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Dear Colleague,

At a timewhen computing is at the center of the growing demand for technology jobsworldwide,
ACM is continuing its work on initiatives to help computing professionals stay competitive in the

global community. ACM delivers resources that advance computing as a science and profession.

As amember of ACM, you join nearly 90,000 other computing professionals and students worldwide to define
the largest educational, scientific, and professional computing society. Whether you are pursuing scholarly

research, building systems and applications, ormanaging computing projects, ACMoffers opportunities to advance
your interests.

MEMBER BENEFITS INCLUDE:

• A subscription to the completely redefined Communications of the ACM, ACM’s flagship monthly magazine
• The option to subscribe to the full ACMDigital Library, with improved search functionalities and Author
Profile Pages for almost every author in computing

• The Guide to Computing Literature, with over one million bibliographic citations
• Access to ACM’s Career & Job Center offering a host of exclusive career-enhancing benefits
• Free e-mentoring services provided by MentorNet®
• Full and unlimited access to over 3,000 online courses from SkillSoft
• Full and unlimited access to 1,100 online books, featuring 500 from Books24x7®, and 600 from Safari® Books
Online, including leading publishers such as O’Reilly (Professional Members only)

• The option to connect with the best thinkers in computing by joining 34 Special Interest Groups or
hundreds of local chapters

• ACM’s 40+ journals andmagazines at special member-only rates
• TechNews, ACM’s tri-weekly email digest delivering stories on the latest IT news
• CareerNews, ACM’s bi-monthly email digest providing career-related topics
• MemberNet, ACM’s e-newsletter, covering ACM people and activities
• Email forwarding service & filtering service, providing members with a free acm.org email address and
high-quality Postini spam filtering

• And much, much more!

ACM’s worldwide network ranges from students to seasoned professionals and includesmany of the leaders in the field.
ACMmembers get access to this network, and enjoy the advantages that come from sharing in their collective expertise,
all of which serves to keep our members at the forefront of the technology world.

I invite you to share the value of ACMmembershipwith your colleagues and peers who are not yetmembers, and I hope
you will encourage them to join and become a part of our global community.

Thank you for your membership in ACM.

Sincerely,

John R.White
Executive Director and Chief Executive Officer
Association for Computing Machinery

ACM,Uniting theWorld’s Computing Professionals,
Researchers, Educators, and Students

Advancing Computing as a Science & Profession
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editor’s letter

DOI: 10.1145/1364782.1364783 	 Moshe Y. Vardi

cannot take a break. Communications 
continued to appear every month while 
behind the curtains major changes 
were taking place. Over the next few 
months, I will discuss these changes in 
greater detail and, more importantly, 
why these changes are necessary for 
Communications to maintain its leader-
ship position.

An important component in this 
revitalization is the fortification of the 
professional staff producing it. A key 
addition to the fold is Scott Delman as 
Group Publisher. For Communications 
to continue to maintain its leadership 
position, it must excel not only edi-
torially, but also as a business. Flag-
ship publications of professional so-
cieties consume nontrivial fractions of 
their societies’ budgets, and continual 
business innovation is critical to their 
success. Scott brings extensive experi-
ence in the scholarly publication mar-
ketplace; we are fortunate to have him 
join the team.

Another change is the establishment 
of a new editorial board (see masthead, 
pg. 4 or http://www.acm.org/publica-
tions/cacm/?pageIndex=5). This out-
standing board brings together many 
of the leaders of the computing field, 
representing its diversity along many 
dimensions. The board is organized by 
teams, roughly corresponding to the 
different sections within the magazine. 
Unlike some distinguished editorial 
boards, this board is a working board. 
Producing a monthly publication re-
quires an ongoing effort to “procure” 

high-quality material, which is the task 
of this editorial board. The quality of 
a publication such as Communications 
is critically tied to the quality of its edi-
torial board. ACM is lucky to have so 
many dedicated volunteers.

Let me close by mentioning one 
new feature of the new content model 
with ties to the old days when Commu-
nications was a venue for top research 
papers. The new Research Highlights 
section provides readers with a collec-
tion of outstanding research articles, 
selected from the broad spectrum of 
computing research conferences. This 
section provides a broad overview of 
the most significant developments in 
computing research. Articles appear-
ing in this section are first nominated 
by Editorial Board members or Ap-
proved Nominating Organizations, 
and are then subject to final selection 
by the Editorial Board. Prior to publica-
tion, authors are requested to rewrite 
and expand the scope of their articles, 
as appropriate for Communications’ 
broad-based readership. Each selected 
Research Highlights article is preceded 
by a one-page Technical Perspective 
providing readers with an overview of 
the underlying motivation of the re-
search, the important ideas to emerge 
from the work, and its scientific and 
practical significance. These Techni-
cal Perspectives are written by noted 
experts in the field addressed in the 
research article. 

Moshe Y. Vardi, Editor-in-Chief

‘Where Do You Come From?  
And Where Are You Going?’
The noted management consulting firm Booz Allen  
Hamilton recently issued a report identifying the world’s 
10 most enduring institutions of the 20th and 21st centuries. 

More interesting than their findings is 
their list of chosen determinants: in-
novative capabilities; governance and 
leadership; information flow; culture 
and values; adaptive response; risk 
structure; and legitimacy. 

It is useful to keep these determi-
nants in mind when we consider that 
Communications, having celebrated its 
50th anniversary last January, is now 
older than most of its readers. Keeping 
a magazine in a leadership position for 
over 50 years is a daunting challenge 
indeed. As the Red Queen in Lewis 
Carroll’s Through the Looking Glass, pro-
claimed: “Now, here, you see, it takes all 
the running you can do to keep in the 
same place. If you want to get some-
where else, you must run at least twice 
as fast as that!” In a fast-changing dis-
cipline such as ours, we need to run 
incredibly fast if we want Communica-
tions to remain the foremost monthly 
magazine for the leadership of the 
computing field.

In the anniversary issue last Janu-
ary, I wrote an essay (“CACM: Past, 
Present, and Future,” pg. 44) describ-
ing the process initiated in early 2005 
by then ACM President David Pat-
terson to revitalize Communications. 
Upon ACM Council’s approval of a new 
editorial model in June 2007, a major 
initiative was launched to achieve this 
vision. This issue is the culmination 
of that effort. To appreciate the magni-
tude of the task, consider the analogy 
“replacing the engines of a jet plane 
in mid-flight.” A monthly publication 
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Lafortune, Stephane

A comprehensive 
introduction to the field 
of discrete event 

systems, offering a breadth of coverage that 
makes the material accessible to readers of 
varied backgrounds. The book emphasizes a 
unified modeling framework that transcends 
specific application areas, linking the following 
topics in a coherent manner: language and 
automata theory, supervisory control, Petri net 
theory, Markov chains and queueing theory, 
discrete-event simulation, and concurrent 
estimation techniques. Distinctive features of 
the second edition include 7 more detailed 
treatment of equivalence of automata, event 
diagnosis, and decentralized event diagnosis  
7 expanded treatment of centralized and 
decentralized control of partially-observed 
systems 7 new sections on timed automata 
with guards (in the Alur-Dill formalism) and 
hybrid automata 7 an introduction to hybrid 
systems 7 updated coverage of discrete event 
simulation, including new software tools 
available  7 recent developments in sensitivity 
analysis for discrete event systems as well as 
hybrid systems 

2nd ed., 2008, XXIV, 776 p., Hardcover
ISBN 978-0-387-33332-8 7 $89.95

A Brief History 
of Computing
O’Regan, Gerard

This useful and lively 
text provides a 
comprehensive 
introduction to the key 
topics in the history of 

computing, in an easy-to-follow and concise 
manner. It covers the significant areas and 
events in the field - from the ancient Egyptians 
through to the present day - and both gives the 
reader a flavour of the history and stimulates 
further study in the subject.

2008, XX, 252 p. 72 illus., Hardcover
ISBN 978-1-84800-083-4 7 $29.95

Rightshore!
Successfully 
Industrialize SAP® 
Projects Offshore

Hendel, Anja; Messner, 
Wolfgang; Thun, Frank 
(Eds.)

This book describes 
successful global delivery models utilizing 
industrialized methods to deliver SAP® projects 
from India. While the first part is devoted to 
management concepts, service offerings and 
the peculiarities of working together with 
India, the second part features eight case 
studies from different industries and from 
around the world describing how India delivery 
centers have been successfully deployed in 
SAP® development projects.

2008, XVIII, 292 p. 74 illus., Hardcover
ISBN 978-3-540-77287-3 7 $64.95

Algorithms and 
Data Structures
The Basic Toolbox

Mehlhorn, Kurt, Sanders, 
Peter

This book is a concise 
introduction addressed 
to students and 

professionals familiar with programming and 
basic mathematical language. Individual 
chapters cover arrays and linked lists, hash 
tables and associative arrays, sorting and 
selection, priority queues, sorted sequences, 
graph representation, graph traversal, shortest 
paths, minimum spanning trees, and 
optimization. The algorithms are presented in a 
modern way, with explicitly formulated 
invariants, and comment on recent trends such 
as algorithm engineering, memory hierarchies, 
algorithm libraries and certifying algorithms. 
The authors use pictures, words and high-level 
pseudocode to explain the algorithms, and 
then they present more detail on efficient 
implementations using real programming 
languages like C++ and Java.

2008, Approx. 310 p., Hardcover
ISBN 978-3-540-77977-3 7 $44.95

Software 
Evolution
Mens, Tom; Demeyer, 
Serge (Eds.)

Mens and Demeyer, both 
international authorities 
in the field of software 
evolution, together with 

the invited contributors, focus on novel trends in 
software evolution research and its relations 
with other emerging disciplines such as model-
driven software engineering, service-oriented 
software development, and aspect-oriented 
software development. They do not restrict 
themselves to the evolution of source code but 
also address the evolution of other, equally 
important software artifacts such as databases 
and database schemas, design models, software 
architectures, and process management. The 
contributing authors provide broad overviews of 
related work, and they also contribute to a 
comprehensive glossary, a list of acronyms, and 
a list of books, journals, websites, standards and 
conferences that together represent the 
community’s body of knowledge.

2008, XVIII, 347 p. 100 illus., Hardcover
ISBN 978-3-540-76439-7 7 $89.95

Guide to 
Advanced 
Empirical 
Software 
Engineering
Shull, Forrest; Singer, 
Janice; Sjøberg,  
Dag I.K. (Eds.)

Empirical studies have become an integral 
element of software engineering research and 
practice. This unique text/reference includes 
chapters from some of the top international 
empirical software engineering researchers and 
focuses on the practical knowledge necessary 
for conducting, reporting and using empirical 
methods in software engineering.

2008, XII, 388 p. 37 illus., Hardcover
ISBN 978-1-84800-043-8 7 $99.00
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publisher’s corner

The name on the cover remains the 
same, but even at first glance it is clear 
that the differences far outweigh the 
similarities with what we can now fondly 
and lovingly refer to as the old CACM. 

Every decade or so, it is common for 
magazines to reinvent themselves. This is 
the case for many reasons, some related to 
the publishers and the changing dynam-
ics of the publishing industry and some 
related to changing market and reader-
ship demographics. Very few magazines 
are able to survive over time without react-
ing to these changes and Communications 
of the ACM is no exception. In fact, maga-
zines in the technology sector are even 
less immune to such changes, because 
of the rapid growth of the industry as a 
whole and trend toward specialization. 
As new areas of research and technology 
emerge, new publications are launched 
to satisfy the information needs of those 
new communities. The number of new 
technology magazines launched over the 
past 10 years for this reason is startling, 
each carving out a highly targeted and 
dedicated niche. 

Equally startling is the number of 
technology magazines that have folded or 
merged into other publications over the 
past two years. As many magazines are 
heavily dependent on advertising revenue 
to fund operations, recent economic con-
ditions and the rapid migration of adver-
tising revenue from print to online have 
had a sobering effect on the technology 
magazine publishing industry.

Publications that have the ability to trans-
form themselves editorially and appeal to 

doi:10.1145/1364782.1364784 	 Scott E. Delman

the changing needs of their readership have 
the greatest ability to succeed. Publications 
that can thrive even under these adverse mar-
ket conditions are truly exceptional. 

For 50 years, Communications has 
stood the test of time and when neces-
sary reinvented itself to keep pace with 
ACM’s diverse and growing membership 
and with the leadership of the computing 
field. In recent years, the computing com-
munity has started to indicate to ACM’s 
leadership that it was time for a change— 
perhaps even a dramatic one—for the 
flagship publication. 

The ACM membership has consis-
tently grown more diverse over the past 
decade and its information needs have 
grown more demanding. No longer is it 
possible to categorize ACM’s member-
ship into a few distinct buckets, such as 
Educator or Researcher or Practitioner. 
Such distinctions make sense on paper 
and are favorable for commercial rea-
sons, but they are also extremely limiting 
and do not reflect the way things often 
work in the real world, where these lines 
are often less defined. Practitioners are 
in fact interested in what next-generation 
research is coming down the pipeline, 
researchers are of course interested in 
what major technology challenges exist, 
and both groups have a vested interest in 
issues related to computing education. 
But as publishers it is far too easy to draw 
the distinctions instead of the similarities 
and to produce publications that target 
specific categories of readers instead of 
large and diverse communities that share 
common goals and interests. 

When the field of computing was in its 
infancy, Communications of the ACM was 
created to serve as a single source of high- 
quality authoritative information to help 
bring together a growing community of 
scientists, technologists, and educators 
by highlighting the best the field had to 
offer. Some 50 years later, even though 
the field has grown tremendously, it con-
tinues to experience growing pains, and 
now more than ever requires a revitalized 
publication to bring this community to-
gether. The new Communications of the 
ACM is in many ways a homecoming for 
the field of computing itself and an op-
portunity to help guide the field through 
what many believe is a critical stage in the 
field’s maturation into adulthood. 

Over the coming months, Communica-
tions’ dynamic new Editor-in-Chief, Moshe 
Y. Vardi, an all-star lineup of contributors, 
and I will introduce you to more of the in-
novations that form the basis for the new 
Communications. But it is most important 
to note that all of the changes to this new 
vision reflect the best the international 
computing community has to offer.

The true innovation, however, lies in 
the expansion of the magazine’s editorial 
scope, which will appeal to the commu-
nity’s diverse mix of researchers, practi-
tioners, and educators in all areas of com-
puting and information technology. 

It is with great pride and appreciation 
for your continued support of ACM’s flag-
ship publication that I welcome you to the 
new Communications of the ACM.

Scott E. Delman,  Group Publisher

The Art and Business of Revitalizing 
a 50-Year-Old Science  
and Technology Magazine
By the time you flip to this page you will have noticed there is 
something dramatically different with Communications of the ACM. 
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H
OW DO YOU grab and hold 
someone’s attention? Strat-
egies vary. While polite in-
terjections and attentive 
gazes work in some circles, 

they are ineffective on the Internet, 
where Web sites employ a host of in-
your-face, lapel-grabbing techniques 
in the war for eyeballs.

We’re in the middle of redesigning 
Communications’ Web site. The plan 
is to make cacm.acm.org as engaging 
and as awesome as a summer fireworks 
display, but without the noise. The new 
site won’t be ready for months, but it’s 
safe to say it will include some long-
overdue content, notably news, but will 
mostly muffle the raised-voice tech-
niques commonly shouted by popular 
sites, and will avoid these tactics spot-
ted in the last 24 hours (where noted). 
There will be no blood (NYtimes.com), 
no fires (CNN.com), no violence (wash-
ingtonpost.com), and no Paris Hilton 
(youtube.com). What’s left? 

Plenty. “Journalism is so much 
more than blood and sex,” says Erica 
Stone, the fictional professor played by 
Doris Day in Teacher’s Pet, a 1958 film 
that is both old fashioned and surpris-
ingly fresh. “Your friend’s kind of re-
porting went out with Prohibition,” 
Day tells one of her night-school stu-
dents, a seasoned newspaper editor 
played by Clark Gable. “TV and radio 
announce spot news minutes after it 
happens. Newspapers can’t compete 
in reporting what happened anymore. 
But they can and should tell the public 
why it happened. Ask anybody. You’ll 
find that today the average man wants 
to know why.”

The scene is funny not because Day 
is perky, smart, and slightly oblivious 
(which she is), or because Gable is 
playing his archetype—the smirking, 
worldly, leering male (which he is). It’s 
because adding “the Internet” to Pro-
fessor Stone’s roster of fast media has 
her delivering word-for-word the same 
lecture that newspaper publishers 
humbled by the Internet are repeating 

50 years later. That’s less astonishing 
foresight than an assertion of the on-
going need for change amidst increas-
ing competition for readers’ attention, 
whatever the media du jour.   

This redesigned edition attests to 
that need for change; the upcoming 
Web site will do the same. Both will 
hold your attention by providing en-
gaging, interesting, and meaningful 
content. Web inventor Tim Berners-
Lee recently told BBC News that the 
Web is “still in its infancy.” Created 
“by so many people collaborating 
across the globe,” the world has “only 
started to explore the possibilities of 
[the Web].” That spirit of openness, 
collaboration, and creativity informs 
the redesign of Communications’ site. 
It will provide more than what you see 
in the magazine, and will have you 
coming back for more.

No change is being made for change’s 
sake. Every addition, every feature, ev-
ery design decision is being bounced 
off ACM members to make sure it 
meets your needs and interests. The 
site will serve a rich menu of content 
that’s been taste-tested by members 
through focus groups, one-on-one in-

terviews, and surveys. If this doesn’t 
sound like what the doctor ordered, 
it’s not. It’s what you ordered. 

“If it has good content, I don’t care” 
if it’s in news, blog, or video format, 
said one surveyed member. “Content 
trumps all,” said another. 

The site will present traditional Com-
munications fare plus other computing 
stories.  Development is still in flux, but 
the site is likely to publish opinion and 
commentary from readers and invited 
experts to explain the importance or 
significance of a work. “Some edito-
rial guidance would be most useful to 
help readers understand the relevance 
of and keep updated on the newest 
research,” one member said. “Reader 
discussion and commentary [are im-
portant],” another said, “because in 
the computer world, there is so much 
to be talked about. People must bounce 
ideas off of one another in order to get 
some kind of understanding and gen-
eral consensus on anything which has 
any importance.” Roger that.

Advertising is also on the menu. 
The vast majority of members, 93%, 
are open to or unruffled by ads on the 
site. That’s an endorsement of ACM’s 
strategy to find revenue to expand the 
range of services available to members 
and non-members alike. “Google makes 
a lot of money out of (relevant) ads,” one 
member said. “They are ok for me. You 
should consider generating revenue 
from ads.”  

Nothing will get onto the site before 
it gets a thumbs up from members. To 
that end, ACM is still asking for input 
and will continue to do so until the site 
launches, probably in early 2009. It’s 
all being done with an eye on holding 
your attention by delivering what you 
want. If you have opinions about the 
redesign that you’d like to share, go to 
www.acm.org/publications/cacm/acm-
member-feedback.

Thanks for your attention.

David Roman (roman@hq.acm.org) 
is Communications’ Web Editor.  
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Your Attention, Please
The redesigned CACM Web site will deliver exactly what you want.

cacm online
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T
he Greek myths tell of crea-
tures plucked from the sur-
face of the Earth and en-
shrined as constellations 
in the night sky. Something 

similar is happening today in the world 
of computing. Data and programs are 
being swept up from desktop PCs and 
corporate server rooms and installed 
in “the compute cloud.” 

Whether it’s called cloud comput-
ing or on-demand computing, software 
as a service, or the Internet as platform, 
the common element is a shift in the 
geography of computation. When you 
create a spreadsheet with the Google 
Docs service, major components of the 
software reside on unseen computers, 
whereabouts unknown, possibly scat-
tered across continents.

The shift from locally installed pro-
grams to cloud computing is just get-
ting under way in earnest. Shrink-wrap 
software still dominates the market 
and is not about to disappear, but the 
focus of innovation indeed seems to be 
ascending into the clouds. Some sub-
stantial fraction of computing activity 
is migrating away from the desktop and 
the corporate server room. The change 
will affect all levels of the computa-
tional ecosystem, from casual user to 
software developer, IT manager, even 
hardware manufacturer. 

In a sense, what we’re seeing now 
is the second coming of cloud com-
puting. Almost 50 years ago a similar 
transformation came with the creation 
of service bureaus and time-sharing 
systems that provided access to com-
puting machinery for users who lacked 
a mainframe in a glass-walled room 
down the hall. A typical time-sharing 
service had a hub-and-spoke configu-
ration. Individual users at terminals 
communicated over telephone lines 
with a central site where all the com-
puting was done. 

When personal computers arrived 
in the 1980s, part of their appeal was 
the promise of “liberating” programs 
and data from the central computing 
center. (Ted Nelson, the prophet of hy-
pertext, published a book titled Com-
puter Lib/Dream Machines in 1974.) In-
dividuals were free to control their own 
computing environment, choosing 
software to suit their needs and cus-
tomizing systems to their tastes.

But PCs in isolation had an obvious 
weakness: In many cases the sneaker-
net was the primary means of collabo-
ration and sharing. The client-server 
model introduced in the 1980s offered 
a central repository for shared data 
while personal computers and work-
stations replaced terminals, allowing 
individuals to run programs locally.

In the current trend, the locus of 

Technology  |  doi: 10.1145/1364782.1364786	 Brian Hayes

Cloud Computing 
As software migrates from local PCs to distant Internet servers,  
users and developers alike go along for the ride.
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ing platform of the vendor’s choosing. 
Updates and bug fixes are deployed in 
minutes. (But the challenges of diversi-
ty don’t entirely disappear; the server-
side software must be able to interact 
with a variety of clients.) 

Although the new model of Inter-
net computing has neither hub nor 
spokes, it still has a core and a fringe. 
The aim is to concentrate computation 
and storage in the core, where high-
performance machines are linked by 
high-bandwidth connections, and all of 
these resources are carefully managed. 
At the fringe are the end users making 
the requests that initiate computations 
and who receive the results. 

Although the future of cloud com-
puting is less than clear, a few exam-
ples of present practice suggest likely 
directions: 

Wordstar for the Web. The kinds of 
productivity applications that first at-
tracted people to personal computers 
30 years ago are now appearing as soft-
ware services. The Google Docs pro-
grams are an example, including a word 
processor, a spreadsheet, and a tool 
for creating PowerPoint-like presenta-
tions. Another undertaking of this kind 
is Buzzword, a Web-based word proces-
sor acquired by Adobe Systems in 2007. 

computation is shifting again, with 
functions migrating outward to distant 
data centers reached through the Inter-
net. The new regime is not quite a re-
turn to the hub-and-spoke topology of 
time-sharing systems, if only because 
there is no hub. A client computer on 
the Internet can communicate with 
many servers at the same time, some of 
which may also be exchanging informa-
tion among themselves. However, even 
if we are not returning to the architec-
ture of time-sharing systems, the sud-
den stylishness of the cloud paradigm 
marks the reversal of a long-standing 
trend. Where end users and corporate 
IT managers once squabbled over pos-
session of computing resources, both 
sides are now willing to surrender a 
large measure of control to third-party 
service providers. What brought about 
this change in attitude? 

For the individual, total control 
comes at a price. Software must be in-
stalled and configured, then updated 
with each new release. The computa-
tional infrastructure of operating sys-
tems and low-level utilities must be 
maintained. Every update to the oper-
ating system sets off a cascade of sub-
sequent revisions to other programs. 
Outsourcing computation to an Inter-
net service eliminates nearly all these 
concerns. Cloud computing also offers 
end users advantages in terms of mo-
bility and collaboration.

For software vendors who have shift-
ed their operations into the cloud, the 
incentives are similar to those motivat-
ing end users. Software sold or licensed 
as a product to be installed on the user’s 
hardware must be able to cope with a 
baffling variety of operating environ-
ments. In contrast, software offered 
as an Internet-based service can be de-
veloped, tested, and run on a comput-

Another recent Adobe product is Pho-
toshop Express, which has turned the 
well-known image-manipulation pro-
gram into an online service. 

Enterprise computing in the cloud. 
Software for major business applica-
tions (such as customer support, sales, 
and marketing) has generally been run 
on corporate servers, but several com-
panies now provide it as an on-demand 
service. The first was Salesforce.com, 
founded in 1999, offering a suite of on-
line programs for customer relation-
ship management and other business-
oriented tasks; the company’s slogan is 
“No software!” 

Cloudy infrastructure. It’s all very 
well to outsource the chore of build-
ing and maintaining a data center, 
but someone must still supply that in-
frastructure. Amazon.com has moved 
into this niche of the Internet ecosys-
tem. Amazon Web Services offers data 
storage priced by the gigabyte-month 
and computing capacity by the CPU-
hour. Both kinds of resources expand 
and contract according to need. IBM 
has announced plans for the “Blue 
Cloud” infrastructure. And Google is 
testing the App Engine, which provides 
hosting on Google server farms and a 
software environment centered on the 
Python programming language and the 
Bigtable distributed storage system. 

The cloud OS. For most cloud-com-
puting applications, the entire user in-
terface resides inside a single window 
in a Web browser. Several initiatives 
aim to provide a richer user experi-
ence for Internet applications. One 
approach is to exploit the cloud-com-
puting paradigm to provide all the fa-
cilities of an operating system inside a 
browser. The eyeOS system, for exam-
ple, reproduces the familiar desktop 
metaphor—with icons for files, folders, 

What are the most important IT 
challenges for the next 25 years? 
At the recent Gartner Emerging 
Trends Symposium/ITxpo, 
Gartner analysts identified 
seven IT grand challenges 
that, if met, will have profound 
economic, scientific and 
societal impacts. They are:

Eliminate the need to manu-˲˲
ally recharge wireless devices

Parallel programming applica-˲˲
tions that fully exploit multicore 
processors

Non-tactile, natural  comput-˲˲
ing interfaces

Automated computer-to-hu-˲˲
man speech translation

Reliable, long-term digital ˲˲
storage

Increase programmer produc-˲˲
tivity by 100 percent

Identify the financial conse-˲˲
quences of IT investments

“IT leaders should always be 
looking ahead for the emerging 
technologies that will have 

a dramatic impact on their 
business, and information on 
many of these future innovations 
are already in some public 
domain,” says Gartner VP Ken 
McGee. To find such information, 
Gartner suggests examining 
relevant research papers, patents, 
and production prototypes.

Information Technology

Gartner’s Seven IT Grand Challenges

For most applications, 
the entire user 
interface resides 
inside a single window  
in a Web browser.
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as PHP, Java, and Python). Information 
exchanged between the various layers 
is likely to be encoded in some varia-
tion of XML. 

Even though the new model of re-
mote computing seems to reverse the 
1980s “liberation” movement that gave 
individual users custody over programs 
and data, the shift does not necessarily 
restore control to managers in the cor-
porate IT department. 

To the extent that cloud comput-
ing succeeds, it represents an obvious 
competitive challenge to vendors of 
shrink-wrap software. Ironically, the 
open-source movement could also 
have a tough time adapting to the new 
computing model. It’s one thing to cre-
ate and distribute an open-source word 
processor competing with Microsoft 
Word; not so obvious is how a consor-
tium of volunteers would create a Web 
service to compete with Google Docs. 

Finally, cloud computing raises 
questions about privacy, security, and 
reliability—a major subject of discus-
sion at a workshop held last January 
at the Center for Information Tech-
nology Policy at Princeton University. 
Allowing a third-party service to take 
custody of personal documents raises 
awkward questions about control and 
ownership: If you move to a competing 
service provider, can you take your data 
with you? Could you lose access to your 
documents if you fail to pay your bill? 
Do you have the power to expunge doc-
uments that are no longer wanted? 

The issues of privacy and confiden-
tiality are equally perplexing. In one 
frequently cited scenario, a govern-
ment agency presents a subpoena or 
search warrant to the third party that 
has possession of your data. If you had 
retained physical custody, you might 
still have been compelled to surrender 
the information, but at least you would 
have been able to decide for yourself 
whether or not to contest the order. 
The third-party service is presumably 
less likely to go to court on your behalf. 
In some circumstances you might not 
even be informed that your documents 
have been released. It seems likely that 
much of the world’s digital informa-
tion will be living in the clouds long be-
fore such questions are resolved.	

 

Brian Hayes writes about science and technology from 
Durham, NC. 

and applications—all living in a brows-
er window. Another solution would 
bypass the Web browser, substituting 
a more-capable software system that 
runs as a separate application on the 
client computer and communicates di-
rectly with servers in the cloud. This is 
the idea behind AIR (formerly Apollo) 
being tested by Adobe Systems. Open-
Laszlo, an open-source project, works 
in much the same way.

For those deploying software out in 
the cloud, scalability is a major issue—
the need to marshal resources in such a 
way that a program continues running 
smoothly even as the number of users 
grows. It’s not just that servers must re-
spond to hundreds or thousands of re-
quests per second; the system must also 
coordinate information coming from 
multiple sources, not all of which are 
under the control of the same organiza-
tion. The pattern of communication is 
many-to-many, with each server talking 
to multiple clients and each client in-
voking programs on multiple servers. 

The other end of the cloud-comput-
ing transaction—the browser-based 
user interface—presents challenges 
of another kind. The familiar window-
and-menu layer of modern operating 
systems has been fine-tuned over de-
cades to meet user needs and expec-
tations. Duplicating this functionality 
inside a Web browser is a considerable 
feat. Moreover, it has to be done in a 
comparatively impoverished develop-
ment environment. A programmer 
creating a desktop application for Win-
dows or one of the Unix variants can 
choose from a broad array of program-
ming languages, code libraries, and 
application frameworks; major parts 
of the user interface can be assembled 
from pre-built components. The equiv-
alent scaffolding for the Web comput-
ing platform is much more primitive. 

A major challenge of moving appli-
cations to the cloud is the need to mas-
ter multiple languages and operating 
environments. In many cloud applica-
tions a back-end process relies on a re-
lational database, so part of the code is 
written in SQL or other query language. 
On the client side, program logic is 
likely to be implemented in JavaScript 
embedded within HTML documents. 
Standing between the database and the 
client is a server application that might 
be written in a scripting language (such 

Virtual Reality

A Fly’s Life
A team of Swiss and U.S. 
researchers have developed  
an interactive virtual-reality 
display system that enables 
them to better understand  
fruit flies’ behavior and 
movement in response to  
their visual environment,  
New Scientist reports. 

Led by Steven Fry of the 
Institute of Neuroinformatics  
in Zurich, the Swiss-U.S. team 
built a wind tunnel in which 
changing scenes or images are 
projected onto its walls. A camera 
tracks a fruit fly in 3D, making 
the scenes or images move in 
response to the animal’s  
activity inside the wind tunnel. 
Previous research had involved 
tethered flies which, Fry 
said, “is very unnatural and 
it becomes very difficult to 
interpret the data because  
of the strong interference by  
the experimenter.”

The team’s research, which 
has implications for animal 
behavior and biomimetic design 
control, can be readily reproduced, 
according to Fry. “Being based on 
standard hardware and software 
techniques, our methods 
provide an affordable, easy to 
replicate, and general solution 
for a broad range of behavioral 
applications in freely moving 
animals,” he says. 

Information Technology

Wireless 
Conductor 
Paths?
The conductor paths in sensor 
systems have traditionally 
consisted of thin wires—until now. 
Researchers at the Fraunhofer 
Institute for Manufacturing 
Engineering and Applied 
Materials Research in Bremen, 
Germany, have developed a new 
technique that prints conductor 
paths, using a contactless 
aerosol ink with nano-sized silver 
particles. In tests conducted with 
the Institute for Microsensors, 
Actuators and Systems at the 
University of Bremen, the printed 
conductor paths have proven 
to be nearly 500 times thinner 
than wire bonds, and the sensors 
provide significantly more 
accurate measurements.

CACM_V51.7.indb   11 6/18/08   12:53:58 PM



12    communications of the acm    |   july 2008  |   vol.  51  |   no.  7

news

Quantum Computing
Researchers are optimistic, but a practical device is years away. 

S
ince quantum algorithms 
and architectures will ul-
timately need hardware 
on which to run, we’ve ex-
plored how the principal 

experimental efforts are striving to 
produce it. Even 15 years ago, a quan-
tum computer was generally viewed 
by computer scientists and physicists 
alike as an intriguing but probably un-
attainable theoretical curiosity. But in-
terest exploded in 1994 after Peter Shor, 
then at Bell Laboratories (now at MIT), 
published his famous quantum factor-
ing algorithm capable of undermining 
widely used cryptosystems that relied 
on the difficulty of factoring large num-
bers. Today, several thousand physics, 
computer science, and engineering 
researchers in more than 100 groups 
in universities, institutes, and compa-
nies around the world are exploring the 
frontiers of quantum information, en-
compassing quantum computing, as 
well as recently commercialized quan-
tum cryptography and quantum tele-
portation communication techniques. 
Accelerating progress on virtually all 
fronts in this worldwide research com-
munity is yielding confidence that a 
practical quantum computer is indeed 
achievable. 

Quantum computing’s potential 
has always been tantalizing: Exponen-
tially scalable computing power that 
could solve problems beyond the ca-
pabilities of conventional computers. 
The key is exploiting the superposi-
tion of quantum-entangled informa-
tion units, or qubits. But the research 
challenges are daunting: How to create 
and reliably compute with the qubits, 
which require the seemingly mutually 
exclusive conditions of exquisite clas-
sical control while being isolated from 
any external influences that could de-
stroy the entanglement. 

The computing power of a quantum 
computer grows exponentially with the 
number of qubits it uses. Dozens to 
hundreds of qubits will be needed for a 

quantum computer to solve interesting 
problems using quantum algorithms 
(along with appropriate quantum er-
ror-correction techniques needed to be 
sure the answer is correct). The qubits 
must also be connected by quantum 
communication channels into logic 
gates that can be manipulated to im-
plement the algorithms. 

However, merely having and con-
necting qubits is not sufficient for a 
quantum computer. They must remain 
entangled long enough to complete the 
number of gate operations required by 

the algorithm and mandatory error cor-
rection. Faster gate operation, higher 
fidelity (percentage of gate operations 
completed correctly), and greater er-
ror-correcting efficiency can speed the 
calculation or reduce the number of 
qubits needed to solve the problem. 

More than a dozen different ways 
of creating qubits—each with its own 
strengths and challenges—have been 
developed to date. The following is a 
rundown of the leading candidates: 

Ion traps use electrical and/or mag-
netic fields and laser-cooling to create 
a “pseudo-molecule” quantum regis-
ter with micron-scale inter-ion spac-

ing. Typically, the qubit is a two-level 
motion mode for a trapped ion. The 
modes are modulated by laser pulses. 
The ion motion acts like a data bus, 
and gates are implemented by modu-
lating neighboring ions. 

“Our decoherence times can be up 
to 10 minutes—very long compared 
with other quantum computing tech-
niques,” says Dave Wineland of the 
National Institute of Standards and 
Technology, Boulder, CO. “But our 
gates are rather slow, about five micro-
seconds for our two-qubit gates.” Since 

factoring a 100-to-200-digit number 
would require a million operations, 
even error-free implementation would 
take far longer than the qubit could be 
maintained. Researchers, led by Rainer 
Blatt of the Institut fur Experimental-
physik Universtität Innsbruck in Aus-
tria, recently set the record for qubit 
fidelity: 99.3%. 

Integrating CMOS chips with ion 
traps is a recent innovation that permits 
quantum communication but uses 
classical control and measurement. 
One design created at Lucent by Rich-
ard Slusher (now at the Georgia Tech 
Quantum Institute) and Jungsang Kim 

Science  |  doi: 10.1145/1364782.1364787 	 Michael Ross

Miniature ion trap manufactured by Sandia National Laboratories.
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controllable couplings between widely 
separated qubits. However, it also re-
quires extremely low temperatures—
milliKelvins—and tends to have short 
decoherence times (to date only a few 
microseconds). John Martinis’s group 
at the University of California, Santa 
Barbara, recently measured single-
qubit fidelity of 98% in a phase-qubit 
system. And Robert Schoelkopf’s 
group at Yale developed a “transmon” 
qubit 300 microns long and very stable 
against noise. 

Hybrid approaches combine the best 
features of their parents. Chuang’s re-
search group is integrating ion traps 
into superconducting qubits. “Ion traps 
are very hard to connect to anything,” 
Chuang says. “It would be really nice to 
have an ion trap with wires coming in 
and out.” Vandersypen says that as ion 
traps get smaller they might eventually 
look similar to quantum dots. 

D-Wave Systems, a venture-backed 
company based in Vancouver, BC, 
made news twice last year when it an-
nounced the operation of a 16-qubit 
(in February) and 28-qubit (in Novem-
ber) “adiabatic” quantum computer. 
However, many scientists are skepti-
cal of both the claims and their impor-
tance. The adiabatic method, which 
is a quantum version of simulated an-
nealing, involves slowly evolving a sys-
tem toward the solution. Skeptics say 
this approach will prove to be neither 
fault-tolerant nor scalable. Although 
the company revealed scant scientific 
detail about its approach, its president 
and CEO, Geordie Rose, says it has no 
proof yet of entanglement—the hall-
mark of quantum computation. 

Diamond-based systems are an in-
triguing recent entrant. The qubit is the 
spin state of a nitrogen impurity adja-
cent to a vacancy in the carbon crystal. 

(now at Duke) is an ion-trap analogue 
to the electron-based charge-coupled 
device chips used in digital cameras. 
“This design gives addressability to an 
enormous number of ions,” says MIT’s 
Isaac Chuang.

Quantum dots are a popular solid-
state host for qubits. Lieven Vander-
sypen’s research group in Delft, The 
Netherlands, reported last November 
that it had used an alternating elec-
trical field to control single electrons 
contained in gallium arsenide quan-
tum dots. Electrical control is more 
selective than the previously used mag-
netic fields. Their fidelity of flipping a 
single-electron spin (a simple gate) is a 
little lower than the 73% attained with 
magnetic-field control but is expected 
to increase as they gain experience. Fu-
ture research will venture into no-spin 
hosts, such as silicon and carbon (car-
bon-12, nanotubes, graphene), that are 
expected to have much longer decoher-
ence times. 

Linear optic qubits are created by si-
multaneously producing forward and 
backward photons and encoding their 
logical states into vertical and horizon-
tal polarizations. This approach has the 
advantage of long decoherence times 
and compatibility with fiber optics but 
needs higher photon-creation and -de-
tection efficiencies. Last December, 
Andrew White’s group from the Uni-
versity of Queensland reported that it 
had used a linear optic circuit involving 
four qubits to find the prime factors of 
15 (5 and 3) thus demonstrating that 
system’s ability to perform the core 
processes required for implementing 
Shor’s algorithm. 

In April, Prem Kumar of Northwest-
ern University announced a quantum 
gate created within an optical fiber. 
A few years ago, Kumar showed that 
photons can remain entangled within 
a fiber for a distance of 100 kilometers. 
The recent result will be useful in cre-
ating quantum repeaters for a distrib-
uted quantum information network. 

Superconducting qubits can be made 
in three types: charge, flux, and phase. 
Each uses excitation states of Joseph-
son junctions: two superconductor 
pieces separated by an insulator thin 
enough for Cooper pairs of electrons 
to tunnel across. This approach is scal-
able, since superconductivity enables 
fast control and readout and large, 

Stemming from Tom Kennedy’s 2003 
research at the Naval Research Labora-
tory, “nitrogen-vacancy color centers” 
have two compelling advantages: their 
spin state can be both initialized and 
read out optically at room temperature 
and weak spin-orbit coupling in dia-
mond makes this qubit well-decoupled 
from its environment. Several groups 
have jumped in to study this system, 
and its decoherence time has increased 
from about 50 microseconds to nearly 
a millisecond. 

Challenges include devising ways to 
control individual qubits and couple 
them together. But David Awschalom 
of the University of California, Santa 
Barbara, is optimistic. “If you had told 
me,” he says, “a few years ago that you 
were going to try to control a single 
electron at gigahertz frequencies in a 
solid-state material at room tempera-
ture, I’d have said, ‘Good luck!’ Now 
we’re doing just that.” 

This system is also useful as an ac-
cessible test bed for studying spin in-
teraction in solid-state materials that 
may contribute to the success of other 
systems and quantum physics knowl-
edge in general. Awschalom’s group re-
cently watched quantum information 
from a single “nitrogen-vacancy cen-
ter” spin disappear into the “bath” of 
spins associated with the much more 
common nitrogen impurities not as-
sociated with vacancies…then reap-
pear. “In quantum physics, this is a big 
deal,” Awschalom says. “It’s an age-old 
problem. There have been 1,000 theory 
papers on this, but no experiments.” 

The recent across-the-board prog-
ress, however, has stimulated optimism 
in the eventual success and impact of 
quantum computing inconceivable 15 
years ago. For example, IBM Research’s 
David DiVincenzo, who proved in 1995 
that quantum algorithms could be 
executed using only two-qubit opera-
tions and later devised seven widely ac-
cepted criteria for a practical quantum 
computer, says, “I’m confident that 
the quantum computer will eventually 
change the world and will deeply influ-
ence how information processing will 
be done in the future.” 	

Michael Ross writes about science and technology from 
San Jose, CA. 

Mark Oskin, University of Washington, Seattle, 
contributed to this article. 

More than a dozen 
different ways  
of creating qubits  
have been developed  
to date.
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“There have been only a few real di-
sasters due to software. But we’re walk-
ing closer and closer to the edge,” says 
MIT’s Daniel Jackson.

Experts agree that flaws typically 
arise not from minor bugs in code, 
but during the higher-level design pro-
cess. (Security flaws, which tend to be 
caused by implementation-level vul-
nerabilities, are often an exception to 
this rule.) One class of problems arises 
at the requirements phase: program 
design requirements are often poorly 
articulated, or poorly understood. An-
other class arises from insufficient hu-
man factors design, where engineers 
make unwarranted assumptions about 
the environment in which software or 
hardware will operate. If a program 
isn’t capable of handling those unfore-
seen conditions, it may fail.

But mistakes can happen at any 
time. “Since humans aren’t perfect, 
humans make mistakes, and mistakes 
can be made in any step of the develop-
ment process,” cautions Gerard Holz-

Social  |  doi: 10.1145/1364782.1364788 	 Leah Hoffman

In Search of
Dependable Design
How can software and hardware developers  
increase the reliability of their designs?

mann of the NASA/JPL Laboratory for 
Reliable Software.

Holzmann is among a small group 
of researchers who are committed 
to developing tools, techniques, and 
procedures for increasing design reli-
ability. Currently, most programs are 
debugged and then refined by random 
testing. Testing can be useful to pin-
point smaller errors, say researchers, 
but inadequate when it comes to iden-
tifying structural ones. And tests de-
signed for specific scenarios may not 
be able to explore combinations of be-
havior that fall outside of anticipated 
patterns. The search is therefore on for 
additional strategies.

One promising technique is known 
as model checking. The idea is to verify 
the logic behind a particular software 
or hardware design by constructing 
a mathematical model and using an 
algorithm to make sure it satisfies 
certain requirements. Though the 
task can be time consuming, it forces 
developers to articulate their require-
ments in a systematic, mathematical 
way, thereby minimizing ambigu-
ity. More importantly, however, model 
checkers automatically give diagnostic 
counterexamples when mistakes are 
found, helping developers pinpoint 
what went wrong and catch flaws be-
fore they are coded.

“When people use the term ‘reliabil-
ity,’ they might have some probabilis-
tic notion that ‘only rarely’ do errors 
crop up, whereas people in the formal 
verification community mean that all 
behaviors are correct against all speci-
fied criteria,” explains Allen Emerson 
of the University of Texas at Austin. (In 
recognition of the importance of for-
mal verification techniques, the 2007 
ACM A.M. Turing Award was given to 
Edmund Clarke, Allen Emerson, and 
Joseph Sifakis for their pioneering 
work in model checking. A Q&A with 

I
n 1994, an obscure circuitry  
error was discovered in In-
tel’s Pentium I micropro-
cessor. Thomas R. Nicely, a 
mathematician then affiliated 

with Lynchburg College in Virginia,  
noticed that the chip gave incorrect an-
swers to certain floating-point division  
calculations. Other researchers soon 
confirmed the problem and identified  
additional examples. And though Intel 
initially tried to downplay the mistake, 
the company eventually responded  
to mounting public pressure by  
offering to replace each one of the 
flawed processors.

“It was the first error to make the 
evening news,” recalls Edmund Clarke 
of Carnegie Mellon University. The cost 
to the company: around $500 million.

Nearly 15 years later, the Pentium 
bug continues to serve as a sobering re-
minder of how expensive design flaws 
can be. The story is no different for soft-
ware: a $170 million virtual case man-
agement system was scrapped by the 
FBI in 2005 due to numerous failings, 
and a flawed IRS tax-processing system 
consumed billions of dollars in the late 
1990s before it was finally fixed. And in 
an era in which people rely on comput-
ers in practically every aspect of their 
lives—in cars, cell phones, airplanes, 
ATMs, and more—the cost of unreli-
able design is only getting higher. Data 
is notoriously difficult to come by, but 
a 2002 study conducted by the National 
Institute of Standards and Technology 
(NIST) estimated that faulty software 
alone costs the U.S. economy as much 
as $59.5 billion a year in lost informa-
tion, squandered productivity, and in-
creased repair and maintenance.

But it’s not just a matter of money—
increasingly, people’s lives are at stake. 
Faulty software has plunged cockpit 
displays into darkness, sunk oil rigs, 
and caused missiles to malfunction.
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Institute of Technology’s Bertrand Mey-
er and recipient of ACM’s 2006 Software 
System Award, is one well-known ex-
ample; Alloy, a tool developed by Daniel 
Jackson and the MIT Software Design 
Group, has also shown great promise. 

To supplement the new languages 
and techniques, other researchers 
have focused on outlining more effec-
tive procedures and methodologies for 
developers to follow as they work.

“I’m not a great believer in for-
mal analysis,” says Grady Booch of 
IBM Research. “Problems tend to 
appear at this curious intersection 
of the technological and the social.” 
After monitoring 50 developers for 
24 hours, for example, Booch found 
that only 30% of their time was spent 
coding—the rest was spent talking to 

“How can you ever 
hope to build a 
dependable system 
if you don’t know 
what ‘dependable’ 
means?” asks MIT’s 
Daniel Jackson.

other members of their team. Avoid-
ing miscommunication, he believes, 
is therefore critical. Booch is perhaps 
best known for developing (with Ivar 
Jacobson and James Rumbaugh) the 
Unified Markup Language, or UML, 
a language that uses graphical nota-
tions to create an abstract model of 
a software or hardware system and 
helps teams communicate, explore, 
and validate potential designs. More 
recently, he has continued to focus on 
the big picture of development with 
the online Handbook of Software Ar-
chitecture, which brings together a 
large collection of software-intensive 
systems and presents them in a man-
ner that “exposes their essential pat-
terns and that permits comparisons 
across domains and architectural 
styles.” The ultimate goal, of course, 
is to help developers apply that time-
tested knowledge to their own pro-
gramming projects.

“Reuse is easier at a higher level of 
abstraction,” explains Booch. “So we can 
reuse patterns, if not necessarily code.”

MIT’s Daniel Jackson is another 
strong believer in the “big picture” ap-
proach. “The first thing we need to do 
is be honest about the level of reliabil-
ity that we need,” he asserts. “The sec-
ond thing is to think about what really 
cannot go wrong—about what’s mis-
sion critical and what’s not.”

Rather than starting with a typical 
requirements document that outlines 

the three Turing recipients can be 
found on page 112.)

Model checking has proven extreme-
ly successful at verifying hardware de-
signs. In fact, Xudong Zhao, a graduate 
student of Clarke’s, showed that model 
checking could have found Intel’s float-
ing-point division error—and that the 
company’s fix did indeed correct the 
problem. Since then, Intel has been a 
leading user of the technique. 

But because even small programs 
can have millions of different states (a 
dilemma known to the discipline as 
the “state explosion problem”), there 
are limits to the size and complexity of 
designs that model checking can verify, 
and it’s been less immediately success-
ful for software. The verification of reac-
tive systems—the combination of hard-
ware and software interacting with an 
external environment—also remains 
problematic, due mainly to the difficul-
ty of constructing faithful models.

“We’ve come a long way in the last 
28 years, and there’s a huge, huge dif-
ference in the scale of problems we can 
address now as opposed to 1980,” says 
Holzmann. “But of course we are more 
ambitious and our applications have 
gotten more complex, so there is a lot 
more to be done.”

