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5	 Editor’s Letter
Yes, It Can Be Done
By Moshe Y. Vardi

7	 Publisher’s Corner
Communications’ Web Site  
to Launch in March
By Scott E. Delman

8	 Letters To The Editor
Children’s Magic Won’t  
Deliver the Semantic Web

12	 CACM Online
Prepare to Launch
By David Roman

37	 Calendar

106	 Careers

Last Byte

110	 Puzzled
Solutions and Sources
By Peter Winkler

112	 Future Tense
Radical Evolution
Technologies powerful enough 
to modify our minds, memories, 
metabolisms, personalities, and 
progeny are powerful enough  
to transform our own evolution. 
By Joel Garreau

News

13	 Betting on Ideas
Advanced computational models 
are enabling researchers to create 
increasingly sophisticated prediction 
markets. 
By Gregory Goth

16	 Crowd Control
Using crowdsourcing applications, 
humans around the world are 
transcribing audio files, conducting 
market research, and labeling  
data, for work or pleasure.
By Leah Hoffmann

18	 The Evolution of Virtualization
Virtualization is moving out  
of the data center and making 
inroads with mobile computing, 
security, and software delivery. 
By Kirk L. Kroeker

21	 A Difficult, Unforgettable Idea
On the 40th anniversary of Douglas 
C. Engelbart’s “The Mother of All 
Demos,” computer scientists discuss 
the event’s influence—and imagine 
what could have been. 
By Karen A. Frenkel

22	 ACM Fellows Honored
Forty-four men and women  
are being inducted this year  
as 2008 ACM Fellows.

Viewpoints

24	 The Profession of IT
Is Software Engineering 
Engineering?
Software engineering continues 
to be dogged by claims it is not 
engineering. Adopting more of a 
computer-systems view may help.
By Peter J. Denning  
and Richard D. Riehle

27	 Legally Speaking
When is a “License” Really a Sale? 
Can you resell software even if  
the package says you can’t? What  
are the implications for copyright  
law of the Quanta decision discussed 
in the November 2008 column?   
By Pamela Samuelson

30	 Viewpoint
Your Students Are Your Legacy
This Viewpoint boils down into  
a few magazine pages what  
I’ve learned in my 32 years  
of mentoring Ph.D. students.
By David A. Patterson

34	 Viewpoint
Advising Students for Success
Some advice for those doing  
the advising (and what the advisors 
can learn from the advisees).  
By Jeffrey D. Ullman

38	 Interview
An Interview with C.A.R. Hoare 
C.A.R. Hoare, developer of the 
Quicksort algorithm and a lifelong 
contributor to the theory and 
design of programming languages, 
discusses the practical application  
of his theoretical ideas.
By Len Shustek, Editor

Douglas C. Engelbart
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42	 Better Scripts, Better Games
Smarter, more powerful scripting 
languages will improve game 
performance while making gameplay 
development more efficient.
By Walker White, Christoph Koch,  
Johannes Gehrke, and Alan Demers

48	 Erlang for Concurrent Programming
Designed for concurrency from the 
ground up, the Erlang language 
can be a valuable tool to help solve 
concurrent problems. 
By Jim Larson

Contributed Articles

58	 Reflecting Human Values  
in the Digital Age
HCI experts must broaden the field’s 
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to be useful in 21st-century 
sociotechnical environments.  
by Abigail Sellen, Yvonne Rogers,  
Richard Harper, and Tom Rodden

67	 Statecharts in the Making:  
A Personal Account
How avionics work led to a graphical 
language for reactive systems  
where the diagrams themselves 
define the system’s behavior. 
By David Harel

Review Articles

76	 Probabilistically Checkable Proofs
Can a proof be checked  
without reading it? 
By Madhu Sudan

Research Highlights

86	 Technical Perspective
The Beauty of  
Error-Correcting Codes
By Daniel A. Spielman

87	 Error Correction up to the 
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Virtual Extension

As with all magazines, page limitations often 
prevent the publication of articles that might 
otherwise be included in the print edition. 
To ensure timely publication, ACM created 
Communications’ Virtual Extension (VE).
	 VE articles undergo the same rigorous review 
process as those in the print edition and are 
accepted for publication on their merit. These 
articles are now available to ACM members in  
the Digital Library. 

	 Online Privacy Practices in Higher 
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Mary J. Culnan and Thomas J. Carlin

	 Who Captures Value in Global 
Innovation Network?  
The Case of Apple’s iPod
Greg Linden, Kenneth L. Kraemer,  
and Jason Dedrick

	 Open Access Publishing in Science
Florian Mann, Benedikt von Walter, 
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and Alexandre B. Lopes

	 Ensuring Transparency in 
Computational Modeling 
Kenneth R. Fleischmann  
and William A. Wallace

	 Concept Similarity by Evaluating 
Information Contents and Feature 
Vectors: A Combined Approach
Anna Formica

	 Technical Opinion 
Security Threats of  
Smartphones and Bluetooth
Alfred Loo

About the Cover:  
The relationship between 
humans and computers 
has changed radically in the 
last quarter century—along 
with the sociotechnical 
landscape—calling the 
relevancy of current HCI 
methods into question. 
Illustration by Bryan 
Christie Design.
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editor’s letter

“Yes, It Can Be Done”
The 2008 presidential campaign slogan  
“Yes, We Can” is the English translation  
of the United Farm Workers’ 1972 slogan  
“Sí, se puede,” or “Yes, it can be done.” 

lated, but independent, task of devel-
oping practitioner content for ACM, 
primarily through the Queue Portal, 
at queue.acm.org. This board thrives 
on intense face-to-face interaction, 
meeting monthly to discuss emerg-
ing technologies. They identify topics 
of current interest to software archi-
tects, project leaders, IT managers, 
and corporate decision makers. The 
board also identifies potential au-
thors and then commissions them to 
develop articles, under the guidance 
of board members and invited guest 
experts.

The Contributed Articles Board, 
chaired by Al Aho and Georg Gottlob, 
operates like a traditional editorial 
board of a scientific journal. Unso-
licited manuscripts are submitted 
via Manuscript Central, a Web-based 
system for facilitating a fully online 
review process. As this board handles 
both Contributed and Review articles, 
the co-chairs assign each submission 
to an associate editor, who oversees 
a scholarly review process. The co-
chairs and associate editors can de-
cide to decline a paper without fur-
ther review, if they judge it does not 
fit our new content model. 

The bar for acceptance is very high; 
articles must be of the highest quality 
and reach out to a very broad techni-
cal audience. A significant fraction of 
the submissions fit Communications’ 
previous editorial model and must be 
declined. A major task of this board 
is to encourage submissions by au-
thors inspired by the new editorial 
model. It is fair to say that attracting 

In 2005, I had a conversation with a 
member of ACM’s Publications Board 
about the (then nascent) idea of revi-
talizing Communications. I was very 
pessimistic then, saying, “It cannot 
be done.” About a year later, in the fall 
of 2006, I undertook that very task. 
Now, it is March of 2009, and we can 
say, “Yes, it can be done.”

Why was I wrong in 2005? To start, 
I underestimated the determination 
of ACM’s leadership to turn Communi-
cations around. I also underestimated 
the willingness of Communications’ 
staff to undertake a radical change in 
the way they go about their jobs. Most 
of all, I underestimated ACM mem-
bership’s intense desire for change 
and willingness to volunteer their ef-
fort toward the development of a flag-
ship publication of which we can all 
be proud.

In my January 2008 editorial, I de-
scribed Communications’ editorial 
model as we envisioned it. Since I view 
this publication as a joint project be-
tween our Editorial Board and ACM’s 
membership, it is important, I be-
lieve, that our editorial model be well 
understood. In January, I explained 
how our News and Viewpoints boards 
operate.

Our Practice Board, chaired by Ste-
phen Bourne, with James Maurer as 
publisher, has a dual personality. On 
one hand, it is part of Communica-
tions’ Editorial Board, with respon-
sibility for developing the content 
for the Practice section. On the other 
hand, that same board is also Queue’s 
Editorial Board, with the closely re-

high-quality Contributed and Review 
articles is an ongoing effort.

The Research Highlights Board 
aims to leverage the unique feature of 
computing research from our highly 
selective conferences. Their goal is 
to provide readers with a collection 
of outstanding research articles, se-
lected from the broad spectrum of 
computing-research conferences, 
and reposition them for a far more di-
versified audience. Submissions are 
first nominated by Board Members or 
Approved Nominating Organizations 
and are subject to final selection by 
the Board. Authors are invited to re-
write and expand the scope of their 
research papers to address Communi-
cations’ broad readership. 

Each of these articles is accompa-
nied by a Technical Perspective essay, 
providing readers with a one-page 
overview of the underlying motiva-
tion and important ideas of the fea-
tured research as well as its scientific 
and practical significance. Technical 
Perspective essays are written by ris-
ing stars and established luminaries 
invited by the Board. The challenge 
for this Board is to develop a reach 
into hundreds of computing-research 
conferences. So far, only about 10 
ACM SIGs have applied to become Ap-
proved Nominating Organizations. 
We hope to see more SIGs applying 
this year, as well as non-ACM organi-
zations.

This, in a nutshell, is how Com-
munications’ editorial work is carried 
out. I’ve also tried to give you a sense 
of the ongoing challenges. Producing 
a top-notch flagship publication is an 
evolving project. I am pleased with 
the progress we have made so far, and 
am acutely aware of the efforts re-
quired to sustain and improve upon 
the quality of this magazine. Yes, it 
can be done, if we, ACM members, 
collectively shoulder this effort.

Moshe Y. Vardi, Editor-in-Chief

DOI:10.1145/1467247.1467248		  Moshe Y. Vardi

http://queue.acm.org
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publisher’s corner

DOI: 10.1145/1467247.1467249	 Scott E. Delman

Communications’ Web 
Site to Launch in March

launch a new Communications’ Web site, 
which will go live this month. The new 
site will complement the magazine by 
providing an easy access point to all the 
content found in the magazine’s print 
pages, but perhaps more importantly the 
site will extend beyond Communications’ 
current reach and help bring us closer to 
fulfilling the flagship’s original promise 
as the primary “communication” tool in 
the field of computing. 

Let me say a few words about the 
new site. Many in the community are 
now used to downloading Communica-
tions’ articles from the ACM Digital Li-
brary, reading the print publication on 
the train or plane, or scanning through 
the pages of the Digital Edition on your 
desktop or mobile device (as an aside, 
the iPhone version is worth trying). For 
those of you who have your preferred 
way of digesting and archiving the ar-
ticles published each month, nothing 
should change and we will do our best 
to continue to improve the experience 
for you. The new site, however, offers 
you for the first time a robust gateway or 
digital storefront from which to not only 
read and download articles, but to com-
ment, share, and interact with the com-
puting community in a meaningful way 
and in real time without the limitations 
of page budgets and print schedules. 

The new site will be content- and 
feature-rich with an emphasis on high-
quality editorial. Everything found in 
the print publication will be available 
via the Web site, but the site will also 
contain additional news content up-

dated more frequently than is possible 
in print. A variety of user-generated con-
tent, such as the new Expert Blog aptly 
named the Blog@CACM, will be con-
tributed to by a growing list of distin-
guished practitioners and researchers. 
Periodically, the best of those entries 
and comments will make their way into 
the print magazine and the result will be 
a cross-fertilization of content between 
the print and online Communications. 
So, for those of you who still prefer to 
see your name appear in print there is 
another incentive to go online. The new 
site will also serve as a gateway to some 
of the most interesting and relevant ex-
isting blogs (see Blog Roll) in the com-
puting community and provide links to 
related content, books, courses, confer-
ences, SIGs, and other resources. The 
site will also be heavily integrated with 
the ACM Digital Library, so as to provide 
a single entry point for searching both 
Communications articles and other ar-
ticles published by ACM. 

It is important to say that the site 
will not be all things to all people. That 
is not the intention. But, if you are a 
regular reader of Communications and 
you are looking for a way to find more 
high-quality information on advanced 
computing topics (for practitioners and 
researchers), we believe this new site 
will be a great place to start and over 
time will find its way into your favorites 
folder and become a highly respected 
and valuable resource. At least, that is 
our ultimate goal.

Scott E. Delman, group publisher

2008 was a year of significant change for 
Communications. The same will be the case in 
2009. After a successful relaunch of the print 
magazine last year, ACM is getting ready to 

The site will 
extend beyond 
Communications’ 
current reach 
and help bring us 
closer to fulfilling 
the flagship’s 
original promise 
as the primary 
“communication” 
tool in the field  
of computing. 
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letters to the editor

quality of tools and is a major factor in their 
popularity. 

Finally, the W3C standards relate only 
to the languages themselves, leaving 
the design and implementation of tools 
to developers. The OWL standard does 
not specify any particular reasoning 
algorithm, and existing OWL/DL reasoners 
are based variously on (at least) analytic 
tableau, resolution, hyper-resolution, query 
rewriting, saturation, and rule-extended 
triple stores. 

Ian Horrocks, Oxford, U.K. 

Give Me the Science of 
Virtualization, Not Buzzwords 
The “CTO Roundtable on Virtualiza-
tion, Parts I and II” moderated by Ma-
che Creeger (Nov. and Dec. 2008) was a 
rambling discussion filled with vague 
assertions, buzzwords, and brand 
names but few clear concepts. The an-
ecdotal discussion touched on cloud 
computing, late binding, even the ter-
ror attacks of 9/11, without clear logical 
sequence or relationship with deeper 
(unstated) definitions or principles. 

As far as I know, VM is an operating 
system concept first implemented by 
IBM 40 years ago on its punched-card-
era mainframes (360–67) and commer-
cially available on PCs for at least the 
past 10 years. VM was invented for essen-
tially the same reasons it is used today: 
run multiple operating systems on one 
machine in fully isolated ways. Some of 
these operating systems may be less re-
liable than others or may still be under 
test but are unable to interfere with one 
another. Even if we are talking about the 
same thing, the roundtable highlighted 
none of these basic concepts. VM was 
widely used within a few years of its ear-
liest implementation. One roundtable 
participant (in Part I, Nov. 2008) said: “I 
support virtualization.” OK, so I support 
transistor radios. 

To me, this is further confirmation 
of the fact that IT progress is fast on 
the surface but slow in terms of basic 
concepts. 

Luigi Logrippo, Gatineau,  
Québec, Canada 

T
o e xpla in  the  nature of 
“Ontologies and the Seman-
tic Web” in his contributed 
article (Dec. 2008), Ian Hor-
rocks, a leading figure be-

hind the theory and practice of Descrip-
tion Logics (DLs), employed analogous 
characters and language of the fiction-
al Harry Potter children’s novels. Not-
withstanding the fact this did not help 
readers not already familiar with Pot-
ter or even those, as there may exist a 
few, who find the novels utterly boring 
and repetitive, hearing the same story 
over again in a new guise prompts me 
to ask: When will such presentations 
evolve from toy examples into more 
realistic accounts of larger, complex 
ontologies? That is, when will the im-
portant issue of scalability in the stor-
age, retrieval, and use of large ontolo-
gies (millions of concepts, hundreds of 
millions of roles/attributes, nontrivial 
reasoning) be addressed? 

Horrocks wrote, “A key feature of 
OWL is its basis in Description Log-
ics, a family of logic-based knowledge-
representation formalisms that are 
descendants of Semantic Networks 
and KL-ONE but that have a formal 
semantics based on first-order logic.” 
While this may be true, it could also 
mislead a neophyte to conclude that 
DL is somehow the only formalism for 
representing and using ontologies. 
This is far from true. There is at least 
one alternative formalism, also a direct 
descendant of KL-ONE—Order-Sorted 
Feature (OSF) constraint logica—that 
lends itself quite well to the task. Else-
where, I also covered how various DLs 
and OSF constraint logics formally re-
late to one another.b 

The trouble I see in such publica-
tions by influential members of the 

a	 Ait-Kaci, H. Data models as constraint systems: 
A key to the semantic Web. Constraint Program-
ming Letters 1 (Nov. 2007), 33–88; www.cs.brown.
edu/people/pvh/CPL/Papers/v1/hak.pdf.

b	 Ait-Kaci, H. Description logic vs. order-sorted 
feature logic. In Proceedings of the 20th Interna-
tional Workshop on Description Logics. Lecture 
Notes in Computer Science. Springer-Verlag, 
2007; sunsite.informatik.rwth-aachen.de/Pub-
lications/CEUR-WS/Vol-250/paper_2.pdf.

