
COMMuNICATIONS
OF THE ACM

Designing
Games with

a Purpose
Computer science
and game theory

scaling games
and virtual Worlds

the Collaborative
organization of

Knowledge

cacm.acm.oRG 08/08 vol.51 no.8

1_CACM_V51.8.indb 1 7/21/08 10:12:33 AM

http://cacm.acm.oRG

www.oopsla.org/submit

Conference Chair
GAIL E. HARRIS
Instantiated Software Inc.
chair@oopsla.org

Program Chair
GREGOR KICZALES
University of British Columbia
papers@oopsla.org

Onward! Chair
DIRK RIEHLE
SAP Research
onward@oopsla.org

D E F I N E T H E F U T U R E O F S O F T WA R E

call for papers
March 19, 2008
Due date for Research Program,
Onward!, Development Program,
Educators’ Symposium, Essays
and proposals for Tutorials, Panels,
Workshops and DesignFest

July 2, 2008
Due date for Development Program Briefs,
Doctoral Symposium and Student Volunteers

NASHVILLE CONVENTION CENTER, NASHVILLE , TN
October 19 - 23, 2008

essays, {craft, art, science} of software, python, eclipse, agile development,

onward!, {generative, functional} programming, .net, open source, concurrency,

smalltalk, aspects, second life, ruby, service-orientation, objects, embedded,

u l t ra la rge sca le

{model, test}-driven

passion, fun!, agents,

d o m a i n - s p e c i f i c

use cases, movies,

l i g h t n i n g t a l k s ,

systems, objective-c,

deve lopmen t , c# ,

d e s i g n p a t t e r n s ,

l a nguage s , w i k i ,

product-lines, java,

r e f a c t o r i n g , plop

1_CACM_V51.8.indb 2 7/21/08 10:12:33 AM

http://www.oopsla.org/submit
mailto:chair@oopsla.org
mailto:papers@oopsla.org
mailto:onward@oopsla.org

013827x

ABCD springer.com

Easy Ways to Order for the Americas 7 Write: Springer Order Department, PO Box 2485, Secaucus, NJ 07096-2485, USA 7 Call: (toll free) 1-800-SPRINGER
7 Fax: 1-201-348-4505 7 Email: orders-ny@springer.com or for outside the Americas 7 Write: Springer Distribution Center GmbH, Haberstrasse 7,
69126 Heidelberg, Germany 7 Call: +49 (0) 6221-345-4301 7 Fax : +49 (0) 6221-345-4229 7 Email: SDC-bookorder@springer.com
7 Prices are subject to change without notice. All prices are net prices.

Computer Science Springer References
Encyclopedia of
Algorithms
Kao, Ming-Yang (Ed.)

The Encyclopedia of
Algorithms will provide a
comprehensive set of
solutions to important
algorithmic problems for

students and researchers interested in quickly
locating useful information. The first edition of
the reference will focus on high-impact
solutions from the most recent decade; later
editions will widen the scope of the work. This
defining reference is published both in print
and online.

Print
2008. Approx. 1220 p. 138 illus., Hardcover
ISBN 978-0-387-30770-1 7 $399.00
eReference
ISBN 978-0-387-30162-4 7 $399.00
Print + eReference
ISBN 978-0-387-36061-4 7 $499.00

Encyclopedia of
GIS
Shekhar, Shashi;
Xiong, Hui (Eds.)

The Encyclopedia of GIS
provides a comprehen-
sive and authoritative
treatment of a dynamic

and rapidly expanding field, with entries
alphabetically arranged for convenient, rapid
access. The entries explain the key software,
data sets, and processes used by geographers
and computational scientists. All entries are
contributed by world experts and peer-
reviewed for accuracy and currency. The
reference will be published as a print volume
with abundant black and white art, and
simultaneously as an XML online reference with
hyperlinked citations and other interactive
features.

Print
2008. XL, 1377 p. 723 illus., Hardcover
ISBN 978-0-387-30858-6 7 $399.00
eReference
ISBN 978-0-387-35973-1 7 $399.00
print + eReference
ISBN 978-0-387-35975-5 7 $499.00

Encyclopedia of
Multimedia
Furht, Borko (Ed.)

The Encyclopedia of
Multimedia provides
easily accessible coverage
of the important
concepts, issues and

technology trends in the field of multimedia
technologies, systems, techniques, and
applications. It is a comprehensive collection of
more than 250 entries from hundreds of
leading researchers and world experts.
With over 1000 heavily-illustrated pages, the
Encyclopedia of Multimedia presents concise
overviews of all aspects of software, systems,
web tools and hardware that enable video,
audio and developing media to be shared and
delivered electronically.

2006. XXIII, 989 p. 300 illus., Hardcover
ISBN 978-0-387-24395-5 7 $499.00

Encyclopedia of Multimedia
Furht, Borko (Ed.)

Encyclopedia of Multimedia, Second Edition
provides easy access to important concepts,
issues and technology trends in the field of
multimedia technologies, systems, techniques,
and applications. Hundreds of leading
researchers and world experts have contrib-
uted to this comprehensive collection of nearly
400 entries. Over 1200 heavily-illustrated pages
(including 120+ new entries) present concise
overviews of all aspects of software, systems,
web tools and hardware that enable video,
audio and developing media to be shared and
delivered electronically.

Print
2nd ed. 2009. Approx. 1010 p. Hardcover
ISBN 978-0-387-74724-8 7 $449.00
eReference
ISBN 978-0-387-78414-4 7 $449.00
Print + eReference
ISBN 978-0-387-78415-1 7 $559.00

Encyclopedia of
Cryptography
and Security
Tilborg, Henk C.A. van (Ed.)

This comprehensive ency-
clopedia provides easy
access to information on
all aspects of cryptog-

raphy and security. With an A–Z format of over
460 entries, 100+ international experts provide
an accessible reference for those seeking entry
into any aspect of the broad fields of
cryptography and information security. Most
entries in this preeminent work include useful
literature references, providing more than 2500
references in total.

Print
2005. XII. 684 p. Hardcover
ISBN 978-0-387-23473-1 7 $349.00
eReference
ISBN 978-0-387-23483-0 7 $299.00
Print + eReference
ISBN 978-0-387-33557-5 7 $379.00

Encyclopedia
of Database
Systems
Özsu, M. Tamer;
Liu, Ling (Eds.)

The multi-volume
Encyclopedia of Database
Systems provides easy

access to relevant information on all aspects of
very large databases, data management, and
database systems. Over 1,300 illustrated essays
and definitional entries, organized alphabeti-
cally, present basic terminology, concepts,
methods and data processing algorithms, key
results to date, references to the literature, and
cross-references to other entries and journal
articles.

Print
2009. Approx. 4000 p. 60 illus.
In 4 volumes, not available separately
ISBN 978-0-387-35544-3 7 $1499.00
eReference
ISBN 978-0-387-39940-9 7 $1499.00
Print + eReference
ISBN 978-0-387-49616-0 7 $1899.00

1_CACM_V51.8.indb 1 7/21/08 10:12:34 AM

http://springer.com
mailto:orders-ny@springer.com
mailto:SDC-bookorder@springer.com

2 communications of the acm | august 2008 | vol. 51 | no. 8

communications of the acm

Departments

5	 President’s Letter
A New Beginning, A Fond Farewell
By Stuart I. Feldman

7	 Letters To The Editor
Words Both Kind and Contrary

8	 CACM Online
Small Changes Hint at Bigger Things
By David Roman

101	 Careers

Last Byte

104	 Puzzled
Delightful Graph Theory
By Peter Winkler

News

9	 Designing the Perfect Auction
Distributed algorithmic mechanism
design is a field at the intersection of
computer science and economics.
By Hal R. Varian

12	 Access for All
Accessible technologies are improving
the lives of millions of physically
impaired people around the world.
By Peggy Aycinena

15	 Challenging Poverty
Information and communication
technologies are an important
component in the generation
of wealth. How can they help
reduce poverty?
By Sarah Underwood

18	 Remembering Jim
Both melancholy and reverential, the
Jim Gray Tribute at the University of
California at Berkeley honored one of
computer science’s leading pioneers
and visionaries.
By Michael Ross

Viewpoints

19	 The Profession of IT
Voices of Computing
The choir of engineers,
mathematicians, and scientists who
make up the bulk of our field better
represents computing than the solo
voice of the programmer.
By Peter J. Denning

22	 From the Front Lines
Software Development Amidst the
Whiz of Silver Bullets
Software development organizations
must accept the inevitability of silver-
bullet solution proposals and devise
strategies to defend against them.
By Alex E. Bell

25	 Education
Paving the Way for
Computational Thinking
Drawing on methods from
diverse disciplines—including
computer science, education,
sociology, and psychology—to
improve computing education.
By Mark Guzdial

28	 Viewpoint
Envisioning the Future
of Computing Research
Advances in computing have
changed our lives—the Computing
Community Consortium aims
to help the research community
continue that lineage.
By Ed Lazowska

31	 Interview
Donald Knuth:
A Life’s Work Interrupted
In this second of a two-part interview
by Edward Feigenbaum, we find
Knuth, having completed three
volumes of The Art of Computer
Programming, drawn to creating
a system to produce books digitally.
Edited by Len Shustek

Practice

38	 Scaling in Games and Virtual Worlds
Online games and virtual worlds
have familiar scaling requirements,
but don’t be fooled: Everything you
know is wrong.
By Jim Waldo

45	 CTO Storage Roundtable
Leaders in the storage world
offer valuable advice for making
more effective architecture and
technology decisions.
By Mache Creeger, Moderator

52	 The Rise and Fall of CORBA
There’s a lot we can learn from
CORBA’s mistakes.
By Michi Henning

1_CACM_V51.8.indb 2 7/21/08 10:12:34 AM

august 2008 | vol. 51 | no. 8 | communications of the acm 3

08/08
vol. 51 no. 8

Contributed Articles

58	 Designing Games with a Purpose
Data generated as a side effect of
game play also solves computational
problems and trains Al algorithms.
By Luis von Ahn and Laura Dabbish

68	 The Collaborative Organization
of Knowledge
Why Wikipedia’s remarkable
growth is sustainable.
By Diomidis Spinellis
and Panagiotis Louridas

Review Articles

74	 Computer Science and Game Theory
The most dramatic interaction
between computer science
and game theory may involve
game-theory pragmatics.
By Yoav Shoham

Research Highlights

82	 Technical Perspective
A Methodology for Evaluating
Computer System Performance
By William Pugh

83	 Wake Up and Smell the Coffee:
Evaluation Methodology
for the 21st Century
By Stephen M. Blackburn, Kathryn
S. McKinley, Robin Garner, Chris
Hoffmann, Asjad M. Khan, Rotem
Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z. Guyer,
Martin Hirzel, Antony Hosking,
Maria Jump, Han Lee, J. Eliot, B. Moss,
Aashish Phansalkar, Darko Stefanovíc,
Thomas VanDrunen, Daniel von
Dincklage, and Ben Wiedermann

90	 Technical Perspective
Transactions are Tomorrow’s
Loads and Stores
By Nir Shavit

91	 Composable Memory Transactions
By Tim Harris, Simon Marlow, Simon
Peyton Jones, and Maurice Herlihy

About the Cover: Ben Fry, doctoral graduate of the MIT
Media Lab, took hundreds of actual images and responses
from the gwap.com ESP Game and employed Processing
to create the data visualization on this month’s cover.
Aside from being one of the original initiators of the open
source Processing project, his book Visualizing Data, was
recently published by O’Reilly.

1_CACM_V51.8.indb 3 7/21/08 10:12:36 AM

http://gwap.com

4 communications of the acm | august 2008 | vol. 51 | no. 8

communications of the acm
A monthly publication of ACM Media

ACM, the world’s largest educational
and scientific computing society, delivers
resources that advance computing as a
science and profession. ACM provides the
computing field’s premier Digital Library
and serves its members and the computing
profession with leading-edge publications,
conferences, and career resources.

Executive Director and CEO
John White
Deputy Executive Director and COO
Patricia Ryan
Director, Office of Information Systems
Wayne Graves
Director, Office of Financial Services
Russell Harris
Director, Office of Membership
Lillian Israel
Director, Office of Publications
Mark Mandelbaum
Director, Office of SIG Services
Donna Cappo

ACM Council
President
Wendy Hall
Vice-President
Alain Chenais
Secretary/Treasurer
Barbara Ryder
Past President
Stuart I. Feldman
Chair, SGB Board
Alexander Wolf
Co-Chairs, Publications Board
Ronald Boisvert, Holly Rushmeier
Members-at-Large
Carlo Ghezzi;
Anthony Joseph;
Mathai Joseph;
Kelly Lyons;
Bruce Maggs;
Mary Lou Soffa;
SGB Council Representatives
Norman Jouppi;
Robert A. Walker;
Jack Davidson

Publications Board
Co-Chairs
Ronald F. Boisvert and Holly Rushmeier
Board Members
Gul Agha; Michel Beaudouin-Lafon;
Jack Davidson; Carol Hutchins;
Ee-ping Lim; M. Tamer Ozsu; Vincent Shen;
Mary Lou Soffa; Ricardo Baeza-Yates

ACM U.S. Public Policy Office
Cameron Wilson, Director
1100 Seventeenth St., NW, Suite 507
Washington, DC 20036 USA
T (202) 659-9711; F (202) 667-1066

Computer Science Teachers
Association
Chris Stephenson
Executive Director
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA
T (800) 401-1799; F (541) 687-1840

Association for Computing Machinery
(ACM)
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA
T (212) 869-7440; F (212) 869-0481

STAFF

Group Publisher
Scott E. Delman

Executive Editor
Diane Crawford
Managing Editor
Thomas E. Lambert
Senior Editor
Andrew Rosenbloom
Senior Editor/News
Jack Rosenberger
Web Editor
David Roman
Editorial Assistant
Zarina Strakhan
Rights and Permissions
Deborah Cotton

Art Director
Andrij Borys
Associate Art Director
Alicia Kubista
Assistant Art Director
Mia Angelica Balaquiot
Production Manager
Lynn D’Addesio
Director of Media Sales
Jonathan Just
Advertising Coordinator
Graciela Jacome
Marketing & Communications Manager
Brian Hebert
Public Relations Coordinator
Virgina Gold
Publications Assistant
Emily Eng

Columnists
Alok Aggarwal; Phillip G. Armour
Martin-Campbell-Kelly;
Michael Cusumano; Peter J. Denning;
Shane Greenstein; Mark Guzdial;
Peter Harsha; Leah Hoffmann;
Deborah Johnson; Mari Sako;
Pamela Samuelson; Gene Spafford;
Cameron Wilson

Contact Points
Copyright permission
permissions@acm.org
Calendar items
calendar@acm.org
Change of address
acmcoa@acm.org

Web Presence
http://cacm.acm.org

Advertising

ACM Advertising Department
2 Penn Plaza, Suite 701, New York, NY
10121-0701
T (212) 869-7440
F (212) 869-0481

Director of Media Sales
Jonathan M. Just
jonathan.just@acm.org

For the latest media kit—including
rates—contact Graciela Jacome at
jacome@acm.org

editorial Board

Editor-in-chief
Moshe Y. Vardi

News
Co-chairs
Marc Najork and Prabhakar Raghavan
Board Members
Brian Bershad; Hsiao-Wuen Hon;
Mei Kobayashi; Rajeev Rastogi;
Jeannette Wing

Viewpoints
Co-chairs
William Aspray and
Susanne E. Hambrusch
Board Members
Stefan Bechtold; Judith Bishop;
Peter van den Besselaar; Soumitra Dutta;
Peter Freeman; Seymour Goodman;
Shane Greenstein; Mark Guzdial;
Richard Heeks; Susan Landau;
Carlos Jose Pereira de Lucena;
Helen Nissenbaum; Beng Chin Ooi

Practice
Chair
Stephen Bourne
Board Members
Eric Allman; Charles Beeler;
David J. Brown; Bryan Cantrill;
Terry Coatta; Mark Compton;
Ben Fried; Pat Hanrahan;
Marshall Kirk McKusick;
George Neville-Neil

Contributed Articles
Co-chairs
Al Aho and George Gottlob
Board Members
Yannis Bakos; Gilles Brassard; Peter
Buneman; Andrew Chien; Anja Feldman;
Blake Ives; Takeo Kanade; James Larus;
Igor Markov; Gail C. Murphy; Shree Nayar;
Lionel M. Ni; Sriram Rajamani; Avi Rubin;
Ron Shamir; Larry Snyder;
Wolfgang Wahlster; Andy Chi-Chih Yao;
Willy Zwaenepoel

Research Highlights
Co-chairs
David A. Patterson and
Stuart J. Russell
Board Members
Martin Abadi; P. Anandan; Stuart K. Card;
Deborah Estrin; Stuart I. Feldman;
Shafi Goldwasser; Maurice Herlihy;
Norm Jouppi; Andrew B. Kahng; Linda
Petzold; Michael Reiter;
Mendel Rosenblum; Ronitt Rubinfeld;
David Salesin; Lawrence K. Saul;
Guy Steele, Jr.; Gerhard Weikum

Web
Co-chairs
Marti Hearst and James Landay
Board Members
Jason I. Hong; Jeff Johnson;
Wendy MacKay; Jian Wang

The Practice section of the
CACM Editorial Board also serves as the
Editorial Board of ACM Queue.

Author Guidelines
http://cacm.acm.org/guidelines

ACM Copyright Notice
Copyright © 2008 by Association for
Computing Machinery, Inc. (ACM).
Permission to make digital or hard copies
of part or all of this work for personal
or classroom use is granted without
fee provided that copies are not made
or distributed for profit or commercial
advantage and that copies bear this
notice and full citation on the first
page. Copyright for components of this
work owned by others than ACM must
be honored. Abstracting with credit is
permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to
lists, requires prior specific permission
and/or fee. Request permission to publish
from permissions@acm.org or fax
(212) 869-0481.

For other copying of articles that carry a
code at the bottom of the first or last page
or screen display, copying is permitted
provided that the per-copy fee indicated
in the code is paid through the Copyright
Clearance Center; www.copyright.com.

Subscriptions
Annual subscription cost is included in
the society member dues of $99.00 (for
students, cost is included in $42.00 dues);
the nonmember annual subscription rate
is $100.00.

ACM Media Advertising Policy
Communications of the ACM and other
ACM Media publications accept advertising
in both print and electronic formats. All
advertising in ACM Media publications is
at the discretion of ACM and is intended
to provide financial support for the various
activities and services for ACM members.
Current Advertising Rates can be found by
visiting http://cacm.acm.org/advertising or
by contacting ACM Media Sales at
(212) 626-0654.

Single Copies
Single copies of Communications of the
ACM are available for purchase. Please
contact acmhelp@acm.org.

Communications of the ACM
(ISSN 0001-0782) is published monthly
by ACM Media, 2 Penn Plaza, Suite 701,
New York, NY 10121-0701. Periodicals
postage paid at New York, NY 10001,
and other mailing offices.

POSTMASTER
Please send address changes to
Communications of the ACM
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA

Printed in the U.S.A.

Communications of the ACM is the leading monthly print and online magazine for the computing and information technology fields.
Communications is recognized as the most trusted and knowledgeable source of industry information for today’s computing professional.
Communications brings its readership in-depth coverage of emerging areas of computer science, new trends in information technology,
and practical applications. Industry leaders use Communications as a platform to present and debate various technology implications,
public policies, engineering challenges, and market trends. The prestige and unmatched reputation that Communications of the ACM
enjoys today is built upon a 50-year commitment to high-quality editorial content and a steadfast dedication to advancing the arts,
sciences, and applications of information technology.

P
L

E

A
S E R E C Y

C
L

E

T
H

I

S
 M A G A Z

I
N

E

1_CACM_V51.8.indb 4 7/21/08 10:12:36 AM

mailto:permissions@acm.org
mailto:calendar@acm.org
mailto:acmcoa@acm.org
http://cacm.acm.org
mailto:jonathan.just@acm.org
mailto:jacome@acm.org
http://cacm.acm.org/guidelines
mailto:permissions@acm.org
http://www.copyright.com
http://cacm.acm.org/advertising
mailto:acmhelp@acm.org

august 2008 | vol. 51 | no. 8 | communications of the acm 5

president’s letter

A New Beginning,
A Fond Farewell

DOI:10.1145/1378704.1378705		 Stuart I. Feldman

Communications has an editorial team
assigned to select and shape its con-
tent. These teams unite leading voices
from across the global computing field.
I am eager to read upcoming issues.

ACM is striving to reach out to com-
puter experts everywhere. Much of
computing science, technology, and
applications is location-independent,
but the way people work is affected by
where they live. Numerous activities
are under way to make ACM more rel-
evant to members outside the U.S. as
well as to Americans with an increas-
ingly global viewpoint: A growing
number of ACM leaders—including
elected officers, members of Coun-
cil, as well as members of many ACM
Boards and SIGs—are from outside
the U.S. We have opened an office in
Beijing to enable us to participate
more fully in China. We also have ad-
visory groups in China, India, and
Europe to help ACM do more for our
members and potential members in
those areas.

In addition, we are working to ad-
dress problems and concerns relating
to our field. In many countries, uni-
versity enrollment in the computing
disciplines has been falling for years.
Despite the centrality of information
technologies to the economy and soci-
ety, too many people think the bloom
is off the rose. Yet new technological
marvels arrive regularly because of the

At this moment, you hold in your
hands one of the biggest improve-
ments—the newly renovated Commu-
nications of the ACM. From the outset
of this ambitious project, our goal has
been to make this a vibrant publica-
tion, a must-read and can’t-wait-to-
read for people everywhere who are
excited by and depend on progress
in computing. Readers need to know
what is best and new in research, what
is ripe enough to influence practice in
a year or two, and what is happening
in industry, government, and universi-
ties that affects the way we work.

The goal of the new Communica-
tions is to present a diverse collection
of articles about the most interesting
research in the field, as well as perspec-
tives and reviews of hot topics, all writ-
ten for knowledgeable and engaged
computer scientists. It also brings ar-
ticles about technology directions and
problems that will interest practitio-
ners and their managers. A new Prac-
tice section, aimed at computing pro-
fessionals who develop, deploy, and
enhance real systems, will leverage the
success of the Association’s respected
ACM Queue magazine by having its edi-
torial board serve as Communications’
Practice board. In addition, you can
now find news and analysis articles
about people, organizations, funding,
and directions in computing world-
wide. Indeed, each section of the new

fantastic work by computer scientists
and engineers like you. In an effort
to call more widespread attention to
such marvels, ACM has undertaken a
number of initiatives to address the
image of the profession, including ex-
amining the role of policy, education,
and diversity. We have planted the
seeds; look for visible signs of growth
in the coming years.

One way to increase visibility of
the field, both within academia and
in public, is through professional
awards and press coverage. We have
raised the financial levels of a number
of ACM awards and instituted a new
major prize—the ACM-Infosys Foun-
dation Award—to recognize and hon-
or great work in computer science. We
have increased efforts to garner atten-
tion from the media and policy mak-
ers with our timely reports, boards,
awards, and contributions from our
excellent members.

As I noted in my opening remarks,
much has been accomplished and
much remains to be done. Thank you
for allowing me this chance to serve the
community and ACM.	

Stuart I. Feldman is vice president of engineering for
Google, Inc., New York City.

I am writing this column in my last month as
President of ACM. It’s been a great opportunity to
support the Association’s many successful programs
and to expand and firmly establish new directions.
Much has been accomplished, much remains to be done.

1_CACM_V51.8.indb 5 7/21/08 10:12:37 AM

The ACM Online Books Collection includes
unlimited access to 600 online books from
Safari® Books Online, featuring leading publishers
including O’Reilly. Safari puts a complete IT
and business e-reference library right on your
desktop. Available to ACM Professional
Members, Safari will help you zero in on
exactly the information you need, right when
you need it.

600 Online Books from Safari

3,000 Online Courses from SkillSoft

The ACM Online Course Collection features unlimited access to 3,000 online courses from SkillSoft, a
leading provider of e-learning solutions. This new collection of courses offers a
host of valuable resources that will help to maximize your learning experience.
Available on a wide range of information technology and business subjects, these
courses are open to ACM Professional and Student Members.

SkillSoft courses offer a number of valuable features, including:

Newly Expanded
Online Books
& Courses Programs!ACM’s

pd.acm.org
www.acm.org/join

HelpingMembers Meet Today’s Career Challenges

All Professional and Student Members also have
unlimited access to 500 online books from
Books24x7®, in ACM’s rotating collection of com-
plete unabridged books on the hottest comput-
ing topics. This virtual library puts information
at your fingertips. Search, bookmark, or read
cover-to-cover. Your bookshelf allows for quick
retrieval and bookmarks let you easily return
to specific places in a book.

introducing...

500 Online Books from Books24x7

• Job Aids, tools and forms that complement and support course content
• Skillbriefs, condensed summaries of the instructional content of a course topic
• Mentoring via email, online chats, threaded discussions - 24/7
• Exercises, offering a thorough interactive practice session appropriate to the
learning points covered previously in the course

• Downloadable content for easy and convenient access
• Downloadable Certificate of Completion

“The course Certificate
of Completion is
great to attach to
job applications!”

ACM Professional Member

1-23_ACM_Books_and_Courses_4C_full-page:Layout 1 6/26/08 3:04 PM Page 1

1_CACM_V51.8.indb 6 7/21/08 10:12:37 AM

http://pd.acm.org
http://www.acm.org/join

7 communications of the acm | august 2008 | vol. 51 | no. 8

letters to the editor

Words Both Kind and Contrary

F
or the first time in many,
many years I found Commu-
nications (July 2008) both
friendly to the reader and use-
ful. Over the years, the physi-

cal form and font of the issues were
very unfriendly, let alone the content,
which was quite rarified. Not this latest
issue. The redesign makes the physical
attributes—paper (non-glossy, yeah!),
layout, and font very approachable.
And the content is just great. Real con-
crete stuff to learn and use!

Makes me happy to have persevered
as a member during the past 10 years!

Deepak Kenchammana, San Jose, CA

Thanks for the good work in revising
Communications for readability and at-
tractiveness. The new online format is
very compelling as well. Readability for
me is way up, and I like the catchy use
of color.

Well done!
Alex Lancaster, Arlington, VA

I don’t have time to adequately express
my thoughts on the new design for
Communications. About all I can say is,
“Wow, I am impressed!” The content is
so rich. Definitely a better magazine.

Thank you!
David Brown, Denver, PA

I received my print copy of the July
Communications and wanted to let

you know how much I dislike the new
three-column layout and reduced font
size. I have been a member of ACM for
over 25 years and have always enjoyed
thumbing though every issue of Com-
munications, reading articles here and
there. Trying to read the new version
was not enjoyable.

 Has your design team forgotten that
a lot of us ACM members are in our 50s,
60s, and 70s, and can’t comfortably
read small, wedged-together print?

 Judy Walters, Naperville, IL

Catalan Is a Different Latin Language
I found it astonishing that the article
“Web Searching in a Multilingual
World” by Wingyan Chung (May 2008)
included (in Table 2) the following
claim: “Catalan (another version of
Spanish) is widely used as well.” A lan-
guage spoken in the same country as
another language is not necessarily “a
version” of the other language. Catalan
is, like French, Spanish, and Italian, a
“different” Latin language, spoken not
only in Spain but also in France and An-
dorra where it is the official language.

Alberto Gonzalez Tellez,
Valencia, Spain

Behavior Reinforcement is
an Empirical Issue
Although the concepts were presented
correctly in the section called “Feed-
back and learning from security-related
decisions” in Ryan West’s article “The
Psychology of Security” (Apr. 2008), the
definitions were incorrect. Reinforce-
ments, both positive and negative, mo-
tivate behavior. The nagging messages
regarding, say, Windows update avail-
ability can be seen as negative rein-
forcement. Users then update the op-
erating system, and the message goes
away. The same users would be more
likely to update in the future if the mes-
sage itself were, indeed, reinforcing.

Consequences that inhibit certain
behavior are punishments, either
positive (something “good” happens)
or negative (something “bad” is re-

moved). Nothing should be assumed in
advance to be reinforcing or punishing.
Determining which is which is always
an empirical issue. Only by studying
how users actually respond to feedback
from the interface can system develop-
ers truly understand how the interface
affects their behavior. Otherwise, like
a school principal wondering why stu-
dents sent regularly to the “office” for
“punishment” continue to misbehave,
they will be left scratching their heads.

Timothy Dunnigan, San Diego, CA

Author’s Response:
Thanks to Dunnigan for the correction. The
distinction simply slipped my mind.

Ryan West, Round Rock, TX

The Price of Eternal Vigilance
Essentially the same quote was at-
tributed to two different people, one
in an article, the other in a column,
in the same issue (Mar. 2008). The ar-
ticle “The Illusion of Security” by David
Wright et al. ended with: “As Thomas
Jefferson said, ‘The price of freedom is
eternal vigilance.’” The “Inside Risks”
column by Xiaming Lu and George Le-
din, Jr., began with: “When Wendell
Phillips...told a Boston audience in
1852 that ‘Eternal vigilance is the price
of liberty’...”

A bit of Google-sleuthing found that
although the quote is sometimes at-
tributed to Jefferson, Tom Paine, and
Patrick Henry, its first documented
use was probably by Phillips (Bartleby.
com’s Dictionary of Quotations, www.
bartleby.com/73/1073.html).

Further muddying the issue, wiki-
quote.org (en.wikiquote.org/wiki/
Leonard_H._Courtney) claims the
quote originated with Leonard Henry
Courtney (1832–1918), a British baron,
politician, and statistician.

Jeff Johnson, San Francisco

Communications welcomes your opinion. To submit a
Letter to the Editor, please limit your comments to 500
words or less and send to letters@cacm.acm.org.

doi:10.1145/1378704.1378706

Coming Next Month in

Communications
Information Integration
in the Enterprise

Design and Code Reviews
in the Internet Age

Beyond Google: Automated
Question Answering on the Web

How Do I Model State?

Plus the latest news on spectral
graph theory, video encoding, and
privacy technologies.

1_CACM_V51.8.indb 7 7/21/08 10:12:37 AM

mailto:letters@cacm.acm.org
http://Bartleby.com
http://Bartleby.com
http://www.bartleby.com/73/1073.html
http://www.bartleby.com/73/1073.html
http://wikiquote.org
http://wikiquote.org
http://en.wikiquote.org/wiki/Leonard_H._Courtney
http://en.wikiquote.org/wiki/Leonard_H._Courtney

8 communications of the acm | august 2008 | vol. 51 | no. 8

cacm online

Hiding In Plain Sight
The redesign of Communications Web site is taking place largely out of sight,
though a clue to the coming changes is on the cover of this very issue. It’s sitting
discretely under the name of the publication. It’s the new URL for the new site,
which will launch in early 2009: cacm.acm.org.

Calling All Authors
The dramatic changes to Communications—the magazine—call for an equally
distinctive selection of top-notch articles. The Editorial Board of Communica-
tions welcomes your submissions, which can be delivered online at cacm.acm.
org/submissions.

Rules to Write By
This new editorial model comes with a new set of guidelines for authors to fol-
low. A comprehensive description of what’s expected in a manuscript can be
found in the Author Guidelines, available online at cacm.acm.org/guidelines.

Looking Good
You don’t need Google to learn about authors of the nearly one million Communi-
cations’ and other articles in ACM’s Digital Library. The new Author Profile pages
provide biographical information as well as usage statistics that help measure an
author’s impact. They also allow for community participation in the profiles. To
investigate, click on an author’s name from the full citation page of any article in
the Digital Library; www.acm.org/dl.

Extra! Extra! Read All About It!
Each issue of Communications is available in a special Digital Edition, an electron-
ic format that can be searched or downloaded. The latest Digital Edition, and an
archive of past issues, is available online. The Digital Editions can also be viewed
on a mobile phone, or via an RSS feed. Go to mags.acm.org/communications/.

Small Changes Hint
at Bigger Things

DOI:10.1145/1378704.1378707	  David Roman ACM
Member
News
ACM Presidential
Award Winners
The ACM Presidential Award
was recently presented to four
individuals. Steve Bourne was
honored for his leadership in
the creation of ACM Queue and
the ACM Professions Board;
Pat Ryan for her dedication to
ACM and its many volunteers;
Barbara Ryder for her efforts
on behalf of numerous ACM
committees, conferences, and
councils; and Moshe Y. Vardi
for his commitment to the ACM
Job Migration Task Force and
his new role as editor-in-chief of
Communications of the ACM.

ACM-W Initiative on
Women and Minorities
Tracy Camp, former co-chair of
ACM’s Committee on Women
in Computing (ACM-W), is
promoting a new project to
attract women and other
underrepresented groups to
computing. This collaborative
project, known as the Practices,
Aggregation, Infrastructure, and
Retrieval Service (PAIRS), is part
of an ongoing ACM-W effort
to develop a comprehensive
collection of articles on
women and minority groups in
computing. So far, a collection
of 135 resources, including
research articles and teaching
methods, are in the pipeline. For
information about PAIRS, visit
http://www.colorado.edu/atlas/
research/arc/pairs.

ACM Election Results
Results of the recent General
Election are:

President:
Wendy Hall	 4,783
J Strother Moore	 3,918

Vice President:
Alain Chesnais	 4,907
Joseph A. Konstan	 3,546

Secretary/Treasurer:
Norman Jouppi	 3,523
Barbara Ryder	 4,965

Members at Large:
Carlo Ghezzi	 6,172
Anthony Joseph	 6,532
Mathai Joseph	 4,789
Chuang Lin	 3,399
Daniel Ling	 4,482
Kelly Lyons	 6,920
Mary Lou Soffa	 6,324

1_CACM_V51.8.indb 8 7/21/08 10:12:38 AM

http://cacm.acm.org
http://cacm.acm.org/guidelines
http://www.acm.org/dl
http://mags.acm.org/communications/
http://cacm.acm.org/submissions
http://cacm.acm.org/submissions
http://www.colorado.edu/atlas/research/arc/pairs
http://www.colorado.edu/atlas/research/arc/pairs

 N
news

august 2008 | vol. 51 | no. 8 | communications of the acm 9

photograph

 by

 C
had

 B
aker

Science | doi:10.1145/1378704.1378708	 Hal R. Varian

I
n January, the U.S. Federal
Communications Commis-
sion (FCC) launched one of
the biggest auctions in his-
tory, selling off what some in

the wireless industry have called the
“beachfront property” of the electro-
magnetic spectrum. Its auction of
the 700MHz frequencies, the largest
and most valuable slice of spectrum
to come available in years, brought in
more than $19 billion.

With the auction, the FCC inau-
gurated the first use in a major spec-
trum auction of “package bidding,” in
which bidders are allowed to bid either
on individual state licenses or regional
packages of licenses. Although pack-
age bidding makes a lot of sense—for
example, some bidders might be inter-
ested in buying state A only if they can
be guaranteed to also get state B—until
now, the FCC had not offered an auc-
tion design that gave bidders enough
flexibility while keeping combinato-
rial and computational complexity in
check.

The auction is a high-profile ex-
ample of distributed algorithmic
mechanism design, a field that com-
bines economics and algorithm de-
sign. Economic mechanism design is

concerned with how to design a mar-
ket or market-like institution so that
it will achieve a desired goal, such as
allocating goods efficiently, maximiz-
ing profit, or achieving an equitable
distribution. Mechanism design is, in
a sense, the inverse of game theory: in
game theory, one is given the rules of
a game and the goal is to predict the
outcome; in mechanism design, one

is given a set of desired outcomes and
the goal is to design a game that will
achieve them.

In 2007, Leo Hurwicz, Eric Maskin
and Roger Myerson were awarded the
Nobel Prize in Economics for their
work in economic mechanism design.
Their theoretical work underpins a
host of practical applications, includ-
ing eBay’s auctions, the auctions used
by Google and Yahoo! to sell ad slots,
the matching system used to pair
medical residents and hospitals, the
California electric power exchange,
the rules governing trades on NASDAQ
and other financial markets, and, of
course, the FCC spectrum auctions.

As auctions have grown more com-
plex and more economic transactions

Designing the
Perfect Auction
Distributed algorithmic mechanism design is a field at
the intersection of computer science and economics.

1_CACM_V51.8.indb 9 7/21/08 10:12:39 AM

10 communications of the acm | august 2008 | vol. 51 | no. 8

news

occur online, computational consider-
ations in mechanism design are taking
on a growing significance. Distributed
algorithmic mechanism design, or
just algorithmic mechanism design, is
emerging as a field in its own right.

“Mechanism design is one of the
major intellectual interfaces between
computer science and economics, as
well as one of the most vibrant areas of
economics,” says Christos Papadimi-
triou, a computer scientist at the Uni-
versity of California, Berkeley.

For Your Consideration
Broadly speaking, there are two main
strands in the literature. The first in-
volves bringing computational consid-
erations to the economics mechanism
design literature. The second involves
bringing incentive considerations to
the computer science literature.

As an example of the first issue,
consider the recent spectrum auction
by the Federal Communications Com-
mission mentioned earlier. In this auc-
tion, the right to use spectrum in vari-
ous locations was sold to mobile phone
companies and other potential users.
The valuation that a buyer places on
spectrum in a particular location may
depend strongly on whether or not it
wins spectrum in other locations.

In theory, each buyer could assign a
different value to each possible subset
of the geographic locations being sold.
How does one design an auction that
will yield reasonable outcomes in such
a “combinatorial auction”? In such
auctions, it turns out that the so-called
“winner determination problem” is,
in general, NP-complete. However,
researchers working in algorithmic
mechanism design have discovered
various approximation algorithms and
special cases that allow for reasonably
good solutions in practical examples.

As an example of the second issue,
consider the famous “stable marriage
problem” in which one wants to design
an algorithm to match up men and
women. Each man has a ranking over
the women, and each woman has a
ranking over the men. A stable assign-
ment is one such that no couple would
prefer to leave their current mates to
form a new couple. Although this par-
ticular description may sound some-
what frivolous, there are much more
serious examples, such as matching

up hospitals and residents or organ
donors and recipients.

It turns out that stable assignments
always exist, and there are a number of
algorithms that compute them. How-
ever, these algorithms assume that the
participants are truthfully revealing
their rankings. Do they actually have
the appropriate incentives to do so?
It turns out that some algorithms pro-
vide such incentives to men, and some
provide such incentives to women, but
there is no algorithm that provides in-
centives for both sides of the market to
be truthful.

Ideas from economics can shed
light on many computer science prob-
lems that arise from user interactions,
such as computer viruses and spam,
says Preston McAfee, a researcher at
Yahoo! Research in Burbank, CA. “I
think there’s a growing recognition
that problems of bad behavior are in-
centive problems in the realm of game
theory, rather than technological prob-
lems in the realm of traditional com-
puter science,” he says.

Understanding the effect of incen-
tives on how algorithms perform is
“the latest and most momentous twist”
on the question of computation’s lim-
its, Papadimitriou says.

“With classical algorithms, you get
your inputs and then compute away,
and the answer comes out,” he says.
“In this new context, you have to get
your inputs by peering into the souls of
selfish agents trying to promote them-
selves.”

A Simple Auction
A good starting point for studying dis-
tributed algorithmic mechanism de-
sign is a simple auction. A seller has
one item to sell and n buyers have values

v1, … , vn for this item. The seller may
have a reserve price r, which is the min-
imum price at which he is willing to sell
the item. Typically there will also be a
bid increment, the minimum amount
by which a bid may be changed.

The goal is to design an online auc-
tion that will achieve some desired
goals. There are many types of auctions
that could be used. They include:

English auction. The seller starts at
r and progressively raises the price by
the bid increment until all but one of
the buyers drops out. This is the most
common form of auction.

Dutch auction. The seller starts at
a high price and progressively lowers
the price by the bid increment until
a buyer shouts out “buy.” This sort of
auction is used to sell flowers in the
Netherlands.

First-price sealed bid. The buyers
write down a bid and seal it in an en-
velope. The envelopes are opened and
the item is awarded to the highest bid-
der at the price he or she bid. This form
is commonly used for construction
contracts.

Second-price sealed bid. The buyers
write down a bid and seal it in an en-
velope. The envelopes are opened and
the item is awarded to the highest bid-
der at the second-highest price. This
auction was used by stamp collectors
in the 19th century to sell stamps by
mail.

It turns out there are some relation-
ships among these auctions. For ex-
ample, with fully rational players, the
outcome of the English auction is the
same, up to the bid increment, as the
outcome of the second-price sealed
bid auction. This is, perhaps, not so
surprising upon reflection, as the Eng-
lish auction ends up awarding the item
to the bidder who is willing to go the
highest, but he or she only has to pay
the bid of the second highest bidder
plus a possible bid increment.

To make the argument slightly
more precise observe that the payoff to
a bidder with value v1 is v1 – b2 where b2
is the bid of the second-highest bidder.
There are three cases to consider:

v˲˲ 1 > b2. In this case bidder 1 wants
to win. But the bidder can do so by re-
porting b1 = v1.

v˲˲ 1 < b2. In this case bidder 1 wants
to lose. But the bidder can so by report-
ing b1 = v1.

A good starting
point for studying
distributed algorithmic
mechanism design
is a simple auction.

1_CACM_V51.8.indb 10 7/21/08 10:12:39 AM

news

august 2008 | vol. 51 | no. 8 | communications of the acm 11

v˲˲ 1 = b2. In this case, bidder 1 is in-
different about winning or losing, so
the bidder may as well report b1 = v1.

In each case it is optimal for bid-
der 1 to report his or her true value,
regardless of what the bidder thinks
other bidders will do. This is known as
a dominant strategy in game theory. If
everyone reports their true value, the
item ends up being awarded to the bid-
der with the highest value, which is the
efficient outcome in the sense of maxi-
mizing the value of the assignment.

The auction used by eBay is basi-
cally a form of second-price auction;
the bidder who programs his or her
bidding agent with the highest value
wins, but only has to pay the second
highest bid.

Note that in both of the examples
mentioned—the 19th century stamp
collectors and the eBay auction—the
underlying motivation for adopting
this auction form was communication
costs. The stamp collectors did not
want to mail bids back and forth and
eBay buyers did not want to log on ev-
ery time they wanted to change their
bid.

Combinatorial Auctions
To continue with auctions, let us imag-
ine a much more complex problem in
which many items are to be sold. Let x
represent an assignment of goods to
bidders and let va(x) represent agent
a’s valuation—the agent’s willingness
to pay—for a given assignment. In
principle, each agent may care not only
about what he or she gets in the assign-
ment, but also what everyone else gets.
The seller does not know the bidders’
valuation functions.

The auction design goal is to assign
the items to the agents in a way that
maximizes the sum of the individual
valuations of the assignment.

Perhaps surprisingly, this mecha-
nism design problem can be solved in
much the same way as the single item
auction. We simply ask each person to
report their valuation functions. Next,
we find the assignment that maximiz-
es the sum of the reported valuations.
The payment that agent a makes is the
difference between the maximal value
to the other agents if agent a is present
and the maximal value if agent a is re-
moved from the calculation. Roughly
speaking, each agent has to pay the

cost that his or her presence imposes
on the other agents.

To see how this generalizes the pre-
vious simple auction, note that in the
simple auction the price that the high-
est bidder has to pay is the cost he or
she imposed on the other agents; if
the highest bidder weren’t present, the
second highest bidding agent would
receive the item. This mechanism is
known as the Vickrey-Clarke-Groves
or VCG mechanism. It provides incen-
tives to report true values for virtually
any sort of problem. Of course, it also
has flaws. For example, it does not typi-
cally generate the maximum amount
of revenue for the seller.

Search Engine Ad Auctions
Google, MSN, and Yahoo! all use an
auction to sell ad space on their search
engines. Advertisers bid for positions
on a search results page with the high-
est bidder receiving the most promi-
nent position. The second highest bid-
der gets the second most prominent
position and so on. Each advertiser
pays a price per click based on the bid
of the advertiser below him or her.

It turns out that there is no domi-
nant strategy in this game when more
than two positions being auctioned
off. However, it is possible to find out-
comes that are “stable” in the sense
that no agent wants to change his or
her bid, given the bids of the other ad-
vertisers.

Designing online auctions has been
an evolutionary process, says Alvin
Roth, an economist at Harvard Uni-
versity. “Google’s design came out of
some earlier designs, and getting the
right design has been an important
part of its success,” he says. “It has
helped create a market that didn’t ex-
ist before.”

Distributed algorithmic mechanism
design offers an interesting theoretical
framework for incorporating incen-
tives into algorithmic design. It also of-
fers exciting opportunities for interdis-
ciplinary collaboration as well as being
highly relevant to important practical
problems, such as auctioning off the
popular 700MHz frequencies.�

Hal R. Varian is the chief economist of Google.

Berkeley, CA-based science and technology writer Erica
Klarreich provided additional reporting.

Information Technology

Video
Search,
Intel Style
Researchers at Intel labs
in China and the U.S. are
developing a video search
technology that will enable
users to search images in
videos by person and object.
Intel’s video search technology
divides videos on a frame-by-
frame basis and uses image
and face-recognition software
to identify and categorize faces,
voices, objects, locations, and
movements. Next, the videos
are reassembled to facilitate
video search.

With Intel’s video search
technology, users will no longer
have to fast forward through
or watch an entire video, but
can instantly cut to a particular
scene or scenes. In addition
to enabling users to instantly
analyze videos, Intel’s objective
is to create a visual computing
platform in which people
can interact with a personal
computer in a life-like, 3D
environment.

1_CACM_V51.8.indb 11 7/21/08 10:12:39 AM

12 communications of the acm | august 2008 | vol. 51 | no. 8

news

Technology | doi:10.1145/1378704.1378709	 Peggy Aycinena

C
ountless people interface
with assistive technologies
today either because they
use them, develop them, or
both. Some technologies

have existed for years, but many more
are rapidly emerging, motivated by
fast-paced developments in science
and engineering and by the allure of
enormous potential markets.

Newly emerging technologies in-
clude mobile video phones for people
who use sign language in combination
with texting; enhanced optical charac-
ter recognition and speech-synthesis
tools that read books aloud; machine-
learning algorithms and positioning
sensors that enable a person in a wheel-
chair to better navigate an environment;
improved speech recognition hardware
for more accurately inputting verbal
commands to a computer, wheelchair,
or handheld device; and tools for de-
signing more accessible Web sites.

More than 40 million Americans
identify themselves as having a physi-
cal disability, of which 12 million use
a computer and 17 million work full
time, according to the U.S. Census Bu-
reau. Globally, the United Nations es-
timates more than 700 million people
have a physical disability. That figure
is expected to grow due to improved
health care and other factors that are
increasing overall life expectancies.
Factoring in the family members of
these hundreds of millions, the market
for assistive technologies encompasses
several billion persons, and universi-
ties, companies, and governments are
ramping up to meet the demand.

Profound changes are taking place
in the assistive technology industry due
to advances in compute power, signal
processing, data compression, materi-
als science, miniaturization, cognitive
research, and the algorithms of artifi-
cial intelligence, along with a host of le-
gal mandates and a growing awareness
that full access to technology makes
the world a happier, smarter, and more

productive place. Along with these
technological advances, a 21st-century
lexicon has emerged as well. People to-
day talk about accessibility technology,
rather than assistive technology.

Accessibility technology guru Rich-
ard E. Ladner, a professor in computer
science and engineering at the Univer-
sity of Washington and winner of the
2008 A. Nico Habermann Award, notes
that people don’t want assistance; they
want fair and equal access to comput-
ers, the Internet, consumer devices,
and other aspects of 21st-century life
no matter their preferences or needs.
Ladner is also quick to point out that if

anyone expects to work in the field of
accessibility technology, they must un-
derstand the accompanying terminol-
ogy and the mindset.

There are no homogenous popula-
tions of accessibility technology users
who can be lumped together by a com-
mon disability, Ladner says. There are
only individuals who will evaluate the
various accessibility tools made avail-
able and pick for themselves. “There
are lots of examples of accessibility
technology that were creative or inven-
tive, but were never accepted,” says
Ladner. “People just want to live their
lives, to succeed, and be happy. They

will be the ones to decide if any particu-
lar technology is part of that equation,
so one of the biggest challenges is to
find solutions that work and will also
be adopted by a community.”

Hence, a growing focus today is on
universal design, making the human-ma-
chine interface fully configurable and
responsive to everybody’s needs with
technology so customizable that it’s ac-
cessible to all. That’s the goal of today’s
dynamic, constantly evolving landscape
of accessible technology research initia-
tives and commercial products.

“It’s a Wild West out there,” Lad-
ner says. “In terms of the engineering

alone, accessible technology research
is a wide-open field, with an infinite
number of solutions.”

Accessible Text
In Japan, a great deal of effort has gone
into text captioning to make video
broadcasting more accessible to peo-
ple who are hearing impaired. At Kyoto
University, various projects emphasize
speech recognition and language pro-
cessing for spoken text. At NHK Labora-
tory, part of Japan Broadcasting Corp.,
work focuses on real-time captioning
in which a TV announcer’s words are
repeated by a speaker to produce a

Access For All
Accessible technologies are improving the lives of millions
of physically impaired people around the world.

P
hotograph

 by

 jyyne

_

2
0

0
0

1_CACM_V51.8.indb 12 7/21/08 10:12:40 AM

AUGUST 2008 | vol. 51 | no. 8 | communications of the acm 13

news

higher, more stable rate of speech rec-
ognition for translation into text.

Speech-to-text conversion is far
from perfect, however, as it is affect-
ed by factors such as audio devices,
speaking style, and ambient noise. At
the IBM Tokyo Research Laboratory,
Takashi Saito, manager of the Acces-
sibility Center, leads a group focused
on correcting speech recognition er-
rors. “This is tedious work,” says Saito.
“First you listen to the audio to find
errors in the text, then you delete the
wrong characters, and then you input
the correct characters. Our goal is to
minimize the total time required for
this process by simplifying the correc-
tion operations and minimizing the
necessary keystrokes.”

Improving the quality of speech rec-
ognition is also playing a role in a proof-
of-concept wheelchair at MIT. Finale
Doshi, a graduate student in computer
science, has designed a voice-activated
wheelchair command system that uses
machine learning to create and navigate
a map of its environment. The wheel-
chair-bound person issues verbal com-
mands to the guidance system to move
from point to point on the map. High
quality, easily trainable speech recogni-
tion devices that operate reliably are the
key to implementing the wheelchair.

“People who use wheelchairs often
have a lot of shaking, even people who
don’t have several degenerative con-
ditions,” says Doshi. “It takes far less
mental concentration to maneuver a
wheelchair if you can issue commands
verbally rather than manually. This is a
very active area of research at MIT.”

In Seattle, Ladner and his students
in the Department of Computer Sci-
ence and Engineering at the University
of Washington have their own active
areas of research. Their MobileASL
project combines enhanced video
compression with a cell phone config-
ured as a video phone—the video lens
is on the same side of the device as the
phone’s screen, which has two panels,
one of which displays the remote trans-
lator while the other panel displays the
cell phone user—to provide more effec-
tive communication between people
who sign and remote translators who
provide American Sign Language (ASL)
and text relay services.

Ladner insists the raison d’être
for all accessibility technology is to

optimize people’s lives. “Accessible
technology is about accepting, for in-
stance, that people use sign language
and making the phone adapt to their
needs. It’s not about a prosthesis or re-
placing something that’s taken million
of years to evolve. Not everybody wants
a cochlear implant, which requires
major surgery and can cause problems
with balance.”

In conjunction with the Roches-
ter Institute of Technology, Ladner’s
group is also working to establish a
DHH (deaf or hard of hearing) Cyber-
Community between universities to
increase enrollment of students who
are deaf or hard of hearing in science,
engineering, and mathematics from
undergraduate levels through doctoral
programs.

Also related to student access, Lad-
ner’s group is developing a tool that
translates textbooks, so a person who
is blind can fully understand the con-
tent. “Between Braille and optical char-
acter recognition, words in textbooks
are fairly accessible, but the figures are
still difficult. We’re replacing figures
with textures through an automated
process using our Tactile Graphics As-
sistant,” he says.

Ladner’s students are also contrib-
uting to the growing worldwide effort
to improve Internet accessibility. “Un-
fortunately, a lot of Web pages are not
all that accessible for people who are
blind or dyslexic,” he says. “Web de-
signers use commercial development
tools to make things look good, but
don’t create a logical structure behind
the page that’s navigable with a screen
reader. Frequently, there’s also no al-
ternative text inserted for figures.”

At MIT, a voice-
activated wheelchair
command system
uses machine
learning to navigate
a map of its
environment.

Computer Science

A Mind-
‘Reading’
Computer
A pair of scientists at Carnegie
Mellon University have created
a computational model
that can predict the brain
activation patterns associated
with concrete nouns, Science
reports. Computer scientist
Tom M. Mitchell and cognitive
neuroscientist Marcel Just
previously used functional
magnetic resonance imaging
(fMRI) to detect and pinpoint
brain activity when a person
thinks of a specific noun. With
the fMRI data, the scientists
created a computational model
that enables a computer to
determine what word a person
is thinking of by analyzing
brain scan data. In their latest
research, Mitchell and Just
used fMRI data to develop a
computational model that can
predict the brain activation
patterns related to concrete
nouns even if the computer
did not possess fMRI data for a
specific noun.

Mitchell and Just’s research
could have applications in
the study of autism, paranoid
schizophrenia and other
thought disorders, and
semantic dementias such as
Pick’s disease.

1_CACM_V51.8.indb 13 7/21/08 10:12:40 AM

14 communications of the acm | august 2008 | vol. 51 | no. 8

news

In response, Ladner’s group has de-
veloped the WebInSight tool to infer the
contents of a Web page and automati-
cally insert alternative text. In addition,
students Jeffrey P. Bingham and Craig
M. Prince at the University of Washing-
ton are spearheading WebAnywhere, a
low-cost, Web-based browser and self-
voicing screen reader. (Commercial
screen readers typically $1,000.) We-
bAnywhere can also be used by devel-
opers evaluate the accessibility of their
Web designs.