Other techniques include special-
ized programming languages and en-
vironments that facilitate the creation 
of reliable, reusable software modules. 
Eiffel, developed by the Swiss Federal 

Outstanding Contribution  
to ACM Award 
Robert A. Walker,  
Kent State University

Distinguished Service Award 
David A. Patterson, University  
of California at Berkeley 

Eugene L. Lawler Award for 
Humanitarian Contributions 
within Computer Science  
and Informatics  
Randy Wang,  
Microsoft Research India

Paris Kanellakis Theory  
and Practice Award  
Bruno Buchberger,  
Johannes Kepler University

Karl V. Karlstrom Outstanding 
Educator Award 
Randy Pausch,  
Carnegie Mellon University 

Grace Murray Hopper Award 
Vern Paxson, International 
Computer Science Institute  
and University of California at 
Berkeley/Lawrence Berkeley 
National Laboratory

A.M. Turing Award 
Edmund M. Clarke,  
Carnegie Mellon University 
E. Allen Emerson,  
University of Texas at Austin 
Joseph Sifakis, Centre National  
de la Recherche Scientifique  
and Verimag Laboratory

Software System Award 
David Harel, The Weizmann 
Institute of Science 
Hagi Lachover 
Amnon Naamad, EMC Corporation 
Amir Pnueli, NYU Courant  
Institute of Mathematical Sciences 
Michal Politi,  
Tadiran Electronic Systems 
Rivi Sherman, Negevtech 
Mark Trakhtenbrot,  
Holon Academic Institute of 
Technology and The Open 
University of Israel 
Aron Trauring, Zotecabv

ACM – Infosys  
Foundation Award  
Daphne Koller, Stanford University

Doctoral Dissertation Award  
Sergey Yekhanin, Princeton University 

Honorable Mentions: 
Benny Applebaum,  
Princeton University 
Vincent Conitzer, Duke University 
Yan Liu, IBM

ACM-W Athena Lecturer Award  
Shafi Goldwasser, MIT and The 
Weizmann Institute of Science

ACM – AAAI Allen Newell Award 
Leonidas J. Guibas, Stanford University

Several award winners had yet  
to be announced at press time. 
We’ll have more news about  
the 2007 ACM award winners  
in next month’s issue.

Awards

2007 ACM Award Winners
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it’s inconvenient, but it’s not a threat to 
anyone’s life,” says Holzmann. Among 
the approaches he and his lab—who 
work to guarantee the safety of the com-
puter systems that run spacecraft—are 
currently looking into is the develop-
ment of simple, yet effective, coding 
standards. His recommendations 
may seem somewhat draconian (in 
safety-critical applications, they for-
bid the use of goto statements, setjmp 
or longjmp constructs, and direct or 
indirect recursion, for example), but 
they are intended to increase simplic-
ity, prevent common coding mistakes, 
and force developers to create more 
logical architectures. Simpler pro-
grams are also easier to verify with 
tools like model checkers. After over-
coming their initial reluctance, Holz-
mann says, developers often find that 
the restrictions are a worthwhile trade-
off for increased safety.

A rigorous focus on simplicity can 
be costly, of course, especially for 
complex legacy systems that would  
be prohibitively expensive to replace 
but that need, nonetheless, to be up-
dated or further developed. So can 
taking the time out to formally articu-
late all requirements and assump-
tions, or to verify software designs. 
Yet the cost of fixing an error in the 
initial stages of development is far 
less than fixing it at the end—a lesson 
that Intel, for one, now knows well.

“Computer science is a very young 
discipline,” explains Joseph Sifakis, 
research director at CNRS. “We don’t 
have a theory that can guarantee sys-
tem reliability, that can tell us how to 
build systems that are correct by con-
struction. We only have some recipes 
about how to write good programs and 
how to design good hardware. We’re 
learning by a trial-and-error process.”	

Leah Hoffman is a Brooklyn-based freelance writer.

tasks in a procedural way, says Jack-
son, developers must first make sure 
they understand what the system is re-
ally about. What are its essential prop-
erties? Who are its stakeholders? What 
level of dependability does it need?

“How can you ever hope to build a 
dependable system if you don’t know 
what ‘dependable’ means?” he asks. 
The task itself is abstract, but Jackson 
believes that articulating all require-
ments and assumptions is crucial to 
tackling it—ideally in a formal, meth-
odological way. The most important 
thing, according to Jackson, is the act 
of articulation itself. “When you write 
things down, you often find that you 
didn’t understand them nearly as well 
as you thought you did.” And there’s al-
ways a temptation to jump to the solu-
tion before you’ve fully understood the 
problem. “That’s not to say that auto-
mated tools and techniques like model 
checking aren’t useful, of course. Tools 
are an important support, but they’re 
secondary,” says Jackson.

And the more safety-critical the ap-
plication, the more rigorous develop-
ers must be. “If your computer crashes, 
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Techniques for Designing  
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Memory Transactions

Envisioning the Future  
of Computing Research

CTO Roundtable

Part II of an interview  
with Donald Knuth

And the latest news about game 
theory, assistive technologies, and 
computing and the developing world.

Simpler programs 
are easier to verify 
with tools like model 
checkers.

Computer Science

Winning 
Strategy
St. Petersburg University of 
Information Technology, 
Mechanics and Optics recently 
won the 32nd annual ACM 
International Collegiate 
Programming Contest (ICPC) 
World Finals, held in Branff, 
Canada. It was the university’s 
second ACM-ICPC world 
championship in four years.

The annual programming 
contest started with 6,700 
teams from 1,821 universities 
in 83 countries, competing at 
213 sites around the world. 
Through a series of regional 
competitions, the field 
narrowed to 100 teams. At the 
World Finals, each three-person 
team had one computer  and five 
hours to solve 11 programming 
problems. 

 “The main goal at the World 
Finals is to solve problems,” 
says Andrey Stankevich, coach 
of the St. Petersburg University 
of Information Technology, 
Mechanics and Optics team, 
who was interviewed via email. 
“If you use your time to solve 
problems (and not to look for 
bugs in the problems already 
solved, but not accepted by 
the judges) you have time to 
solve more. So, the way to win 
the World Finals is to solve 
problems in such way that  
you don’t make bugs, and if  
the problem is accepted,  
you can immediately start 
solving another one. This 
requires cooperation in both 
thinking about problems and 
writing code.”

The winning team solved 
eight problems, followed by 
second-place Massachusetts 
Institute of Technology, third-
place Izhevsk State Technical 
University, fourth-place Lviv 
National University and fifth-
place Moscow State University, 
each of which solved seven 
problems.

The competition at each 
ACM-ICPC World Finals appears 
to be stronger than the previous 
one, and longtime contest 
sponsor IBM believes the 
global contest is good for the IT 
industry. “The value proposition 
for IBM is not only about the 
students who go on to work for 
IBM, but who go on to work for 
our clients and our business 
partners, or who become faculty 
members,” says IBM director of 
talent Margaret Ashida. “It’s a 
win for everyone.”
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I
ndia’s information technol-

ogy (IT) industry is a product 
of serendipity—it happened 
mainly by accident and partly 
by design. In the 1960s and 

1970s, there was no separate IT in-
dustry in India. Multinational compa-
nies such as U.S.-based IBM and U.K.-
based ICL were the largest providers 
of hardware, which was bundled with 
operating systems and few software 
packages that were generally written in 
FORTRAN and COBOL. Furthermore, 
Indian import duties on hardware were 
extremely high (almost 300%), and even 
IBM used to sell old, refurbished, and 
antiquated machines (because that is 
all most Indian companies could af-
ford). Hence, large enterprises (includ-
ing the Indian defense department 
and other public organizations) that 
needed customized applications usu-
ally employed in-house teams that did 
everything from installing systems to 
writing software.  

The first software company in India 
was Tata Consulting Services (TCS), 
which began operations in 1968. For-
tunately, after executing a few local or-

ders, TCS obtained its first big export 
assignment in 1973–1974, when it was 
asked to build an inventory control 
software solution for an electricity gen-
eration unit in Iran. During this period, 
TCS also developed a hospital infor-
mation system in the U.K. in coopera-
tion with Burroughs Corporation (at 
that time the second-largest hardware 
company in the world). Through its 
software exports and collaborations, 
TCS became a role model for other In-
dian IT companies later. Also, during 
the late 1970s, the Indian government 
lowered import duties on all IT equip-

ment. But there was a catch. Importers 
had to recover in exports twice the val-
ue of the foreign exchange they spent 
on importing computers. Partly as a 
result, by the early 1980s, India was the 
only developing nation to have any sig-
nificant software exports with 30 com-
panies that were beginning to export 
IT services. If we now look back at the 
1970–1980 era, it is clear that the fol-
lowing four unrelated incidents con-
tributed heavily in shaping the Indian 
IT industry:

In late 1970s, the Indian govern-˲˲

ment passed a controversial law (only 
repealed in 1992) that forced all mul-
tinational companies to reduce their 
equity share in their Indian subsidiar-
ies to less than 50%. Since IBM did not 
want to comply, it decided to leave In-
dia. This opened the market for local 
IT competitors and made Indian com-
panies generally less reliant on main-
frame computers.

The advent of personal computers in ˲˲

the 1980s reduced the cost of importing 
hardware substantially, thereby, spawn-
ing an industry that has more than 3,100 
companies today. 

Emerging Markets  
India’s Role in the 
Globalization of IT
Tracing the exponential growth of the Indian IT industry. 
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which offered software exporters a new 
way to transfer data and services and 
set the foundation for offshore busi-
ness models that could compete with 
the onsite “body shopping.”

In 1993, the U.S. Immigration and 
Naturalization Service made changes 
that made it difficult to get B-1 visas. 
Furthermore, the U. S. Department of 
Labor required that companies apply-
ing for new H-1 visas needed to certify 
that prevailing market wages were be-
ing paid to immigrant workers. Also, 
Indian software professionals who 
were brought under the umbrella of 
the Immigration Act, had to pay Social 
Security and related taxes to the U.S. 
government, creating an additional 
burden on the employees as well as 
their employers. These factors led a 
few IT companies in India to adopt 
a mixed model, which satellite links 
had already enabled, and in which 
some software programmers would 
work at the client’s premises (in the 
U.S.) whereas others would continue 
to work in their offices in India. Nev-
ertheless, the move to this new busi-
ness model was gradual because cost 
savings for the onsite model were still 
quite large, and there were clearly ad-
vantages of being in close proximity to 
the client. Even today, some IT compa-
nies continue to follow the old model 
and send 15%–25% of their program-
mers to the U.S. and other developed 
countries. 

By 1998, the IT industry in the U.S. 
and other developed countries was con-
sumed by the Y2K problem, and two 
industries—telecommunications and 

Realizing the Indian college sys-˲˲

tem was unable to provide much IT 
training, three Indian entrepreneurs 
took it upon themselves in 1982 to pro-
vide IT tutorials and training classes. 
Their early days were often marked 
with one of them driving a motorcycle 
and the other riding behind with a PC 
in his lap so that they could impart this 
training in some rented school space 
(in evenings and on weekends). Today, 
their institute (NIIT) is a multinational 
company that has helped build a sub-
stantial base of IT skills in India.

In 1985, Texas Instruments set up ˲˲

an office in Bangalore with a direct 
satellite link to the U.S. By 1989, the 
government had also commissioned a 
direct 64Kbps satellite link to the U.S., 

the Internet (with its associated dot-
com start-ups)—were booming. This 
resulted in U.S. companies hiring in-
creased numbers of computer program-
mers, and since the Y2K problem was 
mainly related to legacy software written 
in old languages like COBOL, India was 
one of the few countries that could still 
provide a sufficient number of such pro-
grammers. Consequently, the U.S. gov-
ernment was forced to increase its H-1 
quota from 65,000 in 1998 to 130,000 in 
1999 and then to 195,000 soon thereaf-
ter, and many Indian IT professionals 
moved temporarily or permanently to 
the U.S. However, in spite of the large 
influx of IT professionals, the U.S. indus-
try still could not fulfill its programming 
needs and started outsourcing large 
amounts of programming and mainte-
nance work to India. 

By early 2000, the Y2K problem had 
been solved, and both the telecom-
munications and dot-com booms had 
suffered downturns. In 2001, the U.S. 
went into a recession and the U.S. gov-
ernment reduced its H-1 quota back 
to 65,000. Far from harming India, 
though, these events showed that off-
shore outsourcing grows in both good 
times and bad times. Economic hard-
ships forced U.S. companies to reduce 
costs. As a result, they transferred even 
more IT work to India, thereby fueling 
the growth of an industry that was 
already growing exponentially.

The table here lists the revenue 
earned and the number of profession-
als employed by the Indian IT services 
industry during alternate years span-
ning 2001–2002 and projects numbers 

	 2001-02	 2003-04	 2005-06	 2007-08*	 2009-10*	 2011-12*	 2013-14*	 2015-16 *

IT Services								      

Exports	 4.5; 150	 7.3; 220	 13.2; 345	 23.1; 510	 36.7; 720	 54.5; 975	 76.9; 1,225	 101.7; 1,490

Domestic	 2.1; 160	 2.7; 190	 3.9; 250	 7.9; 400	 14.3; 615	 24.0; 870	 37.5; 1,155	 54.0; 1,485

Engineering Services,  
R&D, Software Products								      

Exports	 1.6; 55	 2.5; 75	 3.9; 105	 6.3: 145	 10.0; 205	 15.1; 280	 21.0; 365	 27.8; 430

Domestic	 0.5; 40	 0.8; 60	 1.3; 85	 2.2; 115	 3.2; 135	 5.1; 165	 6.7; 200	 9.6; 240

Total IT Industry (excluding  
Hardware and BPO sectors)	 8.7; 405	 13.3; 545	 22.3; 785	 39.5; 1,170	 64.2; 1,675	 98.7; 2,290	 142.1; 2,945	 193.1; 3,645

USD (Billion); Number of IT Professionals (‘000)    *Expected

Annual revenue and number of IT professionals employed by Indian IT services industry. 

Economic hardships 
forced U.S. companies 
to reduce costs. 
As a result, they 
transferred even 
more IT work to 
India, thereby fueling 
the growth of an 
industry that was 
already growing. 
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for future years up to 2015–2016. These 
figures do not include professionals 
who are getting trained by their employ-
ers and also do not include revenues or 
the number of professionals related to 
other business process services or hard-
ware products. The revenue numbers 
given in the first four columns have been 
sourced from the National Association 
of Software and Services Companies 
(NASSCOM; www.nasscom.org); all 
other figures have been taken from Eval-
ueserve (www.evalueserve.com), a global 
research and analytics firm.

Since India’s GDP is expected to be 
$1,100 billion in 2007–2008 and since 
this GDP is growing annually at an aver-
age of 8.5% in real terms and 14% in nom-
inal terms, this GDP is likely to be $2,400 
billion in 2015–2016. Consequently, if 
the forecasts provided by Evalueserve re-
garding the Indian IT industry turn out 
to be true, then by 2015–2016, the num-
ber of professionals working in the IT in-
dustry would have grown tenfold (from 
2001–2002 to 2015–2016), and, in nomi-
nal terms, the total revenue would have 
grown by 22 times, which would end up 
being approximately 8% of India’s GDP.

To assess what may be ahead, consider 
the current and future status of three key 
elements of the Indian IT industry:

Export of IT Services: IT export servic-
es provided from India include custom 
application development, application 
management, information systems 
outsourcing, software and hardware 
development and support, training, 
education and helpdesks, IT consult-
ing, systems integration, software test-
ing, network consulting, and network 
integration. During the last 10 years, 
exports of these services have been 
growing at an annual rate of 32%. How-
ever, Evalueserve expects this growth 
rate to slow to approximately 19% in 
the next five to six years because of a 
lack of availability of enough talent, ris-
ing wages, and increased attrition. The 
U.S. and U.K. remain the largest export 
markets, accounting for approximately 
61% and 18% of exports respectively in 
2007–2008. However, IT exports have 
also been steadily increasing to other 
countries. In particular, IT exports to 
continental Europe have witnessed no-
table gains, growing at an annual rate 
of more than 55% during the period 
2004–2007. 

Domestic Use of IT Services: India 

was a closed economy until 1991 and 
the Indian government owned many 
banks and companies that had little 
or no use for IT. However, in 1991, its 
government started opening up and 
most Indian companies had to com-
pete with both domestic and multi-
national companies that wanted to 
sell in India. Consequently, many 
such companies—including domes-
tic banks, airlines, railways, telecom-
munications companies, and other 
government-owned companies—have 
become or are in the process of be-
coming avid users of IT. Hence, the do-
mestic IT services industry has been 
growing at an annual rate of 41% dur-
ing the last two years and is expected 
to continue growing at 5%–6% per year 
more than export services for the next 
seven to eight years. This implies that 
by 2015–2016, the number of IT pro-
fessionals employed in the domestic 
IT industry would be comparable to 
that employed in the IT exports indus-
try. The domestic IT industry, which 
contributed only 0.8% to India’s GDP 
in 2006–2007, is likely to contribute 
2.7% by 2015–2016. At present, inter-
nal company departments provide 
more than 90% of all domestic IT 
services. That provides a large oppor-
tunity market for third-party vendors, 
particularly as liberalization and glo-
balization mean the types of domestic 
IT services provided within India are 

similar to those found in the industri-
alized world.

Import of IT Products and Services 
into India: In India, the number of mo-
bile phones has been increasing at ap-
proximately nine million per month, 
and the total number is likely to exceed 
340 million by the end of 2008, thereby 
making India the second-largest mo-
bile phone market after China. Inter-
estingly, IBM is already servicing ap-
proximately 50% of the mobile phone 
subscriber base in India after signing 
three 10-year contracts with Bharti Air-
tel in 2004, Idea Cellular in 2006, and 
Vodafone Essar in 2007. Most of these 
agreements require IBM to consolidate, 
transform, and manage comprehen-
sive infrastructure and applications, 
as well as to jointly develop marketing 
IT and telecommunications solutions 
and services. Clearly, such a move 
frees up these clients to do aggressive 
marketing, sales, and business devel-
opment. Although IBM may not have 
been the least-expensive provider, it 
probably won these contracts because 
it was able to bring its intellectual prop-
erty, products, and services from other 
parts of the world where it has already 
helped other very large telecommunica-
tions companies. Since Indian financial 
services (such as banks and insurance 
companies) and transportation (espe-
cially airlines) are also expanding and 
globalizing at a phenomenal pace, these 
sectors are likely to follow suit.

Across all parts of Indian IT, then, 
we see the synergistic impact of glo-
balization. Globalization helps Indian 
IT companies to grow, while Indian 
IT is becoming a digital foundation 
for many globalizing firms. As the 
Indian economy becomes more inte-
grated into the global economy, there 
is another two-way effect—more op-
portunity for global IT firms to sell to 
Indian clients. And, of course, more 
opportunity for Indian IT firms to 
sell globally.	

This is the first of the “Emerging Markets” columns. 
Subsequent columns will address the roles of other 
emerging countries in the globalization of IT, including 
China, several Eastern European countries, the Middle 
East, and Latin America.  

Alok Aggarwal (alok.aggarwal@evalueserve.com)  
is the co-founder and chairman of Evaluserve, Inc. in 
Saratoga, CA.
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remain the largest 
export markets, 
accounting for 
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and 18% of exports 
respectively in  
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IT exports have 
also been steadily 
increasing to  
other countries.
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Legally Speaking  
Revisiting Patentable 
Subject Matter 
Is everything under the sun made by humans  
patentable subject matter?

The order announcing the en banc 
review invited interested parties to 
file amicus curiae (friend of the court) 
briefs to address not only whether 
Bilski’s patent application should be 
granted, but also what test or stan-
dard should be used for judging what 
processes are eligible for patent pro-
tection. The order even asks whether  
the State Street Bank decision should 
be overturned. 

Bilski’s Claim 
Claim 1 of Bilski’s application sets 
forth three steps of his method for 
energy risk management: initiating  
a series of transactions between a com-
modity provider and consumers of the 
commodity whereby consumers would 
purchase the commodity at a fixed rate 
based on historical averages (setting 
the risk position of the consumers); 
identifying market participants for 
the commodity who have a counter-
risk position to that of consumers; and  
initiating a series of transactions  
between the commodity provider and 
market participants having a counter-
risk position at a second fixed rate 
such that transactions of the market 
participants balance out the risks  
to consumers. 

Bilski relies upon the State Street 
Bank decision in support of his claim. 
He asserts his claim recites a process 
and this method produces a useful, 
concrete, and tangible result. To under-
stand why BPAI rejected Bilski’s claim, 
a brief historical review is in order.

A
re business methods and 
software algorithms pat-
entable? Many of us think 
they shouldn’t be. How-
ever, under a 1998 U.S. 

Federal Circuit Court of Appeals 
decision in State Street Bank Bank 
v. Signature Financial Group,  they 
seem to be. That case opined that busi-
ness methods could be patented and 
regarded any process conforming to a 
dictionary definition as patentable sub-
ject matter, as long as it produces a “use-
ful, concrete, and tangible result.” This 
would include program algorithms.

Because of State Street Bank’s very 
broad interpretation of patentable 
subject matter, the U.S. Patent and 
Trademark Office (PTO) has been 
flooded with applications for patents 
on methods of all kinds, including 
business methods, methods of medi-
tation, dating methods, sports moves, 
tax strategies, and even plots for nov-
els. This capacious view of patentable 
subject matter may, however, be about 
to change.

This past February, the Federal Cir-
cuit decided to hear en banc (with the 
full court, not just the usual panel of 
three judges) an appeal by Bernard 
Bilski of a decision by the PTO 
Board of Patent Appeals and Inter-
ferences (BPAI) denying Bilski’s ap-
plication for a patent on a method 
for managing energy consump-
tion risks owing to vagaries of the 
weather for failure to claim patentable 
subject matter. 

The Supreme Court  
on Process Patents 
The Supreme Court first considered 
whether computer program processes 
could be patented in its unanimous 
1972 decision in Gottschalk v. Benson. 
Benson had applied for a patent on 
a method for transforming binary 
coded decimals to pure binary form. 
One claim called for implementing 
this algorithm in a programmed com-
puter; a second was for the algorithm 
as such. 

Section 101 of U.S. patent law states 
that “[w]hoever invents or discovers 
any new and useful process, machine, 
manufacture, or composition of mat-
ter, or any new and useful improve-
ment thereof, may obtain a patent 
therefore.” Benson’s algorithm was a 
process in the dictionary sense of the 
word, but that didn’t necessarily mean 
it was a process within the meaning of 
section 101. 

Under the Court’s past decisions, 
patentable processes had been those 
that transformed matter from one 
physical state to another. Benson’s 
process didn’t do this. Past decisions 
had also excluded laws of nature, 
mathematical and scientific princi-
ples, mental processes, and abstract 
ideas from patent protection. Because 
Benson’s method could be carried out 
in a person’s head or with aid of paper 
and pencil, it seemed like a mental 
process or abstract idea, and perhaps 
a mathematical principle. The Court 
was also disturbed that Benson’s 
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cuit’s overbroad conception of pat-
entable subject matter. So it rejected  
Bilki’s claims.

BPAI on Patentable Subject Matter 
Bilski sets forth a series of propositions 
about patentable subject matter. The 
first is that the constitutional subject 
matter for patent protection is inven-
tions in the “useful arts,” by which the 
founders meant what today we would 
call “technological arts,” or more sim-
ply, “technology.” Section 101 names 
four kinds of technologies that are eli-
gible for patent protection: processes, 
machines, manufactures, and compo-
sitions of matter. 

BPAI thinks that Congress intended 
to make every human-made machine, 
manufacture, and composition of mat-
ter eligible for patent protection, but 
doubts it intended everything under 
the sun made by humans to be eligible 
for patent protection. Computer pro-
grams, documents, music, art, and 
literature are innovations made by hu-
mans; yet, none is eligible for patent 
protection. 

Technological processes that trans-
form matter from one physical state 
to another (for example, chemical A 
mixed with chemical B to produce 
chemical C) are clearly patentable, as 
are processes that are tied to specific 
mechanical implementations. But if 
processes do not transform matter and 
are not tied to technical implementa-
tions, BPAI thinks they are not tech-
nological enough to be patentable. 
Such methods should be considered 
“abstract ideas” that are excluded from 
patent protection, as was the algorithm 
in Benson. 

Bilski questions the Federal Cir-
cuit’s “useful, concrete, and tangible 
result” test for patentable subject 
matter as lacking an authoritative ba-
sis and a sound rationale. Bilski ob-
serves that Justice Breyer’s dissent in 
Lab Corp. questioned the “useful, con-
crete, and tangible result” test for pat-
entable subject matter as not having 
been endorsed by the Court. (Indeed, 
this test is inconsistent with Benson 
and Flook.)  

Because Bilski’s method wasn’t tied 
to an implementation in a specific de-
vice and didn’t transform matter from 
one physical state to another, the BPAI 
concluded it was an unpatentable  

claims would cover (and therefore 
preempt) all uses of the algorithm, not 
just those applied to particular indus-
trial ends. 

In 1978, the Court revisited Benson 
in Parker v. Flook, which considered the 
patentability of a process for calculat-
ing and updating alarm limits for cata-
lytic conversion plants. By a 6–3 major-
ity, the Court rejected Flook’s claim 
because the only new thing about it 
was an algorithm onto which had been 
tacked conventional post-solution ac-
tivity (updating the alarm limits).

Three years later, in Diamond v. 
Diehr, the Court once again considered 
the patentability of a process involving  
a computer program. In Diehr, the 
Court ruled by a 5–4 majority that a 
process for curing rubber, one step of 
which involved a computer program 
that continuously calculated tempera-
tures inside the mold to determine 
when the rubber was properly cured, 
was a patentable process. Because 
Diehr did not abrogate Benson or Flook 
and involved a conventional process 
that transformed matter from one 
physical state to another, Diehr was ini-
tially viewed as a narrow decision for 
patenting software innovations.

The Federal Circuit, however, con-
strued Diehr more broadly by focusing 
on its dicta that everything under the 
sun made by man should be considered 
patentable subject matter. For the past 
27 years, this court has fashioned its 
own conception of patentable subject 
matter, culminating in the State Street 
Bank decision. Its recent willingness to 
reconsider State Street Bank and its ap-
proach to determining patentable sub-
ject matter may well be due to its sense 
that the Supreme Court is not satisfied 
with its rulings. 

Renewed Supreme Court  
Interest in Patents 
In the past few years, the Supreme 
Court has reviewed several Federal 
Circuit decisions and reversed that 
court’s rulings every time. In eBay v. 
MercExchange, for example, the Court 
rejected the Federal Circuit’s rigid rule 
that courts must issue injunctions in 
virtually all patent infringement cases. 
In KSR v. Teleflex, the Court reinvigo-
rated the nonobviousness standard 
for invention by rejecting the Federal 
Circuit’s approach to judging obvious-

ness. In Microsoft v. AT&T, the Court 
overturned a Federal Circuit ruling 
that Microsoft was liable for offshore 
patent infringement based on its ship-
ment to another country of a disk of 
software containing a component that 
infringed a U.S. patent.

The Supreme Court has also sig-
naled renewed interest in the Federal 
Circuit’s approach to patentable sub-
ject matter. In 2005, it accepted Lab 
Corp’s appeal from a Federal Circuit 
ruling that it had induced patent in-
fringement by providing test results 
about levels of homocysteine in pa-
tients’ blood to doctors who then cor-
related elevated levels of this amino 
acid with vitamin deficiencies and en-
hanced risks of heart disease, thereby 
infringing Metabolite’s patent. Justice 
Breyer dissented from the decision to 
drop the Lab Corp. appeal because in 
his view, Metabolite’s patent claimed 
a process that “is no more than an in-
struction to read some numbers in 
light of medical knowledge.” He be-
lieved this ran afoul of the longstand-
ing rule that laws of nature and natural 
phenomena cannot be patented. 

A year later, during oral argument 
in the Microsoft v. AT&T case, five mem-
bers of the Court asked questions 
about the patentability of computer 
programs, even though that issue was 
not before the Court. These questions 
revealed that patentable subject mat-
ter was on many Justices’ minds.

Given the Court’s renewed inter-
est in patentable subject matter, the 
BPAI seems to have decided that it was  
time to push back on the Federal Cir-

The Federal Circuit 
has the opportunity 
in Bilski to clarify  
the standard by 
which to judge what 
processes are  
eligible for patent 
protection.
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process and an abstract idea. BPAI in-
dicated its conclusion would be no dif-
ferent even if Bilski altered his claims  
to mention use of some technology,  
such as a telephone or computer, to  
carry out the method because the 
method was essentially still an ab-
stract one akin to the claim in Benson 
for implementing the algorithm in  
a programmed computer.

What Will Happen?
The Federal Circuit has the opportu-
nity in Bilski to clarify the standard 
by which to judge what processes  
are eligible for patent protection and 
why this is the right standard. It also 
has the opportunity to give substance  
to the abstract idea exclusion from  
patent protection. 

If the Federal Circuit affirms the 
BPAI rejection of Bilski’s application 
and rules that Bilski’s method is un-
patentable as an abstract idea and/
or as a non-technological process, the 
Supreme Court will probably be satis-
fied that the Federal Circuit has gotten 
the message that it should pay closer  
attention to the Court’s prior rulings 
and narrow the scope of patentable 
subject matter. 

If, however, the Federal Circuit re-
verses the BPAI’s ruling in Bilski or is 
deeply split and issues multiple opin-
ions expressing divergent theories 
about patentable subject matter, the 
Supreme Court will probably review the 
Bilski case to clarify what standards the 
PTO and Federal Circuit should apply 
in judging which processes are eligible 
for patent protection.

A decision upholding the unpatent-
ability of Bilski’s process will not do 
away with all software patents because 
some do claim technological process-
es, but many patents issued under 
the State Street Bank test, whether  
for software innovations, business 
methods, dating methods, and the 
like, would then be rendered ineffec-
tual. As things go, this would be prog-
ress. This is another patent reform 
that can and should be carried out 
through the courts.	

Pamela Samuelson (pam@law.berkeley.edu) is the 
Richard M. Sherman Distinguished Professor of Law and 
Information at the University of California, Berkeley. 
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Dear KV,
I’ve been reading your rants in Queue 
for a while now and I can’t help ask-
ing, is there any code you do like? You 
always seem so negative; I really won-
der if you actually believe the world of 
programming is such an ugly place or if 
there is, somewhere, some happy place 
that you go to but never tell your read-
ers about.

A Happy Programmer

Dear Mr. Happy,
While I will try not to take exception 
to your calling my writings “rants,” I 
have to say that I am surprised by your 
question. KV is a happy, cheerful, out-
going kind of guy who not only has a 
“happy place,” but also carries it with 
him wherever he goes, sharing joy and 
laughter with everyone around him 
and giving sweets to small children. 
(cough)

Now that I’ve bleached my brain, 
I can answer a bit more honestly. Yes, 
in fact, there are good systems and I 
have seen good code, sometimes even 
great code, in my time. I would like to 
describe one such chunk of good code 
right now. Unfortunately, it will require 
a bit of background to explain what 
the code is, but please stick with me. 
Perhaps you can relax by going to your 
“happy place” first.

One of my recent projects has been 
to extend support for something called 
hardware performance monitoring 
counters (hwpmc) on FreeBSD, the op-

erating system I work on. As the name 
indicates, hwpmc is implemented in 
hardware, and in this case hardware 
means on the CPU. I don’t know if 
you’ve ever read CPU or chip documen-
tation, but there is little in our indus-
try that is more difficult to write or less 
pleasant to read. It’s bad enough that 
the subject is as dry as the surface of 
the moon, but it’s much worse because 
the people who write such documenta-
tion either don’t understand the tech-
nology or are terrible writers, and often 
there is a fatal combination of the two. 
Starting from that base, the typical 
software engineer produces code that 
somewhat mirrors the specification, 
and as things that grow in poison soil 
themselves become poison, the code is 
often as confusing as the specification.

What is hwpmc? It is a set of coun-
ters that reside on the CPU that can 
record various types of events of inter-
est to engineers. If you want to know 
if your code is thrashing the L2 cache 
or if the compiler is generating sub-
optimal code that’s messing up the 
pipeline, this is a system you want to 
use. Though these things may seem 
esoteric, if you’re working on high-
performance computing, they’re vitally 
important. As you might imagine, such 
counters are CPU specific, but not just 
by company, with Intel being differ-
ent from AMD: even the model of CPU 
bears on the counters that are present, 
as well as how they are accessed. 

The sections covering hwpmc in 
Intel’s current manual, Intel® 64 and 

IA-32 Architectures Software Developer’s 
Manual Volume 3B: System Programming 
Guide, Part 2, encompass 249 pages: 81 
to describe the various systems on vari-
ous chips and 168 to cover all the coun-
ters you can use on the chips. That’s a 
decent-size novel, but of course with-
out the interesting story line. Kudos 
to Intel’s tech writers, as this is not the 
worst chip manual I have ever read, 
but I would still rather have been read-
ing something else. Once I had read 
through all of this background mate-
rial, I was a bit worried about what I 
would see when I opened the file.

But I wasn’t too worried, because I 
knew the programmer who wrote the 
code personally. He’s a very diligent 
engineer who not only is a good coder 
but also can explain what he has done 
and why. When I told him that I would 
be trying to add more chip models 
to the system he wrote, he sent me a 
1,300-word email message detailing 
just how to add support for new chips 
and counters to the system. 

What’s so great about this software? 
Well, let’s look at a few snippets of the 
code. It’s important to always read the 
header files before the code, because 
header files are where the structures 
are defined. If the structures aren’t de-
fined in the header file, you’re doomed 
from the start. Looking at the top of the 
very first header file I opened we see the 
code snippet shown in Figure 1. Why 
do these lines indicate quality code to 
me? Is it the capitalization? Spacing? 
Use of tabs? No, of course not! It’s the 

Kode Vicious 
Beautiful Code Exists,  
If You Know Where to Look
Coding is his game, pleasantries distained.

doi: 10.1145/1364782.1364791	 George V. Neville-Neil
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remember yet another stupid, usually 
hex, constant. I am not impressed by 
programmers who can remember they 
numbered things from 0x100 and that 
0x105 happens to be significant. Who 
cares? I don’t. What I want is code that 
uses descriptive names. Also note the 
constants in the code aren’t very long, 
but are just long enough to make it 
easy to know in the code which chip 
we’re talking about.

Figure 3 shows another fine exam-
ple from the header file. I’ve used this 
snippet so I can avoid including the 
whole file. Here, machine-dependent 
structures are separated from machine-
independent structures. It would seem 
obvious that you want to separate the 
bits of data that are specific to a cer-
tain type of CPU or device from data 
that is independent, but what seems 
obvious is rarely done in practice. The 
fact that the engineer thought about 
which bits should go where indicates a 

fact that there are version numbers. 
The engineer clearly knew his software 
would be modified not only by himself 
but also by others, and he has specifi-
cally allowed for that by having major, 
minor, and patch version numbers. 
Simple? Yes. Found often? No.

The next set of lines—and remem-
ber this is only the first file I opened—
were also instructive, as shown in Fig-
ure 2. Frequent readers of KV might 
think it was the comment that made 
me happy, but they would be wrong. 
It was the translation of constants 
into intelligible textual names. Noth-
ing is more frustrating when working 
on a piece of software than having to 

high level of quality in the code. Read 
the descriptive comments for each 
element and the indication of where 
the proper types can be found, as in 
the case of pmd_cputype being from 
enum pmc_cputtype. 

One final comment on this file. 
Note that the programmer is writing 
objects in C. Operating system kernels 
and other low-level bits of code are still 
written in C, and though there are plen-
ty of examples now of people trying to 
think differently in this respect (such 
as Apple’s Mac OS X drivers being writ-
ten in C++) low-level code will continue 
to be written in C. That does not mean 
programmers should stop using the 
lessons they learned about data encap-
sulation, but rather that it is important 
to do the right thing when possible. 
The structure listed here is an object. 
It has data and methods to act upon it. 
The BSD kernels have used this meth-
odology for 20-plus years at this point, 
and it’s a lesson that should be learned 
and remembered by others.

These are just a few examples from 
this code, but in file after file I have 
found the same level of quality, the 
same beautiful code. If you’re truly 
interested in seeing what good code 
looks like, then I recommend you read 
the code yourself. If any place is a “hap-
py place,” it is in code such as this.

KV

P.S. Complete code cross-references for 
many operating system kernels, includ-
ing FreeBSD, can be found at http://fxr.
watson.org/ and the code you’re look-
ing for can be found at: http://fxr.
watson.org/fxr/source/dev/hwpmc/.

A similar set of cross-references 
can be found on the codespelunking 
site: http://www.codespelunking.org/
freebsd-current/htags/.

Dear KV,
In his book The Mythical Man-Month, 
Frederick P. Brooks admonishes us 
with grandfatherly patience to plan 
to build a prototype—and to throw it 
away. You will anyway.

At one point this resulted in a fad-
of-the-year called prototyping (the 
programming methodology formerly 
known as trial and error), demonstrat-
ing that too little and too much are 
equally as bad.

Figure 1: Header file showing  
version numbers.

#define	 PMC_VERSION_MAJOR	0x03
#define	 PMC_VERSION_MINOR	0x00
#define	 PMC_VERSION_PATCH	0x0000

Figure 2: Translation of constants into descriptive names.

/*
 * Kinds of CPUs known
 */

#define	 __PMC_CPUS()				    \
	 __PMC_CPU(AMD_K7,   “AMD K7”)		  \
	 __PMC_CPU(AMD_K8,   “AMD K8”)		  \
	 __PMC_CPU(INTEL_P5,  “Intel Pentium”)	 \
	 __PMC_CPU(INTEL_P6,  “Intel Pentium Pro”)	 \
	 __PMC_CPU(INTEL_CL,  “Intel Celeron”)	 \
	 __PMC_CPU(INTEL_PII, “Intel Pentium II”)	 \
	 __PMC_CPU(INTEL_PIII, “Intel Pentium III”)	\
	 __PMC_CPU(INTEL_PM,  “Intel Pentium M”)	 \
	 __PMC_CPU(INTEL_PIV, “Intel Pentium IV”)

Figure 3: Machine-dependent structures 
are separated from machine-independent structures.

/*
 * struct pmc_mdep
 *
 * Machine dependent bits needed per CPU type.
 */

struct pmc_mdep {
	 uint32_t	pmd_cputype;  /* from enum pmc_cputype */
	 uint32_t	pmd_npmc;     /* max PMCs per CPU */
	 uint32_t	pmd_nclass;   /* # PMC classes supported */
	 struct pmc_classinfo pmd_classes[PMC_CLASS_MAX];
	 int pmd_nclasspmcs[PMC_CLASS_MAX];

	 /*
	  * Methods
	  */

	 int (*pmd_init)(int _cpu); /* machine dependent initialization */
	 int (*pmd_cleanup)(int _cpu); /* machine dependent cleanup */
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The sufferers of prototypitis are really 
just chicken. Not putting a line in the 
sand is a sign of cowardice on the part 
of the engineer or team. “This is just a 
prototype” is too often used as an ex-
cuse to avoid looking at the hard prob-
lems in a system’s design. In a way, 
such prototyping has become the exact 
opposite of what Mr. Brooks was trying 
to do. The point of a prototype is to find 
out where the hard problems are, and 
once they are identified, to make it pos-
sible to finish the whole system. It is 
not to give the marketing department 
something pretty to show potential 
customers—that’s what paper napkins 
and lots of whiskey are for.

Where do I stand on prototypes? 
The same place that I stand on layer-
ing or the breaking down of systems 
into smaller and smaller objects. You 
should build only as many prototypes 
as are necessary to find and solve the 
hard problems that result from whatev-
er you’re trying to build. Anything else 
is just navel-gazing. Now, don’t get me 
wrong, I like navel-gazing as much as 
the next guy, perhaps more, but what 
I do when I delve into my psychedelia 
collection has nothing, I assure you, to 
do with writing software.

KV

George V. Neville-Neil (kv@acm.org) is the proprietor 
of Neville-Neil Consulting. He works on networking and 
operating systems code for fun and profit, teaches courses 
on various programming-related subjects, and encourages 
your comments, quips, and code snips pertaining to his 
Communications column.  

© 2008 ACM 0001-0782/08/0700 $5.00

What is your view of creating proto-
types, and particularly on the question 
of how faithful a prototype needs to be 
to resolve the really tricky details, as 
opposed to just enabling the market-
ing department to get screenshots so 
they can strut the stuff?

Signed,
An (A)typical Engineer

Dear Atypical,
What do you mean by “formerly known 
as trial and error”!?! Are you telling me 
that this fad has died? As far as I can 
tell, it’s alive and well, though perhaps 
many of its practitioners don’t actu-
ally know their intellectual parentage. 
Actually, I suspect most of its practitio-
ners can’t spell intellectual parentage.

 Alas, it is often the case that a piece 
of good advice is taken too far and be-
comes, for a time, a mantra. Anything 
repeated often enough seems to be-
come truth. Mr. Brooks’ advice, as I’m 
sure you know, was meant to overcome 
the “it must be perfect” mantra that is 
all too prevalent in computer science. 
The idea that you can know everything 
in the design stage is a fallacy that I 
think started with the mathematicians, 
who were the world’s first program-
mers. If you spend your days looking 
at symbols on paper, and then only oc-
casionally have to build those symbols 
into working systems, you rarely come 
to appreciate what happens when the 
beauty of your system meets the ugly 
reality that is real hardware. 

From that starting point, it’s easy 
to see how programmers of the 1950s 
and 1960s would want to write every-
thing down first. The problem is that a 
piece of paper is a very poor substitute 
for a computer. Paper doesn’t have odd 
delays introduced by the speed of elec-
trons in copper, the length of wires, 
or the speed of the drum (now disk, 
soon to be flash). Thus, it made perfect 
sense at the time to admonish people 
just to build the damned thing, no mat-
ter what it was, and then to take the les-
sons learned from the prototype and 
integrate them into the real system.

The increasing speeds of computers 
since that advice was first given have 
allowed people to build bigger, faster, 
and certainly more prototypes in the 
same amount of time that a single sys-
tem could have been built in the past. 

The idea that you  
can know everything 
in the design stage  
is a fallacy that  
I think started with 
the mathematicians, 
who were the world’s 
first programmers.
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Point: Stephen J. Andriole

T
he field of information 
technology is changing and 
those responsible for edu-
cating the next generation of 
technology (information sys-

tems, computer science, and computer 
engineering) professionals have re-
sponded with curriculum that fails to 
address the depth, speed, or direction 
of these changes. If we want our stu-
dents to enjoy productive and mean-
ingful careers, we need to radically 
change the content of the curriculum 
of our technology majors. a 

Change
The structure of the hardware/soft-
ware/services technology industry is 
changing—morphing quickly from a 
set of fragmented hardware and soft-
ware activities and vendors to a hard-
ware/software/service provider model 
dominated by a shrinking number 
of vendors. IBM, Microsoft, HP, Dell, 
Intel, Oracle, Cisco, Accenture, EDS, 
CSC, and a few other companies are 
included in this $10B+ in revenue per 
year group.b 

a.	 A more extensive discussion of these issues 
can be found in Stephen J. Andriole, “Busi-
ness Technology Education in the Early 21st 
Century: The Ongoing Quest for Relevance,” 
Journal of Information Technology Education, 
September 2006. I am referring here primarily 
to our undergraduate educational efforts.

b.	 Matthew Aslett, “CBR 50 Largest IT Vendors,” 
Computer Business Review, July 19, 2006.

Is it improper to profile what these 
companies do and reverse engineer 
curricula? Most of these companies 
have robust R&D programs, manufac-
ture hardware and software, and solve 
industry problems with technology. 
Their activities might well provide a 
useful—and obviously relevant—cur-
riculum roadmap.

Another major trend is the stan-
dardization of software packages as 
the primary platform on which large 
enterprises compute and communi-
cate. The software necessary to con-
nect disparate software is no longer 
exclusively defined as proprietary 
middleware; instead, it’s embedded 
in applications by the major vendors 
through interoperability standards 
based on Web Services and its exten-
sions, service-oriented architecture 
(SOA), and event-driven architecture 
(EDA). Software is also installed less 
as more more companies rent applica-
tions from hosting vendors like Sales-
force.com, Microsoft, and now even 
SAP. Many CIOs really want to get out 
of the enterprise software acquisition, 
deployment, or support business: the 
demand curve for software-as-a-service 
(SaaS) is steep. c 

c.	 SaaS is growing in popularity as more compa-
nies appreciate the benefits of renting soft-
ware. This avoids the in-house implementation 
phase and large enterprise software licensing 
fees. Industry analysts from the Gartner Group 
and Forrester Research, among others, report 
that by 2012 25% of all software will be rented. 
The decline of proprietary software will also 

Relatively few vendors will produce 
most of the world’s mainstream soft-
ware in the coming years. The stan-
dardization of software will result in 
a concentration of software suppli-
ers complying with a set of expand-
ing integration and interoperabil-
ity standards incarnated in evolving 
(service-oriented and event-driven) 
architectures. Just look at the mergers 
and acquisitions that have occurred 
in the software industry over the past 
few years. How many business intelli-
gence (BI) vendors are independent? 
How many enterprise resource plan-
ning (ERP) vendors are left? Finally, 
greater amounts of software will exist 
only on servers accessed by increasingly 
thin clients. “Thin clients”—which have 
no local processing—will replace many 
“fat clients”—machines with lots of soft-
ware, processing power, and storage.

When we layer outsourcing trends 
onto software trends, we see industry 
turning to offshore providers to satisfy 
their operational support requirements 
rather than U.S.-educated profession-
als who are not receiving enough of the 
knowledge or skills that industry values 
(or is willing to pay for, compared to off-
shore labor rates). Today those require-
ments are relatively low-level operation-
al requirements but over time offshore 
providers will climb the food chain to 
more strategic technology capabili-
ties. It’s these latter areas that should 

be accelerated by the rising adoption of open 
source software.

Point/Counterpoint  
Technology Curriculum  
for the Early 21st Century 
In case you missed IT, the world has changed.

doi: 10.1145/1364782.1364792 	 Stephen J. Andriole	 Eric Roberts
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catch the attention of U.S. educators 
preparing their students for technol-
ogy careers since the sourcing battle for 
technology infrastructure and support is 
all but over—those who seek support for 
computing and communications infra-
structures are driven more by labor rates 
than tradition, more by the advantages 
of commoditization than by customi-
zation. In fact, methodologies like ITIL 
(Information Technology Infrastructure 
Library) and COBIT (Control Objectives 
for Information and Related Technol-
ogy) increasingly provide the means to 
cost-effectively manage and optimize in-
frastructures, making the infrastructure 
support business even less generous to 
technology professionals.

There are other trends changing 
the industry. R&D outsourcing is ex-
panding. Data mining has become 
customer profiling, customization, 
and personalization. Supply chains are 
becoming transparent and have gone 
global. Real-time dynamic pricing (via 
intelligent rules engines) is spreading. 
Adding to this is the convergence of all 
things digital. 

Where does technology curriculum 
address all of these trends? Where are 
the academic programs and certificates 
in SOA, EDA, hosting, SaaS, integration 
and interoperability, Web 2.0, Web 
3.0, thin-client architecture, Web Ser-
vices, open source software, sourcing 
and technology performance manage-
ment? Where do students learn about 

interoperable architectures, roaming 
connectivity, real-time processing, 
rich converged media, user-generated 
content, global supply chain optimiza-
tion, full-view business intelligence, 
predictive analytics, master data man-
agement, and crowdsourcing-based 
problem-solving?

Response
Several curriculum changes and guide-
lines have been proposed that attempt 
to address the changes in technology 
and design optimal pedagogical ap-
proaches in response to these changes. 
The Joint Task Force for Computing 
Curricula on Computing Curricula for 
the early 21st century identified five 
areas of computing degree concentra-
tions: computer engineering, com-
puter science, information systems, 
information technology, and software 
engineering. 

These areas represent the academic 
programs that the Joint Task Force 
believes represent the state of the 
field and the educational outcomes 
our students should pursue. They’ve 
identified a suite of “computing” and 
“non-computing” areas that students 
in each of the five areas should under-
stand. The list of knowledge and skills 
areas identified by the Joint Task Force 
that defines the components of the five 
areas was derived from academic pro-
grams and curricula that have evolved 
over a long period of time. I collected 

some data that also identified knowl-
edge and skills areas—but from a prac-
titioner’s perspective.d 

The table here presents the two 
sets of knowledge/skills areas side-
by-side. The contrast is dramatic. The 
Joint Task Force’s list barely correlates 
with the list developed from the prac-
titioner surveys. Academic programs 
should acknowledge the widening gap 
between theory and practice, especially 
since it has enormous impact on their 
students’ employment prospects. Re-
gardless of what we call the academic 
majors and degrees, it’s the content 
of each degree’s curriculum that will 
determine our students’ ability to find 
gainful employment.