World Wide Web Consortium (W3C) is 
that one particular formalism—DL—
is being confused with the general is-
sue of formal representation and use 
of ontologies. It would be like saying 
Prolog and SLD-Resolution is the only 
way to do Logic Programming. To some 
extent, the LP community’s insistence 
on clinging to this “exclusive method” 
has contributed to the relative disin-
terest in LP following its development 
in the 1980s and 1990s. Similarly, DL 
formalists have built a de facto ex-
clusive reasoning method—Analytic 
Tableaux—into their formalism so the 
same causes always result in the same 
consequences. 

Whether the various languages pro-
posed by the W3C are able to fly beyond 
toy applications has yet to be proved, 
especially in light of the huge financial 
investment being poured into the se-
mantic Web. To realize this promise, we 
must not mistake the tools for the goal. 
Indeed, while DLs are admittedly one 
tool among several for representing and 
using ontologies, the goal is still to make 
semantic Web ontology languages work, 
no matter which method is used, as long 
as it is formal, effective, and efficient on 
real data. Otherwise, the semantic Web 
might well end up being built on noth-
ing more than children’s magic. 

Hassan Aït-Kaci, Vancouver, Canada 

Author’s Response: 
The Harry Potter example was not 
intended to be representative of realistic 
application ontologies. As I discussed in 
the article, such ontologies are often large 
and complex, making them unsuitable for 
didactic purposes. 

I certainly didn’t mean to suggest that 
DL is the only possible formal basis for an 
ontology language. However, it is important 
to agree on the use of some formalism in 
order to facilitate the exchange and reuse of 
ontologies and encourage the development 
of the tools and infrastructure needed for 
large-scale ontology development and 
deployment. This is a major success of 
RDF and OWL; users now have access 
to a previously undreamt of range and 

Children’s Magic Won’t Deliver the Semantic Web 
DOI:10.1145/1467247.1467250			 

http://www.cs.brown.edu/people/pvh/CPL/Papers/v1/hak.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-250/paper_2.pdf
http://www.cs.brown.edu/people/pvh/CPL/Papers/v1/hak.pdf
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Creeger’s Response: 
The CTO Roundtables are conversations, 
not well-defined treatises with clear-
cut conclusions. Discussing early-stage 
adoption of commercial technology involves 
differences of opinion about definition, best 
practices, product maturity, and best ways 
forward. We provide the discussion; the 
reader decides. 

My focus as moderator is commercial 
benefits and best ways to realize them, 
conceding that my success varies. Logrippo 
suggests and I agree we need to do more 
to extract key ideas and make them more 
accessible to the reader. 

While virtualization goes back more 
than 40 years, it has gained renewed 
commercial appeal in the past decade as a 
better way to provide application services. 
Overhead, risk, cost, and resulting benefit 
must be evaluated in the context of the 
commercial problems being addressed. 
The goal is not to define virtualization 
as a new CS technique but address its 
relatively recent status as an attractive 
commercial technology. When a panelist 
supports virtualization, it mean to him its 
benefits far outweigh its impact on service 
infrastructure. 

Mache Creeger, Head Wrangler, CTO 
Roundtable Series, Portola Valley, CA

More Legacy from Gates 
Michael Cusumano really knows some-
thing about Microsoft, and his View-
point column “Technology Strategy 
and Management” on “The Legacy of 
Bill Gates” (Jan. 2009) is the best popu-
lar assessment I’ve read on the subject. 
However, for the public to fully un-
derstand how Gates affects the world, 
three more aspects of that legacy must 
be understood: 

Product lock-in. In the marketplace 
for everyday consumer software, con-
sumers’ decisions are overwhelmed by 
their need for compatibility with popu-
lar file formats; all other desirable at-
tributes, including cost, quality, speed, 
security, ergonomics, simplicity, size, 
and feature sets, are simply inactivated 
by this one imperative. Gates under-
stood this network dynamic at the time 
he founded Microsoft and has pursued 
it relentlessly ever since. Never before 
has a popular world market been so 
tightly constrained by this idea; bil-
lions of consumers have thus been 
deprived of choices through a single 
mechanism. Paradoxically, this lock 

on the market happened even as the 
technical capacity to produce cheap al-
ternative products mushroomed; 

Wheels of justice. As a business cal-
culation, Microsoft ignored a court-im-
posed fine of one million Euros per day 
every day for three years. This action 
(as well as others by Microsoft) created 
a new level of frustration for court sys-
tems and represents a phenomenon of 
corporate behavior that may now need 
specific new methods of redress. Speed 
of compliance with court orders is cru-
cial in a marketplace moving as quickly 
as IT. As long as the wheels of justice 
turn slower than marketplace evolu-
tion, many laws may be reduced to ir-
relevance; and 

Battle against standards. Microsoft is 
fully aware that open public standards 
are an impediment to the perpetuation 
of its monopolies and spends billions 
to defeat them. Public standards are a 
pillar of efficiency in free markets, ad-
dressing the lock-in problem by solv-
ing the compatibility problems, and 
hence of immense value to consumers. 
Unfortunately, the tactics in this battle 
are largely out of the public’s view. 

Such business behaviors are only ca-
sually understood by the public. None 
are new, but globalization and the ex-
traordinary new arithmetic of marginal 
costs in the software industry have in-
tensified their effects. Gates elevated 
each one to the level of boardroom 
stratagem, using it to prevent the mar-
ket from becoming as competitive and 
productive as it could be. It behooves 
the world to pay as much explicit atten-
tion to these things as Gates did and 
decide if a response is needed. As econ-
omies change, our free-market system 
requires diligent protection from every 
scheme that suppresses efficient com-
petition. 

J. Stephen Judd, Plainsboro, NJ 

Deserves More Than an  
Ad Hominem Response 
When columnist Michael Cusumano 
used the phrase “religious-like re-
sponses from the faithful” in his re-
sponse to a comment (by Ian Joyner, 
Dec. 2008, concerning his Viewpoint 
column “Technology Strategy and 
Management, Sept. 2008) to simply 
dismiss the comment, it constituted 
an ad hominem and self-referential 

attack, not a principled response, and 
was unworthy of the professional stan-
dards ACM is attempting to establish 
in the new Communications. 

Rosemary M. Simpson, Providence, RI 

Cusumano’s Response: 
It was quite a rude comment to me, and 
I reacted to the tone of it. No doubt it is 
best in such cases to wait awhile before 
responding. But when a reader criticizes 
every argument by saying I am simply 
“anti-Apple,” there is not much use in 
replying point by point. I have had many 
such encounters with Apple users, given 
my extensive work on Microsoft and 
concluded there is indeed such a thing as 
“the Apple faithful” and a strong element of 
religiousness to them. But I disagree that 
I am simply anti-Apple. I have been much 
more critical of Microsoft and Bill Gates. The 
main point was that I believe Apple could 
have become the dominant PC technology 
had Steve Jobs adopted more of an open 
“platform” strategy, much as Japan Victor 
did with VHS, which dominated Beta mainly 
because of the much greater availability of 
prerecorded tapes (software) and extensive 
OEM licensing deals (hardware).

Michael Cusumano, Cambridge, MA 

Communications welcomes your opinion. To submit a 
Letter to the Editor, please limit your comments to 500 
words or less and send to letters@cacm.acm.org. 
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to Dependable Software
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Dame Wendy Hall

Computing as a Social Science

The Future of Database 
Systems and Information 
Retrieval

The Roofline Visual-
Performance Model

And the latest news on active 
learning, sentiment analysis, and 
virtual colonoscopy technology.
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The task identified by ACM in 2005 has 
come to fruition. Communications of the 
ACM has been remade both in print and 
online. The magazine was relaunched in 
July 2008, and now we are putting the fin-
ishing touches on the Web site to launch 
in March at cacm.acm.org. 

To say a Web site is preparing to 
‘launch’ hints at manned spaceflight and 
adds an element of drama that aggran-
dizes a site’s unveiling. That’s unneces-
sary. The development of the Communi-
cations’ Web site was dramatic enough. 

The drama could be found in the faces 
of ACM managers when they recognized 
the developers’ simpatico braininess. It 
was in the musings of stakeholders shar-
ing wouldn’t-it-be-nice lists, and then re-
alizing that some wishes do come true. 
It was in the scrupulous attention that 
Communications’ Web board members 
paid to idiosyncratic design details such 
as fonts, column widths, and bread-
crumb trails, and in their elation when 

they realized their suggestions begat change. And as the launch date drew near, it 
was in the unbending determination of all parties to work through and past every 
clash, to square the uncompromising conflict between getting things right and 
hitting each deadline. 

The site is ready, but not finished. That’s not to say it is not a complete product. 
It is. Unlike its predecessor, it delivers a daily dose of news, blogs, and opinion 
pieces from ACM and from around the Web. It reflects the rich history of Commu-
nications’ 52 years and introduces a new chapter in its editorial scope and global 
coverage. Indeed, its plentiful content will make you a frequent visitor.  

But there are more features, content, and services in the offing. The site’s ad-
herence to user-centered design will influence future developments, as will Web 
trends, user predilections, and hard economics (for more details, see the Publish-
er’s Corner on page 7). The site does and will mirror the membership’s diverse 
and changing interests. Enjoy it!

Prepare for Launch
DOI:10.1145/1467247.1467251	 David Roman

ACM 
Member 
News
Wendy Hall Appointed 
Dame Commander 
ACM President Wendy Hall 
has been appointed Dame 
Commander of the Order  
of the British Empire by Queen 
Elizabeth II for services to science 
and technology. The appointment 
was announced by Buckingham 
Palace as part of the 2009 New  
Year Honours list.

“Hall is a member of the 
United Kingdom’s Prime 
Minister’s Council for Science 
and Technology, former president 
of the British Computer Society, 
professor of computer science at 
the University of Southampton, 
U.K., and a renowned researcher 
in Web science including 
multimedia and hypermedia,” 
said ACM CEO John White in  
a statement. “This honor from 
The Queen recognizes her service 
and speaks to Hall’s life-long 
commitment to advancing the 
field of computer science, as 
well as supporting her goal of 
promoting the use of technology 
to connect people across 
international boundaries.”

Hall is well known throughout 
the computer science community 
for her energy and vision, and 
for being a vocal advocate of 
women’s opportunities in 
science, engineering, and 
technology. In addition to her 
large number of commitments 
in areas of policy development, 
she continues to advance new 
research directions. In 2006, she 
was one of the founders of the 
Web Science Research Initiative, 
along with Sir Tim Berners-Lee, 
Nigel Shadbolt, and Daniel 
Weitzner. They are pioneering the 
new discipline of Web Science, to 
develop a better understanding 
of the architectural principles 
that led to the Web’s growth 
and success, and ensure that 
these support the Web’s future 
development.

Tapia 09
The Richard Tapia Celebration  
of Diversity in Computing 
conference is being held in 
Portland, OR, from April 1–4, and 
will include a technical program, 
plenary talks, a poster session,  
a doctoral consortium, a robotics 
competition, and networking 
opportunities. For more information, 
visit tapiaconference.org. P
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T
he  U.S.  presidential elec-
tions offer social scientists 
and statisticians many av-
enues for dissecting the 
mood of the nation. Among 

the well-publicized polls and sur-
veys conducted by well-known and 
well-funded organizations, a lower-
key method of capturing the likely 
outcome of the election—prediction 
markets—is steadily gaining attention 
from academic researchers and busi-
ness leaders for use beyond elections, 
movie box-office earnings, and sport-
ing contest outcomes.

Like other futures markets, predic-
tion markets offer participants the op-
portunity to trade on their hunches, 
the difference being that a prediction 
market offers payout odds based on ag-
gregate hunches of forthcoming events 
instead of prices. 

Prediction markets are gaining inter-
est because the Internet allows greater 
worldwide access to them, as well as 
to the ever-increasing amount of data 
stored on any topic imaginable (which 
theoretically allows participants to 
make more informed predictions, indi-
vidually and in aggregate). These factors, 
plus the enormous amount of comput-
ing power that will make it possible to 
instantly calculate exponentially small 

odds, are stimulating new research on 
advanced computational models in pre-
diction markets. These models could 
be capable of analyzing entire events 
such as the annual NCAA collegiate 
basketball tournament, which begins a 
63-game schedule with 263 possible out-
comes by the tournament’s end.

“I still think it’s a growth area,” says 
David Pennock, a principal researcher 

Science  |  doi:10.1145/1467247.1467252	 Gregory Goth

Betting on Ideas 
Advanced computational models are enabling researchers  
to create increasingly sophisticated prediction markets. 

at Yahoo!, who is working on expand-
ing the capabilities of prediction mar-
ket outcomes. “Yes, prediction mar-
kets get lots of attention every four 
years during a presidential election, 
but every election cycle, they get more 
attention than they did the previous 
one. The perception of them is grow-
ing, startup companies using predic-
tion markets are emerging, and there 
are a lot of research questions and in-
dustry growth still.”

In fact, Pennock says, the U.S. Com-
modities Futures Trading Commission 
(CFTC) is considering expanding the use 
of prediction markets beyond low-bud-
get research functions or “play money” 
markets to regulated public exchanges 

The world’s largest prediction market, Intrade, offers bets on everything from the Academy 
Awards to whether the Higgs boson particle will be observed before or on a certain date. 

http://INTRADE.COM
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IEM steering committee member 
Thomas Rietz, a professor of finance at 
the university, says the aggregate zero-
risk design of the IEM allows the mar-
kets to perfectly reflect the aggregate 
forecast opinions of its participants. By 
aggregate zero-risk, Rietz explains that 
when a trader enters a particular bilat-
eral (either/or) market, he or she must 
buy one share of each choice, called a 
bundle, for a total cost of $1. If the trad-
er holds the bundle until the market 
concludes, there is neither profit nor 
gain. If the trader guesses the outcome 
successfully, and sells the losing unit of 
the bundle to another trader while the 
market is running, he or she picks up 
the original $1 bet plus whatever price 
was agreed upon for the losing share 
that was sold. If the trader chooses to 
hold onto the loser and sell the even-
tual winner, however, they will incur 
the $1 loss at payout time. At any given 

similar to the world’s largest prediction 
market, Ireland-based Intrade.

“The request for comments was ac-
tually very well written and it’s clear 
they understand a lot of the issues,” 
Pennock says. Even if public prediction 
markets for substantial sums are not 
approved in the U.S., the markets offer 
considerable promise for enterprise 
planners who want the latest informa-
tion on questions such as a product’s 
likely launch date or revenue projec-
tions, and public policy forecasters, 
who can design markets exempt from 
CFTC oversight.

Growing opportunities in internal pri-
vate-sector prediction markets are also 
revealing divergent philosophies among 
the markets’ designers. Many of the pub-
lic markets feature price-adjustment 
algorithms built around answering 
discrete multiple-choice outcomes, 
such as which candidate will win an 
election or if a product will launch in 
month x, y, or z. However, Mat Foga-
rty, CEO of prediction markets startup 
Xpree, says enterprise clients need to 
address questions expressed as con-
tinuous variables, such as a date range 
in which a product will launch or how 
many units will sell, and those markets 
need to feature an intuitive interface 
that encourages participation among 
those without a great interest in finan-
cial or mathematic complexities. The 
front end of these new prediction mar-
kets, as designed by Xpree, will feature 
interfaces inspired by computer game 
design, while the back end will replace 
multiple-choice algorithms with auto-
mated market makers based on Bayes-
ian probability, enabling participants 
to place bets on a range of options. 

Forecasting Events
The pioneering, modern public-policy 
prediction market, the University of 
Iowa’s Iowa Electronic Markets (IEM), 
is now 21 years old and still offering 
new events for traders to forecast. First 
used in the 1988 U.S. presidential elec-
tion, the IEM has offered markets on 
congressional elections, federal mon-
etary policy, and inspired university 
colleagues to run a prediction market 
on national influenza infection trends. 
The IEM’s unique design also inspired 
the latest corporate prediction market, 
a virtual-money internal market oper-
ated by Google.

The most visible 
enterprise use of 
prediction markets 
is to help companies 
improve product and 
process development.

time, the number of eventual winning 
shares and losing shares is equal and 
held by the traders. So, the university 
bears no counterparty risk and there 
is no need to provide hedging margins 
that irrationally affect outcomes.