World Wide Access
When it comes to the World Wide Web,
a host of accessibility technologies are
in play or under consideration around
the globe. The ACM Special Interest
Group on Accessibility, SIGACCESS,
has been showcasing novel ideas about
computers and accessibility at their an-
nual ASSETS conference for more than
10 years.

University of Manchester researcher
Simon Harper is chair of this year’s con-
ference, which will be held in Halifax,
Canada. “What we’re doing is not just
for a small subset of people, but for ev-
erybody,” says Harper. “Global position-
ing systems, for instance, got started as
speech recognition and positioning sys-
tems for people who are blind.”

Harper is among those at the Hu-
man Centred Web Lab at the Univer-
sity of Manchester working to increase
Internet accessibility. “Web designers
make a lot of mistakes when they’re
designing Web sites, so we are study-
ing how users interact with a dynami-
cally updating page and where their at-
tention is drawn to on the page,” says
Harper. “We believe by understanding

how users who are blind interact with
a page, we can create novel methods of
making obfuscated structures, infor-
mation, and semantics more explicit in
the design. We can help designers bet-
ter understand which things on a page
should be spoken and which should be
more silent.”

Like many accessible technology
researchers, Harper believes accessi-
bility starts with the design. “It would
cost nothing and would be very easy to
make a Web site from the outset that’s
supportive of accessible technology.”

Vicki Hanson, chair of ACM SIGAC-
CESS and a researcher at IBM’s T.J.
Watson Center in New York, agrees.
She adds, however, that the decision
to design for accessibility is more than
just a matter of cleaning up the Inter-
net–it’s a matter of law.

“Section 508 of the Americans with
Disabilities Act pertains to all busi-
nesses that the U.S. Government works
with,” Hanson says. “Every Web site for
those businesses, and for all govern-
mental agencies, has got to be designed
for accessibility. Of course, if the costs

are too prohibitive, it won’t happen for
small businesses, so people in SIGAC-
CESS are working to make accessibility
features in software the standard, not
something separate or different.”

Cynthia Waddell, executive director
of the International Center for Disabil-
ity Resources on the Internet (ICDRI),
says the move toward accessibility is a
matter of international law. “When the
U.S. government–the largest procurer
of technology in the world–adopted
Section 508 in 1998, people around the
world started to realize they had better
start to comply with best practices re-
garding accessibility. As of today, 126
countries have signed the 2006 U.N.
Convention guaranteeing access to
Information and Computer Technol-
ogy (ICT) for people with disabilities.
So much has happened over the last 10
years, it’s almost unbelievable!”

ICDRI chair Mike Burks says acces-
sible technology is about economics.
“Some people maintain that pursuing
accessible technology is too expensive,
but people in the U.S. who have disabil-
ities have an approximately 70% unem-
ployment rate,” says Burks. “That’s a
huge price for any society to pay for ICT
not being accessible to all.”

Simon Harper, however, says acces-
sible technology is about choice. “Every
one of us is bizarrely unique, and in the
real world we do things in many differ-
ent ways,” he says. “There is no single
solution to accessibility technologies.
The solution is to have a whole menu
of solutions from which each of us can
pick and choose.”�

Peggy Aycinena is a freelance journalist based in Silicon
Valley.

Are some Web domains
inherently more risky than
others? According to software
vendor McAfee’s second
annual Mapping the Mal
Web report, the answer is
a resounding “yes.”

In its analysis of 9.9 million
heavily visited Web sites in 265
different country and generic
domains, McAfee found that the
most dangerous Web domains

are those ending in “.hk” (Hong
Kong), “.cn” (China) and “.info”
(information). According to
McAfee’s report, almost one
in five .hk sites (19.2%) are
dangerous. Nearly 12% of both
the .cn and .info domains were
classified as dangerous.

A Web site with an .hk or .cn
domain isn’t necessarily located
in Hong Kong or China; the
owner of a domain name could

theoretically situate his or her
business anywhere.

As for the world’s most
popular domain, “.com,” slightly
more than 5% of .com sites are
deemed dangerous.

The three safest domains are
“.gov” (government), with 0.05%
classified as dangerous; “.jp”
(Japan), with 0.1%; and “.au,”
(Australia) with 0.3%.

An unhealthy percentage of

Internet frauds involve the sale of
fake pharmaceuticals.

“My advice about surfing
behavior is that if you’re really
desperate for cheap Prozac
and the pharmacy ends in .cn,
don’t do it. Just don’t do it,” said
McAfee research analyst and
report lead author Shane Keats in
an interview with the Associated
Press. “Find another place to get
your Prozac.”

Internet

Dangerous Web Domains

Like many
accessibility
researchers, Simon
Harper believes
accessibility starts
with the design.

1_CACM_V51.8.indb 14 7/21/08 10:12:40 AM

august 2008 | vol. 51 | no. 8 | communications of the acm 15

news

A
s the debate on whether
poverty is best challenged
by money or knowledge
continues, efforts to im-
prove individual lives and

kick-start economies in developing
countries are escalating. As in wealthy
countries, where technology has trans-
formed many lives, information and
communication technologies (ICT) are
part of development programs in poor
countries. However, their application is
very different and the implementation
constraints can be overwhelming.

The World Bank, which cites its mis-
sion as “working for a world free of pov-
erty,” is a supporter of ICT for develop-
ment (ICT4D). The bank has a global
ICT department with three organiza-
tional groups: one offers loans and as-
sistance for ICT projects to developing
world governments; another promotes
sustainable private-sector investment
in developing countries; and the last
acts as an ICT think tank, bringing to-
gether and disseminating best prac-
tices.

This year, the World Bank will spend
approximately $7.3 billion on projects
with an ICT component. Typical ex-
amples include an $8 million grant to a
private sector program in Bhutan that is
establishing an IT park and a $40 mil-
lion loan to the government of Ghana
for an e-Ghana project.

“We offer loans, grants, and techni-
cal assistance,” says Randeep Sudan,
lead ICT policy specialist in the World
Bank’s ICT department, “and we have
a formal mechanism for deciding as-
sistance strategies and working with
governments to define projects and re-
lationships. Inclusiveness and sustain-
ability are key issues.”

The World Bank collaborates with
many organizations, bringing together
multidisciplinary teams including aca-
demics, consultants, anthropologists,
computer scientists, and economists.
Projects focusing on ICT consider how
technology can impact poverty through

its application in areas such as educa-
tion, health, agriculture, e-government,
and public-sector reform.

With projects and people in place,
the challenge is to overcome local con-
straints including a lack of ICT infra-
structure, inadequate and unreliable
power supplies, and a paucity of skilled,
and sometimes literate, local people.
Also, mind-sets need to be challenged
and visionary plans created, particular-
ly in developing countries that are lim-

ited by their own political or economic
constraints.

Despite the difficulties of imple-
menting technology, the World Bank
sees ICT as an important element of
transformation. “ICT has an impact in
nearly every intervention we make to re-
duce poverty,” says Sudan. “It enhances
employment, pushes up incomes, in-
creases the employment of women, cre-
ates efficiency in government services,
and reduces corruption.”

The European Commission also pro-
vides funds to sustain ITC4D initiatives
and works in partnership with develop-
ing countries to build infrastructure.
The Infrastructure Partnership with Af-
rica, which the Commission supports,

is partially funding the EASSy subma-
rine cable that will link the countries
of East Africa to the rest of the world
and is due to be in place before South
Africa hosts the World Cup in 2010. As
well as easing the lack of connectivity
in Africa, the EASSy cable will provide
lower communication costs than satel-
lite systems.

Harry De Backer, a principal admin-
istrator working in the new technolo-
gies remit of the Commission’s Euro-
pean Development Fund, explains:
“The EASSy cable will give Africa an op-
portunity to become part of the world
economy through better communica-
tions, which will improve the export of
locally produced products. EASSy will
also provide backhauls into poorly con-
nected areas of Africa, such as Kenya,
Uganda, Burundi, Tanzania, and Rwan-
da. Ultimately, the backhaul will reach
rural areas.”

With some 278 million mobile
phones in Africa—one in three people
has a mobile phone according to the
GSM Association (GSMA), a global trade
group of mobile phone operators—and
GSMA operators poised to invest $50
billion over the next five years, the pros-
pect of creating a strong commercial
environment is promising.

De Backer believes those living on
just a few dollars a day will be included
in the mobile phone community, stem-
ming migration to congested cities
and improving the lives of poor people
through communication. One example
of a mobile phone project is farmers
who receive an SMS service telling them
the consumer prices of vegetables.
Armed with this information, the farm-
ers can better negotiate prices with the
middlemen who buy from the farmers
and sell to consumers.

While connecting Africa is a major
task, many smaller ICT projects are
challenging poverty. Some have the po-
tential to scale regionally, others could
cross continents. Their proponents
are experts with a desire to use ICT

Society | doi:10.1145/1378704.1378710	 Sarah Underwood

Challenging Poverty
Information and communication technologies are an important component
in the generation of wealth. How can they help reduce poverty?

P
H

O
T

O
G

R
A

P
H

 B
Y

 D
ipanker

 D
utta

1_CACM_V51.8.indb 15 7/21/08 10:12:41 AM

16 communications of the acm | august 2008 | vol. 51 | no. 8

news

it started, suggests that the scalability
of the system and its ability to be de-
veloped using existing infrastructure
mean it could be expanded across rural
India and replicated elsewhere.

“eSagu has been very successful.
This year we will look at how it can be
commercialized and improved further,
still for the benefit of rural farmers,”
Reddy says.

At the Indian Institute of Technology
(IIT) in Madras, professor Ashok Jhun-
jhunwala of the Department of Electri-
cal Engineering, leads Tenet, a telecom-
munications and computer networking
group that aims to bring not only tele-
phony and Internet services to rural In-
dia, but also social improvement such
as better education, agricultural devel-
opment, and job creation. Jhunjhun-
wala also chairs a rural technology and
business incubator with a mission to
design, pilot, and nurture business ven-
tures and a vision to facilitate inclusive
technology and business development
in rural areas.

“Everything is so different in rural
areas compared to urban areas. The
technology is different, connectivity is
difficult and often only mobile, and the
economics are different as there are a
smaller number of people in a specific
area with little ability to pay for ser-
vices,” explains Jhunjhunwala. “Each
challenge is a huge learning experience
and things you assume will work often
don’t.”

While little connectivity in rural In-
dia 10 years ago meant there was no
business case for commercial expan-
sion, 60% to 70% of the rural population

to amplify what people in developing
countries can do to improve their lives
and eradicate poverty. Again, the task
is Herculean, with the World Bank re-
porting that, despite a reduction in the
proportion of people living in poverty in
the developing world over the past 20
years from 40% to 20%, more than a bil-
lion people still struggle to survive on a
dollar a day.

Improving Farmers’ Lives
Successful ICT4D projects include
eSagu, an IT-based personalized agri-
cultural extension system that started
in 2004 as a research project by the In-
ternational Institute of Information
Technology (IIIT) in Hyderabad, India
and is funded by Media Lab Asia, a non-
profit organization that carries out col-
laborative research in developing rele-
vant and sustainable technologies, and
culturally appropriate solutions, which
will improve daily life.

In India, farming is the backbone
of the economy, with two-thirds of the
population living in rural areas and
depending on agriculture for their
income. However, the farming com-
munity faces numerous problems, in-
cluding a lack of timely expert advice to
help farmers be more productive and
competitive.

eSagu (“Sagu” means “cultivation”
in the Telugu language) aims to im-
prove farm productivity by delivering
farm-specific expert advice in an op-
portune manner to each farmer with-
out the farmer needing to be literate
or IT competent. The system is based
on a team of agricultural experts at an

eSagu lab, usually in a city, supported by
an agricultural information system. A
small computer center, with a coordina-
tor who is an educated and experienced
farmer, covers a group of five or six vil-
lages. Every day, the coordinator visits
farms to collect information and take
photographs. A CD is then prepared
and sent by parcel service—broadband
is prohibitively expensive—to the main
lab, where the experts analyze each
farm’s crop situation and prepare farm-
specific advice. This is downloaded to
the village eSagu center via a dial-up
connection and the coordinator deliv-
ers the experts’ advice to each farmer.

By closing the gap between agri-
cultural research and practice, eSagu
helps farmers improve efficiency and
use pesticides and fertilizers effectively.
An evaluation study showed that eS-
agu farms accumulated benefits worth
about $89 per acre.

IIIT professor P. Krishna Reddy,
who has been involved in eSagu since

With HealthLine,
women can become
healthcare providers
in rural villages that
often have little or
no health service
provisions.

Richard Manning Karp was
recently awarded the Kyoto
Award in the category of
Advanced Technology for his
contributions to the theory of
computational complexity, which
he first developed in the early
1970s by establishing the theory
of NP-completeness.

A professor of computer
science and electrical
engineering at the University of
California, Berkeley, Karp has

had an enormous influence on
the principles behind the analysis
and design of algorithms used in
numerous scientific disciplines.

Karp’s NP-completeness
theory increased the efficiency of
problem solving by providing a
standard method of measuring
the computational complexity
of combinatorial problems.
His NP-completeness theory
classifies problems by their
degree of difficulty: Class P

represents problems for which
polynomial-time algorithms of
deterministic solutions exist and
Class NP represents problems
for which polynomial-time
algorithms of non-deterministic
solutions exist, including the
sub-class NP-Complete, the
most difficult-to-solve problems.
By developing a standard
methodology for this process,
Karp significantly advanced
the theory of computation and

algorithms that now support the
field of computer science.

Karp is the recipient of the
1985 ACM A.M. Turing Award, the
National Medal of Science, and
the Benjamin Franklin Medal in
Computer and Cognitive Science,
among other awards. He will be
presented with the Kyoto Award
and a $460,000 prize from the
Inamori Foundation at an awards
ceremony in Kyoto, Japan, in
November.

Computer Science

Richard Karp Wins Kyoto Award

1_CACM_V51.8.indb 16 7/21/08 10:12:41 AM

august 2008 | vol. 51 | no. 8 | communications of the acm 17

news

Roni Rosenfeld, professor of com-
puter science at Carnegie Mellon,
hopes the Pakistani government will
fund a large-scale version of the project,
but also envisions a business model
that requires people to pay a small fee
for information they want, making the
project self sustaining if it is not govern-
ment funded.

Are such projects sustainable? “Ab-
solutely,” says Rosenfeld. “Although it
is hard to predict sustainability for any
one ITC4D project, overall sustainable
projects are sure to emerge. We need ex-
pertise in IT, economics, social policy,
different cultures, and business, and
we need to try out as many ideas and so-
lutions as possible. Some will fail, but
some will succeed.”

It is not just academic projects that
are reaching the poorest people on
the planet. Commercial companies
are also playing a part. While cynics
suggest their interest is in cornering
emerging markets, corporations such
as Microsoft take a more balanced
view. Kentaro Toyama, a leader in Mi-
crosoft’s Technology for Emerging
Markets group at Microsoft Research
India, acknowledges the business po-
tential of new markets, but also points
to the company’s responsibility to help
people get the most out of computers,
particularly in places that have previ-
ously lacked access to technology.

In terms of ICT4D projects, Micro-
soft runs many, funding research bud-
gets and collaborating with develop-
ment partners such as the World Bank.
Its projects include Digital Green,
which disseminates agricultural edu-
cation to small farmers through digi-
tal video, and text-free user interfaces,
which allow nonliterate groups to ac-
cess computers.

While the answer to the question
of whether the end of poverty will be
achieved by money or knowledge is
probably both, Toyama adds the need
for human interest. “The problems
of developing countries are huge and
dire,” he says. “We have to do as much
as we can to help by harnessing the
energy of people in developed coun-
tries. ICT4D is sustainable and can
be successful as long as it attracts hu-
man interest.”�

Sarah Underwood writes about computing and
technology from Teddington, UK.

is now connected, making it more fea-
sible for telecomm operators to move
into rural India.

The business case around services
based on connectivity remains weak,
however, because the question of who
will pay is unanswered. But Tenet and
the IIT incubator are experimenting
with a number of technology and appli-
cation options, developing ideas that
could scale to become commercial.

Jhunjhunwala forecasts that mobile
communication will reach 97% of In-
dia’s rural population in the next few
years and that every village will have
broadband in five or six years. However,
he says, “we are also concerned about
sustainable development and world is-
sues such as climate change. Creating
a better life for those in rural areas will
challenge the poverty trap of moving to
overcrowded urban areas and reduce
climate damage.”

Rural Healthcare
In Pakistan, ICT4D programs include
a speech and language technology de-
velopment research project led by Car-
negie Mellon University and Aga Khan
University, and initially funded by Mi-
crosoft’s Digital Inclusion initiative.
Called HealthLine, the project seeks to
overcome a lack of healthcare informa-
tion in rural areas by giving members
of the healthcare community access to
medical information. Healthcare work-
ers, mostly village women chosen by
the government for two months of ba-
sic training, use a toll-free number to
call and ask questions of an automated
health information system. The system
overcomes literacy problems and barri-
ers to information access, allowing the
women to act as frontline healthcare
providers in villages that often have lit-
tle or no health service provision.

Jahanzeb Sherwani, an undergradu-
ate from Lahore and a doctoral student
at Carnegie Mellon, is working on the
project in Karachi, talking to healthcare
providers about their needs and consid-
ering how technology can be adapted
for populations with a low level of lit-
eracy. The system is being tested and, if
it is successful, could be scaled to cover
the 100,000 rural healthcare workers in
Pakistan. The economics of the system
are good as health workers need only ac-
cess to a phone and the health informa-
tion is held on a PC server in Karachi.

Patent Applications

Patent
Filings
Increase
in China
More patent applications were
filed in China than any other
country last year, according
to China’s State Intellectual
Property Office, which received
694,000 applications in 2007.
The U.S. had the second most
applications, with 484,955,
followed by Japan with 443,150.

Three types of patents are
granted in China: invention
patents, which are valid for 20
years from the date of filing,
and utility patents and design
patents, both of which are
valid for 10 years. In terms
of invention patents, China
is ranked third in the world,
behind the U.S. and Japan.
If China’s number of patent
applications continues at its
current rate, it will lead the
world in invention patent
applications by 2012.

Approximately one-third
of the invention patent
applications filed in China are
made by foreign businesses,
“which clearly suggests that
filing in China has become
an intrinsic part of most
multinational company’s
[intellectual property]
strategies,” according to
Evalueserve, a market and
business research company.

1_CACM_V51.8.indb 17 7/21/08 10:12:41 AM

18 communications of the acm | august 2008 | vol. 51 | no. 8

doi:10.1145/1378704.1380421	 Michael Ross

Remembering Jim
Both melancholy and reverential, the Jim Gray Tribute
at the University of California at Berkeley honored one of
computer science’s leading pioneers and visionaries.

O
n May 31, almost 750 col-
leagues, friends, and fami-
ly members gathered at the
University of California at
Berkeley campus for a day-

long tribute to Jim Gray, who disap-
peared at sea while sailing his 40-foot
sailboat off the coast of San Francisco
on Jan. 28, 2007.

For nearly four decades, Gray work-
ed for some of the computer industry’s
largest companies including Digi-
tal Equipment, IBM, Microsoft, and
Tandem. His intellect and technical
achievements in database and transac-
tion processing are legendary. He won
the ACM A.M. Turing Award in 1998
for his description of the basic require-
ments for transactions as well as his
research in locking, concurrency, and
fault tolerance. He initiated the use of
performance benchmarks for a wide
variety of transaction environments.
And in recent years he stimulated the
creation of massive distributed scien-
tific databases that are reshaping the
fields of astronomy and oceanogra-
phy, and are laying the groundwork for
eScience, a new method of research.

Even more impressive than his pro-
fessional achievements is the fact that
hundreds of Gray’s colleagues consid-
ered themselves to his best friend, so
genuine and deep was his interest in
each of them. Accordingly, the tribute’s
audience included graduate students
and new employees, astronomers and
geologists, department chairs and
CEOs, and several generations of com-
puter scientists and database experts
from academia and industry. A handful
of attendees traveled from as far away
as Europe and Asia solely for the event.

Gray entered the University of Cali-
fornia at Berkeley in 1961, initially ma-
joring in physics. He briefly considered
philosophy, then switched to mathe-
matics before settling on the emerging
field of computer science. His thesis
advisor, Michael Harrison, urged his

students to write down all that they
learned. Gray took this advice to heart,
developing the habit of writing up—
and distributing—reports of meetings,
trips, and conferences. He soon estab-
lished two rules for authoring techni-
cal papers: “He who types the paper
is first author” and “It’s easier to add
a co-author than deal with someone’s
hurt feelings.” At times, colleagues
were unaware of their participation. “I
co-authored [one paper] while I wasn’t
looking,” quipped Microsoft’s Pat Hel-
land, who joined Tandem in the early
1980s to work with Gray.

“Jim was not dangerous to his col-
leagues, as some scientists can be,”
recalled Mike Blasgen, who was one of
Gray’s managers at IBM in the 1970s.
“He would not take credit for your
ideas. Also, he always had an interest-
ing or provocative insight, so people
wanted to be his friend.”

In time, Gray developed a large pro-
fessional network with which he shared
information, both inside and outside
of the company he was working for. At
Tandem, for example, “he was a great
pollinator,” productively sharing ideas
between departments, said Wendy Bar-
tlett, now with Hewlett-Packard.

When visiting companies and uni-
versities or attending conferences, Gray
often sought out students, interns, and
young professionals, listening intently

to their research and subtly offering
suggestions. “He would not say ‘This
is what you must do,’ ” said Alex Szalay
of Johns Hopkins University, who had
worked with Gray on the Sloan Digital
Sky Survey. “He would gently light the
way, so that people would find the path
themselves.”

Although Gray’s closest colleagues
knew firsthand the many hours he typi-
cally spent working, many attendees at
the tribute were incredulous that any
one person could accomplish all that
Gray had.

His wife, Donna Lee Carnes, offered
some clues. “I don’t think I ever saw
Jim procrastinate,” she said. “Writing
also came very easily to him. You can
get a lot done when you’re focused and
fast. He could also read and absorb
knowledge very quickly. ”

Carnes said her husband had an as-
tounding amount of energy despite the
fact that he often slept only five hours
a night during the week. “If he was
looking for a bug in his program or a
product was nearly ready to ship, noth-
ing came between Jim and his work,”
Carnes added. “He wouldn’t even stop
to eat. Just coffee, sometimes three
pots.”

However, after the bug was found
and fixed or the product shipped, Gray
would enjoy good food, and often sail-
ing, with his wife and friends. When
John Nauman, who hired Gray at Tan-
dem, asked the tribute audience how
many had gone sailing with Gray, about
100 hands shot into the air.

In announcing his departure from
IBM Research in 1980, Gray wrote that
he aspired to be “a scholar of computer
science,” noting that all fields of schol-
arship emphasized research, teaching,
and service. The Jim Gray Tribute dem-
onstrated that he had clearly achieved
that—and much, much more.�

Michael Ross writes about science and technology from
San Jose, CA.

news

photograph

 by

 richard

 morgenstein

1_CACM_V51.8.indb 18 7/21/08 10:12:41 AM

V
viewpoints

august 2008 | vol. 51 | no. 8 | communications of the acm 19

doi:10.1145/1378704.1378711	 Peter J. Denning

The Profession of IT
Voices of Computing
The choir of engineers, mathematicians, and scientists who make up the bulk of
our field better represents computing than the solo voice of the programmer.

A
lthough enrollments

in computing degree pro-
grams appear to have bot-
tomed out at approximate-
ly half of their 2001 level,

there is no reassuring upward trend.
The industry need for computing pro-
fessionals will continue to exceed the
pipeline by at least one-third for some
time to come. Why do low enrollment
rates persist in such a good market?

Several key factors influencing low
enrollment rates are connected to the
myth “CS=programming”—tales of
dwindling employment opportuni-
ties, negative images of computing
work, and inflexible curricula.2,3 Revers-
ing this myth can result in considerable
progress.

Thirty-five years ago, Edsger Dijkstra
reacted to his generation’s version of
this myth by declaring himself proud
to be a programmer.5 Many followed
his lead. ACM has been proud: half the
A.M. Turing Award winners are in pro-
gramming, algorithms, and complexi-
ty.3 But our internal self-confidence did
not dispel the external myth.

Twenty years ago, the ACM and
IEEE warned that the myth could be-
come damaging.4 Today, the word

“programming” itself generates mis-
understandings. Internally, it is broad:
design, development, testing, debug-
ging, documentation, maintenance of
software, analysis, and complexity of
algorithms. Externally, it is narrow: the
U.S. Bureau of Labor Statistics defines
“programmer” to mean “coder.” Often
without realizing it, insiders and out-
siders interpret the same words with
entirely different meanings. When in-
siders broadened to object-oriented
programming, outsiders thought we
narrowed to the Java language.

Ten years ago, we tried another tack.
We broadened our view of comput-
ing to include information technology
(IT),1 and we defined what it means
to be fluent in IT.7,8 These works were
embraced in high schools and helped
generate enrollments in IT but not CS.
They have not dispelled the myth.

Today, Clay Shirky notes a trend that
may help explain the durability of the
myth.6 The general public is now con-
fronted with an amazing array of power-
ful tools for the common computational
tasks. Many believe they can accomplish
what they need as amateurs. Only a few
professionals are needed to program all
these tools for the many. There is no spe-

cial attraction to being a professional.
How can we communicate the rich-

ness of our field and dispel the myth?
What if we learn to speak in the voices
of the many kinds of computing pro-
fessionals? The programmer is a solo
voice. The whole, loud choir could
dispel the perception that the bulk of
computing is about programming. The
choir might also help make profession-
alism more attractive by showing our
many critical specialties that cannot
be done by amateurs.

To speak in a professional’s voice, I
immersed myself in the professional’s
practice. I spoke of war stories, experi-
ences, ambitions, fears, and everyday
things. I sang the joys (and sorrows) of
being a professional.

Education philosophers such as
John Dewey maintained there are two
ways of learning, which can be called
“learning-about” and “learning-to-be.”
Learning-about means to acquire a de-
scription; learning-to-be means to ac-
quire the practice. Learning about car-
pentry, music, or programming is not
the same as being a carpenter, a musi-
cian, or a programmer. Programming
seems to blur this distinction because
programmers build descriptions of al-

1_CACM_V51.8.indb 19 7/21/08 10:12:42 AM

20 communications of the acm | AUGUST 2008 | vol. 51 | no. 8

viewpoints

gorithms. Programming predisposes
us to the “about” side of computing.
We are more used to speaking about
the principles and ideas of our field
than about how individuals experience
them. Descriptions of computational
methods can be dull and lifeless com-
pared to war stories from professionals
who design and use them.

What follows are six voices of com-
puting professionals. I added a seventh,
non-professional voice, which I call the
Last Voice. It is last not only because it
appears at the end of this column, but
because it may be the last voice con-
sulted by young people before deciding
against computing as a major.

All these voices are already within
you. Except the last, just let them speak.

The Programmer
I love programming. I know a lot of lan-
guages and can make computers really
hum. I do my best work when no one
bosses me around—that’s when I am at
my most creative. You know, program-
ming is the most fundamental part of
computer science. No computer can
run without a program. I enable every-
thing else in computing. I have written
some history-changing programs. Just
think about the software in the Apollo
missions—I helped get us to the moon.
Think of all those multiplayer virtual
reality games—I give a lot of people
immense pleasure learning important
skills and shooting each other up. I get
you safely across the country by helping
the air traffic controllers. I get you your
food by helping to route the trains and
trucks. I gave you your word processor,
spreadsheet, PowerPoint applications,
and even a few friendly hearted Easter

Eggs. I attacked the Internet with a
worm in 1988 and then helped stop the
worm and catch the perp. I do a lot of
things for you. I know that sometimes
you look down at programmers and
sometimes you think of us as the com-
puter science equivalent of hamburg-
er-flippers. But we deserve your respect
and admiration.

The User
I love using computers. I’m not a com-
puter scientist, and I don’t want to be.
I just love using the stuff computer sci-
entists make. Awesome! I get some re-
ally spiffy things done with your tools
even though I am an amateur. Most of
the time, your stuff does not bankrupt
me, waste my time, or kill me. My cell
phone, instant messages, Web, Inter-
net, Google Earth, Microsoft Office,
iTunes, iPod, and the ACM Digital Li-
brary. It just goes on and on. I am so
grateful to have all this computer stuff.
My wants and needs determine what
computer scientists can sell, so they of-
ten listen to me very carefully. Without

those wants and needs, in fact, I’d be a
nobody.

The Computational Thinker
I love problem solving. Not just any old
problem solving, but problem solving
using algorithms. I love finding ways to
apply algorithms I know to solve prob-
lems that folks didn’t realize could be
solved. It’s such a powerful way to solve
problems. All you have to do is think
algorithms and—poof!—solutions ap-
pear. Sometimes I implement those so-
lutions myself, and sometimes I let my
friends the programmers do that. I’ve
helped biologists search DNA databas-
es, meteorologists forecast weather,
petrologists find oil, oceanographers
track ocean currents, linguists teach
languages, and tax collectors insert
spreadsheet algorithms into the law.
Every so often somebody asks if I am a
computational scientist. I answer no—
while I think about how algorithms can
help scientists, I don’t do their science
for them. I’m all about thought. One of
my greatest successes is to get politi-
cians to think that through their laws
they are programmers of national so-
cial systems. I’ve got economists think-
ing they can program the economy with
the right policies. Perhaps my greatest
triumph is to get people everywhere to
think their brains are computers and
that everything they do and say is sim-
ply an output.

The Mathematician
I love mathematics. I know mathemat-
ics sounds pretty abstract to a lot of
people. It’s not for everyone. We’ve
long been recognized as the language
of physics. Now we’ve got the addition-

We are more used
to speaking about
the principles and
ideas of our field than
about how individuals
experience them.

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 J
O

E
L

 C
A

S
T

I
L

L
O

1_CACM_V51.8.indb 20 7/21/08 10:12:42 AM

viewpoints

august 2008 | vol. 51 | no. 8 | communications of the acm 21

al recognition of being the language
for computation. We help people find
representations for real-world things
and then prove things about their rep-
resentations. In computer science we
have invented new mathematics for an-
alyzing algorithms. We explained why a
binary search is so much faster than a
linear search, and why a bubble sort is
so much slower than a merge sort. We
figured out how to parse programming
languages efficiently, making the jobs
of programmers so much easier. Our
tools help programmers prove that
their complicated programs actually
work, meaning that users can sleep
at night knowing that their airplanes
won’t crash and their business soft-
ware won’t ruin them. Our biggest tri-
umph has been to show that over 3,000
common problems in science, engi-
neering, and business are so difficult
to solve that even the fastest supercom-
puters would take centuries on simple
versions. We call this the P=NP issue.
Whoever proves that P=NP would win
all the math prizes and the ACM Turing
Award. And no, proving P=NP does not
boil down to proving N=1.

The Engineer
I love building things. My math friends
like picturing things in their minds; I
like holding things in my hands and
putting them through their paces. You
tell me what you want, what budget I
have, and how much time I have, and
I’ll find a way to build a computing
system that does it. I don’t need every-
thing to be figured out mathematically
before I can start. I built your operat-
ing systems, your networks, your TCP
and IP, your air traffic control system,

your banking systems, your game en-
gines, and your search engines. I built
your memory chips, your CPUs, your
stacks, your graphics displays, your
warehouse computers, your BlackBer-
ries, and your iPods. I know how to
make software and hardware artifacts
reliable, dependable, usable, safe,
and secure. I love the smells of solder,
motherboards, routers, power sup-
plies, and musty cable racks. Some-
times I even think I can smell rotting
bugs in software. I’m so good at doing
things faster, cheaper, and better that
I keep on giving you Moore’s Law year
after year.

The Scientist
I love discovering new things about
nature. Recently my friends in biology
have discovered that DNA transcrip-
tion is a natural information process.
What an amazing discovery. Compu-
tation is not an artifact of a computer,
it’s part of life! My friends in physics,
economics, materials, chemistry, me-
teorology, oceanography, and cosmol-
ogy are all making similar discoveries.
What a great time for collaborations
on new discoveries about those natural
processes. But that’s not all I do. I dis-
covered scientific principles for com-
puting. My scientific analysis guided
the design of the first electronic com-
puters. My principle of locality helped
us achieve high performance through
caching in everything from chips to
the Internet. I discovered fast algo-
rithms for throughput and response
time of large systems and networks,
launching the performance evaluation
industry. I brought the experimental
method to architecture, program per-

formance improvement, large system
design, mathematical software, mod-
eling, and simulation. My greatest tri-
umph in the CS realm has been with
artificial intelligence. Now that they
have accepted my methods, they are
making remarkable advances with ma-
chines that mimic human intelligent
behavior.

The Last Voice: The Catalog
Students begin by learning the use of
computer programming as a problem-
solving tool. Topics in procedural pro-
gramming include expressions, control
structures, simple data types, input-
output, graphical interfaces, testing,
debugging, and programming environ-
ments. The student then advances to
problem solving with object-oriented
programming. Topics include classes,
inheritance, packages, collections, ex-
ceptions, polymorphism, and recursive
thinking. A good deal of time will be
spent on programming projects.	

References
1.	 Denning, P. Who are we? Commun. ACM 44, 2 (Feb.

2001), 15–19.
2. 	 Denning, P. The field of programmers myth. Commun.

ACM 47, 7 (July 2004), 15–20.
3. 	 Denning, P. Recentering computer science. Commun.

ACM 48, 11 (Nov. 2005), 15–19.
4. 	 Denning, P. et al. Computing as a discipline. Commun.

ACM 32, 1 (Jan. 1989), 9–23.
5. 	 Dijkstra, E. The humble programmer. Commun. ACM

15, 10 (Oct. 1972), 859–866.
6. 	 Shirky, C. Here Comes Everybody. Penguin, 2008.
7. 	 Snyder, L. Fluency with Information Technology.

Addison-Wesley, 2002.
8. 	 Wing, J. Computational thinking. Commun. ACM 49, 3

(Mar. 2006), 33–35.

Peter J. Denning (pjd@nps.edu) is the director of the
Cebrowski Institute for Information Innovation and
Superiority at the Naval Postgraduate School in Monterey,
CA, and is a past president of ACM.

© 2008 ACM 0001-0782/08/0800 $5.00

1_CACM_V51.8.indb 21 7/21/08 10:12:43 AM

mailto:pjd@nps.edu

22 communications of the acm | august 2008 | vol. 51 | no. 8

V
viewpoints

doi:10.1145/1378704.1378712 	 Alex E. Bell

From the Front Lines
Software Development Amidst
the Whiz of Silver Bullets
Software development organizations must accept the inevitability of silver-bullet
solution proposals and devise strategies to defend against them.

T
he software engineering
landscape remains pock-
marked with individuals
who continue to disregard
Fred Brooks’ sage admo-

nitionsa asserting that silver bullets
should not be relied upon to solve all
woes. The desperate, the pressured,
and the ignorant are among those
who defiantly worship the silver-bullet
gods, pleading for a continuum of the
silver-fueled delusions keeping many
of their projects alive. It is difficult to
be overly critical of those who have suc-
cumbed to silver bullets, however, be-
cause the software engineering space
is being strafed with them as never be-
fore. In fact, even the most savvy must
occasionally liken themselves to the in-
famous Neo in the film The Matrix and
gyrate wildly to avoid being stricken by
the many silver bullets whizzing by.

Veterans of the software industry
will attest to having seen a number of
silver bullets come and go during their
careers. The argentumb projectiles of
yesteryear, such as OO, high-level soft-
ware languages, and integrated devel-
opment environments, are now obvi-
ous to have been only low-grade alloys
compared to the fine silver being dis-
charged today. Some of today’s silver
bullets have demonstrated an unparal-
leled ability to provide implicit value to

a	 Brooks, F.P., Jr. No silver bullet, essence and
accidents of software engineering. Computer
Magazine (Apr. 1987).

b	 The Latin word for silver and the basis of the
periodic symbol: Ag.

artifacts just because they were created
using a particular technology while
others have demonstrated the power
to shift the responsibilities associated
with long-established engineering dis-
ciplines to other organizations. Only
the passage of time will reveal the new
and amazing capabilities of future sil-
ver bullets that have yet to whiz by.

Getting back to today’s silver bul-
lets, though, I was recently reviewing
a software design package that cor-

rectly paid much-needed attention to
the objective of supporting configu-
rable runtime behavior. As opposed to
simply documenting how the design
would accommodate this desired con-
figurability, however, the design de-
scription also included a compelling
assertion a number of times: “The
configuration data will be stored in
XML.” What on earth did this have to
do with anything? Should I have been
relieved that some form of irregular I

L
L

U
S

T
R

A
T

I
O

N
 B

Y
 J

O
H

N
 H

E
R

S
E

Y

1_CACM_V51.8.indb 22 7/21/08 10:12:47 AM

V
viewpoints

august 2008 | vol. 51 | no. 8 | communications of the acm 23

create a new one that simply returns
numbers that violate the Goldbach
Conjecture?d Considerations for strict
temporal determinism, sporadic net-
work availability, or the fact that a Web
service’s signature does not support
one’s workflow needs are unimport-
ant amidst the whiz of silver bullets.

Although vulnerability to error and
productivity impacts of working direct-
ly with XML inspired the innovation of
technologies such as WSDL with which
to improve the usability of Web ser-
vices, some developers feel that their
usage short-circuits the unparalleled
maintainability and flexibility proper-
ties offered by method signatures as
shown in Figure 2.

Why should anyone subject them-
selves to the brittleness of specialized
methods when a single method can ac-
commodate currently required behav-
iors and any that may only be known
in the future? Additional benefits of of-
fering methods with DoAnything()
signatures include freeing designers
from the burdens of time-consuming
negotiation with prospective service
users and not having to be bothered
with recompilation issues that typical-
ly accompany usage of more strongly
typed interfaces. It would serve as a
great justice if the providers of meth-
ods such as DoAnything() also as-
sumed their associated liabilities. The
unfortunate reality, however, is that
the method’s users typically have to

d	 A long-unsolved math problem asserting that
all even positive integers >=4 can be expressed
as the sum of two primes.

Egyptian hieroglyph had not instead
been chosen as the representation
choice for this configuration data?

Still reeling from the potentially
powerful implications of what I had
read, I began to wonder if any tex-
tual content expressed in XML would
somehow lead people to believe it to
be of high pedigree, divine origin, and
having some implicit warranty of ac-
curacy or correctness. I decided to test
this premise and composed an email
message to my 12-year-old daughter
hoping to sway her on an opinion she
had been stubbornly adhering to in the
past—see Figure 1. I was hopeful that
if she were to read my message within
the context of XML, our long-standing
dispute would finally get some much-
needed resolution. Unfortunately,
things did not work out as I had hoped,
and my ploy only served to further re-
inforce her unyielding position on my
standing among other fathers.

XML is not the only silver bullet in
the software engineering toolkit to
which value seems to be implicit by
mere usage. The fact that a diagram
has been created using UML leads
some to believe that the associated
design is guaranteed to be implement-
able and ready for development even if
the laws of physics were ignored as con-
straints. Had my daughter not already
convincingly dashed the notion of im-
plicit technological sanctity, I certainly
would be tempted to create a yoo-melc
sequence diagram for my wife detail-
ing the steps I plan to take someday to
be more sensitive, a better listener, and
less of a slob. If she were to see my plan
captured in UML, perhaps she would
be more inclined to believe the sincer-
ity of my intentions?

No discourse on silver bulletry
would be complete without giving
due recognition to a current favorite:
Web services. “That’s just a Web ser-
vice…” is a phrase often spoken so
convincingly that it is hard to believe
that there are not Web services already
available with which to accommodate
all known functional needs. After all,
there are already Web services avail-
able that provide the stock price for
any ticker symbol or the ZIP code for
any city, how difficult could it be to

c	 Spoken in a drawl, a euphemism for insane
usage of the UML.

endure the associated liabilities in the
form of increased testing and integra-
tion costs as the result of misusage be-
ing virtually undetectable at compile
time. In response to suggestions that
a DoAnything() method should be
redesigned to take advantage of strong
typing, it is not uncommon to hear its
designers assert something of the sort,
“An XMLCommand is a strong type,
let’s see you try to use an integer argu-
ment in its place!”.

The challenges of software develop-
ment are difficult enough without also
having to endure the ricochet of silver
bullets strafing the organizations re-
sponsible for engineering the products
that software development itself relies
upon. For example, some systems en-
gineers have discovered that usage of
UML greatly simplifies efforts that their
predecessors unnecessarily struggled
with in pre-UML days. As opposed to
having to devote significant efforts to
the consideration of constraints such as
network bandwidth, processor speeds,
and the speed of light when developing
system architectures, such annoyances
are now overcome by creating stacks of
UML diagrams that abstract these de-
tails away as uninteresting implemen-
tation issues. I wonder if there is any
way for us software guys to further kick
this problem down the road by con-
vincing testers that their jobs would be
much easier if they validated UML mod-
els instead of software?

One of my favorite television com-
mercials of all time helps characterize
the situation. While sitting in a police
station, a crime victim is providing a

Figure 1: Sample message text expressed in XML.

<message _ from _ Dad>

	 <addressee> Alanah </addressee>

	 <message> Hi Sweetie, I am not the weirdest Dad of all the kids
	 in your whole school.

	 Love, Dad.
	 </message>

</message _ from _ Dad>

Figure 2: Sample method signature.

XMLResult DoAnything (XMLCommand Arguments)
{
	
}

1_CACM_V51.8.indb 23 7/21/08 10:12:47 AM

24 communications of the acm | august 2008 | vol. 51 | no. 8

viewpoints

detailed description of his alleged per-
petrator to a police artist who appears
to be diligently sketching a corre-
sponding likeness on an unseen tablet
of paper. After some time, the police
artist believes that the likeness he has
captured is sufficiently ready for the
victim to assess its accuracy. Amidst
a rising crescendo of expectation, the
artist reveals his drawing to the vic-
tim. Shockingly, the drawing contains
only a human stick figure that would
be considered primitive by even kin-
dergarten standards. All of the criti-
cal detail is missing from the sketch
upon which to base future work, just
like when CreateWorldPeace or
IncreaseTheSpeedOfLight use
cases are delivered to software engineer-
ing organizations for implementation.
Abstraction has a whole new meaning
amidst the whiz of silver bullets!

Silver bullets of the past and present
share a number of common properties
that will also likely apply to the bullets
only now forming in the mental found-
ries of the fantasy minded. They defy
the laws of physics, they are not bound-

ed by cost, they are not constrained by
time, and they seem to rob otherwise
intelligent people of their common
sense. Their usage is typically accom-
panied by postponing engineering ef-
forts to a time later in the product life
cycle, shirking responsibilities to other
organizations, and blatant disregard
for reality. And probably the most con-
sistent property associated with silver
bullets is that the people who promote
or endorse them have generally never
been software developers nor have they
directly contributed to the delivery of a
successful program. With Fred Brooks’
well-known admonitions aside, it is
startling that the failure of past silver
bullets is insufficient to make people
very wary of them today.

Barring future events similar to
the Hunt brothers’ failed attempt to
corner the silver market in 1980, sil-
ver futures appear to be bullish. The
supply of fine-grade silver required to
manufacture the next generation of sil-
ver bullets is projected to meet future
demand so the sound of their whiz will
not subside anytime soon. As a result,

software organizations must accept
that silver bullets will be a part of their
future and should prepare strategies to
defend against them rather than to as-
sume their demise. The only plausible
defense strategy against silver bullets
that I have been able to think of is to
assemble an engineering staff that
has a natural affinity for eluding these
projectiles and one with an innate ter-
ror of them. Assembling such a staff,
however, would involve an undertak-
ing that is currently quite unpopular:
outsourcing. As opposed to China or
India, however, my outsourcing plan
would focus on a small town in Roma-
nia. For it is only in Transylvania where
one can assemble a team of those cer-
tain someones having an innate fear of
silver bullets…werewolves. 	

Alex E. Bell (alex.e.bell@boeing.com) is a software
architect with The Boeing Company and author of “Death
by UML Fever.”

A previous version of this material appeared in the June
2006 issue of ACM Queue.

© 2008 ACM 0001-0782/08/0800 $5.00

ACM Journal on
EmergingTechnologies
in Computing Systems

� � � � �

This quarterly publication provides comprehensive coverage of inno-
vativework in the specification, design analysis, simulation, verification,
testing, and evaluation of computing systems constructed out of
emerging technologies and advanced semiconductors. Topics include,
but are not limited to: Logic Primitive Design and Synthesis; System-
Level Specification, Design and Synthesis; Software-Level Specification,
Design and Synthesis; and Mixed-Technology Systems.

� � � � �

http://jetc.acm.org/

JETC_half_page_4C:Layout 1 6/26/08 3:44 PM Page 1

1_CACM_V51.8.indb 24 7/21/08 10:12:48 AM

mailto:alex.e.bell@boeing.com
http://jetc.acm.org/

V
viewpoints

august 2008 | vol. 51 | no. 8 | communications of the acm 25

doi:10.1145/1378704.1378713	 Mark Guzdial

Education
Paving the Way for
Computational Thinking
Drawing on methods from diverse disciplines—including computer science,
education, sociology, and psychology—to improve computing education.

T
eaching everyone on cam-
pus to program is a noble
goal, put forth by Alan Per-
lis in 1962. Perlis, who was
awarded the first ACM A.M.

Turing Award, said that everyone
should learn to program as part of a
liberal education. He argued that pro-
gramming was an exploration of pro-
cess, a topic that concerned everyone,
and that the automated execution of
process by machine was going to
change everything. He saw program-
ming as a step toward understand-
ing a “theory of computation,” which
would lead to students recasting their
understanding of a wide variety of top-
ics (such as calculus and economics)
in terms of computation.4

Today, we know that Perlis was pre-
scient—the automated execution of
process is changing how profession-
als of all disciplines think about their
work. As Jeanette Wing has pointed
out, the metaphors and structures of
computing are influencing all areas of
science and engineering.6 Computing
professionals and educators have the
responsibility to make computation
available to thinkers of all disciplines.

Part of that responsibility will be
met through formal education. While
a professional in another field may be
able to use an application with little
training, the metaphors and ways of
thinking about computing must be
explicitly taught. To teach computa-
tional thinking to everyone on campus

may require different approaches than
those we use when we can assume our
students want to become computing
professionals. Developing approaches
that will work for all students will re-
quire us to answer difficult questions
like what do non-computing students
understand about computing, what

will they find challenging, what kinds
of tools can make computational think-
ing most easily accessible to them, and
how should we organize and structure
our classes to make computing acces-
sible to the broad range of students.

Through a few brief examples, I
will show in this column how these

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 C
H

R
I

S
T

O
P

H
E

R
 S

I
L

A
S

 N
E

A
L

1_CACM_V51.8.indb 25 7/21/08 10:12:49 AM

26 communications of the acm | august 2008 | vol. 51 | no. 8

viewpoints

questions are being addressed by re-
searchers in the field of computing
education research. Researchers in
computing education draw on both
computer science and education—
neither field alone is sufficient. While
we computer scientists understand
computing from a practical, rational,
and theoretical perspective, ques-
tions about education are inherently
human questions. Humans are often
impractical, irrational, and difficult
to make predictions or proofs about.
Computing education researchers are
using experimentation and design to
demonstrate we can address impor-
tant questions about how humans
come to understand computing, and
how we can make it better. Research
in computing education will pave the
way to make “computational think-
ing” a 21st century literacy that we can
share across the campus.

Understanding Computing
Before Programming
A research theme in the early 1980s
was how to design programming lan-
guages so they would be more like nat-
ural languages. An obvious question,
then, is how people specify processes
in natural language. Lance A. Miller
asked his study participants to specify
file manipulation tasks for another
person. A task might be “Make a list of
employees who have a job title of pho-
tographer and who are rated superior,
given these paper files.” Miller studied
the language used in his participants’
descriptions.2

One of Miller’s surprises was how
rarely his participants explicitly speci-
fied any kind of control flow. There
was almost no explicit looping in any
of their task descriptions. While some
tested conditions (“IF”), none ever
specified an “ELSE.” He found this so

surprising that he gave a second set of
participants an example task descrip-
tion, without looping and no ELSE
specification. The second set of par-
ticipants easily executed the task de-
scription. When asked what they were
doing if the condition was not met, or
if data was exhausted, they replied (al-
most unanimously, Miller reports), “Of
course, you just check the next person,
or if there are no more, you just go on.”

Miller’s results predict some of the
challenges in learning to program—
challenges that are well-known to
teachers of introductory classes today.
While process descriptions by novices
tend not to specify what to do under
every condition, computers require
that specificity. Miller’s results suggest
what kinds of programming languages
might be easier for novices. Program-
ming languages like APL and MATLAB,
and programming tools for children
like Squeak’s eToys use implicit loop-
ing, as did the participants in Miller’s
studies.

Twenty years later, John Pane and
his colleagues at Carnegie Mellon Uni-
versity revisited Miller’s questions,
in new contexts.3 In one experiment,
Pane showed his subjects situations
and processes that occur in a Pacman
game, then asked how they would spec-
ify them. The subjects responded with
explanations like, “When Pacman gets
all the dots, he goes to the next level.”
Like Miller, Pane found that partici-
pants rarely used explicit looping and
always used one-sided conditionals.
Pane went further, to characterize the
style of programming that the partici-
pants used. He found that over half
of the participants’ task statements
were in the form of production rules,
as in the example. He also saw the use
of constraints and imperative state-
ments, but little evidence of object-ori-
ented thinking. Participants did talk
about accessing behaviors built into
an entity, but rarely from the perspec-
tive of that entity; instead, it was from
the perspective of the player or the
programmer. He found no evidence of
participants describing categories of
entities (defining classes), inheritance,
or polymorphism.

Pane’s results suggest that object-
oriented thinking is not “natural,” in
the sense of being characteristic of
novices’ task descriptions. Since ob-

Figure 1: Traditional conditional structure.

if (value < 10)
then value = value + 10;
else sum = sum + value;
end if

Figure 2: New conditional structure.

if (value < 10): value = value + 10;
not (value < 10): sum = sum + value;
end (value < 10)

www.acm.org/dl

ACM Digital Library

TheUltimateOnline
INFORMATIONTECHNOLOGY

Resource!

• NEW! Author Profile Pages
• Improved Search Capabilities
• Over 40 ACM publications, plus
conference proceedings
• 50+ years of archives
• Advanced searching capabilities
• Over 2 million pages of
downloadable text

Plus over one million
bibliographic citations are
available in the ACM Guide
to Computing Literature

To join ACM and/or subscribe to
the Digital Library, contact ACM:

Phone: 1.800.342.6626 (U.S. & Canada)
+1.212.626.0500 (Global)

Fax: +1.212.944.1318
Hours: 8:30 a.m.-4:30 p.m., EST
Email: acmhelp@acm.org

Join URL:www.acm.org/joinacm

Mail: ACMMember Services
General Post Office
PO Box 30777
NewYork, NY 10087-0777 USA

DL_one-third_page_4C:Layout 1 6/26/08 4:05 PM Page 1

1_CACM_V51.8.indb 26 7/21/08 10:12:49 AM

http://www.acm.org/dl
mailto:acmhelp@acm.org
http://www.acm.org/joinacm

viewpoints

august 2008 | vol. 51 | no. 8 | communications of the acm 27

jects are the foundation of most mod-
ern software today, his results point out
where we can expect to find challenges
in explaining objects to students. Both
Miller’s and Pane’s results encourage
us to think how we might design lan-
guages for novices that play to their
natural ways of thinking about specify-
ing computation, like the use of event-
based programming in MIT’s Scratch.

In the last four years, a multination-
al group of researchers has explored
“Commonsense Computing”: what
do our students know before we teach
them? Given a complex task, how do
people without programming knowl-
edge specify an algorithm for that task?
In one paper, Lewandowski et al.1 ex-
plore concurrency—in a complex task
of multiple box offices selling tickets
for a theater, how well do non-program-
ming students avoid selling the same
seat twice? The results showed that 97
solutions (69% of the total, drawn from
five institutions) were correct; only 31%
of the solutions (45% of the correct so-
lutions) were distributed, so teachers
of algorithms classes need not worry
about being put out of business. Non-
computing students do not naturally
come up with the elegant solutions
that computer scientists have devised.
However, these results suggest that
students can “naturally” think about
concurrency correctly. Problems with
implementing concurrent programs
might stem more from the challenges
in specifying those algorithms in cur-
rent programming languages, rather
than from the complexity of the algo-
rithms themselves.

Redesigning
Programming Languages
Both Pane’s and Miller’s results make
suggestions about the design of pro-
gramming languages if the goal is to
make computational ideas more acces-
sible to novices. Testing new forms of
programming languages was an area
of active exploration by Thomas R.G.
Green, Elliot Soloway, and others.

In one paper, Green and his col-
leagues explored alternatives to the
traditional conditional structure.5 A
typical structure might look like the
structure shown in Figure 1. They test-
ed a new structure where this would be
written as shown in Figure 2. This new
structure makes explicit the condition

for the execution of each clause of the
condition. Green and his colleagues
found that novices were able to cor-
rect mistakes using the second form 10
times faster than programs using the
first form.

Miller and Pane found that their
participants simply never used an else
clause. Instead, it seemed obvious (“of
course”) what to do when the tested
condition wasn’t true. Miller’s and
Pane’s subjects were doing something
different than Green’s. Writing a task
description is different than reading
and fixing a task description. Green’s
results complement Miller’s and
Pane’s. Novices do not naturally write
the else clause—they think it’s obvi-
ous what to do if the test fails. How-
ever, conditionals in programs are not
always obvious, and it’s easier for the
novices trying to read those programs
if the conditions for each clause’s ex-
ecution are explicit.