One of the most important corpo-
rate knowledge areas today—in fact, 
the essence of business technology 
convergence—is enterprise architec-
ture. Enterprise business-technology 
architecture is the linchpin among 
business strategy, strategic applica-
tions, technology infrastructure, and 
technology support. As business is en-
abled by technology and technology 
defines new business models and pro-
cesses, the importance of enterprise 
business-technology architecture is 
increasing. This emerging core com-
petency for the practice of the tech-
nology profession is unrepresented 
in the Joint Task Force’s list of knowl-
edge and skills areas—though it is a 
huge area in our practitioner survey. 
Similarly, business technology opti-
mization is an opportunity area for ed-
ucators. Increasing numbers of com-
panies are struggling to optimize the 
performance of their software appli-
cations, networks, database manage-
ment platforms, and infrastructure. 

d.	 During the period from 2002–2005, an online 
survey sponsored by the Cutter Consortium 
(a technology industry research organization; 
www.cutter.com) collected data from Chief 
Information Officers (CIOs), Chief Technol-
ogy Officers (CTOs), technology managers, 
Chief Executive Officers (CEOs), Chief Finan-
cial Officers (CFOs), technology consultants 
and vendors about the content of the field, the 
skill sets necessary to succeed, and the tech-
nologies most likely to be applied, neglected, 
or decommissioned. Over 1,000 professionals 
responded to the survey. The survey data was 
subsequently presented to—and validated 
by—the Villanova University CIO Advisory 
Council, which consists of 25 CIOs from the 
Philadelphia, PA region.

Knowledge and skills areas and bridges.

Bridge Areas Practitioner AreasACM Task Force Areas

Computing  
Knowledge  
and Skills

Non-Computing  
Knowledge 
and Skills

Design

Integration

Interoperability

Information  
Architecture

Communications  
Architecture

Applications  
Architecture

Optimization

Metrics

Business Strategy 
Knowlege and Skills

Business Applications 
Knowledge and Skills

Enterprise Architecture 
Knowledge and Skills

Technology Infrastructure 
Knowledge and Skills

Technology Support 
Knowledge and Skills

Technology Acquisition 
Knowledge and Skills

Organization and Management 
Knowledge and Skills
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Recommendations
While distinctions between computer 
engineering (CE) and the other disci-
plines are relatively easy to appreci-
ate—especially because of the role that 
hardware plays in CE programs—the 
differences between information sys-
tems, information technology, software 
engineering, and computer science are 
much more difficult to understand and 
define, especially when we reference 
the changes occurring in the field. I 
believe there should be three flavors: 
computer engineering, computer sci-
ence, and information systems.e 

CS programs should focus less on al-
ternative programming languages and 
more on architectures, integration, and 
interoperability; less on algorithms and 
discrete structures and more on soft-
ware engineering best practices. SOA 
and EDA should be owned by CS curri-
cula as should Web 2.0 and 3.0, SaaS, 
thin client architecture, digital secu-
rity, open source software, interoper-
able architectures, roaming connectiv-
ity, near-real-time processing, and rich 
converged media, among other related 
areas. Programming? Who programs? 
And where does—and more impor-
tantly, will—programming occur? 
Programming will ultimately evolve to 
component assembly and components 
will be generated by relatively few pro-
fessionals located in the U.S., Banga-
lore, Moscow, and Shanghai working 
for IBM, Oracle, SAP, Microsoft, Tata, 
Infosys, and Google. Put another way, 
is “programming” the core competen-
cy of computer science? 

Of course there will be program-
ming jobs for our students. But the 
number of those jobs will decline, be-
come more specialized, and distrib-
uted across the globe. A simple metric: 
how many Fortune 1000 companies 
still hire programmers? In the 1980s 
and 1990s, companies like CIGNA—
where I was CTO—had hundreds of 
programmers on staff. Today, Fortune 
1000 companies have far fewer pro-
grammers than they did because of the 
rise of packaged applications and the 
labor-rate-driven sourcing options they 

e.	 The focus here is on the relationship between 
computer science and information systems; 
CE will likely remain primarily hardware fo-
cused and in engineering colleges within the 
nation’s universities.

ACM Joint Task Force knowledge and skills areas and practitioner areas.

ACM Task Force Areas 
Computing Knowledge and Skills

Programming Fundamentals˲˲
Integrative Programming˲˲
Algorithms and Complexity˲˲
Computer Architecture  ˲˲
and Organization

Operating Systems Principles and Design˲˲
Net Centric Principles and Design˲˲
Platform Technologies˲˲
Theory of Programming Languages˲˲
Human-Computer Interactions˲˲
Graphics and Visualization˲˲
Intelligent Systems (AI)˲˲
Information Management  ˲˲
(Database) Theory

Information Management  ˲˲
(Database) Practice

Scientific Computing (Numerical Methods)˲˲
Legal/Professional/Ethics/Society˲˲
Information Systems Development˲˲
Analysis of Technical Requirements˲˲
Engineering Foundations ˲˲
for Software

Engineering Economics  ˲˲
for Software

Software Modeling and Analysis˲˲
Software Design˲˲
Software Verification and Validation˲˲
Software Evolution (Maintenance)˲˲
Software Process˲˲
Software Quality˲˲
Computer Systems Engineering˲˲
Digital Logic˲˲
Distributed Systems˲˲
Security: Issues and Principles˲˲
Security: Implementation  ˲˲
and Management

Systems Administration˲˲
Systems Integration˲˲
Digital Media Development˲˲
Technical Support˲˲

Non-Computing Knowledge and Skills

Organizational Theory˲˲
Management of Information  ˲˲
Systems Organization

Decision Theory˲˲
Organizational Behavior˲˲
Organizational Change Management˲˲
E-business˲˲
General Systems Theory˲˲
Risk Management (Project, Safety Risk)˲˲
Project Management˲˲
Analysis of Business Requirements˲˲
Embedded Systems˲˲
Circuits and Systems˲˲

Practitioner Areas
Business Strategy Knowledge and Skills

Collaboration˲˲
Customization and Personalization˲˲
Supply Chain Management˲˲
Business and Technology  ˲˲
Convergence Strategy

Competitor Intelligence˲˲
Business Process Management˲˲

Business Applications  
Knowledge and Skills

Business Application Optimization˲˲
Core Business  ˲˲
Applications Management

Business Analytics˲˲

Enterprise Architecture  
Knowledge and Skills

Applications Architectures˲˲
Data Architectures˲˲
Security Architectures˲˲
Business Scenario Development˲˲
Enterprise Technology  ˲˲
Architecture Modeling

Enterprise Architecture˲˲

Technology Infrastructure  
Knowledge and Skills

Messaging/Workflow/Calendaring˲˲
Automation˲˲
Database/Content/ ˲˲
Knowledge Management

Technology Support  
Knowledge and Skills

Desktop/Laptop/PDA/Thin  ˲˲
Client Support

Data Center Operations˲˲
Server Farm Design and Maintenance˲˲
Network Design and Support˲˲
Security and Privacy˲˲
Procurement and  ˲˲
Asset Management

Asset Disposal˲˲

Technology Acquisition  
Knowledge and Skills

Business Technology  ˲˲
Acquisition Strategy

RFP and SLA Development˲˲

Organization and Management 
Knowledge and Skills

Reporting Relationships˲˲
Centralization and Decentralization˲˲
Governance˲˲
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now have. This trend will accelerate re-
sulting in fewer programming jobs for 
our students. Should we continue to 
produce more programmers?

In addition to the basics like data 
communications, database manage-
ment, and enterprise applications, 
21st-century IS programs should focus 
on business analytics, supply-chain 
optimization, technology performance 
management, business process mod-
eling, full-view business intelligence, 
sourcing, and large amounts of technol-
ogy management skills—in short, many 
of the items on the list of practitioner 
knowledge and skills.

CS programs can enable IS pro-
grams. The knowledge and skills areas 
proposed by the Joint Task Force should 
be extended to link to the knowledge 
and skills on the IS side. Clearly, the 
programs need to be coordinated—if 
we want to produce marketable human 
products.f The figure here suggests how 
this might work. The Joint Task Force 

f.	 Most CS and IS programs exist on islands in 
most universities. They seldom coordinate cur-
ricula and generally have relatively little contact.

knowledge and skills areas appear on 
the left and the practitioner knowledge 
and skills appear on the right side of the 
figure. In the middle are some “bridges” 
that might shrink the gap between the 
two areas. These bridges might become 
required for both CS and IS curricula and 
help CS programs become more relevant 
and IS programs more grounded in the 
enabling technology that supports busi-
ness processes and transactions.

The essence of these suggestions is 
that CS and IS curriculum must dramati-
cally change if we are to help our students 
compete. What was technologically signif-
icant 10 years ago is not nearly as signifi-
cant today: hardly anyone needs to know 
how to program in multiple languages 
or craft complex, elegant algorithms that 
demonstrate alternative paths to the same 
computational objective. We know more 
about what software needs to do today 
than we did a decade ago—and you know 
what? There’s less to do and support. This 
is the effect standards and commoditiza-
tion have on an industry. 

Our job as educators is to prepare stu-
dents for the technology world-to-be, not 
the-one-that-was. A simple way to design 

new CS and IS curriculum is to observe 
what practitioners do today, project 
what they’ll do tomorrow, and then 
identify the requisite enabling technol-
ogies (which will lead to new CS curricu-
lum) and applied technologies and best 
practices (which will lead to new IS cur-
riculum). I have attempted to energize 
this process by contrasting the Joint 
Task Force and practitioner knowledge 
and skills areas. I believe strongly in rel-
evance-driven education and training, 
but also realize that not everyone be-
lieves education and training are closely 
related or that universities are respon-
sible for preparing students for success-
ful careers. Many believe the creation 
and communication of selected knowl-
edge—regardless of its relevance to 
practice or professional careers—is the 
primary role of the modern university. 

Differences of opinion are usually 
healthy, so let the debate begin.	

Stephen J. Andriole (stephen.andriole@villanova.edu) 
is the Thomas G. Labrecque Professor of Business at 
Villanova University where he conducts applied research 
in business-technology convergence. 
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Counterpoint: Eric Roberts

A
s I read Stephen And-
riole’s critique of com-
puting education, I was 
reminded of the classic 
South Asian folk tale of 

the blind men and the elephant. You 
know the story: six blind men each try 
to describe an elephant after touch-
ing only a part of it. The trunk is like a 
snake, the tail is like a rope, the ear is 
like a fan, and so on. Each description 
contains a kernel of truth, but none 
comes close to capturing the reality of 
the elephant as a whole.

Andriole’s characterization of com-
puting in the early 21st century suffers 
from much the same failing in that it 
attempts to generalize observations 
derived from one part of the field to the 
entire discipline. He begins by observ-
ing, correctly, that the last few years 
have seen increasing “standardization 
of software packages as the primary 
platform on which large enterprises 

compute and communicate.” But en-
terprise software is only part of the 
computing elephant. Computing is in-
tegral to many sectors of the modern 
economy: entertainment, education, 
science, engineering, medicine, eco-
nomics, and many more. In most of 
those sectors, software is far from be-
ing a commodity product. Innovation 
in these areas continues to depend on 
developing new algorithms and writing 
the software necessary to make those 
algorithms real.

As an example, software develop-
ment remains vital in the video game 
industry, which accounts for more than 
$10 billion a year in revenue. This sec-
tor is looking for people with an entirely 
different set of skills than those Andri-
ole enumerates in his survey of “profes-
sionals” in the field—a category that he 
restricts largely to senior management 
concerned with enterprise-level infor-
mation technology. That the hiring 
criteria of a CIO for a Fortune 500 com-
pany would differ from those of a video The Blind Men and the Elephant illustration

















 by


 clara







 e
. 

atwood








 from





 A
ugusta








 S

tevenson











’s
 C

hildren









’s

 C
lassics










 in


 D
ramatic










 F
orm




: 
B

ook



 I

I
, 

1
9

0
8

.

CACM_V51.7.indb   30 6/18/08   12:54:08 PM

mailto:stephen.andriole@villanova.edu


viewpoints

july 2008  |   vol.  51  |   no.  7   |   communications of the acm     31

game developer is hardly surprising. 
The two are looking at different parts of 
the elephant.

And what does the video game industry 
look for in its technology hires? As much 
as anything, video game companies are 
in the market for people with strong 
programming skills. At the 2007 confer-
ence on Innovation and Technology in 
Computer Science Education (ITiCSE) in 
Dundee, Scotland, keynote speaker Chris 
van der Kuyl, Scotland’s leading entrepre-
neur in the video game industry, assured 
his audience that the greatest single factor 
limiting growth in his sector is a shortage of 
programming talent.

That any segment of the industry 
might be starved for programming tal-
ent will likely come as a surprise to 
someone who sees programming as a 
soon-to-be-obsolete skill. “Program-
ming? Who programs?” Andriole asks, 
with rhetorical flourish. The answer, of 
course, is that millions of people around 
the world are productively engaged in 
precisely that activity.

Contrary to the impression Andri-
ole creates in his column, there is no 
evidence that the demand for highly 
skilled software developers is declining. 
The agencies charged with predicting 
employment trends expect a substan-
tial increase in employment for people 
with software development skills. The 
Bureau of Labor Statistics, in its Decem-
ber 2007 report Employment Projections: 
2006–16, identifies “network systems 
and data communications analyst” as 
the single most rapidly growing occu-
pational category over the next decade, 
with “computer software engineers, ap-
plications” in fourth place on that same 
survey. This data is hardly suggestive of a 
job category in decline.

Employment projections are by no 
means the only evidence of continued 
demand for people with software devel-
opment skills. Business leaders from 
the top software companies routinely 
cite the shortage of technical expertise 
as the biggest stumbling block they face. 
Consider, for example, the following re-
marks by Microsoft chairman Bill Gates 
in a February 19, 2008 op-ed article for 
the San Jose Mercury News: “Today, there 
simply aren’t enough people with the 
right skills to fill the growing demand for 
computer scientists and computer engi-
neers. This is a critical problem because 
technology holds the key to progress, 

and to addressing many of the world’s 
most pressing problems, including 
health care, education, global inequal-
ity and climate change.” Other industry 
leaders—including Rick Rashid at Mi-
crosoft (see his column in this issue) and 
Google founders Larry Page and Sergey 
Brin—have raised similar concerns.

It is clear from such responses that 
not everyone in the computing indus-
try shares Andriole’s conviction that 
traditional software-development skills 
are no longer relevant. Even so, industry 
leaders across all sectors nonetheless 
have something in common: they can-
not find enough people with the skills 
they seek. Faced with a shortfall in the 
hiring pipeline, it is perhaps natural 
to argue that educational institutions 
should stop wasting time on other as-
pects of the discipline and focus of the 
skills that are just right for one particu-
lar environment. That argument would 
have merit if there were an imbalance 
between supply and demand, with too 
many degree recipients trained for 
some occupations while other jobs 
went begging. That situation, however, 
does not exist in the computing indus-
try today. There is a shortfall across the 
board, with not enough graduates to 
supply any of the major subdisciplines.

The most powerful illustration I 
have seen documenting the magnitude 
of this shortfall comes from a talk pre-
sented by John Sargent, Senior Policy 
Analyst for the Department of Com-
merce, at a February 2004 research 
conference sponsored by the Comput-
ing Research Association (CRA). The 
figure here combines the data from 
several of Sargent’s slides into a single 
graphic that plots statistics on degree 
production against the anticipated an-
nual demand for people with those 
degrees. As you can see from the left-
most set of bars, the projected annual 
number of job openings for engineers 
is approximately two-thirds the num-
ber of bachelor’s degrees produced 
each year. The situation in the physi-
cal sciences is similar at a somewhat 
smaller scale. In biology, by contrast, 
the annual number of job openings 
is only about 10% of the number of 
bachelor’s degrees. This situation 
suggests an oversupply that allows for 
increased selectivity on the part of em-
ployers, who are unlikely to hire biolo-
gists without advanced degrees.

The bar graph for computer science 
at the right of the figure, however, re-
veals an entirely different situation. Ac-
cording to projections from the Bureau 
of Labor Statistics, the number of job 
openings for computer science exceeds 
the number of people receiving bach-
elor’s degrees by almost a factor of four. 
Even if the industry were to hire every 
computer science graduate it would 
still have to look elsewhere for most of 
its new hires. That, indeed, is precisely 
what is happening. According to data 
presented by Caroline Wardle of the Na-
tional Science Foundation at the CRA 
Snowbird conference in 2002, less than 
40% of employees in computing-related 
jobs have computing degrees—a figure 
that stands in dramatic contrast to most 
other disciplines in which a degree in the 
field is part of the entry requirements. It 
is not that employers prefer candidates 
without formal training, but simply that 
there are nowhere near enough quali-
fied graduates to satisfy the demand.

The problem that we face in comput-
ing education, therefore, is to increase 
the number of students. We cannot do 
that by arguing that only certain com-
puting fields are worthy. The shortfall 
exists across the entire field. We need 
more students in each of the disciplines 
identified by the Joint ACM/IEEE-CS 
Task Force on Computing Curricula: 
computer science, computer engineer-
ing, software engineering, information 
systems, and information technology. 
Andriole would have us abandon soft-
ware engineering, despite the fact that 
Money magazine recently put “software 
engineer” in first place in a list of the 
best jobs in the U.S. and despite the 
fact that the Bureau of Labor Statistics 
identifies “software engineer, applica-
tions” as one of the fastest-growing 
job categories.

Unfortunately, one of the biggest 
challenges that the ACM faces in its 
efforts to increase student interest in 
computing careers is precisely to coun-
ter the mythology about the dangers of 
offshoring that Andriole perpetuates 
in his column. His assertion that “pro-
gramming will ultimately…be generated 
by relatively few professionals” largely 
located in places like Bangalore, Mos-
cow, and Shanghai validates the fears so 
many high-school students express that 
computing careers will vanish as soft-
ware development moves overseas. 
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The 2006 ACM report on Globalization 
and Offshoring of Software—a report 
to which Andriole contributed—finds 
no evidence to support this view. If 
anything, the opening of the offshore 
labor market in computing seems to 
have increased the number of comput-
ing jobs in the U.S., as illustrated by the 
following paragraph from the Execu-
tive Summary: “The economic theory 
of comparative advantage argues that if 
countries specialize in areas where they 
have a comparative advantage and they 
freely trade goods and services over the 
long run, all nations involved will gain 
greater wealth.…This theory is sup-
ported to some extent by data from the 
U.S. Bureau of Labor Statistics (BLS). 
According to BLS reports, despite a 
significant increase in offshoring over 
the past five years, more IT jobs are 
available today in the U.S. than at the 
height of the dot-com boom. Moreover, 
IT jobs are predicted to be among the 
fastest-growing occupations over the 
next decade.”

The reality is that the shortage of peo-
ple with the expertise industry needs is so 
severe that companies will go anywhere 
in the world that can provide workers 
with the necessary skills. If those people 
exist in Bangalore, Moscow, or Shanghai, 
then companies will hire them there. 
And if those people exist in the U.S., those 
same companies will hire them here.

Unfortunately, all too many people 
seem to believe that companies always 
seek to minimize labor costs, typically 
by employing workers at the lower sala-
ries that prevail in developing countries. 
That view, however, represents a funda-
mental misunderstanding of labor eco-
nomics. Companies are not primarily 
concerned with minimizing costs; after 
all, they could accomplish that goal by 
shutting down. Companies are in the 
business of maximizing return.

A simple thought experiment will 
make this difference clear. Suppose you 
are Microsoft and are looking to hire 
people with stellar software develop-
ment skills. One of the candidates you 

are considering is a recent graduate from 
a top-notch Silicon Valley university; giv-
en current salaries in the U.S., the cost 
of hiring this candidate might be, con-
sidering benefits and structural costs, ap-
proximately $200,000 a year. You have an-
other candidate in Bangalore who will cost 
you only $75,000. Both candidates seem 
extraordinarily well qualified and show 
every sign of being extremely productive 
software engineers, capable of generating 
perhaps $1,000,000 in annual revenue. 
What do you do?

The answer, of course, is that 
Microsoft hires them both. Although 
the software engineer in Bangalore 
might be more cost-effective, what pos-
sible reason could there be for throwing 
away $800,000 a year? As long as quali-
fied candidates are scarce and capital 
is plentiful, companies will hire anyone 
for whom the marginal value exceeds 
the marginal cost. The value that a com-
pany can recognize from the services 
of talented software developers vastly 
exceeds their costs, irrespective of in 
which country they reside or in what 
currency they are paid.

The only way software development 
jobs will move entirely overseas is if the 
U.S. abandons the playing field by failing 
to produce students with the necessary 
skills. As the New York Times editorial 
page observed on March 1, 2006, shortly 
after the publication of the ACM global-
ization report: “Perhaps that explains 
what the report says is declining interest 
in computer science among American 
college students. Students may think, 
Why bother if all the jobs are in India? 
But the computer sector is booming, 
while the number of students interest-
ed in going into the field is falling. The 
industry isn’t gone, but it will be if we 
don’t start generating the necessary dy-
namic work force.” Andriole’s failure to 
understand that the computing indus-
try extends far beyond enterprise soft-
ware and his perpetuation of the myths 
that drive students away can only make 
it more difficult to generate the dynamic 
work force the U.S. needs to remain com-
petitive in the global marketplace.	

Eric Roberts (eroberts@cs.stanford.edu) is a professor 
of computer science at Stanford University, co-chair and 
principal author of the computer science volume produced 
by the joint ACM/IEEE-CS Task Force on Computing 
Curricula 2001, and past chair of the ACM Education Board. 
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U.S. degree production and annual employment projections.

  Ph.D.
  Master’s
  Bachelor’s
  Projected job openings

Physical SciencesEngineering

Source: Adapted from a presentation by John Sargent, Senior Policy Analyst, Department of Commerce, at the 
CRA Computing Research Summit, February 23, 2004. Original sources listed as National Science Foundation/
Division of Science Resources Statistics; degree data from Department of Education/National Center for Educa-
tion Statistics: Integrated Postsecondary Education Data System Completions Survey; and NSF/SRS; Survey of 
Earned Doctorates; and Projected Annual Average Job Openings derived from Department of Commerce (Office 
of Technology Policy) analysis of Bureau of Labor Statistics 2002–2012 projections. 
See www.cra.org/govaffairs/content.php?cid=22.

Even though the statistics in the figure are derived from surveys taken several years ago, there is no reason  
to believe the situation has changed in any qualitative way. Comparing the 2002 and 2006 reports from the 
Bureau of Labor Statistics suggests that employment demand may have shifted by as much as 10% percent  
in certain categories. The fundamental message of the figure would not change even if the numbers were off  
by a factor of two.
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Image Crisis 
Inspiring a New Generation  
of Computer Scientists 
Consider what you can do to encourage young people to  
pursue technology-related career paths.

I
s computer science a dying 
profession? That may seem 
like an odd question. After all, 
computers are omnipresent 
in our day-to-day lives. Their 

importance to the way we run our 
businesses, communicate, and use 
information has never been greater. 
Computing is an essential tool for 
discovery and advancement in virtu-
ally every field of science. And as we 
move forward, computing holds the 
key to progress in almost every hu-
man endeavor. 

And yet the fact remains that, in the 
U.S. at least, computer science as a pro-
fession is beginning to wither away. 

There is ample evidence to support 
this conclusion. A recent UCLA survey 
found that in 2006, barely 1% of incom-
ing freshman planned to major in com-
puter science, compared with nearly 
5% 25 years ago. According to the most 
recent version of the Computer Re-
search Association’s annual Taulbee 
report, just 12,498 computer science 
and computer engineering degrees 
were awarded last year, a one-year drop 
of almost 20%. Even more alarming, to-
tal undergraduate enrollment in com-
puter science and computer engineer-
ing has fallen 50% during the past five 
years, to just 46,000 students. 

All this comes at a time when de-
mand for computer scientists is stron-
ger than it has been for many years. 
Today, IT employment is 17% higher 
than it was at the height of the dot-
com bubble. According to the U.S. 

Bureau of Labor Statistics, we will 
add an annual average of 100,000 new 
computer-related jobs through 2014, 
with careers in computer science the 
fastest-growing of all “professional 
and related occupations.” 

These numbers actually understate 
the severity of the problem. Enroll-
ment in computer science and com-
puter engineering programs in the U.S. 
consists of a disproportionate number 
of foreign-born students, particularly 
at the graduate level: last year, more 
than half of master’s and doctoral de-
grees granted by U.S. universities were 
awarded to non-U.S. citizens. Thanks to 
a combination of security restrictions 
here and increasing job opportunities 
in their home countries, fewer num-
bers of these students are choosing to 
remain in the U.S. to work.

Left unchecked, these trends will 
inevitably undermine our ability to 
compete in the global economy. For 
decades, the ability of U.S. companies 
to transform innovations into success-
ful businesses has been the founda-
tion for our economic growth. Tech-
nologies such as the microprocessor, 
the Internet, and fiber optics that were 
developed by scientists and engineers 
trained in U.S. universities laid the 
foundation for new industries that gen-
erated millions of high-paying jobs. 

But if the number of young people 
in the U.S. who study computer sci-
ence continues to decline, the center 
of gravity for innovation will shift to 
countries where students flock to uni-

versities to pursue degrees in the tech-
nical fields that will enable tomorrow’s 
breakthroughs. 

As head of Microsoft Research, I am 
acutely aware of the impact that the 
shortage of computer professionals 
can have. Although the majority of our 
researchers are based in the U.S. and 
these facilities continue to grow, we 
are expanding our research facilities in 
other parts of the world, in part because 
we recognize that this may be the only 
way we can continue to find and hire 
the world’s top computer scientists. I 
also see the increasing difficulty that 
Microsoft has in filling positions that 
require a high level of training and skill 
in computer science and engineering.

And, as co-chair of the Image of 
Computing Task Force with Jim Foley 
of Georgia Tech, I am committed to 
working with colleagues from indus-
try, academia, and government to un-
derstand why interest in computer sci-
ence is declining in the U.S. and learn 
what we can do to encourage young 
people to pursue technology-related 
careers. Founded by Foley, and based 
at the University of Colorado in Boul-
der, the Image of Computing Task 
Force is spearheading a national effort 
to help young people recognize the vi-
tal role that computing plays in almost 
every field and see the opportunities 
that come with a solid background in 
computer science.

Through my work with Jill Ross, di-
rector of the Image of Computing Task 
Force, I’ve spoken with high school 
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and college students from across the 
country. What I’ve learned from these 
conversations and from the growing 
body of research into why students are 
losing interest in computing gives me 
hope that we can inspire a new genera-
tion of bright young people to pursue 
careers in computer science and relat-
ed fields. At the heart of falling interest 
in computer science are fundamental 
misconceptions about the work we do, 
our ability to make a difference in the 
world, and the job opportunities our 
field offers. If we can change these per-
ceptions, we can ensure that instead of 
withering, our profession will thrive. 

One barrier to interest in computer 
science is the unfortunate and deeply 
held stereotype of the solitary male pro-
grammer who slaves over a keyboard 
and subsists on snack food. A major-
ity of young people subscribe to this 
stereotype and believe the job of the 
computer scientist consists of endless 
days spent alone in front of a computer 
screen. A survey of high school students 
enrolled in calculus and pre-calculus 
courses—students likely to have an 
aptitude for computer science—found 
that half have already decided not to 
pursue computer science as a major 
because they don’t want to “sit in front 
of a computer all day.”

The problem is even more acute 
among women. A study of college un-
dergraduate women who had achieved 
high SAT scores found that 70%–80% of 
them chose not to major in computer 
science and computer engineering be-
cause they felt they “would not enjoy 
the work.” Young people also under-
estimate the role that computing can 
play in changing the world. To most 
high school and college students, the 
job of the computer scientist is simply 
to write code. What they don’t under-
stand is that most of us chose to write 
code because we understood the pow-
er of computing as a tool for tackling 
important problems. 

A study that compared computer 
science graduates at Georgia Insti-
tute of Technology with students who 
switched from computer science to 
another major is instructive. In that 
study, a typical graduate student who 
stayed in the major defined comput-
ing as “creating the applications…that 
allow computers to solve real-world 
problems.” Students who left the ma-

jor saw it as an exercise in “learning 
how to manipulate code,” and they as-
sumed their work experience would be 
“boring…debugging code in front of a 
computer screen all day.” 

Finally, the post-dot-com downturn 
notion that there aren’t many open-
ings in the field persists, compounded 
by the belief that computer-related 
jobs are quickly being outsourced. The 
message that many students hear from 
parents and teachers is that computer 
science is not a good career choice, 
despite U.S. Bureau of Labor Statistics 
reports indicating it is one of this coun-
try’s fastest-growing professions.

Last February, I met with a number 
of high school and college students 
who are deeply interested in computer 
science. My goal was to learn what in-
spired them and find out what they 
think we can do to help inspire their 
peers. Part of what I learned was the 
important role an adult—a good teach-
er or an interested mentor—can play in 
encouraging an interest in computing. 

One such student is Evie Powell, a 
Ph.D. candidate in game design at the 
University of North Carolina at Char-
lotte. From a family that discouraged 
her love of math and computers, she 
struggled as an undergraduate until 
she took an introductory game devel-
opment course. “This class and its pro-
fessor turned out to be the inspiration I 
needed,” she said.

Today, Evie is also active in the 
STARS Alliance, a program that aims 
to increase participation by women 
and minorities in computing. “I hope 
to reach out to those who feel like they 
don’t have a place in such a technical 
field of study,” she said. “And hopefully 
show them early on that they too…have 
much to offer to the discipline.”

I also met UNC Charlotte student 
Lane Harrison. He started college with 
a vague interest in computing but felt 
he lacked the background and con-
fidence to succeed. Now a third-year 
computer science and mathematics 
major, he says exceptional teaching 
was the catalyst for his decision to 
pursue computing. He too is active in 
the STARS Alliance and has spoken to 
more than 1,000 high school students 
about his enthusiasm for computing.

I was thrilled by the passion for com-
puting that Evie, Lane, and the other stu-
dents I met with share. I also came away 

from those meetings feeling that those 
of us already in the field should see the 
work they are doing to encourage other 
young people as a personal challenge. 

As ACM members, shouldn’t we 
be even more committed to spending 
time out in the community and shar-
ing our enthusiasm for computing 
than Evie and Lane are? Isn’t it really 
up to us to show the next generation 
of potential computer scientists how 
exciting it is to work in a field where 
we have the opportunity to advance sci-
ence, cure diseases, and tackle global 
warming? Shouldn’t we be the ones 
out there demonstrating that our work 
consists less of debugging code than it 
does of collaborating with colleagues 
to develop new ideas and create solu-
tions to difficult challenges? 

How can we do this? By visiting 
schools and community groups to 
share our passion for our field and to 
make clear that a career in computing 
is filled with great jobs and incredible 
opportunities. By bringing young peo-
ple to the places where we work so they 
can see what we really do. We can do it 
by offering internships and taking the 
time to mentor a young person and en-
courage their interest in math, science, 
and computing. 

We also need to reach out to the peo-
ple who have the greatest influence on 
young people: parents, teachers, coun-
selors, and the media. Talk with teach-
ers and professors and encourage them 
to show their students not only how to 
write code, but why computing is such 
a powerful way to solve problems. 

Speak with parents or guidance 
counselors and make clear to them 
that computing is a career path that 
offers high-paying job opportunities 
unmatched by almost any other profes-
sion. Talk to journalists and empha-
size the importance of computing as a 
driver for innovation and progress, and 
encourage them to provide a realistic 
picture of the work we do that goes be-
yond the traditional stereotype of the 
geek programmer. 

If you are like me, you entered this 
field to make a difference. This is your 
opportunity. The future of our profes-
sion depends on it. 

Rick Rashid (rashid@microsoft.com) is a senior vice 
president for research at Microsoft Corporation.

© 2008 ACM 0001-0782/08/0700 $5.00
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scared that I was going to flunk out, but 
still I was ready to work.

He initially aspired to be  
a physicist, but something 
happened along the way.
In my sophomore year in physics I 
had to take a required class of weld-
ing. Welding was so scary and I was 
a miserable failure at it, so I decided 
maybe I can’t be a physicist. On the 
other hand—mathematics! In the 
sophomore year for mathematicians, 
they give you courses on what we now 
call discrete mathematics, where you 
study logic and things that are integers 
instead of continuous quantities. I was 
drawn to that. That was something, 
somehow, that had great appeal to me.

I think that there is something 
strange inside my head. It’s clear that 
I have much better intuition about dis-
crete things than continuous things. In 
physics, for example, I could pass the 
exams and I could do the problems in 
quantum mechanics, but I couldn’t in-
tuit what I was doing. But on the other 
hand, in my discrete math class, these 
were things that really seemed a part 
of me. There’s definitely something in 
how I had developed by the time I was 
a teenager that made me understand 
discrete objects, like zeros and ones 
of course, or things that are made out 
of alphabetical letters, much better 
than things like Fourier transforms 
or waves. 

I’m visualizing the symbols. To me, 
the symbols are reality, in a way. I take 

doi: 10.1145/1364782.1364794	 Len Shustek

T
he Computer History Mu-
seum has an active program  
to gather videotaped histo-
ries from people who have 
done pioneering work in 

this first century of the information 
age. These tapes are a rich aggregation  
of stories that are preserved in the col-
lection, transcribed, and made available 
on the Web to researchers, students, 
and anyone curious about how inven-
tion happens.

The oral histories are conversations 
about people’s lives. We want to know 
about their upbringing, their families, 
their education, and their jobs. But 
above all, we want to know how they 
came to the passion and creativity that 
leads to innovation.

Presented here in two installments 
(concluding next month) are excerptsa  
from an interview conducted by Ed-
ward Feigenbaum in March 2007 of 
Donald E. Knuth, Professor Emeritus of  
The Art of Computer Programming at 
Stanford University.	 — L. S.

Don talks about his 
family background.
My father was the first person among 
all his ancestors who had gone to col-
lege. My mother was the first person in 
all of her ancestors who had gone to a 

a	 Oral histories are not scripted, and a transcript 
of casual speech is very different from what 
one would write. I have taken the liberty of 
editing and reordering freely for presentation. 
For the original transcript, see http://archive.
computerhistory.org/search/oh/

year of school to learn how to be a typist. 
My great-grandfather was a blacksmith. 
There was no tradition in our family of 
higher education at all. These people 
were pretty smart, but they didn’t have 
an academic background.

Some people know from an early 
age what they want to do. Don 
didn’t, but he knew he wanted to 
work hard.
My main interest in those days was mu-
sic. But at the college where I had been 
admitted, people emphasized how easy 
it was going to be there as a music ma-
jor. When I got the chance to go to Case 
Institute of Technology in Ohio instead, 
I was intrigued by the idea that Case 
was going to make me work hard. I was 

Interview
The ‘Art’ of Being
Donald Knuth 
In this first of a two-part talk, the renowned scholar and computer scientist 
reflects on the influences that set the course for his extraordinary career. 
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algebraic formula on cards and feed 
the cards into the machine. The lights 
spin around for a few seconds and then 
out come machine language instruc-
tions that set X1 equal to X2 + X4. Au-
tomatic programming coming out of 
an algebraic formula! Well, this blew 
my mind. I couldn’t understand how it 
was possible to do this miracle. I could 
understand how to write a program 
to factor numbers, but I couldn’t un-
derstand how to write a program that 
would convert algebra into machine 
instructions.

It hadn’t yet occurred to him 
that the computer was a general 
symbol-manipulating device?
No. That occurred to Lady [Ada] Love-
lace, but it didn’t occur to me. I’m slow 
to pick up on these things, but then I 
persevere.

I got hold of the source code for IT. 
I went through every line of that pro-
gram. During the summer we typically 
had a family get-together on a beach on 
Lake Erie where we spent time playing 
cards and playing tennis. But that sum-
mer, I spent most of the time going 
through this listing, trying to find out 
the miracle of how IT worked. Okay, 
it wasn’t impossible after all. In fact, 
I thought of better ways to do it than 
were in that program.

The code, once I saw how it hap-
pened, was inspiring to me. Also, the 
discipline of reading other people’s 
programs was something good to 
learn early. Throughout my life I’ve 
had a love of reading source materi-
als—reading something that pioneers 
had written and trying to understand 
their thought processes, especially 
when they’re solving a problem I don’t 
know how to solve. This is the best way 
for me to get my own brain past the 
stumbling blocks. At Case I remem-
ber looking at papers that [Pierre de] 
Fermat had written in Latin in the 
17th century, in order to understand 
how that great number theorist ap-
proached problems.

But it’s been hard to  
communicate the love of reading 
historical programs.
I would say that’s my major disap-
pointment with my teaching career. 
I was not able to get across to any of 
my students this love for that kind of 

a mathematical problem, I translate it 
into formulas, and then the formulas 
are the reality.

He discovers computers, and 
how hard programming is.
I wrote my first program for the IBM 
650 [a vacuum tube magnetic drum 
computer from the 1950s], probably 
in the spring of my freshman year, and 
debugged it at night. The first time I 
wrote the program, to find the prime 
factors of a number, it was about 60 in-
structions long in machine language. 
They were almost all wrong. When I 
finished, it was about 120 or 130 in-
structions. I made more errors in this 
program than there were lines of code! 

My first program taught me a lot 
about the errors that I was going to be 
making in the future, and also about 
how to find errors. That’s sort of the 
story of my life, making errors and try-
ing to recover from them. I try to get 
things correct. I probably obsess about 
not making too many mistakes.

At Case he learns  
about early compilers
For the IT (“Internal Translator”) pro-
gram for the 650 you would punch an 

scholarship—reading source material.  
I was a complete failure at passing this 
on to the people that I worked with the 
most closely. 

He graduates from Case 
and becomes a professional 
compiler writer while traveling 
to the California Institute of 
Technology for graduate school.
I had learned about the Burroughs 205 
machine language, and it was kind of 
appealing to me. So I made my own 

My first program 
taught me a lot about 
the errors that I was 
going to be making  
in the future, and also 
about how to find 
errors. That’s sort 
of the story of my 
life, making errors 
and trying to recover 
from them. I try to 
get things correct. 
I probably obsess 
about not making too 
many mistakes.
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Heading out to California, I drove 100 
miles each day and then sat in a motel 
and wrote code.

But he rejects “compiler writer”  
as a career, and decides what is  
important in life.
Then a startup company came to 
me and said, “Don, write compil-
ers for us and we will take care of 
finding computers to debug them. 
Name your price.” I said, “Oh, okay, 
$100,000,” assuming that this was 

proposal to Burroughs. I said, “I’ll write 
you an ALGOL compiler for $5,000. But 
I can’t implement all of ALGOL for this; 
I am just one guy. Let’s leave out proce-
dures.” Well, this is a big hole in the 
language! Burroughs said, “No, you’ve 
got to put in procedures.” I said, “Okay, 
I will put in procedures, but you’ve got 
to pay me $5,500.” That’s what hap-
pened. They paid me $5,500, which was 
a fairly good salary in those days. So be-
tween graduating from Case and going 
to Caltech, I worked on this compiler. 

[outrageous]. The guy didn’t blink. 
He agreed. I didn’t blink either. I 
said, “I’m not going to do it. I just 
thought that was an impossible 
number.” At that point I made the 
decision in my life that I wasn’t go-
ing to optimize my income.

I spent a day that summer look-
ing at the mathematics of how fast 
linear probing works. I got lucky, and 
I solved the problem. I figured out 
some math, and I kept two or three 
sheets of paper with me and I typed 
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He starts The Art of  
Computer Programming.
A man from Addison-Wesley came to 
visit me and said “Don, we would like 
you to write a book about how to write 
compilers.” I thought about it and de-
cided “Yes, I’ve got this book inside of 
me.” That day I sketched out—I still 
have that sheet of tablet paper—12 
chapters that I thought should be in 
such a book. I told my new wife, Jill,  
“I think I’m going to write a book.” 
Well, we had just four months of bliss, 
because the rest of our marriage has all 
been devoted to this book. We still have 
had happiness, but really, I wake up ev-
ery morning and I still haven’t finished 
the book. So I try to organize the rest of 
my life around this, as one main unify-
ing theme.

George Forsythe [founder of the 
Computer Science Department at 
Stanford] came down to southern Cali-
fornia for a talk, and he said, “Come 
up to Stanford. How about joining 
our faculty?” I said “Oh no, I can’t do 
that. I just got married, and I’ve got to  
finish this book first. I think I’ll fin-
ish the book next year, and then I can 
come up [and] start thinking about the 
rest of my life. But I want to get my book 
done before my son is born.” Well, John  
is now 40-some years old and I’m not 
done with the book. 

This is really the story of my life,  
because I hope to live long enough 
to finish it. But I may not because it’s 
turned out to be such a huge project. 

1967 was a big year.
It was certainly a pivotal year in my life. 
You can see in retrospect why I think 
things were building up to a crisis, be-
cause I was just working at high pitch 
all the time. I was on the editorial board 
of Communications of the ACM and 
Journal of the ACM—working on their 
programming languages sections—
and I took the editorial duties very seri-
ously. I was a consultant to Burroughs 
on innovative machines. I was con-
sumed with getting The Art of Computer 
Programming done. And I was a father 
and husband. I would start out every 
day saying “Well, what am I going to ac-
complish today?” Then I would stay up 
until I finished it.

It was time for me to make a ca-
reer decision. The question was where 
should I spend the rest of my life? 

it up.b This became the genesis of 
my main research work, which devel-
oped not to be working on compilers, 
but to be working on the analysis of 
algorithms. It dawned on me that 
this was just one of many algorithms 
that would be important, and each 
one would lead to a fascinating math-
ematical problem. This was easily a 
good lifetime source of rich prob-
lems to work on.

If you ask me what makes me 
most happy, number one would 
be somebody saying “I learned 
something from you.” Number two 
would be somebody saying “I used 
your software.”

At Caltech he finds a mentor, 
but can’t talk to him.
I went to Caltech because they had 
[strength] in combinatorics, although 
their computing system was incred-
ibly arcane and terrible. Marshall 
Hall was my thesis advisor. He was a 
world-class mathematician, and for a 
long time had done pioneering work 
in combinatorics. He was my mentor. 
But it was a funny thing, because I was 
in such awe of him that when I was in 
the same room with him I could not 
think straight. I wouldn’t remember 
my name. I would write down what he 
was saying, and then I would go back 
to my office so that I could figure it 
out. We couldn’t do joint research to-
gether in the same room. We could do 
it back and forth.

He also was an extremely good ad-
visor, in better ways than I later was 
with my students. He would keep 
track of me to make sure I was not 
slipping. When I was working with my 
own graduate students, I was pretty 
much in a mode where they would 
bug me instead of me bugging them. 
But he would actually write me notes 
and say, “Don, why don’t you do such 
and such?”

The research for his Ph.D. 
thesis takes an hour.
I got a listing from a guy at Princeton 
who had just computed 32 solutions 
to a problem that I had been looking 
at for a homework problem in my com-
binatorics class. I was riding up on the 

b	 “Notes on Open Addressing.” Unpublished memoran-
dum, July 22, 1963; but see http://algo.inria.fr/AofA/
Research/11-97.html

elevator with Olga Todd, one of our 
professors, and I said, “Mrs. Todd, I 
think I’m going to have a theorem in 
an hour. I am going to psyche out the 
rule that explains why there happen to 
be 32 of each kind.” Sure enough, an 
hour later I had seen how to get from 
each solution on the first page to the 
solution on the second page. I showed 
this to Marshall Hall. He said, “Don, 
that’s your thesis. Don’t worry about 
this block design with �=2 business. 
Write this up instead and get out of 
here.” So that became my thesis. And it 
is a good thing, because since then only 
one more design with �=2 has been 
discovered in the history of the world. 
I might still be working on my thesis if 
I had stuck to that problem. But I felt a 
little guilty that I had solved my Ph.D. 
problem in one hour, so I dressed it up 
with a few other chapters of stuff.

He’s never had trouble finding 
problems to work on.
The way I work it’s a blessing and  
a curse that I don’t have difficulty 
thinking of questions. I have to actively 
suppress stimulation so that I’m not 
working on too many things at once. 
The hard thing for me is not to find  
a problem, but to find a good problem. 
One that will not just be isolated to 
something that happens to be true, but 
also will be something that will have 
spin-offs, so that once you’ve solved 
the problem, the techniques are going 
to apply to many other things.

If you ask me what 
makes me most 
happy, number one 
would be somebody 
saying “I learned 
something from you.” 
Number two would  
be somebody saying 
“I used your software.” 
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Should I be a mathematician? Should 
I be a computer scientist? By this time 
I had learned that it was actually pos-
sible to do mathematical work as a 
computer scientist. I had analysis of 
algorithms to do. What would be a 
permanent home? My model of my 
life was going to be that I was going 
to make one move in my lifetime to a 
place where I had tenure, and I would 
stay there forever.

The crisis comes.
At Caltech, I was preparing my class lec-
tures, or typing my book. I didn’t have 
time to do research. If I had a new idea, 
if I said “Here’s a problem that ought to 
be solved,” when was I going to solve it? 
Maybe on the airplane. We were doing a 
lot of experiments but I didn’t have time 
to sit down at home and work out the 
theory for it. I had attribute grammars 
coming up in February, and these re-
ductions systems coming up in March, 
and I was supposed to be grinding out 
Volume Two of The Art of Computer Pro-

gramming. I was scheduled in June to 
lecture at a summer school in Copen-
hagen about how to parse, what’s called 
top-down parsing. 

What happened then, in May, is I 
had a massive bleeding ulcer, and I was 
hospitalized. My body gave out. I was 
just doing all this stuff, and it couldn’t 
take it. 

I learned about myself. The doc-
tor showed me his textbook that de-
scribed the typical ulcer patient: what 
people call the “Type A” personality. It 
described me to a T. All of the signs 
were there. I was an automaton, I 
think, basically. I saw a goal and I put 
myself to it, and I worked on it and 
pushed it through. I didn’t say no to 
people when they asked, “Don, can you 
do this for me?” At this point I saw I 
had this problem. I shouldn’t try to do 
the impossible.

He changes his lifestyle, 
and moves to Stanford.
I wrote a letter to my publisher, framed 
in black, saying, “I’m not going to be 
able to get the manuscript of Volume 
Two to you this year. I’m sorry.” I re-
signed from 10 editorial boards. No 
more JACM, no more CACM. I gave up 
all of the editorships in order to cut 
down my workload. I started working 
on Volume Two where I left off at the 
time of the ulcer, but I would be careful 
to go to sleep and keep a regular sched-
ule. I went to a conference in Santa Bar-
bara on combinatorial mathematics 
and had three days to sit on the beach 
and develop the theory of attribute 
grammars, this idea of top-down and 
bottom-up parsing.

In February of 1968 I finally got the 
offer from Stanford. The committees 
were saying, “This guy is just 30 years 
old.” But when they looked at the book, 
they said, “Oh, there’s some credibility 
here.” That helped me.

Why he writes his books with a pencil.
I love keyboards, but my manuscripts 
are always handwritten. The reason is 
that I type faster than I think. There’s 
a synchronization problem. I can think 
of ideas at about the rate I can write 
them down with a pencil. But with typ-
ing I’m going faster, so I have to sync, 
and my thoughts have to start up and 
stop again in a way that involves more 
of my brain.

Three volumes of “The Art” are 
done, but it’s time for a pause.
Volume Four is about combinatorial 
algorithms. Combinatorial algorithms 
were such a small topic in 1962, when 
I made that Chapter Seven of my out-
line, that Johan Dahl asked me, “How 
did you ever think of putting in a chap-
ter about combinatorial algorithms in 
1962?” I said, “Well, the only reason 
was that it was the part I thought was 
most fun.” But there was almost noth-
ing known about it at the time. 

The way I look at it, this is where 
you’ve got to use some art. You’ve got 
to be really skillful, because one good 
idea can save you six orders of magni-
tude and make your program run a mil-
lion times faster. People are coming up 
with these ideas all the time. For me, 
the combinatorial explosion was the 
explosion of research in combinato-
rics. Not the problems exploding, but 
the ideas were exploding. There’s that 
much more to cover now.

It’s true that in the back of my mind 
I was scared stiff that I can’t write Vol-
ume Four anymore. So maybe I was 
waiting for it to simmer down. Some-
body did say to me once, after I solved 
the problem of typesetting, maybe I 
would start to look at binding or some-
thing, because I had to have some oth-
er reason [to delay]. I’ve certainly seen 
enough graduate student procrastina-
tors in my life. Maybe I was in denial.	

He solves the problem of typesetting?  
Stay tuned for Part II of this interview 
in the August issue and learn how 
Knuth interrupted his life’s work on 
The Art of Computer Programming to  
create a system that makes digitally  
produced books beautiful.

