
COMMUNICATIONS
OF THE ACMcACM.acm.org� 07/08 VOL.51 NO.7

Association for
Computing Machinery

Web Science
XML Fever

The Revolution
Inside the Box

Transactional
Memory

An Interview with
Donald Knuth

Association for
Computing Machinery

CACM_V51.7.indb 1 6/18/08 12:53:52 PM

http://cacm.acm.org

Dear Colleague,

At a timewhen computing is at the center of the growing demand for technology jobsworldwide,
ACM is continuing its work on initiatives to help computing professionals stay competitive in the

global community. ACM delivers resources that advance computing as a science and profession.

As amember of ACM, you join nearly 90,000 other computing professionals and students worldwide to define
the largest educational, scientific, and professional computing society. Whether you are pursuing scholarly

research, building systems and applications, ormanaging computing projects, ACMoffers opportunities to advance
your interests.

MEMBER BENEFITS INCLUDE:

• A subscription to the completely redefined Communications of the ACM, ACM’s flagship monthly magazine
• The option to subscribe to the full ACMDigital Library, with improved search functionalities and Author
Profile Pages for almost every author in computing

• The Guide to Computing Literature, with over one million bibliographic citations
• Access to ACM’s Career & Job Center offering a host of exclusive career-enhancing benefits
• Free e-mentoring services provided by MentorNet®
• Full and unlimited access to over 3,000 online courses from SkillSoft
• Full and unlimited access to 1,100 online books, featuring 500 from Books24x7®, and 600 from Safari® Books
Online, including leading publishers such as O’Reilly (Professional Members only)

• The option to connect with the best thinkers in computing by joining 34 Special Interest Groups or
hundreds of local chapters

• ACM’s 40+ journals andmagazines at special member-only rates
• TechNews, ACM’s tri-weekly email digest delivering stories on the latest IT news
• CareerNews, ACM’s bi-monthly email digest providing career-related topics
• MemberNet, ACM’s e-newsletter, covering ACM people and activities
• Email forwarding service & filtering service, providing members with a free acm.org email address and
high-quality Postini spam filtering

• And much, much more!

ACM’s worldwide network ranges from students to seasoned professionals and includesmany of the leaders in the field.
ACMmembers get access to this network, and enjoy the advantages that come from sharing in their collective expertise,
all of which serves to keep our members at the forefront of the technology world.

I invite you to share the value of ACMmembershipwith your colleagues and peers who are not yetmembers, and I hope
you will encourage them to join and become a part of our global community.

Thank you for your membership in ACM.

Sincerely,

John R.White
Executive Director and Chief Executive Officer
Association for Computing Machinery

ACM,Uniting theWorld’s Computing Professionals,
Researchers, Educators, and Students

Advancing Computing as a Science & Profession

CACM_V51.7.indb 2 6/18/08 12:53:52 PM

http://acm.org

Priority Code: ACACM29

Online
http://www.acm.org/join

Phone
+1-800-342-6626 (US & Canada)

+1-212-626-0500 (Global)

Fax
+1-212-944-1318

membership application &
digital library order form

PROFESSIONALMEMBERSHIP:

� ACM Professional Membership: $99 USD

� ACM Professional Membership plus the ACMDigital Library:

$198 USD ($99 dues + $99 DL)

� ACMDigital Library: $99 USD (must be an ACMmember)

STUDENTMEMBERSHIP:

� ACM Student Membership: $19 USD

� ACM StudentMembershipplus theACMDigital Library: $42USD

� ACM StudentMembership PLUSPrintCACMMagazine: $42USD

� ACM Student Membership w/Digital Library PLUS Print

CACMMagazine: $62 USD

choose onemembership option:

Name

Address

City State/Province Postal code/Zip

Country E-mail address

Area code & Daytime phone Fax Member number, if applicable

Payment must accompany application. If paying by check or
money order, make payable to ACM, Inc. in US dollars or foreign
currency at current exchange rate.

� Visa/MasterCard � American Express � Check/money order

� Professional Member Dues ($99 or $198) $ ______________________

� ACM Digital Library ($99) $ ______________________

� Student Member Dues ($19, $42, or $62) $ ______________________

Total Amount Due $ ______________________

Card # Expiration date

Signature

Professional membership dues include $40 toward a subscription
to Communications of the ACM. Member dues, subscriptions,
and optional contributions are tax-deductible under certain
circumstances. Please consult with your tax advisor.

payment:

RETURN COMPLETED APPLICATIONTO:

All new ACMmembers will receive an
ACMmembership card.

For more information, please visit us at www.acm.org

Association for Computing Machinery, Inc.
General Post Office
P.O. Box 30777
NewYork, NY 10087-0777

Questions? E-mail us at acmhelp@acm.org
Or call +1-800-342-6626 to speak to a live representative

Satisfaction Guaranteed!

Purposes of ACM
ACM is dedicated to:
1) advancing the art, science, engineering,
and application of information technology
2) fostering the open interchange of
information to serve both professionals and
the public
3) promoting the highest professional and
ethics standards

I agree with the Purposes of ACM:

Signature

ACM Code of Ethics:
http://www.acm.org/serving/ethics.html

You can join ACM in several easy ways:

Or, complete this application and return with payment via postal mail

Special rates for residents of developing countries:
http://www.acm.org/membership/L2-3/

Special rates for members of sister societies:
http://www.acm.org/membership/dues.html

Advancing Computing as a Science & Profession

Please print clearly

CACM_V51.7.indb 1 6/18/08 12:53:53 PM

http://www.acm.org/join
http://www.acm.org/membership/L2-3/
http://www.acm.org/membership/dues.html
http://www.acm.org/serving/ethics.html
http://www.acm.org
mailto:acmhelp@acm.org

2 communicationS of the acm | JULY 2008 | voL. 51 | no. 7

coMMuNicAtioNs�of�the�AcM

Departments

5 Editor’s letter
“Where Do You Come From?
And Where Are You Going?”
By Moshe Y. Vardi

7 Publisher’s Corner
The Art and Business of Revitalizing
A 50-Year-Old Science and
Technology Magazine
By Scott E. Delman

8 CACM Online
Your Attention, Please
By David Roman

107 Careers

109�Calendar

last Byte

112 q&A
Talking Model-Checking Technology
A conversation with the 2007
ACM A.M. turing Award winners.
By Leah Hoffman

News

9 Cloud Computing
As software migrates from local pCs
to distant internet servers, users and
developers alike go along for the ride.
By Brian Hayes

12 Quantum Computing
researchers are optimistic, but
a practical device is years away.
By Michael Ross

14 In Search of Dependable Design
how can developers increase the
reliability of their designs?
By Leah Hoffman

Viewpoints

17 Emerging Markets
India’s Role in the Globalization of IT
tracing the exponential growth
of the indian it industry.
By Alok Aggarwal

20 legally Speaking
Revisiting Patentable Subject Matter
is everything under the sun made by
humans patentable subject matter?
By Pamela Samuelson

23 kode Vicious
Beautiful Code Exists,
If You Know Where to Look
Coding is his game,
pleasantries distained.
By George V. Neville-Neil

27 Point/Counterpoint
Technology Curriculum for
the Early 21st Century
in case you missed it,
the world has changed.
By Stephen J. Andriole/Eric Roberts

33 Image Crisis
Inspiring a New Generation
of Computer Scientists
Consider what you can do to
encourage young people to pursue
technology-related career paths.
By Rick Rashid

35 Interview
The ‘Art’ of Being Donald Knuth
in this fi rst of a two-part talk, the
renowned scholar and computer
scientist refl ects on the infl uences
that set the course for his
extraordinary career.
By Len Shustek

Practice

40 XML Fever
don’t let delusions about
XMl develop into a virulent
strain of XMl fever.
By Erik Wilde and Robert J. Glushko

47 Flash Storage Memory
Can fl ash memory become
the foundation for a new tier
in the storage hierarchy?
By Adam Leventhal

52 Beyond Relational Databases
there is more to data access than sQl.
By Margo Seltzer

CACM_V51.7.indb 2 6/18/08 12:53:53 PM

JULY 2008 | voL. 51 | no. 7 | communicationS of the acm 3

07/08
VoL.�51�No.�7

Association for Computing Machinery
Advancing Computing as a Science & Profession

Contributed Articles

60 Web Science: An Interdisciplinary
Approach to Understanding the Web
the Web must be studied as
an entity in its own right to ensure
it keeps fl ourishing and prevent
unanticipated social effects.
By James Hendler, Nigel Shadbolt,
Wendy Hall, Tim Berners-Lee,
and Daniel Weitzner

70 The Revolution Inside the Box
how changes in computer
architecture are about to impact
everyone in the it business.
By Mark Oskin

Review Articles

80 Transactional Memory
is tM the answer for improving
parallel programming?
By James Larus and Christos Kozyrakis

Research Highlights

90 Technical Perspective
Computer Science Takes On
Molecular Dynamics
By Bob Colwell

91 Anton, a Special-Purpose Machine
for Molecular Dynamics Simulation
By David E. Shaw, Martin M. Deneroff,
Ron O. Dror, Jeffrey S. Kuskin,
Richard H. Larson, John K. Salmon,
Cliff Young, Brannon Batson,
Kevin J. Bowers, Jack C. Chao,
Michael P. Eastwood,
Joseph Gagliardo, J.P. Grossman,
 C. Richard Ho, Douglas J. Ierardi,
István Kolossváry, John L. Klepeis,
Timothy Layman, Christine McLeavey,
Mark A. Moraes, Rolf Mueller,
Edward C. Priest, Yibing Shan,
Jochen Spengler, Michael Theobald,
Brian Towles, and Stanley C. Wang

98 Technical Perspective
The Physical Side of Computing
By Feng Zhao

99 The Emergence of a Networking
Primitive in Wireless Sensor Networks
By Philip Levis, Eric Brewer,
David Culler, David Gay, Sam Madden,
Neil Patel, Joe Polastre, Scott Shenker,
Robert Szewczyk, and Alec Woo

about the cover: Marius Watz is a distinguished digital
artist whose bold abstract compositions are created
directly through computer code. His tool of choice is
Processing, a language built on Java and intended for use
by artists and designers. As a student of computer science
in the early 1990s, Watz would peruse Communications
of the ACM at his university’s library, looking for articles
on computer graphics. With this cover illustration, one
might say a circle has been completed.

CACM_V51.7.indb 3 6/18/08 12:53:55 PM

4 communications of the acm | JULY 2008 | vol. 51 | no. 07

communications of the acm
A monthly publication of ACM Media

ACM, the world’s largest educational
and scientific computing society, delivers
resources that advance computing as a
science and profession. ACM provides the
computing field’s premier Digital Library
and serves its members and the computing
profession with leading-edge publications,
conferences, and career resources.

Executive Director and CEO
John White
Deputy Executive Director and COO
Patricia Ryan
Director, Office of Information Systems
Wayne Graves
Director, Office of Financial Services
Russell Harris
Director, Office of Membership
Lillian Israel
Director, Office of Publications
Mark Mandelbaum
Director, Office of SIG Services
Donna Cappo

ACM Council
President
Stuart I. Feldman
Vice-President
Wendy Hall
Secretary/Treasurer
Alain Chesnais
Past President
David A. Patterson
Chair, SGB Board
Joseph A. Konstan
Co-Chairs, Publications Board
Ronald Boisvert, Holly Rushmeier
Members-at-Large
Michel Beauduoin-Lafon (2000–2008);
Chuang Lin (2007–2008);
Bruce Maggs (2006–2010);
Jennifer Rexford (2007-2008)
Barbara Ryder (2000–2008);
David S. Wise (2004–2008)
SGB Council Representatives
Norman Jouppi (2006–2009);
Robert A. Walker (2006–2008);
Alexander Wolf (2005–2009)

Publications Board
Co-Chairs
Ronald F. Boisvert and Holly Rushmeier
Board Members
Gul Agha; Michel Beaudouin-Lafon;
Jack Davidson; Carol Hutchins;
Ee-ping Lim; M. Tamer Ozsu; Vincent Shen;
Mary Lou Soffa; Ricardo Baeza-Yates

ACM U.S. Public Policy Office
Cameron Wilson, Director
1100 Seventeenth St., NW, Suite 507
Washington, DC 20036 USA
T (202) 659-9711; F (202) 667-1066

Computer Science Teachers
Association
Chris Stephenson
Executive Director
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA
T (800) 401-1799; F (541) 687-1840

Association for Computing Machinery
(ACM)
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA
T (212) 869-7440; F (212) 869-0481

STAFF

Group Publisher
Scott E. Delman

Executive Editor
Diane Crawford
Managing Editor
Thomas E. Lambert
Senior Editor
Andrew Rosenbloom
Senior Editor/News
Jack Rosenberger
Web Editor
David Roman
Editorial Assistant
Zarina Strakhan
Rights and Permissions
Deborah Cotton

Art Director
Andrij Borys
Associate Art Director
Alicia Kubista
Assistant Art Director
Mia Angelica Balaquiot
Production Manager
Lynn D’Addesio
Director of Media Sales
Jonathan Just
Advertising Coordinator
Graciela Jacome
Marketing & Communications Manager
Brian Hebert
Public Relations Coordinator
Virgina Gold
Publications Assistant
Emily Eng

Columnists
Alok Aggarwal; Phillip G. Armour
Martin-Campbell-Kelly,
Michael Cusumano; Peter J. Denning;
Shane Greenstein; Mark Guzdial;
Peter Harsha; Leah Hoffman
Deborah Johnson; Susan Landau;
Mari Sako; Pamela Samuelson;
Gene Spafford; Cameron Wilson

Contact Points
Copyright permission
permissions@acm.org
Calendar items
calendar@acm.org
Change of address
acmcoa@acm.org

Web Presence
http://cacm.acm.org

Advertising

ACM Advertising Department
2 Penn Plaza, Suite 701, New York, NY
10121-0701
T (212) 869-7440
F (212) 869-0481

Director of Media Sales
Jonathan M. Just
jonathan.just@acm.org

For the latest media kit—including
rates—contact Graciela Jacome at
jacome@acm.org

editorial Board

Editor-in-chief
Moshe Y. Vardi

News
Co-chairs
Mark Najor and Prabhakar Raghavan
Board Members
Brian Bershad; Hsiao-Wuen Hon;
Mei Kobayashi; Rajeev Rastogi;
Jeannette Wing

Viewpoints
Co-chairs
William Aspray and
Susanne E. Hambrusch
Board Members
Stefan Bechtold; Judith Bishop;
Peter van den Besselaar; Soumitra Dutta;
Peter Freeman; Seymour Goodman;
Shane Greenstein; Mark Guzdial;
Richard Heeks; Susan Landau;
Carlos Jose Pereira de Lucena;
Helen Nissenbaum; Beng Chin Ooi

Practice
Chair
Stephen Bourne
Board Members
Eric Allman; Charles Beeler;
David J. Brown; Bryan Cantrill;
Terry Coatta; Mark Compton;
Ben Fried; Pat Hanrahan
Marshall Kirk McKusick;
George Neville-Neil

Contributed Articles
Co-chairs
Al Aho and George Gottlob
Board Members
Yannis Bakos; Gilles Brassard; Peter
Buneman; Andrew Chien; Anja Feldman;
Blake Ives; Takeo Kanade; James Larus;
Igor Markov; Gail C. Murphy; Shree Nayar;
Lionel M. Ni; Sriram Rajamani; Avi Rubin;
Ron Shamir; Larry Snyder;
Wolfgang Wahlster; Andy Chi-Chih Yao;
Willy Zwaenepoel

Research Highlights
Co-chairs
David A. Patterson and
Stuart J. Russell
Board Members
Martin Abadi; P. Anandan; Stuart K. Card;
Deborah Estrin; Stuart I. Feldman;
Shafi Goldwasser; Maurice Herlihy;
Norm Jouppi; Andrew B. Kahng; Linda
Petzold; Michael Reiter;
Mendel Rosenblum; Ronitt Rubinfeld;
David Salesin; Lawrence K. Saul;
Guy Steele, Jr.; Gerhard Weikum

Web
Co-chairs
Marti Hearst and James Landay
Board Members
Jason I. Hong; Jeff Johnson;
Wendy MacKay; Jian Wang

The Practice section of the
CACM Editorial Board also serves as the
Editorial Board of ACM Queue.

Author Guidelines
http://cacm.acm.org/guidelines

ACM Copyright Notice
Copyright © 2008 by Association for
Computing Machinery, Inc. (ACM).
Permission to make digital or hard copies
of part or all of this work for personal
or classroom use is granted without
fee provided that copies are not made
or distributed for profit or commercial
advantage and that copies bear this
notice and full citation on the first
page. Copyright for components of this
work owned by others than ACM must
be honored. Abstracting with credit is
permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to
lists, requires prior specific permission
and/or fee. Request permission to publish
from permissions@acm.org or fax (212)
869-0481.

For other copying of articles that carry a
code at the bottom of the first or last page
or screen display, copying is permitted
provided that the per-copy fee indicated
in the code is paid through the Copyright
Clearance Center; www.copyright.com.

Subscriptions
Annual subscription cost is included in
the society member dues of $99.00 (for
students, cost is included in $42.00 dues);
the nonmember annual subscription rate
is $100.00.

ACM Media Advertising Policy
Communications of the ACM and other
ACM Media publications accept advertising
in both print and electronic formats. All
advertising in ACM Media publications is
at the discretion of ACM and is intended
to provide financial support for the various
activities and services for ACM members.
Current Advertising Rates can be found by
visiting http://www.acm.org/publications/
about_advertising?searchterm=advertis
ing or by contacting ACM Media Sales at
(212) 626-0654.

Single Copies
Single copies of Communications of the
ACM are available for purchase. Please
contact acmhelp@acm.org.

Communications of the ACM
(ISSN 0001-0782) is published monthly
by ACM Media, 2 Penn Plaza, Suite 701,
New York, NY 10121-0701. Periodicals
postage paid at New York, NY 10001,
and other mailing offices.

POSTMASTER
Please send address changes to
Communications of the ACM
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA

Printed in the U.S.A.

Communications of the ACM is the leading monthly print and online magazine for the computing and information technology fields.
Communications is recognized as the most trusted and knowledgeable source of industry information for today’s computing professional.
Communications brings its readership in-depth coverage of emerging areas of computer science, new trends in information technology,
and practical applications. Industry leaders use Communications as a platform to present and debate various technology implications,
public policies, engineering challenges, and market trends. The prestige and unmatched reputation that Communications of the ACM
enjoys today is built upon a 50-year commitment to high-quality editorial content and a steadfast dedication to advancing the arts,
sciences, and applications of information technology.

P
L

E

A
S E R E C Y

C
L

E

T
H

I

S
 M A G A Z

I
N

E

CACM_V51.7.indb 4 6/18/08 12:53:55 PM

mailto:permissions@acm.org
mailto:calendar@acm.org
mailto:acmcoa@acm.org
http://cacm.acm.org
mailto:jonathan.just@acm.org
mailto:jacome@acm.org
http://cacm.acm.org/guidelines
mailto:permissions@acm.org
http://www.copyright.com
mailto:acmhelp@acm.org
http://www.acm.org/publications/about_advertising?searchterm=advertising
http://www.acm.org/publications/about_advertising?searchterm=advertising
http://www.acm.org/publications/about_advertising?searchterm=advertising

july 2008 | vol. 51 | no. 7 | communications of the acm 5

editor’s letter

DOI: 10.1145/1364782.1364783 	 Moshe Y. Vardi

cannot take a break. Communications
continued to appear every month while
behind the curtains major changes
were taking place. Over the next few
months, I will discuss these changes in
greater detail and, more importantly,
why these changes are necessary for
Communications to maintain its leader-
ship position.

An important component in this
revitalization is the fortification of the
professional staff producing it. A key
addition to the fold is Scott Delman as
Group Publisher. For Communications
to continue to maintain its leadership
position, it must excel not only edi-
torially, but also as a business. Flag-
ship publications of professional so-
cieties consume nontrivial fractions of
their societies’ budgets, and continual
business innovation is critical to their
success. Scott brings extensive experi-
ence in the scholarly publication mar-
ketplace; we are fortunate to have him
join the team.

Another change is the establishment
of a new editorial board (see masthead,
pg. 4 or http://www.acm.org/publica-
tions/cacm/?pageIndex=5). This out-
standing board brings together many
of the leaders of the computing field,
representing its diversity along many
dimensions. The board is organized by
teams, roughly corresponding to the
different sections within the magazine.
Unlike some distinguished editorial
boards, this board is a working board.
Producing a monthly publication re-
quires an ongoing effort to “procure”

high-quality material, which is the task
of this editorial board. The quality of
a publication such as Communications
is critically tied to the quality of its edi-
torial board. ACM is lucky to have so
many dedicated volunteers.

Let me close by mentioning one
new feature of the new content model
with ties to the old days when Commu-
nications was a venue for top research
papers. The new Research Highlights
section provides readers with a collec-
tion of outstanding research articles,
selected from the broad spectrum of
computing research conferences. This
section provides a broad overview of
the most significant developments in
computing research. Articles appear-
ing in this section are first nominated
by Editorial Board members or Ap-
proved Nominating Organizations,
and are then subject to final selection
by the Editorial Board. Prior to publica-
tion, authors are requested to rewrite
and expand the scope of their articles,
as appropriate for Communications’
broad-based readership. Each selected
Research Highlights article is preceded
by a one-page Technical Perspective
providing readers with an overview of
the underlying motivation of the re-
search, the important ideas to emerge
from the work, and its scientific and
practical significance. These Techni-
cal Perspectives are written by noted
experts in the field addressed in the
research article.

Moshe Y. Vardi, Editor-in-Chief

‘Where Do You Come From?
And Where Are You Going?’
The noted management consulting firm Booz Allen
Hamilton recently issued a report identifying the world’s
10 most enduring institutions of the 20th and 21st centuries.

More interesting than their findings is
their list of chosen determinants: in-
novative capabilities; governance and
leadership; information flow; culture
and values; adaptive response; risk
structure; and legitimacy.

It is useful to keep these determi-
nants in mind when we consider that
Communications, having celebrated its
50th anniversary last January, is now
older than most of its readers. Keeping
a magazine in a leadership position for
over 50 years is a daunting challenge
indeed. As the Red Queen in Lewis
Carroll’s Through the Looking Glass, pro-
claimed: “Now, here, you see, it takes all
the running you can do to keep in the
same place. If you want to get some-
where else, you must run at least twice
as fast as that!” In a fast-changing dis-
cipline such as ours, we need to run
incredibly fast if we want Communica-
tions to remain the foremost monthly
magazine for the leadership of the
computing field.

In the anniversary issue last Janu-
ary, I wrote an essay (“CACM: Past,
Present, and Future,” pg. 44) describ-
ing the process initiated in early 2005
by then ACM President David Pat-
terson to revitalize Communications.
Upon ACM Council’s approval of a new
editorial model in June 2007, a major
initiative was launched to achieve this
vision. This issue is the culmination
of that effort. To appreciate the magni-
tude of the task, consider the analogy
“replacing the engines of a jet plane
in mid-flight.” A monthly publication

CACM_V51.7.indb 5 6/18/08 12:53:56 PM

http://www.acm.org/publications/cacm/?pageIndex=5
http://www.acm.org/publications/cacm/?pageIndex=5

013759x

ABCD springer.com

Easy Ways to Order for the Americas 7 Write: Springer Order Department, PO Box 2485, Secaucus, NJ 07096-2485, USA 7 Call: (toll free) 1-800-SPRINGER
7 Fax: 1-201-348-4505 7 Email: orders-ny@springer.com or for outside the Americas 7 Write: Springer Distribution Center GmbH, Haberstrasse 7,
69126 Heidelberg, Germany 7 Call: +49 (0) 6221-345-4301 7 Fax : +49 (0) 6221-345-4229 7 Email: SDC-bookorder@springer.com
7 Prices are subject to change without notice. All prices are net prices.

New and Noteworthy
Introduction to
Discrete Event
Systems
Cassandras, Christos G.;
Lafortune, Stephane

A comprehensive
introduction to the field
of discrete event

systems, offering a breadth of coverage that
makes the material accessible to readers of
varied backgrounds. The book emphasizes a
unified modeling framework that transcends
specific application areas, linking the following
topics in a coherent manner: language and
automata theory, supervisory control, Petri net
theory, Markov chains and queueing theory,
discrete-event simulation, and concurrent
estimation techniques. Distinctive features of
the second edition include 7 more detailed
treatment of equivalence of automata, event
diagnosis, and decentralized event diagnosis
7 expanded treatment of centralized and
decentralized control of partially-observed
systems 7 new sections on timed automata
with guards (in the Alur-Dill formalism) and
hybrid automata 7 an introduction to hybrid
systems 7 updated coverage of discrete event
simulation, including new software tools
available 7 recent developments in sensitivity
analysis for discrete event systems as well as
hybrid systems

2nd ed., 2008, XXIV, 776 p., Hardcover
ISBN 978-0-387-33332-8 7 $89.95

A Brief History
of Computing
O’Regan, Gerard

This useful and lively
text provides a
comprehensive
introduction to the key
topics in the history of

computing, in an easy-to-follow and concise
manner. It covers the significant areas and
events in the field - from the ancient Egyptians
through to the present day - and both gives the
reader a flavour of the history and stimulates
further study in the subject.

2008, XX, 252 p. 72 illus., Hardcover
ISBN 978-1-84800-083-4 7 $29.95

Rightshore!
Successfully
Industrialize SAP®
Projects Offshore

Hendel, Anja; Messner,
Wolfgang; Thun, Frank
(Eds.)

This book describes
successful global delivery models utilizing
industrialized methods to deliver SAP® projects
from India. While the first part is devoted to
management concepts, service offerings and
the peculiarities of working together with
India, the second part features eight case
studies from different industries and from
around the world describing how India delivery
centers have been successfully deployed in
SAP® development projects.

2008, XVIII, 292 p. 74 illus., Hardcover
ISBN 978-3-540-77287-3 7 $64.95

Algorithms and
Data Structures
The Basic Toolbox

Mehlhorn, Kurt, Sanders,
Peter

This book is a concise
introduction addressed
to students and

professionals familiar with programming and
basic mathematical language. Individual
chapters cover arrays and linked lists, hash
tables and associative arrays, sorting and
selection, priority queues, sorted sequences,
graph representation, graph traversal, shortest
paths, minimum spanning trees, and
optimization. The algorithms are presented in a
modern way, with explicitly formulated
invariants, and comment on recent trends such
as algorithm engineering, memory hierarchies,
algorithm libraries and certifying algorithms.
The authors use pictures, words and high-level
pseudocode to explain the algorithms, and
then they present more detail on efficient
implementations using real programming
languages like C++ and Java.

2008, Approx. 310 p., Hardcover
ISBN 978-3-540-77977-3 7 $44.95

Software
Evolution
Mens, Tom; Demeyer,
Serge (Eds.)

Mens and Demeyer, both
international authorities
in the field of software
evolution, together with

the invited contributors, focus on novel trends in
software evolution research and its relations
with other emerging disciplines such as model-
driven software engineering, service-oriented
software development, and aspect-oriented
software development. They do not restrict
themselves to the evolution of source code but
also address the evolution of other, equally
important software artifacts such as databases
and database schemas, design models, software
architectures, and process management. The
contributing authors provide broad overviews of
related work, and they also contribute to a
comprehensive glossary, a list of acronyms, and
a list of books, journals, websites, standards and
conferences that together represent the
community’s body of knowledge.

2008, XVIII, 347 p. 100 illus., Hardcover
ISBN 978-3-540-76439-7 7 $89.95

Guide to
Advanced
Empirical
Software
Engineering
Shull, Forrest; Singer,
Janice; Sjøberg,
Dag I.K. (Eds.)

Empirical studies have become an integral
element of software engineering research and
practice. This unique text/reference includes
chapters from some of the top international
empirical software engineering researchers and
focuses on the practical knowledge necessary
for conducting, reporting and using empirical
methods in software engineering.

2008, XII, 388 p. 37 illus., Hardcover
ISBN 978-1-84800-043-8 7 $99.00

CACM_V51.7.indb 6 6/18/08 12:53:56 PM

http://springer.com
mailto:orders-ny@springer.com
mailto:SDC-bookorder@springer.com

july 2008 | vol. 51 | no. 7 | communications of the acm 7

publisher’s corner

The name on the cover remains the
same, but even at first glance it is clear
that the differences far outweigh the
similarities with what we can now fondly
and lovingly refer to as the old CACM.

Every decade or so, it is common for
magazines to reinvent themselves. This is
the case for many reasons, some related to
the publishers and the changing dynam-
ics of the publishing industry and some
related to changing market and reader-
ship demographics. Very few magazines
are able to survive over time without react-
ing to these changes and Communications
of the ACM is no exception. In fact, maga-
zines in the technology sector are even
less immune to such changes, because
of the rapid growth of the industry as a
whole and trend toward specialization.
As new areas of research and technology
emerge, new publications are launched
to satisfy the information needs of those
new communities. The number of new
technology magazines launched over the
past 10 years for this reason is startling,
each carving out a highly targeted and
dedicated niche.

Equally startling is the number of
technology magazines that have folded or
merged into other publications over the
past two years. As many magazines are
heavily dependent on advertising revenue
to fund operations, recent economic con-
ditions and the rapid migration of adver-
tising revenue from print to online have
had a sobering effect on the technology
magazine publishing industry.

Publications that have the ability to trans-
form themselves editorially and appeal to

doi:10.1145/1364782.1364784 	 Scott E. Delman

the changing needs of their readership have
the greatest ability to succeed. Publications
that can thrive even under these adverse mar-
ket conditions are truly exceptional.

For 50 years, Communications has
stood the test of time and when neces-
sary reinvented itself to keep pace with
ACM’s diverse and growing membership
and with the leadership of the computing
field. In recent years, the computing com-
munity has started to indicate to ACM’s
leadership that it was time for a change—
perhaps even a dramatic one—for the
flagship publication.

The ACM membership has consis-
tently grown more diverse over the past
decade and its information needs have
grown more demanding. No longer is it
possible to categorize ACM’s member-
ship into a few distinct buckets, such as
Educator or Researcher or Practitioner.
Such distinctions make sense on paper
and are favorable for commercial rea-
sons, but they are also extremely limiting
and do not reflect the way things often
work in the real world, where these lines
are often less defined. Practitioners are
in fact interested in what next-generation
research is coming down the pipeline,
researchers are of course interested in
what major technology challenges exist,
and both groups have a vested interest in
issues related to computing education.
But as publishers it is far too easy to draw
the distinctions instead of the similarities
and to produce publications that target
specific categories of readers instead of
large and diverse communities that share
common goals and interests.

When the field of computing was in its
infancy, Communications of the ACM was
created to serve as a single source of high-
quality authoritative information to help
bring together a growing community of
scientists, technologists, and educators
by highlighting the best the field had to
offer. Some 50 years later, even though
the field has grown tremendously, it con-
tinues to experience growing pains, and
now more than ever requires a revitalized
publication to bring this community to-
gether. The new Communications of the
ACM is in many ways a homecoming for
the field of computing itself and an op-
portunity to help guide the field through
what many believe is a critical stage in the
field’s maturation into adulthood.

Over the coming months, Communica-
tions’ dynamic new Editor-in-Chief, Moshe
Y. Vardi, an all-star lineup of contributors,
and I will introduce you to more of the in-
novations that form the basis for the new
Communications. But it is most important
to note that all of the changes to this new
vision reflect the best the international
computing community has to offer.

The true innovation, however, lies in
the expansion of the magazine’s editorial
scope, which will appeal to the commu-
nity’s diverse mix of researchers, practi-
tioners, and educators in all areas of com-
puting and information technology.

It is with great pride and appreciation
for your continued support of ACM’s flag-
ship publication that I welcome you to the
new Communications of the ACM.

Scott E. Delman, Group Publisher

The Art and Business of Revitalizing
a 50-Year-Old Science
and Technology Magazine
By the time you flip to this page you will have noticed there is
something dramatically different with Communications of the ACM.

CACM_V51.7.indb 7 6/18/08 12:53:57 PM

H
OW DO YOU grab and hold
someone’s attention? Strat-
egies vary. While polite in-
terjections and attentive
gazes work in some circles,

they are ineffective on the Internet,
where Web sites employ a host of in-
your-face, lapel-grabbing techniques
in the war for eyeballs.

We’re in the middle of redesigning
Communications’ Web site. The plan
is to make cacm.acm.org as engaging
and as awesome as a summer fireworks
display, but without the noise. The new
site won’t be ready for months, but it’s
safe to say it will include some long-
overdue content, notably news, but will
mostly muffle the raised-voice tech-
niques commonly shouted by popular
sites, and will avoid these tactics spot-
ted in the last 24 hours (where noted).
There will be no blood (NYtimes.com),
no fires (CNN.com), no violence (wash-
ingtonpost.com), and no Paris Hilton
(youtube.com). What’s left?

Plenty. “Journalism is so much
more than blood and sex,” says Erica
Stone, the fictional professor played by
Doris Day in Teacher’s Pet, a 1958 film
that is both old fashioned and surpris-
ingly fresh. “Your friend’s kind of re-
porting went out with Prohibition,”
Day tells one of her night-school stu-
dents, a seasoned newspaper editor
played by Clark Gable. “TV and radio
announce spot news minutes after it
happens. Newspapers can’t compete
in reporting what happened anymore.
But they can and should tell the public
why it happened. Ask anybody. You’ll
find that today the average man wants
to know why.”

The scene is funny not because Day
is perky, smart, and slightly oblivious
(which she is), or because Gable is
playing his archetype—the smirking,
worldly, leering male (which he is). It’s
because adding “the Internet” to Pro-
fessor Stone’s roster of fast media has
her delivering word-for-word the same
lecture that newspaper publishers
humbled by the Internet are repeating

50 years later. That’s less astonishing
foresight than an assertion of the on-
going need for change amidst increas-
ing competition for readers’ attention,
whatever the media du jour.

This redesigned edition attests to
that need for change; the upcoming
Web site will do the same. Both will
hold your attention by providing en-
gaging, interesting, and meaningful
content. Web inventor Tim Berners-
Lee recently told BBC News that the
Web is “still in its infancy.” Created
“by so many people collaborating
across the globe,” the world has “only
started to explore the possibilities of
[the Web].” That spirit of openness,
collaboration, and creativity informs
the redesign of Communications’ site.
It will provide more than what you see
in the magazine, and will have you
coming back for more.

No change is being made for change’s
sake. Every addition, every feature, ev-
ery design decision is being bounced
off ACM members to make sure it
meets your needs and interests. The
site will serve a rich menu of content
that’s been taste-tested by members
through focus groups, one-on-one in-

terviews, and surveys. If this doesn’t
sound like what the doctor ordered,
it’s not. It’s what you ordered.

“If it has good content, I don’t care”
if it’s in news, blog, or video format,
said one surveyed member. “Content
trumps all,” said another.

The site will present traditional Com-
munications fare plus other computing
stories. Development is still in flux, but
the site is likely to publish opinion and
commentary from readers and invited
experts to explain the importance or
significance of a work. “Some edito-
rial guidance would be most useful to
help readers understand the relevance
of and keep updated on the newest
research,” one member said. “Reader
discussion and commentary [are im-
portant],” another said, “because in
the computer world, there is so much
to be talked about. People must bounce
ideas off of one another in order to get
some kind of understanding and gen-
eral consensus on anything which has
any importance.” Roger that.

Advertising is also on the menu.
The vast majority of members, 93%,
are open to or unruffled by ads on the
site. That’s an endorsement of ACM’s
strategy to find revenue to expand the
range of services available to members
and non-members alike. “Google makes
a lot of money out of (relevant) ads,” one
member said. “They are ok for me. You
should consider generating revenue
from ads.”

Nothing will get onto the site before
it gets a thumbs up from members. To
that end, ACM is still asking for input
and will continue to do so until the site
launches, probably in early 2009. It’s
all being done with an eye on holding
your attention by delivering what you
want. If you have opinions about the
redesign that you’d like to share, go to
www.acm.org/publications/cacm/acm-
member-feedback.

Thanks for your attention.

David Roman (roman@hq.acm.org)
is Communications’ Web Editor.

8 communications of the acm | july 2008 | vol. 51 | no. 7

P
H

O
T

O
G

R
A

P
H

 B
Y

 K
A

M
 Y

I
N

,
K

W
O

K

DOI: 10.1145/1364782.1364785	 David Roman

Your Attention, Please
The redesigned CACM Web site will deliver exactly what you want.

cacm online

CACM_V51.7.indb 8 6/18/08 12:53:57 PM

http://cacm.acm.org
http://NYtimes.com
http://CNN.com
http://youtube.com
mailto:roman@hq.acm.org
http://washingtonpost.com
http://washingtonpost.com
http://www.acm.org/publications/cacm/acmmember-feedback
http://www.acm.org/publications/cacm/acmmember-feedback

 N
news

july 2008 | vol. 51 | no. 7 | communications of the acm 9

T
he Greek myths tell of crea-
tures plucked from the sur-
face of the Earth and en-
shrined as constellations
in the night sky. Something

similar is happening today in the world
of computing. Data and programs are
being swept up from desktop PCs and
corporate server rooms and installed
in “the compute cloud.”

Whether it’s called cloud comput-
ing or on-demand computing, software
as a service, or the Internet as platform,
the common element is a shift in the
geography of computation. When you
create a spreadsheet with the Google
Docs service, major components of the
software reside on unseen computers,
whereabouts unknown, possibly scat-
tered across continents.

The shift from locally installed pro-
grams to cloud computing is just get-
ting under way in earnest. Shrink-wrap
software still dominates the market
and is not about to disappear, but the
focus of innovation indeed seems to be
ascending into the clouds. Some sub-
stantial fraction of computing activity
is migrating away from the desktop and
the corporate server room. The change
will affect all levels of the computa-
tional ecosystem, from casual user to
software developer, IT manager, even
hardware manufacturer.

In a sense, what we’re seeing now
is the second coming of cloud com-
puting. Almost 50 years ago a similar
transformation came with the creation
of service bureaus and time-sharing
systems that provided access to com-
puting machinery for users who lacked
a mainframe in a glass-walled room
down the hall. A typical time-sharing
service had a hub-and-spoke configu-
ration. Individual users at terminals
communicated over telephone lines
with a central site where all the com-
puting was done.

When personal computers arrived
in the 1980s, part of their appeal was
the promise of “liberating” programs
and data from the central computing
center. (Ted Nelson, the prophet of hy-
pertext, published a book titled Com-
puter Lib/Dream Machines in 1974.) In-
dividuals were free to control their own
computing environment, choosing
software to suit their needs and cus-
tomizing systems to their tastes.

But PCs in isolation had an obvious
weakness: In many cases the sneaker-
net was the primary means of collabo-
ration and sharing. The client-server
model introduced in the 1980s offered
a central repository for shared data
while personal computers and work-
stations replaced terminals, allowing
individuals to run programs locally.

In the current trend, the locus of

Technology | doi: 10.1145/1364782.1364786	 Brian Hayes

Cloud Computing
As software migrates from local PCs to distant Internet servers,
users and developers alike go along for the ride.

P
H

O
T

O
G

R
A

P
H

 B
Y

 R
I

C
H

A
R

D
 M

O
R

G
E

N
S

T
E

I
N

CACM_V51.7.indb 9 6/18/08 12:53:58 PM

10 communications of the acm | july 2008 | vol. 51 | no. 7

news

ing platform of the vendor’s choosing.
Updates and bug fixes are deployed in
minutes. (But the challenges of diversi-
ty don’t entirely disappear; the server-
side software must be able to interact
with a variety of clients.)

Although the new model of Inter-
net computing has neither hub nor
spokes, it still has a core and a fringe.
The aim is to concentrate computation
and storage in the core, where high-
performance machines are linked by
high-bandwidth connections, and all of
these resources are carefully managed.
At the fringe are the end users making
the requests that initiate computations
and who receive the results.

Although the future of cloud com-
puting is less than clear, a few exam-
ples of present practice suggest likely
directions:

Wordstar for the Web. The kinds of
productivity applications that first at-
tracted people to personal computers
30 years ago are now appearing as soft-
ware services. The Google Docs pro-
grams are an example, including a word
processor, a spreadsheet, and a tool
for creating PowerPoint-like presenta-
tions. Another undertaking of this kind
is Buzzword, a Web-based word proces-
sor acquired by Adobe Systems in 2007.

computation is shifting again, with
functions migrating outward to distant
data centers reached through the Inter-
net. The new regime is not quite a re-
turn to the hub-and-spoke topology of
time-sharing systems, if only because
there is no hub. A client computer on
the Internet can communicate with
many servers at the same time, some of
which may also be exchanging informa-
tion among themselves. However, even
if we are not returning to the architec-
ture of time-sharing systems, the sud-
den stylishness of the cloud paradigm
marks the reversal of a long-standing
trend. Where end users and corporate
IT managers once squabbled over pos-
session of computing resources, both
sides are now willing to surrender a
large measure of control to third-party
service providers. What brought about
this change in attitude?

For the individual, total control
comes at a price. Software must be in-
stalled and configured, then updated
with each new release. The computa-
tional infrastructure of operating sys-
tems and low-level utilities must be
maintained. Every update to the oper-
ating system sets off a cascade of sub-
sequent revisions to other programs.
Outsourcing computation to an Inter-
net service eliminates nearly all these
concerns. Cloud computing also offers
end users advantages in terms of mo-
bility and collaboration.

For software vendors who have shift-
ed their operations into the cloud, the
incentives are similar to those motivat-
ing end users. Software sold or licensed
as a product to be installed on the user’s
hardware must be able to cope with a
baffling variety of operating environ-
ments. In contrast, software offered
as an Internet-based service can be de-
veloped, tested, and run on a comput-

Another recent Adobe product is Pho-
toshop Express, which has turned the
well-known image-manipulation pro-
gram into an online service.

Enterprise computing in the cloud.
Software for major business applica-
tions (such as customer support, sales,
and marketing) has generally been run
on corporate servers, but several com-
panies now provide it as an on-demand
service. The first was Salesforce.com,
founded in 1999, offering a suite of on-
line programs for customer relation-
ship management and other business-
oriented tasks; the company’s slogan is
“No software!”

Cloudy infrastructure. It’s all very
well to outsource the chore of build-
ing and maintaining a data center,
but someone must still supply that in-
frastructure. Amazon.com has moved
into this niche of the Internet ecosys-
tem. Amazon Web Services offers data
storage priced by the gigabyte-month
and computing capacity by the CPU-
hour. Both kinds of resources expand
and contract according to need. IBM
has announced plans for the “Blue
Cloud” infrastructure. And Google is
testing the App Engine, which provides
hosting on Google server farms and a
software environment centered on the
Python programming language and the
Bigtable distributed storage system.

The cloud OS. For most cloud-com-
puting applications, the entire user in-
terface resides inside a single window
in a Web browser. Several initiatives
aim to provide a richer user experi-
ence for Internet applications. One
approach is to exploit the cloud-com-
puting paradigm to provide all the fa-
cilities of an operating system inside a
browser. The eyeOS system, for exam-
ple, reproduces the familiar desktop
metaphor—with icons for files, folders,

What are the most important IT
challenges for the next 25 years?
At the recent Gartner Emerging
Trends Symposium/ITxpo,
Gartner analysts identified
seven IT grand challenges
that, if met, will have profound
economic, scientific and
societal impacts. They are:

Eliminate the need to manu-˲˲
ally recharge wireless devices

Parallel programming applica-˲˲
tions that fully exploit multicore
processors

Non-tactile, natural comput-˲˲
ing interfaces

Automated computer-to-hu-˲˲
man speech translation

Reliable, long-term digital ˲˲
storage

Increase programmer produc-˲˲
tivity by 100 percent

Identify the financial conse-˲˲
quences of IT investments

“IT leaders should always be
looking ahead for the emerging
technologies that will have

a dramatic impact on their
business, and information on
many of these future innovations
are already in some public
domain,” says Gartner VP Ken
McGee. To find such information,
Gartner suggests examining
relevant research papers, patents,
and production prototypes.

Information Technology

Gartner’s Seven IT Grand Challenges

For most applications,
the entire user
interface resides
inside a single window
in a Web browser.

CACM_V51.7.indb 10 6/18/08 12:53:58 PM

http://Salesforce.com
http://Amazon.com

news

july 2008 | vol. 51 | no. 7 | communications of the acm 11

as PHP, Java, and Python). Information
exchanged between the various layers
is likely to be encoded in some varia-
tion of XML.

Even though the new model of re-
mote computing seems to reverse the
1980s “liberation” movement that gave
individual users custody over programs
and data, the shift does not necessarily
restore control to managers in the cor-
porate IT department.

To the extent that cloud comput-
ing succeeds, it represents an obvious
competitive challenge to vendors of
shrink-wrap software. Ironically, the
open-source movement could also
have a tough time adapting to the new
computing model. It’s one thing to cre-
ate and distribute an open-source word
processor competing with Microsoft
Word; not so obvious is how a consor-
tium of volunteers would create a Web
service to compete with Google Docs.

Finally, cloud computing raises
questions about privacy, security, and
reliability—a major subject of discus-
sion at a workshop held last January
at the Center for Information Tech-
nology Policy at Princeton University.
Allowing a third-party service to take
custody of personal documents raises
awkward questions about control and
ownership: If you move to a competing
service provider, can you take your data
with you? Could you lose access to your
documents if you fail to pay your bill?
Do you have the power to expunge doc-
uments that are no longer wanted?

The issues of privacy and confiden-
tiality are equally perplexing. In one
frequently cited scenario, a govern-
ment agency presents a subpoena or
search warrant to the third party that
has possession of your data. If you had
retained physical custody, you might
still have been compelled to surrender
the information, but at least you would
have been able to decide for yourself
whether or not to contest the order.
The third-party service is presumably
less likely to go to court on your behalf.
In some circumstances you might not
even be informed that your documents
have been released. It seems likely that
much of the world’s digital informa-
tion will be living in the clouds long be-
fore such questions are resolved.	

Brian Hayes writes about science and technology from
Durham, NC.

and applications—all living in a brows-
er window. Another solution would
bypass the Web browser, substituting
a more-capable software system that
runs as a separate application on the
client computer and communicates di-
rectly with servers in the cloud. This is
the idea behind AIR (formerly Apollo)
being tested by Adobe Systems. Open-
Laszlo, an open-source project, works
in much the same way.

For those deploying software out in
the cloud, scalability is a major issue—
the need to marshal resources in such a
way that a program continues running
smoothly even as the number of users
grows. It’s not just that servers must re-
spond to hundreds or thousands of re-
quests per second; the system must also
coordinate information coming from
multiple sources, not all of which are
under the control of the same organiza-
tion. The pattern of communication is
many-to-many, with each server talking
to multiple clients and each client in-
voking programs on multiple servers.

The other end of the cloud-comput-
ing transaction—the browser-based
user interface—presents challenges
of another kind. The familiar window-
and-menu layer of modern operating
systems has been fine-tuned over de-
cades to meet user needs and expec-
tations. Duplicating this functionality
inside a Web browser is a considerable
feat. Moreover, it has to be done in a
comparatively impoverished develop-
ment environment. A programmer
creating a desktop application for Win-
dows or one of the Unix variants can
choose from a broad array of program-
ming languages, code libraries, and
application frameworks; major parts
of the user interface can be assembled
from pre-built components. The equiv-
alent scaffolding for the Web comput-
ing platform is much more primitive.

A major challenge of moving appli-
cations to the cloud is the need to mas-
ter multiple languages and operating
environments. In many cloud applica-
tions a back-end process relies on a re-
lational database, so part of the code is
written in SQL or other query language.
On the client side, program logic is
likely to be implemented in JavaScript
embedded within HTML documents.
Standing between the database and the
client is a server application that might
be written in a scripting language (such

Virtual Reality

A Fly’s Life
A team of Swiss and U.S.
researchers have developed
an interactive virtual-reality
display system that enables
them to better understand
fruit flies’ behavior and
movement in response to
their visual environment,
New Scientist reports.

Led by Steven Fry of the
Institute of Neuroinformatics
in Zurich, the Swiss-U.S. team
built a wind tunnel in which
changing scenes or images are
projected onto its walls. A camera
tracks a fruit fly in 3D, making
the scenes or images move in
response to the animal’s
activity inside the wind tunnel.
Previous research had involved
tethered flies which, Fry
said, “is very unnatural and
it becomes very difficult to
interpret the data because
of the strong interference by
the experimenter.”

The team’s research, which
has implications for animal
behavior and biomimetic design
control, can be readily reproduced,
according to Fry. “Being based on
standard hardware and software
techniques, our methods
provide an affordable, easy to
replicate, and general solution
for a broad range of behavioral
applications in freely moving
animals,” he says.

Information Technology

Wireless
Conductor
Paths?
The conductor paths in sensor
systems have traditionally
consisted of thin wires—until now.
Researchers at the Fraunhofer
Institute for Manufacturing
Engineering and Applied
Materials Research in Bremen,
Germany, have developed a new
technique that prints conductor
paths, using a contactless
aerosol ink with nano-sized silver
particles. In tests conducted with
the Institute for Microsensors,
Actuators and Systems at the
University of Bremen, the printed
conductor paths have proven
to be nearly 500 times thinner
than wire bonds, and the sensors
provide significantly more
accurate measurements.

CACM_V51.7.indb 11 6/18/08 12:53:58 PM

12 communications of the acm | july 2008 | vol. 51 | no. 7

news

Quantum Computing
Researchers are optimistic, but a practical device is years away.

S
ince quantum algorithms
and architectures will ul-
timately need hardware
on which to run, we’ve ex-
plored how the principal

experimental efforts are striving to
produce it. Even 15 years ago, a quan-
tum computer was generally viewed
by computer scientists and physicists
alike as an intriguing but probably un-
attainable theoretical curiosity. But in-
terest exploded in 1994 after Peter Shor,
then at Bell Laboratories (now at MIT),
published his famous quantum factor-
ing algorithm capable of undermining
widely used cryptosystems that relied
on the difficulty of factoring large num-
bers. Today, several thousand physics,
computer science, and engineering
researchers in more than 100 groups
in universities, institutes, and compa-
nies around the world are exploring the
frontiers of quantum information, en-
compassing quantum computing, as
well as recently commercialized quan-
tum cryptography and quantum tele-
portation communication techniques.
Accelerating progress on virtually all
fronts in this worldwide research com-
munity is yielding confidence that a
practical quantum computer is indeed
achievable.

Quantum computing’s potential
has always been tantalizing: Exponen-
tially scalable computing power that
could solve problems beyond the ca-
pabilities of conventional computers.
The key is exploiting the superposi-
tion of quantum-entangled informa-
tion units, or qubits. But the research
challenges are daunting: How to create
and reliably compute with the qubits,
which require the seemingly mutually
exclusive conditions of exquisite clas-
sical control while being isolated from
any external influences that could de-
stroy the entanglement.

The computing power of a quantum
computer grows exponentially with the
number of qubits it uses. Dozens to
hundreds of qubits will be needed for a

quantum computer to solve interesting
problems using quantum algorithms
(along with appropriate quantum er-
ror-correction techniques needed to be
sure the answer is correct). The qubits
must also be connected by quantum
communication channels into logic
gates that can be manipulated to im-
plement the algorithms.

However, merely having and con-
necting qubits is not sufficient for a
quantum computer. They must remain
entangled long enough to complete the
number of gate operations required by

the algorithm and mandatory error cor-
rection. Faster gate operation, higher
fidelity (percentage of gate operations
completed correctly), and greater er-
ror-correcting efficiency can speed the
calculation or reduce the number of
qubits needed to solve the problem.

More than a dozen different ways
of creating qubits—each with its own
strengths and challenges—have been
developed to date. The following is a
rundown of the leading candidates:

Ion traps use electrical and/or mag-
netic fields and laser-cooling to create
a “pseudo-molecule” quantum regis-
ter with micron-scale inter-ion spac-

ing. Typically, the qubit is a two-level
motion mode for a trapped ion. The
modes are modulated by laser pulses.
The ion motion acts like a data bus,
and gates are implemented by modu-
lating neighboring ions.

“Our decoherence times can be up
to 10 minutes—very long compared
with other quantum computing tech-
niques,” says Dave Wineland of the
National Institute of Standards and
Technology, Boulder, CO. “But our
gates are rather slow, about five micro-
seconds for our two-qubit gates.” Since

factoring a 100-to-200-digit number
would require a million operations,
even error-free implementation would
take far longer than the qubit could be
maintained. Researchers, led by Rainer
Blatt of the Institut fur Experimental-
physik Universtität Innsbruck in Aus-
tria, recently set the record for qubit
fidelity: 99.3%.

Integrating CMOS chips with ion
traps is a recent innovation that permits
quantum communication but uses
classical control and measurement.
One design created at Lucent by Rich-
ard Slusher (now at the Georgia Tech
Quantum Institute) and Jungsang Kim

Science | doi: 10.1145/1364782.1364787 	 Michael Ross

Miniature ion trap manufactured by Sandia National Laboratories.

P
hotograph

 by

 J
eff

 S
herman

 of

 the

 O
x

ford

 I
on

 T

rap

 Q

uantum

 C
omputing

 G

roup

CACM_V51.7.indb 12 6/18/08 12:53:59 PM

news

july 2008 | vol. 51 | no. 7 | communications of the acm 13

controllable couplings between widely
separated qubits. However, it also re-
quires extremely low temperatures—
milliKelvins—and tends to have short
decoherence times (to date only a few
microseconds). John Martinis’s group
at the University of California, Santa
Barbara, recently measured single-
qubit fidelity of 98% in a phase-qubit
system. And Robert Schoelkopf’s
group at Yale developed a “transmon”
qubit 300 microns long and very stable
against noise.

Hybrid approaches combine the best
features of their parents. Chuang’s re-
search group is integrating ion traps
into superconducting qubits. “Ion traps
are very hard to connect to anything,”
Chuang says. “It would be really nice to
have an ion trap with wires coming in
and out.” Vandersypen says that as ion
traps get smaller they might eventually
look similar to quantum dots.

D-Wave Systems, a venture-backed
company based in Vancouver, BC,
made news twice last year when it an-
nounced the operation of a 16-qubit
(in February) and 28-qubit (in Novem-
ber) “adiabatic” quantum computer.
However, many scientists are skepti-
cal of both the claims and their impor-
tance. The adiabatic method, which
is a quantum version of simulated an-
nealing, involves slowly evolving a sys-
tem toward the solution. Skeptics say
this approach will prove to be neither
fault-tolerant nor scalable. Although
the company revealed scant scientific
detail about its approach, its president
and CEO, Geordie Rose, says it has no
proof yet of entanglement—the hall-
mark of quantum computation.

Diamond-based systems are an in-
triguing recent entrant. The qubit is the
spin state of a nitrogen impurity adja-
cent to a vacancy in the carbon crystal.

(now at Duke) is an ion-trap analogue
to the electron-based charge-coupled
device chips used in digital cameras.
“This design gives addressability to an
enormous number of ions,” says MIT’s
Isaac Chuang.

Quantum dots are a popular solid-
state host for qubits. Lieven Vander-
sypen’s research group in Delft, The
Netherlands, reported last November
that it had used an alternating elec-
trical field to control single electrons
contained in gallium arsenide quan-
tum dots. Electrical control is more
selective than the previously used mag-
netic fields. Their fidelity of flipping a
single-electron spin (a simple gate) is a
little lower than the 73% attained with
magnetic-field control but is expected
to increase as they gain experience. Fu-
ture research will venture into no-spin
hosts, such as silicon and carbon (car-
bon-12, nanotubes, graphene), that are
expected to have much longer decoher-
ence times.

Linear optic qubits are created by si-
multaneously producing forward and
backward photons and encoding their
logical states into vertical and horizon-
tal polarizations. This approach has the
advantage of long decoherence times
and compatibility with fiber optics but
needs higher photon-creation and -de-
tection efficiencies. Last December,
Andrew White’s group from the Uni-
versity of Queensland reported that it
had used a linear optic circuit involving
four qubits to find the prime factors of
15 (5 and 3) thus demonstrating that
system’s ability to perform the core
processes required for implementing
Shor’s algorithm.

In April, Prem Kumar of Northwest-
ern University announced a quantum
gate created within an optical fiber.
A few years ago, Kumar showed that
photons can remain entangled within
a fiber for a distance of 100 kilometers.
The recent result will be useful in cre-
ating quantum repeaters for a distrib-
uted quantum information network.

Superconducting qubits can be made
in three types: charge, flux, and phase.
Each uses excitation states of Joseph-
son junctions: two superconductor
pieces separated by an insulator thin
enough for Cooper pairs of electrons
to tunnel across. This approach is scal-
able, since superconductivity enables
fast control and readout and large,

Stemming from Tom Kennedy’s 2003
research at the Naval Research Labora-
tory, “nitrogen-vacancy color centers”
have two compelling advantages: their
spin state can be both initialized and
read out optically at room temperature
and weak spin-orbit coupling in dia-
mond makes this qubit well-decoupled
from its environment. Several groups
have jumped in to study this system,
and its decoherence time has increased
from about 50 microseconds to nearly
a millisecond.

Challenges include devising ways to
control individual qubits and couple
them together. But David Awschalom
of the University of California, Santa
Barbara, is optimistic. “If you had told
me,” he says, “a few years ago that you
were going to try to control a single
electron at gigahertz frequencies in a
solid-state material at room tempera-
ture, I’d have said, ‘Good luck!’ Now
we’re doing just that.”

This system is also useful as an ac-
cessible test bed for studying spin in-
teraction in solid-state materials that
may contribute to the success of other
systems and quantum physics knowl-
edge in general. Awschalom’s group re-
cently watched quantum information
from a single “nitrogen-vacancy cen-
ter” spin disappear into the “bath” of
spins associated with the much more
common nitrogen impurities not as-
sociated with vacancies…then reap-
pear. “In quantum physics, this is a big
deal,” Awschalom says. “It’s an age-old
problem. There have been 1,000 theory
papers on this, but no experiments.”

The recent across-the-board prog-
ress, however, has stimulated optimism
in the eventual success and impact of
quantum computing inconceivable 15
years ago. For example, IBM Research’s
David DiVincenzo, who proved in 1995
that quantum algorithms could be
executed using only two-qubit opera-
tions and later devised seven widely ac-
cepted criteria for a practical quantum
computer, says, “I’m confident that
the quantum computer will eventually
change the world and will deeply influ-
ence how information processing will
be done in the future.” 	

Michael Ross writes about science and technology from
San Jose, CA.

Mark Oskin, University of Washington, Seattle,
contributed to this article.

More than a dozen
different ways
of creating qubits
have been developed
to date.

CACM_V51.7.indb 13 6/18/08 12:53:59 PM

14 communications of the acm | july 2008 | vol. 51 | no. 7

news

“There have been only a few real di-
sasters due to software. But we’re walk-
ing closer and closer to the edge,” says
MIT’s Daniel Jackson.

Experts agree that flaws typically
arise not from minor bugs in code,
but during the higher-level design pro-
cess. (Security flaws, which tend to be
caused by implementation-level vul-
nerabilities, are often an exception to
this rule.) One class of problems arises
at the requirements phase: program
design requirements are often poorly
articulated, or poorly understood. An-
other class arises from insufficient hu-
man factors design, where engineers
make unwarranted assumptions about
the environment in which software or
hardware will operate. If a program
isn’t capable of handling those unfore-
seen conditions, it may fail.

But mistakes can happen at any
time. “Since humans aren’t perfect,
humans make mistakes, and mistakes
can be made in any step of the develop-
ment process,” cautions Gerard Holz-

Social | doi: 10.1145/1364782.1364788 	 Leah Hoffman

In Search of
Dependable Design
How can software and hardware developers
increase the reliability of their designs?

mann of the NASA/JPL Laboratory for
Reliable Software.

Holzmann is among a small group
of researchers who are committed
to developing tools, techniques, and
procedures for increasing design reli-
ability. Currently, most programs are
debugged and then refined by random
testing. Testing can be useful to pin-
point smaller errors, say researchers,
but inadequate when it comes to iden-
tifying structural ones. And tests de-
signed for specific scenarios may not
be able to explore combinations of be-
havior that fall outside of anticipated
patterns. The search is therefore on for
additional strategies.

One promising technique is known
as model checking. The idea is to verify
the logic behind a particular software
or hardware design by constructing
a mathematical model and using an
algorithm to make sure it satisfies
certain requirements. Though the
task can be time consuming, it forces
developers to articulate their require-
ments in a systematic, mathematical
way, thereby minimizing ambigu-
ity. More importantly, however, model
checkers automatically give diagnostic
counterexamples when mistakes are
found, helping developers pinpoint
what went wrong and catch flaws be-
fore they are coded.