Paving the Way for
“Computational Thinking” For All
To make “computational thinking” ac-
cessible to students across the entire
campus, we need to understand how
to teach computing better. Computing
education researchers explore how hu-
mans come to understand computing,
and how to improve that understand-
ing. Computing education research is a
close cousin to human-computer inter-
action, since HCI researchers explore
how humans interact with computing
and how to improve that interaction.
Computing education researchers

have found a home in the International
Computing Education Research (ICER)
workshop (whose fourth annual meet-
ing will be held this September in Syd-
ney, Australia; see www.newcastle.edu.
au/conference/icer2008/) and in jour-
nals like Computer Science Education
and Journal on Educational Resources
in Computing.

Computing education research
draws on a variety of disciplines to
make computing education better. So-
cial scientists like Jane Margolis, Lecia
Barker, and Carsten Schulte help us to
understand how students experience
our classes (which often differs from
what we might expect as teachers)
and how we can change our classes to
make them more successful for all stu-
dents. Computing education research-
ers draw on methods from education,
sociology, and psychology in order to
measure learning about computing
and understand the factors that influ-
ence that learning. By making comput-
ing education better, we can broaden
access to computing ideas and ca-
pabilities. When we can teach every
student programming and the theory
of computation in a way that makes
sense to them for their discipline, we
will see how ubiquitous understanding
of computing will advance the entire
academy, just as Perlis predicted over
45 years ago.	

References
1.	 Lewandowski, G. et al. Commonsense computing

(episode 3): Concurrency and concert tickets. In
Proceedings of theThird International Workshop on
Computing Education Research (2007), 133–144.

2.	 Miller, L.A. Natural language programming: Styles,
strategies, and contrasts. IBM Systems Journal 29, 2
(1981), 184–215.

3.	 Pane, J.F., Ratanamahatana, C., and Myers, B.A.
Studying the language and structure in non-
programmers’ solutions to programming problems.
International Journal of Human-Computer Studies 54
(2001), 237–264.

4.	 Perlis, A. The computer in the university. In M.
Greenberger, Ed., Computers and the World of the
Future, MIT Press, Cambridge, MA, 1962, 180–219.

5.	 Sime, M.E., Arblaster, A.T., and Green, T.R.G.
Structuring the programmer’s task. Journal of
Occupational Psychology 50 (1977), 205–216.

6.	 Wing, J. Computational thinking. Commun. ACM 49,
3 (Mar. 2006), 33–35.

Mark Guzdial (guzdial@cc.gatech.edu) is a professor
in the College of Computing at Georgia Institute of
Technology in Atlanta, GA.

The Communications “Education” column will feature
commentary on education issues, presenting research
results and opinions that inform how the challenges of
computing education can be best addressed.

© 2008 ACM 0001-0782/08/0800 $5.00

Research in
computing
education will pave
the way to make
“computational
thinking” a 21st
century literacy that
we can share across
the campus.

1_CACM_V51.8.indb 27 7/21/08 10:12:49 AM

mailto:guzdial@cc.gatech.edu
http://www.newcastle.edu.au/conference/icer2008/
http://www.newcastle.edu.au/conference/icer2008/

V
viewpoints

28 communications of the acm | august 2008 | vol. 51 | no. 8

doi:10.1145/1378704.1378714 	 Ed Lazowska

H
ow can we work together to
establish, articulate, and
pursue compelling visions
for our field—visions that
will shape the intellectual

future of the field, that will catalyze
research investment and public sup-
port, and that will attract the best and
brightest minds of a new generation?

The National Science Foundation
asked the Computing Research Asso-
ciation to create the Computing Com-
munity Consortium (CCC) to address
this challenge. The mechanics of the
CCC have been described elsewhere;5
in this column, I focus on the sub-
stance.

Computing has Made
Extraordinary Progress
William Shockley, Walter Brattain,
and John Bardeen invented the tran-
sistor at Bell Laboratories in 1947, just
over 60 years ago. Jack Kilby at Texas
Instruments and Bob Noyce at Fairchild
Semiconductor demonstrated the in-
tegrated circuit only 50 years ago, in
1958. It was 1965—just a bit more than
40 years ago—when Gordon Moore
described what is now universally re-
ferred to as “Moore’s Law.”

Today, the computational power
of an early mainframe can be found
in an electronic greeting card, and
the computational power that guided
Apollo 11 to the moon is contained in
a Furby electronic toy. There are more
than one billion PCs, and nearly that

many Internet hosts.
It was only 10 years ago that Deep

Blue—a supercomputer by any defi-
nition—defeated world chess cham-
pion Garry Kasparov. Today, thanks
more to progress in software than to
progress in hardware, you can down-
load for your PC a chess engine with
a rating 10% higher than any human
player. Most of the “futurist scenar-
ios” described when Time magazine
featured the computer as “Machine of
the Year” 25 years ago have been real-
ized, including computer-controlled
tailoring using laser-scanning, robots
performing domestic chores, embed-
ded systems that people don’t realize
are computers at all.

Advances in computing are chang-
ing the way we live, work, learn, and
communicate. These advances are
driving advances in nearly all other
fields and are significantly influencing
the U.S. economy—not just through
the growth of the IT industry, but even
more importantly, through productiv-
ity growth across all sectors.

Research has
Laid the Foundation
Almost every aspect of computing that
is integral to our lives today can trace
its roots, at least in substantial part, to
federally sponsored research. In 1995,
the National Academies’ “Brooks-
Sutherland Report”2 traced the lin-
eage of a number of billion-dollar
sub-sectors of the computing indus-

try: timesharing, computer graphics,
networking (LANs and the Internet),
personal workstation computing, win-
dows and the graphical user interface,
RISC architectures, modern integrat-
ed circuit design, RAID storage, and
parallel computing. In each case, the
role of federally sponsored research
was clear.

The panel conducting this study (I
was one of the 12 members) lamented
our inability to identify new ideas that
might someday be comparably influ-
ential. But eight years later, the Na-
tional Academies did a reprise of the
study4 and noted entertainment tech-
nology, data mining, portable com-
munication, the Web, speech recogni-
tion, and broadband last mile as new
billion-dollar subsectors whose roots
could be traced, at least in substantial
part, to federally sponsored research.
(The figure on the next page shows
the approximate time frame from
concept to billion-dollar industry.)

While we may not be sure which
they are, there surely are technolo-
gies in our laboratories today that will
have comparable impact a decade
from now.

The Future is
Full of Opportunity
Several months ago, the National Acad-
emy of Engineering unveiled 14 “Grand
Challenges for Engineering” for the
21st century.3 The majority of these
“Grand Challenges” for all of engineer-

Viewpoint
Envisioning the Future
of Computing Research
Advances in computing have changed our lives—the Computing Community
Consortium aims to help the research community continue that lineage.

1_CACM_V51.8.indb 28 7/21/08 10:12:49 AM

V
viewpoints

august 2008 | vol. 51 | no. 8 | communications of the acm 29

ing have either substantial or prepon-
derant computer science content:

Secure cyberspace˲˲

Enhance virtual reality˲˲

�Advance health information ˲˲

systems
Advance personalized learning˲˲

Engineer better medicines˲˲

�Engineer the tools of scientific ˲˲

discovery
Reverse-engineer the brain˲˲

�Prevent nuclear terror (to a great ˲˲

extent a sensor network and data
mining problem)

These are, in every way, visions that
can shape the intellectual future of our
field, catalyze research investment and
public support, and attract the best
and brightest minds of a new genera-
tion. And there are many more such
visions:

Create the future of networking˲˲

�Empower the developing world ˲˲

through appropriate information
technology
�Design automobiles that don’t ˲˲

crash
�Build truly scalable computing ˲˲

systems
�Engineer advanced “robotic pros-˲˲

thetics” —the field of Neurobotics
�Instrument your body as thor-˲˲

oughly as your automobile
�Engineer biology (synthetic ˲˲

biology)
Achieve quantum computing˲˲

It is very difficult to imagine a field
with greater opportunity to change the
world.

The Role of the Computing
Community Consortium
The role of the Computing Community
Consortium is to help our field “put the
meat on the bones” of visions such as
these. For each of these visions—and
for others—we must work together to
build a research community, lay out a
research roadmap, and acquire mo-
mentum.

One way in which CCC is doing this
is to sponsor a series of workshops on
various topics: thus far, “big data com-
puting,” “cyber-physical systems,” vi-
sions for theoretical computer science,
the future of robotics, and network sci-
ence and engineering. CCC is actively
soliciting proposals for additional
workshops from members of the re-
search community.

The “tire tracks” diagram illustrates time from concept to billion-dollar industry.

RAID /disk servers

Relational databases

World Wide Web

Speech recognition

Broadband l in last mile

Portable communication

Parallel databases

Parallel computing

Data mining

The topics are ordered roughly by increasing date of $1 B industry.

Berkeley, Wisconsin

Berkeley

CMU, SRI, MIT

Stanford, UCLA

Berkeley, Purdue (CDMA)

Tokyo, Wisconsin, UCLA

Illiac 4, CMU, Caltech, HPC

Wisconsin, Stanford

CERN, Illinois (Mosaic)

University

IBM

Striping/Datamesh, Petal

Alta Vista

Bell, IBM, Dragon

Bellcore (Telcordia)

Linkabit, Hughes

IBM, ICL

IBM, Intel

IBM, Arbor

Industry R&D Products

Oracle, IBM, Sybase

many

Netscape, Yahoo, Google

Dragon, IBM

Amati, Alcatel, Broadcom

Qualcomm

ICL, Teradata, Tandem

CM-5, Teradata, Cray T3D

IRI, Arbor, Plato

$1 B market

1965 1970 1975 1980 1985 1990 1995 2005

1965 1970 1975 1980 1985 1990 1995 2005

computing

LANs

Graphical user interfaces

Workstations

Graphics

Timesharing

Internet

RISC processors

VLSI design

Client/server

Entertainment

Rings, Hubnet

Sketchpad, Utah

Lisp machine, Stanford

Engelbart / Rochester

CTSS, Multics / BSD

ARPANET, Aloha, Internet

Berkeley, Stanford

Berkeley, Caltech, MOSIS

Berkeley, CMU, CERN

Spacewar (MIT), Trek (Rochester)

Ethernet, Datakit, Autonet

GM/IBM, Xerox, Microsoft

Xerox Alto

Alto, Smalltalk

Unix

Pup

IBM 801

PARC, DEC, IBM

Atari, Nintendo, SGI, Pixar

LANs, switched Ethernet

E&S, SGI, ATI, Adobe

Xerox Star, Apollo, Sun

Star, Mac, Microsoft

SDS 940, 360/67, VMS

DECnet, TCP/IP

SUN, SGI, IBM, HP

many

Novell, EMC, Sun, Oracle

S
ource

:
N

ational

 R

esearch

 C

ouncil

.
A

ssessme

n

t
 of

 D

epartme

n

t
 of

 D

efe

n

se

 B
asic

 R

esearch

.

T
he

 N

ational

 A

cademies

 P
ress

,

W
ashington

,
D

.C
.,

 2
0

0
5

.

1_CACM_V51.8.indb 29 7/21/08 10:12:50 AM

30 communications of the acm | august 2008 | vol. 51 | no. 8

viewpoints

The participants in these work-
shops are primarily researchers. The
workshops also involve representatives
of funding agencies—critical to transi-
tioning research visions into funded
programs. Often they also involve in-
dustrial participants. A recent example
of success is CCC’s “Big Data Comput-
ing Study Group.” In late March 2008,
two workshops were held in Sunnyvale,
CA. The first was the “Hadoop Sum-
mit,” whose goal was to build a com-
munity of users of Hadoop, an open-
source version of Google’s MapReduce
system1 for distributing computations
across clusters of thousands of nodes.
The second was the “Data-Intensive
Scalable Computing Symposium,”
whose goal was to build a community
of researchers concerned with various
issues related to “big-data computing”
(slides, videos, and summaries are
linked from the CCC Web site; www.
cra.org/ccc/). Both of these communi-
ty-building exercises were successful.
And, as a result of preliminary work
done by the core group of organizers
of this effort, Google, IBM, and Ya-

hoo! have made large-scale clusters
available to the academic community
for education and research, and the
National Science Foundation has an-
nounced its CluE (Cluster Exploratory)
research initiative. There is no magic
here—it takes dedicated individuals to
make things happen. But CCC can be
an enabler.

A number of other CCC activities are
described on CCC’s Web site, which
includes descriptions of various grand
challenge problems and a blog devoted
to discussions of research visions for
the field. More broadly, CCC is work-
ing along with other organizations to
“get the word out” regarding our field.
I encourage you to become engaged.
Participate in the CCC research visions
blog (www.cccblog.org/). Join with col-
leagues to propose a workshop to chart
a compelling vision for future of your
subfield.

Computer science has accom-
plished so much, and there is so much
additional exciting work to do. The op-
portunities are truly extraordinary. It’s
up to us to seize these opportunities.	

References
1.	 Dean, J. and Ghemawat, S. MapReduce: Simplified

data processing on large clusters. In Proceedings of
the Sixth Symposium on Operating System Design and
Implementation (OSDI ’04), (San Francisco, CA, Dec.
2004); labs.google.com/papers/mapreduce.html.

2.	 Evolving the High Performance Computing and
Communications Initiative to Support the Nation’s
Information Infrastructure. Computer Science
and Telecommunications Board, National Research
Council, 1995; www7.national-academies.org/cstb/
pub_hpcci.html.

3.	 Grand Challenges for Engineering. National Academy
of Engineering; www.engineeringchallenges.org.

4.	 Innovation in Information Technology. Computer
Science and Telecommunications Board, National
Research Council, 2003; www7.national-academies.
org/cstb/pub_itinnovation.html.

5.	 The Computing Community Consortium: Who,
what, when, where, why, and how. Computing
Research News 20, 1 (Jan. 2008); www.cra.org/CRN/
issues/0801.pdf.

Ed Lazowska (lazowska@cs.washington.edu) is the Bill &
Melinda Gates Chair in Computer Science & Engineering
at the University of Washington and the chair of the
Computing Community Consortium.

© 2008 ACM 0001-0782/08/0800 $5.00

ACMTransactions on
Internet Technology

� � � � �

This quarterly publication encompasses many disciplines in
computing—including computer software engineering, mid-
dleware, database management, security, knowledge discovery
and data mining, networking and distributed systems,
communications, and performance and scalability—all under
one roof. TOIT brings a sharper focus on the results and roles
of the individual disciplines and the relationship among
them. Extensive multi-disciplinary coverage is placed on the
new application technologies, social issues, and public policies
shaping Internet development.

� � � � �

http://toit.acm.org/

TOIt_half_page_4C_marks.pdf:Layout 1 6/26/08 3:28 PM Page 1

1_CACM_V51.8.indb 30 7/21/08 10:12:50 AM

http://www.cccblog.org/
http://labs.google.com/papers/mapreduce.html
http://www.engineeringchallenges.org
mailto:lazowska@cs.washington.edu
http://toit.acm.org/
http://www.cra.org/ccc/
http://www.cra.org/ccc/
http://www7.national-academies.org/cstb/pub_hpcci.html
http://www7.national-academies.org/cstb/pub_hpcci.html
http://www7.national-academies.org/cstb/pub_itinnovation.html
http://www7.national-academies.org/cstb/pub_itinnovation.html
http://www.cra.org/CRN/issues/0801.pdf
http://www.cra.org/CRN/issues/0801.pdf

august 2008 | vol. 51 | no. 8 | communications of the acm 31

V
viewpoints

Don switches gears and for
a while becomes what Ed
Feigenbaum calls “The World’s
Greatest Programmer.”
There was a revolutionary new way to
write programs that came along in
the 1970s called “structured program-
ming.” At Stanford we were teaching
students how to write programs, but we
had never really written more than text-
book code ourselves in this style. Here
we are, full professors, telling people
how to do it, but having never done it
ourselves except in really sterile cases
with no real-world constraints. I was
itching to do it. Thank you for calling
me the world’s greatest programmer—
I was always calling myself that in my
head. I love programming, and so I loved
to think that I was doing it as well as any-
body. But the fact is the new way of pro-
gramming was something that I hadn’t
had time to invest much effort in.

The motivation is his love
affair with books…
That goes very deep. My parents dis-
obeyed the conventional wisdom by
teaching me to read before I entered
kindergarten. I have a kind of strange
love affair with books going way back.
I also had this thing about the appear-
ance of books. I wanted my books to
have an appearance that other readers
would treasure, not just appreciate be-
cause there were some words in there.

…and what had happened
to his books.
Printing was done with hot lead in the
1960s, but they switched over to using
film in the 1970s. My whole book had
been completely re-typeset with a differ-
ent technology. The new fonts looked
terrible! The subscripts were in a differ-
ent style from the large letters, for exam-
ple, and the spacing was very bad. You
can look at books printed in the early
1970s and almost everything looked
atrocious in those days. I couldn’t stand
to see my books so ugly. I spent all this
time working on them, and you can’t
be proud of something that looks hope-
less. I was tearing out my hair.

At the very same time, in February
1977, Pat Winston had just come out

with a new book on artificial intelli-
gence, and the proofs of it were being
done at III [Information International,
Incorporated] in Southern California.
They had a new way of typesetting us-
ing lasers. All digital, all dots of ink.
Instead of photographic images and
lenses, they were using algorithms,
bits. I looked at Winston’s galley
proofs. I knew it was just bits, but they
looked gorgeous.

I canceled my plan for a sabbatical
in Chile. I wrote saying “I’m sorry; in-
stead of working on Volume 4 during
my sabbatical, I’m going to work on ty-
pography. I’ve got to solve this problem
of getting typesetting right. It’s only
zeros and ones. I can get those dots on
the page, and I’ve got to write this pro-
gram.” That’s when I became an engi-
neer. I did sincerely believe that it was
only going to take me a year to do it.

But, in fact, it was to be a 10-year
project. The prototype user was
Phyllis Winkler, Don’s secretary.
Phyllis had been typing all of my tech-
nical papers. I have never seen her
equal anywhere, and I’ve met a lot of re-
ally good technical typists. My thought
was definitely that this would be some-
thing that I would make so that Phyllis
would be able to take my handwritten
manuscripts and go from there.

The design took place in two all-
nighters. I made a draft. I sat up at the
AI lab one evening and into the early
morning hours, composing what I
thought would be the specifications

doi:10.1145/1378704.1378715	 Len Shustek, Editor

Interview
Donald Knuth:
A Life’s Work Interrupted
In this second of a two-part interview by Edward Feigenbaum, we find Knuth, having completed three
volumes of The Art of Computer Programming, drawn to creating a system to produce books digitally.

For Part I of this interview, see Communications,
July 2008, page 35.P

H
O

T
O

G
R

A
P

H
 B

Y
 T

I
M

O
T

H
Y

 A
R

C
H

I
B

A
L

D

32 communications of the acm | august 2008 | vol. 51 | no. 8

viewpoints

of a language. I looked at my book and
I found excerpts from several dozen
pages where I thought it gave all the va-
riety of things I need in the book. Then
I sat down and I thought, well, if I were
Phyllis, how would I like to key this in?
What would be a reasonable format
that would appeal to Phyllis, and at the
same time something that as a com-
piler writer I felt I could translate into
the book? Because TeX is just another
kind of a compiler; instead of going
into machine language you’re going
into words on a page. That’s a different
output language, but it’s analogous to
recognizing the constructs that appear
in the source file.

The programming turned out
to be harder than he thought.
I showed the second version of the de-
sign to two of my graduate students,
and I said, “Okay, implement this,
please, this summer. That’s your sum-
mer job.” I thought I had specified a
language. To my amazement, the stu-
dents, who were outstanding students,
did not complete it. They had a system
that was able to do only about three
lines of TeX. I thought, “My goodness,
what’s going on? I thought these were
good students.” Later I changed my
attitude, saying, “Boy, they accom-
plished a miracle.” Because going
from my specification, which I thought
was complete, they really had an im-
possible task, and they had succeeded
wonderfully with it. These guys were
actually doing great work, but I was
amazed that they couldn’t do what I
thought was just sort of a routine task.
Then I became a programmer in ear-
nest, I had to do it.

This experience led to general
observations about programming
and specifications.
When you’re doing programming, you
have to explain something to a com-
puter, which is dumb. When you’re
writing a document for a human being
to understand, the human being will
look at it and nod his head and say,
“Yeah, this makes sense.” But there
are all kinds of ambiguities and vague-
ness that you don’t realize until you
try to put it into a computer. Then all
of a sudden, almost every five minutes
as you’re writing the code, a question
comes up that wasn’t addressed in the

specification. “What if this combina-
tion occurs?” It just didn’t occur to
the person writing the design specifi-
cation. When you’re faced with doing
the implementation, a person who
has been delegated the job of working
from a design would have to say, “Well,
hmm, I don’t know what the designer
meant by this.”

It’s so hard to do the design unless
you’re faced with the low-level aspects
of it, explaining it to a machine in-
stead of to another person. I think it
was George Forsythe who said, “People
have said you don’t understand some-
thing until you’ve taught it in a class.
The truth is you don’t really under-
stand something until you’ve taught it
to a computer, until you’ve been able
to program it.” At this level, program-
ming was absolutely important.

When I got to actually program-
ming TeX, I had to also organize it so
that it could handle lots of text. I had to
develop a new data structure in order
to be able to do the paragraph coming
in text and enter it in an efficient way.
I had to introduce ideas called “glue,”
and “penalties,” and figure out how
that glue should disappear at bound-

aries in certain cases and not in oth-
ers. All these things would never have
occurred to me unless I was writing the
program.

Edsger Dijkstra gave this wonderful
Turing lecture early in the 1970s called
“The Humble Programmer.” One of
the points he made in his talk was that
when they asked him in Holland what
his job title was, he said, “Program-
mer,” and they said, “No, that’s not a
job title. You can’t do that; program-
mers are just coders. They’re people
who are assigned like scribes were in
the days when you needed somebody
to write a document in the Middle
Ages.” Dijkstra said no, he was proud
to be a programmer. Unfortunately, he
changed his attitude completely, and I
think he wrote his last computer pro-
gram in the 1980s.

I checked the other day and found I
wrote 35 programs in January, and 28
or 29 programs in February. These are
small programs, but I have a compul-
sion. I love to write programs. I think
of a question that I want to answer, or
I have part of my book where I want
to present something, but I can’t just
present it by reading about it in a book.
As I code it, it all becomes clear in my
head. The fact that I have to translate
my knowledge of this method into
something that the machine is going
to understand forces me to make that
knowledge crystal-clear in my head.
Then I can explain it to somebody
else infinitely better. The exposition
is always better if I’ve implemented it,
even though it’s going to take me more
time.

It didn’t occur to me at the time
that I just had to program in order to
be a happy man. I didn’t find my other
roles distasteful, except for fundrais-
ing. I enjoyed every aspect of being a
professor except dealing with propos-
als, which was a necessary evil. But I
wake up in the morning with an idea,
and it makes my day to think of add-
ing a couple of lines to my program. It
gives me a real high. It must be the way
poets feel, or musicians, or painters.
Programming does that for me.

The TeX project led to
METAFONT for the design of fonts.
But it also wasn’t smooth sailing.
Graphic designers are about the nic-
est people I’ve ever met in my life. In

“I wake up in the
morning with
an idea, and it
makes my day
to think of adding
a couple of lines
to my program.
It gives me a real
high. It must be
the way poets
feel, or musicians,
or painters.
Programming
does that for me.”

1_CACM_V51.8.indb 32 7/21/08 10:12:55 AM

viewpoints

august 2008 | vol. 51 | no. 8 | communications of the acm 33

the spring of 1977, I could be found
mostly in the Stanford Library reading
about the history of letter forms. Be-
fore I went to China that summer I had
drafted the letters for A to Z.

One of the greatest disappoint-
ments in my whole life was the day I
received in the mail the new edition of
The Art of Computer Programming Vol-
ume 2, which was typeset with my fonts
and which was supposed to be the
crowning moment of my life, having
succeeded with the TeX project. I think
it was 1981, and I had the best typeset-
ting equipment, and I had written a
program for the 8-bit microprocessor
inside. It had 5,000 dots-per-inch, and
all the proofs coming out looked good
on this machine. I went over to Addi-
son-Wesley, who had typeset it. There
was the book, and it was in the familiar
beige covers. I opened the book up and
I’m thinking, “Oh, this is going to be
a nice moment.” I had Volume 2, first
edition. I had Volume 2, second edi-
tion. They were supposed to look the
same. Everything I had known up to
that point was that they would look the
same. All the measurements seemed
to agree. But a lot of distortion goes
on, and our optic nerves aren’t linear.
All kinds of things were happening. I

“I found that
writing software
was much more
difficult than
anything else I had
done in my life. I had
to keep so many
things in my head
at once. I couldn’t
just put it down
and start something
else. It really took
over my life during
this period.”

P
H

O
T

O
G

R
A

P
H

 B
Y

 T
I

M
O

T
H

Y
 A

R
C

H
I

B
A

L
D

1_CACM_V51.8.indb 33 7/21/08 10:12:56 AM

34 communications of the acm | august 2008 | vol. 51 | no. 8

viewpoints

burned with disappointment. I really
felt a hot flash, I was so upset. It had to
look right, and it didn’t, at that time.
I’m happy to say that I open my books
now and I like what I see. Even though
they don’t match the 1968 book ex-
actly, the way they differ are pleasing
to me.

What it was like writing TeX.
Structured programming gave me a
different feeling from programming
the old way—a feeling of confidence
that I didn’t have to debug something
immediately as I wrote it. Even more
important, I didn’t have to mock-up
the unwritten parts of the program. I
didn’t have to do fast prototyping or
something like that, because when you
use structured programming method-
ology you have more confidence that
it’s going to be right, that you don’t
have to try it out first. In fact, I wrote all
of the code for TeX over a period of sev-
en months, before I even typed it into a
computer. It wasn’t until March 1978
that I spent three weeks debugging ev-
erything I had written up to that time.

I found that writing software was
much more difficult than anything
else I had done in my life. I had to keep
so many things in my head at once. I
couldn’t just put it down and start
something else. It really took over my
life during this period. I used to think
there were different kinds of tasks:
writing a paper, writing a book, teach-
ing a class, things like that. I could
juggle all of those simultaneously. But
software was an order of magnitude
harder. I couldn’t do that and still teach
a good Stanford class. The other parts
of my life were largely on hold, includ-
ing The Art of Computer Programming.
My life was pretty much typography.

TeX leads to a new way
of programming.
Literate programming, in my mind,
was the greatest spin-off of the TeX
project. I learned a new way to program.
I love programming, but I really love
literate programming. The idea of lit-
erate programming is that I’m writing
a program for a human being to read
rather than a computer to read. It’s
still a program and it’s still doing the
stuff, but I’m a teacher to a person. I’m
addressing my program to a thinking
being, but I’m also being exact enough

so that a computer can understand it
as well. Now I can’t imagine trying to
write a program any other way.

As I’m writing The Art of Computer
Programming, I realized the key to
good exposition is to say everything
twice: informally and formally. The
reader gets to lodge it in his brain in
two different ways, and they reinforce
each other. In writing a computer pro-
gram, it’s also natural to say everything
in the program twice. You say it in Eng-
lish, what the goals of this part of the
program are, but then you say it in your
computer language. You alternate be-
tween the informal and the formal. Lit-
erate programming enforces this idea.

In the comments you also explain
what doesn’t work, or any subtleties.
You can say, “Now note the following.
Here is the tricky part in line 5, and
it works because of this.” You can ex-
plain all of the things that a maintainer
needs to know. All this goes in as part
of the literate program, and makes
the program easier to debug, easier to
maintain, and better in quality.

After TeX, Don gets to go back
to mathematics.
We finished the TeX project; the cli-
max was in 1986. After a sabbatical in
Boston I came back to Stanford and
plunged into what I consider my main
life’s work: analysis of algorithms.
That’s a very mathematical thing,
and so instead of having font design
visitors to my project, I had great al-
gorithmic analysts visiting my project.
I started working on some powerful
mathematical approaches to analysis
of algorithms that were unheard of in
the 1960s when I started the field. Here

I am in math mode, and thriving on
the beauties of this subject.

One of the problems out there that
was fascinating is the study of random
graphs. Graphs are one of the main fo-
cuses of Volume 4, all the combinato-
rial algorithms, because they’re ubiq-
uitous in applications.

Frustrated with the rate of
progress, he “retires” to devote
himself to “The Art.”
I wasn’t really as happy as I let on. I
mean, I was certainly enjoying the re-
search I was doing, but I wasn’t making
any progress at all on Volume 4. I’m do-
ing this work on random graphs, and
I’m learning all of these things. But at
the end of the year, how much more
had been done? I’ve still got 11 feet of
preprints stacked up in my closet that
I haven’t touched, because I had to put
that all on hold for the TeX project. I
figured the thing that I’m going to be
able to do best for the world is finish-
ing The Art of Computer Programming.

The only way to do it was to stop be-
ing a professor full time. I really had
to be a writer full time. So, at age 55 I
became “Professor Emeritus of The
Art of Computer Programming,” with
a capital “T.” I love that title.

Don is a master at straddling
the path between engineering
and science.
I always thought that the best way to
sum up my professional work is that it
has been an almost equal mix of theory
and practice. The theory I do gives me
the vocabulary and the ways to do prac-
tical things that can make giant steps
instead of small steps when I’m doing
a practical problem. The practice I do
makes me able to consider better and
more robust theories, theories that
are richer than if they’re just purely
inspired by other theories. There’s
this symbiotic relationship between
those things. At least four times in my
life when I was asked to give a kind of
philosophical talk about the way I look
at my professional work, the title was
“Theory and Practice.” My main mes-
sage to the theorists is, “Your life is
only half there unless you also get nur-
tured by practical work.”

Software is hard. My experience with
TeX taught me to have much more ad-
miration for colleagues that are devot-

“At age 55 I
became ‘Professor
Emeritus of The
Art of Computer
Programming,’
with a capital ‘T.’
I love that title.”

1_CACM_V51.8.indb 34 7/21/08 10:12:56 AM

viewpoints

august 2008 | vol. 51 | no. 8 | communications of the acm 35

ing most of their life to software than I
had previously done, because I didn’t
realize how much more bandwidth of
my brain was being taken up by that
work than it was when I was doing just
theoretical work.

Computers aren’t everything:
religion is part of his life, too.
I think computer science is wonder-
ful, but it’s not everything. Through-
out my life I’ve been in a very loving
religious community. I appreciate
Luther as a theologian who said you
don’t have to close your mind. You
keep questioning. You never know the
answer. You don’t just blindly believe
something.

I’m a scientist, but on Sundays I
would study with other people of our
church on aspects of the Bible. I got
this strange idea that maybe I could
study the Bible the way a scientist
would do it, by using random sam-
pling. The rule I decided on was we
were going to study Chapter 3, Verse
16 of every book of the Bible.

This idea of sampling turned out
to be a good time-efficient way to get
into a complicated subject. I actually
got too confident that I knew much
more than I actually had any right to,
because I’m only studying less than
1/500th of the Bible. But a classical
definition of a liberal education is that
you know everything about something
and something about everything.a

On his working style...
I enjoy working with collaborators,
but I don’t think they enjoy working
with me, because I’m very unreliable. I
march to my own drummer, and I can’t
be counted on to meet deadlines be-
cause I always underestimate things.
I’m not a great coworker, and I’m very
bad at delegating.

I have no good way to work with
somebody else on tasks that I can do
myself. It’s a huge skill that I lack.
With the TeX project I think it was
important, however, that I didn’t del-
egate the writing of the code. I needed
to be the programmer on the first-gen-
eration project, and I needed to write
the manual, too. If I delegated that,
I wouldn’t have realized some parts

a	 See 3:16 Bible Texts Illuminated, by Donald
Knuth, A-R Editions, 1991.

of it are impossible to explain. I just
changed them as I wrote the manual.

What is the future
 of programming?
A program I read when I was in my first
year of programming was the SOAP II
assembler by Stan Poley at IBM. It was a
symphony. It was smooth. Every line of
code did two things. It was like seeing a
grand master playing chess. That’s the
first time I got a turn-on saying, “You
can write a beautiful program.” It had
an important effect on my life.

I’m worried about the present state
of programming. Programmers now
are supposed to mostly just use librar-
ies. Programmers aren’t allowed to do
their own thing from scratch anymore.
They’re supposed to assemble reus-
able code that somebody else has writ-
ten. There’s a bunch of things on the
menu and you choose from these and
put them together. Where’s the fun in
that? Where’s the beauty in that? We
have to figure out a way we can make
programming interesting for the next
generation of programmers.

What about the future of science
and engineering generally?
Knowledge in the world is exploding.
Up until this point we had subjects,
and a person would identify them-
selves with what I call the vertices of a
graph. One vertex would be mathemat-
ics. Another vertex would be biology.

Another vertex would be computer sci-
ence, a new one. There would be a phys-
ics vertex, and so on. People identified
themselves as vertices, because these
were the specialties. You could live in
that vertex, and you would be able to
understand most of the lectures that
were given by your colleagues.

Knowledge is growing to the point
where nobody can say they know all of
mathematics, certainly. But there’s so
much interdisciplinary work now. We
see that a mathematician can study
the printing industry, and some of the
ideas of dynamic programming ap-
ply to book publishing. Wow! There
are interactions galore wherever you
look. My model of the future is that
people won’t identify themselves with
vertices, but rather with edges—with
the connections between. Each per-
son is a bridge between two other ar-
eas, and they identify themselves by
the two subspecialties that they have
a talent for.

Finally, we always ask
for life advice.
When I was working on typography, it
wasn’t fashionable for a computer sci-
ence professor to do typography, but I
thought it was important and a beauti-
ful subject. Other people later told me
that they’re so glad I put a few years
into it, because it made it academically
respectable, and now they could work
on it themselves. They were afraid
to do it themselves. When my books
came out, they weren’t copies of any
other books. They always were some-
thing that hadn’t been fashionable to
do, but they corresponded to my own
perception of what ought to be done.

Don’t just do trendy stuff. If some-
thing is really popular, I tend to think:
back off. I tell myself and my students
to go with your own aesthetics, what
you think is important. Don’t do what
you think other people think you want
to do, but what you really want to do
yourself. That’s been a guiding heuris-
tic for me all the way through.

And it should for the rest of us.
Thank you, Don.�

Edited by Len Shustek, Chair, Computer History Museum,
Mountain View, CA.

© 2008 ACM 0001-0782/08/0800 $5.00

“I’m worried about
the present state
of programming.
Programmers now
are … supposed to
assemble reusable
code that somebody
else has written…
Where’s the fun in
that? Where’s the
beauty in that?”

1_CACM_V51.8.indb 35 7/21/08 10:12:56 AM

Dear Colleague,

At a timewhen computing is at the center of the growing demand for technology jobsworldwide,
ACM is continuing its work on initiatives to help computing professionals stay competitive in the

global community. ACM delivers resources that advance computing as a science and profession.

As amember of ACM, you join nearly 90,000 other computing professionals and students worldwide to define
the largest educational, scientific, and professional computing society. Whether you are pursuing scholarly

research, building systems and applications, ormanaging computing projects, ACMoffers opportunities to advance
your interests.

MEMBER BENEFITS INCLUDE:

• A subscription to the completely redefined Communications of the ACM, ACM’s flagship monthly magazine
• The option to subscribe to the full ACMDigital Library, with improved search functionalities and Author
Profile Pages for almost every author in computing

• The Guide to Computing Literature, with over one million bibliographic citations
• Access to ACM’s Career & Job Center offering a host of exclusive career-enhancing benefits
• Free e-mentoring services provided by MentorNet®
• Full and unlimited access to over 3,000 online courses from SkillSoft
• Full and unlimited access to 1,100 online books, featuring 500 from Books24x7®, and 600 from Safari® Books
Online, including leading publishers such as O’Reilly (Professional Members only)

• The option to connect with the best thinkers in computing by joining 34 Special Interest Groups or
hundreds of local chapters

• ACM’s 40+ journals andmagazines at special member-only rates
• TechNews, ACM’s tri-weekly email digest delivering stories on the latest IT news
• CareerNews, ACM’s bi-monthly email digest providing career-related topics
• MemberNet, ACM’s e-newsletter, covering ACM people and activities
• Email forwarding service & filtering service, providing members with a free acm.org email address and
high-quality Postini spam filtering

• And much, much more!

ACM’s worldwide network ranges from students to seasoned professionals and includesmany of the leaders in the field.
ACMmembers get access to this network, and enjoy the advantages that come from sharing in their collective expertise,
all of which serves to keep our members at the forefront of the technology world.

I invite you to share the value of ACMmembershipwith your colleagues and peers who are not yetmembers, and I hope
you will encourage them to join and become a part of our global community.

Thank you for your membership in ACM.

Sincerely,

John R.White
Executive Director and Chief Executive Officer
Association for Computing Machinery

ACM,Uniting theWorld’s Computing Professionals,
Researchers, Educators, and Students

Advancing Computing as a Science & Profession

Priority Code: ACACM29

Online
http://www.acm.org/join

Phone
+1-800-342-6626 (US & Canada)

+1-212-626-0500 (Global)

Fax
+1-212-944-1318

membership application &
digital library order form

PROFESSIONALMEMBERSHIP:

� ACM Professional Membership: $99 USD

� ACM Professional Membership plus the ACMDigital Library:

$198 USD ($99 dues + $99 DL)

� ACMDigital Library: $99 USD (must be an ACMmember)

STUDENTMEMBERSHIP:

� ACM Student Membership: $19 USD

� ACM StudentMembershipplus theACMDigital Library: $42USD

� ACM StudentMembership PLUSPrintCACMMagazine: $42USD

� ACM Student Membership w/Digital Library PLUS Print

CACMMagazine: $62 USD

choose onemembership option:

Name

Address

City State/Province Postal code/Zip

Country E-mail address

Area code & Daytime phone Fax Member number, if applicable

Payment must accompany application. If paying by check or
money order, make payable to ACM, Inc. in US dollars or foreign
currency at current exchange rate.

� Visa/MasterCard � American Express � Check/money order

� Professional Member Dues ($99 or $198) $ ______________________

� ACM Digital Library ($99) $ ______________________

� Student Member Dues ($19, $42, or $62) $ ______________________

Total Amount Due $ ______________________

Card # Expiration date

Signature

Professional membership dues include $40 toward a subscription
to Communications of the ACM. Member dues, subscriptions,
and optional contributions are tax-deductible under certain
circumstances. Please consult with your tax advisor.

payment:

RETURN COMPLETED APPLICATIONTO:

All new ACMmembers will receive an
ACMmembership card.

For more information, please visit us at www.acm.org

Association for Computing Machinery, Inc.
General Post Office
P.O. Box 30777
NewYork, NY 10087-0777

Questions? E-mail us at acmhelp@acm.org
Or call +1-800-342-6626 to speak to a live representative

Satisfaction Guaranteed!

Purposes of ACM
ACM is dedicated to:
1) advancing the art, science, engineering,
and application of information technology
2) fostering the open interchange of
information to serve both professionals and
the public
3) promoting the highest professional and
ethics standards

I agree with the Purposes of ACM:

Signature

ACM Code of Ethics:
http://www.acm.org/serving/ethics.html

You can join ACM in several easy ways:

Or, complete this application and return with payment via postal mail

Special rates for residents of developing countries:
http://www.acm.org/membership/L2-3/

Special rates for members of sister societies:
http://www.acm.org/membership/dues.html

Advancing Computing as a Science & Profession

Please print clearly

1_CACM_V51.8.indb 36 7/21/08 10:12:57 AM

http://acm.org

Dear Colleague,

At a timewhen computing is at the center of the growing demand for technology jobsworldwide,
ACM is continuing its work on initiatives to help computing professionals stay competitive in the

global community. ACM delivers resources that advance computing as a science and profession.

As amember of ACM, you join nearly 90,000 other computing professionals and students worldwide to define
the largest educational, scientific, and professional computing society. Whether you are pursuing scholarly

research, building systems and applications, ormanaging computing projects, ACMoffers opportunities to advance
your interests.

MEMBER BENEFITS INCLUDE:

• A subscription to the completely redefined Communications of the ACM, ACM’s flagship monthly magazine
• The option to subscribe to the full ACMDigital Library, with improved search functionalities and Author
Profile Pages for almost every author in computing

• The Guide to Computing Literature, with over one million bibliographic citations
• Access to ACM’s Career & Job Center offering a host of exclusive career-enhancing benefits
• Free e-mentoring services provided by MentorNet®
• Full and unlimited access to over 3,000 online courses from SkillSoft
• Full and unlimited access to 1,100 online books, featuring 500 from Books24x7®, and 600 from Safari® Books
Online, including leading publishers such as O’Reilly (Professional Members only)

• The option to connect with the best thinkers in computing by joining 34 Special Interest Groups or
hundreds of local chapters

• ACM’s 40+ journals andmagazines at special member-only rates
• TechNews, ACM’s tri-weekly email digest delivering stories on the latest IT news
• CareerNews, ACM’s bi-monthly email digest providing career-related topics
• MemberNet, ACM’s e-newsletter, covering ACM people and activities
• Email forwarding service & filtering service, providing members with a free acm.org email address and
high-quality Postini spam filtering

• And much, much more!

ACM’s worldwide network ranges from students to seasoned professionals and includesmany of the leaders in the field.
ACMmembers get access to this network, and enjoy the advantages that come from sharing in their collective expertise,
all of which serves to keep our members at the forefront of the technology world.

I invite you to share the value of ACMmembershipwith your colleagues and peers who are not yetmembers, and I hope
you will encourage them to join and become a part of our global community.

Thank you for your membership in ACM.

Sincerely,

John R.White
Executive Director and Chief Executive Officer
Association for Computing Machinery

ACM,Uniting theWorld’s Computing Professionals,
Researchers, Educators, and Students

Advancing Computing as a Science & Profession

Priority Code: ACACM29

Online
http://www.acm.org/join

Phone
+1-800-342-6626 (US & Canada)

+1-212-626-0500 (Global)

Fax
+1-212-944-1318

membership application &
digital library order form

PROFESSIONALMEMBERSHIP:

� ACM Professional Membership: $99 USD

� ACM Professional Membership plus the ACMDigital Library:

$198 USD ($99 dues + $99 DL)

� ACMDigital Library: $99 USD (must be an ACMmember)

STUDENTMEMBERSHIP:

� ACM Student Membership: $19 USD

� ACM StudentMembershipplus theACMDigital Library: $42USD

� ACM StudentMembership PLUSPrintCACMMagazine: $42USD

� ACM Student Membership w/Digital Library PLUS Print

CACMMagazine: $62 USD

choose onemembership option:

Name

Address

City State/Province Postal code/Zip

Country E-mail address

Area code & Daytime phone Fax Member number, if applicable

Payment must accompany application. If paying by check or
money order, make payable to ACM, Inc. in US dollars or foreign
currency at current exchange rate.

� Visa/MasterCard � American Express � Check/money order

� Professional Member Dues ($99 or $198) $ ______________________

� ACM Digital Library ($99) $ ______________________

� Student Member Dues ($19, $42, or $62) $ ______________________

Total Amount Due $ ______________________

Card # Expiration date

Signature

Professional membership dues include $40 toward a subscription
to Communications of the ACM. Member dues, subscriptions,
and optional contributions are tax-deductible under certain
circumstances. Please consult with your tax advisor.

payment:

RETURN COMPLETED APPLICATIONTO:

All new ACMmembers will receive an
ACMmembership card.

For more information, please visit us at www.acm.org

Association for Computing Machinery, Inc.
General Post Office
P.O. Box 30777
NewYork, NY 10087-0777

Questions? E-mail us at acmhelp@acm.org
Or call +1-800-342-6626 to speak to a live representative

Satisfaction Guaranteed!

Purposes of ACM
ACM is dedicated to:
1) advancing the art, science, engineering,
and application of information technology
2) fostering the open interchange of
information to serve both professionals and
the public
3) promoting the highest professional and
ethics standards

I agree with the Purposes of ACM:

Signature

ACM Code of Ethics:
http://www.acm.org/serving/ethics.html

You can join ACM in several easy ways:

Or, complete this application and return with payment via postal mail

Special rates for residents of developing countries:
http://www.acm.org/membership/L2-3/

Special rates for members of sister societies:
http://www.acm.org/membership/dues.html

Advancing Computing as a Science & Profession

Please print clearly

1_CACM_V51.8.indb 37 7/21/08 10:12:58 AM

http://www.acm.org/join
http://www.acm.org/membership/L2-3/
http://www.acm.org/membership/dues.html
http://www.acm.org/serving/ethics.html
http://www.acm.org
mailto:acmhelp@acm.org

38 communications of the acm | august 2008 | vol. 51 | no. 8

practice
doi:10.1145/1378704.1378716

Online games and virtual worlds have
familiar scaling requirements, but don’t
be fooled: Everything you know is wrong.

by Jim waldo

Scaling
in Games
and Virtual
Worlds

I used to be like you.
I used to be a systems programmer, working on

infrastructure used by banks, telecom companies,
and other engineers. I worked on operating systems.
I worked on distributed middleware. I worked on
programming languages. I wrote tools. I did all of the
things that hardcore systems programmers do.

And I knew the rules. I knew that throughput was
the real test of scaling. I knew that data had to be kept
consistent and durable, and that relational databases
are the way to ensure atomicity, and that loss of
information is never an option. I knew that clients
were getting thinner as the layers of servers increased,
and that the best client would be one that contained
the least amount of state and allowed the important
computations to go on inside the computing cloud.
I knew that support for legacy code is vital to the

adoption of any new technology, and
that most legacy code has yet to be
written.

But two years ago my world changed.
I was asked to take on the technical ar-
chitect position on Project Darkstar, a
distributed infrastructure targeted to
the massive-multiplayer online game
and virtual-world market. At first, it
seemed like a familiar system. The
goal was to scale flexibly by enabling
the dynamic addition (or subtraction)
of machines to match load. There was
a persistence layer and a communica-
tion layer. We also wanted to make the
programming model as simple as pos-
sible, while enabling the system to use
all the power of the new generations of
multicore chips that Sun (and others)
were producing. These were all prob-
lems that I had encountered before,
so how hard could these particular ver-
sions of the problems for this particu-
lar market be? I agreed to spend a cou-
ple of months on the project, cleaning
up the architecture and making sure it
was on the right track while I thought
about new research topics that I might
want to tackle.

The three months have turned into
two years (and counting). I’ve found
lots of new research challenges, but
they all have to do with finding ways
to make the environment for online
games and virtual worlds scale. In the
process, I have been introduced to a dif-
ferent world of computing, with differ-
ent problems, different assumptions,
and a different environment. At times
I feel like an anthropologist who has
discovered a new civilization. I’m still
learning about the culture and practice
of games, and it is a different world.

Everything You Know is Wrong
To understand this new world, the first
thing to realize is that it is part of the en-
tertainment industry. Because of this,
the most important goal for a game
or virtual world is that it be fun. Every-
thing else is secondary to this prime
directive. Being fun is not an objective
measure, but the goal is to provide an
immersive, all-consuming experience I

L
L

U
S

T
R

A
T

I
O

N
 B

Y
 P

E
T

E
R

 G
O

L
I

B
E

R
S

U
C

H

1_CACM_V51.8.indb 38 7/21/08 10:13:00 AM

1_CACM_V51.8.indb 39 7/21/08 10:13:02 AM

40 communications of the acm | august 2008 | vol. 51 | no. 8

practice

sible on the client.
The need for a heavyweight client

is, in part, an outcome of the evolution
of these games. Online games have de-
veloped from standalone products, in
which everything was done on the local
machines. This is more than entropy
in the industry, however; keeping as
much as possible on the client allows
the communication with the server to be
minimized, both in the number of calls
made to the server and in the amount
of information conveyed in those calls.
This communication minimization is
required to meet the prime directive of
fun, since it is part of the way in which
latency is minimized in these games.

Latency is the enemy of fun—and
therefore the enemy of online games
and virtual worlds. This is especially
interesting in the case of online games,
where the latency of the connection be-
tween the client and the servers cannot
be controlled. Therefore, the commu-
nication protocol needs to be as simple
as possible, and the information trans-
mitted from the client to the server
must fit into a single packet whenever
possible. Further, the server must be
designed so that it is doing very little,

ensuring that whatever it is doing can
be done very quickly so a response can
be sent back to the player. Some in-
teresting tricks have been developed
to mask unavoidable latency from the
player. These include techniques such
as showing prerecorded clips during
the loading of a mission or showing a
“best guess” immediately at the result

that rewards the player for playing well,
is easy to learn but hard to master, and
will keep the player coming back again
and again.

Most online games center around a
story and a world, and the richness of
the story and the world has much to do
with the success of the game. The de-
sign of the game centers on the story
and the gameplay. Design of the code
that is used to implement the game
comes quite a bit later (and is often
considered much less interesting). A
producer heads the team that builds
the game or world. Members of the
team include writers, artists, and musi-
cians, as well as coders. The group with
the least influence on the game is the
coders; their job is to bring the vision
of others to reality.

The computational environment
for online games or virtual worlds is
close to the exact inverse of that found
in most markets serviced by the high-
tech industry. The clients are anything
but thin; game players will be using
the highest-end computing platform
they can get, or a game console that
has been specially designed for the
computational rigors of these games.

These client machines will have as
much memory as can be jammed into
the box, the latest and fastest CPU, and
a graphics subsystem that has super-
computing abilities on its own. These
clients will also have considerable ca-
pacity for persistent storage, since one
of the basic approaches to these games
is to put as much information as pos-

of an action and then repairing any dif-
ferences between that guess and the ac-
tual result when the server responds.

The role of the server is twofold. The
most obvious is to allow players to in-
teract with each other in the context of
the game. This role is becoming more
important and more complex as these
games and worlds become more and
more elaborate. The original role of
the server was to allow players to com-
pete with each other in the game. Now
games and worlds are developing their
own societies, where players may com-
pete but may also cooperate or simply
interact in various ways. Virtual worlds
allow users to try out new personalities.
Games let players cooperate to do tasks
that they would be unable to complete
individually. In both, players are find-
ing that a major draw of the technology
is using it to connect to other people.

The second role of the server is to
be the arbiter of truth between the cli-
ents. Whether the client is running on
a console or on a personal computer,
control rests in the hands of the play-
er. This means the player has access to
the client program, and the competi-
tive nature of the games gives the play-
er motivation to alter the client in the
player’s favor. Even in virtual worlds,
where there is only social competition,
the desire to enhance the opportunity
of the individual player (more com-
monly known as “cheating”) is com-
mon. This requires that the server,
which is the one component that is
not in control of the players, be the ar-
biter of the true state of the game. The
game server is used both to discourage
cheating (by making it much more dif-
ficult) and to detect cheating (by see-
ing patterns of divergence between
the game state reported by the client
and the game state held by the serv-
er). Peer-to-peer technologies might
seem a natural fit for the first role of
the game server, but this second role
means that few if any games or worlds
trust their peers enough to avoid the
server component.

Current Scaling Strategies
The use of the singular term server in
the previous section represents a con-
ceptual illusion of the system structure
that can be maintained only by the cli-
ents of the game or world. In fact, any
online game or virtual world will in- S

yncretia

 in

 S
econd

 L
ife

,
by

 A

lpha

 A
uer

,
aka

.
E

lif

 A

yiter

1_CACM_V51.8.indb 40 7/21/08 10:13:04 AM

practice

august 2008 | vol. 51 | no. 8 | communications of the acm 41

volve a large number of servers (or will
have failed so miserably that no one
either can or wants to remember the
game or world). Using multiple serv-
ers is a basic mechanism for scaling
the server component of a game to the
levels that are being seen in the online
world today. World of Warcraft has re-
ported more than five million subscrib-
ers with hundreds of thousands active
at any one time. Second Life reports
usage within an order of magnitude of
World of Warcraft, and there is some
evidence that sites such as Webkinz or
Club Penguin are even more popular. A
single server is not able to handle such
load, no matter how efficient the repre-
sentation. Even if a single server could
deal with this load, such a server would
be far too expensive for the smaller
loads that are encountered (some-
times by the same games or worlds) at
times of low demand (or in parts of the
product’s life cycle when demand has
decreased).

Having multiple servers means that
part of building the game is deciding
how to partition the load over these
servers. Two techniques are commonly
used in both online games and virtual
worlds. Sometimes only one of the two
techniques is used, sometimes both,
depending on the nature of the game
or world.

The first technique is to exploit the
geography of the game or world, de-
composing the game into different ar-
eas, each of which can be mapped to a
hosting server. For example, an island
in Second Life corresponds to a physi-
cal server running the code for the
shared reality of the world. Similarly,
different areas of the World of Warcraft
universe are hosted on different physi-
cal machines. Anyone who is in the
area will connect to the same server,
and interactions among the players on
that server can be localized (and opti-
mized). Actions happening in a differ-
ent part of the world are not likely to
affect those in this part of the world,
so the communication traffic between
servers can be kept small.

The second technique is known as
sharding. A shard is a copy of a part of
the game or virtual world. Different
shards reside on different servers, and
players who are assigned to one shard
can interact with the world and other
players in the shard, but will not see (or

be able to interact with) players or ob-
jects in other shards. Shards not only
allow more players to be supported in
the world, but also permit independent
explorations into the world by different
sets of players. Thus, when a new quest
or mission is added to a game, it will of-
ten be replicated with multiple shards
so that more than one player (or group
of players) can experience the quest or
mission in its original state.