Edited by Len Shustek, Chair, Computer History Museum

© 2008 ACM 0001-0782/08/0700 $5.00

I told my new wife, 
Jill, “I think I’m  
going to write a book.” 
Well, we had just 
four months of bliss, 
because the rest of 
our marriage has 
all been devoted to 
this book. We still 
have had happiness, 
but really, I wake up 
every morning and  
I still haven’t finished 
the book. So I try  
to organize the rest  
of my life around  
this, as one main 
unifying theme.
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T he  Extensible Markup Language (XM L), which just 
celebrated its 10th birthday,4 is one of the big success 
stories of the Web. Apart from basic Web technologies 
(URIs, HTTP, and HTML) and the advanced scripting 
driving the Web 2.0 wave, XML is by far the most 
successful and ubiquitous Web technology. With great 
power, however, comes great responsibility, so while 
XML’s success is well earned as the first truly universal 
standard for structured data, it must now deal with 
numerous problems that have grown up around it. 
These are not entirely the fault of XML itself, but 
instead can be attributed to exaggerated claims and 
ideas of what XML is and what it can do.

This article is about the lessons 
gleaned from learning XML, from 
teaching XML, from dealing with over-
ly optimistic assumptions about XML’s 
powers, and from helping XML users 
in the real world recover from these 
misconceptions. Shamelessly copying 
Alex Bell’s “Death by UML Fever,”1 we 
frame our observations and the root of 
the problems along with possible cures 
in terms of different categories and 
strains of “XML fever.” We didn’t invent 
this term, but it embodies many inter-
esting metaphors for understanding 
the use and abuse of XML, including 
disease symptoms, infection methods, 
immunization and preventive mea-
sures, and various remedies for treating 
those suffering from different strains.

XML fever can be acquired in many 
different ways, but the most prevalent way 
is to be infected by the idea that XML en-
ables almost magical universal interop-
erability of information producers and 
consumers. XML fevers can be classified 
as basic, intermediate, and advanced:

Basic strains infect XML neophytes, 
but most of them recover quickly. It 
can be disappointing to discover that 
the landscape of XML technologies 
is not as simple as expected, and that 
working with the associated tools re-
quires some getting used to, but most 
people develop some immunity to the 
XML hype and quickly begin to do use-
ful work with it.

Intermediate strains of XML fever 
are contracted when XML users move 
beyond simple applications involving 
structured information and encoun-
ter models of data, documents, or pro-
cesses. A recurring symptom in these 
varieties of XML fever is mild paralysis 
brought on by having to select a sche-
ma language to encode a model, trying 
to choose among the bewildering num-
ber of features in some languages, or 
trying to “round-trip” a model between 
different environments.

Advanced strains of XML fever often 
take hold after exposure to the prolif-
eration of more complex and esoteric 
XML-based technologies layered on 
top of it. These advanced diseases are 

XML 
Fever

doi: 10.1145/1364782.1364795

Don’t let delusions about XML develop into a 
virulent strain of XML fever.

by ERIK WILDE AND ROBERT J. GLUSHKO
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harder to catch, but they are also hard-
er to remedy because people who have 
caught these advanced strains tend to 
congregate with others with the same 
diseases and they are continually rein-
fecting each other.

Basic Strains
One of our favorite teaching moments 
is to start an introductory XML lecture 
with the statement, “XML is a syntax for 
trees,” and that this is all there is to it, 
so no further explanation is required. 
Of course, there is more to it, and we 
manage to fill a complete course with 
it, but the essence of XML really is sim-
ple and small. This is elegant to us but 
a disappointment to many XML begin-
ners who expect something bigger and 
more complicated to match up with 
all the hype they have heard. In fact, 
XML’s character-based format lures 
many XML beginners to assume they 
can simply use their trusted text-pro-
cessing tools, which is the inevitable 
path to the first XML fever:

Parsing pain. At first sight, XML’s 
syntax looks as if it would be easy to 
use simple text-processing tools for ac-
cessing XML data, so that a “desperate 
Perl hacker” could implement XML in 
a weekend. Unfortunately, not all XML 
documents use the same character en-
coding; character references must be 
interpreted; entities must be resolved; 
and so on... As soon as the output from 
a wider array of XML producers is con-
sidered, it becomes apparent that for 
robustly parsing XML with text-pro-
cessing tools, the tools must imple-
ment a complete XML parser. This 
becomes most painfully evident when 
XML processing needs to take XML 
Namespaces into account (often lead-
ing to an infection with the intermedi-
ate namespace nausea fever).

After overcoming parsing pain and 
starting to use an XML parser, begin-
ners usually understand what we mean 
when we say that XML is a syntax for 
trees, but they do not as quickly grasp 
that XML uses multiple tree models, 
and depending on which XML technol-
ogy one is using, the “XML tree” looks 
slightly different. Thus, the second ba-
sic strain of XML fever is:

Tree trauma. This is caused by ex-
posure to XML’s various tree models, 
such as XML itself, DOM, the Infoset, 
XPath 1.0, PSVI, and XDM. All of these 

tree models share XML’s basic idea of 
trees of elements, attributes, and text, 
but have different ways of exposing 
that model and handling some of the 
details. In fact, while XML itself explic-
itly states that XML processors must 
implement all of XML (apart from vali-
dation, the standard has no optional 
parts, which is a smart thing for a stan-
dard to do), some of the more recent 
tree models exhibit the “extended sub-
set” nature of technologies, which can 
often lead to incompatibilities among 
implementations. For example, PSVI—
the data model of an XML document 
validated by an XML Schema (for the 
rest of the article, we refer to W3C’s 
language as XSDL)—is based on the 
Infoset, which is a subset of the full in-
formation of an XML document, and 
extends that subset with information 
made available by the schema and the 
validation process.

While XML is available in a number 
of various “tree flavors,” the W3C has 
settled (after a very long process) on the 
Infoset model as the core of many XML 
technologies. This means it would be 
technically more accurate to say that 
most XML technologies available today 
are actually Infoset technologies. XML 
has become one way (and so far the only 
standardized one, but with the upcom-
ing binary Infoset format EXI as a more 
compact alternative) of representing 
Infosets. Of course, the W3C does not 
want to give up the brand name of XML 
and still calls everything “XML-based.” 
As a result, XML users can easily get af-
fected by a peculiar ailment:

Infoset ignorance. Instead of XPath, 
XSLT, and XQuery, these technologies’ 
proper names would be IPath, ISLT, and 
IQuery, because they are Infoset-based. 
Victims of Infoset ignorance take the 
W3C’s branding of everything as XML 
at face value and sometimes invest a lot 
of energy trying to build XML process-
ing pipelines that preserve character 
references and other markup details. 
Infoset ignorance prevents its victims 
from seeing that this approach cannot 
succeed as long as they are using stan-
dards-based tools.

The remedy for Infoset ignorance 
is to select a set of XML technologies 
with compatible tree models. This usu-
ally also cures tree trauma, because now 
XML users can focus on a specific variety 
of XML tree. Depending on the specific 

technologies chosen, though, tree trau-
ma can metastasize into a more severe 
disease caused by failure to appreciate 
the somewhat obscure ways in which 
some XML technologies process trees:

Default derangement. Tree trauma 
can develop into default derangement 
if XML users are exposed to and experi-
ment with schema languages such as 
DTDs and XSDL that allow default val-
ues. These languages cause XML trees 
to change based on validation, which 
means that XML processing is critically 
based on validation. Because it is often 
not feasible to quarantine XML users to 
keep them from these schema languag-
es, a better prescription is to put them on 
a strict diet of design guidelines to avoid 
these potentially dangerous features.

Among the core components of vir-
tually all XML scenarios today are XML 
Namespaces. They are essential for 
turning XML’s local names into glob-
ally unique identifiers, but the spe-
cifics of how namespaces can be de-
clared in documents, and the fact that 
namespace names are URIs that do not 
need to be dereferenceable, have not 
yet failed once to confound everybody 
trying to start using them. A very popu-
lar XML fever thus is:

Namespace nausea. No matter 
how often we try to explain that XML 
Namespaces have no functionality be-
yond the simple association of local 
names and namespace names, many 
myths and assumptions surround 
them. For example, many students as-
sume that namespaces must refer to 
existing resources and ask us how to 
“call the namespace in a program.” 
And even though they should be sim-
ple, XML is often serialized by tools 
that do not allow much control over 
how namespaces are treated, creating 
XML documents that exhibit various 
kinds of correct but very confusing 
ways of using namespaces. A particu-
larly nasty secondary infection caused 
by namespace nausea can be con-
tracted when using a specific kind of 
XML vocabulary:

Context cataracts. If QNames (the 
colon-separated names combining 
namespace prefixes and local names) 
are allowed to appear as content of 
XML documents (such as in attribute 
values or element content), they make 
the content context dependent. This 
means that such XML content can be 
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correctly interpreted only within its 
context in the XML document (where 
all in-scope namespace declarations 
can be accessed), or it must be decon-
textualized by parsing it and replacing 
each QName with a context-indepen-
dent representation. Unfortunately, no 
standard exists for this latter approach, 
which makes this contextualized con-
tent brittle and hard to work with.

The strains described so far mani-
fest themselves in basic XML process-
ing tasks. As soon as XML users begin 
work with business information and 
processes, they must confront the 
challenge of understanding what XML 
structures actually mean. This task 
exposes them to a dangerous virus en-
coded in the catchy slogan that XML is 
“self-describing.” 

We could be charitable and assume 
that when people say XML is self-
describing, what they really mean is 
“compared with something else that 
clearly isn’t.” The least self-describing 
information consists of just a stream 
of alphanumeric characters of some 
text format, as they might be on a 
punch card. This delimiter-less en-
coding does not even make explicit 
the tokenization of the characters into 
meaningful values, so there is not any 
“self” to which any description could 
be assigned. The possibility of self-
description emerges only when we 
separate the values with commas or 
some other delimiter character, which 
tells us what information components 
must be described. XML goes one step 
further with the syntactic mecha-
nisms of paired text labels to distin-
guish the information components 
in a stream of text and quotes to as-
sociate one bit of information as an 
attribute of another. It is certainly 
fair to say that XML is on average 
more self-describing than other text-
based encoding syntaxes, but that is 
like saying the average dwarf is taller 
than the average baby; neither is tall 
enough to excel at basketball.

From a more technical perspec-
tive, it is also true that XML is self-
describing in the limited sense that 
the data structure (one of the XML 
trees, see tree trauma) can be recon-
structed from an XML document (and 
maybe its schema, if processing takes 
place in an environment susceptible 
to default derangement).

When most people say that XML 
is self-describing, however, they are 
being captured by a delusion that this 
refers to actual semantics, overlook-
ing the fact the XML has almost no 
predefined semantics (the only excep-
tion being one predefined attribute for 
identifying languages). The disease is 
most likely caused by the many XML 
examples that show element and at-
tribute names that seem to be self-
describing because they are labeling 
the syntactic components. It could be 
prevented with examples that merely 
show how the XML markup characters 
distinguish the information being de-
scribed from the markup that is part of 
its structural description:

<xxx yyy=”4567”>850</xxx>  
<zzz>20060812</zzz> 

Using syntactic mechanisms to provide 
clues to the element and attribute seman-
tics is convenient, but this is the cause of a 
very common strain of XML fever:

Self-description delusion. XML’s 
ability to define names for elements 
and attributes, and the widespread 
assumption that these names have 
some intrinsic semantics, often cause 
victims to assume that the semantics 
of an XML document are self-evident, 
openly available just by looking at it 
and understanding the names. Fre-
quently, this strain of XML fever causes 
great discomfort when the victims 
learn that XML does not deal with se-
mantics, and that common under-
standing has to be established through 
other mechanisms. Victims weakened 
by self-description delusion are often 
infected by one or more of the inter-
mediate or advanced strains of XML 
fever, which promise to easily and per-
manently cure the pain caused by self-
description delusion.

Recovery from self-description de-
lusion can take a great deal of personal 
commitment and effort. Victims must 
learn how to define or adapt an XML 
vocabulary, or to adopt technologies 
that are explicitly focused on seman-
tics, not just syntax. In either case, 
these steps risk exposure to strains of 
XML fever beyond the basic types.

Intermediate Strains
If self-description delusion is appropri-
ately diagnosed and treated, XML users 

While XML’s 
success is well 
earned as the first 
truly universal 
standard for 
structured data, it 
must now deal with 
numerous problems 
that have grown 
up around it. These 
are not entirely the 
fault of XML itself, 
but instead can 
be attributed to 
exaggerated claims 
and ideas of what 
XML is and what it 
can do.
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and assumptions and hacks get built 
into systems, which inevitably cause 
interoperability problems later on.

If model myopia is diagnosed (often 
by discovering that two implementa-
tions do not interoperate correctly be-
cause of different sets of assumptions 
built into these implementations), 
the key step in curing it is to define a 
schema so that the XML structures to 
be used in documents are well defined 
and can be validated using existing 
tools. As soon as this happens, the ob-
vious question is which schema lan-
guage to use. This can be the beginning 
of another troublesome development:

Schema schizophrenia. DTDs are 
XML’s built-in schema language, but 
they are limited in their expressiveness 
and do not support essential XML fea-
tures (most notably, they do not work 
well with XML Namespaces). After con-
sidering various alternative languages, 
the W3C eventually settled on XSDL, a 
rather complex schema language with 
built-in modeling capabilities. XSDL’s 
expressiveness can directly cause an 
associated infection, caused by the in-
ability to decide between modeling al-
ternatives:

Schema option paralysis. XSDL’s 
complexity allows a given logical mod-
el to be encoded in a plethora of ways 
(this fever will mutate into an even 
more serious threat with the upcoming 
XSDL 1.1, which adds new features that 
overlap with existing features). A cure 
for schema option paralysis is to use 
alternative schema languages with a 
better separation of concerns (such as 
limiting itself to grammars and leaving 
data types and path-based constraints 
to other languages), most notably RE-
LAX NG.

Using more focused schema lan-
guages and targeting a separation of 
concerns leaves schema developers 
with a choice of schema languages. In 
addition, at times it would be ideal to 
combine schema languages to capture 
more constraints than any one could 
enforce on its own. The choice of sche-
ma languages, however, is more often 
determined by available tool support 
and acquired habits than by a thorough 
analysis of what would be the most ap-
propriate language.

Since schema schizophrenia (with 
occasional bouts of schema option 
paralysis) can be a painful and long-

often recover with improved insight. 
They now realize that XML’s basic tech-
nologies and toolset can be employed 
for basic processing tasks involving 
structured data, but that most applica-
tions involve models of the application 
data or processes. XML is based on tree 
structures as the basic model, and this 
does not always provide the best fit for 
application-level models, which can 
cause trouble when mapping these 
nontree structures to XML:

Tree tremors. Whereas tree trauma 
(discussed earlier) is a basic strain of 
XML fever caused by the various fla-
vors of trees in XML technologies, tree 
tremors are a more serious condition 
afflicting victims trying to manage 
data in XML that is not inherently tree-
structured. The most common causes 
are data models requiring nontree 
graph structures and document mod-
els needing overlapping structures. In 
both cases, mapping these models to 
XML’s tree model results in XML struc-
tures that cannot conveniently repre-
sent the application-level model.

We often tell students that “the best 
thing about XML is the ease with which 
you can create a new vocabulary.” But 
because XML allows well-formed docu-
ments (as opposed to valid documents 
that must conform to some schema), it 
is actually possible to use vocabularies 
that have never been explicitly created: 
documents can simply use elements 
and attributes that were never declared 
(let alone defined) anywhere. Well-
formedness can be appropriate dur-
ing prototyping but is reckless during 
deployment and almost certainly sub-
verts interoperability. Unfortunately, 
many XML users suffer from a condi-
tion that prevents them from seeing 
these dangers:

Model myopia. Starting from a proto-
type based on well-formed documents, 
some developers never bother to devel-
op a schema, let alone a well-defined 
mapping between such a schema and 
the application-level data model. In sce-
narios leading to this condition, valida-
tion often is only by eye (key phrases for 
this technique are “looks good to me” 
or “our documents usually sort of look 
like these two examples here”), which 
makes it impossible to test documents 
strictly for correctness. Round-trip 
XML-to-model and reverse transforma-
tions cannot be reliably implemented, 

lasting condition, one tempting way 
out is not to use schema languages 
as the normative encoding form for 
models and instead generate schemas 
from some more application-oriented 
modeling environment or tool. Very 
often, however, these tools have a dif-
ferent built-in bias, and they rarely sup-
port document modeling. This causes 
a very specific problem for generated 
schemas:

Mixed content crisis. XML’s origin as 
a document representation language 
gives it capabilities to represent com-
plex document structures, most nota-
bly mixed content, essential in publi-
cations and other narrative document 
types. Most non-XML modeling envi-
ronments and tools, however, are data 
oriented and lack support for mixed 
content. These tools produce XML 
structures that look like table dumps 
from a relational database, lacking the 
nuanced document structures that are 
crucial in a document-processing envi-
ronment.

Because the approach of generat-
ing schemas has the advantage that 
developers of XML schemas never have 
to actually write them (or even look at 
them), it also can be the cause of one of 
the most troubling XML problems that 
is often experienced when encoun-
tering schemas generated from UML 
models or spreadsheets:

Generated schema indigestion. More 
abstract models have to be mapped to 
XML vocabularies for XML-based infor-
mation exchange. Most modeling tools 
and development environments export 
models to XSDL and use that schema 
for serializing and parsing instances. 
Because of the perniciousness of sche-
ma schizophrenia, however, this mod-
el-to-schema encoding is complex and 
tool dependent. Generated schema 
indigestion often afflicts those who try 
to use the schema or instances outside 
the context of the tools that generated 
them. This first contact with generated 
schemas can be very frustrating and 
distasteful, because unless the same 
XML encoding rules are followed in 
both contexts, XML might not be easy 
to work with and certainly is neither in-
teroperable nor extensible.

These intermediate strains of XML 
fever mostly revolve around the prob-
lem of how to create and use well-de-
fined descriptions of XML vocabular-
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We always tell 
students the worst 
thing about XML 
is the same as the 
best thing: the ease 
with which you 
can create a new 
vocabulary.

ies. Before we continue to describe the 
more advanced strains of XML fever 
that may result from these intermedi-
ate fevers and attempts to cure them, 
it is important to point out that a good 
way of avoiding them is to reuse exist-
ing XML languages, thus avoiding the 
efforts and risks of inventing some-
thing new.

In an online follow-up to “On Lan-
guage Creation,”3 Tim Bray (one of the 
creators of XML) says, “If you’re going 
to be designing a new XML language, 
first of all, consider not doing it.” This 
is a very important point, because the 
ubiquity of XML makes it likely that 
for any given problem, somebody else 
might have already encountered it 
and solved it. Or for a given problem, 
it might be possible to divide it into 
smaller parts or to map it to a more 
general problem, and to find existing 
solutions for these. 

Of course, there is a chance that no 
prior work exists or that the available 
solutions are unsatisfactory, but it re-
ally is worth the effort to evaluate exist-
ing solutions because a vocabulary can 
represent hundreds or even thousands 
of hours of analysis and encoding. For 
example, the Universal Business Lan-
guage (UBL), a set of information build-
ing blocks common to business trans-
actions and several dozen standard 
documents that reuse them, is the re-
sult of years of work by numerous XML 
and business experts—and the UBL 
effort itself began in 2001 by building 
on the XML Common Business Library 
(xCBL), on which work began in 1997. 

We always tell students the worst 
thing about XML is the same as the 
best thing: the ease with which you can 
create a new vocabulary. Language de-
sign is fundamentally hard, but XML 
has made it deceptively simple by low-
ering the syntactic threshold. The con-
ceptual tasks of creating shared vocab-
ularies that are globally understood, 
well defined in every necessary respect, 
and reasonably easy to use have not 
been made easier by XML. XML has 
just given us a good toolset to describe 
and work with these languages once 
we have them, but defining them still 
is hard work.

This, of course, is not a secret to 
computer scientists, and the fact that 
XML has no semantics when they are 
essential to meaningful information 

exchange led to the idea of the Seman-
tic Web.2 The value proposition of the 
Semantic Web is compelling: a com-
mon way of representing semantics 
makes it easier to express, understand, 
exchange, share, merge, and agree on 
them. The Semantic Web, however, is 
also the leading cause of the more ad-
vanced strains of XML fever. 

Advanced Strains
If semantics are important, and since 
an XML schema defines only struc-
tures (that is, syntax), then semantics 
must be specified in some other way. 
This can happen informally by prose 
describing the meaning of the individ-
ual components and parts of a schema, 
or more formally, by using some model 
for specifying semantics. The Seman-
tic Web is the most popular candidate 
for such an environment; it is based on 
a model for making statements about 
resources, the Resource Description 
Framework (RDF), with various tech-
nologies layered on top of that, such as 
those for describing schemas for RDF.

One important observation about 
the Semantic Web that is often missed 
is that it introduces not only models 
for semantics (various schema lan-
guages for RDF), but also a new data 
model, which means that XML’s tree 
structures are no longer the core data 
structures for representing data. RDF 
can be expressed in XML, but there are 
many different ways of doing it, which 
can cause a very specific illness:

RDF rage. RDF’s most widely used 
syntax is XML based, but there are 
many different ways in which the same 
set of RDF triples can be expressed 
as XML, so working with RDF data is 
almost impossible using basic XML 
tools, even for simple tasks such as 
comparing RDF data. This inability to 
use a seemingly related toolset for a 
seemingly related task often is the first 
symptom through which XML users 
learn that they are now suffering from 
more advanced strains of XML fever.

In a more classical view of infor-
mation organization, the meaning of 
terms can be specified in a variety of 
ways. Ordered by complexity, popular 
approaches are controlled vocabular-
ies, taxonomies, thesauri, and ontolo-
gies. RDF can be used to implement 
any of these concepts, but RDF sche-
mas are most often referred to as on-
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tologies. This is in part a result of free 
standards-based tools for creating on-
tologies such as Protégé and SWOOP; 
just as we mentioned with schema op-
tion paralysis, the availability of tools 
shapes the languages people use and 
the choices they make. The relative 
unfamiliarity and the vague “hipness” 
of the “ontology” world, however, can 
give XML users anxiety about their abil-
ity to adjust to the RDF/OWL world with 
more rigorous semantics. As a result, 
they often overcompensate:

Ontology overkill. Operating in an 
environment that focuses on seman-
tics, victims of ontology overkill tend 
to overmodel semantics, creating ab-
stractions and associations that are 
of little value to the application but 
make the model much harder to un-
derstand and use. Ontology overkill 
forces its sufferers not only to over-
model, but also often to fail at doing 
so, because it is much harder to define 
an ontology (in its fullest sense), and 
to identify, understand, and validate 
all its implications, than it is to define 
a controlled vocabulary.

If XML fever sufferers come in con-
tact with communities where Seman-
tic Web ideas are widespread and well 
established, they quickly discover that 
most of their knowledge acquired in 
the basic and intermediate phases of 
the XML learning curve does not ap-
ply anymore. The reason for this is that 
the Semantic Web creates a completely 
self-contained world on top of other 
Web technologies, with the only inter-
section being the fact that resources are 
identified by URI. As a result, Semantic 
Web users become blissfully unaware 
that the Web may have solutions for 
them or that there could be a simpler 
way of solving problems. Seeing the 
Semantic Web as the logical next step 
of the Web’s evolution, we can observe 
the following condition:

Web blindness. This is a condition 
in which the victim settles into the 
Semantic Web to a degree where the 
non-Semantic Web does not even exist 
anymore. In the pure Semantic Web, 
lower-level technologies no longer 
need to evolve, because every problem 
can be solved on the semantic layer. 
Web blindness victims often are only 
dimly aware that many problems in 
the real world are and most likely will 
be solved with technologies other than 

Semantic Web technologies.
If victims of Web blindness have 

adjusted to their new environment of 
abundant RDF and start embracing the 
new world, they may come in contact 
with applications that have aggregated 
large sets of RDF data. While RDF tri-
ples are a seemingly simple concept, 
the true power of RDF lies in the fact 
that these triples are combined to form 
interconnected graphs of statements 
about things, and statements about 
statements, which quickly makes it 
impossible to use this dataset without 
specialized tools. These tools require 
specialized data storage and special-
ized languages for accessing these 
stores. Handling these large sets of 
data is the leading cause of an RDF-
specific ailment:

Triple shock. While RDF itself is sim-
ple, large datasets easily contain mil-
lions of triples (for truly large datasets 
this can go up to billions), and man-
aging and querying such a big dataset 
can become a considerable challenge. 
If the schema of these large datasets 
is simple, but ontology overkill has set 
in and it has been reformulated as an 
ontology, handling this dataset may 
become considerably harder, without 
any immediate benefit.

Semantic Web technologies may be 
the correct choice for projects requiring 
fully developed ontologies, but Semantic 
Web technologies have little to do with 
the plain Web and XML. This means that 
neither should be regarded as a cure for 
basic or intermediate XML fevers, and 
that each has its own set of issues, which 
are only partially listed here.

The Prescription
We probably cannot prevent these vari-
eties of XML fever, especially the basic 
strains, because it is undoubtedly a re-
sult of the hype and overbroad claims 
for XML that many people try it in the 
first place. We can do a better job of 
inoculating XML novices and users 
against the intermediate and advanced 
strains, however, by teaching them that 
the appropriate use of XML technolo-
gies depends on the nature and scope 
of the problems to which they are ap-
plied. Heavyweight XML specifications 
such as those developed by OASIS, 
OMG, and other standards organiza-
tions are necessary to build robust en-
terprise-class XML applications, and 

Semantic Web concepts and tools are 
prerequisites for knowledge-intensive 
computation, but more lightweight ap-
proaches for structuring and classify-
ing information such as microformats 
will do in other contexts.

When someone first learns about it, 
XML may seem like the hammer in the 
cliché about everything looking like a 
nail. Those of us who teach XML, write 
about it, or help others become effec-
tive users of it, however, can encourage 
a more nuanced view of XML tools and 
technologies that portrays them as a set 
of hammers of different sizes, with a va-
riety of grips, heads, and claws. We need 
to point out that not everyone needs a 
complete set of hammers, but infor-
mation architects should know how to 
select the appropriate hammer for the 
kind of hammering they need to do. 
And we should always remember that 
pounding nails is only one of the tasks 
involved in design and construction.

XML has succeeded beyond the 
wildest expectations as a convenient 
format for encoding information in  
an open and easily computable fashion. 
But it is just a format, and the difficult 
work of analysis and modeling informa-
tion has not and will never go away.	
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The  past  few  years  have been an exciting time for 
flash memory. The cost has fallen dramatically as 
fabrication has become more efficient and the market 
has grown; the density has improved with the advent 
of better processes and additional bits per cell; and 
flash has been adopted in a wide array of applications. 

The flash ecosystem has expanded and 
continues to expand—especially for 
thumb drives, cameras, ruggedized 
laptops, and phones in the consumer 
space. One area where flash has seen 
only limited success, however, is in the 
primary storage market. As the price 
trend for flash became clear in recent 
years, the industry anticipated its ubiq-
uity for primary storage, with some so 
bold as to predict the impending de-
mise of rotating media (undeterred, 
apparently, by the obduracy of mag-
netic tape). But flash has not lived up 
to these high expectations. The brunt 
of the effort to bring flash to primary 
storage has taken the form of solid-
state disks (SSDs), flash memory pack-

aged in hard-drive form factors and de-
signed to supplant conventional drives. 
This technique is alluring because it re-
quires no changes to software or other 
hardware components, but the cost of 
flash per gigabyte, while falling quick-
ly, is still far more than hard drives. 
Only a small number of applications 
have performance needs that justify 
the expense. 

Although flash’s prospects are tan-
talizing, the challenge is to find uses for 
it that strike the right balance between 
cost and performance. Flash should be 
viewed not as a replacement for exist-
ing storage, but rather as a means to 
enhance it. Conventional storage sys-
tems mix dynamic memory (DRAM) 
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and hard drives; flash is interesting 
because it falls in a sweet spot between 
those two components for both cost 
and performance in that flash is signif-
icantly cheaper and denser than DRAM 
and significantly faster than disk. Flash 
can accordingly augment the system to 
form a new tier in the storage hierar-
chy—perhaps the most significant new 
tier since the introduction of the disk 
drive with RAMAC in 1956. 

Properties of Flash 
Flash has two distinct categories: 
NAND and NOR—designations that 
refer to the way the flash cells are ar-
ranged. NOR flash allows for random 
access and is best suited for random 
access memory, while NAND must be 
treated as blocks and is ideal for per-
sistent storage. The rest of this article 
examines only NAND flash, the cheap-
er and more common variety, of which 
again there are two types: single-level 
cell (SLC) and multilevel cell (MLC). 
SLC stores a single binary value in 
each memory cell. The binary value is 
distinguished by two threshold volt-
ages. MLC supports four or, recently, 
eight distinct values per memory cell 
corresponding to two or three bits of 
storage. Because of its improved lon-
gevity and performance, the conven-
tional wisdom is that SLC is best suited 
for enterprise (that is, not consumer-
grade) solutions, so our focus here is 
on SLC flash, its cost, power dissipa-
tion, performance, and longevity as 
compared with DRAM and disk drives 
(see Figure 1). 

The cost per unit storage is what 
has brought flash to the forefront in 
recent years (see Figure 2). Earlier this 
decade, flash costs were on par with 
those of DRAM; now, flash devices 
are much less expensive: $10–$35 per 
GB for an SLC flash device compared 
with around $100 per GB for DRAM. 
The cost trend appears to be continu-
ing to widen the gap between flash 
and DRAM. Disk drives are still much 
cheaper than flash, weighing in at less 
than $1 per GB for 7,200RPM drives 
and in the neighborhood of $3 per GB 
for 15,000RPM drives. 

The other exciting attribute of flash 
is its low power consumption. As the 
cost of power and the impetus toward 
green computing rise, so does the at-
tractiveness of lower-power solutions. 

While completely accurate compari-
sons between flash, DRAM, and hard 
drives are difficult because of differenc-
es in capacity and interfaces, it’s fair to 
say that flash consumes significantly 
less power than those other system 
components, especially on a per-giga-
byte basis. The accompanying table re-
cords the power consumption for some 
typical components to provide a broad 
sense for each type of device. 

The performance of flash is a bit 
unusual in that it’s highly asymmet-
ric, posing a challenge for using it in a 
storage system. A block of flash must 
be erased before it can be written, 
which takes on the order of 1–2 ms for 
a block, and writing to erased flash re-
quires around 200–300 µs. For this rea-
son flash devices try to maintain a pool 
of previously erased blocks so that the 
latency of a write is just that of the pro-
gram operation. Read operations are 
much faster: approximately 25 µs for 
4k. By comparison, raw DRAM is even 
faster, able to perform reads and writes 
in much less than a microsecond. Disk-
drive latency depends on the rotational 
speed of the drive: on average 4.2 ms for 
7,200RPM, 3 ms for 10,000RPM, and 2 
ms for 15,000RPM. Adding in the seek 
time bumps these latencies up an addi-
tional 3–10 ms depending on the qual-
ity of the mechanical components. 

SLC flash is typically rated to sustain 
one million program/erase cycles per 
block. As flash cells are stressed, they 
lose their ability to record and retain 
values. Because of the limited lifetime, 
flash devices must take care to ensure 

that cells are stressed uniformly so 
that “hot” cells don’t cause premature 
device failure, a technique known as 
wear-leveling. Just as disk drives keep 
a pool of spare blocks for bad-block 
remapping, flash devices typically 
present themselves to the operating 
system as significantly smaller than 
the amount of raw flash to maintain a 
reserve of spare blocks (and pre-erased 
blocks to improve write performance). 
Most flash devices are also capable of 
estimating their own remaining life-
times so systems can anticipate failure 
and take prophylactic action. 

Today’s Storage Hierarchy 
Whether over a network or for local ac-
cess, primary storage can be succinctly 
summarized as a head unit containing 
CPUs and DRAM attached to drives ei-
ther in storage arrays or JBODs (just a 
bunch of disks). The disks comprise 
the primary repository for data—typi-
cal modern data sets range from a few 
hundred gigabytes up to a petabyte or 
more—while DRAM acts as a very fast 
cache. Clients communicate via read 
and write operations. Read operations 
are always synchronous in that the cli-
ent is blocked until the operation is ser-
viced, whereas write operations may be 
either synchronous or asynchronous 
depending on the application. For ex-
ample, video streams may write data 
blocks asynchronously and verify only 
at the end of the stream that all data 
has been quiesced; databases, how-
ever, use synchronous usually writes to 
ensure that every transaction has been 
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committed to stable storage. 
On a typical system, the speed of a 

synchronous write is bounded by the 
latency of nonvolatile storage, as writes 
must be committed before they can 
be acknowledged. Read operations 
first check in the DRAM cache provid-
ing very low-latency service times, but 
cache misses must also wait for the slow 
procession of data around the spindle. 
Since it’s quite common to have work-
ing sets larger than the meager DRAM 
available, even the best prefetching 
algorithms will leave many read opera-
tions blocked on the disk. 

A brute-force solution for improv-
ing latency is simply to spin the plat-
ters faster to reduce rotational latency, 
using 15,000RPM drives rather than 
10,000 or 7,200RPM drives. This will 
improve both read and write latency, 
but only by a factor of two or so. For ex-
ample, using drives from a major ven-
dor, at current prices, a 10TB data set 
on a 7,200RPM drive would cost about 
$3,000 and dissipate 112 watts; the 
same data set on a 15,000RPM drive 
would cost $22,000 and dissipate 473 
watts—all for a latency improvement 
of a bit more than a factor of two. The 
additional cost and power overhead 
make this an unsatisfying solution, 
though it is widely employed absent a 
clear alternative. 

A focused solution for improving the 
performance of synchronous writes is 
to add nonvolatile RAM (NVRAM) in the 
form of battery-backed DRAM, usually 
on a PCI card. Writes are committed to 
the NVRAM ring buffer and immedi-

ately acknowledged to the client while 
the data is asynchronously written out 
to the drives. Once the data has been 
committed to disk, the corresponding 
record can be freed in the NVRAM. This 
technique allows for a tremendous im-
provement for synchronous writes, but 
suffers some downsides. NVRAM is 
quite expensive; batteries fail (or leak, 
or, worse, explode); and the maximum 
size of NVRAM tends to be small (2GB–
4GB)—small enough that workloads 
can fill the entire ring buffer before it 
can be flushed to disk. 

Flash as a Log Device 
One use of flash is as a stand-in for 
NVRAM that can improve write per-
formance as a log device. To that end 
you need a device that mimics the im-
portant properties of NVRAM (fast, 
persistent writes), while avoiding the 
downsides (cost, size, battery power). 
Recall, however, that while achieving 
good write bandwidth is fairly easy, the 
physics of flash dictate that individual 
writes exhibit relatively high latency. 
However, it’s possible to build a flash-
based device that can service write 
operations very quickly by inserting 
a DRAM write cache and then treat-
ing that write cache as nonvolatile by 
adding a supercapacitor to provide the 
necessary power to flush outstanding 
data in the DRAM to flash in the case of 
power loss. 

Many applications such as data-
bases can use a dedicated log device 
as a way of improving the performance 
of write operations; for these applica-

tions, such a device can be dropped in 
easily. To bring the benefits of a flash 
log device to primary storage, and 
therefore to a wide array of applica-
tions, we need similar functionality in 
a general-purpose file system. Sun’s 
ZFS provides a useful context for the 
use of flash. ZFS, an enterprise-class 
file system designed for the scale and 
requirements of modern systems, was 
implemented from scratch starting 
in 2001. It discards the model of a file 
system sitting on a volume manager in 
favor of pooled storage both for sim-
plicity of management and greater flex-
ibility for optimizing performance. ZFS 
maintains its on-disk data structures 
in way that is always consistent, elimi-
nating the need for consistency check-
ing after an unexpected power failure. 
Furthermore, it is flexible enough to 
accommodate new technological ad-
vances, such as new uses of flash. (For a 
complete description of ZFS, see http://
opensolaris.org/os/community/zfs.) 

ZFS provides for the use of a sepa-
rate intent-log device (a slog in ZFS 
jargon) to which synchronous writes 
can be quickly written and acknowl-
edged to the client before the data is 
written to the storage pool. The slog 
is used only for small transactions, 
while large transactions use the main 
storage pool—it’s tough to beat the 
raw throughput of large numbers 
of disks. The flash-based log device 
would be ideally suited for a ZFS slog. 
The write buffer on the flash device has 
to be only large enough to saturate the 
bandwidth to flash. Its DRAM size re-
quirements—and therefore the power 
requirements—are quite small. Note 
also the write buffer is much smaller 
than the required DRAM in a battery-
backed NVRAM device. There are ef-
fectively no constraints on the amount 
of flash that could be placed on such a 
device, but experimentation has shown 
that 10GB of delivered capacity is more 
than enough for the vast majority of 
use cases. 

Using such a device with ZFS in a 
test system, we measured latencies 
in the range of 80–100 µs. This ap-
proaches the performance of NVRAM 
and has many other benefits. A com-
mon concern for flash is its longevity. 
SLC flash is often rated for one million 
write/erase cycles, but beyond several 
hundred thousand, the data-retention 
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period can drop to just a few weeks. 
ZFS will write to this device as a slog in 
8KB chunks with each operation tak-
ing 80 µs. On a device with 10GB of raw 
flash, this equates to about 3½ years of 
constant use. A flash device with a for-
matted capacity of 10GB will, however, 

required for bookkeeping (at a ratio 
of 50:1 in the current ZFS implemen-
tation). For example, the maximum 
memory configuration on a four-sock-
et machine is usually around 128GB; 
such a system can easily accommo-
date 768GB or more using flash SSDs 
in its internal drive bays. ZFS’s built-
in checksums catch cache inconsis-
tencies and mean that defective flash 
blocks simply lead to fewer cache hits 
rather than data loss. 

In the context of the memory hierar-
chy, caches are often populated as en-
tries are evicted from the previous lay-
er—in an exclusive cache architecture, 
on-chip caches are evicted to off-chip 
caches, and so on. With a flash-based 
cache, however, the write latency is so 
poor the system could easily be bogged 
down waiting for evictions. Accord-
ingly, the L2ARC uses an evict-ahead 
policy: it aggregates ARC entries and 
predictively pushes them out to flash, 
thus amortizing the cost over large 
operations and ensuring that there is 
no additional latency when the time 
comes to evict an entry from the ARC. 
The L2ARC iterates over its space as a 
ring, starting back at the beginning 
once it reaches the end, thereby avoid-
ing any potential for fragmentation. Al-
though this technique does mean that 
entries in the L2ARC that may soon be 
accessed could be overwritten prema-
turely, bear in mind that the hottest 
data will still reside in the DRAM-based 
ARC. ZFS will write to the L2ARC slow-
ly, meaning that it can take some time 
to warm up; but once warm, it should 
remain so, as long as the writes to the 
cache can keep up with data churn on 
the system. 

It’s worth noting that to this point 
the L2ARC hasn’t even taken advan-
tage of what is usually considered to 
be a key feature of flash: nonvolatility. 
Under normal operation, the L2ARC 
treats flash as cheap and vast storage. 
As it writes blocks of data to populate 
the cache devices, however, the L2ARC 
includes a directory so that after a 
power loss, the contents of the cache 
can be identified, thus pre-warming 
the cache. Although resets are rare, 
system failures, power failures, and 
downtime due to maintenance are all 
inevitable; the instantly warmed cache 
reduces the slow performance ramp 
typical of a system after a reset. Since 

typically have 20%–50% more flash held 
in reserve, easily taking the longevity of 
such a device under constant use to five 
years, and the device itself can easily re-
port its expected remaining lifetime as 
it counts down its dwindling reserve of 
spare blocks. Further, data needs to be 
retained only long enough for the sys-
tem to recover from a fatal error; a rea-
sonable standard is 72 hours, so a few 
weeks of data retention, even for very 
old flash cells, is more than adequate 
and a vast improvement on NVRAM. 

Flash as a Cache 
The other half of this performance pic-
ture is read latency. Storage systems 
typically keep a DRAM cache of data 
the system determines a consumer is 
likely to access so that it can service 
read requests from that cache rather 
than waiting for the disk. In ZFS, this 
subsystem is called the adaptive re-
placement cache (ARC). The policies 
that determine which data is present 
in the ARC attempt to anticipate future 
needs, but read requests can still miss 
the cache as a result of bad predictions 
or because the working set is simply 
larger than the cache can hold—or 
even larger than the maximum con-
figurable amount of DRAM on a sys-
tem. Flash is well suited for acting as 
a new second-level cache in between 
memory and disk in terms of capacity 
and performance. In ZFS, this is called 
the L2ARC. 

ZFS fills the L2ARC using large, asyn-
chronous writes and uses the cache to 
seamlessly satisfy read requests from 
clients. The requirements here are a 
perfect fit for flash, which inherently 
has sufficient write bandwidth and fan-
tastic read latency. Since these devices 
can be external—rather than being at-
tached to the main board, as is the case 
with DRAM—the size of the L2ARC is 
limited only by the amount of DRAM 

Device Approximate Power Consumption

DRAM DIMM module (1GB) 5W

15,000 RPM drive (300GB) 17.2W

7,200 RPM drive (750GB) 12.6W

High-performance flash SSD (128GB) 2W

Power consumption for typical components.

Top: A 10MB compact flash card from 1996.

Bottom: A 2GB SD flash card from 2008.
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the L2ARC writes slowly to its flash de-
vices and data on the system may be 
modified quickly (especially with the 
use of flash as a log device), the con-
tents of the L2ARC may not reflect the 
same data stored on disk. During nor-
mal operation, dirtied and stale entries 
are marked as such so they are ignored. 
After a system reset, though stale data 
may be read off the cache device, meta-
data kept on the device and ZFS’s built-
in checksums are used to identify this 
condition and seamlessly recover by 
reading the correct data from disk. 

For working sets that are larger than 
the DRAM capacity, flash offers an av-
enue to access that working set much 
faster than could otherwise be done 
by disks of any speed. Even for work-
ing sets that could comfortably fit in 
DRAM, if the absolute performance of 
DRAM isn’t necessary, it may be more 
economical to skimp on DRAM for the 
main ARC and instead cache the data 
on flash. As this use of flash meshes 
perfectly with its natural strengths, 
suitable devices can be produced quite 
cheaply and still have a significant per-
formance advantage over fast disks. 
Although flash is still more expensive 
than fast disks per unit storage, cach-
ing even a very large working set in 
flash is often cheaper than storing all 
data on fast disks. 

The Impact of Flash 
By combining the use of flash as an 
intent-log to reduce write latency with 
flash as a cache to reduce read latency, 
we can create a system that performs 
far better and consumes less power 
than other systems of similar cost. It is 
now possible to construct systems with 
a precise mix of write-optimized flash, 
flash for caching, DRAM, and cheap 
disks designed specifically to achieve 
the right balance of cost and perfor-
mance for any given workload, with data 
automatically handled by the appropri-
ate level of the hierarchy. It is also pos-
sible to address specific performance 
problems with directed rather than 
general solutions. Through the use of 
smarter software, we can build systems 
that integrate different technologies to 
extract the best qualities of each. Fur-
ther, the use of smarter software will 
allow flash vendors to build solutions 
for specific problems rather than gus-
sying up flash to fit the anachronistic 

constraints of a hard drive. ZFS is just 
one example among many of how one 
could apply flash as a log and a cache 
to deliver total system performance. 
Most generally, this new flash tier can 
be thought of as a radical form of hier-
archical storage management (HSM) 
without the need for explicit manage-
ment. Although these solutions offer 
concrete methods of integrating flash 
into a storage system, they also raise 
a number of questions and force us to 
reconsider many aspects of the system. 
For example, how should we connect 
flash to the system? SSDs are clearly an 
easy approach, but there may be faster 
interfaces such as the memory bus. 
More broadly, how will this impact the 
balance of a system? As more requests 
are serviced from flash, it may be possi-
ble to provision systems with far more 
network connectivity to clients than 
bus connectivity to disks. 

In that vein, flash opens the possibil-
ity of using disks that are even slower, 
cheaper, and more power efficient. We 
can now scoff at a 15,000RPM drive as 
an untargeted half-measure for a vari-
ety of problems, but couldn’t the same 
argument be applied to a 7,200RPM 
drive? Just because it’s at the low end 
of the performance curve doesn’t mean 
it’s at the bottom. The 5,400RPM drive 
is quite common today and consumes 
less power still. Can the return of the 
3,600RPM drive be far behind? The cost 
of power has continued to rise, but even 
if that trend were to plateau, a large 
portion of the total cost of ownership 
of a storage system is directly tied to its 
power use—and that’s to say nothing 
of the increased market emphasis on 
green design. Flash provides solutions 
that require us to rethink how we build 
systems and challenge us to develop 
smarter software to drive those systems; 
the result will be faster systems that are 
cheaper and greener. 	
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T he  number and variety  of computing devices in the 
environment are increasing rapidly. Real computers 
are no longer tethered to desktops or locked in server 
rooms. PDAs, highly mobile tablet and laptop devices, 
palmtop computers, and mobile telephony handsets 
now offer powerful platforms for the delivery of new 
applications and services. These devices are, however, 
only the tip of the iceberg. Hidden from sight are the 
many computing and network elements required to 
support the infrastructure that makes ubiquitous 
computing possible. 

With so much computing power traveling around 
in briefcases and pockets, developers are building 
applications that would have been impossible just a 
few years ago. Among the interesting services available 
today are text and multimedia messaging, location-
based search and information services (for example, 

on-demand reviews of nearby restau-
rants), and ad hoc multiplayer games. 
Over the next several years, new classes 
of mobile and personalized services, 
impossible to predict today, will cer-
tainly be developed.

While these services differ from one 
another in major ways, they also share 
some important attributes. One—the 
focus of this article—is the need for 
data storage and retrieval functions 
built into the application. Messaging 
applications need to move messages 
around the network reliably and with-
out loss. Location-based services need 
to map physical location to logical lo-
cation (for example, GPS or cell-tower 
coordinates to postal code) and then 
look up location-based information. 
Gaming applications must record and 
share the current state of the game on 
distributed devices and must manage 
content retrieval and delivery to each 
of the devices in real time. In all these 
cases, fast, reliable data storage and re-
trieval are critical.

As soon as the discussion turns to 
data storage and retrieval, relational 
databases come to mind. Relational 
databases have been tremendously 
successful over the past three decades 
and SQL has become the lingua franca 
for data access. While data manage-
ment has become almost synonymous 
with RDBMS, however, there are an 
increasing number of applications for 
which lighter-weight alternatives are 
more appropriate.

This article begins with a brief re-
view of how relational systems came to 
dominate the data management land-
scape, and discusses how the relational 
technologies have evolved. It presents 
a data-centric overview of today’s emer-
gent applications, and delves into data 
management needs for today’s and to-
morrow’s applications.

Relational Prehistory
Relational databases came out of re-
search at IBM1,5 and the University of 
California at Berkeley7 in the 1970s. Re-
lational databases were fundamentally 
a reaction to escalating costs in deploy-
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related trends emerged. First, the RD-
BMS vendors increased functionality 
to provide market differentiators and 
to address each new market niche as 
it arose. Second, few applications need 
all the features available in today’s 
RDBMSs, so as the feature set size in-
creased, each application used a de-
creasing fraction of that feature set.

This drive toward increasing DBMS 
functionality has been accompanied 
by increasing complexity, and most 
deployments now require a specialist, 
trained in database administration, 
to keep the systems and applications 
running. Since these systems are devel-
oped and sold as monolithic entities, 
even though applications may require 
only a small subset of the system’s 
functionality, each installation pays 
the price of the total overall complexity. 
Surely, there must be a better way.

ing and maintaining complex systems.
The key observation was that pro-

grammers, who were very expensive, 
had to rewrite large amounts of appli-
cation software manually whenever the 
content or physical organization of a 
database changed. Because the appli-
cation generally knew in detail how its 
data was stored, including its on-disk 
layout, reorganizing databases or add-
ing new information to existing data-
bases forced wholesale changes to the 
code accessing those databases.

Relational databases solved this 
problem in two ways. First, they hid the 
physical organization of the database 
from the application and provided only 
a logical view of the data. Second, they 
used a declarative language to describe 
the data of interest in a particular que-
ry, rather than forcing the programmer 
to write a collection of function calls 

to fetch the data. These two changes 
allowed programmers to describe the 
information they wanted and to leave 
the details of optimization and access 
to the database management system. 
This transformation relieved program-
mers of the burden of rewriting appli-
cation code whenever the database lay-
out or organization changed.

Relational databases enjoyed tre-
mendous success in the IT shops and 
data centers of the world. Businesses 
with large quantities of data to manage 
and sophisticated applications using 
that data adopted the new technology 
quickly. Demand for relational prod-
ucts created a market worth billions of 
dollars in licensing revenue per year. 
Several RDBMS vendors arose in the 
1980s to compete for this lucrative 
business.