“When people use the term ‘reliabil-
ity,’ they might have some probabilis-
tic notion that ‘only rarely’ do errors
crop up, whereas people in the formal
verification community mean that all
behaviors are correct against all speci-
fied criteria,” explains Allen Emerson
of the University of Texas at Austin. (In
recognition of the importance of for-
mal verification techniques, the 2007
ACM A.M. Turing Award was given to
Edmund Clarke, Allen Emerson, and
Joseph Sifakis for their pioneering
work in model checking. A Q&A with

I
n 1994, an obscure circuitry
error was discovered in In-
tel’s Pentium I micropro-
cessor. Thomas R. Nicely, a
mathematician then affiliated

with Lynchburg College in Virginia,
noticed that the chip gave incorrect an-
swers to certain floating-point division
calculations. Other researchers soon
confirmed the problem and identified
additional examples. And though Intel
initially tried to downplay the mistake,
the company eventually responded
to mounting public pressure by
offering to replace each one of the
flawed processors.

“It was the first error to make the
evening news,” recalls Edmund Clarke
of Carnegie Mellon University. The cost
to the company: around $500 million.

Nearly 15 years later, the Pentium
bug continues to serve as a sobering re-
minder of how expensive design flaws
can be. The story is no different for soft-
ware: a $170 million virtual case man-
agement system was scrapped by the
FBI in 2005 due to numerous failings,
and a flawed IRS tax-processing system
consumed billions of dollars in the late
1990s before it was finally fixed. And in
an era in which people rely on comput-
ers in practically every aspect of their
lives—in cars, cell phones, airplanes,
ATMs, and more—the cost of unreli-
able design is only getting higher. Data
is notoriously difficult to come by, but
a 2002 study conducted by the National
Institute of Standards and Technology
(NIST) estimated that faulty software
alone costs the U.S. economy as much
as $59.5 billion a year in lost informa-
tion, squandered productivity, and in-
creased repair and maintenance.

But it’s not just a matter of money—
increasingly, people’s lives are at stake.
Faulty software has plunged cockpit
displays into darkness, sunk oil rigs,
and caused missiles to malfunction.

CACM_V51.7.indb 14 6/18/08 12:54:02 PM

news

july 2008 | vol. 51 | no. 7 | communications of the acm 15

Institute of Technology’s Bertrand Mey-
er and recipient of ACM’s 2006 Software
System Award, is one well-known ex-
ample; Alloy, a tool developed by Daniel
Jackson and the MIT Software Design
Group, has also shown great promise.

To supplement the new languages
and techniques, other researchers
have focused on outlining more effec-
tive procedures and methodologies for
developers to follow as they work.

“I’m not a great believer in for-
mal analysis,” says Grady Booch of
IBM Research. “Problems tend to
appear at this curious intersection
of the technological and the social.”
After monitoring 50 developers for
24 hours, for example, Booch found
that only 30% of their time was spent
coding—the rest was spent talking to

“How can you ever
hope to build a
dependable system
if you don’t know
what ‘dependable’
means?” asks MIT’s
Daniel Jackson.

other members of their team. Avoid-
ing miscommunication, he believes,
is therefore critical. Booch is perhaps
best known for developing (with Ivar
Jacobson and James Rumbaugh) the
Unified Markup Language, or UML,
a language that uses graphical nota-
tions to create an abstract model of
a software or hardware system and
helps teams communicate, explore,
and validate potential designs. More
recently, he has continued to focus on
the big picture of development with
the online Handbook of Software Ar-
chitecture, which brings together a
large collection of software-intensive
systems and presents them in a man-
ner that “exposes their essential pat-
terns and that permits comparisons
across domains and architectural
styles.” The ultimate goal, of course,
is to help developers apply that time-
tested knowledge to their own pro-
gramming projects.

“Reuse is easier at a higher level of
abstraction,” explains Booch. “So we can
reuse patterns, if not necessarily code.”

MIT’s Daniel Jackson is another
strong believer in the “big picture” ap-
proach. “The first thing we need to do
is be honest about the level of reliabil-
ity that we need,” he asserts. “The sec-
ond thing is to think about what really
cannot go wrong—about what’s mis-
sion critical and what’s not.”

Rather than starting with a typical
requirements document that outlines

the three Turing recipients can be
found on page 112.)

Model checking has proven extreme-
ly successful at verifying hardware de-
signs. In fact, Xudong Zhao, a graduate
student of Clarke’s, showed that model
checking could have found Intel’s float-
ing-point division error—and that the
company’s fix did indeed correct the
problem. Since then, Intel has been a
leading user of the technique.

But because even small programs
can have millions of different states (a
dilemma known to the discipline as
the “state explosion problem”), there
are limits to the size and complexity of
designs that model checking can verify,
and it’s been less immediately success-
ful for software. The verification of reac-
tive systems—the combination of hard-
ware and software interacting with an
external environment—also remains
problematic, due mainly to the difficul-
ty of constructing faithful models.

“We’ve come a long way in the last
28 years, and there’s a huge, huge dif-
ference in the scale of problems we can
address now as opposed to 1980,” says
Holzmann. “But of course we are more
ambitious and our applications have
gotten more complex, so there is a lot
more to be done.”

Other techniques include special-
ized programming languages and en-
vironments that facilitate the creation
of reliable, reusable software modules.
Eiffel, developed by the Swiss Federal

Outstanding Contribution
to ACM Award
Robert A. Walker,
Kent State University

Distinguished Service Award
David A. Patterson, University
of California at Berkeley

Eugene L. Lawler Award for
Humanitarian Contributions
within Computer Science
and Informatics
Randy Wang,
Microsoft Research India

Paris Kanellakis Theory
and Practice Award
Bruno Buchberger,
Johannes Kepler University

Karl V. Karlstrom Outstanding
Educator Award
Randy Pausch,
Carnegie Mellon University

Grace Murray Hopper Award
Vern Paxson, International
Computer Science Institute
and University of California at
Berkeley/Lawrence Berkeley
National Laboratory

A.M. Turing Award
Edmund M. Clarke,
Carnegie Mellon University
E. Allen Emerson,
University of Texas at Austin
Joseph Sifakis, Centre National
de la Recherche Scientifique
and Verimag Laboratory

Software System Award
David Harel, The Weizmann
Institute of Science
Hagi Lachover
Amnon Naamad, EMC Corporation
Amir Pnueli, NYU Courant
Institute of Mathematical Sciences
Michal Politi,
Tadiran Electronic Systems
Rivi Sherman, Negevtech
Mark Trakhtenbrot,
Holon Academic Institute of
Technology and The Open
University of Israel
Aron Trauring, Zotecabv

ACM – Infosys
Foundation Award
Daphne Koller, Stanford University

Doctoral Dissertation Award
Sergey Yekhanin, Princeton University

Honorable Mentions:
Benny Applebaum,
Princeton University
Vincent Conitzer, Duke University
Yan Liu, IBM

ACM-W Athena Lecturer Award
Shafi Goldwasser, MIT and The
Weizmann Institute of Science

ACM – AAAI Allen Newell Award
Leonidas J. Guibas, Stanford University

Several award winners had yet
to be announced at press time.
We’ll have more news about
the 2007 ACM award winners
in next month’s issue.

Awards

2007 ACM Award Winners

CACM_V51.7.indb 15 6/18/08 12:54:02 PM

16 communications of the acm | july 2008 | vol. 51 | no. 7

news

it’s inconvenient, but it’s not a threat to
anyone’s life,” says Holzmann. Among
the approaches he and his lab—who
work to guarantee the safety of the com-
puter systems that run spacecraft—are
currently looking into is the develop-
ment of simple, yet effective, coding
standards. His recommendations
may seem somewhat draconian (in
safety-critical applications, they for-
bid the use of goto statements, setjmp
or longjmp constructs, and direct or
indirect recursion, for example), but
they are intended to increase simplic-
ity, prevent common coding mistakes,
and force developers to create more
logical architectures. Simpler pro-
grams are also easier to verify with
tools like model checkers. After over-
coming their initial reluctance, Holz-
mann says, developers often find that
the restrictions are a worthwhile trade-
off for increased safety.

A rigorous focus on simplicity can
be costly, of course, especially for
complex legacy systems that would
be prohibitively expensive to replace
but that need, nonetheless, to be up-
dated or further developed. So can
taking the time out to formally articu-
late all requirements and assump-
tions, or to verify software designs.
Yet the cost of fixing an error in the
initial stages of development is far
less than fixing it at the end—a lesson
that Intel, for one, now knows well.

“Computer science is a very young
discipline,” explains Joseph Sifakis,
research director at CNRS. “We don’t
have a theory that can guarantee sys-
tem reliability, that can tell us how to
build systems that are correct by con-
struction. We only have some recipes
about how to write good programs and
how to design good hardware. We’re
learning by a trial-and-error process.”	

Leah Hoffman is a Brooklyn-based freelance writer.

tasks in a procedural way, says Jack-
son, developers must first make sure
they understand what the system is re-
ally about. What are its essential prop-
erties? Who are its stakeholders? What
level of dependability does it need?

“How can you ever hope to build a
dependable system if you don’t know
what ‘dependable’ means?” he asks.
The task itself is abstract, but Jackson
believes that articulating all require-
ments and assumptions is crucial to
tackling it—ideally in a formal, meth-
odological way. The most important
thing, according to Jackson, is the act
of articulation itself. “When you write
things down, you often find that you
didn’t understand them nearly as well
as you thought you did.” And there’s al-
ways a temptation to jump to the solu-
tion before you’ve fully understood the
problem. “That’s not to say that auto-
mated tools and techniques like model
checking aren’t useful, of course. Tools
are an important support, but they’re
secondary,” says Jackson.

And the more safety-critical the ap-
plication, the more rigorous develop-
ers must be. “If your computer crashes,

Coming Next Month in

Communications
Scaling Massive Multiplayer
Online Game Infrastructure

Techniques for Designing
Games with a Purpose

Computer Science
and Game Theory

The Rise and Fall
of CORBA

Evaluating Methodology
for the 21st Century

Composable
Memory Transactions

Envisioning the Future
of Computing Research

CTO Roundtable

Part II of an interview
with Donald Knuth

And the latest news about game
theory, assistive technologies, and
computing and the developing world.

Simpler programs
are easier to verify
with tools like model
checkers.

Computer Science

Winning
Strategy
St. Petersburg University of
Information Technology,
Mechanics and Optics recently
won the 32nd annual ACM
International Collegiate
Programming Contest (ICPC)
World Finals, held in Branff,
Canada. It was the university’s
second ACM-ICPC world
championship in four years.

The annual programming
contest started with 6,700
teams from 1,821 universities
in 83 countries, competing at
213 sites around the world.
Through a series of regional
competitions, the field
narrowed to 100 teams. At the
World Finals, each three-person
team had one computer and five
hours to solve 11 programming
problems.

 “The main goal at the World
Finals is to solve problems,”
says Andrey Stankevich, coach
of the St. Petersburg University
of Information Technology,
Mechanics and Optics team,
who was interviewed via email.
“If you use your time to solve
problems (and not to look for
bugs in the problems already
solved, but not accepted by
the judges) you have time to
solve more. So, the way to win
the World Finals is to solve
problems in such way that
you don’t make bugs, and if
the problem is accepted,
you can immediately start
solving another one. This
requires cooperation in both
thinking about problems and
writing code.”

The winning team solved
eight problems, followed by
second-place Massachusetts
Institute of Technology, third-
place Izhevsk State Technical
University, fourth-place Lviv
National University and fifth-
place Moscow State University,
each of which solved seven
problems.

The competition at each
ACM-ICPC World Finals appears
to be stronger than the previous
one, and longtime contest
sponsor IBM believes the
global contest is good for the IT
industry. “The value proposition
for IBM is not only about the
students who go on to work for
IBM, but who go on to work for
our clients and our business
partners, or who become faculty
members,” says IBM director of
talent Margaret Ashida. “It’s a
win for everyone.”

CACM_V51.7.indb 16 6/18/08 12:54:02 PM

V
viewpoints

july 2008 | vol. 51 | no. 7 | communications of the acm 17

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 E
S

K
I

M
O

 S
Q

U
A

R
E

doi: 10.1145/1364782.1364789 	 Alok Aggarwal

I
ndia’s information technol-

ogy (IT) industry is a product
of serendipity—it happened
mainly by accident and partly
by design. In the 1960s and

1970s, there was no separate IT in-
dustry in India. Multinational compa-
nies such as U.S.-based IBM and U.K.-
based ICL were the largest providers
of hardware, which was bundled with
operating systems and few software
packages that were generally written in
FORTRAN and COBOL. Furthermore,
Indian import duties on hardware were
extremely high (almost 300%), and even
IBM used to sell old, refurbished, and
antiquated machines (because that is
all most Indian companies could af-
ford). Hence, large enterprises (includ-
ing the Indian defense department
and other public organizations) that
needed customized applications usu-
ally employed in-house teams that did
everything from installing systems to
writing software.

The first software company in India
was Tata Consulting Services (TCS),
which began operations in 1968. For-
tunately, after executing a few local or-

ders, TCS obtained its first big export
assignment in 1973–1974, when it was
asked to build an inventory control
software solution for an electricity gen-
eration unit in Iran. During this period,
TCS also developed a hospital infor-
mation system in the U.K. in coopera-
tion with Burroughs Corporation (at
that time the second-largest hardware
company in the world). Through its
software exports and collaborations,
TCS became a role model for other In-
dian IT companies later. Also, during
the late 1970s, the Indian government
lowered import duties on all IT equip-

ment. But there was a catch. Importers
had to recover in exports twice the val-
ue of the foreign exchange they spent
on importing computers. Partly as a
result, by the early 1980s, India was the
only developing nation to have any sig-
nificant software exports with 30 com-
panies that were beginning to export
IT services. If we now look back at the
1970–1980 era, it is clear that the fol-
lowing four unrelated incidents con-
tributed heavily in shaping the Indian
IT industry:

In late 1970s, the Indian govern-˲˲

ment passed a controversial law (only
repealed in 1992) that forced all mul-
tinational companies to reduce their
equity share in their Indian subsidiar-
ies to less than 50%. Since IBM did not
want to comply, it decided to leave In-
dia. This opened the market for local
IT competitors and made Indian com-
panies generally less reliant on main-
frame computers.

The advent of personal computers in ˲˲

the 1980s reduced the cost of importing
hardware substantially, thereby, spawn-
ing an industry that has more than 3,100
companies today.

Emerging Markets
India’s Role in the
Globalization of IT
Tracing the exponential growth of the Indian IT industry.

CACM_V51.7.indb 17 6/18/08 12:54:03 PM

18 communications of the acm | july 2008 | vol. 51 | no. 7

viewpoints

which offered software exporters a new
way to transfer data and services and
set the foundation for offshore busi-
ness models that could compete with
the onsite “body shopping.”

In 1993, the U.S. Immigration and
Naturalization Service made changes
that made it difficult to get B-1 visas.
Furthermore, the U. S. Department of
Labor required that companies apply-
ing for new H-1 visas needed to certify
that prevailing market wages were be-
ing paid to immigrant workers. Also,
Indian software professionals who
were brought under the umbrella of
the Immigration Act, had to pay Social
Security and related taxes to the U.S.
government, creating an additional
burden on the employees as well as
their employers. These factors led a
few IT companies in India to adopt
a mixed model, which satellite links
had already enabled, and in which
some software programmers would
work at the client’s premises (in the
U.S.) whereas others would continue
to work in their offices in India. Nev-
ertheless, the move to this new busi-
ness model was gradual because cost
savings for the onsite model were still
quite large, and there were clearly ad-
vantages of being in close proximity to
the client. Even today, some IT compa-
nies continue to follow the old model
and send 15%–25% of their program-
mers to the U.S. and other developed
countries.

By 1998, the IT industry in the U.S.
and other developed countries was con-
sumed by the Y2K problem, and two
industries—telecommunications and

Realizing the Indian college sys-˲˲

tem was unable to provide much IT
training, three Indian entrepreneurs
took it upon themselves in 1982 to pro-
vide IT tutorials and training classes.
Their early days were often marked
with one of them driving a motorcycle
and the other riding behind with a PC
in his lap so that they could impart this
training in some rented school space
(in evenings and on weekends). Today,
their institute (NIIT) is a multinational
company that has helped build a sub-
stantial base of IT skills in India.

In 1985, Texas Instruments set up ˲˲

an office in Bangalore with a direct
satellite link to the U.S. By 1989, the
government had also commissioned a
direct 64Kbps satellite link to the U.S.,

the Internet (with its associated dot-
com start-ups)—were booming. This
resulted in U.S. companies hiring in-
creased numbers of computer program-
mers, and since the Y2K problem was
mainly related to legacy software written
in old languages like COBOL, India was
one of the few countries that could still
provide a sufficient number of such pro-
grammers. Consequently, the U.S. gov-
ernment was forced to increase its H-1
quota from 65,000 in 1998 to 130,000 in
1999 and then to 195,000 soon thereaf-
ter, and many Indian IT professionals
moved temporarily or permanently to
the U.S. However, in spite of the large
influx of IT professionals, the U.S. indus-
try still could not fulfill its programming
needs and started outsourcing large
amounts of programming and mainte-
nance work to India.

By early 2000, the Y2K problem had
been solved, and both the telecom-
munications and dot-com booms had
suffered downturns. In 2001, the U.S.
went into a recession and the U.S. gov-
ernment reduced its H-1 quota back
to 65,000. Far from harming India,
though, these events showed that off-
shore outsourcing grows in both good
times and bad times. Economic hard-
ships forced U.S. companies to reduce
costs. As a result, they transferred even
more IT work to India, thereby fueling
the growth of an industry that was
already growing exponentially.

The table here lists the revenue
earned and the number of profession-
als employed by the Indian IT services
industry during alternate years span-
ning 2001–2002 and projects numbers

	 2001-02	 2003-04	 2005-06	 2007-08*	 2009-10*	 2011-12*	 2013-14*	 2015-16 *

IT Services								

Exports	 4.5; 150	 7.3; 220	 13.2; 345	 23.1; 510	 36.7; 720	 54.5; 975	 76.9; 1,225	 101.7; 1,490

Domestic	 2.1; 160	 2.7; 190	 3.9; 250	 7.9; 400	 14.3; 615	 24.0; 870	 37.5; 1,155	 54.0; 1,485

Engineering Services,
R&D, Software Products								

Exports	 1.6; 55	 2.5; 75	 3.9; 105	 6.3: 145	 10.0; 205	 15.1; 280	 21.0; 365	 27.8; 430

Domestic	 0.5; 40	 0.8; 60	 1.3; 85	 2.2; 115	 3.2; 135	 5.1; 165	 6.7; 200	 9.6; 240

Total IT Industry (excluding
Hardware and BPO sectors)	 8.7; 405	 13.3; 545	 22.3; 785	 39.5; 1,170	 64.2; 1,675	 98.7; 2,290	 142.1; 2,945	 193.1; 3,645

USD (Billion); Number of IT Professionals (‘000)   *Expected

Annual revenue and number of IT professionals employed by Indian IT services industry.

Economic hardships
forced U.S. companies
to reduce costs.
As a result, they
transferred even
more IT work to
India, thereby fueling
the growth of an
industry that was
already growing.

CACM_V51.7.indb 18 6/18/08 12:54:03 PM

viewpoints

july 2008 | vol. 51 | no. 7 | communications of the acm 19

for future years up to 2015–2016. These
figures do not include professionals
who are getting trained by their employ-
ers and also do not include revenues or
the number of professionals related to
other business process services or hard-
ware products. The revenue numbers
given in the first four columns have been
sourced from the National Association
of Software and Services Companies
(NASSCOM; www.nasscom.org); all
other figures have been taken from Eval-
ueserve (www.evalueserve.com), a global
research and analytics firm.

Since India’s GDP is expected to be
$1,100 billion in 2007–2008 and since
this GDP is growing annually at an aver-
age of 8.5% in real terms and 14% in nom-
inal terms, this GDP is likely to be $2,400
billion in 2015–2016. Consequently, if
the forecasts provided by Evalueserve re-
garding the Indian IT industry turn out
to be true, then by 2015–2016, the num-
ber of professionals working in the IT in-
dustry would have grown tenfold (from
2001–2002 to 2015–2016), and, in nomi-
nal terms, the total revenue would have
grown by 22 times, which would end up
being approximately 8% of India’s GDP.

To assess what may be ahead, consider
the current and future status of three key
elements of the Indian IT industry:

Export of IT Services: IT export servic-
es provided from India include custom
application development, application
management, information systems
outsourcing, software and hardware
development and support, training,
education and helpdesks, IT consult-
ing, systems integration, software test-
ing, network consulting, and network
integration. During the last 10 years,
exports of these services have been
growing at an annual rate of 32%. How-
ever, Evalueserve expects this growth
rate to slow to approximately 19% in
the next five to six years because of a
lack of availability of enough talent, ris-
ing wages, and increased attrition. The
U.S. and U.K. remain the largest export
markets, accounting for approximately
61% and 18% of exports respectively in
2007–2008. However, IT exports have
also been steadily increasing to other
countries. In particular, IT exports to
continental Europe have witnessed no-
table gains, growing at an annual rate
of more than 55% during the period
2004–2007.

Domestic Use of IT Services: India

was a closed economy until 1991 and
the Indian government owned many
banks and companies that had little
or no use for IT. However, in 1991, its
government started opening up and
most Indian companies had to com-
pete with both domestic and multi-
national companies that wanted to
sell in India. Consequently, many
such companies—including domes-
tic banks, airlines, railways, telecom-
munications companies, and other
government-owned companies—have
become or are in the process of be-
coming avid users of IT. Hence, the do-
mestic IT services industry has been
growing at an annual rate of 41% dur-
ing the last two years and is expected
to continue growing at 5%–6% per year
more than export services for the next
seven to eight years. This implies that
by 2015–2016, the number of IT pro-
fessionals employed in the domestic
IT industry would be comparable to
that employed in the IT exports indus-
try. The domestic IT industry, which
contributed only 0.8% to India’s GDP
in 2006–2007, is likely to contribute
2.7% by 2015–2016. At present, inter-
nal company departments provide
more than 90% of all domestic IT
services. That provides a large oppor-
tunity market for third-party vendors,
particularly as liberalization and glo-
balization mean the types of domestic
IT services provided within India are

similar to those found in the industri-
alized world.

Import of IT Products and Services
into India: In India, the number of mo-
bile phones has been increasing at ap-
proximately nine million per month,
and the total number is likely to exceed
340 million by the end of 2008, thereby
making India the second-largest mo-
bile phone market after China. Inter-
estingly, IBM is already servicing ap-
proximately 50% of the mobile phone
subscriber base in India after signing
three 10-year contracts with Bharti Air-
tel in 2004, Idea Cellular in 2006, and
Vodafone Essar in 2007. Most of these
agreements require IBM to consolidate,
transform, and manage comprehen-
sive infrastructure and applications,
as well as to jointly develop marketing
IT and telecommunications solutions
and services. Clearly, such a move
frees up these clients to do aggressive
marketing, sales, and business devel-
opment. Although IBM may not have
been the least-expensive provider, it
probably won these contracts because
it was able to bring its intellectual prop-
erty, products, and services from other
parts of the world where it has already
helped other very large telecommunica-
tions companies. Since Indian financial
services (such as banks and insurance
companies) and transportation (espe-
cially airlines) are also expanding and
globalizing at a phenomenal pace, these
sectors are likely to follow suit.

Across all parts of Indian IT, then,
we see the synergistic impact of glo-
balization. Globalization helps Indian
IT companies to grow, while Indian
IT is becoming a digital foundation
for many globalizing firms. As the
Indian economy becomes more inte-
grated into the global economy, there
is another two-way effect—more op-
portunity for global IT firms to sell to
Indian clients. And, of course, more
opportunity for Indian IT firms to
sell globally.	

This is the first of the “Emerging Markets” columns.
Subsequent columns will address the roles of other
emerging countries in the globalization of IT, including
China, several Eastern European countries, the Middle
East, and Latin America.

Alok Aggarwal (alok.aggarwal@evalueserve.com)
is the co-founder and chairman of Evaluserve, Inc. in
Saratoga, CA.

© 2008 ACM 0001-0782/08/0700 $5.00

The U.S. and U.K.
remain the largest
export markets,
accounting for
approximately 61%
and 18% of exports
respectively in
2007–2008. However,
IT exports have
also been steadily
increasing to
other countries.

CACM_V51.7.indb 19 6/18/08 12:54:03 PM

http://www.nasscom.org
http://www.evalueserve.com
mailto:alok.aggarwal@evalueserve.com

20 communications of the acm | july 2008 | vol. 51 | no. 7

V
viewpoints

doi: 10.1145/1364782.1364790 	 Pamela Samuelson

Legally Speaking
Revisiting Patentable
Subject Matter
Is everything under the sun made by humans
patentable subject matter?

The order announcing the en banc
review invited interested parties to
file amicus curiae (friend of the court)
briefs to address not only whether
Bilski’s patent application should be
granted, but also what test or stan-
dard should be used for judging what
processes are eligible for patent pro-
tection. The order even asks whether
the State Street Bank decision should
be overturned.

Bilski’s Claim
Claim 1 of Bilski’s application sets
forth three steps of his method for
energy risk management: initiating
a series of transactions between a com-
modity provider and consumers of the
commodity whereby consumers would
purchase the commodity at a fixed rate
based on historical averages (setting
the risk position of the consumers);
identifying market participants for
the commodity who have a counter-
risk position to that of consumers; and
initiating a series of transactions
between the commodity provider and
market participants having a counter-
risk position at a second fixed rate
such that transactions of the market
participants balance out the risks
to consumers.

Bilski relies upon the State Street
Bank decision in support of his claim.
He asserts his claim recites a process
and this method produces a useful,
concrete, and tangible result. To under-
stand why BPAI rejected Bilski’s claim,
a brief historical review is in order.

A
re business methods and
software algorithms pat-
entable? Many of us think
they shouldn’t be. How-
ever, under a 1998 U.S.

Federal Circuit Court of Appeals
decision in State Street Bank Bank
v. Signature Financial Group, they
seem to be. That case opined that busi-
ness methods could be patented and
regarded any process conforming to a
dictionary definition as patentable sub-
ject matter, as long as it produces a “use-
ful, concrete, and tangible result.” This
would include program algorithms.

Because of State Street Bank’s very
broad interpretation of patentable
subject matter, the U.S. Patent and
Trademark Office (PTO) has been
flooded with applications for patents
on methods of all kinds, including
business methods, methods of medi-
tation, dating methods, sports moves,
tax strategies, and even plots for nov-
els. This capacious view of patentable
subject matter may, however, be about
to change.

This past February, the Federal Cir-
cuit decided to hear en banc (with the
full court, not just the usual panel of
three judges) an appeal by Bernard
Bilski of a decision by the PTO
Board of Patent Appeals and Inter-
ferences (BPAI) denying Bilski’s ap-
plication for a patent on a method
for managing energy consump-
tion risks owing to vagaries of the
weather for failure to claim patentable
subject matter.

The Supreme Court
on Process Patents
The Supreme Court first considered
whether computer program processes
could be patented in its unanimous
1972 decision in Gottschalk v. Benson.
Benson had applied for a patent on
a method for transforming binary
coded decimals to pure binary form.
One claim called for implementing
this algorithm in a programmed com-
puter; a second was for the algorithm
as such.

Section 101 of U.S. patent law states
that “[w]hoever invents or discovers
any new and useful process, machine,
manufacture, or composition of mat-
ter, or any new and useful improve-
ment thereof, may obtain a patent
therefore.” Benson’s algorithm was a
process in the dictionary sense of the
word, but that didn’t necessarily mean
it was a process within the meaning of
section 101.

Under the Court’s past decisions,
patentable processes had been those
that transformed matter from one
physical state to another. Benson’s
process didn’t do this. Past decisions
had also excluded laws of nature,
mathematical and scientific princi-
ples, mental processes, and abstract
ideas from patent protection. Because
Benson’s method could be carried out
in a person’s head or with aid of paper
and pencil, it seemed like a mental
process or abstract idea, and perhaps
a mathematical principle. The Court
was also disturbed that Benson’s

CACM_V51.7.indb 20 6/18/08 12:54:06 PM

V
viewpoints

july 2008 | vol. 51 | no. 7 | communications of the acm 21

cuit’s overbroad conception of pat-
entable subject matter. So it rejected
Bilki’s claims.

BPAI on Patentable Subject Matter
Bilski sets forth a series of propositions
about patentable subject matter. The
first is that the constitutional subject
matter for patent protection is inven-
tions in the “useful arts,” by which the
founders meant what today we would
call “technological arts,” or more sim-
ply, “technology.” Section 101 names
four kinds of technologies that are eli-
gible for patent protection: processes,
machines, manufactures, and compo-
sitions of matter.

BPAI thinks that Congress intended
to make every human-made machine,
manufacture, and composition of mat-
ter eligible for patent protection, but
doubts it intended everything under
the sun made by humans to be eligible
for patent protection. Computer pro-
grams, documents, music, art, and
literature are innovations made by hu-
mans; yet, none is eligible for patent
protection.

Technological processes that trans-
form matter from one physical state
to another (for example, chemical A
mixed with chemical B to produce
chemical C) are clearly patentable, as
are processes that are tied to specific
mechanical implementations. But if
processes do not transform matter and
are not tied to technical implementa-
tions, BPAI thinks they are not tech-
nological enough to be patentable.
Such methods should be considered
“abstract ideas” that are excluded from
patent protection, as was the algorithm
in Benson.

Bilski questions the Federal Cir-
cuit’s “useful, concrete, and tangible
result” test for patentable subject
matter as lacking an authoritative ba-
sis and a sound rationale. Bilski ob-
serves that Justice Breyer’s dissent in
Lab Corp. questioned the “useful, con-
crete, and tangible result” test for pat-
entable subject matter as not having
been endorsed by the Court. (Indeed,
this test is inconsistent with Benson
and Flook.)

Because Bilski’s method wasn’t tied
to an implementation in a specific de-
vice and didn’t transform matter from
one physical state to another, the BPAI
concluded it was an unpatentable

claims would cover (and therefore
preempt) all uses of the algorithm, not
just those applied to particular indus-
trial ends.

In 1978, the Court revisited Benson
in Parker v. Flook, which considered the
patentability of a process for calculat-
ing and updating alarm limits for cata-
lytic conversion plants. By a 6–3 major-
ity, the Court rejected Flook’s claim
because the only new thing about it
was an algorithm onto which had been
tacked conventional post-solution ac-
tivity (updating the alarm limits).

Three years later, in Diamond v.
Diehr, the Court once again considered
the patentability of a process involving
a computer program. In Diehr, the
Court ruled by a 5–4 majority that a
process for curing rubber, one step of
which involved a computer program
that continuously calculated tempera-
tures inside the mold to determine
when the rubber was properly cured,
was a patentable process. Because
Diehr did not abrogate Benson or Flook
and involved a conventional process
that transformed matter from one
physical state to another, Diehr was ini-
tially viewed as a narrow decision for
patenting software innovations.

The Federal Circuit, however, con-
strued Diehr more broadly by focusing
on its dicta that everything under the
sun made by man should be considered
patentable subject matter. For the past
27 years, this court has fashioned its
own conception of patentable subject
matter, culminating in the State Street
Bank decision. Its recent willingness to
reconsider State Street Bank and its ap-
proach to determining patentable sub-
ject matter may well be due to its sense
that the Supreme Court is not satisfied
with its rulings.

Renewed Supreme Court
Interest in Patents
In the past few years, the Supreme
Court has reviewed several Federal
Circuit decisions and reversed that
court’s rulings every time. In eBay v.
MercExchange, for example, the Court
rejected the Federal Circuit’s rigid rule
that courts must issue injunctions in
virtually all patent infringement cases.
In KSR v. Teleflex, the Court reinvigo-
rated the nonobviousness standard
for invention by rejecting the Federal
Circuit’s approach to judging obvious-

ness. In Microsoft v. AT&T, the Court
overturned a Federal Circuit ruling
that Microsoft was liable for offshore
patent infringement based on its ship-
ment to another country of a disk of
software containing a component that
infringed a U.S. patent.

The Supreme Court has also sig-
naled renewed interest in the Federal
Circuit’s approach to patentable sub-
ject matter. In 2005, it accepted Lab
Corp’s appeal from a Federal Circuit
ruling that it had induced patent in-
fringement by providing test results
about levels of homocysteine in pa-
tients’ blood to doctors who then cor-
related elevated levels of this amino
acid with vitamin deficiencies and en-
hanced risks of heart disease, thereby
infringing Metabolite’s patent. Justice
Breyer dissented from the decision to
drop the Lab Corp. appeal because in
his view, Metabolite’s patent claimed
a process that “is no more than an in-
struction to read some numbers in
light of medical knowledge.” He be-
lieved this ran afoul of the longstand-
ing rule that laws of nature and natural
phenomena cannot be patented.

A year later, during oral argument
in the Microsoft v. AT&T case, five mem-
bers of the Court asked questions
about the patentability of computer
programs, even though that issue was
not before the Court. These questions
revealed that patentable subject mat-
ter was on many Justices’ minds.

Given the Court’s renewed inter-
est in patentable subject matter, the
BPAI seems to have decided that it was
time to push back on the Federal Cir-

The Federal Circuit
has the opportunity
in Bilski to clarify
the standard by
which to judge what
processes are
eligible for patent
protection.

CACM_V51.7.indb 21 6/18/08 12:54:06 PM

22 communications of the acm | july 2008 | vol. 51 | no. 7

viewpoints

process and an abstract idea. BPAI in-
dicated its conclusion would be no dif-
ferent even if Bilski altered his claims
to mention use of some technology,
such as a telephone or computer, to
carry out the method because the
method was essentially still an ab-
stract one akin to the claim in Benson
for implementing the algorithm in
a programmed computer.

What Will Happen?
The Federal Circuit has the opportu-
nity in Bilski to clarify the standard
by which to judge what processes
are eligible for patent protection and
why this is the right standard. It also
has the opportunity to give substance
to the abstract idea exclusion from
patent protection.

If the Federal Circuit affirms the
BPAI rejection of Bilski’s application
and rules that Bilski’s method is un-
patentable as an abstract idea and/
or as a non-technological process, the
Supreme Court will probably be satis-
fied that the Federal Circuit has gotten
the message that it should pay closer
attention to the Court’s prior rulings
and narrow the scope of patentable
subject matter.

If, however, the Federal Circuit re-
verses the BPAI’s ruling in Bilski or is
deeply split and issues multiple opin-
ions expressing divergent theories
about patentable subject matter, the
Supreme Court will probably review the
Bilski case to clarify what standards the
PTO and Federal Circuit should apply
in judging which processes are eligible
for patent protection.

A decision upholding the unpatent-
ability of Bilski’s process will not do
away with all software patents because
some do claim technological process-
es, but many patents issued under
the State Street Bank test, whether
for software innovations, business
methods, dating methods, and the
like, would then be rendered ineffec-
tual. As things go, this would be prog-
ress. This is another patent reform
that can and should be carried out
through the courts.	

Pamela Samuelson (pam@law.berkeley.edu) is the
Richard M. Sherman Distinguished Professor of Law and
Information at the University of California, Berkeley.

© 2008 ACM 0001-0782/08/0700 $5.00

www.acm.org/dl

ACM Digital Library

The UltimateOnline
INFORMATIONTECHNOLOGY

Resource!
• Over 40 ACM publications, plus conference
proceedings
• 50+ years of archives
• Advanced searching capabilities
• Over 2 million pages of downloadable text

Plus over one million bibliographic
citations are available in the

ACM Guide to Computing Literature

To join ACM and/or subscribe to the Digital Library, contact ACM:

Phone: 1.800.342.6626 (U.S. and Canada)
+1.212.626.0500 (Global)

Fax: +1.212.944.1318
Hours: 8:30 a.m.-4:30 p.m., Eastern Time

Email: acmhelp@acm.org
Join URL: www.acm.org/joinacm

Mail: ACMMember Services
General Post Office
PO Box 30777
NewYork, NY 10087-0777 USA

CACM_V51.7.indb 22 6/18/08 12:54:06 PM

http://www.acm.org/dl
mailto:acmhelp@acm.org
http://www.acm.org/joinacm
mailto:pam@law.berkeley.edu

V
viewpoints

july 2008 | vol. 51 | no. 7 | communications of the acm 23

Dear KV,
I’ve been reading your rants in Queue
for a while now and I can’t help ask-
ing, is there any code you do like? You
always seem so negative; I really won-
der if you actually believe the world of
programming is such an ugly place or if
there is, somewhere, some happy place
that you go to but never tell your read-
ers about.

A Happy Programmer

Dear Mr. Happy,
While I will try not to take exception
to your calling my writings “rants,” I
have to say that I am surprised by your
question. KV is a happy, cheerful, out-
going kind of guy who not only has a
“happy place,” but also carries it with
him wherever he goes, sharing joy and
laughter with everyone around him
and giving sweets to small children.
(cough)

Now that I’ve bleached my brain,
I can answer a bit more honestly. Yes,
in fact, there are good systems and I
have seen good code, sometimes even
great code, in my time. I would like to
describe one such chunk of good code
right now. Unfortunately, it will require
a bit of background to explain what
the code is, but please stick with me.
Perhaps you can relax by going to your
“happy place” first.

One of my recent projects has been
to extend support for something called
hardware performance monitoring
counters (hwpmc) on FreeBSD, the op-

erating system I work on. As the name
indicates, hwpmc is implemented in
hardware, and in this case hardware
means on the CPU. I don’t know if
you’ve ever read CPU or chip documen-
tation, but there is little in our indus-
try that is more difficult to write or less
pleasant to read. It’s bad enough that
the subject is as dry as the surface of
the moon, but it’s much worse because
the people who write such documenta-
tion either don’t understand the tech-
nology or are terrible writers, and often
there is a fatal combination of the two.
Starting from that base, the typical
software engineer produces code that
somewhat mirrors the specification,
and as things that grow in poison soil
themselves become poison, the code is
often as confusing as the specification.

What is hwpmc? It is a set of coun-
ters that reside on the CPU that can
record various types of events of inter-
est to engineers. If you want to know
if your code is thrashing the L2 cache
or if the compiler is generating sub-
optimal code that’s messing up the
pipeline, this is a system you want to
use. Though these things may seem
esoteric, if you’re working on high-
performance computing, they’re vitally
important. As you might imagine, such
counters are CPU specific, but not just
by company, with Intel being differ-
ent from AMD: even the model of CPU
bears on the counters that are present,
as well as how they are accessed.

The sections covering hwpmc in
Intel’s current manual, Intel® 64 and

IA-32 Architectures Software Developer’s
Manual Volume 3B: System Programming
Guide, Part 2, encompass 249 pages: 81
to describe the various systems on vari-
ous chips and 168 to cover all the coun-
ters you can use on the chips. That’s a
decent-size novel, but of course with-
out the interesting story line. Kudos
to Intel’s tech writers, as this is not the
worst chip manual I have ever read,
but I would still rather have been read-
ing something else. Once I had read
through all of this background mate-
rial, I was a bit worried about what I
would see when I opened the file.

But I wasn’t too worried, because I
knew the programmer who wrote the
code personally. He’s a very diligent
engineer who not only is a good coder
but also can explain what he has done
and why. When I told him that I would
be trying to add more chip models
to the system he wrote, he sent me a
1,300-word email message detailing
just how to add support for new chips
and counters to the system.

What’s so great about this software?
Well, let’s look at a few snippets of the
code. It’s important to always read the
header files before the code, because
header files are where the structures
are defined. If the structures aren’t de-
fined in the header file, you’re doomed
from the start. Looking at the top of the
very first header file I opened we see the
code snippet shown in Figure 1. Why
do these lines indicate quality code to
me? Is it the capitalization? Spacing?
Use of tabs? No, of course not! It’s the

Kode Vicious
Beautiful Code Exists,
If You Know Where to Look
Coding is his game, pleasantries distained.

doi: 10.1145/1364782.1364791	 George V. Neville-Neil

CACM_V51.7.indb 23 6/18/08 12:54:06 PM

24 communications of the acm | july 2008 | vol. 51 | no. 7

viewpoints

remember yet another stupid, usually
hex, constant. I am not impressed by
programmers who can remember they
numbered things from 0x100 and that
0x105 happens to be significant. Who
cares? I don’t. What I want is code that
uses descriptive names. Also note the
constants in the code aren’t very long,
but are just long enough to make it
easy to know in the code which chip
we’re talking about.

Figure 3 shows another fine exam-
ple from the header file. I’ve used this
snippet so I can avoid including the
whole file. Here, machine-dependent
structures are separated from machine-
independent structures. It would seem
obvious that you want to separate the
bits of data that are specific to a cer-
tain type of CPU or device from data
that is independent, but what seems
obvious is rarely done in practice. The
fact that the engineer thought about
which bits should go where indicates a

fact that there are version numbers.
The engineer clearly knew his software
would be modified not only by himself
but also by others, and he has specifi-
cally allowed for that by having major,
minor, and patch version numbers.
Simple? Yes. Found often? No.

The next set of lines—and remem-
ber this is only the first file I opened—
were also instructive, as shown in Fig-
ure 2. Frequent readers of KV might
think it was the comment that made
me happy, but they would be wrong.
It was the translation of constants
into intelligible textual names. Noth-
ing is more frustrating when working
on a piece of software than having to

high level of quality in the code. Read
the descriptive comments for each
element and the indication of where
the proper types can be found, as in
the case of pmd_cputype being from
enum pmc_cputtype.

One final comment on this file.
Note that the programmer is writing
objects in C. Operating system kernels
and other low-level bits of code are still
written in C, and though there are plen-
ty of examples now of people trying to
think differently in this respect (such
as Apple’s Mac OS X drivers being writ-
ten in C++) low-level code will continue
to be written in C. That does not mean
programmers should stop using the
lessons they learned about data encap-
sulation, but rather that it is important
to do the right thing when possible.
The structure listed here is an object.
It has data and methods to act upon it.
The BSD kernels have used this meth-
odology for 20-plus years at this point,
and it’s a lesson that should be learned
and remembered by others.

These are just a few examples from
this code, but in file after file I have
found the same level of quality, the
same beautiful code. If you’re truly
interested in seeing what good code
looks like, then I recommend you read
the code yourself. If any place is a “hap-
py place,” it is in code such as this.

KV

P.S. Complete code cross-references for
many operating system kernels, includ-
ing FreeBSD, can be found at http://fxr.
watson.org/ and the code you’re look-
ing for can be found at: http://fxr.
watson.org/fxr/source/dev/hwpmc/.

A similar set of cross-references
can be found on the codespelunking
site: http://www.codespelunking.org/
freebsd-current/htags/.

Dear KV,
In his book The Mythical Man-Month,
Frederick P. Brooks admonishes us
with grandfatherly patience to plan
to build a prototype—and to throw it
away. You will anyway.

At one point this resulted in a fad-
of-the-year called prototyping (the
programming methodology formerly
known as trial and error), demonstrat-
ing that too little and too much are
equally as bad.

Figure 1: Header file showing
version numbers.

#define	 PMC_VERSION_MAJOR	0x03
#define	 PMC_VERSION_MINOR	0x00
#define	 PMC_VERSION_PATCH	0x0000

Figure 2: Translation of constants into descriptive names.

/*
 * Kinds of CPUs known
 */

#define	 __PMC_CPUS()				 \
	 __PMC_CPU(AMD_K7, “AMD K7”)		 \
	 __PMC_CPU(AMD_K8, “AMD K8”)		 \
	 __PMC_CPU(INTEL_P5, “Intel Pentium”)	 \
	 __PMC_CPU(INTEL_P6, “Intel Pentium Pro”)	 \
	 __PMC_CPU(INTEL_CL, “Intel Celeron”)	 \
	 __PMC_CPU(INTEL_PII, “Intel Pentium II”)	 \
	 __PMC_CPU(INTEL_PIII, “Intel Pentium III”)	\
	 __PMC_CPU(INTEL_PM, “Intel Pentium M”)	 \
	 __PMC_CPU(INTEL_PIV, “Intel Pentium IV”)

Figure 3: Machine-dependent structures
are separated from machine-independent structures.

/*
 * struct pmc_mdep
 *
 * Machine dependent bits needed per CPU type.
 */

struct pmc_mdep {
	 uint32_t	pmd_cputype; /* from enum pmc_cputype */
	 uint32_t	pmd_npmc; /* max PMCs per CPU */
	 uint32_t	pmd_nclass; /* # PMC classes supported */
	 struct pmc_classinfo pmd_classes[PMC_CLASS_MAX];
	 int pmd_nclasspmcs[PMC_CLASS_MAX];

	 /*
	 * Methods
	 */

	 int (*pmd_init)(int _cpu); /* machine dependent initialization */
	 int (*pmd_cleanup)(int _cpu); /* machine dependent cleanup */

CACM_V51.7.indb 24 6/18/08 12:54:06 PM

http://fxr.watson.org/
http://fxr.watson.org/
http://fxr.watson.org/fxr/source/dev/hwpmc/
http://fxr.watson.org/fxr/source/dev/hwpmc/
http://www.codespelunking.org/freebsd-current/htags/
http://www.codespelunking.org/freebsd-current/htags/

viewpoints

july 2008 | vol. 51 | no. 7 | communications of the acm 25

The sufferers of prototypitis are really
just chicken. Not putting a line in the
sand is a sign of cowardice on the part
of the engineer or team. “This is just a
prototype” is too often used as an ex-
cuse to avoid looking at the hard prob-
lems in a system’s design. In a way,
such prototyping has become the exact
opposite of what Mr. Brooks was trying
to do. The point of a prototype is to find
out where the hard problems are, and
once they are identified, to make it pos-
sible to finish the whole system. It is
not to give the marketing department
something pretty to show potential
customers—that’s what paper napkins
and lots of whiskey are for.

Where do I stand on prototypes?
The same place that I stand on layer-
ing or the breaking down of systems
into smaller and smaller objects. You
should build only as many prototypes
as are necessary to find and solve the
hard problems that result from whatev-
er you’re trying to build. Anything else
is just navel-gazing. Now, don’t get me
wrong, I like navel-gazing as much as
the next guy, perhaps more, but what
I do when I delve into my psychedelia
collection has nothing, I assure you, to
do with writing software.

KV

George V. Neville-Neil (kv@acm.org) is the proprietor
of Neville-Neil Consulting. He works on networking and
operating systems code for fun and profit, teaches courses
on various programming-related subjects, and encourages
your comments, quips, and code snips pertaining to his
Communications column.

© 2008 ACM 0001-0782/08/0700 $5.00

What is your view of creating proto-
types, and particularly on the question
of how faithful a prototype needs to be
to resolve the really tricky details, as
opposed to just enabling the market-
ing department to get screenshots so
they can strut the stuff?

Signed,
An (A)typical Engineer

Dear Atypical,
What do you mean by “formerly known
as trial and error”!?! Are you telling me
that this fad has died? As far as I can
tell, it’s alive and well, though perhaps
many of its practitioners don’t actu-
ally know their intellectual parentage.
Actually, I suspect most of its practitio-
ners can’t spell intellectual parentage.

 Alas, it is often the case that a piece
of good advice is taken too far and be-
comes, for a time, a mantra. Anything
repeated often enough seems to be-
come truth. Mr. Brooks’ advice, as I’m
sure you know, was meant to overcome
the “it must be perfect” mantra that is
all too prevalent in computer science.
The idea that you can know everything
in the design stage is a fallacy that I
think started with the mathematicians,
who were the world’s first program-
mers. If you spend your days looking
at symbols on paper, and then only oc-
casionally have to build those symbols
into working systems, you rarely come
to appreciate what happens when the
beauty of your system meets the ugly
reality that is real hardware.

From that starting point, it’s easy
to see how programmers of the 1950s
and 1960s would want to write every-
thing down first. The problem is that a
piece of paper is a very poor substitute
for a computer. Paper doesn’t have odd
delays introduced by the speed of elec-
trons in copper, the length of wires,
or the speed of the drum (now disk,
soon to be flash). Thus, it made perfect
sense at the time to admonish people
just to build the damned thing, no mat-
ter what it was, and then to take the les-
sons learned from the prototype and
integrate them into the real system.

The increasing speeds of computers
since that advice was first given have
allowed people to build bigger, faster,
and certainly more prototypes in the
same amount of time that a single sys-
tem could have been built in the past.

The idea that you
can know everything
in the design stage
is a fallacy that
I think started with
the mathematicians,
who were the world’s
first programmers.

CACM_V51.7.indb 25 6/18/08 12:54:07 PM

mailto:kv@acm.org

ICL2008

Conference chair
M. E. Auer
(CTI Villach, Austria)

Program committee
Senior Members
A. Y. Al-Zoubi,
PSUT Amman, Jordan,
Peter Baumgartner,
Danube University Krems, Austria
Christos. Bouras
University and CTI Patras, Greece
Rhena Delport, University of
Pretoria, South Africa
Christian Dorninger,
BMBWK Vienna, Austria
Arthur Edwards, Universidad de
Colima, Mexico
David Guralnick, Kaleidoscope
Learning New York, USA
Martin Hitz,
University of Klagenfurt, Austria
Josef Hvorecky,
VSM Bratislava, Slovakia
Trayan Iliev, University of Sofia,
Bulgaria
George Ioannidis,
University of Patras, Greece
Göran Karlsson,
KTH Stockholm, Sweden
Barbara Kerr, Concordia University
Montreal, Canada
Andreas Pester, Carinthia Tech
Institute Villach, Austria
Serge Ravet, European Institute for
E-Learning, France
Rob Reilly, MIT Media Lab, USA
Cornel Samoila, University
Transylvania Brasov, Romania
Wolfgang Scharl,
Technikum Vienna, Austria
Jeanne Schreurs, University of
Hasselt, Belgium
Thomas Schmidt,
HAW Hamburg, Germany
Richard Straub,
IBM, France and ELIG
Andras Szucs,
EDEN, TU Budapest, Hungary
Linmi Tao, Tsinghua University
Peking, China
Doru Ursutiu, University
Transylvania Brasov, Romania

More information
http://www.icl-conference.org
info@icl-conference.org
phone: +43-4242-90500-2115

Registration
http://www.conftool.com/icl-
conference/

FIRST CALL FOR PAPERS

11th International Conference on Interactive Computer aided Learning
www.icl-conference.org

September 24 – 26, 2008, Villach, Austria

This interdisciplinary conference aims to focus on the exchange of relevant trends and research results as
well as the presentation of practical experiences in interactive computer aided learning. Therefore pilot
projects, applications and products will also be welcome.
This conference will be organized by the Carinthia University of Applied Sciences, Villach/Austria in
cooperation with:

Federal Ministries for Science, Education
and Culture of Austria,
IEEE Education Society,
European Distance and E-learning
Network (EDEN)
International E-Learning Association (IELA)
European Learning Industry Group (ELIG)

International Society of Engineering
Education (IGIP)
International Association of Online
Engineering (IAOE)
European Inst. of E-Learning (EifEL)
Austrian Computer Society (OCG)
IT Campus Carinthia

Topics of Interest
ICL2008 will have a focus on Educational MashUps, Collaborative Learning Environments as well
as E-Portfolios. General topics are for example:

Web based learning (WBL)
Life long learning
Intelligent content
Adaptive and intuitive environments
Responsive environments
Mobile learning environments and
applications
Computer aided language learning
incorporating AI techniques (ICALL)
Platforms and authoring tools
Educational MashUps
Networks/Grids for learning
Knowledge management and learning
Educational Virtual Environments

Collaborative learning
Applications of the Semantic Web
E-Portfolios
Standards and style-guides
Remote and virtual laboratories
Multimedia applications and virtual reality
Pedagogical and psychological issues
Evaluation and outcomes assessment
New learning models and applications
Cost-effectiveness
Real world experiences
Pilot projects / Products / Applications
 … and others

Types of Contributions
Full Papers (20 minutes presentation followed by a panel discussion)
Short Papers (15 minutes presentation)
Interactive Demonstrations (15 minutes, also on-line demonstrations)
Posters

All submissions are subject to a double blind reviewing process.
Other opportunities to participate:

Run a workshop or tutorial.
Organize a thematic session. Proposals should include a minimum of three papers.
Exhibit at ICL (products and developments of e-learning technology)

Important Dates
May 16, 2008 Submission of extended abstracts (two pages)
June 20, 2008 Notification of acceptance
Sept. 10, 2008 Camera-ready due
Sept. 24-26, 2008 Conference ICL2008

Proceedings
All accepted submissions will be published in the conference proceedings (ISBN 978-3-89958- 353-3).

CACM_V51.7.indb 26 6/18/08 12:54:07 PM

http://www.icl-conference.org
http://www.icl-conference.org
mailto:info@icl-conference.org
http://www.conftool.com/iclconference/
http://www.conftool.com/iclconference/

V
viewpoints

july 2008 | vol. 51 | no. 7 | communications of the acm 27

Point: Stephen J. Andriole

T
he field of information
technology is changing and
those responsible for edu-
cating the next generation of
technology (information sys-

tems, computer science, and computer
engineering) professionals have re-
sponded with curriculum that fails to
address the depth, speed, or direction
of these changes. If we want our stu-
dents to enjoy productive and mean-
ingful careers, we need to radically
change the content of the curriculum
of our technology majors. a

Change
The structure of the hardware/soft-
ware/services technology industry is
changing—morphing quickly from a
set of fragmented hardware and soft-
ware activities and vendors to a hard-
ware/software/service provider model
dominated by a shrinking number
of vendors. IBM, Microsoft, HP, Dell,
Intel, Oracle, Cisco, Accenture, EDS,
CSC, and a few other companies are
included in this $10B+ in revenue per
year group.b

a.	 A more extensive discussion of these issues
can be found in Stephen J. Andriole, “Busi-
ness Technology Education in the Early 21st
Century: The Ongoing Quest for Relevance,”
Journal of Information Technology Education,
September 2006. I am referring here primarily
to our undergraduate educational efforts.

b.	 Matthew Aslett, “CBR 50 Largest IT Vendors,”
Computer Business Review, July 19, 2006.

Is it improper to profile what these
companies do and reverse engineer
curricula? Most of these companies
have robust R&D programs, manufac-
ture hardware and software, and solve
industry problems with technology.
Their activities might well provide a
useful—and obviously relevant—cur-
riculum roadmap.

Another major trend is the stan-
dardization of software packages as
the primary platform on which large
enterprises compute and communi-
cate. The software necessary to con-
nect disparate software is no longer
exclusively defined as proprietary
middleware; instead, it’s embedded
in applications by the major vendors
through interoperability standards
based on Web Services and its exten-
sions, service-oriented architecture
(SOA), and event-driven architecture
(EDA). Software is also installed less
as more more companies rent applica-
tions from hosting vendors like Sales-
force.com, Microsoft, and now even
SAP. Many CIOs really want to get out
of the enterprise software acquisition,
deployment, or support business: the
demand curve for software-as-a-service
(SaaS) is steep. c

c.	 SaaS is growing in popularity as more compa-
nies appreciate the benefits of renting soft-
ware. This avoids the in-house implementation
phase and large enterprise software licensing
fees. Industry analysts from the Gartner Group
and Forrester Research, among others, report
that by 2012 25% of all software will be rented.
The decline of proprietary software will also

Relatively few vendors will produce
most of the world’s mainstream soft-
ware in the coming years. The stan-
dardization of software will result in
a concentration of software suppli-
ers complying with a set of expand-
ing integration and interoperabil-
ity standards incarnated in evolving
(service-oriented and event-driven)
architectures. Just look at the mergers
and acquisitions that have occurred
in the software industry over the past
few years. How many business intelli-
gence (BI) vendors are independent?
How many enterprise resource plan-
ning (ERP) vendors are left? Finally,
greater amounts of software will exist
only on servers accessed by increasingly
thin clients. “Thin clients”—which have
no local processing—will replace many
“fat clients”—machines with lots of soft-
ware, processing power, and storage.

When we layer outsourcing trends
onto software trends, we see industry
turning to offshore providers to satisfy
their operational support requirements
rather than U.S.-educated profession-
als who are not receiving enough of the
knowledge or skills that industry values
(or is willing to pay for, compared to off-
shore labor rates). Today those require-
ments are relatively low-level operation-
al requirements but over time offshore
providers will climb the food chain to
more strategic technology capabili-
ties. It’s these latter areas that should

be accelerated by the rising adoption of open
source software.

Point/Counterpoint
Technology Curriculum
for the Early 21st Century
In case you missed IT, the world has changed.

doi: 10.1145/1364782.1364792 	 Stephen J. Andriole	 Eric Roberts

CACM_V51.7.indb 27 6/18/08 12:54:07 PM

http://Salesforce.com
http://Salesforce.com

28 communications of the acm | july 2008 | vol. 51 | no. 7

viewpoints

catch the attention of U.S. educators
preparing their students for technol-
ogy careers since the sourcing battle for
technology infrastructure and support is
all but over—those who seek support for
computing and communications infra-
structures are driven more by labor rates
than tradition, more by the advantages
of commoditization than by customi-
zation. In fact, methodologies like ITIL
(Information Technology Infrastructure
Library) and COBIT (Control Objectives
for Information and Related Technol-
ogy) increasingly provide the means to
cost-effectively manage and optimize in-
frastructures, making the infrastructure
support business even less generous to
technology professionals.

There are other trends changing
the industry. R&D outsourcing is ex-
panding. Data mining has become
customer profiling, customization,
and personalization. Supply chains are
becoming transparent and have gone
global. Real-time dynamic pricing (via
intelligent rules engines) is spreading.
Adding to this is the convergence of all
things digital.

Where does technology curriculum
address all of these trends? Where are
the academic programs and certificates
in SOA, EDA, hosting, SaaS, integration
and interoperability, Web 2.0, Web
3.0, thin-client architecture, Web Ser-
vices, open source software, sourcing
and technology performance manage-
ment? Where do students learn about

interoperable architectures, roaming
connectivity, real-time processing,
rich converged media, user-generated
content, global supply chain optimiza-
tion, full-view business intelligence,
predictive analytics, master data man-
agement, and crowdsourcing-based
problem-solving?

Response
Several curriculum changes and guide-
lines have been proposed that attempt
to address the changes in technology
and design optimal pedagogical ap-
proaches in response to these changes.
The Joint Task Force for Computing
Curricula on Computing Curricula for
the early 21st century identified five
areas of computing degree concentra-
tions: computer engineering, com-
puter science, information systems,
information technology, and software
engineering.

These areas represent the academic
programs that the Joint Task Force
believes represent the state of the
field and the educational outcomes
our students should pursue. They’ve
identified a suite of “computing” and
“non-computing” areas that students
in each of the five areas should under-
stand. The list of knowledge and skills
areas identified by the Joint Task Force
that defines the components of the five
areas was derived from academic pro-
grams and curricula that have evolved
over a long period of time. I collected

some data that also identified knowl-
edge and skills areas—but from a prac-
titioner’s perspective.d

The table here presents the two
sets of knowledge/skills areas side-
by-side. The contrast is dramatic. The
Joint Task Force’s list barely correlates
with the list developed from the prac-
titioner surveys. Academic programs
should acknowledge the widening gap
between theory and practice, especially
since it has enormous impact on their
students’ employment prospects. Re-
gardless of what we call the academic
majors and degrees, it’s the content
of each degree’s curriculum that will
determine our students’ ability to find
gainful employment.

One of the most important corpo-
rate knowledge areas today—in fact,
the essence of business technology
convergence—is enterprise architec-
ture. Enterprise business-technology
architecture is the linchpin among
business strategy, strategic applica-
tions, technology infrastructure, and
technology support. As business is en-
abled by technology and technology
defines new business models and pro-
cesses, the importance of enterprise
business-technology architecture is
increasing. This emerging core com-
petency for the practice of the tech-
nology profession is unrepresented
in the Joint Task Force’s list of knowl-
edge and skills areas—though it is a
huge area in our practitioner survey.
Similarly, business technology opti-
mization is an opportunity area for ed-
ucators. Increasing numbers of com-
panies are struggling to optimize the
performance of their software appli-
cations, networks, database manage-
ment platforms, and infrastructure.

d.	 During the period from 2002–2005, an online
survey sponsored by the Cutter Consortium
(a technology industry research organization;
www.cutter.com) collected data from Chief
Information Officers (CIOs), Chief Technol-
ogy Officers (CTOs), technology managers,
Chief Executive Officers (CEOs), Chief Finan-
cial Officers (CFOs), technology consultants
and vendors about the content of the field, the
skill sets necessary to succeed, and the tech-
nologies most likely to be applied, neglected,
or decommissioned. Over 1,000 professionals
responded to the survey. The survey data was
subsequently presented to—and validated
by—the Villanova University CIO Advisory
Council, which consists of 25 CIOs from the
Philadelphia, PA region.

Knowledge and skills areas and bridges.