Although sharding and geographic
decomposition allow multiple servers
to be used to handle the load on a sin-
gle game or world, they do present the
developer with significant challenges.
By creating noninteracting copies of
parts of a world, shards isolate the play-
ers in different shards from each other.
This means that players who want to
share their experience of the world or
game need to become aware of the dif-
ferent shards that are being offered,
and arrange to be placed in the same
shard. As the number of players who
want to be in the same shard increases
(some guilds, or groups of players who
cooperatively play in a single game
over an extended period of time, have
hundreds of members), the difficulty
of coordinating placement into shards
increases and interferes with the expe-
rience of the world. While shards allow
scale, they do so at the price of player
interaction.

Geographic decomposition does
not limit player interaction, but does
require that the designers of the game
be able to predict the size of a geo-
graphic area that will be the correct
unit of decomposition. If one geo-
graphic area becomes very popular,
play on that area will slow down as
the server associated with the area
is overloaded. If a geographic area is
less popular than originally predicted,
computer hardware (and money) will
be wasted on that section because not
enough players are there. Since the
geographic decomposition is hard-
wired into the code of the game or
world, changing the decomposition
in response to observed user behavior
requires rewriting part of the game or
world itself. This takes time, can in-
troduce bugs, and is very costly. While
this is being done, gameplay can be
adversely affected. In extreme cases,
this can have a major financial im-
pact. When World of Warcraft was in-

With the possible
exception of
the highest end
of scientific
computing, no other
kind of software has
ridden the advances
of Moore’s Law as
aggressively as
game or virtual-
world programs.

1_CACM_V51.8.indb 41 7/21/08 10:13:04 AM

42 communications of the acm | august 2008 | vol. 51 | no. 8

practice

troduced, the demand for the game so
outstripped the capacity that had been
built into the game that subscriptions
had to be closed off for months while
the code that distributed the game
was rewritten.

Changing Chip Architectures
Scaling over a set of machines is a dis-
tributed computing problem, and the
game and virtual-world programming
culture has had little experience with
this set of problems. This is hardly the
only place where scaling requires the
game programmer to learn a new set
of skills. A change in the trend of chip
design also means these programmers
must learn skills they have never had to
exercise before.

With the possible exception of the
highest end of scientific computing, no
other kind of software has ridden the
advances of Moore’s Law as aggressive-
ly as game or virtual-world programs.
As chips have gotten faster, games
and virtual worlds have become more
realistic, more complex, and more im-
mersive. Serious gameplayers invest in
the very best equipment that they can
obtain, and then use techniques such
as overclocking to push even more per-
formance out of those systems.

Now, however, chip designers have
decided to exploit Moore’s Law in a dif-
ferent way. Rather than increasing the
speed of a chip, they are adding multi-
ple cores to a chip running at the same
(or sometimes slower) clock speed.
There are many good reasons for this,
from simplified design to lower power
consumption and heat production,
but it means that the performance of a
single program will not automatically
increase when you run the program
on a new chip. Overall performance
of a group of programs may increase
(since they can all run in parallel) but
not the single program (unless it can
be broken into multiple, cooperating
threads). Games are written as single-
threaded programs, however.

In fact, games and virtual worlds
(and especially the server side of these
programs) should be perfect vehicles
to show the performance gains possi-
ble with multicore chips and groups of
cooperating servers. Games and virtual
worlds are embarrassingly parallel, in
that most of what goes on in them is
independent of the other things that

are happening. Of the hundreds of
thousands of players who are active in
World of Warcraft at any one time, only
a very small number will be interacting
with any particular player. The same is
true in Second Life and nearly all large-
scale games or worlds.

The problem is that the culture that
has grown up around games and virtual
worlds is not one that understands or is
overly familiar with the programming
techniques that are required to exploit
the parallelism inherent in these sys-
tems. These are people who grew up on
a single (PC) machine, running a single
thread. Asking them to master the in-
tricacies of concurrent programming
or distributed systems takes them away
from their concentration on the game
or world experience itself. Even when
they have the desire, they don’t have
the time or the experience to exploit
these new technologies.

Project Darkstar
It is for these reasons that we started
Project Darkstar (http://www.pro-
jectdarkstar.com), a research effort
attempting to build a server-side in-
frastructure that will exploit the mul-
tithreaded, multicore chips being pro-
duced and scaled over a large group
of machines while presenting the pro-
grammer with the illusion that he or
she is developing in a single-threaded,
single-machine environment. Hid-
ing threading and distribution is, in
the general case, probably not a good
idea (see http://research.sun.com/
techrep/1994/abstract-29.html for a
full argument). Game and world serv-
ers tend to follow a very restricted pro-
gramming model, however, in which
we believe we can hide both concur-
rency and distribution.

The model is a simple event-based
one in which input from the client is re-
ceived by the server, which then sets off
a task in response to that event. These
tasks can change the state of the world
(by moving a player, changing the state
of an object, or the like) and initiate
communication. The communication
can be to a single client or to a group
of clients that are all subscribed to the
same communication channel.

We chose this model largely because
this is the way most game and virtual-
world servers are already structured.
The challenge was then to keep this

By backing the
data in a persistent
fashion rather than
keeping it in main
memory, we gain
some inherent
reliability that has
not been exhibited
by games or worlds
in the past.

1_CACM_V51.8.indb 42 7/21/08 10:13:04 AM

http://www.projectdarkstar.com
http://www.projectdarkstar.com
http://research.sun.com/techrep/1994/abstract-29.html
http://research.sun.com/techrep/1994/abstract-29.html

practice

august 2008 | vol. 51 | no. 8 | communications of the acm 43

model and allow servers written in this
style to be scaled over multiple cores
(running multiple threads) and mul-
tiple servers. We were not trying to take
existing code and allow it to run within
our system. This would have made the
task much more difficult and would
not have corresponded to the realities
of the game and virtual-world culture.
Game and world servers are written
from scratch for each game or world,
perhaps reusing some libraries but
rarely, once running, being rehosted
into a different environment. Efforts
to bring different platforms into the
game are restricted to the client side,
where new consoles bringing in new
players may be worth the effort.

Darkstar provides a container in
which the server runs. The container
provides interfaces to a set of services
that allow the game server to keep per-
sistent state, establish connections
with clients, and construct publish/
subscribe channels with sets of clients.
Multiple copies of the game server
code can run in multiple instances of
the Darkstar container. Each copy can
be written as if it was the only one ac-
tive (and, in fact, it may be the only one
active for small-scale games or worlds).
Each of the servers is structured as an
event loop—the main loop listens on
a session with a client that is estab-
lished when the client logs in. When a
message is delivered, the event loop is
called. The loop can then decode the
message and determine the game or
world action that is the appropriate re-
sponse. It then dispatches a task within
the container.

Each of these tasks can read or
change data in the world through the
Darkstar data service, communicate
with the client, or send messages to
groups of other game or world partici-
pants via a channel. Under the covers,
the task is wrapped in a transaction.
The transaction is used to ensure that
no conflicting concurrent access to the
world data will occur. If a task tries to
change data that is being changed by
some other concurrent task, the data
service will detect that conflict. In that
case, one of the conflicting tasks will
be aborted and rescheduled; the other
task should run to completion. Thus,
when the aborted task is retried, the
conflict should have disappeared and
the task should run to completion.

crash can cause the loss of any change
in the game or world since the last time
the system was checkpointed. This can
sometimes be hours of play, which
can cause considerable consternation
among the customers and expensive
calls to the service lines. By keeping all
data persistently, we believe we can en-
sure that no more than a few seconds
of game or world interaction will be
lost in the case of a server crash. In the
best case, such a crash won’t even be
noticed by the players, as the tasks that
were on the server will be transferred
to another server in a fashion that is
transparent to the player.

The biggest payoff for requiring
that all data be kept in the data store is
that it helps to make the tasks that are
generated by the response to events in
the game portable. Since the data store
can be accessed by any of a cluster of
machines that are running the Dark-
star stack and the game logic, there
is no data that cannot be moved from
machine to machine. We do the same
with the communication mechanisms,
ensuring that a session or channel that
is connecting the game and some set of

clients is abstracted through the Dark-
star stack. This allows us to move the
task using the session or channel to
another machine without affecting the
semantics of the task talking over the
session or channel.

This task portability means we can
dynamically balance the load on a set of
machines running the game or virtual

This mechanism for concurrency
control does require that all tasks ac-
cess all of their data through the Dark-
star data service. This is a departure
from the usual way of programming
game or world servers, where data is
kept in memory to decrease latency.
By using results from the past 20 years
of database research, we believe that
we can keep the penalty for accessing
through a data service small by cach-
ing data in intelligent ways. We also be-
lieve that by using the inherent paral-
lelism in these games, we can increase
the overall performance of the game as
the number of players increases, even
if there is a small penalty for individual
data access. Our data store is not based
on a standard SQL database since we
don’t need the full functionality such
databases provide. What we need is
something that gives us fast access to
persistently stored objects that can be
identified in simple ways. Our current
implementation uses the Berkeley Da-
tabase for this, although we have ab-
stracted our access to it to provide the
opportunity to use other persistence
layers if required.

Concurrency control is not the only
reason to require that all data be ac-
cessed through the data store. By back-
ing the data in a persistent fashion
rather than keeping it in main mem-
ory, we gain some inherent reliability
that has not been exhibited by games
or worlds in the past. Storing all of the
data in memory means that a server S

yncretia

 in

 S
econd

 L
ife

,
by

 A

lpha

 A
uer

,
aka

.
E

lif

 A

yiter

1_CACM_V51.8.indb 43 7/21/08 10:13:05 AM

44 communications of the acm | august 2008 | vol. 51 | no. 8

practice

world. Rather than splitting the game
up into regions or shards at compile
time, virtual worlds or games based
on the Darkstar stack can move load
around the network of server machines
at runtime. While the participant
might see a short increase in latency
during the move, the overall latency
will be decreased after the move. By
moving tasks, we not only can balance
the load on the machines involved, but
also try to collocate tasks that are ac-
cessing the same set of data or that are
communicating with each other. All of
these mechanisms allow us to deter-
mine, while the game is being played,
which tasks (and which users) should
be placed on the same server.

The project is in its early stages of
development and deployment. It is
based on an open-source licensing
model and community, so we are rely-
ing on our users to educate us about
the needs of the community that will
build the games and worlds that will
run on the infrastructure. The research
is part computer science and part an-
thropology, but each of the cultures
has an opportunity to learn much from
the other.

Even at this early stage, it is clear
that this is going to be a complex ven-
ture. While early experience with the
code has shown that the program-
ming model does relieve the game or
world server programmer from think-
ing about threads and locking, it has
also shown that there are places where
they do have to understand something

about the underlying concurrency of
the system. The most obvious of these
is in the design of the data structures.
One of the earliest users of our code
was getting terrible performance from
the system. When we looked at the
code, we discovered that a single object
was written to on every task, updating
a global piece of game state. By design-
ing the server in this way, this user ef-
fectively serialized all of the tasks that
were running in the system, making it
impossible for the server to get any ad-
vantage from the inherent parallelism
in the game. Some minor redesign,
breaking the single object into many
(much smaller) objects, removed this
particular bottleneck, with resulting
gains in overall performance. This ex-
perience also taught us that we need
to educate users of the system in the
design of independent data structures
that can be accessed in parallel.

Nor has our own implementation
been without some excitement. When
we moved from a multithreaded serv-
er that ran on a single machine to an
implementation that runs on multiple
machines, we expected some degrada-
tion in the performance of the single-

machine system. We were delighted to
find that the single-node system deg-
radation was not nearly as large as we
thought it would be, but we found that
additional machines lowered the capac-
ity of the overall system. When present-
ed with these measurements, this was
not all that surprising to understand—
the possibility for contention on mul-

tiple machines is greater than that on
a single machine, and discovering and
recovering from such contention takes
longer. We are working on removing
the choke points so that adding equip-
ment actually adds capacity.

Measuring the performance of the
system is made especially challenging
by the lack of any clear notion of what
the requirements of the target servers
are. Game developers are notoriously
secretive, and the notion of a character-
istic load for a game or virtual world is
not something that is well document-
ed. We have some examples that have
been written by the team or by people
we know in the game world, but we
cannot be sure that these are accurate
reflections of what is being written by
the industry. Our hope is that the open-
source community that is beginning to
form around the project will aid in the
production of useful performance and
stress tests.

Seen in a broader light, the project
has and continues to be an interest-
ing experiment in building levels of
abstraction for the world of multi-
threaded, distributed systems. The
problems we are tackling are not new.
Large Web-serving farms have many
of the same problems with highly vari-
able demand. Scientific grids have sim-
ilar problems of scaling over multiple
machines. Search grids have similar
issues in dealing with large-scale envi-
ronments solving embarrassingly but
not completely parallel problems.

What makes online games and vir-
tual worlds interestingly different are
the very different requirements they
bring to the table compared to these
other domains. The interactive, low-
latency environment is very different
from grids, Web services, or search.
The growth from the entertainment
industry makes the engineering disci-
plines far different from those others,
as well. Solving these problems in this
new environment is challenging, and
adds to our general knowledge of how
to write software for the emerging class
of multithreaded, multicore, distrib-
uted systems.

And best of all, it’s fun.�

Jim Waldo is a Distinguished Engineer with Sun
Microsystems Laboratories, Burlington, MA, where he
conducts research on large-scale distributed systems.

© 2008 ACM 0001-0782/08/0800 $5.00 S
yncretia

 in

 S

econd

 L

ife

,

by

 A
lpha

 A

uer

,

aka

.

E
lif

 A
yiter

1_CACM_V51.8.indb 44 7/21/08 10:13:05 AM

august 2008 | vol. 51 | no. 8 | communications of the acm 45

FEATURIN G S EV EN WO RL D- CL AS S storage experts, this
roundtable discussion is the first in a new series of
CTO Forums focusing on the near-term challenges
and opportunities facing the commercial computing
community. Overseen by the ACM Professions
Board, the goal of this series is to provide working
IT managers expert advice so they can make better
decisions when investing in new architectures and
technologies. This is the first installment of the

discussion, with a second installment
slated for publication in the September
issue.

Recognizing that Usenix and ACM
serve similar constituencies, Ellie
Young, Usenix Executive Director, gra-
ciously invited us to hold our panel dur-
ing the Usenix Conference on File and
Storage Technologies (FAST ‘08) in San
Jose, Feb. 27, 2008. Ellie and her staff
were extremely helpful in supporting
us during the conference and all of us
at ACM greatly appreciate their efforts.

— Stephen Bourne

Participants
Steve Kleiman—Senior Vice Presi-

dent and Chief Scientist, Network Appli-
ances.

Eric Brewer—Professor, Computer
Science Division, University of Califor-
nia, Berkeley, Inktomi co-founder (ac-
quired by Yahoo).

Erik Riedel—Head, Interfaces &
Architecture Department, Seagate Re-
search, Seagate Technology.

Margo Seltzer—Herchel Smith Pro-
fessor of Computer Science, Profes-
sor in the Division of Engineering and
Applied Sciences, Harvard University,
Sleepycat Software founder (acquired
by Oracle Corporation), architect at
Oracle Corporation.

Greg Ganger—Professor Electrical
and Computer Engineering, School of
Computer Science, Director, Parallel
Data Lab, Carnegie Mellon University.

Mary Baker—Research Scientist, HP
Labs, Hewlett-Packard.

Kirk McKusick—Past president,
Usenix Association, BSD and FreeBSD
architect.

Moderator
Mache Creeger—Principal, Emer-

gent Technology Associates.

doi:10.1145/1378704.1378717

Leaders in the storage world offer
valuable advice for making more effective
architecture and technology decisions.

by Mache Creeger, moderator

CTO Storage
Roundtable

1_CACM_V51.8.indb 45 7/21/08 10:13:06 AM

46 communications of the acm | august 2008 | vol. 51 | no. 8

practice

Mache Creeger: Welcome to you all.
Today we’re talking about storage is-
sues that are specific to what people
are coming into contact with now and
what they can expect in the near term.
Why don’t we start with energy con-
sumption and see where that takes us?

Eric Brewer: Recently I decided to
rebuild my Microsoft Windows XP PC
from scratch and for the first time tried
to use a 32GB flash card instead of a
hard drive. I’m already using network-
attached storage for everything impor-
tant and information on local disk is

easily re-created from the distribution
CD. Flash consumes less energy and is
much quieter.

Although this seemed like a good
idea, it didn’t work out that well be-
cause XP apparently does a great deal
of writing to its C drive during boot.
Writing to flash is not a good idea, as
the device is limited in the number and
bandwidth of writes. Even though the
read time for flash is great, I found the
boot time on the Windows machine to
be remarkably poor. It was slower than
the drive I was replacing and I’m go-

ing to have to go back to a disk in my
system. But I still like the idea and feel
that the thing that I need to boot my
PC should be a low-power flash device
with around 32GB of storage.

Erik Riedel: This highlights one of
the problems with the adoption of new
technologies. Until the software is ap-
propriately modified to match the new
hardware, you don’t get the full benefit.
Much of the software we run today is
old. It was designed for certain para-
digms, certain sets of hardware, and as
we move to new hardware the old soft-
ware doesn’t match up.

Mache Creeger: I’ve had a similar ex-
perience. In my house, my family has
gotten addicted to MythTV—a free,
open source, client-server, DVR (Digi-
tal Video Recorder) that runs on Linux
(http://www.mythtv.org/). Mindful of
energy consumption, I wanted to get
rid of as many disk drives as possible.
I first tried to go diskless and do a net-
work boot of my clients off of the server.
I found it awfully difficult to get a net-
work-booted Linux client to be config-
ured the way I wanted. Things like NFS
did not come easily and you had to do a
custom kernel if you wanted to include
stuff outside a small standard set.

Since I wanted small footprint client
machines, and was concerned about
heat and noise, I took a look at flash,
but quickly noted that it was write-
limited. Because I did not have a good
handle on my outbound writes, flash
didn’t seem to be a particularly good
candidate for my needs.

I settled on laptop drives, which
seemed to be the best compromise.
Laptop drives have lots of storage, are
relatively cheap, can be shaken, don’t
generate a lot of heat, and do not re-
quire a lot of power to operate. For
small audiovisual client computers,
laptop drives seem to be the state-of-
the-art right solution for me right now.

Erik Riedel: Seagate has been selling
drives specifically optimized for DVRs.
The problem is we don’t sell them to
the retail channel, but to integrators
like TIVO and Comcast. Initially, the
optimization was for sound. We slowed
down the disk seek times and did other
things with the materials to eliminate
the clicky-clacky sound.

Recently, power is more of a con-
cern. You have to balance power with
storage capacity. When you go to a photogr

A
P

H
 B

Y
 M

A
R

K
 R

I
C

H
A

R
D

S
,

F
rom

 the

 book

 C

ore

 M

emor

y
,

C
hronicle

 B

ooks

Developed in the 1950s, magnetic drums were the first mechanical “direct access” storage
devices. Made of a nickel-cobalt substrate coated with powdered iron, data was recorded by
magnetizing small surface regions organized into long tracks of bits.

1_CACM_V51.8.indb 46 7/21/08 10:13:09 AM

http://www.mythtv.org/

practice

august 2008 | vol. 51 | no. 8 | communications of the acm 47

notebook drive, it’s a smaller drive with
smaller platter, so there are fewer bits.
For most DVRs, you still care about
how many HD shows you can put on
it (a typical hour of high-definition TV
uses over five times the storage capac-
ity of standard definition TV).

Mary Baker: Talk about noise. We
have three TBs of storage at home.
What used to be my linen closet is now
the machine room. While storage appli-
ances are supposed to be happy sitting
in a standard home environment, with
three of them, I get overheating fail-
ures. Our house isn’t air conditioned,
but the linen closet is. It doesn’t matter
how quiet the storage is because the air
conditioner is really loud.

Mache Creeger: What we’re finding
in this little microcosm are the trade-
offs that people need to consider. The
home server is becoming a piece of
house infrastructure for which people
have to deal with issues of power, heat
generation, and noise.

Kirk McKusick: We have seven ma-
chines in our house and we wanted to
cut our power consumption at 59 cents a
kilowatt-hour. We got Soekris boxes that
will support either flash or laptop drives
(http://www.soekris.com/). The box uses
six watts plus the power consumption of
the attached storage device.

The first machine we tried was our
FreeBSD gateway. We used flash and
it worked out great. FreeBSD doesn’t
write anything until after it’s gone
multi-user and as a result we were able
to configure our gateway to be almost
write-free.

Armed with our initial success, we fo-
cused on our Web server. We discovered
the Web server, Apache, writes stuff all
the time and our first flash device write-
failed after 18 months. But flash tech-
nology seems to be improving. After we
replaced it with a 2X-sized device, it has
not been as severely impacted by writes.
The replacement has been going strong
for almost three years.

Margo Seltzer: My guys who are
studying flash claim that the write
problem is going to be a thing of the
past very soon.

Steve Kleiman: Yes and no. Write
limits are going to go down over time.
However, as long as capacity increases
enough so that at a given write rate
you’re not using it up too fast, it’s okay.
It is correct to think of flash as a con-

sumable, and you have to organize your
systems that way.

Kirk McKusick: But disks are also con-
sumable, they only last three years.

Steve Kleiman: Disks are absolutely
consumable. They are also obsolete
after five years, as you don’t want to
use the same amount of power to spin
something that’s a quarter of the stor-
age space of the current technology.

The implications of flash are pro-
found. I’ve done the arithmetic. For as
long as I can remember it’s been about
a 100-to-1 ratio between main memory
and disk in terms of dollars per gigabyte.
Flash sits right in the middle. In fact, if
you look at the projections, at least on a
raw cost basis, by 2011–2012 flash will
overlap high-performance disk drives
in terms of dollars per gigabyte.

Yet flash has two orders of mag-
nitude better dollars per random I/O
operation than disk drives. Disk drives
have a 100-to-1 difference in bandwidth
between random and serial access pat-
terns. In flash that’s not true. It’s prob-
ably a 2- or 3-to-1 difference between
read and write, but the dynamic range
is much less.

Greg Ganger: It’s much more like
RAM in that way.

Steve Kleiman: Yes. My theory is that
whether it’s flash, phase-change mem-
ory, or something else, there is a new
place in the memory hierarchy. There
was a big blank space for decades that
is now filled and a lot of things that
need to be rethought. There are many
implications to this, and we’re just be-
ginning to see the tip of the iceberg.

Mary Baker: There are a lot of people
who agree with you, and it’s going to
be fun to watch over the next few years.
There is the JouleSort contest (http://
joulesort.stanford.edu/) to see, within
certain constraints—performance or
size—what is the lowest power at which
you can sort a specific data set. The
people who have won so far have been
experimenting with flash.

Steve Kleiman: I went to this Web site
that ranked the largest databases in the
world. I think the largest OLTP (Online
Transaction Processing) databases
were between 3TB–10TB. I know from
my friends at Oracle that if you cache
3% to 5% of an OLTP database, you’re
getting a lot of the interesting stuff.
What that means is a few thousand dol-
lars worth of flash can cache the largest

Steve Kleiman

The implications of
flash are profound.
I’ve done the
arithmetic. For
as long as I can
remember it’s been
about a 100-to-1
ratio between main
memory and disk in
terms of dollars per
gigabyte. Flash sits
right in the middle.

1_CACM_V51.8.indb 47 7/21/08 10:13:09 AM

http://www.soekris.com/
http://joulesort.stanford.edu/
http://joulesort.stanford.edu/

48 communications of the acm | august 2008 | vol. 51 | no. 8

practice

OLTP working set known today. You
don’t need hundreds of thousands of
dollars of enterprise “who-ha” if a few
thousand dollars will do it.

With companies like Teradata and
Netezza you have to ask if doing all
these things to reorganize the data for
DSS (Decision Support Systems) is even
necessary anymore?

Mache Creeger: For the poor IT man-
agers out in Des Moines struggling
to get more out of their existing IT in-
frastructure, you’re saying that they
should really look at existing vendors
that supply flash caches?

Steve Kleiman: No. I actually think
that flash caches are a temporary solu-
tion. If you think about the problem,
caches are great with disks because
there is a benefit to aggregation. If I
have a lot of disks on the network, I can
get a better level of performance than
I could from my own single disk dedi-
cated to me because I have more arms
working for me.

With DRAM-based caches, I get a
benefit to aggregation because DRAM
is so expensive it’s hard to dedicate it
to any single node. Neither of these is
true of network-based flash caches.
You can only get a fraction of perfor-
mance of flash by sticking it out over
the network. I think flash migrates to
both sides, to the host and to the stor-
age system. It doesn’t exist by itself in
the network.

Mache Creeger: Are there products or
architectures that people can take ad-
vantage of?

Steve Kleiman: Sure. I think for the
next few years, cache will be an impor-
tant thing. It’s an easy way to do things.
Put some SSDs (Solid State Disks) into
some of the caching products, or arrays,
that people have and it’s easy. There’ll
be a lot of people consuming SSDs. I’m
just talking about the long term.

Mache Creeger: This increases per-
formance overall, but what about the
other issue: power consumption?

Steve Kleiman: I’m a power consump-
tion skeptic. People do all these archi-
tectures to power things down, but the
lowest-power disk is the one you don’t
own. Better you should get things into
their most compressed form. What
we’ve seen is that if you can remove all
the copies that are out in the storage
system and make it only one instance,
you can eliminate a lot of storage that

general-purpose, so-called “unstruc-
tured” data, where it’s difficult to let
people know that accessing this par-
ticular data set might have a signifi-
cant delay, it’s hard to get good results.
By the time the required disks have all
spun up, the person who tried to access
an old project file or follow a search hit
is on the phone to IT. With the lower-
power operating modes, the time to
first access is reasonable and the power
savings is significant. By the way, much
of the growth in data over the past few
years has been in unstructured data.

Erik Riedel: That’s where the key so-
lutions are going to come from. Look at
what the EPA is doing with their recent
proposals for Energy Star in the data
center. They address a whole series of
areas where you need to think about
power. They have a section about the
power management features you have
in your device. The way that it’s likely to
be written is you can get an Energy Star
label if you do two of the following five
things, choosing between things like
de-duplication, thin provisioning, or
spin-down.

But if you look at the core part of the
spec, there’s a section where they’re
focused on idle power. Idle power is
where we have a big problem in stor-
age. The CPU folks can idle the CPU.
If there is nothing to do then it goes
idle. The problem is storage systems
still have to store the data and be re-
sponsive when a data request comes
in. That means time-to-data and time-
to-ready are important. In those cases
people really do need to know about
their data. The best idle power for stor-
age systems is to turn the whole thing
off, but that doesn’t give people access
to their data.

We’ve never been really careful be-
cause we haven’t had to be. You could
just keep spending the watts and
throwing in more equipment. When
you start asking “What data am I actu-
ally using and how am I using it?” you
have to do prediction.

Steve Kleiman: My point is that there
is so much low-hanging fruit with de-
duplication, compression, and lower-
power operating modes before you
have to turn the disk off that we can
spend the next four or five years just
doing that and save much more energy
than spinning it down will do.

Erik Riedel: We are going to have to

you would otherwise have to power.
When there are hundreds of copies of
the same set of executables, that’s a lot
of savings.

Margo Seltzer: You’re absolutely
right, getting rid of duplication helps
reduce power. But that’s not inconsis-
tent; it’s a different kind of power man-
agement. If you look at the cost of stor-
age it’s not just the initial cost, but also
the long-term cost, such as manage-
ment and power. Power is a huge frac-
tion, and de-duplication is one way to
cut that down. Any kind of lower-power
device, of which flash memory is one
example, is going to be increasingly
more attractive to people as power be-
comes increasingly more expensive.

Steve Kleiman: I agree. Flash can
handle a lot of the very expensive,
high-power workloads—the heavy
random I/Os. But I am working on the
assumption that disks still exist. On
a dollar-per-gigabyte basis, there’s at
least a 5-to-1 ratio between flash and
disks, long term.

Margo Seltzer: If it costs five times
more to buy a flash disk than a spin-
ning disk, how long do I have to use a
flash disk before I’ve made up that 5X
cost in power savings over spinning
disk?

Steve Kleiman: It’s a fair point. Flash
consumes very little power when you
are not accessing it. Given the way elec-
tricity costs are rising, the cost of power
and cooling over a five-year life for even
a “fat” drive can approach the raw cost
of the drive. That’s still not 5X. The disk
folks are working on lower-power oper-
ating and idle modes that can cut the
power by half or more without adding
more than a few seconds latency to ac-
cess. So that improves things to only
50% over the raw cost of the drive.

Look at tape-based migration sys-
tems. The penalty for making a bad de-
cision is really bad, because you have
to go find a tape, stick it in the drive,
and wait a minute or two. Spinning
up a disk or set of disks is almost the
same since it can take longer than 30
seconds. Generally those tape systems
were successful where it was expected
behavior that the time to first data ac-
cess might be a minute. Obviously, the
classic example is backup and restore,
and that’s where we see spin-down
mostly used today.

If you want to apply these ideas to

1_CACM_V51.8.indb 48 7/21/08 10:13:09 AM

practice

august 2008 | vol. 51 | no. 8 | communications of the acm 49

know more about the data and the ap-
plications. Look at the history of an
earlier technology we all know about:
RAID. There are multiple reasons to
do RAID. You do it for availability, to
protect the data, and for performance
benefits. There are also areas where
RAID does not provide any benefits.
When we ask our customers why they
are doing RAID, nobody knows which
of the benefits are more important to
them.

We’ve spent all this time sending
them to training classes, teaching
them about the various RAID-levels,
and how you calculate the XORs. What
they know is if they want to protect
their data, they’ve got to turn it up to
RAID5, and if they’ve got money ly-
ing around, they want to turn it up to
RAID10. They don’t know why they’re
doing that, they’re just saying, “This is
what I’m supposed to do so I’ll do it.”
There isn’t the deeper understanding
of how the data and applications are
being used. The model is not there.

Margo Seltzer: I don’t think that’s
going to change. We’re going to have
to figure out the RAID equivalent for
power management because I don’t
think people are going to figure out
their data that way. It’s not something
that people know or understand.

Kirk McKusick: Or they’re going to
put flash in front of the disk, so you
can have the disk power down. You can
dump it into flash and then update the
disk when it becomes available.

Eric Brewer: Many disks have some
NVRAM (Non-Volatile RAM) in them
anyway, so I feel like one could absorb
the write burst while the drive wakes
up. We should be able to hide that.
At least in my consumer case, I know
that one disk can handle my read load.
Enterprise is a more complicated, but
that’s a lot of disks we can shut down.

Steve Kleiman: I disagree. Flash cach-
es can help with a lot of applications
being consumed in the enterprise.
However, because there is a 10-to-1
cost factor, there are areas where flash
adds no benefit. You have to let the disk
show through so that cache misses are
addressed. That is very hard to predict.

We’ve long passed the point where
you can delete something. Typically,
you don’t know what is important and
what is not and you can’t spend the
time and money to figure it out. So

you end up keeping everything, which
means in some sense everything’s
equally valued. The problem is that you
need a certain level of minimum reli-
ability or redundancy into all the data
because it’s hard to distinguish what
is important and what’s not. It’s not
just RAID. People are going to want to
have disaster recovery strategy. They’re
not going to have just one copy of this
thing, RAID or no RAID.

Erik Riedel: At a recent event in my
department to discuss storage power,
we had a vendor presentation that
showed a CPU scaling system. When
system administrators feel they are get-
ting close to peak power they can access
a master console and turn back all the
processors by 20%. That’s a system that
they have live running today. And they
do it without fear. They figure that ap-
plications are balanced and somehow
all the applications—the Web servers,
the database servers—will adjust to ev-
erything running 20% slower.

When our group saw that, it became
clear that we are going to have to figure
out what the equivalent of that is for
storage. We need to be able to architect
storage systems so that an administra-
tor has the option of saying, “I need it
to consume 20% or 30% less power for
the next couple of hours.”

Mache Creeger: A mantra that I
learned early on in databases was more
spindles are better. More spindles allow
you to have more parallelism and a wid-
er data path. What you’re all saying now
is that we have to challenge that. More
spindles are better, but at what cost?
Yes, I can run a database on one spin-
dle, but it’s not going to be a particular-
ly responsive one. It won’t have all the
performance of a 10-spindle database,
but it’s going to be cheaper to run.

Steve Kleiman: If you think about the
database example, I don’t know about
that. You can put most of the working
set on flash. You don’t have to worry
about spinning it.

Margo Seltzer: That’s the key insight
here. Flash has two attractive proper-
ties: It handles random I/O load really
well and it’s also very power efficient.
I think you have to look at how that’s
going to play into the storage hierarchy
and how it’s going to help.

In some cases you may be using flash
as a performance enhancer, as a power
enhancer, or both. This gets back to

Mache Creeger

A mantra that
I learned early on
in databases was
more spindles
are better. What
you’re all saying
now is that we
have to challenge
that. More spindles
are better, but at
what cost?

1_CACM_V51.8.indb 49 7/21/08 10:13:10 AM

50 communications of the acm | august 2008 | vol. 51 | no. 8

practice

Erik’s point, which is that today people
don’t know why they’re using RAID. It
may very well be the same with flash.

Greg Ganger: The general model of
search engines is you want to have a
certain cluster that handles a given
load. When you want to increase the
load you can handle, you essentially
replicate that entire cluster. It’s the
unit of replication that makes manage-
ment easier.

When it’s Christmas Eve and the
service load is low, you could actu-
ally power down many of the replicas.
While I do not believe this has been
done yet, it seems like the thing to do
as power costs continue to be a larger
issue. In these systems there is already
a great degree of replication in order
to provide more spindles during high-
load periods.

Mache Creeger: You all said that there
is low-hanging fruit to take advantage
of. Are there things you can do today as
profound as server virtualization?

Steve Kleiman: The companion to

because it gets to the core of what is
private and what rights you have over
data about you. I want to be able to de-
lete my own stuff, but I also want to be
able to delete from groups that have
data about me that I no longer trust.
A lot of this is a legal issue, but I hate
to feel like the technical things are go-
ing to push us away from the ability to
delete.

Steve Kleiman: That’s a good point.
While it’s hard to expend the intellec-
tual effort to decide what you want to
delete, once you’ve expended that ef-
fort, you should be able to delete. The
truth is that it’s incredibly hard to de-
lete something. Not only do you have
to deal with the disks themselves, but
also the bits that are resident on the
disk after you “delete” them, and the
copies, and the backups on tape.

One of the things that is part of our
product right now, and which we con-
tinue to work on, is the ability to fine-
grain encrypt information and then
throw away the key. That deletes the
information itself, the copies of the in-

server virtualization is storage virtu-
alization. Things like snapshots and
clones take whole golden images of
what you’re going to run and instan-
taneously make a copy so that only the
parts that have changed are additional.
You might have 100 virtual servers out
there with what they think are 100 im-
ages, but it’s only one golden image
and the differences. That’s an amaz-
ing savings. It’s the same thing that’s
going on with server virtualization; it’s
almost the mirror image of it.

What has come about over the last
few years is the ability to share the in-
frastructure. You may have one infra-
structure, but it’s still a hundred differ-
ent images, you’re actually not sharing
the data. That’s changed in the last five
years since we have had cloning tech-
nology. This allows you to get this tre-
mendous so-called thin-provisioning
savings.

Eric Brewer: I disagree with some-
thing said earlier, which is that it’s be-
coming hard to delete stuff. I feel that
deletion is a fundamental human right

Invented by IBM in 1956, the first Model 350 disk drive contained 50 24-inch diameter disks and stored a total of 5MB. IBM later added
removable disk platters to its drives; these platters provided archival data storage. photogr

A
P

H
 B

Y
 M

A
R

K
 R

I
C

H
A

R
D

S
,

F
rom

 the

 book

 C

ore

 M

emor

y
,

C
hronicle

 B

ooks

1_CACM_V51.8.indb 50 7/21/08 10:13:12 AM

practice

august 2008 | vol. 51 | no. 8 | communications of the acm 51

formation, and the copies of the infor-
mation on tape.

Margo Seltzer: It seems that there
are two sides to this. I agree that’s a
nice solution to the deletion prob-
lem, but it concerns me because you
may get the unintended consequence,
which is now you’ve got a key manage-
ment problem. Given my own abil-
ity to keep track of my passwords, the
thought of putting stuff I care about on
an encrypted device where if I lose the
key, I’ve lost my data forever, is a little
scary.

Steve Kleiman: We have a technology
that does exactly that. It turns into a
hierarchical key management system.
Margo’s right. When you care about
doing stuff like that, you have to get se-
rious about it. Once you lose or delete
that key, it’s really, really, truly, gone.

Margo Seltzer: And given that my
greatest love of snapshots comes from
that time that I inadvertently deleted
the thing that I didn’t want to, inadver-
tent key deletion really scares me.

Steve Kleiman: That’s why people
won’t do it, right? I think it’ll be done
for very specific reasons with pre-
thought intent that says, “Look, for
legal reasons, because I don’t want to
be sued, I don’t want this document to
exist after five years.”

Today, data ownership has a very
real burden. For example, you have
an obligation to protect things like
your customers’ credit card numbers,
or Social Security numbers, and this
obligation has a real cost. This gives
you a way of relieving yourself of that
burden when you want to.

Margo Seltzer: I hear you and I be-
lieve it at one level, but at another
level, I can’t help but think of the
dialogue boxes that pop up that say,
“Do you really mean to do this?” and
we’re all trained to click on them and
say “Yes.” I’m concerned about how
seriously humans will take an abso-
lute delete.

Erik Riedel: Margo, you’ve pointed
out a much bigger problem. Today,
one of the key problems within all
security technology is that the usabil-
ity is essentially zero. With regards to
Web page security, it’s amazing what
people are willing to click and ignore.
As long as there’s a lock icon some-
where on the page, it’s fine.

Eric Brewer: If we made deletion a

right, this would get sorted out. I could
expect business relationships of mine
to delete all records about me after
our relationship ceased. The industry
would figure it out. If you project out
30 years, the amount you can infer
given what’s out there is much worse
than what’s known about you today.

Mary Baker: It’s overwhelming and
there’s no way to pull it back in. Once
it’s out there, there’s no control.

Mache Creeger: Now that we all
agree that there should be a way to
make information have some sort of
time-to-live or be able to disappear at
some future direction, what recom-
mendations can we make?

Margo Seltzer: There’s a funda-
mental conflict here. We know how to
do real deletion using encryption, but
for every benefit there’s a cost. As an
industry, people have already demon-
strated that the cost for security is too
high. Why are our systems insecure?
No one is willing to pay the cost in ei-
ther usability or performance to have
true security.

In terms of deletion, there’s a simi-
lar cost-benefit relationship. There is
a way to provide the benefit, but the
cost in terms of risk of losing data for-
ever is so high that there’s a tension.
This fundamental tension is never
going to be fully resolved unless we
come up with a different technology.

Eric Brewer: If what you want is
time to change your mind, we could
just wait awhile to throw away the key.

Margo Seltzer: The best approach
I’ve heard is that you throw away bits
of the key over time. Throwing away
one bit of the key allows recovery with
a little bit of effort. Throw away the
second bit and it becomes harder, and
so on.

Eric Brewer: But ultimately you’re
either going to be able to make it go
away or you’re not. You have to be
willing to live with what it means to
delete. Experience always tells us that
there’s regret when you delete some-
thing you would rather keep.�

Mache Creeger (mache@creeger.com) is a technology
industry veteran based in Silicon Valley. Along with
being a columnist for ACM Queue, he is the principal of
Emergent Technology Associates, marketing and business
development consultants to technology companies
worldwide.

© 2008 ACM 0001-0782/08/0800 $5.00

Margo Seltzer

Given my own
ability to keep track
of my passwords,
the thought of
putting stuff
I care about on
an encrypted
device where if
I lose the key, I’ve
lost my data forever,
is a little scary.

1_CACM_V51.8.indb 51 7/21/08 10:13:12 AM

mailto:mache@creeger.com

practice

1_CACM_V51.8.indb 52 7/21/08 10:13:18 AM

practice

august 2008 | vol. 51 | no. 8 | communications of the acm 53

doi:10.1145/1378704.1378718

There’s a lot we can learn
from CORBA’s mistakes.

by michi henning

The Rise
and Fall of
CORBA

D epending on exactly when one starts counting,
CORBA (Common Object Request Broker
Architecture) is around 15 years old. During its
lifetime, CORBA has moved from being a bleeding-
edge technology for early adopters, to being a popular
middleware, to being a niche technology that exists
in relative obscurity. It is instructive to examine why
CORBA—despite once being heralded as the “next-
generation technology for e-commerce”—suffered
this fate. CORBA’s history is one that the computing
industry has seen many times, and it seems likely that
current middleware efforts, specifically Web services,
will reenact a similar history.

In the early 1990s, persuading programs on
different machines to talk to each other was a
nightmare, especially if different hardware, operating
systems, and programming languages were involved:
programmers either used sockets and wrote an
entire protocol stack themselves or their programs
didn’t talk at all. (Other early middleware, such as
Sun ONC, Apollo NCS, and DCE, was tied to C and

Unix and not suitable for heterogeneous
environments.)

After a false start with CORBA 1.0,
which was not interoperable and provid-
ed only a C mapping, the OMG (Object
Management Group) published CORBA
2.0 in 1997. It provided a standardized
protocol and a C++ language mapping,
with a Java language mapping following
in 1998. This gave developers a tool that
allowed them to build heterogeneous
distributed applications with relative
ease. CORBA rapidly gained popularity
and quite a number of mission-critical
applications were built with the tech-
nology. CORBA’s future looked rosy.

During CORBA’s growth phase in the
mid- and late 1990s, major changes af-
fected the computing landscape, most
notably, the advent of Java and the Web.
CORBA provided a Java language map-
ping, but it did nothing to cooperate
with the rapidly expanding Web. In-
stead of waiting for CORBA to deliver
a solution, companies turned to other
technologies and started building their
e-commerce infrastructures based on
Web browsers, HTTP, Java, and EJB (En-
terprise Java Beans).

In addition, developers who had
gained experience with CORBA found
that writing any nontrivial CORBA ap-
plication was surprisingly difficult.
Many of the APIs were complex, incon-
sistent, and downright arcane, forcing
the developer to take care of a lot of de-
tail. In contrast, the simplicity of com-
ponent models, such as EJB, made pro-
gramming a lot simpler (if less flexible),
so calls for a CORBA component model
became louder and louder. A compo-
nent model was a long time in coming,
however. Work was started in 1996 on a
CBOF (Common Business Object Facil-
ity), but that effort got bogged down in
political infighting and was eventually
abandoned, to be replaced by the CCM
(CORBA Component Model). A specifi-
cation for CCM was finally published in
late 1999, but was largely a nonevent:

The specification was large and ˲˲

complex and much of it had never been
implemented, not even as a proof of
concept. Reading the document made I

L
L

U
S

T
R

A
T

I
O

N
 B

Y
 J

A
S

O
N

 L
I

M
O

N

1_CACM_V51.8.indb 53 7/21/08 10:13:21 AM

54 communications of the acm | august 2008 | vol. 51 | no. 8

practice

failed attempts to make it scale. By that
time, the middleware market was in a
very fragmented state, with multiple
technologies competing, but none was
able to capture sufficient mindshare to
unify distributed systems development.

Another important factor in CORBA’s
decline was XML. During the late 1990s,
XML had become the new silver bullet of
the computing industry: almost by defi-
nition, if it was XML, it was good. After
giving up on DCOM, Microsoft wasn’t
going to leave the worldwide e-com-
merce market to its competitors and,
rather than fight a battle it could not win,
it used XML to create an entirely new
battlefield. In late 1999, the industry saw
the publication of SOAP (Simple Object
Access Protocol). Originally developed
by Microsoft and DevelopMentor, and
then passed to W3C for standardization,
SOAP used XML as the on-the-wire en-
coding for remote procedure calls.

SOAP had serious technical short-
comings, but, as a market strategy, it
was a masterstroke. It caused further
fragmentation as numerous vendors
clambered for a share of the pie and
moved their efforts away from CORBA
and toward the burgeoning Web ser-
vices market. For customers, this added
more uncertainty about CORBA’s viabil-
ity, often prompting them to put invest-
ment in the technology on hold.

CORBA suffered another blow when
the Internet bubble burst in early 2001.
The industry’s financial collapse drove
many software companies out of the mar-
ket and forced the survivors to refocus
their efforts. The result was significant
attrition in the number of commercial
CORBA products. Before the collapse,
several vendors had already dropped or
deemphasized their CORBA products
and, after the collapse, more followed.
What in the mid- to late 1990s had been
a booming market with many compet-
ing products had suddenly turned into
a fringe market with far fewer vendors,
customers, and investment. By then,
open source implementations of COR-
BA were available that partially compen-
sated for the departure of the commer-
cial vendors, but this was not enough to
recover the lost mindshare and restore
the market’s confidence: CORBA was no
longer the darling child of the industry.

Today, CORBA is used mostly to wire
together components that run inside
companies’ networks, where commu-

it clear that CCM was technically imma-
ture: sections of it were essentially un-
implementable or, if they were imple-
mentable, did not provide portability.

No commercial CORBA vendor ˲˲

commited to implement CCM.
Even if implementations had been ˲˲

available by the time CCM was pub-
lished, it was too late. EJB had become
entrenched in the industry to the point
where another component technology
had no chance of success.

CMM failure did little to boost the
confidence of CORBA customers, who
were stuck with complex technology.

Meanwhile, the industry’s need for
middleware was stronger than ever. Af-
ter some experience with e-commerce
systems that used HTTP, HTML, and
the CGI (Common Gateway Interface),
it had become clear that building dis-
tributed systems in this way had serious
limitations. Without a proper type sys-
tem, applications were reduced to pars-
ing HTML to extract semantics, which
amounted to little more than screen-
scraping. The resulting systems turned
out to be very brittle. On the other hand,
EJB had a proper type system but was
limited to Java and so not suited for
many situations. There were also a few
flies in the CORBA ointment:

Commercial CORBA implementa-˲˲

tions typically cost several thousand
dollars per development seat, plus, in
many cases, runtime royalties for each
deployed copy of an application. This
limited broader acceptance of the plat-
form—for many potential customers,
CORBA was simply too expensive.

The platform had a steep learning ˲˲

curve and was complex and hard to use
correctly, leading to long development
times and high defect rates. Early imple-
mentations also were often riddled with
bugs and suffered from a lack of qual-
ity documentation. Companies found it
difficult to find the expert CORBA pro-
grammers they needed.

Microsoft never embraced CORBA
and instead chose to push its own
DCOM (Distributed Component Object
Model). This kept much of the mar-
ket either sitting on the fence or using
DCOM instead, but DCOM could not
win the middleware battle either, be-
cause it worked only on Windows. (A
port of DCOM to Unix by Software AG
never gained traction.) Microsoft even-
tually dropped DCOM after several

nication is protected from the outside
world by a firewall. It is also used for
real-time and embedded systems de-
velopment, a sector in which CORBA
is actually growing. Overall, however,
CORBA’s use is in decline and it cannot
be called anything but a niche technol-
ogy now.

Given that only a few years ago, COR-
BA was considered to be the cutting
edge of middleware that promised to
revolutionize e-commerce, it is surpris-
ing to see how quickly the technology
was marginalized, and it is instructive
to examine some of the deeper reasons
for the decline.

Technical Issues
Obviously, a number of external fac-
tors contributed to the fall of CORBA,
such as the bursting of the Internet
bubble and the competition with other
technologi es, such as DCOM, EJB, and
Web services. One can also argue that
CORBA was a victim of industry trends
and fashion. In the computing industry,
the technical excellence of a particular
technology frequently has little to do
with its success—mindshare and mar-
keting can be more important factors.
These arguments cannot fully account
for CORBA’s loss of popularity, however.
After all, if the technology had been as
compelling as was originally envisaged,
it is unlikely that customers would have
dropped it in favor of alternatives.

Technical excellence is not a suf-
ficient prerequisite for success but, in
the long term, it is a necessary prerequi-
site. No matter how much industry hype
might be pushing it, if a technology has
serious technical shortcomings, it will
eventually be abandoned. This is where
we can find the main reasons for COR-
BA’s failure.

Complexity: The most obvious tech-
nical problem is CORBA’s complexity—
specifically, the complexity of its APIs.
Many of CORBA’s APIs are far larger than
necessary. For example, CORBA’s object
adapter requires more than 200 lines of
interface definitions, even though the
same functionality can be provided in
about 30 lines—the other 170 lines con-
tribute nothing to functionality, but se-
verely complicate program interactions
with the CORBA runtime.

Another problem area is the C++ lan-
guage mapping. The mapping is diffi-
cult to use correctly and contains many

1_CACM_V51.8.indb 54 7/21/08 10:13:21 AM

practice

august 2008 | vol. 51 | no. 8 | communications of the acm 55

pitfalls that lead to bugs, particularly
with respect to thread safety, excep-
tion safety, and memory management.
A number of other examples of overly
complex and poorly designed APIs can
be found in the CORBA specification,
such as the naming, trading, and notifi-
cation services, all of which provide APIs
that are error-prone and difficult to use.
Also, CCM configuration is so complex
it cannot be used productively without
employing additional tool support.

Poorly designed interfaces and lan-
guage mappings are a very visible part
of any technology because they are the
“coal face” of software development:
they are the point at which developers
and the platform meet, and their us-
ability and safety has major impact on
development time and defect count.
Obviously, any technology that suffers
from endemic complexity does little to
endear itself to developers, and does
even less to endear itself to managers.

Complexity also arises from archi-
tectural choices. For example, CORBA’s
IORs (interoperable object references)
are opaque entities whose contents are
to remain hidden from developers. This
is unfortunate for three reasons:

Opaque references pretty much ˲˲

force the use of a naming service be-
cause clients cannot create object ref-
erences without the help of an external
service. This not only complicates sys-
tem development and deployment, but
also introduces redundant state into
the system (with the concomitant risk
of corrupting that state) and creates an
additional failure point.

Opaque references considerably ˲˲

complicate a number of APIs. For exam-
ple, CORBA’s interceptor APIs would be
far simpler had object references been
made transparent.

Opaque references require remote ˲˲

calls to compare object identity reliably.
For some applications, the overhead of
these calls is prohibitive.

Another source of complexity is the
type system. For example, CORBA’s in-
terface definition language provides
a large set of types, among them un-
signed integers, fixed-point and extend-
ed-precision floating-point numbers,
bounded and unbounded sequences,
as well as arrays, and an “Any” type that
can store values of arbitrary type.

Supporting these types complicates
many APIs (in particular, the interfaces

for introspection and dynamic invo-
cation) and leads to subtle portability
problems. For example, Java does not
support unsigned types, so use of an un-
signed integer in an interface can lead
to overflow problems when a Java client
communicates with a C++ server. Simi-
larly, on platforms without native sup-
port for fixed-point or double-precision
floating-point numbers, implementa-
tions must emulate these types.

Emulations are difficult to imple-
ment such that they behave identically
across platforms, and they require addi-
tional APIs. This adds further complex-
ity and is a source of hard-to-diagnose
interoperability problems.

Finally, some of the OMG’s early ob-
ject services specifications, such as the
life cycle, query, concurrency control, re-
lationship, and collection services, were
not only complex, but also performed
no useful function whatsoever. They
only added noise to an already complex
suite of specifications, confused cus-
tomers, and reinforced CORBA’s repu-
tation of being hard to use.

Insufficient Features: CORBA pro-
vides quite rich functionality, but fails
to provide two core features:

Security. CORBA’s unencrypted traf-
fic is subject to eavesdropping and man-
in-the-middle attacks, and it requires a
port to be opened in the corporate fire-
wall for each service. This conflicts with
the reality of corporate security policies.
(Incidentally, this CORBA shortcoming
was major factor in the rise of SOAP. Not
having to open a port in the corporate
firewall and sending everything via port
80 was seen as a major advantage, de-
spite the naïvety of that idea.) The OMG
made several attempts at specifying se-
curity and firewall traversal for CORBA,
but they were abandoned as a result of
technical shortcomings and lack of in-
terest from firewall vendors.

Versioning. Deployed commercial
software requires middleware that al-
lows for gradual upgrades of the soft-
ware in a backward-compatible way.
CORBA does not provide any such ver-
sioning mechanism (other than version-
ing by derivation, which is utterly inad-
equate). Instead, versioning a CORBA
application generally breaks the on-the-
wire contract between client and server.
This forces all parts of a deployed appli-
cation to be replaced at once, which is
typically infeasible. (This shortcoming

Today, CORBA
is used mostly
to wire together
components
that run inside
companies’
networks, where
communication
is protected from
the outside world
by a firewall. It
is also used for
real-time and
embedded systems
development, a
sector in which
CORBA is actually
growing. Overall,
however, CORBA’s
use is in decline
and it cannot be
called anything
but a niche
technology now.

1_CACM_V51.8.indb 55 7/21/08 10:13:21 AM

56 communications of the acm | august 2008 | vol. 51 | no. 8

practice

of CORBA was another major factor in
the rise of SOAP. The supposedly loosely
coupled nature of XML was seen as ad-
dressing the problem, despite this idea
being just as naïve as funneling all com-
munications through port 80.)

For a commercial e-commerce infra-
structure, lack of security and versioning
are quite simply showstoppers—many
potential e-commerce customers re-
jected CORBA for these reasons alone.

A number of other technical issues
plague CORBA, among them:

Design flaws in CORBA’s interoper-˲˲

ability protocol make it pretty much im-
possible to build a high-performance
event distribution service.

The on-the-wire encoding of COR-˲˲

BA contains a large amount of redun-
dancy, but the protocol does not sup-
port compression. This leads to poor
performance over wide-area networks.

The specification ignores threading ˲˲

almost completely, so threaded applica-
tions are inherently nonportable (yet
threading is essential for commercial-
grade applications).

CORBA does not support asynchro-˲˲

nous server-side dispatch.
No language mappings exist for C# ˲˲

and Visual Basic, and CORBA has com-
pletely ignored .NET.