In the 20 years that followed, two I
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The New Frontier 
We are not the first to notice these 
tides of change. In 1998, the leading 
database researchers concluded that 
database management systems were 
becoming too complex and that auto-
mated configuration and management 
were becoming essential.2 Two years 
later, Surajit Chaudhuri and Gerhard 
Weikum proposed radically rethink-
ing database management system 
architecture.4 They suggested that da-
tabase management systems be made 
more modular and that we broaden 
our thoughts about data management 
to include rather simple, component-
based building blocks.  Most recently, 
Michael Stonebraker joined the cho-
rus, arguing that “one size no longer 
fits all,” and citing particular applica-
tion examples where the conventional 
RDBMS architecture is inappropriate.8

As argued by Stonebraker, the rela-
tional vendors have been providing the 
illusion that an RDBMS is the answer to 
any data management need. For exam-
ple, as data warehousing and decision 
support emerged as important appli-
cation domains, the vendors adapted 
products to address the specialized 
needs that arise in these new domains. 
They do this by hiding fairly different 
data management implementations 
behind the familiar SQL front end. 
This model breaks down, however, as 
one begins to examine emerging data 
needs in more depth. 

Data warehousing. Retail organi-
zations now have the ability to record 
every customer transaction, producing 
an enormous data source that can be 
mined for information about custom-

Web search. Internet search en-
gines lie at the intersection of database 
management and information retriev-
al. The objects upon which they oper-
ate are typically semistructured (that 
is, HTML instead of raw text), but the 
queries posed are most often keyword 
lookups where the desired response is 
a sorted list of possible answers. Practi-
cally all the successful search engines 
today have developed their own data 
management solution to this problem, 
constructing efficient inverted indices 
and highly parallelized implementa-
tions of index and lookup. This appli-
cation is read-mostly with bulk updates 
and nontraditional indexing.

Mobile device caching. The preva-
lence of small, mobile devices intro-
duces yet another category of applica-
tion: caching relevant portions of a 
larger dataset on a smaller, low-func-
tionality device. While today’s users 
think of their cell phone’s directory as 
their own data collection, another view 
might be to think of it as a cache of a 
global phone and address directory. 
This model has attractive properties—
in particular, the ability to augment 
the local dataset with entries as they 
are used or needed. Mobile telephony 
infrastructure requires similar caching 
capabilities to maintain communica-
tion channels to the devices. The ac-
cess pattern observed in these caches 
is also read-mostly, and the data itself 
is completely transitory; it can be lost 
and regenerated if necessary. 

XML management. Online transac-
tions are increasingly being conducted 
by exchanging XML-encoded docu-
ments. The standard solution today in-
volves converting these documents into 
a canonical relational organization, 
storing them in an RDBMS, and then 
converting again when one wishes to 
use them. As more documents are cre-
ated, transmitted, and operated upon in 
XML, these translations become unnec-
essary, inefficient, and tedious. Surely 
there must be a better way. Native XML 
data stores with Xquery and Xpath ac-
cess patterns represent the next wave 
of storage evolution. While new items 
are constantly added to and removed 
from an XML repository, the documents 
themselves are largely read-only.

Stream processing. Stream process-
ing is a bit of an outcast in this laun-
dry list of data-intensive applications.  

ers’ purchasing patterns, trends in 
product popularity, geographical pref-
erences, and countless other phenom-
ena that can be exploited to increase 
sales or decrease the cost of doing busi-
ness. This database is read-mostly: it is 
updated in bulk by periodically adding 
new transactions to the collection, but 
it is read frequently as analysts cull the 
data extracting useful tidbits. This ap-
plication domain is characterized by 
enormous tables (tens or hundreds 
of terabytes), queries that access only 
a few of the many columns in a table, 
and a need to scan tables sorted in a 
number of different ways.

Directory services. As organizations 
become increasingly dependent upon 
distributed resources and personnel, 
the demand for directory services has 
exploded.3 Directory servers provide 
fast lookup of entities arranged in a 
hierarchical structure that frequently 
matches the hierarchical structure of 
an organization. The LDAP standard 
emerged in the 1990s in response to the 
heavyweight ISO X.400/X.500 directory 
services. LDAP is now at the core of au-
thentication and identity management 
systems from a number of vendors (for 
example,  IBM Tivoli’s Directory Server, 
Microsoft’s Active Directory Server, the 
Sun ONE Directory Server). Like data 
warehousing, LDAP is characterized by 
read-mostly access. Queries are either 
single-row retrieval (find the record 
that corresponds to this user) or look-
ups based on attribute values (find all 
users in the engineering department). 
The prevalence of multivalued attri-
butes makes a relational representa-
tion quite inefficient.
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Strictly speaking, stream processing 
is not a data management task; it is a 
data-filtering task. That is, data is pro-
duced at some source and sent stream-
ing to recipients that filter the stream 
for “interesting” events. For example, 
financial institutions watch stock tick-
ers looking for hotly traded items and/
or stocks that aren’t being traded as 
heavily as expected.

The reason that these stream-
processing applications are included 
here is a linguistic one: the filters that 
are typically desired in these environ-
ments look like SQL; however, while 
SQL was designed to operate on persis-
tently stored tables, these queries act 
upon a real time stream of data values. 
Stonebraker explains in some depth 
how poorly equipped databases are for 
this task. Perhaps the bigger surprise 
is not that database systems are poorly 
equipped to address this task, but that 
because SQL appears to be the “right” 
query language, developers use rela-
tional database systems for applica-
tions that have no persistent storage!

Stream processing represents a 
class of applications that could benefit 
from a SQL-like query language atop a 
data management system with prop-
erties that are radically different from 
an RDBMS. Since streaming queries 
frequently operate on data observed 
during a time window, some transient 
local storage is necessary, but this stor-
age needn’t be persistent, transaction-
al, or support complex query process-
ing. Instead, it must be blindingly fast. 
Although relational databases are well-
equipped to handle dynamic queries 
over relatively static or slowly changing 
data, this application class is charac-
terized by a fairly static query set over 
highly dynamic data.

Flexible Solutions
Relational systems have been designed 
to satisfy online transaction process-
ing (OLTP) workloads characterized by 
ad hoc queries, significant write traffic, 
and the need for strong transactional 
and integrity guarantees. In contrast, 
the applications described here are al-
most all read-dominated, and stream-
ing applications don’t even take advan-
tage of persistent data, just an SQL-like 
query language. Few of these applica-
tions require transactional guarantees, 
and there is little inherently relational 

about the data being accessed. Thus, 
the data management question be-
comes how best to satisfy the needs of 
these different types of applications. 
We claim (like Stonebraker) that there 
really is no single right answer. In-
stead, we must focus on flexible solu-
tions that can be tailored to the needs 
of a particular application.

There are several ways to deliver flex-
ibility in today’s changing data environ-
ment. The back-to-basics approach is 
to require that every single application 
build its own data storage service. This 
option, while seemingly simple, is im-
practical in all but the simplest of appli-
cations. Some data-intensive applica-
tions running today, however, are built 
upon simple, homegrown solutions.

The second way to address the need 
for flexibility is to provide a smorgas-
bord of data management options, 
each of which addresses a particular 
application class. We see this approach 
emerging in the traditional relational 
market, where the SQL veneer is used to 
hide the different capabilities required 
for OLTP and data warehousing.

The third approach to flexibility is to 
produce a storage engine that is more 
configurable so that it can be tuned to 
the requirements of individual applica-
tions. This solution has the advantage 
of allowing concentrated investment 
in a single storage system, improv-
ing quality. Configurability, however, 
makes new demands of developers 
who use the database, since they must 
understand the configuration options 
and then integrate the data manage-
ment component properly into their 
product designs.

In fact, the solution emerging in the 
marketplace is to have a handful of rea-
sonably configurable storage systems, 
each of which is useful across a broad 
application class.

There are fundamentally two prop-
erties that a solution must possess to 
address the wide range of application 
needs emerging today: modularity 
and configurability. Few applications 
require all the functionality possible 
in a data management system. If an 
application doesn’t need function-
ality, it should not have to “pay” for 
that functionality in size (footprint, 
memory consumption, disk utiliza-
tion, and so on), complexity, or cost. 
Therefore, a flexible engine must allow 

There are 
fundamentally two 
properties that  
a solution must 
possess to address 
the wide range  
of application  
needs emerging 
today: modularity 
and configurability. 
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the developer to use or exclude major 
subsystems depending on whether the 
application needs them. Once a system 
is sufficiently modular to permit a truly 
small footprint, we will find that sys-
tem deployed on an array of hardware 
platforms with staggeringly large dif-
ferences in capabilities. In these cases, 
the system must be configurable to its 
operating environment: the specific 
hardware, operating system, and appli-
cation using it. 

Modularity
Some argue that database architecture 
is in need of a revolution akin to the 
RISC revolution in computer hardware. 
The conventional monolithic DBMS ar-
chitecture is not facile enough to adapt 
to today’s data demands, so we must 
build data management capabilities 
out of a collection of small, simple, 
reusable components.  For example, 
instead of viewing SQL as a simple bi-
nary decision, Chaudhuri and Weikum 
argue that query capabilities should be 
provided at different levels of sophisti-
cation: a single-table selection proces-
sor that has a B+ tree index that sup-
ports simple indexing, updating, and 
selection. To this, you might add trans-
actions.  Continuing up the complex-
ity hierarchy, consider a select-project-
join processor. Next, add aggregates. In 
this manner, you transform SQL from 
a monolithic language into a family 
of successively richer languages, each 
of which is provided as a component 
and satisfies a significant number of 
application domains. Any particular 
application selects the components it 
needs. This idea of a component-based 
architecture can be extended to in-
clude several other aspects of database 
design: concurrency control, transac-
tions, logging, and high availability.

Concurrency control lends itself to 
a hierarchy similar to that presented in 
the language example. Some applica-
tions are completely single-threaded 
and require no locking; others have low 
levels of concurrency and would be well 
served by table-level locks or API-level 
locks (allowing only one writer or mul-
tiple readers into the database system 
simultaneously); finally, highly con-
current applications need fine-grain 
locking and multiple degrees of isola-
tion (potentially allowing applications 
to see values that have been written by 

Old-style database 
systems solve  
old-style problems;  
we need new-style 
databases to solve  
new-style problems.

incomplete transactions).6 In a conven-
tional database management system, 
locking is assumed; in the brave new 
world discussed here, locking is op-
tional and different components can 
be used to provide different levels of 
concurrency.

Transactions provide the illusion 
that a collection of operations are ap-
plied to a database in an atomic unit 
and that once applied, the operations 
will persist, even in the face of appli-
cation or system failure. Transaction 
management is at the heart of most da-
tabase management systems, yet many 
applications do not require transac-
tions. In a component-based world, 
transactions, too, are optional. When 
they are present, a system might still 
have a number of different components 
providing basic transactional mecha-
nisms, savepoints (the ability to identi-
fy a point in time to which the database 
may be rolled back), two-phase commit 
to support transactions that span mul-
tiple databases, nested transactions 
to decompose a large operation into a 
number of smaller ones, and compen-
sating transactions to undo high-level, 
logical operations.

Many transaction systems use some 
form of logging to provide rollback and 
recovery capabilities. In that context, 
it hardly seems necessary to treat log-
ging as a separable component, but it 
should be. A transactional component 
might be designed to work with mul-
tiple implementations, some of which 
do not use logging (for example, no-
overwrite schemes such as shadow-pag-
es). Perhaps even more interesting, a 
logging system might be useful outside 
the context of transactions; it might be 
used for auditing or provide some sort 
of backup mechanism. In either case, 
it should be an application designer’s 
decision whether logging is necessary 
rather than having it imposed by the 
database vendor.

Finally, data is sometimes so critical 
that downtime is unacceptable. Many 
database systems provide replicated 
or highly available systems to address 
this need. Although this functionality is 
often available as an add-on in today’s 
systems, they have not gone far enough. 
A developer may wish to use a data-
base’s HA (high-availability) configura-
tion, but may use it in conjunction with 
some other company’s HA substrate. If 
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the application already has a substrate 
that performs heartbeat protocols (or 
any other mechanism that notifies the 
application or system when a compo-
nent fails), fail-over, and redundant 
communication channels, then you 
will want to exclude those components 
from the database management sys-
tem and hook into the existing func-
tionality. Monolithic systems do not al-
low this, whereas a component-based, 
modular architecture does.

In addition to providing smaller, 
simpler applications, components with 
well-defined, clean, exposed interfaces 
provide for a degree of extensibility that 
is simply not possible in a monolithic 
system. For example, consider the ba-
sic set of components needed to con-
struct a transactional system: a trans-
action manager, a lock manager, and a 
log manager. If these modules are open 
and extensible, then the developer can 
build systems that incorporate items 
that are not managed by the database 
system into transactions. Consider, for 
example, a network switch: the state of 
the configuration database depends on 
the state of hardware inside the device, 
and vice versa. If the electrical control 
over chips and boards can be incorpo-
rated into transactions, by allowing the 
programmer to extend the locking and 
logging system to communicate with 
them, then operations such as “power 
up the backup network interface card” 
can be made transactional.

Modularity is a powerful tool for 
managing size and complexity of appli-
cations and systems while also enabling 
the application and data management 
capabilities to seamlessly interact. 
Thus, we have proposed an architec-
ture that enables developers to exclude 
functionality they do not need and in-
clude functionality they do need but is 
not provided by the database vendor.

Configurability
The second property of a flexible data 
management system is configurability. 
Whereas modularity is an architectural 
mechanism, configuration is mostly a 
runtime mechanism. With a compo-
nent-based architecture, the build-time 
configuration is involved in selecting 
appropriate components. A single col-
lection of components may still run on 
a range of systems with wildly different 
capabilities. For example, just because 

make the right decisions.
Variability in persistent storage 

technologies places new demands 
on the database engine as well. Not 
only must it work well in the presence 
of spinning, magnetic storage, but it 
should also run well on other media 
(for example, flash) with constraints on 
behaviors (such as the number of writes 
to a particular memory location), and it 
may need to run in the absence of any 
persistent storage. For example, some 
applications want to manage data en-
tirely in main memory, with no per-
sistence; some want to manage data 
with full synchronous transactional 
guarantees on updates; and some need 
something in the middle. Each of these 
policies should be implemented by 
the same transactional component, 
but the database should allow the pro-
grammer to control whether or not data 
persists across power-down events and 
the strictness of any transactional as-
surances that the system makes to the 
end user.

Although many embedded systems 
are now able to use commodity off-the-
shelf hardware platforms, many pro-
prietary devices still exist. The ubiqui-
tous data management solution will be 
portable to these special-purpose hard-
ware devices. It will also be portable to a 
variety of operating systems as well; the 
services available from the operating 
system on a mobile telephone handset 
are different from those available on a 
64-way multiprocessor with gigabytes 
of RAM, even if both are running Linux. 
If the data management system is to 
run everywhere, then it must rely only 
on the services common to most oper-

two applications both want transac-
tions and B-trees, this does not mean 
that both can support a multi-gigabyte 
in-memory cache. The ability to adapt 
to radically different circumstances is 
critical. Configurability refers to how 
well a system can be matched to its en-
vironment and application needs. In 
this article we discuss configurability 
with respect to the hardware, the envi-
ronment in which the application runs 
(for example, the operating system), 
the application’s software architecture, 
and the “natural” data format of the ap-
plication.

Hardware environments introduce 
variability in CPU speed, memory size, 
and persistent storage capabilities. 
Variability in CPU speed and persis-
tent storage introduces the possibility 
of trading computation for disk band-
width. On a fast processor, it may be 
beneficial to compress data, consum-
ing CPU cycles, in order to save I/O; 
on a PDA, where CPU cycles are sparse 
and persistent I/O is fast, compression 
might not be the right trade-off.

In a world where resource-con-
strained devices require potentially so-
phisticated data management, develop-
ers must have control over the memory 
and disk consumption policies of the 
database. In different environments, 
applications may need control over the 
maximum size of in-memory data struc-
tures, the maximum size of persistent 
data, and the space consumed by trans-
actional logs. Policies for consump-
tion of these resources must be set by 
the application developer, not the end 
user, since the developer is more likely 
to have the technical savvy necessary to 
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XML, object-oriented, among others) 
would add overhead for no benefit. The 
configurable engine must support stor-
ing data in the format that is most nat-
ural for the application. It is then the 
programmer’s responsibility to select 
the format that meets the “most natu-
ral” criteria.

New-Style Databases  
for New-Style Problems
Old-style database systems solve old-
style problems; we need new-style da-
tabases to solve new-style problems. 
While the need for conventional da-
tabase management systems isn’t go-
ing away, many of today’s problems 
require a configurable database sys-
tem. Even without a crystal ball, it 
seems clear that tomorrow’s systems 
will also require a significant degree of 
configurability. As programmers and 
engineers, we learn to select the right 
tool to do a job; selecting a database is 
no exception. We need to operate in a 
mode where we recognize that there 
are options in data management, and 
we should select the right tool to get 
the job done as efficiently, robustly, 
and simply as possible.  	
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ating systems, and it must provide ex-
plicit mechanisms to allow portability, 
through simple interposition libraries 
or source-code availability.

Even on a single platform, the de-
veloper makes architectural choices 
that affect the database system. For ex-
ample, a system may be built using: a 
single thread of control; a collection of 
cooperating processes, each of which 
is single-threaded; multiple threads 
of control in a single process; multiple 
multithreaded processes; or a strictly 
event-based architecture. These choic-
es are driven by a combination of the 
application’s requirements, the devel-
oper’s preferences, the operating sys-
tem, and the hardware. The database 
system must accommodate them.

The database must also avoid mak-
ing decisions about network protocols. 
Since the database will run in environ-
ments where communication takes 
place over backplanes, as well as en-
vironments where it takes place over 
WANs, the developer should select 
the appropriate communication infra-
structure. A special-purpose telephone 
switch chassis may include a custom 
backplane and protocol for fast com-
munication among redundant boards; 
the database must not prevent the de-
veloper from using it.

Up to this point, configurability has 
revolved around adapting to the hard-
ware and software environment of the 
application. The last area of configura-
tion that we address revolves around 
the application’s data. Data layout, in-
dexing, and access are critical perfor-
mance considerations. There are three 
main design points with respect to data: 
the physical clustering, the indexing 
mechanism, and the internal structure 
of items in the database. Some of these, 
like the indexing mechanism, really 
are runtime configuration decisions, 
whereas others are more about giving 
the application the ability to make de-
sign decisions, rather than having de-
signers forced into decisions because 
of the database management system.

Database management systems de-
signed for spinning magnetic media 
expend considerable effort clustering 
related data together on disk so that 
seek and rotation times can be amor-
tized by transferring a large amount of 
data per repositioning event. In gen-
eral, this clustering is good, as long as 

the data is clustered according to the 
correct criteria. In the case of a configu-
rable database system, this means that 
the developer needs to retain control 
over primary key selection (as is done 
in most relational database manage-
ment systems) and must be able to ig-
nore clustering issues if the persistent 
medium either does not exist or does 
not show performance benefits to ac-
cessing locations that are “close” to the 
last access.

On a related note, the developer 
must be left the flexibility to select an 
indexing structure for the primary keys 
that is appropriate for the workload. 
Workloads with locality of reference 
are probably well served by B+ trees; 
those with huge datasets and truly ran-
dom access might be better off with 
hash tables. Perhaps the data is highly 
dimensional and require a completely 
different indexing structure; the exten-
sibility discussed in the previous sec-
tion should allow a developer to pro-
vide an application-specific indexing 
mechanism and use it with all of the 
system’s other features (for example,  
locking, transactions). At a minimum, 
the configurable database should pro-
vide a range of alternative indexing 
structures that support iteration, fast 
equality searches, and range searches, 
including searches on partial keys.

Unlike relational engines, the con-
figurable engine should permit the 
programmer to determine the inter-
nal structure of its data items. If the 
application has a dynamic or evolving 
schema or must support ad hoc que-
ries, then the internal structure should 
be one that enables high-level query ac-
cess such as SQL, Xpath, Xquery, LDAP, 
etc. If, however, the schema is static 
and the query set is known, selecting 
an internal structure that maps more 
directly to the application’s internal 
data structures provides significant 
performance improvements. For ex-
ample, if an application’s data is inher-
ently nonrelational (for example,  con-
taining multivalued attributes or large 
chunks of unstructured data), then 
forcing it into a relational organiza-
tion simply to facilitate SQL access will 
cost performance in the translation 
and is unlikely to reap the benefits of 
the relational store. Similarly, if the ap-
plication’s data was relational, forcing 
it into a different format (for example, 
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which it is built, it remains, as an entity, surprisingly 
unstudied. Here, we look at some of the technical and 
social challenges that must be overcome to model the 
Web as a whole, keep it growing, and understand its 
continuing social impact. A systems approach, in the 
sense of “systems biology,” is needed if we are to be 
able to understand and engineer the future Web.
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academia teach, communicate, pub-
lish, and do research. In industry, it 
has not only created an entire sector 
(or, arguably, multiple sectors) but af-
fected the communications and deliv-
ery of services across the entire indus-
trial spectrum. In government, it has 
changed not only the nature of how 
governments communicate with their 
citizens but also how these popula-
tions communicate and even, in some 
cases, how they end up choosing their 
governments in the first place; recall 
the U.S. presidential debates in which 
candidates took questions online and 
through YouTube videos. It is estimat-
ed that the size of the human popu-
lation is on the order of 1010 people, 

Despite the huge effect the Web has 
had on computing, as well as on the 
overall field of computer science, the 
best keyword indicator one can find in 
the ACM taxonomy, the one by which 
the field organizes many of its research 
papers and conferences, is “miscella-
neous.” Similarly, if you look at CS cur-
ricula in most universities worldwide 
you will find “Web design” is taught as 
a service course, along with, perhaps, 
a course on Web scripting languages. 
You are unlikely to find a course that 
teaches Web architecture or protocols. 
It is as if the Web, at least below the 
browser, simply does not exist. Many 
“information schools” and “informat-
ics departments” offer courses that fo-
cus on applications on the Web or on 
such topics as “Web 2.0,” but the pro-
tocols, architectures, and underlying 
principles of the Web per se are rarely 
covered. 

Simplifying a bit, part of the reason 
for this is that networking has long 
been part of the systems curricula in 
many departments, and thus the Inter-
net, defined via the TCP/IP networking 
protocols, has long been considered an 
important part of CS work. The Web, 
despite having its own protocols, algo-
rithms, and architectural principles, is 
often viewed by people in the CS field 
as an application running on top of the 
Net, more than as an entity unto itself. 

This is odd, as the Web is the most 
used and one of the most transfor-
mative applications in the history of 
computing, even of human communi-
cations. It has changed how those in 

whereas the number of separate Web 
documents is more than 1011. 

Computing has made significant 
contributions to the Web. Our everyday 
use of the Web depends on fundamen-
tal developments in CS that took place 
long before the Web was invented. To-
day’s search engines are based on, for 
example, developments in information 
retrieval with a legacy going back to the 
1960s. The innovations of the 1990s 9, 23 
provide the crucial algorithms underly-
ing modern search and are fundamen-
tal to Web use. New resources (such as 
Hadoop, lucene.apache.org/hadoop/, 
an open-source software framework 
that supports data-intensive distrib-
uted applications on large clusters of 
commodity computers) make it pos-
sible for students to explore these al-
gorithms and experiment with large-
scale Web-programming practices like 
MapReduce parallelism 11 in a way not 
previously accessible beyond a few top 
universities. 

Other aspects of human interaction 
on the Web have been studied else-
where. Of special note, many interest-
ing aspects of the use of the Web (such 
as social networking, tagging, data in-
tegration, information retrieval, and 
Web ontologies) have become part of 
a new “social computing” area at some 
of the top information schools. They of-
fer classes in the general properties of 
networks and interconnected systems 
in both the policy and political aspects 
of computing and in the economics 

Figure 1: The social interactions enabled by the Web put demands on the Web applications 
behind them, in turn putting further demands on the Web’s infrastructure. 
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of computer use. However, in many of 
these courses, the Web itself is treat-
ed as a specific instantiation of more 
general principals. In other cases, the 
Web is treated primarily as a dynamic 
content mechanism that supports the 
social interactions among multiple 
browser users. Whether in CS studies 
or in information-school courses, the 
Web is often studied exclusively as the 
delivery vehicle for content, technical 
or social, rather than as an object of 
study in its own right. 

Here, we present the emerging in-
terdisciplinary field of Web science5, 

6 taking the Web as its primary object 
of study. We show there is significant 
interplay among the social interac-
tions enabled by the Web’s design, the 
scalable and open applications devel-
opment mandated to support them, 
and the architectural and data require-
ments of these large-scale applications 
(see Figure 1). However, the study of 
the relationships among these levels 
is often hampered by the disciplinary 
boundaries that tend to separate the 
study of the underlying networking 
from the study of the social applica-
tions. We identify some of these rela-
tionships and briefly review the status 
of Web-related research within com-
puting, We primarily focus on identify-
ing emerging and extremely challeng-
ing problems researchers (in their role 
as Web scientists) need to explore. 

What Is It? 
Where physical science is commonly 
regarded as an analytic discipline that 
aims to find laws that generate or ex-
plain observed phenomena, CS is pre-
dominantly (though not exclusively) 
synthetic, in that formalisms and algo-
rithms are created in order to support 
specific desired behaviors. Web science 
deliberately seeks to merge these two 
paradigms. The Web needs to be stud-
ied and understood as a phenomenon 
but also as something to be engineered 
for future growth and capabilities. 

At the micro scale, the Web is an in-
frastructure of artificial languages and 
protocols; it is a piece of engineering. 
However, it is the interaction of human 
beings creating, linking, and consum-
ing information that generates the 
Web’s behavior as emergent proper-
ties at the macro scale. These proper-
ties often generate surprising proper-

ties that require new analytic methods 
to be understood. Some are desirable 
and therefore to be engineered in; 
others are undesirable and if possible 
engineered out. We also need to keep 
in mind that the Web is part of a wider 
system of human interaction; it has 
profoundly affected society, with each 
emerging wave creating new challeng-
es and opportunities in making infor-
mation more available to wider sectors 
of the population than ever before. 

It may seem that the best way to un-
derstand the Web is as a set of protocols 
that can be studied for their properties, 
with individual applications analyzed 
for their algorithmic properties. How-
ever, the Web wasn’t (and still isn’t) 
built using the specify, design, build, 
test development cycle CS has tradi-
tionally viewed as software engineering 
best practice. 

Figure 2 outlines a new way of look-
ing at Web development. A software 
application is designed based on an 
appropriate technology (such as algo-
rithm and design) and with an envi-
sioned “social” construct; it is indeed 
a contradiction in terms to talk about 
a Web application built for a single 
user on a single machine. The system 
is generally tested in a small group 
or deployed on a limited basis; the 
system’s “micro” properties are thus 
tested. In some cases, when more and 
more people accept the micro system, 
accelerating “viral” scaling occurs. For 
example, when Mosaic, the first popu-
lar Web browser, was released publicly 
in 1992, the number of users quickly 
grew by several orders of magnitude, 
with more than a million downloads 
in the first year; for more recent exam-
ples, consider photo-sharing on Flickr, 
video-uploading on YouTube, and so-
cial-networking sites like mySpace and 
Facebook. 

The macro system, that is, the use 
of the micro system by many users in-
teracting with one another in often-un-
predicted ways, is far more interesting 
in and of itself and generally must be 
analyzed in ways that are different from 
the micro system. Also, these macro 
systems engender new challenges that 
do not occur at the micro scale; for ex-
ample, the wide deployment of Mosaic 
led to a need for a way to find relevant 
material on the growing Web, and thus 
search became an important applica-

A large-scale 
system may 
have emergent 
properties not 
predictable by 
analyzing micro 
technical and/or 
social effects. 
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tion, and later an industry, in its own 
right. In other cases, the large-scale sys-
tem may have emergent properties that 
were not predictable by analyzing the 
micro technical and/or social effects. 
Dealing with these issues can lead to 
subsequent generations of technology. 
For example, the enormous success of 
search engines has inevitably yielded 
techniques to game the algorithms (an 
unexpected result) to improve search 
rank, leading, in turn, to the develop-
ment of better search technologies to 
defeat the gaming. 

The essence of our understanding of 
what succeeds on the Web and how to 
develop better Web applications is that 
we must create new ways to understand 
how to design systems to produce the 
effect we want. The best we can do today 
is design and build in the micro, hop-
ing for the best, but how do we know if 
we’ve built in the right functionality to 
ensure the desired macroscale effects? 
How do we predict other side effects 
and the emergent properties of the 
macro? Further, as the success or fail-
ure of a particular Web technology may 
involve aspects of social interaction 
among users, a topic we return to later, 
understanding the Web requires more 
than a simple analysis of technological 
issues but also of the social dynamic of 
perhaps millions of users. 

Given the breadth of the Web and its 
inherently multi-user (social) nature, 
its science is necessarily interdisciplin-
ary, involving at least mathematics, CS, 
artificial intelligence, sociology, psy-
chology, biology, and economics. We 
invite computer scientists to expand 
the discipline by addressing the chal-
lenges following from the widespread 
adoption of the Web and its profound 
influence on social structures, political 
systems, commercial organizations, 
and educational institutions. 

Beneath the Web Graph 
One way to understand the Web, famil-
iar to many in CS, is as a graph whose 
nodes are Web pages (defined as static 
HTML documents) and whose edges 
are the hypertext links among these 
nodes. This was named the “Web 
graph” in 22, which also included the 
first related analysis. The in-degree 
of the Web graph was shown in Klein-
berg et al.3 and Kumar et al.24 to follow a 
power-law distribution; a similar effect 

page to an article on a Communications 
page will actually involve a number of 
requests among a number of servers; at 
the time of this writing, typing the URI 
for Communications into a browser will 
cause more than 20 different HTTP-
GET requests to occur for seven differ-
ent types of Web formats. Crawlers can 
capture these links and create the Web 
graph as, essentially, a static snapshot 
of the linking of the Web. 

However, the Web graph is just one 
abstraction of the Web based on one 
part of the processing and protocols 
underlying its function. While it is an 
important result that the Web graph is 
scale-free, it is the design of the proto-
cols and services that we now call the 
Web that makes it possible for it to be 
this way. The Web was built around a 
set of core design components defined 
in The Architecture of The World Wide 
Web, Volume 121 as “the identification 
of resources, the representation of re-
source state, and the protocols that 
support the interaction between agents 
and resources in the space.” 

A feature of the Web is that, depend-
ing on the details of a request, differ-
ent representations may be served up 
to different requesters. For example, 
the HTML produced may vary based 
on conditions hidden from the client 
(such as which particular machines 
in a back-end server farm process the 
request) and by the server’s customi-
zation of the response. Cookies, rep-
resenting previous state, may also be 
used, causing different users to see dif-
ferent content (and thus have different 
links in the Web graph) based on ear-
lier behavior and visits to the same or 
to other sites. This sort of user-depen-
dent state is not directly accounted for 
in current Web-graph models. 

There are also other ways the Web, as 
an application of the Internet, cannot 
simply be analyzed using the model of 
a quasi-static graph of linked hypertext 
pages. For example, many Web sites 
use Web forms to access a wealth of 
information behind the servers, where 
that information, sometimes called 
“the deep Web,” is not visible in the 
Web model. For many sites, in which 
the applications’s data forms a linked 
Web, the links are not explicit, and 
HTTP-POST requests are used instead 
of the HTTP-GETs in the Web graph. In 
other cases, these sites generate com-

was shown in Broder et al.10 for the out-
branching of vertices in the graph. An 
important result in Dill et al.12 showed 
that large samples of the Web, gener-
ated through a variety of methods, all 
had similar properties—important as 
the Web graph grows, reported in 2005 
to be on the order of seven million new 
pages a day.17 Various models have 
been proposed as to how the Web graph 
grows and which models best capture 
its evolution; see Donato et al.14 for an 
analysis of a number of these models 
and their properties. 

Along with analyses of this graph 
and its growth, a number of algorithms 
have been devised to exploit various 
properties of the graph. For example, 
the HITS algorithm23 and PageRank9 
assume that the insertion of a hyper-
link from one page to another can be 
taken as a sort of endorsement of the 
“authority” of the page being linked to, 
an assumption that led to the develop-
ment of powerful search engines for 
finding pages on the Web. While mod-
ern search engines use a number of 
heuristics beyond these page-author-
ity calculations, due in part to com-
petitive pressure from those trying to 
spoof the algorithms and get a higher 
rank, these Web-graph-based models 
still form the heart of the critical crawl-
ers and rank-assessment algorithms 
behind Web search. 

The links in this Web graph rep-
resent single instantiations of the 
results of calling the HTTP protocol 
with a GET request that returns a par-
ticular representation (in this case an 
HTML page) of a document based on 
a universal resource identifier (URI) 
that serves as an identifier common 
across the entire Web. So, for example, 
the URI http://www.acm.org/publica-
tions/cacm typed into a standard Web 
browser invokes the hypertext transfer 
protocol (HTTP) and returns an HTML 
page that contains content describing 
the publication known as Communica-
tions of the ACM. Note, however, that 
the content itself contains other URIs 
that are themselves pointers to objects 
that are also displayed (such as icons 
and images) and that the formatting of 
the page itself may require retrieving 
other resources (such as cascaded style 
sheets) or XML DTD documents. So 
what we might naively view as a single 
link from, say, a research group’s Web 
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cations, and (iii) the increasing num-
ber of diverse users from everywhere 
in the world makes a similar analysis 
impossible today without creating and 
validating new models of the Web’s 
dynamics. Such models must also pay 
special attention to the details of the 
Web’s architecture, as well as to the 
complexity of the interactions actually 
taking place there. 

Additionally, modern, sophisti-
cated Web sites provide powerful 
user-interface functionality by run-
ning large script systems within the 
browser. These applications access the 
underlying remote data model through 
Web APIs. This application architec-
ture allows users and entrepreneurs 
to quickly build many new forms of 
global systems using the processing 
power of users’ machines and the stor-
age capacity of a mass of conventional 
Web servers. Like the basic Web, each 
such system is interesting mainly for 
its emergent macro-scale properties, 
of which we have little understanding. 
Are such systems stable? Are they fair? 
Do they effectively create a new form 
of currency? And if they do should it 
be regulated? 

Similarly, many user-generated 
content sites now store personal in-
formation yet have rather simplistic 
systems to restrict access to a person’s 
“friends.” This information is not avail-
able to wide-scale analysis. Some other 
sites must be allowed to access the sites 
by posing as the user or as a friend; a 
number of three-party authentication 
protocols are being deployed to allow 
this. A complex system is thus being 
built piece by piece, with no invariants 
(such as “my employer will never see 
this picture”) assured for the user. 

The purpose of this discussion is not 
to go into the detail of Web protocols 
or the relative merits of Web-modeling 
approaches but to stress that they are 
critical to the current and continued 
working of the Web. Understanding 
the protocols and issues is important 
to understanding the Web as a tech-
nical construct and to analyzing and 
modeling its dynamic nature. Our abil-
ity to engineer Web systems with desir-
able properties at scale requires that 
we understand these dynamics. This 
analysis and modeling are thus an im-
portant challenge to computer scien-
tists if they are to be able to understand 

plex URIs that use GET requests to pass 
on statea, thus obscuring the identity of 
the actual resources. 

URIs that carry state are used heav-
ily in Web applications but are, to 
date, largely unanalyzed. For exam-
ple, in a June 2007 talk, Udi Manber, 
Google’s VP of engineering, addressed 
the issue of why Web search is so dif-
ficult,25 explaining that on an average 
day, 20%–25% of the searches seen by 
Google have never been submitted be-
fore and that each of these searches 
generates a unique identifier (using 
server-specific encoding information). 
So a Web-graph model would repre-
sent only the requesting document 
(whether a user request or a request 
generated by, for example, a dynamic 
advertisement content request) linked 
to the www.google.com node. How-
ever if, as is widely reported, Google 
receives more than 100 million queries 
per day, and if 20% of them are unique, 
then more than 20 million links, rep-
resented as new URIs that encode the 
search term(s), should show up in the 
Web graph every day, or around 200 per 
second. Do these links follow the same 
power laws? Do the same growth mod-
els explain these behaviors? We simply 
don’t know. 

Analyzing the Web solely as a graph 
also ignores many of its dynamics (es-
pecially at short timescales). Many 
phenomena known to Web users (such 
as denial-of-service attacks caused by 
flooding a server and the need to click 
the same link multiple times before get-
ting a response) cannot be explained by 
the Web-graph model and often can’t 
be expressed in terms amenable to 
such graph-based analysis. Represent-
ing them at the networking level, ignor-
ing protocols and how they work, also 
misses key aspects of the Web, as well 
as a number of behaviors that emerge 
from the interactions of millions of re-
quests hitting many thousands of serv-
ers every second. Web dynamics were 
analyzed more than a decade ago,20 but 
the combination of (i) the exponential 
growth in the amount of Web content, 
(ii) the change in the number, power, 
and diversity of Web servers and appli-

a.	 These characters, including ?.#, =, and &, fol-
lowed by keywords, may follow the last “slash” 
in the URI, thus making for the long URIs of-
ten generated by dynamic content servers.

Today’s interactive 
applications are 
very early social 
machines, limited 
by the fact that they 
are largely isolated 
one from another. 
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the growth and behaviors of the future 
Web, as well as to engineer systems 
with desired properties in a way that is 
significantly less hit or miss. 

From Power Laws to People 
Mathematically based analysis of the 
Web involves another potential failing. 
Whereas the structure and use of vari-
ous Web sites (taken mathematically) 
may have interesting properties, these 
properties may not be very useful in ex-
plaining the behavior of the sites over 
time. Consider the following example: 
Wikipedia (www.wikipedia.org), the 

online wiki-based encyclopedia, in-
cludes more than two million articles 
in English and more than six million 
in all languages combined. They are 
hyperlinked, and it is logical to ask 
whether the hyperlinks have structure 
similar to those on the Web in general 
or whether, since this is a managed cor-
pus, they have yet other properties. 

Answering can be done in a num-
ber of ways; Figure 3 shows the result 
of one of them. In this case, DBPedia 
(dbpedia.org), which is a dump of the 
link structure of Wikipedia using the 
labeled links of the resource descrip-
tion framework, or RDF, has been ana-
lyzed with respect to the use of the link 
labels; that is, we are looking at the 
structure of Wikipedia as opposed to 

the linguistic content of its pages. The 
figure shows the same kind of Zipf-like 
distribution found in the original Web 
graph analyses. There is also some evi-
dence16 and a lot of speculation29 that 
similar effects can be seen in the use 
of tags in Web-based tagging systems. 
Current research is also exploring 
whether these results depart from such 
models as preferential attachment3 
used to explain the scale-free features 
of Web graphs. 

Unfortunately, whatever explains 
these effects, another aspect of Wiki-
pedia’s use is not explained by these 

models and does not necessarily follow 
from these properties. Wikipedia is 
built on top of the MediaWiki software 
package (www.mediawiki.org/wiki/Me-
diaWiki), which is freely available and 
used in many other Web applications 
besides Wikipedia. While some of 
them have also been successful, many 
have failed to generate significant use. 
A purely “technological” explanation 
cannot account for this; rather, some-
thing about the organizational struc-
tures of Wikipedia and the needs of its 
users accounts for its success over other 
systems built from the same code base. 
The model by which articles are cre-
ated, edited, and tracked is provided by 
the underlying technology. The social 
model enabled by humans interacting 

in ways allowed by that technology is 
more difficult to explain. The dynam-
ics of any “social machine” are highly 
complex, and dozens of academic pa-
pers, from multiple disciplines, have 
been written about it; en.wikipedia.
org/wiki/Wikipedia:Wikipedia_in_aca-
demic_studies uses Wikipedia itself to 
maintain an up-to-date reference list. 

The idea of a social machine was 
introduced in Weaving the Web,8 which 
hypothesized that the architectural 
design of the Web would allow devel-
opers, and thus end users, to use com-
puter technology to help provide the 
management function for social sys-
tems as they were realized online. The 
social machine includes the underlying 
technology (mediaWiki in the case of 
Wikipedia) but also the rules, policies, 
and organizational structures used 
to manage the technology. Examples 
abound on the Web today. Consider 
the coupling of the application design 
of blogging-support systems (such as 
LiveJournal and WordPress) with the 
social mechanisms provided by blog-
rolls, permalinks, and trackbacks that 
have led to the so-called blogosphere. 
Similarly, the protocols used by social 
networking sites like MySpace and Fa-
cebook have much in common, but the 
success or failure of the sites hinges 
on the rules, policies, and user com-
munities they support. Given that the 
success or failure of Web technologies 
often seems to rely on these social fea-
tures, the ability to engineer successful 
applications requires a better under-
standing of the features and functions 
of the social aspects of the systems.b 

Today’s interactive applications are 
very early social machines, limited by 
the fact that they are largely isolated 
from one another. We hypothesize that 
(i) there are forms of social machine 
that will someday be significantly more 
effective than those we have today; (ii) 
that different social processes interlink 
in society and therefore must be inter-
linked on the Web; and (iii) that they 
are unlikely to be developed through a 
single deliberate effort in a single proj-

b.	 When we say “success” or “failure,” we are re-
ferring not to the business factors that deter-
mine whether, for example, Facebook or MyS-
pace will attract more users but to the success 
or failure of the sites to provide the particular 
types of social interaction for which they are 
designed.

Figure 3: Results of an analysis of the link structure of Wikipedia with  
respect to the use of link labels, not the linguistic content of pages. 
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ect or site; rather, technology is needed 
to allow user communities to construct, 
share, and adapt social machines so 
successful models evolve through trial, 
use, and refinement. 

A number of research challenges 
and questions must be resolved before 
a new generation of interacting social 
machines can be created and evolved 
this way: 

What are the fundamental theoret-˲˲
ical properties of social machines, and 
what kinds of algorithms are needed to 
create them?; 

What underlying architectural ˲˲
principles are needed to guide the de-
sign and efficient engineering of new 
Web infrastructure components for 
this social software?; 

How can we extend the current ˲˲
Web infrastructure to provide mecha-
nisms that make the social properties 
of information-sharing explicit and 
guarantee that the use of this informa-
tion conforms to relevant social-policy 
expectations?; and 

How do cultural differences af-˲˲
fect the development and use of social 
mechanisms on the Web? As the Web 
is indeed worldwide, the properties 
desired by one culture may be seen as 
counterproductive by others. Can Web 
infrastructure help bridge cultural di-
vides and/or increase cross-cultural 
understanding? 

In addition, a crucial aspect of hu-
man interaction with information is 
our ability to represent and reason 
over such attributes as trustworthi-
ness, reliability, and tacit expectations 
about the use of information, as well as 
about privacy, copyright, and other le-
gal rules. While some of this informa-
tion is available on the Web today, we 
lack structures for formally represent-
ing and computing over them. Tradi-
tional cryptographic security research 
and well-known access-control-policy 
frameworks have failed to meet these 
challenges in today’s online environ-
ment and are thus insufficient as a 
foundation for the social machines of 
the future. Recent work on formal mod-
els for privacyb has demonstrated that 
traditional cryptographic approaches 
to privacy protection can fail in open 
Web environments. Similar problems 
with copyright enforcement have 
also hampered the flow of commer-
cial and scholarly information on the 

Web.27 To this end, an exemplar Web 
science research area we are pursu-
ing involves interdisciplinary research 
toward augmenting Web architecture 
with technical and social conventions 
that increase individual accountability 
to social and legal rules governing in-
formation use.31 Continued failure to 
develop scalable models for handling 
policy will impede the ability of the 
Web to be the best possible medium 
for exchanging cultural, scientific, and 
political information. 

Further, we can see from the dra-
matic growth of new collaborative 
styles of creating and publishing in-
formation on the Web that many of the 
social institutions we rely on to judge 
trustworthiness and veracity are miss-
ing from our online information life. 
Being able to engineer the Web of the 
future requires not only understanding 
it as a computational structure but also 
how it interacts with and supports in-
teraction among its users. 

An important aspect of research 
exploring the influence of the Web on 
society involves online societies using 
Web infrastructure to support dynamic 
human interaction. This work—seen 
in trout.cpsr.org and other such ef-
forts—explores how the Web can en-
courage more human engagement in 
the political sphere. Combining it with 
the emerging study of the Web and the 
coevolution of technology and social 
needs is an important focus of design-
ing the future Web.30 

The Web of Data 
This emerging area of study involves 
the heavy use of tagging provided by 
many of what are known as Web 2.0 
technologies. Articles, blogs, photos, 
videos, and all manner of other Web 
resources may be annotated with user-
generated keywords, or tags, that can 
later be used for searching or brows-
ing these resources. Much has been 
made of how “folksonomies,” or tax-
onomies that emerge through the use 
of tags, can be used as metadata to 
help explain the content of the objects 
being described. 

One aspect of tagging generating 
interest today is the need for “social 
context” in tagging.26 Many tags in-
volve terms that are extremely ambigu-
ous in a general context. For example, 
first names are popular tags on Flickr, 

The Web is changing 
at a rate that may 
be greater than 
even the most 
knowledgeable 
researcher’s ability 
to observe it.

CACM_V51.7.indb   67 6/18/08   12:54:31 PM

http://trout.cpsr.org


68    communications of the acm    |   JULY 2008  |   vol.  51  |   no.  7

contributed articles

though they are not good general 
search terms. On the other hand, in a 
specific social context (such as a par-
ticular person’s photos), the same tag 
can be useful since it can designate a 
particular individual. The use of a tag 
as metadata often depends on such a 
context, and the “network effect” in 
these cites is thus socially organized.19 

A more ambitious use of metadata 
involves recent applications of seman-
tic Web technologies7 and represents 
an important paradigm shift that is a 
significant element of emerging Web 
technologies. The semantic Web rep-
resents a new level of abstraction from 
the underlying network infrastructure, 
as the Internet and Web did earlier. 
The Internet allowed programmers to 
create programs that could communi-
cate without concern for the network 
of cables through which the communi-
cation had to flow. The Web allows pro-
grammers and users to work with a set 
of interconnected documents without 
concern for the details of the comput-
ers storing and exchanging them. 

The semantic Web will allow pro-
grammers and users alike to refer to 
real-world objects—people, chemicals, 
agreements, stars, whatever—without 
concern for the underlying documents 
in which these things, abstract and 
concrete, are described. While basic 
semantic Web technologies have been 
defined and are being deployed more 
widely, little work has sought to explain 
the effect of these new capabilities on 
the connections within the Web of peo-
ple who use them.28 

The semantic Web arena reflects two 
principle nexuses of activity. One tends 
to involve data (and the Web), and the 
other on the domain (and semantics). 
The first, based largely on innovation 
in data-integration applications, focus-
es on developing Web applications that 
employ only limited semantics but pro-
vide a powerful mechanism for linking 
data entities using the URIs that are 
the basis of the Web. Powered by the 
RDF, these applications focus largely 
on querying graph-oriented triple-store 
databases using the emerging SPARQL 
language, which helps create Web ap-
plications and portals that use REST-
based models, integrating data from 
multiple sources without preexisting 
schema. The second, based largely on 
the Web Ontology Language, or OWL, 

looks to provide models that can be 
used to represent expressive semantic 
descriptions of application domains 
and provide inferencing power for 
both Web and non-Web applications 
that need a knowledge base. 

Current research is exploring how 
the databases of the semantic Web 
relate to traditional database ap-
proaches and to scaling semantic Web 
stores to very large scales.1 In terms of 
modeling, one goal is to develop tools 
to speed inference in large knowl-
edge bases (without sacrificing per-
formance), including how to exploit 
trade-offs between expressivity and 
reasoning to provide the capabilities 
needed for Web scale.15 A market is 
beginning to emerge for “bottom-up” 
tools driven by data and “top-down” 
technologies driven by Web ontolo-
gies. Creating back-ends for the se-
mantic Web is being transitioned 
(bottom-up) from an arcane art into an 
emerging Web application program-
ming approach, as new open-source 
technologies integrate well with tradi-
tional Web servers. At the same time, 
new tools support ontology develop-
ment and deployment (top-down), and 
tens of thousands of OWL ontologies 
are available for jumpstarting new 
domain-modeling efforts. In addition, 
approaches using rule-based reason-
ing modified for the Web have also 
gained attention.4 Engineering the fu-
ture Web includes the design and use 
of these emerging technologies, along 
with how they differ from traditional 
approaches to databases, in one case 
creating back-ends for the semantic 
Web, in the other new tools for ontol-
ogy-based applications. 

The semantic Web is a key emerg-
ing technology on the Web, but, also, 
as we’ve discussed, there are different 
opinions as to what it is best for and, 
more important, what the macro ef-
fects might be. Our lack of a better un-
derstanding of how Web systems de-
velop makes it difficult for us to know 
the kinds of effects the technology will 
produce at scale. What social conse-
quences might there be from greater 
public exposure and the sharing of in-
formation hidden away in databases? 
A better understanding of how Web 
systems move from the micro to the 
macro scale would provide a better 
understanding of how they could be 

developed and what their potential so-
cietal effects might be. 