Bridge Areas Practitioner AreasACM Task Force Areas

Computing
Knowledge
and Skills

Non-Computing
Knowledge
and Skills

Design

Integration

Interoperability

Information
Architecture

Communications
Architecture

Applications
Architecture

Optimization

Metrics

Business Strategy
Knowlege and Skills

Business Applications
Knowledge and Skills

Enterprise Architecture
Knowledge and Skills

Technology Infrastructure
Knowledge and Skills

Technology Support
Knowledge and Skills

Technology Acquisition
Knowledge and Skills

Organization and Management
Knowledge and Skills

CACM_V51.7.indb 28 6/18/08 12:54:07 PM

http://www.cutter.com

viewpoints

july 2008 | vol. 51 | no. 7 | communications of the acm 29

Recommendations
While distinctions between computer
engineering (CE) and the other disci-
plines are relatively easy to appreci-
ate—especially because of the role that
hardware plays in CE programs—the
differences between information sys-
tems, information technology, software
engineering, and computer science are
much more difficult to understand and
define, especially when we reference
the changes occurring in the field. I
believe there should be three flavors:
computer engineering, computer sci-
ence, and information systems.e

CS programs should focus less on al-
ternative programming languages and
more on architectures, integration, and
interoperability; less on algorithms and
discrete structures and more on soft-
ware engineering best practices. SOA
and EDA should be owned by CS curri-
cula as should Web 2.0 and 3.0, SaaS,
thin client architecture, digital secu-
rity, open source software, interoper-
able architectures, roaming connectiv-
ity, near-real-time processing, and rich
converged media, among other related
areas. Programming? Who programs?
And where does—and more impor-
tantly, will—programming occur?
Programming will ultimately evolve to
component assembly and components
will be generated by relatively few pro-
fessionals located in the U.S., Banga-
lore, Moscow, and Shanghai working
for IBM, Oracle, SAP, Microsoft, Tata,
Infosys, and Google. Put another way,
is “programming” the core competen-
cy of computer science?

Of course there will be program-
ming jobs for our students. But the
number of those jobs will decline, be-
come more specialized, and distrib-
uted across the globe. A simple metric:
how many Fortune 1000 companies
still hire programmers? In the 1980s
and 1990s, companies like CIGNA—
where I was CTO—had hundreds of
programmers on staff. Today, Fortune
1000 companies have far fewer pro-
grammers than they did because of the
rise of packaged applications and the
labor-rate-driven sourcing options they

e.	 The focus here is on the relationship between
computer science and information systems;
CE will likely remain primarily hardware fo-
cused and in engineering colleges within the
nation’s universities.

ACM Joint Task Force knowledge and skills areas and practitioner areas.

ACM Task Force Areas
Computing Knowledge and Skills

Programming Fundamentals˲˲
Integrative Programming˲˲
Algorithms and Complexity˲˲
Computer Architecture ˲˲
and Organization

Operating Systems Principles and Design˲˲
Net Centric Principles and Design˲˲
Platform Technologies˲˲
Theory of Programming Languages˲˲
Human-Computer Interactions˲˲
Graphics and Visualization˲˲
Intelligent Systems (AI)˲˲
Information Management ˲˲
(Database) Theory

Information Management ˲˲
(Database) Practice

Scientific Computing (Numerical Methods)˲˲
Legal/Professional/Ethics/Society˲˲
Information Systems Development˲˲
Analysis of Technical Requirements˲˲
Engineering Foundations ˲˲
for Software

Engineering Economics ˲˲
for Software

Software Modeling and Analysis˲˲
Software Design˲˲
Software Verification and Validation˲˲
Software Evolution (Maintenance)˲˲
Software Process˲˲
Software Quality˲˲
Computer Systems Engineering˲˲
Digital Logic˲˲
Distributed Systems˲˲
Security: Issues and Principles˲˲
Security: Implementation ˲˲
and Management

Systems Administration˲˲
Systems Integration˲˲
Digital Media Development˲˲
Technical Support˲˲

Non-Computing Knowledge and Skills

Organizational Theory˲˲
Management of Information ˲˲
Systems Organization

Decision Theory˲˲
Organizational Behavior˲˲
Organizational Change Management˲˲
E-business˲˲
General Systems Theory˲˲
Risk Management (Project, Safety Risk)˲˲
Project Management˲˲
Analysis of Business Requirements˲˲
Embedded Systems˲˲
Circuits and Systems˲˲

Practitioner Areas
Business Strategy Knowledge and Skills

Collaboration˲˲
Customization and Personalization˲˲
Supply Chain Management˲˲
Business and Technology ˲˲
Convergence Strategy

Competitor Intelligence˲˲
Business Process Management˲˲

Business Applications
Knowledge and Skills

Business Application Optimization˲˲
Core Business ˲˲
Applications Management

Business Analytics˲˲

Enterprise Architecture
Knowledge and Skills

Applications Architectures˲˲
Data Architectures˲˲
Security Architectures˲˲
Business Scenario Development˲˲
Enterprise Technology ˲˲
Architecture Modeling

Enterprise Architecture˲˲

Technology Infrastructure
Knowledge and Skills

Messaging/Workflow/Calendaring˲˲
Automation˲˲
Database/Content/ ˲˲
Knowledge Management

Technology Support
Knowledge and Skills

Desktop/Laptop/PDA/Thin ˲˲
Client Support

Data Center Operations˲˲
Server Farm Design and Maintenance˲˲
Network Design and Support˲˲
Security and Privacy˲˲
Procurement and ˲˲
Asset Management

Asset Disposal˲˲

Technology Acquisition
Knowledge and Skills

Business Technology ˲˲
Acquisition Strategy

RFP and SLA Development˲˲

Organization and Management
Knowledge and Skills

Reporting Relationships˲˲
Centralization and Decentralization˲˲
Governance˲˲

CACM_V51.7.indb 29 6/18/08 12:54:08 PM

30 communications of the acm | july 2008 | vol. 51 | no. 7

viewpoints

now have. This trend will accelerate re-
sulting in fewer programming jobs for
our students. Should we continue to
produce more programmers?

In addition to the basics like data
communications, database manage-
ment, and enterprise applications,
21st-century IS programs should focus
on business analytics, supply-chain
optimization, technology performance
management, business process mod-
eling, full-view business intelligence,
sourcing, and large amounts of technol-
ogy management skills—in short, many
of the items on the list of practitioner
knowledge and skills.

CS programs can enable IS pro-
grams. The knowledge and skills areas
proposed by the Joint Task Force should
be extended to link to the knowledge
and skills on the IS side. Clearly, the
programs need to be coordinated—if
we want to produce marketable human
products.f The figure here suggests how
this might work. The Joint Task Force

f.	 Most CS and IS programs exist on islands in
most universities. They seldom coordinate cur-
ricula and generally have relatively little contact.

knowledge and skills areas appear on
the left and the practitioner knowledge
and skills appear on the right side of the
figure. In the middle are some “bridges”
that might shrink the gap between the
two areas. These bridges might become
required for both CS and IS curricula and
help CS programs become more relevant
and IS programs more grounded in the
enabling technology that supports busi-
ness processes and transactions.

The essence of these suggestions is
that CS and IS curriculum must dramati-
cally change if we are to help our students
compete. What was technologically signif-
icant 10 years ago is not nearly as signifi-
cant today: hardly anyone needs to know
how to program in multiple languages
or craft complex, elegant algorithms that
demonstrate alternative paths to the same
computational objective. We know more
about what software needs to do today
than we did a decade ago—and you know
what? There’s less to do and support. This
is the effect standards and commoditiza-
tion have on an industry.

Our job as educators is to prepare stu-
dents for the technology world-to-be, not
the-one-that-was. A simple way to design

new CS and IS curriculum is to observe
what practitioners do today, project
what they’ll do tomorrow, and then
identify the requisite enabling technol-
ogies (which will lead to new CS curricu-
lum) and applied technologies and best
practices (which will lead to new IS cur-
riculum). I have attempted to energize
this process by contrasting the Joint
Task Force and practitioner knowledge
and skills areas. I believe strongly in rel-
evance-driven education and training,
but also realize that not everyone be-
lieves education and training are closely
related or that universities are respon-
sible for preparing students for success-
ful careers. Many believe the creation
and communication of selected knowl-
edge—regardless of its relevance to
practice or professional careers—is the
primary role of the modern university.

Differences of opinion are usually
healthy, so let the debate begin.	

Stephen J. Andriole (stephen.andriole@villanova.edu)
is the Thomas G. Labrecque Professor of Business at
Villanova University where he conducts applied research
in business-technology convergence.

© 2008 ACM 0001-0782/08/0700 $5.00

Counterpoint: Eric Roberts

A
s I read Stephen And-
riole’s critique of com-
puting education, I was
reminded of the classic
South Asian folk tale of

the blind men and the elephant. You
know the story: six blind men each try
to describe an elephant after touch-
ing only a part of it. The trunk is like a
snake, the tail is like a rope, the ear is
like a fan, and so on. Each description
contains a kernel of truth, but none
comes close to capturing the reality of
the elephant as a whole.

Andriole’s characterization of com-
puting in the early 21st century suffers
from much the same failing in that it
attempts to generalize observations
derived from one part of the field to the
entire discipline. He begins by observ-
ing, correctly, that the last few years
have seen increasing “standardization
of software packages as the primary
platform on which large enterprises

compute and communicate.” But en-
terprise software is only part of the
computing elephant. Computing is in-
tegral to many sectors of the modern
economy: entertainment, education,
science, engineering, medicine, eco-
nomics, and many more. In most of
those sectors, software is far from be-
ing a commodity product. Innovation
in these areas continues to depend on
developing new algorithms and writing
the software necessary to make those
algorithms real.

As an example, software develop-
ment remains vital in the video game
industry, which accounts for more than
$10 billion a year in revenue. This sec-
tor is looking for people with an entirely
different set of skills than those Andri-
ole enumerates in his survey of “profes-
sionals” in the field—a category that he
restricts largely to senior management
concerned with enterprise-level infor-
mation technology. That the hiring
criteria of a CIO for a Fortune 500 com-
pany would differ from those of a video The Blind Men and the Elephant illustration

 by

 clara

 e
.

atwood

 from

 A
ugusta

 S

tevenson

’s
 C

hildren

’s

 C
lassics

 in

 D
ramatic

 F
orm

:
B

ook

 I

I
,

1
9

0
8

.

CACM_V51.7.indb 30 6/18/08 12:54:08 PM

mailto:stephen.andriole@villanova.edu

viewpoints

july 2008 | vol. 51 | no. 7 | communications of the acm 31

game developer is hardly surprising.
The two are looking at different parts of
the elephant.

And what does the video game industry
look for in its technology hires? As much
as anything, video game companies are
in the market for people with strong
programming skills. At the 2007 confer-
ence on Innovation and Technology in
Computer Science Education (ITiCSE) in
Dundee, Scotland, keynote speaker Chris
van der Kuyl, Scotland’s leading entrepre-
neur in the video game industry, assured
his audience that the greatest single factor
limiting growth in his sector is a shortage of
programming talent.

That any segment of the industry
might be starved for programming tal-
ent will likely come as a surprise to
someone who sees programming as a
soon-to-be-obsolete skill. “Program-
ming? Who programs?” Andriole asks,
with rhetorical flourish. The answer, of
course, is that millions of people around
the world are productively engaged in
precisely that activity.

Contrary to the impression Andri-
ole creates in his column, there is no
evidence that the demand for highly
skilled software developers is declining.
The agencies charged with predicting
employment trends expect a substan-
tial increase in employment for people
with software development skills. The
Bureau of Labor Statistics, in its Decem-
ber 2007 report Employment Projections:
2006–16, identifies “network systems
and data communications analyst” as
the single most rapidly growing occu-
pational category over the next decade,
with “computer software engineers, ap-
plications” in fourth place on that same
survey. This data is hardly suggestive of a
job category in decline.

Employment projections are by no
means the only evidence of continued
demand for people with software devel-
opment skills. Business leaders from
the top software companies routinely
cite the shortage of technical expertise
as the biggest stumbling block they face.
Consider, for example, the following re-
marks by Microsoft chairman Bill Gates
in a February 19, 2008 op-ed article for
the San Jose Mercury News: “Today, there
simply aren’t enough people with the
right skills to fill the growing demand for
computer scientists and computer engi-
neers. This is a critical problem because
technology holds the key to progress,

and to addressing many of the world’s
most pressing problems, including
health care, education, global inequal-
ity and climate change.” Other industry
leaders—including Rick Rashid at Mi-
crosoft (see his column in this issue) and
Google founders Larry Page and Sergey
Brin—have raised similar concerns.

It is clear from such responses that
not everyone in the computing indus-
try shares Andriole’s conviction that
traditional software-development skills
are no longer relevant. Even so, industry
leaders across all sectors nonetheless
have something in common: they can-
not find enough people with the skills
they seek. Faced with a shortfall in the
hiring pipeline, it is perhaps natural
to argue that educational institutions
should stop wasting time on other as-
pects of the discipline and focus of the
skills that are just right for one particu-
lar environment. That argument would
have merit if there were an imbalance
between supply and demand, with too
many degree recipients trained for
some occupations while other jobs
went begging. That situation, however,
does not exist in the computing indus-
try today. There is a shortfall across the
board, with not enough graduates to
supply any of the major subdisciplines.

The most powerful illustration I
have seen documenting the magnitude
of this shortfall comes from a talk pre-
sented by John Sargent, Senior Policy
Analyst for the Department of Com-
merce, at a February 2004 research
conference sponsored by the Comput-
ing Research Association (CRA). The
figure here combines the data from
several of Sargent’s slides into a single
graphic that plots statistics on degree
production against the anticipated an-
nual demand for people with those
degrees. As you can see from the left-
most set of bars, the projected annual
number of job openings for engineers
is approximately two-thirds the num-
ber of bachelor’s degrees produced
each year. The situation in the physi-
cal sciences is similar at a somewhat
smaller scale. In biology, by contrast,
the annual number of job openings
is only about 10% of the number of
bachelor’s degrees. This situation
suggests an oversupply that allows for
increased selectivity on the part of em-
ployers, who are unlikely to hire biolo-
gists without advanced degrees.

The bar graph for computer science
at the right of the figure, however, re-
veals an entirely different situation. Ac-
cording to projections from the Bureau
of Labor Statistics, the number of job
openings for computer science exceeds
the number of people receiving bach-
elor’s degrees by almost a factor of four.
Even if the industry were to hire every
computer science graduate it would
still have to look elsewhere for most of
its new hires. That, indeed, is precisely
what is happening. According to data
presented by Caroline Wardle of the Na-
tional Science Foundation at the CRA
Snowbird conference in 2002, less than
40% of employees in computing-related
jobs have computing degrees—a figure
that stands in dramatic contrast to most
other disciplines in which a degree in the
field is part of the entry requirements. It
is not that employers prefer candidates
without formal training, but simply that
there are nowhere near enough quali-
fied graduates to satisfy the demand.

The problem that we face in comput-
ing education, therefore, is to increase
the number of students. We cannot do
that by arguing that only certain com-
puting fields are worthy. The shortfall
exists across the entire field. We need
more students in each of the disciplines
identified by the Joint ACM/IEEE-CS
Task Force on Computing Curricula:
computer science, computer engineer-
ing, software engineering, information
systems, and information technology.
Andriole would have us abandon soft-
ware engineering, despite the fact that
Money magazine recently put “software
engineer” in first place in a list of the
best jobs in the U.S. and despite the
fact that the Bureau of Labor Statistics
identifies “software engineer, applica-
tions” as one of the fastest-growing
job categories.

Unfortunately, one of the biggest
challenges that the ACM faces in its
efforts to increase student interest in
computing careers is precisely to coun-
ter the mythology about the dangers of
offshoring that Andriole perpetuates
in his column. His assertion that “pro-
gramming will ultimately…be generated
by relatively few professionals” largely
located in places like Bangalore, Mos-
cow, and Shanghai validates the fears so
many high-school students express that
computing careers will vanish as soft-
ware development moves overseas.

CACM_V51.7.indb 31 6/18/08 12:54:08 PM

32 communications of the acm | july 2008 | vol. 51 | no. 7

viewpoints

The 2006 ACM report on Globalization
and Offshoring of Software—a report
to which Andriole contributed—finds
no evidence to support this view. If
anything, the opening of the offshore
labor market in computing seems to
have increased the number of comput-
ing jobs in the U.S., as illustrated by the
following paragraph from the Execu-
tive Summary: “The economic theory
of comparative advantage argues that if
countries specialize in areas where they
have a comparative advantage and they
freely trade goods and services over the
long run, all nations involved will gain
greater wealth.…This theory is sup-
ported to some extent by data from the
U.S. Bureau of Labor Statistics (BLS).
According to BLS reports, despite a
significant increase in offshoring over
the past five years, more IT jobs are
available today in the U.S. than at the
height of the dot-com boom. Moreover,
IT jobs are predicted to be among the
fastest-growing occupations over the
next decade.”

The reality is that the shortage of peo-
ple with the expertise industry needs is so
severe that companies will go anywhere
in the world that can provide workers
with the necessary skills. If those people
exist in Bangalore, Moscow, or Shanghai,
then companies will hire them there.
And if those people exist in the U.S., those
same companies will hire them here.

Unfortunately, all too many people
seem to believe that companies always
seek to minimize labor costs, typically
by employing workers at the lower sala-
ries that prevail in developing countries.
That view, however, represents a funda-
mental misunderstanding of labor eco-
nomics. Companies are not primarily
concerned with minimizing costs; after
all, they could accomplish that goal by
shutting down. Companies are in the
business of maximizing return.

A simple thought experiment will
make this difference clear. Suppose you
are Microsoft and are looking to hire
people with stellar software develop-
ment skills. One of the candidates you

are considering is a recent graduate from
a top-notch Silicon Valley university; giv-
en current salaries in the U.S., the cost
of hiring this candidate might be, con-
sidering benefits and structural costs, ap-
proximately $200,000 a year. You have an-
other candidate in Bangalore who will cost
you only $75,000. Both candidates seem
extraordinarily well qualified and show
every sign of being extremely productive
software engineers, capable of generating
perhaps $1,000,000 in annual revenue.
What do you do?

The answer, of course, is that
Microsoft hires them both. Although
the software engineer in Bangalore
might be more cost-effective, what pos-
sible reason could there be for throwing
away $800,000 a year? As long as quali-
fied candidates are scarce and capital
is plentiful, companies will hire anyone
for whom the marginal value exceeds
the marginal cost. The value that a com-
pany can recognize from the services
of talented software developers vastly
exceeds their costs, irrespective of in
which country they reside or in what
currency they are paid.

The only way software development
jobs will move entirely overseas is if the
U.S. abandons the playing field by failing
to produce students with the necessary
skills. As the New York Times editorial
page observed on March 1, 2006, shortly
after the publication of the ACM global-
ization report: “Perhaps that explains
what the report says is declining interest
in computer science among American
college students. Students may think,
Why bother if all the jobs are in India?
But the computer sector is booming,
while the number of students interest-
ed in going into the field is falling. The
industry isn’t gone, but it will be if we
don’t start generating the necessary dy-
namic work force.” Andriole’s failure to
understand that the computing indus-
try extends far beyond enterprise soft-
ware and his perpetuation of the myths
that drive students away can only make
it more difficult to generate the dynamic
work force the U.S. needs to remain com-
petitive in the global marketplace.	

Eric Roberts (eroberts@cs.stanford.edu) is a professor
of computer science at Stanford University, co-chair and
principal author of the computer science volume produced
by the joint ACM/IEEE-CS Task Force on Computing
Curricula 2001, and past chair of the ACM Education Board.

© 2008 ACM 0001-0782/08/0700 $5.00

U.S. degree production and annual employment projections.

  Ph.D.
  Master’s
  Bachelor’s
  Projected job openings

Physical SciencesEngineering

Source: Adapted from a presentation by John Sargent, Senior Policy Analyst, Department of Commerce, at the
CRA Computing Research Summit, February 23, 2004. Original sources listed as National Science Foundation/
Division of Science Resources Statistics; degree data from Department of Education/National Center for Educa-
tion Statistics: Integrated Postsecondary Education Data System Completions Survey; and NSF/SRS; Survey of
Earned Doctorates; and Projected Annual Average Job Openings derived from Department of Commerce (Office
of Technology Policy) analysis of Bureau of Labor Statistics 2002–2012 projections.
See www.cra.org/govaffairs/content.php?cid=22.

Even though the statistics in the figure are derived from surveys taken several years ago, there is no reason
to believe the situation has changed in any qualitative way. Comparing the 2002 and 2006 reports from the
Bureau of Labor Statistics suggests that employment demand may have shifted by as much as 10% percent
in certain categories. The fundamental message of the figure would not change even if the numbers were off
by a factor of two.

Biological Sciences Computer Sciences

160,000

140,000

120,000

100,000

80,000

60,000

40,000

20,000

0

CACM_V51.7.indb 32 6/18/08 12:54:08 PM

mailto:eroberts@cs.stanford.edu
http://www.cra.org/govaffairs/content.php?cid=22

V
viewpoints

july 2008 | vol. 51 | no. 7 | communications of the acm 33

doi: 10.1145/1364782.1364793	 Rick Rashid

Image Crisis
Inspiring a New Generation
of Computer Scientists
Consider what you can do to encourage young people to
pursue technology-related career paths.

I
s computer science a dying
profession? That may seem
like an odd question. After all,
computers are omnipresent
in our day-to-day lives. Their

importance to the way we run our
businesses, communicate, and use
information has never been greater.
Computing is an essential tool for
discovery and advancement in virtu-
ally every field of science. And as we
move forward, computing holds the
key to progress in almost every hu-
man endeavor.

And yet the fact remains that, in the
U.S. at least, computer science as a pro-
fession is beginning to wither away.

There is ample evidence to support
this conclusion. A recent UCLA survey
found that in 2006, barely 1% of incom-
ing freshman planned to major in com-
puter science, compared with nearly
5% 25 years ago. According to the most
recent version of the Computer Re-
search Association’s annual Taulbee
report, just 12,498 computer science
and computer engineering degrees
were awarded last year, a one-year drop
of almost 20%. Even more alarming, to-
tal undergraduate enrollment in com-
puter science and computer engineer-
ing has fallen 50% during the past five
years, to just 46,000 students.

All this comes at a time when de-
mand for computer scientists is stron-
ger than it has been for many years.
Today, IT employment is 17% higher
than it was at the height of the dot-
com bubble. According to the U.S.

Bureau of Labor Statistics, we will
add an annual average of 100,000 new
computer-related jobs through 2014,
with careers in computer science the
fastest-growing of all “professional
and related occupations.”

These numbers actually understate
the severity of the problem. Enroll-
ment in computer science and com-
puter engineering programs in the U.S.
consists of a disproportionate number
of foreign-born students, particularly
at the graduate level: last year, more
than half of master’s and doctoral de-
grees granted by U.S. universities were
awarded to non-U.S. citizens. Thanks to
a combination of security restrictions
here and increasing job opportunities
in their home countries, fewer num-
bers of these students are choosing to
remain in the U.S. to work.

Left unchecked, these trends will
inevitably undermine our ability to
compete in the global economy. For
decades, the ability of U.S. companies
to transform innovations into success-
ful businesses has been the founda-
tion for our economic growth. Tech-
nologies such as the microprocessor,
the Internet, and fiber optics that were
developed by scientists and engineers
trained in U.S. universities laid the
foundation for new industries that gen-
erated millions of high-paying jobs.

But if the number of young people
in the U.S. who study computer sci-
ence continues to decline, the center
of gravity for innovation will shift to
countries where students flock to uni-

versities to pursue degrees in the tech-
nical fields that will enable tomorrow’s
breakthroughs.

As head of Microsoft Research, I am
acutely aware of the impact that the
shortage of computer professionals
can have. Although the majority of our
researchers are based in the U.S. and
these facilities continue to grow, we
are expanding our research facilities in
other parts of the world, in part because
we recognize that this may be the only
way we can continue to find and hire
the world’s top computer scientists. I
also see the increasing difficulty that
Microsoft has in filling positions that
require a high level of training and skill
in computer science and engineering.

And, as co-chair of the Image of
Computing Task Force with Jim Foley
of Georgia Tech, I am committed to
working with colleagues from indus-
try, academia, and government to un-
derstand why interest in computer sci-
ence is declining in the U.S. and learn
what we can do to encourage young
people to pursue technology-related
careers. Founded by Foley, and based
at the University of Colorado in Boul-
der, the Image of Computing Task
Force is spearheading a national effort
to help young people recognize the vi-
tal role that computing plays in almost
every field and see the opportunities
that come with a solid background in
computer science.

Through my work with Jill Ross, di-
rector of the Image of Computing Task
Force, I’ve spoken with high school

CACM_V51.7.indb 33 6/18/08 12:54:08 PM

34 communications of the acm | july 2008 | vol. 51 | no. 7

viewpoints

and college students from across the
country. What I’ve learned from these
conversations and from the growing
body of research into why students are
losing interest in computing gives me
hope that we can inspire a new genera-
tion of bright young people to pursue
careers in computer science and relat-
ed fields. At the heart of falling interest
in computer science are fundamental
misconceptions about the work we do,
our ability to make a difference in the
world, and the job opportunities our
field offers. If we can change these per-
ceptions, we can ensure that instead of
withering, our profession will thrive.

One barrier to interest in computer
science is the unfortunate and deeply
held stereotype of the solitary male pro-
grammer who slaves over a keyboard
and subsists on snack food. A major-
ity of young people subscribe to this
stereotype and believe the job of the
computer scientist consists of endless
days spent alone in front of a computer
screen. A survey of high school students
enrolled in calculus and pre-calculus
courses—students likely to have an
aptitude for computer science—found
that half have already decided not to
pursue computer science as a major
because they don’t want to “sit in front
of a computer all day.”

The problem is even more acute
among women. A study of college un-
dergraduate women who had achieved
high SAT scores found that 70%–80% of
them chose not to major in computer
science and computer engineering be-
cause they felt they “would not enjoy
the work.” Young people also under-
estimate the role that computing can
play in changing the world. To most
high school and college students, the
job of the computer scientist is simply
to write code. What they don’t under-
stand is that most of us chose to write
code because we understood the pow-
er of computing as a tool for tackling
important problems.

A study that compared computer
science graduates at Georgia Insti-
tute of Technology with students who
switched from computer science to
another major is instructive. In that
study, a typical graduate student who
stayed in the major defined comput-
ing as “creating the applications…that
allow computers to solve real-world
problems.” Students who left the ma-

jor saw it as an exercise in “learning
how to manipulate code,” and they as-
sumed their work experience would be
“boring…debugging code in front of a
computer screen all day.”

Finally, the post-dot-com downturn
notion that there aren’t many open-
ings in the field persists, compounded
by the belief that computer-related
jobs are quickly being outsourced. The
message that many students hear from
parents and teachers is that computer
science is not a good career choice,
despite U.S. Bureau of Labor Statistics
reports indicating it is one of this coun-
try’s fastest-growing professions.

Last February, I met with a number
of high school and college students
who are deeply interested in computer
science. My goal was to learn what in-
spired them and find out what they
think we can do to help inspire their
peers. Part of what I learned was the
important role an adult—a good teach-
er or an interested mentor—can play in
encouraging an interest in computing.

One such student is Evie Powell, a
Ph.D. candidate in game design at the
University of North Carolina at Char-
lotte. From a family that discouraged
her love of math and computers, she
struggled as an undergraduate until
she took an introductory game devel-
opment course. “This class and its pro-
fessor turned out to be the inspiration I
needed,” she said.

Today, Evie is also active in the
STARS Alliance, a program that aims
to increase participation by women
and minorities in computing. “I hope
to reach out to those who feel like they
don’t have a place in such a technical
field of study,” she said. “And hopefully
show them early on that they too…have
much to offer to the discipline.”

I also met UNC Charlotte student
Lane Harrison. He started college with
a vague interest in computing but felt
he lacked the background and con-
fidence to succeed. Now a third-year
computer science and mathematics
major, he says exceptional teaching
was the catalyst for his decision to
pursue computing. He too is active in
the STARS Alliance and has spoken to
more than 1,000 high school students
about his enthusiasm for computing.

I was thrilled by the passion for com-
puting that Evie, Lane, and the other stu-
dents I met with share. I also came away

from those meetings feeling that those
of us already in the field should see the
work they are doing to encourage other
young people as a personal challenge.

As ACM members, shouldn’t we
be even more committed to spending
time out in the community and shar-
ing our enthusiasm for computing
than Evie and Lane are? Isn’t it really
up to us to show the next generation
of potential computer scientists how
exciting it is to work in a field where
we have the opportunity to advance sci-
ence, cure diseases, and tackle global
warming? Shouldn’t we be the ones
out there demonstrating that our work
consists less of debugging code than it
does of collaborating with colleagues
to develop new ideas and create solu-
tions to difficult challenges?

How can we do this? By visiting
schools and community groups to
share our passion for our field and to
make clear that a career in computing
is filled with great jobs and incredible
opportunities. By bringing young peo-
ple to the places where we work so they
can see what we really do. We can do it
by offering internships and taking the
time to mentor a young person and en-
courage their interest in math, science,
and computing.

We also need to reach out to the peo-
ple who have the greatest influence on
young people: parents, teachers, coun-
selors, and the media. Talk with teach-
ers and professors and encourage them
to show their students not only how to
write code, but why computing is such
a powerful way to solve problems.

Speak with parents or guidance
counselors and make clear to them
that computing is a career path that
offers high-paying job opportunities
unmatched by almost any other profes-
sion. Talk to journalists and empha-
size the importance of computing as a
driver for innovation and progress, and
encourage them to provide a realistic
picture of the work we do that goes be-
yond the traditional stereotype of the
geek programmer.

If you are like me, you entered this
field to make a difference. This is your
opportunity. The future of our profes-
sion depends on it. 

Rick Rashid (rashid@microsoft.com) is a senior vice
president for research at Microsoft Corporation.

© 2008 ACM 0001-0782/08/0700 $5.00

CACM_V51.7.indb 34 6/18/08 12:54:08 PM

mailto:rashid@microsoft.com

V
viewpoints

JULY 2008 | vol. 51 | no. 7 | communications of the acm 35

P
H

O
T

O
G

R
A

P
H

 B
Y

 T
I

M
O

T
H

Y
 A

R
C

H
I

B
A

L
D

scared that I was going to flunk out, but
still I was ready to work.

He initially aspired to be
a physicist, but something
happened along the way.
In my sophomore year in physics I
had to take a required class of weld-
ing. Welding was so scary and I was
a miserable failure at it, so I decided
maybe I can’t be a physicist. On the
other hand—mathematics! In the
sophomore year for mathematicians,
they give you courses on what we now
call discrete mathematics, where you
study logic and things that are integers
instead of continuous quantities. I was
drawn to that. That was something,
somehow, that had great appeal to me.

I think that there is something
strange inside my head. It’s clear that
I have much better intuition about dis-
crete things than continuous things. In
physics, for example, I could pass the
exams and I could do the problems in
quantum mechanics, but I couldn’t in-
tuit what I was doing. But on the other
hand, in my discrete math class, these
were things that really seemed a part
of me. There’s definitely something in
how I had developed by the time I was
a teenager that made me understand
discrete objects, like zeros and ones
of course, or things that are made out
of alphabetical letters, much better
than things like Fourier transforms
or waves.

I’m visualizing the symbols. To me,
the symbols are reality, in a way. I take

doi: 10.1145/1364782.1364794	 Len Shustek

T
he Computer History Mu-
seum has an active program
to gather videotaped histo-
ries from people who have
done pioneering work in

this first century of the information
age. These tapes are a rich aggregation
of stories that are preserved in the col-
lection, transcribed, and made available
on the Web to researchers, students,
and anyone curious about how inven-
tion happens.

The oral histories are conversations
about people’s lives. We want to know
about their upbringing, their families,
their education, and their jobs. But
above all, we want to know how they
came to the passion and creativity that
leads to innovation.

Presented here in two installments
(concluding next month) are excerptsa
from an interview conducted by Ed-
ward Feigenbaum in March 2007 of
Donald E. Knuth, Professor Emeritus of
The Art of Computer Programming at
Stanford University.	 — L. S.

Don talks about his
family background.
My father was the first person among
all his ancestors who had gone to col-
lege. My mother was the first person in
all of her ancestors who had gone to a

a	 Oral histories are not scripted, and a transcript
of casual speech is very different from what
one would write. I have taken the liberty of
editing and reordering freely for presentation.
For the original transcript, see http://archive.
computerhistory.org/search/oh/

year of school to learn how to be a typist.
My great-grandfather was a blacksmith.
There was no tradition in our family of
higher education at all. These people
were pretty smart, but they didn’t have
an academic background.

Some people know from an early
age what they want to do. Don
didn’t, but he knew he wanted to
work hard.
My main interest in those days was mu-
sic. But at the college where I had been
admitted, people emphasized how easy
it was going to be there as a music ma-
jor. When I got the chance to go to Case
Institute of Technology in Ohio instead,
I was intrigued by the idea that Case
was going to make me work hard. I was

Interview
The ‘Art’ of Being
Donald Knuth
In this first of a two-part talk, the renowned scholar and computer scientist
reflects on the influences that set the course for his extraordinary career.

CACM_V51.7.indb 35 6/18/08 12:54:10 PM

http://archive.computerhistory.org/search/oh/
http://archive.computerhistory.org/search/oh/

36 communications of the acm | JULY 2008 | vol. 51 | no. 7

viewpoints

algebraic formula on cards and feed
the cards into the machine. The lights
spin around for a few seconds and then
out come machine language instruc-
tions that set X1 equal to X2 + X4. Au-
tomatic programming coming out of
an algebraic formula! Well, this blew
my mind. I couldn’t understand how it
was possible to do this miracle. I could
understand how to write a program
to factor numbers, but I couldn’t un-
derstand how to write a program that
would convert algebra into machine
instructions.

It hadn’t yet occurred to him
that the computer was a general
symbol-manipulating device?
No. That occurred to Lady [Ada] Love-
lace, but it didn’t occur to me. I’m slow
to pick up on these things, but then I
persevere.

I got hold of the source code for IT.
I went through every line of that pro-
gram. During the summer we typically
had a family get-together on a beach on
Lake Erie where we spent time playing
cards and playing tennis. But that sum-
mer, I spent most of the time going
through this listing, trying to find out
the miracle of how IT worked. Okay,
it wasn’t impossible after all. In fact,
I thought of better ways to do it than
were in that program.

The code, once I saw how it hap-
pened, was inspiring to me. Also, the
discipline of reading other people’s
programs was something good to
learn early. Throughout my life I’ve
had a love of reading source materi-
als—reading something that pioneers
had written and trying to understand
their thought processes, especially
when they’re solving a problem I don’t
know how to solve. This is the best way
for me to get my own brain past the
stumbling blocks. At Case I remem-
ber looking at papers that [Pierre de]
Fermat had written in Latin in the
17th century, in order to understand
how that great number theorist ap-
proached problems.

But it’s been hard to
communicate the love of reading
historical programs.
I would say that’s my major disap-
pointment with my teaching career.
I was not able to get across to any of
my students this love for that kind of

a mathematical problem, I translate it
into formulas, and then the formulas
are the reality.

He discovers computers, and
how hard programming is.
I wrote my first program for the IBM
650 [a vacuum tube magnetic drum
computer from the 1950s], probably
in the spring of my freshman year, and
debugged it at night. The first time I
wrote the program, to find the prime
factors of a number, it was about 60 in-
structions long in machine language.
They were almost all wrong. When I
finished, it was about 120 or 130 in-
structions. I made more errors in this
program than there were lines of code!

My first program taught me a lot
about the errors that I was going to be
making in the future, and also about
how to find errors. That’s sort of the
story of my life, making errors and try-
ing to recover from them. I try to get
things correct. I probably obsess about
not making too many mistakes.

At Case he learns
about early compilers
For the IT (“Internal Translator”) pro-
gram for the 650 you would punch an

scholarship—reading source material.
I was a complete failure at passing this
on to the people that I worked with the
most closely.

He graduates from Case
and becomes a professional
compiler writer while traveling
to the California Institute of
Technology for graduate school.
I had learned about the Burroughs 205
machine language, and it was kind of
appealing to me. So I made my own

My first program
taught me a lot about
the errors that I was
going to be making
in the future, and also
about how to find
errors. That’s sort
of the story of my
life, making errors
and trying to recover
from them. I try to
get things correct.
I probably obsess
about not making too
many mistakes.

CACM_V51.7.indb 36 6/18/08 12:54:14 PM

viewpoints

JULY 2008 | vol. 51 | no. 7 | communications of the acm 37

P
H

O
T

O
G

R
A

P
H

 B
Y

 T
I

M
O

T
H

Y
 A

R
C

H
I

B
A

L
D

Heading out to California, I drove 100
miles each day and then sat in a motel
and wrote code.

But he rejects “compiler writer”
as a career, and decides what is
important in life.
Then a startup company came to
me and said, “Don, write compil-
ers for us and we will take care of
finding computers to debug them.
Name your price.” I said, “Oh, okay,
$100,000,” assuming that this was

proposal to Burroughs. I said, “I’ll write
you an ALGOL compiler for $5,000. But
I can’t implement all of ALGOL for this;
I am just one guy. Let’s leave out proce-
dures.” Well, this is a big hole in the
language! Burroughs said, “No, you’ve
got to put in procedures.” I said, “Okay,
I will put in procedures, but you’ve got
to pay me $5,500.” That’s what hap-
pened. They paid me $5,500, which was
a fairly good salary in those days. So be-
tween graduating from Case and going
to Caltech, I worked on this compiler.

[outrageous]. The guy didn’t blink.
He agreed. I didn’t blink either. I
said, “I’m not going to do it. I just
thought that was an impossible
number.” At that point I made the
decision in my life that I wasn’t go-
ing to optimize my income.

I spent a day that summer look-
ing at the mathematics of how fast
linear probing works. I got lucky, and
I solved the problem. I figured out
some math, and I kept two or three
sheets of paper with me and I typed

CACM_V51.7.indb 37 6/18/08 12:54:17 PM

38 communications of the acm | JULY 2008 | vol. 51 | no. 7

viewpoints

He starts The Art of
Computer Programming.
A man from Addison-Wesley came to
visit me and said “Don, we would like
you to write a book about how to write
compilers.” I thought about it and de-
cided “Yes, I’ve got this book inside of
me.” That day I sketched out—I still
have that sheet of tablet paper—12
chapters that I thought should be in
such a book. I told my new wife, Jill,
“I think I’m going to write a book.”
Well, we had just four months of bliss,
because the rest of our marriage has all
been devoted to this book. We still have
had happiness, but really, I wake up ev-
ery morning and I still haven’t finished
the book. So I try to organize the rest of
my life around this, as one main unify-
ing theme.

George Forsythe [founder of the
Computer Science Department at
Stanford] came down to southern Cali-
fornia for a talk, and he said, “Come
up to Stanford. How about joining
our faculty?” I said “Oh no, I can’t do
that. I just got married, and I’ve got to
finish this book first. I think I’ll fin-
ish the book next year, and then I can
come up [and] start thinking about the
rest of my life. But I want to get my book
done before my son is born.” Well, John
is now 40-some years old and I’m not
done with the book.

This is really the story of my life,
because I hope to live long enough
to finish it. But I may not because it’s
turned out to be such a huge project.

1967 was a big year.
It was certainly a pivotal year in my life.
You can see in retrospect why I think
things were building up to a crisis, be-
cause I was just working at high pitch
all the time. I was on the editorial board
of Communications of the ACM and
Journal of the ACM—working on their
programming languages sections—
and I took the editorial duties very seri-
ously. I was a consultant to Burroughs
on innovative machines. I was con-
sumed with getting The Art of Computer
Programming done. And I was a father
and husband. I would start out every
day saying “Well, what am I going to ac-
complish today?” Then I would stay up
until I finished it.

It was time for me to make a ca-
reer decision. The question was where
should I spend the rest of my life?

it up.b This became the genesis of
my main research work, which devel-
oped not to be working on compilers,
but to be working on the analysis of
algorithms. It dawned on me that
this was just one of many algorithms
that would be important, and each
one would lead to a fascinating math-
ematical problem. This was easily a
good lifetime source of rich prob-
lems to work on.

If you ask me what makes me
most happy, number one would
be somebody saying “I learned
something from you.” Number two
would be somebody saying “I used
your software.”

At Caltech he finds a mentor,
but can’t talk to him.
I went to Caltech because they had
[strength] in combinatorics, although
their computing system was incred-
ibly arcane and terrible. Marshall
Hall was my thesis advisor. He was a
world-class mathematician, and for a
long time had done pioneering work
in combinatorics. He was my mentor.
But it was a funny thing, because I was
in such awe of him that when I was in
the same room with him I could not
think straight. I wouldn’t remember
my name. I would write down what he
was saying, and then I would go back
to my office so that I could figure it
out. We couldn’t do joint research to-
gether in the same room. We could do
it back and forth.

He also was an extremely good ad-
visor, in better ways than I later was
with my students. He would keep
track of me to make sure I was not
slipping. When I was working with my
own graduate students, I was pretty
much in a mode where they would
bug me instead of me bugging them.
But he would actually write me notes
and say, “Don, why don’t you do such
and such?”

The research for his Ph.D.
thesis takes an hour.
I got a listing from a guy at Princeton
who had just computed 32 solutions
to a problem that I had been looking
at for a homework problem in my com-
binatorics class. I was riding up on the

b	 “Notes on Open Addressing.” Unpublished memoran-
dum, July 22, 1963; but see http://algo.inria.fr/AofA/
Research/11-97.html

elevator with Olga Todd, one of our
professors, and I said, “Mrs. Todd, I
think I’m going to have a theorem in
an hour. I am going to psyche out the
rule that explains why there happen to
be 32 of each kind.” Sure enough, an
hour later I had seen how to get from
each solution on the first page to the
solution on the second page. I showed
this to Marshall Hall. He said, “Don,
that’s your thesis. Don’t worry about
this block design with �=2 business.
Write this up instead and get out of
here.” So that became my thesis. And it
is a good thing, because since then only
one more design with �=2 has been
discovered in the history of the world.
I might still be working on my thesis if
I had stuck to that problem. But I felt a
little guilty that I had solved my Ph.D.
problem in one hour, so I dressed it up
with a few other chapters of stuff.

He’s never had trouble finding
problems to work on.
The way I work it’s a blessing and
a curse that I don’t have difficulty
thinking of questions. I have to actively
suppress stimulation so that I’m not
working on too many things at once.
The hard thing for me is not to find
a problem, but to find a good problem.
One that will not just be isolated to
something that happens to be true, but
also will be something that will have
spin-offs, so that once you’ve solved
the problem, the techniques are going
to apply to many other things.

If you ask me what
makes me most
happy, number one
would be somebody
saying “I learned
something from you.”
Number two would
be somebody saying
“I used your software.”

CACM_V51.7.indb 38 6/18/08 12:54:17 PM

http://algo.inria.fr/AofA/Research/11-97.html
http://algo.inria.fr/AofA/Research/11-97.html

viewpoints

JULY 2008 | vol. 51 | no. 7 | communications of the acm 39

Should I be a mathematician? Should
I be a computer scientist? By this time
I had learned that it was actually pos-
sible to do mathematical work as a
computer scientist. I had analysis of
algorithms to do. What would be a
permanent home? My model of my
life was going to be that I was going
to make one move in my lifetime to a
place where I had tenure, and I would
stay there forever.

The crisis comes.
At Caltech, I was preparing my class lec-
tures, or typing my book. I didn’t have
time to do research. If I had a new idea,
if I said “Here’s a problem that ought to
be solved,” when was I going to solve it?
Maybe on the airplane. We were doing a
lot of experiments but I didn’t have time
to sit down at home and work out the
theory for it. I had attribute grammars
coming up in February, and these re-
ductions systems coming up in March,
and I was supposed to be grinding out
Volume Two of The Art of Computer Pro-

gramming. I was scheduled in June to
lecture at a summer school in Copen-
hagen about how to parse, what’s called
top-down parsing.

What happened then, in May, is I
had a massive bleeding ulcer, and I was
hospitalized. My body gave out. I was
just doing all this stuff, and it couldn’t
take it.

I learned about myself. The doc-
tor showed me his textbook that de-
scribed the typical ulcer patient: what
people call the “Type A” personality. It
described me to a T. All of the signs
were there. I was an automaton, I
think, basically. I saw a goal and I put
myself to it, and I worked on it and
pushed it through. I didn’t say no to
people when they asked, “Don, can you
do this for me?” At this point I saw I
had this problem. I shouldn’t try to do
the impossible.

He changes his lifestyle,
and moves to Stanford.
I wrote a letter to my publisher, framed
in black, saying, “I’m not going to be
able to get the manuscript of Volume
Two to you this year. I’m sorry.” I re-
signed from 10 editorial boards. No
more JACM, no more CACM. I gave up
all of the editorships in order to cut
down my workload. I started working
on Volume Two where I left off at the
time of the ulcer, but I would be careful
to go to sleep and keep a regular sched-
ule. I went to a conference in Santa Bar-
bara on combinatorial mathematics
and had three days to sit on the beach
and develop the theory of attribute
grammars, this idea of top-down and
bottom-up parsing.

In February of 1968 I finally got the
offer from Stanford. The committees
were saying, “This guy is just 30 years
old.” But when they looked at the book,
they said, “Oh, there’s some credibility
here.” That helped me.

Why he writes his books with a pencil.
I love keyboards, but my manuscripts
are always handwritten. The reason is
that I type faster than I think. There’s
a synchronization problem. I can think
of ideas at about the rate I can write
them down with a pencil. But with typ-
ing I’m going faster, so I have to sync,
and my thoughts have to start up and
stop again in a way that involves more
of my brain.

Three volumes of “The Art” are
done, but it’s time for a pause.
Volume Four is about combinatorial
algorithms. Combinatorial algorithms
were such a small topic in 1962, when
I made that Chapter Seven of my out-
line, that Johan Dahl asked me, “How
did you ever think of putting in a chap-
ter about combinatorial algorithms in
1962?” I said, “Well, the only reason
was that it was the part I thought was
most fun.” But there was almost noth-
ing known about it at the time.

The way I look at it, this is where
you’ve got to use some art. You’ve got
to be really skillful, because one good
idea can save you six orders of magni-
tude and make your program run a mil-
lion times faster. People are coming up
with these ideas all the time. For me,
the combinatorial explosion was the
explosion of research in combinato-
rics. Not the problems exploding, but
the ideas were exploding. There’s that
much more to cover now.

It’s true that in the back of my mind
I was scared stiff that I can’t write Vol-
ume Four anymore. So maybe I was
waiting for it to simmer down. Some-
body did say to me once, after I solved
the problem of typesetting, maybe I
would start to look at binding or some-
thing, because I had to have some oth-
er reason [to delay]. I’ve certainly seen
enough graduate student procrastina-
tors in my life. Maybe I was in denial.	

He solves the problem of typesetting?
Stay tuned for Part II of this interview
in the August issue and learn how
Knuth interrupted his life’s work on
The Art of Computer Programming to
create a system that makes digitally
produced books beautiful.

Edited by Len Shustek, Chair, Computer History Museum

© 2008 ACM 0001-0782/08/0700 $5.00

I told my new wife,
Jill, “I think I’m
going to write a book.”
Well, we had just
four months of bliss,
because the rest of
our marriage has
all been devoted to
this book. We still
have had happiness,
but really, I wake up
every morning and
I still haven’t finished
the book. So I try
to organize the rest
of my life around
this, as one main
unifying theme.

CACM_V51.7.indb 39 6/18/08 12:54:17 PM

40 communications of the acm | JULY 2008 | vol. 51 | no. 7

practice

T he Extensible Markup Language (XM L), which just
celebrated its 10th birthday,4 is one of the big success
stories of the Web. Apart from basic Web technologies
(URIs, HTTP, and HTML) and the advanced scripting
driving the Web 2.0 wave, XML is by far the most
successful and ubiquitous Web technology. With great
power, however, comes great responsibility, so while
XML’s success is well earned as the first truly universal
standard for structured data, it must now deal with
numerous problems that have grown up around it.
These are not entirely the fault of XML itself, but
instead can be attributed to exaggerated claims and
ideas of what XML is and what it can do.

This article is about the lessons
gleaned from learning XML, from
teaching XML, from dealing with over-
ly optimistic assumptions about XML’s
powers, and from helping XML users
in the real world recover from these
misconceptions. Shamelessly copying
Alex Bell’s “Death by UML Fever,”1 we
frame our observations and the root of
the problems along with possible cures
in terms of different categories and
strains of “XML fever.” We didn’t invent
this term, but it embodies many inter-
esting metaphors for understanding
the use and abuse of XML, including
disease symptoms, infection methods,
immunization and preventive mea-
sures, and various remedies for treating
those suffering from different strains.

XML fever can be acquired in many
different ways, but the most prevalent way
is to be infected by the idea that XML en-
ables almost magical universal interop-
erability of information producers and
consumers. XML fevers can be classified
as basic, intermediate, and advanced:

Basic strains infect XML neophytes,
but most of them recover quickly. It
can be disappointing to discover that
the landscape of XML technologies
is not as simple as expected, and that
working with the associated tools re-
quires some getting used to, but most
people develop some immunity to the
XML hype and quickly begin to do use-
ful work with it.

Intermediate strains of XML fever
are contracted when XML users move
beyond simple applications involving
structured information and encoun-
ter models of data, documents, or pro-
cesses. A recurring symptom in these
varieties of XML fever is mild paralysis
brought on by having to select a sche-
ma language to encode a model, trying
to choose among the bewildering num-
ber of features in some languages, or
trying to “round-trip” a model between
different environments.

Advanced strains of XML fever often
take hold after exposure to the prolif-
eration of more complex and esoteric
XML-based technologies layered on
top of it. These advanced diseases are

XML
Fever

doi: 10.1145/1364782.1364795

Don’t let delusions about XML develop into a
virulent strain of XML fever.

by ERIK WILDE AND ROBERT J. GLUSHKO

CACM_V51.7.indb 40 6/18/08 12:54:17 PM

JULY 2008 | vol. 51 | no. 7 | communications of the acm 41

CACM_V51.7.indb 41 6/18/08 12:54:19 PM

42 communications of the acm | JULY 2008 | vol. 51 | no. 7

practice

harder to catch, but they are also hard-
er to remedy because people who have
caught these advanced strains tend to
congregate with others with the same
diseases and they are continually rein-
fecting each other.

Basic Strains
One of our favorite teaching moments
is to start an introductory XML lecture
with the statement, “XML is a syntax for
trees,” and that this is all there is to it,
so no further explanation is required.
Of course, there is more to it, and we
manage to fill a complete course with
it, but the essence of XML really is sim-
ple and small. This is elegant to us but
a disappointment to many XML begin-
ners who expect something bigger and
more complicated to match up with
all the hype they have heard. In fact,
XML’s character-based format lures
many XML beginners to assume they
can simply use their trusted text-pro-
cessing tools, which is the inevitable
path to the first XML fever:

Parsing pain. At first sight, XML’s
syntax looks as if it would be easy to
use simple text-processing tools for ac-
cessing XML data, so that a “desperate
Perl hacker” could implement XML in
a weekend. Unfortunately, not all XML
documents use the same character en-
coding; character references must be
interpreted; entities must be resolved;
and so on... As soon as the output from
a wider array of XML producers is con-
sidered, it becomes apparent that for
robustly parsing XML with text-pro-
cessing tools, the tools must imple-
ment a complete XML parser. This
becomes most painfully evident when
XML processing needs to take XML
Namespaces into account (often lead-
ing to an infection with the intermedi-
ate namespace nausea fever).

After overcoming parsing pain and
starting to use an XML parser, begin-
ners usually understand what we mean
when we say that XML is a syntax for
trees, but they do not as quickly grasp
that XML uses multiple tree models,
and depending on which XML technol-
ogy one is using, the “XML tree” looks
slightly different. Thus, the second ba-
sic strain of XML fever is:

Tree trauma. This is caused by ex-
posure to XML’s various tree models,
such as XML itself, DOM, the Infoset,
XPath 1.0, PSVI, and XDM. All of these

tree models share XML’s basic idea of
trees of elements, attributes, and text,
but have different ways of exposing
that model and handling some of the
details. In fact, while XML itself explic-
itly states that XML processors must
implement all of XML (apart from vali-
dation, the standard has no optional
parts, which is a smart thing for a stan-
dard to do), some of the more recent
tree models exhibit the “extended sub-
set” nature of technologies, which can
often lead to incompatibilities among
implementations. For example, PSVI—
the data model of an XML document
validated by an XML Schema (for the
rest of the article, we refer to W3C’s
language as XSDL)—is based on the
Infoset, which is a subset of the full in-
formation of an XML document, and
extends that subset with information
made available by the schema and the
validation process.

While XML is available in a number
of various “tree flavors,” the W3C has
settled (after a very long process) on the
Infoset model as the core of many XML
technologies. This means it would be
technically more accurate to say that
most XML technologies available today
are actually Infoset technologies. XML
has become one way (and so far the only
standardized one, but with the upcom-
ing binary Infoset format EXI as a more
compact alternative) of representing
Infosets. Of course, the W3C does not
want to give up the brand name of XML
and still calls everything “XML-based.”
As a result, XML users can easily get af-
fected by a peculiar ailment:

Infoset ignorance. Instead of XPath,
XSLT, and XQuery, these technologies’
proper names would be IPath, ISLT, and
IQuery, because they are Infoset-based.
Victims of Infoset ignorance take the
W3C’s branding of everything as XML
at face value and sometimes invest a lot
of energy trying to build XML process-
ing pipelines that preserve character
references and other markup details.
Infoset ignorance prevents its victims
from seeing that this approach cannot
succeed as long as they are using stan-
dards-based tools.

The remedy for Infoset ignorance
is to select a set of XML technologies
with compatible tree models. This usu-
ally also cures tree trauma, because now
XML users can focus on a specific variety
of XML tree. Depending on the specific

technologies chosen, though, tree trau-
ma can metastasize into a more severe
disease caused by failure to appreciate
the somewhat obscure ways in which
some XML technologies process trees:

Default derangement. Tree trauma
can develop into default derangement
if XML users are exposed to and experi-
ment with schema languages such as
DTDs and XSDL that allow default val-
ues. These languages cause XML trees
to change based on validation, which
means that XML processing is critically
based on validation. Because it is often
not feasible to quarantine XML users to
keep them from these schema languag-
es, a better prescription is to put them on
a strict diet of design guidelines to avoid
these potentially dangerous features.

Among the core components of vir-
tually all XML scenarios today are XML
Namespaces. They are essential for
turning XML’s local names into glob-
ally unique identifiers, but the spe-
cifics of how namespaces can be de-
clared in documents, and the fact that
namespace names are URIs that do not
need to be dereferenceable, have not
yet failed once to confound everybody
trying to start using them. A very popu-
lar XML fever thus is:

Namespace nausea. No matter
how often we try to explain that XML
Namespaces have no functionality be-
yond the simple association of local
names and namespace names, many
myths and assumptions surround
them. For example, many students as-
sume that namespaces must refer to
existing resources and ask us how to
“call the namespace in a program.”
And even though they should be sim-
ple, XML is often serialized by tools
that do not allow much control over
how namespaces are treated, creating
XML documents that exhibit various
kinds of correct but very confusing
ways of using namespaces. A particu-
larly nasty secondary infection caused
by namespace nausea can be con-
tracted when using a specific kind of
XML vocabulary:

Context cataracts. If QNames (the
colon-separated names combining
namespace prefixes and local names)
are allowed to appear as content of
XML documents (such as in attribute
values or element content), they make
the content context dependent. This
means that such XML content can be

CACM_V51.7.indb 42 6/18/08 12:54:19 PM

practice

JULY 2008 | vol. 51 | no. 7 | communications of the acm 43

correctly interpreted only within its
context in the XML document (where
all in-scope namespace declarations
can be accessed), or it must be decon-
textualized by parsing it and replacing
each QName with a context-indepen-
dent representation. Unfortunately, no
standard exists for this latter approach,
which makes this contextualized con-
tent brittle and hard to work with.

The strains described so far mani-
fest themselves in basic XML process-
ing tasks. As soon as XML users begin
work with business information and
processes, they must confront the
challenge of understanding what XML
structures actually mean. This task
exposes them to a dangerous virus en-
coded in the catchy slogan that XML is
“self-describing.”

We could be charitable and assume
that when people say XML is self-
describing, what they really mean is
“compared with something else that
clearly isn’t.” The least self-describing
information consists of just a stream
of alphanumeric characters of some
text format, as they might be on a
punch card. This delimiter-less en-
coding does not even make explicit
the tokenization of the characters into
meaningful values, so there is not any
“self” to which any description could
be assigned. The possibility of self-
description emerges only when we
separate the values with commas or
some other delimiter character, which
tells us what information components
must be described. XML goes one step
further with the syntactic mecha-
nisms of paired text labels to distin-
guish the information components
in a stream of text and quotes to as-
sociate one bit of information as an
attribute of another. It is certainly
fair to say that XML is on average
more self-describing than other text-
based encoding syntaxes, but that is
like saying the average dwarf is taller
than the average baby; neither is tall
enough to excel at basketball.

From a more technical perspec-
tive, it is also true that XML is self-
describing in the limited sense that
the data structure (one of the XML
trees, see tree trauma) can be recon-
structed from an XML document (and
maybe its schema, if processing takes
place in an environment susceptible
to default derangement).

When most people say that XML
is self-describing, however, they are
being captured by a delusion that this
refers to actual semantics, overlook-
ing the fact the XML has almost no
predefined semantics (the only excep-
tion being one predefined attribute for
identifying languages). The disease is
most likely caused by the many XML
examples that show element and at-
tribute names that seem to be self-
describing because they are labeling
the syntactic components. It could be
prevented with examples that merely
show how the XML markup characters
distinguish the information being de-
scribed from the markup that is part of
its structural description:

<xxx yyy=”4567”>850</xxx>
<zzz>20060812</zzz>

Using syntactic mechanisms to provide
clues to the element and attribute seman-
tics is convenient, but this is the cause of a
very common strain of XML fever:

Self-description delusion. XML’s
ability to define names for elements
and attributes, and the widespread
assumption that these names have
some intrinsic semantics, often cause
victims to assume that the semantics
of an XML document are self-evident,
openly available just by looking at it
and understanding the names. Fre-
quently, this strain of XML fever causes
great discomfort when the victims
learn that XML does not deal with se-
mantics, and that common under-
standing has to be established through
other mechanisms. Victims weakened
by self-description delusion are often
infected by one or more of the inter-
mediate or advanced strains of XML
fever, which promise to easily and per-
manently cure the pain caused by self-
description delusion.

Recovery from self-description de-
lusion can take a great deal of personal
commitment and effort. Victims must
learn how to define or adapt an XML
vocabulary, or to adopt technologies
that are explicitly focused on seman-
tics, not just syntax. In either case,
these steps risk exposure to strains of
XML fever beyond the basic types.

Intermediate Strains
If self-description delusion is appropri-
ately diagnosed and treated, XML users

While XML’s
success is well
earned as the first
truly universal
standard for
structured data, it
must now deal with
numerous problems
that have grown
up around it. These
are not entirely the
fault of XML itself,
but instead can
be attributed to
exaggerated claims
and ideas of what
XML is and what it
can do.

CACM_V51.7.indb 43 6/18/08 12:54:19 PM

44 communications of the acm | JULY 2008 | vol. 51 | no. 7

practice

and assumptions and hacks get built
into systems, which inevitably cause
interoperability problems later on.

If model myopia is diagnosed (often
by discovering that two implementa-
tions do not interoperate correctly be-
cause of different sets of assumptions
built into these implementations),
the key step in curing it is to define a
schema so that the XML structures to
be used in documents are well defined
and can be validated using existing
tools. As soon as this happens, the ob-
vious question is which schema lan-
guage to use. This can be the beginning
of another troublesome development:

Schema schizophrenia. DTDs are
XML’s built-in schema language, but
they are limited in their expressiveness
and do not support essential XML fea-
tures (most notably, they do not work
well with XML Namespaces). After con-
sidering various alternative languages,
the W3C eventually settled on XSDL, a
rather complex schema language with
built-in modeling capabilities. XSDL’s
expressiveness can directly cause an
associated infection, caused by the in-
ability to decide between modeling al-
ternatives:

Schema option paralysis. XSDL’s
complexity allows a given logical mod-
el to be encoded in a plethora of ways
(this fever will mutate into an even
more serious threat with the upcoming
XSDL 1.1, which adds new features that
overlap with existing features). A cure
for schema option paralysis is to use
alternative schema languages with a
better separation of concerns (such as
limiting itself to grammars and leaving
data types and path-based constraints
to other languages), most notably RE-
LAX NG.

Using more focused schema lan-
guages and targeting a separation of
concerns leaves schema developers
with a choice of schema languages. In
addition, at times it would be ideal to
combine schema languages to capture
more constraints than any one could
enforce on its own. The choice of sche-
ma languages, however, is more often
determined by available tool support
and acquired habits than by a thorough
analysis of what would be the most ap-
propriate language.

Since schema schizophrenia (with
occasional bouts of schema option
paralysis) can be a painful and long-

often recover with improved insight.
They now realize that XML’s basic tech-
nologies and toolset can be employed
for basic processing tasks involving
structured data, but that most applica-
tions involve models of the application
data or processes. XML is based on tree
structures as the basic model, and this
does not always provide the best fit for
application-level models, which can
cause trouble when mapping these
nontree structures to XML:

Tree tremors. Whereas tree trauma
(discussed earlier) is a basic strain of
XML fever caused by the various fla-
vors of trees in XML technologies, tree
tremors are a more serious condition
afflicting victims trying to manage
data in XML that is not inherently tree-
structured. The most common causes
are data models requiring nontree
graph structures and document mod-
els needing overlapping structures. In
both cases, mapping these models to
XML’s tree model results in XML struc-
tures that cannot conveniently repre-
sent the application-level model.