This list of problems is just a sam-
ple and could be extended consider-
ably. Such issues affect only a minority
of customers, but add to CORBA’s bad
press and limit its market.

Procedural Issues
Technical problems are at the heart of
CORBA’s decline, raising the question
of how it is possible for a technology
produced by the world’s largest soft-
ware consortium to suffer such flaws. As
it turns out, the technical problems are
a symptom rather than a cause.

The OMG is an organization that
publishes technology based on con-
sensus. In essence, members vote to
issue an RFP (request for proposals)
for a specification, member companies
submit draft specifications in response,
and the members vote on which draft
to accept as a standard. In theory, this
democratic process is fair and equitable
but, in practice, it does not work:

There are no entry qualifications to
participate in the standardization pro-
cess. Some contributors are experts in
the field, but, to be blunt, a large num-

implementation can be surprisingly
costly; customers often find themselves
locked into a particular product despite
all the standardization.

RFPs are often answered by several
draft specifications. Instead of choosing
one of the competing specifications, a
common response of OMG members
is to ask the submitters to merge their
features into a single specification. This
practice is a major cause of CORBA’s
complexity. By combining features,
specifications end up as the kitchen
sink of every feature thought of by any-
one ever. This not only makes the speci-
fications larger and more complex than
necessary, but also tends to introduce
inconsistencies: different features that,
in isolation, are perfectly reasonable
can subtly interact with each other and
cause semantic conflicts.

Major vendors occasionally stall pro-
ceedings unless their pet feature makes
it into the merged standard. This causes
the technology process to degenerate
into political infighting, forces foul
compromises, and creates delays. For
example, the first attempt at a compo-
nent model was a victim of such infight-
ing, as was the first attempt at a C++
mapping. Both efforts got bogged down
to the point where they had to be aban-
doned and restarted later.

The OMG does not require a reference
implementation for a specification to be
adopted. This practice opens the door to
castle-in-the-air specifications. On sev-
eral occasions, the OMG has published
standards that turned out to be partly
or wholly unimplementable because of
serious technical flaws. In other cases,
specifications that could be implement-
ed were pragmatically unusable because
they imposed unacceptable runtime
overhead. Naturally, repeated incidents
of this sort are embarrassing and do
little to boost customer confidence. A
requirement for a reference implemen-
tation would have forced submitters to
implement their proposals and would
have avoided many such incidents.

Overall, the OMG’s technology adop-
tion process must be seen as the core
reason for CORBA’s decline. The pro-
cess encourages design by committee
and political maneuvering to the point
where it is difficult to achieve technical
mediocrity, let alone technical excel-
lence. Moreover, the addition of dis-
jointed features leads to a gradual ero-

ber of members barely understand the
technology they are voting on. This re-
peatedly has led to the adoption of spec-
ifications with serious technical flaws.

RFPs often call for a technology that is
unproven. The OMG membership can
be divided into roughly two groups: us-
ers of the technology and vendors of
the technology. Typically, it is the us-
ers who would like to expand CORBA to
add a capability that solves a particular
problem. These users, in the hope that
vendors will respond with a solution
to their problem, drive issuance of an
RFP. Users, however, usually know little
about the internals of a CORBA imple-
mentation. At best, this leads to RFPs
containing requirements that are diffi-
cult to implement or have negative per-
formance impact. At worst, it leads to
RFPs that are little more than requests
for vendors to perform magic. Instead
of standardizing best existing practice,
such RFPs attempt to innovate without
prior practical experience.

Vendors respond to RFPs even when
they have known technical flaws. This
may seem surprising. After all, why
would a vendor propose a standard for
something that is known to suffer tech-
nical problems? The reason is that ven-
dors compete with each other for cus-
tomers and are continuously jostling
for position. The promise to respond to
an RFP, even when it is clear that it con-
tains serious problems, is sometimes
used to gain favor (and, hopefully, con-
tracts) with users.

Vendors have a conflict of interest when
it comes to standardization. For vendors,
standardization is a two-edged sword.
On the one hand, standardization is at-
tractive because it makes it easier to sell
the technology. On the other hand, too
much standardization is seen as detri-
mental because vendors want to keep
control over features that distinguish
their product from the competition.

Vendors sometimes attempt to block
standardization of anything that would
require a change to their existing prod-
ucts. This causes features that should
be standardized to remain proprietary
or to be too vaguely specified to be use-
ful. Some vendors also neglect to dis-
tinguish standard features from pro-
prietary ones, so customers stray into
implementation-specific territory with-
out warning. As a result, porting a COR-
BA application to a different vendor’s

1_CACM_V51.8.indb 56 7/21/08 10:13:21 AM

practice

august 2008 | vol. 51 | no. 8 | communications of the acm 57

Technical problems
are at the heart
of CORBA’s decline.
This raises the
question of how
it is possible for
a technology that
was produced
by the world’s
largest software
consortium to
suffer such flaws.
As it turns out,
the technical
problems are
a symptom rather
than a cause.

sion of the architectural vision.
CORBA’s numerous technical flaws

have accumulated to a point where it
is very difficult to fix or add anything
without breaking something else. For
example, every revision of CORBA’s
interoperability protocol had to make
incompatible changes, and many fixes
and clarifications to the protocol had
to be reworked several times because of
unforeseen interactions with features
that were added over time.

Can We Learn from the Past?
A democratic process such as the OMG’s
is uniquely ill suited for creating good
software. Despite the known procedur-
al problems, however, the industry pre-
fers to rely on large consortia to produce
technology. Web services, the current
silver bullet of middleware, uses a pro-
cess much like the OMG’s and, by many
accounts, also suffers from infighting,
fragmentation, lack of architectural co-
herence, design by committee, and fea-
ture bloat. It seems inevitable that Web
services will enact a history quite simi-
lar to CORBA’s.

What steps should we take to end up
with a better standards process and bet-
ter middleware? Seeing that procedural
failures are the root cause of technical
failures, I suggest at least the following:

Standards consortia need iron-cast
rules to ensure that they standardize ex-
isting best practice. There is no room for
innovation in standards: throwing in
“just that extra little feature” inevitably
causes unforeseen technical problems,
despite the best intentions.

No standard should be approved with-
out a reference implementation. This pro-
vides a first-line sanity check of what is
being standardized. (No one is brilliant
enough to look at a specification and be
certain it does not contain hidden flaws
without actually implementing it.)

No standard should be approved with-
out having been used to implement a few
projects of realistic complexity. This is
necessary to weed out poor APIs: too of-
ten, the implementers of an API never
actually use their own interfaces, with
disastrous consequences for usability.

Interestingly, the open source com-
munity has done a much better job of
adhering to these rules than have indus-
try consortia.

Open source innovation usually is sub-
ject to a Darwinian selection process. Dif-

ferent developers implement their ideas
of how something should work, and
others try to use the feature and critique
or improve it. That way, the software is
extensively scrutinized and tested, and
only the “fittest” version survives. (Many
open source projects formalize this pro-
cess with alternating experimental and
production releases: the experimental
releases act as the test bed and evolu-
tionary filter.)

To create quality software, the ability
to say “no” is usually far more important
than the ability to say “yes.” Open source
embodies this in something that can be
called “benevolent dictatorship”: even
though many people contribute to the
overall effort, a single expert (or a small
cabal of experts) ultimately accepts or
rejects each proposed change. This
preserves the original architectural vi-
sion and stops the proverbial too many
cooks from spoiling the broth.

At the heart of these open source
practices are two essential prerequi-
sites: cooperation and trust. Without
cooperation, the evolutionary process
cannot work; and without trust, no ca-
bal of experts can act as an ultimate ar-
biter. This, however, is precisely where
software consortia find their doom. It
is naïve to put competing vendors and
customers into a consortium and expect
them to come up with a high-quality
product—commercial realities ensure
that cooperation and trust are the last
things on the participants’ minds.

Of course, software consortia con-
tribute to an evolutionary process just
as much as open source projects do. But
it is the commercial marketplace that
acts as the test bed and evolutionary
filter, and it is the customers who, with
their wallets, act as the (usually not so
benevolent) dictator. This amounts to
little more than an industry that throws
up silver bullets and customers who
leap after them like lemmings over a
cliff. Until we change this process, the
day of universal e-commerce middle-
ware is as far away as ever.	

Michi Henning (michi@zeroc.com) is chief scientist of
ZeroC, Palm Beach Garden, FL. From 1995 to 2002, he
worked on CORBA as a member of the OMG’s architecture
board and as an ORB implementer, consultant, and trainer.

A previous version of this article appeared in the June
2006 issue of ACM Queue.

© 2008 ACM 0001-0782/08/0800 $5.00

1_CACM_V51.8.indb 57 7/21/08 10:13:21 AM

mailto:michi@zeroc.com

58 communications of the acm | august 2008 | vol. 51 | no. 8

contributed articles

M any tasks are trivial for humans but continue to
challenge even the most sophisticated computer
programs. Traditional computational approaches to
solving such problems focus on improving artificial-
intelligence algorithms. Here, we advocate a different
approach: the constructive channeling of human
brainpower through computer games. Toward this
goal, we present general design principles for the
development and evaluation of a class of games we call
“games with a purpose,” or GWAPs, in which people,
as a side effect of playing, perform tasks computers
are unable to perform.

The Entertainment Software Association (www.
theesa.com/facts/gamer_data.php) has reported
that more than 200 million hours are spent each day
playing computer and video games in the U.S. Indeed,
by age 21, the average American has spent more than
10,000 hours playing such games15—equivalent to five
years of working a full-time job 40 hours per week.

doi:10.1145/1378704.1378719

Data generated as a side effect of game
play also solves computational problems
and trains AI algorithms.

by Luis von Ahn and Laura Dabbish

Designing
Games With
A Purpose

V
I

S
U

A
L

I
Z

A
T

I
O

N
 B

Y
 B

E
N

 F
R

Y

1_CACM_V51.8.indb 58 7/21/08 10:13:23 AM

http://www.theesa.com/facts/gamer_data.php
http://www.theesa.com/facts/gamer_data.php

1_CACM_V51.8.indb 59 7/21/08 10:13:26 AM

60 communications of the acm | august 2008 | vol. 51 | no. 8

contributed articles

What if this time and energy were also
channeled toward solving computa-
tional problems and training AI algo-
rithms?

People playing GWAPs22–25 perform
basic tasks that cannot be automat-
ed. The ESP Game,22 a.k.a. the Google
Image Labeler (images.google.com/
imagelabeler/), is a GWAP in which
people provide meaningful, accurate
labels for images on the Web as a side
effect of playing the game; for example,
an image of a man and a dog is labeled
“dog,” “man,” and “pet.” The game is
fast-paced, enjoyable, and competi-
tive; as of July 2008, 200,000 players
had contributed more than 50 million
labels; try it yourself at www.gwap.com.
These labels can be used to improve
Web-based image search, which typi-
cally involves noisy information (such
as filenames and adjacent text). Rather
than using computer-vision techniques
that do not work well enough, the ESP
Game constructively channels its play-
ers to do the work of labeling images in
a form of entertainment.

Other GWAPs include Peeka-
boom,25 which locates objects within
images (and has been played more
than 500,000 human-hours); Phetch,23
which annotates images with descrip-
tive paragraphs; and Verbosity,24 which
collects commonsense facts in or-
der to train reasoning algorithms. In
each, people play not because they are
personally interested in solving an in-
stance of a computational problem but
because they wish to be entertained.

The ESP Game, introduced in 2003,
and its successors represent the first
seamless integration of game play and
computation. How can this approach
be generalized? Our experience build-
ing and testing GWAPs with hundreds
of thousands of players has helped us
spell out general guidelines for GWAP
development. Here, we articulate
three GWAP game “templates” repre-
senting three general classes of games
containing all the GWAPs we’ve creat-
ed to date. They can be applied to any
computational problem to construct a
game that encourages players to solve
problem instances. Each template de-
fines the basic rules and winning con-
ditions of a game in a way that is in the
players’ best interest to perform the in-
tended computation. We also describe
a set of design principles that comple-

ment the basic game templates. While
each template specifies the funda-
mental structure for a class of games,
the general design principles make
the games more enjoyable while im-
proving the quality of the output pro-
duced by players. Finally, we propose a
set of metrics defining GWAP success
in terms of maximizing the utility ob-
tained per human-hour spent playing
the game.

Related Work
Though previous research recognized
the utility of human cycles and the mo-
tivational power of gamelike interfac-
es, none successfully combined these
concepts into a general method for
harnessing human processing skills
through computer games.

Networked individuals accomplish-
ing work. Some of the earliest examples
of networked individuals accomplish-
ing work online, dating to the 1960s,
were open-source software-develop-
ment projects. These efforts typically
involved contributions from hundreds,
if not thousands, of programmers
worldwide. More recent examples of
networked distributed collaboration
include Wikipedia, by some measures
equal in quality to the Encyclopaedia
Britannica.6

The collaborative effort by large
numbers of networked individuals
makes it possible to accomplish tasks
that would be much more difficult,
time consuming, and in some cases
nearly impossible for a lone person or
for a small group of individuals to do
alone. An example is the recent Ama-
zon Mechanical Turk system (devel-
oped in 2005, www.mturk.com/mturk/
welcome) in which large computation-
al tasks are split into smaller chunks
and divvied up among people willing
to complete small amounts of work for
some minimal amount of money.

Open Mind Initiative. The Open
Mind Initiative18,19 is a worldwide re-
search endeavor developing “intelli-
gent” software by leveraging human
skills to train computers. It collects in-
formation from regular Internet users,
or Netizens, and feeds it to machine-
learning algorithms. Volunteers par-
ticipate by providing answers to ques-
tions computers cannot answer (such
as “What is in this image?”), aiming to
teach computer programs common-

People play not
because they
are personally
interested in solving
an instance of a
computational
problem but
because they wish
to be entertained.

1_CACM_V51.8.indb 60 7/21/08 10:13:26 AM

http://www.gwap.com
http://images.google.com/imagelabeler/
http://images.google.com/imagelabeler/
http://www.mturk.com/mturk/welcome
http://www.mturk.com/mturk/welcome

contributed articles

august 2008 | vol. 51 | no. 8 | communications of the acm 61

sense facts. However, the Open Mind
approach involves two drawbacks: re-
liance on the willingness of unpaid
volunteers to donate their time and no
guarantee that the information they
enter is correct. GWAPs differ from
Open Mind in that they are designed
to be enjoyable while ensuring that the
data they collect is free from error.

Interactive machine learning. An-
other area leveraging human abilities
to train computers is “interactive ma-
chine learning”4 in which a user pro-
vides examples to a machine-learning
system and is given real-time feedback
as to how well an algorithm is learn-
ing. Based on the feedback, the user is
able to determine what new examples
should be given to the program. Some
instances of this approach have uti-
lized human perceptual skills to train
computer-vision algorithms to recog-
nize specific objects.

Making work fun. Over the past 30
years, human-computer-interaction
researchers have recognized and writ-
ten about the importance of enjoyment
and fun in user interfaces.16,26 For ex-
ample, systems (such as the StyleCam)
aim to use gamelike interaction to in-
crease enjoyment and engagement
with the software.21 Many research-
ers have suggested that incorporating
gamelike elements into user interfaces
could increase user motivation and the
playfulness of work activities.16,26 Some
projects have taken this notion further,
turning the user interface itself into
a game. For instance, PSDoom pro-
vides a first-person-shooter-style inter-
face for system-administrator-related
tasks.2,3 The idea of turning work tasks
into games is increasingly being ap-
plied in children’s learning activities.12
Researchers note, as we do here, that it
is important to not simply slap a game-
like interface onto work activities but
to integrate the required activities into
the game itself; there must be tight in-
terplay between the game interaction
and the work to be accomplished.

Desire to Be Entertained
The GWAP approach is characterized
by three motivating factors: an increas-
ing proportion of the world’s popula-
tion has access to the Internet; certain
tasks are impossible for computers but
easy for humans; and people spend lots
of time playing games on computers.

puts based on the input. Game instruc-
tions indicate that players should try to
produce the same output as their part-
ners. Players cannot see one another’s
outputs or communicate with one an-
other; and

Winning condition. Both players
must produce the same output; they
do not have to produce it at the same
time but must produce it at some point
while the input is displayed onscreen.

When the input is an image and the
outputs are keyword descriptions of
the image, this template becomes the
ESP Game (see Figure 2).

Since the two players cannot com-
municate and know nothing about
each other, the easiest way for both to
produce the same output is by enter-
ing something related to the common
input. Note, however, that the game
rules do not directly tell the players
to enter a correct output for the given

In contrast to other work that has at-
tempted to use distributed collections
of individuals to perform tasks, the
paradigm we describe here does not
rely on altruism or financial incentives
to entice people to perform certain ac-
tions; rather, they rely on the human
desire to be entertained. A GWAP, then,
is a game in which the players perform
a useful computation as a side effect
of enjoyable game play. Every GWAP
should be associated with a computa-
tional problem and therefore generate
an input-output behavior.

A game can be fully specified through
a goal players try to achieve (the win-
ning condition) and a set of rules that
determines what players can and can-
not do during the game. A GWAP’s
rules should encourage players to cor-
rectly perform the necessary steps to
solve the computational problem and,
if possible, involve a probabilistic guar-
antee that the game’s output is correct,
even if the players do not want it to be
correct.

The key property of games is that
people want to play them. We therefore
sidestep any philosophical discussions
about “fun” and “enjoyable,” defining
a game as “successful” if enough hu-
man-hours are spent playing it.

We advocate a transformative pro-
cess whereby a problem is turned into
a GWAP. Given a problem that is easy
for humans but difficult or impossible
for computers, the process of turning
the problem into a GWAP consists of
first creating a game so that its struc-
ture (such as rules and winning condi-
tion) encourages computation and cor-
rectness of the output. Having created
many GWAPs, including the ESP Game,
Peekaboom, Phetch, and Verbosity, we
explore three game-structure templates
that generalize successful instances of
human computation games: output-
agreement games, inversion-problem
games, and input-agreement games.

Output-agreement games. Output-
agreement games (see Figure 1) are a
generalization of the ESP Game (see
the sidebar “The ESP Game and Ver-
bosity” on page 65) to its fundamental
input-output behavior:

Initial setup. Two strangers are ran-
domly chosen by the game itself from
among all potential players;

Rules. In each round, both are given
the same input and must produce out-

Figure 1: In this output-agreement game,
players are given the same input and
must agree on an appropriate output.

Players win if/when output1,i = output2,j

Player 1

(t1,1) output1,1

(t1,2) output1,2

(t1,n) output1,n

INPUT

Player 2

(t2,1) output2,1

(t2,2) output2,2

(t2,m) output2,m

INPUT

Figure 2: In this output-agreement game,
the partners are agreeing on a label.

Player 1

	 (0:03)	 dog

	 (0:07)	 puppy

	 (0:10)	 cute

Player 2

	 (0:06)	 animal

	 (0:11)	 dog

1_CACM_V51.8.indb 61 7/21/08 10:13:26 AM

62 communications of the acm | august 2008 | vol. 51 | no. 8

contributed articles

input; all they know is that they must
“think like each other” and enter the
same output.

This game structure accomplishes
several goals at once: a good “winning”
strategy for the players is to produce
outputs related to the only thing they
have in common—the input; when the
two players provide the same output,
this partially verifies that the output is
correct, since it comes from two largely
independent sources; and trying to
agree on the same output with a part-
ner is an enjoyable social experience.

Inversion-problem games. Result-
ing from any of three seemingly differ-
ent games—Peekaboom,25 Phetch,23

and Verbosity24—they, in their most
general form (see Figure 3), can be de-
scribed through the following rules:

Initial setup. Two strangers are ran-
domly chosen by the game itself from
among all potential players;

Rules. In each round, one player is
assigned to be the “describer,” and
the other player is assigned to be the
“guesser.” The describer is given an in-
put. Based on this input, the describer
produces outputs that are sent to the
guesser. The outputs from the describ-
er should help the guesser produce the
original input; and

Winning condition. The guesser pro-
duces the input that was originally giv-
en to the describer.

Verbosity (see the sidebar) is an
inversion-problem game where the in-
put is a word and the outputs are com-
monsense facts related to that word.
Following the input word “milk,” the
game might output such facts as “it is
white” and “people usually eat cereal
with it.”

Although the design of Verbosity
involves other game elements not de-
scribed here, the basic idea is that play-
ers need not be asked directly for facts
about “milk.” The game is designed
such that facts are collected as a side
effect of playing. Players told to “please
enter facts about milk” might not be
motivated to do so or enter incorrect
information.

In inversion-problem games, part-
ners are successful only when the de-
scriber provides enough outputs for
the guesser to guess the original input.
If the outputs are incorrect or incom-
plete, the guesser will not be able to
produce the original input. Therefore,
the game structure encourages play-
ers to enter correct information. At the
same time, having one player guess the
input while the other describes it is an
enjoyable social interaction, similar to
the popular children’s game “20 Ques-
tions.”

Additional elements can be added to
inversion-problem games to increase
player enjoyment, including transpar-
ency and alternation:

Transparency. In post-game ques-
tionnaires, players of inversion-prob-
lem games have expressed a strong de-
sire to see their partner’s guesses. We
therefore experimented with adding a
level of transparency between players

so the actions of one would be visible
to the other. In games like Verbosity
and Peekaboom this transparency is
achieved by displaying partner guesses
to the describers and allowing them to
indicate whether each guess is “hot”
or “cold.” This design feature increas-
es the social connection between the
players without compromising output
correctness.

Alternation. Unlike output-agree-
ment games (where both players con-
tinually perform the same task), inver-
sion-problem games are asymmetric
in that each player in the pair performs
a different task. In some games of this
type, one of the two roles involves more
interaction or is faster-paced and thus
more enjoyable than the other role. In
such cases, to balance the game and
maintain an equal level of player en-
gagement, player roles can switch after
each round; the guesser becomes the
describer, and the describer becomes
the guesser.

Input-agreement games. Repre-
senting a generalization of games like
Edith Law’s TagATune9 (see Figure 4),
they can be described through the fol-
lowing rules:

Initial setup. Two strangers are ran-
domly chosen by the game itself from
among all potential players;

Rules. In each round, both players
are given inputs that are known by the
game (but not by the players) to be the
same or different. The players are in-
structed to produce outputs describing
their input, so their partners are able
to assess whether their inputs are the
same or different. Players see only each
other’s outputs; and

Winning condition. Both players cor-
rectly determine whether they have
been given the same or different in-
puts.

In TagATune, the input is a sound
clip, and the output is a series of labels
or tags for the clip. The two players
achieve the winning condition (and ob-
tain points) only if they both correctly
determine whether they have the same
input song. Because players want to
achieve the winning condition, they
each want their partner to be able to
determine if their inputs are the same.
This means it is in their own best inter-
est to enter accurate outputs that ap-
propriately describe their individual
inputs.

Players win if/when output2,i = INPUT

Player 1

(t1,1) output1,1

(t1,n) output1,n

INPUT

Player 2

(t2,1) output2,1

(t2,m) output2,m

(t1,1) output1,1

(t1,n) output1,n

Figure 3: In this inversion-problem game,
given an input, Player 1 produces an out-
put, and Player 2 guesses the input.

Win if players guess whether INPUT1 = INPUT2

Player 1

INPUT1

(t1,1) output1,1

(t1,n) output1,n

= ≠

Player 2

INPUT2

(t2,1) output2,1

= ≠

(t2,m) output2,m

Figure 4: In this input-agreement game,
players must determine whether they
have been given the same input.

1_CACM_V51.8.indb 62 7/21/08 10:13:26 AM

contributed articles

august 2008 | vol. 51 | no. 8 | communications of the acm 63

To discourage players from ran-
domly guessing whether their inputs
are the same, scoring in input-agree-
ment games strongly penalizes incor-
rect guesses. One way to do this (while
maintaining a positive scoring system)
is to give an increasing number of
points for streaks of correct answers
and zero points for incorrect answers.

Increase Player Enjoyment
Perhaps the most important aspect of
GWAP is that the output is produced in
a way that’s designed to be enjoyable.
As noted with respect to the ESP Game,
players are not directly instructed to
enter keywords for a given image. Rath-
er, they are told to type what they think
their partner is typing. The fact that
people enjoy the game makes them
want to continue playing, in turn pro-
ducing more useful output.

It is important to note that the three
basic templates defined earlier de-
scribe the basic structure of a GWAP;
additional game mechanisms must be
added to them to increase player enjoy-
ment. For example, much of the previ-
ous work describing game-design prin-
ciples cites challenge as a key aspect of
any successful game.11,12,14,20 Challenge
translates into game features (outlined
by Malone11,12) like timed response,
score keeping, player skill level, high-
score lists, and randomness:

Timed response. Setting time limits
for game sessions introduces chal-
lenge into a game in the form of timed
response.11,12 Players are told to com-
plete a designated number of prob-
lem instances within an assigned time
limit. If they accomplish it, they may
be given extra points for their perfor-
mance. Timed response is effective for
introducing challenge because it estab-
lishes an explicit goal that is not trivial
for players to achieve if the game is cali-
brated properly.11,12 We know from the
literature on motivation in psychology
and organizational behavior that goals
that are both well-specified and chal-
lenging lead to higher levels of effort
and task performance than goals that
are too easy or vague.10 It is essential
that the number of tasks for players to
complete within a given time period is
calibrated to introduce challenge and
that the time limit and time remaining
are displayed throughout the game.

Score keeping. One of the most di-

rect methods for motivating players is
by assigning points for each instance
of successful output produced during
the game. For the ESP Game,22 pairs of
players are given points for each image
for which they successfully agree on a
word (which then becomes a label for
the image). Using points increases mo-
tivation by providing a clear connection
among effort in the game, performance
(achieving the winning condition), and
outcomes (points).11,12 A score summa-
ry following each game also provides
players with performance feedback,10
facilitating progress assessment on
score-related goals (such as beating a
previous game score and completing
all task instances within the set time
limit).

Player skill levels. Player skill levels,
or “ranks,” are another way for game
developers to incorporate goal-based
motivation into GWAP design. For ex-
ample, the ESP Game and Peekaboom
each have five skill levels players are
able to achieve based on the number
of points they accumulate. Each new-
comer to the game initially has no
points and is assigned to the lowest
level (“newbie”) then has to earn a cer-
tain number of points to advance to the
next level.

Following each game session, play-
ers are shown their current skill level
and the number of points needed to
reach the next level.10 Data from the
ESP Game indicates that presentation
of this skill-level information strongly
influences player motivation and be-
havior. Of the 200,000+ players as of
July 2008 with an account on the ESP
Game, 42% have scores that fall within
5,000 points of the rank cutoffs. Given
that these skill-level point intervals
cover less than 2% of the space of pos-
sible cumulative scores, the data sug-
gests that many players continue play-
ing just to reach a new rank.

High-score lists. Another method
for motivating GWAP play is the use
of high-score lists showing the login
names and score of the subset of play-
ers with the highest number of points
over a certain period of time. The score
needed by players to be listed on a
high-score list varies in terms of diffi-
culty relative to the list’s time period,
ranging from highest scores achieved
in the past game session over the past
hour or week all the way to the history

It is essential that
the number of
tasks for players
to complete within
a given time period
is calibrated to
introduce challenge
and that the time
limit and time
remaining are
displayed throughout
the game.

1_CACM_V51.8.indb 63 7/21/08 10:13:26 AM

64 communications of the acm | august 2008 | vol. 51 | no. 8

contributed articles

of the game. For example, an hourly
high-score list gives players a specific
point total to aim for to get onto the
list, as well as relatively quick feedback
(within the hour) about their progress
toward it. A daily high-score list and
all-time high-score list define goals of
increasing difficulty. These multi-level
goals, varying in difficulty, provide
strong, positive motivation for extend-
ed game play—and related data gen-
eration.

Randomness. GWAPs should also in-
corporate randomness. For example,
inputs for a particular game session
are typically selected at random from
the set of all possible inputs, and play-
ers are randomly paired to prevent
cheating.

Because inputs are randomly select-
ed, their difficulty varies, thus keeping
the game interesting and engaging
for expert and novice players alike.11,12

It also means that every game session
involves uncertainty about whether all
inputs will be completed within the
time limit, adding to the challenge ex-
perienced by players.11,12

Random partner assignment also
ensures the uniqueness of each game
session. Anecdotal evidence from the
ESP Game22 suggests that during each
game session players develop a sense
of their partners’ relative skill, a per-
ception that affects their joint perfor-
mance. The feeling of connection that
players can get from these games is one
of the factors that motivates repeated
play.18,20

Output Accuracy
Additional mechanisms must be added
to GWAPs beyond the basic template
structure to ensure output correctness
and counter player collusion. For exam-
ple, players of the ESP Game might try
to circumvent the game’s built-in verifi-
cation mechanism by agreeing prior to
the game that for every image they will
always type the letter “a”; in this case,
they would always match each other,
and incorrect data would therefore be
entered into the system. We describe
generally applicable mechanisms in
the following sections that have proved
successful in guarding against player
collusion and guaranteeing the cor-
rectness of the computation across all
game templates.

Random matching. GWAPs are

meant to be played by hundreds, if not
thousands, of people at once, most in
distributed locations. Players paired
or grouped randomly have no way of
knowing their partner’s identity so have
no easy way to agree ahead of time on
any cheating strategy. Thus, under ran-
dom matching, the probability of two or
more cheaters using the same strategy
being paired together should be low.

Player testing. Games may randomly
present players inputs for which all
possible correct outputs are already
known. For them, if the output pro-
duced by a particular player does not
match the known correct outputs, the
players should be considered suspi-
cious, and none of their results should
be trusted. Depending on the number
of “test” inputs presented to players,
this strategy can guarantee with high
probability that the output is correct.
To illustrate, assume half of the inputs
given to a player are test inputs. The
probability is thus that a new output
by the player is correct, given of course
that the player is correct on all the test
inputs at least 50% of the time, a prob-
ability that can be increased through
repetition.

Repetition. A game should be de-
signed so it does not consider an out-
put correct until a certain number of
players have entered it. This strategy for
determining correctness enables any
GWAP to guarantee correct output with
arbitrarily high probability. As an ex-
ample, consider an output-agreement
game; if for a given input the game ac-
cepts an output as correct only after
n pairs have entered it, and the game
itself knows that each of these n pairs
entered a correct output with at least
50% probability (as a result of player
testing), then the output is correct with
probability of at least (I–½n).

Taboo outputs. For problems in
which many different outputs can be
associated with one input (such as la-
beling images with words), ensuring
sufficient coverage of the output space
is an important consideration. The use
of “taboo,” or off-limits, outputs pro-
vides some guarantee that a larger pro-
portion of all possible outputs will be
entered by all players. Taboo outputs
are known correct outputs displayed
onscreen during game sessions that
players are not allowed to enter. They
can be taken from correct outputs gen-

The real measure
of utility for a
GWAP is therefore
a combination of
throughput and
enjoyability.

1_CACM_V51.8.indb 64 7/21/08 10:13:26 AM

contributed articles

august 2008 | vol. 51 | no. 8 | communications of the acm 65

Two of the most popular
GWAPS—ESP and Verbosity—
can be played online at
www.gwap.com.

The ESP Game has generated
millions of labels for random
images located throughout
the Web. In it, two players are
randomly paired for two-and-a-
half minutes as they are shown
a series of images to label. The
game does not directly ask them
to label the images. Rather, both
players must try to enter the same
word as their partner for each
image on the screen; neither
player can see the partner’s
words. When both players agree
on a word, each is given a new
image. The goal is to agree with
the partner on words for as many
images as possible. The words the
players agree on for each image
are extremely accurate labels that
can be used to improve image
search throughout the Web.
To increase the quality of these
labels, as well as to motivate
player engagement, the game

forbids the use of “taboo words”
from being entered. In the
screenshot (see Figure a), players
cannot use the words “dog” or
“pillow” when trying to agree on a
word with their partner.

Verbosity is a word-guessing
game in which two players
alternate roles. The describer is
given a secret word the guesser

must figure out as quickly as
possible. The describer helps
the guesser by providing clues
about the secret word using
sentence templates that must
be completed without using the
secret word itself. In the example
here (see Figure b), the secret
word is “sock,” and the sentence
template “It is a kind of _____”

has been instantiated to the clue
“It is a kind of clothing.” The
describer sees all of the guesser’s
inputs and indicates which ones
are “hot” and which are “cold.”
The computational purpose of
the game is to collect a database
of commonsense facts about the
secret words (such as “Sock is a
kind of clothing”).

A Sampling of GWAPs

The ESP Game and Verbosity

trators to guarantee that many people
will be able to play at the same time. We
thus recommend that game developers
apply a technique—prerecorded game
play—introduced by the ESP Game.22 A
dyadic game, normally played by multi-
ples of two players, can be transformed
into a single-player game by pairing a
single player with a prerecorded set of
actions.

In the case of an input-agreement
game or output-agreement game (such
as the ESP Game), implementing auto-
mated players is relatively easy. When
two people are playing, the game
should simply record every action they
make, along with the relative timing of
each action. Then, when a single player
wishes to play, the system can pair that
single player with a prerecorded set of
moves.

In inversion-problem games, im-
plementing prerecorded game play
is more complex because one of the
players (the guesser) must dynamically
respond to the other (human) player’s
actions. Peekaboom, Phetch, and Ver-
bosity have each implemented a single-
player version using techniques cus-

tomized to each game.23–25

More than two players. The three
GWAP templates can be extended to
include more than two players; for
example, output-agreement games
can be extended to incorporate more
players by modifying the winning
condition such that the first two play-
ers who agree on the output are the
winners of the round (and granted
a higher number of points than the
nonwinners). Similarly, the template
for inversion-problem games can
be extended to incorporate multiple
players by substituting an individual
guesser with an arbitrary number of
players in the role of guesser, all rac-
ing to be first to correctly guess the
input (winning condition).

These extensions change the nature
of the games considerably. Whereas
the two-player versions of each tem-
plate are cooperative in nature (play-
ers work together to obtain points), the
multiplayer versions are competitive.
Cooperative, as well as competitive,
games involve advantages and disad-
vantages. For certain players, competi-
tive games may be more enjoyable than

erated in previous rounds of the game
itself. It is important for the game’s de-
signer to randomize which taboo out-
puts are presented in order to account
for potential output-priming effects
(in which the particular taboo outputs
shown to the players influence the
guesses they enter) and ensure wide
coverage of all potential outputs for a
given input.

Other Design Guidelines
The general schemes we’ve presented
here for designing GWAPs rely on the
participation of two players per game
session. Now we show that the games
can be modified to accommodate sin-
gle or more than two players.

Prerecorded games. Paired game play
makes GWAPs social, meaning that
players are able to validate each other’s
computation. However, two-player
games present logistical challenges.
For instance, there may be times when
an odd number of people want to play a
particular game, meaning at least one
of them cannot play. In addition, when
a game is just beginning to gain popu-
larity, it is difficult for game adminis-

Figure a: Players of the ESP Game try to guess
what their partner is typing on each image.

Figure b: Players of Verbosity enter commonsense
facts to help their partner guess a secret word.

1_CACM_V51.8.indb 65 7/21/08 10:13:27 AM

http://www.gwap.com

66 communications of the acm | august 2008 | vol. 51 | no. 8

contributed articles

in the usability tradition on measur-
ing fun and game enjoyment has sug-
gested the usefulness of self-report
questionnaire measures.7,14 However, a
behavioral measure (such as through-
put) provides a more accurate direct
assessment of how much people play
the game and, in turn, how useful the
game is for computational purposes.

Finally, a GWAP’s developers must
verify that the game’s design is indeed
correct; that is, that the output of the
game maps properly to the particular
inputs that were fed into it. One way to
do this (as with the ESP Game, Peeka-
boom, Phetch, and Verbosity) is to ana-
lyze the output with the help of human
volunteers. We have employed two tech-
niques for this kind of output verifica-
tion: comparing the output produced in
the game to outputs generated by paid
participants (rather than game players)22

and having independent “raters” evalu-
ate the quality of the output produced in
the game.22 Output from a GWAP should
be of comparable quality to output pro-
duced by paid subjects.

Conclusion
The set of guidelines we have articu-
lated for building GWAPs represents
the first general method for seamlessly
integrating computation and game-
play, though much work remains to be
done. Indeed, we hope researchers will
improve on the methods and metrics
we’ve described here.

Other GWAP templates likely exist
beyond the three we have presented,
and we hope future work will identify
them. We also hope to better under-
stand problem-template fit, that is,
whether certain templates are better
suited for some types of computational
problems than others.

The game templates we have devel-
oped thus far have focused on similar-
ity as a way to ensure output correct-
ness; players are rewarded for thinking
like other players. This approach may
not be optimal for certain types of
problems; in particular, for tasks that
require creativity, diverse viewpoints
and perspectives are optimal for gener-
ating the broadest set of outputs.17 De-
veloping new templates for such tasks
could be an interesting area to explore.

We would also like to understand
what kinds of problems, if any, fall out-
side the GWAP approach. The games

their cooperative counterparts. On the
other hand, having more players work
on the same input is wasteful in terms
of “computational efficiency,” an im-
portant criterion for evaluating the
utility of a given game.

GWAP Evaluation
How might a game’s performance be
judged successful? Given that two dif-
ferent GWAPs solve the same problem,
which is best? We describe a set of met-
rics for determining GWAP success, in-
cluding throughput, lifetime play, and
expected contribution.

Game efficiency and expected con-
tribution. If we treat games as if they
were algorithms, efficiency would be a
natural metric of evaluation. There are
many possible algorithms for any given
problem, some more efficient than oth-
ers. Similarly, many possible GWAPs
are available for any given problem. In
order to choose the best solution to a
problem we need a way to compare
the alternatives in terms of efficiency.
Efficiency of standard algorithms is
measured by counting atomic steps.
For instance, QuickSort is said to run
in O(n log n) time, meaning it sorts a list
of n elements in roughly n log n compu-
tational steps. In the case of GWAPs,
the notion of what constitutes a com-
putational step is less clear. Therefore,
we must be able to define efficiency
through other means.

First, we define the throughput of a
GWAP as the average number of prob-
lem instances solved, or input-output
mappings performed, per human-
hour. For example, the throughput of
the ESP Game is roughly 233 labels per
human-hour.22 This is calculated by ex-
amining how many individual inputs,
or images, are matched with outputs,
or labels, over a certain period of time.

Learning curves and variations in
player skill must be considered in cal-
culating throughput. Most games in-
volve a certain type of learning, mean-
ing that with repeated game sessions
over time, players become more skilled
at the game. For the game templates
we described earlier, such learning can
result in faster game play over time. To
account for variance in player skill and
changes in player speed over time as a
result of learning, we define through-
put as the average number of problem
instances solved per human-hour. This

average is taken over all game sessions
through a reasonably lengthy period of
time and over all players of the game.

Games with higher throughput
should be preferred over those with
lower throughput. But throughput
is not the end of the story. Because a
GWAP is a game, “fun” must also be
included. It does not matter how many
problem instances are addressed by
a given game if nobody wants to play.
The real measure of utility for a GWAP
is therefore a combination of through-
put and enjoyability.

Enjoyability is difficult to quantify
and depends on the precise implemen-
tation and design of each game. Even
seemingly trivial modifications to a
game’s user interface or scoring system
can significantly affect how enjoyable
it is to play. Our approach to quantify-
ing this elusive measure is to calculate
and use as a proxy the “average lifetime
play” (ALP) for a game. ALP is the over-
all amount of time the game is played
by each player averaged across all peo-
ple who have played it. For instance, on
average, each player of the ESP Game
plays for a total of 91 minutes.

“Expected contribution” is our sum-
mary measure of GWAP quality. Once a
game developer knows on average how
many problems are solved per human-
hour spent in the game (throughput)
and how much time each player can
be expected to spend in a game (ALP),
these metrics can be combined to as-
sess each player’s expected contribu-
tion. Expected contribution indicates
the average number of problem in-
stances a single human player can be
expected to solve by playing a particu-
lar game. Developers can then use this
measure as a general way of evaluating
GWAPs. We define the three GWAP
metrics this way:

Throughput = average number of
problem instances solved per human-
hour;

ALP = average (across all people who
play the game) overall amount of time
the game will be played by an individu-
al player; and

Expected contribution = throughput
multiplied by ALP.

Although this approach does not
capture certain aspects of games (such
as “popularity” and contagion, or word
of mouth), it is a fairly stable measure
of a game’s usefulness. Previous work

1_CACM_V51.8.indb 66 7/21/08 10:13:27 AM

contributed articles

august 2008 | vol. 51 | no. 8 | communications of the acm 67

we have designed so far have focused
on problems that are easily divided
into subtasks. The “bite-size” nature
of these games adds to their popular-
ity and appeal to casual gamers in par-
ticular, since such players typically go
for games they can play “just one more
time” without having to make too much
of a time commitment.

The GWAP approach represents a
promising opportunity for everyone to
contribute to the progress of AI. By le-
veraging the human time spent playing
games online, GWAP game developers
are able to capture large sets of train-
ing data that express uniquely human
perceptual capabilities. This data can
contribute to the goal of developing
computer programs and automated
systems with advanced perceptual or
intelligence skills.

Acknowledgment
We would like to thank Manuel and
Lenore Blum, Mike Crawford, Shiry
Ginosar, Severin Hacker, Susan Hrish-
enko, Mihir Kedia, Edith Law, Bryant
Lee, and Roy Liu for their help in this
research. 	

References
1.	 Carroll, J.M. and Thomas, J.M. Fun. ACM SIGCHI

Bulletin 19, 3 (Jan. 1988), 21–24.
2.	 Chao, D. Computer games as interfaces. Interactions

11, 5 (Sept.–Oct. 2004), 71–72.
3.	 Chao, D. Doom as an interface for process

management. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(Seattle, Mar. 31–Apr. 5). ACM Press, New York, 2001,
152–157.

4.	 Fails, J.A. and Olsen, D.R. Interactive machine
learning. In Proceedings of the Eighth International
Conference on Intelligent User Interfaces (Miami,
Jan. 12–15). ACM Press, New York, 2003, 39–45.

5.	 Federoff, M. Heuristics and Usability Guidelines for
the Creation and Evaluation of Fun in Video Games.
Unpublished thesis, Indiana University, Bloomington;
www.melissafederoff.com/thesis.html.

6.	 Giles, J. Internet encyclopaedias go head to head.
Nature 438 (Dec. 15, 2005), 900–901.

7.	 Hassenzahl, M., Beu, A., and Burmeister, M.
Engineering joy. IEEE Software 18, 1 (Jan.–Feb. 2001),
70–76.

8.	 Laurel, B.K. Interface as mimesis. In User–Centered
System Design: New Perspectives on Human–
Computer Interaction, D.A. Norman and S.W. Draper,
Eds. Lawrence Erlbaum Associates, Inc., Mahwah, NJ,
1986, 67–85.

9.	 Law, E.L.M., von Ahn, L., Dannenberg, R.B., and
Crawford, M. TagATune: A game for music and sound
annotation. In Proceedings of the Eighth International
Conference on Music Information Retrieval (Vienna,
Austria, Sept. 23–30). Austrian Computer Society,
Vienna, Austria, 2007, 361–364.

10.	 Locke, E.A. and Latham, G.P. A Theory of Goal Setting
and Task Performance. Prentice Hall, Englewood
Cliffs, NJ, 1990.

11.	 Malone, T.M. Heuristics for designing enjoyable
user interfaces: Lessons from computer games. In
Proceedings of the Conference on Human Factors in
Computing Systems (Gaithersburg, MD, Mar. 15–17).
ACM Press, New York, 1982, 63–68.

12.	 Malone, T.M. What makes things fun to learn?
Heuristics for designing instructional computer
games. In Proceedings of the Third ACM SIGSMALL

Symposium and the First SIGPC Symposium on Small
Systems (Palo Alto, CA, Sept. 18–19). ACM Press,
New York, 1980, 162–169.

13.	 Mokka, S., Väätänen, A., Heinilä, J., and Välkkynen,
P. Fitness computer game with a bodily user
interface. In Proceedings of the Second International
Conference on Entertainment Computing (Pittsburgh,
PA, May 8–10). Carnegie Mellon University, Pittsburgh,
PA, 2003, 1–3.

14.	 Pagulayan, R., Keeker, K., Wixon, D., Romero, R.,
and Fuller, T. User–centered design in games. In
The Human–Computer Interaction Handbook:
Fundamentals, Evolving Techniques and Emerging
Applications, J.A. Jacko and A. Sears, Eds. Lawrence
Erlbaum Associates, Mahwah, NJ, 2003, 883–905.

15.	 Richards, C. Teach the world to twitch: An interview
with Marc Prensky, CEO and founder Games2train.
com. Futurelab (Dec. 2003); www.futurelab.org.uk/
resources/publications_reports_articles/web_articles/
Web_Article578.

16.	 Shneiderman, B. Designing for fun: How can we design
user interfaces to be more fun? Interactions 11, 5
(Sept.–Oct. 2004), 48–50.

17.	 Steiner, I. Group Process and Productivity. Academic
Press, New York, 1972.

18.	 Stork, D.G. and Lam C.P. Open mind animals: Ensuring
the quality of data openly contributed over the World
Wide Web. In Learning from Imbalanced Data Sets:
Papers from the AAAI Workshop (Technical Report
WS-00-05). (Austin, TX, July 30–Aug. 1). American
Association for Artificial Intelligence, Menlo Park, CA,
2000, 4–9.

19.	 Stork, D.G. The Open Mind Initiative. IEEE Intelligent
Systems & Their Applications 14, 3 (May–June 1999),
19–20.

20.	 Sweetser, P. and Wyeth, P. GameFlow: A model
for evaluating player enjoyment in games. ACM
Computers in Entertainment 3, 3 (July 2005), 3.

21.	 Tsang, M., Fitzmaurice, G., Kurtenbach, G., and Khan,
A. Game–like navigation and responsiveness in
non–game applications. Commun. ACM 46, 7 (July
2003), 57–61.

22.	 von Ahn, L. and Dabbish, L. Labeling images with
a computer game. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(Vienna, Austria, Apr. 24–2). ACM Press, New York,
2004, 319–326.

23.	 von Ahn, L., Ginosar, S., Kedia, M., and Blum, M.
Improving image search with Phetch. In Proceedings
of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (Honolulu, Apr. 15–20).
IEEE Press, New York, 2007, IV–1209–IV–1212.

24.	 von Ahn, L., Kedia, M., and Blum, M. Verbosity: A
game for collecting common-sense knowledge. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (Montreal, Apr. 22–27).
ACM Press, 2007, 75–78.

25.	 von Ahn, L., Liu, R., and Blum, M. Peekaboom: A Game
for locating objects in images. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (Montreal, Apr. 22–27). ACM Press, New York,
2006, 55–64.

26.	 Webster, J. Making computer tasks at work more
playful: Implications for systems analysts and
designers. In Proceedings of the SIGCPR Conference
on Management of Information Systems Personnel
(College Park, MD, Apr. 7–8). ACM Press, New York,
1988, 78–87.

This work was partially supported by National
Science Foundation grants CCR-0122581 and
CCR-0085982 (ALADDIN) and generous gifts
from Google, Inc., and the Heinz Endowment.
Luis von Ahn was partially supported by
a Microsoft Research Graduate Fellowship,
a Microsoft Research New Faculty Fellowship,
and a MacArthur Fellowship.

Luis von Ahn (lav@andrew.cmu.edu) is an assistant
professor in the Computer Science Department at
Carnegie Mellon University, Pittsburgh, PA.

Laura Dabbish (dabbish@andrew.cmu.edu) is an
assistant professor of information technology and
organizations in the Heinz School, with a joint appointment
in the Human-Computer Interaction Institute in
the School of Computer Science at Carnegie Mellon
University, Pittsburgh, PA.

© 2008 ACM 0001-0782/08/0800 $5.00V
I

S
U

A
L

I
Z

A
T

I
O

N
 B

Y
 B

E
N

 F
R

Y

1_CACM_V51.8.indb 67 7/21/08 10:13:28 AM

http://www.melissafederoff.com/thesis.html
mailto:lav@andrew.cmu.edu
mailto:dabbish@andrew.cmu.edu
http://www.futurelab.org.uk/resources/publications_reports_articles/web_articles/Web_Article578
http://www.futurelab.org.uk/resources/publications_reports_articles/web_articles/Web_Article578
http://www.futurelab.org.uk/resources/publications_reports_articles/web_articles/Web_Article578

68 communications of the acm | august 2008 | vol. 51 | no. 8

contributed articles

WIKIPEDIA (WWW.WIKIPEDIA.ORG) is a freely available
online encyclopedia anyone can edit, contributing
changes, as well as articles.10 With more than a million
entries, hundreds of thousands of contributors, and
tens of millions of fully recorded article revisions,
Wikipedia’s freely available database has also made it
possible to study how human knowledge is recorded
and organized through an open collaborative process.
Although citation analysis6 can establish how new
research builds on existing publications, the fully
recorded evolutionary development of Wikipedia’s
structure has allowed us to examine how existing
articles foster development of new entries and links.
Motivation for our longitudinal study of Wikipedia
evolution followed from our observation that even
though Wikipedia’s scope is increasing, its coverage is
apparently not deteriorating. To study the process of
Wikipedia growth we downloaded the February 2006

snapshot of all recorded changes and
examined how entries are created and
linked. Inspecting the timestamps on
individual entry defi nitions and refer-
ences, we found that links to nonexis-
tent articles often precede creation of
new articles. Also, tracking the evolu-
tion of article links allowed us to em-
pirically validate Barabási’s hypothesis
on the formation of scale-free graphs
through incremental growth and pref-
erential attachment.1 Our fi ndings
paint a picture of sustainable growth,
suggesting that Wikipedia’s develop-
ment process delivers coverage of more
and more subjects.

The phenomenal growth of Wikipe-
dia is attributable to a mixture of tech-
nologies and a process of open par-
ticipation. The key technology behind
Wikipedia is that of a Wiki—online
lightweight Web-based collaboration.4

Wikipedia content appears online as
static HTML pages, though each such
page includes an edit button anyone
can use to modify its content; editing
most articles requires no prior autho-
rization or arrangement. The system
maintains the complete edit history of
each page and supports a “watchlist”
mechanism that alerts registered us-
ers when a page they are interested in
changes.

The page history and watchlist facil-
ities promote low-overhead collabora-
tion and identifi cation of and response
to instances of article vandalism. We
found that 4% of article revisions were
tagged in their descriptive comment as
“reverts”—the typical response to van-
dalism. They occurred an average of
13 hours after their preceding change.
Looking for articles with at least one
revert comment, we found that 11% of
Wikipedia’s articles had been vandal-
ized at least once. (The entry for George
W. Bush had the most revisions and re-
verts: of its 28,000 revisions one-third
were reverts and, conceivably, another
third vandalism.) Articles prone to van-
dalism can be administratively locked
against revisions, a step rarely taken;
in our study only 0.13% of the articles
(2,441 entries) were locked.

Doi:10.1145/1378704.1378720

Why Wikipedia’s remarkable growth
is sustainable.

By DiomiDis sPineLLis anD PanaGiotis LouRiDas

the
collaborative
organization
of Knowledge

S
T

U
D

Y
I

N
G

 C
O

O
P

E
R

A
T

I
O

N
 A

N
D

 C
O

N
F

L
I

C
T

 B
E

T
W

E
E

N
 A

U
T

H
O

R
S

 W
I

T
H

 H
I

S
T

O
R

Y
 F

L
O

W
 V

I
S

U
A

L
I

Z
A

T
I

O
N

S
.

F
E

R
N

A
N

D
A

 B
.

V
I

É
G

A
S

,
M

A
R

T
I

N
 W

A
T

T
E

N
B

E
R

G
,

A
N

D
 K

U
S

H
A

L
 D

A
V

E
.

P
R

O
C

E
E

D
I

N
G

S
 O

F
 S

I
G

C
H

I
 2

0
0

4
.

H
T

T
P

:/
/A

L
U

M
N

I
.M

E
D

I
A

.M
I

T
.E

D
U

/~
F

V
I

E
G

A
S

/P
A

P
E

R
S

/H
I

S
T

O
R

Y
_

F
L

O
W

.P
D

F

1_CACM_V51.8.indb 68 7/21/08 10:13:28 AM

http://WWW.WIKIPEDIA.ORG
http://ALUMNI.MEDIA.MIT.EDU/~FVIEGAS/PAPERS/HISTORY_FLOW.PDF

august 2008 | vol. 51 | no. 8 | communications of the acm 69august 2008 | vol. 51 | no. 8 | communications of the acm 69

D
ec

em
be

r
20

0
1

J
un

e
20

0
3

1_CACM_V51.8.indb 69 7/21/08 10:13:30 AM

70 communications of the acm | august 2008 | vol. 51 | no. 8

contributed articles

dump of the English-language Wikipe-
dia, a 485GB XML document. (In June
2008, we looked to rerun the study with
more recent data, but complete dumps
were no longer available.) The text of
each entry was internally represented
through the wiki-specific annotation
format; we used regular expressions
and explicit state transitions in a flex-
generated analyzer for parsing both
the XML document structure and the
annotated text. From the database’s
entries we skipped all entries resid-
ing in alternative namespaces (such
as “talk” pages containing discussions
about specific articles, user pages, and
category pages). In total, we processed
28.2 million revisions on 1.9 million
pages.

For each Wikipedia entry we main-
tained a record containing the contrib-
utor identifiers and timestamps for the
entry’s definition and for its first refer-
ence, the number of efferent (outgoing)
article references (unique references
to other Wikipedia articles in the cur-
rent version of the entry), the number
of unique contributors, the number of
revisions, a vector containing the num-
ber of the entry’s afferent (incoming)
references from other Wikipedia arti-
cles for each month, and a correspond-
ing vector of Boolean values identifying
the months during which the entry was
marked as a stub. (The source code for
the tools we used and the raw results
we obtained are at www.dmst.aueb.gr/
dds/sw/wikipedia.)