“The price you would be willing to 
buy or sell for today is your expectation 
of its value in the future—the prices 
can be directly interpreted as a fore-
cast,” Rietz says. “In ordinary futures 
markets, there is a long-lasting debate, 
going back to John Maynard Keynes 
in the 1930s, over whether prices can 
legitimately be used as forecasts, and 
it all hinges on whether or not people 
demand a return or face a risk in ag-
gregate when they’re investing in these 
contracts.”

The enterprise markets are offering 
intriguing design opportunities, as ex-
pressed by Xpree’s Fogarty, as well as 
possible benefits beyond mining col-
lective beliefs of what may make a suc-
cessful product. The Google prediction 
market, for example, was examined by 
Bo Cowgill of Google, Justin Wolfers of 
the University of Pennsylvania’s Whar-
ton School of Business, and Eric Zitze-
witz of Dartmouth College as a vehicle 
for the way information flows within an 
organization. Prediction markets, they 
assert, provide employees with incen-
tives for truthful revelation and can cap-
ture changes in opinion at a much high-
er frequency than surveys, allowing one 
to track how information moves inside 
an organization and how it responds 

David Pennock of Yahoo! at a “Prediction Markets: Tapping the Wisdom of Crowds” 
conference organized by Yahoo!’s Technology Development Group.  
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to external events. Proactive managers 
can use the analysis of those informa-
tion flows to reorganize the company, if 
necessary, says Wolfers.

“A problem for economists is you can’t 
measure information flows, and a mar-
ket actually kind of makes those flows 
measurable,” Wolfers says. “I would nev-
er suggest you set up a prediction market 
just to learn about the sociology of your 
organization. But it tracks, and can also 
change, how organizations operate.”

Better Public Policies 
Although Wolfers concedes the most 
visible enterprise use of prediction 
markets is to help companies improve 
product and process development, he 
also says, “As an economist, I am much 
more enthusiastic about how predic-
tion markets could help in producing 
better public policies.”

One public policy market that is 
gaining momentum is the University of 
Iowa’s Iowa Health Prediction Market, 
funded by a $1.1 million grant from 
the Robert Wood Johnson Foundation. 
The market supplies invited healthcare 
professionals with $100 to begin trad-
ing their forecasts on flu activity in the 
coming season (winners are allowed to 
spend their trading earnings on profes-
sional advancement, thereby reducing 
public opprobrium about people prof-
iting from others’ illness). 

Improving the flu markets’ utility 
will entail expanding the regions the 
markets cover, and also tackling the 
most challenging computational is-
sues facing prediction market design-
ers—creating combinatorial markets 
that allow a much wider range of pos-
sible outcomes, and more granular ex-
pression of them, than the traditional 
win-lose, bilateral markets such as 
election markets. Yahoo!’s Pennock is 
experimenting with multiple examples 
of these combinatorial markets, which 
allow both conditional “if” questions 
and conjunctive “and” questions to be 
combined in virtually unlimited mul-
tiple arrangements.

For the flu market, which Pennock 
says he has discussed with the Iowa 
researchers, a combinatorial interface 
would allow traders to bet on more 
than the expected severity of outbreaks 
in one region. 

With a combinatorial interface, he 
says, “you would choose a region of the 

country and choose a date range, and 
then also choose an outbreak range. 
This is a combination of things you 
think will happen—‘In this region, dur-
ing this time frame, flu outbreak level 
will be red.’ And the market will price 
it for you.”

One enduring research problem on 
combinatorial markets is mitigating 
the effects a virtually unlimited spec-
trum of outcomes will have on creating 
markets that are so thin in trades they 
do not serve their purpose of aggregat-
ing information.

In such markets, which might bear 
a resemblance to an enterprise pre-
diction market in that there are not 
enough participants to provide a statis-
tically valid spread of opinion, Pennock 
says a market-maker algorithm might 
serve as a price setter within widely ac-
ceptable limits.

“I believe that approximation al-
gorithms will be fine for the market 
maker, because people don’t really 
care about making bets on things 
that are incredibly unlikely, like 10-6 
chance,” Pennock says. “But as long 
as you’re betting on something with a 
10% chance of happening, we’ll be able 
to approximate pretty quickly with a 
market-maker price.”

Pennock says the continuous in-
crease of computational power is 
making advanced research into some 
of these exponentially based markets 
feasible. “I don’t think it would have 
happened 10 years ago,” he says. “The 
horsepower to do a good approxima-
tion is somewhat more recent.”	

Gregory Goth is an Oakerville, CT-based writer 
specializing in science and technology.

Combinatorial markets 
allow a wider range  
of outcomes and  
a more granular 
expression of them 
than traditional 
bilateral markets.

Data Mining

Slice, 
Then 
Stitch
Researchers at the University 
of California, Davis, and 
Lawrence Livermore National 
Laboratory have developed 
software that makes the 
analysis and visualization of 
large data sets possible without 
the use of a supercomputer, 
reports Technology Review. The 
researchers’ algorithm slices 
data into manageable chunks, 
then stitches it back together, 
so the data can be manipulated 
in three dimensions, all on a 
computer with the power and 
capacity of an expensive laptop. 

The researchers’ algorithm 
offers a method of obtaining 
structural information about 
materials, proteins, and fluids, 
says Attila Gyulassy, the UC Davis 
researcher who led the project. 
It allows users to “interactively 
visualize, rotate, apply different 
transfer functions, and highlight 
different aspects of the data,” 
he says. 

The software uses a 
mathematical tool called the 
Morse-Smale complex, which 
has been used to extract and 
visualize elements of large 
data sets by sorting them 
into segments that contain 
mathematically similar features. 
The Morse-Smale complex has 
been known for decades, but 
it normally requires enormous 
amounts of computer memory. 

Gyulassy and his colleagues 
overcame this memory problem 
by writing an algorithm that 
breaks apart a data set before 
using the Morse-Smale complex, 
then stitches the blocks back 
together. As a result, only a 
small amount of data is needed 
at each step, so much less data 
must be stored in memory. 

Peter Schröder, a professor 
of computer science at 
the California Institute of 
Technology, notes that memory 
has been one of the limiting 
factors for the complex analysis 
of massive data sets. “You can’t 
even fit the stuff in memory,”  
he says. “But [the researchers] 
have addressed it.”

The researchers plan to 
release an open source software 
library this spring to allow 
researchers to take advantage 
of the approach, and revise it 
according to their needs. 
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h o ug  h  c o m p u t e rs   h av e 
outstripped us in arithme-
tic and chess, there are still 
plenty of areas where the 
human mind excels, such 

as visual cognition and language pro-
cessing. And if one mind is good, as 
the proverb goes, two—or two thou-
sand—are often better. That insight, 
and its consequences, drew worldwide 
interest with the 2004 publication of 
James Surowiecki’s best-selling The 
Wisdom of Crowds, which argued that 
a large group of people are superior at 
certain types of rational tasks than in-
dividuals or even experts.

Now researchers are turning to 
computers to help us take advantage 
of our own cognitive abilities and 
of the wisdom of crowds. Through a 
distributed problem-solving process 
variously known as crowdsourcing, 
human computation, and computer-
aided micro-consulting, answers are 
solicited online to a set of simple, spe-
cific questions that computers can’t 
solve. Is this a picture of a fish? Do 
you like that style of shoe? How many 
hotels are on St. George’s Island, and 
which ones have Internet access?

The amateur, often anonymous 
workers who agree to execute these 
tasks are usually given some sort of 
social or financial incentive. A few 
cents might buy the answer to a simple 
data-labeling task, while a more ardu-

ous job like audio transcription could 
require a couple of dollars. Reposition 
the task as a game, and many people 
even “work” for free. Either way, the 
possibilities—for creating corpuses of 
annotated data, conducting market re-
search, and more—have both comput-
er scientists and companies excited.

One of the oldest commercial 
crowdsourcing applications is Ama-
zon’s Mechanical Turk. Named after 
a famous 18th century chess-playing 
“machine” that was secretly operated 
by a human, it offers a flexible, Web-
based platform for creating and pub-
licizing tasks and distributing micro-
payments. Since its launch in 2006, 
Turk has spawned both a vocabulary 
and a mini-marketplace. Workers, 
or “Turkers” (there are more than 
200,000 in 185,000 countries, accord-
ing to Amazon), select “Human Intel-
ligence Tasks” (HITs) that match their 
interests and abilities. Motivations 
vary. Some work odd hours or at night 
to generate extra income, while oth-
ers simply desire a more productive 
way to kill time online, like solitaire 
with financial rewards. As in the of-
fline world, more money buys faster 
results, and Amazon’s HIT requesters 
often experiment to find a pay scale 
that matches their needs.

Also part of the Turk economy are 
companies like Dolores Labs and Cast-
ingWords, which rely on Amazon’s 

technology to power their own crowd-
sourcing applications. Dolores Labs, 
based in San Francisco, posts Turk 
HITs on behalf of its clients, then filters 
the answers through custom-built soft-
ware systems to check for quality and 
generate meaningful results. Data is ul-
timately used to perform tasks like filter 
comment spam, tag data for search en-
gine optimization, and research market 
trends.

“Many companies don’t have the 
resources to describe tasks, put them 
up online, and manage the data they 
get,” explains Lukas Biewald, the 
company’s founder and CEO. Nor do 
they have time for Dolores’s extensive 
quality-control measures, which in-
clude creating “test” questions whose 
answers are already known, checking 
responses against one another, track-
ing individual answer histories, and 
creating a confidence measure with 
which to weight the resulting data.

Dolores also guides clients through 
the many variables that are involved 
in designing a crowdsourced project. 
How arduous is each task? How quick-
ly are results needed? How would cli-
ents like to deal with the statistical 
outliers that are caught by Dolores’ 
quality-control algorithms? If you’re 
checking user-generated content for 
pornography, for example, you might 
err on the side of caution. 

According to Biewald’s estimates, 

Crowd Control 
Using crowdsourcing applications, humans around the world are transcribing  
audio files, conducting market research, and labeling data, for work or pleasure.

Society  |  doi:10.1145/1467247.1467254	 Leah Hoffmann

Some of the 10,000 sheep created for Aaron Koblin’s TheSheepMarket.com by workers for Amazon’s Mechanical Turk who were paid .02 
cents to “draw a sheep facing to the left.”

http://TheSheepMarket.com
http://THESHEEPMARKET.COM
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age as the other player slowly reveals it. 
In fact, designing a game is much like 
designing an algorithm, as von Ahn has 
pointed out: “It must be proven correct, 
its efficiency can be analyzed, a more ef-
ficient version can supersede a less effi-
cient one.” And since many people are 
inherently competitive, building a com-
munity around each game to recognize 
outstanding performers helps increase 
participation, as well.

ReCAPTCHA, on the other hand, is 
an attempt to take advantage of a task 
that millions of people perform in the 
course of their everyday online lives: 
solve the ubiquitous character recog-
nition tests known as CAPTCHAs to 
prove they are human. “I developed 
reCAPTCHA because I found out that 
we’re wasting 500,000 collective hours 
each day solving these mindless tasks,” 
says von Ahn. To put that brainpower 
to use, reCAPTCHA presents users with 
scanned images from old books and 
newspapers, which computers have dif-
ficulty deciphering. By solving the re-
CAPTCHA they help digitize the works. 
Since 2007, some 400 million people 
have helped digitize more than five bil-
lion words, according to von Ahn. 

Crowdsourcing’s critics claim it 
is unethical and exploitive, paying 
pennies or nothing for honest labor 
(though diligent workers often make 
close to minimum wage). In a strug-
gling economy, people may grow 
choosier about the ways they earn extra 
income. On the other hand, they may 
also be more interested in blowing off 
steam on the Internet—and being re-
warded with a few extra dollars.	

Leah Hoffmann is a Brooklyn-based science and 
technology writer. Valerie Nygaard, Microsoft, 
contributed to the development of this article.

Online Social Networks

Adults  
Get Social 
The percentage of Internet 
users age 55 and older who 
have a profile on an online 
social network has quadrupled 
during the last four years, from 
8% in 2005 to 35% in 2008, 
according to a new survey by 
the Pew Internet & American 
Life Project. 

Although media coverage 
has largely focused on how 
children and young adults use 
social network sites, adults still 
comprise the majority of the 
users of the social network sites 
because adults make up a larger 
portion of the U.S. population 
than teens, 65% of whom use 
social network sites.

Overall, however, younger 
adults are much more likely 
than older adults to use social 
networks. For instance, 75% of 
online adults age 18–24 have a 
profile on a social network; 57% of 
online adults 25–34 have a profile; 
30% of online adults 35–44 have 
a profile; 19% of online adults 
45–54 have a profile; 10% of adults 
55–64 have a profile; and only 7% 
of online adults 65 and older have 
a profile.

In terms of gender, adult 
women and men are equally 
likely to use social networks. 

The Pew study also reported 
that minority groups are more 
prevalent on social sites than 
previously expected. It found 
that 48% of African-American 
adults and 43% of nonwhite 
Hispanic adults have a social 
profile, compared to 31% of 
white adults. 

The personal use of social 
networks is more prevalent 
than professional use, both in 
the orientation of the networks 
that adults choose to use as 
well as the reasons they give 
for using the applications. For 
instance, 50% of adult users 
have a profile on MySpace, 
22% on Facebook, and 6% on 
LinkedIn. 

The applications are mostly 
used to explain and maintain 
personal networks, and most 
older adults are using them 
to connect with people they 
already know, usually to keep 
up with (89%), make plans with 
friends (57%), or to make new 
friends (49%). Other uses include 
organizing with others for an 
event, cause or issue; flirting; 
promoting one’s self or work; and 
making new business contacts.

Since 2007, some 400 
million people have 
helped digitize more 
than five billion words, 
says Carnegie Mellon’s 
Luis von Ahn.

the cost for a crowdsourced proj-
ect ranges from $2,000 to $4,000 for 
simple tagging projects to $10,000 
to $20,000 for more complex custom 
applications. Stephen Mechler, man-
aging director of the German crowd-
sourcing Web site Floxter, which uses 
its own technologies to handle the 
mechanics of creating and assigning 
tasks and compensating workers, cal-
culates that it is 33% less expensive to 
crowdsource projects like data classi-
fication and tagging than to complete 
them with in-house employees.

Other companies focus their crowd-
sourcing efforts on specific types of 
projects. New Mexico-based Casting-
Words uses Turk to transcribe audio 
files. Through a propriety algorithm, 
files are first split into three- to four-
minute chunks. Next, Turkers listen to 
a few seconds of each clip to judge the 
quality of the recording, which in turn 
helps determine pay rates for the tran-
scription work. Once each file has been 
transcribed, a full draft is assembled 
and sent back to Turk to be graded for 
consistency and precision, and re-
transcribed where necessary. Finally, 
Turkers edit and polish the transcript 
to be sent back to the client. Total costs 
range from $.75 to $2.50 per audio min-
ute, depending on how quickly a client 
needs the work completed.

Researchers like Carnegie Mellon 
University computer science professor 
Luis von Ahn are also finding ways to put 
crowdsourcing to work. Unlike his cor-
porate peers, von Ahn is unable to pay 
for the completion of a task, so he relies 
on social incentives—and tries to make 
tasks fun. To entice people to manu-
ally label a collection of digital images, 
for instance, von Ahn created the ESP 
Game, which randomly matches each 
player with an anonymous partner. Play-
ers try to guess which words or phrases 
their partners (whom they can’t com-
municate with) would use to describe 
a certain image. Once both players type 
the same descriptor, a new image ap-
pears and the process begins anew. In 
2006, Google licensed the idea and cre-
ated its own version of the game in order 
to improve image search results.

Since then, von Ahn has developed 
other games with a purpose to harness 
the wisdom of crowds. In Peekaboom, 
for example, one player attempts to guess 
the word associated with a particular im-
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t’s no secret that virtualization, 
a technology long associated 
with mainframe computers, 
has been transforming data 
centers due to its ability to 

consolidate hardware resources and 
reduce energy costs. But in addition to 
its impact on data centers, virtualiza-
tion is emerging as a viable technolo-
gy for smartphones and virtual private 
networks, as well as being used to re-
conceive agile and cloud computing.