We often tell students that “the best
thing about XML is the ease with which
you can create a new vocabulary.” But
because XML allows well-formed docu-
ments (as opposed to valid documents
that must conform to some schema), it
is actually possible to use vocabularies
that have never been explicitly created:
documents can simply use elements
and attributes that were never declared
(let alone defined) anywhere. Well-
formedness can be appropriate dur-
ing prototyping but is reckless during
deployment and almost certainly sub-
verts interoperability. Unfortunately,
many XML users suffer from a condi-
tion that prevents them from seeing
these dangers:

Model myopia. Starting from a proto-
type based on well-formed documents,
some developers never bother to devel-
op a schema, let alone a well-defined
mapping between such a schema and
the application-level data model. In sce-
narios leading to this condition, valida-
tion often is only by eye (key phrases for
this technique are “looks good to me”
or “our documents usually sort of look
like these two examples here”), which
makes it impossible to test documents
strictly for correctness. Round-trip
XML-to-model and reverse transforma-
tions cannot be reliably implemented,

lasting condition, one tempting way
out is not to use schema languages
as the normative encoding form for
models and instead generate schemas
from some more application-oriented
modeling environment or tool. Very
often, however, these tools have a dif-
ferent built-in bias, and they rarely sup-
port document modeling. This causes
a very specific problem for generated
schemas:

Mixed content crisis. XML’s origin as
a document representation language
gives it capabilities to represent com-
plex document structures, most nota-
bly mixed content, essential in publi-
cations and other narrative document
types. Most non-XML modeling envi-
ronments and tools, however, are data
oriented and lack support for mixed
content. These tools produce XML
structures that look like table dumps
from a relational database, lacking the
nuanced document structures that are
crucial in a document-processing envi-
ronment.

Because the approach of generat-
ing schemas has the advantage that
developers of XML schemas never have
to actually write them (or even look at
them), it also can be the cause of one of
the most troubling XML problems that
is often experienced when encoun-
tering schemas generated from UML
models or spreadsheets:

Generated schema indigestion. More
abstract models have to be mapped to
XML vocabularies for XML-based infor-
mation exchange. Most modeling tools
and development environments export
models to XSDL and use that schema
for serializing and parsing instances.
Because of the perniciousness of sche-
ma schizophrenia, however, this mod-
el-to-schema encoding is complex and
tool dependent. Generated schema
indigestion often afflicts those who try
to use the schema or instances outside
the context of the tools that generated
them. This first contact with generated
schemas can be very frustrating and
distasteful, because unless the same
XML encoding rules are followed in
both contexts, XML might not be easy
to work with and certainly is neither in-
teroperable nor extensible.

These intermediate strains of XML
fever mostly revolve around the prob-
lem of how to create and use well-de-
fined descriptions of XML vocabular-

CACM_V51.7.indb 44 6/18/08 12:54:19 PM

practice

JULY 2008 | vol. 51 | no. 7 | communications of the acm 45

We always tell
students the worst
thing about XML
is the same as the
best thing: the ease
with which you
can create a new
vocabulary.

ies. Before we continue to describe the
more advanced strains of XML fever
that may result from these intermedi-
ate fevers and attempts to cure them,
it is important to point out that a good
way of avoiding them is to reuse exist-
ing XML languages, thus avoiding the
efforts and risks of inventing some-
thing new.

In an online follow-up to “On Lan-
guage Creation,”3 Tim Bray (one of the
creators of XML) says, “If you’re going
to be designing a new XML language,
first of all, consider not doing it.” This
is a very important point, because the
ubiquity of XML makes it likely that
for any given problem, somebody else
might have already encountered it
and solved it. Or for a given problem,
it might be possible to divide it into
smaller parts or to map it to a more
general problem, and to find existing
solutions for these.

Of course, there is a chance that no
prior work exists or that the available
solutions are unsatisfactory, but it re-
ally is worth the effort to evaluate exist-
ing solutions because a vocabulary can
represent hundreds or even thousands
of hours of analysis and encoding. For
example, the Universal Business Lan-
guage (UBL), a set of information build-
ing blocks common to business trans-
actions and several dozen standard
documents that reuse them, is the re-
sult of years of work by numerous XML
and business experts—and the UBL
effort itself began in 2001 by building
on the XML Common Business Library
(xCBL), on which work began in 1997.

We always tell students the worst
thing about XML is the same as the
best thing: the ease with which you can
create a new vocabulary. Language de-
sign is fundamentally hard, but XML
has made it deceptively simple by low-
ering the syntactic threshold. The con-
ceptual tasks of creating shared vocab-
ularies that are globally understood,
well defined in every necessary respect,
and reasonably easy to use have not
been made easier by XML. XML has
just given us a good toolset to describe
and work with these languages once
we have them, but defining them still
is hard work.

This, of course, is not a secret to
computer scientists, and the fact that
XML has no semantics when they are
essential to meaningful information

exchange led to the idea of the Seman-
tic Web.2 The value proposition of the
Semantic Web is compelling: a com-
mon way of representing semantics
makes it easier to express, understand,
exchange, share, merge, and agree on
them. The Semantic Web, however, is
also the leading cause of the more ad-
vanced strains of XML fever.

Advanced Strains
If semantics are important, and since
an XML schema defines only struc-
tures (that is, syntax), then semantics
must be specified in some other way.
This can happen informally by prose
describing the meaning of the individ-
ual components and parts of a schema,
or more formally, by using some model
for specifying semantics. The Seman-
tic Web is the most popular candidate
for such an environment; it is based on
a model for making statements about
resources, the Resource Description
Framework (RDF), with various tech-
nologies layered on top of that, such as
those for describing schemas for RDF.

One important observation about
the Semantic Web that is often missed
is that it introduces not only models
for semantics (various schema lan-
guages for RDF), but also a new data
model, which means that XML’s tree
structures are no longer the core data
structures for representing data. RDF
can be expressed in XML, but there are
many different ways of doing it, which
can cause a very specific illness:

RDF rage. RDF’s most widely used
syntax is XML based, but there are
many different ways in which the same
set of RDF triples can be expressed
as XML, so working with RDF data is
almost impossible using basic XML
tools, even for simple tasks such as
comparing RDF data. This inability to
use a seemingly related toolset for a
seemingly related task often is the first
symptom through which XML users
learn that they are now suffering from
more advanced strains of XML fever.

In a more classical view of infor-
mation organization, the meaning of
terms can be specified in a variety of
ways. Ordered by complexity, popular
approaches are controlled vocabular-
ies, taxonomies, thesauri, and ontolo-
gies. RDF can be used to implement
any of these concepts, but RDF sche-
mas are most often referred to as on-

CACM_V51.7.indb 45 6/18/08 12:54:19 PM

46 communications of the acm | JULY 2008 | vol. 51 | no. 7

practice

tologies. This is in part a result of free
standards-based tools for creating on-
tologies such as Protégé and SWOOP;
just as we mentioned with schema op-
tion paralysis, the availability of tools
shapes the languages people use and
the choices they make. The relative
unfamiliarity and the vague “hipness”
of the “ontology” world, however, can
give XML users anxiety about their abil-
ity to adjust to the RDF/OWL world with
more rigorous semantics. As a result,
they often overcompensate:

Ontology overkill. Operating in an
environment that focuses on seman-
tics, victims of ontology overkill tend
to overmodel semantics, creating ab-
stractions and associations that are
of little value to the application but
make the model much harder to un-
derstand and use. Ontology overkill
forces its sufferers not only to over-
model, but also often to fail at doing
so, because it is much harder to define
an ontology (in its fullest sense), and
to identify, understand, and validate
all its implications, than it is to define
a controlled vocabulary.

If XML fever sufferers come in con-
tact with communities where Seman-
tic Web ideas are widespread and well
established, they quickly discover that
most of their knowledge acquired in
the basic and intermediate phases of
the XML learning curve does not ap-
ply anymore. The reason for this is that
the Semantic Web creates a completely
self-contained world on top of other
Web technologies, with the only inter-
section being the fact that resources are
identified by URI. As a result, Semantic
Web users become blissfully unaware
that the Web may have solutions for
them or that there could be a simpler
way of solving problems. Seeing the
Semantic Web as the logical next step
of the Web’s evolution, we can observe
the following condition:

Web blindness. This is a condition
in which the victim settles into the
Semantic Web to a degree where the
non-Semantic Web does not even exist
anymore. In the pure Semantic Web,
lower-level technologies no longer
need to evolve, because every problem
can be solved on the semantic layer.
Web blindness victims often are only
dimly aware that many problems in
the real world are and most likely will
be solved with technologies other than

Semantic Web technologies.
If victims of Web blindness have

adjusted to their new environment of
abundant RDF and start embracing the
new world, they may come in contact
with applications that have aggregated
large sets of RDF data. While RDF tri-
ples are a seemingly simple concept,
the true power of RDF lies in the fact
that these triples are combined to form
interconnected graphs of statements
about things, and statements about
statements, which quickly makes it
impossible to use this dataset without
specialized tools. These tools require
specialized data storage and special-
ized languages for accessing these
stores. Handling these large sets of
data is the leading cause of an RDF-
specific ailment:

Triple shock. While RDF itself is sim-
ple, large datasets easily contain mil-
lions of triples (for truly large datasets
this can go up to billions), and man-
aging and querying such a big dataset
can become a considerable challenge.
If the schema of these large datasets
is simple, but ontology overkill has set
in and it has been reformulated as an
ontology, handling this dataset may
become considerably harder, without
any immediate benefit.

Semantic Web technologies may be
the correct choice for projects requiring
fully developed ontologies, but Semantic
Web technologies have little to do with
the plain Web and XML. This means that
neither should be regarded as a cure for
basic or intermediate XML fevers, and
that each has its own set of issues, which
are only partially listed here.

The Prescription
We probably cannot prevent these vari-
eties of XML fever, especially the basic
strains, because it is undoubtedly a re-
sult of the hype and overbroad claims
for XML that many people try it in the
first place. We can do a better job of
inoculating XML novices and users
against the intermediate and advanced
strains, however, by teaching them that
the appropriate use of XML technolo-
gies depends on the nature and scope
of the problems to which they are ap-
plied. Heavyweight XML specifications
such as those developed by OASIS,
OMG, and other standards organiza-
tions are necessary to build robust en-
terprise-class XML applications, and

Semantic Web concepts and tools are
prerequisites for knowledge-intensive
computation, but more lightweight ap-
proaches for structuring and classify-
ing information such as microformats
will do in other contexts.

When someone first learns about it,
XML may seem like the hammer in the
cliché about everything looking like a
nail. Those of us who teach XML, write
about it, or help others become effec-
tive users of it, however, can encourage
a more nuanced view of XML tools and
technologies that portrays them as a set
of hammers of different sizes, with a va-
riety of grips, heads, and claws. We need
to point out that not everyone needs a
complete set of hammers, but infor-
mation architects should know how to
select the appropriate hammer for the
kind of hammering they need to do.
And we should always remember that
pounding nails is only one of the tasks
involved in design and construction.

XML has succeeded beyond the
wildest expectations as a convenient
format for encoding information in
an open and easily computable fashion.
But it is just a format, and the difficult
work of analysis and modeling informa-
tion has not and will never go away.	

References
1.	 Bell, A.E. Death by UML fever. ACM Queue 2, 1 (Mar.

2004), 72-80.
2.	 Berners-Lee, T., Hendler, J.A., Lassila, O. The Semantic

Web. Scientific American 284, 5 (May 2001), 34-43.
3.	 Bray, T. On language creation. In Proceedings of XML

2005 (Atlanta, GA, Nov. 2005).
4.	 Bray, T., Paoli, J., Michael Sperberg-McQueen, C.

Extensible markup language (XML) 1.0. World
Wide Web Consortium, Recommendation REC-
xml-19980210 (Feb. 1998).

Erik Wilde (dret@berkeley.edu) is a visiting assistant
professor in the School of Information at the University of
California at Berkeley, where he is also technical director
of the Information and Service Design program.

Robert J. Glushko (glushko@ischool.berkeley.edu) is
an adjunct professor at the University of California at
Berkeley in the School of Information, the director of the
Center for Document Engineering, and one of the founding
faculty members of the Information and Service Design
program.

© 2008 ACM 0001-0782/08/0700 $5.00

CACM_V51.7.indb 46 6/18/08 12:54:20 PM

mailto:dret@berkeley.edu
mailto:glushko@ischool.berkeley.edu

JULY 2008 | vol. 51 | no. 7 | communications of the acm 47

The past few years have been an exciting time for
flash memory. The cost has fallen dramatically as
fabrication has become more efficient and the market
has grown; the density has improved with the advent
of better processes and additional bits per cell; and
flash has been adopted in a wide array of applications.

The flash ecosystem has expanded and
continues to expand—especially for
thumb drives, cameras, ruggedized
laptops, and phones in the consumer
space. One area where flash has seen
only limited success, however, is in the
primary storage market. As the price
trend for flash became clear in recent
years, the industry anticipated its ubiq-
uity for primary storage, with some so
bold as to predict the impending de-
mise of rotating media (undeterred,
apparently, by the obduracy of mag-
netic tape). But flash has not lived up
to these high expectations. The brunt
of the effort to bring flash to primary
storage has taken the form of solid-
state disks (SSDs), flash memory pack-

aged in hard-drive form factors and de-
signed to supplant conventional drives.
This technique is alluring because it re-
quires no changes to software or other
hardware components, but the cost of
flash per gigabyte, while falling quick-
ly, is still far more than hard drives.
Only a small number of applications
have performance needs that justify
the expense.

Although flash’s prospects are tan-
talizing, the challenge is to find uses for
it that strike the right balance between
cost and performance. Flash should be
viewed not as a replacement for exist-
ing storage, but rather as a means to
enhance it. Conventional storage sys-
tems mix dynamic memory (DRAM)

doi: 10.1145/1364782.1364796

Can flash memory become the foundation
for a new tier in the storage hierarchy?

by adam leventhal

Flash
Storage
Memory

CACM_V51.7.indb 47 6/18/08 12:54:20 PM

48 communications of the acm | JULY 2008 | vol. 51 | no. 7

practice

and hard drives; flash is interesting
because it falls in a sweet spot between
those two components for both cost
and performance in that flash is signif-
icantly cheaper and denser than DRAM
and significantly faster than disk. Flash
can accordingly augment the system to
form a new tier in the storage hierar-
chy—perhaps the most significant new
tier since the introduction of the disk
drive with RAMAC in 1956.

Properties of Flash
Flash has two distinct categories:
NAND and NOR—designations that
refer to the way the flash cells are ar-
ranged. NOR flash allows for random
access and is best suited for random
access memory, while NAND must be
treated as blocks and is ideal for per-
sistent storage. The rest of this article
examines only NAND flash, the cheap-
er and more common variety, of which
again there are two types: single-level
cell (SLC) and multilevel cell (MLC).
SLC stores a single binary value in
each memory cell. The binary value is
distinguished by two threshold volt-
ages. MLC supports four or, recently,
eight distinct values per memory cell
corresponding to two or three bits of
storage. Because of its improved lon-
gevity and performance, the conven-
tional wisdom is that SLC is best suited
for enterprise (that is, not consumer-
grade) solutions, so our focus here is
on SLC flash, its cost, power dissipa-
tion, performance, and longevity as
compared with DRAM and disk drives
(see Figure 1).

The cost per unit storage is what
has brought flash to the forefront in
recent years (see Figure 2). Earlier this
decade, flash costs were on par with
those of DRAM; now, flash devices
are much less expensive: $10–$35 per
GB for an SLC flash device compared
with around $100 per GB for DRAM.
The cost trend appears to be continu-
ing to widen the gap between flash
and DRAM. Disk drives are still much
cheaper than flash, weighing in at less
than $1 per GB for 7,200RPM drives
and in the neighborhood of $3 per GB
for 15,000RPM drives.

The other exciting attribute of flash
is its low power consumption. As the
cost of power and the impetus toward
green computing rise, so does the at-
tractiveness of lower-power solutions.

While completely accurate compari-
sons between flash, DRAM, and hard
drives are difficult because of differenc-
es in capacity and interfaces, it’s fair to
say that flash consumes significantly
less power than those other system
components, especially on a per-giga-
byte basis. The accompanying table re-
cords the power consumption for some
typical components to provide a broad
sense for each type of device.

The performance of flash is a bit
unusual in that it’s highly asymmet-
ric, posing a challenge for using it in a
storage system. A block of flash must
be erased before it can be written,
which takes on the order of 1–2 ms for
a block, and writing to erased flash re-
quires around 200–300 µs. For this rea-
son flash devices try to maintain a pool
of previously erased blocks so that the
latency of a write is just that of the pro-
gram operation. Read operations are
much faster: approximately 25 µs for
4k. By comparison, raw DRAM is even
faster, able to perform reads and writes
in much less than a microsecond. Disk-
drive latency depends on the rotational
speed of the drive: on average 4.2 ms for
7,200RPM, 3 ms for 10,000RPM, and 2
ms for 15,000RPM. Adding in the seek
time bumps these latencies up an addi-
tional 3–10 ms depending on the qual-
ity of the mechanical components.

SLC flash is typically rated to sustain
one million program/erase cycles per
block. As flash cells are stressed, they
lose their ability to record and retain
values. Because of the limited lifetime,
flash devices must take care to ensure

that cells are stressed uniformly so
that “hot” cells don’t cause premature
device failure, a technique known as
wear-leveling. Just as disk drives keep
a pool of spare blocks for bad-block
remapping, flash devices typically
present themselves to the operating
system as significantly smaller than
the amount of raw flash to maintain a
reserve of spare blocks (and pre-erased
blocks to improve write performance).
Most flash devices are also capable of
estimating their own remaining life-
times so systems can anticipate failure
and take prophylactic action.

Today’s Storage Hierarchy
Whether over a network or for local ac-
cess, primary storage can be succinctly
summarized as a head unit containing
CPUs and DRAM attached to drives ei-
ther in storage arrays or JBODs (just a
bunch of disks). The disks comprise
the primary repository for data—typi-
cal modern data sets range from a few
hundred gigabytes up to a petabyte or
more—while DRAM acts as a very fast
cache. Clients communicate via read
and write operations. Read operations
are always synchronous in that the cli-
ent is blocked until the operation is ser-
viced, whereas write operations may be
either synchronous or asynchronous
depending on the application. For ex-
ample, video streams may write data
blocks asynchronously and verify only
at the end of the stream that all data
has been quiesced; databases, how-
ever, use synchronous usually writes to
ensure that every transaction has been

10000

1000

100

10

1

0.1

  DRAM
  SSD
  15K RPM

access μsecs $/GB

Figure 1: DRAM, 15K RPM drives and SSD: Price and performance.

0.9

85

5500

125

25

3

CACM_V51.7.indb 48 6/18/08 12:54:20 PM

practice

JULY 2008 | vol. 51 | no. 7 | communications of the acm 49

committed to stable storage.
On a typical system, the speed of a

synchronous write is bounded by the
latency of nonvolatile storage, as writes
must be committed before they can
be acknowledged. Read operations
first check in the DRAM cache provid-
ing very low-latency service times, but
cache misses must also wait for the slow
procession of data around the spindle.
Since it’s quite common to have work-
ing sets larger than the meager DRAM
available, even the best prefetching
algorithms will leave many read opera-
tions blocked on the disk.

A brute-force solution for improv-
ing latency is simply to spin the plat-
ters faster to reduce rotational latency,
using 15,000RPM drives rather than
10,000 or 7,200RPM drives. This will
improve both read and write latency,
but only by a factor of two or so. For ex-
ample, using drives from a major ven-
dor, at current prices, a 10TB data set
on a 7,200RPM drive would cost about
$3,000 and dissipate 112 watts; the
same data set on a 15,000RPM drive
would cost $22,000 and dissipate 473
watts—all for a latency improvement
of a bit more than a factor of two. The
additional cost and power overhead
make this an unsatisfying solution,
though it is widely employed absent a
clear alternative.

A focused solution for improving the
performance of synchronous writes is
to add nonvolatile RAM (NVRAM) in the
form of battery-backed DRAM, usually
on a PCI card. Writes are committed to
the NVRAM ring buffer and immedi-

ately acknowledged to the client while
the data is asynchronously written out
to the drives. Once the data has been
committed to disk, the corresponding
record can be freed in the NVRAM. This
technique allows for a tremendous im-
provement for synchronous writes, but
suffers some downsides. NVRAM is
quite expensive; batteries fail (or leak,
or, worse, explode); and the maximum
size of NVRAM tends to be small (2GB–
4GB)—small enough that workloads
can fill the entire ring buffer before it
can be flushed to disk.

Flash as a Log Device
One use of flash is as a stand-in for
NVRAM that can improve write per-
formance as a log device. To that end
you need a device that mimics the im-
portant properties of NVRAM (fast,
persistent writes), while avoiding the
downsides (cost, size, battery power).
Recall, however, that while achieving
good write bandwidth is fairly easy, the
physics of flash dictate that individual
writes exhibit relatively high latency.
However, it’s possible to build a flash-
based device that can service write
operations very quickly by inserting
a DRAM write cache and then treat-
ing that write cache as nonvolatile by
adding a supercapacitor to provide the
necessary power to flush outstanding
data in the DRAM to flash in the case of
power loss.

Many applications such as data-
bases can use a dedicated log device
as a way of improving the performance
of write operations; for these applica-

tions, such a device can be dropped in
easily. To bring the benefits of a flash
log device to primary storage, and
therefore to a wide array of applica-
tions, we need similar functionality in
a general-purpose file system. Sun’s
ZFS provides a useful context for the
use of flash. ZFS, an enterprise-class
file system designed for the scale and
requirements of modern systems, was
implemented from scratch starting
in 2001. It discards the model of a file
system sitting on a volume manager in
favor of pooled storage both for sim-
plicity of management and greater flex-
ibility for optimizing performance. ZFS
maintains its on-disk data structures
in way that is always consistent, elimi-
nating the need for consistency check-
ing after an unexpected power failure.
Furthermore, it is flexible enough to
accommodate new technological ad-
vances, such as new uses of flash. (For a
complete description of ZFS, see http://
opensolaris.org/os/community/zfs.)

ZFS provides for the use of a sepa-
rate intent-log device (a slog in ZFS
jargon) to which synchronous writes
can be quickly written and acknowl-
edged to the client before the data is
written to the storage pool. The slog
is used only for small transactions,
while large transactions use the main
storage pool—it’s tough to beat the
raw throughput of large numbers
of disks. The flash-based log device
would be ideally suited for a ZFS slog.
The write buffer on the flash device has
to be only large enough to saturate the
bandwidth to flash. Its DRAM size re-
quirements—and therefore the power
requirements—are quite small. Note
also the write buffer is much smaller
than the required DRAM in a battery-
backed NVRAM device. There are ef-
fectively no constraints on the amount
of flash that could be placed on such a
device, but experimentation has shown
that 10GB of delivered capacity is more
than enough for the vast majority of
use cases.

Using such a device with ZFS in a
test system, we measured latencies
in the range of 80–100 µs. This ap-
proaches the performance of NVRAM
and has many other benefits. A com-
mon concern for flash is its longevity.
SLC flash is often rated for one million
write/erase cycles, but beyond several
hundred thousand, the data-retention

225

200

175

150

125

100

75

50

25

0

2003 2004 2005 2006 2007

Figure 2: Flash cost per GB.

CACM_V51.7.indb 49 6/18/08 12:54:20 PM

http://opensolaris.org/os/community/zfs
http://opensolaris.org/os/community/zfs

50 communications of the acm | JULY 2008 | vol. 51 | no. 7

practice

period can drop to just a few weeks.
ZFS will write to this device as a slog in
8KB chunks with each operation tak-
ing 80 µs. On a device with 10GB of raw
flash, this equates to about 3½ years of
constant use. A flash device with a for-
matted capacity of 10GB will, however,

required for bookkeeping (at a ratio
of 50:1 in the current ZFS implemen-
tation). For example, the maximum
memory configuration on a four-sock-
et machine is usually around 128GB;
such a system can easily accommo-
date 768GB or more using flash SSDs
in its internal drive bays. ZFS’s built-
in checksums catch cache inconsis-
tencies and mean that defective flash
blocks simply lead to fewer cache hits
rather than data loss.

In the context of the memory hierar-
chy, caches are often populated as en-
tries are evicted from the previous lay-
er—in an exclusive cache architecture,
on-chip caches are evicted to off-chip
caches, and so on. With a flash-based
cache, however, the write latency is so
poor the system could easily be bogged
down waiting for evictions. Accord-
ingly, the L2ARC uses an evict-ahead
policy: it aggregates ARC entries and
predictively pushes them out to flash,
thus amortizing the cost over large
operations and ensuring that there is
no additional latency when the time
comes to evict an entry from the ARC.
The L2ARC iterates over its space as a
ring, starting back at the beginning
once it reaches the end, thereby avoid-
ing any potential for fragmentation. Al-
though this technique does mean that
entries in the L2ARC that may soon be
accessed could be overwritten prema-
turely, bear in mind that the hottest
data will still reside in the DRAM-based
ARC. ZFS will write to the L2ARC slow-
ly, meaning that it can take some time
to warm up; but once warm, it should
remain so, as long as the writes to the
cache can keep up with data churn on
the system.

It’s worth noting that to this point
the L2ARC hasn’t even taken advan-
tage of what is usually considered to
be a key feature of flash: nonvolatility.
Under normal operation, the L2ARC
treats flash as cheap and vast storage.
As it writes blocks of data to populate
the cache devices, however, the L2ARC
includes a directory so that after a
power loss, the contents of the cache
can be identified, thus pre-warming
the cache. Although resets are rare,
system failures, power failures, and
downtime due to maintenance are all
inevitable; the instantly warmed cache
reduces the slow performance ramp
typical of a system after a reset. Since

typically have 20%–50% more flash held
in reserve, easily taking the longevity of
such a device under constant use to five
years, and the device itself can easily re-
port its expected remaining lifetime as
it counts down its dwindling reserve of
spare blocks. Further, data needs to be
retained only long enough for the sys-
tem to recover from a fatal error; a rea-
sonable standard is 72 hours, so a few
weeks of data retention, even for very
old flash cells, is more than adequate
and a vast improvement on NVRAM.

Flash as a Cache
The other half of this performance pic-
ture is read latency. Storage systems
typically keep a DRAM cache of data
the system determines a consumer is
likely to access so that it can service
read requests from that cache rather
than waiting for the disk. In ZFS, this
subsystem is called the adaptive re-
placement cache (ARC). The policies
that determine which data is present
in the ARC attempt to anticipate future
needs, but read requests can still miss
the cache as a result of bad predictions
or because the working set is simply
larger than the cache can hold—or
even larger than the maximum con-
figurable amount of DRAM on a sys-
tem. Flash is well suited for acting as
a new second-level cache in between
memory and disk in terms of capacity
and performance. In ZFS, this is called
the L2ARC.

ZFS fills the L2ARC using large, asyn-
chronous writes and uses the cache to
seamlessly satisfy read requests from
clients. The requirements here are a
perfect fit for flash, which inherently
has sufficient write bandwidth and fan-
tastic read latency. Since these devices
can be external—rather than being at-
tached to the main board, as is the case
with DRAM—the size of the L2ARC is
limited only by the amount of DRAM

Device Approximate Power Consumption

DRAM DIMM module (1GB) 5W

15,000 RPM drive (300GB) 17.2W

7,200 RPM drive (750GB) 12.6W

High-performance flash SSD (128GB) 2W

Power consumption for typical components.

Top: A 10MB compact flash card from 1996.

Bottom: A 2GB SD flash card from 2008.

CACM_V51.7.indb 50 6/18/08 12:54:20 PM

practice

JULY 2008 | vol. 51 | no. 7 | communications of the acm 51

the L2ARC writes slowly to its flash de-
vices and data on the system may be
modified quickly (especially with the
use of flash as a log device), the con-
tents of the L2ARC may not reflect the
same data stored on disk. During nor-
mal operation, dirtied and stale entries
are marked as such so they are ignored.
After a system reset, though stale data
may be read off the cache device, meta-
data kept on the device and ZFS’s built-
in checksums are used to identify this
condition and seamlessly recover by
reading the correct data from disk.

For working sets that are larger than
the DRAM capacity, flash offers an av-
enue to access that working set much
faster than could otherwise be done
by disks of any speed. Even for work-
ing sets that could comfortably fit in
DRAM, if the absolute performance of
DRAM isn’t necessary, it may be more
economical to skimp on DRAM for the
main ARC and instead cache the data
on flash. As this use of flash meshes
perfectly with its natural strengths,
suitable devices can be produced quite
cheaply and still have a significant per-
formance advantage over fast disks.
Although flash is still more expensive
than fast disks per unit storage, cach-
ing even a very large working set in
flash is often cheaper than storing all
data on fast disks.

The Impact of Flash
By combining the use of flash as an
intent-log to reduce write latency with
flash as a cache to reduce read latency,
we can create a system that performs
far better and consumes less power
than other systems of similar cost. It is
now possible to construct systems with
a precise mix of write-optimized flash,
flash for caching, DRAM, and cheap
disks designed specifically to achieve
the right balance of cost and perfor-
mance for any given workload, with data
automatically handled by the appropri-
ate level of the hierarchy. It is also pos-
sible to address specific performance
problems with directed rather than
general solutions. Through the use of
smarter software, we can build systems
that integrate different technologies to
extract the best qualities of each. Fur-
ther, the use of smarter software will
allow flash vendors to build solutions
for specific problems rather than gus-
sying up flash to fit the anachronistic

constraints of a hard drive. ZFS is just
one example among many of how one
could apply flash as a log and a cache
to deliver total system performance.
Most generally, this new flash tier can
be thought of as a radical form of hier-
archical storage management (HSM)
without the need for explicit manage-
ment. Although these solutions offer
concrete methods of integrating flash
into a storage system, they also raise
a number of questions and force us to
reconsider many aspects of the system.
For example, how should we connect
flash to the system? SSDs are clearly an
easy approach, but there may be faster
interfaces such as the memory bus.
More broadly, how will this impact the
balance of a system? As more requests
are serviced from flash, it may be possi-
ble to provision systems with far more
network connectivity to clients than
bus connectivity to disks.

In that vein, flash opens the possibil-
ity of using disks that are even slower,
cheaper, and more power efficient. We
can now scoff at a 15,000RPM drive as
an untargeted half-measure for a vari-
ety of problems, but couldn’t the same
argument be applied to a 7,200RPM
drive? Just because it’s at the low end
of the performance curve doesn’t mean
it’s at the bottom. The 5,400RPM drive
is quite common today and consumes
less power still. Can the return of the
3,600RPM drive be far behind? The cost
of power has continued to rise, but even
if that trend were to plateau, a large
portion of the total cost of ownership
of a storage system is directly tied to its
power use—and that’s to say nothing
of the increased market emphasis on
green design. Flash provides solutions
that require us to rethink how we build
systems and challenge us to develop
smarter software to drive those systems;
the result will be faster systems that are
cheaper and greener. 	

Adam Leventhal (ahl@sun.com) is a staff engineer
on Sun’s Microsystems’ Fishworks advanced product
development team, San Francisco, CA.

Props to Neil Perrin for developing slogs, to Brendan
Gregg for developing the L2ARC, and to Jeff Bonwick and
Matt Ahrens for reinventing storage with ZFS.

© 2008 ACM 0001-0782/08/0700 $5.00

Although flash’s
prospects are
tantalizing, the
challenge is to
find uses for it
that strike
the right balance
between cost
and performance.
Flash should be
viewed not as
a replacement
for existing
storage, but rather
as a means
to enhance it.

CACM_V51.7.indb 51 6/18/08 12:54:21 PM

mailto:ahl@sun.com

52 communications of the acm | JULY 2008 | vol. 51 | no. 7

practice

T he number and variety of computing devices in the
environment are increasing rapidly. Real computers
are no longer tethered to desktops or locked in server
rooms. PDAs, highly mobile tablet and laptop devices,
palmtop computers, and mobile telephony handsets
now offer powerful platforms for the delivery of new
applications and services. These devices are, however,
only the tip of the iceberg. Hidden from sight are the
many computing and network elements required to
support the infrastructure that makes ubiquitous
computing possible.

With so much computing power traveling around
in briefcases and pockets, developers are building
applications that would have been impossible just a
few years ago. Among the interesting services available
today are text and multimedia messaging, location-
based search and information services (for example,

on-demand reviews of nearby restau-
rants), and ad hoc multiplayer games.
Over the next several years, new classes
of mobile and personalized services,
impossible to predict today, will cer-
tainly be developed.

While these services differ from one
another in major ways, they also share
some important attributes. One—the
focus of this article—is the need for
data storage and retrieval functions
built into the application. Messaging
applications need to move messages
around the network reliably and with-
out loss. Location-based services need
to map physical location to logical lo-
cation (for example, GPS or cell-tower
coordinates to postal code) and then
look up location-based information.
Gaming applications must record and
share the current state of the game on
distributed devices and must manage
content retrieval and delivery to each
of the devices in real time. In all these
cases, fast, reliable data storage and re-
trieval are critical.

As soon as the discussion turns to
data storage and retrieval, relational
databases come to mind. Relational
databases have been tremendously
successful over the past three decades
and SQL has become the lingua franca
for data access. While data manage-
ment has become almost synonymous
with RDBMS, however, there are an
increasing number of applications for
which lighter-weight alternatives are
more appropriate.

This article begins with a brief re-
view of how relational systems came to
dominate the data management land-
scape, and discusses how the relational
technologies have evolved. It presents
a data-centric overview of today’s emer-
gent applications, and delves into data
management needs for today’s and to-
morrow’s applications.

Relational Prehistory
Relational databases came out of re-
search at IBM1,5 and the University of
California at Berkeley7 in the 1970s. Re-
lational databases were fundamentally
a reaction to escalating costs in deploy-

Beyond
Relational
Databases

doi: 10.1145/1364782.1364797

There is more to data access than SQL.

by margo seltzer

CACM_V51.7.indb 52 6/18/08 12:54:21 PM

practice

JULY 2008 | voL. 51 | no. 7 | communicationS of the acm 53

related trends emerged. First, the RD-
BMS vendors increased functionality
to provide market differentiators and
to address each new market niche as
it arose. Second, few applications need
all the features available in today’s
RDBMSs, so as the feature set size in-
creased, each application used a de-
creasing fraction of that feature set.

This drive toward increasing DBMS
functionality has been accompanied
by increasing complexity, and most
deployments now require a specialist,
trained in database administration,
to keep the systems and applications
running. Since these systems are devel-
oped and sold as monolithic entities,
even though applications may require
only a small subset of the system’s
functionality, each installation pays
the price of the total overall complexity.
Surely, there must be a better way.

ing and maintaining complex systems.
The key observation was that pro-

grammers, who were very expensive,
had to rewrite large amounts of appli-
cation software manually whenever the
content or physical organization of a
database changed. Because the appli-
cation generally knew in detail how its
data was stored, including its on-disk
layout, reorganizing databases or add-
ing new information to existing data-
bases forced wholesale changes to the
code accessing those databases.

Relational databases solved this
problem in two ways. First, they hid the
physical organization of the database
from the application and provided only
a logical view of the data. Second, they
used a declarative language to describe
the data of interest in a particular que-
ry, rather than forcing the programmer
to write a collection of function calls

to fetch the data. These two changes
allowed programmers to describe the
information they wanted and to leave
the details of optimization and access
to the database management system.
This transformation relieved program-
mers of the burden of rewriting appli-
cation code whenever the database lay-
out or organization changed.

Relational databases enjoyed tre-
mendous success in the IT shops and
data centers of the world. Businesses
with large quantities of data to manage
and sophisticated applications using
that data adopted the new technology
quickly. Demand for relational prod-
ucts created a market worth billions of
dollars in licensing revenue per year.
Several RDBMS vendors arose in the
1980s to compete for this lucrative
business.

In the 20 years that followed, two I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 C
E

L
I

A
 J

O
H

N
S

O
N

CACM_V51.7.indb 53 6/18/08 12:54:21 PM

54 communications of the acm | JULY 2008 | vol. 51 | no. 7

practice

The New Frontier
We are not the first to notice these
tides of change. In 1998, the leading
database researchers concluded that
database management systems were
becoming too complex and that auto-
mated configuration and management
were becoming essential.2 Two years
later, Surajit Chaudhuri and Gerhard
Weikum proposed radically rethink-
ing database management system
architecture.4 They suggested that da-
tabase management systems be made
more modular and that we broaden
our thoughts about data management
to include rather simple, component-
based building blocks. Most recently,
Michael Stonebraker joined the cho-
rus, arguing that “one size no longer
fits all,” and citing particular applica-
tion examples where the conventional
RDBMS architecture is inappropriate.8

As argued by Stonebraker, the rela-
tional vendors have been providing the
illusion that an RDBMS is the answer to
any data management need. For exam-
ple, as data warehousing and decision
support emerged as important appli-
cation domains, the vendors adapted
products to address the specialized
needs that arise in these new domains.
They do this by hiding fairly different
data management implementations
behind the familiar SQL front end.
This model breaks down, however, as
one begins to examine emerging data
needs in more depth.

Data warehousing. Retail organi-
zations now have the ability to record
every customer transaction, producing
an enormous data source that can be
mined for information about custom-

Web search. Internet search en-
gines lie at the intersection of database
management and information retriev-
al. The objects upon which they oper-
ate are typically semistructured (that
is, HTML instead of raw text), but the
queries posed are most often keyword
lookups where the desired response is
a sorted list of possible answers. Practi-
cally all the successful search engines
today have developed their own data
management solution to this problem,
constructing efficient inverted indices
and highly parallelized implementa-
tions of index and lookup. This appli-
cation is read-mostly with bulk updates
and nontraditional indexing.

Mobile device caching. The preva-
lence of small, mobile devices intro-
duces yet another category of applica-
tion: caching relevant portions of a
larger dataset on a smaller, low-func-
tionality device. While today’s users
think of their cell phone’s directory as
their own data collection, another view
might be to think of it as a cache of a
global phone and address directory.
This model has attractive properties—
in particular, the ability to augment
the local dataset with entries as they
are used or needed. Mobile telephony
infrastructure requires similar caching
capabilities to maintain communica-
tion channels to the devices. The ac-
cess pattern observed in these caches
is also read-mostly, and the data itself
is completely transitory; it can be lost
and regenerated if necessary.

XML management. Online transac-
tions are increasingly being conducted
by exchanging XML-encoded docu-
ments. The standard solution today in-
volves converting these documents into
a canonical relational organization,
storing them in an RDBMS, and then
converting again when one wishes to
use them. As more documents are cre-
ated, transmitted, and operated upon in
XML, these translations become unnec-
essary, inefficient, and tedious. Surely
there must be a better way. Native XML
data stores with Xquery and Xpath ac-
cess patterns represent the next wave
of storage evolution. While new items
are constantly added to and removed
from an XML repository, the documents
themselves are largely read-only.

Stream processing. Stream process-
ing is a bit of an outcast in this laun-
dry list of data-intensive applications.

ers’ purchasing patterns, trends in
product popularity, geographical pref-
erences, and countless other phenom-
ena that can be exploited to increase
sales or decrease the cost of doing busi-
ness. This database is read-mostly: it is
updated in bulk by periodically adding
new transactions to the collection, but
it is read frequently as analysts cull the
data extracting useful tidbits. This ap-
plication domain is characterized by
enormous tables (tens or hundreds
of terabytes), queries that access only
a few of the many columns in a table,
and a need to scan tables sorted in a
number of different ways.

Directory services. As organizations
become increasingly dependent upon
distributed resources and personnel,
the demand for directory services has
exploded.3 Directory servers provide
fast lookup of entities arranged in a
hierarchical structure that frequently
matches the hierarchical structure of
an organization. The LDAP standard
emerged in the 1990s in response to the
heavyweight ISO X.400/X.500 directory
services. LDAP is now at the core of au-
thentication and identity management
systems from a number of vendors (for
example, IBM Tivoli’s Directory Server,
Microsoft’s Active Directory Server, the
Sun ONE Directory Server). Like data
warehousing, LDAP is characterized by
read-mostly access. Queries are either
single-row retrieval (find the record
that corresponds to this user) or look-
ups based on attribute values (find all
users in the engineering department).
The prevalence of multivalued attri-
butes makes a relational representa-
tion quite inefficient.

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 celia

 johnson

CACM_V51.7.indb 54 6/18/08 12:54:21 PM

practice

JULY 2008 | vol. 51 | no. 7 | communications of the acm 55

Strictly speaking, stream processing
is not a data management task; it is a
data-filtering task. That is, data is pro-
duced at some source and sent stream-
ing to recipients that filter the stream
for “interesting” events. For example,
financial institutions watch stock tick-
ers looking for hotly traded items and/
or stocks that aren’t being traded as
heavily as expected.

The reason that these stream-
processing applications are included
here is a linguistic one: the filters that
are typically desired in these environ-
ments look like SQL; however, while
SQL was designed to operate on persis-
tently stored tables, these queries act
upon a real time stream of data values.
Stonebraker explains in some depth
how poorly equipped databases are for
this task. Perhaps the bigger surprise
is not that database systems are poorly
equipped to address this task, but that
because SQL appears to be the “right”
query language, developers use rela-
tional database systems for applica-
tions that have no persistent storage!

Stream processing represents a
class of applications that could benefit
from a SQL-like query language atop a
data management system with prop-
erties that are radically different from
an RDBMS. Since streaming queries
frequently operate on data observed
during a time window, some transient
local storage is necessary, but this stor-
age needn’t be persistent, transaction-
al, or support complex query process-
ing. Instead, it must be blindingly fast.
Although relational databases are well-
equipped to handle dynamic queries
over relatively static or slowly changing
data, this application class is charac-
terized by a fairly static query set over
highly dynamic data.

Flexible Solutions
Relational systems have been designed
to satisfy online transaction process-
ing (OLTP) workloads characterized by
ad hoc queries, significant write traffic,
and the need for strong transactional
and integrity guarantees. In contrast,
the applications described here are al-
most all read-dominated, and stream-
ing applications don’t even take advan-
tage of persistent data, just an SQL-like
query language. Few of these applica-
tions require transactional guarantees,
and there is little inherently relational

about the data being accessed. Thus,
the data management question be-
comes how best to satisfy the needs of
these different types of applications.
We claim (like Stonebraker) that there
really is no single right answer. In-
stead, we must focus on flexible solu-
tions that can be tailored to the needs
of a particular application.

There are several ways to deliver flex-
ibility in today’s changing data environ-
ment. The back-to-basics approach is
to require that every single application
build its own data storage service. This
option, while seemingly simple, is im-
practical in all but the simplest of appli-
cations. Some data-intensive applica-
tions running today, however, are built
upon simple, homegrown solutions.

The second way to address the need
for flexibility is to provide a smorgas-
bord of data management options,
each of which addresses a particular
application class. We see this approach
emerging in the traditional relational
market, where the SQL veneer is used to
hide the different capabilities required
for OLTP and data warehousing.

The third approach to flexibility is to
produce a storage engine that is more
configurable so that it can be tuned to
the requirements of individual applica-
tions. This solution has the advantage
of allowing concentrated investment
in a single storage system, improv-
ing quality. Configurability, however,
makes new demands of developers
who use the database, since they must
understand the configuration options
and then integrate the data manage-
ment component properly into their
product designs.

In fact, the solution emerging in the
marketplace is to have a handful of rea-
sonably configurable storage systems,
each of which is useful across a broad
application class.

There are fundamentally two prop-
erties that a solution must possess to
address the wide range of application
needs emerging today: modularity
and configurability. Few applications
require all the functionality possible
in a data management system. If an
application doesn’t need function-
ality, it should not have to “pay” for
that functionality in size (footprint,
memory consumption, disk utiliza-
tion, and so on), complexity, or cost.
Therefore, a flexible engine must allow

There are
fundamentally two
properties that
a solution must
possess to address
the wide range
of application
needs emerging
today: modularity
and configurability.

CACM_V51.7.indb 55 6/18/08 12:54:21 PM

56 communications of the acm | JULY 2008 | vol. 51 | no. 7

practice

the developer to use or exclude major
subsystems depending on whether the
application needs them. Once a system
is sufficiently modular to permit a truly
small footprint, we will find that sys-
tem deployed on an array of hardware
platforms with staggeringly large dif-
ferences in capabilities. In these cases,
the system must be configurable to its
operating environment: the specific
hardware, operating system, and appli-
cation using it.

Modularity
Some argue that database architecture
is in need of a revolution akin to the
RISC revolution in computer hardware.
The conventional monolithic DBMS ar-
chitecture is not facile enough to adapt
to today’s data demands, so we must
build data management capabilities
out of a collection of small, simple,
reusable components. For example,
instead of viewing SQL as a simple bi-
nary decision, Chaudhuri and Weikum
argue that query capabilities should be
provided at different levels of sophisti-
cation: a single-table selection proces-
sor that has a B+ tree index that sup-
ports simple indexing, updating, and
selection. To this, you might add trans-
actions. Continuing up the complex-
ity hierarchy, consider a select-project-
join processor. Next, add aggregates. In
this manner, you transform SQL from
a monolithic language into a family
of successively richer languages, each
of which is provided as a component
and satisfies a significant number of
application domains. Any particular
application selects the components it
needs. This idea of a component-based
architecture can be extended to in-
clude several other aspects of database
design: concurrency control, transac-
tions, logging, and high availability.

Concurrency control lends itself to
a hierarchy similar to that presented in
the language example. Some applica-
tions are completely single-threaded
and require no locking; others have low
levels of concurrency and would be well
served by table-level locks or API-level
locks (allowing only one writer or mul-
tiple readers into the database system
simultaneously); finally, highly con-
current applications need fine-grain
locking and multiple degrees of isola-
tion (potentially allowing applications
to see values that have been written by

Old-style database
systems solve
old-style problems;
we need new-style
databases to solve
new-style problems.

incomplete transactions).6 In a conven-
tional database management system,
locking is assumed; in the brave new
world discussed here, locking is op-
tional and different components can
be used to provide different levels of
concurrency.

Transactions provide the illusion
that a collection of operations are ap-
plied to a database in an atomic unit
and that once applied, the operations
will persist, even in the face of appli-
cation or system failure. Transaction
management is at the heart of most da-
tabase management systems, yet many
applications do not require transac-
tions. In a component-based world,
transactions, too, are optional. When
they are present, a system might still
have a number of different components
providing basic transactional mecha-
nisms, savepoints (the ability to identi-
fy a point in time to which the database
may be rolled back), two-phase commit
to support transactions that span mul-
tiple databases, nested transactions
to decompose a large operation into a
number of smaller ones, and compen-
sating transactions to undo high-level,
logical operations.

Many transaction systems use some
form of logging to provide rollback and
recovery capabilities. In that context,
it hardly seems necessary to treat log-
ging as a separable component, but it
should be. A transactional component
might be designed to work with mul-
tiple implementations, some of which
do not use logging (for example, no-
overwrite schemes such as shadow-pag-
es). Perhaps even more interesting, a
logging system might be useful outside
the context of transactions; it might be
used for auditing or provide some sort
of backup mechanism. In either case,
it should be an application designer’s
decision whether logging is necessary
rather than having it imposed by the
database vendor.

Finally, data is sometimes so critical
that downtime is unacceptable. Many
database systems provide replicated
or highly available systems to address
this need. Although this functionality is
often available as an add-on in today’s
systems, they have not gone far enough.
A developer may wish to use a data-
base’s HA (high-availability) configura-
tion, but may use it in conjunction with
some other company’s HA substrate. If

CACM_V51.7.indb 56 6/18/08 12:54:21 PM

practice

JULY 2008 | vol. 51 | no. 7 | communications of the acm 57

the application already has a substrate
that performs heartbeat protocols (or
any other mechanism that notifies the
application or system when a compo-
nent fails), fail-over, and redundant
communication channels, then you
will want to exclude those components
from the database management sys-
tem and hook into the existing func-
tionality. Monolithic systems do not al-
low this, whereas a component-based,
modular architecture does.

In addition to providing smaller,
simpler applications, components with
well-defined, clean, exposed interfaces
provide for a degree of extensibility that
is simply not possible in a monolithic
system. For example, consider the ba-
sic set of components needed to con-
struct a transactional system: a trans-
action manager, a lock manager, and a
log manager. If these modules are open
and extensible, then the developer can
build systems that incorporate items
that are not managed by the database
system into transactions. Consider, for
example, a network switch: the state of
the configuration database depends on
the state of hardware inside the device,
and vice versa. If the electrical control
over chips and boards can be incorpo-
rated into transactions, by allowing the
programmer to extend the locking and
logging system to communicate with
them, then operations such as “power
up the backup network interface card”
can be made transactional.

Modularity is a powerful tool for
managing size and complexity of appli-
cations and systems while also enabling
the application and data management
capabilities to seamlessly interact.
Thus, we have proposed an architec-
ture that enables developers to exclude
functionality they do not need and in-
clude functionality they do need but is
not provided by the database vendor.

Configurability
The second property of a flexible data
management system is configurability.
Whereas modularity is an architectural
mechanism, configuration is mostly a
runtime mechanism. With a compo-
nent-based architecture, the build-time
configuration is involved in selecting
appropriate components. A single col-
lection of components may still run on
a range of systems with wildly different
capabilities. For example, just because

make the right decisions.
Variability in persistent storage

technologies places new demands
on the database engine as well. Not
only must it work well in the presence
of spinning, magnetic storage, but it
should also run well on other media
(for example, flash) with constraints on
behaviors (such as the number of writes
to a particular memory location), and it
may need to run in the absence of any
persistent storage. For example, some
applications want to manage data en-
tirely in main memory, with no per-
sistence; some want to manage data
with full synchronous transactional
guarantees on updates; and some need
something in the middle. Each of these
policies should be implemented by
the same transactional component,
but the database should allow the pro-
grammer to control whether or not data
persists across power-down events and
the strictness of any transactional as-
surances that the system makes to the
end user.

Although many embedded systems
are now able to use commodity off-the-
shelf hardware platforms, many pro-
prietary devices still exist. The ubiqui-
tous data management solution will be
portable to these special-purpose hard-
ware devices. It will also be portable to a
variety of operating systems as well; the
services available from the operating
system on a mobile telephone handset
are different from those available on a
64-way multiprocessor with gigabytes
of RAM, even if both are running Linux.
If the data management system is to
run everywhere, then it must rely only
on the services common to most oper-

two applications both want transac-
tions and B-trees, this does not mean
that both can support a multi-gigabyte
in-memory cache. The ability to adapt
to radically different circumstances is
critical. Configurability refers to how
well a system can be matched to its en-
vironment and application needs. In
this article we discuss configurability
with respect to the hardware, the envi-
ronment in which the application runs
(for example, the operating system),
the application’s software architecture,
and the “natural” data format of the ap-
plication.

Hardware environments introduce
variability in CPU speed, memory size,
and persistent storage capabilities.
Variability in CPU speed and persis-
tent storage introduces the possibility
of trading computation for disk band-
width. On a fast processor, it may be
beneficial to compress data, consum-
ing CPU cycles, in order to save I/O;
on a PDA, where CPU cycles are sparse
and persistent I/O is fast, compression
might not be the right trade-off.

In a world where resource-con-
strained devices require potentially so-
phisticated data management, develop-
ers must have control over the memory
and disk consumption policies of the
database. In different environments,
applications may need control over the
maximum size of in-memory data struc-
tures, the maximum size of persistent
data, and the space consumed by trans-
actional logs. Policies for consump-
tion of these resources must be set by
the application developer, not the end
user, since the developer is more likely
to have the technical savvy necessary to

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 celia

 johnson

CACM_V51.7.indb 57 6/18/08 12:54:22 PM

58 communications of the acm | JULY 2008 | vol. 51 | no. 7

practice

XML, object-oriented, among others)
would add overhead for no benefit. The
configurable engine must support stor-
ing data in the format that is most nat-
ural for the application. It is then the
programmer’s responsibility to select
the format that meets the “most natu-
ral” criteria.

New-Style Databases
for New-Style Problems
Old-style database systems solve old-
style problems; we need new-style da-
tabases to solve new-style problems.
While the need for conventional da-
tabase management systems isn’t go-
ing away, many of today’s problems
require a configurable database sys-
tem. Even without a crystal ball, it
seems clear that tomorrow’s systems
will also require a significant degree of
configurability. As programmers and
engineers, we learn to select the right
tool to do a job; selecting a database is
no exception. We need to operate in a
mode where we recognize that there
are options in data management, and
we should select the right tool to get
the job done as efficiently, robustly,
and simply as possible. 	

References
1.	 Astrahan, M.M. System R: Relational approach

to database management. ACM Trans. Database
Systems 1, 2 (1976), 97–137.

2.	 Bernstein, P. The Asilomar Report on database
research. ACM SIGMOD Record 27, 4 (1998); www.
sigmod.org/record/issues/9812/asilomar.html.

3.	 Broussard, F. Worldwide IT asset management
software forecast and analysis, 2002–2007. (2004).
IDC Doc. #30277; www.idc.com/getdoc.jsp?containerI
d=30277&pid=35178981.

4.	 Chaudhuri, S., and Weikum, G. Rethinking database
system architecture: Towards a self-tuning RISC-
style database system. The VLDB Journal. (2000),
1–10; www.vldb.org/conf/2000/P001.pdf.

5.	 Codd, E.F. A relational model of data for large shared
data banks. Commun. ACM 13, 6 (June 1970):
377–387.

6.	 Gray, J., and Reuter, A. Transaction Processing:
Concepts and Technologies. Morgan Kaufman, San
Mateo, CA, 1993, 397-402

7.	 Stonebraker, M. The design and implementation of
Ingres. ACM Trans. Database Systems 1, 3 (1976),
189–222.

8.	 Stonebraker, M., and Cetintemel, U. One size fits
all: An idea whose time has come and gone. In
Proceedings of the 2005 International Conference on
Data Engineering (April 2005); http://www.cs.brown.
edu/~ugur/fits_all.pdf.

Margo I. Seltzer (margo@eecs.harvard.edu) is the
Herchel Smith Professor of Computer Science and a
Harvard College Professor in the Division of Engineering
and Applied Sciences at Harvard University, Cambridge,
MA. She is also a founder and CTO of Sleepycat Software,
the makers of Berkeley DB.

A previous version of this article appeared in the April 2005
issue of ACM Queue.Vol 3, .No. 3.

©2008 ACM 0001-0782/08/0700 $5.00

ating systems, and it must provide ex-
plicit mechanisms to allow portability,
through simple interposition libraries
or source-code availability.

Even on a single platform, the de-
veloper makes architectural choices
that affect the database system. For ex-
ample, a system may be built using: a
single thread of control; a collection of
cooperating processes, each of which
is single-threaded; multiple threads
of control in a single process; multiple
multithreaded processes; or a strictly
event-based architecture. These choic-
es are driven by a combination of the
application’s requirements, the devel-
oper’s preferences, the operating sys-
tem, and the hardware. The database
system must accommodate them.

The database must also avoid mak-
ing decisions about network protocols.
Since the database will run in environ-
ments where communication takes
place over backplanes, as well as en-
vironments where it takes place over
WANs, the developer should select
the appropriate communication infra-
structure. A special-purpose telephone
switch chassis may include a custom
backplane and protocol for fast com-
munication among redundant boards;
the database must not prevent the de-
veloper from using it.

Up to this point, configurability has
revolved around adapting to the hard-
ware and software environment of the
application. The last area of configura-
tion that we address revolves around
the application’s data. Data layout, in-
dexing, and access are critical perfor-
mance considerations. There are three
main design points with respect to data:
the physical clustering, the indexing
mechanism, and the internal structure
of items in the database. Some of these,
like the indexing mechanism, really
are runtime configuration decisions,
whereas others are more about giving
the application the ability to make de-
sign decisions, rather than having de-
signers forced into decisions because
of the database management system.

Database management systems de-
signed for spinning magnetic media
expend considerable effort clustering
related data together on disk so that
seek and rotation times can be amor-
tized by transferring a large amount of
data per repositioning event. In gen-
eral, this clustering is good, as long as

the data is clustered according to the
correct criteria. In the case of a configu-
rable database system, this means that
the developer needs to retain control
over primary key selection (as is done
in most relational database manage-
ment systems) and must be able to ig-
nore clustering issues if the persistent
medium either does not exist or does
not show performance benefits to ac-
cessing locations that are “close” to the
last access.

On a related note, the developer
must be left the flexibility to select an
indexing structure for the primary keys
that is appropriate for the workload.
Workloads with locality of reference
are probably well served by B+ trees;
those with huge datasets and truly ran-
dom access might be better off with
hash tables. Perhaps the data is highly
dimensional and require a completely
different indexing structure; the exten-
sibility discussed in the previous sec-
tion should allow a developer to pro-
vide an application-specific indexing
mechanism and use it with all of the
system’s other features (for example,
locking, transactions). At a minimum,
the configurable database should pro-
vide a range of alternative indexing
structures that support iteration, fast
equality searches, and range searches,
including searches on partial keys.

Unlike relational engines, the con-
figurable engine should permit the
programmer to determine the inter-
nal structure of its data items. If the
application has a dynamic or evolving
schema or must support ad hoc que-
ries, then the internal structure should
be one that enables high-level query ac-
cess such as SQL, Xpath, Xquery, LDAP,
etc. If, however, the schema is static
and the query set is known, selecting
an internal structure that maps more
directly to the application’s internal
data structures provides significant
performance improvements. For ex-
ample, if an application’s data is inher-
ently nonrelational (for example, con-
taining multivalued attributes or large
chunks of unstructured data), then
forcing it into a relational organiza-
tion simply to facilitate SQL access will
cost performance in the translation
and is unlikely to reap the benefits of
the relational store. Similarly, if the ap-
plication’s data was relational, forcing
it into a different format (for example,

CACM_V51.7.indb 58 6/18/08 12:54:22 PM

http://www.vldb.org/conf/2000/P001.pdf
mailto:margo@eecs.harvard.edu
http://www.sigmod.org/record/issues/9812/asilomar.html
http://www.sigmod.org/record/issues/9812/asilomar.html
http://www.idc.com/getdoc.jsp?containerId=30277&pid=35178981
http://www.idc.com/getdoc.jsp?containerId=30277&pid=35178981
http://www.cs.brown.edu/~ugur/fits_all.pdf
http://www.cs.brown.edu/~ugur/fits_all.pdf

The ACM Online Books Collection includes
unlimited access to 600 online books from
Safari® Books Online, featuring leading publishers
including O’Reilly. Safari puts a complete IT
and business e-reference library right on your
desktop. Available to ACM Professional
Members, Safari will help you zero in on
exactly the information you need, right when
you need it.

600 Online Books from Safari

3,000 Online Courses from SkillSoft

The ACM Online Course Collection features unlimited access to 3,000 online courses from SkillSoft, a
leading provider of e-learning solutions. This new collection of courses offers a
host of valuable resources that will help to maximize your learning experience.
Available on a wide range of information technology and business subjects, these
courses are open to ACM Professional and Student Members.

SkillSoft courses offer a number of valuable features, including:

Newly Expanded
Online Books
& Courses Programs!ACM’s

pd.acm.org
www.acm.org/join

HelpingMembers Meet Today’s Career Challenges

All Professional and Student Members also have
unlimited access to 500 online books from
Books24x7®, in ACM’s rotating collection of com-
plete unabridged books on the hottest comput-
ing topics. This virtual library puts information
at your fingertips. Search, bookmark, or read
cover-to-cover. Your bookshelf allows for quick
retrieval and bookmarks let you easily return
to specific places in a book.

introducing...

500 Online Books from Books24x7

• Job Aids, tools and forms that complement and support course content
• Skillbriefs, condensed summaries of the instructional content of a course topic
• Mentoring via email, online chats, threaded discussions - 24/7
• Exercises, offering a thorough interactive practice session appropriate to the
learning points covered previously in the course

• Downloadable content for easy and convenient access
• Downloadable Certificate of Completion

“The course Certificate
of Completion is
great to attach to
job applications!”