Growth and Unresolved References
We were motivated to do this research
when one of us (Spinellis), in the
course of writing a new Wikipedia en-
try, observed that the article ended up
containing numerous links to other
nonexistent articles. This observation
led us to the “inflationary hypothesis”
of Wikipedia growth, that is, that the
number of links to nonexistent ar-
ticles increases at a rate greater than
the rate new articles are entered into
Wikipedia; therefore Wikipedia util-
ity decreases over time as its coverage
deteriorates by having more and more
references to concepts that lack a cor-
responding article. An alternative—the
“deflationary hypothesis”—involves
links to nonexistent articles increasing
at a rate less than the rate of the addi-
tion of new articles. Under this hypoth-

When edited, an entry’s content
doesn’t use the Web’s relatively com-
plex, error-prone HTML syntax but rath-
er a simplified text annotation scheme
called wiki markup, or wikitext. Creat-
ing a link from one entry to another is
as simple as enclosing the other entry’s
identifying name in double square
brackets. Markup tags can also group
together related articles into categories
(such as “Nobel laureates in physics,”
“liberal democracies,” and “bowed in-
struments”). One use of a category tag
is to mark entries as stubs, indicating
to readers and future contributors that
a particular entry is incomplete and re-
quires expansion. In the snapshot we
studied, about 20% of the entries were
marked as stubs. For a better idea of
Wikipedia’s process and technology,
access an entry in your own specialty
and contribute an improvement.

Existing research on Wikipedia
employs descriptive, analytic, and
empirical methodologies. A series of
measurements has been published
that identifies power laws in terms of
number of distinct authors per article,
articles edited per author, and ingoing,
outgoing, and broken links.13 On the
analysis front, notable work has used
simulation models to demonstrate
preferential attachment,3 visualization
techniques to identify cooperation and
conflict among authors,12 social-activity
theories to understand participation,2
and small-worlds network analysis to
locate genre-specific characteristics
in linking.8 Finally, given the anarchic
nature of Wikipedia development, it is
not surprising that some studies have
also critically examined the quality of
Wikipedia’s articles.7,11 The work we de-
scribe here focuses on the dynamics of
Wikipedia growth, examining the rela-
tionship between existing and pending
articles, the addition of new articles as
a response to references to them, and
the building of a scale-free network of
articles and references.

Methods
The complete content of the Wikipe-
dia database is available online in the
form of compressed XML documents
containing separate revisions of every
entry, together with metadata (such
as the revision’s timestamp, contribu-
tor, and modification comment). We
processed the February 2006 complete

We hypothesize
that the addition
of new Wikipedia
articles is not a
purely random
process following
the whims of its
contributors but
that references
to nonexistent
articles trigger the
eventual creation
of a corresponding
article.

1_CACM_V51.8.indb 70 7/21/08 10:13:30 AM

http://www.dmst.aueb.gr/dds/sw/wikipedia
http://www.dmst.aueb.gr/dds/sw/wikipedia

contributed articles

august 2008 | vol. 51 | no. 8 | communications of the acm 71

esis we are able to project a point in the
future when the Wikipedia engine of
growth (discussed in the next section)
will stall.

It turns out that the reality of Wiki-
pedia development is located comfort-
ably between the two extremes of non-
existent link infl ation and defl ation.
Figure 1 outlines the ratio between
incomplete and complete articles from
2001 to 2006. Incomplete articles either
don’t exist in Wikipedia or exist but are
marked as stubs. Although many stub
articles contain useful information (of-
ten a link to an authoritative page with
more detail), some pages also require
additional work to be helpful but are
not marked as stubs. For the purposes
of our study we assume that the two ef-
fects cancel each other out.

The covered ratio from 2003 to 2006
seems stable, with about 1.8 missing or
stub articles for every complete Wiki-
pedia article. During the same time
the number of articles surged from
140,000 to 1.4 million entries, showing
that the apparently chaotic Wikipedia
development process delivers growth
at a sustainable rate.

References Lead to Defi nitions
Wikipedia’s topic coverage has been
criticized as too refl ective of and limited
to the interests of its young, tech-savvy
contributors, covering technology and
current affairs disproportionably more
than, say, world history or the arts.5 We
hypothesize that the addition of new
Wikipedia articles is not a purely ran-
dom process following the whims of
its contributors but that references to
nonexistent articles trigger the eventu-
al creation of a corresponding article.
Although it is diffi cult to claim that this
process guarantees even and unbiased
coverage of topics (adding links is also
a subjective process), such a mecha-
nism could eventually force some kind
of balance in Wikipedia coverage.

The empirical fi ndings outlined in
Figure 2 support our hypothesis con-
cerning the drive behind the addition
of new articles. In particular, a refer-
ence to a nonexistent entry appears to
be positively correlated with the addi-
tion of an article for it. Figure 2a tal-
lies the number of articles with a given
time difference between an entry’s fi rst
reference and its subsequent defi ni-
tion. Most articles by far seem to be

Figure 1: Coverage of Wikipedia articles.

 1.2

 1.4

 1.6

 1.8

2

 2.2

 2.4

 2.6

 2.8

3

 3.2

Jul-01 Jan-02 Jul-02 Jan-03 Jul-03 Jan-04 Jul-04 Jan-05 Jul-05 Jan-06
R

at
io

Date

incomplete/complete articles

Figure 2a: References to an entry typically precede the entry’s definition;
number of entries with a given difference between the time of the first reference
to the entry and the addition of its definition.

N
u

m
b

er
 o

f
ar

ti
cl

es

Difference (in months) between an entry’s
first reference and the entry’s definition

 100

 1000

 10000

 100000

1,000,000

-40 -30 -20 -10 0 10 20 30 40

Figure 2b: References to an entry typically precede the entry’s definition;
number of references to an entry at the time of its definition.

R
ef

er
en

ce
s

to
 a

n
 e

n
tr

y
(a

ve
ra

g
e)

Difference (in months) between an entry’s
first reference and the entry’s definition

0.01

0.1

1

10

-40 -30 -20 -10 0 10 20 30 40

1_CACM_V51.8.indb 71 7/21/08 10:13:31 AM

72 communications of the acm | august 2008 | vol. 51 | no. 8

contributed articles

appearance of scale-free networks like
the one formed by Wikipedia’s entries
and references. The models can be di-
vided into two groups:9 treating power
laws as the result of an optimization
process; and treating power laws as
the result of a growth model, the most
popular of which is Barabási’s pref-
erential attachment model.1 In-vitro
model simulations verify that the pro-
posed growth models do indeed lead
to scale-free graphs. Having the com-
plete record of Wikipedia history al-
lows us to examine in-vivo whether a
particular model is indeed being fol-
lowed.

Barabási’s model of the formation
of scale-free networks starts with a
small number (m0) of vertices. Every
subsequent time step involves the addi-
tion of a new vertex, with m ≤ m0 edges
linking it to m different vertices already
in the system. The probability P that a
new vertex will be connected to vertex
i is P(ki) = ki/∑jkj, where ki is the vertex’s
connectivity at that step.

The situation in Wikipedia is more
complex, as the number of vertices
and edges added in a time step is not
constant and new edges are added
between existing vertices as well. We
therefore consider a model where at
each time step t a month, a variable
number of entries and rt references
are added. The references are distrib-
uted among all entries following a
probability P(ki,t) = ki,t /∑j,tkj,t , with the
sums and the connectivities calculat-
ed at the start of t. The expected num-
ber of references added to entry i at
month t is then {ki, t} = rtP (ki,t). We fi nd
a close match between the expected
and the actual numbers in our data.
Figure 3a is a quantile-quantile plot
of the expected and the actual num-
bers at the 1,000-quantiles; Figure 3b
outlines the frequency distributions
of the number of articles (expected vs.
actual) gaining a number of referenc-
es in a month. The two data sets have
a Pearson’s product-moment correla-
tion of 0.97, with the 95% confi dence
interval being (0.9667, 0.9740). If nax
is the number of articles that gained x
> 30 (to focus on the tails) references
in a month and na'x is the expected
number of such articles, we have nax
1.11na'x (p-value < 0.001).

It has never been possible to exam-
ine the emergence of scaling in other

created in the month of their fi rst refer-
ence. Interestingly, the reference and
subsequent defi nition of an article in
Wikipedia appear to be a collaborative
phenomenon; from the 1.7 million en-
tries for which both the contributor en-
tering the fi rst reference and the con-
tributor entering the fi rst defi nition are
known, that contributor is the same for
only 47,000, or 3%, of entries.

Similarly, the mean number of fi rst
references to entries (see Figure 2b)
rises exponentially until the refer-
enced entry becomes an article. (For
calculating the mean we offset each

entry’s time of defi nition and time
points in which it was referenced to
center them at time 0.) The point in
time when the referenced entry be-
comes an article marks an infl ection
point; from then on the number of ref-
erences to a defi ned article rises only
linearly (on average).

Building a scale-free network
We established that entries are added
to Wikipedia as a response to refer-
ences to them, but what process adds
references and entries? Several mod-
els have been proposed to explain the

Figure 3b: Expected and actual number of references added each
month to an entry; frequency distributions of the expected and actual
number of references added each month to each article.

1

 10

 100

 1000

 10000

 100000

1,000,000

 1 10 100 1000 10000 100000

expected actual

N
u

m
b

er
 o

f
ar

ti
cl

es

References added to article in a month

Figure 3a: Expected and actual number of references added each
month to an entry; quantile-quantile plot of the expected and
actual number of references added each month to each article.

1

 10

 100

 1000

1 10 100 1000

10
0

0
-q

u
an

ti
le

s
of

 a
ct

u
al

 n
u

m
b

er
 o

f
re

fe
re

n
ce

s
ad

d
ed

 t
o

ar
ti

cl
e

in
 a

 m
on

th

1000-quantiles of expected number of
references added to article in a month

1_CACM_V51.8.indb 72 7/21/08 10:13:32 AM

contributed articles

august 2008 | vol. 51 | no. 8 | communications of the acm 73

big real-world networks like the Web,
as there is no full record of their evolu-
tion. Wikipedia now allows us to wit-
ness, and validate, preferential attach-
ment at work on its graph.

Conclusion
The usefulness of an online encyclo-
pedia depends on multiple factors,
including breadth and depth of cover-
age, organization and retrieval inter-
face, and trustworthiness of content.
In Wikipedia more depth eventually
translates into breadth, because the
Wikipedia style guidelines recommend
the splitting of overly long articles. The
evolution of articles and links in Wiki-
pedia allows us to model the system’s
growth. Our finding that the ratio of in-
complete vs. complete articles remains
constant yields a picture of sustainable
coverage and growth. An increasing
ratio would result in thinner coverage
and diminishing utility and a decreas-
ing ratio of incomplete vs. complete
articles to eventual stagnation of Wiki-
pedia growth.

The idea of growth triggered by
undefined references is supported by
our second finding—that most new ar-
ticles are created shortly after a corre-
sponding reference to them is entered
into the system. We also found that
new articles are typically written by dif-
ferent authors from the ones behind
the references to them. Therefore, the
scalability of the endeavor is limited
not by the capacity of individual con-
tributors but by the total size of the
contributor pool.

Wikipedia’s incremental-growth
model, apart from providing an in-vi-
vo validation of Barabási’s scale-free
network-development theory, sug-
gests that the processes we have dis-
covered may continue to shape Wiki-
pedia in the future. Wikipedia growth
could be limited by invisible subjec-
tive boundaries related to the inter-
ests of its contributors. Our growth
model suggests how these boundaries
might be bridged. Consider that refer-
ences to nonexistent entries prompt
creation of these entries and assume
that all human knowledge forms a
fully connected network. Wikipe-
dia’s coverage will broaden through a
breadth-first graph traversal or flood-
filling process, albeit over an uneven
time progression.

How far might the Wikipedia pro-
cess carry us? In Jorge Luis Borges’s
1946 short story “On Exactitude in Sci-
ence,” the wise men of the empire un-
dertake to create a complete map of the
empire; upon finishing, they realize the
map was so big it coincided with the
empire itself. 	

References
1.	 Barabási, A.-L. and Albert, R. Emergence of scaling in

random networks. Science 286, 5439 (Oct. 15 1999),
509–512.

2.	 Bryant, S., Forte, A., and Bruckman, A. Becoming
Wikipedian: Transformation of participation in a
collaborative online encyclopedia. In Proceedings of
the 2005 International ACM SIGGROUP Conference
on Supporting Group Work (Sanibel Island, FL, Nov.
6–9). ACM Press, New York, 2005, 1–10.

3.	 Capocci, A. Servedio, V., Colaiori, F., Buriol, L., Donato,
D., Leonardi, S., and Caldarelli, G. Preferential
attachment in the growth of social networks: The case
of Wikipedia. Physical Review E, 74, 036116 (2006).

4.	 Cunningham, W. and Leuf, B. The Wiki Way: Quick
Collaboration on the Web. Addison-Wesley, Boston,
MA, 2001.

5.	 Denning, P., Horning, J., Parnas, D., and Weinstein, L.
Wikipedia risks. Commun. ACM 48, 12 (Dec. 2005),
152–152.

6.	 Garfield, E. Citation Indexing: Its Theory and
Application in Science, Technology, and Humanities.
John Wiley & Sons, Inc., New York, 1979.

7.	 Giles, J. Internet encyclopaedias go head to head.
Nature 438, 7070 (Dec. 15, 2005), 900–901.

8.	 Mehler, A. Text linkage in the wiki medium: A
comparative study. In Proceedings of the EACL 2006
Workshop on New Text: Wikis and Blogs and Other
Dynamic Text Sources (Trento, Italy, Apr. 6, 2006),
1–8.

9.	 Mitzenmacher, M. A brief history of generative models
for power law and lognormal distributions. Internet
Mathematics 1, 2 (2003), 226–251.

10.	 Remy, M. Wikipedia: The free encyclopedia. Online
Information Review 26, 6 (2002), 434.

11.	 Stvilia, B., Twidale, M., Smith, L., and Gasser, L.
Assessing information quality of a community–based
encyclopedia. In Proceedings of the International
Conference on Information Quality (Cambridge, MA,
Nov. 4–6, 2005), 442–454.

12.	 Viégas, F., Wattenberg, M., and Dave, K. Studying
cooperation and conflict between authors with history
flow visualizations. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(Vienna, Austria, Apr. 24–29). ACM Press, New York,
2004, 575–582.

13.	 Voß, J. Measuring Wikipedia. In Proceedings of the 10th
International Conference of the International Society
for Scientometrics and Informetrics (Stockholm, July
24–28, 2005), 221–231.

This work is partially funded by the European
Commission’s Sixth Framework Programme
under contract IST-2005-033331 “Software
Quality Observatory for Open Source Software
(SQO-OSS).”

Diomidis Spinellis (dds@aueb.gr) is an associate
professor of information system technologies in the
Department of Management Science and Technology
at the Athens University of Economics and Business,
Athens, Greece.

Panagiotis Louridas (louridas@acm.org) is a software
engineer in the Greek Research and Technology Network
and a researcher at the Department of Management
Science and Technology, Athens University of Economics
and Business, Athens, Greece.

© 2008 ACM 0001-0782/08/0800 $5.00

It turns out
that the reality
of Wikipedia’s
development is
located comfortably
between the
two extremes
of nonexistent
link inflation and
deflation.

1_CACM_V51.8.indb 73 7/21/08 10:13:33 AM

mailto:dds@aueb.gr
mailto:louridas@acm.org

review articles

1_CACM_V51.8.indb 74 7/21/08 10:13:35 AM

review articles

august 2008 | vol. 51 | no. 8 | communications of the acm 75

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 J
E

A
N

 F
R

A
N

C
O

I
S

 P
O

D
E

V
I

N

doi:10.1145/1378704.1378721

The most dramatic interaction between CS
and GT may involve game-theory pragmatics.

 BY Yoav Shoham

University, under the leadership of John
von Neumann, in the 1950s.a

In this article I try to do two things:
identify the main areas of interaction
between computer science and game
theory so far; and point to where the
most interesting interaction yet may
lie—in an area that is still relatively un-
derexplored.

The first part aims to be an unbiased
survey, but it is impossible to avoid
bias altogether. Ten researchers survey-
ing the interactions between CS and
GT would probably write 10 different
types of reports. Indeed, several already
have (as I will discuss). Moreover, in
this brief discussion I cannot possibly
do justice to all the work taking place
in the area. So I try to compensate for
these limitations in two ways: I provide
a balanced set of initial pointers into
the different subareas, without regard
to the amount or nature of work that
has taken place in each; and I point the
reader to other relevant surveys of the
CS-GT interaction, each having its own
take on things.

The second part is decidedly subjec-
tive, but it is still meant to be broadly
relevant both to computer scientists
and game theorists interested in the in-
teraction between the disciplines.

Lessons from Kalai (1995)
My departure point is a 13-year-old sur-
vey paper by E. Kalai,16 a game theorist
with algorithmic sensibilities. Geared
primarily toward computer scientists,
the paper took stock of the interac-
tions between game theory, operations
research, and computer science at the
time. It points to the following areas:

Graphs in games1.	
The complexity of solving a game2.	
Multiperson operations research3.	
The complexity of playing a game4.	
Modeling bounded rationality.5.	

The reason I start with this paper, be-
sides providing the interesting perspec-
tive of a non-computer scientist, is the
comparison with current CS-GT interac-

a	 I thank Moshe Tennenholtz for this observa-
tion, which is especially true of GT and AI.

G ame theor y has influenced many fields,
including economics (its initial focus), political
science, biology, and many others. In recent years,
its presence in computer science has become
impossible to ignore. GT is an integral part of
artificial intelligence (AI), theory, e-commerce,
networking, and other areas of computer science,
and it is routinely featured in the field’s leading
journals and conferences. One reason is application
pull: the Internet calls for analysis and design of
systems that span multiple entities, each with its
own information and interests. Game theory, for all
its limitations, is by far the most developed theory
of such interactions. Another reason is technology
push: the mathematics and scientific mind-set of
game theory are similar to those that characterize
many computer scientists. Indeed, it is interesting
to note that modern computer science and modern
game theory originated in large measure at the same
place and time—namely at Princeton

Computer
Science and
Game Theory

1_CACM_V51.8.indb 75 7/21/08 10:13:36 AM

76 communications of the acm | august 2008 | vol. 51 | no. 8

review articles

is known to exist,27 the computation of
a sample Nash equilibrium was shown
to be complete for this class,2 and the
problem of computing Nash equilib-
ria with specific properties was shown
to be NP-hard.4, 10 At the same time,
algorithms—some quite sophisticated,
and all exponential in the worst case—
have been proposed to compute Nash
equilibria.11, 41 Somewhat surprisingly,
recent experiments have shown that a
relatively simple search algorithm sig-
nificantly outperforms more sophisti-
cated algorithms.31 This is an active area
that promises many additional results.

The third match is somewhat less tight
than the first two. There are at least two
kinds of optimization one could speak
about in a game-theoretic setting. The
first is computing a best response to a
fixed decision by the other agents; this is
of course the quintessential single-agent
optimization problem of operations re-
search and AI, among other fields. The
second is the optimization by the design-
er of a mechanism aimed at inducing
games with desirable equilibria.

This so-called “mechanism design”
has been the focus of much work in
computer science. One reason is the
interesting interaction between tradi-
tional CS problems (such as optimi-
zation and approximation) and tradi-
tional mechanism-design issues (such
as incentive compatibility, individual
rationality, and social-welfare maximi-
zation). A good example is the interac-
tion between the Vickrey-Clarke-Groves
mechanism and shortest-path computa-
tion;26 another is the literature on com-
binatorial auctions,6 which combine
a weighted-set-packing-like NP-hard
optimization problem with incentive
issues. The interplay between mecha-
nism design and cryptography is worth
particular mention. Though both are in
the business of controlled dissemina-
tion of information, they are different in
significant ways. For one thing, they are
dual in the following sense: mechanism
design attempts to force the revelation
of information, while cryptography at-
tempts to allow its hiding. For another,
they traditionally embody quite differ-
ent models of paranoia. Game theory
assumes an even-keeled expected utility
maximization on the part of all agents,
while cryptography is more simple-
minded: it assumes that “good” agents
act as instructed, while “bad” agents are

tion, as both the matches and mismatches
are instructive. Looking at the interactions
between CS and GT taking place today,
one can identify the following foci:

�Compact game representations;a.	
�Complexity of, and algorithms for, b.	
computing solution concepts;
�Algorithmic aspects of mecha-c.	
nism design;
�Game-theoretic analysis d.	
inspired by specific applications;
�Multiagent learning;e.	
�Logics of knowledge and belief, f.	
and other logical aspects of
games.b

The crude mapping between this list
and Kalai’s is as follows:

1995 2008
1 • • a
2 • • b
3 • • c, d
4
5

	 e,
f

Here, I discuss the areas that match
up (1• •a, 2• •b, 3• •c, d), then turn to
the currently active areas that were not
discussed by Kalai (e, f), and finish with
the orphans on the other side (4, 5) that
were discussed by Kalai but not yet vig-
orously pursued.

There has been substantial work
on compact and otherwise specialized
game representations. Some of them
are indeed graph-based—graphical
games,18 local-effect games,21 MAIDS,19
and Game networks,20 for example. The
graph-based representations extend
also to coalition game theory.7 But spe-
cialized representations exist that are
not graph based, such as those that are
multi-attribute based5 and logic based.15
I believe this area is ripe for additional
work—regarding, for example, the strat-
egy space of agents described using con-
structs of programming languages.

The complexity of computing a sam-
ple Nash equilibrium (as well as other
solution concepts) has been the focus
of much interest in CS, especially with-
in the theory community. A new com-
plexity class—PPAD—was proposed to
handle problems for which a solution

b	 This current survey originated in a presenta-
tion made at a December 2007 festschrift in
honor of E. Kalai.

maximally harmful. Recent work, how-
ever, has begun to bridge these gaps.

This third category blends into the
fourth one, which is research moti-
vated by specific applications that have
emerged in the past decade. For exam-
ple, the domain of networking has given
rise to a literature on so-called “price
of anarchy” (which captures the inef-
ficiency of equilibria in that domain),
games of routing, networking-forma-
tion games, and peer-to-peer networks.
Other domains include sponsored
search auctions, information markets,
and reputation systems. This combina-
tion of the third and fourth categories
is arguably the most active area today
at the interface of CS and GT, and many
aspects of it are covered in Nisan et al.,25
which is an extensive edited collection
of surveys. The popularity of this area is
perhaps not surprising. The relevancies
of specific applications speak for them-
selves (although arguments remain
about whether the traditional game-the-
oretic analysis is an appropriate one).
More generally, it is not surprising that
mechanism design struck a chord in
CS, given that much of CS’s focus is on
the design of algorithms and protocols.
Mechanism design is the one area with-
in GT that adopts such a design stance.

The fifth category active today is mul-
tiagent learning, also called “interactive
learning” in the game-theory literature.c
Multiagent learning, long a major focus
within game theory, has been rediscov-
ered with something of a vengeance in
computer science and in particular AI;
witness special issues devoted to it in
the Journal of Artificial Intelligence39 and
the Machine Learning Journal.12 For com-
puter science, the move from single-
agent learning to multiagent learning
is interesting not only because it calls
for new solutions but also because the
very questions change. When multiple
agents learn concurrently, one can-
not distinguish between learning and
teaching, and the question of “optimal”
learning is no longer well defined (just
as the more general notion of an “op-
timal policy” ceases to be meaningful
when one moves to the multiagent set-
ting). For a discussion of this phenom-
enon, see the Journal of Artificial Intelli-
gence special issue cited earlier.39

c	 Kalai’s omission of this area is ironic, as he co-
authored one of its seminal papers.

1_CACM_V51.8.indb 76 7/21/08 10:13:36 AM

review articles

august 2008 | vol. 51 | no. 8 | communications of the acm 77

The sixth and final major area of fo-
cus, also one not discussed in Kalai,16
is called “interactive epistemology” in
game theory and simply “reasoning
about knowledge and belief” in com-
puter science. Starting in the mid-1980s,
this area was for a while the most active
focus of interaction between computer
science (including distributed systems,
AI, and theory) and game theory. Be-
side game theory, it established deep
ties with philosophy and mathematical
logic, culminating in the seminal book
by Fagin et al.8, d It is interesting to spec-
ulate why this area was omitted from
Kalai’s list, even although it predates
his paper by a decade, and why today it
is not as broadly populated as the other
areas. I think the reason is that the sub-
ject matter is more foundational, pri-
marily non-algorithmic, and appeals to
a smaller sliver of the two communities.
Be that as it may, it remains a key area of
interaction between the two fields.

These six areas are where most of
the action has been in past years, but by
listing only them and being brief about
each one, I have by necessity glossed
over some other important areas. The
references compensate for this omis-
sion to some extent. In addition, the
reader is referred to the following addi-
tional surveys, all by computer scientists
who each have a slightly different slant.
Most of these works go into considerably
more detail about some of the topics.

The earliest relevant survey is prob-˲˲

ably by Linial.22 Geared primarily toward
game theorists, this 58-page report has
deep coverage of game-theoretic as-
pects of distributed systems, fault-toler-
ant computing, and cryptography, and
it also touches on computation of game
theoretic concepts, games and logic,
and other topics.

Papadimitriou’s survey˲˲ 29 geared to-

d	 That book focused on static aspects of knowl-
edge and belief, which, notwithstanding the
substantial computer-science credentials of
the authors, raise an interesting contrast be-
tween the computer-science and game-theory
literature in these areas. In game theory, static
theories are indeed the primary focus, where-
as in computer science—in particular, in data-
base theory and artificial intelligence—belief
revision and other dynamic theories30 (includ-
ing the entire mini-industry of nonmonotonic
logics9) play an equal if not greater role. In-
deed, recent work at the interface of logic and
game theory37 extends the static treatment of
Fagin et al.8 in a dynamic direction.

ward computer scientists, is a concise
five-page paper summarizing the main
complexity and algorithmic issues at
the interface of CS and GT circa 2001.

The 21-page paper by Halpern˲˲ 13
is similar to Linial in that it is geared
toward game theorists and its main fo-
cus is distributed systems, but having
been published a decade later it is more
current. The work later evolved into a
17-page survey14 with an abbreviated
discussion of distributed computing
and additional material on complexity
considerations, price of anarchy, me-
diators, and other topics.

Roughgarden’s 30-page work is ˲˲

a detailed survey of a specific topic—
namely, the complexity of computing
a sample Nash equilibrium.32 Geared
mostly toward economists, it includes
ample background material on relevant
concepts from complexity theory.

The material discussed so far is not
only prominently featured in computer
science journals and conferences but
also is beginning to find its way into
textbooks.35 These areas will undoubt-
edly continue to flourish. But now I
want to turn our attention to the two
closely-related areas—4 and 5—listed
by Kalai that have not been looked at as
closely by the community at large, CS
in particular. I do this for two reasons: I
believe they are critical to the future suc-
cess of game theory, and I believe that
CS can play an important role in them.
They both have to do with incorporat-
ing practical considerations into the
model of rationality that is inherent to
game theory. To repeat the caveat stated
earlier: unlike the material so far, the re-
maining discussion is future-directed,
speculative, and subjective.

Lessons from Linguistics
The field of linguistics distinguishes
among syntax, semantics, and prag-
matics. Syntax defines the form of lan-
guage, semantics defines its meaning,
and pragmatics defines its use. While
the three interact in important ways,
the distinctions have proved very use-
ful. I believe that game theory may do
well to make similar distinctions, and
that CS can help in the process. Just as
in the case in linguistics, it is unlikely
that game-theory pragmatics will yield
to unified clean theories, as do syntax
and semantics. But I expect game-theo-
ry pragmatics to be as critical to reduc-

I expect game-
theory pragmatics
to be as critical
to reducing game
theory to practice
as language
pragmatics have
been to analyzing
human discourse
or understanding
language by
computers.

1_CACM_V51.8.indb 77 7/21/08 10:13:36 AM

78 communications of the acm | august 2008 | vol. 51 | no. 8

review articles

ing game theory to practice as language
pragmatics have been to analyzing hu-
man discourse or understanding lan-
guage by computers.

The distinction between the syntax
and semantics of games is, I think, quite
important, as some of the disputes with-
in game theory regarding the primacy of
different game representations (for ex-
ample, the strategic and extensive forms)
suffer from the lack of this distinction. It
might, however, be presumptuous for CS
to intrude on this debate, except insofar
as it lends logical insights.38 Indeed, per-
haps this is more the role of mathemati-
cal logic than of CS per se.

But where CS can truly lead the way
is in game theory’s pragmatics. Game
theory as we know it embodies radical
idealizations, which include the infinite
capacity of agents to reason and the in-
finite mutually recursive modeling of
agents. Backing off from these strong
assumptions has proven challenging.
A fairly thin strand of work under the
heading of “bounded rationality” in-
volves games played by automata.33 This
is an important area of research that
sometimes makes deep connections
between the two fields. For example,
early results showed that one of the
well-known pesky facts in game theo-
ry—namely, that constant “defection”
is the only subgame-perfect equilib-
rium in the finitely repeated prisoner’s
dilemma game—ceases to hold true if
the players are finite automata with suf-
ficiently few states.24, 28 A more recent re-
sult shows that when players in a game
are computer programs, one obtains
phenomena akin to the Folk Theorem
for repeated games.36

This connection between theoretical
models of computation and game theo-
ry is quite important and beautiful, but
it constitutes a fairly narrow interpreta-
tion of the term “bounded rationality.”
The term should perhaps be reserved
for describing a much broader research
agenda—one that may encourage more
radical departures from the traditional
view in game theory. Let me mention
two directions that I think would be
profitable (and difficult) to pursue un-
der this broader umbrella.

When one takes seriously the notion
of agents’ limited reasoning powers,
it is not only some of the answers that
begin to change; the questions them-
selves must be reconsidered. Consider

the basic workhorses of game theory—
the Nash equilibrium and its many
variants—that have so far served as the
very basic analysis tool of strategic inter-
actions. Questioning the role of equilib-
rium analysis will be viewed by some in
GT as act of heresy, but real life suggests
that we may have no choice. For exam-
ple, in the trading agent competition,
Nash equilibrium of the game did not
play a role in almost any participating
program,42 and this is certainly true as
well of the more established chess and
checkers competitions.

It is premature to write off the Nash
equilibrium as irrelevant, however. For
example, two programs competing in
the TAC did in fact make use of what
can be viewed as approximate empiri-
cal NE.42 Another striking example is the
computation of equilibria in a simplified
game tree by a top-scoring program in a
poker competition.43 It could be argued
that maxmin strategies, which coincide
with equilibrium strategies in zero-sum
games, do play an important pragmatic
role. But computation of either maxmin
or equilibrium strategies in competi-
tions has certainly been the exception to
the rule. The more common experience
is that one expends the vast majority of
the effort on traditional AI problems
such as designing a good heuristic func-
tion, searching, and planning. Only a
little—albeit important—time is spent
reasoning about the opponent.

The impact of such pragmatic con-
siderations on game theory can be
dramatic. Rather than start from very
strong idealizing assumptions and awk-
wardly try to back off from them, it may
prove more useful or accurate to start
from assumptions of rather limited rea-
soning and mutual modeling, and then
judiciously add what is appropriate for
the situation being modeled. Which in-
cremental-modeling approach will out
has yet to be seen, but the payoff both
for CS and GT can be substantial.

The second direction is radical in
a different way. Game theory adopts
a fairly terse vocabulary, inheriting it
from decision theory and the found-
aions of statistics.e In particular, agents

e	 Parenthetically, it can be remarked that
Savage’s setting,34 on which the modern
Bayesian framework is based, does not have
an obvious extension to the multi-agent case.
However, this is not the focus of the point I am
making here.

Science operates
at many levels.
For some, it is
sufficient that
scientific theories
be clever, beautiful,
and inspirational.
Others require
that any science
eventually
make contact
with compelling
applications
and be subjected
to empirical
evaluation.

1_CACM_V51.8.indb 78 7/21/08 10:13:36 AM

review articles

august 2008 | vol. 51 | no. 8 | communications of the acm 79

have “strategies,” which have minimal
structure, and motivations, which are
encapsulated in a simple real-valued
utility function. (This in fact carries
even less information than is suggested
by the use of numbers, as the theory is
unchanged by any positive affine trans-
formation of the numbers.) In real life,
and in computer programs attempting
to behave intelligently, we find use for a
much broader vocabulary. For example,
agents are able to take certain actions
and not others; have desires, goals, and
intentions (the belief-desire-intention
combination giving rise to the pun
“beady-eye agent architecture”); and
make plans. Apparently these abstract
notions are useful both in effecting
intelligent behavior and in reasoning
about it. Philosophers have written
about them (for example, Bratman1)
and there have been attempts—albeit
preliminary ones—to formalize these
intuitions (starting with Cohen and
Levesque3). Some in AI have advocated
embracing an even broader vocabulary
of emotions (such as the recent provoc-
ative albeit informal book by Minsky.23)
Is game theory missing out by not con-
sidering these concepts?

Concluding Remarks
Science operates at many levels. For
some, it is sufficient that scientific theo-
ries be clever, beautiful, and inspira-
tional. Others require that any science
eventually make contact with compelling
applications and be subjected to empiri-
cal evaluation. Without personally weigh-
ing in on this emotional debate, I note
that in his 2004 presidential address at
the Second World Congress of the Game
Theory Society,17 Kalai reprised the three
stages of any science as discussed by von
Neumann and Morgenstern:

[W]hat is important is the gradual
development of a theory, based on a
careful analysis of the ordinary everyday
interpretation of economic facts. The
theory finally developed must be math-
ematically rigorous and conceptually
general. Its first applications are neces-
sarily to elementary problems where the
result has never been in doubt and no
theory is actually required. At this early
stage the application serves to corrobo-
rate the theory. The next stage develops
when the theory is applied to somewhat
more complicated situations in which

it may already lead to a certain extent
beyond the obvious and the familiar.
Here theory and application corrobo-
rate each other mutually. Beyond this
lies the field of real success: genuine
predictions by theory. It is well known
that all mathematized sciences have
gone through these successive phases
of evolution.40

So at least von Neumann, the father
of modern-day game theory and com-
puter science, attached importance to
spanning the spectrum from the theo-
retical to the applied. Pragmatics may
be critical to achieving von Neumann
and Morgenstern’s third stage, and it
could propel a joint endeavor between
computer science and game theory.�

Acknowledgments
I thank Alon Altman, Joe Halpern, Sam Ieong, Daphne
Koller, Tim Roughgarden, Moshe Vardi, Mike Wellman, and
anonymous referees for their useful help and suggestions.
Of course, all errors, opinions, and erroneous opinions are
mine alone.

References
1.	 Bratman, M.E. Intention, Plans, and Practical Reason.

CSLI Publications, Stanford University, 1987.
2.	 Chen, X. and Deng, X. Settling the complexity of

2-player Nash–equilibrium. FOCS, 2006.
3.	 Cohen, P.R. and Levesque, H.J. Intention is choice with

commitment. Artificial Intelligence 42, 2–3 (1990),
213–261.

4.	 Conitzer, V. and Sandholm, T. Complexity results about
Nash equilibria. IJCAI. 2003, 761–771.

5.	 Conitzer, V. and Sandholm, T. Computing Shapley
values, manipulating value division schemes, and
checking core membership in multi–issue domains.
AAAI, 2004.

6.	 Cramton, P.C., Shoham, Y. and Steinberg, R. (eds).
Combinatorial Auctions. MIT Press, 2006.

7.	 Deng, X and Papadimitriou, C.H. On the complexity
of cooperative solution concepts. Mathematics of
Operations Research 19, 257, 1994.

8.	 Fagin, R., Halpern, J.Y., Moses, Y. and Vardi, M.Y.
Reasoning about Knowledge. MIT Press, Cambridge,
MA, 1995.

9.	 Niemela, I., Brewka, G., and Truszczynski, M.
Nonmonotonic reasoning. In Handbook of Knowledge
Representation. F. van Harmelen, V. Lifschitz, and B.
Porter. (eds.), Elsevier, 2007.

10.	 Gilboa, I. and Zemel, E. Nash and correlated equilibria:
Some complexity considerations. Games and
Economic Behavior, 80–93, 1989.

11.	 Govindan, S. and Wilson, R. A global Newton method
to compute Nash equilibria. Journal of Economic
Theory, 2003.

12.	 Greenwald, A. and Littman, M.L. (eds.). Special issue
on learning and computational game theory. Machine
Learning 67, 1–2, 2007.

13.	 Halpern, J.Y. A computer scientist looks at game
theory. Games and Economic Behavior 45, 1 (2003),
114–132.

14.	 Halpern, J.Y. Computer science and game theory:
A brief survey. In The New Palgrave Dictionary
of Economics. S.N. Durlauf and L.E. Blume (eds.),
Palgrave MacMillan, 2008.

15.	 Ieong, S. and Shoham, Y. Marginal Contribution Nets:
A compact representation scheme for coalitional
games. In Proceedings of the 6th ACM Conference on
Electronic Commerce, 2005.

16.	 Kalai, E. Games, computers, and O.R. In ACM/SIAM
Symposium on Discrete Algorithms, 1995.

17.	 Kalai, E. Presidential address. The Second World
Congress of the Game Theory Society,

Marseille, 2004. Games and Economic Behavior,
P. Reny (ed.), in press.

18.	 Kearns, M.J., Littman, M.L., and Singh, S.P. Graphical
models for game theory. UAI, 2001.

19.	 Koller, D. and Milch, B. Multiagent influence diagrams
for representing and solving games. IJCAI, 2001.

20.	 LaMura, P. Game networks. UAI, 2000.
21.	 Leyton–Brown, K. and Tennenholtz, M. Local–effect

games. IJCAI, 2003.
22.	 Linial, N. Game theoretic aspects of computing. In

Handbook of Game Theory, R.J. Aumann and S. Hart
(eds.), 1339–1395, Elsevier Science, 1994.

23.	 Minsky, M. The Emotion Machine: Commonsense
Thinking, Artificial Intelligence, and the Future of the
Human Mind, New York: Simon and Shuster, 2007.

24.	 Neyman, A. Bounded complexity justifies cooperation
in finitely repeated prisoner’s dilemma. Economic
Letters, 1985, 227–229.

25.	 Nisan, N., Roughgarden, T., Tardos, E., and Vazirani, V.
(eds). Algorithmic Game Theory. Cambridge University
Press, 2007.

26.	 Nisan, N. and Ronen, A. Algorithmic mechanism
design. In Proceedings of the 31st ACM Symposium on
Theory of Computing, 1999, 129–140.

27.	 Papadimitriou, C.H. On the complexity of the parity
argument and other inefficient proofs of existence.
Journal of Computer and System Sciences 48, 3
(1004), 498–532.

28.	 Papadimitriou, C.H. and Yannakakis, M. On bounded
rationality and computational complexity. In
Proceedings of the Symposium on the Theory of
Computing, 1994, 726–733.

29.	 Papadimitriou, C.H. Algorithms, games, and the
Internet. Lecture Notes in Computer Science 2076,
2001.

30.	 Pappas, P. Belief revision. In Handbook of Knowledge
Representation. F. van Harmelen, V. Lifschitz, and B.
Porter (eds.). Elsevier, 2007.

31.	 Porter, R., Nudelman, E., and Shoham, Y. Simple
search methods for finding a Nash equilibrium. In
Proceedings of the National Conference on Artificial
Intelligence, 2004, 664–669.

32.	 Roughgarden, T. Computing equilibria: A
computational complexity perspective. Economic
Theory, 2008.

33.	 Rubinstein, A. Modeling Bounded Rationality. MIT
Press, Cambridge, MA, 1998.

34.	 Savage, L.J. The Foundations of Statistics. John Wiley
and Sons, NY, 1954. (Second Edition: Dover Press,
1972).

35.	 Shoham, Y. and Leyton–Brown, K. Multiagent Systems:
Algorithmic, Game Theoretic, and Logical Foundations.
Cambridge University Press, 2008.

36.	 Tennenholtz, M. Program equilibrium. Games and
Economic Behavior 49, 2004, 363–373.

37.	 van Benthem, J. Exploring Logical Dynamics. Center
for the Study of Language and Information, Stanford,
CA, 1997.

38.	 van Benthem, J. When are two games the same? In
LOFT–III, 1998 (ILLC preprint, 1999).

39.	 Vohra, R. and Wellman, M.P. (eds.). Special issue
on foundations of multiagent learning. Artificial
Intelligence 171, 1 (2007).

40.	von Neumann, J. and Morgenstern, O. Theory of
Games and Economic Behavior, Second Edition.
Princeton University Press, 1947.

41.	 von Stengel, B. Computing equilibria for two–person
games. In Handbook of Game Theory, vol. III,
chap. 45. R. Aumann and S. Hart (eds.). Elsevier,
Amsterdam, 2002, 1723–1759.

42.	 Wellman, M.P., Greenwald, A., and Stone, P.
Autonomous Bidding Agents: Strategies and Lessons
from the Trading Agent Competition. MIT Press, 2007.

43.	 Zinkevich, M., Bowling, M., and Burch. N. A new
algorithm for generating equilibria in massive zero–
sum games. In Proceedings of the 22nd Conference on
AI, 2007, 788–793.

	 This work has been supported by NSF grant TR–0205633.

Yoav Shoham (http://cs.stanford.edu/~shoham) is a
professor of computer science at Stanford University,
Stanford, CA.

© 2008 ACM 0001-0782/08/0800 $5.00

1_CACM_V51.8.indb 79 7/21/08 10:13:36 AM

http://cs.stanford.edu/~shoham

International
ConferenceICL

ICL 2008 Special Track Call for Papers
The 11th International Conference
“Interactive Computer-Aided Learning”
ICL2008 from September 24–26, 2008
in Villach, Austria has again a Special Track

Educational MashUps (EMA)
Mashups involve the reuse, or remixing, of works
of art, of content, and/or of data for purposes that
usually were not intended or even imagined by
the original creators.

The term data mashup describes a Web site or
application that combines the data and functionality
of multiple Web sites into an integrated experience.

— Brian Lamb, University of British Columbia

Topics of interest
The goals of this special track are two-fold:

	 1	 presenting novel fundamental techniques applicable
		 to EMA, and
	 2	 showcasing solutions to EMA applications.

Manuscripts are solicited to address a wide range of topics in EMA,
including but not limited to the following:

–	 General framework for EMA
–	 Open and discoverable educational resources for

reusing and remixing
–	 Novel technologies and APIs for EMA
–	 Web site or application that combines the data and

functionality of multiple Web sites into an integrated
experience in education.

–	 Educational examples of Google Map Mashup and
Yahoo! Pipes interface

Types of contributions
–	 Full Papers: 20 minutes presentation followed by

a panel discussion
–	 Interactive Demonstrations: 15 minutes demonstration.
–	 Poster Presentations

Other opportunities to participate:
–	 Exhibit at the ICL products and developments of e-learning.

Conference chair
M. Auer (Carinthia Tech
Institute Villach)

Special track chair
Linmi Tao (tao.linmi@gmail.com)
Tsinghua University Beijing, China

Proceedings
The proceedings will be published
on CD in cooperation with the Kassel
University Press (own ISBN number).

Submission of papers
Extended abstracts should be
submitted using the Electronic
Submission System.

The extended abstract should comprise
up to two pages, informing the
program committee about the aim of
the approach (study, tool) reported,
experiences gained and the form and
result of evaluations conducted.

Proposals for tutorials and the exhibition
also may be submitted in a short form to:
info@icl-conference.org .

More information
http://www.icl-conference.org info@
icl-conference.org

General information
The conference will be organized by
the Carinthia Tech Institute in Villach.
Conference venue is the Conference
Center Villach.

1_CACM_V51.8.indb 80 7/21/08 10:13:36 AM

mailto:tao.linmi@gmail.com
mailto:info@icl-conference.org
http://www.icl-conference.org
mailto:info@icl-conference.org
mailto:info@icl-conference.org

research highlights

august 2008 | vol. 51 | no. 8 | communications of the acm 81

p. 91

Composable
Memory Transactions
By Tim Harris, Simon Marlow, Simon Peyton Jones,
and Maurice Herlihy

p. 90

Technical
Perspective
Transactions
are Tomorrow’s
Loads and Stores
By Nir Shavit

p. 83

Wake Up and Smell the Coffee:
Evaluation Methodology
for the 21st Century
By Stephen M. Blackburn, Kathryn S. McKinley, Robin Garner,
Chris Hoffmann, Asjad M. Khan, Rotem Bentzur, Amer Diwan,
Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel,
Antony Hosking, Maria Jump, Han Lee, J. Eliot, B. Moss,
Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen,
Daniel von Dincklage, and Ben Wiedermann

p. 82

Technical
Perspective
A Methodology for
Evaluating Computer
System Performance
By William Pugh

1_CACM_V51.8.indb 81 7/21/08 10:13:36 AM

82 communications of the acm | august 2008 | vol. 51 | no. 8

research highlights

doi:10.1145/1378704.1378722

the Algol60 programming language in
1972 and later translated into many
other languages. Several benchmarks
became well known and widely used
in research or commercial settings, or
both. Examples include the Livermore
loops, the Dhrystone benchmark, the
Linpack benchmark, and the Perfect
Club benchmarks.

The design and selection of bench-
marks, however, has traditionally been
a matter of art and taste, as much sci-
ence as engineering. The paper here by
the DaCapo team is the best effort I’ve
seen in providing a sound basis for se-
lecting benchmarks. Historically, there
has not been any standard methodolo-
gy for deciding whether or not a bench-
mark did indeed provide a representa-
tive measure of a system’s performance
within a particular domain. A more
serious problem with benchmarks is
that they age poorly. Benchmarks of-
ten do a reasonable job of evaluating
the performance of applications at the
time they are proposed. However, three
things tend to make benchmarks grow
less useful over time:

As machines and memories grow ˲˲

faster and larger, the sizes of applica-
tion data sets grow as well. What was
considered a reasonable problem size
when a benchmark was proposed soon
becomes a trivial example that fits in
the on-processor cache.

The actual applications that people ˲˲

use systems for evolve over time, and
benchmarks that were once represen-
tative become less so.

The weight attached to benchmark ˲˲

performance encourages develop-
ers of computer systems to optimize,
tune, and tweak their systems in ways
that improve their performance on the
benchmarks but not more generally,
making the benchmarks—again—less
representative.

Almost every systems researcher
and commercial software developer
has a personal horror story about a
poorly designed benchmark that was

C omputer science has long had a sol-
id foundation for evaluating the per-
formance of algorithms. The asymp-
totic complexity of the time required
by an algorithm is well defined and
usually tractable, allowing for a clear
evaluation of whether one algorithm
provides a fundamental improvement
over another. More nuanced and alter-
native evaluations, such as amortized
and randomized analysis, provide ad-
ditional insights into the fundamental
advantages of different algorithms.

Unfortunately, the situation is even
grimmer when evaluating the perfor-
mance of a computer system, whether
that system is a computer architec-
ture, a compiler, a graphics processor,
or a runtime system. Given a specific
application, it is often fairly straight-
forward to execute the application on
various systems and evaluate which
system offers faster execution of that
application on the provided input. Of
course, once an application has been
run on a particular input, one gener-
ally does not need to rerun it on that
same input.

What programmers really want is
some way to evaluate which system is
likely to provide better performance
on applications and data sets run in
the future, thus making it the “bet-
ter” system. Benchmarks also provide
a way to examine how various system
components behave and interact un-
der load. Benchmarks should give re-
peatable results, even when rerun by
an independent researcher or testing
organization. A benchmark can be
either a real or a synthetic applica-
tion.

A synthetic application doesn’t
compute anything useful but is de-
signed to have performance character-
istics that are representative of a range
of real applications.

Benchmarks have an established
history in computer science. The first
widely used synthetic benchmark was
the Whetstone benchmark written in

difficult to use, produced misleading
results, or focused attention on the
wrong problem for too long. One such
story in my own experience involves the
SPEC JVM98 db benchmark intended
to represent a database benchmark.
Several early papers on removing re-
dundant or useless synchronization
from Java programs focused on this
benchmark, since removing such syn-
chronization could produce a 20% to
30% speed improvement in the bench-
mark. However, closer examination re-
vealed that more than 70% of the CPU
time for this benchmark was spent in a
badly written 20-line Shell sort; replac-
ing the handwritten sort with a call to
the built-in sort function doubled the
execution speed, even without remov-
ing the useless synchronization.

The DaCapo research group offers
what seems to be an exceptionally well
engineered set of benchmarks for eval-
uating Java computer systems. This
includes not only selecting the bench-
mark applications, but designing a
substantial infrastructure to support
the execution and evaluation of bench-
mark executions.

Far more important than the actual
selection of the benchmarks and the
engineering infrastructure, the DaCa-
po team has put together an excellent
description of best practices for using
benchmarks to evaluate Java system
performance, as well as a principled
approach for evaluating whether a
suite of benchmark applications is, in
fact, sufficiently diverse. This approach
involves measuring a number of char-
acteristics of each application, and
then applying principal component
analysis (PCA) to determine whether
the applications do have fundamental
differences, or if they basically mea-
sure the same aspects of a system. I
hope the methodology described in
the paper will allow the DaCapo bench-
mark suite, and others, to be evaluated
so they can evolve in ways that make
them useful as well as meaningful for
more than just a moment in time.�

William Pugh (pugh@cs.umd.edu) is a professor in the
Department of Computer Science at the University of
Maryland, College Park.

Technical Perspective
A Methodology for Evaluating
Computer System Performance
By William Pugh

1_CACM_V51.8.indb 82 7/21/08 10:13:37 AM

mailto:pugh@cs.umd.edu

Wake Up and Smell the Coffee:
Evaluation Methodology
for the 21st Century
By Stephen M. Blackburn, Kathryn S. McKinley, Robin Garner, Chris Hoffmann, Asjad M. Khan, Rotem Bentzur, Amer
Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee,
 J. Eliot, B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann

doi:10.1145/1378704.1378723

Abstract
Evaluation methodology underpins all innovation in experi-
mental computer science. It requires relevant workloads,
appropriate experimental design, and rigorous analysis.
Unfortunately, methodology is not keeping pace with the
changes in our field. The rise of managed languages such
as Java, C#, and Ruby in the past decade and the imminent
rise of commodity multicore architectures for the next de-
cade pose new methodological challenges that are not yet
widely understood. This paper explores the consequences
of our collective inattention to methodology on innovation,
makes recommendations for addressing this problem in
one domain, and provides guidelines for other domains.
We describe benchmark suite design, experimental design,
and analysis for evaluating Java applications. For example,
we introduce new criteria for measuring and selecting di-
verse applications for a benchmark suite. We show that the
complexity and nondeterminism of the Java runtime system
make experimental design a first-order consideration, and
we recommend mechanisms for addressing complexity and
nondeterminism. Drawing on these results, we suggest how
to adapt methodology more broadly. To continue to deliver
innovations, our field needs to significantly increase partici-
pation in and funding for developing sound methodological
foundations.

1. INTRODUCTION
Methodology is the foundation for judging innovation in
experimental computer science. It therefore directs and
misdirects our research. Flawed methodology can make
good ideas look bad or bad ideas look good. Like any infra-
structure, such as bridges and power lines, methodology is
often mundane and thus vulnerable to neglect. While sys-
temic misdirection of research is not as dramatic as a bridge
collapse11 or complete power failure,10 the scientific and
economic cost may be considerable. Sound methodology
includes using appropriate workloads, principled experi-
mental design, and rigorous analysis. Unfortunately, many
of us struggle to adapt to the rapidly changing computer sci-
ence landscape. We use archaic benchmarks, outdated ex-
perimental designs, and/or inadequate data analysis. This
paper explores the methodological gap, its consequences,
and some solutions. We use the commercial uptake of man-
aged languages over the past decade as the driving example.

Many developers today choose managed languages, which
provide: (1) memory and type safety, (2) automatic memory
management, (3) dynamic code execution, and (4) well-de-
fined boundaries between type-safe and unsafe code (e.g., JNI
and Pinvoke). Many such languages are also object-oriented.
Managed languages include Java, C#, Python, and Ruby. C
and C++ are not managed languages; they are compiled-
ahead-of-time, not garbage collected, and unsafe. Unfortu-
nately, managed languages add at least three new degrees of
freedom to experimental evaluation: (1) a space–time trade-off
due to garbage collection, in which heap size is a control vari-
able, (2) nondeterminism due to adaptive optimization and
sampling technologies, and (3) system warm-up due to dy-
namic class loading and just-in-time (JIT) compilation.

Although programming language researchers have em-
braced managed languages, many have not evolved their
evaluation methodologies to address these additional de-
grees of freedom. As we shall show, weak methodology leads
to incorrect findings. Equally problematic, most architecture
and operating systems researchers do not use appropriate
workloads. Most ignore managed languages entirely, despite
their commercial prominence. They continue to use C and
C++ benchmarks, perhaps because of the significant cost and
challenges of developing expertise in new infrastructure. Re-
gardless of the reasons, the current state of methodology for
managed languages often provides bad results or no results.

To combat this neglect, computer scientists must be
vigilant in their methodology. This paper describes how
we addressed some of these problems for Java and makes
recommendations for other domains. We discuss how
benchmark designers can create forward-looking and diverse
workloads and how researchers should use them. We then
present a set of experimental design guidelines that accom-
modate complex and nondeterministic workloads. We show
that managed languages make it much harder to produce
meaningful results and suggest how to identify and explore
control variables. Finally, we discuss the importance of rig-
orous analysis8 for complex nondeterministic systems that
are not amenable to trivial empirical methods.