Conclusion 
The Web is different from most pre-
viously studied systems in that it is 
changing at a rate that may be of the 
same order as, or perhaps greater 
than, even the most knowledgeable 
researcher’s ability to observe it. An 
unavoidable fact is that the future 
of human society is now inextricably 
linked to the future of the Web. We 
therefore have a duty to ensure that 
future Web development makes the 
world a better place. Corporations 
have a responsibility to ensure that 
the products and services they de-
velop on the Web don’t produce side 
effects that harm society, and govern-
ments and regulators have a respon-
sibility to understand and anticipate 
the consequences of the laws and pol-
icies they enact and enforce. 

We cannot achieve these aims un-
til we better understand the complex, 
cross-disciplinary dynamics driving 
development on the Web—the main 
aim of Web science. Just as climate-
change scientists have had to develop 
ways to gather and analyze evidence 
to prove or disprove theories about 
the effect of human behavior on the 
Earth’s climate, Web scientists need 
new methodologies for gathering evi-
dence and finding ways to anticipate 
how human behavior will affect devel-
opment of a system that is evolving at 
such an amazing rate. We also must 
consider what would happen to so-
ciety if access to the Web was denied 
to some or all and to raise awareness 
among major corporations and gov-
ernments that the consequences of 
what appear to be relatively small de-
cisions can profoundly affect society 
in the future by affecting Web devel-
opment today. 

Computing plays a crucial role in 
the Web science vision, and much of 
what we know about the Web today 
is based on our understanding of it 
in a computational way. However, as 
we’ve explored here, significant re-
search must still be done to be able 
to engineer future successful Web 
applications. We must understand 
the Web as a dynamic and changing 
entity, exploring the emergent be-
haviors that arise from the “macro” 
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interactions of people enabled by 
the Web’s technology base. We must 
therefore understand the “social ma-
chines” that may be the critical dif-
ference between the success or fail-
ure of Web applications and learn to 
build them in a way that allows inter-
linking and sharing. 
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In this article I look back on computer 
architecture research over the past 10 
years, including what accounted for this 
change and what will happen because 
of it. In addition, I survey the field of 
computer architecture research, look-
ing at what types of problems we once 
thought were important to explore and 
how those problems are exacerbated or 
mitigated in the future.

Seven years ago, when I started as 
a young assistant professor, my com-
puter science colleagues felt computer 
architecture was a solved problem. 
Words like “incremental” and “nar-
row” were often used to describe re-
search under way in the field. In some 
ways, who could blame them? To a 
software developer, the hardware/soft-
ware interface—the very core of the 
computer architecture research field—
had remained unchanged for most of 
their professional lifetimes. Even the 
key microarchitectural innovations 
(pipelining, branch prediction, cach-
ing, and others) appeared to be created 
long ago. From the perspective of the 
rest of computer science, architecture 
was a solved problem. This percep-
tion of computer architecture research 
had some very real consequences. 
NSF folded the computer architecture 
(CSA) program together with a grab bag 
of areas from VLSI to graphics into an 
omnibus “computing processes and 
artifacts” cluster. Large-scale DARPA 
programs to fund innovative architec-
ture research in academia have recent-
ly wound down.

Around 2000, I would also char-
acterize the collective mood of re-
searchers in computer architecture 
as overly self-critical and bored of 
examining certain core topics in the 
field. The outside perspective of com-
puter architecture had become the 
inside one. We would bemoan our 
field, nicknaming our premier tech-
nical conference as the “International 
Symposium on Cache Architecture,” 
instead of its true title “Computer Ar-
chitecture.” We amusingly called our 
own innovations “yet another”12 take 
on an old problem.

Computer  architecture research is undergoing 
a renewed vitality. No longer is the road ahead clear 
for microprocessors. Indeed, a decade ago the road 
seemed straightforward: deeper pipelines, more 
complex microprocessors, and little change to the 
core instruction set architecture. No longer. For a 
variety of technological reasons, manufacturers 
have embraced multicore CPUs for the mainstream 
of desktop computing. Such a change represents 
the biggest single risk these vendors have taken 
in decades, as they are now expecting software 
developers to embrace a programming model they 
have been reluctant to target in the past. 

doi:  10.1145/1364782.1364799

How changes in computer architecture are 
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cessors are extremely complex to design 
and validate. As designers struggled to 
manage this complexity they also were 
obtaining diminishing performance re-
turns from the approach. More pipeline 
stages increased the length of critical 
loops3 in the processor, lengthening the 
number of cycles on the critical path 
of execution. Finally, while those pipe-
line stages enabled processors to be 
clocked faster, a linear increase in clock 
frequency creates a cubic increase in 
power consumption.6 The power that a 
commodity desktop processor can con-
sume and still be economically viable is 
capped by packaging and cooling costs, 
which assert a downward pressure on 
clock frequency.

Part I: The End of Innocence
In 2000, the roadmap ahead for desk-
top processing seemed clear to many. 
Processors with ever deeper pipelines 
and faster clock frequencies would scale 
performance into the future.1,17 Research-
ers, myself among them, focused on the 
consequences of this, such as the wire 
delay problem. It was hypothesized that 
clock frequencies would grow so fast and 
wires so slow, that it would take tens of 
cycles to send information across a large 
chip. The microarchitectures we build 
and ship today really are not equipped to 
work under such delay constraints.

However, faster clocks and deeper 
pipelines ran into more fundamental 
problems. More deeply pipelined pro-

Collectively, these effects manifest-
ed themselves as a distinct change in 
the growth of processor frequency in 
2004 (as indicated in Figure 1). Intel, 
in fact, stepped back from aggressive 
clock scaling in the Pentium 4 and with 
later products such the Core 2. AMD 
never attempted to build processors of 
the same frequency as Intel, but con-
sequently suffered in the marketing 
game, whereby consumers erroneously 
assume frequency is the only indicator 
of CPU performance.

Clock frequency is clearly not the 
same thing as performance. CPU per-
formance must be measured by observ-
ing the execution time of real applica-
tions. Reasonable people can argue 
about the validity of the SPEC bench-
mark suite. Most would admit it under- 
represents memory and I/O effects. 
Nevertheless, when we consider much 
larger trends in performance over sev-
eral years it is a reliable indicator of the 
progress computer architects and sili-
con technology have made.

Figure 2 depicts CPU performance 
from 1982 to 2007, as measured by sev-
eral different generations of SPEC inte-
ger benchmarks. The world changed by 
June 2004. Examining this 25-year time 
span, and now with four years of hind-
sight, it’s clear we have a problem. We 
no longer are able to exponentially im-
prove the rate of performance of single 
threaded applications.

The fact that we have been able to 
improve performance rates in the past 
has been a tremendous boon for the IT 
industry. Imagine if other industries, 
such as the auto or airline business, 
had at their core a driving source of 
exponential improvement. How would 
the auto or airline industries change 
if miles per gallon or transport speed 
doubled every two years? Exponen-
tial performance improvement drives 
down cost and increases the user expe-
rience by enabling ever richer applica-
tions. In fact, manufacturing, materi-
als, architects, and compiler writers 
have been so effective at translating 
Moore’s Law exponential increase in 
chip resources23 into exponential per-
formance improvements, that many 
people erroneously use the terms in-
terchangeably. The question before 
us as a research field and an industry 
is, now that we no longer know how to 
translate Moore’s Law growth in avail-

Figure 1: CPU clock speed.
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able silicon area per unit dollar into 
exponential performance increases at 
relatively fixed cost, what are we going 
to do instead?

A Savior? Processor manufactur-
ers have bet their future on a relatively 
straightforward (for them) solution. 
That is, if we can’t make one core ex-
ecute a thread any faster, let’s just 
place two cores on the die and modify 
the software to utilize the extra core. In 
the next generation, place four cores. 
The generation after that, eight, and 
so on. From a manufacturing stand-
point, multicore or “manycore,” as this 
approach is called, has several attrac-
tive qualities. First, we know how to 
build systems with higher peak perfor-
mance. If the software can utilize them, 
then more cores per die will equate to 
improved performance. Unlike single-
threaded performance, where we really 
have no clear ideas left to scale perfor-
mance, multicore appears to offer us a 
path to salvation.

Second, again, if the software is 
there, a host of technological problems 
are mitigated by multicore. For exam-
ple, as long as thread communication 
is kept to a minimum, it is more en-
ergy efficient to complete a fixed task 
using multiple threads, compared to 
executing one thread faster. Multiple 
smaller, simpler cores are easier to 
design than larger complex ones, thus 
mitigating the design and verification 
costs. Reliability, a growing problem in 
processor design, also becomes easier: 
simply place redundant cores on the 
die and post-fabrication route requests 
for defective units to one of the redun-
dant cores, much as we do today with 
DRAMs. Or, even simpler, map them 
out entirely and sell a lower-cost part 
to a different market segment, as Sun 
Microsystems now does. Finally, wire 
delay—that grand challenge that moti-
vated a flurry of research almost a de-
cade ago—is also mitigated: simpler 
cores are smaller and clock frequency 
can be reduced as performance can be 
had through thread-level parallelism.

All of this sounds fantastic, except 
for one thing: it is predicated on the 
software being multithreaded. Just as 
important for future scalability, thread 
parallelism must be found in software 
at a rate commensurate with Moore’s 
Law, which means if today we must find 
four independent threads of computa-

tion, in two years there must be eight, 
and two years after that 16.

Processor manufacturers are not 
asking a small favor from software de-
velopers. From a programmer’s per-
spective, multicore CPUs currently 
look no different than Symmetric Mul-
tiprocessors (SMPs) that have been 
around for decades. Such systems are 
not widely deployed on the home and 
business desktop, for good reason. 
They cost more and there isn’t a sig-
nificant performance advantage for 
the applications these users employ. 
So a reasonable question then is to ask: 
What makes us think this time it’s go-
ing to work?

An optimist will make the following 
arguments: First, the cost difference is 
now in the reverse direction. Assuming 
we could build a faster single-threaded 
core, it will cost more. Design, valida-
tion, cooling, and manufacturing will 
assure that fact. Second, we do know 
more about parallel programming 
now than ever before. Tools have actu-
ally improved, with methods to look 
for race conditions and automatically 
parallelize loops,10 and the resurgent 
interest in transactional programming 
will bear fruit. We’ve had many years 
of successful experience using paral-
lelism in the graphics, server, and sci-
entific computing domains. Third, 
and perhaps most importantly, it just 
has to work. For this reason software 
companies that need their products 
to achieve scalable performance must 
invest heavily into parallel programming. 
The hope is the commercial emphasis on 
parallel computing will create solutions.

A pessimist will counter thusly: 
Parallelism on the desktop has never 
worked because the technical require-
ments it takes to write threaded code 
just don’t align with the economic forc-
es driving desktop software developers. 
Writing parallel code is more difficult 
than writing sequential code. It’s more 
error prone and difficult to debug, 
due to the non-determinism of thread 
memory interleavings. Furthermore, 
I have yet to meet anyone that thinks 
the industry will successfully parallel-
ize its large legacy code bases. Once a 
large application has been designed 
for a single-threaded execution model, 
it is extremely difficult to tease it apart 
and parallelize it. What this means is 
programmers must feel the economic 

The question before 
us as a research 
field and an  
industry is, now  
that we no longer 
know how to 
translate Moore’s 
Law growth in 
available silicon 
area per unit dollar 
into exponential 
performance 
increases at 
relatively fixed chip 
cost, what are we 
going to do instead? 
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forces to create threaded code from day 
one, not as a revision of the code base. 
Parallelizing code must be as much of 
a priority as writing correct code, or 
achieving a certain time to market.

A more realistic view of the future 
is somewhere between these two 
extremes. Parallelizing legacy code 
is widely viewed as a dead-end, but 
building compelling add-ons to ex-
isting applications and then “bolting 
on” these features to legacy codes is 
possible. One does not need to change 
the entire code base of a word proces-
sor, for example, in order to bolt on 
a speech recognition engine that ex-
ploits multicore. Furthermore, some 
applications that drive sales of new 
machines, such as interactive video 
games, have ample data parallelism 
that is relatively easy to extract with 
stream-based programming.

Finally, programmers will end up 
writing parallel software without real-
izing that is what they are doing. For 
example, programmers who utilize 
SQL databases will see their applica-
tion’s performance improve just by 
virtue of some other developer’s effort 
spent on parallelizing the database en-
gine itself. Extending this idea further, 
building parallel frameworks that fit 
various application classes (business, 
Web services, games, and so on) will 
enable programmers to more easily 
exploit multicore processors without 
having to bite off the whole complexity 
of parallel programming.

Part II: The Architecture  
Research Community
Given this technology environment, 
what do computer architects currently 
research? To answer this question, it is 
best to look back over the last decade 
and understand what we thought were 
important research problems, and 
what happened to them.

The memory wall. A workshop, held 
in conjunction with the 1997 Interna-
tional Symposium of Computer Archi-
tecture (ISCA), focused on the memory 
wall and the research occurring on pro-
posed solutions to it. The memory wall 
is the problem that accesses to main 
memory are significantly slower than 
computation. There are two aspects to 
it, a high latency to memory (hundreds 
of times the latency of a basic ALU op-
eration inside a CPU) and a constrained 

bandwidth. Excitement at the time was 
over solutions that proposed placing 
computational logic in the DRAM.11, 

19, 20, 29, 32 Such solutions never achieved 
broad acceptance in the marketplace 
because they required programmers to 
alter their software and they required 
DRAM manufacturers to restructure 
their business models. DRAM is a com-
modity, and businesses compete on 
cost. Adding logic to DRAM makes the 
devices expensive and system specific.

While technically feasible, it is a 
different business that DRAM manu-
facturers chose not to enter. However, 
less radical solutions, such as prefetch-
ing, stream buffers,18 and ever larger 
on-chip caches,22 did take hold com-
mercially. Moreover, programmers be-
came more amenable to tuning their 
applications to the memory hierarchy 
architects provide them. Cache-con-
scious data structures and algorithms 
are an effective, yet burdensome, way 
to achieve performance.

The memory wall is still with us. 
Accessing DRAM continues to require 
hundreds of more cycles than perform-
ing a basic ALU operation. While the 
drop in the growth of processor clock 
speed means that memory latency is 
less of a growing concern, the switch to 
multicore actually presents new chal-
lenges with bandwidth and consisten-
cy. Having all these CPU cores on a sin-
gle die means they will need a Moore’s 
Law growth in bandwidth to memory in 
order to operate efficiently. At the mo-
ment, we are not pin limited in provid-
ing this bandwidth, but we quickly will 
be; so we can expect a host of future 
research that looks at the memory wall 
again, but this time from a bandwidth, 
instead of a latency perspective.

Along with memory performance 
is the evolution of the memory model. 
In the past, it was thought providing 
a sequentially consistent system with 
reasonable performance was not pos-
sible. Hence, we devised a range of 
relaxed consistency approaches.30 
It is natural for programmers to as-
sume multicore systems are sequen-
tially consistent, however, and recent 
work8 suggests that architectures can 
use speculation16 to provide it. Look-
ing forward, as much as can be done, 
must be done, to make programming 
parallel systems as easy as possible. 
This author believes this will push 

Parallelizing legacy 
code is widely 
viewed as a dead-
end, but building 
compelling add-
ons to existing 
applications that 
take advantage of 
multicore, and then 
“bolting on” these 
features to legacy 
codes is possible.  
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hardware vendors toward providing 
sequentially consistent systems.

Power. ISCA 98 brought a whole new 
vocabulary to architects. Terms such as 
power, energy, energy-delay product, 
bips-per-watt, and so on, would hence-
forth be part of the research parlance, 
with real debate about what quantity 
was most important to optimize. The 
slide that defined the power problem34 
depicted process generation on the x 
-axis, power per unit area on a log-scale 
on the y-axis, and various points depict-
ing Intel processors, a hot plate, a nu-
clear reactor, a rocket nozzle, and the 
surface of the sun. The message from 
the slide was clear: change something, 
or processors would quickly have to be 
cooled by some technology capable of 
cooling the surface of the sun, clearly a 
ridiculous design point. The research 
on power was vast, starting with tech-
niques for measuring power5, 42 in mi-
croarchitectures. Since then, authors 
either included a power analysis of 
their work in their papers, or, reviewers 
would ask for it!

In reality, at the microarchitectural 
level, dynamic voltage/frequency scal-
ing27 (DVFS)—a circuit technique that 
reduces operating frequency and sup-
ply voltage when processors are idle, 
or need only operate at reduced per-
formance—and clock-gating are high-
ly effective. Several ideas for reducing 
power beyond DVFS and clock-gating 
have been proposed, and do work, 
but the most bang for the buck comes 
from doing these two techniques well. 
Looking forward, power will continue 
to cap performance and drive design 
considerations. The macroscopic en-
vironment in which we consider pow-
er issues has changed slightly from 

a perceived increase in processor is-
sue width by coarser management of 
fetched instructions.4 

Design complexity is still an issue 
today, but the switch to multicore has 
effectively halted the growth in core 
complexity. With processor vendors 
banking their future on multicore, 
they are expecting performance to 
come from additional cores, not more 
complex ones. Moreover, there are 
strong arguments to be made, that if 
the thread parallelism is available in 
the applications, then vendors will 
switch to more energy-efficient, sim-
pler cores. In effect, the trend in core 
complexity could actually reverse. How 
far this trend will go no one knows, but 
if software does indeed catch up and 
become thread-parallel, then we could 
see heterogeneous multicore devices, 
with one or a handful of complex cores 
and a sea of simple, reduced-ISA ones43 
that will provide the most performance 
per dollar and per watt.

Reliability. In 2001, concerns about 
both hard and soft faults began to ap-
pear at ISCA. Yet another new vocabu-
lary term appeared in our literature: 
the high-energy particle. As silicon 
feature sizes shrink, the quantity of 
charge held on any particular wire in 
a microprocessor also is reduced. Nor-
mally this has a positive benefit (lower 
power, faster), but it also means that 
the charge on that line can be on the or-
der of that induced by an alpha particle 
striking the silicon lattice. This is not 
a new problem, as “hardened” micro-
processors have been built for decades 
for the space industry as electronics in 
space must operate without the natu-
ral high-energy particle absorption ef-
fect of the atmosphere. Now our earth-

1998, however. The massive power 
consumption occurring in data-cen-
ters makes companies that operate 
them power-hungry, shopping for 
the best physical and regulatory en-
vironment in which to obtain cheap 
energy. These companies will benefit 
from multicore devices, as their soft-
ware is task-parallel, and using mul-
tiple simple cores is a more energy 
efficient means to compute than with 
single complex CPUs. The usefulness 
of portable devices is also effectively 
constrained by power, as improve-
ments in battery technology continue 
to lag in the single digits. Thus, archi-
tects will continue to consider power 
in their ideas, as it continues to be an 
important design consideration.

Design Complexity. In the mid- 
1990s, a community of architects 
began to focus on the complexity of 
modern CPU designs.31 Processors 
today contain approximately 1,000 
times more core (non-cache) tran-
sistors than 30 years ago. It is just 
not possible to have a bug-free de-
sign for such a complex device with 
the engineering methodologies that 
we currently employ. Such complex 
designs are difficult to innovate, as 
design changes cannot be reasoned 
about locally. Moreover, large mono-
lithic designs often have long wires, 
which consume power and constrain 
the clock cycle. Several projects were 
spurred by these motivations to pro-
pose fairly radical changes to the 
processing model.26, 36, 37 A wealth of 
less radical, more localized solutions 
were developed, among them ways 
to reduce instruction scheduling 
logic,14 reduce the complexity of out 
of order structures,9, 38 and provide 

My survey of the top 10 CS 
and engineering departments 
suggests that a strong majority 
(80%) require some form of 
computer architecture class in 
order to receive a bachelor’s 
degree in CS. At the moment, 
advanced architecture, such as 
parallel systems, and advanced 
programming techniques, 
such as parallel programming, 
appear to be relegated to 

electives. If computer architects 
fail to get microprocessors back 
on an exponential performance 
curve, as appears likely at 
the moment, then clearly the 
curriculum in our universities 
will need revision.

Students graduating with 
a competence in engineering 
software for parallel systems 
will have a distinct advantage 
in the work force over those 

who do not. But creating this 
competence is elusive. Most 
universities that I surveyed begin 
their programs by teaching basic 
programming—or programming 
for single-core devices. What 
this means is undergraduates 
are taught from day one in 
CS departments to think 
about engineering sequential 
solutions. Clearly this will 
not do in a multicore era, still 

the complexities of teaching 
threads, locks, and barriers to 
freshmen computer scientists 
seem daunting. Nevertheless, 
departments that are able to 
integrate parallel computing 
throughout their curriculum will 
position their undergraduates 
to be the future leaders in the IT 
industry. Thus, they should be 
well motivated to think about 
curriculum change.

Computer Architecture in Education
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leads directly to improved yields (and 
in the future, improved performance if 
redundant cores are not required), and 
thus reduced costs.

Evaluation techniques. How archi-
tects do research has changed dramati-
cally over the decades. When ISCA first 
started in the 1970s, papers typically 
provided paper designs and qualita-
tive or simple analytical arguments to 
the idea’s effectiveness. Research tech-
niques changed significantly in the 
early 1980s with the ability to simulate 
new architecture proposals, and thus 
provide quantitative evidence to back 
up intuition. Simulation and quantita-
tive approaches have their place, but 
misused, they can provide an easy way 
to produce a lot of meaningless, but 
convincing looking data. Sadly, it is now 
commonly accepted in our community 
that the absolute value of any data pre-
sented in a paper isn’t meaningful. We 
take solace in the fact the trends—the 
relative difference between two data 
points—likely have a corresponding 
difference in the real world.

As an engineer, this approach to 
our field is sketchy, but workable; as 
a scientist, this seems like a terrible 
place to be. It is nearly impossible to 
do something as simple as reproduce 
the results in a paper. Doing so from 
the paper alone requires starting from 
the same simulation infrastructure as 
the authors, implementing the idea 
as the authors did, and then execut-

bound devices must also deal with this 
problem. Architects proposed a cornu-
copia of techniques to deal with faults, 
from the radical, which proposed alter-
native processor designs2 and ways to 
use simultaneous multithreaded de-
vices,24, 39 to the more easily adoptable 
by industry, such as cache designs with 
better fault resilience. Important work 
also better characterized what parts of 
the microarchitecture are actually sus-
ceptible to a dynamic fault.	  

Reliability continues to play an im-
portant part of architecture research, 
but the future presents some differing 
technology trends. It is this author’s 
opinion that Moore’s Law will not stop 
anytime soon, but it won’t be because 
we shrink feature sizes down to a hand-
ful of atoms in width.44 Rather, die-
stacking will continue to provide ever 
more chip real estate. These dies will 
have a fixed (or even larger) feature size, 
and thus the growth in dynamic faults 
due to reduced feature sizes should 
actually stop. Moreover, if multicore 
does actually prove to be a market suc-
cess, then reliability can be achieved 
without enormous complexity: proces-
sors with manufactured faults can be 
mapped out, and for applications that 
require high reliability, multiple cores 
can be used to redundantly perform 
the computation. Nevertheless, de-
spite this positive long-term outlook, 
work to improve reliability will always 
have purpose, as improved reliability 

ing the same benchmarks, compiled 
with the same compiler with the same 
settings, as the authors. Starting from 
scratch on this isn’t tractable, and the 
only real way to reproduce a paper’s 
results is to ask the authors to share 
their infrastructure. Another, more 
insidious problem with simulation is 
its too easy to make mistakes when 
implementing a component model. 
Because it is common, and even desir-
able, to separate functional ISA mod-
eling from performance modeling, 
these performance model errors can 
go unnoticed, thus leading to entirely 
incorrect data and conclusions. De-
spite these drawbacks, quantitative 
data is seductive to reviewers, and 
simulation is the most labor-efficient 
way to produce it.

Looking forward, the picture is 
muddled. Simulation will continue to 
be the most important tool in the com-
puter architect’s toolbox. The need 
to model ever more parallel architec-
tures, however, will create the need to 
continue to explore different modeling 
techniques because, for the moment, 
the tools used in computer architecture 
research are built on single-threaded 
code bases. Thus, simulating an expo-
nentially increasing number of CPU 
cores means an exponential increase 
in simulation time. Fortunately, sev-
eral paths forward exist. Work on high 
level performance models13, 28 provides 
accurate relative performance data 
quickly, suitable for coarsely mapping 
a design space. Techniques to sample35, 41 
simulation data enable architects to 
explore longer-running simulations 
with reasonable confidence. Finally, 
renewed interest in prototyping and 
using FPGAs for simulation40 will allow 
architects to explore ideas that require 
cooperation with language and applica-
tion researchers as the speed of FPGA-
based simulation is just fast enough to 
be usable by software developers.

There are several advantages to 
pre-built and shared tools for archi-
tecture research. They are enablers, 
allowing research groups to not start 
from scratch. Having shared tools has 
another benefit: the bugs and inaccu-
racies in those tools can be revealed 
and fixed over time. Shared tools also 
enable re-creating other people’s work 
easier. There has been, and there will 
continue to be, a downside to the avail-

Figure 3: Papers published in ISCA 2001–2006.
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tion scheduling, and so on. The list of 
areas explored is endless.

Alongside the development of x86 
microprocessors in the 1990s and 
2000s, Intel and HP sunk enormous 
effort and dollars into developing an-
other line of processors, Itanium,22 
that gain performance from ILP. Ita-
nium is a Very Long Instruction Word 
(VLIW) processor, in the mold of far 
earlier work on the subject.15 Such pro-
cessors promise performance from 
ILP at reduced complexity compared 
to superscalar designs, by relying on 
sophisticated compilation technology. 
VLIW is a fine idea; it communicates 
more semantic knowledge about fine-
grained parallelism from the software 
to the hardware. If technically such 
an approach is useful, why don’t you 
have an Itanium processor on your 
desktop? In a nutshell, such proces-
sors never achieved a price point that 
fit well in the commodity PC market. 
Moreover, in order to maintain binary 
compatibility with x86, sophisticated 
binary translation mechanisms had 
to be employed. After such transla-
tion, existing code saw little to no 
performance benefit from executing 
on Itanium. Consumers were loath to 
spend more on a system that was no 
faster, if not slower, than the cheaper 
alternative, for the promise that some-
day faster native-code applications 
would arrive. There is a lesson here 
for multicore systems as well: without 
tangible benefits, consumers will not 
spend money on new hardware just 
for its technical superiority.

Does ILP still matter? This author 
would argue it does. As mentioned 
earlier, even parallel programs have 
sequential parts. Legacy code still mat-
ters to the IT industry. Is there more 
ILP to be had? This is a more difficult 
question to answer. The seminal work 
in this area21 suggests there is. Extract-
ing it from applications, however, is no 
trivial matter. The low-hanging fruit 
was gone before I even entered the 
field! Aggressive speculation to address 
the memory wall, the inherent diffi-
cultly in predicting certain branches, 
and the false control and memory de-
pendencies introduced by the impera-
tive language programming model is 
required. This must be carried out by 
architectures that are simple to design 
and validate, lack monolithic control 

ability of pre-built tools for architec-
ture research, however. Just as Sim-
pleScalar7 created a flood of research 
on super-scalar microarchitecture, 
the availability of pre-canned tools 
and benchmarks for CMPs will create 
a flood of research that is one delta 
away from existing CMP designs. But 
is this the type of research academics 
should be conducting? As academics, 
shouldn’t we be looking much farther 
downfield, to the places where indus-
try is not yet willing to go? This is an 
age-old quandary in our community 
and will likely continue to be so. Such 
a debate will certainly continue to ex-
ist in our research community for the 
foreseeable future.

In the computer architecture field 
there is a cynical saying that goes 
something like “we design tomorrow’s 
systems with yesterday’s benchmarks.” 
This author finds this statement ex-
treme, but there is some underlying 
merit to it. For example, there are far 
more managed-code and scripting lan-
guage developers out there than C/C++ 
ones. Yet the majority of benchmarks 
used in our field are written in C. For-
tunately, this is changing, with newer 
benchmarks such as SPECjvm and 
SPECjbb. Moreover, a few researchers 
are starting to focus on performance 
issues of managed and scripted code. 
Looking forward, there is a very real 
need for realistic multithreaded bench-
marks. Recent work, suggests a kernel-
driven approach is sufficient.33 As with 
the whole of architecture evaluation 
techniques, the jury is still out on what 
is the proper methodology.

Instruction-Level Parallelism. Fi-
nally, a large number of architects, 
myself among them, are still putting 
enormous effort into finding addi-
tional instruction-level parallelism 
(ILP). Some of these architects don’t 
have complete faith that multicore 
will be a success. Others recognize 
that improvements in single-thread-
ed performance benefit multicore as 
well, as parts of applications will be 
sequential or require a few threads to 
execute quickly. Over the years, these 
researchers have sought to find ILP in 
every nook and cranny of the research 
space. Everything from new instruc-
tion set architectures, new execution 
models, to better branch predictors, 
caches, register management, instruc-
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People far older 
and wiser than me 
contend this is the 
most exciting time 
for architecture 
since the invention 
of the computer. 
What makes it 
exciting is that 
architecture is in 
the unique position 
of being at the 
center of the future 
of computer science 
and the IT industry. 
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structures, and that are backward 
compatible, if not with the binaries, 
with the programming model.

What are we doing now? A look at 
the ISCA 2007 conference program 
provides a good overview of the type 
of research being done in our com-
munity. A survey of papers published 
in that year reveals the following: 18 
papers focused on multicore (eight 
core and memory design, six transac-
tional programming, four on-chip in-
terconnect); six papers were focused 
on single-core devices and/or appli-
cations, six papers were focused on 
special-purpose or streaming/media 
devices, four papers were focused on 
power reduction and three were in 
the general area of “beyond CMOS” 
Figure 3 extends this data out for 
the last seven years of ISCA. This 
data extends the work of Hill,45 who 
tracked papers published in ISCA by 
category from 1973–2001. That data 
showed a precipitous rise and fall of 
interest in multiprocessor research, 
while data from the last seven years 
depicts a renewed and vigorous mul-
tiprocessor research environment.

The Most Exciting Time
In my lifetime, this is the most excit-
ing time for computer architecture 
research; indeed, people far older and 
wiser than me46 contend this is the 
most exciting time for architecture 
since the invention of the computer. 
What makes it exciting is that architec-
ture is in the unique position of being 
at the center of the future of computer 
science and the IT industry. Innova-
tions in architecture will impact every-
thing from education to determining 
who are the new winners and losers in 
the IT business. Central to this excite-
ment for me as an academic, is there is 
no real clear way to proceed. Multicore 
devices are being sold, and parts of the 
software ecosystem will utilize them, 
but the research and product space is 
far more fluid and open to new ideas 
now than ever before. Thus, while we 
are central to the future directions of 
computer science, we really lack a clear 
vision for how to proceed. What could 
be better than that? 	
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complex processor architectures. The 
era did not stop because Moore’s Lawa 
ended. Semiconductor technology is 
still capable of doubling the transistors 
on a chip every two years. However, this 
flood of transistors now increases the 
number of independent processors on 
a chip, rather than making an individ-
ual processor run faster. The resulting 
computer architecture, named Multi-
core, consists of several independent 
processors (cores) on a chip that com-
municate through shared memory. To-
day, two-core chips are common and 
four-core chips are coming to market, 
and there is every reason to believe that 
the number of cores will continue to 
double for a number of generations. 
On one hand, the good news is that the 
peak performance of a Multicore com-
puter doubles each time the number 
of cores doubles. On the other hand, 
achieving this performance requires a 
program execute in parallel and scale 
as the number of processors increase.

Few programs today are written to 
exploit parallelism effectively. In part, 
most programmers did not have access 
to parallel computers, which were lim-
ited to domains with large, naturally 
parallel workloads, such as servers, or 
huge computations, such as high-per-
formance computing. Because main-
stream programming was sequential 
programming, most existing program-
ming languages, libraries, design pat-
terns, and training do not address the 
challenges of parallelism program-
ming. Obviously, this situation must 
change before programmers in general 
will start writing parallel programs for 
Multicore processors.

A primary challenge is to find bet-
ter abstractions for expressing paral-
lel computation and for writing paral-
lel programs. Parallel programming 
encompasses all of the difficulties of 
sequential programming, but also in-
troduces the hard problem of coordi-
nating interactions among concurrent-
ly executing tasks. Today, most parallel 

a.	 The doubling every 18–24 months of the num-
ber of transistors fabricable on a chip.

As computers evolve, programming changes as 
well. The past few years mark the start of a historic 
transition from sequential to parallel computation 
in the processors used in most personal, server, 
and mobile computers. This shift marks the end of 
a remarkable 30-year period in which advances in 
semiconductor technology and computer architecture 
improved the performance of sequential processors at 
an annual rate of 40%–50%. This steady performance 
increase benefited all software, and this progress was 
a key factor driving the spread of software throughout 
modern life.

This remarkable era stopped when practical limits 
on the power dissipation of a chip ended the continual 
increases in clock speed and limited instruction-level 
parallelism diminished the benefit of increasingly

doi:  10.1145/1364782.1364800 
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programs employ low-level program-
ming constructs that are just a thin 
veneer over the underlying hardware. 
These constructs consist of threads, 
which are an abstract processor, and 
explicit synchronization (for example, 
locks, semaphores, and monitors) to 
coordinate thread execution. Consid-
erable experience has shown that par-
allel programs written with these con-
structs are difficult to design, program, 
debug, maintain, and—to add insult to 
injury—often do not perform well.

Transactional memory (TM)—pro-
posed by Lomet19 and first practically 
implemented by Herlihy and Moss13—
is a new programming construct that 
offers a higher-level abstraction for 
writing parallel programs. In the past 
few years, it has engendered consider-

able interest, as transactions have long 
been used in databases to isolate con-
current activities. TM offers a mecha-
nism that allows portions of a program 
to execute in isolation, without regard 
to other, concurrently executing tasks. 
A programmer can reason about the 
correctness of code within a transac-
tion and need not worry about complex 
interactions with other, concurrently ex-
ecuting parts of the program. TM offers 
a promising, but as yet unproven mecha-
nism to improve parallel programming.

What is Transaction Memory?
A transaction is a form of program ex-
ecution borrowed from the database 
community.8 Concurrent queries con-
flict when they read and write an item in 
a database, and a conflict can produce 

an erroneous result that could not arise 
from a sequential execution of the que-
ries. Transactions ensure that all que-
ries produce the same result as if they 
executed serially (a property known as 
“serializability”). Decomposing the se-
mantics of a transaction yields four re-
quirements, usually called the “ACID” 
properties—atomicity, consistency, 
isola​tion, and durability.

TM provides lightweight transac-
tions for threads running in a shared 
address space. TM ensures the atom-
icity and isolation of concurrently ex-
ecuting tasks. (In general, TM does not 
provide consistency or durability.) Ato-
micity ensures program state changes 
effected by code executing in a transac-
tion are indivisible from the perspec-
tive of other, concurrently executing I
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account only during their operation, 
properly implementing Transfer re-
quires understanding and modifying 
the class’s locking discipline by adding 
a method to either lock all accounts 
or lock a single account. The latter ap-
proach allows non-overlapping trans-
fers to execute concurrently, but intro-
duces the possibility of deadlock if a 
transfer from account A to B overlaps 
with a transfer from B to A.

TM allows the operations to be com-
posed directly. The Deposit and With-
draw operations each execute in a trans-
action, to protect their manipulations 
of the underlying data. The Transfer 
operation also executes in a transaction, 
which subsumes the underlying opera-
tions into a single atomic action.

Limitations of Transactional Mem-
ory. Transactions by themselves cannot 
replace all synchronization in a parallel 
program.2 Beyond mutual exclusion, 
synchronization is often used to coor-
dinate independent tasks, for example, 
by ensuring that one task waits for an-
other to finish or by limiting the num-
ber of threads performing a task.

Transactions by themselves provide 
little assistance in coordinating inde-
pendent tasks. For example, consider 
a producer-consumer programming 
relationship, in which one task writes 
a value that another task reads. Trans-
actions can ensure the tasks’ shared 
accesses do not interfere. However, 
this pattern is expensive to imple-
ment with transactions, whose goal is 
to shield a task from interactions with 
other tasks. If the consumer transac-
tion finds the value is not available, it 
can only abort and check for the value 
later. Busy waiting by aborting is inef-
ficient since an aborted transaction 
rolls back its entire computation. A 
better solution is for the producer to 
signal the consumer when the value 
is ready. However, since a signal is 
not visible in a transaction, many TM 
systems provide a guard that prevents 
a transaction from starting execution 
until a predicate becomes true. 

Haskell TM introduced the retry 
and orElse constructs as a way for a 
transaction to wait until an event oc-
curs and to sequence the execution of 
two transactions.11 Executing a re-
try statement causes the surround-
ing transaction to abort. It does not 
reexecute until a location it previously 

transactions. In other words, although 
the code in a transaction may modify 
individual variables through a series 
of assignments, another computation 
can only observe the program state 
immediately before or immediately af-
ter the transaction executes. Isolation 
ensures that concurrently executing 
tasks cannot affect the result of a trans-
action, so a transaction produces the 
same answer as when no other task was 
executing. Transactions provide a ba-
sis to construct parallel abstractions, 
which are building blocks that can be 
combined without knowledge of their 
internal details, much as procedures 
and objects provide composable ab-
stractions for sequential code.

TM Programming Model. A pro-
gramming model provides a rationale 
for the design of programming lan-
guage constructs and guidance on how 
to construct programs. Like many as-
pects of TM, its programming model is 
still the subject of active investigation.

Most TM systems provide simple 
atomic statements that execute a block 
of code (and the routines it invokes) as 
a transaction. An atomic block isolates 
the code from concurrently executed 
threads, but a block is not a replace-
ment for general synchronization 
such as semaphores or condition vari-
ables.2 In particular, atomic blocks by 
themselves do not provide a means to 
coordinate code running on parallel 
threads.

Automatic mutual exclusion (AME), 
by contrast, turns the transactional 
model “inside-out” by executing most 
of a program in transactions.15 AME 
supports asynchronous program-
ming, in which a function starts one 
or more asynchronous computations 
and later rendezvouses to retrieve 
their results. This programming mod-
el is a common way to deal with un-
predictable latency in user-directed 
and distributed systems. The atomic-
ity provided by transactions ensures 
that an asynchronous computation, 
which executes at an unpredictable 
rate, does not interfere with other, si-
multaneously active computations.

Advantages of Transactional Mem-
ory. Parallel programming poses many 
difficulties, but one of the most serious 
challenges in writing correct code is 
coordinating access to data shared by 
several threads. Data races, deadlocks, 

and poor scalability are consequences 
of trying to ensure mutual exclusion 
with too little or too much synchroni-
zation. TM offers a simpler alternative 
to mutual exclusion by shifting the bur-
den of correct synchronization from 
a programmer to the TM system.9 In 
theory, a program’s author only needs 
to identify a sequence of operations on 
shared data that should appear to ex-
ecute atomically to other, concurrent 
threads. Through the many mecha-
nisms discussed here, the TM system 
then ensures this outcome.

Harris and Peyton-Jones11 argued 
that, beyond providing a better pro-
gramming abstraction, transactions 

also make synchronization compos-
able, which enables the construction 
of concurrency programming abstrac-
tions. A programming abstraction is 
composable if it can be correctly com-
bined with other abstractions without 
needing to understand how the ab-
stractions operate.

Simple locking is not composable. 
Consider, as an example, a class that 
implements a collection of bank ac-
counts. The class provides thread-safe 
Deposit and Withdraw operations 
to add and remove money from a bank 
account. Suppose that we want to com-
pose these operations into a thread-
safe Transfer operation, which 
moves money from one account to an-
other. The intermediate state, in which 
money was debited but not credited, 
should not be visible to other threads 
(that is, the transfer should be atomic). 
Since Deposit and Withdraw lock an I
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read changes value, which avoids 
the crudest form of busy waiting in 
which a transaction repeatedly reads 
an unchanging value and aborts. The 
orElse construct composes two 
transactions by starting the second 
one only if the first transaction fails to 
commit. This pattern—which arises 
in situations as simple as checking for 
a value in a cache and recomputing 
it if necessary—is difficult to express 
otherwise, since a transaction’s fail-
ure and reexecution is transparent to 
other computation.

We still do not understand the 
trade-offs and programming pragmat-
ics of the TM programming model. 
For example, the semantics of nested 
transactions is an area of active debate. 
Suppose that code in a transaction O 
invokes a library routine, which starts 
its own transaction I. Should the two 
transactions interact in any way, and 
if so, what are the implications for the 
TM implementation and for program-
mers building modular software and 
libraries? Consider when transaction 
I commits. Should its results be visible 
only to code in transaction O (closed 
nesting) or also to other threads (open 
nesting)? If the latter, what happens 
if transaction O aborts? Similarly, if 
transaction I aborts, should it termi-
nate transaction O as well, or should 
the inner transaction be rolled back 
and restarted independently?

Finally, the performance of TM is 
not yet good enough for widespread 
use. Software TM systems (STM) im-
pose considerable overhead costs on 
code running in a transaction, which 
saps the performance advantages of 
parallel computers. Hardware TM sys-
tems (HTM) can lower the overhead, 
but they are only starting to become 
commercially available, and most 
HTM systems fall back on software for 
large transactions. Better implemen-
tation techniques are likely to improve 
both types of systems and are an area 
of active research.

Transactional Memory  
Implementation
TM can be implemented entirely in 
software (STM) or with specialized 
hardware support (HTM). Many differ-
ent implementation techniques have 
been proposed, and this paper, rather 
than surveying the literature, focuses 

original, underlying object while the 
first transaction is still running, which 
causes a logical conflict that the STM 
system detects and resolves by abort-
ing one of the two transactions. 

An STM system can detect a con-
flict when a transaction first accesses 
an object (early detection) or when the 
transaction attempts to commit (late 
detection). Both approaches yield the 
same results, but may perform differ-
ently and, unfortunately, neither is 
consistently superior. Early detection 
prevents a transaction from perform-
ing unnecessary computation that a 
subsequent abort will discard. Late de-
tection can avoid unnecessary aborts, 
as when the conflicting transaction it-
self aborts because of a conflict with a 
third transaction. 

Another complication is a conflict 
between a transaction that only reads 
an object and another that modifies 
the object. Since reads are more com-
mon than writes, STM systems only 
clone objects that are modified. To 
reduce overhead, a transaction tracks 
the objects it reads and, before it com-
mits, ensures that no other transaction 
modified them.

DSTM is a library. An object ma-
nipulated in a transaction is first reg-
istered with the DSTM system, which 
returns a TMObject wrapper for the 
object (as illustrated in the accompa-
nying figure). Subsequently, the code 
executing the transaction can open 
the TMObject for read-only or read-
write access, which returns a pointer 
to the original or cloned object, re-
spectively. Either way, the transaction 
manipulates the object directly, with-
out further synchronization.

 A transaction ends when the pro-
gram attempts to commit the transac-
tion’s changes. If the transaction suc-
cessfully commits, the DSTM system 
atomically replaces, for all modified 
objects, the old object in a Locator 
structure with its modified version.

A transaction T can commit success-
fully if it meets two conditions. The 
first is that no concurrently executing 
transaction modified an object read by 
T. DSTM tracks the objects a transac-
tion opened for reading and validates 
the entries in this read set when the 
transaction attempts to commit. An 
object in the read set is valid if its ver-
sion is unchanged since transaction 

on a few key techniques. A more com-
plete overview is available elsewhere.18 

Most TM systems of both types im-
plement optimistic concurrency con-
trol in which a transaction executes 
under the assumption that it will not 
conflict with another transaction. If 
two transactions conflict, because one 
modifies a location read or modified 
by the other, the TM system aborts 
one of the transactions by reversing 
(rolling back) its side effects. The al-
ternative pessimistic concurrency 
control requires a transaction to es-
tablish exclusive access to a location 
(for example, by acquiring a lock) be-
fore modifying it. This approach also 

may abort and roll back a transaction, 
in case of deadlock.

Software Transactional Memory. 
The initial paper on STM by Shavit and 
Touitou29 showed it was possible to 
implement lock-free, atomic, multi-lo-
cation operations entirely in software, 
but it required a program to declare in 
advance the memory locations to be ac-
cessed by a transaction.

Herlihy et al.’s Dynamic STM 
(DSTM)14 was the first STM system that 
did not require a program to declare 
the memory locations accessed by a 
transaction. DSTM is an object-gran-
ularity, deferred-update STM system, 
which means that a transaction modi-
fies a private copy of an object and 
only makes its changes visible to other 
transactions when it commits. The 
transaction exclusively accesses the 
copy without synchronization. Howev-
er, another transaction can access the I
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T first opened it. DSTM also validates 
the read set every time it opens an ob-
ject, to avoid allowing a transaction to 
continue executing in an erroneous 
program state in which some objects 
changed after the transaction started 
execution.

The second condition is that trans-
action T is not modifying an object 
that another transaction is also modi-
fying. DSTM prevents this type of con-
flict by only allowing one transaction 
to open an object for modification. 
When a write-write conflict occurs, 
DSTM aborts one of the two conflicting 
transactions and allows the other to 
proceed. DSTM rolls the aborted trans-
action back to its initial state and then 
allow it to reexecute. The policy used to 
select which transaction to abort can 
affect system performance, including 
liveness, but it should have no effect on 
the semantics of the STM system.28

The performance of DSTM, like 
other STM systems, depends on the 
details of the workload. In general, 
the large overheads of STM systems 
are more expensive than locking on a 
small number of processors. However, 
as the number of processors increases, 
so does the contention for a lock and 
the cost of locking. When this occurs 
and conflicts are rare, STMs have been 
shown to outperform locks on small 
benchmarks.

Deferred-Update Systems. Other 
deferred-update STM systems inves-
tigated alternative implementation 

techniques. Harris and Fraser’s WSTM 
system detects conflicts at word, not 
object, granularity. This approach 
can avoid unnecessary conflicts if two 
transactions access different fields in 
an object, but it complicates the imple-
mentation sufficiently that few STM 
systems adopted the idea (although, 
HTM systems generally detect con-
flicts at word or cache line granularity). 
WSTM also was the first STM system in-
tegrated into a programming language. 
Harris and Fraser extended Java with 
an atomic statement that executed its 
block in a transaction, for example:

atomic {
 int x = lst.head;
 lst = lst.tail;
 …
}

The construct also provided an op-
tional guard that prevents a transac-
tion from executing until the condition 
becomes true.

Considerable research has inves-
tigated the policies that select which 
transaction to abort at a conflict.10, 28 
No one policy performs best in all situ-
ations, though a policy called “Polka” 
performed well overall. Under this pol-
icy, each transaction tracks the num-
ber of objects it has open and uses 
this count as its priority. A transaction 
attempting to acquire access to an ob-
ject immediately aborts a conflicting, 
lower-priority transaction. If the ac-

quiring transaction’s priority is lower, 
it backs off N times, where N is the dif-
ference in priority, with an exponen-
tially increasing interval between the 
retries. The transaction aborts and re-
executes if it cannot acquire an object 
within N attempts.

Direct Update Systems. In a direct-
update STM system, transactions di-
rectly modify an object, rather than a 
copy.1, 12, 27 Eliminating the copy poten-
tially is more efficient, since it does 
not require a clone of each modified 
object. However, direct-update sys-
tems must record the original value 
of each modified memory location, 
so the system can restore the location 
if the transaction aborts. In addition, 
a direct update STM must prevent a 
transaction from reading the loca-
tions modified by other, uncommitted 
transactions, thereby reducing the po-
tential for concurrent execution.

Direct update STM systems also re-
quire a lock to prevent multiple trans-
actions from updating an object con-
currently. Because of the high cost of 
fair multiple reader-single writer locks, 
the systems do not lock a read-only ob-
ject and instead rely on read-set valida-
tion to detect concurrent modification 
of read-only objects. These lock sets in-
cur the same high overhead cost as in 
deferred-update systems.

The locks used to prevent multiple 
writes to a location, however, raise the 
possibility of stalling many transac-
tions when a transaction is suspended 
or descheduled while holding locks. 
Deferred-update STM systems typi-
cally use non-blocking data structures, 
which prevented a failed thread from 
obstructing other threads. Direct-up-
date STM systems provide similar for-
ward progress guarantees to an appli-
cation by detecting and aborting failed 
or blocked threads.

Hardware Support for  
Transactional Memory
The programming effort necessary to 
exploit parallelism is justified if the 
new code performs better or is more 
responsive than sequential code. Even 
though the performance of recent 
STM systems scales with the number 
of processors in a Multicore chip, the 
overhead of the software systems is 
significant. Even with compiler opti-
mizations, a STM thread may run two 

TMObject is a handle for the object. It points to a Locator, which in turn points to  
the Transaction that opened the object, the original (“old) version of the object, and  
the transaction’s private (“new”) clone of the object.