ACM Professional Member

CACM_V51.7.indb 59 6/18/08 12:54:22 PM

http://pd.acm.org
http://www.acm.org/join

60 communications of the acm | JULY 2008 | vol. 51 | no. 7

D espite the Web’s great success as a technology and
the significant amount of computing infrastructure on
which it is built, it remains, as an entity, surprisingly
unstudied. Here, we look at some of the technical and
social challenges that must be overcome to model the
Web as a whole, keep it growing, and understand its
continuing social impact. A systems approach, in the
sense of “systems biology,” is needed if we are to be
able to understand and engineer the future Web.

doi: 10.1145/1364782.1364798

The Web must be studied as an entity in its
own right to ensure it keeps flourishing
and prevent unanticipated social effects.

by James Hendler, Nigel Shadbolt, Wendy Hall,
Tim Berners-Lee, and Daniel Weitzner

Web Science:
An Interdisciplinary
Approach to
Understanding
the Web

contributed articles

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 M
A

R
I

U
S

 W
A

T
Z

CACM_V51.7.indb 60 6/18/08 12:54:24 PM

CACM_V51.7.indb 61 6/18/08 12:54:29 PM

62 communications of the acm | JULY 2008 | vol. 51 | no. 7

contributed articles

academia teach, communicate, pub-
lish, and do research. In industry, it
has not only created an entire sector
(or, arguably, multiple sectors) but af-
fected the communications and deliv-
ery of services across the entire indus-
trial spectrum. In government, it has
changed not only the nature of how
governments communicate with their
citizens but also how these popula-
tions communicate and even, in some
cases, how they end up choosing their
governments in the first place; recall
the U.S. presidential debates in which
candidates took questions online and
through YouTube videos. It is estimat-
ed that the size of the human popu-
lation is on the order of 1010 people,

Despite the huge effect the Web has
had on computing, as well as on the
overall field of computer science, the
best keyword indicator one can find in
the ACM taxonomy, the one by which
the field organizes many of its research
papers and conferences, is “miscella-
neous.” Similarly, if you look at CS cur-
ricula in most universities worldwide
you will find “Web design” is taught as
a service course, along with, perhaps,
a course on Web scripting languages.
You are unlikely to find a course that
teaches Web architecture or protocols.
It is as if the Web, at least below the
browser, simply does not exist. Many
“information schools” and “informat-
ics departments” offer courses that fo-
cus on applications on the Web or on
such topics as “Web 2.0,” but the pro-
tocols, architectures, and underlying
principles of the Web per se are rarely
covered.

Simplifying a bit, part of the reason
for this is that networking has long
been part of the systems curricula in
many departments, and thus the Inter-
net, defined via the TCP/IP networking
protocols, has long been considered an
important part of CS work. The Web,
despite having its own protocols, algo-
rithms, and architectural principles, is
often viewed by people in the CS field
as an application running on top of the
Net, more than as an entity unto itself.

This is odd, as the Web is the most
used and one of the most transfor-
mative applications in the history of
computing, even of human communi-
cations. It has changed how those in

whereas the number of separate Web
documents is more than 1011.

Computing has made significant
contributions to the Web. Our everyday
use of the Web depends on fundamen-
tal developments in CS that took place
long before the Web was invented. To-
day’s search engines are based on, for
example, developments in information
retrieval with a legacy going back to the
1960s. The innovations of the 1990s 9, 23
provide the crucial algorithms underly-
ing modern search and are fundamen-
tal to Web use. New resources (such as
Hadoop, lucene.apache.org/hadoop/,
an open-source software framework
that supports data-intensive distrib-
uted applications on large clusters of
commodity computers) make it pos-
sible for students to explore these al-
gorithms and experiment with large-
scale Web-programming practices like
MapReduce parallelism 11 in a way not
previously accessible beyond a few top
universities.

Other aspects of human interaction
on the Web have been studied else-
where. Of special note, many interest-
ing aspects of the use of the Web (such
as social networking, tagging, data in-
tegration, information retrieval, and
Web ontologies) have become part of
a new “social computing” area at some
of the top information schools. They of-
fer classes in the general properties of
networks and interconnected systems
in both the policy and political aspects
of computing and in the economics

Figure 1: The social interactions enabled by the Web put demands on the Web applications
behind them, in turn putting further demands on the Web’s infrastructure.

Social Interactions

Application Needs

Infrastructure Reqs

Figure 2: The Web presents new challenges to software engineering
and application development.

Issues

Idea

macro

Technology

Social micro

analysis complexity

creativity

Design

CACM_V51.7.indb 62 6/18/08 12:54:29 PM

http://lucene.apache.org/hadoop/

contributed articles

JULY 2008 | vol. 51 | no. 7 | communications of the acm 63

of computer use. However, in many of
these courses, the Web itself is treat-
ed as a specific instantiation of more
general principals. In other cases, the
Web is treated primarily as a dynamic
content mechanism that supports the
social interactions among multiple
browser users. Whether in CS studies
or in information-school courses, the
Web is often studied exclusively as the
delivery vehicle for content, technical
or social, rather than as an object of
study in its own right.

Here, we present the emerging in-
terdisciplinary field of Web science5,

6 taking the Web as its primary object
of study. We show there is significant
interplay among the social interac-
tions enabled by the Web’s design, the
scalable and open applications devel-
opment mandated to support them,
and the architectural and data require-
ments of these large-scale applications
(see Figure 1). However, the study of
the relationships among these levels
is often hampered by the disciplinary
boundaries that tend to separate the
study of the underlying networking
from the study of the social applica-
tions. We identify some of these rela-
tionships and briefly review the status
of Web-related research within com-
puting, We primarily focus on identify-
ing emerging and extremely challeng-
ing problems researchers (in their role
as Web scientists) need to explore.

What Is It?
Where physical science is commonly
regarded as an analytic discipline that
aims to find laws that generate or ex-
plain observed phenomena, CS is pre-
dominantly (though not exclusively)
synthetic, in that formalisms and algo-
rithms are created in order to support
specific desired behaviors. Web science
deliberately seeks to merge these two
paradigms. The Web needs to be stud-
ied and understood as a phenomenon
but also as something to be engineered
for future growth and capabilities.

At the micro scale, the Web is an in-
frastructure of artificial languages and
protocols; it is a piece of engineering.
However, it is the interaction of human
beings creating, linking, and consum-
ing information that generates the
Web’s behavior as emergent proper-
ties at the macro scale. These proper-
ties often generate surprising proper-

ties that require new analytic methods
to be understood. Some are desirable
and therefore to be engineered in;
others are undesirable and if possible
engineered out. We also need to keep
in mind that the Web is part of a wider
system of human interaction; it has
profoundly affected society, with each
emerging wave creating new challeng-
es and opportunities in making infor-
mation more available to wider sectors
of the population than ever before.

It may seem that the best way to un-
derstand the Web is as a set of protocols
that can be studied for their properties,
with individual applications analyzed
for their algorithmic properties. How-
ever, the Web wasn’t (and still isn’t)
built using the specify, design, build,
test development cycle CS has tradi-
tionally viewed as software engineering
best practice.

Figure 2 outlines a new way of look-
ing at Web development. A software
application is designed based on an
appropriate technology (such as algo-
rithm and design) and with an envi-
sioned “social” construct; it is indeed
a contradiction in terms to talk about
a Web application built for a single
user on a single machine. The system
is generally tested in a small group
or deployed on a limited basis; the
system’s “micro” properties are thus
tested. In some cases, when more and
more people accept the micro system,
accelerating “viral” scaling occurs. For
example, when Mosaic, the first popu-
lar Web browser, was released publicly
in 1992, the number of users quickly
grew by several orders of magnitude,
with more than a million downloads
in the first year; for more recent exam-
ples, consider photo-sharing on Flickr,
video-uploading on YouTube, and so-
cial-networking sites like mySpace and
Facebook.

The macro system, that is, the use
of the micro system by many users in-
teracting with one another in often-un-
predicted ways, is far more interesting
in and of itself and generally must be
analyzed in ways that are different from
the micro system. Also, these macro
systems engender new challenges that
do not occur at the micro scale; for ex-
ample, the wide deployment of Mosaic
led to a need for a way to find relevant
material on the growing Web, and thus
search became an important applica-

A large-scale
system may
have emergent
properties not
predictable by
analyzing micro
technical and/or
social effects.

CACM_V51.7.indb 63 6/18/08 12:54:29 PM

64 communications of the acm | JULY 2008 | vol. 51 | no. 7

contributed articles

tion, and later an industry, in its own
right. In other cases, the large-scale sys-
tem may have emergent properties that
were not predictable by analyzing the
micro technical and/or social effects.
Dealing with these issues can lead to
subsequent generations of technology.
For example, the enormous success of
search engines has inevitably yielded
techniques to game the algorithms (an
unexpected result) to improve search
rank, leading, in turn, to the develop-
ment of better search technologies to
defeat the gaming.

The essence of our understanding of
what succeeds on the Web and how to
develop better Web applications is that
we must create new ways to understand
how to design systems to produce the
effect we want. The best we can do today
is design and build in the micro, hop-
ing for the best, but how do we know if
we’ve built in the right functionality to
ensure the desired macroscale effects?
How do we predict other side effects
and the emergent properties of the
macro? Further, as the success or fail-
ure of a particular Web technology may
involve aspects of social interaction
among users, a topic we return to later,
understanding the Web requires more
than a simple analysis of technological
issues but also of the social dynamic of
perhaps millions of users.

Given the breadth of the Web and its
inherently multi-user (social) nature,
its science is necessarily interdisciplin-
ary, involving at least mathematics, CS,
artificial intelligence, sociology, psy-
chology, biology, and economics. We
invite computer scientists to expand
the discipline by addressing the chal-
lenges following from the widespread
adoption of the Web and its profound
influence on social structures, political
systems, commercial organizations,
and educational institutions.

Beneath the Web Graph
One way to understand the Web, famil-
iar to many in CS, is as a graph whose
nodes are Web pages (defined as static
HTML documents) and whose edges
are the hypertext links among these
nodes. This was named the “Web
graph” in 22, which also included the
first related analysis. The in-degree
of the Web graph was shown in Klein-
berg et al.3 and Kumar et al.24 to follow a
power-law distribution; a similar effect

page to an article on a Communications
page will actually involve a number of
requests among a number of servers; at
the time of this writing, typing the URI
for Communications into a browser will
cause more than 20 different HTTP-
GET requests to occur for seven differ-
ent types of Web formats. Crawlers can
capture these links and create the Web
graph as, essentially, a static snapshot
of the linking of the Web.

However, the Web graph is just one
abstraction of the Web based on one
part of the processing and protocols
underlying its function. While it is an
important result that the Web graph is
scale-free, it is the design of the proto-
cols and services that we now call the
Web that makes it possible for it to be
this way. The Web was built around a
set of core design components defined
in The Architecture of The World Wide
Web, Volume 121 as “the identification
of resources, the representation of re-
source state, and the protocols that
support the interaction between agents
and resources in the space.”

A feature of the Web is that, depend-
ing on the details of a request, differ-
ent representations may be served up
to different requesters. For example,
the HTML produced may vary based
on conditions hidden from the client
(such as which particular machines
in a back-end server farm process the
request) and by the server’s customi-
zation of the response. Cookies, rep-
resenting previous state, may also be
used, causing different users to see dif-
ferent content (and thus have different
links in the Web graph) based on ear-
lier behavior and visits to the same or
to other sites. This sort of user-depen-
dent state is not directly accounted for
in current Web-graph models.

There are also other ways the Web, as
an application of the Internet, cannot
simply be analyzed using the model of
a quasi-static graph of linked hypertext
pages. For example, many Web sites
use Web forms to access a wealth of
information behind the servers, where
that information, sometimes called
“the deep Web,” is not visible in the
Web model. For many sites, in which
the applications’s data forms a linked
Web, the links are not explicit, and
HTTP-POST requests are used instead
of the HTTP-GETs in the Web graph. In
other cases, these sites generate com-

was shown in Broder et al.10 for the out-
branching of vertices in the graph. An
important result in Dill et al.12 showed
that large samples of the Web, gener-
ated through a variety of methods, all
had similar properties—important as
the Web graph grows, reported in 2005
to be on the order of seven million new
pages a day.17 Various models have
been proposed as to how the Web graph
grows and which models best capture
its evolution; see Donato et al.14 for an
analysis of a number of these models
and their properties.

Along with analyses of this graph
and its growth, a number of algorithms
have been devised to exploit various
properties of the graph. For example,
the HITS algorithm23 and PageRank9
assume that the insertion of a hyper-
link from one page to another can be
taken as a sort of endorsement of the
“authority” of the page being linked to,
an assumption that led to the develop-
ment of powerful search engines for
finding pages on the Web. While mod-
ern search engines use a number of
heuristics beyond these page-author-
ity calculations, due in part to com-
petitive pressure from those trying to
spoof the algorithms and get a higher
rank, these Web-graph-based models
still form the heart of the critical crawl-
ers and rank-assessment algorithms
behind Web search.

The links in this Web graph rep-
resent single instantiations of the
results of calling the HTTP protocol
with a GET request that returns a par-
ticular representation (in this case an
HTML page) of a document based on
a universal resource identifier (URI)
that serves as an identifier common
across the entire Web. So, for example,
the URI http://www.acm.org/publica-
tions/cacm typed into a standard Web
browser invokes the hypertext transfer
protocol (HTTP) and returns an HTML
page that contains content describing
the publication known as Communica-
tions of the ACM. Note, however, that
the content itself contains other URIs
that are themselves pointers to objects
that are also displayed (such as icons
and images) and that the formatting of
the page itself may require retrieving
other resources (such as cascaded style
sheets) or XML DTD documents. So
what we might naively view as a single
link from, say, a research group’s Web

CACM_V51.7.indb 64 6/18/08 12:54:29 PM

http://www.acm.org/publications/cacm
http://www.acm.org/publications/cacm

contributed articles

JULY 2008 | vol. 51 | no. 7 | communications of the acm 65

cations, and (iii) the increasing num-
ber of diverse users from everywhere
in the world makes a similar analysis
impossible today without creating and
validating new models of the Web’s
dynamics. Such models must also pay
special attention to the details of the
Web’s architecture, as well as to the
complexity of the interactions actually
taking place there.

Additionally, modern, sophisti-
cated Web sites provide powerful
user-interface functionality by run-
ning large script systems within the
browser. These applications access the
underlying remote data model through
Web APIs. This application architec-
ture allows users and entrepreneurs
to quickly build many new forms of
global systems using the processing
power of users’ machines and the stor-
age capacity of a mass of conventional
Web servers. Like the basic Web, each
such system is interesting mainly for
its emergent macro-scale properties,
of which we have little understanding.
Are such systems stable? Are they fair?
Do they effectively create a new form
of currency? And if they do should it
be regulated?

Similarly, many user-generated
content sites now store personal in-
formation yet have rather simplistic
systems to restrict access to a person’s
“friends.” This information is not avail-
able to wide-scale analysis. Some other
sites must be allowed to access the sites
by posing as the user or as a friend; a
number of three-party authentication
protocols are being deployed to allow
this. A complex system is thus being
built piece by piece, with no invariants
(such as “my employer will never see
this picture”) assured for the user.

The purpose of this discussion is not
to go into the detail of Web protocols
or the relative merits of Web-modeling
approaches but to stress that they are
critical to the current and continued
working of the Web. Understanding
the protocols and issues is important
to understanding the Web as a tech-
nical construct and to analyzing and
modeling its dynamic nature. Our abil-
ity to engineer Web systems with desir-
able properties at scale requires that
we understand these dynamics. This
analysis and modeling are thus an im-
portant challenge to computer scien-
tists if they are to be able to understand

plex URIs that use GET requests to pass
on statea, thus obscuring the identity of
the actual resources.

URIs that carry state are used heav-
ily in Web applications but are, to
date, largely unanalyzed. For exam-
ple, in a June 2007 talk, Udi Manber,
Google’s VP of engineering, addressed
the issue of why Web search is so dif-
ficult,25 explaining that on an average
day, 20%–25% of the searches seen by
Google have never been submitted be-
fore and that each of these searches
generates a unique identifier (using
server-specific encoding information).
So a Web-graph model would repre-
sent only the requesting document
(whether a user request or a request
generated by, for example, a dynamic
advertisement content request) linked
to the www.google.com node. How-
ever if, as is widely reported, Google
receives more than 100 million queries
per day, and if 20% of them are unique,
then more than 20 million links, rep-
resented as new URIs that encode the
search term(s), should show up in the
Web graph every day, or around 200 per
second. Do these links follow the same
power laws? Do the same growth mod-
els explain these behaviors? We simply
don’t know.

Analyzing the Web solely as a graph
also ignores many of its dynamics (es-
pecially at short timescales). Many
phenomena known to Web users (such
as denial-of-service attacks caused by
flooding a server and the need to click
the same link multiple times before get-
ting a response) cannot be explained by
the Web-graph model and often can’t
be expressed in terms amenable to
such graph-based analysis. Represent-
ing them at the networking level, ignor-
ing protocols and how they work, also
misses key aspects of the Web, as well
as a number of behaviors that emerge
from the interactions of millions of re-
quests hitting many thousands of serv-
ers every second. Web dynamics were
analyzed more than a decade ago,20 but
the combination of (i) the exponential
growth in the amount of Web content,
(ii) the change in the number, power,
and diversity of Web servers and appli-

a.	 These characters, including ?.#, =, and &, fol-
lowed by keywords, may follow the last “slash”
in the URI, thus making for the long URIs of-
ten generated by dynamic content servers.

Today’s interactive
applications are
very early social
machines, limited
by the fact that they
are largely isolated
one from another.

CACM_V51.7.indb 65 6/18/08 12:54:29 PM

http://www.google.com

66 communications of the acm | JULY 2008 | vol. 51 | no. 7

contributed articles

the growth and behaviors of the future
Web, as well as to engineer systems
with desired properties in a way that is
significantly less hit or miss.

From Power Laws to People
Mathematically based analysis of the
Web involves another potential failing.
Whereas the structure and use of vari-
ous Web sites (taken mathematically)
may have interesting properties, these
properties may not be very useful in ex-
plaining the behavior of the sites over
time. Consider the following example:
Wikipedia (www.wikipedia.org), the

online wiki-based encyclopedia, in-
cludes more than two million articles
in English and more than six million
in all languages combined. They are
hyperlinked, and it is logical to ask
whether the hyperlinks have structure
similar to those on the Web in general
or whether, since this is a managed cor-
pus, they have yet other properties.

Answering can be done in a num-
ber of ways; Figure 3 shows the result
of one of them. In this case, DBPedia
(dbpedia.org), which is a dump of the
link structure of Wikipedia using the
labeled links of the resource descrip-
tion framework, or RDF, has been ana-
lyzed with respect to the use of the link
labels; that is, we are looking at the
structure of Wikipedia as opposed to

the linguistic content of its pages. The
figure shows the same kind of Zipf-like
distribution found in the original Web
graph analyses. There is also some evi-
dence16 and a lot of speculation29 that
similar effects can be seen in the use
of tags in Web-based tagging systems.
Current research is also exploring
whether these results depart from such
models as preferential attachment3
used to explain the scale-free features
of Web graphs.

Unfortunately, whatever explains
these effects, another aspect of Wiki-
pedia’s use is not explained by these

models and does not necessarily follow
from these properties. Wikipedia is
built on top of the MediaWiki software
package (www.mediawiki.org/wiki/Me-
diaWiki), which is freely available and
used in many other Web applications
besides Wikipedia. While some of
them have also been successful, many
have failed to generate significant use.
A purely “technological” explanation
cannot account for this; rather, some-
thing about the organizational struc-
tures of Wikipedia and the needs of its
users accounts for its success over other
systems built from the same code base.
The model by which articles are cre-
ated, edited, and tracked is provided by
the underlying technology. The social
model enabled by humans interacting

in ways allowed by that technology is
more difficult to explain. The dynam-
ics of any “social machine” are highly
complex, and dozens of academic pa-
pers, from multiple disciplines, have
been written about it; en.wikipedia.
org/wiki/Wikipedia:Wikipedia_in_aca-
demic_studies uses Wikipedia itself to
maintain an up-to-date reference list.

The idea of a social machine was
introduced in Weaving the Web,8 which
hypothesized that the architectural
design of the Web would allow devel-
opers, and thus end users, to use com-
puter technology to help provide the
management function for social sys-
tems as they were realized online. The
social machine includes the underlying
technology (mediaWiki in the case of
Wikipedia) but also the rules, policies,
and organizational structures used
to manage the technology. Examples
abound on the Web today. Consider
the coupling of the application design
of blogging-support systems (such as
LiveJournal and WordPress) with the
social mechanisms provided by blog-
rolls, permalinks, and trackbacks that
have led to the so-called blogosphere.
Similarly, the protocols used by social
networking sites like MySpace and Fa-
cebook have much in common, but the
success or failure of the sites hinges
on the rules, policies, and user com-
munities they support. Given that the
success or failure of Web technologies
often seems to rely on these social fea-
tures, the ability to engineer successful
applications requires a better under-
standing of the features and functions
of the social aspects of the systems.b

Today’s interactive applications are
very early social machines, limited by
the fact that they are largely isolated
from one another. We hypothesize that
(i) there are forms of social machine
that will someday be significantly more
effective than those we have today; (ii)
that different social processes interlink
in society and therefore must be inter-
linked on the Web; and (iii) that they
are unlikely to be developed through a
single deliberate effort in a single proj-

b.	 When we say “success” or “failure,” we are re-
ferring not to the business factors that deter-
mine whether, for example, Facebook or MyS-
pace will attract more users but to the success
or failure of the sites to provide the particular
types of social interaction for which they are
designed.

Figure 3: Results of an analysis of the link structure of Wikipedia with
respect to the use of link labels, not the linguistic content of pages.

+ Predicate occurrence distribution

k

1 10 100 1000 10000 100000 1e+06 1e+07

1

0.1

0.01

0.001

0.0001

1e-05

P
(k

)

CACM_V51.7.indb 66 6/18/08 12:54:31 PM

http://www.wikipedia.org
http://dbpedia.org
http://en.wikipedia.org/wiki/Wikipedia:Wikipedia_in_academic_studies
http://en.wikipedia.org/wiki/Wikipedia:Wikipedia_in_academic_studies
http://en.wikipedia.org/wiki/Wikipedia:Wikipedia_in_academic_studies
http://www.mediawiki.org/wiki/MediaWiki
http://www.mediawiki.org/wiki/MediaWiki

contributed articles

JULY 2008 | vol. 51 | no. 7 | communications of the acm 67

ect or site; rather, technology is needed
to allow user communities to construct,
share, and adapt social machines so
successful models evolve through trial,
use, and refinement.

A number of research challenges
and questions must be resolved before
a new generation of interacting social
machines can be created and evolved
this way:

What are the fundamental theoret-˲˲
ical properties of social machines, and
what kinds of algorithms are needed to
create them?;

What underlying architectural ˲˲
principles are needed to guide the de-
sign and efficient engineering of new
Web infrastructure components for
this social software?;

How can we extend the current ˲˲
Web infrastructure to provide mecha-
nisms that make the social properties
of information-sharing explicit and
guarantee that the use of this informa-
tion conforms to relevant social-policy
expectations?; and

How do cultural differences af-˲˲
fect the development and use of social
mechanisms on the Web? As the Web
is indeed worldwide, the properties
desired by one culture may be seen as
counterproductive by others. Can Web
infrastructure help bridge cultural di-
vides and/or increase cross-cultural
understanding?

In addition, a crucial aspect of hu-
man interaction with information is
our ability to represent and reason
over such attributes as trustworthi-
ness, reliability, and tacit expectations
about the use of information, as well as
about privacy, copyright, and other le-
gal rules. While some of this informa-
tion is available on the Web today, we
lack structures for formally represent-
ing and computing over them. Tradi-
tional cryptographic security research
and well-known access-control-policy
frameworks have failed to meet these
challenges in today’s online environ-
ment and are thus insufficient as a
foundation for the social machines of
the future. Recent work on formal mod-
els for privacyb has demonstrated that
traditional cryptographic approaches
to privacy protection can fail in open
Web environments. Similar problems
with copyright enforcement have
also hampered the flow of commer-
cial and scholarly information on the

Web.27 To this end, an exemplar Web
science research area we are pursu-
ing involves interdisciplinary research
toward augmenting Web architecture
with technical and social conventions
that increase individual accountability
to social and legal rules governing in-
formation use.31 Continued failure to
develop scalable models for handling
policy will impede the ability of the
Web to be the best possible medium
for exchanging cultural, scientific, and
political information.

Further, we can see from the dra-
matic growth of new collaborative
styles of creating and publishing in-
formation on the Web that many of the
social institutions we rely on to judge
trustworthiness and veracity are miss-
ing from our online information life.
Being able to engineer the Web of the
future requires not only understanding
it as a computational structure but also
how it interacts with and supports in-
teraction among its users.

An important aspect of research
exploring the influence of the Web on
society involves online societies using
Web infrastructure to support dynamic
human interaction. This work—seen
in trout.cpsr.org and other such ef-
forts—explores how the Web can en-
courage more human engagement in
the political sphere. Combining it with
the emerging study of the Web and the
coevolution of technology and social
needs is an important focus of design-
ing the future Web.30

The Web of Data
This emerging area of study involves
the heavy use of tagging provided by
many of what are known as Web 2.0
technologies. Articles, blogs, photos,
videos, and all manner of other Web
resources may be annotated with user-
generated keywords, or tags, that can
later be used for searching or brows-
ing these resources. Much has been
made of how “folksonomies,” or tax-
onomies that emerge through the use
of tags, can be used as metadata to
help explain the content of the objects
being described.

One aspect of tagging generating
interest today is the need for “social
context” in tagging.26 Many tags in-
volve terms that are extremely ambigu-
ous in a general context. For example,
first names are popular tags on Flickr,

The Web is changing
at a rate that may
be greater than
even the most
knowledgeable
researcher’s ability
to observe it.

CACM_V51.7.indb 67 6/18/08 12:54:31 PM

http://trout.cpsr.org

68 communications of the acm | JULY 2008 | vol. 51 | no. 7

contributed articles

though they are not good general
search terms. On the other hand, in a
specific social context (such as a par-
ticular person’s photos), the same tag
can be useful since it can designate a
particular individual. The use of a tag
as metadata often depends on such a
context, and the “network effect” in
these cites is thus socially organized.19

A more ambitious use of metadata
involves recent applications of seman-
tic Web technologies7 and represents
an important paradigm shift that is a
significant element of emerging Web
technologies. The semantic Web rep-
resents a new level of abstraction from
the underlying network infrastructure,
as the Internet and Web did earlier.
The Internet allowed programmers to
create programs that could communi-
cate without concern for the network
of cables through which the communi-
cation had to flow. The Web allows pro-
grammers and users to work with a set
of interconnected documents without
concern for the details of the comput-
ers storing and exchanging them.

The semantic Web will allow pro-
grammers and users alike to refer to
real-world objects—people, chemicals,
agreements, stars, whatever—without
concern for the underlying documents
in which these things, abstract and
concrete, are described. While basic
semantic Web technologies have been
defined and are being deployed more
widely, little work has sought to explain
the effect of these new capabilities on
the connections within the Web of peo-
ple who use them.28

The semantic Web arena reflects two
principle nexuses of activity. One tends
to involve data (and the Web), and the
other on the domain (and semantics).
The first, based largely on innovation
in data-integration applications, focus-
es on developing Web applications that
employ only limited semantics but pro-
vide a powerful mechanism for linking
data entities using the URIs that are
the basis of the Web. Powered by the
RDF, these applications focus largely
on querying graph-oriented triple-store
databases using the emerging SPARQL
language, which helps create Web ap-
plications and portals that use REST-
based models, integrating data from
multiple sources without preexisting
schema. The second, based largely on
the Web Ontology Language, or OWL,

looks to provide models that can be
used to represent expressive semantic
descriptions of application domains
and provide inferencing power for
both Web and non-Web applications
that need a knowledge base.

Current research is exploring how
the databases of the semantic Web
relate to traditional database ap-
proaches and to scaling semantic Web
stores to very large scales.1 In terms of
modeling, one goal is to develop tools
to speed inference in large knowl-
edge bases (without sacrificing per-
formance), including how to exploit
trade-offs between expressivity and
reasoning to provide the capabilities
needed for Web scale.15 A market is
beginning to emerge for “bottom-up”
tools driven by data and “top-down”
technologies driven by Web ontolo-
gies. Creating back-ends for the se-
mantic Web is being transitioned
(bottom-up) from an arcane art into an
emerging Web application program-
ming approach, as new open-source
technologies integrate well with tradi-
tional Web servers. At the same time,
new tools support ontology develop-
ment and deployment (top-down), and
tens of thousands of OWL ontologies
are available for jumpstarting new
domain-modeling efforts. In addition,
approaches using rule-based reason-
ing modified for the Web have also
gained attention.4 Engineering the fu-
ture Web includes the design and use
of these emerging technologies, along
with how they differ from traditional
approaches to databases, in one case
creating back-ends for the semantic
Web, in the other new tools for ontol-
ogy-based applications.

The semantic Web is a key emerg-
ing technology on the Web, but, also,
as we’ve discussed, there are different
opinions as to what it is best for and,
more important, what the macro ef-
fects might be. Our lack of a better un-
derstanding of how Web systems de-
velop makes it difficult for us to know
the kinds of effects the technology will
produce at scale. What social conse-
quences might there be from greater
public exposure and the sharing of in-
formation hidden away in databases?
A better understanding of how Web
systems move from the micro to the
macro scale would provide a better
understanding of how they could be

developed and what their potential so-
cietal effects might be.

Conclusion
The Web is different from most pre-
viously studied systems in that it is
changing at a rate that may be of the
same order as, or perhaps greater
than, even the most knowledgeable
researcher’s ability to observe it. An
unavoidable fact is that the future
of human society is now inextricably
linked to the future of the Web. We
therefore have a duty to ensure that
future Web development makes the
world a better place. Corporations
have a responsibility to ensure that
the products and services they de-
velop on the Web don’t produce side
effects that harm society, and govern-
ments and regulators have a respon-
sibility to understand and anticipate
the consequences of the laws and pol-
icies they enact and enforce.

We cannot achieve these aims un-
til we better understand the complex,
cross-disciplinary dynamics driving
development on the Web—the main
aim of Web science. Just as climate-
change scientists have had to develop
ways to gather and analyze evidence
to prove or disprove theories about
the effect of human behavior on the
Earth’s climate, Web scientists need
new methodologies for gathering evi-
dence and finding ways to anticipate
how human behavior will affect devel-
opment of a system that is evolving at
such an amazing rate. We also must
consider what would happen to so-
ciety if access to the Web was denied
to some or all and to raise awareness
among major corporations and gov-
ernments that the consequences of
what appear to be relatively small de-
cisions can profoundly affect society
in the future by affecting Web devel-
opment today.

Computing plays a crucial role in
the Web science vision, and much of
what we know about the Web today
is based on our understanding of it
in a computational way. However, as
we’ve explored here, significant re-
search must still be done to be able
to engineer future successful Web
applications. We must understand
the Web as a dynamic and changing
entity, exploring the emergent be-
haviors that arise from the “macro”

CACM_V51.7.indb 68 6/18/08 12:54:31 PM

contributed articles

JULY 2008 | vol. 51 | no. 7 | communications of the acm 69

Intelligent Systems, Trends & Controversies 20, 1
(Jan./Feb. 2005).

14.	 Donato, D., Laura, L., Leonardi, S., and Millozzi, S. The
Web as a graph: How far we are. ACM Transactions on
Internet Technology 7, 1 (Feb. 2007).

15.	 Fokoue, A., Kershenbaum, A., Ma, L., Schonberg,
E., and Srinivas, K. The Summary Abox: Cutting
ontologies down to size. In Proceedings of the
International Semantic Web Conference (Athens, GA,
Nov. 5–9). Springer Berlin, Heidelberg, 2006.

16.	 Golder, S. and Huberman, B. The Structure of
Collaborative Tagging Systems (2005); arxiv.org/abs/
cs/0508082.

17.	 Gulli, A. and Signorini, A. The indexable Web is more
than 11.5 billion pages. In the special-interest tracks
and posters of the 14th International World Wide Web
Conference (Chiba, Japan, May 10–14). ACM Press,
New York, 2005.

18.	 Hendler, J. Web 3.0: Semantic Web chicken farms.
IEEE Computer 41, 1 (Jan. 2008).

19.	 Hendler, J. and Golbeck, J. Metcalfe’s Law, Web 2.0,
and the semantic Web. Journal of Web Semantics 6, 1
(Feb. 2008).

20.	 Huberman, B. and Lukose, R. Social dilemmas and
Internet congestion. Science 277, 5325 (July 1997).

21.	 Jacobs, I. and Walsh, N. Architecture of the World
Wide Web, Vol. One. W3C Recommendation, Dec. 15,
2004; www.w3.org/TR/webarch/.

22.	 Kleinberg, J., Kumar, R., Raghavan, P., Rajagopalan, S.,
and Tomkins, A. The Web as a graph: Measurements,
models, and methods. In Proceedings of the Fifth
Annual International Conference on Computing and
Combinatorics (Tokyo, July 26–28). Springer, New
York, 1999.

23.	 Kleinberg, J. Authoritative sources in a hyperlinked
environment. Journal of the ACM 46, 5 (Sept. 1997).

24.	 Kumar, R., Raghavan, P., Rajagopalan, S., and Tomkins,
A. Trawling the Web for emerging cyber communities.
In Proceedings of the Eighth International World Wide
Web Conference (Toronto, May 11–14). Elsevier North-
Holland, Inc., New York, 1999.

25.	 Manber, U. Why Search Is a Hard Problem.
Presentation at Supernova 2007 (San Francisco, June
16–18, 2008); www.readwriteweb.com/archives/
udi_manber_search_is_a_hard_problem.php

26.	 Marcus, A. and Perez, A. m-YouTube mobile UI: Video
selection based on social influence. In Proceedings of
the 12th International HCI Conference (Beijing, July
22–27). Springer, 2007.

27.	 Samuelson, P. Copyright’s fair use doctrine and digital
data. Commun. ACM 37, 1 (Jan.1994), 21–27.

28. Shadbolt, N., Hall, W., and Berners-Lee, T. The
semantic Web revisited. IEEE Intelligent Systems 21,
3 (May/June 2006).

29.	 Shirky, C. Power Laws, Weblogs, and Inequality. In
Clay Shirky’s blog (2003); www.shirky.com/writings/
powerlaw_weblog.html.

30.	 Shneiderman, B. Web science: A provocative invitation
to computer science. Commun. ACM 50, 6 (June
2007), 25–27.

interactions of people enabled by
the Web’s technology base. We must
therefore understand the “social ma-
chines” that may be the critical dif-
ference between the success or fail-
ure of Web applications and learn to
build them in a way that allows inter-
linking and sharing.

Acknowledgments
Figure 2 is taken from talks Tim
Berners-Lee gave in 2007 (www.w3.
org/2007/Talks/1018-websci-mit-tbl/
Overview.html). We also thank the
other members of the WSRI Scientific
Council (webscience.org/about/peo-
ple/) for input relating to the goals of
Web science and the interaction of the
Web and computer and information
sciences. We are indebted to Konstan-
tin Mertsalov of Rensselaer Polytechnic
Institute for the DBpedia analysis dis-
cussed in the section on power laws. 	

References 	
1.	 Abadi, D., Marcus, A., Madden, S., and Hollenbach,

K. Scalable semantic Web data management using
vertical partitioning. In Proceedings of the 33rd
International Conference on Very Large Data Bases
(Vienna, Austria, Sept. 23–27). VLDB Endowment,
Heidelberg, 2007.

2.	 Backstron, L., Dwork, C., and Kleinberg, J. Wherefore
art thou R3579X? Anonymized social networks,
hidden patterns, and structural steganography. In
Proceedings of the 16th International World Wide Web
Conference (Banff, Alberta, Canada, May 8–12). ACM
Press, New York, 2007.

3.	 Barabasi, A. and Albert, A. Emergence of scaling in
random networks. Science 286 (1999).

4.	 Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., and
Hendler, J. N3Logic: A logical framework for the World
Wide Web. Theory and Practice of Logic Programming
(2008).

5.	 Berners-Lee, T., Hall, W., Hendler, J., Shadbolt, N., and
Wietzner, D. Creating a science of the Web. Science
311 (2006).

6.	 Berners-Lee, T., Hall, W., Hendler, J., O’Hara, K.,
Shadbolt, N., and Weitzner, D. A framework for Web
science. Foundations and Trends in Web Science 1, 1
(Sept. 2006).

7.	 Berners-Lee, T., Hendler, J., and Lassila, O. The
semantic Web. Scientific American (May 2001).

8.	 Berners-Lee, T. and Fischetti, M. Weaving the Web:
The Original Design and Ultimate Destiny of the World
Wide Web. Harper Collins, New York, 1999.

9.	 Brin, S. and Page, L. The anatomy of large-scale
hypertextural Web search engine. Presented at the
Sixth International World Wide Web Conference
(Santa Clara, CA, Apr. 7–11, 1997).

10.	 Broder, A., Kumar, R., Maghoul, F., Raghavan, P.,
Rajagopalan, S., Stata, R., Tomkins, A., and Wiener,
J. Graph structure in the Web. In Proceedings of
the Ninth International World Wide Web Conference
(Amsterdam, The Netherlands, May 15–19). Elsevier,
Amsterdam, The Netherlands, 2000.

11.	 Dean, J. and Ghemawat, S. MapReduce: Simplified
data processing on large clusters. In Proceedings of
the Sixth Symposium on Operating System Design and
Implementation (San Francisco, Dec. 6–8). USENIX
Association, Berkeley, CA, 2004.

12.	 Dill, S., Kumar, R., McCurley, K., Rajagopalan, S.,
Sivakumar, D. and Tomkins, A. Self-similarity in
the Web. In Proceedings of the 27th International
Conference on Very Large Data Bases (Rome, Italy,
Sept. 11–14). Morgan Kaufmann Publishers, Inc., San
Francisco, 2001.

13.	 Domingos, P., Golbeck, J., Mika, P., and Nowak, A.
Social networks and intelligent systems. IEEE

31.	 Weitzner, D., Abelson, H., Berners-Lee, T., Feigenbaum,
J., Hendler, J., and Sussman, G. Information
accountability. Commun. ACM 51, 6 (June 2008).

32. Weitzner, D., Hendler, J., Berners-Lee., T., and Connolly,
D. Creating a policy-aware Web: Discretionary, rule-
based access for the World Wide Web. In Web and
Information Security, E. Ferrari and B. Thuraisingham,
Eds. IRM Press, Hershey, PA, 2006.

	 Funding for this work comes from the U.S.
National Science Foundation (Policy Aware Web
and Transparency Aware Data Mining Projects),
iARPA(End-to-End Semantic Accountability),
the U.K. Engineering and Physical Sciences Research
Council (Advanced Knowledge Technologies
Project), and the U.S. Army Research Laboratory
and U.K. Ministry of Defence (U.S./U.K. Information
Technology Alliance). We also thank industrial and
individual donors to the authors’ research at RPI,
Southampton, and MIT and to the Web Science
Research Initiative (www.webscience.org).

James Hendler (hendler@cs.rpi.edu) is the Tetherless
World Chair of Computer and Cognitive Science at
Rensselaer Polytechnic Institute, Troy, NY.

Nigel Shadbolt (nrs@ecs.soton.ac.uk) is professor of
artificial intelligence and deputy head of the School of
Electronics and Computer Science at Southampton
University, Southampton, U.K.

Wendy Hall (wh@ecs.soton.ac.uk) is a professor of
computer science at the University of Southampton,
Southampton, U.K.

Tim Berners-Lee (timbl@csail.mit.edu) is the Director
of the World Wide Web Consortium and holds the
3Com Founders chair and is a senior research scientist
in the Laboratory for Computer Science and Artificial
Intelligence at the Massachusetts Institute of
Technology, Cambridge, MA.

Daniel Weitzner (djweitzner@csail.mit.edu) is director of
the Massachusetts Institute of Technology Decentralized
Information Group and principle research scientist in
the MIT Computer Science and Artificial Intelligence
Laboratory, Cambridge, MA.

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 M
A

R
I

U
S

 W
A

T
Z

CACM_V51.7.indb 69 6/18/08 12:54:32 PM

http://www.w3.org/TR/webarch/
http://www.webscience.org
mailto:hendler@cs.rpi.edu
mailto:nrs@ecs.soton.ac.uk
mailto:wh@ecs.soton.ac.uk
mailto:timbl@csail.mit.edu
mailto:djweitzner@csail.mit.edu
http://arxiv.org/abs/cs/0508082
http://arxiv.org/abs/cs/0508082
http://www.w3.org/2007/Talks/1018-websci-mit-tbl/Overview.html
http://www.w3.org/2007/Talks/1018-websci-mit-tbl/Overview.html
http://www.w3.org/2007/Talks/1018-websci-mit-tbl/Overview.html
http://webscience.org/about/people/
http://webscience.org/about/people/
http://www.readwriteweb.com/archives/udi_manber_search_is_a_hard_problem.php
http://www.readwriteweb.com/archives/udi_manber_search_is_a_hard_problem.php
http://www.shirky.com/writings/powerlaw_weblog.html
http://www.shirky.com/writings/powerlaw_weblog.html

70 communications of the acm | july 2008 | vol. 51 | no. 7

contributed articles

In this article I look back on computer
architecture research over the past 10
years, including what accounted for this
change and what will happen because
of it. In addition, I survey the field of
computer architecture research, look-
ing at what types of problems we once
thought were important to explore and
how those problems are exacerbated or
mitigated in the future.

Seven years ago, when I started as
a young assistant professor, my com-
puter science colleagues felt computer
architecture was a solved problem.
Words like “incremental” and “nar-
row” were often used to describe re-
search under way in the field. In some
ways, who could blame them? To a
software developer, the hardware/soft-
ware interface—the very core of the
computer architecture research field—
had remained unchanged for most of
their professional lifetimes. Even the
key microarchitectural innovations
(pipelining, branch prediction, cach-
ing, and others) appeared to be created
long ago. From the perspective of the
rest of computer science, architecture
was a solved problem. This percep-
tion of computer architecture research
had some very real consequences.
NSF folded the computer architecture
(CSA) program together with a grab bag
of areas from VLSI to graphics into an
omnibus “computing processes and
artifacts” cluster. Large-scale DARPA
programs to fund innovative architec-
ture research in academia have recent-
ly wound down.

Around 2000, I would also char-
acterize the collective mood of re-
searchers in computer architecture
as overly self-critical and bored of
examining certain core topics in the
field. The outside perspective of com-
puter architecture had become the
inside one. We would bemoan our
field, nicknaming our premier tech-
nical conference as the “International
Symposium on Cache Architecture,”
instead of its true title “Computer Ar-
chitecture.” We amusingly called our
own innovations “yet another”12 take
on an old problem.

Computer architecture research is undergoing
a renewed vitality. No longer is the road ahead clear
for microprocessors. Indeed, a decade ago the road
seemed straightforward: deeper pipelines, more
complex microprocessors, and little change to the
core instruction set architecture. No longer. For a
variety of technological reasons, manufacturers
have embraced multicore CPUs for the mainstream
of desktop computing. Such a change represents
the biggest single risk these vendors have taken
in decades, as they are now expecting software
developers to embrace a programming model they
have been reluctant to target in the past.

doi: 10.1145/1364782.1364799

How changes in computer architecture are
about to impact everyone in the IT business.

by mark oskin

The
Revolution
Inside
the Box

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 gary

 neill

CACM_V51.7.indb 70 6/18/08 12:54:32 PM

july 2008 | vol. 51 | no. 7 | communications of the acm 71

CACM_V51.7.indb 71 6/18/08 12:54:35 PM

72 communications of the acm | july 2008 | vol. 51 | no. 7

contributed articles

cessors are extremely complex to design
and validate. As designers struggled to
manage this complexity they also were
obtaining diminishing performance re-
turns from the approach. More pipeline
stages increased the length of critical
loops3 in the processor, lengthening the
number of cycles on the critical path
of execution. Finally, while those pipe-
line stages enabled processors to be
clocked faster, a linear increase in clock
frequency creates a cubic increase in
power consumption.6 The power that a
commodity desktop processor can con-
sume and still be economically viable is
capped by packaging and cooling costs,
which assert a downward pressure on
clock frequency.

Part I: The End of Innocence
In 2000, the roadmap ahead for desk-
top processing seemed clear to many.
Processors with ever deeper pipelines
and faster clock frequencies would scale
performance into the future.1,17 Research-
ers, myself among them, focused on the
consequences of this, such as the wire
delay problem. It was hypothesized that
clock frequencies would grow so fast and
wires so slow, that it would take tens of
cycles to send information across a large
chip. The microarchitectures we build
and ship today really are not equipped to
work under such delay constraints.

However, faster clocks and deeper
pipelines ran into more fundamental
problems. More deeply pipelined pro-

Collectively, these effects manifest-
ed themselves as a distinct change in
the growth of processor frequency in
2004 (as indicated in Figure 1). Intel,
in fact, stepped back from aggressive
clock scaling in the Pentium 4 and with
later products such the Core 2. AMD
never attempted to build processors of
the same frequency as Intel, but con-
sequently suffered in the marketing
game, whereby consumers erroneously
assume frequency is the only indicator
of CPU performance.

Clock frequency is clearly not the
same thing as performance. CPU per-
formance must be measured by observ-
ing the execution time of real applica-
tions. Reasonable people can argue
about the validity of the SPEC bench-
mark suite. Most would admit it under-
represents memory and I/O effects.
Nevertheless, when we consider much
larger trends in performance over sev-
eral years it is a reliable indicator of the
progress computer architects and sili-
con technology have made.

Figure 2 depicts CPU performance
from 1982 to 2007, as measured by sev-
eral different generations of SPEC inte-
ger benchmarks. The world changed by
June 2004. Examining this 25-year time
span, and now with four years of hind-
sight, it’s clear we have a problem. We
no longer are able to exponentially im-
prove the rate of performance of single
threaded applications.

The fact that we have been able to
improve performance rates in the past
has been a tremendous boon for the IT
industry. Imagine if other industries,
such as the auto or airline business,
had at their core a driving source of
exponential improvement. How would
the auto or airline industries change
if miles per gallon or transport speed
doubled every two years? Exponen-
tial performance improvement drives
down cost and increases the user expe-
rience by enabling ever richer applica-
tions. In fact, manufacturing, materi-
als, architects, and compiler writers
have been so effective at translating
Moore’s Law exponential increase in
chip resources23 into exponential per-
formance improvements, that many
people erroneously use the terms in-
terchangeably. The question before
us as a research field and an industry
is, now that we no longer know how to
translate Moore’s Law growth in avail-

Figure 1: CPU clock speed.

 S parc
  AMD
  Intel
  PowerPC

MH

z

Nov ’88 May ’94 Oct ’99 Apr ’05

4000

3500

3000

2500

2000

1500

1000

500

0

Figure 2: SPEC integer CPU performance over a 25-year time span.

C
P

U
 P

er
fo

rm
an

ce

Year

1987 1992 1997 2002 2004

Spec 92

Spec 95

Spec 2000

?

CACM_V51.7.indb 72 6/18/08 12:54:35 PM

contributed articles

july 2008 | vol. 51 | no. 7 | communications of the acm 73

able silicon area per unit dollar into
exponential performance increases at
relatively fixed cost, what are we going
to do instead?

A Savior? Processor manufactur-
ers have bet their future on a relatively
straightforward (for them) solution.
That is, if we can’t make one core ex-
ecute a thread any faster, let’s just
place two cores on the die and modify
the software to utilize the extra core. In
the next generation, place four cores.
The generation after that, eight, and
so on. From a manufacturing stand-
point, multicore or “manycore,” as this
approach is called, has several attrac-
tive qualities. First, we know how to
build systems with higher peak perfor-
mance. If the software can utilize them,
then more cores per die will equate to
improved performance. Unlike single-
threaded performance, where we really
have no clear ideas left to scale perfor-
mance, multicore appears to offer us a
path to salvation.

Second, again, if the software is
there, a host of technological problems
are mitigated by multicore. For exam-
ple, as long as thread communication
is kept to a minimum, it is more en-
ergy efficient to complete a fixed task
using multiple threads, compared to
executing one thread faster. Multiple
smaller, simpler cores are easier to
design than larger complex ones, thus
mitigating the design and verification
costs. Reliability, a growing problem in
processor design, also becomes easier:
simply place redundant cores on the
die and post-fabrication route requests
for defective units to one of the redun-
dant cores, much as we do today with
DRAMs. Or, even simpler, map them
out entirely and sell a lower-cost part
to a different market segment, as Sun
Microsystems now does. Finally, wire
delay—that grand challenge that moti-
vated a flurry of research almost a de-
cade ago—is also mitigated: simpler
cores are smaller and clock frequency
can be reduced as performance can be
had through thread-level parallelism.

All of this sounds fantastic, except
for one thing: it is predicated on the
software being multithreaded. Just as
important for future scalability, thread
parallelism must be found in software
at a rate commensurate with Moore’s
Law, which means if today we must find
four independent threads of computa-

tion, in two years there must be eight,
and two years after that 16.

Processor manufacturers are not
asking a small favor from software de-
velopers. From a programmer’s per-
spective, multicore CPUs currently
look no different than Symmetric Mul-
tiprocessors (SMPs) that have been
around for decades. Such systems are
not widely deployed on the home and
business desktop, for good reason.
They cost more and there isn’t a sig-
nificant performance advantage for
the applications these users employ.
So a reasonable question then is to ask:
What makes us think this time it’s go-
ing to work?

An optimist will make the following
arguments: First, the cost difference is
now in the reverse direction. Assuming
we could build a faster single-threaded
core, it will cost more. Design, valida-
tion, cooling, and manufacturing will
assure that fact. Second, we do know
more about parallel programming
now than ever before. Tools have actu-
ally improved, with methods to look
for race conditions and automatically
parallelize loops,10 and the resurgent
interest in transactional programming
will bear fruit. We’ve had many years
of successful experience using paral-
lelism in the graphics, server, and sci-
entific computing domains. Third,
and perhaps most importantly, it just
has to work. For this reason software
companies that need their products
to achieve scalable performance must
invest heavily into parallel programming.
The hope is the commercial emphasis on
parallel computing will create solutions.

A pessimist will counter thusly:
Parallelism on the desktop has never
worked because the technical require-
ments it takes to write threaded code
just don’t align with the economic forc-
es driving desktop software developers.
Writing parallel code is more difficult
than writing sequential code. It’s more
error prone and difficult to debug,
due to the non-determinism of thread
memory interleavings. Furthermore,
I have yet to meet anyone that thinks
the industry will successfully parallel-
ize its large legacy code bases. Once a
large application has been designed
for a single-threaded execution model,
it is extremely difficult to tease it apart
and parallelize it. What this means is
programmers must feel the economic

The question before
us as a research
field and an
industry is, now
that we no longer
know how to
translate Moore’s
Law growth in
available silicon
area per unit dollar
into exponential
performance
increases at
relatively fixed chip
cost, what are we
going to do instead?

CACM_V51.7.indb 73 6/18/08 12:54:36 PM

74 communications of the acm | july 2008 | vol. 51 | no. 7

contributed articles

forces to create threaded code from day
one, not as a revision of the code base.
Parallelizing code must be as much of
a priority as writing correct code, or
achieving a certain time to market.

A more realistic view of the future
is somewhere between these two
extremes. Parallelizing legacy code
is widely viewed as a dead-end, but
building compelling add-ons to ex-
isting applications and then “bolting
on” these features to legacy codes is
possible. One does not need to change
the entire code base of a word proces-
sor, for example, in order to bolt on
a speech recognition engine that ex-
ploits multicore. Furthermore, some
applications that drive sales of new
machines, such as interactive video
games, have ample data parallelism
that is relatively easy to extract with
stream-based programming.

Finally, programmers will end up
writing parallel software without real-
izing that is what they are doing. For
example, programmers who utilize
SQL databases will see their applica-
tion’s performance improve just by
virtue of some other developer’s effort
spent on parallelizing the database en-
gine itself. Extending this idea further,
building parallel frameworks that fit
various application classes (business,
Web services, games, and so on) will
enable programmers to more easily
exploit multicore processors without
having to bite off the whole complexity
of parallel programming.

Part II: The Architecture
Research Community
Given this technology environment,
what do computer architects currently
research? To answer this question, it is
best to look back over the last decade
and understand what we thought were
important research problems, and
what happened to them.

The memory wall. A workshop, held
in conjunction with the 1997 Interna-
tional Symposium of Computer Archi-
tecture (ISCA), focused on the memory
wall and the research occurring on pro-
posed solutions to it. The memory wall
is the problem that accesses to main
memory are significantly slower than
computation. There are two aspects to
it, a high latency to memory (hundreds
of times the latency of a basic ALU op-
eration inside a CPU) and a constrained

bandwidth. Excitement at the time was
over solutions that proposed placing
computational logic in the DRAM.11,

19, 20, 29, 32 Such solutions never achieved
broad acceptance in the marketplace
because they required programmers to
alter their software and they required
DRAM manufacturers to restructure
their business models. DRAM is a com-
modity, and businesses compete on
cost. Adding logic to DRAM makes the
devices expensive and system specific.

While technically feasible, it is a
different business that DRAM manu-
facturers chose not to enter. However,
less radical solutions, such as prefetch-
ing, stream buffers,18 and ever larger
on-chip caches,22 did take hold com-
mercially. Moreover, programmers be-
came more amenable to tuning their
applications to the memory hierarchy
architects provide them. Cache-con-
scious data structures and algorithms
are an effective, yet burdensome, way
to achieve performance.

The memory wall is still with us.
Accessing DRAM continues to require
hundreds of more cycles than perform-
ing a basic ALU operation. While the
drop in the growth of processor clock
speed means that memory latency is
less of a growing concern, the switch to
multicore actually presents new chal-
lenges with bandwidth and consisten-
cy. Having all these CPU cores on a sin-
gle die means they will need a Moore’s
Law growth in bandwidth to memory in
order to operate efficiently. At the mo-
ment, we are not pin limited in provid-
ing this bandwidth, but we quickly will
be; so we can expect a host of future
research that looks at the memory wall
again, but this time from a bandwidth,
instead of a latency perspective.

Along with memory performance
is the evolution of the memory model.
In the past, it was thought providing
a sequentially consistent system with
reasonable performance was not pos-
sible. Hence, we devised a range of
relaxed consistency approaches.30
It is natural for programmers to as-
sume multicore systems are sequen-
tially consistent, however, and recent
work8 suggests that architectures can
use speculation16 to provide it. Look-
ing forward, as much as can be done,
must be done, to make programming
parallel systems as easy as possible.
This author believes this will push

Parallelizing legacy
code is widely
viewed as a dead-
end, but building
compelling add-
ons to existing
applications that
take advantage of
multicore, and then
“bolting on” these
features to legacy
codes is possible.

CACM_V51.7.indb 74 6/18/08 12:54:36 PM

contributed articles

july 2008 | vol. 51 | no. 7 | communications of the acm 75

hardware vendors toward providing
sequentially consistent systems.

Power. ISCA 98 brought a whole new
vocabulary to architects. Terms such as
power, energy, energy-delay product,
bips-per-watt, and so on, would hence-
forth be part of the research parlance,
with real debate about what quantity
was most important to optimize. The
slide that defined the power problem34
depicted process generation on the x
-axis, power per unit area on a log-scale
on the y-axis, and various points depict-
ing Intel processors, a hot plate, a nu-
clear reactor, a rocket nozzle, and the
surface of the sun. The message from
the slide was clear: change something,
or processors would quickly have to be
cooled by some technology capable of
cooling the surface of the sun, clearly a
ridiculous design point. The research
on power was vast, starting with tech-
niques for measuring power5, 42 in mi-
croarchitectures. Since then, authors
either included a power analysis of
their work in their papers, or, reviewers
would ask for it!

In reality, at the microarchitectural
level, dynamic voltage/frequency scal-
ing27 (DVFS)—a circuit technique that
reduces operating frequency and sup-
ply voltage when processors are idle,
or need only operate at reduced per-
formance—and clock-gating are high-
ly effective. Several ideas for reducing
power beyond DVFS and clock-gating
have been proposed, and do work,
but the most bang for the buck comes
from doing these two techniques well.
Looking forward, power will continue
to cap performance and drive design
considerations. The macroscopic en-
vironment in which we consider pow-
er issues has changed slightly from

a perceived increase in processor is-
sue width by coarser management of
fetched instructions.4

Design complexity is still an issue
today, but the switch to multicore has
effectively halted the growth in core
complexity. With processor vendors
banking their future on multicore,
they are expecting performance to
come from additional cores, not more
complex ones. Moreover, there are
strong arguments to be made, that if
the thread parallelism is available in
the applications, then vendors will
switch to more energy-efficient, sim-
pler cores. In effect, the trend in core
complexity could actually reverse. How
far this trend will go no one knows, but
if software does indeed catch up and
become thread-parallel, then we could
see heterogeneous multicore devices,
with one or a handful of complex cores
and a sea of simple, reduced-ISA ones43
that will provide the most performance
per dollar and per watt.

Reliability. In 2001, concerns about
both hard and soft faults began to ap-
pear at ISCA. Yet another new vocabu-
lary term appeared in our literature:
the high-energy particle. As silicon
feature sizes shrink, the quantity of
charge held on any particular wire in
a microprocessor also is reduced. Nor-
mally this has a positive benefit (lower
power, faster), but it also means that
the charge on that line can be on the or-
der of that induced by an alpha particle
striking the silicon lattice. This is not
a new problem, as “hardened” micro-
processors have been built for decades
for the space industry as electronics in
space must operate without the natu-
ral high-energy particle absorption ef-
fect of the atmosphere. Now our earth-

1998, however. The massive power
consumption occurring in data-cen-
ters makes companies that operate
them power-hungry, shopping for
the best physical and regulatory en-
vironment in which to obtain cheap
energy. These companies will benefit
from multicore devices, as their soft-
ware is task-parallel, and using mul-
tiple simple cores is a more energy
efficient means to compute than with
single complex CPUs. The usefulness
of portable devices is also effectively
constrained by power, as improve-
ments in battery technology continue
to lag in the single digits. Thus, archi-
tects will continue to consider power
in their ideas, as it continues to be an
important design consideration.

Design Complexity. In the mid-
1990s, a community of architects
began to focus on the complexity of
modern CPU designs.31 Processors
today contain approximately 1,000
times more core (non-cache) tran-
sistors than 30 years ago. It is just
not possible to have a bug-free de-
sign for such a complex device with
the engineering methodologies that
we currently employ. Such complex
designs are difficult to innovate, as
design changes cannot be reasoned
about locally. Moreover, large mono-
lithic designs often have long wires,
which consume power and constrain
the clock cycle. Several projects were
spurred by these motivations to pro-
pose fairly radical changes to the
processing model.26, 36, 37 A wealth of
less radical, more localized solutions
were developed, among them ways
to reduce instruction scheduling
logic,14 reduce the complexity of out
of order structures,9, 38 and provide

My survey of the top 10 CS
and engineering departments
suggests that a strong majority
(80%) require some form of
computer architecture class in
order to receive a bachelor’s
degree in CS. At the moment,
advanced architecture, such as
parallel systems, and advanced
programming techniques,
such as parallel programming,
appear to be relegated to

electives. If computer architects
fail to get microprocessors back
on an exponential performance
curve, as appears likely at
the moment, then clearly the
curriculum in our universities
will need revision.

Students graduating with
a competence in engineering
software for parallel systems
will have a distinct advantage
in the work force over those

who do not. But creating this
competence is elusive. Most
universities that I surveyed begin
their programs by teaching basic
programming—or programming
for single-core devices. What
this means is undergraduates
are taught from day one in
CS departments to think
about engineering sequential
solutions. Clearly this will
not do in a multicore era, still

the complexities of teaching
threads, locks, and barriers to
freshmen computer scientists
seem daunting. Nevertheless,
departments that are able to
integrate parallel computing
throughout their curriculum will
position their undergraduates
to be the future leaders in the IT
industry. Thus, they should be
well motivated to think about
curriculum change.

Computer Architecture in Education

CACM_V51.7.indb 75 6/18/08 12:54:36 PM

76 communications of the acm | july 2008 | vol. 51 | no. 7

contributed articles

leads directly to improved yields (and
in the future, improved performance if
redundant cores are not required), and
thus reduced costs.

Evaluation techniques. How archi-
tects do research has changed dramati-
cally over the decades. When ISCA first
started in the 1970s, papers typically
provided paper designs and qualita-
tive or simple analytical arguments to
the idea’s effectiveness. Research tech-
niques changed significantly in the
early 1980s with the ability to simulate
new architecture proposals, and thus
provide quantitative evidence to back
up intuition. Simulation and quantita-
tive approaches have their place, but
misused, they can provide an easy way
to produce a lot of meaningless, but
convincing looking data. Sadly, it is now
commonly accepted in our community
that the absolute value of any data pre-
sented in a paper isn’t meaningful. We
take solace in the fact the trends—the
relative difference between two data
points—likely have a corresponding
difference in the real world.

As an engineer, this approach to
our field is sketchy, but workable; as
a scientist, this seems like a terrible
place to be. It is nearly impossible to
do something as simple as reproduce
the results in a paper. Doing so from
the paper alone requires starting from
the same simulation infrastructure as
the authors, implementing the idea
as the authors did, and then execut-

bound devices must also deal with this
problem. Architects proposed a cornu-
copia of techniques to deal with faults,
from the radical, which proposed alter-
native processor designs2 and ways to
use simultaneous multithreaded de-
vices,24, 39 to the more easily adoptable
by industry, such as cache designs with
better fault resilience. Important work
also better characterized what parts of
the microarchitecture are actually sus-
ceptible to a dynamic fault.	