We address neglect in one domain, at one point in time,
but the broader problem is widespread and growing. For
example, researchers and industry are pouring resources
into and exploring new approaches for embedded sys-
tems, multicore architectures, and concurrent program-
ming models. However, without consequent investments

august 2008 | vol. 51 | no. 8 | communications of the acm 83

1_CACM_V51.8.indb 83 7/21/08 10:13:37 AM

84 communications of the acm | august 2008 | vol. 51 | no. 8

research highlights

in methodology, how can we confidently evaluate these
approaches? The community must take responsibility for
methodology. For example, many Java evaluations still use
SPECjvm98, which is badly out of date. Out-of-date bench-
marks are problematic because they pose last year’s prob-
lems and can lead to different conclusions.17 To ensure a
solid foundation for future innovation, the community
must make continuous and substantial investments. Es-
tablishing community standards and sustaining these in-
vestments require open software infrastructures contain-
ing the consequent artifacts.

For our part, we developed a new benchmark suite and
new methodologies. We estimate that we have spent 10,000
person-hours to date developing the DaCapo suite and asso-
ciated infrastructure, none of it directly funded. Such a ma-
jor undertaking would be impossible without a large number
of contributing institutions and individuals. Just as NSF and
DARPA have invested in networking infrastructure to foster
the past and future generations of the Internet, our commu-
nity needs foundational investment in methodological in-
frastructure to build next-generation applications, software
systems, and architectures. Without this investment, what
will be the cost to researchers, industry, and society in lost
opportunities?

2. WORKLOAD DESIGN AND USE
The DaCapo research group embarked on building a Java
benchmark suite in 2003 after we highlighted the dearth
of realistic Java benchmarks to an NSF review panel. The
panel suggested we solve our own problem, but our grant
was for dynamic optimizations. NSF did not provide ad-
ditional funds for benchmark development, but we forged
ahead regardless. The standard workloads at the time,
SPECjvm98 and SPECjbb2000,14,15 were out of date. For ex-
ample, SPECjvm98 and SPECjbb2000 make meager use of
Java language features, and SPECjvm98 has a tiny code and
memory footprint. (SPEC measurements are in a technical
report3.) We therefore set out to create a suite suitable for re-
search, a goal that adds new requirements beyond SPEC’s
goal of product comparisons. Our goals were:

Relevant and diverse workload: A diverse, widely used set
of nontrivial applications that provide a compelling plat-
form for innovation.

Suitable for research: A controlled, tractable workload
amenable to analysis and experiments.

We selected the following benchmarks for the initial release
of the DaCapo suite, based on criteria described below.

antlr	 Parser generator and translator generator
bloat	 Java bytecode-level optimization and analysis tool
chart	 Graph-plotting toolkit and PDF renderer
eclipse	 Integrated development environment (IDE)
fop	 Output-device-independent print formatter
hsqldb	 SQL relational database engine written in Java
jython	 Python interpreter written in Java
luindex	 Text-indexing tool
lusearch	 Text-search tool

pmd 	 Source code analyzer for Java
xalan	 XSLT transformer for XML documents

2.1. Relevance and diversity
No workload is definitive, but a narrow scope makes it pos-
sible to attain some coverage. We limited the DaCapo suite
to nontrivial, actively maintained real-world Java applica-
tions. We solicited and collected candidate applications.
Because source code supports research, we considered only
open-source applications. We first packaged candidates
into a prototype DaCapo harness and tuned them with in-
puts that produced tractable execution times suitable for ex-
perimentation, that is, around a minute on 2006 commodity
hardware. Section 2.2 describes how the DaCapo packaging
provides tractability and standardization.

We then quantitatively and qualitatively evaluated each
candidate. Table 1 lists the static and dynamic metrics we
used to ensure that the benchmarks were relevant and di-
verse. Our original paper4 presents the DaCapo metric data
and our companion technical report3 adds SPECjvm98 and
SPECjbb200. We compared against SPEC as a reference point
and compared candidates with each other to ensure diversity.

We used new and standard metrics. Our standard met-
rics included the static CK metrics, which measure code
complexity of object-oriented programs6; dynamic heap
composition graphs, which measure time-varying lifetime
properties of the heap16; and architectural characteristics
such as branch misprediction rates and instruction mix.
We introduced new metrics to capture domain-specific
characteristics of Java such as allocation rate, ratio of

Table 1: Quantitative selection metrics.

Metric	 Description

Code Metrics

CK metrics6	�O bject-oriented programming metrics measuring

source code complexity

Code size	�N umbers of classes loaded, methods declared, total

bytecodes compiled

Code footprint	I nstruction cache and I-TLB misses

Optimization	�N umber of methods compiled, number optimized,

percentage hot

Heap Metrics

Allocation	T otal bytes/objects allocated, average object size

Heap footprint	 Maximum live bytes/objects, nursery survival rate

Fan-out/fan-in	 Mean incoming and outgoing pointers per object

Pointer distance	� Mean distance in bytes of each pointer encountered

in a snapshot traversal of an age-ordered heap

Mutation distance	� Mean distance in bytes of each pointer dynami-

cally created/mutated by the application in an age-

ordered heap

Architecture Metrics

Instruction mix	 Mix of branches, ALU, and memory instructions

Branches	�B ranch mispredictions per instruction for PMM

predictor

Register 	R egister dependence distances

dependence

1_CACM_V51.8.indb 84 7/21/08 10:13:37 AM

august 2008 | vol. 51 | no. 8 | communications of the acm 85

allocated to live memory, and heap mutation rate. These
new metrics included summaries and time series of allo-
cated and live object size demographics, summaries and
time series of pointer distances, and summaries and time
series of mutation distances. Pointer distance and mutation
distance time-series metrics summarize the lengths of the
edges that form the application’s object graph. We designed
these metrics and their means of collection to be abstract,
so that the measurements are VM-neutral.4

Figure 1 qualitatively illustrates the temporal complex-
ity of heap composition and pointer distance metrics for
two benchmarks, _209_db and eclipse. With respect to our
metrics, eclipse from DaCapo is qualitatively richer than
_209_db from SPECjvm98. Our original paper explains how
to read these graphs and includes dozens of graphs, repre-
senting mountains of data.4 Furthermore, it shows that the
DaCapo benchmarks substantially improve over SPECjvm98
on all measured metrics. To confirm the diversity of the
suite, we applied principal component analysis (PCA)7 to
the summary metrics. PCA is a multivariate statistical tech-
nique for reducing a large N-dimensional space into a low-
er-dimensional uncorrelated space. If the benchmarks are
uncorrelated in lower-dimensional space, then they are also
uncorrelated in the higher-dimensional space. The analysis
shows that the DaCapo benchmarks are diverse, nontrivial
real-world applications with significant memory load, code
complexity, and code size.

Because the applications come from active projects,
they include unresolved performance anomalies, both typi-
cal and unusual programming idioms, and bugs. Although
not our intention, their rich use of Java features uncovered
bugs in some commercial JVMs. The suite notably omits
Java application servers, embedded Java applications, and
numerically intensive applications. Only a few benchmarks
are explicitly concurrent. To remain relevant, we plan to up-
date the DaCapo benchmarks every two years to their latest
version, add new applications, and delete applications that
have become less relevant. This relatively tight schedule
should reduce the extent to which vendors may tune their
products to the benchmarks (which is standard practice, no-
tably for SPECjbb20001).

As far as we know, we are the first to use quantitative met-
rics and PCA analysis to ensure that our suite is diverse and
nontrivial. The designers of future suites should choose
additional aggregate and time-varying metrics that direct-
ly address the domain of interest. For example, metrics
for concurrent or embedded applications might include a
measure of the fraction of time spent executing purely se-
quential code, maximum and time-varying degree of paral-
lelism, and a measure of sharing between threads.

2.2. Suitable for research
We decided that making the benchmarks tractable, stan-
dardized, and suitable for research was a high priority.
While not technically deep, good packaging is extremely
time consuming and affects usability. Researchers need
tractable workloads because they often run thousands of ex-
ecutions for a single experiment. Consider comparing four
garbage collectors over 16 heap sizes—that is, we need 64

combinations to measure. Teasing apart the performance
differences with multiple hardware performance moni-
tors may add eight or more differently instrumented runs
per combination. Using five trials to ensure statistical sig-
nificance requires a grand total of 2560 test runs. If a single
benchmark test run takes as long as 20 min (the time limit is
30 min on SPECjbb15), we would need over a month on one
machine for just one benchmark comparison—and surely
we should test the four garbage collectors on many bench-
marks, not just one.

Moreover, time-limited workloads do not hold work con-
stant, so they are analytically inconvenient for reproducibil-
ity and controlling load on the JIT compiler and the garbage
collector. Cycle-accurate simulation, which slows execution
down by orders of magnitude, further amplifies the need for
tractability. We therefore provide work-limited benchmarks
with three input sizes: small, default, and large. For some of
the benchmarks, large and default are the same. The larg-
est ones typically executed in around a minute on circa 2006
commodity high-performance architectures.

We make simplicity our priority for packaging; we ship the
suite as a single self-contained Java jar file. The file contains
all benchmarks, a harness, input data, and checksums for
correctness. The harness checksums the output of each it-
eration and compares it to a stored value. If the values do not
match, the benchmark fails. We provide extensive configu-
ration options for specifying the number of iterations, the
ability to run to convergence with customized convergence
criteria, and callback hooks before and after every iteration.
For example, the user-defined callbacks can turn hardware
performance counters on and off, or switch a simulator in
and out of detailed simulation mode. We use these features
extensively and are heartened to see others using them.12
For standardization and analytical clarity, our benchmarks
require only a single host and we avoid components that
require user configuration. By contrast, SPEC jAppServer,
which models real-world application servers, requires mul-
tiple hosts and depends on third-party–configurable com-
ponents such as a database. Here we traded some relevance
for control and analytical clarity.

We provide a separate “source” jar to build the entire
suite from scratch. For licensing reasons, the source jar au-
tomatically downloads the Java code from the licensor. With
assistance from our users,5 our packaging now facilitates
static whole program analysis, which is not required for
standard Java implementations. Since the entire suite and
harness are open-source, we happily accept contributions
from our users.

2.3. The researcher
Appropriate workload selection is a task for the commu-
nity, consortia, the workload designer, and the researcher.
Researchers make a workload selection, either implicitly or
explicitly, when they conduct an experiment. This selection
is often automatic: “Let’s use the same thing we used last
time!” Since researchers invest heavily in their evaluation
methodology and infrastructure, this path offers the least
resistance. Instead, we need to identify the workloads and
methodologies that best serve the research evaluation. If

1_CACM_V51.8.indb 85 7/21/08 10:13:37 AM

86 communications of the acm | august 2008 | vol. 51 | no. 8

research highlights

there is no satisfactory answer, it is time to form or join a con-
sortium and create new suitable workloads and supporting
infrastructure.
Do Not Cherry-Pick! A well-designed benchmark suite re-
flects a range of behaviors and should be used as a whole.
Perez et al. demonstrate with alarming clarity that cherry-
picking changes the results of performance evaluation.13
They simulate 12 previously published cache architecture
optimizations in an apples-to-apples evaluation on a suite of
26 SPECcpu benchmarks. There is one clear winner with all
26 benchmarks. There is a choice of 2 different winners with
a suitable subset of 23 benchmarks, 6 winners with subsets
of 18, and 11 winners with 7. When methodology allows re-
searchers a choice among 11 winners from 12 candidates,
the risk of incorrect conclusions, by either mischief or error,
is too high. Section 3.1 shows that Java is equally vulnerable
to subsetting.

Run every benchmark. If it is impossible to report results
for every benchmark because of space or time constraints,
bugs, or relevance, explain why. For example, if you are pro-
posing an optimization for multithreaded Java workloads,
you may wish to exclude benchmarks that do not exhibit
concurrency. In this case, we recommend reporting all the
results but highlighting the most pertinent. Otherwise read-
ers are left guessing as to the impact of the “optimization”
on the omitted workloads—with key data omitted, readers
and reviewers should not give researchers the benefit of the
doubt.

3. EXPERIMENTAL DESIGN
Sound experimental design requires a meaningful base-
line and comparisons that control key parameters. Most
researchers choose and justify a baseline well, but identify-
ing which parameters to control and how to control them is
challenging.

3.1. Gaming your results
The complexity and degrees of freedom inherent in these
systems make it easy to produce misleading results through
errors, omissions, or mischief. Figure 2 presents four results
from a detailed comparison of two garbage collectors. The
JVM, architecture, and other evaluation details appear in the
original paper.4 More garbage collector implementation de-
tails are in Blackburn et al.2 Each graph shows normalized
time (lower is better) across a range of heap sizes that expose
the space–time tradeoff for implementations of two canoni-
cal garbage collector designs, SemiSpace and MarkSweep.

Subsetting Figure 2 badly misleads us in at least three
ways: (1) Figure 2(c) shows that by selecting a single heap size
rather than plotting a continuum, the results can produce
diametrically opposite conclusions. At 2.1 × maximum heap
size, MarkSweep performs much better than SemiSpace,
while at 6.0 × maximum heap size, SemiSpace performs better.
Figures 2(a) and 2(d) exhibit this same dichotomy, but have
different crossover points. Unfortunately, some research-
ers are still evaluating the performance of garbage-collected
languages without varying heap size. (2) Figures 2(a) and 2(b)
confirm the need to use an entire benchmark suite. Although
_209_db and hsqldb are established in-memory database
benchmarks, SemiSpace performs better for _209_db in large
heaps, while MarkSweep is always better for hsqldb. (3) Figures
2(c) and 2(d) show that the architecture significantly impacts
conclusions at these heap size ranges. MarkSweep is better at
more heap sizes for AMD hardware as shown in Figure 2(c).
However, Figure 2(d) shows SemiSpace is better at more heap
sizes for PowerPC (PPC) hardware. This example of garbage-
collection evaluation illustrates a small subset of the pitfalls
in evaluating the performance of managed languages.

3.2. Control in a changing world
Understanding what to control and how to control it in an

Figure 1: Two time-varying selection metrics. Pointer distance (top) and heap composition (bottom) as a function of time.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5
−100

−75

−50

−25

0

25

50

75

100

D
is

ta
n

ce
s

(%
)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5

Time (millions of pointer mutations)

(a) SPECjvm98 _209_db (b) DaCapo eclipse

0

1

2

3

4

5

6

7

8

H
ea

p
 V

ol
u

m
e

(M
B

)

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350
−90
−80
−70
−60
−50
−40
−30
−20
−10

0
10
20
30
40

D
is

ta
n

ce
s

(%
)

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350

Time (millions of pointer mutations)

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5
25.0
27.5
30.0

H
ea

p
 V

ol
u

m
e

(M
B

)

1_CACM_V51.8.indb 86 7/21/08 10:13:39 AM

august 2008 | vol. 51 | no. 8 | communications of the acm 87

experimental system is clearly important. For a classic com-
parison of Fortran, C, or C++ systems, there are at least two
degrees of freedom to control: (a) the host platform (hard-
ware and operating system) and (b) the language runtime
(compiler and associated libraries). Over the years, research-
ers have evolved solid methodologies for evaluating compil-
er, library, and architectural enhancements that target these
languages. Consider a compiler optimization for improving
cache locality. Accepted practice is to compile with and with-
out the optimization and report how often the compiler ap-
plied the optimization. To eliminate interference from other
processes, one runs the versions standalone on one or more
architectures and measures miss rates with either perfor-
mance counters or a simulator. This methodology evolved,
but is now extremely familiar. Once researchers invest in a
methodology, the challenge is to notice when the world has
changed, and to figure out how to adapt.

Modern managed runtimes such as Java add at least three
more degrees of freedom: (c) heap size, (d) nondeterminism,
and (e) warm-up of the runtime system.

Heap Size: Managed languages use garbage collection to
detect unreachable objects, rather than relying on the pro-
grammer to explicitly delete objects. Garbage collection is
fundamentally a space–time trade-off between the efficacy
of space reclamation and time spent reclaiming objects;
heap size is the key control variable. The smaller the heap
size, the more often the garbage collector will be invoked
and the more work it will perform.

Nondeterminism: Deterministic profiling metrics are ex-
pensive. High-performance JVMs therefore use approximate
execution frequencies computed by low-overhead dynamic
sampling to select which methods the JIT compiler will op-
timize and how. For example, a method may happen to be
sampled N times in one invocation and N + 3 in another; if
the optimizer uses a hot-method threshold of N + 1, it will
make different choices. Due to this nondeterminism, code
quality usually does not reach the same steady state on a de-
terministic workload across independent JVM invocations.

Warm-Up: A single invocation of the JVM will often execute
the same application repeatedly. The first iteration of the ap-
plication usually includes the largest amount of dynamic
compilation. Later iterations usually have both less compi-
lation and better application code quality. Eventually, code
quality may reach a steady state. Code quality thus “warms
up.” Steady state is the most frequent use-case. For example,
application servers run their code many times in the same

JVM invocation and thus care most about steady-state perfor-
mance. Controlling for code warm-up is an important aspect
of experimental design for high-performance runtimes.

3.3. Case study
We consider performance evaluation of a new garbage col-
lector as an example of experimental design. We describe
the context and then show how to control the factors de-
scribed above to produce a sound experimental design.

Two key context-specific factors for garbage-collection
evaluation are (a) the space–time trade-off as discussed
above and (b) the relationship between the collector and
mutator (the term for the application itself in the gar-
bage-collection literature). For simplicity, we consider
a stop-the-world garbage collector, in which the collector
and the mutator never overlap in execution. This separa-
tion eases measurement of the mutator and collector.
Some collector-specific code mixes with the mutator: ob-
ject allocation and write barriers, which identify pointers
that cross between independently collected regions. This
code impacts both the mutator and the JIT compiler. Fur-
thermore, the collector greatly affects mutator locality, due
to the allocation policy and any movement of objects at col-
lection time.

Meaningful Baseline: Comparing against the state of the
art is ideal, but practical only when researchers make their
implementations publicly available. Researchers can then
implement their approaches using the same tools or con-
trol for infrastructure differences to make apples-to-apples
comparisons. Garbage-collection evaluations often use gen-
erational MarkSweep collectors as a baseline because these
collectors are widely used in high-performance VMs and
perform well.

Host Platform: Garbage collectors exhibit architecture-
dependent performance properties that are best revealed
with an evaluation across multiple architectures, as shown
in Figures 2(c) and 2(d). These properties include locality,
the cost of write barriers, and the cost of synchronization
instructions.

Language Runtime: The language runtime, libraries, and
JIT compiler directly affect memory load, and so should be
controlled. Implementing various collectors in a common
toolkit factors out common shared mechanisms and focus-
es the comparison on the algorithmic differences between
the collectors.

Heap Size: Garbage-collection evaluations should com-

Figure 2: Gaming your results. Four ways to compare two garbage collectors.

1

 1.1

 1.2

 1.3

 1.4

1.5

1 2 3 4 5 6

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

SemiSpace
MarkSweep

SemiSpace
MarkSweep

1

 1.1

 1.2

 1.3

 1.4

1.5

1 2 3 4 5 6

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

SemiSpace
MarkSweep

1

 1.1

 1.2

 1.3

 1.4

1.5

1 2 3 4 5 6

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

SemiSpace
MarkSweep

1

 1.1

 1.2

 1.3

 1.4

1.5

1 2 3 4 5 6

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

(a) _209_db, Pentium-M (b) hsqldb, Pentium-M (c) pseudojbb, AMD (d) pseudojbb, PPC

1_CACM_V51.8.indb 87 7/21/08 10:13:40 AM

88 communications of the acm | august 2008 | vol. 51 | no. 8

research highlights

pare performance across a range of benchmark-specific
relative heap sizes, starting at the smallest heap in which
any of the measured collectors can run, as shown in Figure
2. Each evaluated system must experience the same memory
load, which requires forcing collections between iterations
to normalize the heap and controlling the JIT compiler.

Nondeterminism: Nondeterministic JIT optimization
plans lead to nondeterministic mutator performance. JIT
optimization of collector-specific code, optimizations that
elide allocations, and the fraction of time spent in collec-
tion may affect mutator behavior in ways that cannot be pre-
dicted or repeated. For example, in Jikes RVM, a Java-in-Java
VM widely used by researchers, JIT compiler activity directly
generates garbage collection load because the compiler al-
locates and executes in the same heap as the application.
These effects make nondeterminism even more acute.

Warm-Up: For multi-iteration experiments, as the system
warms up, mutator speeds increase, and JIT compiler activity
decreases, the fraction of time spent in collection typically
grows. Steady-state execution therefore accentuates the im-
pact of the garbage collector as compared to start-up. Fur-
thermore, the relative impact of collector-specific code will
change as the code is more aggressively optimized. Evalua-
tions must therefore control for code quality and warm-up.

3.4. Controlling nondeterminism
Of the three new degrees of freedom outlined in Section 3.2,
we find dealing with nondeterminism to be the most meth-
odologically challenging. Over time, we have adopted and
recommend three different strategies: (a) use deterministic
replay of optimization plans, which requires JVM support;
(b) take multiple measurements in a single JVM invocation,
after reaching steady state and turning off the JIT compiler;
and (c) generate sufficient data points and apply suitable
statistical analysis.8 Depending on the experiment, the re-
searcher will want to perform one, two, or all of these experi-
ments. The first two reduce nondeterminism for analysis
purposes by controlling its sources. Statistical analysis of
results from (a) and (b) will reveal whether differences from
the remaining nondeterminism are significant. The choice
of (c) accommodates larger factors of nondeterminism (see
Section 4) and may be more realistic, but requires significant-
ly more data points, at the expense of other experiments.

Replay Compilation: Replay compilation collects pro-
file data and a compilation plan from one or more train-
ing runs, forms an optimization plan, and then replays
it in subsequent, independent timing invocations.9 This
methodology deterministically applies the JIT compiler,
but requires modifications to the JVM. It isolates the JIT
compiler activity, since replay eagerly compiles to the
plan’s final optimization level instead of lazily relying on
dynamic recompilation triggers. Researchers can mea-
sure the first iteration for deterministic characterization
of start-up behavior. Replay also removes most profiling
overheads associated with the adaptive optimization sys-
tem, which is turned off. As far as we are aware, produc-
tion JVMs do not support replay compilation.

Multi-Iteration Determinism: An alternative approach

that does not depend on runtime support is to run multiple
measurement iterations of a benchmark in a single invo-
cation, after the runtime has reached steady state. Unlike
replay, this approach does not support deterministic mea-
surement of warm-up. We use this approach when gather-
ing data from multiple hardware performance counters,
which requires multiple distinct measurements of the same
system. We first perform N – 1 unmeasured iterations of a
benchmark while the JIT compiler warms up the code. We
then turn the JIT compiler off and execute the Nth iteration
unmeasured to drain any JIT work queues. We measure the
next K iterations. On each iteration, we gather different per-
formance counters of interest. Since the code quality has
reached steady state, it should be a representative mix of
optimized and unoptimized code. Since the JIT compiler is
turned off, the variation between the subsequent iterations
should be low. The variation can be measured and verified.

3.5. Experimental design in other settings
In each experimental setting, the relative influence of the
degrees of freedom, and how to control them, will vary. For
example, when evaluating a new compiler optimization, re-
searchers should hold the garbage-collection activity con-
stant to keep it from obscuring the effect of the optimization.
Comparing on multiple architectures is best, but is limited
by the compiler back-end. When evaluating a new architec-
ture, vary the garbage-collection load and JIT compiler activi-
ty, since both have distinctive execution profiles. Since archi-
tecture evaluation often involves very expensive simulation,
eliminating nondeterminism is particularly important.

4. ANALYSIS
Researchers use data analysis to identify and articulate the
significance of experimental results. This task is more chal-
lenging when systems and their evaluation become more
complex, and the sheer volume of results grows. The prima-
ry data analysis task is one of aggregation: (a) across repeat-
ed experiments to defeat experimental noise and (b) across
diverse experiments to draw conclusions.

Aggregating data across repeated experiments is a stan-
dard technique for increasing confidence in a noisy environ-
ment.8 In the limit, this approach is in tension with tractabil-
ity, because researchers have only finite resources. Reducing
sources of nondeterminism with sound experimental design
improves tractability. Since noise cannot be eliminated al-
together, multiple trials are inevitably necessary. Research-
ers must aggregate data from multiple trials and provide
evidence such as confidence intervals to reveal whether the
findings are significant. Georges et al.8 use a survey to show
that current practice lacks statistical rigor and explain the
appropriate tests for comparing alternatives.

Section 2.3 exhorts researchers not to cherry-pick bench-
marks. Still, researchers need to convey results from diverse
experiments succinctly, which necessitates aggregation. We
encourage researchers (a) to include complete results and (b)
to use appropriate summaries. For example, using the geo-
metric mean dampens the skewing effect of one excellent
result. Although industrial benchmarks will often produce

1_CACM_V51.8.indb 88 7/21/08 10:13:40 AM

august 2008 | vol. 51 | no. 8 | communications of the acm 89

a single aggregate score over a suite, this methodology is
brittle because the result depends entirely on vagaries of the
suite composition.18 For example, while it is tempting to cite
your best result—“we outperform X by up to 1000%”—stat-
ing an aggregate together with the best and worst results is
more honest and insightful.

5. CONCLUSION
Methodology plays a strategic role in experimental computer
science research and development by creating a common
ground for evaluating ideas and products. Sound methodolo-
gy relies on relevant workloads, principled experimental design,
and rigorous analysis. Evaluation methodology can therefore
have a significant impact on a research field, potentially ac-
celerating, retarding, or misdirecting energy and innovation.
However, we work within a fast-changing environment and
our methodologies must adapt to remain sound and relevant.
Prompted by concerns among ourselves and others about the
state of the art, we spent thousands of hours at eight institu-
tions examining and addressing the problems of evaluating
Java applications. The lack of direct funding, the perception
that methodology is mundane, and the magnitude of the ef-
fort surely explain why these efforts are uncommon.

We address neglect of evaluation methodology concretely,
in one domain at one point in time, and draw broader lessons
for experimental computer science. The development and
maintenance of the DaCapo benchmark suite and associated

methodology have brought some much-needed improvement
to our evaluations and to our particular field. However, experi-
mental computer science cannot expect the upkeep of its meth-
odological foundations to fall to ad hoc volunteer efforts. We
encourage stakeholders such as industry and granting agencies
to be forward-looking and make a systemic commitment to
stem methodological neglect. Invest in the foundations of our
innovation.

Acknowledgments
We thank Andrew Appel, Randy Chow, Frans Kaashoek, and
Bill Pugh, who encouraged this project at our three year NSF
ITR review. We thank Mark Wegman, who initiated the public
availability of Jikes RVM, and the developers of Jikes RVM. We
gratefully acknowledge Fahad Gilani, who wrote the original
version of the measurement infrastructure for his ANU Mas-
ters thesis; Xianglong Huang and Narendran Sachindran, who
helped develop the replay methodology; and Jungwoo Ha and
Magnus Gustafsson, who helped developed the multi-iteration
replay methodology. We thank Tom Horn for his proofreading,
and Guy Steele for his careful reading and suggestions.

This work was supported by NSF ITR CCR-0085792,
CNS-0719966, NSF CCF-0429859, NSF EIA-0303609, DARPA
F33615-03-C-4106, ARC DP0452011, ARC DP0666059, Intel,
IBM, and Microsoft. Any opinions, findings and conclusions
expressed herein are the authors’ and do not necessarily re-
flect those of the sponsors.�

References

	 1.	 Adamson, A., Dagastine, D., and Sarne,
S. SPECjbb2005––A year in the life of
a benchmark. 2007 SPEC Benchmark
Workshop. SPEC, Jan. 2007.

	 2.	 Blackburn, S.M., Cheng P., and
McKinley, K.S. Myths and realities:
The performance impact of garbage
collection. Proceedings of the
ACM Conference on Measurement
and Modeling Computer Systems,
pp. 25–36, New York, NY,
June 2004.

	 3.	 Blackburn, S.M., Garner, R., Hoffman,
C., Khan, A.M., McKinley, K.S.,
Bentzur, R., Diwan, A., Feinberg, D.,
Frampton, D., Guyer, S.Z., Hirzel, M.,
Hosking, A., Jump, M., Lee, H., Moss,
J.E.B., Phansalkar, A., Stefanović,
D., VanDrunen, T., von Dincklage,
D., and Wiedermann, B. The DaCapo
benchmarks: Java benchmarking
development and analysis (extended
version). Technical Report TR-
CS-06-01, Dept. of Computer
Science, Australian National
University, 2006. http://www.
dacapobench.org.

	 4.	 Blackburn, S.M., Garner, R., Hoffman,
C., Khan, A.M., McKinley, K.S.,
Bentzur, R., Diwan, A., Feinberg, D.,
Frampton, D., Guyer, S.Z., Hirzel, M.,
Hosking, A., Jump, M., Lee, H., Moss,
J.E.B., Phansalkar, A., Stefanović,
D., VanDrunen, T., von Dincklage,
D.,and Wiedermann, B. The DaCapo
benchmarks: Java benchmarking
development and analysis. ACM
Conference on Object-Oriented
Programming Systems, Languages,
and Applications, pp. 169–190,
Oct. 2006.

	 5.	 Bodden, E., Hendren, L., and Lhoták,
O. A staged static program analysis to
improve the performance of runtime
monitoring. 21st European Conference
on Object-Oriented Programming,
July 30th–August 3rd 2007, Berlin,
Germany, number 4609 in Lecture
Notes in Computer Science, pp.
525–549, Springer Verlag, 2007.

	 6.	 Chidamber, S.R. and Kemerer, C.F.
A metrics suite for object-oriented
design. IEEE Transactions on Software
Engineering, 20(6):476–493, 1994.

	 7.	 Dunteman, G.H. Principal Components
Analysis. Sage Publications, Newbury
Park, CA, USA, 1989.

	 8.	 Georges, A., Buytaert, D., and
Eeckhout, L. Statistically rigorous
Java performance evaluation. ACM
Conference on Object-Oriented
Programming Systems, Languages,
and Applications, pp. 57–76, Montreal,
Quebec, Canada, 2007.

	 9.	 Huang, X., Blackburn, S.M., McKinley,
K.S., Moss, J.E.B., Wang Z., and Cheng
P. The garbage collection advantage:
Improving mutator locality. ACM
Conference on Object-Oriented
Programming Systems, Languages,
and Applications, pp. 69–80,
Vancouver, BC, 2004.

	10.	 Leyland, B. Auckland central
business district supply failure. Power
Engineering Journal, 12(3):109–114,
1998.

	11.	 National Transportation Safety
Board. NTSB urges bridge owners to
perform load capacity calculations
before modifications; I-35W
investigation continues. SB-08-02.
http://www.ntsb.gov/Pressrel/​

2008/080115.html, Jan. 2008.
	12.	 Neelakantam, N., Rajwar, R.,

Srinivas, S., Srinivasan, U., and
Zilles, C. Hardware atomicity for
reliable software speculation. ACM/
IEEE International Symposium on
Computer Architecture, pp. 174–185,
ACM, New York, NY, USA, 2007.

	13.	 Perez, D.G., Mouchard, G., and
Temam, O. MicroLib: A case for
the quantitative comparison of
micro-architecture mechanisms.
International Symposium on
Microarchitecture, pp. 43–54,
Portland, OR, Dec. 2004.

	14.	 Standard Performance Evaluation
Corporation. SPECjvm98
Documentation, release 1.03
edition, March 1999.

	15.	 Standard Performance Evaluation
Corporation. SPECjbb2000 (Java
Business Benchmark) Documentation,

release 1.01 edition, 2001.
	16.	 Stefanović, D. Properties of

Age-Based Automatic Memory
Reclamation Algorithms. PhD thesis,
Department of Computer Science,
University of Massachusetts,
Amherst, Massachusetts, Dec. 1998.

	17.	 Yi, J.J., Vandierendonck, H., Eeckhout,
L., and Lilja, D.J. The exigency of
benchmark and compiler drift:
Designing tomorrow’s processors
with yesterday’s tools. International
Conference on Supercomputing, pp.
75–86, Cairns, Queensland, Australia,
July 2006.

	18.	 Yoo, R.M., Lee, H.-H. S., Lee, H., and
K. Chow. Hierarchical means: Single
number benchmarking with workload
cluster analysis. IISWC 2007. IEEE
10th International Symposium
on Workload Characterization, pp.
204–213, IEEE, 2007.

© 2008 ACM 0001-0782/08/0800 $5.00

Stephen M. Blackburn, Robin Garner,
Daniel Frampton, Australian National
University

Kathryn S. McKinley, Aashish
Phansalkar, Ben Wiedermann, Maria
Jump, University of Texas at Austin

Chris Hoffmann, Asjad M. Khan, J Eliot
B. Moss, University of Massachusetts,
Amherst

Rotem Bentzur, Daniel Feinberg, Darko
Stefanović, University of New Mexico

Amer Diwan, Daniel von Dincklage,
University of Colorado

Samuel Z. Guyer, Tufts University

Martin Hirzel, IBM

Antony Hosking, Purdue University

Han Lee, Intel

Thomas VanDrunen, Wheaton College

1_CACM_V51.8.indb 89 7/21/08 10:13:40 AM

http://www.dacapobench.org
http://www.dacapobench.org
http://www.ntsb.gov/Pressrel/2008/080115.html
http://www.ntsb.gov/Pressrel/2008/080115.html

90 communications of the acm | august 2008 | vol. 51 | no. 8

research highlights

doi:10.1145/1378704.1378724

Technical Perspective
Transactions are Tomorrow’s
Loads and Stores
By Nir Shavit

In computer science, when we say
“time is money,” we typically refer to
two types of time that determine the
costs and benefits of a given computer
program: the time it takes the program
to run, and the time it takes to write
and maintain it. There is a delicate
trade-off between these two types of
time: the faster we want a program to
run, the more time we need to spend
when writing and maintaining it, and
vice versa.

Until very recently, it seemed this
trade-off could be mostly ignored. The
job of making programs run faster fell
into the lap of the hardware architects,
who continued to deliver advances in
single CPU clock speed at a reliable
pace. These reliable speed increases
allowed software engineers and pro-
gramming language designers to fo-
cus on adding software constructs
that offered substantial reductions in
the time it takes to write and maintain
code. How was this done? The terms
that come to mind are abstraction,
modularity, and compositionality.

Unfortunately, as we have all heard,
things are about to change dramati-
cally. Moore’s Law has not been re-
pealed—each year more and more
transistors are being fit into the same
space—but CPU clock speeds can no
longer be effectively increased. In-
stead, hardware designers have turned
to multicore architectures, in which
multiple computing cores are included
on each processor chip. The switch to
multicore architectures promises in-
creased parallelism, but not increased
single-thread performance. Even if this
increased parallelism is delivered at a
reliable pace, the hardware designers
cannot by themselves deliver reliable
increases in the speed at which pro-
grams run. This job will fall into the
laps of software engineers.

The main tool for handling concur-
rency in today’s programming languag-
es are locks—software constructs that
allow sequences of loads and stores

to access data in a mutually exclusive
manner. Indeed, lock-based programs
have been known to deliver amazing
performance on multicore architec-
tures. However, it is becoming clear
that, while using locks will allow us to
continue to reduce the time it takes
programs to run, they will cause the
time it takes us to write and maintain
our programs to shoot back up.

The heart of the problem is, per-
haps, that no one really knows how to
organize and maintain large systems
that rely on locking. Locks are not
modular and do not compose, and the
association between locks and data is
established mostly by convention. Ul-
timately, the association exists only in
the mind of the programmer, and may
be documented only in comments.

A promising solution to this prob-
lem is the introduction of atomic
memory transactions as a multicore
programming abstraction. While trans-
actions have been used for years in the
database community, they are now be-
ing proposed as an equal partner to,
and perhaps even a replacement for,
the loads and stores we typically use
in our programs. The idea is simple:
encapsulate sequences of loads and
stores within a transaction, with the
guarantee that if any operation takes
place, they all do, and that if they do,
they appear to other threads to do so
atomically, as one indivisible opera-
tion.

Work on the design of efficient trans-
actional memory implementations has
been proceeding in earnest. However,
there is a missing element: a frame-
work of transactional memory-based
concurrency that would provide the
modularity and compositionality nec-
essary when designing and maintain-
ing large-scale concurrent systems.

This is where the breakthrough
work on composable memory trans-
actions by Tim Harris, Simon Marlow,
Simon Peyton Jones, and Maurice Her-
lihy takes center stage. They have pro-

vided, for the first time, a concurrent
language model and a set of constructs
that allow true simplicity in transac-
tional programming.

One source of difficulty they had to
overcome was that transactions are op-
timistic: they are tried but may fail and
have to be rolled back, so one cannot al-
low events with side effects, for example
I/O, to take place within transactions.

The authors’ solution was to use
transactions within a purely declara-
tive language, which, as it turns out, is
a perfect match for transactions since
the type system explicitly separates
computations that may have side ef-
fects from effect-free ones.

Another big problem was that con-
current programming requires that
threads await events by other threads.
Waiting on a condition outside a trans-
action greatly limits what it can do, and
waiting inside a transaction can get it
stuck.

The authors solved the problem by
introducing new transactional con-
structs, among them an elegant retry
command that allows a transaction to
effectively abort, then restart only after
a potentially good event has increased
the likelihood of the condition being
met. Quite surprisingly, retry is a key
factor in allowing sequences of trans-
actional actions to be composed so
they all take effect together.

The language structure together
with the added transactional composi-
tion constructs provide a clean frame-
work that allows transactions to com-
pose without giving up their natural
advantages over locks: concurrent pro-
grammers can program using atomic
operations that span multiple objects
in memory, without having to break
abstraction barriers.

If multicore architectures are the
way to continue improving the time it
takes programs to run, then perhaps
composable memory transactions are
the way to improve the time its takes us
to write and maintain them.�

Nir Shavit (shanir@cs.tau.ac.il) is a past program chair
of the ACM’s PODC and SPAA conferences and a recipient
of the ACM’s 2004 Gödel Prize in Theoretical Computer
Science.

1_CACM_V51.8.indb 90 7/21/08 10:13:40 AM

mailto:shanir@cs.tau.ac.il

august 2008 | vol. 51 | no. 8 | communications of the acm 91

doi:10.1145/1378704.1378725

Composable Memory Transactions
By Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy

Abstract
Writing concurrent programs is notoriously difficult and
is of increasing practical importance. A particular source
of concern is that even correctly implemented concurrency
abstractions cannot be composed together to form larger
abstractions. In this paper we present a concurrency model,
based on transactional memory, that offers far richer com-
position. All the usual benefits of transactional memory are
present (e.g., freedom from low-level deadlock), but in addi-
tion we describe modular forms of blocking and choice that
were inaccessible in earlier work.

1. INTRODUCTION
The free lunch is over.25 We have been used to the idea that
our programs will go faster when we buy a next-generation
processor, but that time has passed. While that next-
generation chip will have more CPUs, each individual CPU
will be no faster than the previous year’s model. If we want
our programs to run faster, we must learn to write parallel
programs.

Writing parallel programs is notoriously tricky. Main-
stream lock-based abstractions are difficult to use and they
make it hard to design computer systems that are reliable
and scalable. Furthermore, systems built using locks are dif-
ficult to compose without knowing about their internals.

To address some of these difficulties, several research-
ers (including ourselves) have proposed building program-
ming language features over software transactional memory
(STM), which can perform groups of memory operations
atomically.23 Using transactional memory instead of locks
brings well-known advantages: freedom from deadlock and
priority inversion, automatic roll-back on exceptions or tim-
eouts, and freedom from the tension between lock granular-
ity and concurrency.

Early work on software transactional memory suffered
several shortcomings. Firstly, it did not prevent transactional
code from bypassing the STM interface and accessing data
directly at the same time as it is being accessed within a trans-
action. Such conflicts can go undetected and prevent transac-
tions executing atomically. Furthermore, early STM systems
did not provide a convincing story for building operations
that may block—for example, a shared work-queue support-
ing operations that wait if the queue becomes empty.

Our work on STM-Haskell set out to address these prob-
lems. In particular, our original paper makes the following
contributions:

•	We re-express the ideas of transactional memory in the
setting of the purely functional language Haskell
(Section 3). As we show, STM can be expressed particu-
larly elegantly in a declarative language, and we are able
to use Haskell’s type system to give far stronger guaran-

tees than are conventionally possible. In particular, we
guarantee “strong atomicity”15 in which transactions
always appear to execute atomically, no matter what
the rest of the program is doing. Furthermore transac-
tions are compositional: small transactions can be
glued together to form larger transactions.

•	We present a modular form of blocking (Section 3.2).
The idea is simple: a transaction calls a retry opera-
tion to signal that it is not yet ready to run (e.g., it is try-
ing to take data from an empty queue). The programmer
does not have to identify the condition which will
enable it; this is detected automatically by the STM.

•	The retry function allows possibly blocking transac-
tions to be composed in sequence. Beyond this, we also
provide orElse, which allows them to be composed as
alternatives, so that the second is run if the first retries
(see Section 3.4). This ability allows threads to wait for
many things at once, like the Unix select system
call—except that orElse composes, whereas select
does not.

Everything we describe is fully implemented in the Glas-
gow Haskell Compiler (GHC), a fully fledged optimizing
compiler for Concurrent Haskell; the STM enhancements
were incorporated in the GHC 6.4 release in 2005. Further
examples and a programmer-oriented tutorial are also
available.19

Our main war cry is compositionality: a programmer can
control atomicity and blocking behavior in a modular way
that respects abstraction barriers. In contrast, lock-based
approaches lead to a direct conflict between abstraction and
concurrency (see Section 2). Taken together, these ideas offer
a qualitative improvement in language support for modular
concurrency, similar to the improvement in moving from as-
sembly code to a high-level language. Just as with assembly
code, a programmer with sufficient time and skills may ob-
tain better performance programming directly with low-level
concurrency control mechanisms rather than transactions—
but for all but the most demanding applications, our higher-
level STM abstractions perform quite well enough.

This paper is an abbreviated and polished version of an
earlier paper with the same title.9 Since then there has been
a tremendous amount of activity on various aspects of trans-
actional memory, but almost all of it deals with the question
of atomic memory update, while much less attention is paid
to our central concerns of blocking and synchronization be-
tween threads, exemplified by retry and orElse. In our
view this is a serious omission: locks without condition vari-
ables would be of limited use.

Transactional memory has tricky semantics, and the
original paper gives a precise, formal semantics for transac-
tions, as well as a description of our implementation. Both
are omitted here due to space limitations.

1_CACM_V51.8.indb 91 7/21/08 10:13:41 AM

92 communications of the acm | august 2008 | vol. 51 | no. 8

research highlights

2. BACKGROUND
Throughout this paper we study concurrency between
threads running on a shared-memory machine; we do not
consider questions of external interaction through storage
systems or databases, nor do we address distributed systems.
The kinds of problem we have in mind are building collection
classes (queues, lists, and so on) and other data structures
that concurrent threads use to maintain shared informa-
tion. There are many other approaches to concurrency that
we do not discuss, including data-parallel abstractions from
languages like NESL2 and those from the high-performance
computing community such as OpenMP and MPI.

Even in this restricted setting, concurrent programming
is extremely difficult. The dominant programming tech-
nique is based on locks, an approach that is simple and di-
rect, but that simply does not scale with program size and
complexity. To ensure correctness, programmers must iden-
tify which operations conflict; to ensure liveness, they must
avoid introducing deadlock; to ensure good performance,
they must balance the granularity at which locking is per-
formed against the costs of fine-grain locking.

Perhaps the most fundamental objection, though, is that
lock-based programs do not compose. For example, consider
a hash table with thread-safe insert and delete operations.
Now suppose that we want to delete one item A from table
t1, and insert it into table t2; but the intermediate state (in
which neither table contains the item) must not be visible
to other threads. Unless the implementer of the hash table
anticipates this need, there is simply no way to satisfy this re-
quirement without somehow locking out all other accesses
to the table. One approach is to expose concurrency control
methods such as LockTable and UnlockTable—but this
breaks the hash table abstraction, and invites lock-induced
deadlock, depending on the order in which the client takes
the locks, or race conditions if the client forgets. Yet more
complexity is required if the client wants to await the pres-
ence of A in t1—but this blocking behavior must not lock
the table (else A cannot be inserted). In short, operations
that are individually correct (insert, delete) cannot be com-
posed into larger correct operations.

The same phenomenon shows up trying to compose al-
ternative blocking operations. Suppose a procedure p1 waits
for one of two input pipes to have data, using a call to the
Unix select procedure; and suppose another procedure
p2 does the same thing, on two other pipes. In Unix there
is no way to perform a select between p1 and p2, a funda-
mental loss of compositionality. Instead, Unix programmers
learn awkward programming techniques to gather up all the
file descriptors that must be waited for, perform a single top-
level select, and then dispatch back to the correct handler.
Again, two individually correct abstractions, p1 and p2, can-
not be composed into a larger one; instead, they must be
ripped apart and awkwardly merged, in direct conflict with
the goals of abstraction.

Rather than fixing locks, a more promising and radical
alternative is to base concurrency control on atomic mem-
ory transactions, also known as transactional memory. We
will show that transactional memory offers a solution to
the tension between concurrency and abstraction. For ex-

ample, with memory transactions we can manipulate the
hash table thus:

and to wait for either p1 or p2 we can say

These simple constructions require no knowledge of the
implementation of insert, delete, p1 or p2, and they
continue to work correctly if these operations may block, as
we shall see.

2.1. Transactional memory
The idea of transactions is not new. They have been a fun-
damental mechanism in database design for many years,
and there has been much subsequent work on transactional
memory. Larus and Rajwar provide a recent survey.14

The key idea is that a block of code, including nested calls,
can be enclosed by an atomic block, with the guarantee that
it runs atomically with respect to every other atomic block.
Transactional memory can be implemented using optimistic
synchronization. Instead of taking locks, an atomic block
runs without locking, accumulating a thread-local transaction
log that records every memory read and write it makes. When
the block completes, it first validates its log, to check that
it has seen a consistent view of memory, and then commits
its changes to memory. If validation fails, because memory
read by the method was altered by another thread during the
block’s execution, then the block is re-executed from scratch.

Suitably implemented transactional memory eliminates
many of the low-level difficulties that plague lock-based pro-
gramming. There are no lock-induced deadlocks (because
there are no locks); there is no priority inversion; and there is
no painful tension between granularity and concurrency. How-
ever, initial work made little progress on transactional abstrac-
tions that compose well. There are three particular problems.

Firstly, since a transaction may be rerun automatically,
it is essential that it does nothing irrevocable. For example,
the transaction

might launch a second salvo of missiles if it were re-execut-
ed. It might also launch the missiles inadvertently if, say, the
thread was de-scheduled after reading n but before reading
k, and another thread modified both before the thread was
resumed. This problem begs for a guarantee that the body of
the atomic block can only perform memory operations, and
hence can only make benign modifications to its own transac-
tion log, rather than performing irrevocable input/output.

Secondly, many systems do not support synchroniza-
tion between transactions, and those that do rely on a a
programmer-supplied Boolean guard on the atomic block.8
For example, a method to get an item from a buffer might be:

atomic {v := delete(t1, A); insert(t2, A, v)}

atomic {p1 ‘orElse‘ p2}

atomic {if (n > k) then launchMissiles(); S2}

1_CACM_V51.8.indb 92 7/21/08 10:13:41 AM

august 2008 | vol. 51 | no. 8 | communications of the acm 93

The thread waits until the guard (n_items > 0) holds,
before executing the block. But how could we take two con-
secutive items? We cannot call get(); get(), because an-
other thread might perform an intervening get. We could
try wrapping two calls to get in a nested atomic block,
but the semantics of this are unclear unless the outer block
checks there are two items in the buffer. This is a disaster
for abstraction, because the client (who wants to get the two
items) has to know about the internal details of the imple-
mentation. If several separate abstractions are involved,
matters are even worse.

Thirdly, no previous transactional memory supports choice,
exemplified by the select example mentioned earlier.

We tackle all three issues by presenting transactional
memory in the context of the declarative language Concur-
rent Haskell, which we briefly review next.

2.2. Concurrent Haskell
Concurrent Haskell20 is an extension to Haskell 98, a pure,
lazy, functional language. It provides explicitly forked
threads, and abstractions for communicating between
them. This naturally involves side effects and so, given the
lazy evaluation strategy, it is necessary to be able to control
exactly when they occur. The big breakthrough came from a
mechanism called monads.21

Here is the key idea: a value of type IO a is an I/O action
that, when performed, may do some I/O before yielding a
value of type a. For example, the functions putChar and
getChar have types:

That is, putChar takes a Char and delivers an I/O action
that, when performed, prints the character on the standard
output; while getChar is an action that, when performed,
reads a character from the console and delivers it as the re-
sult of the action. A complete program must define an I/O
action called main; executing the program means perform-
ing that action. For example:

I/O actions can be glued together by a monadic bind
combinator. This is normally used through some syntac-
tic sugar, allowing a C-like syntax. Here, for example, is a
complete program that reads a character and then prints
it twice:

As well as performing external input/output, I/O actions in-
clude operations with side effects on mutable cells. A value
of type IORef a is a mutable storage cell which can hold
values of type a, and is manipulated (only) through the fol-
lowing interface:

newIORef takes a value of type a and creates a mutable stor-
age location holding that value. readIORef takes a refer-
ence to such a location and returns the value that it contains.
writeIORef provides the corresponding update operation.
Since these cells can only be created, read, and written using
operations in the IO monad, there is a type-secure guaran-
tee that ordinary functions are unaffected by state—for ex-
ample, a pure function sin cannot read or write an IORef
because sin has type Float -> Float.

Concurrent Haskell supports threads, each indepen-
dently performing input/output. Threads are created using
a function forkIO:

forkIO takes an I/O action as its argument, spawns a fresh
thread to perform that action, and immediately returns its
thread identifier to the caller. For example, here is a program
that forks a thread that prints ‘x’, while the main thread goes
on to print ‘y’:

Peyton Jones provides a fuller introduction to concur-
rency, I/O, exceptions and cross-language interfacing
(the “awkward squad” for pure, lazy, functional program-
ming),18 and Daume III provides a general online tutorial
to Haskell.6

3. COMPOSABLE TRANSACTIONS
We are now ready to present the key ideas of the paper. Our
starting point is this: a purely declarative language is a per-
fect setting for transactional memory, for two reasons. First,
the type system explicitly separates computations which
may have side effects from effect-free ones. As we shall see,
it is easy to refine it so that transactions can perform mem-
ory effects but not irrevocable input/output effects. Second,
reads from and writes to mutable cells are explicit, and
relatively rare: most computation takes place in the purely
functional world. These functional computations perform
many, many memory operations—allocation, update of
thunks, stack operations, and so on—but none of these
need to be tracked by the STM, because they are pure and
never need to be rolled back. Only the relatively rare explicit
operations need be logged, so a software implementation is
entirely appropriate.

Item get () {
  atomic (n_items > 0) {... remove item ...}
}

putChar :: Char -> IO ()
getChar :: IO Char

main :: IO ()
main = putChar ’x’

main = do {c <- getChar; putChar c; putChar c}

newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()

forkIO :: IO a -> IO ThreadId

main = do {forkIO (print ’x’); print ’y’}

1_CACM_V51.8.indb 93 7/21/08 10:13:41 AM

94 communications of the acm | august 2008 | vol. 51 | no. 8

research highlights

So our approach is to use Haskell as a kind of “labora-
tory” in which to study the ideas of transactional memory
in a setting with a very expressive type system. As we go, we
will mention primitives from the STM library, whose inter-
face is summarized in Figure 1. In this paper, we focus on
examples of how STM can be used in building simple con-
currency abstractions. Our original paper9 formally defines
the details of the design via an operational semantics
which we developed alongside our implementations; we
found this invaluable in highlighting interactions between
the constructs—for example, what happens if an excep-
tion is raised deep inside an atomic block, nested within
catch handlers and orElse? For the moment we return to
simpler examples.

3.1. Transactional variables and atomicity
Suppose we wish to implement a resource manager, which
holds an integer-valued resource. The call (getR r n) should
acquire n units of resource r, blocking if r holds insufficient re-
source; the call (putR r n) should return n units of resource
to r.

Here is how we might program putR in STM-Haskell:

The currently available resource is held in a transactional
variable of type TVar Int. The type declaration simply
gives a name to this type. The function putR reads the value
v of the resource from its cell, and writes back (v + i) into
the same cell. (We discuss getR next, in Section 3.2.)

The readTVar and writeTVar operations both return
STM actions (Figure 1), but Haskell allows us to use the same

do {. . .} syntax to compose STM actions as we did for I/O ac-
tions. These STM actions remain tentative during their ex-
ecution: to expose an STM action to the rest of the system, it
can be passed to a new function atomic, with type:

It takes a memory transaction, of type STM a, and delivers
an I/O action that, when performed, runs the transaction
atomically with respect to all other memory transactions.
One might say:

The underlying transactional memory deals with maintain-
ing a per-thread transaction log to record the tentative access-
es made to TVars. When atomic is invoked, the STM checks
that the logged accesses are valid—i.e., no concurrent trans-
action has committed conflicting updates to those TVars. If
the log is valid then the STM commits it atomically to the heap,
thereby exposing its effects to other transactions. Otherwise
the memory transaction is rerun with a fresh log.

Splitting the world into STM actions and I/O actions pro-
vides two valuable properties, both statically checked by the
type system:

•	 There is no way to perform general I/O within a transac-
tion, because there is no operation that takes an IO
computation and performs it in the STM monad. Hence
only STM actions and pure computation can be per-
formed inside a memory transaction. This is precisely
the guarantee we sought in Section 2.1. It statically pre-
vents the programmer from calling launchMissiles
inside a transaction, because launching missiles is an
I/O action with type IO (), and cannot be composed
with STM actions.