Locator
TMObject

Object — Old Version

Object — New VersionTransaction

New Data

Old Data

Status

A transacted object in the DSTM system.
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to seven times slower than sequential 
code. 22, 26

HTM can improve the performance 
of STM. While still an active area of re-
search, proposed systems fall into two 
broad categories: those that acceler-
ate key STM operations and those that 
implement transactional bookkeeping 
directly in hardware. 

Hardware Acceleration for STM. 
The primary source of overhead for an 
STM is the maintenance and validation 
of read sets. To track a read set, an STM 
system typically invokes an instrumen-
tation routine at every shared-memory 
read. The routine registers the object’s 
address and optionally performs early 
conflict detection by checking the 
object’s version or lock. To validate a 
transaction, the STM must traverse the 
read set and ensure each object has no 
conflicts. This instrumentation can 
impose a large overhead if the transac-
tion does not perform a large amount 
of computation per memory access. 

The hardware-accelerated STM 
(HASTM) by Saha et al. was the first 
system to propose hardware support 
to reduce the overhead of STM instru-
mentation.26 The supplementary hard-
ware allows software to build fast fil-
ters that could accelerate the common 
case of read set maintenance. HASTM 
provides the STM with two capabilities 
through per-thread mark bits at the 
granularity of cache blocks. First, soft-
ware can check if a mark bit was previ-
ously set for a given block of memory 
and that no other thread wrote to the 
block since it was marked (conflict de-
tection). Second, software can query if 
potentially there were writes by other 
threads to any of the memory blocks 
that the thread marked (validation).

HASTM proposed implementing 
mark bits using additional metadata 
for each block in the per-processor 
cache of a Multicore chip. The hard-
ware tracks if any marked cache block 
was invalidated because it was evicted 
from the cache or written to by another 
thread. An STM uses mark bits in the 
following way. The read instrumenta-
tion call checks and sets the mark bit 
for the memory block that contains 
an object’s header. If the mark bit was 
set, indicating that the transaction pre-
viously accessed the object, it is not 
added to the read set again. To validate 
the transaction, the STM queries the 

hardware to determine if any marked 
cache blocks were invalidated. If not, 
all objects accessed through instru-
mentation were private to the thread 
for the duration of the transaction 
and no further validation is required. 
If some marked blocks were invali-
dated, the STM must rely on software-
based validation to check the version 
numbers or locks for all objects in the 
read set. This expensive validation 
step determines if a marked block 
was evicted because of limited cache 
capacity or because of true conflicts 
between concurrent transactions. 

HASTM allows transactions to span 
system events such as interrupts, con-
text switches, and page faults, as the 
mark bits function only as a filter. If 
servicing a system event causes the 
eviction of some marked blocks, a 
pending transaction can continue its 
subsequent execution without abort-
ing. The transaction will simply fall 
back on software validation before it 
commits. Similarly, HASTM allows a 
transaction to be suspended and its 
speculative state inspected by a com-
ponent such as a garbage collector or a 
debugger running in another thread. 

It is also possible to accelerate STM 
conflict detection without modifying 
hardware caches. First-level caches are 
typically in the critical path of a proces-
sor and interact with complex subsys-
tems such as the coherence protocol. 
Even minor changes to caches can af-
fect the processor’s clock frequency 
and increase design and verification 
complexity. The signature-accelerated 
STM (SigTM) proposed by Cao Minh et 
al. uses hardware signatures to encode 
pessimistically the read set and write 
set for software transactions.22 A hard-
ware Bloom filter outside of the caches 
computes the signatures.b Software in-
strumentation provides the filters with 
the addresses of the objects read or 
written within a transaction. To detect 
conflicts, hardware in the computer 
monitors coherence traffic for requests 
for exclusive accesses to a cache block, 
which indicates a memory update. The 
hardware tests if the address in a re-

b.	 A Bloom filter efficiently represents a super-
set of the elements in a set and allows fast set 
membership queries. The use of Bloom fil-
ters for dependency detection in thread-level 
speculation and transactions was originally 
proposed by Ceze et al.6

The programming 
effort necessary to 
exploit parallelism 
is justified if the 
new code performs 
better or is more 
responsive than 
sequential code.
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quest is potentially in a transaction’s 
read or write set by examining the trans-
action’s signatures. If so, the memory 
reference is a potential conflict and the 
STM can either abort a transaction or 
turn to software validation. 

Both HASTM and SigTM accelerate 
read set tracking and validation for 
STM systems. Nevertheless, the archi-
tectures differ. SigTM encodes read 
set and write sets whose size exceeds 
the size of private caches. Capacity 
and conflict misses do not cause soft-
ware validation, as with HASTM. On 
the other hand, SigTM uses probabi-
listic signatures, which never miss a 
true conflict, but may produce false 
conflicts due to address aliasing in a 
Bloom filter. Moreover, the hardware 
signatures are relatively compact 
and easy to manipulate, so they can 
be saved and restored across context 
switches and other interruptions. In 
HASTM, the mark bits may be lost if 
a processor is used to run other tasks. 
On the other hand, SigTM signatures 
track physical addresses and their 
content must be discarded after the 
virtual page mapping is modified. 

Hardware acceleration for read set 
management has been shown to im-
prove the performance of lock-based, 
direct-update, and deferred-update 
STM systems by a factor of two.22, 26  
Additional improvements are pos-
sible with hardware mechanisms that 
target version management for the ob-
jects written by the STM.31 Neverthe-
less, since most programs read signif-
icantly more objects than they write, 
these performance improvements are 
small. 

Hardware Transactional Memory. 
The interest in full hardware imple-
mentation of TM (HTM) dates to the 
initial two papers on TM by Knight16 
and Herlihy and Moss13 respectively. 
HTM systems require no software in-
strumentation of memory references 
within transaction code. The hardware 
manages data versions and tracks 
conflicts transparently as software 
performs ordinary read and write ac-
cesses. Eliminating instrumentation 
reduces program overhead and elimi-
nates the need to specialize function 
bodies so they can be called within 
and outside of a transaction. 

HTM systems rely on a computer’s 
cache hierarchy and the cache coher-

ence protocol to implement version-
ing and conflict detection. Caches 
observe all reads and writes issued by 
a processor, can buffer a significant 
amount of data, and can be searched 
efficiently because of their associative 
organization. All HTMs modify the 
first-level caches, but the approach 
extends to higher-level caches, both 
private and shared. To illustrate the 
organization and operation of HTM 
systems, we will describe the TCC ar-
chitecture in some detail and briefly 
mention the key attributes of alterna-
tive designs. 

The Transactional Coherence and 
Consistency (TCC) system is a deferred-

update HTM that performs conflict de-
tection when a transaction attempts 
to commit.21 To track the read set and 
write set, each cache block is annotat-
ed with R and W tracking bits, which 
are set on the first read or write access 
to the block from within the transac-
tion. Cache blocks in the write set act 
as a write buffer and do not propagate 
the memory updates until the transac-
tion commits. 

TCC commits transactions using 
a two-phase protocol. First, the hard-
ware acquires exclusive access to all 
cache blocks in the write set using co-
herence messages. If this step is suc-
cessful, the transaction is considered 
validated. Next, the hardware instanta-
neously resets all W bits in the cache, 
which atomically commits the updates 
by this transaction. The new versions 
of the data are now globally accessible 
by all processors through the normal 

coherence protocol of a Multicore 
chip. If validation fails, because anoth-
er processor is also trying to commit a 
conflicting transaction, the hardware 
reverts to a software handler, which 
may abort the transaction or attempt 
to commit it under a contention man-
agement policy. When a transaction 
commits or aborts, all tracking bits are 
simultaneously cleared using a gang 
reset operation. Absent conflicts, mul-
tiple transactions may be committing 
in parallel. 

Conflict detection occurs as other 
processors receive the coherence mes-
sages from the committing transac-
tion. Hardware looks up the received 
block address in the local caches. If the 
block is in a cache and has its R or W 
bit set, there is a read-write or a write-
write conflict between the committing 
and the local transaction. The hard-
ware signals a software handler, which 
aborts the local transaction and poten-
tially retries it after a backoff period. 

Similar hardware techniques can 
support HTM systems with direct 
memory updates or early detection 
of conflicts.23 For direct updates, the 
hardware transparently logs the origi-
nal value in a memory block before its 
first modification by a transaction. If 
the transaction aborts, the log is used 
to undo any memory updates. For 
early conflict detection, the hardware 
acquires exclusive access to the cache 
block on the first write and maintains 
it until the transaction commits. Un-
der light contention, most HTM de-
signs perform similarly. Under heavier 
contention, deferred updates and late 
conflict detection lead to fewer patho-
logical scenarios that can be easily 
handled with a backoff policy.3 

 The performance of an HTM thread 
is typically within 2%–10% of the per-
formance of non-transactional code. 
An HTM system can outperform a lock-
based STM by a factor of four and the 
corresponding hardware-accelerated 
STM by a factor of two.22 Nevertheless, 
HTM systems face several system chal-
lenges that are not an issue for STM 
implementations. The caches used to 
track the read set, write set, and data 
versions have finite capacity and may 
overflow on a long transaction. The 
transactional state in caches is large 
and is difficult to save and restore at in-
terrupts, context switching, and paging I
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events. Long transactions may be rare, 
but they still must execute in a manner 
that preserves atomicity and isolation. 
Placing implementation-dependent 
limits on transaction sizes is unaccept-
able from a programmer’s perspective. 

A simple mechanism to handle cache 
overflows or system events is to ensure 
the offending transaction executes to 
completion.21 When one of these events 
occurs, the HTM system can update 
memory directly without tracking the 
read set, write set, or old data versions. 
At this point, however, no other transac-
tions can execute, as conflict detection 
is no longer possible. Moreover, direct 
memory updates without undo logging 
preclude the use of explicit abort or re-
try statements in a transaction. 

Rajwar et al. proposed Virtualized 
TM (VTM), an alternative approach 
that maintains atomicity and isolation 
for even if a transaction is interrupted 
by a cache overflow or a system event.25 
VTM maps the key bookkeeping data 
structures for transactional execution 
(read set, write set, write buffer or un-
do-log) to virtual memory, which is ef-
fectively unbounded and is unaffected 
by system interruptions. The hardware 
caches hold the working set of these 
data structures. VTM also suggested 
the use of hardware signatures to avoid 
redundant searches through structures 
in virtual memory. 

A final technique to address the 
limitation of hardware resources is to 
use a hybrid HTM–STM system.7, 17 A 
transaction starts in the HTM mode us-
ing hardware mechanisms for conflict 
detection and data versioning. If HTM 
resources are exceeded, the transac-
tion is rolled back and restarted in the 
STM mode with additional instrumen-
tation. This approach requires two ver-
sions of each function, but it provides 
good performance for short transac-
tions. A challenge for hybrid systems is 
to detect conflict between concurrently 
HTM and STM transactions. 

Hardware/Software Interface for 
Transactional Memory. Hardware de-
signs are optimized to make the com-
mon case fast and reduce the cost of 
correctly handling rare events. Proces-
sor vendors will follow this principle 
in introducing hardware support for 
transactional execution. Initial systems 
are likely to devote modest hardware 
resources to TM. As more applications 

use transactions, more aggressive hard-
ware designs, including full-featured 
HTM systems, may become available. 

Regardless of the amount of hard-
ware used for TM, it is important that 
HTM systems provide functionality 
that is useful in developing practical 
programming models and execution 
environments. A significant amount 
of HTM research has focused on hard-
ware/software interfaces that can sup-
port rich software features. McDonald 
et al. suggested four interface mecha-
nisms for HTM systems.20 The first 
mechanism is a two-phase commit 
protocol that architecturally separates 
transaction validation from commit-

ting its updates to memory. The sec-
ond mechanism is transactional han-
dlers that allow software to interface 
on significant events such as conflict 
detection, commit, or abort. Shrira-
man et al. suggest alert-on-update, 
a similar mechanism that invokes a 
software handler when HTM hard-
ware detects conflicts or experiences 
overflows.31 The third mechanism is 
support for closed and open-nested 
transactions. Open nesting allows soft-
ware to interrupt the currently execut-
ing transaction and run some service 
code (for example, a system call) with 
independent atomicity and isolation 
guarantees. Other researchers sug-
gest it is sufficient to suspend HTM 
transactions to service system calls 
and I/O operations.24, 32 Nevertheless, 
if the service code uses transactions to 
access shared data in memory, the re-
quirements of transaction pausing are 

not significantly different from those 
of open-nested transactions. Finally, 
both McDonald et al. and Sriraman et 
al. propose multiple types of load and 
store instructions what allow compil-
ers to distinguish accesses to thread-
private, immutable, or idempotent 
data from accesses to truly shared data. 
By providing such mechanisms, HTM 
systems can support software features 
ranging from conditional synchroni-
zation and limited I/O within trans-
actions5,32 to high-level concurrency 
models that avoid transaction aborts 
on memory conflicts if the application-
level semantics are not violated.4 

Open Issues
Beyond the implementation issues 
discussed here, TM faces a number of 
challenges that are the subject of active 
research. One serious difficulty with 
optimistic TM is that a transaction that 
executed an I/O operation may roll back 
at a conflict. I/O in this case consists of 
any interaction with the world outside 
of the control of the TM system. If a 
transaction aborts, its I/O operations 
should roll back as well, which may be 
difficult or impossible to accomplish 
in general. Buffering the data read or 
written by a transaction permits some 
rollbacks, but buffering fails in simple 
situations, such as a transaction that 
writes a prompt and then waits for user 
input. A more general approach is to 
designate a single privileged transac-
tion that runs to completion, by en-
suring it triumphs over all conflicting 
transactions. Only the privileged trans-
action can perform I/O (but the privi-
lege can be passed between transac-
tions), which unfortunately limits the 
amount of I/O a program can perform.

Another major issue is strong and 
weak atomicity. STM systems generally 
implement weak atomicity, in which 
non-transactional code is not isolated 
from code in transactions. HTM sys-
tems, on the other hand, implement 
strong atomicity, which provides a 
more deterministic programming 
model in which non-transactional code 
does not affect the atomicity of a trans-
action. This difference presents several 
problems. Beyond the basic question of 
which model is a better basis for writ-
ing software, the semantic differences 
makes it difficult to develop software 
that runs on both types of systems. I
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The least common denominator is the 
weak model, but erroneous programs 
will produce divergent results on differ-
ent systems. An alternative viewpoint 
is that unsynchronized data accesses 
between two threads is generally an er-
ror, and if only one thread is executing 
a transaction, then there is insufficient 
synchronization between the threads. 
Therefore, the programming language, 
tools, runtime system, or hardware 
should prevent or detect unsynchro-
nized sharing between transactional 
and non-transactional code, and a pro-
grammer should fix the defect.

Weakly atomic systems also face 
difficulties when an object is shared 
between transactional and non-trans-
actional code.30 Publication occurs 
when a thread makes an object visible 
to other threads (for example, by add-
ing it to a global queue) and privatiza-
tion occurs when a thread removes an 
object from the global shared space. 
Private data should be manipulatable 
outside of a transaction without syn-
chronization, but an object’s transi-
tion between public and private must 
be coordinated with the TM system, 
lest it attempt to roll back an object’s 
state while another thread assumes it 
has sole, private access to the data.

Finally, TM must coexist and inter-
operate with existing programs and li-
braries. It is not practical to require pro-
grammers to start afresh and acquire a 
brand new set of transactional libraries 
to enjoy the benefits of TM. Existing se-
quential code should be able to execute 
correctly in a transaction, perhaps with 
a small amount of annotation and re-
compilation. Existing parallel code 
that uses locks and other forms of syn-
chronization, must continue to oper-
ate properly, even if some threads are 
executing transactions. 

Conclusion
Transactional memory by itself is un-
likely to make Multicore computers 
readily programmable. Many other 
improvements to programming lan-
guages, tools, runtime systems, and 
computer architecture are also neces-
sary. TM, however, does provide a time-
tested model for isolating concurrent 
computations from each other. This 
model raises the level of abstraction for 
reasoning about concurrent tasks and 
helps avoid many insidious parallel 

programming errors. However, many 
aspects of the semantics and imple-
mentation of TM are still the subject 
of active research. If these difficulties 
can be resolved in a timely fashion, 
TM will likely become a central pillar 
of parallel programming.	
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Technical Perspective
Computer Science Takes on 
Molecular Dynamics
By Bob Colwell

Put this on your to-do list: read the fol-
lowing paper by researcher David Shaw 
and colleagues that describes their An-
ton molecular dynamics (MD) engine. 
Shaw’s Anton engine applies leading-
edge computer science concepts to the 
biologically crucial problem of mod-
eling molecular interactions. In an 
era when much of our most advanced 
computer technology is spent creating 
ever more horrible creatures that we 
can shoot ever bigger virtual holes in, 
the idea of productively using this tech-
nology to explore nature at its most 
up-close-and-personal is both exciting 
and reassuring.

The nature of the computational 
problem Anton aims to solve, and the 
unique aspects of the resulting design, 
are fascinating peeks into a corner of 
the computer design space we seldom 
get to visit—even though each of us 
is a biological machine that relies on 
the correct functioning of molecular 
mechanisms. When diseases cause 
these mechanisms to go awry, medical 
researchers try to infer the causes and 
possible remedies from very indirect 
and error-prone evidence, as they lack 
direct means of measuring or simu-
lating the molecular underpinnings. 
David Shaw calls his new instrument 
a “computational microscope,” and if 
successful it stands to make the same 
kind of game-changing impact that 
Anton van Leeuwenhoek’s original 
optical microscope once did. (Shaw’s 
machine was named in van Leeuwen-
hoek’s honor.)

To appreciate what Shaw’s machine 
is attempting, consider a system con-
taining a realistic protein molecule 
together with a few layers of water 
molecules, which might together en-
compass tens of thousands of atoms. 
If calculation of the force between any 
two atoms takes 10 computer opera-
tions, then the total ops required per 
time step would be (104 atoms) × (104 
atoms) × 10 ops/atom = 109 ops. Time 
slices are on the order of femtoseconds 

(10-15 seconds), and simulations must 
run for milliseconds (10-3 seconds) to 
capture the biology being modeled. So 
we’ll need to run those 109 ops for 1012 
slices to reach a simulated millisec-
ond—that’s 31,000 years. We need six 
orders of magnitude speedup, roughly 
three orders of magnitude beyond to-
day’s fastest supercomputers.

But even if you weren’t a biological 
unit with a vested interest in this effort, 
you could still appreciate the Anton de-
sign from a computer system perspec-
tive. General-purpose computer sys-
tems aspire to run everything well, but 
no one thing spectacularly well. Anton 
is designed to run a specific molecular 
dynamics workload spectacularly well. 
While a well-designed general system 
can bottleneck 100 different ways on 
100 different benchmarks, Anton must 
try, in essence, to bottleneck every-
where, all at once, on its one workload. 

This balancing act must be attempt-
ed in the face of imperfect knowledge 
of that one workload. For example, 
electrostatic interactions between two 
atoms that aren’t sharing any electrons 
are considered to be well understood, 
and are the most numerous, so Anton 
applies very specific, very parallel, and 
very inflexible hardware to handling 
them. Less is known about the infre-
quent bonded interactions, so those 
calculations are allocated to a much 
more flexible subsystem that will allow 
experimentation with various “force 
field” models and algorithms.

What might go wrong with the An-
ton effort? Subtle errors arising from 
the class of force fields that Anton is 
designed to handle efficiently may ac-
cumulate over the extremely long MD 
runtimes; in a custom machine with 
no operational experience, soft errors 
could strike much more often and 
substantially slow its performance; 
quantum effects may turn out to be 
necessary, beyond the classical force 
field being modeled here; some clever 
graduate student may come up with a 

software-based approach that reduces 
Anton’s two-orders-of-magnitude per-
formance advantage to only one (which 
might no longer be enough to justify 
its hardware expenditure). Or Anton 
might become a victim of its own suc-
cess if early learnings point to much 
better (and much different) MD algo-
rithms that no longer fit well into An-
ton’s overall structure.

But what if things go right? Benoit 
Roux, an MD researcher now at the 
University of Chicago, said that as soon 
as Anton has delivered its first verified 
scientific result he will want an engine 
of his own, and so will everyone in the 
entire MD field. Roux points out that 
molecular biologists must normally 
have “elaborate strategies to prevent 
fooling themselves” in their macro-
scale experiments. With Anton, “we’ll 
be able to do insane things with un-
known problems and two weeks later 
we’ll discover how the molecules actu-
ally move. … Anton will revolutionize 
molecular biology.”

It is not often that a science reaches 
a clear tipping point—when it advanc-
es very quickly, virtually exploding into 
a new shape and venue. Our own field 
of computing has done that several 
times. Many physicists expect this of 
the Large Hadron Collider currently be-
ing completed in Europe. Shaw and his 
coworkers are attempting nothing less 
in the field of molecular dynamics. As 
a computing professional, I am proud 
of their efforts, I salute their attempt 
to drive an extremely important basic 
science forward, and I heartily recom-
mend their paper.	

Bob Colwell (bob.colwell@comcast.net), former chief 
architect of Intel’s IA-32 microprocessors, is now an 
independent consultant.
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Anton, a Special-Purpose Machine 
for Molecular Dynamics Simulation
By David E. Shaw, Martin M. Deneroff, Ron O. Dror, Jeffrey S. Kuskin, Richard H. Larson, John K. Salmon, Cliff Young, 
Brannon Batson, Kevin J. Bowers, Jack C. Chao, Michael P. Eastwood, Joseph Gagliardo, J.P. Grossman, C. Richard Ho, 
Douglas J. Ierardi, István Kolossváry, John L. Klepeis, Timothy Layman, Christine McLeavey, Mark A. Moraes, Rolf Mueller, 
Edward C. Priest, Yibing Shan, Jochen Spengler, Michael Theobald, Brian Towles, and Stanley C. Wang

Abstract
The ability to perform long, accurate molecular dynamics  (MD) 
simulations involving proteins and other biological macro-
molecules could in principle provide answers to some of 
the most important currently outstanding questions in the 
fields of biology, chemistry, and medicine. A wide range of 
biologically interesting phenomena, however, occur over 
timescales on the order of a millisecond—several orders of 
magnitude beyond the duration of the longest current MD 
simulations.

We describe a massively parallel machine called Anton, 
which should be capable of executing millisecond-scale 
classical MD simulations of such biomolecular systems. 
The machine, which is scheduled for completion by the end 
of 2008, is based on 512 identical MD-specific ASICs that in-
teract in a tightly coupled manner using a specialized high-
speed communication network. Anton has been designed to 
use both novel parallel algorithms and special-purpose logic 
to dramatically accelerate those calculations that dominate 
the time required for a typical MD simulation. The remain-
der of the simulation algorithm is executed by a program-
mable portion of each chip that achieves a substantial de-
gree of parallelism while preserving the flexibility necessary 
to accommodate anticipated advances in physical models 
and simulation methods.

1. Introduction
Molecular dynamics (MD) simulations can be used to model 
the motions of molecular systems, including proteins, cell 
membranes, and DNA, at an atomic level of detail. A suffi-
ciently long and accurate MD simulation could allow scien-
tists and drug designers to visualize for the first time many 
critically important biochemical phenomena that cannot 
currently be observed in laboratory experiments, including 
the “folding” of proteins into their native three-dimension-
al structures, the structural changes that underlie protein 
function, and the interactions between two proteins or be-
tween a protein and a candidate drug molecule. Such sim-
ulations could answer some of the most important open 
questions in the fields of biology and chemistry, and have 
the potential to make substantial contributions to the pro-
cess of drug development.

Many of the most important biological processes occur 
over timescales on the order of a millisecond. MD simula-
tions on this timescale, however, lie several orders of magni-
tude beyond the reach of current technology; only a few MD 

runs have thus far reached even a microsecond of simulated 
time, and the vast majority have been limited to the nano-
second timescale. Millisecond-scale simulations of a biomo-
lecular system containing tens of thousands of atoms will in 
practice require that the forces exerted by all atoms on all 
other atoms be calculated in just a few microseconds—a 
process that must be repeated on the order of 1012 times. 
These requirements far exceed the current capabilities 
of even the most powerful commodity clusters or general-
purpose scientific supercomputers.

This paper describes a specialized, massively parallel ma-
chine, named Anton, that is designed to accelerate MD sim-
ulations by several orders of magnitude, bringing millisec-
ond-scale simulations within reach for molecular systems 
involving tens of thousands of atoms. The machine, which is 
scheduled for completion by the end of 2008, will comprise 
512 processing nodes in its initial configuration, each con-
taining a specialized MD computation engine implemented 
as a single ASIC. The molecular system to be simulated is de-
composed spatially among these processing nodes, which 
are connected through a specialized high-performance net-
work to form a three-dimensional torus. Anton’s expected 
performance advantage stems from a combination of MD-
specific hardware that achieves a very high level of arithmetic 
density and novel parallel algorithms that enhance scalabil-
ity by reducing both intra- and inter-chip communication. 
Figure 1 is a photograph of one of the first Anton ASICs.

In designing Anton and its associated software, we have 
attempted to attack a somewhat different problem than the 
ones addressed by several other projects that have deployed 
significant computational resources for MD simulations. 
The Folding@Home project,16 for example, has obtained a 
number of significant and interesting scientific results by 
using as many as 250,000 PCs (made available over the Inter-
net by volunteers) to simulate a very large number of separate 
molecular trajectories, each of which is limited to the 
timescale accessible on a single PC. While a great deal 
can be learned from a large number of independent MD 
trajectories, many other important problems require 
the examination of a single, very long trajectory—the 
principal task for which Anton is designed. Other proj-
ects, such as FASTRUN,6 MDGRAPE,22 and MD Engine,23 
have produced special-purpose hardware to accelerate 
the most computationally expensive elements of an 
MD simulation. Such hardware reduces the cost of MD 
simulations, particularly for large molecular systems, 
but Amdahl’s law and communication bottlenecks pre-
vent the efficient use of enough such chips in parallel 
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to extend individual simulations beyond microsecond 
timescales.

Anton is named after Anton van Leeuwenhoek, whose 
contributions to science and medicine we hope to emulate 
in our own work. In the 17th century, van Leeuwenhoek, 
often referred to as the “father of microscopy,” built high-
precision optical instruments that allowed him to visualize 
for the first time an entirely new biological world that had 
previously been unknown to the scientists of his day. We 
view Anton (the machine) as a sort of “computational micro-
scope.” To the extent that we and other researchers are able 
to increase the length of MD simulations, we would hope to 
provide contemporary biological and biomedical research-
ers with a tool for understanding organisms and their dis-
eases on a still smaller length scale.

2. MD COMPUTATION ON ANTON
An MD computation simulates the motion of a collection 
of atoms (the chemical system) over a period of time accord-
ing to the laws of classical physics.1 Time is broken into a 
series of discrete time steps, each representing a few fem-
toseconds of simulated time. A time step has two major 
phases. Force calculation computes the force on each par-
ticle due to other particles in the system. Integration uses 
the net force on each particle to update that particle’s posi-
tion and velocity.

2.1. Force calculation
Interatomic forces are calculated based on a molecular 

mechanics force field (or simply force field), which models 
the forces on each atom as a function of the spatial co-
ordinates of all atoms. In commonly used biomolecular 
force fields,9, 11, 15 the forces consist of three components: 
bond forces, involving groups of atoms separated by no 
more than three covalent bonds; van der Waals forces, 
computed between pairs of atoms separated by less than 
some cutoff radius (usually chosen between 5 and 15 Å); 
and electrostatic forces, which are the most computation-

ally intensive as they must be computed between all pairs 
of atoms.

Anton uses the k-space Gaussian split Ewald method 
(k‑GSE)18 to reduce the computational workload associated 
with the electrostatic interactions. This method divides 
the electrostatic force calculation into two components. 
The first decays rapidly with particle separation and is 
computed directly for all particle pairs separated by less 
than a cutoff radius. We refer to this contribution, together 
with the van der Waals interactions, as range-limited inter-
actions. The second component, long-range interactions, 
decays more slowly, but can be computed efficiently by 
mapping charge from particles to a regular mesh (charge 
spreading), taking the fast Fourier transform (FFT) of the 
mesh charges, multiplying by an appropriate function in 
Fourier space, performing an inverse FFT, and then com-
puting forces on the particles from the resulting mesh 
values (force interpolation).

To parallelize range-limited interactions, our machine 
uses an algorithm we developed called the NT method.19 The 
NT method achieves both asymptotic and practical reduc-
tions in required interprocessor communication bandwidth 
relative to traditional parallelization methods. It is one of a 
number of neutral territory methods that employ a spatial 
assignment of particles to nodes, but that often compute 
the interaction between two particles using a node on which 
neither particle resides.4, 7, 10, 14, 17, 21

2.2. Integration
The integration phase uses the results of force calculation 
to update atomic positions and velocities, numerically in-
tegrating a set of ordinary differential equations describing 
the motion of the atoms. The numerical integrators used in 
MD are nontrivial for several reasons. First, the integration 
algorithm and the manner in which numerical issues are 
handled can have a significant effect on accuracy. Second, 
some simulations require the integrator to calculate and 
adjust global properties such as temperature and pressure. 
Finally, one can significantly accelerate most simulations by 
incorporating constraints that eliminate the fastest vibra-
tional motions. For example, constraints are typically used 
to fix the lengths of bonds to all hydrogen atoms and to hold 
water molecules rigid.

3. WHY SPECIALIZED HARDWARE?
A natural question is whether a specialized machine for 
molecular simulation can gain a significant performance 
advantage over general-purpose hardware. After all, his-
tory is littered with the corpses of specialized machines, 
spanning a huge gamut from Lisp machines to database 
accelerators. Performance and transistor count gains pre-
dicted by Moore’s law, together with the economies of scale 
behind the development of commodity processors, have 
driven a history of general-purpose microprocessors outpac-
ing special-purpose solutions. Any plan to build specialized 
hardware must account for the expected exponential growth 
in the capabilities of general-purpose hardware.

We concluded that special-purpose hardware is warrant-
ed in this case because it leads to a much greater improve-

Figure 1: Anton ASIC. One of the first Anton ASICs, which arrived in 
January 2008.
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ment in absolute performance than the expected speedup 
predicted by Moore’s law over our development time pe-
riod, and because we are currently at the cusp of simulat-
ing timescales of great biological significance. We expect 
Anton to run simulations over 1000 times faster than was 
possible when we began this project. Assuming that tran-
sistor densities continue to double every 18 months and 
that these increases translate into proportionally faster 
processors and communication links, one would expect 
approximately a tenfold improvement in commodity solu-
tions over the five-year development time of our machine 
(from conceptualization to bring-up). We therefore expect 
that a specialized solution will be able to access biological-
ly critical millisecond timescales significantly sooner than 
commodity hardware.

To simulate a millisecond within a couple of months, 
we must complete a time step every few microseconds, or 
every few thousand clock ticks. The sequential dependence 
of successive time steps in an MD simulation makes spec-
ulation across time steps extremely difficult. Fortunately, 
specialization offers unique opportunities to accelerate an 
individual time step using a combination of architectural 
features that reduce both computational latency and com-
munication latency.

For example, we reduced computational latency 
by designing:

l	 Dedicated, specialized hardware datapaths and control 
logic to evaluate the range-limited interactions and to 
perform charge spreading and force interpolation. In 
addition to packing much more computational logic 
on a chip than is typical of general-purpose architec-
tures, these pipelines use customized precision for 
each operation.

l	 Specialized, yet programmable, processors to compute 
bond forces and the FFT and to perform integration. 
The instruction set architecture (ISA) of these proces-
sors is tailored to the calculations they perform. Their 
programmability provides flexibility to accommodate 
various force fields and integration algorithms.

l	 Dedicated support in the memory subsystem to accu-
mulate forces for each particle.

We reduced communication latency by designing:

l	 A low-latency, high-bandwidth network, both within an 
ASIC and between ASICs, that includes specialized 
routing support for common MD communication pat-
terns such as multicast and compressed transfers of 
sparse data structures.

l	 Support for choreographed “push”-based communica-
tion. Producers send results to consumers without the 
consumers having to request the data beforehand.

l	 A set of autonomous direct memory access (DMA) 
engines that offload communication tasks from the 
computational units, allowing greater overlap of com-
munication and computation.

l	 Admission control features that prioritize packets car-
rying certain algorithm-specific data types.

We balance our design very differently from a general-
purpose supercomputer architecture. Relative to other 
high-performance computing applications, MD uses much 
communication and computation but surprisingly little 
memory. The entire architectural state of an MD simulation 
of 25,000 particles, for example, is just 1.6 MB, or 3.2 KB per 
node in a 512-node system. We exploit this property by us-
ing only SRAMs and small L1 caches on our ASIC, with all 
code and data fitting on-chip in normal operation. Rather 
than spending silicon area on large caches and aggressive 
memory hierarchies, we instead dedicate it to communica-
tion and computation.

It is serendipitous that the most computationally inten-
sive parts of MD—in particular, the electrostatic interac-
tions—are also the most well established and unlikely to 
change as force field models evolve, making them particu-
larly amenable to hardware acceleration. Dramatically ac-
celerating MD simulation, however, requires that we accel-
erate more than just an “inner loop.”

Calculation of electrostatic and van der Waals forces ac-
counts for roughly 90% of the computational time for a 
representative MD simulation on a single general-purpose 
processor. Amdahl’s law states that no matter how much we 
accelerate this calculation, the remaining computations, 
left unaccelerated, would limit our maximum speedup to 
a factor of 10. Hence, we dedicated a significant fraction 
of silicon area to accelerating other tasks, such as bond 
force computation, constraint computation, and velocity 
and position updates, incorporating programmability as 
appropriate to accommodate a variety of force fields and 
integration methods.

4. SYSTEM ARCHITECTURE
The building block of the system is a node, depicted in 
Figure 2. Each node comprises an MD-specific ASIC, at-
tached DRAM, and six ports to the system-wide interconnec-
tion network. Each ASIC has four major subsystems, which 
are described briefly in this section. The nodes, which are 
logically identical, are connected in a three-dimensional 
torus topology (which maps naturally to the periodic 
boundary conditions frequently used in MD simulations). 
The initial version of Anton will be a 512-node torus with 
eight nodes in each dimension, but our architecture also 
supports larger and smaller toroidal configurations. The 
ASICs are clocked at a modest 400 MHz, with the exception 
of one double-clocked component in the high-throughput 
interaction subsystem (HTIS), discussed in the following 
section.

4.1. High-throughput interaction subsystem
The HTIS calculates range-limited interactions and 

performs charge spreading and force interpolation. The 
HTIS, whose internal structure is shown in Figure 3, applies 
massive parallelism to these operations, which constitute 
the bulk of the calculation in MD. It provides tremendous 
arithmetic throughput using an array of 32 pairwise point in-
teraction modules (PPIMs) (Figure 3), each of which includes 
a force calculation pipeline that runs at 800 MHz and is ca-
pable of computing the combined electrostatic and van der 
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Waals interactions between a pair of atoms at every cycle. This 
26-stage pipeline (Figure 4) includes adders, multipliers, func-
tion evaluation units, and other specialized datapath elements. 
Inside this pipeline, we use customized numerical precisions: 
functional unit width varies across the different pipeline stages 
but still produces a sufficiently accurate 32–bit result. 

In order to keep the pipelines busy with useful compu-
tation, the remainder of the HTIS must determine pairs of 
atoms that need to interact, feed them to the pipelines, 
and aggregate the pipelines’ outputs. This proves a for-
midable challenge given communication bandwidth limi-
tations between ASICs, between the HTIS and other sub-
systems on the same ASIC, and between pipelines within 
the HTIS. We address this problem using an architecture 
tailored for direct product selection reduction operations 
(DPSRs), which take two sets of points and perform com-
putation proportional to the product of the set sizes but 
only require input and output volume proportional to the 
sum of their sizes. The HTIS considers interactions be-
tween all atoms in a region called the tower and all atoms 
in a region called the plate. Each atom in the tower is as-
signed to one PPIM, while each atom in the plate streams 
by all the PPIMs. Eight match units in each PPIM perform 
several tests, including a low-precision distance check, 
to determine which pairs of plate and tower particles are 
fed to the force calculation pipeline. Because the HTIS is 
a streaming architecture, with no feedback in its compu-
tational path, it is simple to scale the PPIM array to any 
number of PPIMs. The HTIS also includes an interaction 
control block processor, which controls the flow of data 
through the HTIS. More detail about the HTIS and about 
DPSR operations can be found in the proceedings of this 
years’s HPCA conference.13

The PPIMs are the most hard-wired component of our 
architecture, reflecting the fact that they handle the most 
computationally intensive parts of the MD calculation. 
That said, even the PPIMs include programmability where 
we anticipate potential future changes to force fields. For 
instance, the functional forms for van der Waals and 
electrostatic interactions are specified using SRAM look-
up tables, whose contents are determined at runtime.
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4.2. Flexible subsystem
The flexible subsystem controls the ASIC and handles all oth-
er computations, including the bond force calculations, the 
FFT, and integration. Figure 5 shows the components of the 
flexible subsystem. Four identical processing slices form the 
core of the flexible subsystem. Each slice comprises a gen-
eral-purpose core with its caches, a remote access unit (RAU) 
that performs autonomous data transfers, and two geometry 
cores (GCs), which are programmable cores that perform 
most of the flexible subsystem’s computation. The RAU is a 
programmable data transfer engine that enables the flexible 
subsystem to participate in “push” communication, both of-
floading messages sent from the processor cores and track-
ing incoming messages to determine when work is ready to 
be done. Each GC is a dual-issue, statically scheduled, 4-way 
SIMD processor with pipelined multiply accumulate sup-
port and instruction set extensions to support common MD 
calculations. Other components of the flexible subsystem 
include a correction pipeline, which computes force cor-
rection terms; a racetrack, which serves as a local, internal 
interconnect for the flexible subsystem components; and a 
ring interface unit, which allows the flexible subsystem com-
ponents to transfer packets to and from the communication 
subsystem. More detail about the flexible subsystem is given 
in a second paper at this year’s HPCA conference.12

4.3. Communication subsystem
The communication subsystem provides high-speed, low-
latency communication both between ASICs and among 

the subsystems within an ASIC. Between chips, each torus 
link provides 5.3 GB/s full-duplex communication with 
a hop latency around 50 ns. Within a chip, two 256-bit, 
400 MHz communication rings link all subsystems and the 
six inter-chip torus ports. The communication subsystem 
supports efficient multicast, provides flow control, and 
provides class-based admission control with rate meter-
ing. The communication subsystem also allows access to 
an external host computer system for input and output of 
simulation data.

4.4. Memory subsystem
The memory subsystem provides access to the ASIC’s at-
tached DRAM. In addition to basic memory read//write ac-
cess, the memory subsystem supports accumulation and 
synchronization. Special memory write operations numer-
ically add incoming write data to the contents of the mem-
ory location specified in the operation. These operations 
implement force, energy, potential, and spread charge ac-
cumulations, reducing the computation and communica-
tion load on the flexible subsystem. By taking advantage of 
the attached DRAM, Anton will be able to simulate chemi-
cal systems with billions of atoms.

5. PERFORMANCE AND ACCURACY MEASUREMENTS
In this section, we show that the performance of Anton 
significantly exceeds that of other MD platforms, and that 
Anton is capable of performing simulations of high nu-
merical accuracy. Because we do not yet have a working 
512-node segment, performance estimates for our ma-
chine come from our performance simulator. The cycle fi-
delity of this simulator varies across components, but we 
expect overall fidelity better than ±20%.

5.1. Performance comparison
We compare the performance of various MD platforms in 
terms of simulation rate (nanoseconds of simulated time 
per day of execution) on a particular chemical system. In 
this section and in Section 5.2, we use a system with 23,558 
atoms in a cubic box measuring 62.2 Å on a side. This sys-
tem represents dihydrofolate reductase (DHFR), a protein 
targeted by various cancer drugs, surrounded by water.

The highest-performing MD codes achieve a simulation 
rate of a few nanoseconds per day for DHFR on a single 
state-of-the-art commodity processor core.8 Existing mul-
tiprocessor machines with high-performance intercon-
nects achieve simulation rates up to a few hundred nano-
seconds per day using many hundreds or thousands of 
processor cores.2, 3, 5

We expect a 512-node Anton system to achieve a simula-
tion rate of approximately 14,500 nanoseconds per day for 
DHFR, enabling a millisecond simulation in just over two 
months. While the performance of general-purpose ma-
chines will undoubtedly continue to improve, Anton’s per-
formance advantage over other MD platforms significantly 
exceeds the speedup predicted by Moore’s law over the 
next few years. A more detailed performance comparison 
of Anton and other MD platforms is given in the proceed-
ings of last year’s ISCA conference.20
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Figure 5: Flexible subsystem. It is a collection of four identical 
processing slices (one of which is indicated by a box at the left) and 
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5.2. Accuracy
To quantify the accuracy of force computation on Anton, we 
measured the relative rms force error, defined as the rms er-
ror in the force on all particles divided by the rms force.18 For 
the DHFR system with typical simulation parameters, Anton 
achieves a relative rms force error of 1.5 × 10−4. A relative rms 
force error below 10−3 is generally considered sufficiently ac-
curate for biomolecular MD simulations.25

We also measured energy drift to quantify the overall ac-
curacy of our simulations. An exact MD simulation would 
conserve energy exactly. Errors in the simulation generally 
lead to an increase in the overall energy of the simulated 
system with time, a phenomenon known as energy drift. We 
measured energy drift over 5 ns of simulated time (2 million 
time steps) for DHFR using a bit-accurate numerical emu-
lator that exactly duplicates Anton’s arithmetic. While the 
simulation exhibited short-term energy fluctuations of a few 
kcal/mol (about 0.001% of the total system energy), there 
was no detectable long-term trend in total energy. MD stud-
ies are generally considered more than adequate even with a 
significantly higher energy drift.24

5.3. Scaling with chemical system size
Figure 6 shows the scaling of performance with chemical 
system size. Within the range where chemical systems fit in 
on-chip memory, we expect performance to scale roughly 
linearly with the number of atoms, albeit with occasional 
jumps as different operating parameters change to opti-
mize performance while maintaining accuracy. The largest 
discontinuity in simulation rate occurs at a system volume 

of approximately 500,000 Å3 when we change from a 32 × 32 
× 32 FFT grid to a 64 × 64 × 64 FFT grid, reflecting the fact 
that our code supports only power-of-two-length FFTs. This 
lengthens the long-range calculation because the number 
of grid points increases by a factor of 8. Overall, the results 
are consistent with supercomputer scaleup studies—as we 
increase chemical system size, Anton’s efficiency improves 
because of better overlap of communication and computa-
tion, and because calculation pipelines operate closer to 
peak efficiency.

6. CONCLUSION
We are currently in the process of building a specialized, 
massively parallel machine, called Anton, for the high-speed 
execution of MD simulations. We expect Anton to be capa-
ble of simulating the dynamic, atomic-level behavior of pro-
teins and other biological macromolecules in an explicitly 
represented solvent environment for periods on the order 
of a millisecond—about three orders of magnitude beyond 
the reach of current MD simulations. The machine uses spe-
cialized ASICs, each of which performs a very large number 
of application-specific calculations during each clock cycle. 
Novel architectural and algorithmic techniques are used to 
minimize intra- and inter-chip communication, providing 
an unusually high degree of scalability.

While it contains programmable elements that could in 
principle support the parallel execution of algorithms for a 
wide range of other applications, Anton was not designed to 
function as a general-purpose scientific supercomputer, and 
would not in practice be well suited for such a role. Rather, 
we envision Anton serving as a computational microscope, 
allowing researchers to observe for the first time a wide range 
of biologically important structures and processes that have 
thus far proven inaccessible to both computational model-
ing and laboratory experiments.�

Figure 6: Scaling of performance for a 512-node version of Anton 
with increasing chemical system size. The graph shows a stacked 
bar chart for each chemical system, with the height of each stack 
proportional to the simulation time, assuming that long-range forces 
are evaluated every other time step. Each stack represents the time 
required to execute two consecutive time steps; one is a “long-range 
time step” that includes calculation of long-range electrostatics by 
k-GSE, and the other is a “range-limited time step” that does not. The 
chemical systems represent proteins and nucleic acids of various 
sizes, surrounded by water.
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W ireless  sensor  networks  (or sen-
sornets) represent a new computing 
platform that blends computation, 
sensing, and communication with a 
physical environment such as a bird 
habitat, bridges, or power grid. This 
new class of networked embedded 
computers requires new programming 
models, abstractions, and manage-
ment tools. They change the way we 
think about computation and chal-
lenge the design of the next-generation 
Internet that not only connects people 
together but also connects people with 
the physical environment.

This computing platform is charac-
terized by the embedding in the physi-
cal world and (often) unattended op-
eration for years, severe constraints in 
resources especially energy, unreliable 
hardware and communication links, 
and the need to respond to time-critical 
events. The implications are twofold. A 
sensornet must gather and act on sen-
sor data in a timely manner. The value 
of information and window of oppor-
tunity for action may dwindle as time 
elapses. Consequently, sensornets 
should support reliable and timely data 
collection and dissemination despite 
significant link and data variability and 
hardware flakiness. Second, because of 
limited battery capacity, a sensor node 
limits the amount of onboard memory 
and uses low-power microprocessor 
and low data rate radio with power-
saving dials. The data collection and 
dissemination must be handled in an 
energy-efficient manner.

A fundamental computer science 
question arising from sensornets is the 
role of energy and how we think about 
it in relation to performance and qual-
ity metrics such as latency and data 
yield. Much of CS has been built on the 
analysis of the time and space complex-
ity of algorithms that has informed the 
design of processor, memory, and I/O 
in computing systems. Only recently 
have we confronted the energy prob-
lem head on, in designing high-perfor-

mance servers as well as low-power sen-
sornets (supercomputing addressed 
the cooling problem before). Multi/
many-core is one answer in the upper 
tier of the computing ecosystem. The 
tiny computers in sensornets expose 
another rich area where energy trades 
with performances in a decentralized, 
fine-grained way. For example, commu-
nication in data dissemination may be 
delayed, to reduce collision and hence 
energy due to excessive retransmis-
sion, at the expense of a larger latency. 
Sensor data may be locally compressed 
at the node, to reduce the data volume 
sent over the wireless network, trading 
the communication energy with that of 
processing. This points to the need for 
establishing a theory of “energy com-
plexity” in computing that provides 
models for energy and its trade-offs 
with other system metrics. 

The decade of sensornet research 
has produced a rich collection of al-
gorithms, protocols, system architec-
tures, tools, and several generations 
of hardware platforms. The energy 
constraints, for example, led many to 
design extremely efficient systems that 
break the traditional networking and 
systems layers in order to squeeze the 
last Joule out of the operation. Natu-
rally, one asks, what are the reusable 
building blocks and common abstrac-
tions that emerge from these works? 
Some of the techniques address the 
deeper problems of energy complex-
ity, system scalability, and robustness. 
Others may just be artifacts of the cur-
rent hardware limitations.

Levis et al. answers the question 
with Trickle, a building block for algo-
rithms that move data around quickly 
in a sensornet while conserving its lim-
ited energy. Realizing that the one-to-
many and many-to-one data dissemi-
nation and collection in a network rely 
on a common primitive to detect when 
the state of a node becomes inconsis-
tent in a network of shared variables 
and to propagate the information when 

inconsistency arises, they propose an 
epidemic-style algorithm that does so 
on an as-needed basis. It was originally 
designed for distributing code in a sen-
sornet, as in re-tasking or code patch-
ing. To detect whether a node has the 
latest version, each node declares to 
others which version it currently has. 
An inconsistency triggers the propa-
gation on demand, suppressing the 
transmissions of others, thus more en-
ergy efficient than flooding.

The key idea behind Trickle is to 
maintain a constant number of mes-
sage transmissions per area, and use 
a feedback mechanism to regulate 
that as node density changes. A node 
only decides to transmit if it has not 
heard from a sufficient number of its 
neighbors. This way, the more nodes 
in an area, the less likely each node 
will decide to transmit as the likeli-
hood of others already having adver-
tised increases. Trickle provides the 
dials to trade energy expenditure of the 
network with the speed of the propaga-
tion. This self-regulation mechanism 
is similar to how nature regulates the 
population of a species, where growth 
is self-limiting because of the finite 
sustainable food supply. 

A useful primitive finds itself in many 
applications. Trickle is promising; since 
the publication of the original paper, the 
idea of Trickle has found itself in data 
dissemination as well as data collection 
algorithms, including TinyOS 2.0 CTP, a 
data collection protocol.