Reliability continues to play an im-
portant part of architecture research,
but the future presents some differing
technology trends. It is this author’s
opinion that Moore’s Law will not stop
anytime soon, but it won’t be because
we shrink feature sizes down to a hand-
ful of atoms in width.44 Rather, die-
stacking will continue to provide ever
more chip real estate. These dies will
have a fixed (or even larger) feature size,
and thus the growth in dynamic faults
due to reduced feature sizes should
actually stop. Moreover, if multicore
does actually prove to be a market suc-
cess, then reliability can be achieved
without enormous complexity: proces-
sors with manufactured faults can be
mapped out, and for applications that
require high reliability, multiple cores
can be used to redundantly perform
the computation. Nevertheless, de-
spite this positive long-term outlook,
work to improve reliability will always
have purpose, as improved reliability

ing the same benchmarks, compiled
with the same compiler with the same
settings, as the authors. Starting from
scratch on this isn’t tractable, and the
only real way to reproduce a paper’s
results is to ask the authors to share
their infrastructure. Another, more
insidious problem with simulation is
its too easy to make mistakes when
implementing a component model.
Because it is common, and even desir-
able, to separate functional ISA mod-
eling from performance modeling,
these performance model errors can
go unnoticed, thus leading to entirely
incorrect data and conclusions. De-
spite these drawbacks, quantitative
data is seductive to reviewers, and
simulation is the most labor-efficient
way to produce it.

Looking forward, the picture is
muddled. Simulation will continue to
be the most important tool in the com-
puter architect’s toolbox. The need
to model ever more parallel architec-
tures, however, will create the need to
continue to explore different modeling
techniques because, for the moment,
the tools used in computer architecture
research are built on single-threaded
code bases. Thus, simulating an expo-
nentially increasing number of CPU
cores means an exponential increase
in simulation time. Fortunately, sev-
eral paths forward exist. Work on high
level performance models13, 28 provides
accurate relative performance data
quickly, suitable for coarsely mapping
a design space. Techniques to sample35, 41
simulation data enable architects to
explore longer-running simulations
with reasonable confidence. Finally,
renewed interest in prototyping and
using FPGAs for simulation40 will allow
architects to explore ideas that require
cooperation with language and applica-
tion researchers as the speed of FPGA-
based simulation is just fast enough to
be usable by software developers.

There are several advantages to
pre-built and shared tools for archi-
tecture research. They are enablers,
allowing research groups to not start
from scratch. Having shared tools has
another benefit: the bugs and inaccu-
racies in those tools can be revealed
and fixed over time. Shared tools also
enable re-creating other people’s work
easier. There has been, and there will
continue to be, a downside to the avail-

Figure 3: Papers published in ISCA 2001–2006.

  Interconnect
  Power
  Multicore

 S inglecore
 � Alternatives to

Single/Multicore

 S pecialized Processors
 E merging Technologies
  Reliability

100%

75%

50%

25%

2002 2003 2004 2005 2006 2007 2008

CACM_V51.7.indb 76 6/18/08 12:54:36 PM

july 2008 | vol. 51 | no. 7 | communications of the acm 77

tion scheduling, and so on. The list of
areas explored is endless.

Alongside the development of x86
microprocessors in the 1990s and
2000s, Intel and HP sunk enormous
effort and dollars into developing an-
other line of processors, Itanium,22
that gain performance from ILP. Ita-
nium is a Very Long Instruction Word
(VLIW) processor, in the mold of far
earlier work on the subject.15 Such pro-
cessors promise performance from
ILP at reduced complexity compared
to superscalar designs, by relying on
sophisticated compilation technology.
VLIW is a fine idea; it communicates
more semantic knowledge about fine-
grained parallelism from the software
to the hardware. If technically such
an approach is useful, why don’t you
have an Itanium processor on your
desktop? In a nutshell, such proces-
sors never achieved a price point that
fit well in the commodity PC market.
Moreover, in order to maintain binary
compatibility with x86, sophisticated
binary translation mechanisms had
to be employed. After such transla-
tion, existing code saw little to no
performance benefit from executing
on Itanium. Consumers were loath to
spend more on a system that was no
faster, if not slower, than the cheaper
alternative, for the promise that some-
day faster native-code applications
would arrive. There is a lesson here
for multicore systems as well: without
tangible benefits, consumers will not
spend money on new hardware just
for its technical superiority.

Does ILP still matter? This author
would argue it does. As mentioned
earlier, even parallel programs have
sequential parts. Legacy code still mat-
ters to the IT industry. Is there more
ILP to be had? This is a more difficult
question to answer. The seminal work
in this area21 suggests there is. Extract-
ing it from applications, however, is no
trivial matter. The low-hanging fruit
was gone before I even entered the
field! Aggressive speculation to address
the memory wall, the inherent diffi-
cultly in predicting certain branches,
and the false control and memory de-
pendencies introduced by the impera-
tive language programming model is
required. This must be carried out by
architectures that are simple to design
and validate, lack monolithic control

ability of pre-built tools for architec-
ture research, however. Just as Sim-
pleScalar7 created a flood of research
on super-scalar microarchitecture,
the availability of pre-canned tools
and benchmarks for CMPs will create
a flood of research that is one delta
away from existing CMP designs. But
is this the type of research academics
should be conducting? As academics,
shouldn’t we be looking much farther
downfield, to the places where indus-
try is not yet willing to go? This is an
age-old quandary in our community
and will likely continue to be so. Such
a debate will certainly continue to ex-
ist in our research community for the
foreseeable future.

In the computer architecture field
there is a cynical saying that goes
something like “we design tomorrow’s
systems with yesterday’s benchmarks.”
This author finds this statement ex-
treme, but there is some underlying
merit to it. For example, there are far
more managed-code and scripting lan-
guage developers out there than C/C++
ones. Yet the majority of benchmarks
used in our field are written in C. For-
tunately, this is changing, with newer
benchmarks such as SPECjvm and
SPECjbb. Moreover, a few researchers
are starting to focus on performance
issues of managed and scripted code.
Looking forward, there is a very real
need for realistic multithreaded bench-
marks. Recent work, suggests a kernel-
driven approach is sufficient.33 As with
the whole of architecture evaluation
techniques, the jury is still out on what
is the proper methodology.

Instruction-Level Parallelism. Fi-
nally, a large number of architects,
myself among them, are still putting
enormous effort into finding addi-
tional instruction-level parallelism
(ILP). Some of these architects don’t
have complete faith that multicore
will be a success. Others recognize
that improvements in single-thread-
ed performance benefit multicore as
well, as parts of applications will be
sequential or require a few threads to
execute quickly. Over the years, these
researchers have sought to find ILP in
every nook and cranny of the research
space. Everything from new instruc-
tion set architectures, new execution
models, to better branch predictors,
caches, register management, instruc-

contributed articles

People far older
and wiser than me
contend this is the
most exciting time
for architecture
since the invention
of the computer.
What makes it
exciting is that
architecture is in
the unique position
of being at the
center of the future
of computer science
and the IT industry.

CACM_V51.7.indb 77 6/18/08 12:54:36 PM

78 communications of the acm | july 2008 | vol. 51 | no. 7

contributed articles

conventional microarchitectures. SIGARCH Comput.
Archit. News 28, 2, (2000), 248–259.

2.	 Austin, T.M. Diva: A reliable substrate for deep
submicron microarchitecture design. Micro. 00 196,
1999.

3.	 Borch, E. Tune, E., Manne, S., and Emer, J. Loose loops
sink chips. In Proceedings of the Eighth International
Symposium on High-Performance Computer
Architecture. Feb. 2-6, 2002, 299–310.

4.	 Bracy, A., Prahlad, P., and Roth, A. Dataflow
mini-graphs: Amplifying superscalar capacity and
bandwidth. In Proceedings of the 37th Annual IEEE/
ACM International Symposium on Microarchitecture.
IEEE Computer Society, Washington, D.C., 2004,
18–29.

5.	 Brooks, D., Tiwari, V., and Martonosi, M. Wattch: A
framework for architectural-level power analysis and
optimizations. SIGARCH Comput. Archit. News 28, 2,
(2000), 83–94.

6.	 Brooks, D.M., Bose, P., Schuster, S.E. Jacobson, H.,
Kudva, P.N. Buyuktosunoglu, A., Wellman, J-D.,
Zyuban, V., Gupta, M., and Cook, P.W. Power-aware
microarchitecture: Design and modeling challenges
for next-generation microprocessors. IEEE Micro 20, 6
(2000), 26–44.

7.	 Burger, D., and Austin, T.M. The simplescalar tool set,
version 2.0. SIGARCH Comput. Archit. News 25, 3
(1997), 13–25.

8.	 Ceze, L., Tuck, J., Montesinos, P., and Torrellas, J.
Bulksc: Bulk enforcement of sequential consistency.
SIGARCH Comput. Archit. News 35, 2 (2007),
278–289.

9.	 Cristal, A., Ortega, D., Llosa, J., and Valero, M. Out-of-
order commit processors. hpca, 00:48, 2004.

10.	 Dagum, R., Menon, L. Openmp: An industry standard
api for shared-memory programming. Computational
Science and Engineering 5, 11, (Jan-Mar 1998) 46–55.

11.	 Draper, J., Chame, J., Hall, M., Steele, C., Barrett, T.,
LaCoss, J., Granacki, J., Shin, J., Chen, C., Kang, C.W.,
Kim, I., and Daglikoca, G. The architecture of the diva
processing-in-memory chip. In Proceedings of the 16th
International Conference on Supercomputing., ACM,
NY, 2002, 14–25.

12.	 Eden, T., Mudge, A.N., The YAGS branch prediction
scheme. In Proceedings of the 31st Annual ACM/IEEE
International Symposium on Microarchitecture (Nov.
30–Dec. 2, 1998), 69–77.

13.	 Eeckhout, L., Stougie, B., Bosschere, K.D., and John,
L.K. Control flow modeling in statistical simulation
for accurate and efficient processor design studies.
SIGARCH Comput. Archit. News 32, 2 (2004), 350.

14.	 Ernst, D., Hamel, A., and Austin, T. Cyclone: A
broadcast-free dynamic instruction scheduler with
selective replay. In Proceedings of the 30th Annual
International Symposium on Computer Architecture
(June 9–11, 2003), 253–262.

15.	 Fisher, J.A. Very long instruction word architectures
and the eli-512. In Proceedings of the 10th Annual
International Symposium on Computer Architecture
(Los Alamitos, CA, 1983). IEEE Computer Society
Press, 140–150.

16.	 Hill, M.D. Multiprocessors should support simple
memory-consistency models. IEEE Computer 31, 8
(1998), 28–34.

17.	 Hinton, G., Upton, M., Sager, D., Boggs, D., Carmean,
D., Roussel, P., Chappell, T., Fletcher, T., Milshtein, M.,
Sprague, M., Samaan, S., and Murray., R. A 0.18-m
CMOS ia-32 processor with a 4-ghz integer execution
unit. IEEE Journal of Solid-State Circuits, 36, 11 (Nov.
2001),1617–1627.

18.	 Jouppi, N.P. Improving direct-mapped cache
performance by the addition of a small fully
associative cache and prefetch buffers. SIGARCH
Comput. Archit. News, 18, 3a (1990), 364–373.

19.	 Kang, Y., Huang, W., Yoo, S.-M., Keen, D., Ge, Z., Lam,
V., Torrellas, J., and Pattnaik, P. Flexram: Toward an
advanced intelligent memory system. ICCD 00:192,
1999.

20.	 Kogge, P., Sunaga, T., Miyataka, H., Kitamura, K.,
and Retter, E. Combined DRAM and logic chip for
massively parallel systems. arvlsi 0:4, 1995.

21.	 Lam, M.S., and Wilson, R.P. Limits of control flow
on parallelism. In Proceedings of the 19th Annual
International Symposium on Computer Architecture.
ACM, NY, 1992, 46–57.

22.	 McNairy, D., Soltis, C. Itanium 2 processor
microarchitecture. IEEE Micro 23, 2 (Mar.–Apr. 2003),
44–55,

23.	 Moore, G. Cramming more components onto
integrated circuits. Electronics (Apr. 1965), 114–117.

24.	 Mukherjee, S., Kontz, M., and Reinhardt, S., Detailed
design and evaluation of redundant multithreading

alternatives. In Proceedings of the 29th Annual
International Symposium on Computer Architecture
(2002), 99–110.

25.	 Mukherjee, S., Weaver, C., Emer, J., Reinhardt, S., and
Austin, T., A systematic methodology to compute
the architectural vulnerability factors for a high-
performance microprocessor. In Proceedings of the
36th Annual IEEE/ACM International Symposium on
Microarchitecture (Dec. 3-5, 2003), 29–40.

26.	 Nagarajan, R., Sankaralingam, K., Burger, D., and
Keckler, S.W. A design space evaluation of grid
processor architectures. In Proceedings of the
34th Annual ACM/IEEE International Symposium
on Microarchitecture. IEEE Computer Society,
Washington, D.C. 2001, 40–51.

27.	 Nielsen, L.S., and Niessen, C. Low-power operation
using self-timed circuits and adaptive scaling of the
supply voltage. IEEE Trans. Very Large Scale Integr.
Syst., 2, 4 (1994), 391–397.

28.	 Oskin, M., Chong, F.T., and Farrens, M. HlS: Combining
statistical and symbolic simulation to guide
microprocessor designs. SIGARCH Comput. Archit.
News 28, 2 (2002), 71–82.

29.	 Oskin, M., Chong, F.T., and Sherwood, T. Active
pages: A computation model for intelligent memory.
SIGARCH Comput. Archit. News 26, 3 (1998),
192–203.

30.	 Pai, V.S., Ranganathan, P., Adve, S.V., and Harton, T. An
evaluation of memory consistency models for shared-
memory systems with ilp processors. SIGPLAN
Notices 31, 9 (1996), 12–23.

31.	 Palacharla, S. Complexity-effective superscalar
processors. Ph.D. thesis, 1998.

32.	 Patterson, D., Anderson, T., Cardwell, N., Fromm, R.,
Keeton, K., Kozyrakis, C., Thomas, R., and Yelick, K. A
case for intelligent RAM. IEEE Micro 17, 2 (Mar.-Apr.
1997), 34–44.

33.	 Patterson, D., Keutzer, K., Asanovic, K., Yelick, K.,
and Bodik, R. The landscape of parallel computing
research: A view from Berkeley. 2007.

34.	 Pollack, F., Keynote: New microarchitecure challenges
in the coming generations of CMOS process
technologies, 1999.

35.	 Sherwood, T., Perelman, E., Hamerly, G., and Calder,
B. Automatically characterizing large scale program
behavior. In Proceedings of the 10th International
Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, NY, 2002,
45–57.

36.	 Swanson, S., Michelson, K., Schwerin, A., and Oskin, M.
Wavescalar. In Proceedings of the 36th Annual IEEE/
ACM International Symposium on Microarchitecture.
IEEE Computer Society, Washington, D.C., 291.

37.	 Taylor, M.B., Kim, J., Miller, J., Wentzlaff, D., Ghodrat,
F., Greenwald, B., Hoffman, F., Johnson, P., Lee, J.-W.,
Lee, W., Ma, A., Saraf, A., Seneski, M., Shnidman, N.,
Strumpen, V., Frank, M., Amarasinghe, S., and Agarwal,
A. The raw microprocessor: A computational fabric
for software circuits and general-purpose programs.
IEEE Micro 22, 2 (2002), 25–35.

38.	 Valero, M., Gonzalez, A., Topham, N.P., and Cruz,
C. Multiple-banked register file architectures. isca
00:316, 2000.

39.	 Vijaykumar, T., Pomeranz, I., and Cheng, K., Transient-
fault recovery using simultaneous multithreading.
In Proceedings of the 29th Annual International
Symposium on Computer Architecture (2002), 87–98.

40.	Wawrzynek, J., Patterson, D., Oskin, M., Lu, S.-L.,
Kozyrakis, C., Hoe, J. C., Chiou, D., and Asanovi, K.
RAMP: Research accelerator for multiple processors.
IEEE Micro 27, 2 (2007), 46–57.

41.	 Wunderlich, R., Wenisch, T., Falsafi, B., and Hoe. J.
Smarts: Accelerating microarchitecture simulation via
rigorous statistical sampling. In Proceedings of the
30th Annual International Symposium on Computer
Architecture (June 9-11, 2003), 84–95.

42.	 Ye, W., Vijaykrishnan, N., Kandemir, M., and Irwin, M.J.
The design and use of simplepower: A cycle-accurate
energy estimation tool. In Proceedings of the 37th
Conference on Design Automation. ACM, NY (2000),
340–345

43.	 http://www.news.com/2100-1006 3-6119618.html.
44.	http://www.itrs.net/.
45.	 http://pages.cs.wisc.edu/ markhill/mp2001.html.
46.	 Personal communication with Burton Smith.

Mark Oskin (oskin@cs.washington.edu) is an associate
professor in the Department of Computer Science and
Engineering at University of Washington, Seattle.

©2008 ACM 0001-0782/08/0700 $5.00

structures, and that are backward
compatible, if not with the binaries,
with the programming model.

What are we doing now? A look at
the ISCA 2007 conference program
provides a good overview of the type
of research being done in our com-
munity. A survey of papers published
in that year reveals the following: 18
papers focused on multicore (eight
core and memory design, six transac-
tional programming, four on-chip in-
terconnect); six papers were focused
on single-core devices and/or appli-
cations, six papers were focused on
special-purpose or streaming/media
devices, four papers were focused on
power reduction and three were in
the general area of “beyond CMOS”
Figure 3 extends this data out for
the last seven years of ISCA. This
data extends the work of Hill,45 who
tracked papers published in ISCA by
category from 1973–2001. That data
showed a precipitous rise and fall of
interest in multiprocessor research,
while data from the last seven years
depicts a renewed and vigorous mul-
tiprocessor research environment.

The Most Exciting Time
In my lifetime, this is the most excit-
ing time for computer architecture
research; indeed, people far older and
wiser than me46 contend this is the
most exciting time for architecture
since the invention of the computer.
What makes it exciting is that architec-
ture is in the unique position of being
at the center of the future of computer
science and the IT industry. Innova-
tions in architecture will impact every-
thing from education to determining
who are the new winners and losers in
the IT business. Central to this excite-
ment for me as an academic, is there is
no real clear way to proceed. Multicore
devices are being sold, and parts of the
software ecosystem will utilize them,
but the research and product space is
far more fluid and open to new ideas
now than ever before. Thus, while we
are central to the future directions of
computer science, we really lack a clear
vision for how to proceed. What could
be better than that? 	

References
1.	 Agarwal, V., Hrishikesh, M.S., Keckler, S.W., and Burger,

D. Clock rate versus IPC: The end of the road for

CACM_V51.7.indb 78 6/18/08 12:54:36 PM

http://www.itrs.net/
mailto:oskin@cs.washington.edu
http://www.news.com/2100-1006 3-6119618.html
http://pages.cs.wisc.edu/ markhill/mp2001.html

The 1st ACM SIGGRAPH Conference and Exhibition in Asia
www.siggraph.org/asia2008

New Horizons

Held inConference and Exhibition on Computer Graphics and Interactive Techniques

Singapore, 10-13 December 2008

SIGGRAPHASIA2008

ACM SIGGRAPH launches
the premiere SIGGRAPH Asia
in Singapore
Programs include:

Papers

Sketches and Posters

Courses

Art Gallery

Computer Animation Festival

Educators Program

Emerging Technologies

Exhibition

Calling all creative researchers, artists,
digital innovators and animators!

This is your opportunity to present your stellar
work or attend the 1st ACM SIGGRAPH
conference and Exhibition in Asia.

Queries?

Contact Conference and Exhibitions
Management at asia2008@siggraph.org or
Tel: +65 6500 6700

•

•

•

•

•

•

•

•

CACM_V51.7.indb 79 6/18/08 12:54:38 PM

mailto:asia2008@siggraph.org
http://www.siggraph.org/asia2008
http://visitsingapore.com

80 communications of the acm | JULY 2008 | vol. 51 | no. 7

review articles

complex processor architectures. The
era did not stop because Moore’s Lawa
ended. Semiconductor technology is
still capable of doubling the transistors
on a chip every two years. However, this
flood of transistors now increases the
number of independent processors on
a chip, rather than making an individ-
ual processor run faster. The resulting
computer architecture, named Multi-
core, consists of several independent
processors (cores) on a chip that com-
municate through shared memory. To-
day, two-core chips are common and
four-core chips are coming to market,
and there is every reason to believe that
the number of cores will continue to
double for a number of generations.
On one hand, the good news is that the
peak performance of a Multicore com-
puter doubles each time the number
of cores doubles. On the other hand,
achieving this performance requires a
program execute in parallel and scale
as the number of processors increase.

Few programs today are written to
exploit parallelism effectively. In part,
most programmers did not have access
to parallel computers, which were lim-
ited to domains with large, naturally
parallel workloads, such as servers, or
huge computations, such as high-per-
formance computing. Because main-
stream programming was sequential
programming, most existing program-
ming languages, libraries, design pat-
terns, and training do not address the
challenges of parallelism program-
ming. Obviously, this situation must
change before programmers in general
will start writing parallel programs for
Multicore processors.

A primary challenge is to find bet-
ter abstractions for expressing paral-
lel computation and for writing paral-
lel programs. Parallel programming
encompasses all of the difficulties of
sequential programming, but also in-
troduces the hard problem of coordi-
nating interactions among concurrent-
ly executing tasks. Today, most parallel

a.	 The doubling every 18–24 months of the num-
ber of transistors fabricable on a chip.

As computers evolve, programming changes as
well. The past few years mark the start of a historic
transition from sequential to parallel computation
in the processors used in most personal, server,
and mobile computers. This shift marks the end of
a remarkable 30-year period in which advances in
semiconductor technology and computer architecture
improved the performance of sequential processors at
an annual rate of 40%–50%. This steady performance
increase benefited all software, and this progress was
a key factor driving the spread of software throughout
modern life.

This remarkable era stopped when practical limits
on the power dissipation of a chip ended the continual
increases in clock speed and limited instruction-level
parallelism diminished the benefit of increasingly

doi: 10.1145/1364782.1364800

Is TM the answer for improving
parallel programming?

by james larus and christos Kozyrakis

Transactional
Memory

CACM_V51.7.indb 80 6/18/08 12:54:38 PM

JULY 2008 | vol. 51 | no. 7 | communications of the acm 81

programs employ low-level program-
ming constructs that are just a thin
veneer over the underlying hardware.
These constructs consist of threads,
which are an abstract processor, and
explicit synchronization (for example,
locks, semaphores, and monitors) to
coordinate thread execution. Consid-
erable experience has shown that par-
allel programs written with these con-
structs are difficult to design, program,
debug, maintain, and—to add insult to
injury—often do not perform well.

Transactional memory (TM)—pro-
posed by Lomet19 and first practically
implemented by Herlihy and Moss13—
is a new programming construct that
offers a higher-level abstraction for
writing parallel programs. In the past
few years, it has engendered consider-

able interest, as transactions have long
been used in databases to isolate con-
current activities. TM offers a mecha-
nism that allows portions of a program
to execute in isolation, without regard
to other, concurrently executing tasks.
A programmer can reason about the
correctness of code within a transac-
tion and need not worry about complex
interactions with other, concurrently ex-
ecuting parts of the program. TM offers
a promising, but as yet unproven mecha-
nism to improve parallel programming.

What is Transaction Memory?
A transaction is a form of program ex-
ecution borrowed from the database
community.8 Concurrent queries con-
flict when they read and write an item in
a database, and a conflict can produce

an erroneous result that could not arise
from a sequential execution of the que-
ries. Transactions ensure that all que-
ries produce the same result as if they
executed serially (a property known as
“serializability”). Decomposing the se-
mantics of a transaction yields four re-
quirements, usually called the “ACID”
properties—atomicity, consistency,
isola​tion, and durability.

TM provides lightweight transac-
tions for threads running in a shared
address space. TM ensures the atom-
icity and isolation of concurrently ex-
ecuting tasks. (In general, TM does not
provide consistency or durability.) Ato-
micity ensures program state changes
effected by code executing in a transac-
tion are indivisible from the perspec-
tive of other, concurrently executing I

L
L

U
S

T
R

A
T

I
O

N
 B

Y
 S

T
U

D
I

O
 T

O
N

N
E

 /
 Z

E
E

G
E

N
R

U
S

H
.C

O
M

CACM_V51.7.indb 81 6/18/08 12:54:38 PM

http://ZEEGENRUSH.COM

82 communications of the acm | JULY 2008 | vol. 51 | no. 7

review articles

account only during their operation,
properly implementing Transfer re-
quires understanding and modifying
the class’s locking discipline by adding
a method to either lock all accounts
or lock a single account. The latter ap-
proach allows non-overlapping trans-
fers to execute concurrently, but intro-
duces the possibility of deadlock if a
transfer from account A to B overlaps
with a transfer from B to A.

TM allows the operations to be com-
posed directly. The Deposit and With-
draw operations each execute in a trans-
action, to protect their manipulations
of the underlying data. The Transfer
operation also executes in a transaction,
which subsumes the underlying opera-
tions into a single atomic action.

Limitations of Transactional Mem-
ory. Transactions by themselves cannot
replace all synchronization in a parallel
program.2 Beyond mutual exclusion,
synchronization is often used to coor-
dinate independent tasks, for example,
by ensuring that one task waits for an-
other to finish or by limiting the num-
ber of threads performing a task.

Transactions by themselves provide
little assistance in coordinating inde-
pendent tasks. For example, consider
a producer-consumer programming
relationship, in which one task writes
a value that another task reads. Trans-
actions can ensure the tasks’ shared
accesses do not interfere. However,
this pattern is expensive to imple-
ment with transactions, whose goal is
to shield a task from interactions with
other tasks. If the consumer transac-
tion finds the value is not available, it
can only abort and check for the value
later. Busy waiting by aborting is inef-
ficient since an aborted transaction
rolls back its entire computation. A
better solution is for the producer to
signal the consumer when the value
is ready. However, since a signal is
not visible in a transaction, many TM
systems provide a guard that prevents
a transaction from starting execution
until a predicate becomes true.

Haskell TM introduced the retry
and orElse constructs as a way for a
transaction to wait until an event oc-
curs and to sequence the execution of
two transactions.11 Executing a re-
try statement causes the surround-
ing transaction to abort. It does not
reexecute until a location it previously

transactions. In other words, although
the code in a transaction may modify
individual variables through a series
of assignments, another computation
can only observe the program state
immediately before or immediately af-
ter the transaction executes. Isolation
ensures that concurrently executing
tasks cannot affect the result of a trans-
action, so a transaction produces the
same answer as when no other task was
executing. Transactions provide a ba-
sis to construct parallel abstractions,
which are building blocks that can be
combined without knowledge of their
internal details, much as procedures
and objects provide composable ab-
stractions for sequential code.

TM Programming Model. A pro-
gramming model provides a rationale
for the design of programming lan-
guage constructs and guidance on how
to construct programs. Like many as-
pects of TM, its programming model is
still the subject of active investigation.

Most TM systems provide simple
atomic statements that execute a block
of code (and the routines it invokes) as
a transaction. An atomic block isolates
the code from concurrently executed
threads, but a block is not a replace-
ment for general synchronization
such as semaphores or condition vari-
ables.2 In particular, atomic blocks by
themselves do not provide a means to
coordinate code running on parallel
threads.

Automatic mutual exclusion (AME),
by contrast, turns the transactional
model “inside-out” by executing most
of a program in transactions.15 AME
supports asynchronous program-
ming, in which a function starts one
or more asynchronous computations
and later rendezvouses to retrieve
their results. This programming mod-
el is a common way to deal with un-
predictable latency in user-directed
and distributed systems. The atomic-
ity provided by transactions ensures
that an asynchronous computation,
which executes at an unpredictable
rate, does not interfere with other, si-
multaneously active computations.

Advantages of Transactional Mem-
ory. Parallel programming poses many
difficulties, but one of the most serious
challenges in writing correct code is
coordinating access to data shared by
several threads. Data races, deadlocks,

and poor scalability are consequences
of trying to ensure mutual exclusion
with too little or too much synchroni-
zation. TM offers a simpler alternative
to mutual exclusion by shifting the bur-
den of correct synchronization from
a programmer to the TM system.9 In
theory, a program’s author only needs
to identify a sequence of operations on
shared data that should appear to ex-
ecute atomically to other, concurrent
threads. Through the many mecha-
nisms discussed here, the TM system
then ensures this outcome.

Harris and Peyton-Jones11 argued
that, beyond providing a better pro-
gramming abstraction, transactions

also make synchronization compos-
able, which enables the construction
of concurrency programming abstrac-
tions. A programming abstraction is
composable if it can be correctly com-
bined with other abstractions without
needing to understand how the ab-
stractions operate.

Simple locking is not composable.
Consider, as an example, a class that
implements a collection of bank ac-
counts. The class provides thread-safe
Deposit and Withdraw operations
to add and remove money from a bank
account. Suppose that we want to com-
pose these operations into a thread-
safe Transfer operation, which
moves money from one account to an-
other. The intermediate state, in which
money was debited but not credited,
should not be visible to other threads
(that is, the transfer should be atomic).
Since Deposit and Withdraw lock an I

L
L

U
S

T
R

A
T

I
O

N
 B

Y
 S

T
U

D
I

O
 T

O
N

N
E

 /
 Z

E
E

G
E

N
R

U
S

H
.C

O
M

CACM_V51.7.indb 82 6/18/08 12:54:39 PM

http://ZEEGENRUSH.COM

review articles

JULY 2008 | vol. 51 | no. 7 | communications of the acm 83

read changes value, which avoids
the crudest form of busy waiting in
which a transaction repeatedly reads
an unchanging value and aborts. The
orElse construct composes two
transactions by starting the second
one only if the first transaction fails to
commit. This pattern—which arises
in situations as simple as checking for
a value in a cache and recomputing
it if necessary—is difficult to express
otherwise, since a transaction’s fail-
ure and reexecution is transparent to
other computation.

We still do not understand the
trade-offs and programming pragmat-
ics of the TM programming model.
For example, the semantics of nested
transactions is an area of active debate.
Suppose that code in a transaction O
invokes a library routine, which starts
its own transaction I. Should the two
transactions interact in any way, and
if so, what are the implications for the
TM implementation and for program-
mers building modular software and
libraries? Consider when transaction
I commits. Should its results be visible
only to code in transaction O (closed
nesting) or also to other threads (open
nesting)? If the latter, what happens
if transaction O aborts? Similarly, if
transaction I aborts, should it termi-
nate transaction O as well, or should
the inner transaction be rolled back
and restarted independently?

Finally, the performance of TM is
not yet good enough for widespread
use. Software TM systems (STM) im-
pose considerable overhead costs on
code running in a transaction, which
saps the performance advantages of
parallel computers. Hardware TM sys-
tems (HTM) can lower the overhead,
but they are only starting to become
commercially available, and most
HTM systems fall back on software for
large transactions. Better implemen-
tation techniques are likely to improve
both types of systems and are an area
of active research.

Transactional Memory
Implementation
TM can be implemented entirely in
software (STM) or with specialized
hardware support (HTM). Many differ-
ent implementation techniques have
been proposed, and this paper, rather
than surveying the literature, focuses

original, underlying object while the
first transaction is still running, which
causes a logical conflict that the STM
system detects and resolves by abort-
ing one of the two transactions.

An STM system can detect a con-
flict when a transaction first accesses
an object (early detection) or when the
transaction attempts to commit (late
detection). Both approaches yield the
same results, but may perform differ-
ently and, unfortunately, neither is
consistently superior. Early detection
prevents a transaction from perform-
ing unnecessary computation that a
subsequent abort will discard. Late de-
tection can avoid unnecessary aborts,
as when the conflicting transaction it-
self aborts because of a conflict with a
third transaction.

Another complication is a conflict
between a transaction that only reads
an object and another that modifies
the object. Since reads are more com-
mon than writes, STM systems only
clone objects that are modified. To
reduce overhead, a transaction tracks
the objects it reads and, before it com-
mits, ensures that no other transaction
modified them.

DSTM is a library. An object ma-
nipulated in a transaction is first reg-
istered with the DSTM system, which
returns a TMObject wrapper for the
object (as illustrated in the accompa-
nying figure). Subsequently, the code
executing the transaction can open
the TMObject for read-only or read-
write access, which returns a pointer
to the original or cloned object, re-
spectively. Either way, the transaction
manipulates the object directly, with-
out further synchronization.

 A transaction ends when the pro-
gram attempts to commit the transac-
tion’s changes. If the transaction suc-
cessfully commits, the DSTM system
atomically replaces, for all modified
objects, the old object in a Locator
structure with its modified version.

A transaction T can commit success-
fully if it meets two conditions. The
first is that no concurrently executing
transaction modified an object read by
T. DSTM tracks the objects a transac-
tion opened for reading and validates
the entries in this read set when the
transaction attempts to commit. An
object in the read set is valid if its ver-
sion is unchanged since transaction

on a few key techniques. A more com-
plete overview is available elsewhere.18

Most TM systems of both types im-
plement optimistic concurrency con-
trol in which a transaction executes
under the assumption that it will not
conflict with another transaction. If
two transactions conflict, because one
modifies a location read or modified
by the other, the TM system aborts
one of the transactions by reversing
(rolling back) its side effects. The al-
ternative pessimistic concurrency
control requires a transaction to es-
tablish exclusive access to a location
(for example, by acquiring a lock) be-
fore modifying it. This approach also

may abort and roll back a transaction,
in case of deadlock.

Software Transactional Memory.
The initial paper on STM by Shavit and
Touitou29 showed it was possible to
implement lock-free, atomic, multi-lo-
cation operations entirely in software,
but it required a program to declare in
advance the memory locations to be ac-
cessed by a transaction.

Herlihy et al.’s Dynamic STM
(DSTM)14 was the first STM system that
did not require a program to declare
the memory locations accessed by a
transaction. DSTM is an object-gran-
ularity, deferred-update STM system,
which means that a transaction modi-
fies a private copy of an object and
only makes its changes visible to other
transactions when it commits. The
transaction exclusively accesses the
copy without synchronization. Howev-
er, another transaction can access the I

L
L

U
S

T
R

A
T

I
O

N
 B

Y
 S

T
U

D
I

O
 T

O
N

N
E

 /
 Z

E
E

G
E

N
R

U
S

H
.C

O
M

CACM_V51.7.indb 83 6/18/08 12:54:39 PM

http://ZEEGENRUSH.COM

84 communications of the acm | JULY 2008 | vol. 51 | no. 7

review articles

T first opened it. DSTM also validates
the read set every time it opens an ob-
ject, to avoid allowing a transaction to
continue executing in an erroneous
program state in which some objects
changed after the transaction started
execution.

The second condition is that trans-
action T is not modifying an object
that another transaction is also modi-
fying. DSTM prevents this type of con-
flict by only allowing one transaction
to open an object for modification.
When a write-write conflict occurs,
DSTM aborts one of the two conflicting
transactions and allows the other to
proceed. DSTM rolls the aborted trans-
action back to its initial state and then
allow it to reexecute. The policy used to
select which transaction to abort can
affect system performance, including
liveness, but it should have no effect on
the semantics of the STM system.28

The performance of DSTM, like
other STM systems, depends on the
details of the workload. In general,
the large overheads of STM systems
are more expensive than locking on a
small number of processors. However,
as the number of processors increases,
so does the contention for a lock and
the cost of locking. When this occurs
and conflicts are rare, STMs have been
shown to outperform locks on small
benchmarks.

Deferred-Update Systems. Other
deferred-update STM systems inves-
tigated alternative implementation

techniques. Harris and Fraser’s WSTM
system detects conflicts at word, not
object, granularity. This approach
can avoid unnecessary conflicts if two
transactions access different fields in
an object, but it complicates the imple-
mentation sufficiently that few STM
systems adopted the idea (although,
HTM systems generally detect con-
flicts at word or cache line granularity).
WSTM also was the first STM system in-
tegrated into a programming language.
Harris and Fraser extended Java with
an atomic statement that executed its
block in a transaction, for example:

atomic {
 int x = lst.head;
 lst = lst.tail;
 …
}

The construct also provided an op-
tional guard that prevents a transac-
tion from executing until the condition
becomes true.

Considerable research has inves-
tigated the policies that select which
transaction to abort at a conflict.10, 28
No one policy performs best in all situ-
ations, though a policy called “Polka”
performed well overall. Under this pol-
icy, each transaction tracks the num-
ber of objects it has open and uses
this count as its priority. A transaction
attempting to acquire access to an ob-
ject immediately aborts a conflicting,
lower-priority transaction. If the ac-

quiring transaction’s priority is lower,
it backs off N times, where N is the dif-
ference in priority, with an exponen-
tially increasing interval between the
retries. The transaction aborts and re-
executes if it cannot acquire an object
within N attempts.

Direct Update Systems. In a direct-
update STM system, transactions di-
rectly modify an object, rather than a
copy.1, 12, 27 Eliminating the copy poten-
tially is more efficient, since it does
not require a clone of each modified
object. However, direct-update sys-
tems must record the original value
of each modified memory location,
so the system can restore the location
if the transaction aborts. In addition,
a direct update STM must prevent a
transaction from reading the loca-
tions modified by other, uncommitted
transactions, thereby reducing the po-
tential for concurrent execution.

Direct update STM systems also re-
quire a lock to prevent multiple trans-
actions from updating an object con-
currently. Because of the high cost of
fair multiple reader-single writer locks,
the systems do not lock a read-only ob-
ject and instead rely on read-set valida-
tion to detect concurrent modification
of read-only objects. These lock sets in-
cur the same high overhead cost as in
deferred-update systems.

The locks used to prevent multiple
writes to a location, however, raise the
possibility of stalling many transac-
tions when a transaction is suspended
or descheduled while holding locks.
Deferred-update STM systems typi-
cally use non-blocking data structures,
which prevented a failed thread from
obstructing other threads. Direct-up-
date STM systems provide similar for-
ward progress guarantees to an appli-
cation by detecting and aborting failed
or blocked threads.

Hardware Support for
Transactional Memory
The programming effort necessary to
exploit parallelism is justified if the
new code performs better or is more
responsive than sequential code. Even
though the performance of recent
STM systems scales with the number
of processors in a Multicore chip, the
overhead of the software systems is
significant. Even with compiler opti-
mizations, a STM thread may run two

TMObject is a handle for the object. It points to a Locator, which in turn points to
the Transaction that opened the object, the original (“old) version of the object, and
the transaction’s private (“new”) clone of the object.

Locator
TMObject

Object — Old Version

Object — New VersionTransaction

New Data

Old Data

Status

A transacted object in the DSTM system.

CACM_V51.7.indb 84 6/18/08 12:54:39 PM

review articles

JULY 2008 | vol. 51 | no. 7 | communications of the acm 85

to seven times slower than sequential
code. 22, 26

HTM can improve the performance
of STM. While still an active area of re-
search, proposed systems fall into two
broad categories: those that acceler-
ate key STM operations and those that
implement transactional bookkeeping
directly in hardware.

Hardware Acceleration for STM.
The primary source of overhead for an
STM is the maintenance and validation
of read sets. To track a read set, an STM
system typically invokes an instrumen-
tation routine at every shared-memory
read. The routine registers the object’s
address and optionally performs early
conflict detection by checking the
object’s version or lock. To validate a
transaction, the STM must traverse the
read set and ensure each object has no
conflicts. This instrumentation can
impose a large overhead if the transac-
tion does not perform a large amount
of computation per memory access.

The hardware-accelerated STM
(HASTM) by Saha et al. was the first
system to propose hardware support
to reduce the overhead of STM instru-
mentation.26 The supplementary hard-
ware allows software to build fast fil-
ters that could accelerate the common
case of read set maintenance. HASTM
provides the STM with two capabilities
through per-thread mark bits at the
granularity of cache blocks. First, soft-
ware can check if a mark bit was previ-
ously set for a given block of memory
and that no other thread wrote to the
block since it was marked (conflict de-
tection). Second, software can query if
potentially there were writes by other
threads to any of the memory blocks
that the thread marked (validation).

HASTM proposed implementing
mark bits using additional metadata
for each block in the per-processor
cache of a Multicore chip. The hard-
ware tracks if any marked cache block
was invalidated because it was evicted
from the cache or written to by another
thread. An STM uses mark bits in the
following way. The read instrumenta-
tion call checks and sets the mark bit
for the memory block that contains
an object’s header. If the mark bit was
set, indicating that the transaction pre-
viously accessed the object, it is not
added to the read set again. To validate
the transaction, the STM queries the

hardware to determine if any marked
cache blocks were invalidated. If not,
all objects accessed through instru-
mentation were private to the thread
for the duration of the transaction
and no further validation is required.
If some marked blocks were invali-
dated, the STM must rely on software-
based validation to check the version
numbers or locks for all objects in the
read set. This expensive validation
step determines if a marked block
was evicted because of limited cache
capacity or because of true conflicts
between concurrent transactions.

HASTM allows transactions to span
system events such as interrupts, con-
text switches, and page faults, as the
mark bits function only as a filter. If
servicing a system event causes the
eviction of some marked blocks, a
pending transaction can continue its
subsequent execution without abort-
ing. The transaction will simply fall
back on software validation before it
commits. Similarly, HASTM allows a
transaction to be suspended and its
speculative state inspected by a com-
ponent such as a garbage collector or a
debugger running in another thread.

It is also possible to accelerate STM
conflict detection without modifying
hardware caches. First-level caches are
typically in the critical path of a proces-
sor and interact with complex subsys-
tems such as the coherence protocol.
Even minor changes to caches can af-
fect the processor’s clock frequency
and increase design and verification
complexity. The signature-accelerated
STM (SigTM) proposed by Cao Minh et
al. uses hardware signatures to encode
pessimistically the read set and write
set for software transactions.22 A hard-
ware Bloom filter outside of the caches
computes the signatures.b Software in-
strumentation provides the filters with
the addresses of the objects read or
written within a transaction. To detect
conflicts, hardware in the computer
monitors coherence traffic for requests
for exclusive accesses to a cache block,
which indicates a memory update. The
hardware tests if the address in a re-

b.	 A Bloom filter efficiently represents a super-
set of the elements in a set and allows fast set
membership queries. The use of Bloom fil-
ters for dependency detection in thread-level
speculation and transactions was originally
proposed by Ceze et al.6

The programming
effort necessary to
exploit parallelism
is justified if the
new code performs
better or is more
responsive than
sequential code.

CACM_V51.7.indb 85 6/18/08 12:54:39 PM

86 communications of the acm | JULY 2008 | vol. 51 | no. 7

review articles

quest is potentially in a transaction’s
read or write set by examining the trans-
action’s signatures. If so, the memory
reference is a potential conflict and the
STM can either abort a transaction or
turn to software validation.

Both HASTM and SigTM accelerate
read set tracking and validation for
STM systems. Nevertheless, the archi-
tectures differ. SigTM encodes read
set and write sets whose size exceeds
the size of private caches. Capacity
and conflict misses do not cause soft-
ware validation, as with HASTM. On
the other hand, SigTM uses probabi-
listic signatures, which never miss a
true conflict, but may produce false
conflicts due to address aliasing in a
Bloom filter. Moreover, the hardware
signatures are relatively compact
and easy to manipulate, so they can
be saved and restored across context
switches and other interruptions. In
HASTM, the mark bits may be lost if
a processor is used to run other tasks.
On the other hand, SigTM signatures
track physical addresses and their
content must be discarded after the
virtual page mapping is modified.

Hardware acceleration for read set
management has been shown to im-
prove the performance of lock-based,
direct-update, and deferred-update
STM systems by a factor of two.22, 26
Additional improvements are pos-
sible with hardware mechanisms that
target version management for the ob-
jects written by the STM.31 Neverthe-
less, since most programs read signif-
icantly more objects than they write,
these performance improvements are
small.

Hardware Transactional Memory.
The interest in full hardware imple-
mentation of TM (HTM) dates to the
initial two papers on TM by Knight16
and Herlihy and Moss13 respectively.
HTM systems require no software in-
strumentation of memory references
within transaction code. The hardware
manages data versions and tracks
conflicts transparently as software
performs ordinary read and write ac-
cesses. Eliminating instrumentation
reduces program overhead and elimi-
nates the need to specialize function
bodies so they can be called within
and outside of a transaction.

HTM systems rely on a computer’s
cache hierarchy and the cache coher-

ence protocol to implement version-
ing and conflict detection. Caches
observe all reads and writes issued by
a processor, can buffer a significant
amount of data, and can be searched
efficiently because of their associative
organization. All HTMs modify the
first-level caches, but the approach
extends to higher-level caches, both
private and shared. To illustrate the
organization and operation of HTM
systems, we will describe the TCC ar-
chitecture in some detail and briefly
mention the key attributes of alterna-
tive designs.

The Transactional Coherence and
Consistency (TCC) system is a deferred-

update HTM that performs conflict de-
tection when a transaction attempts
to commit.21 To track the read set and
write set, each cache block is annotat-
ed with R and W tracking bits, which
are set on the first read or write access
to the block from within the transac-
tion. Cache blocks in the write set act
as a write buffer and do not propagate
the memory updates until the transac-
tion commits.

TCC commits transactions using
a two-phase protocol. First, the hard-
ware acquires exclusive access to all
cache blocks in the write set using co-
herence messages. If this step is suc-
cessful, the transaction is considered
validated. Next, the hardware instanta-
neously resets all W bits in the cache,
which atomically commits the updates
by this transaction. The new versions
of the data are now globally accessible
by all processors through the normal

coherence protocol of a Multicore
chip. If validation fails, because anoth-
er processor is also trying to commit a
conflicting transaction, the hardware
reverts to a software handler, which
may abort the transaction or attempt
to commit it under a contention man-
agement policy. When a transaction
commits or aborts, all tracking bits are
simultaneously cleared using a gang
reset operation. Absent conflicts, mul-
tiple transactions may be committing
in parallel.

Conflict detection occurs as other
processors receive the coherence mes-
sages from the committing transac-
tion. Hardware looks up the received
block address in the local caches. If the
block is in a cache and has its R or W
bit set, there is a read-write or a write-
write conflict between the committing
and the local transaction. The hard-
ware signals a software handler, which
aborts the local transaction and poten-
tially retries it after a backoff period.

Similar hardware techniques can
support HTM systems with direct
memory updates or early detection
of conflicts.23 For direct updates, the
hardware transparently logs the origi-
nal value in a memory block before its
first modification by a transaction. If
the transaction aborts, the log is used
to undo any memory updates. For
early conflict detection, the hardware
acquires exclusive access to the cache
block on the first write and maintains
it until the transaction commits. Un-
der light contention, most HTM de-
signs perform similarly. Under heavier
contention, deferred updates and late
conflict detection lead to fewer patho-
logical scenarios that can be easily
handled with a backoff policy.3

 The performance of an HTM thread
is typically within 2%–10% of the per-
formance of non-transactional code.
An HTM system can outperform a lock-
based STM by a factor of four and the
corresponding hardware-accelerated
STM by a factor of two.22 Nevertheless,
HTM systems face several system chal-
lenges that are not an issue for STM
implementations. The caches used to
track the read set, write set, and data
versions have finite capacity and may
overflow on a long transaction. The
transactional state in caches is large
and is difficult to save and restore at in-
terrupts, context switching, and paging I

L
L

U
S

T
R

A
T

I
O

N
 B

Y
 S

T
U

D
I

O
 T

O
N

N
E

 /
 Z

E
E

G
E

N
R

U
S

H
.C

O
M

CACM_V51.7.indb 86 6/18/08 12:54:40 PM

http://ZEEGENRUSH.COM

JULY 2008 | vol. 51 | no. 7 | communications of the acm 87

review articles

events. Long transactions may be rare,
but they still must execute in a manner
that preserves atomicity and isolation.
Placing implementation-dependent
limits on transaction sizes is unaccept-
able from a programmer’s perspective.

A simple mechanism to handle cache
overflows or system events is to ensure
the offending transaction executes to
completion.21 When one of these events
occurs, the HTM system can update
memory directly without tracking the
read set, write set, or old data versions.
At this point, however, no other transac-
tions can execute, as conflict detection
is no longer possible. Moreover, direct
memory updates without undo logging
preclude the use of explicit abort or re-
try statements in a transaction.

Rajwar et al. proposed Virtualized
TM (VTM), an alternative approach
that maintains atomicity and isolation
for even if a transaction is interrupted
by a cache overflow or a system event.25
VTM maps the key bookkeeping data
structures for transactional execution
(read set, write set, write buffer or un-
do-log) to virtual memory, which is ef-
fectively unbounded and is unaffected
by system interruptions. The hardware
caches hold the working set of these
data structures. VTM also suggested
the use of hardware signatures to avoid
redundant searches through structures
in virtual memory.

A final technique to address the
limitation of hardware resources is to
use a hybrid HTM–STM system.7, 17 A
transaction starts in the HTM mode us-
ing hardware mechanisms for conflict
detection and data versioning. If HTM
resources are exceeded, the transac-
tion is rolled back and restarted in the
STM mode with additional instrumen-
tation. This approach requires two ver-
sions of each function, but it provides
good performance for short transac-
tions. A challenge for hybrid systems is
to detect conflict between concurrently
HTM and STM transactions.

Hardware/Software Interface for
Transactional Memory. Hardware de-
signs are optimized to make the com-
mon case fast and reduce the cost of
correctly handling rare events. Proces-
sor vendors will follow this principle
in introducing hardware support for
transactional execution. Initial systems
are likely to devote modest hardware
resources to TM. As more applications

use transactions, more aggressive hard-
ware designs, including full-featured
HTM systems, may become available.

Regardless of the amount of hard-
ware used for TM, it is important that
HTM systems provide functionality
that is useful in developing practical
programming models and execution
environments. A significant amount
of HTM research has focused on hard-
ware/software interfaces that can sup-
port rich software features. McDonald
et al. suggested four interface mecha-
nisms for HTM systems.20 The first
mechanism is a two-phase commit
protocol that architecturally separates
transaction validation from commit-

ting its updates to memory. The sec-
ond mechanism is transactional han-
dlers that allow software to interface
on significant events such as conflict
detection, commit, or abort. Shrira-
man et al. suggest alert-on-update,
a similar mechanism that invokes a
software handler when HTM hard-
ware detects conflicts or experiences
overflows.31 The third mechanism is
support for closed and open-nested
transactions. Open nesting allows soft-
ware to interrupt the currently execut-
ing transaction and run some service
code (for example, a system call) with
independent atomicity and isolation
guarantees. Other researchers sug-
gest it is sufficient to suspend HTM
transactions to service system calls
and I/O operations.24, 32 Nevertheless,
if the service code uses transactions to
access shared data in memory, the re-
quirements of transaction pausing are

not significantly different from those
of open-nested transactions. Finally,
both McDonald et al. and Sriraman et
al. propose multiple types of load and
store instructions what allow compil-
ers to distinguish accesses to thread-
private, immutable, or idempotent
data from accesses to truly shared data.
By providing such mechanisms, HTM
systems can support software features
ranging from conditional synchroni-
zation and limited I/O within trans-
actions5,32 to high-level concurrency
models that avoid transaction aborts
on memory conflicts if the application-
level semantics are not violated.4

Open Issues
Beyond the implementation issues
discussed here, TM faces a number of
challenges that are the subject of active
research. One serious difficulty with
optimistic TM is that a transaction that
executed an I/O operation may roll back
at a conflict. I/O in this case consists of
any interaction with the world outside
of the control of the TM system. If a
transaction aborts, its I/O operations
should roll back as well, which may be
difficult or impossible to accomplish
in general. Buffering the data read or
written by a transaction permits some
rollbacks, but buffering fails in simple
situations, such as a transaction that
writes a prompt and then waits for user
input. A more general approach is to
designate a single privileged transac-
tion that runs to completion, by en-
suring it triumphs over all conflicting
transactions. Only the privileged trans-
action can perform I/O (but the privi-
lege can be passed between transac-
tions), which unfortunately limits the
amount of I/O a program can perform.

Another major issue is strong and
weak atomicity. STM systems generally
implement weak atomicity, in which
non-transactional code is not isolated
from code in transactions. HTM sys-
tems, on the other hand, implement
strong atomicity, which provides a
more deterministic programming
model in which non-transactional code
does not affect the atomicity of a trans-
action. This difference presents several
problems. Beyond the basic question of
which model is a better basis for writ-
ing software, the semantic differences
makes it difficult to develop software
that runs on both types of systems. I

L
L

U
S

T
R

A
T

I
O

N
 B

Y
 S

T
U

D
I

O
 T

O
N

N
E

 /
 Z

E
E

G
E

N
R

U
S

H
.C

O
M

CACM_V51.7.indb 87 6/18/08 12:54:40 PM

http://ZEEGENRUSH.COM

88 communications of the acm | JULY 2008 | vol. 51 | no. 7

review articles

The least common denominator is the
weak model, but erroneous programs
will produce divergent results on differ-
ent systems. An alternative viewpoint
is that unsynchronized data accesses
between two threads is generally an er-
ror, and if only one thread is executing
a transaction, then there is insufficient
synchronization between the threads.
Therefore, the programming language,
tools, runtime system, or hardware
should prevent or detect unsynchro-
nized sharing between transactional
and non-transactional code, and a pro-
grammer should fix the defect.

Weakly atomic systems also face
difficulties when an object is shared
between transactional and non-trans-
actional code.30 Publication occurs
when a thread makes an object visible
to other threads (for example, by add-
ing it to a global queue) and privatiza-
tion occurs when a thread removes an
object from the global shared space.
Private data should be manipulatable
outside of a transaction without syn-
chronization, but an object’s transi-
tion between public and private must
be coordinated with the TM system,
lest it attempt to roll back an object’s
state while another thread assumes it
has sole, private access to the data.

Finally, TM must coexist and inter-
operate with existing programs and li-
braries. It is not practical to require pro-
grammers to start afresh and acquire a
brand new set of transactional libraries
to enjoy the benefits of TM. Existing se-
quential code should be able to execute
correctly in a transaction, perhaps with
a small amount of annotation and re-
compilation. Existing parallel code
that uses locks and other forms of syn-
chronization, must continue to oper-
ate properly, even if some threads are
executing transactions.

Conclusion
Transactional memory by itself is un-
likely to make Multicore computers
readily programmable. Many other
improvements to programming lan-
guages, tools, runtime systems, and
computer architecture are also neces-
sary. TM, however, does provide a time-
tested model for isolating concurrent
computations from each other. This
model raises the level of abstraction for
reasoning about concurrent tasks and
helps avoid many insidious parallel

programming errors. However, many
aspects of the semantics and imple-
mentation of TM are still the subject
of active research. If these difficulties
can be resolved in a timely fashion,
TM will likely become a central pillar
of parallel programming.	

References
1.	 Adl-Tabatabai, A.R., Lewis, B.T., Menon, V., Murphy,

B.R., Saha, B., and Shpeisman, T. Compiler and
runtime support for efficient software transactional
memory. In Proceedings of the 2006 ACM SIGPLAN
Conference on Programming Language Design and
Implementation (Ottawa, Ontario, Canada, 2006).
ACM, NY 26–37.

2.	 Blundell, C., Lewis, E.C., and Martin, M.M.K . Subtleties
of transactional memory atomicity semantics. IEEE
Computer Architecture Letters 5 (Nov. 2006).

3.	 Bobba, J., Moore, K.E., Volos, H., Yen, L., Hill, M.D.,
Swift, M.M., and Wood, D.A. Performance pathologies
in hardware transactional memory. In Proceedings
of the 34th International Symposium on Computer
Architecture (San Diego, CA, 2007). ACM, NY, 81–91.

4.	 Carlstrom, B. D., McDonald, A., Carbin, M., Kozyrakis,
C., and Olukotun, K. Transactional collection classes.
In Proceedings of the 12th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming
(San Jose, CA, 2007). ACM, NY, 56–67.

5.	 Carlstrom, B.D., McDonald, A., Chafi, H., Chung, J.,
Minh, C.C., Kozyrakis, C., and Olukotun, K. The Atomos
transactional programming language. In Proceedings
of the 2006 ACM SIGPLAN Conference on
Programming Language Design and Implementation
(Ottawa, Ontario, Canada, 2006). ACM, NY, 1–13.

6.	 Ceze, L., Tuck, J., Torrellas, J., and Cascaval,
C. Bulk disambiguation of speculative threads
in multiprocessors. In Proceedings of the 33rd

International Symposium on Computer Architecture
(Boston, MA, 2006). ACM, NY, 227–238.

7.	 Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir,
M., and Nussbaum, D. Hybrid transactional memory.
In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages
and Operating Systems (San Jose, CA, 2006). ACM,
NY, 336–346.

8.	 Gray, J. and Reuter, A. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann
Publishers, San Francisco, CA, 1992.

9.	 Grossman, D. The transactional memory / garbage
collection analogy. In Proceedings of the ACM
Conference on Object-Oriented Programming
Systems, Languages, and Applications (Montreal,
Canada, 2007). ACM, NY, 695–706.

10.	 Guerraoui, R., Herlihy, M., and Pochon, B. Polymorphic
contention management. In Proceedings of the 19th
International Symposium on Distributed Computing
(Krakow, Poland, 2005). Springer Verlag, 303–323.

11.	 Harris, T., Marlow, S., Peyton-Jones, S., and Herlihy, M.
Composable memory transactions. In Proceedings of
the 10th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (Chicago, IL, 2005),
ACM, NY, 48–60.

12.	 Harris, T., Plesko, M., Shinnar, A., and Tarditi, D.
Optimizing memory transactions. In Proceedings of
the 2006 ACM SIGPLAN Conference on Programming
Language Design and Implementation (Ottawa,
Ontario, Canada, 2006). ACM, NY, 14–25.

13.	 Herlihy, M. and Moss, J.E.B. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of the 20th International Symposium on
Computer Architecture. ACM, 1993, 289–300.

14.	 Herlihy, M., Luchangco, V., Moir, M., and Scherer III,
W.N. Software transactional memory for dynamic-
sized data structures. In Proceedings of the 22nd
Annual Symposium on Principles of Distributed
Computing (Boston, MA, 2003), 92–101

15.	 Isard, M., and Birrell, A. Automatic mutual exclusion.
In Proceeding of the Usenix 11th Workshop on Hot
Topics in Operating Systems (San Diego, CA, 2007).

16.	 Knight, T.F. An architecture for mostly functional
languages. In Proceedings of the 1986 ACM Lisp and
Functional Programming Conference. ACM, NY.

17.	 Kumar, S., Chu, M., Hughes, C.J., Kundu, P., and
Nguyen, A. Hybrid transactional memory. In
Proceedings of the 11th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming. ACM,
NY, 2006, 209–220.

18. 	Larus, J.R. and Rajwar, R. Transactional Memory.
Morgan & Claypool, 2006.

19.	 Lomet, D.B. Process structuring, synchronization, and
recovery using atomic actions. In Proceedings of the
ACM Conference on Language Design for Reliable
Software (Raleigh, NC, 1977). ACM, NY, 128–137.

20.	 McDonald, A., Chung, J., Brian, D.C., Minh, C.C., Chafi,
H., Kozyrakis, C., and Olukotun, K. Architectural
semantics for practical transactional memory. In
Proceedings of the 33rd International Symposium on
Computer Architecture. ACM, 2006, 53–65.

21.	 McDonald, A., Chung, J., Chafi, H., Cao Minh,
C., Carlstrom, B.D., Hammond, L., Kozyrakis, C.,
and Olukotun, K. Characterization of TCC on
chip-multiprocessors. In Proceedings of the 14th
International Conference on Parallel Architectures
and Compilation Techniques. (St Louis, MO, 2005).
IEEE, 63–74.

22.	 Minh, C. C., Trautmann, M., Chung, J., McDonald, A.,
Bronson, N., Casper, J., Kozyrakis, C., and Olukotun, K.
An effective hybrid transactional memory system with
strong isolation guarantees. In Proceedings of the 34th
International Symposium on Computer Architecture
(San Diego, CA, 2007) ACM, NY, 69–80.

23.	 Moore, K.E., Bobba, J., Moravan, M.J., Hill, M.D., and
Wood, D.A. LogTM: Log-based transactional memory.
In Proceedings of the 12th International Symposium
on High-Performance Computer Architecture (Austin,
TX, 2006). IEEE, 254–265.

24.	 Moravan, M.J., Bobba, J., Moore, K.E., Yen, L., Hill,
M.D., Liblit, B., Swift, M.M., and Wood, D.A. Supporting
Nested Transactional Memory in LogTM. Proceedings
of the 12th International Conference on Architectural
Support for Programming Languages and Operating
Systems (San Jose, CA, 2006). ACM, NY, 359–370.

25.	 Rajwar, R., Herlihy, M., and Lai, K. Virtualizing
transactional memory. In Proceedings of the 32nd
International Symposium on Computer Architecture
(Madison, WI, 2005). ACM. NY, 494–505.

26.	 Saha, B., Adl-Tabatabai, A. R., and Jacobson, Q.
Architectural support for software transactional
memory. In Proceedings of the 39th International
Symposium on Microarchitecture (Orlando, FL, 2006).
IEEE, 185–196.

27.	 Saha, B., Adl-Tabatabai, A.R., Hudson, R.L., Minh, C.C.,
and Hertzberg, B. McRT-STM: A high performance
software transactional memory system for a
multi-core runtime. In Proceedings of the 11th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (2006). ACM, NY, 187–197.