Over the past decade there has 
been a great deal of work on improv-
ing the performance, enhancing the 
flexibility, and increasing the manage-
ability of virtualization technologies. 
Developments in the past five years 
alone, for example, include the abil-
ity to move a running virtual machine, 
along with its live operating system 
and applications, to a physical host 
without major downtime. The indus-
try has also recently witnessed the 
ability of virtualization to log the ac-
tions of a virtual machine in real time, 
with the purpose of being able to roll 
back an entire system to an arbitrary 
point and then roll it forward for de-
bugging or auditing. These and other 
recent developments have positioned 
virtualization as a core technology in 
cloud computing and have facilitated 
the technology’s move to the desktop. 

“It’s clear that virtualization is here 
to stay,” says Steve Herrod, chief tech-
nology officer at VMware. “In the fu-
ture, we’ll look back at the nonvirtual-
ized compute models as we look back 
at the phonograph and bulky CRTs.” 
But Herrod also says that the industry is 
far from realizing the full benefits that 
virtualization can bring to desktops, 
laptops, and smartphones. “Virtual-
ization is picking up steam rapidly for 
desktop users, but it has certainly not 
achieved ubiquity yet,” he says. “End 
users don’t want or need to know that 

virtualization is being used; they want 
access to their applications, and they 
want the very rich media experiences 
that many modern applications offer.” 

Arguably, one of the most interest-
ing and novel uses of the technology 
is on mobile devices, where virtual-
ization enables several new use-cas-
es, such as isolating work and home 
smartphones on a single physical 
handset. Gartner predicts that more 
than 50% of new smartphones will 
have a virtualization layer by the year 
2012. The need for virtualization on 
smartphones is strong, says Herrod, 
particularly as these devices become 
more powerful, as mobile applica-
tions become more advanced, and as 
security becomes a bigger issue. “Just 
as in the early days of our x86 desktop 
virtualization efforts, we see many dif-
ferent benefits that will come with this 
virtualization,” says Herrod.

As one example, Herrod cites the 
substantial testing procedures that 
every new handset must undergo 

prior to shipping. Virtualization, he 
says, will let handset manufactur-
ers test once and deploy on different 
handsets. For the carriers, Herrod pre-
dicts that virtualization will enable a 
new set of services, such as allowing 
users to deploy a virtual copy of their 
mobile data to a newly purchased 
handset. And for businesses, he says 
that those who want a single handset 
for home and work will be able to use 
different virtual phones. “Their work 
phone could be restricted to very spe-
cific applications and corporate data 
that is secure and completely isolated 
from their home phone, where they 
may have personal information and 
games,” he says. “The more we talk 
with people about this new area, the 
more use-cases we find.”

Enhanced Security
The notion that one of the strengths 
of virtualization is its ability to isolate 
data and applications corresponds 
to another aspect of the technology 

Technology  |  doi:10.1145/1467247.1467253	 Kirk L. Kroeker

The Evolution  
of Virtualization 
Virtualization is moving out of the data center and making inroads 
with mobile computing, security, and software delivery.

An iMac computer, with VMware Fusion, which enables it to run Windows XP Pro on the left 
screen, Windows Vista Home on the right, and Mac OS X Leopard in the background. 
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Quantum Computing

Atoms 
Teleported
A team of scientists from the 
University of Maryland and 
the University of Michigan 
have successfully teleported 
information between a pair 
of atoms, housed in separate 
and enclosed containers, 
across a distance of one meter, 
reports Science. According to 
the scientists, this is the first 
time that information has 
been teleported between two 
separate atoms in unconnected 
containers. 

With their protocol, 
the scientists successfully 
teleported quantum 
information between two 
ytterbium ions, using a method 
of teleportation in which the 
ions are stimulated to emit 
photons and the quantum states 
are inferred from the color of 
the emissions. The scientists 
report that atom-to-atom 
teleported information can be 
recovered with perfect accuracy 
approximately 90% of the time, 
and they believe that figure can 
be improved.

“Our system has the 
potential to form the basis for a 
large-scale ‘quantum repeater’ 
that can network quantum 
memories over vast distances,” 
says Christopher Monroe, 
the team leader and a physics 
professor at the University 
of Maryland. “Moreover, 
our methods can be used in 
conjunction with quantum 
bit operations to create a 
key component needed for 
quantum computation. 

“One particularly attractive 
aspect of our method is 
that it combines the unique 
advantages of both photons and 
atoms,” says Monroe. “Photons 
are ideal for transferring 
information fast over long 
distances, whereas atoms 
offer a valuable medium for 
long-lived quantum memory. 
The combination represents 
an attractive architecture for a 
‘quantum repeater,’ that would 
allow quantum information to 
be communicated over much 
larger distances than can be 
done with just photons. Also, 
the teleportation of quantum 
information in this way could 
form the basis of a new type of 
quantum Internet that could 
outperform any conventional 
type of classical network for 
certain tasks.”

that has become increasingly popu-
lar. While it might be easy to think 
of virtualization as adding a software 
layer that requires additional controls 
to maintain security, proponents of 
virtualization argue that it serves the 
opposite purpose, and instead rep-
resents a core enhancement to secu-
rity. “The only way we know how to 
get strong isolation is to keep things 
simple,” says Mendel Rosenblum, 
founder of VMware and a professor of 
computer science at Stanford Univer-
sity. “And the only way we know how to 
do that is to have isolation enforced at 
the lowest level.” 

Modern operating systems have a 
high level of functionality—and a cor-
responding level of complexity and 
number of potential weaknesses. “I 
look at virtualization as a step toward 
getting out of the mess we have in 
terms of these systems being so in-
secure,” says Rosenblum, who main-
tains that better security is a natural 
result of virtualization. Still, he says, it 
is incumbent on those working on vir-
tualization to build layers that don’t 
make virtualized systems so full of fea-
tures and complex that they become 
difficult to secure. 

Ian Pratt, founder of XenSource and 
vice president of advanced products at 
Citrix, has a similar view of virtualiza-
tion’s relationship to security. “If you 
look at hypervisors for laptops and 
phones, it’s not about consolidation,” 
he says. “It’s about security and being 
able to secure different partitions on 
a device.” 

Citrix is developing software for 
a model of mobile computing that 
the company calls “bring your own 
computer,” with the idea being for 
employees to use their own laptop 
for securely connecting to the corpo-
rate network. In this model, the lap-
top runs a corporate virtual machine 
directly on top of a hypervisor rather 
than in a hosted virtual environment 
contained by the employee’s personal 
operating system. 

“You need to provide very strict iso-
lation between those environments 
because you really don’t trust the per-
sonal environment,” says Pratt. “It is 
only through using a hypervisor where 
you can achieve that strong isolation 
between those environments.” 

Like VMware’s Herrod, Pratt points 

to smartphones as one manifestation 
of this new way of thinking about vir-
tualization and security. In Pratt’s 
example, a handset might have one 
virtual machine that controls the ra-
dio, another that contains all the de-
fault software and applications, and a 
third that operates everything the user 
downloads and installs. “The whole 
idea behind this,” says Pratt, “is that 
because you have this strong isolation, 
no matter what rubbish you download 
and install on the phone, you are still 
going to be able to make that 911 call 
whenever you need it.”

Proponents of virtualization say 
that, in addition to facilitating new 
ways of enforcing security, virtual-
ization technologies are leading to 
new ways of distributing software. 
“Virtualization not only gives you the 
ability to manage hardware more ef-
fectively,” says Rosenblum, “but also 
allows you to treat the software you’re 
running differently.” One way of lever-
aging virtualization’s capabilities is 
to ship complete packages of running 
virtual machines rather than having 
users assemble operating systems 
and applications themselves, he says. 
The idea represents a different take 
on software as a service, a model that 
obviates the need for users to assem-
ble applications themselves. “It’s not 
like you buy all the separate parts to 
make a car, but that’s what we do with 
computers,” says Rosenblum, who 
predicts that virtualization will lead to 
users simply invoking complete, au-
thenticated virtual machines tailored 
to their particular needs.

Core Challenges
While virtualization is continuing to 
make inroads in several new areas and 

With virtualization, 
people will be able  
to use both their  
work phone and  
home phone on  
a single handset.
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is leading to speculation about new 
models of computing, the technology’s 
overhead remains a core challenge. 
Recent advances in hardware and 
software have been removing some of 
the performance concerns associated 
with virtualization, but the goal is to 
eliminate the performance gap alto-
gether. “We are not there yet, but what 
you’re going to see is enhancements 
in processors and other technolo-
gies to make the performance gap go 
away,” says Leendert van Doorn, who 
is a senior fellow at AMD and respon-
sible for AMD’s virtualization technol-
ogy, including the AMD virtualization 
extensions in the company’s latest 
quad-core Opteron processor, which 
are designed to reduce the perfor-
mance overhead of software-based vir-
tualization. “The big problem with vir-
tualization right now is performance 
guarantees,” he says. “If you have a 
database transaction requirement of a 
few milliseconds, it is very difficult to 
provide that guarantee in a virtualized 
environment.” 

Still, van Doorn says he is confident 
that this overhead will be reduced in 
the coming years with better hardware 
and software support for virtualiza-
tion. Currently, overhead in virtual-

ized environments varies from a few 
percent to upward of 20%, a figure that 
van Doorn says depends on several 
factors, including how the hypervisor 
is implemented and whether the oper-
ating system running atop the hypervi-
sor is aware that it is being virtualized. 
“The Holy Grail is to get near-native 
performance,” he says. “We are get-
ting closer to that goal.”

In addition to the performance is-
sue, there remains the issue of man-
ageability in the data center and else-
where. “For the next generation, every 
big software company is working on 
comprehensive management tools,” 
says van Doorn. The goal is to deal with 
a massive number of virtual machines 

In the future, all  
new machines might 
have virtualization 
capabilities embedded  
in their firmware. 

and effectively make global optimiza-
tion decisions for thousands of virtual 
systems running in data centers or in 
the hands of a large work force. So-
phisticated management tools will be 
essential in the future imagined by vir-
tualization’s proponents, who predict 
that industry is moving toward a world 
in which the technology is ubiquitous, 
and where all new machines will have 
virtualization capabilities embedded 
in firmware.

Certainly, says Citrix’s Pratt, all 
servers, desktops, laptops, smart-
phones, routers, storage arrays, and 
anything else running software that 
must be isolated from other applica-
tions will be virtualized. The result? 
“The main noticeable thing will be 
more trustworthy computing,” says 
Pratt. Echoing this sentiment, Herrod 
predicts that users won’t think about 
virtualization as a different form of 
computing. “It will seamlessly fit into 
our notion of computing,” he says, 
“enabling a much simpler and more 
productive experience for all of us.”	

Based in Los Angeles, Kirk L. Kroeker is a freelance 
editor and writer specializing in science and technology. 
Steven Hand, Citrix, and Carl Waldspurger, VMware, 
assisted in the development of this article. 

Obituaries

In Memoriam
The world of computer science 
recently lost two esteemed 
members: Oliver G. Selfridge, 
who died at 82, and Ingo 
Wegener, 57.

Selfridge, whose career 
included positions at MIT, 

BBN, and GTE 
Laboratories, is 
widely regarded as 
a leading pioneer 
in the field of 
artificial 
intelligence and 

the father of machine perception. 
“In prescient research in the 
1950s,” says Eric Horvitz, 
president of the American 
Association of Artificial 
Intelligence, “he introduced and 
tackled key problems that are 
now well known to machine 
learning researchers, including 
the challenges of search and 
optimization over large 
parameter spaces, feature 

definition and selection, 
dependencies among variables, 
and unsupervised learning—
learning without explicit access 
to signals about success versus 
failure.” 

In 1956, Selfridge, with 
four colleagues, organized a 
conference at Dartmouth College 
that led to the creation of the 
field of artificial intelligence. And 
his 1958 paper, “Pandemonium: 
A Paradigm for Learning,” is a 
classic AI treatise that essentially 
provides a blueprint for machine 
learning research.  

“The Pandemonium work 
introduced a distributed model 
for pattern recognition, where 
a community of interacting 
‘demons’ or agents with different 
competencies and functions 
perform different subtasks 
that are then combined into 
final answers or behaviors,” 
Horvitz notes. “Rather than 

being handcrafted ahead of time 
and fixed, the agents and their 
networks of communication 
could evolve with experience.

“For decades, Oliver 
communicated an exciting vision 
where computers would one day 
learn to infer human intentions 
and act to assist people without 
the need for detailed expression 
of problems,” says Horvitz. “Such 
a vision has evolved to be central 
in research on human-computer 
interaction.”

Ingo Wegener, a professor of 
computer science at the 
Technical University of 
Dortmund, is well known for his 
groundbreaking work in 
complexity theory. He wrote a 
pair of important monographs, 
The Complexity of Boolean Functions 
(1987) and Branching Programs 
and Binary Decision Diagrams 
(2000). In the early 1990s, he 
worked in the formal analysis of 

metaheuristics, and his 
conviction that optimization 
algorithms based on 
metaheuristics, like evolutionary 
algorithms and simulated 
annealing, should be studied 
with the methods from  

the theory of  
efficient  
algorithms and  
complexity theory.  
Wegener’s new,  
theoretical  
approach  

produced a profound 
understanding of the limitations 
of such metaheuristics.

Wegener was appointed a 
member of the German Council 
of Science and Humanities, 
the leading scientific advisory 
committee to the German 
government, in 2004, and 
won the Konrad-Zuse-Medal, 
Germany’s most prestigious 
computer science award, in 2006.
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silos—application programs that mir-
ror the development organizations that 
produced them” and whose “common 
denominator is importing and export-
ing bitmaps,” he said. Computing, van 
Dam suggested, should “go back to the 
future.” 

Alan Kay, president of Viewpoints 
Research Institute, said what most at-
tracted him to Engelbart’s goal was to 
use computers to improve the world. 
However, people disagreed about 
what it means to augment intellect. 
Furthermore, he said, the biggest 
unsolved problem is how to capture 
group wisdom and the difficulty of 
summarizing it. 

Kay and van Dam both lamented 
today’s practitioners’ lack of curiosity 
and historical context. “We’re incredi-
bly wedged… conceptually, technically, 
emotionally, and psychologically into a 
tiny and boring form of computing that 
is not even utilitarian,” said Kay. “I’d be 

O
n  D e ce mber 9,  1968, Doug-
las C. Engelbart and his 
Stanford Research Institute 
(SRI) team demonstrated 
their latest inventions at 

the Fall Joint Computer Conference 
in San Francisco in an event popularly 
known as “The Mother of All Demos.” 
Engelbart’s demonstration includ-
ed the world debut of the computer 
mouse, plus the introduction of inter-
active text, email, teleconferencing and 
videoconferencing, and hypertext. 

But Engelbart, director of SRI’s Aug-
mentation Research Center, had lofty 
aspirations for the system, called NLS 
(for oNLine System). His goal was to 
create an integrated system that would 
“augment human intellect” by facili-
tating collaboration and bootstrap-
ping—continually improving the im-
provement process—and thereby help 
people better the world. NLS, he hoped, 
would enable a new way of thinking 
about how humans work, learn, and 
live together.

Last December two celebrations—
one at the Tech Museum of Innova-
tion in San Jose, and another at Stan-
ford University—commemorated the 
demonstration’s 40th anniversary, 
and industry luminaries honored En-
gelbart and his team’s achievements, 
discussed how the event changed their 
thinking, and examined its impact on 
computing. 

Andries van Dam, a professor of 
computer science at Brown University, 
extolled what he had felt back then was 
so “mind-blowing” about the demo—
that it reflected a broad, new way of 
thinking about design. “It was a huge 
beautiful suite of tools that allowed a 
recursive, self-improvement process—
very fast progressive refinement cycles 
that really raised the collective IQ of the 
group and made the tools more power-
ful,” he said. 

However, van Dam was disappoint-
ed that the idealism of an integrated 
system has been lost. “Today we have 

happy to burn the whole thing down 
and start over again.”

Kay said few people objected when 
browsers were no longer WYSIWYG-
capable “because [people] were not 
sophisticated enough to have the per-
spective to complain.” And van Dam 
objected to “dumbed-down” links. In 
the past, “we had fine-grained, bidi-
rectional, tagged links useful for infor-
mation retrieval and viewing specifica-
tions for links and their destinations,” 
he said. “We need to get them back and 
not just be stuck with URLs.”

Kay warned that suboptimal tools 
can reshape us, and called on attend-
ees to spread Engelbart’s vision. “Per-
haps the real significance of NLS,” 
he said, “is that it put an idea into the 
world that is a difficult one, but… it’s 
an idea none of us can forget.” 	