Gordon Bell posits every decade or 
so a new computing platform emerges 
due to advantages in form factor, inter-
face, and functionality/price. The wire-
less sensor network is such a new com-
puting platform. I expect emerging 
primitives and abstractions like Trick-
le, being developed by the research 
community, to help us conceptualize 
and modularize the design of this new 
platform and to become part of a stan-
dard TTL-like catalog for building scal-
able, reliable, and energy-efficient sen-
sornet systems.	

Feng Zhao (zhao@microsoft.com) is a principal 
researcher at Microsoft Research, Redmond, WA.
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Abstract
The wireless sensor network community approached net-
working abstractions as an open question, allowing answers 
to emerge with time and experience. The Trickle algorithm 
has become a basic mechanism used in numerous proto-
cols and systems. Trickle brings nodes to eventual consis-
tency quickly and efficiently while remaining remarkably 
robust to variations in network density, topology, and dy-
namics. Instead of flooding a network with packets, Trickle 
uses a “polite gossip” policy to control send rates so each 
node hears just enough packets to stay consistent. This 
simple mechanism enables Trickle to scale to 1000-fold 
changes in network density, reach consistency in seconds, 
and require only a few bytes of state yet impose a mainte-
nance cost of a few sends an hour. Originally designed for 
disseminating new code, experience has shown Trickle to 
have much broader applicability, including route mainte-
nance and neighbor discovery. This paper provides an over-
view of the research challenges wireless sensor networks 
face, describes the Trickle algorithm, and outlines several 
ways it is used today.

1. WIRELESS SENSOR NETWORKS
Although embedded sensing applications are extremely 
diverse, ranging from habitat and structural monitoring to 
vehicle tracking and shooter localization, the software and 
hardware architectures used by these systems are surpris-
ingly similar. The typical architecture is embodied by the 
mote platforms, such as those shown in Figure 1. A micro-
controller provides processing, program ROM, and data 
RAM, as well as analog-to-digital converters for sensor in-
puts, digital interfaces for connecting to other devices, and 
control outputs. Additional flash storage holds program 
images and data logs. A low-power CMOS radio provides 
a simple link layer. Support circuitry allows the system to 
enter a low-power sleep state, wake quickly, and respond to 
important events.

Four fundamental constraints shape wireless embedded 
system and network design: power supply, limited memory, 
the need for unattended operation, and the lossy and tran-
sient behavior of wireless communication. A typical power 
envelope for operating on batteries or harvesting requires a 
600 µW average power draw, with 1%% of the time spent in 
a 60 mW active state and the remainder spent in a very low 
power 6 µW passive state.

Maintaining a small memory footprint is a major require-
ment of algorithm design. Memory in low-cost, ultra-low-
power devices does not track Moore’s Law. One indication 
of this is that microcontroller RAM costs three orders of 
magnitude more than PC SRAM and five orders more than 
PC DRAM. More importantly, SRAM leakage current, which 
grows with capacity, dictates overall standby power con-
sumption and, hence, lifetime. Designs that provide large 
RAMs in conjunction with 32-bit processors go to great 
lengths to manage power. One concrete example of such 
nodes is the Sun SPOT,20 which enters a low-power sleep 
state by writing RAM contents to flash. Restoring memory 
from flash on wakeup uses substantial power and takes con-
siderable time. The alternative, taken in most sensor node 
designs, is to have just a few kilobytes of RAM. This, in turn, 
imposes limits on the storage complexity of network (and 
other) protocols, requiring routing tables, buffering, and 
caches be kept small. The historical trends of monetary and 
energy costs suggest these constraints are likely to last.

Wireless sensors are typically embedded in the physi-
cal environment associated with their application. Com-

The Emergence of a  
Networking Primitive in  
Wireless Sensor Networks
By Philip Levis, Eric Brewer, David Culler, David Gay, Sam Madden, Neil Patel,  
Joe Polastre, Scott Shenker, Robert Szewczyk, and Alec Woo

Figure 1: EPIC, KMote, and Telos motes. Each has an 8MHz  
microcontroller, 10kB of RAM, 48kB of program flash, and a  
250kbps radio.

CACM_V51.7.indb   99 6/18/08   12:54:47 PM



100    communications of the acm    |   July 2008  |   vol.  51  |   no.  7

research highlights 

 

munication connectivity varies due to environmental and 
electromagnetic factors, with the additional constraint 
that no human being will shepherd the device to a bet-
ter setting, as with a cell phone or a laptop. The degree 
of the network at a node, i.e., the number of nodes in its 
communication neighborhood, is determined not by the 
desired network organization but by the physical device 
placement, which is often dictated by application require-
ments and physical constraints. There may be thousands 
of nodes in close proximity, or just a few. A single trans-
mission may be received by many devices, so any retrans-
mission, response, or even a simple acknowledgment, 
may cause huge contention, interference, and loss. Re-
dundancy is essential for reliability, but it also can be a 
primary cause of loss.

This last point is one of the key observations that have 
emerged from a decade of development of networking ab-
stractions for wireless sensor networks: the variety of net-
work topologies and densities across which sensor network 
protocols must operate calls for a polite, density-aware, local 
retransmission scheme. This paper describes the Trickle al-
gorithm, which uses such a communication pattern to pro-
vide an eventual consistency mechanism to protocols and 
services. In the past ten years, a key insight that has emerged 
from the wireless sensor network community is that many 
protocol problems can be reduced to maintaining even-
tual consistency. Correspondingly, Trickle has emerged as 
the core networking primitive at the heart of practical, effi-
cient, and robust implementations of many sensor network 
protocols and systems. Before diving into the details of the 
Trickle, however, we review how core sensor networking pro-
tocols work and differ from conventional networking proto-
cols, with the goal of exploring how a Trickle-like primitive 
satisfies some of their needs.

2. NETWORKING PROTOCOLS
Networking issues are at the core of embedded sensor net-
work design because radio communication—listening, 
receiving, and transmitting—dominates the active energy 
budget and defines system lifetime. The standard energy 
cost metric for multihop protocols, in either link layer 
meshing or network layer routing, is communication cost, 
defined as the number of individual radio transmissions 
and receptions. One protocol is more efficient than another 
if it can provide equivalent performance (e.g., throughput, 
latency, delivery ratio) at a lower communication cost. Pro-
tocols focus on minimizing transmissions and making sure 
transmitted packets arrive successfully.

Almost all sensor network systems rely on two multihop 
protocols for their basic operation: a collection protocol 
for pulling data out of a network and a dissemination 
protocol for pushing data into a network through one or 
more distinguished nodes or egress routers. Many higher 
level protocols build on dissemination and collection. For 
example, reprogramming services such as Deluge9 use 
dissemination to deliver commands to change program 
images. Management layers22 and remote source-level de-
buggers25 also use dissemination. Reliable transport pro-
tocols, such as RCRT,18 and rate control protocols such as 

IFRC,19 operate on collection trees. Point-to-point routing 
schemes, such as S4,16 establish overlays over multiple 
parallel collection topologies.

While collection and dissemination have the opposite 
communication patterns (all-to-one vs. one-to-all) and differ 
in reliability (unreliable vs. reliable), both maintain eventu-
ally consistent shared state between nodes. The rest of this 
section provides a high-level overview of these two protocol 
classes. It provides details on the challenging problems they 
introduce, and how some of them can be solved through 
eventual consistency.

2.1. Pushing data in: dissemination
One problem sensor network administrators face is dynami-
cally changing how a network collects data by changing the 
sampled sensors, the sampling rate, or even the code run-
ning on the nodes by disseminating the change to every 
node in a network. We begin with a discussion of dissemi-
nation protocols because they were the original impetus for 
Trickle and are its simplest application.

Early systems used packet floods to disseminate changes. 
Flooding protocols rebroadcast packets they receive. Flood-
ing is very simple—often just a line or two of code—but has 
many problems. First, floods are unreliable. Inevitably, some 
nodes do not receive the packet, so users typically repeatedly 
flood until every node receives it. Second, in high density 
networks, many nodes end up rebroadcasting packets at the 
same time. These messages collide and cause a form of net-
work collapse called a “broadcast storm.”17

Second-generation dissemination and network program-
ming systems like Xnp3 and TinyDB15 use an adaptive flood 
combined with a protocol to request missing messages. 
Adaptive flooding uses an estimate of the node density to 
limit the flooding rate. The missing message protocol al-
lows nodes to request the (hopefully few) missing messages 
from their neighbors. Unfortunately, getting such protocols 
to work well can be tricky, especially across a range of net-
work densities and object sizes.

Another way to look at dissemination protocols is that 
they ensure that every node has an eventually consistent 
version of some shared state, such as the value of a configu-
ration parameter or command. Data consistency is when 
all nodes have the same version of that state, and nodes re-
solve inconsistencies by updating neighbors to the newer 
version. Inductively, these definitions cause the network to 
converge on the most recent version. To disseminate a com-
mand, a system installs it on one node as a newer version 
and initiates the consistency protocol.

Casting dissemination as a data consistency problem 
means it does not provide full reliability. Eventual con-
sistency only promises to deliver the most recent ver-
sion to connected nodes. Disconnected nodes can and 
often do miss updates. In practice, however, this limita-
tion is rarely problematic. An administrator who chang-
es the data reporting rate three times then adds some 
new nodes and expects them to receive the most recent 
reporting rate, not all three. Similarly, when sending 
commands, users do not expect a new node to receive 
the entire history of all commands injected into a net-
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work. A node that is disconnected for several minutes 
will still receive the most recent command when it re-
connects, however.

Dissemination protocols succeed where flooding and its 
derivatives fail because they cast the problem of delivering 
data into maintaining data consistency among neighbors. 
This allows them to provide a very useful form of reliabil-
ity in arbitrary topologies with no a priori topology knowl-
edge or configurati on. An effective dissemination proto-
col, however, needs to bring nodes up to date quickly while 
sending few packets when every node has the most recent 
version: this is correspondingly a requirement for the un-
derlying consistency mechanism.

2.2. Pulling data out: collection
As the typical sensor network goal is to report observations 
on a remote environment, it is not surprising that data col-
lection is the earliest and most studied class of protocol. 
There are many collection protocol variations, similar to 
how there are many versions of TCP. These differences 
aside, all commonly used collection protocols provide 
unreliable datagram delivery to a collection point using 
a minimum-cost routing tree. Following the general goal 
of layer 3 protocols, cost is typically measured in terms of 
expected transmissions, or ETX:2 nodes send packets on 
the route that requires the fewest transmissions to reach 
a collection point.

The earliest collection protocol, directed diffusion, pro-
posed dynamically setting up collection trees based on data-
specific node requests.10 Early experiences with low-power 
wireless, however, led many deployments to move towards a 
much simpler and less general approach, where each node 
decides on a single next hop for all forwarded data traffic, 
thereby creating routing trees to fixed collection points. The 
network builds this tree by establishing a routing cost gra-
dient. A collection point has a cost of 0. A node calculates 
the cost of each of its candidate next hops as the cost of that 
node plus the cost of the link to it. Inductively, a node’s cost 
is the sum of the costs of the links in its route. Figure 2 illus-
trates an example topology.

Collection variations boil down to how they quantify and 
calculate link costs, the number of links they maintain, how 
they propagate changes in link state amongst nodes, and 
how frequently they re-evaluate link costs and switch par-
ents. Early protocols used hop-counts8 as a link cost met-
ric, similar to MANET protocols such as AODV and DSDV; 
second-generation protocols such as MintRoute24 and Srcr2 
estimated the transmissions per delivery on a link using pe-
riodic broadcasts; third-generation protocols, such as Mul-
tiHopLQI, added physical layer signal quality to the metric; 
current generation collection protocols, such as Collection 
Tree Protocol (CTP), unify these approaches, drawing on in-
formation from multiple layers.6

Most collection layers operate as anycast protocols. A net-
work can have multiple data collection points, and collec-
tion automatically routes to the closest one. As there is only 
one destination—any collection point—the required rout-
ing state can be independent of network density and size. 
Most protocols use a small, fixed-size table of candidate next 

hops. They also attempt to strike a balance between route 
stability and churn to discover new, possibly better parents 
by switching parents infrequently and using damping mech-
anisms to limit the rate of change.

As collection protocols have improved and become bet-
ter at choosing routes, reducing control traffic has become 
an increasingly important component of efficiency. While 
nodes can piggyback some control information on data 
packets, they need to send link-layer broadcasts to their lo-
cal neighbors to advertise their presence and routing cost. 
Choosing how often to send these advertisements introduc-
es a difficult design tension. A slow rate imposes a low over-
head, but limits how quickly the tree can adapt to failures or 
link changes, making its data traffic less efficient. A fast rate 
imposes a higher overhead, but leads to an agile tree that 
can more accurately find the best route to use.

This tension is especially challenging when a network 
only collects data in response to events, and so can go 
through periods of high and low data rates. Having a high 
control rate during periods of low traffic is highly inef-
ficient, while having a low control rate during periods of 
high traffic makes the tree unable to react quickly enough 
to changes. When starting a burst of transmissions, a node 
may find that link costs have changed substantially neces-
sitating a change in its route and, as a result, advertised 
routing cost. Changes in costs need to propagate quickly, or 
the topology can easily form routing loops. For example, if a 
link’s cost increases significantly, then a node may choose 
one of its children as its next hop. Since the protocol state 
must be independent of the topology, a node cannot avoid 
this by simply enumerating its children (constraining tree 
in-degree to a constant leads to inefficient, circuitous to-
pologies in dense networks).

Current protocols, such as CTP21 and ArchRock’s routing 
layer,1 resolve this tension by reducing the routing gradient 
as a data consistency problem. The gradient is consistent as 
long as children have a higher cost than their parent. An in-
consistency can arise when costs change enough to violate 

Figure 2: Sample collection tree, showing per-link and node costs. 
The cost of a node is its next hop’s cost plus the cost of the link.
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this constraint. As long as routing costs are stable, nodes 
can assume the gradient is consistent and avoid exchanging 
unnecessary packets.

2.3. A general mechanism
The examples above described how two very different proto-
cols can both address a design tension by reducing a prob-
lem to maintaining data consistency. Both examples place 
the same requirements on a data consistency mechanism: 
it needs to resolve inconsistencies quickly, send few pack-
ets when data is consistent, and require very little state. The 
Trickle algorithm, discussed in the next section, meets these 
three requirements.

3. Trickle
The Trickle algorithm establishes a density-aware local 
broadcast with an underlying consistency model that guides 
when a node communicates. When a node’s data does not 
agree with its neighbors, it communicates quickly to re-
solve the inconsistency. When nodes agree, they slow their 
communication rate exponentially, such that in a stable 
state nodes send at most a few packets per hour. Instead of 
flooding a network with packets, the algorithm controls the 
send rate so each node hears a small trickle of packets, just 
enough to stay consistent. Furthermore, by relying only on 
local broadcasts, Trickle handles network repopulation, is 
robust to network transience, loss, and disconnection, and 
requires very little state (implementations use 4–11 bytes).

While Trickle was originally designed for reprogramming 
protocols (where the data is the code of the program being 
updated), experience has shown it to be a powerful mecha-
nism that can be applied to wide range of protocol design 
problems. For example, routing protocols can use Trickle to 
ensure that nodes in a given neighborhood have consistent, 
loop-free routes. When the topology is consistent, nodes 
occasionally gossip to check that they still agree, and when 
the topology changes they gossip more frequently, until they 
reach consistency again.

For the purpose of clearly explaining the reasons be-
hind Trickle’s design, all of the experimental results in 
this section are from simulation, in some cases very high-
level abstract simulators. In practice, Trickle’s simplicity 
means it works remarkably well in the far more challeng-
ing and difficult real world. The original Trickle paper,13 as 
well as Deluge9 and DIP14 report experimental results from 
real networks.

3.1. Algorithm
Trickle’s basic mechanism is a randomized, suppressive 
broadcast. A Trickle has a time interval of length t and a 
redundancy constant k. At the beginning of an interval, a 
node sets a timer t in the range of t-2, t. When this timer fires, 
the node decides whether to broadcast a packet contain-
ing metadata for detecting inconsistencies. This decision 
is based on what packets the node heard in the interval be-
fore t. A Trickle maintains a counter c, which it initializes to 
0 at the beginning of each interval. Every time a node hears 
a Trickle broadcast that is consistent with its own state, it 
increments c. When it reaches time t, the Trickle broadcasts 

if c < k. Randomizing t spreads transmission load over a sin-
gle-hop neighborhood, as nodes take turns being the first 
node to decide whether to transmit. Figure 3 summarizes 
Trickle’s parameters.

3.2. Scalability
Transmitting only if c < k makes a Trickle density aware, as 
it limits the transmission rate over a region of the network 
to a factor of k. In practice, the transmission load a node ob-
serves over an interval is O(k . log(d) ), where d is the network 
density. The base of the logarithm depends on the packet 
loss rate PLR: it is P

1—L–R.
This logarithmic behavior represents the probability that 

a single node misses a number of transmissions. For exam-
ple, with a 10% loss rate, there is a 10% chance that a node will 
miss a single packet. If a node misses a packet, it will trans-
mit, resulting in two transmissions. There is correspondingly 
a 1% chance a node will miss two packets from other nodes, 
leading to three transmissions. In the extreme case of a 100% 
loss rate, each node is by itself: transmissions scale linearly.

Figure 4 shows this scaling. The number of transmissions 
scales logarithmically with density and the slope line (base 
of the logarithm) depends on the loss rate. These results 
come from a Trickle-specific algorithmic simulator we im-
plemented to explore the algorithm’s behavior under con-
trolled conditions. Consisting of little more than an event 
queue, this simulator allows configuration of all of Trickle’s 
parameters, run duration, and the boot time of nodes. It 
models a uniform packet loss rate (same for all links) across 
a single hop network. Its output is a packet send count.

Figure 3: Trickle parameters and variables.

t	 Communication interval length

T	 Timer value in range t-2
, t

C	 Communication counter

K	 Redundancy constant

t
l	 Smallest t

th	 Largest t  

Figure 4: Trickle’s transmissions per interval scales logarithmically 
with density. The base of the logarithm is a function of the packet 
loss rate (the percentages)
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3.3. Synchronization
The scaling shown in Figure 4 assumes that all nodes are 
synchronized, such that the intervals during which they are 
awake and listening to their radios line up perfectly. Inevita-
bly, this kind of time synchronization imposes a communi-
cation, and therefore energy, overhead. While some networks 
can provide time synchronization to Trickle, others cannot. 
Therefore, Trickle is designed to work in both the presence and 
absence of synchronization.

Trickle chooses t in the range of (t-2, t] rather than (0, t] be-
cause the latter causes the transmission load in unsynchro-
nized networks to scale with O(d). This undesirable scaling 
occurs due to the short listen problem, where some subset of 
motes gossip soon after the beginning of their interval. They 
listen for only a short time, before anyone else has a chance to 
speak up. This is not a problem if all of the intervals are syn-
chronized, since the first gossip will quiet everyone else. How-
ever, if nodes are not synchronized, a node may start its interval 
just after another node’s broadcast, resulting in missed mes-
sages and increased transmission load.

Unlike loss, where the extra O(log(d) ) transmissions keep 
the worst case node that missed several packets up to date, the 
additional transmissions due to the short listen problem are 
completely wasteful. Choosing t in the range of (t-2, t] removes 
this problem: it defines a “listen-only” period of the first half of 
an interval. A listening period improves scalability by enforcing 
a simple constraint. If sending a message guarantees a silent 
period of some time T that is independent of density, then the 
send rate is bounded above (independent of the density). When 
a mote transmits, it suppresses all other nodes for at least the 
length of the listening period. Figure 5 shows how a listen peri-
od of t-2. bounds the total sends in a lossless single-hop network 
to be 2k. With loss, transmissions scale as O(2k . log(d) ) per in-
terval, returning scalability to the O(log(d) ) goal.

3.4. Controlling t
A large t (gossiping interval) leads to a low communication 
overhead, but propagates information slowly. Conversely, 

a small t imposes a higher communication overhead, but 
propagates data more quickly. These two goals, rapid propa-
gation and low overhead, are fundamentally at odds: the for-
mer requires communication to be frequent, while the latter 
requires it to be infrequent.

By dynamically scaling t, Trickle can quickly make data 
consistent with a very small cost. t has a lower bound, tl, and 
an upper bound th. When t expires without a node receiv-
ing a new update, t doubles, up to a maximum of th. When 
a node detects a data inconsistency (e.g., a newer version 
number in dissemination, a gradient constraint violation in 
collection), it resets t to be tl.

Essentially, when there is nothing new to say, motes gos-
sip infrequently: t is set to th. However, as soon as a mote 
hears something new, it gossips more frequently, so those 
who have not heard the new data receive it quickly. The chat-
ter then dies down, as t grows from tl to th.

By adjusting t in this way, Trickle can get the best of both 
worlds: rapid consistency and low overhead when the net-
work is consistent. The cost per inconsistency (shrinking t) 
is approximately log(-t2

h 

l
-) additional sends. For a tl of 1 s and 

a th of 1 h, this is a cost of 11 packets to obtain a 3000-fold 
decrease in the time it takes to detect an inconsistency (or, 
from the other perspective, a 3000-fold decrease in mainte-
nance overhead). The simple Trickle policy, “every once in a 
while, transmit unless you have heard a few other transmis-
sions,” can be used both to inexpensively maintain that the 
network is consistent as well as quickly inform nodes when 
there is an inconsistency.

Figure 6 shows pseudocode for the complete Trickle algorithm.

3.5. Case study: Maté
Maté is a lightweight bytecode interpreter for wireless sen-
sornets.11 Programs are tiny sequences of optimized byte-
codes. The Maté runtime uses Trickle to install new pro-
grams in a network, by making all nodes consistent to the 
most recent version of a script.

Maté uses Trickle to periodically broadcast version sum-
maries. In all experiments, code routines fit in a single pack-
et (30 bytes). The runtime registers routines with a Trickle 
propagation service, which then maintains all of the neces-
sary timers and broadcasts, notifying the runtime when it 
installs new code. Maté uses a very simple consistency reso-
lution mechanism. It broadcasts the missing routines three 
times: 1, 3, and 7 s after hearing there is an inconsistency.

Figure 7 shows simulation results of Maté’s behavior during 
a reprogramming event. These results come from the TOSSIM 
simulator,12 which simulates entire sensornet applications and 

Figure 5: Without a listen-only period, Trickle’s transmissions scale 
with a square root of the density when intervals are not synchro-
nized. With a listen-only period of duration t-2, the transmissions 
per interval asymptotically approach 2k. The black line shows how 
Trickle scales when intervals are synchronized. These results are 
from lossless networks.

1 2 4 8 16 32 64 128 256

Nodes

0

2

4

6

8

10

12

14

T
ra

n
sm

is
si

on
s/

in
te

rv
al

No listening

Listening

Figure 6: Trickle pseudocode.

Event	A ction

t Expires	 Double t, up to th. Reset c, pick a new t*

t Expires	 If c < k, transmit

Receive consistent data	 Increment c

Receive inconsistent data	S et t to t
l. Reset c, pick a new t

*t is picked from the range [t-
2
, t]
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models wireless connectivity at the bit level. In these experi-
ments, tl is 1 s and th is 1 min.

Each simulation had 400 nodes regularly placed in a 
square grid with node spacings of 5, 10, 15, and 20 ft. By 
varying network density, we were able to examine how 
Trickle’s propagation rate scales over different loss rates 
and physical densities. Density ranged from a 5 ft spac-
ing between nodes up to 20 ft (the networks were 95 × 95 
to 380 × 380). Crossing the network in these topologies 
takes from six to forty hops.a Time to complete propagation 
varied from 16 s in the densest network to about 70 s for the 
sparsest, representing a latency of 2.7 and 1.8 s per hop, re-
spectively. The minimum per-hop Trickle latency is 2—

ti and 
the consistency mechanism broadcasts a routine 1 s after 
discovering an inconsistency, so the best case latency is 1.5 
s per hop. Despite an almost complete lack of coordination 
between nodes, Trickle still is able to cause them to coop-
erate efficiently.

Figure 8 shows how adjusting th changes the propaga-
tion time for the 5 and 20 ft spacings. Increasing th from 
1 to 5 min does not significantly affect the propagation 
time; indeed, in the sparse case, it propagates faster un-
til roughly the 95th percentile. This result indicates that 
there may be little trade-off between the maintenance 
overhead of Trickle and its effectiveness in the face of a 
propagation event.

A very large th can increase the time to discover incon-
sistencies to be approximately -t2

h -. However, this is only true 
when two stable subnets (t = th) with different code recon-
nect. If new code is introduced, it immediately triggers 
nodes to reset t to tl, bringing them quickly to a consistent 
state.

The Maté implementation of Trickle requires few system 
resources. It requires approximately 70 bytes of RAM; half of 
this is a message buffer for transmissions, a quarter is point-
ers to code routines. Trickle itself requires only 11 bytes for 
its counters; the remaining RAM is for internal coordination 
(e.g., pending and initialization flags). The executable code 
is 1.8 K (90 lines of code). Other implementations have simi-
lar costs. The algorithm requires few CPU cycles, and can 
operate at a very low duty cycle.

3.6. Uses and improvements
Trickle is not just used by Maté; it and its derivatives are 
used in almost every dissemination protocol today. The Del-
uge binary dissemination protocol for installing new sensor 
node firmware uses Trickle to detect when nodes have dif-
ferent firmware versions9 (tl = 500 ms, th = 1.1 h). The MNP 
binary dissemination protocol (tl = 16 s, th = 512 s) adjusts 
Trickle so that nodes with more neighbors are more likely 
to send updates by preventing low degree nodes from sup-
pressing high degree ones.23 The Drip command layer of the 
Sensornet Management System uses Trickle (tl = 100 ms, th 
= 32 s) to install commands.22 The Tenet programming ar-

chitecture uses Trickle (tl = 100 ms, th = 32 s) to install small 
dynamic code tasks.7

In the past few years, as collection protocols have im-
proved in efficiency, they have also begun to use Trickle. The 
CTP, the standard collection layer in the TinyOS operating 
system distribution,21 uses Trickle timers (tl = 64 ms, th = 1 h) 
for its routing traffic. The 6LoWPAN IPv6 routing layer in 
Arch Rock’s software uses Trickle to keep IPv6 routing tables 
and ICMP neighbor lists consistent.1 As protocols continue 
to improve, Trickle’s efficacy and simplicity will cause it to 
be used in more protocols and systems.

One limitation with Trickle as described in this paper 
is that its maintenance cost grows O(n) with the number 
of data items, as nodes must exchange version numbers. 
This growth may be a hindering factor as Trickle’s use in-
creases. Recent work on the DIP protocol addresses this 

Figure 7: Time to consistency in 20 × 20 TOSSIM grids (seconds).  
The hop count values in each legend are the expected number of 
transmissions necessary to get from corner to corner, considering 
loss.
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Figure 8: Rate nodes reach consistency for different ths in TOSSIM. A 
larger th does not slow reaching consistency.
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concern by using a combination of hash trees and ran-
domized searches, enabling the maintenance cost to re-
main O(1) while imposing a O(log(n) ) discovery cost.14

4. Discussion
Wireless sensor networks, like other ad hoc networks, do not 
know the interconnection topology a priori and are typically 
not static. Nodes must discover it by attempting to commu-
nicate and then observing where communication succeeds. 
In addition, the communication medium is expected to be 
lossy. Redundancy in such networks is both friend and foe, 
but Trickle reinforces the positive aspects and suppresses 
the negative ones.

Trickle draws on two major areas of prior research. The 
first area is controlled, density-aware flooding algorithms for 
wireless and multicast networks.5, 17 The second is epidemic 
and gossiping algorithms for maintaining data consistency 
in distributed systems.4 Although both techniques—broad-
casts and epidemics—have assumptions that make them 
inappropriate in their pure form to eventual consistency in 
sensor networks, they are powerful techniques that Trickle 
draws from. Trickle’s suppression mechanism is inspired by 
the request/repair algorithm used in Scalable and Reliable 
Multicast (SRM).5 Trickle adapts to local network density as 
controlled floods do, but continually maintains consistency 
in a manner similar to epidemic algorithms. Trickle also 
takes advantage of the broadcast nature of the wireless chan-
nel, employing SRM-like duplicate suppression to conserve 
precious transmission energy and scale to dense networks.

Exponential timers are a common protocol mechanism. 
Ethernet, for example, uses an exponential backoff to pre-
vent collisions. While Trickle also has an exponential timer, 
its use is reversed. Where Ethernet defaults to the smallest 
time window and increases it only in the case of collisions, 
Trickle defaults to the largest time window and decreases it 
only in the case of an inconsistency. This reversal is indica-
tive of the different priorities in ultra-low-power networks: 
minimizing energy consumption, rather than increasing 
performance, is typically the more important goal.

In the case of dissemination, Trickle timers spread out 
packet responses across nodes while allowing nodes to 
estimate their degree and set their communication inter-
val. Trickle leads to energy efficient, density-aware dis-
semination not only by avoiding collisions through mak-
ing collisions rare, but also by suppressing unnecessary 
retransmissions.

Instead of trying to enforce suppression on an abstrac-
tion of a logical group, which can become difficult in mul-
tihop networks with dynamically changing connectivity, 
Trickle suppresses in terms of an implicit group: nearby 
nodes that hear a broadcast. Correspondingly, Trickle does 
not impose the overhead of discovering and maintaining 
logical groups, and effortlessly deals with transient and 
lossy wireless links. By relying on this implicit naming, the 
Trickle algorithm remains very simple: implementations 
can fit in under 2 K of code, and require a mere 11 bytes 
of state.

Routing protocols discover other routers, exchange rout-
ing information, issue probes, and establish as well as tear 

down links. All of these operations can be rate-controlled 
by Trickle. For example, in our experiences exploring how 
wireless sensor networks can adopt more of the IPv6 stack 
in 6LoWPAN, Trickle provides a way to support established 
ICMP-v6 mechanisms for neighbor discovery, duplicate ad-
dress detection, router discovery, and DHCP in wireless net-
works. Each of these involves advertisement and response. 
Trickle mechanisms are a natural fit: they avoid loss where 
density is large, allow prompt notifications of change and 
adapt to low energy consumption when the configuration 
stabilizes. By adopting a model of eventual consistency, 
nodes can locally settle on a consistent state without requir-
ing any actions from an administrator.

Trickle was initially developed for distributing new pro-
grams into a wireless sensornet: the title of the original pa-
per is “Trickle: A Self-Regulating Algorithm for Code Propa-
gation and Maintenance in Wireless Sensor Networks.”13 
Experience has shown it to have much broader uses. Trickle-
based communication, rather than flooding, has emerged 
as the central paradigm for the basic multihop network 
operations of discovering connectivity, data dissemination, 
and route maintenance.

Looking forward, we expect the use of these kinds of tech-
niques to be increasingly common throughout the upper 
layers of the wireless network stack. Such progress will not 
only make existing protocols more efficient, it will enable 
sensor networks to support layers originally thought infea-
sible. Viewing protocols as a continuous process of estab-
lishing and adjusting a consistent view of distributed data 
is an attractive way to build robust distributed systems.
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Howard Hughes Medical Institute Janelia Farm 
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Research Campus. The Howard Hughes Medi-
cal Institute’s Janelia Farm Research Campus is 
a unique, world-class research community in the 
Washington, D.C. area. Over the next four years, 
Janelia Farm Research Campus (JFRC) will grow to 
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icists, engineers and operations staff all working in 
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needs of neuroscientists at Janelia Farm Research 
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standing of numerical computation, algorithm de-
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spanning multiple product releases.Qualifications: 
Bachelor’s degree and minimum of 12 years experi-
ence in a software product development environ-
ment. For more information and to apply, please 
visit http://www.rockwellautomation.com/.

Rockwell Automation
Sr. Interaction Designer
Software

Lead the information design of an industry lead-
ing commercial software application for a core, 
high growth Rockwell Automation product line. 
Lead interaction design for our next generation 
software products supporting industrial auto-
mation system design. Qualifications: Masters 
degree in Interaction Design, Human Factors, 
Cognitive or Behavioral Science, or related field 
required. Experience in interaction design, user 
center design and user interface. For more in-
formation and to apply, please visit http://www.
rockwellautomation.com/.
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requiring strengths in both computational and 
biological sciences.

These positions are being offered in coop-
eration with the Computation and Informatics in 
Biology and Medicine Training Program (CIBM; 
www.cibm.wisc.edu). The 45 CIBM faculty span 
15 different departments and five colleges at 
UW-Madison and includes several faculty at the 
Marshfield Clinic Research Foundation (located 
about 100 miles north of Madison). These posi-
tions are open to both US and non-US Citizens 
with a Ph.D., or equivalent, in computer science. 
The positions are funded for up to two years, re-
newable for a second year pending satisfactory 
progress, with an annual stipend up to $65,000 
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The research focus is in the development of:
Novel bioinformatics algorithms to analyze ˲˲

molecular data, including genome sequences, 
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New tools for imaging and genetic analysis,˲˲
Development of health delivery systems,˲˲
Translational bench-to-bedside medicine˲˲
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608.261.1022, lheisler@morgridgeinstitute.org
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Kuwait University
Faculty of Science
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The Department of Mathematics and Computer 
Science in the Faculty of Science at Kuwait Uni-
versity invites applications for appointment of 
faculty members starting from September 2008, 
for the academic year 2008/2009, in one of the fol-
lowing areas:

Networks, Operating Systems, Mobile Comput-
ing, Multimedia Systems, Computer Architec-
ture, Theoretical Computer Science and Parallel 
& Distributed Computing

Required Qualifications:
Ph.D. degree in the area of specialization from ˲˲

a reputable University.
The applicants GPA in first university degree ˲˲

should be 3 points out of 4 (or equivalent).
Research experience and significant publica-˲˲

tions in refereed international journals.
Full command of teaching in English.˲˲
Minimum of 5 years in University teaching  ˲˲

experience in the specified field.
The successful candidates are expected to have ˲˲

a strong commitment and dedication to quality 
teaching and research.

Benefits include attractive tax-free salary accord-
ing to rank and teaching experience (Professor’s 
monthly salary varies from 2950 to 3192 KD., 
Associate Prof.’s salary varies from KD. 2265 to 
2507, Assistant Professor’s monthly salary varies 
from KD. 1830 to 2070 - [KD.1 = $3.40]), annual 
air tickets for the faculty member and his/her 
family (spouse and up to three children under the 
age of 20), a one time settling-in allowance, hous-
ing allowance, free national health medical care, 
paid mid-term holidays and summer vacations, 
and end-of-contract gratuity. The University also 
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nancial support for research projects.
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to 10 reprints), three copies of Ph.D., Masters, and 
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translation of all documents in other languages 
should be enclosed), a copy of the passport, three 
recommendation letters, and names and addresses 
of three persons well-acquainted with the academic 
and professional work of the applicant. Please use 
PDF format for all electronic application materials.  
Applications and inquiries should be addressed to:

Dr. Salem Al-Yakoob
Chairman
Department of Mathematics  
and Computer Science
Faculty of Science, Kuwait University
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Calendar 
of Events
July
July 20–23
International Symposium 
on Symbolic and Algebraic 
Computation Linz/Hagenberg, 
Australia, Contact: Juan R. 
Sendra, Phone: 341-885-4902, 
Email: rafael.sendra@uah.es 

July 20–24
International Symposium on 
Software Testing and Analysis 
Seattle, WA, Contact: Barbara 
G. Ryder, Phone: 732-445-6430 
x3699, Email: ryder@cs.rutgers.
edu 

July 21–25
Mobiquitos08: 5th Annual 
International Conference on 
Mobile and Ubiquitous Systems: 
Computing, Networking and 
Services Dublin, Ireland, Contact: 
Liviu Iftode, Phone: 732-445-2001, 
Email: iftode@cs.rutgers.edu 

July 22–30
Oregon Programming 
Languages Summer School 
Eugene, OR, Contact: 
Yannis Smaragdakis, Phone: 
541-346-3491, Email: yannis@
cs.uoregan.edu 

July 28–31
5th International ICST Conference 
on Heterogeneous Networking for 
Quality, Reliability and Security Hong 
Kong, Contact: Qian Zhang, Phone: 
852-23588766, Email: qianzh@
cs.e.ust.hk 

August
August 4–6
International Symposium 
on Low Power Electronics 
and Design Bangalore, India, 
Contact: Vijaykrishnan 
Narayanan, Email: vijay@cse.
psu.edu 

August 9–10
APGV ’08: ACM Symposium 
on Applied Perception in 
Graphics and Visualization 
Los Angeles, CA, Contact: 
Bobby Bodenheimer, Phone: 
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on the data being exchanged in the 
critical sections. Many communication 
protocols had the same property. We 
decided to see if we could analyze finite-
state programs by algorithmic means. 

How exactly does that work? 
EAE You have a program described by 

its text and its specification described 
by its text in some logic. It’s either true 
or false that the program satisfies the 
specification, and one wants to deter-
mine that. 

Joseph Sifakis Right. You build a 
mathematical model [of the program], 
and on this model, you check some 
properties, which are also mathemati-
cally specified. To check the property, 
you need a model-checking algorithm 
that takes as input the mathematical 
model you’ve constructed and then 
gives an answer: “yes,” “no,” or “I don’t 
know.” If the property is not verified, 
you get diagnostics. 

And to formalize those specifica-
tions, those properties… 

EAE What people really want is the 
program they desire, an inherently pre-
formal notion. They have some vague 
idea about what sort of program they 
want, or perhaps they have some sort 
of committee that came up with an 
English prose description of what they 
want the program to do, but it’s not a 
mathematical problem. 

So one benefit of model checking 
is that it forces you to precisely specify 
your design requirements. 

EMC Yes. But for many people, the 
most important benefit is that if the 
specification isn’t satisfied, the model 
checker provides a counterexample 
execution trace. In other words, it pro-
vides a trace that shows you exactly 
how you get to an error that invalidates 

your specification, and often you can 
use that to find really subtle errors in 
design.

How have model-checking algo-
rithms evolved over the years? 

EMC Model-checking algorithms 
have evolved significantly over the past 
27 years. The first algorithm for model 
checking, developed by Allen and my-
self, and independently by Queille 
and Sifakis, was a fixpoint algorithm, 
and running time increased with the 
square of the number of states. I doubt 
if it could have handled a system with 
a thousand states. The first imple-
mentation, the EMC Model Checker 
(EMC stands for “Extended Model 
Checker”), was based on efficient 
graph algorithms, developed together 
with Allen and Prasad Sistla, another 
student of mine, and achieved linear 
time complexity in the size of the state 
space. We were able to verify designs 
with about 40,000 states. Because of 
the state-explosion problem, this was 
not sufficient in many cases; we were 
still not able to handle industrial de-
signs. My student Ken McMillan then 
proposed a much more powerful tech-
nique called symbolic model checking. 
We were able to check some examples 
with 10 to the one-hundredth power 
states (1 with a hundred zeros after it). 
This was a dramatic breakthrough but 
was still unable to handle the state-ex-
plosion problem in many cases. In the 
late 1990s, my group developed a tech-
nique called bounded model check-
ing, which enabled us to find errors 
in many designs with 10 to the 10,000 
power states. 

EAE These advances document the 
basic contribution of model checking. 
For the first time, industrial designs 
are being verified on a routine basis. 
Organizations, such as IBM, Intel, Mi-
crosoft, and NASA, have key applica-
tions where model checking is useful. 
Moreover, there is now a large mod-
el-checking community, including 
model-checking users and researchers 
contributing to the advance of model-
checking technology. 

What are the limitations of model 
checking? 

JS You have two basic problems: 
how to build a mathematical model 
of the system and then how to check a 
property, a requirement, on that math-
ematical model. 

First of all, it can be very challeng-
ing to construct faithful mathematical 
models of complex systems. For hard-
ware, it’s relatively easy to extract math-
ematical models, and we’ve made a lot 
of progress. For software, the problem 
is quite a bit more difficult. It depends 
on how the software is written, but we 
can verify a lot of complex software. 
But for systems consisting of software 
running on hardware, we don’t know 
how to construct faithful mathemati-
cal models for their verification. 

The other limitation is in the com-
plexity of the checking algorithm, and 
here we have a problem called the 
state-explosion problem (that Clarke 
referred to earlier), which means that 
the number of the states may go expo-
nentially high with the number of com-
ponents of the system.

EMC Software verification is a Grand 
Challenge. By combining model check-
ing with static analysis techniques, it 
is possible to find errors but not give 
a correctness proof. As for the state-
explosion problem, depending on the 
logic and model of computation, you 
can prove theoretically that it is inevi-
table. But we’ve developed a number of 
techniques to deal with it. 

Such as? 
EMC The most important technique 

is abstraction. The basic idea is that 
part of the program or the protocol 
you’re verifying doesn’t really have any 
effect on the particular properties that 
you’re checking. So what you can do is 
simply eliminate those particular parts 
from the design.

You can also combine model check-
ing with compositional reasoning, 
where you take a complex design and 
break it up into smaller components. 
Then you check those smaller compo-
nents to deduce the correctness of the 
entire system.

How large are the programs we can 
currently verify with model checking? 

EMC Well, first of all, there’s not 
always a natural correspondence be-
tween a program’s size and its com-
plexity. But I would say we can often 
check circuits with around 10 to the 
100th power states (1 with a hundred 
zeros after it).

JS Right. We know how to verify sys-
tems of medium complexity today—
it’s difficult to say but perhaps a pro-
gram of around 10,000 lines. But we 

“The idea behind 
model checking  
was to avoid  
having humans 
construct proofs.”

[continued     FROM P.112]
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don’t know how to verify very complex 
systems. 

EMC We’re always playing a catch-
up game; we’re always behind. We’ve 
developed more powerful techniques, 
but it’s still difficult to keep up with the 
advance of technology and the com-
plexity of new systems. 

Can we use model checking to check 
concurrent programs? 

EAE Arguably, model checking is a 
very natural fit for parallel program-
ming. Typically, we treat parallelism 
as a nondeterministic—or, informally, 
random—choice, so, in a way a parallel 
program is a more complex sequential 
program, with many nondeterministic 
behaviors. Model checking is very well 
suited to describing and reasoning 
about the associated coordination and 
synchronization properties of parallel 
programs. 

EMC Concurrent programs are much 
more difficult to debug because it’s 
difficult for humans to keep track of a 
lot of things that are happening all at 
once. Model checking is ideal for that. 

JS But if you have programs that 
interact with the physical environ-
ment, time becomes very important. 
For these systems, verification is much 
more complicated. 

Do we have any algorithms that can 
operate directly on implementable 
code? 

EMC To verify the process of trans-
lating a design to code, or to verify 
the code itself, is much more diffi-
cult. Some successful model checkers 
use this approach, however. The Java 
Pathfinder model checker developed 
at NASA Ames generates byte code for 
a Java program and simulates the byte 
code to find errors. 

JS The best available technology is 
proprietary technology that was de-
veloped by U.S. companies. But most 
of the code-level model checkers are 
used to verify sequential software. If 
you want to verify concurrent software, 
then you need to be very careful. 

EMC The SLAM model checker de-
veloped at Microsoft Research for find-
ing errors in Windows device drivers is 
probably the most successful software 
model checker. It is now distributed to 
people who want to write device driv-
ers for Windows. However, it is hardly 
a general-purpose software model 
checker. 

EAE In hardware verification, Verilog 
and VHDL are widely used design de-
scription languages. Many industrial 
model checkers typically accept de-
signs described in these languages. 

Is model checking something cur-
rently taught to undergraduates? 

JS Formal verification is definitely 
taught in Europe. Europe has tradition-
ally had a stronger community in for-
mal methods, and I’d like to say it has 
also traditionally had a stronger com-
munity in semantics and languages. 

EMC Yes, there’s always been more in-
terest in verification in Europe than in 
the U.S. Most of the major universities 
here—CMU, Stanford, UC Berkeley, U. 
Texas, and so on—do offer courses in 
model checking at both undergradu-
ate and graduate levels, but it hasn’t fil-
tered down to schools where no one is 
doing research in the topic. Part of that 
has to do with the availability of appro-
priate textbooks; good books are just 
beginning to come out. 

EAE Formal methods are being 
taught with some frequency [in the 
U.S.], but they are not broadly incor-
porated into the core undergraduate 
curriculum as required courses to 
the extent that operating systems and 
data structures are. It is probably more 
prevalent at the graduate level. But the 
distinction between undergraduate 
and graduate is not clear-cut. At many 
schools advanced undergrad and be-
ginning grad overlap. 

What’s in store for model checking 
and formal verification?

EMC I intend to continue looking at 
ways of making model checking more 
powerful. The state explosion phenom-
enon is still a difficult problem. I have 
worked on it for 27 years and probably 
will continue to do so. Another thing I 
want to do is focus on embedded soft-
ware systems in automotive and avion-
ics applications. These programs are 
often safety-critical. For example, in a 
few years, cars will be “drive-by-wire”; 
there will be no mechanical linkage 
between the steering wheel and the 
tires. The software will definitely need 
to be verified. Fortunately, embedded 
software is usually somewhat simpler 
in structure, without complex point-
ers; I think it may be more amenable to 
model checking techniques than gen-
eral software. 

JS Personally, I believe we should 
look into techniques that allow some 
sort of compositional reasoning, where 
we infer global properties from local 
properties of the system, because of 
the inherent limitations of techniques 
based on the analysis of a global model. 
I’m working on this, as well as on theo-
ries of how to build systems out of com-
ponents, component-based systems. 

EAE Model checking has caused a 
sea change in the way we think about 
establishing program correctness, 
from proof-theoretic (deductive proof) 
to model-theoretic (graph search). I 
think we will continue to make more 
or less steady progress, but the pace of 
development of hardware and software 
is going to accelerate. Whether we ever 
catch up I don’t know. Systems that 
are being designed are getting bigger 
and messier. The seat-of-the-pants ap-
proach will no longer work. We’ll have 
to get better at doing things modularly, 
and we’ll have to have better abstrac-
tions. 	

Leah Hoffman writes about science and technology 
from Brooklyn, NY. 

© 2008 ACM 001-0782/08/0700 $5.00

“If you have  
programs that 
interact with 
the physical 
environment, time 
becomes very 
important. For  
these systems, 
verification is  
more complicated.” 
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E
dmund M. Clarke, E. Allen 
Emerson, and Joseph Sifakis 
were honored for their role in 
developing Model-Checking 
into a highly effective verifi-

cation technology, widely adopted in 
the hardware and software industries.

Let’s talk about the history of formal 
software verification.

E. Allen Emerson By the late 1960s, 
we recognized that a program should 
be viewed as a mathematical object. 
It has a syntax and semantics and for-
mally defined behavior engendered by 
that syntax and semantics. The idea 
was to give a mathematical proof that 
a program met a certain correctness 
specification. So one would have some 
axioms characterizing the way the pro-
gram worked for such-and-such an 
instruction and some inference rules, 
and one would construct a formal 
proof of the system, like philosophers 
do sometimes. 

But it never really seemed to scale up 
to large programs. You ended up with 
something like 15-page papers proving 
that a half-page program was correct. It 
was a great idea but didn’t seem to pan 
out in practice. 

What about the history of model 
checking? 

Edmund M. Clarke The birth of model 
checking was quite painful at times. 
Like most research on the boundary be-
tween theory and practice, theoreticians 
thought the idea was trivial, and system 
builders thought it was too theoretical. 
Researchers in formal methods were 

even less receptive. Research in the for-
mal-methods community in the 1980s 
usually consisted of designing and 
verifying tricky programs with fewer 
than 50 lines using only pen and paper. 
If anyone asked how such a program 
worked in practice on a real computer, 
it would have been interpreted as an in-
sult or perhaps simply as irrelevant. 

EAE The idea behind model check-
ing was to avoid having humans con-
struct proofs. It turns out that many 
important programs, such as operating 
systems, have ongoing behavior and 
ideally run forever; they don’t just start 
and stop. In 1977, Amir Pnueli suggest-
ed that temporal logic could be a good 
way to describe and reason about these 
programs. Now, if a program can be 
specified in temporal logic, then it can 
be realized as a finite state program—
a program with just a finite number 
of different configurations. This sug-
gested the idea of model checking—to 
check whether a finite state graph is a 
model of a temporal logic specifica-
tion. Then one can develop efficient 
algorithms to check whether the tem-
poral-logic specification is true of the 
state graph by searching through the 
state graph for certain patterns. 

EMC Yes, Allen and I noticed that 
many concurrent programs had what 
we called “finite state synchronization 
skeletons.” (Joseph Sifakis and J.P. 
Queille made the same observation, in-
dependently.) For example, the part of 
a mutual-exclusion program that han-
dles synchronization does not depend 

Q&A  
Talking Model-Checking 
Technology 
A conversation with the 2007 ACM A.M. Turing Award winners.

doi: 10.1145/1364782.1364805		L  eah Hoffman
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