28.	 Scherer III, W.N., and Scott, M.L. Advanced
contention management for dynamic software
transactional memory. In Proceedings of the Twenty-
fourth Annual ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing (Las Vegas, NV,
2005). ACM Press, 240–248.

29.	 Shavit, N. and Touitou, D. Software transactional
memory. In Proceedings of the 14th ACM Symposium
on Principles of Distributed Computing (Ottawa,
Canada, 1995). ACM, NY, 204–213.

30.	 Shpeisman, T., Menon, V., Adl-Tabatabai, A.-R.,
Balensiefer, S., Grossman, D., Hudson, R.L., Moore,
K.F., and Saha, B. Enforcing isolation and ordering
in STM. In Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and
Implementation (San Diego, CA, 2007). ACM, NY,
78–88.

31.	 Shriraman, A., Spear, M.F., Hossain, H., Marathe,
V.J., Dwarkadas, S., and Scott, M.L. An integrated
hardware-software approach to flexible transactional
memory. In Proceedings of the 34th International
Symposium on Computer Architecture (San Diego, CA,
2007). ACM, NY, 104–115.

32.	 Zilles, C. and Baugh, L. Extending hardware
transactional memory to support nonbusy waiting and
nontransactional actions. In Proceedings of the First
ACM SIGPLAN Workshop on Languages, Compilers,
and Hardware Support for Transactional Computing
(Ottawa, Canada, 2006). ACM, NY.

James Larus (larus@microsoft.com) is a research area
manager at Microsoft Research, Redmond, WA.

Christos Kozyrakis (christosee.stanford.edu) is an
assistant professor of electrical engineering and computer
science at Stanford University, Stanford, CA.

©2008 ACM0001-0782/08/0700 $5.00

CACM_V51.7.indb 88 6/18/08 12:54:40 PM

mailto:larus@microsoft.com
http://christosee.stanford.edu

research highlights

JULY 2008 | vol. 51 | no. 7 | communications of the acm 89

p. 99

The Emergence of
a Networking Primitive in
Wireless Sensor Networks
By Philip Levis, Eric Brewer, David Culler, David Gay, Sam Madden,
Neil Patel, Joe Polastre, Scott Shenker, Robert Szewczyk, and Alec Woo

p. 98

Technical
Perspective
The Physical Side
of Computing
By Feng Zhao

p. 91

Anton, a Special-Purpose
Machine for Molecular
Dynamics Simulation
By David E. Shaw, Martin M. Deneroff, Ron O. Dror, Jeffrey S. Kuskin,
Richard H. Larson, John K. Salmon, Cliff Young, Brannon Batson,
Kevin J. Bowers, Jack C. Chao, Michael P. Eastwood, Joseph Gagliardo,
J.P. Grossman, C. Richard Ho, Douglas J. Ierardi, István Kolossváry,
John L. Klepeis, Timothy Layman, Christine McLeavey, Mark A. Moraes,
Rolf Mueller, Edward C. Priest, Yibing Shan, Jochen Spengler,
Michael Theobald, Brian Towles, and Stanley C. Wang

p. 90

Technical
Perspective
Computer Science
Takes On
Molecular Dynamics
By Bob Colwell

CACM_V51.7.indb 89 6/18/08 12:54:40 PM

90 communications of the acm | JULY 2008 | vol. 51 | no. 7

research highlights

doi: 10.1145/1364782.1364801

Technical Perspective
Computer Science Takes on
Molecular Dynamics
By Bob Colwell

Put this on your to-do list: read the fol-
lowing paper by researcher David Shaw
and colleagues that describes their An-
ton molecular dynamics (MD) engine.
Shaw’s Anton engine applies leading-
edge computer science concepts to the
biologically crucial problem of mod-
eling molecular interactions. In an
era when much of our most advanced
computer technology is spent creating
ever more horrible creatures that we
can shoot ever bigger virtual holes in,
the idea of productively using this tech-
nology to explore nature at its most
up-close-and-personal is both exciting
and reassuring.

The nature of the computational
problem Anton aims to solve, and the
unique aspects of the resulting design,
are fascinating peeks into a corner of
the computer design space we seldom
get to visit—even though each of us
is a biological machine that relies on
the correct functioning of molecular
mechanisms. When diseases cause
these mechanisms to go awry, medical
researchers try to infer the causes and
possible remedies from very indirect
and error-prone evidence, as they lack
direct means of measuring or simu-
lating the molecular underpinnings.
David Shaw calls his new instrument
a “computational microscope,” and if
successful it stands to make the same
kind of game-changing impact that
Anton van Leeuwenhoek’s original
optical microscope once did. (Shaw’s
machine was named in van Leeuwen-
hoek’s honor.)

To appreciate what Shaw’s machine
is attempting, consider a system con-
taining a realistic protein molecule
together with a few layers of water
molecules, which might together en-
compass tens of thousands of atoms.
If calculation of the force between any
two atoms takes 10 computer opera-
tions, then the total ops required per
time step would be (104 atoms) × (104
atoms) × 10 ops/atom = 109 ops. Time
slices are on the order of femtoseconds

(10-15 seconds), and simulations must
run for milliseconds (10-3 seconds) to
capture the biology being modeled. So
we’ll need to run those 109 ops for 1012
slices to reach a simulated millisec-
ond—that’s 31,000 years. We need six
orders of magnitude speedup, roughly
three orders of magnitude beyond to-
day’s fastest supercomputers.

But even if you weren’t a biological
unit with a vested interest in this effort,
you could still appreciate the Anton de-
sign from a computer system perspec-
tive. General-purpose computer sys-
tems aspire to run everything well, but
no one thing spectacularly well. Anton
is designed to run a specific molecular
dynamics workload spectacularly well.
While a well-designed general system
can bottleneck 100 different ways on
100 different benchmarks, Anton must
try, in essence, to bottleneck every-
where, all at once, on its one workload.

This balancing act must be attempt-
ed in the face of imperfect knowledge
of that one workload. For example,
electrostatic interactions between two
atoms that aren’t sharing any electrons
are considered to be well understood,
and are the most numerous, so Anton
applies very specific, very parallel, and
very inflexible hardware to handling
them. Less is known about the infre-
quent bonded interactions, so those
calculations are allocated to a much
more flexible subsystem that will allow
experimentation with various “force
field” models and algorithms.

What might go wrong with the An-
ton effort? Subtle errors arising from
the class of force fields that Anton is
designed to handle efficiently may ac-
cumulate over the extremely long MD
runtimes; in a custom machine with
no operational experience, soft errors
could strike much more often and
substantially slow its performance;
quantum effects may turn out to be
necessary, beyond the classical force
field being modeled here; some clever
graduate student may come up with a

software-based approach that reduces
Anton’s two-orders-of-magnitude per-
formance advantage to only one (which
might no longer be enough to justify
its hardware expenditure). Or Anton
might become a victim of its own suc-
cess if early learnings point to much
better (and much different) MD algo-
rithms that no longer fit well into An-
ton’s overall structure.

But what if things go right? Benoit
Roux, an MD researcher now at the
University of Chicago, said that as soon
as Anton has delivered its first verified
scientific result he will want an engine
of his own, and so will everyone in the
entire MD field. Roux points out that
molecular biologists must normally
have “elaborate strategies to prevent
fooling themselves” in their macro-
scale experiments. With Anton, “we’ll
be able to do insane things with un-
known problems and two weeks later
we’ll discover how the molecules actu-
ally move. … Anton will revolutionize
molecular biology.”

It is not often that a science reaches
a clear tipping point—when it advanc-
es very quickly, virtually exploding into
a new shape and venue. Our own field
of computing has done that several
times. Many physicists expect this of
the Large Hadron Collider currently be-
ing completed in Europe. Shaw and his
coworkers are attempting nothing less
in the field of molecular dynamics. As
a computing professional, I am proud
of their efforts, I salute their attempt
to drive an extremely important basic
science forward, and I heartily recom-
mend their paper.	

Bob Colwell (bob.colwell@comcast.net), former chief
architect of Intel’s IA-32 microprocessors, is now an
independent consultant.

CACM_V51.7.indb 90 6/18/08 12:54:40 PM

mailto:bob.colwell@comcast.net

july 2008 | vol. 51 | no. 7 | communications of the acm 91

doi: 10.1145/1364782.1364802

Anton, a Special-Purpose Machine
for Molecular Dynamics Simulation
By David E. Shaw, Martin M. Deneroff, Ron O. Dror, Jeffrey S. Kuskin, Richard H. Larson, John K. Salmon, Cliff Young,
Brannon Batson, Kevin J. Bowers, Jack C. Chao, Michael P. Eastwood, Joseph Gagliardo, J.P. Grossman, C. Richard Ho,
Douglas J. Ierardi, István Kolossváry, John L. Klepeis, Timothy Layman, Christine McLeavey, Mark A. Moraes, Rolf Mueller,
Edward C. Priest, Yibing Shan, Jochen Spengler, Michael Theobald, Brian Towles, and Stanley C. Wang

Abstract
The ability to perform long, accurate molecular dynamics (MD)
simulations involving proteins and other biological macro-
molecules could in principle provide answers to some of
the most important currently outstanding questions in the
fields of biology, chemistry, and medicine. A wide range of
biologically interesting phenomena, however, occur over
timescales on the order of a millisecond—several orders of
magnitude beyond the duration of the longest current MD
simulations.

We describe a massively parallel machine called Anton,
which should be capable of executing millisecond-scale
classical MD simulations of such biomolecular systems.
The machine, which is scheduled for completion by the end
of 2008, is based on 512 identical MD-specific ASICs that in-
teract in a tightly coupled manner using a specialized high-
speed communication network. Anton has been designed to
use both novel parallel algorithms and special-purpose logic
to dramatically accelerate those calculations that dominate
the time required for a typical MD simulation. The remain-
der of the simulation algorithm is executed by a program-
mable portion of each chip that achieves a substantial de-
gree of parallelism while preserving the flexibility necessary
to accommodate anticipated advances in physical models
and simulation methods.

1. Introduction
Molecular dynamics (MD) simulations can be used to model
the motions of molecular systems, including proteins, cell
membranes, and DNA, at an atomic level of detail. A suffi-
ciently long and accurate MD simulation could allow scien-
tists and drug designers to visualize for the first time many
critically important biochemical phenomena that cannot
currently be observed in laboratory experiments, including
the “folding” of proteins into their native three-dimension-
al structures, the structural changes that underlie protein
function, and the interactions between two proteins or be-
tween a protein and a candidate drug molecule. Such sim-
ulations could answer some of the most important open
questions in the fields of biology and chemistry, and have
the potential to make substantial contributions to the pro-
cess of drug development.

Many of the most important biological processes occur
over timescales on the order of a millisecond. MD simula-
tions on this timescale, however, lie several orders of magni-
tude beyond the reach of current technology; only a few MD

runs have thus far reached even a microsecond of simulated
time, and the vast majority have been limited to the nano-
second timescale. Millisecond-scale simulations of a biomo-
lecular system containing tens of thousands of atoms will in
practice require that the forces exerted by all atoms on all
other atoms be calculated in just a few microseconds—a
process that must be repeated on the order of 1012 times.
These requirements far exceed the current capabilities
of even the most powerful commodity clusters or general-
purpose scientific supercomputers.

This paper describes a specialized, massively parallel ma-
chine, named Anton, that is designed to accelerate MD sim-
ulations by several orders of magnitude, bringing millisec-
ond-scale simulations within reach for molecular systems
involving tens of thousands of atoms. The machine, which is
scheduled for completion by the end of 2008, will comprise
512 processing nodes in its initial configuration, each con-
taining a specialized MD computation engine implemented
as a single ASIC. The molecular system to be simulated is de-
composed spatially among these processing nodes, which
are connected through a specialized high-performance net-
work to form a three-dimensional torus. Anton’s expected
performance advantage stems from a combination of MD-
specific hardware that achieves a very high level of arithmetic
density and novel parallel algorithms that enhance scalabil-
ity by reducing both intra- and inter-chip communication.
Figure 1 is a photograph of one of the first Anton ASICs.

In designing Anton and its associated software, we have
attempted to attack a somewhat different problem than the
ones addressed by several other projects that have deployed
significant computational resources for MD simulations.
The Folding@Home project,16 for example, has obtained a
number of significant and interesting scientific results by
using as many as 250,000 PCs (made available over the Inter-
net by volunteers) to simulate a very large number of separate
molecular trajectories, each of which is limited to the
timescale accessible on a single PC. While a great deal
can be learned from a large number of independent MD
trajectories, many other important problems require
the examination of a single, very long trajectory—the
principal task for which Anton is designed. Other proj-
ects, such as FASTRUN,6 MDGRAPE,22 and MD Engine,23
have produced special-purpose hardware to accelerate
the most computationally expensive elements of an
MD simulation. Such hardware reduces the cost of MD
simulations, particularly for large molecular systems,
but Amdahl’s law and communication bottlenecks pre-
vent the efficient use of enough such chips in parallel

CACM_V51.7.indb 91 6/18/08 12:54:40 PM

92 communications of the acm | july 2008 | vol. 51 | no. 7

research highlights

to extend individual simulations beyond microsecond
timescales.

Anton is named after Anton van Leeuwenhoek, whose
contributions to science and medicine we hope to emulate
in our own work. In the 17th century, van Leeuwenhoek,
often referred to as the “father of microscopy,” built high-
precision optical instruments that allowed him to visualize
for the first time an entirely new biological world that had
previously been unknown to the scientists of his day. We
view Anton (the machine) as a sort of “computational micro-
scope.” To the extent that we and other researchers are able
to increase the length of MD simulations, we would hope to
provide contemporary biological and biomedical research-
ers with a tool for understanding organisms and their dis-
eases on a still smaller length scale.

2. MD COMPUTATION ON ANTON
An MD computation simulates the motion of a collection
of atoms (the chemical system) over a period of time accord-
ing to the laws of classical physics.1 Time is broken into a
series of discrete time steps, each representing a few fem-
toseconds of simulated time. A time step has two major
phases. Force calculation computes the force on each par-
ticle due to other particles in the system. Integration uses
the net force on each particle to update that particle’s posi-
tion and velocity.

2.1. Force calculation
Interatomic forces are calculated based on a molecular

mechanics force field (or simply force field), which models
the forces on each atom as a function of the spatial co-
ordinates of all atoms. In commonly used biomolecular
force fields,9, 11, 15 the forces consist of three components:
bond forces, involving groups of atoms separated by no
more than three covalent bonds; van der Waals forces,
computed between pairs of atoms separated by less than
some cutoff radius (usually chosen between 5 and 15 Å);
and electrostatic forces, which are the most computation-

ally intensive as they must be computed between all pairs
of atoms.

Anton uses the k-space Gaussian split Ewald method
(k‑GSE)18 to reduce the computational workload associated
with the electrostatic interactions. This method divides
the electrostatic force calculation into two components.
The first decays rapidly with particle separation and is
computed directly for all particle pairs separated by less
than a cutoff radius. We refer to this contribution, together
with the van der Waals interactions, as range-limited inter-
actions. The second component, long-range interactions,
decays more slowly, but can be computed efficiently by
mapping charge from particles to a regular mesh (charge
spreading), taking the fast Fourier transform (FFT) of the
mesh charges, multiplying by an appropriate function in
Fourier space, performing an inverse FFT, and then com-
puting forces on the particles from the resulting mesh
values (force interpolation).

To parallelize range-limited interactions, our machine
uses an algorithm we developed called the NT method.19 The
NT method achieves both asymptotic and practical reduc-
tions in required interprocessor communication bandwidth
relative to traditional parallelization methods. It is one of a
number of neutral territory methods that employ a spatial
assignment of particles to nodes, but that often compute
the interaction between two particles using a node on which
neither particle resides.4, 7, 10, 14, 17, 21

2.2. Integration
The integration phase uses the results of force calculation
to update atomic positions and velocities, numerically in-
tegrating a set of ordinary differential equations describing
the motion of the atoms. The numerical integrators used in
MD are nontrivial for several reasons. First, the integration
algorithm and the manner in which numerical issues are
handled can have a significant effect on accuracy. Second,
some simulations require the integrator to calculate and
adjust global properties such as temperature and pressure.
Finally, one can significantly accelerate most simulations by
incorporating constraints that eliminate the fastest vibra-
tional motions. For example, constraints are typically used
to fix the lengths of bonds to all hydrogen atoms and to hold
water molecules rigid.

3. WHY SPECIALIZED HARDWARE?
A natural question is whether a specialized machine for
molecular simulation can gain a significant performance
advantage over general-purpose hardware. After all, his-
tory is littered with the corpses of specialized machines,
spanning a huge gamut from Lisp machines to database
accelerators. Performance and transistor count gains pre-
dicted by Moore’s law, together with the economies of scale
behind the development of commodity processors, have
driven a history of general-purpose microprocessors outpac-
ing special-purpose solutions. Any plan to build specialized
hardware must account for the expected exponential growth
in the capabilities of general-purpose hardware.

We concluded that special-purpose hardware is warrant-
ed in this case because it leads to a much greater improve-

Figure 1: Anton ASIC. One of the first Anton ASICs, which arrived in
January 2008.

CACM_V51.7.indb 92 6/18/08 12:54:41 PM

july 2008 | vol. 51 | no. 7 | communications of the acm 93

ment in absolute performance than the expected speedup
predicted by Moore’s law over our development time pe-
riod, and because we are currently at the cusp of simulat-
ing timescales of great biological significance. We expect
Anton to run simulations over 1000 times faster than was
possible when we began this project. Assuming that tran-
sistor densities continue to double every 18 months and
that these increases translate into proportionally faster
processors and communication links, one would expect
approximately a tenfold improvement in commodity solu-
tions over the five-year development time of our machine
(from conceptualization to bring-up). We therefore expect
that a specialized solution will be able to access biological-
ly critical millisecond timescales significantly sooner than
commodity hardware.

To simulate a millisecond within a couple of months,
we must complete a time step every few microseconds, or
every few thousand clock ticks. The sequential dependence
of successive time steps in an MD simulation makes spec-
ulation across time steps extremely difficult. Fortunately,
specialization offers unique opportunities to accelerate an
individual time step using a combination of architectural
features that reduce both computational latency and com-
munication latency.

For example, we reduced computational latency
by designing:

l	 Dedicated, specialized hardware datapaths and control
logic to evaluate the range-limited interactions and to
perform charge spreading and force interpolation. In
addition to packing much more computational logic
on a chip than is typical of general-purpose architec-
tures, these pipelines use customized precision for
each operation.

l	 Specialized, yet programmable, processors to compute
bond forces and the FFT and to perform integration.
The instruction set architecture (ISA) of these proces-
sors is tailored to the calculations they perform. Their
programmability provides flexibility to accommodate
various force fields and integration algorithms.

l	 Dedicated support in the memory subsystem to accu-
mulate forces for each particle.

We reduced communication latency by designing:

l	 A low-latency, high-bandwidth network, both within an
ASIC and between ASICs, that includes specialized
routing support for common MD communication pat-
terns such as multicast and compressed transfers of
sparse data structures.

l	 Support for choreographed “push”-based communica-
tion. Producers send results to consumers without the
consumers having to request the data beforehand.

l	 A set of autonomous direct memory access (DMA)
engines that offload communication tasks from the
computational units, allowing greater overlap of com-
munication and computation.

l	 Admission control features that prioritize packets car-
rying certain algorithm-specific data types.

We balance our design very differently from a general-
purpose supercomputer architecture. Relative to other
high-performance computing applications, MD uses much
communication and computation but surprisingly little
memory. The entire architectural state of an MD simulation
of 25,000 particles, for example, is just 1.6 MB, or 3.2 KB per
node in a 512-node system. We exploit this property by us-
ing only SRAMs and small L1 caches on our ASIC, with all
code and data fitting on-chip in normal operation. Rather
than spending silicon area on large caches and aggressive
memory hierarchies, we instead dedicate it to communica-
tion and computation.

It is serendipitous that the most computationally inten-
sive parts of MD—in particular, the electrostatic interac-
tions—are also the most well established and unlikely to
change as force field models evolve, making them particu-
larly amenable to hardware acceleration. Dramatically ac-
celerating MD simulation, however, requires that we accel-
erate more than just an “inner loop.”

Calculation of electrostatic and van der Waals forces ac-
counts for roughly 90% of the computational time for a
representative MD simulation on a single general-purpose
processor. Amdahl’s law states that no matter how much we
accelerate this calculation, the remaining computations,
left unaccelerated, would limit our maximum speedup to
a factor of 10. Hence, we dedicated a significant fraction
of silicon area to accelerating other tasks, such as bond
force computation, constraint computation, and velocity
and position updates, incorporating programmability as
appropriate to accommodate a variety of force fields and
integration methods.

4. SYSTEM ARCHITECTURE
The building block of the system is a node, depicted in
Figure 2. Each node comprises an MD-specific ASIC, at-
tached DRAM, and six ports to the system-wide interconnec-
tion network. Each ASIC has four major subsystems, which
are described briefly in this section. The nodes, which are
logically identical, are connected in a three-dimensional
torus topology (which maps naturally to the periodic
boundary conditions frequently used in MD simulations).
The initial version of Anton will be a 512-node torus with
eight nodes in each dimension, but our architecture also
supports larger and smaller toroidal configurations. The
ASICs are clocked at a modest 400 MHz, with the exception
of one double-clocked component in the high-throughput
interaction subsystem (HTIS), discussed in the following
section.

4.1. High-throughput interaction subsystem
The HTIS calculates range-limited interactions and

performs charge spreading and force interpolation. The
HTIS, whose internal structure is shown in Figure 3, applies
massive parallelism to these operations, which constitute
the bulk of the calculation in MD. It provides tremendous
arithmetic throughput using an array of 32 pairwise point in-
teraction modules (PPIMs) (Figure 3), each of which includes
a force calculation pipeline that runs at 800 MHz and is ca-
pable of computing the combined electrostatic and van der

CACM_V51.7.indb 93 6/18/08 12:54:42 PM

94 communications of the acm | july 2008 | vol. 51 | no. 7

research highlights

Waals interactions between a pair of atoms at every cycle. This
26-stage pipeline (Figure 4) includes adders, multipliers, func-
tion evaluation units, and other specialized datapath elements.
Inside this pipeline, we use customized numerical precisions:
functional unit width varies across the different pipeline stages
but still produces a sufficiently accurate 32–bit result.

In order to keep the pipelines busy with useful compu-
tation, the remainder of the HTIS must determine pairs of
atoms that need to interact, feed them to the pipelines,
and aggregate the pipelines’ outputs. This proves a for-
midable challenge given communication bandwidth limi-
tations between ASICs, between the HTIS and other sub-
systems on the same ASIC, and between pipelines within
the HTIS. We address this problem using an architecture
tailored for direct product selection reduction operations
(DPSRs), which take two sets of points and perform com-
putation proportional to the product of the set sizes but
only require input and output volume proportional to the
sum of their sizes. The HTIS considers interactions be-
tween all atoms in a region called the tower and all atoms
in a region called the plate. Each atom in the tower is as-
signed to one PPIM, while each atom in the plate streams
by all the PPIMs. Eight match units in each PPIM perform
several tests, including a low-precision distance check,
to determine which pairs of plate and tower particles are
fed to the force calculation pipeline. Because the HTIS is
a streaming architecture, with no feedback in its compu-
tational path, it is simple to scale the PPIM array to any
number of PPIMs. The HTIS also includes an interaction
control block processor, which controls the flow of data
through the HTIS. More detail about the HTIS and about
DPSR operations can be found in the proceedings of this
years’s HPCA conference.13

The PPIMs are the most hard-wired component of our
architecture, reflecting the fact that they handle the most
computationally intensive parts of the MD calculation.
That said, even the PPIMs include programmability where
we anticipate potential future changes to force fields. For
instance, the functional forms for van der Waals and
electrostatic interactions are specified using SRAM look-
up tables, whose contents are determined at runtime.

Torus
link

To
ru

s
lin

k
To

ru
s

lin
k

To
ru

s
lin

k

−Y +Y +X

Torus
link

Router

R
ou

te
r

R
ou

te
r

Flexible
subsystem

High-
throughput
interaction
subsystem

(HTIS)

Router

R
ou

te
r

M
em

or
y

co
nt

ro
ll

er

D
R

A
M

Router

Memory controller

DRAM
Intra-chip
ring network

Torus
link

Host
computer

Host
interface

+Z

−Z

−X

Figure 2: Anton processing node. The HTIS performs the most
demanding calculations in an MD simulation. The flexible subsystem
performs the remaining MD calculations, coordinates MD time step
activity, and manages housekeeping tasks.

Processing
node

From intra-chip
ring network

Particle
memory

Particle
pre-

processing

32 PPIM
array

P
ar

ti
cl

e
di

st
ri

bu
ti

on
 lo

gi
c

Fo
rc

e
re

du
ct

io
n

lo
gi

c

Interaction
control
block

processor

To intra-chip
ring network

Figure 3: High-throughput interaction subsystem. The HTIS
comprises an array of 32 PPIMs and an embedded control processor
to coordinate the distribution of particles to the PPIM array.

Tower particles

Plate particles

Plate particle
position and

parameter FIFO

Tower particle
position and

parameter RAM

Particle distance
calculations

Electrostatic function
evaluator

Multiplier

Force(x,y, z) Potentials

Tower and plate force reduction

Energy

Tower forces

Plate forces

r2

qp qt

Plate and tower particle match units

Pair queue and select

Combining rule
calculations

van der Waals
function evaluator

Adder

1/s2 e

Figure 4: PPIM detail. This figure gives a sense of the numerical
calculation units in a PPIM. The top portion of the figure shows the
match units and particle memories. The lower portion shows the
general structure of the force calculation pipelines.

CACM_V51.7.indb 94 6/18/08 12:54:43 PM

july 2008 | vol. 51 | no. 7 | communications of the acm 95

4.2. Flexible subsystem
The flexible subsystem controls the ASIC and handles all oth-
er computations, including the bond force calculations, the
FFT, and integration. Figure 5 shows the components of the
flexible subsystem. Four identical processing slices form the
core of the flexible subsystem. Each slice comprises a gen-
eral-purpose core with its caches, a remote access unit (RAU)
that performs autonomous data transfers, and two geometry
cores (GCs), which are programmable cores that perform
most of the flexible subsystem’s computation. The RAU is a
programmable data transfer engine that enables the flexible
subsystem to participate in “push” communication, both of-
floading messages sent from the processor cores and track-
ing incoming messages to determine when work is ready to
be done. Each GC is a dual-issue, statically scheduled, 4-way
SIMD processor with pipelined multiply accumulate sup-
port and instruction set extensions to support common MD
calculations. Other components of the flexible subsystem
include a correction pipeline, which computes force cor-
rection terms; a racetrack, which serves as a local, internal
interconnect for the flexible subsystem components; and a
ring interface unit, which allows the flexible subsystem com-
ponents to transfer packets to and from the communication
subsystem. More detail about the flexible subsystem is given
in a second paper at this year’s HPCA conference.12

4.3. Communication subsystem
The communication subsystem provides high-speed, low-
latency communication both between ASICs and among

the subsystems within an ASIC. Between chips, each torus
link provides 5.3 GB/s full-duplex communication with
a hop latency around 50 ns. Within a chip, two 256-bit,
400 MHz communication rings link all subsystems and the
six inter-chip torus ports. The communication subsystem
supports efficient multicast, provides flow control, and
provides class-based admission control with rate meter-
ing. The communication subsystem also allows access to
an external host computer system for input and output of
simulation data.

4.4. Memory subsystem
The memory subsystem provides access to the ASIC’s at-
tached DRAM. In addition to basic memory read//write ac-
cess, the memory subsystem supports accumulation and
synchronization. Special memory write operations numer-
ically add incoming write data to the contents of the mem-
ory location specified in the operation. These operations
implement force, energy, potential, and spread charge ac-
cumulations, reducing the computation and communica-
tion load on the flexible subsystem. By taking advantage of
the attached DRAM, Anton will be able to simulate chemi-
cal systems with billions of atoms.

5. PERFORMANCE AND ACCURACY MEASUREMENTS
In this section, we show that the performance of Anton
significantly exceeds that of other MD platforms, and that
Anton is capable of performing simulations of high nu-
merical accuracy. Because we do not yet have a working
512-node segment, performance estimates for our ma-
chine come from our performance simulator. The cycle fi-
delity of this simulator varies across components, but we
expect overall fidelity better than ±20%.

5.1. Performance comparison
We compare the performance of various MD platforms in
terms of simulation rate (nanoseconds of simulated time
per day of execution) on a particular chemical system. In
this section and in Section 5.2, we use a system with 23,558
atoms in a cubic box measuring 62.2 Å on a side. This sys-
tem represents dihydrofolate reductase (DHFR), a protein
targeted by various cancer drugs, surrounded by water.

The highest-performing MD codes achieve a simulation
rate of a few nanoseconds per day for DHFR on a single
state-of-the-art commodity processor core.8 Existing mul-
tiprocessor machines with high-performance intercon-
nects achieve simulation rates up to a few hundred nano-
seconds per day using many hundreds or thousands of
processor cores.2, 3, 5

We expect a 512-node Anton system to achieve a simula-
tion rate of approximately 14,500 nanoseconds per day for
DHFR, enabling a millisecond simulation in just over two
months. While the performance of general-purpose ma-
chines will undoubtedly continue to improve, Anton’s per-
formance advantage over other MD platforms significantly
exceeds the speedup predicted by Moore’s law over the
next few years. A more detailed performance comparison
of Anton and other MD platforms is given in the proceed-
ings of last year’s ISCA conference.20

Processing
node

Intra-chip ring network

Ring interface unit

GP
core 0

RAU 0

P
ro

ce
ss

in
g

sl
ic

e

Racetrack station Racetrack station

Racetrack

Racetrack station

Racetrack station

Racetrack station

GC
0

GC
1

GP
core 1

RAU 1

GC
2

GC
3

GP
core 2

RAU 2

GC
4

GC
5

Correction
pipeline

GP
core 3

RAU 3

GC
6

GC
7

Figure 5: Flexible subsystem. It is a collection of four identical
processing slices (one of which is indicated by a box at the left) and
a correction pipeline unit. The processing slices communicate with
each other and with the correction pipeline via the racetrack. The
various components communicate with the intra-chip communica-
tion ring via the ring interface unit shown at the top of the figure.

CACM_V51.7.indb 95 6/18/08 12:54:43 PM

96 communications of the acm | july 2008 | vol. 51 | no. 7

research highlights

5.2. Accuracy
To quantify the accuracy of force computation on Anton, we
measured the relative rms force error, defined as the rms er-
ror in the force on all particles divided by the rms force.18 For
the DHFR system with typical simulation parameters, Anton
achieves a relative rms force error of 1.5 × 10−4. A relative rms
force error below 10−3 is generally considered sufficiently ac-
curate for biomolecular MD simulations.25

We also measured energy drift to quantify the overall ac-
curacy of our simulations. An exact MD simulation would
conserve energy exactly. Errors in the simulation generally
lead to an increase in the overall energy of the simulated
system with time, a phenomenon known as energy drift. We
measured energy drift over 5 ns of simulated time (2 million
time steps) for DHFR using a bit-accurate numerical emu-
lator that exactly duplicates Anton’s arithmetic. While the
simulation exhibited short-term energy fluctuations of a few
kcal/mol (about 0.001% of the total system energy), there
was no detectable long-term trend in total energy. MD stud-
ies are generally considered more than adequate even with a
significantly higher energy drift.24

5.3. Scaling with chemical system size
Figure 6 shows the scaling of performance with chemical
system size. Within the range where chemical systems fit in
on-chip memory, we expect performance to scale roughly
linearly with the number of atoms, albeit with occasional
jumps as different operating parameters change to opti-
mize performance while maintaining accuracy. The largest
discontinuity in simulation rate occurs at a system volume

of approximately 500,000 Å3 when we change from a 32 × 32
× 32 FFT grid to a 64 × 64 × 64 FFT grid, reflecting the fact
that our code supports only power-of-two-length FFTs. This
lengthens the long-range calculation because the number
of grid points increases by a factor of 8. Overall, the results
are consistent with supercomputer scaleup studies—as we
increase chemical system size, Anton’s efficiency improves
because of better overlap of communication and computa-
tion, and because calculation pipelines operate closer to
peak efficiency.

6. CONCLUSION
We are currently in the process of building a specialized,
massively parallel machine, called Anton, for the high-speed
execution of MD simulations. We expect Anton to be capa-
ble of simulating the dynamic, atomic-level behavior of pro-
teins and other biological macromolecules in an explicitly
represented solvent environment for periods on the order
of a millisecond—about three orders of magnitude beyond
the reach of current MD simulations. The machine uses spe-
cialized ASICs, each of which performs a very large number
of application-specific calculations during each clock cycle.
Novel architectural and algorithmic techniques are used to
minimize intra- and inter-chip communication, providing
an unusually high degree of scalability.

While it contains programmable elements that could in
principle support the parallel execution of algorithms for a
wide range of other applications, Anton was not designed to
function as a general-purpose scientific supercomputer, and
would not in practice be well suited for such a role. Rather,
we envision Anton serving as a computational microscope,
allowing researchers to observe for the first time a wide range
of biologically important structures and processes that have
thus far proven inaccessible to both computational model-
ing and laboratory experiments.�

Figure 6: Scaling of performance for a 512-node version of Anton
with increasing chemical system size. The graph shows a stacked
bar chart for each chemical system, with the height of each stack
proportional to the simulation time, assuming that long-range forces
are evaluated every other time step. Each stack represents the time
required to execute two consecutive time steps; one is a “long-range
time step” that includes calculation of long-range electrostatics by
k-GSE, and the other is a “range-limited time step” that does not. The
chemical systems represent proteins and nucleic acids of various
sizes, surrounded by water.

References

	 1.	 Adcock, S.A. and McCammon, J.A.
Molecular dynamics: Survey of
methods for simulating the activity
of proteins. Chemical Review,
106:1589––1615, 2006.

	 2.	 Bhatele, A., Kumar, S., Mei, C., Phillips,
J.C., Zheng, G., and Kale, L.V. Overcoming
scaling challenges in biomolecular
simulations across multiple platforms,
to appear in Proceedings of the IEEE
International Parallel and Distributed
Processing Symposium (IPDPS 2008),
Miami, FL, 2008.

	 3.	 Bowers, K.J., Chow, E., Xu, H., Dror,
R.O., Eastwood, M.P., Gregersen, B.A.,
Klepeis, J.L., Kolossvary, I., Moraes,
M.A., Sacerdoti, F.D., Salmon, J.K.,
Shan, Y., and Shaw, D.E. Scalable
algorithms for molecular dynamics
simulations on commodity clusters.
Proceedings of the ACM//IEEE
Conference on Supercomputing
(SC06), Tampa, FL, 2006.

	 4.	 Bowers, K.J., Dror, R.O., and Shaw,
D.E. Zonal methods for the parallel
execution of range-limited N-body
problems. Journal of Computational
Physics, 221(1):303––329, 2007.

	 5.	 Fitch, B.G., Rayshubskiy, A.,
Eleftheriou, M., Ward, T.J.C.,
Giampapa, M.E., Pitman, M.C., Pitera,
J.W., Swope, W.C., and Germain,
R.S. Blue matter: scaling of N-body

simulations to one atom per node.
IBM Journal of Research and
Development, 52(1/2), 2008.

	 6.	 Fine, R.D., Dimmler, G., and Levinthal,
C. FASTRUN: A special purpose,
hardwired computer for molecular
simulation. Proteins: Structure,
Function, and Genetics, 11(4):242––
253, 1991 (erratum: 14(3):421––422,
1992).

	 7.	 Germain, R.S., Fitch, B., Rayshubskiy,
A., Eleftheriou, M., Pitman, M.C.,
Suits, F., Giampapa, M., and Ward,
T.J.C. Blue matter on blue gene/L:
Massively parallel computation
for biomolecular simulation.
Proceedings of the Third IEEE/ACM/
IFIP International Conference on
Hardware/Software Codesign and
System Synthesis (CODES + ISSS
‘05), New York, NY, 2005.

	 8.	 Hess, B., Kutzner, C., van der Spoel,
D., and Lindahl, E. GROMACS 4:
Algorithms for highly efficient,
load-balanced, and scalable
molecular simulation. Journal of
Chemical Theory and Computation,
4(2):435––447, 2008.

	 9.	 Jorgensen, W.L., Maxwell, D.S., and
Tirado-Rives, J. Development and
testing of the OPLS all-atom force
field on conformational energetics
and properties of organic liquids.

CACM_V51.7.indb 96 6/18/08 12:54:44 PM

Journal of the American Chemical
Society, 118(45):11225––11236, 1996.

	10.	 Kalé, L., Skeel, R., Bhandarkar, M.,
Brunner, R., Gursoy, A., Krawetz,
N., Phillips, J., Shinozaki, A.,
Varadarajan, K., and Schulten,
K., NAMD2: Greater scalability
for parallel molecular dynamics.
Journal of Computational Physics,
151(1):283––312, 1999.

	11.	 Kollman, P.A., Dixon, R.W., Cornell,
W.D., Fox, T., Chipot, C., and
Pohorille, A. The development/
application of a “Minimalist” organic/
biomolecular mechanic forcefield
using a combination of ab initio
calculations and experimental
data, in Computer Simulation of
Biomolecular Systems: Theoretical
and Experimental Applications, van
Gunsteren, W.F. and Weiner, P.K. eds.,
Dordrecht, Netherlands:ESCOM, pp.
83––96, 1997.

	12.	 Kuskin, J.S., Young, C., Grossman,
J.P., Batson, B., Deneroff, M.M., Dror,
R.O., and Shaw, D.E. Incorporating
flexibility in Anton, a specialized
machine for molecular dynamics
simulation. Proceedings of the 14th
International Symposium on High-
Performance Computer Architecture
(HPCA-14), Salt Lake City, UT, 2008.

	13.	 Larson, R.H., Salmon, J.K., Dror, R.O.,
Deneroff, M.M., Young. C., Grossman,
J.P., Shan, Y., Klepeis, J.L., and Shaw,
D.E. High-throughput pairwise point
interactions in Anton, a specialized
machine for molecular dynamics
simulation. Proceedings of the
14th International Symposium
on High-Performance Computer
Architecture (HPCA-14), Salt
Lake City, UT, 2008.

	14.	 Liem, S.Y., Brown, D., and Clarke,
J.H.R. Molecular dynamics simulations
on distributed memory machines.
Computer Physics Communications,
67(2):261––267, 1991.

	15.	 MacKerell, A.D. Jr., Bashford, D.,
Bellott, M., Dunbrack, R.L., Evanseck,
J.D., Field, M.J., Fischer, S., Gao, J.,
Guo, H., Ha, S., Joseph-McCarthy, D.,
Kuchnir, L., Kuczera, K., Lau, F.T.K.,
Mattos, C., Michnick, S., Ngo, T.,
Nguyen, D.T., Prodhom, B., Reiher,
III, W.E. , Roux, B., Schlenkrich,
M., Smith, J.C., Stote, R., Straub, J.,
Watanabe, M., Wiórkiewicz-Kuczera,
J., Yin, D., and Karplus, M.J. All-atom
empirical potential for molecular
modeling and dynamics studies of
proteins. Journal of Physical Chemistry
B, 102(18):3586––3616, 1998.

	16.	 Pande, V.S., Baker, I., Chapman, J.,
Elmer, S.P., Khaliq, S., Larson, S.M.,
Rhee, Y.M., Shirts, M.R., Snow, C.D.,
Sorin, E.J., and Zagrovic, B. Atomistic
protein folding simulations on the
submillisecond time scale using
worldwide distributed computing.

Biopolymers, 68(1):91––109, 2003.
	17.	 Plimpton, S.J., Attaway, S.,

Hendrickson, B., Swegle, J., Vaughan,
C.,and Gardner, D. Transient dynamics
simulations: Parallel algorithms for
contact detection and smoothed
particle hydrodynamics. Proceedings
of the ACM//IEEE Conference on
Supercomputing (Supercomputing
‘96), Pittsburgh, PA, 1996.

	18.	 Shan, Y., Klepeis, J.L., Eastwood, M.P.,
Dror, R.O., and Shaw, D.E. Gaussian
split Ewald: A fast Ewald mesh
method for molecular simulation.
Journal of Chemical Physics,
122:054101, 2005.

	19.	 Shaw, D.E. A fast, scalable
method for the parallel evaluation
of distance-limited pairwise
particle interactions. Journal
of Computational Chemistry,
26(13):1318––1328, 2005.

	20.	 Shaw, D.E., Deneroff, M.M., Dror, R.O.,
Kuskin, J.S., Larson, R.H., Salmon,
J.K., Young, C., Batson, B., Bowers,
K.J., Chao, J.C., Eastwood, M.P.,
Gagliardo, J., Grossman, J.P., Ho,
C.R., Ierardi, D.J., Kolossváry, I.,
Klepeis, J.L., Layman, T., McLeavey,
C., Moraes, M.A., Mueller, R.,
Priest, E.C., Shan, Y., Spengler, J.,
Theobald, M., Towles, B., and Wang,
S.C., Anton, a special purpose
machine for molecular dynamics
simulation. Proceedings of the 34th
Annual International Symposium
on Computer Architecture (ISCA
‘07), San Diego, CA, 2007.

	21.	 Snir, M. A Note on N-body computations
with cutoffs. Theory of Computing
Systems, 37:295––318, 2004.

	22.	 Taiji, M., Narumi, T., Ohno, Y.,
Futatsugi, N., Suenaga, A., Takada, N.,
and Konagaya, A., Protein explorer:
A petaflops special-purpose
computer system for molecular
dynamics simulations. Proceedings
of the ACM/IEEE Conference on
Supercomputing (SC03), Phoenix,
AZ, 2003.

	23.	 Toyoda, S., Miyagawa, H., Kitamura,
K., Amisaki, T., Hashimoto,
E., Ikeda, H., Kusumi, A., and
Miyakawa, N. Development of MD
engine: High-speed accelerator
with parallel processor design for
molecular dynamics simulations.
Journal Computational Chemistry,
20(2): 185––199, 1999.

	24.	 Wang, W. and Skeel, R.D. Fast
evaluation of polarizableforces.
Journal of Chemical Physics,
123(16):164107, 2005.

	25.	 Zhou, R., Harder, E., Xu, H., and
Berne, B.J. Efficient multiple time
step method for use with Ewald
and particle mesh Ewald for large
biomolecular systems. Journal of
Chemical Physics, 115(5):
2348––2358, 2001.

David E. Shaw (David. Shaw@DEShaw
Research.com) Center for Computational
Biology and Bioinformatics, Columbia
University, New York, NY 10032

© 2008 ACM 0001-0782/08/0700 $5.00

july 2008 | vol. 51 | no. 7 | communications of the acm 97

ACM TRANSACTIONS ON

INTERNET TECHNOLOGY

ISSN: 1533-5399

Order Code: (140)

PRODUCT INFORMATION

TO PLACE AN ORDER

Contact ACM Member Services

Phone: 1.800.342.6626
(U.S. and Canada)

+1.212.626.0500
(Global)

Fax: +1.212.944.1318
(Hours: 8:30am—4:30pm, Eastern Time)

Transactions on InternetTechnology (TOIT). This quar-
terly publication encompasses many disciplines in comput-
ing—including computer software engineering, middleware,
database management, security, knowledge discovery and
data mining, networking and distributed systems, communi-
cations, and performance and scalability—all under one
roof. TOIT brings a sharper focus on the results and roles of
the individual disciplines and the relationship among them.
Extensive multi-disciplinary coverage is placed on the new
application technologies, social issues, and public policies
shaping Internet development. Subscribe Today!

www.acm.org/pubs/periodicals/toit

AD28

Price: $41 ProfessionalMember
$36 Student Member
$170 Non-Member
$16 Air Service (for residents
outside North America only)

Email: acmhelp@acm.org
Mail: ACM Member Services

General Post Office
P.O. Box 30777
New York, NY
10087-0777 USA

CACM_V51.7.indb 97 6/18/08 12:54:46 PM

mailto:acmhelp@acm.org
http://www.acm.org/pubs/periodicals/toit
mailto:David. Shaw@DEShawResearch.com
mailto:David. Shaw@DEShawResearch.com

98 communications of the acm | JULY 2008 | vol. 51 | no. 7

research highlights

doi: 10.1145/1364782.1364803

W ireless sensor networks (or sen-
sornets) represent a new computing
platform that blends computation,
sensing, and communication with a
physical environment such as a bird
habitat, bridges, or power grid. This
new class of networked embedded
computers requires new programming
models, abstractions, and manage-
ment tools. They change the way we
think about computation and chal-
lenge the design of the next-generation
Internet that not only connects people
together but also connects people with
the physical environment.

This computing platform is charac-
terized by the embedding in the physi-
cal world and (often) unattended op-
eration for years, severe constraints in
resources especially energy, unreliable
hardware and communication links,
and the need to respond to time-critical
events. The implications are twofold. A
sensornet must gather and act on sen-
sor data in a timely manner. The value
of information and window of oppor-
tunity for action may dwindle as time
elapses. Consequently, sensornets
should support reliable and timely data
collection and dissemination despite
significant link and data variability and
hardware flakiness. Second, because of
limited battery capacity, a sensor node
limits the amount of onboard memory
and uses low-power microprocessor
and low data rate radio with power-
saving dials. The data collection and
dissemination must be handled in an
energy-efficient manner.

A fundamental computer science
question arising from sensornets is the
role of energy and how we think about
it in relation to performance and qual-
ity metrics such as latency and data
yield. Much of CS has been built on the
analysis of the time and space complex-
ity of algorithms that has informed the
design of processor, memory, and I/O
in computing systems. Only recently
have we confronted the energy prob-
lem head on, in designing high-perfor-

mance servers as well as low-power sen-
sornets (supercomputing addressed
the cooling problem before). Multi/
many-core is one answer in the upper
tier of the computing ecosystem. The
tiny computers in sensornets expose
another rich area where energy trades
with performances in a decentralized,
fine-grained way. For example, commu-
nication in data dissemination may be
delayed, to reduce collision and hence
energy due to excessive retransmis-
sion, at the expense of a larger latency.
Sensor data may be locally compressed
at the node, to reduce the data volume
sent over the wireless network, trading
the communication energy with that of
processing. This points to the need for
establishing a theory of “energy com-
plexity” in computing that provides
models for energy and its trade-offs
with other system metrics.

The decade of sensornet research
has produced a rich collection of al-
gorithms, protocols, system architec-
tures, tools, and several generations
of hardware platforms. The energy
constraints, for example, led many to
design extremely efficient systems that
break the traditional networking and
systems layers in order to squeeze the
last Joule out of the operation. Natu-
rally, one asks, what are the reusable
building blocks and common abstrac-
tions that emerge from these works?
Some of the techniques address the
deeper problems of energy complex-
ity, system scalability, and robustness.
Others may just be artifacts of the cur-
rent hardware limitations.

Levis et al. answers the question
with Trickle, a building block for algo-
rithms that move data around quickly
in a sensornet while conserving its lim-
ited energy. Realizing that the one-to-
many and many-to-one data dissemi-
nation and collection in a network rely
on a common primitive to detect when
the state of a node becomes inconsis-
tent in a network of shared variables
and to propagate the information when

inconsistency arises, they propose an
epidemic-style algorithm that does so
on an as-needed basis. It was originally
designed for distributing code in a sen-
sornet, as in re-tasking or code patch-
ing. To detect whether a node has the
latest version, each node declares to
others which version it currently has.
An inconsistency triggers the propa-
gation on demand, suppressing the
transmissions of others, thus more en-
ergy efficient than flooding.

The key idea behind Trickle is to
maintain a constant number of mes-
sage transmissions per area, and use
a feedback mechanism to regulate
that as node density changes. A node
only decides to transmit if it has not
heard from a sufficient number of its
neighbors. This way, the more nodes
in an area, the less likely each node
will decide to transmit as the likeli-
hood of others already having adver-
tised increases. Trickle provides the
dials to trade energy expenditure of the
network with the speed of the propaga-
tion. This self-regulation mechanism
is similar to how nature regulates the
population of a species, where growth
is self-limiting because of the finite
sustainable food supply.

A useful primitive finds itself in many
applications. Trickle is promising; since
the publication of the original paper, the
idea of Trickle has found itself in data
dissemination as well as data collection
algorithms, including TinyOS 2.0 CTP, a
data collection protocol.

Gordon Bell posits every decade or
so a new computing platform emerges
due to advantages in form factor, inter-
face, and functionality/price. The wire-
less sensor network is such a new com-
puting platform. I expect emerging
primitives and abstractions like Trick-
le, being developed by the research
community, to help us conceptualize
and modularize the design of this new
platform and to become part of a stan-
dard TTL-like catalog for building scal-
able, reliable, and energy-efficient sen-
sornet systems.	

Feng Zhao (zhao@microsoft.com) is a principal
researcher at Microsoft Research, Redmond, WA.

Technical Perspective
The Physical Side
of Computing
By Feng Zhao

CACM_V51.7.indb 98 6/18/08 12:54:47 PM

mailto:zhao@microsoft.com

july 2008 | vol. 51 | no. 7 | communications of the acm 99

doi: 10.1145/1364782.1364804

Abstract
The wireless sensor network community approached net-
working abstractions as an open question, allowing answers
to emerge with time and experience. The Trickle algorithm
has become a basic mechanism used in numerous proto-
cols and systems. Trickle brings nodes to eventual consis-
tency quickly and efficiently while remaining remarkably
robust to variations in network density, topology, and dy-
namics. Instead of flooding a network with packets, Trickle
uses a “polite gossip” policy to control send rates so each
node hears just enough packets to stay consistent. This
simple mechanism enables Trickle to scale to 1000-fold
changes in network density, reach consistency in seconds,
and require only a few bytes of state yet impose a mainte-
nance cost of a few sends an hour. Originally designed for
disseminating new code, experience has shown Trickle to
have much broader applicability, including route mainte-
nance and neighbor discovery. This paper provides an over-
view of the research challenges wireless sensor networks
face, describes the Trickle algorithm, and outlines several
ways it is used today.

1. WIRELESS SENSOR NETWORKS
Although embedded sensing applications are extremely
diverse, ranging from habitat and structural monitoring to
vehicle tracking and shooter localization, the software and
hardware architectures used by these systems are surpris-
ingly similar. The typical architecture is embodied by the
mote platforms, such as those shown in Figure 1. A micro-
controller provides processing, program ROM, and data
RAM, as well as analog-to-digital converters for sensor in-
puts, digital interfaces for connecting to other devices, and
control outputs. Additional flash storage holds program
images and data logs. A low-power CMOS radio provides
a simple link layer. Support circuitry allows the system to
enter a low-power sleep state, wake quickly, and respond to
important events.

Four fundamental constraints shape wireless embedded
system and network design: power supply, limited memory,
the need for unattended operation, and the lossy and tran-
sient behavior of wireless communication. A typical power
envelope for operating on batteries or harvesting requires a
600 µW average power draw, with 1%% of the time spent in
a 60 mW active state and the remainder spent in a very low
power 6 µW passive state.

Maintaining a small memory footprint is a major require-
ment of algorithm design. Memory in low-cost, ultra-low-
power devices does not track Moore’s Law. One indication
of this is that microcontroller RAM costs three orders of
magnitude more than PC SRAM and five orders more than
PC DRAM. More importantly, SRAM leakage current, which
grows with capacity, dictates overall standby power con-
sumption and, hence, lifetime. Designs that provide large
RAMs in conjunction with 32-bit processors go to great
lengths to manage power. One concrete example of such
nodes is the Sun SPOT,20 which enters a low-power sleep
state by writing RAM contents to flash. Restoring memory
from flash on wakeup uses substantial power and takes con-
siderable time. The alternative, taken in most sensor node
designs, is to have just a few kilobytes of RAM. This, in turn,
imposes limits on the storage complexity of network (and
other) protocols, requiring routing tables, buffering, and
caches be kept small. The historical trends of monetary and
energy costs suggest these constraints are likely to last.

Wireless sensors are typically embedded in the physi-
cal environment associated with their application. Com-

The Emergence of a
Networking Primitive in
Wireless Sensor Networks
By Philip Levis, Eric Brewer, David Culler, David Gay, Sam Madden, Neil Patel,
Joe Polastre, Scott Shenker, Robert Szewczyk, and Alec Woo

Figure 1: EPIC, KMote, and Telos motes. Each has an 8MHz
microcontroller, 10kB of RAM, 48kB of program flash, and a
250kbps radio.

CACM_V51.7.indb 99 6/18/08 12:54:47 PM

100 communications of the acm | July 2008 | vol. 51 | no. 7

research highlights

munication connectivity varies due to environmental and
electromagnetic factors, with the additional constraint
that no human being will shepherd the device to a bet-
ter setting, as with a cell phone or a laptop. The degree
of the network at a node, i.e., the number of nodes in its
communication neighborhood, is determined not by the
desired network organization but by the physical device
placement, which is often dictated by application require-
ments and physical constraints. There may be thousands
of nodes in close proximity, or just a few. A single trans-
mission may be received by many devices, so any retrans-
mission, response, or even a simple acknowledgment,
may cause huge contention, interference, and loss. Re-
dundancy is essential for reliability, but it also can be a
primary cause of loss.

This last point is one of the key observations that have
emerged from a decade of development of networking ab-
stractions for wireless sensor networks: the variety of net-
work topologies and densities across which sensor network
protocols must operate calls for a polite, density-aware, local
retransmission scheme. This paper describes the Trickle al-
gorithm, which uses such a communication pattern to pro-
vide an eventual consistency mechanism to protocols and
services. In the past ten years, a key insight that has emerged
from the wireless sensor network community is that many
protocol problems can be reduced to maintaining even-
tual consistency. Correspondingly, Trickle has emerged as
the core networking primitive at the heart of practical, effi-
cient, and robust implementations of many sensor network
protocols and systems. Before diving into the details of the
Trickle, however, we review how core sensor networking pro-
tocols work and differ from conventional networking proto-
cols, with the goal of exploring how a Trickle-like primitive
satisfies some of their needs.

2. NETWORKING PROTOCOLS
Networking issues are at the core of embedded sensor net-
work design because radio communication—listening,
receiving, and transmitting—dominates the active energy
budget and defines system lifetime. The standard energy
cost metric for multihop protocols, in either link layer
meshing or network layer routing, is communication cost,
defined as the number of individual radio transmissions
and receptions. One protocol is more efficient than another
if it can provide equivalent performance (e.g., throughput,
latency, delivery ratio) at a lower communication cost. Pro-
tocols focus on minimizing transmissions and making sure
transmitted packets arrive successfully.

Almost all sensor network systems rely on two multihop
protocols for their basic operation: a collection protocol
for pulling data out of a network and a dissemination
protocol for pushing data into a network through one or
more distinguished nodes or egress routers. Many higher
level protocols build on dissemination and collection. For
example, reprogramming services such as Deluge9 use
dissemination to deliver commands to change program
images. Management layers22 and remote source-level de-
buggers25 also use dissemination. Reliable transport pro-
tocols, such as RCRT,18 and rate control protocols such as

IFRC,19 operate on collection trees. Point-to-point routing
schemes, such as S4,16 establish overlays over multiple
parallel collection topologies.

While collection and dissemination have the opposite
communication patterns (all-to-one vs. one-to-all) and differ
in reliability (unreliable vs. reliable), both maintain eventu-
ally consistent shared state between nodes. The rest of this
section provides a high-level overview of these two protocol
classes. It provides details on the challenging problems they
introduce, and how some of them can be solved through
eventual consistency.

2.1. Pushing data in: dissemination
One problem sensor network administrators face is dynami-
cally changing how a network collects data by changing the
sampled sensors, the sampling rate, or even the code run-
ning on the nodes by disseminating the change to every
node in a network. We begin with a discussion of dissemi-
nation protocols because they were the original impetus for
Trickle and are its simplest application.

Early systems used packet floods to disseminate changes.
Flooding protocols rebroadcast packets they receive. Flood-
ing is very simple—often just a line or two of code—but has
many problems. First, floods are unreliable. Inevitably, some
nodes do not receive the packet, so users typically repeatedly
flood until every node receives it. Second, in high density
networks, many nodes end up rebroadcasting packets at the
same time. These messages collide and cause a form of net-
work collapse called a “broadcast storm.”17

Second-generation dissemination and network program-
ming systems like Xnp3 and TinyDB15 use an adaptive flood
combined with a protocol to request missing messages.
Adaptive flooding uses an estimate of the node density to
limit the flooding rate. The missing message protocol al-
lows nodes to request the (hopefully few) missing messages
from their neighbors. Unfortunately, getting such protocols
to work well can be tricky, especially across a range of net-
work densities and object sizes.

Another way to look at dissemination protocols is that
they ensure that every node has an eventually consistent
version of some shared state, such as the value of a configu-
ration parameter or command. Data consistency is when
all nodes have the same version of that state, and nodes re-
solve inconsistencies by updating neighbors to the newer
version. Inductively, these definitions cause the network to
converge on the most recent version. To disseminate a com-
mand, a system installs it on one node as a newer version
and initiates the consistency protocol.

Casting dissemination as a data consistency problem
means it does not provide full reliability. Eventual con-
sistency only promises to deliver the most recent ver-
sion to connected nodes. Disconnected nodes can and
often do miss updates. In practice, however, this limita-
tion is rarely problematic. An administrator who chang-
es the data reporting rate three times then adds some
new nodes and expects them to receive the most recent
reporting rate, not all three. Similarly, when sending
commands, users do not expect a new node to receive
the entire history of all commands injected into a net-

CACM_V51.7.indb 100 6/18/08 12:54:47 PM

july 2008 | vol. 51 | no. 7 | communications of the acm 101

work. A node that is disconnected for several minutes
will still receive the most recent command when it re-
connects, however.

Dissemination protocols succeed where flooding and its
derivatives fail because they cast the problem of delivering
data into maintaining data consistency among neighbors.
This allows them to provide a very useful form of reliabil-
ity in arbitrary topologies with no a priori topology knowl-
edge or configurati on. An effective dissemination proto-
col, however, needs to bring nodes up to date quickly while
sending few packets when every node has the most recent
version: this is correspondingly a requirement for the un-
derlying consistency mechanism.

2.2. Pulling data out: collection
As the typical sensor network goal is to report observations
on a remote environment, it is not surprising that data col-
lection is the earliest and most studied class of protocol.
There are many collection protocol variations, similar to
how there are many versions of TCP. These differences
aside, all commonly used collection protocols provide
unreliable datagram delivery to a collection point using
a minimum-cost routing tree. Following the general goal
of layer 3 protocols, cost is typically measured in terms of
expected transmissions, or ETX:2 nodes send packets on
the route that requires the fewest transmissions to reach
a collection point.

The earliest collection protocol, directed diffusion, pro-
posed dynamically setting up collection trees based on data-
specific node requests.10 Early experiences with low-power
wireless, however, led many deployments to move towards a
much simpler and less general approach, where each node
decides on a single next hop for all forwarded data traffic,
thereby creating routing trees to fixed collection points. The
network builds this tree by establishing a routing cost gra-
dient. A collection point has a cost of 0. A node calculates
the cost of each of its candidate next hops as the cost of that
node plus the cost of the link to it. Inductively, a node’s cost
is the sum of the costs of the links in its route. Figure 2 illus-
trates an example topology.

Collection variations boil down to how they quantify and
calculate link costs, the number of links they maintain, how
they propagate changes in link state amongst nodes, and
how frequently they re-evaluate link costs and switch par-
ents. Early protocols used hop-counts8 as a link cost met-
ric, similar to MANET protocols such as AODV and DSDV;
second-generation protocols such as MintRoute24 and Srcr2
estimated the transmissions per delivery on a link using pe-
riodic broadcasts; third-generation protocols, such as Mul-
tiHopLQI, added physical layer signal quality to the metric;
current generation collection protocols, such as Collection
Tree Protocol (CTP), unify these approaches, drawing on in-
formation from multiple layers.6

Most collection layers operate as anycast protocols. A net-
work can have multiple data collection points, and collec-
tion automatically routes to the closest one. As there is only
one destination—any collection point—the required rout-
ing state can be independent of network density and size.
Most protocols use a small, fixed-size table of candidate next

hops. They also attempt to strike a balance between route
stability and churn to discover new, possibly better parents
by switching parents infrequently and using damping mech-
anisms to limit the rate of change.

As collection protocols have improved and become bet-
ter at choosing routes, reducing control traffic has become
an increasingly important component of efficiency. While
nodes can piggyback some control information on data
packets, they need to send link-layer broadcasts to their lo-
cal neighbors to advertise their presence and routing cost.
Choosing how often to send these advertisements introduc-
es a difficult design tension. A slow rate imposes a low over-
head, but limits how quickly the tree can adapt to failures or
link changes, making its data traffic less efficient. A fast rate
imposes a higher overhead, but leads to an agile tree that
can more accurately find the best route to use.