Based in Manhattan, Karen A. Frenkel is a freelance 
writer and editor specializing in science and technology. 

A Difficult, Unforgettable Idea
On the 40th anniversary of Douglas C. Engelbart’s “The Mother of All Demos,”  
computer scientists discuss the event’s influence—and imagine what could have been. 

News  |  doi:10.1145/1467247.1467255	 Karen A. Frenkel

Clockwise from top left: A video still of Douglas C. Engelbart during “The Mother of All 
Demos” in 1968; Engelbart conducting a workshop circa 1967; and a closeup view of the 
ergonomic keyboard and mouse setup used in the 1968 demonstration.
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ACM Fellows Honored 
Forty-four men and women are being inducted this year as 2008 ACM Fellows.

News  |  doi:10.1145/1467247.1467256 	

P. Geoffrey Lowney, Intel Corporation
Jitendra Malik, University of 

California, Berkeley
Kathryn S. McKinley, The University of 

Texas at Austin
Bertrand Meyer, ETH Zurich
John C. Mitchell, Stanford University
Joel Moses, Massachusetts Institute of 

Technology
J. Ian Munro, University of Waterloo
Judith S. Olson, University of 

California at Irvine
Lawrence C. Paulson, University of 

Cambridge Computer Laboratory
Hamid Pirahesh, IBM Almaden 

Research Center 
Brian Randell, Newcastle University
Michael K. Reiter, University of North 

Carolina at Chapel Hill
Jennifer Rexford, Princeton University
Jonathan S. Rose, University of Toronto
Mendel Rosenblum, Stanford University
Rob A. Rutenbar, Carnegie Mellon 

University
Tuomas Sandholm, Carnegie  

Mellon University
Vivek Sarkar, Rice University
Mark S. Squillante, IBM Thomas J. 

Watson Research Center
Per Stenström, Chalmers University of 

Technology
Madhu Sudan, Massachusetts 

Institute of Technology
Richard Szeliski, Microsoft Research
Douglas Terry, Microsoft Research 

Silicon Valley

Institute of Technology
William Buxton, Microsoft Research
Kenneth L. Clarkson, IBM Almaden 

Research Center
Jason (Jingsheng) Cong, University of 

California at Los Angeles
Perry R. Cook, Princeton University
Stephen A. Cook, University of Toronto
Jack W. Davidson, University of Virginia
Umeshwar Dayal, Hewlett-Packard 

Laboratories
Xiaotie Deng, City University of Hong 

Kong
Jose J. Garcia-Luna-Aceves, University 

of California, Santa Cruz/Palo Alto 
Research Center

Michel X. Goemans, Massachusetts 
Institute of Technology

Patrick Hanrahan, Stanford University
Charles H. House, Stanford University 

MediaX Program
Watts S. Humphrey, SEI, Carnegie 

Mellon University
Alan C. Kay, Viewpoints Research 

Institute
Joseph A. Konstan, University of 

Minnesota
Roy Levin, Microsoft Research 
       Silicon Valley

technology and for their significant 
contributions to the mission of the 
ACM. The ACM Fellows serve as distin-
guished colleagues to whom the ACM 
and its members look for guidance and 
leadership as the world of information 
technology evolves.

The men and women honored as Fel-
lows have made critical contributions 
toward and continue to exhibit extraor-
dinary leadership in the development  
of the Information Age, and will be in-
ducted at the ACM Awards Banquet on 
June 27, 2009, in San Diego, CA.

This year’s 44 new inductees bring 
the total number of ACM Fellows to 675 
(see www.acm.org/awards/fellows/ for 
a complete list of ACM Fellows). 

ACM Fellows
Martín Abadi, Microsoft Research 

Silicon Valley/University of 
California, Santa Cruz

Gregory Abowd, Georgia Institute of 
Technology

Alexander Aiken, Stanford University
Sanjeev Arora, Princeton University
Hari Balakrishnan, Massachusetts 

The ACM Fellows Program was established  
in 1993 to recognize and honor outstanding 
ACM members for their achievements  
in computer science and information 

The designation “ACM Fellow” 
may be conferred upon those 
ACM members who have 
distinguished themselves by 
outstanding technical and 
professional achievements 
in information technology, 
who are current professional 
members of ACM, and have 

been professional members for 
the preceding five years. Any 
professional member of ACM 
may nominate another member 
for this distinction.  

Nomination information 
organized by a principal 
nominator should include 
excerpts from the candidate’s 

current curriculum vitae, listing 
selected publications, patents, 
technical achievements, 
honors, and other awards; a 
description of the work of the 
nominee, drawing attention to 
the contributions that merit 
designation as Fellow; and 
supporting endorsements  

from five ACM members.
Nominations and endorse-

ments must be submitted to 
the ACM Fellows Web site by 
September 1, 2009. For more 
information about ACM Fellows 
and other member grades, visit 
http://awards.acm.org/html/
amg_call.cfm.

Call for 2009 ACM Fellows Nominations

http://www.acm.org/awards/fellows/
http://awards.acm.org/html/amg_call.cfm
http://awards.acm.org/html/amg_call.cfm


Call for Submissions and Participation 

The 5th International Symposium on Wikis (WikiSym 2009) 

Submission deadline: March 27, 2009 
Symposium: October 25 – 27, 2009 

Symposium location: Orlando, FL, U.S.A. 

Symposium Chair: Dirk Riehle, SAP Labs LLC 
Program Chair: Amy Bruckman, Georgia Tech 

For more information see 
http://www.wikisym.org/ws2009

http://www.wikisym.org/ws2009
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I
t is a time of considerable in-
trospection for the computing 
field. We recognize the need to 
transcend the time-honored, 
but narrow image of, “We are 

programmers.” That image conveys 
no hint of our larger responsibilities 
as software professionals and limits us 
in our pursuit of an engineering model 
for software practice.

The search for an alternative to the 
programmer image is already a gen-
eration old. In 1989 we asked: Are we 
mathematicians? Scientists? Engi-
neers?3 We concluded that we are all 
three. We adopted the term “comput-
ing,” an analogue to the European “in-
formatics,” to avoid bias toward any 
one label or description.

Today, we want all three faces to be 
credible in an expanding world. The 
cases for computing as mathemat-
ics and as science appear to be widely 
accepted outside the field.1 However, 
the case for computing as engineer-
ing is still disputed by traditional en-
gineers. Computer engineering (the 
architecture and design of computing 
machines) is accepted, but software 

engineering remains controversial.
In this column, we examine reasons 

for the persistent questions about soft-
ware engineering and suggest direc-
tions to overcome them.

Engineering Process
The dictionary defines engineering as 
the application of scientific and math-
ematical principles to achieve the de-
sign, manufacture, and operation of 
efficient and economical structures, 
machines, processes, and systems. 

When applied to software engineer-
ing, this definition calls attention to 
the importance of science and math 
principles of computing. Software en-
gineering has also contributed prin-
ciples for managing complexity in soft-
ware systems.

Some definitions insist that engi-
neering mobilizes properties of matter 
and sources of energy in nature. Al-
though software engineering does not 
directly involve forces of nature, this 
difference is less important in modern 
engineering.

The main point of contention is 
whether the engineering practices for 
software are able to deliver reliable, 
dependable, and affordable software. 
With this in mind, the founders of the 
software engineering field, at the leg-
endary 1968 NATO conference, pro-
posed that rigorous engineering pro-
cess in the design and implementation 
of software would help to overcome the 
“software crisis.”

In its most general form, the “en-
gineering process” consists of a re-
peated cycle through requirements, 
specifications, prototypes, and test-

The Profession of IT 
Is Software Engineering 
Engineering? 
Software engineering continues to be dogged by claims it is not engineering. 
Adopting more of a computer-systems view may help.

doi:10.1145/1467247.1467257	 Peter J. Denning and Richard D. Riehle

Software engineering 
may suffer from  
our habit of paying 
too little attention to  
how other engineers 
do engineering.
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ing. In software engineering, the pro-
cess models have evolved into several 
forms that range from highly struc-
tured preplanning (waterfalls, spirals, 
Vs, and CMM) to relatively unstruc-
tured agile (XP, SCRUM, Crystal, and 
evolutionary). No one process is best 
for every problem.

Despite long experience with these 
processes, none consistently delivers 
reliable, dependable, and affordable 
software systems. Approximately one-
third of software projects fail to deliver 
anything, and another third deliver 
something workable but not satisfac-
tory. Often, even successful projects 
took longer than expected and had sig-
nificant cost overruns. Large systems, 
which rely on careful preplanning, are 
routinely obsolescent by the time of 
delivery years after the design started.2 
Faithful following of a process, by it-
self, is not enough to achieve the re-
sults sought by engineering.

Engineering Practice
Gerald Weinberg once wrote, “If soft-
ware engineering truly is engineering, 
then it ought to be able to learn from 
the evolution of other engineering 
disciplines.” Robert Glass and his col-
leagues provocatively evaluated how 
often software engineering literature 
does this.4 They concluded that the lit-
erature relies heavily on software anec-
dotes and draws very lightly from other 
engineering fields. Walter Tichy found 
that fewer than 50% of the published 
software engineering papers tested 
their hypotheses, compared to 90% in 
most other fields.8

So software engineering may suffer 
from our habit of paying too little at-
tention to how other engineers do en-
gineering. In a recent extensive study 
of practices engineers expect explicitly 
or tacitly, Riehle found six we do not do 
well.5

Predictable outcomes (principle of ˲˲

least surprise). Engineers believe that 
unexpected behaviors can be not only 
costly, but dangerous; consequently, 
they work hard to build systems whose 
behavior they can predict. In software 
engineering, we try to eliminate sur-
prises by deriving rigorous specifica-
tions from well-researched require-
ments, then using tools from program 
verification and process management 
to assure that the specifications are 

met. The ACM Risks Forum docu-
ments a seemingly unending series of 
surprises from systems on which such 
attention has been lavished. Writing 
in ACM SIGSOFT in 2005, Riehle sug-
gested a cultural side of this: where 
researchers and artists have a high tol-
erance, if not love, for surprises, engi-
neers do everything in their power to 
eliminate surprises.6 Many of our soft-
ware developers have been raised in a 
research tradition, not an engineering 
tradition.

Design metrics, including design to ˲˲

tolerances. Every branch of modern 
engineering involves design metrics 
including allowable stresses, toler-
ances, performance ranges, structural 
complexity, and failure probabilities 
for various conditions. Engineers use 
these metrics in calculations of risk 
and in sensitivity analyses. Software 
engineers do not consistently work 
with such measures. They tend to use 
simple retrospective measures such 
as lines of code or benchmark per-
formance ranges. The challenge is to 
incorporate more of these traditional 

engineering design metrics into the 
software development process. Sang-
wan gives a successful example.7

Failure tolerance.˲˲  Henry Petroski 
writes, “An idea that unifies all engi-
neering is the concept of failure. Vir-
tually every calculation an engineer 
performs…is a failure calculation…
to provide the limits than cannot be 
exceeded.” There is probably no more 
important task in engineering than 
that of risk management. Software en-
gineers could more thoroughly exam-
ine and test their engineering solutions 
for their failure modes, and calculating 
the risks of all failures identified.

Separation of design from imple-˲˲

mentation. For physical world projects, 
engineers and architects represent a 
design with blueprints and hand off 
implementation to construction spe-
cialists. In current practice, software 
engineers do both, design and build 
(write the programs). Would separa-
tion be a better way?

Reconciliation of conflicting forces ˲˲

and constraints. Today’s engineers 
face many trade-offs between conflict-

http://THEISPOT.COM


26    communications of the acm    |   march 2009  |   vol.  52  |   no.  3

viewpoints

ing natural forces and a dizzying array 
of non-technical economic, statutory, 
societal, and logical constraints. Soft-
ware engineering is similar except 
that fewer forces involve the natural 
world.

Adapting to changing environments. ˲˲

Most environments that use comput-
ing constantly change and expand. 
With drawn-out acquisition processes 
for complex software systems, it is not 
unusual for the system to be obsolete 
by the time of delivery. What waste! 
Mastering evolutionary development is 
the new challenge.2

The System
The problems surrounding the six is-
sues listed here are in large measure 
the consequence of an overly narrow 
view of the system for which the soft-
ware engineer is responsible. Although 
controlled by software, the system is 
usually a complex combination of soft-
ware, hardware, and environment.

Platform independence is an ideal 
of many software systems. It means 
that the software should work under 
a choice of operating systems and 
computing hardware. To achieve this, 
all the platform-dependent functions 
are gathered into a platform inter-
face module; then, porting the sys-
tem to another platform entails only 
the building of that module for the 
new platform. Examples of this are 
the Basic Input-Output System (BIOS) 
component of operating systems and 
the Java Virtual Machine (JVM). When 
this can be achieved, the software en-
gineer is justified in a software-centric 
view of the system.

But not all software systems are 
platform independent. A prominent 
example is the control system for ad-
vanced aircraft. The control system is 
implemented as a distributed system 
across many processors throughout 
the structure where they can be close 
to sensors and control surfaces. An-
other example is software in any large 
system that must constantly adapt in 
a rapidly changing environment. In 
these cases the characteristics of the 
hardware, the interconnections, and 
the environment continually influence 
the software design. The software en-
gineer must either know the system 
well, or must interact well with some-
one who does. In such cases adding 

a system engineer to the team will be 
very important.

Engineering Team
No matter what process engineers use 
to achieve their system objectives, they 
must form and manage an engineering 
team. Much has been written on this 
topic. Software engineering curricula 
are getting better at teaching students 
how to form and work on effective 
teams, but many have a long way to go.

Every software team has four im-
portant roles to fill. These roles can be 
spread out among several people.

The software architect gathers the 
requirements and turns them into 
specifications, seeks an understanding 
of the entire system and its trade-offs, 
and develops an architecture plan for 
the system and its user interfaces.

The software engineer creates a 
system that best meets the architec-
ture plan. The engineer identifies and 
addresses conflicts and constraints 
missed by the architect, and designs 
controls and feedbacks to address 
them. The engineer also designs and 
oversees tests. The engineer must have 
the experience and knowledge to de-
sign an economical and effective solu-
tion with a predictable outcome.

The programmer converts the engi-
neering designs into working, tested 
code. Programmers are problem-solv-
ers in their own right because they 
must develop efficient, dependable 
programs for the design. Moreover, 
anyone who has been a programmer 
knows how easy it is to make mistakes 
and how much time and effort are 
needed to detect and remove mistakes 
from code. When the software engi-
neer has provided a good specification, 
with known exceptions predefined and 
controls clearly delineated, the pro-

grammer can work within a model that 
makes the job of implementation less 
error-prone.

The project manager is responsible 
for coordinating all the parts of the 
team, meeting the schedules, getting 
the resources, and staying within bud-
gets. The project manager interfaces 
with the stakeholders, architects, engi-
neers, and programmers to ensure the 
project produces value for the stake-
holders.

In some cases, as noted previously, 
a systems engineer will also be needed 
on the team.

Conclusion
We have not arrived at that point in 
software engineering practice where 
we can satisfy all the engineering cri-
teria described in this column. We still 
need more effective tools, better soft-
ware engineering education, and wider 
adoption of the most effective practic-
es. Even more, we need to encourage 
system thinking that embraces hard-
ware and user environment as well as 
software.

By understanding the fundamen-
tal ideas that link all engineering dis-
ciplines, we can recognize how those 
ideas can contribute to better software 
production. This will help us construct 
the engineering reference discipline 
that Glass tells us is missing from our 
profession. Let us put this controversy 
to rest.	
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W
he n  you purchase  a 
software package, the 
package will often in-
form you (or the soft-
ware will inform you 

when you install it on your computer), 
that you are not the “owner” of a copy of 
it, but only a “licensee” whose entitle-
ment to use the software is subject to 
certain restrictions. This may include a 
restriction on transferring your copy of 
that software to anyone else. 

Suppose you ignore the no-transfer 
restriction and sell the software to 
someone. Have you breached an en-
forceable contractual obligation to the 
software’s developer? By transferring 
the package to someone else, have you 
infringed copyright or induced the pur-
chaser of the software to infringe copy-
right? Is the purchaser of the used soft-
ware an infringer when he loads it on 
his computer? Is he too bound by the 
license restrictions?