•	 No STM actions can be performed outside a transac-
tion, so the programmer cannot accidentally read or
write a TVar without the protection of atomic. Of
course, one can always say atomic (readTVar v) to
read a TVar in a trivial transaction, but the call to
atomic cannot be omitted.

3.2. Blocking memory transactions
Any concurrency mechanism must provide a way for a
thread to await an event or events caused by other threads.
In lock-based programming, this is typically done us-
ing condition variables; message-based systems offer a
construct to wait for messages on a number of channels;
POSIX provides select; Win32 provides WaitForMul-
tipleObjects; and STM systems to date allow the pro-
grammer to guard the atomic block with a Boolean condi-
tion (see Section 2.1).

The Haskell setting led us to a remarkably simple new
mechanism for blocking. Furthermore, as we show in Sec-
tions 3.3 and 3.4, it supports composition in ways that are
not possible with lock-based programming.

type Resource = TVar Int
putR :: Resource -> Int -> STM ()
putR r i = do { v <- readTVar r
 ; writeTVar r (v + i)}

atomic :: STM a -> IO a

main = do {...; atomic (putR r 3); ...}

Figure 1: The STM interface.

-- The STM monad itself
data STM a
instance Monad STM
-- Monads support “do” notation and sequencing

-- Exceptions
throw  ::  Exception -> STM a
catch  ::  STM a -> (Exception->STM a) -> STM a

-- Running STM computations
atomic  ::  STM a -> IO a
retry  ::  STM a
orElse  ::  STM a -> STM a -> STM a

-- Transactional variables
data TVar a
newTVar  ::  a -> STM (TVar a)
readTVar  ::  TVar a -> STM a
writeTVar  ::  TVar a -> a -> STM ()

1_CACM_V51.8.indb 94 7/21/08 10:13:41 AM

august 2008 | vol. 51 | no. 8 | communications of the acm 95

The idea is to provide a retry operation to indicate that
the current atomic action is not yet ready to run to comple-
tion. Here is the code for getR:

It reads the value v of the resource and, if v >= i, decreases
it by i. If v < i, there is insufficient resource in the variable,
in which case it calls retry. Conceptually, retry aborts
the transaction with no effect, and restarts it at the begin-
ning. However, there is no point in actually re-executing the
transaction until at least one of the TVars read during the at-
tempted transaction has been written by another thread. Hap-
pily, the transaction log (which is needed anyway) already
records exactly which TVars were read. The implementa-
tion, therefore, blocks the thread until at least one of these
is updated. Notice that retry’s type (STM a) allows it to be
used wherever an STM action may occur.

Unlike the validation check, which is automatic and im-
plicit, retry is called explicitly by the programmer. It does
not indicate anything bad or unexpected; rather, it shows up
when some kind of blocking would take place in other ap-
proaches to concurrency.

Notice that there is no need for the putR operation to re-
member to signal any condition variables. Simply by writing
to the TVars involved, the producer will wake up the consum-
er. A whole class of lost-wake-up bugs is thereby eliminated.

From an efficiency point of view, it makes sense to call
retry as early as possible, and to refrain from reading unre-
lated locations until after the test succeeds. Nevertheless,
the programming interface is delightfully simple, and easy
to reason about.

3.3. Sequential composition
By using atomic, the programmer identifies atomic trans-
actions, in the classic sense that the entire set of operations
that it contains appears to take place indivisibly. This is the
key to sequential composition for concurrency abstractions.
For example, to grab three units of one resource and seven of
another, a thread can say

The standard do {. . ; . .} notation combines the STM actions
from the two getR calls and the underlying transactional
memory commits their updates as a single atomic I/O action.

The retry function is central to making transactions
composable when they may block. The transaction above
will block if either r1 or r2 has insufficient resource: there
is no need for the caller to know how getR is implemented,
or what condition guarantees its success. Nor is there any
risk of deadlock by awaiting r2 while holding r1.

This ability to compose STM actions is why we did not
define getR as an I/O action, wrapped in a call to atomic.

By leaving it as an STM action, we allow the programmer to
compose it with other STM actions before finally sealing it
into a transaction with atomic. In a lock-based setting, one
would worry about crucial locks being released between the
two calls, and about deadlock if another thread grabbed the
resources in the opposite order, but there are no such con-
cerns here.

The STM type on an atomic action provides a strong guar-
antee: the only way the action can be executed is for it to be
passed to atomic. Any STM action can be robustly composed
with other STM actions: the resulting sequence will still ex-
ecute atomically.

3.4. Composing alternatives
We have discussed composing transactions in sequence, so
that both are executed. STM-Haskell also allows us to com-
pose transactions as alternatives, so that only one is executed.
For example, to get either 3 units from r1 or 7 units from r2:

The orElse function is provided by the STM module
(Figure 1); here, it is written infix, by enclosing it in back-
quotes, but it is a perfectly ordinary function of two argu-
ments. The transaction s1 ‘orElse‘ s2 first runs s1; if s1
calls retry, then s1 is abandoned with no effect, and s2
is run. If s2 also calls retry then the entire call retries—
but it waits on the variables read by either of the two nested
transactions (i.e., on the union of two variable sets). Again,
the programmer needs know nothing about the enabling
conditions of s1 and s2.

Using orElse provides an elegant way for library imple-
menters to defer to their caller the question of whether or
not to block. For instance, it is straightforward to convert the
blocking version of getR into one which returns a Boolean
success or failure result:

If getR completes normally, nonBlockGetR will return
True; on the other hand, if getR blocks (i.e., retries), the
orElse will try its second alternative, which succeeds im-
mediately, returning False. Notice that this idiom depends
on the left-biased nature of orElse. The same kind of con-
struction can be also used to build a blocking operation from
one that returns a Boolean result: simply invoke retry on
receiving a False result:

getR :: Resource -> Int -> STM ()
getR r i = do { v <- readTVar r
 ; if (v < i) then retry
 else writeTVar r (v - i)}

atomic (do {getR r1 3; getR r2 7})

atomic (getR r1 3 ‘orElse‘ getR r2 7)

nonBlockGetR :: Resource -> Int
	 -> STM Bool
nonBlockGetR r i =
 do {getR r i ; return True}
 ‘orElse‘ return False

blockGetR :: Resource -> Int -> STM ()
blockGetR r i =
 do {s <- nonBlockGetR r i;
 if s then return () else retry}

1_CACM_V51.8.indb 95 7/21/08 10:13:41 AM

96 communications of the acm | august 2008 | vol. 51 | no. 8

research highlights

The orElse function obeys useful laws: it is associative and
has unit retry:

Haskell aficionados will recognize that STM may thus be an
instance of MonadPlus.

3.5. Exceptions
The STM monad supports exceptions just like the IO monad,
and in much the same way as (say) C#. Two new primitive func-
tions, catch and throw, are required; their types are given in
Figure 1. The question is: how should transactions and excep-
tions interact? For example, what should this transaction do?

The programmer throws an exception if n > lim, in which
case the. . .write data. . . part will clearly not take place. But
what about the write to v_n from before the exception was
thrown?

Concurrent Haskell encourages programmers to use ex-
ceptions for signalling error conditions, rather than for nor-
mal control flow. Built-in exceptions, such as divide-by-zero,
also fall into this category. For consistency, then, in the above
program we do not want the programmer to have to take ac-
count of the possibility of exceptions, when reasoning that
if v_n is (observably) written then data is written into the
buffer. We, therefore, specify that exceptions have abort se-
mantics: if an atomic transaction throws an exception, then
the transaction must be validated as if it had completed
normally; however, no changes are committed. If validation
succeeds, then the exception is propagated; but if valida-
tion fails, then the throwing of the exception may have been
based on an inconsistent view of memory, so the exception
is discarded and the transaction is re-executed from scratch.
Abort semantics make it much easier to reason about invari-
ants: the programmer only has to worry about the invariant
being preserved when the transaction commits; exceptions
raised during the transaction always restore the invariant, by
definition.

Our use of exceptions to abort atomic blocks is a free de-
sign choice. In other languages, especially in ones where ex-
ceptions are used more frequently, it might be appropriate
to distinguish exceptions that cause the enclosing atomic

block to abort from exceptions that allow it to commit be-
fore they are propagated.

Notice the difference between calling throw and calling
retry. The former signals an error, and aborts the transac-
tion; the latter only indicates that the transaction is not yet
ready to run, and causes it to be re-executed when the situa-
tion changes.

An exception can carry a value out of the STM world. For
example, consider

Here, the external world gets to see the exception value hold-
ing the string s that was read out of the TVar. However, since
the transaction is aborted before the exception propagates,
its write to svar is not externally observable. One might
argue that it is wrong to allow even reads to “leak” from an
aborted transaction, but we do not agree. The values carried
by an exception can only represent a consistent view of the
heap (or validation would fail, and the transaction would
re-execute without propagating the exception), and it is al-
most impossible to debug an error condition that only says
“something bad happened” while deliberately discarding
all clues to what the bad thing was. The basic transactional
guarantees are not threatened.

What if the exception carries a TVar allocated in the
aborted transaction? A dangling pointer would be unpleas-
ant. To avoid this we refine the semantics of exceptions to
say that a transaction that throws an exception is aborted
so far as its write effects are concerned, but its allocation ef-
fects are retained; after all, they are thread-local. As a result,
the TVar is visible after the transaction, in the state it had
when it was allocated. Cases like these are tricky, which is
why we developed a full formal semantics.9

Concurrent Haskell also provides asynchronous
exceptions which can be thrown into a thread as a signal—
typical examples are error conditions like stack overflow,
or when a master thread wishes to shut down a helper. If
a thread is in the midst of an STM transaction, then the
transaction log can be discarded without externally visible
effects.

What if an exception is raised inside orElse? We con-
sidered a design in which, if the first alternative throws an
exception, we could discard its effects and try the second
alternative instead. But that would invalidate the beautiful
identify which makes retry a unit for orElse and would
also make orElse asymmetric in its treatment of excep-
tions (discarded from the first alternative but propagated by
the second). We, therefore, chose that exceptions do propa-
gate from the first alternative: the second alternative is ex-
amined only if the first one calls a retry.

What about catching an exception within an atomic
block? Consider this example:

atomic (do
{ s <- readTVar svar
; writeTVar svar ”Wuggle”
; is length s < 10 then
  throw (AssertionFailed s)
 else . . .})

atomic (do
{ n <- readTVar v_n
; lim <- readTVar v_lim
; writeTVar v_n (n + 1)
; if n > lim

 then throw
 (AssertionFailed ”Urk”)

 else if (n == lim) then retry
 else return ()
; . . . write data into buffer. . .})

 M1 ‘orElse‘ (M2 ‘orElse‘ M3)
 = (M1 ‘orElse‘ M2) ‘orElse‘ M3
 retry ‘orElse‘ M = M
 M ‘orElse‘ retry = M

1_CACM_V51.8.indb 96 7/21/08 10:13:41 AM

august 2008 | vol. 51 | no. 8 | communications of the acm 97

If g goes wrong (throws an exception), the author of f might
reasonably want to ensure that the item is not read from
the port p and then discarded. And indeed, if f is called in
an atomic context, such as atomic (f p), the effects of
readPort are discarded, so that the item is not read. But
suppose f is called in a context that catches the exception
before leaving the STM world:

In our original paper we proposed that the effects of (f p1)
would be retained and be visible to the call (f p2). Further-
more, if the latter succeeds without itself throwing an excep-
tion or retrying, the effects of (f p1) would be permanently
committed.

Ultimately we felt that this treatment of effects that pre-
cede an exception seemed inconsistent. Consider the author
of f; in an effort to ensure that the item is indeed not read if
g throws an exception, he might try this:

But that relies on the existence of unReadPort to manually
replicate the roll-back supported by the underlying STM.
The conclusion is clear: the effects of the first argument of
catch should be reverted if the computation raises an ex-
ception. Again, this works out nicely in the context of STM-
Haskell because the catch operation used here has an STM
type, which indicates to the programmer that the code is
transactional.

4. APPLICATIONS AND EXAMPLES
In this section we provide some examples of how compos-
able memory transactions can be used to build higher-
level concurrency abstractions. We focus on operations
that involve potentially blocking communication between
threads. Previous work has shown, many times over, how
standard shared-memory data structures can be developed
from sequential code using transactional memory opera-
tions.8,11

4.1. MVars
Prior to our STM work, Concurrent Haskell provided MVars
as its primitive mechanism for allowing threads to com-

municate safely. An MVar is a mutable location like a TVar,
except that it may be either empty, or full with a value. The
take MVar function leaves a full MVar empty, but blocks
on an empty MVar. A putMVar on an empty MVar leaves it
full, but blocks on a full MVar. So MVars are, in effect, a one-
place channel.

It is easy to implement MVars on top of TVars. An MVar
holding a value of type a can be represented by a TVar holding
a value of type Maybe a; this is a type that is either an empty
value (“Nothing”), or actually holds an a (e.g., “Just 42”).

The takeMVar operation reads the contents of the TVar
and retries until it sees a value other than Nothing:

The corresponding putMVar operation retries until it sees
Nothing, at which point it updates the underlying TVar:

Notice how operations that return a Boolean success / fail-
ure result can be built directly from these blocking designs.
For instance:

4.2. Multicast channels
MVars effectively provide communication channels
with a single buffered item. In this section we show how
to program buffered, multi-item, multicast channels,
in which items written to the channel (writeMChan in
the interface below) are buffered internally and received
once by each read-port created from the channel. The
full interface is:

f :: Port Int -> STM ()
f p = do { item <- readPort p
 ; g item}

bad :: Port Int -> Port Int -> STM ()
bad p1 p2 = catch (f p1) (\exn -> f p2)

f :: Port Int -> STM ()
f p = do { item <- readPort p
 ; catch (g item)
 (recover exn item)}
 where
 recover exn item
 = do { unReadPort p item
 ; throw exn}

type MVar a = TVar (Maybe a)
newEmptyMVar :: STM (MVar a)
newEmptyMVar = newTVar Nothing

takeMVar :: MVar a -> STM a
takeMVar mv
 = do { v <- readTVar mv
 ; case v of
 Nothing -> retry
 Just val -> do { writeTVar mv Nothing
 ; return val}}

putMVar :: MVar a -> a -> STM ()
putMVar mv newval
 = do { v <- readTVar mv
 ; case v of
 Nothing -> writeTVar mv
 (Just newval)
 Just val -> retry}

tryPutMVar :: MVar a -> a -> STM Bool
tryPutMVar mv val
 = do {putMVar mv val ; return True}
 ‘orElse‘ return False

1_CACM_V51.8.indb 97 7/21/08 10:13:41 AM

98 communications of the acm | august 2008 | vol. 51 | no. 8

research highlights

We represent the buffered data by a linked list, or Chain, of
items, with a transactional variable in each tail, so that it can
be extended by writeMChan:

An MChan is represented by a mutable pointer to the “write”
end of the chain, while a Port points to the read end:

With these definitions, the code writes itself:

Notice the use of retry to block readPort when the buf-
fer is empty. Although this implementation is very simple, it
ensures that each item written into the MChan is delivered to
every Port; it allows multiple writers (their writes are inter-
leaved); it allows multiple readers on each port (data read by
one is not seen by the other readers on that port); and when
a port is discarded, the garbage collector recovers the buff-
ered data.

More complicated variants are simple to program. For ex-
ample, suppose we wanted to ensure that the writer could
get no more than N items ahead of the most advanced read-
er. One way to do this would be for the writer to include a se-
rially increasing Int in each Item, and have a shared TVar

holding the maximum serial number read so far by any read-
er. It is simple for the readers to keep this up to date, and for
the writer to consult it before adding another item.

4.3. Merge
We have already stressed that transactions are composable.
For example, to read from either of the two different multi-
cast channels, we can say:

No changes need to be made to either multicast channel.
If neither port has any data, the STM machinery will cause
the thread to wait simultaneously on the TVars at the ex-
tremity of each channel.

Equally, the programmer can wait on a condition that in-
volves a mixture of MVars and MChans (perhaps the multi-
cast channel indicates ordinary data and an MVar is being
used to signal a termination request), for instance:

This example is contrived for brevity, but it shows how oper-
ations taken from different libraries, implemented without
anticipation of their being used together, can be composed.
In the most general case, we can select between values re-
ceived from a number of different sources. Given a list of
computations of type STM a we can take the first value to be
produced from any of them by defining a merge operator:

(The function foldr1 f simply reduces a list [a1 a2 . . . an] to
the value a1 ‘f‘ a2 ‘f‘ . . . ‘f‘ an.) This example is childishly
simple in STM-Haskell. In contrast, a function of type

is unimplementable in Concurrent Haskell, or indeed in
other settings with operations built from mutual exclusion
locks and condition variables.

5. IMPLEMENTATION
Since our original paper there has been a lot of work on build-
ing fast implementations of STM along with hardware sup-
port to replace or accelerate them.14 The techniques we have
used in STM-Haskell are broadly typical of much of this work
and so we do not go into the details here. In summary, how-
ever, while a transaction is running, it builds up a private log
that records the TVars it has accessed, the values it has read
from them and (in the case of writes) the new values that it
wants to store to them. When a transaction attempts to com-
mit, it has to reconcile this log with the heap. Logically this
has two steps: validating the transaction to check that there

data MChan a
data port a
newMChan :: STM (MChan a)
-- Write an item to the channel:
writeMChan :: MChan a -> a -> STM ()
-- Create a new read port:
newPort :: MChan a -> STM (Port a)
-- Read the next buffered item:
readPort :: Port a -> STM a

type Chain a = TVar (Item a)
data Item a = Empty | Full a (Chain a)

type MChan a = TVar (Chain a)
type Port a = TVar (Chain a)

newMChan = do {c <- newTVar Empty; newTVar c}
newPort mc = do {c <- readTVar mc; newTVar c}

readPort p
 = do { c <- readTVar p
 ; i <- readTVar c
 ; case i of
 Empty    -> retry
 Full v c’ -> do {writeTVar p c’;
   return v}}

writeMChan mc v
= do { c <- readTVar mc
 ; c’ <- newTVar Empty
 ; writeTVar c (Full v c’)
 ; writeTVar mc c’}

atomic (readPort p1 ‘orElse‘ readPort p2)

atomic (readPort p1 ‘orElse‘ takeMVar m1)

merge	 :: [STM a] -> STM a
merge	 =	 foldr1 orElse

mergeI0 :: [I0 a] -> I0 a

1_CACM_V51.8.indb 98 7/21/08 10:13:42 AM

august 2008 | vol. 51 | no. 8 | communications of the acm 99

have been no conflicting updates to the locations read, and
then writing-back the updates to the TVars that have been
modified.

However, the retry and orElse abstractions led us to
think more carefully about how to integrate blocking op-
erations with this general approach. Following Harris and
Fraser’s work8 we built retry by using a transaction’s log
to identify the TVars that it has read and then adding “trip
wires” to those TVars before blocking: subsequent updates
to any of those TVars will unblock the thread.

The orElse and catch constructs are both implemented
using closed nested transactions17 so that the updates made
by the enclosed work can be rolled back without discarding
the outer transaction. There is one subtlety that we did not
appreciate in our original paper: if the enclosed transaction
is rolled back then the log of locations it has read must be re-
tained by the parent. In retrospect the reason is clear—the
decision of whether or not to roll back must be validated at
the same atomic point as the outer transaction.

5.1. Progress
The STM implementation guarantees that one transaction
can force another to abort only when the first one commits.
As a result, the STM implementation is lock-free in the sense
that it guarantees at any time that some running transac-
tion can successfully commit. For example, no deadlock
will occur if one transaction reads and writes to TVar x
and then TVar y, while a second reads and writes to those
TVars in the opposite order. Each transaction will observe
the original value of those TVars; the first to validate will
commit, and the second will abort and restart. Similarly,
synchronization conflicts over TVars cannot cause cyclic
restart, where two or more transactions repeatedly abort
one another.

Starvation is possible, however. For example, a transaction
that runs for a very long time may repeatedly be aborted by
shorter transactions that conflict with it. We think that star-
vation is unlikely to occur in practice, but we cannot tell with-
out further experience. A transaction may also never commit
if it is waiting for a condition that never becomes true.

6. RELATED WORK
Transactions have long been used for fault tolerance in
databases7 and distributed systems. These transactions
rely on stable storage and distributed commit protocols
to protect system integrity against crashes and commu-
nication failures. Transactional memory of the kind we
are studying provides access to memory within a single
process; it is not intended to survive crashes, so there is
no need for distributed commit protocols or stable stor-
age. It follows that many design and implementation
issues are quite different from those arising in distributed
or persistence-only transaction systems. TM was origi-
nally proposed as a hardware architecture12,24 to support
nonblocking synchronization, and architectural support
for this model remains the subject of ongoing research,
as does the construction of efficient implementations
in software. Larus and Rajwar provide a recent survey of
implementation techniques.14

Transactional composition requires the ability to run
transactions of arbitrary size and duration, presenting a
challenge to hardware-based transactional memory designs,
which are inherently resource-limited. One way for hard-
ware to support large transactions is by virtualization,4,22
providing transparent overflow mechanisms. Another way is
by hybrid STM designs5,13 that combine both hardware and
software mechanisms.

After our original paper, Carlstrom et al. examined a form
of retry that watches for updates to a specified set of loca-
tions,3 arguing that this is easier to support in hardware and
may be more efficient than our form of retry. However,
unless the watch set is defined carefully, this sacrifices the
composability that retry provides because updates to non-
watched locations may change the control flow within the
transaction.

Our original paper also discusses related programming
abstractions for concurrency, notably Concurrent ML’s com-
posable events and Scheme48’s proposals.

7. CONCLUSION
In this paper we have introduced the ideas from STM-
Haskell for composable memory transactions, providing
a substrate for concurrent programming that offers far
richer composition than has been available to date: two
atomic actions can be glued together in sequence with
the guarantee that the result will run atomically, and two
atomic actions can be glued together as alternatives with
the guarantee that exactly one of them will run. In subse-
quent work we have further enhanced the STM interface
with invariants.10

We have used Haskell as a particularly suitable laboratory
to explore these ideas and their implementation. An obvi-
ous question is this: to what extent can our results be car-
ried back into the mainstream world of imperative program-
ming? This is a question that we and many others have been
investigating since our original paper. The ideas of compos-
able blocking through retry and orElse seem straightfor-
ward to apply in other settings—subject, of course, to sup-
port for blocking and wake-up within the lower levels of the
systems.

A more subtle question is the way in which our separa-
tion between transacted state and nontransacted state can
be applied, or our separation between transacted code and
nontransacted code. In Haskell, mutable state and impure
code are expected to be the exception rather than the norm,
and so it seems reasonable to distinguish the small amount
of impure transacted code from the small amount of impure
nontransacted code; both, in any case, can call into pure
functions.

In contrast, in mainstream languages, most code is writ-
ten in an impure style using mutable state. This creates a ten-
sion: statically separating transacted code and data retains
the strong guarantees of STM-Haskell (no irrevocable calls
to “launchMissiles” within a transaction, and no direct
access to transacted state without going through the STM
interface), but it requires source code duplication to cre-
ate transacted variants of library functions and marshaling
between transacted data formats and normal data formats.

1_CACM_V51.8.indb 99 7/21/08 10:13:42 AM

100 communications of the acm | august 2008 | vol. 51 | no. 8

research highlights

Investigating the complex trade-offs in this design space is
the subject of current research.1,16

Whether or not one believes in transactions, it does seem
likely that some combination of effect systems and/or own-
ership types will play an increasingly important role in con-
current programming languages, and these may contribute
to the guarantees desirable for memory transactions.

Our main claim is that transactional memory qualita-
tively raises the level of abstraction offered to programmers.
Just as high-level languages free programmers from worry-
ing about register allocation, so transactional memory frees
the programmer from concerns about locks and lock acqui-
sition order in designing shared-memory data structures.
More fundamentally, one can combine such abstractions
without knowing their implementations, a property that is
the key to constructing large programs.

Like high-level languages, transactional memory does
not banish bugs altogether; for example, two threads can
easily deadlock if each awaits some communication from
the other. But the gain is very substantial: transactions pro-
vide a programming platform for concurrency that elimi-
nates whole classes of concurrency errors, and allows the
programmer to concentrate on the really interesting bits.

Acknowledgments
We would like to thank Byron Cook, Austin Donnelly,
Matthew Flatt, Jim Gray, Dan Grossman, Andres Löh, Jon
Howell, Jan-Willem Maessen, Jayadev Misra, Norman Ram-
sey, Michael Ringenburg, David Tarditi, and especially Tony
Hoare, for their helpful feedback on earlier versions of this
paper, and Guy Steele for his meticulous suggestions in pre-
paring this revised version.�

	 1.	 Abadi, M., Birrell, A., Harris, T., and
Isard, M. Semantics of transactional
memory and automatic mutual
exclusion. POPL’08: Proceedings of
the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of
Programming Languages, pp. 63–74,
ACM, Jan. 2008.

	 2.	 Blelloch, G.E., Hardwick, J.C.,
Sipelstein, J., Zagha, M., and
Chatterjee, S. Implementation of
a portable nested data-parallel
language. J. Parallel Distrib. Comput.,
21 (1): 4–14, 1994.

	 3.	 Carlstrom, B.D., McDonald, A., Chafi,
H., Chung, J., Minh, C.C., Kozyrakis,
C., and Olukotun, K. The Atomos
transactional programming language.
PLDI’06: Proceedings of the 2006
ACM SIGPLAN Conference on
Programming Language Design and
Implementation, pp. 1–13, ACM, June
2006.

	 4.	 Chung, J., Minh, C.C., McDonald,
A., Skare, T., Chafi, H., Carlstrom,
B.D., Kozyrakis, C., and Olukotun,
K. Tradeoffs in transactional
memory virtualization. ASPLOS’06:
Proceedings of the 12th International
Conference on Architectural Support
for Programming Languages and
Operating Systems, pp. 371–381,
ACM, Oct. 2006.

	 5.	 Damron, P., Fedorova, A., Lev,
Y., Luchangco, V., Moir, M., and
Nussbaum, D. Hybrid transactional
memory. ASPLOS’06: Proceedings
of the 12th International Conference
on Architectural Support for
Programming Languages and
Operating Systems, pp. 336–346,
ACM, Oct. 2006.

	 6.	 Daume III, H. Yet another Haskell
tutorial. http://www.cs.utah.edu/~hal/

docs/daume02yaht.pdf, 2006.
	 7.	 Gray, J., and Reuter, A. Transaction

Processing: Concepts and Techniques.
Morgan Kaufmann Publishers, Inc.,
1992.

	 8.	 Harris, T., and Fraser, K. Language
support for lightweight transactions.
OOPSLA’03: Proceedings of the 18th
ACM SIGPLAN Conference on Object-
Oriented Programming, Systems,
Languages, and Applications, pp.
388–402, ACM, Oct. 2003.

	 9.	 Harris, T., Marlow, S., Peyton Jones,
S., and Herlihy, M. Composable
memory transactions. PPoPP’05:
Proceedings of the 10th ACM
SIGPLAN Symposium on Principles
and Practice of Parallel Programming,
pp. 48–60, ACM, June 2005.

	10.	 Harris, T., and Peyton Jones,
S. Transactional memory with
data invariants. TRANSACT’06:
Proceedings of the 1st ACM
SIGPLAN Workshop on Languages,
Compilers, and Hardware Support for
Transactional Computing, June 2006.

	11.	 Herlihy, M., Luchangco, V., Moir, M.,
and Scherer, III, W.N. Software
transactional memory for dynamic-sized
data structures. PODC’03: Proceedings
of the 22nd ACM Symposium on
Principles of Distributed Computing, pp.
92–101, ACM, July 2003.

	12.	 Herlihy, M. and Moss, J.E.B.
Transactional memory: Architectural
support for lock-free data structures.
ISCA’93: Proceedings of the 20th
International Symposium on
Computer Architecture, pp. 289–300,
ACM, May 1993.

	13.	 Kumar, S., Chu, M., J. Hughes, C.,
Kundu, P., and Nguyen, A. Hybrid
transactional memory. PPoPP’06:
Proceedings of the 11th ACM

References

SIGPLAN Symposium on Principles
and Practice of Parallel Programming,
pp. 209–220, ACM, Mar 2006.

	14.	 Larus, J., and Rajwar, R. Transactional
Memory (Synthesis Lectures on
Computer Architecture). Morgan &
Claypool Publishers, 2007.

	15.	 Martin, M., Blundell, C., and Lewis, E.
Subtleties of transactional memory
atomicity semantics. IEEE Comput.
Archit. Lett. 5(2):17, 2006.

	16.	 Moore, K.F. and Grossman, D. High-
level small-step operational semantics
for transactions. POPL’08: Proceedings
of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of
Programming Languages, pp. 51–62,
ACM, Jan. 2008.

	17.	 Moss, E.B. Nested transactions: An
approach to reliable distributed
computing. Tech. Rep. MIT/LCS/
TR-260, Massachusetts Institute of
Technology, Apr. 1981.

	18.	 Peyton Jones, S. Tackling the
awkward squad: Monadic input/
output, concurrency, exceptions, and
foreign-language calls in Haskell.
Engineering Theories of Software
Construction, Marktoberdorf Summer
School 2000.

	19.	 Peyton Jones, S. Beautiful
concurrency. In Beautiful Code (2007),
A. Oran and G. Wilson, Eds., O’Reilly.

	20.	 Peyton Jones, S., Gordon, A., and
Finne, S. Concurrent Haskell. POPL’96:
Proceedings of the 23rd ACM
SIGPLAN-SIGACT Symposium on
Principles of Programming Languages,
pp. 295–308, ACM, Jan. 1996.

	21.	 Peyton Jones, S. and Wadler, P.
Imperative functional programming.
POPL’93: Proceedings of the 20th ACM
SIGPLAN-SIGACT Symposium on
Principles of Programming Languages,
pp. 71–84, ACM, Jan. 1993.

	22.	 Rajwar, R., Herlihy, M., and Lai, K.
Virtualizing transactional memory.
ISCA’05: Proceedings of the 32nd
International Symposium on
Computer Architecture, pp. 494–505,
IEEE Computer Society, June 2005.

	23.	 Shavit, N., and Touitou, D. Software
transactional memory. PODC’95:
Proceedings of the 14th ACM
Symposium on Principles of
Distributed Computing, pp. 204–213,
ACM, Aug. 1995.

	24.	 Stone, J.M., Stone, H.S., Heidelberger,
P., and Turek, J. Multiple reservations
and the Oklahoma update. IEEE
Parallel and Distributed Technology
1(4):58–71, 1993.

	25.	 Sutter, H. The free lunch is over:
A fundamental turn toward
concurrency in software. Dr. Dobb’s J.
(March 2005).

Tim Harris (tharris@microsoft.com)
Microsoft Research

Simon Marlow (simonmar@microsoft.
com) Microsoft Research

Simon Peyton Jones (simonpj@microsoft.
com) Microsoft Research

Maurice Herlihy (mph@cs.brown.edu)
Brown University

© 2008 ACM 0001-0782/08/0800 $5.00

1_CACM_V51.8.indb 100 7/21/08 10:13:42 AM

mailto:tharris@microsoft.com
mailto:mph@cs.brown.edu
http://www.cs.utah.edu/~hal/docs/daume02yaht.pdf
http://www.cs.utah.edu/~hal/docs/daume02yaht.pdf
mailto:simonmar@microsoft.com
mailto:simonmar@microsoft.com
mailto:simonpj@microsoft.com
mailto:simonpj@microsoft.com

August 2008 | vol. 51 | no. 8 | communications of the acm 101

careers

automating, streamlining, coordinating, opti-˲˲
mizing, and documenting our build/test/release
processes,

managing our source code, common library de-˲˲
velopment, configuration, team wiki, bug tracking,

managing branch/merge and database upgrade ˲˲
migration,

developing a bare-metal install/recovery proce-˲˲
dure,

implementing monitors, reports, and statistics ˲˲
for build/test/release,

designing, developing, running, and analyzing ˲˲
program/system tests for correctness and perfor-
mance,

designing and developing software engineer-˲˲
ing team tools,

developing additional features of the LimeBits ˲˲
platform,

driving best practices for build/test/release. ˲˲

QUALIFICATIONS:

Strong experience specialized in build/test/re-˲˲
lease engineering.

Experience with web service development, ˲˲
build, test, and release.

Solid knowledge of all phases of software devel-˲˲
opment and deployment.

Expert knowledge of source code control, pref-˲˲
erably including Subversion and Git.

Programming experience with C, JavaScript, ˲˲
Postgres, Apache, XML.

Proficiency in build scripting with Make and ˲˲
Python, as well as Ruby, Perl, or shell.

Experience with git or Mercurial.˲˲
Strong experience developing software test ˲˲

scripts, including Selenium.
Strong experience with Linux/Unix and open-˲˲

source software.
Ability to work with frequent software builds ˲˲

and releases.
Interest in open-source software and content ˲˲

sharing.
Self-motivated, critical thinker with strong ˲˲

technical background. Curiosity, imagination, in-
tuition. Excellent communication, organization,
and teamwork skills.

Bachelor’s, Master’s, or Doctorate in Computer ˲˲
Science, Software Engineering, or related field.

Bonus: Software configuration and packaging ˲˲
for Windows.

Bonus: Knowledge of Rake, WebDAV, XSLT, ˲˲
MySQL, functional programming or server-side
JavaScript frameworks.

COMPANY:
LimeBits is a startup project in the Lime Group,
home to such companies as Lime Wire, Lime
Brokerage, and Tower Research. The Lime Group
companies offer a dynamic and intellectually
stimulating work environment. While we work
hard, we also play hard and believe in supporting
our team. We provide free lunches, snacks, and
beverages, tickets to NY events, 5 weeks vacation,
and great views from our garden roof deck.

Epic Systems Corporation
Technical Services Engineer

Epic’s Technical Services team is responsible
for our clients’ happiness after the systems are
installed. They create valuable relationships by
listening well to customer concerns and cham-
pioning clients’ needs. They work with IT staff at
customer sites to quickly resolve technical issues
and perform necessary programming, helping to
ensure that every customer gets the most out of
an Epic software investment.

Candidates should have a bachelor’s degree
(all majors considered), a history of academic
success demonstrated by a minimum 3.2 cu-
mulative GPA, strong analytical and reasoning
skills, and be eligible to work in the U.S. with-
out sponsorship. Because we train internally,
no prior technical experience is necessary, but
exposure to programming is a plus. Relocation
to Madison, Wisconsin is required and reim-
bursed.

Epic Systems Corporation
Software Engineer / Developer

Our small teams of software engineers par-
ticipate in all aspects of the development pro-
cess, from meeting customers to system design
through quality assurance and delivery. Their
goal is to create easy-to-use systems with opti-
mal workflows that manage large amounts of
data with sub-second response times and rock-
solid stability. Our continued success in these
areas is shown by Epic software systems’ top-
rated industry reviews. New functionality and
systems are being developed daily that extend
current capabilities and break new ground in
the industry.

Candidates should have a bachelor’s degree
in Computer Science, Math, Electrical Engineer-
ing or Computer Engineering and a history of aca-
demic success demonstrated by a minimum 3.2
cumulative GPA. Relocation to Madison, Wiscon-
sin is required and reimbursed. Visa sponsorship
is available.

Health Research, Inc.
Supervisor of Data Processing

Health Research, Inc. (HRI) seeks a Supervisor of
Data Processing, in the Bureau of Computer Sys-
tems Development, to enhance and maintain its
web based application, Statewide Perinatal Data
System (SPDS), in Albany, NY.

SPDS provides a mechanism for issuing
birth certificates, & collecting birth data from
hospitals & birthing centers in New York State,
exclusive of New York City. The incumbent will
be required to work w/ SPDS customers to define
business needs, determine scope of projects, set
priorities, assess the impact of potential chang-

es, & develop project plans. The incumbent will
oversee & assist subordinate staff in the develop-
ment of use case modes & change specifications,
identification of schema changes, development
& modification of application (Java, JSP) code,
creation of test plans, performance of testing
activities, & implementation of changes & en-
hancements. As part of these responsibilities
the incumbent will be required to coordinate &
oversee the activities of subordinate staff work-
ing on SPDS. The Supervisor of Data Process-
ing is required to write, modify, & test applica-
tion (Java, JSP) code. Other related duties as
assigned.

Min Quals: Master’s degree in Computer
Science or Engineering & 3 yrs of professional
computer programming & systems analysis ex-
perience, 1 yr must have included supervisory
experience or in a project leadership role. 3 yrs
of professional exp must include: development
& maintenance of Enterprise Java (J2EE) Web ap-
plications (JDBC, Java Servlets, Java Server Pages,
JavaScript, & Enterprise Java Beans (EJB)); & BEA
Weblogic Application Server (Version 8 or higher).
2 yrs exp w/: Oracle (8i or higher) SQL databases,
defining business rules & developing case models
using the Rational toolset. 1 yr exp w/ Itext, Filenet
API for Java, and UNIX.

To apply, please visit HRI’s web site at: http://
www.healthresearch.org/jobs.

No phone calls or faxes accepted
AA/EOE/M/W/D/V

Fortify
Software Security Consultant

Deliver on-site software security professional ser-
vices for USAF Application Software Assurance
Center of Excellence
• �Install, customize, and support Fortify products
• �Train, mentor customers
• �Conduct source code analysis, application

security testing; audit results
• �Develop vulnerability remediation plans,

reports
• �Travel to military installations worldwide
• �Must be able to obtain security clearance

Lime Spot LLC/LimeBits
Software build + release engineer/developer,
LimeBits

LimeBits is developing an innovative software
platform intended to empower people to share
their own creations and to collaborate on group
creations. You’ll join the LimeBits team and help
overturn the ancient traditions of software devel-
opment. Your well-organized build/test/release
system will help our team deploy robust, fresh
software rapidly and frequently. As a key member
of the team, you have a blue-sky opportunity to
lead us in

1_CACM_V51.8.indb 101 7/21/08 10:13:42 AM

http://www.healthresearch.org/jobs
http://www.healthresearch.org/jobs

102 communications of the acm | August 2008 | vol. 51 | no. 8

careers

Wisconsin Alumni Research Foundation
Postdoctoral Positions in Computing and
Informatics - Biology & Medicine
UW-Madison / Morgridge Institute for Research

The University of Wisconsin-Madison, with sup-
port from the Morgridge Institute for Research, has
several postdoctoral research positions in compu-
tation and informatics for researchers wishing to
solve biomedical problems requiring strengths in
both computational and biological sciences.

These positions are being offered in coop-
eration with the Computation and Informatics in
Biology and Medicine Training Program (CIBM;
www.cibm.wisc.edu). The 45 CIBM faculty span
15 different departments and five colleges at UW-
Madison and includes several faculty at the Marsh-
field Clinic Research Foundation (located about
100 miles north of Madison). These positions are
open to both US and non-US Citizens with a Ph.D.,
or equivalent, in computer science. The positions
are funded for up to two years, renewable for a sec-
ond year pending satisfactory progress, with an an-
nual stipend up to $65,000 per year.

The research focus is in the development of:
Novel bioinformatics algorithms to analyze ˲˲

molecular data, including genome sequences,
proteins (levels, interactions, structures), and
regulatory pathways,

New tools for imaging and genetic analysis,˲˲
Development of health delivery systems, ˲˲
Translational bench-to-bedside medicine ˲˲

For more information about the position and
application materials, please contact Louise Pape

KUWAIT UNIVERSITY
FACULTY OF SCIENCE

Kuwait
The Department of Mathematics and Computer Science in the Faculty of Science at Kuwait University invites applications for appointment of faculty
members starting from September 2008, for the academic year 2008/2009, in one of the following areas:

Networks, Operating Systems, Mobile Computing, Multimedia Systems, Computer Architecture,
Theoretical Computer Science and Parallel & Distributed Computing

Required Qualifications:
• Ph.D. degree in the area of specialization from a reputable University.
• The applicants GPA in first university degree should be 3 points out of 4 (or equivalent).
• Research experience and significant publications in refereed international journals.
• Full command of teaching in English.
• Minimum of 5 years in University teaching experience in the specified field.

The successful candidates are expected to have a strong commitment and dedication to quality teaching and research.

Benefits include attractive tax-free salary according to rank and teaching experience (Professor’s monthly salary varies from 2950 to 3192 KD., Associate
Prof.’s salary varies from KD. 2265 to 2507, Assistant Professor’s monthly salary varies from KD. 1830 to 2070 - [KD.1 = $3.40]), annual air tickets for
the faculty member and his/her family (spouse and up to three children under the age of 20), a one time settling-in allowance, housing allowance, free
national health medical care, paid mid-term holidays and summer vacations, and end-of-contract gratuity. The University also offers an excellent academic
environment and financial support for research projects.

To apply, send by express mail/courier service or email, within two weeks of the date of announcement, a completed application form, updated curriculum
vitae (including mailing address, phone and fax numbers, e-mail address, academic qualifications, teaching and research experience, and a list of publications
in professional journals up to 10 reprints), three copies of Ph.D., Masters, and Bachelor certificates and transcripts (An English translation of all documents
in other languages should be enclosed), a copy of the passport, three recommendation letters, and names and addresses of three persons well-acquainted
with the academic and professional work of the applicant. Please use PDF format for all electronic application materials. Applications and inquiries should
be addressed to:

Dr. Salem Al-Yakoob
Chairman

Department of Mathematics and Computer Science
Faculty of Science, Kuwait University
P.O. Box 5969, Safat, 13060, Kuwait

Tel: (965) 4813129
Fax: +965 4817201

E-Mail: math@sci.kuniv.edu.kw
http://www.sci.kuniv.edu.kw

1_CACM_V51.8.indb 102 7/21/08 10:13:42 AM

http://www.cibm.wisc.edu
mailto:math@sci.kuniv.edu.kw
http://www.sci.kuniv.edu.kw
http://www.microsoft.com/WindowsAcademic
mailto:compsci@microsoft.com

August 2008 | vol. 51 | no. 8 | communications of the acm 103

at lpape@wisc.edu or call 608-265-7935.
For more information about the Morgridge

Institute for Research please visit www.mor-
gridgeinstitute.org or contact Laura M. Heisler,
Ph.D., Program Developer, Morgridge Institute
for Research, 614 Walnut St., Madison, WI 53726
608.261.1022, lheisler@morgridgeinstitute.org

The National Academies
Program Officer

The Program Officer for the Computer Science and
Telecommunications Board will be responsible
for developing and managing two or more of the
organization’s projects with minimal oversight by
the board director/senior program officers. De-
velop program/project strategy and budget, direct
the work of other staff as appropriate, and ensure
projects meet objectives. Develop prospectuses,
assemble committees/panels and serve as staff
liaison between committee/panel members and
the national academies. Organize and assist com-
mittees, including planning meetings, performing
literature searches, and maintaining websites.

A pioneer in framing and analyzing Internet
policy, the Computer Science and Telecommu-
nications Board (CSTB) provides independent
assessments of technical and public policy is-
sues relating to computing and communications.
Composed of leaders in information technology
and complementary fields from industry and aca-
demia, CSTB is unique in its scope and its inter-
disciplinary approach to technical, economic,
social, and policy issues.

Advertising in Career
Opportunities

How to Submit a Classified Line Ad: Send
an e-mail to jonathan.just@acm.org.
Please include text, and indicate the issue/
or issues where the ad will appear, and a
contact name and number.

Estimates: An insertion order will then
be e-mailed back to you. The ad will by
typeset according to CACM guidelines.
NO PROOFS can be sent. Classified line
ads are NOT commissionable.

Rates: $295.00 for six lines of text, 40
characters per line. $80.00 for each addi-
tional three lines. The MINIMUM is six lines.

Deadlines: Five weeks prior to the
publication date of the issue (which is the
first of every month). Latest deadlines:
http://www.acm.org/publications

Career Opportunities Online: Classified
and recruitment display ads receive a free
duplicate listing on our website at:

http://campus.acm.org/careercenter
Ads are listed for a period of six weeks.

For More Information Contact:

JONATHAN JUST
Director of Media Sales

at 212-626-0687 or
jonathan.just@acm.org

August

August 24–27
The 14th ACM SIGKDD International
Conference on Knowledge Discovery
and Data Mining,
Las Vegas, NV,
Contact: Ying Li,
Phone: 425-703-8739,
Email: yingli@microsoft.com

September

September 1–3
8th International Conference
on Intelligent Virtual Agents,
Tokyo, Japan,
Contact: Helmut Prendinger,
Email: helmut@nii.ac.jp

September 2–5
10th International Conference
on Human Computer Interaction
with Mobile Devices and Services,
Contact: Henri Hofte,
Phone: 31-575-516319,
Email: henri.terhoft@telin.nl

September 8–11
Principles and Practice of
Programming in Java 2008,
Modena, Italy,
Contact: Giacomo Cabri,
Phone: 39-059-2056190,
Email: giacomo.cabri@unimore.it

September 8–12
12th International Software
Product Line Conference 2008,
Limerick, Ireland,
Contact: Lero Klaus Pohl,
Email: klaus.polhl@sse.uni-due.de

September 15–19
ASE ’08: International Conference
on Automated Software Engineering,
L’Aquila, Italy,
Contact: Paola Inverardi,
Phone: 39-862-433-127,
Email: inverard@di.univaq.it

September 16–19
ACM Symposium on
Document Engineering,
Brazil,
Contact: Maria da Graca
Campos Pimentel,
Phone: 55-16-3373-9657,
Email: mgp@icmc.usp.br

September 16–19
ECCE08: European Conference
on Cognitive Ergonomics,
Madeira, Portugal,
Contact: Joaquim A. Jorge,
Phone: 351-21-3100363,
Email: jaj@inesc.pt

September 20–23
The 10th International Conference
on Ubiquitous Computing,
Seoul, South Korea,
Contact: Joseph McCarthy,
Phone: 650-804-6987,
Email: joe@interrelativity.com

September 22–23
Multimedia and Security Workshop,
Oxford, United Kingdom,
Sponsored: SIGMM,
Contact: Andrew David Ker,
Phone: +44 1865 276602,
Email: adk@comblab.ox.ac.uk

September 28–October 2
ACM/IEEE 11th International
Conference on Model Driven
Engineering Languages
and Systems (formerly UML),
Toulouse, France,
Sponsored: SIGSOFT,
Contact: Jean-Michel Bruel,
Phone: +33 686 002 902,
Email: bruel@univ-pau.fr

September 29–30
3rd International Conference
on the Pragmatic Web,
Uppsala, Sweden,
Contact: Par J. Agerfalk,
Phone: 46-18-4711064,
Email: par.agerfalk@dis.uu.se

October

October 1–31
RecSys ’08: ACM Conference
on Recommender Systems,
Lausanne, Switzerland,
Contact: Pearl Pu, Phone:
0041-216936081,
Email: pearl.pu@epfl.ch

October 1–3
International Conference
on Human-Computer
Interaction in Aeronautics,
Toulouse, France,
Contact: Guy A. Boy,
Phone: 336-633-3682,
Email: guy.boy@eurisco.org

October 6–7
Eighth Workshop on Hot Topics
in Networks,
Alberta, Canada,
Contact: Carey L. Williamson,
Phone: 403-220-6780,
Email: carey@cpsc.ucalgary.ca

Calendar of Events

1_CACM_V51.8.indb 103 7/21/08 10:13:43 AM

mailto:lpape@wisc.edu
mailto:lheisler@morgridgeinstitute.org
mailto:jonathan.just@acm.org
http://www.acm.org/publications
http://campus.acm.org/careercenter
mailto:jonathan.just@acm.org
mailto:yingli@microsoft.com
mailto:helmut@nii.ac.jp
mailto:henri.terhoft@telin.nl
mailto:giacomo.cabri@unimore.it
mailto:klaus.polhl@sse.uni-due.de
mailto:inverard@di.univaq.it
mailto:mgp@icmc.usp.br
mailto:jaj@inesc.pt
mailto:joe@interrelativity.com
mailto:adk@comblab.ox.ac.uk
mailto:bruel@univ-pau.fr
mailto:par.agerfalk@dis.uu.se
mailto:pearl.pu@epfl.ch
mailto:guy.boy@eurisco.org
mailto:carey@cpsc.ucalgary.ca
http://www.morgridgeinstitute.org
http://www.morgridgeinstitute.org

104 communications of the acm | august 2008 | vol. 51 | no. 8

last byte

1.Since this is an
election year, it seems

appropriate to visit that
impressionable town in
which, every evening,
each citizen calls all his
(or her) friends (always
an odd number) and
re-chooses his party
affiliation—Republican
or Democrat—the next
day, in accordance with
the majority of his friends
at the time of the call.
Can you show that, after
a while, party affiliations
will be the same on every
alternate day?

2.The island of
Foosgangland

boasts a complex web
of footpaths. Each
section of path, from
one intersection to the
next, is identified by a
different number. If you
happen to take a walk
in Foosgangland, the
“length” of your walk is the
number of path sections
you traverse, and your walk
is “increasing” if the path
numbers you encounter
are always go up. Prove
that there is someplace
on the island where you
can take an increasing
walk whose length is
at least the average
number of paths meeting
at the intersections in
Foosgangland.

3.In a graph-coloring
game, a finite graph

G and a palette of k colors
are fixed. Alice and Bob
alternately choose an
uncolored vertex of G and
color it with a color not
previously used on any
neighboring vertex. Alice,
who goes first, wins if all
the vertices get colored;
but if anyone gets stuck
before that happens,
Bob wins. (The game is
described in an article—
Bartnicki, T., Grytczuk, J.,
Kierstead, H.A., and Zhu,
X. The map-coloring game.
American Mathematical
Monthly 114, 9 (Nov. 2007),
793–803—that pointed out
that the following question
remains embarrassingly
open: Are there a G and a k
such that Alice wins on G
with k colors, but Bob wins
with k+1?)

DOI:10.1145/1378704.1378726		 Peter Winkler

Puzzled
Delightful Graph Theory
Welcome to the new puzzle column. Each column will present three puzzles. The first two will have known
(and usually elegant) solutions that will appear in the next issue of Communications. The third will be an
open problem; good luck with that one.

Readers are encouraged to submit prospective puzzles for future columns to puzzled@cacm.acm.org.

We start with three delightful graph-theoretic puzzles. Here we go.

Peter Winkler (puzzled@cacm.acm.org) is Professor of Mathematics and of Computer Science and Albert Bradley Third
Century Professor in the Sciences at Dartmouth College, Hanover, NH. He has written two puzzle books: Mathematical
Puzzles: A Connoisseur’s Collection and Mathematical Mind-benders, both published by A K Peters, Ltd., Wellesley, MA.

mailto:puzzled@cacm.acm.org
mailto:puzzled@cacm.acm.org

International
ConferenceICL

ICL 2008 Special Track Call for Papers
The 11th International Conference
“Interactive Computer aided Learning”
ICL2008 from September 24–26, 2008 in
Villach, Austria has again a Special Track

School and IT
This Special Track will be organized in cooperation with:
–	 Federal Ministry for Education, the Arts and Culture,
–	 Austrian Computer Society (OCG),
–	 European Distance Education Network (EDEN)

Topics of interest
–	 IT & School development
–	 Didactical approaches
–	 Experiences from pilot projects
–	 Content development and management
–	 Education and further education in IT
–	 Multicultural and transnational approaches

Types of contributions
–	 Full Papers: 20 minutes presentation followed by

a panel discussion
–	 Interactive Demonstrations: 15 minutes demonstration.
–	 Poster Presentations

Other opportunities to participate:
–	 Exhibit at the ICL products and developments of e-learning.

Conference chair
M. Auer (Carinthia Tech
Institute Villach)

Special track chair
Linmi Tao (tao.linmi@gmail.com)
Tsinghua University Beijing, China

Proceedings
The proceedings will be published
on CD in cooperation with the Kassel
University Press (own ISBN number).

Submission of papers
Extended abstracts should be
submitted using the Electronic
Submission System.

The extended abstract should comprise
up to two pages, informing the
program committee about the aim of
the approach (study, tool) reported,
experiences gained and the form and
result of evaluations conducted.

Proposals for tutorials and the exhibition
also may be submitted in a short form to:
info@icl-conference.org .

More information
http://www.icl-conference.org info@
icl-conference.org

General information
The conference will be organized by
the Carinthia Tech Institute in Villach.
Conference venue is the Conference
Center Villach.

1_CACM_V51.8.indb 105 7/21/08 10:13:43 AM

mailto:tao.linmi@gmail.com
mailto:info@icl-conference.org
http://www.icl-conference.org
mailto:info@icl-conference.org
mailto:info@icl-conference.org

1_CACM_V51.8.indb 4 7/21/08 10:13:43 AM

	Table of Contents
	Departments
	President's Letter
	A New Beginning, A Fond Farewell

	Letters To The Editor
	Words Both Kind and Contrary

	CACM Online
	Small Changes Hint at Bigger Things

	Careers

	Last Byte
	Puzzled
	Delightful Graph Theory

	News
	Designing the Perfect Auction
	Access for All
	Challenging Poverty
	Remembering Jim

	Viewpoints
	The Profession of IT
	Voices of Computing

	From the Front Lines
	Software Development Amidst the Whiz of Silver Bullets

	Education
	Paving the Way for Computational Thinking

	Viewpoint
	Envisioning the Future of Computing Research

	Interview
	Donald Knuth: A Life's Work Interupted

	Practice
	Scaling in Games and Virtual Worlds
	CTO Storage Roundtable
	The Rise and Fall of CORBA

	Contributed Articles
	Designing Games with a Purpose
	The Collaborative Organization of Knowledge

	Review Articles
	Computer Science and Game Theory

	Research Highlights
	Technical Perspective
	A Methodolgy for Evaluating Computer System Performance

	Wake Up and Smell the Coffee: Evaluation Methodology for the 21st Century
	Technical Perspective
	Transactions are Tomorrow's Loads and Stores

	Composable Memory Transactions