This tension is especially challenging when a network
only collects data in response to events, and so can go
through periods of high and low data rates. Having a high
control rate during periods of low traffic is highly inef-
ficient, while having a low control rate during periods of
high traffic makes the tree unable to react quickly enough
to changes. When starting a burst of transmissions, a node
may find that link costs have changed substantially neces-
sitating a change in its route and, as a result, advertised
routing cost. Changes in costs need to propagate quickly, or
the topology can easily form routing loops. For example, if a
link’s cost increases significantly, then a node may choose
one of its children as its next hop. Since the protocol state
must be independent of the topology, a node cannot avoid
this by simply enumerating its children (constraining tree
in-degree to a constant leads to inefficient, circuitous to-
pologies in dense networks).

Current protocols, such as CTP21 and ArchRock’s routing
layer,1 resolve this tension by reducing the routing gradient
as a data consistency problem. The gradient is consistent as
long as children have a higher cost than their parent. An in-
consistency can arise when costs change enough to violate

Figure 2: Sample collection tree, showing per-link and node costs.
The cost of a node is its next hop’s cost plus the cost of the link.

0

12

22

22

2423

35
36

15

10

18

20

23

12

10

12

12

14

10

15

18

10
10

CACM_V51.7.indb 101 6/18/08 12:54:48 PM

102 communications of the acm | July 2008 | vol. 51 | no. 7

research highlights

this constraint. As long as routing costs are stable, nodes
can assume the gradient is consistent and avoid exchanging
unnecessary packets.

2.3. A general mechanism
The examples above described how two very different proto-
cols can both address a design tension by reducing a prob-
lem to maintaining data consistency. Both examples place
the same requirements on a data consistency mechanism:
it needs to resolve inconsistencies quickly, send few pack-
ets when data is consistent, and require very little state. The
Trickle algorithm, discussed in the next section, meets these
three requirements.

3. Trickle
The Trickle algorithm establishes a density-aware local
broadcast with an underlying consistency model that guides
when a node communicates. When a node’s data does not
agree with its neighbors, it communicates quickly to re-
solve the inconsistency. When nodes agree, they slow their
communication rate exponentially, such that in a stable
state nodes send at most a few packets per hour. Instead of
flooding a network with packets, the algorithm controls the
send rate so each node hears a small trickle of packets, just
enough to stay consistent. Furthermore, by relying only on
local broadcasts, Trickle handles network repopulation, is
robust to network transience, loss, and disconnection, and
requires very little state (implementations use 4–11 bytes).

While Trickle was originally designed for reprogramming
protocols (where the data is the code of the program being
updated), experience has shown it to be a powerful mecha-
nism that can be applied to wide range of protocol design
problems. For example, routing protocols can use Trickle to
ensure that nodes in a given neighborhood have consistent,
loop-free routes. When the topology is consistent, nodes
occasionally gossip to check that they still agree, and when
the topology changes they gossip more frequently, until they
reach consistency again.

For the purpose of clearly explaining the reasons be-
hind Trickle’s design, all of the experimental results in
this section are from simulation, in some cases very high-
level abstract simulators. In practice, Trickle’s simplicity
means it works remarkably well in the far more challeng-
ing and difficult real world. The original Trickle paper,13 as
well as Deluge9 and DIP14 report experimental results from
real networks.

3.1. Algorithm
Trickle’s basic mechanism is a randomized, suppressive
broadcast. A Trickle has a time interval of length t and a
redundancy constant k. At the beginning of an interval, a
node sets a timer t in the range of t-2, t. When this timer fires,
the node decides whether to broadcast a packet contain-
ing metadata for detecting inconsistencies. This decision
is based on what packets the node heard in the interval be-
fore t. A Trickle maintains a counter c, which it initializes to
0 at the beginning of each interval. Every time a node hears
a Trickle broadcast that is consistent with its own state, it
increments c. When it reaches time t, the Trickle broadcasts

if c < k. Randomizing t spreads transmission load over a sin-
gle-hop neighborhood, as nodes take turns being the first
node to decide whether to transmit. Figure 3 summarizes
Trickle’s parameters.

3.2. Scalability
Transmitting only if c < k makes a Trickle density aware, as
it limits the transmission rate over a region of the network
to a factor of k. In practice, the transmission load a node ob-
serves over an interval is O(k . log(d) ), where d is the network
density. The base of the logarithm depends on the packet
loss rate PLR: it is P

1—L–R.
This logarithmic behavior represents the probability that

a single node misses a number of transmissions. For exam-
ple, with a 10% loss rate, there is a 10% chance that a node will
miss a single packet. If a node misses a packet, it will trans-
mit, resulting in two transmissions. There is correspondingly
a 1% chance a node will miss two packets from other nodes,
leading to three transmissions. In the extreme case of a 100%
loss rate, each node is by itself: transmissions scale linearly.

Figure 4 shows this scaling. The number of transmissions
scales logarithmically with density and the slope line (base
of the logarithm) depends on the loss rate. These results
come from a Trickle-specific algorithmic simulator we im-
plemented to explore the algorithm’s behavior under con-
trolled conditions. Consisting of little more than an event
queue, this simulator allows configuration of all of Trickle’s
parameters, run duration, and the boot time of nodes. It
models a uniform packet loss rate (same for all links) across
a single hop network. Its output is a packet send count.

Figure 3: Trickle parameters and variables.

t	 Communication interval length

T	 Timer value in range t-2
, t

C	 Communication counter

K	 Redundancy constant

t
l	 Smallest t

th	 Largest t

Figure 4: Trickle’s transmissions per interval scales logarithmically
with density. The base of the logarithm is a function of the packet
loss rate (the percentages)

1 2 4 8 16 32 64 128 256

Nodes

0

2

4

6

8

10

12

T
ra

n
sm

is
si

on
s/

in
te

rv
al

0%

20%

40%

60%

CACM_V51.7.indb 102 6/18/08 12:54:48 PM

july 2008 | vol. 51 | no. 7 | communications of the acm 103

3.3. Synchronization
The scaling shown in Figure 4 assumes that all nodes are
synchronized, such that the intervals during which they are
awake and listening to their radios line up perfectly. Inevita-
bly, this kind of time synchronization imposes a communi-
cation, and therefore energy, overhead. While some networks
can provide time synchronization to Trickle, others cannot.
Therefore, Trickle is designed to work in both the presence and
absence of synchronization.

Trickle chooses t in the range of (t-2, t] rather than (0, t] be-
cause the latter causes the transmission load in unsynchro-
nized networks to scale with O(d). This undesirable scaling
occurs due to the short listen problem, where some subset of
motes gossip soon after the beginning of their interval. They
listen for only a short time, before anyone else has a chance to
speak up. This is not a problem if all of the intervals are syn-
chronized, since the first gossip will quiet everyone else. How-
ever, if nodes are not synchronized, a node may start its interval
just after another node’s broadcast, resulting in missed mes-
sages and increased transmission load.

Unlike loss, where the extra O(log(d) ) transmissions keep
the worst case node that missed several packets up to date, the
additional transmissions due to the short listen problem are
completely wasteful. Choosing t in the range of (t-2, t] removes
this problem: it defines a “listen-only” period of the first half of
an interval. A listening period improves scalability by enforcing
a simple constraint. If sending a message guarantees a silent
period of some time T that is independent of density, then the
send rate is bounded above (independent of the density). When
a mote transmits, it suppresses all other nodes for at least the
length of the listening period. Figure 5 shows how a listen peri-
od of t-2. bounds the total sends in a lossless single-hop network
to be 2k. With loss, transmissions scale as O(2k . log(d) ) per in-
terval, returning scalability to the O(log(d) ) goal.

3.4. Controlling t
A large t (gossiping interval) leads to a low communication
overhead, but propagates information slowly. Conversely,

a small t imposes a higher communication overhead, but
propagates data more quickly. These two goals, rapid propa-
gation and low overhead, are fundamentally at odds: the for-
mer requires communication to be frequent, while the latter
requires it to be infrequent.

By dynamically scaling t, Trickle can quickly make data
consistent with a very small cost. t has a lower bound, tl, and
an upper bound th. When t expires without a node receiv-
ing a new update, t doubles, up to a maximum of th. When
a node detects a data inconsistency (e.g., a newer version
number in dissemination, a gradient constraint violation in
collection), it resets t to be tl.

Essentially, when there is nothing new to say, motes gos-
sip infrequently: t is set to th. However, as soon as a mote
hears something new, it gossips more frequently, so those
who have not heard the new data receive it quickly. The chat-
ter then dies down, as t grows from tl to th.

By adjusting t in this way, Trickle can get the best of both
worlds: rapid consistency and low overhead when the net-
work is consistent. The cost per inconsistency (shrinking t)
is approximately log(-t2

h

l
-) additional sends. For a tl of 1 s and

a th of 1 h, this is a cost of 11 packets to obtain a 3000-fold
decrease in the time it takes to detect an inconsistency (or,
from the other perspective, a 3000-fold decrease in mainte-
nance overhead). The simple Trickle policy, “every once in a
while, transmit unless you have heard a few other transmis-
sions,” can be used both to inexpensively maintain that the
network is consistent as well as quickly inform nodes when
there is an inconsistency.

Figure 6 shows pseudocode for the complete Trickle algorithm.

3.5. Case study: Maté
Maté is a lightweight bytecode interpreter for wireless sen-
sornets.11 Programs are tiny sequences of optimized byte-
codes. The Maté runtime uses Trickle to install new pro-
grams in a network, by making all nodes consistent to the
most recent version of a script.

Maté uses Trickle to periodically broadcast version sum-
maries. In all experiments, code routines fit in a single pack-
et (30 bytes). The runtime registers routines with a Trickle
propagation service, which then maintains all of the neces-
sary timers and broadcasts, notifying the runtime when it
installs new code. Maté uses a very simple consistency reso-
lution mechanism. It broadcasts the missing routines three
times: 1, 3, and 7 s after hearing there is an inconsistency.

Figure 7 shows simulation results of Maté’s behavior during
a reprogramming event. These results come from the TOSSIM
simulator,12 which simulates entire sensornet applications and

Figure 5: Without a listen-only period, Trickle’s transmissions scale
with a square root of the density when intervals are not synchro-
nized. With a listen-only period of duration t-2, the transmissions
per interval asymptotically approach 2k. The black line shows how
Trickle scales when intervals are synchronized. These results are
from lossless networks.

1 2 4 8 16 32 64 128 256

Nodes

0

2

4

6

8

10

12

14

T
ra

n
sm

is
si

on
s/

in
te

rv
al

No listening

Listening

Figure 6: Trickle pseudocode.

Event	A ction

t Expires	 Double t, up to th. Reset c, pick a new t*

t Expires	 If c < k, transmit

Receive consistent data	 Increment c

Receive inconsistent data	S et t to t
l. Reset c, pick a new t

*t is picked from the range [t-
2
, t]

CACM_V51.7.indb 103 6/18/08 12:54:48 PM

104 communications of the acm | July 2008 | vol. 51 | no. 7

research highlights

models wireless connectivity at the bit level. In these experi-
ments, tl is 1 s and th is 1 min.

Each simulation had 400 nodes regularly placed in a
square grid with node spacings of 5, 10, 15, and 20 ft. By
varying network density, we were able to examine how
Trickle’s propagation rate scales over different loss rates
and physical densities. Density ranged from a 5 ft spac-
ing between nodes up to 20 ft (the networks were 95 × 95
to 380 × 380). Crossing the network in these topologies
takes from six to forty hops.a Time to complete propagation
varied from 16 s in the densest network to about 70 s for the
sparsest, representing a latency of 2.7 and 1.8 s per hop, re-
spectively. The minimum per-hop Trickle latency is 2—

ti and
the consistency mechanism broadcasts a routine 1 s after
discovering an inconsistency, so the best case latency is 1.5
s per hop. Despite an almost complete lack of coordination
between nodes, Trickle still is able to cause them to coop-
erate efficiently.

Figure 8 shows how adjusting th changes the propaga-
tion time for the 5 and 20 ft spacings. Increasing th from
1 to 5 min does not significantly affect the propagation
time; indeed, in the sparse case, it propagates faster un-
til roughly the 95th percentile. This result indicates that
there may be little trade-off between the maintenance
overhead of Trickle and its effectiveness in the face of a
propagation event.

A very large th can increase the time to discover incon-
sistencies to be approximately -t2

h -. However, this is only true
when two stable subnets (t = th) with different code recon-
nect. If new code is introduced, it immediately triggers
nodes to reset t to tl, bringing them quickly to a consistent
state.

The Maté implementation of Trickle requires few system
resources. It requires approximately 70 bytes of RAM; half of
this is a message buffer for transmissions, a quarter is point-
ers to code routines. Trickle itself requires only 11 bytes for
its counters; the remaining RAM is for internal coordination
(e.g., pending and initialization flags). The executable code
is 1.8 K (90 lines of code). Other implementations have simi-
lar costs. The algorithm requires few CPU cycles, and can
operate at a very low duty cycle.

3.6. Uses and improvements
Trickle is not just used by Maté; it and its derivatives are
used in almost every dissemination protocol today. The Del-
uge binary dissemination protocol for installing new sensor
node firmware uses Trickle to detect when nodes have dif-
ferent firmware versions9 (tl = 500 ms, th = 1.1 h). The MNP
binary dissemination protocol (tl = 16 s, th = 512 s) adjusts
Trickle so that nodes with more neighbors are more likely
to send updates by preventing low degree nodes from sup-
pressing high degree ones.23 The Drip command layer of the
Sensornet Management System uses Trickle (tl = 100 ms, th
= 32 s) to install commands.22 The Tenet programming ar-

chitecture uses Trickle (tl = 100 ms, th = 32 s) to install small
dynamic code tasks.7

In the past few years, as collection protocols have im-
proved in efficiency, they have also begun to use Trickle. The
CTP, the standard collection layer in the TinyOS operating
system distribution,21 uses Trickle timers (tl = 64 ms, th = 1 h)
for its routing traffic. The 6LoWPAN IPv6 routing layer in
Arch Rock’s software uses Trickle to keep IPv6 routing tables
and ICMP neighbor lists consistent.1 As protocols continue
to improve, Trickle’s efficacy and simplicity will cause it to
be used in more protocols and systems.

One limitation with Trickle as described in this paper
is that its maintenance cost grows O(n) with the number
of data items, as nodes must exchange version numbers.
This growth may be a hindering factor as Trickle’s use in-
creases. Recent work on the DIP protocol addresses this

Figure 7: Time to consistency in 20 × 20 TOSSIM grids (seconds).
The hop count values in each legend are the expected number of
transmissions necessary to get from corner to corner, considering
loss.

(a) 5’ Spacing, 6 hops

16−20
12−16
8−12
4−8
0−4

32−40
24−32
16−24
8−16
0−8

60−75
45−60
30−45
15−30
0−15

20−25
15−20
10−15
5−10
0−5

 (b) 10’ Spacing, 16 hops

(c) 15’ Spacing, 32 hops (d) 20’ Spacing, 40 hops

a These hop count values come from computing the minimum cost
path across the network loss topology, where each link has a weight of

1
1–loss , i.e. the expected number of transmissions to successfully traverse that
link.

Figure 8: Rate nodes reach consistency for different ths in TOSSIM. A
larger th does not slow reaching consistency.

0 10 20 30 40 50 60 70

Time (s)

0%

20%

40%

60%

80%

100%

N
od

es
 c

on
si

st
en

t

5�, 60 s

5�, 300 s

20�, 60 s

20�, 300 s

CACM_V51.7.indb 104 6/18/08 12:54:51 PM

july 2008 | vol. 51 | no. 7 | communications of the acm 105

concern by using a combination of hash trees and ran-
domized searches, enabling the maintenance cost to re-
main O(1) while imposing a O(log(n) ) discovery cost.14

4. Discussion
Wireless sensor networks, like other ad hoc networks, do not
know the interconnection topology a priori and are typically
not static. Nodes must discover it by attempting to commu-
nicate and then observing where communication succeeds.
In addition, the communication medium is expected to be
lossy. Redundancy in such networks is both friend and foe,
but Trickle reinforces the positive aspects and suppresses
the negative ones.

Trickle draws on two major areas of prior research. The
first area is controlled, density-aware flooding algorithms for
wireless and multicast networks.5, 17 The second is epidemic
and gossiping algorithms for maintaining data consistency
in distributed systems.4 Although both techniques—broad-
casts and epidemics—have assumptions that make them
inappropriate in their pure form to eventual consistency in
sensor networks, they are powerful techniques that Trickle
draws from. Trickle’s suppression mechanism is inspired by
the request/repair algorithm used in Scalable and Reliable
Multicast (SRM).5 Trickle adapts to local network density as
controlled floods do, but continually maintains consistency
in a manner similar to epidemic algorithms. Trickle also
takes advantage of the broadcast nature of the wireless chan-
nel, employing SRM-like duplicate suppression to conserve
precious transmission energy and scale to dense networks.

Exponential timers are a common protocol mechanism.
Ethernet, for example, uses an exponential backoff to pre-
vent collisions. While Trickle also has an exponential timer,
its use is reversed. Where Ethernet defaults to the smallest
time window and increases it only in the case of collisions,
Trickle defaults to the largest time window and decreases it
only in the case of an inconsistency. This reversal is indica-
tive of the different priorities in ultra-low-power networks:
minimizing energy consumption, rather than increasing
performance, is typically the more important goal.

In the case of dissemination, Trickle timers spread out
packet responses across nodes while allowing nodes to
estimate their degree and set their communication inter-
val. Trickle leads to energy efficient, density-aware dis-
semination not only by avoiding collisions through mak-
ing collisions rare, but also by suppressing unnecessary
retransmissions.

Instead of trying to enforce suppression on an abstrac-
tion of a logical group, which can become difficult in mul-
tihop networks with dynamically changing connectivity,
Trickle suppresses in terms of an implicit group: nearby
nodes that hear a broadcast. Correspondingly, Trickle does
not impose the overhead of discovering and maintaining
logical groups, and effortlessly deals with transient and
lossy wireless links. By relying on this implicit naming, the
Trickle algorithm remains very simple: implementations
can fit in under 2 K of code, and require a mere 11 bytes
of state.

Routing protocols discover other routers, exchange rout-
ing information, issue probes, and establish as well as tear

down links. All of these operations can be rate-controlled
by Trickle. For example, in our experiences exploring how
wireless sensor networks can adopt more of the IPv6 stack
in 6LoWPAN, Trickle provides a way to support established
ICMP-v6 mechanisms for neighbor discovery, duplicate ad-
dress detection, router discovery, and DHCP in wireless net-
works. Each of these involves advertisement and response.
Trickle mechanisms are a natural fit: they avoid loss where
density is large, allow prompt notifications of change and
adapt to low energy consumption when the configuration
stabilizes. By adopting a model of eventual consistency,
nodes can locally settle on a consistent state without requir-
ing any actions from an administrator.

Trickle was initially developed for distributing new pro-
grams into a wireless sensornet: the title of the original pa-
per is “Trickle: A Self-Regulating Algorithm for Code Propa-
gation and Maintenance in Wireless Sensor Networks.”13
Experience has shown it to have much broader uses. Trickle-
based communication, rather than flooding, has emerged
as the central paradigm for the basic multihop network
operations of discovering connectivity, data dissemination,
and route maintenance.

Looking forward, we expect the use of these kinds of tech-
niques to be increasingly common throughout the upper
layers of the wireless network stack. Such progress will not
only make existing protocols more efficient, it will enable
sensor networks to support layers originally thought infea-
sible. Viewing protocols as a continuous process of estab-
lishing and adjusting a consistent view of distributed data
is an attractive way to build robust distributed systems.

Acknowledgments
This work was supported, in part, by the Defense Depart-
ment Advanced Research Projects Agency (grants F33615-
01-C-1895 and N6601-99-2-8913), the National Science
Foundation (grants No. 0122599, IIS-033017, 0615308, and
0627126), by the California MICRO program, Intel Cor-
poration, DoCoMo Capital, Foundation Capital, and a by
Stanford Terman Fellowship. Research infrastructure was
provided by the National Science Foundation (grants No.
9802069). We would also like to thank Sylvia Ratnasamy for
her valuable insights into the early stages of this research,
as well as Jonathan Hui, for his ideas on applying Trickle to
new problems.�

 	 1. 	Arch Rock Corporation. An IPv6
Network Stack for Wireless Sensor
Networks. http://www.archrock.com.

	 2. 	Couto, D.D., Aguayo, D., Bicket, J.,
and Morris, R. A high-throughput
path mMetric for multi-hop wireless
routing. Proceedings of the Ninth
Annual International Conference on
Mobile Computing and Networking
(MobiCom), 2003.

	 3. 	Crossbow, Inc. Mote in Network
Programming User Reference. http://
webs.cs.berkeley.edu/tos/tinyos-1.x/
doc/Xnp.pdf.

	 4. 	Demers, A., Greene, D., Hauser, C.,
Irish, W., and Larson, J. Epidemic
Algorithms for Replicated Database
Maintenance. In Proceedings of the
Sixth Annual ACM Symposium on

Principles of Distributed Computing
(PODC), 1987.

	 5. 	Floyd, S., Jacobson, V., McCanne, S.,
Liu, C.-G., and Zhang, L. A reliable
multicast framework for light-
weight sessions and application
level framing. Proceedings of
the Conference on Applications,
Technologies, Architectures,
and Protocols for Computer
Communication (SIGCOMM), 1995.

	 6. 	Fonseca, R., Gnawali, O., Jamieson,
K., and Levis, P. Four bit wireless link
estimation. Proceedings of the Sixth
Workshop on Hot Topics in Networks
(HotNets VI), 2007.

	 7. 	Gnawali, O., Greenstein, B., Jang,
K.-Y., Joki, A., Paek, J., Vieira, M.,
Estrin, D., Govindan, R., and Kohler,

References

CACM_V51.7.indb 105 6/18/08 12:54:51 PM

http://www.archrock.com
http://webs.cs.berkeley.edu/tos/tinyos-1.x/doc/Xnp.pdf
http://webs.cs.berkeley.edu/tos/tinyos-1.x/doc/Xnp.pdf
http://webs.cs.berkeley.edu/tos/tinyos-1.x/doc/Xnp.pdf

Philip Levis (pal@cs.stanford.edu)
Assistant Professor, Stanford University,
Stanford, CA, USA

Eric Brewer (brewer@cs.berkeley.edu)
Professor, U.C. Berkeley, Berkeley,
CA, USA

David Culler (culler@cs.berkeley.edu)
Professor, U.C. Berkeley, Berkeley,
CA, USA

David Gay (david.e.gay@intel.com) Senior
Researcher, Intel Research Berkeley,
Berkeley, CA, USA

Samuel Madden (madden@csail.mit.
edu) Associate Professor, MIT CSAIL,
Cambridge, MA, USA

© 2008 ACM 001-0782/08/0700 $5.00

Neil Patel (neilp@cs.stanford.edu) Ph.D.
Student, Stanford University, Stanford,
CA, USA

Joe Polastre (joe@sentilla.com) CTO,
Sentilla Corporation, Redwood City,
CA, USA

Scott Shenker (shenker@icsi.berkeley.
edu) Professor, U.C. Berkeley, Berkeley,
CA, USA

Robert Szewczyk (rob@sentilla.com)
Principal Engineer, Sentilla Corporation,
Redwood City, CA, USA

Alec Woo (awoo@archrock.com)
Technical Staff, Arch Rock Corporation,
San Francisco, CA, USA

E. The TENET architecture for tiered
sensor networks. Proceedings of the
Fourth International Conference
on Embedded Networked Sensor
Systems (Sensys), 2006.

	 8. 	Hill, J., Szewczyk, R., Woo, A., Hollar,
S., Culler, D.E., and Pister, K.S.J.
System architecture directions for
networked sensors. Proceedings of
the Ninth International Conference
on Architectural Support for
Programming Languages and
Operating Systems (ASPLOS), 2000.

	 9. 	Hui, J.W. and Culler, D. The dynamic
behavior of a data dissemination
protocol for network programming
at scale. Proceedings of the
Second International Conference
on Embedded Networked Sensor
Systems (SenSys), 2004.

	10. 	Intanagonwiwat, C., Govindan, R.,
and Estrin, D. Directed diffusion: a
scalable and robust communication
paradigm for sensor networks.
Proceedings of the Sixth Annual
International Conference on
Mobile Computing and Networking
(MobiCom), 2000.

	11. 	Levis, P., Gay, D., and Culler, D. Active
sensor networks. Proceedings of the
Second USENIX/ACM Symposium
on Network Systems Design and
Implementation (NSDI), 2005.

	12. 	 Levis, P., Lee, N., Welsh, M., and Culler,
D. TOSSIM: accurate and scalable
simulation of entire TinyOS applications.
Proceedings of the First ACM
Conference on Embedded Networked
Sensor Systems (SenSys), 2003.

	13. 	Levis, P., Patel, N., Culler, D., and
Shenker, S. Trickle: a self-regulating
algorithm for code maintenance
and propagation in wireless sensor
networks. Proceedings of the
First USENIX/ACM Symposium
on Network Systems Design and
Implementation (NSDI), 2004.

	14. 	Lin, K. and Levis, P. Data discovery
and dissemination with DIP.
Proceedings of the Seventh
International Symposium on
Information Processing in Sensor
Networks (IPSN), 2008.

	15. 	Madden, S., Franklin, M.J., Hellerstein,
J.M., and Hong, W. TinyDB: an
acquisitional query processing system
for sensor networks. Transactions on
Database Systems (TODS), 2005.

	16. 	Mao, Y., Wang, F., Qiu, L., Lam, S., and
Smith, J. S4: small state and small

stretch routing protocol for large
wireless sensor networks. Proceedings
of the Fourth USENIX Symposium
on Networked Systems Design and
Implementation (NSDI), 2007.

	17. 	Ni, S.-Y., Tseng, Y.-C., Chen, Y.-S.,
and Sheu, J.-P. The broadcast
storm problem in a mobile ad hoc
network. Proceedings of the Fifth
Annual International Conference on
Mobile Computing and Networking
(MobiCom), 1999.

	18. 	Paek, J. and Govindan, R. RCRT:
rate-controlled reliable transport
for wireless sensor networks.
Proceedings of the Fifth International
Conference on Embedded Networked
Sensor Systems (SenSys), 2007.

	19. 	Rangwala, S., Gummadi, R., Govindan,
R., and Psounis, K. Interference-
aware fair rate control in wireless
sensor networks. Proceedings of
the Conference on Applications,
Technologies, Architectures,
and Protocols for Computer
Communications (SIGCOMM), 2006.

	20. 	Sun Microsystems Laboratories.
Project Sun SPOT: Small
Programmable Object Technology.
http://www.sunspotworld.com/.

	21. 	TinyOS Network Protocol Working
Group. TEP 123: The Collection
Tree Protocol. http://www.tinyos.net//
tinyos-2.x/doc/txt/tep123.txt, 2007.

	22. 	Tolle, G. and Culler, D. Design of an
application-cooperative management
system for wireless sensor networks.
Proceedings of the Second European
Workshop of Wireless Sensor Netw
orks (EWSN), 2005.

	23. 	Wang, L. MNP: Multihop network
reprogramming service for sensor
networks. Proceedings of the
Second International Conference
on Embedded Networked Sensor
Systems (SenSys), 2004.

	24. 	Woo, A., Tong, T., and Culler, D.
Taming the underlying challenges of
multihop routing in sensor etworks.
Proceedings of the First ACM
Conference on Embedded Networked
Sensor Systems (SenSys), 2003.

	25. 	Yang, J., Soffa, M.L., Selavo, L.,
and Whitehouse, K. Clairvoyant:
a comprehensive source-level
debugger for wireless sensor
networks. Proceedings of the
Fifth International Conference
on Embedded Networked Sensor
Systems (SenSys), 2007.

References

ACM

Transactions On

Asian Language

Information

Processing

ISSN: 1530-0226
Order Code: 138
Price: $38 Professional Member

$33 Student Member
$160 Non-Member
$16 Air Service (for residents

outside North America only)

PRODUCT INFORMAT ION

TO PLACE AN ORDER

Contact ACM Member Services

Phone: 1.800.342.6626 (U.S. and Canada)

+1.212.626.0500 (Global)

Fax: +1.212.944.1318
(Hours: 8:30am—4:30pm, Eastern Time)

Email: acmhelp@acm.org
Mail: ACM Member Services

General Post Office
PO Box 30777
New York, NY 10087-0777 USA

www.acm.org/pubs/talip/

The Asian Language Information Processing
Transaction (TALIP) publishes high quality original
archival papers and technical notes in the areas of
computation and processing of information in Asian
languages and related disciplines. Some of the
subjects to be covered by this quarterly publication
are: Computational Linguistics; Linguistic Resources;
Hardware and Software Algorithms and Tools for
Asian Language Processing; Machine Translation; and
Multimedia Asian Information Processing. Emphasis
will be placed on the originality and the practical
significance of the reported research.

To learn more about TALIP, please visit
www.acm.org/pubs/talip/

SUBSCRIBE TODAY!

AD28

106 communications of the acm | July 2008 | vol. 51 | no. 7

CACM_V51.7.indb 106 6/18/08 12:54:51 PM

http://www.acm.org/pubs/talip/
mailto:acmhelp@acm.org
http://www.acm.org/pubs/talip/
mailto:pal@cs.stanford.edu
mailto:brewer@cs.berkeley.edu
mailto:culler@cs.berkeley.edu
http://www.sunspotworld.com/
mailto:neilp@cs.stanford.edu
mailto:joe@sentilla.com
mailto:rob@sentilla.com
mailto:awoo@archrock.com
mailto:david.e.gay@intel.com
mailto:madden@csail.mit.edu
mailto:madden@csail.mit.edu
http://www.tinyos.net//tinyos-2.x/doc/txt/tep123.txt
http://www.tinyos.net//tinyos-2.x/doc/txt/tep123.txt
mailto:shenker@icsi.berkeley.edu
mailto:shenker@icsi.berkeley.edu

July 2008 | vol. 51 | no. 7 | communications of the acm 107

careers

Technical understanding in programming en-˲˲
gineering tools, telecommunications, RF theory,
networking, computer systems, and wireless
technologies

Experience in conducting needs assessments ˲˲
and organizational surveys

Ability to analyze data and translate into re-˲˲
sources that meet business unit objectives

Programming skills with C, C++, C#. ˲˲
Experience developing on Windows, Unix or ˲˲

Linux and/or any real-time OS experience (Vx-
Works, etc..)

Education:
Bachelor’s degree in electrical engineering or
computer science required.

Rockwell Automation
Sr Software Engineer

Design and develop new software features, partic-
ipating in the full development lifecycle. Contrib-
utes to system design and independently develops
subsystem designs that meet the requirements.
Provides manpower/time estimation for the
design. Qualifications: Requires a Bachelor’s
degree and a minimum of 4 years experience in a
software product development environment.

Rockwell Automation
Sr Project Engineer
Software

In this position you will design and develop new
software features with a focus on sequential control
for batch and continuous manufacturing process-
es. Responsibilities include providing technical
and team leadership of a development team from
requirements definition through product release,

Howard Hughes Medical Institute
Lead Software Engineer
(Computational Biologist)

Howard Hughes Medical Institute Janelia Farm
Research Campus Position Announcement Lead
Software Engineer (Computational Biologist) A
full time Lead Software Engineer (Computational
Biologist) position is available at the Janelia Farm
Research Campus. The Howard Hughes Medi-
cal Institute’s Janelia Farm Research Campus is
a unique, world-class research community in the
Washington, D.C. area. Over the next four years,
Janelia Farm Research Campus (JFRC) will grow to
over 400 employees, to include top scientists, phys-
icists, engineers and operations staff all working in
a uniquely supportive campus environment. The
candidate will work with computational biologists
to develop algorithms and software that serves the
needs of neuroscientists at Janelia Farm Research
Campus. The candidate will have a solid under-
standing of numerical computation, algorithm de-
velopment, and technical programming in C/C++.
Knowledge of MATLAB and Numerical Python
preferred while experience with high performance
computing applications and GUI development is a
plus. Responsible for developing algorithms and
software that serves the needs of neuroscientists
and will work closely with computational biolo-
gists to develop common software tools and meth-
odologies that can be used across various research
groups. The ideal candidate should have a BS/MS/
PhD in Computer Science, Computational Biology
or related field AND a minimum of 10 years of pro-
gramming experience in C/C++ in the biological
sciences; experience working closely with scien-
tists in a pure research environment a plus. Solid
understanding of numerical computation, algo-
rithm development, and technical programming
in C/C++; knowledge of MATLAB and Numerical
Python preferred while experience with high per-
formance computing applications and GUI devel-
opment is a plus. HHMI offers a competitive salary
and excellent benefits package. For consideration,
please forward your resume in confidence to jfrc-
jobs@janelia.hhmi.org. Please include a cover
letter detailing previous research experience and
three references. Please also include job title in the
subject line. To learn more about HHMI and Jane-
lia Farm visit www.hhmi.org/janelia. HHMI is an
Equal Opportunity Employer

Howard Hughes Medical Institute
Senior Software Engineer
(Scientific Visualization)

Howard Hughes Medical Institute Janelia Farm
Research Campus Position Announcement
Senior Software Engineer (Scientific Visualiza-
tion) A full time Senior Software Engineer (Sci-
entific Visualization) position is available at the
Janelia Farm Research Campus. The Howard
Hughes Medical Institute’s Janelia Farm Re-

search Campus is a unique, world-class research
community in the Washington, D.C. area. Over
the next four years, Janelia Farm Research Cam-
pus (JFRC) will grow to over 400 employees, to
include top scientists, physicists, engineers and
operations staff all working in a uniquely sup-
portive campus environment. The candidate will
work with neuroscientists and other members
of the Scientific Computing team to design vi-
sualization tools and user interfaces to further
research at Janelia Farm Research Campus.
The candidate will have a solid understanding
of graphics/user interface toolkits like VTK and
OpenGL. The candidate will be expected to pro-
gram in Python, Java, and MATLAB. Responsible
for designing, architecting, and maintaining
software/hardware architectures and frameworks
and will work closely with neuroscientists and
develop visualization tools and user interfaces.
Will initiate discussions with researchers to un-
derstand the thrust of their domain science and
their software and programming needs and will
program software in Python, Java, and MATLAB.
The ideal candidate should have a BS/MS in the
Physical Sciences or preferably the Natural Sci-
ences AND a minimum of 5 years of program-
ming experience in visualization/graphics/user
interfaces in the biological sciences; experience
working closely with scientists in a pure research
environment a plus. Proven skill designing dis-
plays for scientific data, especially in the natural
sciences and proven knowledge of visualization
toolkits like OpenGL and VTK desirable. HHMI
offers a competitive salary and excellent benefits
package. For consideration, please forward your
resume in confidence to jfrcjobs@janelia.hhmi.
org. Please include a cover letter detailing previ-
ous research experience and three references.
Please also include job title in the subject line.
To learn more about HHMI and Janelia Farm visit
www.hhmi.org/janelia. HHMI is an Equal Oppor-
tunity Employer

Qualcomm, Inc.
Software Engineer
(to develop technical training)

Qualcomm is seeking talented individuals to
become part of our Learning Center team.

Skills/Experience:
Work with a team of technical specialists, engi-˲˲

neers, and consultants.
Develop and lead key engineering and techni-˲˲

cal initiatives, providing strategic guidance to
staff and team members.

Design, develop, implement, and evaluate engi-˲˲
neer-related solutions

Design and execute initiatives to accelerate orga-˲˲
nizational and team performance, specifically in
the areas of software, hardware, systems, and test

Technical understanding of software design ˲˲
processes and coding

ACM Policy on Nondiscriminatory Advertising

ACM accepts recruitment advertising under the
basic premise the advertising employer does not
discriminate on the basis of age, color, race, religion,
gender, sexual preference, or national origin. ACM
recognizes, however, that laws on such matters
vary from country to countryand contain exceptions,
inconsistencies, or contradictions. This is true of
laws in the United States of America as it is of other
countries. Thus ACM policy requires each advertising
employer to state explicitly in the advertisement
any employer restrictions that may apply with
respect to age, color, race, religion, gender, sexual
preference, or national origin. (Observance of the
legal retirement age in the employer’s country is
not considered discriminatory under this policy.)
ACM also reserves the right to unilaterally reject
any advertising. ACM provides notices of positions
available as a service to the entire membership
ACM recognizes that from time to time there may be
some recruitment advertising that may be applicable
to a small subset of the membership, and that
this advertising may be inherently discriminatory.
ACM does not necessarily endorse this advertising,
but recognizes the membership has a right to be
informed of such career opportunities.

CACM_V51.7.indb 107 6/18/08 12:54:52 PM

http://www.hhmi.org/janelia
http://www.hhmi.org/janelia
mailto:jfrcjobs@janelia.hhmi.org
mailto:jfrcjobs@janelia.hhmi.org
mailto:jfrcjobs@janelia.hhmi.org
mailto:jfrcjobs@janelia.hhmi.org

108 communications of the acm | July 2008 | vol. 51 | no. 7

careers

spanning multiple product releases.Qualifications:
Bachelor’s degree and minimum of 12 years experi-
ence in a software product development environ-
ment. For more information and to apply, please
visit http://www.rockwellautomation.com/.

Rockwell Automation
Sr. Interaction Designer
Software

Lead the information design of an industry lead-
ing commercial software application for a core,
high growth Rockwell Automation product line.
Lead interaction design for our next generation
software products supporting industrial auto-
mation system design. Qualifications: Masters
degree in Interaction Design, Human Factors,
Cognitive or Behavioral Science, or related field
required. Experience in interaction design, user
center design and user interface. For more in-
formation and to apply, please visit http://www.
rockwellautomation.com/.

Wisconsin Alumni Research Foundation

Postdoctoral Positions in Computation and Infor-
matics in Biology and Medicine University of Wis-
consin-Madison Morgridge Institute for Research

The University of Wisconsin-Madison, with
support from the Morgridge Institute for Re-
search, has several postdoctoral research posi-
tions in computation and informatics for re-
searchers wishing to solve biomedical problems

CACM_V51.7.indb 108 6/18/08 12:54:52 PM

http://www.rockwellautomation.com/
mailto:compsci@microsoft.com
http://www.rockwellautomation.com/
http://www.rockwellautomation.com/
http://www.microsoft.com/WindowsAcademic
http://mitpress.mit.edu

July 2008 | vol. 51 | no. 7 | communications of the acm 109

requiring strengths in both computational and
biological sciences.

These positions are being offered in coop-
eration with the Computation and Informatics in
Biology and Medicine Training Program (CIBM;
www.cibm.wisc.edu). The 45 CIBM faculty span
15 different departments and five colleges at
UW-Madison and includes several faculty at the
Marshfield Clinic Research Foundation (located
about 100 miles north of Madison). These posi-
tions are open to both US and non-US Citizens
with a Ph.D., or equivalent, in computer science.
The positions are funded for up to two years, re-
newable for a second year pending satisfactory
progress, with an annual stipend up to $65,000
per year.

The research focus is in the development of:
Novel bioinformatics algorithms to analyze ˲˲

molecular data, including genome sequences,
proteins (levels, interactions, structures), and
regulatory pathways,

New tools for imaging and genetic analysis,˲˲
Development of health delivery systems,˲˲
Translational bench-to-bedside medicine˲˲

For more information about the position and
application materials, please contact Louise Pape
at lpape@wisc.edu or call 608-265-7935.

For more information about the Morgridge
Institute for Research please visit www.mor-
gridgeinstitute.org or contact Laura M. Heisler,
Ph.D., Program Developer, Morgridge Institute
for Research, 614 Walnut St., Madison, WI 53726
608.261.1022, lheisler@morgridgeinstitute.org

Advertising in Career
Opportunities

How to Submit a Classified Line Ad: Send
an e-mail to jonathan.just@acm.org.
Please include text, and indicate the issue/
or issues where the ad will appear, and a
contact name and number.

Estimates: An insertion order will then
be e-mailed back to you. The ad will be
typeset according to CACM guidelines.
NO PROOFS can be sent. Classified line
ads are NOT commissionable.

Rates: $295.00 for six lines of text, 40
characters per line. $80.00 for each addi-
tional three lines. The MINIMUM is six lines.

Deadlines: Five weeks prior to the
publication date of the issue (which is the
first of every month). Latest deadlines:
http://www.acm.org/publications

Career Opportunities Online: Classified
and recruitment display ads receive a free
duplicate listing on our website at:

http://campus.acm.org/careercenter
Ads are listed for a period of six weeks.

For More Information Contact:

JONATHAN JUST
Director of Media Sales

at 212-626-0687 or
jonathan.just@acm.org

Kuwait University
Faculty of Science
Kuwait

The Department of Mathematics and Computer
Science in the Faculty of Science at Kuwait Uni-
versity invites applications for appointment of
faculty members starting from September 2008,
for the academic year 2008/2009, in one of the fol-
lowing areas:

Networks, Operating Systems, Mobile Comput-
ing, Multimedia Systems, Computer Architec-
ture, Theoretical Computer Science and Parallel
& Distributed Computing

Required Qualifications:
Ph.D. degree in the area of specialization from ˲˲

a reputable University.
The applicants GPA in first university degree ˲˲

should be 3 points out of 4 (or equivalent).
Research experience and significant publica-˲˲

tions in refereed international journals.
Full command of teaching in English.˲˲
Minimum of 5 years in University teaching ˲˲

experience in the specified field.
The successful candidates are expected to have ˲˲

a strong commitment and dedication to quality
teaching and research.

Benefits include attractive tax-free salary accord-
ing to rank and teaching experience (Professor’s
monthly salary varies from 2950 to 3192 KD.,
Associate Prof.’s salary varies from KD. 2265 to
2507, Assistant Professor’s monthly salary varies
from KD. 1830 to 2070 - [KD.1 = $3.40]), annual
air tickets for the faculty member and his/her
family (spouse and up to three children under the
age of 20), a one time settling-in allowance, hous-
ing allowance, free national health medical care,
paid mid-term holidays and summer vacations,
and end-of-contract gratuity. The University also
offers an excellent academic environment and fi-
nancial support for research projects.

To apply, send by express mail/courier service or
email, within two weeks of the date of announce-
ment, a completed application form, updated cur-
riculum vitae (including mailing address, phone
and fax numbers, e-mail address, academic quali-
fications, teaching and research experience, and
a list of publications in professional journals up
to 10 reprints), three copies of Ph.D., Masters, and
Bachelor certificates and transcripts (An English
translation of all documents in other languages
should be enclosed), a copy of the passport, three
recommendation letters, and names and addresses
of three persons well-acquainted with the academic
and professional work of the applicant. Please use
PDF format for all electronic application materials.
Applications and inquiries should be addressed to:

Dr. Salem Al-Yakoob
Chairman
Department of Mathematics
and Computer Science
Faculty of Science, Kuwait University
P.O. Box 5969, Safat, 13060, Kuwait
Tel: (965) 4813129
Fax: +965 4817201
E-Mail: math@sci.kuniv.edu.kw
http://www.sci.kuniv.edu.kw

Calendar
of Events
July
July 20–23
International Symposium
on Symbolic and Algebraic
Computation Linz/Hagenberg,
Australia, Contact: Juan R.
Sendra, Phone: 341-885-4902,
Email: rafael.sendra@uah.es

July 20–24
International Symposium on
Software Testing and Analysis
Seattle, WA, Contact: Barbara
G. Ryder, Phone: 732-445-6430
x3699, Email: ryder@cs.rutgers.
edu

July 21–25
Mobiquitos08: 5th Annual
International Conference on
Mobile and Ubiquitous Systems:
Computing, Networking and
Services Dublin, Ireland, Contact:
Liviu Iftode, Phone: 732-445-2001,
Email: iftode@cs.rutgers.edu

July 22–30
Oregon Programming
Languages Summer School
Eugene, OR, Contact:
Yannis Smaragdakis, Phone:
541-346-3491, Email: yannis@
cs.uoregan.edu

July 28–31
5th International ICST Conference
on Heterogeneous Networking for
Quality, Reliability and Security Hong
Kong, Contact: Qian Zhang, Phone:
852-23588766, Email: qianzh@
cs.e.ust.hk

August
August 4–6
International Symposium
on Low Power Electronics
and Design Bangalore, India,
Contact: Vijaykrishnan
Narayanan, Email: vijay@cse.
psu.edu

August 9–10
APGV ’08: ACM Symposium
on Applied Perception in
Graphics and Visualization
Los Angeles, CA, Contact:
Bobby Bodenheimer, Phone:
615-322-3555, Email: bobbyb@
vuse.vanderbilt.edu

August 11–13
International Symposium
on Low Power Electronics
and Design Bangalore, India,
Contact: Vijaykrishnan
Narayanan, Email: vijay@cse.
psu.edu

CACM_V51.7.indb 109 6/18/08 12:54:52 PM

http://www.cibm.wisc.edu
mailto:lpape@wisc.edu
mailto:lheisler@morgridgeinstitute.org
mailto:jonathan.just@acm.org
http://www.acm.org/publications
http://campus.acm.org/careercenter
mailto:jonathan.just@acm.org
mailto:math@sci.kuniv.edu.kw
mailto:rafael.sendra@uah.es
mailto:iftode@cs.rutgers.edu
mailto:ryder@cs.rutgers.edu
mailto:ryder@cs.rutgers.edu
http://www.morgridgeinstitute.org
http://www.morgridgeinstitute.org
mailto:yannis@cs.uoregan.edu
mailto:yannis@cs.uoregan.edu
mailto:qianzh@cs.e.ust.hk
mailto:qianzh@cs.e.ust.hk
mailto:vijay@cse.psu.edu
mailto:vijay@cse.psu.edu
mailto:bobbyb@vuse.vanderbilt.edu
mailto:bobbyb@vuse.vanderbilt.edu
http://www.sci.kuniv.edu.kw
mailto:vijay@cse.psu.edu
mailto:vijay@cse.psu.edu

110 communications of the acm | JULY 2008 | vol. 51 | no. 7

last byte

on the data being exchanged in the
critical sections. Many communication
protocols had the same property. We
decided to see if we could analyze finite-
state programs by algorithmic means.

How exactly does that work?
EAE You have a program described by

its text and its specification described
by its text in some logic. It’s either true
or false that the program satisfies the
specification, and one wants to deter-
mine that.

Joseph Sifakis Right. You build a
mathematical model [of the program],
and on this model, you check some
properties, which are also mathemati-
cally specified. To check the property,
you need a model-checking algorithm
that takes as input the mathematical
model you’ve constructed and then
gives an answer: “yes,” “no,” or “I don’t
know.” If the property is not verified,
you get diagnostics.

And to formalize those specifica-
tions, those properties…

EAE What people really want is the
program they desire, an inherently pre-
formal notion. They have some vague
idea about what sort of program they
want, or perhaps they have some sort
of committee that came up with an
English prose description of what they
want the program to do, but it’s not a
mathematical problem.

So one benefit of model checking
is that it forces you to precisely specify
your design requirements.

EMC Yes. But for many people, the
most important benefit is that if the
specification isn’t satisfied, the model
checker provides a counterexample
execution trace. In other words, it pro-
vides a trace that shows you exactly
how you get to an error that invalidates

your specification, and often you can
use that to find really subtle errors in
design.

How have model-checking algo-
rithms evolved over the years?

EMC Model-checking algorithms
have evolved significantly over the past
27 years. The first algorithm for model
checking, developed by Allen and my-
self, and independently by Queille
and Sifakis, was a fixpoint algorithm,
and running time increased with the
square of the number of states. I doubt
if it could have handled a system with
a thousand states. The first imple-
mentation, the EMC Model Checker
(EMC stands for “Extended Model
Checker”), was based on efficient
graph algorithms, developed together
with Allen and Prasad Sistla, another
student of mine, and achieved linear
time complexity in the size of the state
space. We were able to verify designs
with about 40,000 states. Because of
the state-explosion problem, this was
not sufficient in many cases; we were
still not able to handle industrial de-
signs. My student Ken McMillan then
proposed a much more powerful tech-
nique called symbolic model checking.
We were able to check some examples
with 10 to the one-hundredth power
states (1 with a hundred zeros after it).
This was a dramatic breakthrough but
was still unable to handle the state-ex-
plosion problem in many cases. In the
late 1990s, my group developed a tech-
nique called bounded model check-
ing, which enabled us to find errors
in many designs with 10 to the 10,000
power states.

EAE These advances document the
basic contribution of model checking.
For the first time, industrial designs
are being verified on a routine basis.
Organizations, such as IBM, Intel, Mi-
crosoft, and NASA, have key applica-
tions where model checking is useful.
Moreover, there is now a large mod-
el-checking community, including
model-checking users and researchers
contributing to the advance of model-
checking technology.

What are the limitations of model
checking?

JS You have two basic problems:
how to build a mathematical model
of the system and then how to check a
property, a requirement, on that math-
ematical model.

First of all, it can be very challeng-
ing to construct faithful mathematical
models of complex systems. For hard-
ware, it’s relatively easy to extract math-
ematical models, and we’ve made a lot
of progress. For software, the problem
is quite a bit more difficult. It depends
on how the software is written, but we
can verify a lot of complex software.
But for systems consisting of software
running on hardware, we don’t know
how to construct faithful mathemati-
cal models for their verification.

The other limitation is in the com-
plexity of the checking algorithm, and
here we have a problem called the
state-explosion problem (that Clarke
referred to earlier), which means that
the number of the states may go expo-
nentially high with the number of com-
ponents of the system.

EMC Software verification is a Grand
Challenge. By combining model check-
ing with static analysis techniques, it
is possible to find errors but not give
a correctness proof. As for the state-
explosion problem, depending on the
logic and model of computation, you
can prove theoretically that it is inevi-
table. But we’ve developed a number of
techniques to deal with it.

Such as?
EMC The most important technique

is abstraction. The basic idea is that
part of the program or the protocol
you’re verifying doesn’t really have any
effect on the particular properties that
you’re checking. So what you can do is
simply eliminate those particular parts
from the design.

You can also combine model check-
ing with compositional reasoning,
where you take a complex design and
break it up into smaller components.
Then you check those smaller compo-
nents to deduce the correctness of the
entire system.

How large are the programs we can
currently verify with model checking?

EMC Well, first of all, there’s not
always a natural correspondence be-
tween a program’s size and its com-
plexity. But I would say we can often
check circuits with around 10 to the
100th power states (1 with a hundred
zeros after it).

JS Right. We know how to verify sys-
tems of medium complexity today—
it’s difficult to say but perhaps a pro-
gram of around 10,000 lines. But we

“The idea behind
model checking
was to avoid
having humans
construct proofs.”

[continued FROM P.112]

CACM_V51.7.indb 110 6/18/08 12:54:53 PM

JULY 2008 | vol. 51 | no. 7 | communications of the acm 111

last byte

don’t know how to verify very complex
systems.

EMC We’re always playing a catch-
up game; we’re always behind. We’ve
developed more powerful techniques,
but it’s still difficult to keep up with the
advance of technology and the com-
plexity of new systems.

Can we use model checking to check
concurrent programs?

EAE Arguably, model checking is a
very natural fit for parallel program-
ming. Typically, we treat parallelism
as a nondeterministic—or, informally,
random—choice, so, in a way a parallel
program is a more complex sequential
program, with many nondeterministic
behaviors. Model checking is very well
suited to describing and reasoning
about the associated coordination and
synchronization properties of parallel
programs.

EMC Concurrent programs are much
more difficult to debug because it’s
difficult for humans to keep track of a
lot of things that are happening all at
once. Model checking is ideal for that.

JS But if you have programs that
interact with the physical environ-
ment, time becomes very important.
For these systems, verification is much
more complicated.

Do we have any algorithms that can
operate directly on implementable
code?

EMC To verify the process of trans-
lating a design to code, or to verify
the code itself, is much more diffi-
cult. Some successful model checkers
use this approach, however. The Java
Pathfinder model checker developed
at NASA Ames generates byte code for
a Java program and simulates the byte
code to find errors.

JS The best available technology is
proprietary technology that was de-
veloped by U.S. companies. But most
of the code-level model checkers are
used to verify sequential software. If
you want to verify concurrent software,
then you need to be very careful.

EMC The SLAM model checker de-
veloped at Microsoft Research for find-
ing errors in Windows device drivers is
probably the most successful software
model checker. It is now distributed to
people who want to write device driv-
ers for Windows. However, it is hardly
a general-purpose software model
checker.

EAE In hardware verification, Verilog
and VHDL are widely used design de-
scription languages. Many industrial
model checkers typically accept de-
signs described in these languages.

Is model checking something cur-
rently taught to undergraduates?

JS Formal verification is definitely
taught in Europe. Europe has tradition-
ally had a stronger community in for-
mal methods, and I’d like to say it has
also traditionally had a stronger com-
munity in semantics and languages.

EMC Yes, there’s always been more in-
terest in verification in Europe than in
the U.S. Most of the major universities
here—CMU, Stanford, UC Berkeley, U.
Texas, and so on—do offer courses in
model checking at both undergradu-
ate and graduate levels, but it hasn’t fil-
tered down to schools where no one is
doing research in the topic. Part of that
has to do with the availability of appro-
priate textbooks; good books are just
beginning to come out.

EAE Formal methods are being
taught with some frequency [in the
U.S.], but they are not broadly incor-
porated into the core undergraduate
curriculum as required courses to
the extent that operating systems and
data structures are. It is probably more
prevalent at the graduate level. But the
distinction between undergraduate
and graduate is not clear-cut. At many
schools advanced undergrad and be-
ginning grad overlap.

What’s in store for model checking
and formal verification?

EMC I intend to continue looking at
ways of making model checking more
powerful. The state explosion phenom-
enon is still a difficult problem. I have
worked on it for 27 years and probably
will continue to do so. Another thing I
want to do is focus on embedded soft-
ware systems in automotive and avion-
ics applications. These programs are
often safety-critical. For example, in a
few years, cars will be “drive-by-wire”;
there will be no mechanical linkage
between the steering wheel and the
tires. The software will definitely need
to be verified. Fortunately, embedded
software is usually somewhat simpler
in structure, without complex point-
ers; I think it may be more amenable to
model checking techniques than gen-
eral software.

JS Personally, I believe we should
look into techniques that allow some
sort of compositional reasoning, where
we infer global properties from local
properties of the system, because of
the inherent limitations of techniques
based on the analysis of a global model.
I’m working on this, as well as on theo-
ries of how to build systems out of com-
ponents, component-based systems.

EAE Model checking has caused a
sea change in the way we think about
establishing program correctness,
from proof-theoretic (deductive proof)
to model-theoretic (graph search). I
think we will continue to make more
or less steady progress, but the pace of
development of hardware and software
is going to accelerate. Whether we ever
catch up I don’t know. Systems that
are being designed are getting bigger
and messier. The seat-of-the-pants ap-
proach will no longer work. We’ll have
to get better at doing things modularly,
and we’ll have to have better abstrac-
tions. 	

Leah Hoffman writes about science and technology
from Brooklyn, NY.

© 2008 ACM 001-0782/08/0700 $5.00

“If you have
programs that
interact with
the physical
environment, time
becomes very
important. For
these systems,
verification is
more complicated.”

CACM_V51.7.indb 111 6/18/08 12:54:53 PM

JULY 2008 | vol. 51 | no. 7 | communications of the acm 112

last byte

E
dmund M. Clarke, E. Allen
Emerson, and Joseph Sifakis
were honored for their role in
developing Model-Checking
into a highly effective verifi-

cation technology, widely adopted in
the hardware and software industries.

Let’s talk about the history of formal
software verification.

E. Allen Emerson By the late 1960s,
we recognized that a program should
be viewed as a mathematical object.
It has a syntax and semantics and for-
mally defined behavior engendered by
that syntax and semantics. The idea
was to give a mathematical proof that
a program met a certain correctness
specification. So one would have some
axioms characterizing the way the pro-
gram worked for such-and-such an
instruction and some inference rules,
and one would construct a formal
proof of the system, like philosophers
do sometimes.

But it never really seemed to scale up
to large programs. You ended up with
something like 15-page papers proving
that a half-page program was correct. It
was a great idea but didn’t seem to pan
out in practice.

What about the history of model
checking?

Edmund M. Clarke The birth of model
checking was quite painful at times.
Like most research on the boundary be-
tween theory and practice, theoreticians
thought the idea was trivial, and system
builders thought it was too theoretical.
Researchers in formal methods were

even less receptive. Research in the for-
mal-methods community in the 1980s
usually consisted of designing and
verifying tricky programs with fewer
than 50 lines using only pen and paper.
If anyone asked how such a program
worked in practice on a real computer,
it would have been interpreted as an in-
sult or perhaps simply as irrelevant.

EAE The idea behind model check-
ing was to avoid having humans con-
struct proofs. It turns out that many
important programs, such as operating
systems, have ongoing behavior and
ideally run forever; they don’t just start
and stop. In 1977, Amir Pnueli suggest-
ed that temporal logic could be a good
way to describe and reason about these
programs. Now, if a program can be
specified in temporal logic, then it can
be realized as a finite state program—
a program with just a finite number
of different configurations. This sug-
gested the idea of model checking—to
check whether a finite state graph is a
model of a temporal logic specifica-
tion. Then one can develop efficient
algorithms to check whether the tem-
poral-logic specification is true of the
state graph by searching through the
state graph for certain patterns.

EMC Yes, Allen and I noticed that
many concurrent programs had what
we called “finite state synchronization
skeletons.” (Joseph Sifakis and J.P.
Queille made the same observation, in-
dependently.) For example, the part of
a mutual-exclusion program that han-
dles synchronization does not depend

Q&A
Talking Model-Checking
Technology
A conversation with the 2007 ACM A.M. Turing Award winners.

doi: 10.1145/1364782.1364805		L eah Hoffman

[continued on p.110]

CACM_V51.7.indb 112 6/18/08 12:54:55 PM

www.oopsla.org/submit

Conference Chair
GAIL E. HARRIS
Instantiated Software Inc.
chair@oopsla.org

Program Chair
GREGOR KICZALES
University of British Columbia
papers@oopsla.org

Onward! Chair
DIRK RIEHLE
SAP Research
onward@oopsla.org

D E F I N E T H E F U T U R E O F S O F T WA R E

call for papers
March 19, 2008
Due date for Research Program,
Onward!, Development Program,
Educators’ Symposium, Essays
and proposals for Tutorials, Panels,
Workshops and DesignFest

July 2, 2008
Due date for Development Program Briefs,
Doctoral Symposium and Student Volunteers

NASHVILLE CONVENTION CENTER, NASHVILLE , TN
October 19 - 23, 2008

essays, {craft, art, science} of software, python, eclipse, agile development,

onward!, {generative, functional} programming, .net, open source, concurrency,

smalltalk, aspects, second life, ruby, service-orientation, objects, embedded,

u l t ra la rge sca le

{model, test}-driven

passion, fun!, agents,

d o m a i n - s p e c i f i c

use cases, movies,

l i g h t n i n g t a l k s ,

systems, objective-c,

deve lopmen t , c# ,

d e s i g n p a t t e r n s ,

l a nguage s , w i k i ,

product-lines, java,

r e f a c t o r i n g , plop

CACM_V51.7.indb 3 6/18/08 12:54:55 PM

http://www.oopsla.org/submit
mailto:chair@oopsla.org
mailto:papers@oopsla.org
mailto:onward@oopsla.org

Who’s next? The Microsoft® Research Faculty Fellowship Award recognizes

exceptionally talented computing academics with the freedom to explore at

the edge of computing. Please join us in congratulating this year’s Fellows. To

find out more, please visit http://research.microsoft.com/nff

Russell Tedrake
Massachusetts Institute

of Technology

Philip Levis
Stanford University

© 2008 Microsoft Corporation.

Robert Kleinberg
Cornell University

Susan Hohenberger
Johns Hopkins University

Kristen Grauman
The University of Texas

at Austin

Moore’s Law. Moore’s Law.
Fermat’s Theorem.Fermat’s Theorem.
Euler’s Function. Euler’s Function.
_____________’s Law.’s Law.

http://research.microsoft.com/nff

	Table of Contents
	Departments
	Editor's Letter
	"Where Do You Come From? And Where Are You Going?"

	Publisher's Corner
	The Art and Business of Revitalizing a 50-Year-Old Science and Technology Magazine

	CACM Online
	Your Attention, Please

	Careers
	Calendar

	Last Byte
	Q&A
	Talking Model-Checking Technology

	News
	Cloud Computing
	Quantum Computing
	In Search of Dependable Design

	Viewpoints
	Emerging Markets
	India’s Role in the Globalization of IT

	Legally Speaking
	Revisiting Patentable Subject Matter

	Kode Vicious
	Beautiful Code Exists, If You Know Where to Look

	Point/Counterpoint
	Technology Curriculum for the Early 21st Century

	Image Crisis
	Inspiring a New Generation of Computer Scientists

	Interview
	The ‘Art’ of Being Donald Knuth

	Practice
	XML Fever
	Flash Storage Memory
	Beyond Relational Databases

	Contributed Articles
	Web Science: An Interdisciplinary Approach to Understanding the Web
	The Revolution Inside the Box

	Review Articles
	Transactional Memory

	Research Highlights
	Technical Perspective
	Computer Science Takes on Molecular Dynamics

	Anton, a Special-Purpose Machine for Molecular Dynamics Simulation
	Technical Perspective
	The Physical Side of Computing

	The Emergence of a Networking Primitive in Wireless Sensor Networks