There is, oddly enough, no defini-
tive court ruling on these questions. In 
Vernor v. Autodesk, Inc., a judge recently 
ruled that a purchaser of used software 
could lawfully sell the package on eBay 
because he was entitled to the benefits of 
the “first sale” rule of copyright law. This 
rule provides that although copyright 
owners may control distributions of 
their works to the public, the first sale of 
a particular copy to the public exhausts 
their right to control any further distri-
bution of that copy. The rule applies to 
all transfers of ownership, including 
gifts or bequests, but not to licenses. 

Reinforcing the Vernor ruling was 
UMG Recordings, Inc. v. Augusto, in which 
a judge recently refused to enforce a re-
strictive legend forbidding recipients of 
promotional CDs from selling or other-
wise transferring the CDs to other peo-
ple. As in Vernor, the court ruled that it 
was lawful for Augusto to sell the used 
CDs on eBay under the first sale rule.

UMG has already appealed the Au-
gusto ruling to the Ninth Circuit Court 
of Appeals (which reviews lower court 

decisions from California and Wash-
ington where Vernor and Augusto were 
rendered), and Autodesk is likely to ap-
peal as well. I predict that the Augusto 
ruling will be affirmed. Vernor is a clos-
er case, but it too may be affirmed un-
less the Ninth Circuit overturns one of 
its long-standing precedents.

UMG v. Augusto
Augusto buys and sells promotional 
CDs that UMG, among others, ship 

Legally Speaking  
When is a “License”  
Really a Sale? 
Can you resell software even if the package says you can’t? What are the implications 
for copyright law of the Quanta decision discussed in the November 2008 column? 

doi:10.1145/1467247.1467258	 Pamela Samuelson
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to insiders in the music business 
in hopes they will listen to the CDs 
and thereafter promote the music by 
spreading positive buzz about it. The 
CD packaging typically states: “This 
CD is the property of the record com-
pany and is licensed to the intended 
recipient for personal use only. Ac-
ceptance of this CD shall constitute 
an agreement to comply with the 
terms of the license. Resale or trans-
fer of possession is not allowed and 
may be punishable under federal and 
state laws.”

Augusto buys promotional CDs 
from music stores and online auctions 
and advertises them on eBay. When 
UMG found out about this practice, it 
sent Augusto a cease and desist letter, 
asserting that selling these CDs would 
infringe its copyrights. UMG made a 
similar claim to eBay and asked it to 
suspend Augusto’s account. EBay ini-
tially did so, but later reinstated the 
account after Augusto asserted that 
his sale of these CDs was lawful under 
the first sale rule. 

UMG then sued Augusto for copy-
right infringement, alleging that the 
eBay sales infringed its exclusive right 
to control distribution of its works. The 
first sale rule did not apply, in UMG’s 
view, because the CDs had been li-
censed, not sold, to recipients.

Characterizing a transaction as a 
license does not, however, automati-
cally make it so. The judge in Augusto 
looked to economic realities to see if 
the transaction was more like a sale or 
a license. 

One important incident of owner-
ship is a right to an unlimited duration 
of possession, whereas an incident of a 
license is an expectation that the prop-

erty will be returned to its owner when 
the license expires or is breached. Re-
cipients of the CDs seemed to be en-
titled to keep the CDs, and UMG pro-
duced no evidence that it expected to 
repossess the CDs. UMG could do noth-
ing, moreover, if recipients destroyed 
these CDs, even though this would 
extinguish UMG’s claimed property 
rights. Nor were insider recipients of 
the CDs under any obligation to UMG 
to promote the music. 

The judge concluded that UMG’s 
shipment of the CDs was a gift to the 
recipients, not a license. The recipi-
ents were, therefore, entitled to trans-
fer their ownership interests in the CDs 
to Augusto under the first sale rule, and 
Augusto was free to resell the CDs on 
eBay. 

Vernor v. Autodesk
CTA is an architectural firm that 
bought 10 copies of AutoCAD software. 
Some years later, it sold four copies of 
this software to Vernor at an office sale. 
Vernor has sold some of them already 
on eBay. Each time Vernor has tried to 
sell used AutoCAD software on eBay, 
Autodesk has contacted him and eBay 
to assert that the sale would infringe its 
copyrights because the software had 
been licensed, not sold, to CTA. 

Although eBay initially suspended 
Vernor’s account, Vernor  told eBay that 
the resales were lawful under the first 
sale rule. Autodesk ultimately acqui-
esced to some earlier resales by Vernor, 
but after it objected to his most recent 
effort to sell a copy of AutoCAD, Vernor 
sought a declaratory judgment that his 
resale of the software was lawful under 

the first sale rule. Autodesk moved to 
dismiss the complaint, arguing that 
the first sale rule did not apply.

The judge concluded that Vernor 
could resell the Autodesk software on 
eBay because the economic realities 
of the transaction rendered it a “sale.” 
CTA, after all, had made a one-time 
payment for permanent use of the soft-
ware, which is typical of sales transac-
tions. Unlike typically licensed proper-
ty, Autodesk had no interest in return 
of the software. 

The judge relied on the Ninth Cir-
cuit’s ruling U.S. v. Wise. It held that 
an actress was the owner of a copy of 
a film, not a licensee, because she had 
obtained the right to possess it for an 
indefinite period and without an obli-
gation to return it, even though she had 
also agreed not to transfer it and to use 
it only for personal use. 

Applying Wise, the judge held that 
Autodesk had sold the software to CTA, 
and because of this, the first sale rule 
protected Vernor’s resale of the soft-
ware on eBay.

What Will the Ninth Circuit Do?
Augusto is an easier first sale case be-
cause the restrictive legend printed on 
the CDs resembles one that was print-
ed in a book that the Supreme Court re-
fused to enforce in Bobbs Merrill Co. v. 
Straus, which established the first sale 
rule in copyright law.

Recipients of the CDs cannot rea-
sonably be understood to have agreed 
to UMG’s restrictive legend. Indeed, 
they demonstrated their lack of assent 
to it by selling or giving the CDs away. 
Because they were free to transfer the 
CDs to anyone, so was Augusto. 

Consumers Union is submitting 
an amicus curiae (friend of the court) 
brief in Augusto pointing out that if the 
Ninth Circuit enforces UMG’s restric-
tive legend and rules that Augusto in-
fringes copyright by reselling the CDs 
on eBay, this precedent would encour-
age manufacturers of all types of goods 
embodying some patented or copy-
righted innovation to adopt similar re-
strictive legends. Such a ruling would 
substantially undermine competition 
in the marketplace for used goods. 

Enforcing UMG’s restrictive leg-
end also seems inconsistent with 
the Supreme Court’s recent decision 
in Quanta v. LGE Enterprises. As I ex-

One can generally 
not obtain broader 
property rights in  
an artifact than had 
the person from 
whom you got it.

The software 
industry will likely 
weigh in heavily on 
the Augusto and 
Vernor cases, for the 
decisions challenge 
a long-standing 
industry practice.
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plained in my November 2008 column, 
the Supreme Court ruled that a patent 
owner’s effort to restrict commerce in 
licensed technologies was inconsis-
tent with patent law’s first sale rule. 
The Court left open the question about 
whether purchasers of the technologies 
could be held liable for breaching con-
tractual restrictions, but made clear 
that they were not patent infringers.

Vernor is a tougher first sale case 
than Augusto for at least two reasons. 
First, CTA had agreed to abide by terms 
of the AutoCAD license. More general-
ly, there is a stronger basis for inferring 
assent to “license” restrictions when a 
purchaser of a software package clicks 
“I agree” to terms of a license when in-
stalling the software (although it is not 
clear from the Vernor opinion whether 
CTA had installed the Autodesk pro-
grams). Second, the case law on wheth-
er the first sale rule applies to mass-
marketed software is mixed. 

Some judges have been persuaded 
that software developers should be free 
to contract as they wish with their cus-
tomers who may return the software if 
they find license terms unacceptable. 

Some defer to the widespread practice 
in the software industry of licensing 
software rather than selling it. If cus-
tomers have agreed to be licensees and 
the license forbids transfer of the soft-
ware, moreover, third-party purchasers 
such as Vernor are arguably incapable 
of being “owners” of that software. One 
can generally not obtain broader prop-
erty rights in an artifact than had the 
person from whom you got it. 

Yet, other judges have agreed with 
the Vernor decision that a one-time 
payment of money for a package of 
mass-marketed software that gives the 
purchaser rights to use software for an 
unlimited duration should be treated 
as a sale, even if it may be subject to 
some restrictions. Unless the Ninth 
Circuit overrules the Wise decision, 
Vernor may win the right to resell used 
software on eBay.

It is a separate question whether 
CTA breached a contractual obligation 
to Autodesk by transferring the soft-
ware to Vernor. But even so, should Ver-
nor be bound by the contract’s restric-
tions on transfers? It would seem not 
since he has not installed the software 

on his computer and has not agreed 
to its terms. A fundamental difference 
between contract rights and intellec-
tual property rights is that the former 
bind only the parties to the agreement, 
whereas the latter bind the world. Be-
sides, Autodesk chose to make the li-
cense nontransferable, so how could 
it bind Vernor or his customers? The 
Ninth Circuit may view Vernor as an 
ordinary guy trying to make a buck in 
the used goods market, rather than an 
infringer of copyrights.

The software industry will likely 
weigh in heavily on the Augusto and 
Vernor cases, for the decisions chal-
lenge a long-standing industry prac-
tice. (Negotiated licenses will be unaf-
fected if the Ninth Circuit affirms both 
rulings.) It remains to be seen whether 
the Ninth Circuit will recognize as le-
gitimate the interests of people like 
Augusto and Vernor and their custom-
ers in the existence of a market for used 
goods protected by copyright law. 	

Pamela Samuelson (pam@law.berkeley.edu) is the 
Richard M. Sherman Distinguished Professor of Law and 
Information at the University of California, Berkeley.
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O
n e  of  my   favorite activities 
is advising, so I was happy 
to accept the invitation 
to give advice about giv-
ing advice. Some faculty 

members give new students a list of 
their expectations and student rights. 
One student did so well that I asked 
him if he knew why. He said I gave him 
helpful guidance upon entering gradu-
ate school, when he was eager to hear 
it. He then told me what I said, which 
I’ve been telling to new students ever 
since:

Show initiative, for fortune favors ˲˲

the bold. Don’t wait for professors to tell 
you what to do; if we were good manag-
ers, we probably wouldn’t be faculty. Ex-
plore, challenge assumptions, and don’t 
let lots of prior art discourage you.

Sink or swim.˲˲  We’ll offer you what 
we think are great projects with plenty 
of potential, and we’ll support you the 
best we can, but it’s what you do with 
the opportunity that makes or breaks 
your graduate student career.

Educate your professor.˲˲  We’re in a 
fast-moving field, so for us to give you 
good advice we need to know what 
you’re working on. Teach us!

It Takes a Village to Raise a Child
Advising is simpler if you foster an en-
vironment that helps students learn 
how to become successful researchers. 
The general goals of the environment 
should be:

Acquiring research taste. ˲˲ Provide 
ways for students to acquire research 

taste; in particular, how to identify 
problems that if solved are more likely 
to scale and have impact.

Frequent feedback.˲˲  Offer opportuni-
ties for students to practice communi-
cation skills by presenting to outsiders, 
to improve their research via honest 
feedback, to inspire them with earned 
praise, and to set milestones for their 
research.

Foster camaraderie and enthusiasm. ˲˲

Create a community that provides ca-
maraderie, group learning, mentoring 
from senior students, and learning 
from peers to make the whole Ph.D. 
process more enjoyable.

Meeting these goals is not always 
easy. I’ll describe three techniques 

that have worked well for me and many 
Berkeley systems students: team-ori-
ented, multidisciplinary projects; re-
search retreats; and open, collabora-
tive research labs.

Exciting multidisciplinary projects. 
I try to work with colleagues to cre-
ate exciting, five-year projects that I 
would die to work on if I were a grad-
uate student again. We self-assem-
ble into teams of typically two to four 
faculty members with the right areas 
of expertise to tackle a challenging 
and important problem, then recruit 
10 to 20 graduate students to work 
toward building a prototype that 
demonstrates our proposed solu-
tion. The accompanying table shows 

Viewpoint 
Your Students  
Are Your Legacy  
This Viewpoint boils down into a few magazine pages what  
I’ve learned in my 32 years of mentoring Ph.D. students. 

doi:10.1145/1467247.1467259	 David A. Patterson 

Network of Workstations (NOW) group reunion in 2008. 
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the 10 Berkeley projects on which I 
participated.

The multidisciplinary nature of the 
project means students gain hands-on 
knowledge about other areas by work-
ing closely with students and faculty 
in other fields. The experience they 
gain building the common prototype 
helps them develop taste in research 
topics, which in turn helps them pick 
interesting research topics for their 
dissertations and later in the rest of 
their careers.

Group projects create communities 
where students have others with whom 
to interact. In particular, the more se-
nior students can mentor the junior 
ones. Being a Ph.D. student can be a 
very lonely experience, especially when 
it comes time to write a dissertation; 
being part of a larger group can allay 
those feelings of isolation. 

We recently started celebrating 
the 10-year anniversary of the end of 
projects. The high participation level 
at these reunions indicates that these 
personal ties in such communities re-
main 10 years later. The accompany-
ing photo shows the Network of Work-
stations (NOW) group reunion held 
last year.a

Research retreats. Key to the success 
of these projects, and to the develop-
ment of Berkeley systems graduate 
students, has been twice-a-year, three-
day retreats where students on the 
project present their results to one- or 
two-dozen guests from industry or 
non-academic labs. These are inten-
sive events, lasting from early break-
fast to late-night discussions, although 
we do take off one afternoon to have 
some fun. Retreats act as project mile-
stones, with the specter of presenting 
to outside visitors motivating students 
to meet the milestones. We close the 
retreats with an outsider feedback ses-
sion that offers advice on any aspect of 
the research. It’s surprisingly rare in 
academia to get frank feedback about 
research, but who can’t benefit from 
constructive criticism? 

Retreats give graduate students two 
chances per year to give a serious talk 

a	 Additional photos are included with the ver-
sion of this Viewpoint available at the Commu-
nications Web site, cacm.acm.org. The online 
version has names and group photos for RAID 
and SPUR reunions and for the most recent 
Par Lab and RAD Lab retreats.

and receive advice from experienced re-
searchers outside academia with differ-
ent experience and perspectives from 
the faculty on the project. Students are 
energized when external people care 
about their work and find it impor-
tant. When we advisers say something 
is good, many students will assume 
we are just acting as cheerleaders or 
just trying to get them to work harder. 
I believe interaction with thoughtful 
colleagues from industry and non-
academic labs is vital to acquiring re-
search taste in computer systems by 
learning to identify critical problems 
and impactful solutions. Retreats also 
introduce students to a network of col-
leagues that may prove useful later in 
their careers.

Such projects and retreats might be 
difficult at some places. Building col-
laborations with local universities and 
industry can produce many of the same 
benefits. The key is to get everyone to 
stay the full time and have people out-
side your group provide candid feed-
back. For example, there is an annual 
Boston Area Architecture workshop 
involving Brown, Harvard, UMass, 
Northeast, RPI, and local industry so 
that their students can cut their teeth 
in front of a friendly audience and get 
feedback from outsiders. 

We have been doing retreats for 
25 years. To my surprise, three years 
ago we discovered another technique 
that is becoming just as important to 
the success of projects and graduate 

students.
Open collaborative laboratory. We 

were increasingly seeing people opti-
mize their schedules to avoid disrup-
tions by working from home when they 
didn’t have classes or meetings, since 
computers and networks were just as 
fast at home as in the office. The nega-
tive global impact of such a local opti-
mization can be thought of as corollary 
of Metcalf’s Law: if the value of a net-
work is proportional to the square of 
the number of connected users, even a 
small group leaving a network can sig-
nificantly decrease its value. This drop 
in value can in turn cause others to 
leave, with the negative feedback loop 
continuing until the network nearly 
collapses. 

In 2006, we experimented by creat-
ing a physical office area with contigu-
ous open space for everyone in the proj-
ect, including the faculty. We hoped 
that easy access to faculty would draw 
students to campus and that the open 
space would inspire innovation by in-
creasing the chances of spontaneous 
discussions.1

The open space makes it very conve-
nient to quickly grab a group of inter-
ested people on a moment’s notice for 
a discussion rather than trying to wan-
der around the building or exchange a 
volley of email messages to schedule a 
meeting. We have also been surprised 
to see new students in this space quick-
ly act like senior graduate students. 
Apparently, easy access to faculty plus 

Patterson’s research projects.

Years Title Professors Students

1977–1981 X-Tree: A Tree-Structured Multiprocessor 3 12

1980–1984 RISC: Reduced Instruction Set Computer 3 17

1983–1986 SOAR: Smalltalk On A RISC 2 12

1985–1989 SPUR: Symbolic Processing  
Using RISCs

6 21

1988–1992 RAID: Redundant Array  
of Inexpensive Disks

3 16

1993–1998 NOW: Network of Workstations 4 25

1997–2002 IRAM: Intelligent RAM 3 12

2001–2005 ROC: Recovery Oriented Computing 2 11

2005–2010 RAD Lab: Reliable Adaptive  
Distributed Computing Lab

7 30

2007–2012 Par Lab: Parallel Computing Lab 8 40

http://cacm.acm.org
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watching how senior graduate students 
operate helps new students move up 
the learning curve quickly. 

The research retreats and open 
space also build esprit de corps, as 
we play together one afternoon at re-
treats—for example, skiing, paint ball, 
and river rafting—and in the lab we 
collectively watch presidential debates, 
movies, and big sports events.

The challenge of our open space is 
then to preserve concentration while 
enhancing communication,1 for other-
wise people will still stay home. Distrac-
tions are reduced with large displays, 
headphones, and relying on cellphones 
instead of landline phones; the custom 
is to make and take calls outside the 
open space. We also included many 
small meeting rooms in which to hold 
vigorous conversations. The result is an 
open space about as quiet as a library or 
coffee shop, which is good enough for 
most to concentrate while encouraging 
spontaneous communication.

Actual Advising 
Clearly, the students who always do 
well are a joy to meet. I do wonder how 
much advising you are really doing for 
them. For those students who need 
more help, the only thing I can say with 
confidence after 32 years is that every 
student is different, and its unlikely 
there is a single path that works for all. 
Moreover, there are limits to how much 
you can change, since students have 
had at least 20 years of people shaping 
their personalities before they even 
meet you. You can tell new students 
that being a successful researcher 
is different from being a successful 
undergraduate student, as they gen-
erally have no opinions on the topic 
when they arrive. For example, it’s of-
ten a surprise that grades are less im-
portant than research, and that they 
need to learn how to work on their 
own rather than just follow orders. 
They also need to find the right bal-
ance between learning the literature 
and starting to build. Clearly, advice 
changes over time. New students may 
need a “starter” project, and you give 
them larger tasks as students mature: 
reviewing, mentoring, and even help-
ing write proposals.

Here are a half-dozen other topics 
for advisors, including bolstering con-
fidence, helping with speaking, spend-

ing time together, giving quick feed-
back, counseling them, and acting like 
a role model.

Bolster confidence. Self-confidence 
can be a problem for students, espe-
cially early in their careers and for 
some belonging to underrepresented 
groups, so look for chances for them 
to succeed. Perhaps it’s suggesting 
a paper they can be lead author on, 
taking a summer internship at a com-
pany that is a good match for their 
talents, or even having success as a 
teaching assistant. I have seen even 
very senior students blossom late in 
their careers when they have some 
wins under their belts that everyone 
recognizes. 

Make sure that you praise such stu-
dents when they do have real success; 
all of us love praise for a job well done, 
but some of us need it more than oth-
ers do. Students learn from criticism as 
well as praise, just be careful it doesn’t 
deflate potentially fragile egos. I try to 
remember to phrase critiques as ques-
tions—“What do you think about…?”—
both orally and in my written comments 
on papers. I try to include something to 
praise in all the red ink that I put on a 
student’s paper, but keep in mind that 
false praise for a mediocre job may hurt 
more than help.3

Practice public speaking. Good work 
is often lost due to poor presentation, 
yet giving good talks is a problem for 
many students. Our culture is that 
practice talks are good for everyone, so 
we all do them, including me. We prac-
tice answering difficult questions as 
well as delivering smooth talks to avoid 
a “deer-in-headlights” incident during 

the actual talk. 
Spend the time. Weekly meetings 

gives students a chance to talk about 
what they’re working on and forces 
them to think in advance about how to 
utilize their time with you. I tell Ph.D. 
students in their last six months that 
they have highest priority on my sched-
ule and can meet as often as they want, 
which helps reduce their anxiety.

Give feedback, quickly and often. I 
try to review a student paper within a 
day or two and give my comments for 
them to read before we meet, which 
means I am not the bottleneck. Making 
students write the paper and the guid-
ing them through the revision process 
teaches them how to write.

Be a trusted counselor. Students may 
ask for personal advice, perhaps even 
for serious problems. As they are often 
far from family and friends, you must 
be there for them.

You’re a role model; act like one. I am 
struck from parenting two now-grown 
sons that it’s not what you say but what 
you do that has lasting impact. I bet 
this lesson applies as well to your aca-
demic progeny. Hence, I am conscious 
that students are always watching what 
I do, and try to act in ways that I’d like 
them to emulate later. 

For example, my joy of being a pro-
fessor is obvious to everyone I interact 
with, whereas I hear that some col-
leagues at competing universities of-
ten complain to their students about 
how hectic their lives are. Perhaps dif-
fering advisor behavior explains why 
many Berkeley systems students try 
academia? 

Tricks of the Trade 
Surely the most traumatic matter for 
the students is picking the thesis topic, 
as they believe it determines their ca-
reers. Gerald Estrin, who had worked 
with John von Neumann, was one of 
my advisors in graduate school. I still 
remember him telling me: “Every CS 
Ph.D. student I have seen, including 
myself, had a least one period when 
they are convinced that their disserta-
tion topic is utterly worthless.” Just 
retelling this story can help students 
cope, but look for opportunities to get 
others to praise their work. Projects 
and retreats help: there are others to 
talk to and they get regular feedback on 
their chosen topic from the outsiders, 

Advising is simpler 
if you foster an 
environment that 
helps students 
learn how to 
become successful 
researchers.
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which can energize those on the lonely 
trail to a Ph.D. My view now is that it’s 
not the dissertation topic so much as 
what students do with it.

Here are four pieces of advice for 
advisors: help if they stumble, aid non-
native speakers, try co-advising, and of-
fer lifelong mentoring.

Help if they stumble. Students may 
underperform not because they lack 
ability but because they come to think 
that “good enough” is OK. Have a heart-
to-heart discussion where you point 
this out and ask if they agree, and from 
now on they’re expected to perform to 
the best of their ability. The book The 
One Minute Manager2 offers advice on 
handling such touchy situations suc-
cessfully for all involved.

One colleague asks students that 
seem stuck to send him a daily report 
about their research and progress. Some 
days it could just summarize a paper or 
talk, or even “I didn’t do anything.” He 
finds that three to four weeks of this of-
ten gets them back on track.

When students really stumble in the 
program and stop making progress, 
I have had luck with sending them to 
industry for a six-month leave, as three 
months may not be enough to do some-
thing significant. Twice students have 
come back fired up knowing what they 
want to do for their dissertation and, 
perhaps more importantly, why they 
want to do it. A third student decided to 
stay in industry. That was likely a good 
decision, as I didn’t look forward to try-
ing to drag him across the Ph.D. finish 
line if he didn’t return with a greater 
sense of purpose, and I’m not sure he 
would have graduated if he wasn’t rein-
vigorated. 

Berkeley CS faculty members hold 
two meetings a year to review the prog-
ress and give feedback to all Ph.D. stu-
dents. Students meet with advisors 
beforehand to set mutually agreed 
upon milestones. Hearing others both 
praise and criticize your students pro-
vides a valuable perspective, and col-
lectively we develop ideas on how to 
help students in need. Reviews also 
ensure that no student falls through 
the cracks. Occasionally, after several 
warnings, we tell students that their 
progress is so slow that they should 
drop out. In more than one instance, 
these letters lit fires under lethargic 
students and they filed their disserta-

tions soon thereafter.
Aid non-native speakers. Non-native 

English speakers can offer another set 
of challenges. As far as I can tell, they 
just need practice speaking and writing 
English. (I wish this need were limited 
to non-native English speakers!) Strunk 
and White’s The Elements of Style4 is my 
writing bible, which I share with all my 
students. Some colleagues have had 
luck hiring graduate students from 
other parts of campus to work with CS 
graduate students to improve their writ-
ing. One colleague suggests making 
sure that if they share an apartment that 
their roommates don’t speak the same 
language so that they are forced to speak 
English. I am trying an experiment to 
improve the diction of an international 
student by having him take a course 
outside the university called “Learn to 
Speak like an American.”

Try co-advising. As part of our new 
open labs, we are also trying joint advis-
ing. I hear my co-advisors offer great ad-
vice that I wish I’d said, and I hope vice 
versa. Co-advising also has the benefit 
that when one advisor is traveling there 
is someone else to meet with the stu-
dent. It also makes advising more fun 
for everyone involved. I believe it works 
well if the advisors meet with the stu-
dent simultaneously, so that they give 
consistent advice. (From my long years 
of experience in academia, I’ve learned 
you get just as much credit whether you 
are the sole advisor or if you co-advise a 
student.)

Mentorship doesn’t end at graduation. 
After investing five or six years training 
an apprentice, it must be worthwhile 
to spend a little more time after gradu-
ation to help him or her succeed. I of-
fer to give a talk at their new institution 
to give them one last shove in the right 
direction. Danny Cohen recently asked 

for advice from Ivan Sutherland—who 
supervised his 1968 thesis—adding 
that Danny views advisor is a lifetime 
job. I agree. I still offer advice to, and 
receive it from, my former students. (In 
fact, my former student Mark Hill sug-
gested I write this Viewpoint.)

Advising in Retrospect 
When I was finishing my Ph.D., I read 
a book based on interviews of people 
talking about their jobs to help decide 
what I would do next.5 What I learned 
from the book was that people were 
happy with their careers if they de-
signed or built objects that lasted, such 
as the Empire State Building or the 
Golden Gate Bridge, or if they shaped 
people’s lives, such as patients or pa-
rishioners. Thus, I went into the job of 
assistant professor with the hypothesis 
that my long-lasting impact was not 
the papers but the people. 

Thirty-two years later, I can confirm 
that hypothesis: your main academic 
legacy is the dozens of students you 
mentor, not the hundreds of papers 
you publish. My advice to advisors is 
to get your students off to a good start, 
create stimulating research environ-
ments, help them acquire research 
taste, be a good role model, bolster stu-
dent confidence, teach them to speak 
well publicly, and help them up if they 
stumble, for students are the real coins 
of the academic realm.	
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N
o two d oc toral  students 
are the same, and the things 
an advisor needs to do for 
each vary accordingly. I can 
look back over my career 

and see several approaches that work, 
and one approach that is popular but 
doesn’t really serve the student well. To 
begin, the goal of the advisor is to teach 
someone how to become an indepen-
dent thinker, inventor, and problem-
solver. You must take someone barely 
out of their teenage years and convince 

them that they can do something that 
none of the most experienced people 
in the field have been able to do. And 
they must do that not only once, but 
throughout their professional lifetime. 
Frankly, when I went off to study for my 
doctorate, I had no idea what writing 
a thesis entailed; had I known, I never 
would have gone to graduate school.

What Not to Do
I was a student, and later faculty mem-
ber, in an electrical engineering de-

partment, where the widely held opin-
ion was that the way you wrote a thesis 
was to read many papers. Look at the 
last section, where there were always 
some “open problems.” Pick one, and 
work on it, until you are able to make 
a little progress. Then write a paper 
of your own about your progress, and 
don’t forget to include an “open prob-
lems” section, where you put in every-
thing you were unable to do. 

Unfortunately this approach, still 
widely practiced today, encourages 
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Some advice for those doing the advising  
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mediocrity. It gives the illusion that 
research is about making small incre-
ments to someone else’s work. But 
worse, it almost guarantees that after 
a while, the work is driven by what can 
be solved, rather than what needs to be 
solved. People write papers, and the 
papers get accepted because they are 
reviewed by the people who wrote the 
papers being improved incrementally, 
but the influence beyond the world of 
paper-writing is minimal. 

The Early Model: 
Theoretical Theses 
In the first years of computer science 
as an academic discipline, many the-
ses were “theoretical,” in the sense that 
the contribution was mostly pencil-
and-paper: theorems, algorithms and 
the like, rather than software. While 
much of this work was vulnerable to 
the problem just described—paper 
building on paper—it is quite possible 
for a theoretical thesis to offer a real 
contribution. For example, even before 
I joined the Princeton faculty, I had a 
summer intern at Bell Labs, Ravi Sethi. 
At that time Ken Thompson and Den-
nis Ritchie were involved in the Mul-
tics project, an operating system for 
the GE635 computer. This beast was 
the first to have more than one regis-
ter in which arithmetic could be done, 
and the word passed to Ravi and me 
that they needed techniques to com-
pile code in a way that made best use 
of several registers. Ravi’s thesis was 
an algorithm for compiling arithmetic 
expressions using any given number of 
registers, in the fewest possible steps. 
This algorithm actually was put into 
the C compiler for the PDP-11, a few 
years later. 

While Ravi’s thesis was “theo
retical”—neither of us wrote any code—
the work illustrates how I believe any 
thesis should develop. The work was 
not based on what some paper left 
open, but rather on an expressed need: 
a way to compile expressions using 
several registers. The big advantage 
we had was that we were part of an en-
vironment that was pushing the fron-
tiers. Had we not been at Bell Labs, it 
is doubtful we would have realized the 
problem was worth addressing. We 
surely could not have read about it in 
a paper. Even Andrei Ershov, who had 
previously published the node-num-

bering scheme we used, only saw it as 
a way to compile for a one-register ma-
chine, and did not suggest in his paper 
that someone else should look at ma-
chines with multiple registers. 

The Ideal Ph.D. Student 
The best scenario is that the student 
tells me what their thesis should be, 
and carries it out independently. More-
over, their thesis topic is selected be-
cause they perceive a need on the part 
of some “customer.” Sergey Brin came 
closest to this ideal, since he and Larry 
Page, with no help from me, saw both 
the need for a better search engine 
and the key ways that goal could be 
reached, while students at Stanford. 
The one missing element: neither of 
them got their degree; but more about 
that later. 

A close approximation was George 
Lueker, who came to visit me one day to 
ask if I had any ideas for a thesis topic. 
George was not then my student, being 
enrolled in the Applied Math Program 
at Princeton. I happened to be reading 
about chordal graphs that morning, 
and suggested an algorithm to detect 
chordality. A year later, he came back 
and showed me a thesis he had written 
on pq-trees, a data structure that even 
today has several important applica-
tions beyond chordality testing. Several 
other students have dragged me kick-
ing and screaming to learn a new area, 
even if I then got involved in selection 
of their thesis topic. Matt Hecht had 
me learn about data-flow analysis; Al-
len Van Gelder did the same with logic 
programming. 

Why does it matter who suggests the 
thesis topic? We’re trying to get young 
scientists to the point where they can 
make independent judgments about 
what is worth working on. There are 
several decisions to be made: what is 
worth doing, what is feasible to do, and 
how do you do it? While an advisor can 
help with all these things, it is won-
derful to meet a student to whom this 
comes naturally. Another point that I 
tried not to forget as I grew older was 
that young people can often see things 
that those of us who have become set 
in our ways cannot. Trusting the tech-
nical judgment of the young is not a 
bad strategy. 

What Students Need 
To make students successful, we need 
to be ready to provide many services. 

Finding customers. As mentioned at 
the beginning of this Viewpoint, there 
needs to be an exposure to problems 
that are at the frontier, and that are 
needed by a “customer.” Sometimes, 
they can find a customer in industry, 
as Ravi Sethi did at Bell Labs. Summer 
internships can be a great opportu-
nity. However, advisors should en-
courage students to intern at a strong 
industrial research group, one where 
the goals are more than minor tweaks 
to what exists. 

Whether the thesis is theoretical 
or an implemented solution, students 
need to be guided to understand who 
will consume their contribution if they 
are successful. And the answer can-
not be “people will read the paper I 
will write, and they will use the open 
problems in it to help form their own 
theses.” Especially when dealing with 
theoretical theses, the chain of con-
sumption may be long, with idea feed-
ing idea, until the payload is delivered. 
Yet if we let students ignore the ques-
tion of whether such a chain and pay-
load plausibly exist, we are doing them 
a disservice. 

Walking before you run. Exposure 
to problems is not enough. Some, al-
though surely not all, Ph.D. students 
need to convince themselves that they 
can do something original. Here are a 
few ideas that have worked: 

One way to give a beginning stu-˲˲

dent practice with the mechanics of 
research is to think through a small 
problem yourself, and then propose 

When I went off  
to study for my 
doctorate, I had  
no idea what writing  
a thesis entailed;  
had I known, I never 
would have gone  
to graduate school.
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be sure that the writing does justice to 
those parts.

a

Fear factor. Yet another common 
job of the advisor is to teach the stu-
dent to fail cheerfully and without em-
barrassment. Not every student has 
a built-in fear of failure, but many as-
sume it is wrong to attempt something 
they doubt is possible. Often, the stu-
dent’s model of a “problem” comes 
from homework, where the solution is 
certainly known. They are ashamed to 
report “I didn’t get anything done this 
week,” even if it was not for lack of ef-
fort. You don’t want students to spend 
a lot of time trying to write a program 
that takes another program as input 
and removes all bugs (as a fellow stu-
dent of mine was once advised by his 
advisor to try), but it is OK to encour-
age a student to do something ambi-
tious and risky, like finding more bugs 
than anybody else. In these cases, a 

a	 (Aside: While it sounds pedantic at first, you 
get a huge increase in clarity by chasing the 
“nonreferential this” from students’ writing. 
Many students (and others) use “this” to refer 
to a whole concept rather than a noun. For ex-
ample: “If you turn the sproggle left, it will jam, 
and the glorp will not be able to move. This is 
why we foo the bar.” Now the writer of this 
prose fully understands about sproggles and 
glorps, so they know whether we foo the bar 
because glorps do not move, or because the 
sproggle jammed. It is important for students 
to put themselves in the place of their readers, 
who may be a little shaky on how sproggles 
and glorps work, and need a more carefully 
written paragraph. Today, it is not that hard to 
find a “this” that is nonreferential. Almost all 
begin sentences, so grepping for ‘This’ will 
find them.)

vital job of the advisor is getting stu-
dents to risk their time and effort, and 
to deal with the case where nothing 
good results. 

Group therapy. A popular technique 
for encouraging and engaging students 
is the free lunch. Not only do Ph.D. stu-
dents benefit, but it can be used to at-
tract undergraduates into the research 
community. For the past 15 years, I 
have been privileged to be part of the 
“Database Group” (now “Infolab”) at 
Stanford, consisting of faculty Gio Wie-
derhold, Hector Garcia-Molina, Jen-
nifer Widom, our students, staff, and 
visitors. At regular Friday lunches, stu-
dents take turns presenting informal 
talks on their work, and good-natured 
argument from the floor is the norm. 
Students get over the fear of defending 
their ideas in public, as well as benefit-
ing from insights of others. Students 
also may practice for an upcoming con-
ference talk and receive very detailed 
suggestions from fellow students. An-
other important function of the lunch 
discussion is bonding, facilitated by a 
social committee to run group events, 
and by regular trip reports, which serve 
as a vehicle for learning about one an-
other’s lives. 

A Newer Model: Project-
Oriented Theses 
It took many years to reach this point, 
but it is now fairly routine to have sub-
stantial software projects carried out 
in an academic setting. While there 
will always be the occasional thesis 
that is purely “pencil-and-paper,” a 
much more productive approach is to 
introduce beginning Ph.D. students to 
a project. Often they enjoy “learning by 
doing,” contributing to the software 
development, while learning the new 
notions that are being investigated by 
the project. Senior students often get 
the opportunity to help, and even to su-
pervise, junior students. 

The best example I’ve seen of how to 
use this mode effectively comes from 
my colleague Jennifer Widom. In a se-
ries of innovative projects (semistruc-
tured data, stream databases, and now 
uncertain databases), she has perfect-
ed a routine, consisting of:

Define a general goal for the re-1.	
search, and get a team of doctoral stu-
dents working together. 

Spend a substantial period of time, 2.	

We’re trying  
to get young 
scientists to  
the point where 
they can make 
independent 
judgments about 
what is worth 
working on.

to a beginning doctoral student that 
they work on the problem. Since 
you have a path in mind, it is easy to 
raise questions that will lead them 
where they should go, until they have 
worked through to the solution on 
their own. A single experience like 
this is usually enough to get them 
operating independently. 

Try getting the student to make an ˲˲

early transition from reading papers to 
exploring their own ideas. Certainly, 
you need to read enough to get the con-
cepts of your field, but after a point, the 
more you read, the closer your mode of 
thinking becomes to that of the field at 
large, and “out of the box” thinking be-
comes harder. If they produce promis-
ing ideas, then of course a more careful 
literature search must be performed. 
I’ve seen enough examples to believe 
that it is a rare case (although sadly not 
impossible) where the student’s ideas 
are completely subsumed under what 
has already been done. 

My colleague Hector Garcia-Moli-˲˲

na often encourages students to start 
not by looking for the theoretically op-
timal solution, but for a simple, easily 
implementable solution that gets you 
90% of the way there. The optimality 
might be studied later and can form an 
important part of the thesis. 

My colleague John Mitchell re-˲˲

minds us that even after getting past 
the hurdle of believing one can invent, 
the thesis can be intimidating because 
of its large scale. He gets students to 
focus on writing a single paper (pref-
erably for a conference where they will 
meet people, not for a journal). After 
they have written a few papers, build-
ing a thesis from them will seem much 
less intimidating. 

Expressing ideas. An advisor must 
make sure that their students can 
write clearly. There is little point train-
ing students to generate great ideas if 
they cannot communicate them. It is 
essential that the advisor reads very 
carefully and checks every sentence of 
a student’s first attempts at writing. A 
common situation, and one that must 
be caught early, is writing that goes 
into a lot of detail on the easy parts, 
and gets fuzzy or overly terse when it 
comes to presenting the hard parts: the 
proof of a key theorem or the details of 
a complex algorithm, for example. So 
an advisor must judge what is hard and 
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perhaps 6–12 months, in which the the-
ory and models underlying the problem 
area are developed. (Jennifer says that 
this step—making the students part of 
the planning and modeling—is what 
distinguishes her approach.) 

Then, start an implementation 3.	
project. Get the students working on 
pieces. The goal of each project is a 
robust, distributable prototype, not 
something that can be carried intact to 
commercialization. 

Allow students to identify their 4.	
own aspect of the broader problem 
area on whose difficulties they will fo-
cus. Students develop their own ideas, 
which form the core of their thesis, and 
are able to validate the ideas by install-
ing them in the larger system. 

It is sad that many research-funding 
agencies, such as DARPA, have become 
so “mission-oriented” recently. While 
it may be possible to support a Ph.D. 
student doing part of a project imple-
mentation, Step 4 is left out; there is 
no room on the project for a student 
to explore original work outside the 
boundaries of the project. For exam-
ple, I have heard from several indepen-
dent sources that while the European 
Union has been supporting “research” 
generously, the support is sufficiently 
constrained by concrete deliverables 
that there is no way to support Step 4 on 
the projects. In countries where Ph.D. 
support comes from a state source, 
this arrangement presents no serious 
impediment. However, in countries 
where Ph.D. students are dependent 
on project support, it becomes hard to 
train first-rate researchers. 

Students and Startups 
One of the trickiest decisions an advi-
sor has to make is how to deal with the 
student who wants to found a startup 
while they are working on their doc-
torate. Few people agree with me on 
this point, but I believe that, unless 
the startup idea is insane, they should 
go out and do the startup. My theory 
is that, while getting a doctorate and 
entering the research arena is a high 
calling, it is not the highest possible 
calling. A startup can have more im-
pact on our lives than a thesis. More-
over, if they miss the opportunity to 
do a successful startup, then they 
have lost a great deal. If the startup 
flops, as many do, they have lost only 

a few years, and can resume work on a 
doctorate if they wish.

Sergey Brin never asked me whether 
or not he should quit the Ph.D. pro-
gram and found Google, but I would 
have told him to do so had he asked. 
Another student, Anand Rajaraman, 
did ask my advice on this matter when 
he was about half a year from finishing. 
I told him to leave and be a founder 
of Junglee. The venture was quite suc-
cessful. A few years later he returned to 
Stanford, started an entirely new thesis 
topic that abstracted some of what he 
had learned at Junglee, and is now Dr. 
Rajaraman. 

You don’t have to be in Silicon Val-
ley to think about startups. Great ideas 
can develop anywhere, and a respon-
sible advisor will, when appropriate, 
present to their students the option 
that their work might form the basis of 
a commercial venture. I recall an email 
message from a student at another 
school asking the question: “can a 
piece of work be both a thesis and use-
ful?” When I replied in the affirmative, 
I was then asked to explain this point 
to their advisor. That advisor was serv-
ing the student poorly, although their 
attitude seems fairly common. Even in 
the course of reviewing this Viewpoint, 
I encountered the view that a piece of 
technical work is more to be admired if 
it cannot be commercialized. 

Afterword 
Of the various things I’ve done in my ca-
reer, I am most proud of my 53 Ph.D. stu-
dents and their academic descendants 
(see infolab.stanford.edu/~ullman/
pub/jdutree.txt; also see the photo ap-
pearing on the first page of this View-
point). Many have done things I could 
never do myself, and done so remark-
ably well. Each has brought unique tal-
ents to their work, and it has, for me, 
been an education just to watch them. 
I’d like to imagine that I contributed to 
their success, although I’m pretty sure 
that the only thing I really did was stay 
out of their way so they could realize 
their own potential. 	

Jeffrey D. Ullman (ullman@cs.stanford.edu) is the 
Stanford W. Ascherman Professor of Computer Science 
(Emeritus) at Stanford University. 

For this Viewpoint, I have repurposed some of the ideas of 
Hector Garcia-Molina, John Mitchell, Jennifer Widom, and 
Gio Wiederhold, for which I thank them. Additional thanks 
go to Mark Hill for suggesting developing this Viewpoint 
about Ph.D. advising. 
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March 15–19
The 2009 ACM Symposium  
on Applied Computing,
Honolulu, HI, 
Sponsored: SIGAPP, 
Contact: Sung Y. Shin, 
Phone: 605-688-6235, 
Email: sung.shin@sdstate.edu   

March 16–18
10th International Symposium 
on Quality Electronic Design,
San Jose, CA, 
Contact: Tanay Karnik, 
Phone: 503-712-4179, 
Email: tanay.karnik@intel.com    

March 19–22
Fourth International 
Conference on Intelligent 
Computing and Information 
Systems,
Cairo, Egypt, 
Contact: Mohamed Essam 
Khalifa, 
Phone: 20127937560, 
Email: esskhlalifa@yahoo.com    

March 22–25
7th Annual IEEE/ACM 
International Symposium 
on Code Generation and 
Optimization,
Seattle, WA, 
Sponsored: SIGMICRO, 
SIGPLAN, 
Contact: David R. Tarditi, Jr., 
Email: dtarditi@microsoft.com     

March 22–27
2009 Spring Simulation 
Conference,
San Diego, CA, 
Contact: Gabriel A. Wainer, 
Email: gwainer@cse.carleton.ca    

March 23–26
International Conference  
on Web Information Systems 
and Technologies,
Lisbon, Portugal, 
Contact: Joaquim B. Filipe, 
Phone: 351-91-983-3996, 
Email: jfilipe@insticc.org  

March 31–April 1
Second International  
Workshop on Social  
Computing, Behavioral 
Modeling and Prediction,
Phoenix, AZ, 
Contact: Huan Liu, 
Phone: 480-727-7349, 
Email: hliu@asu.edu   
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T
h e  C o m p u t e r  H i s to ry   Mu-
seum has an active program 
to gather videotaped histo-
ries from people who have 
done pioneering work in 

this first century of the information 
age. These tapes are a rich aggregation 
of stories that are preserved in the col-
lection, transcribed, and made avail-
able on the Web to researchers, stu-
dents, and anyone curious about how 
invention happens. The oral histories 
are conversations about people’s lives. 
We want to know about their upbring-
ing, their families, their education, 
and their jobs. But above all, we want 
to know how they came to the passion 
and creativity that leads to innovation.

Presented here are excerptsa from 
an interview with Sir Charles Antony 
Richard Hoare, a senior researcher at 
Microsoft Research in Cambridge, U.K. 
and Emeritus Professor of Computing 
at Oxford University, conducted in Sep-
tember 2006 by Jonathan P. Bowen, the 
chairman of Museophile Limited, and 
Emeritus Professor at London South 
Bank University.

What did you want to 
be growing up?
I thought I would like to be a writer. I 

a	 Oral histories are not scripted, and a transcript 
of casual speech is very different from what 
one would write. I have taken the liberty of 
editing and reordering freely for presentation. 
For the original transcript, see http://archive.
computerhistory.org/search/oh/. 

—Len Shustek

didn’t know quite what I was going to 
be writing, but at school I was a rather 
studious and uncommunicative child, 
and so everybody called me “Professor.” 
I found the works of Bernard Shaw very 
inspiring. He’s of course an iconoclast, 
so he would appeal to an adolescent. 
Also Bertrand Russell, who wrote on 
social matters as well as philosophical 
and mathematical matters.

What was your first 
exposure to computers?
I began thinking about computers as 
a sort of philosophical possibility dur-
ing my undergraduate course at Ox-
ford University. I took an interest in 

mathematical logic, which is the basis 
of the formal treatment of computer 
programming. I was sufficiently inter-
ested that one of my few job interviews 
was with the British Steel just after I 
finished my university course in 1956. 
I was attracted by their use of comput-
ers to control a steel milling line. A 
little later I attended an interview at 
Leo Computers Ltd. in London, who 
were building their own computers 
to look after the clerical operations of 
their restaurant chain. But I didn’t fol-
low up on either of those prospects of 
employment.

What was the first 
program you wrote?
In 1958 I attended a course in Mercury 
Autocode, which was the programming 
language used on a computer that Ox-
ford University was just purchasing 
from Ferranti. I wrote a program that 
solved a two-person game using a tech-
nique which I found in a book on game 
theory by von Neumann and Morgen-
stern. I don’t know whether it worked 
or not. It certainly ran to the end, but I 
forgot to put in any check on whether 
the answers it produced were correct, 
and the calculations were too difficult 
for me to do by hand afterward.

What was programming 
like in those days?
Very different from today. The pro-
grams were all prepared on punched 
cards or paper tape. It might take a day 
to get them punched up from the cod-

Interview  
An Interview  
with C.A.R. Hoare  
C.A.R. Hoare, developer of the Quicksort algorithm and  a lifelong contributor to the theory and 
design of programming languages, discusses the practical application of his theoretical ideas.
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ing sheets, and then they were submit-
ted to a computer maybe the following 
day. It would take a long time, if there 
were any faults in the program, to find 
out where they were.

How did you come to live in Russia?
I did national service, which was com-
pulsory in those days, in the Royal Navy 
studying modern military Russian. I 
used to know the names of all the parts 
of a ship in Russian, even if I didn’t 
know what the actual parts of the ship 
were. Later I continued my graduate 
career as a visiting student at Moscow 
State University for a year. 

The 1960s were very exciting times 
in Russia, especially after the U.S. spy 
plane was shot down. I felt quite free, 
and no political problems obtruded. 
But our Russian friends were very sus-
picious of each other. We learned quite 
early on that you never introduce one 
Russian friend to another, because 
each of them thinks the other one is 
the informer. We knew that our rooms 
were bugged, so we would never talk 
about Russian friends inside our own 
rooms.

You developed the famous 
Quicksort algorithm at 
about this time. Why?
The National Physical Laboratory was 
starting a project for the automatic 
translation of Russian into English, 
and they offered me a job. I met sev-
eral of the people in Moscow who were 
working on machine translation, and 
I wrote my first published article, in 
Russian, in a journal called Machine 
Translation. 

In those days the dictionary in 
which you had to look up in order to 
translate from Russian to English was 
stored on a long magnetic tape in al-
phabetical order. Therefore it paid to 
sort the words of the sentence into 
the same alphabetical order before 
consulting the dictionary, so that you 
could look up all the words in the sen-
tence on a single pass of the magnetic 
tape.

I thought with my knowledge of 
Mercury Autocode, I’ll be able to 
think up how I would conduct this 
preliminary sort. After a few moments 
I thought of the obvious algorithm, 
which is now called bubble sort, and 
rejected that because it was obviously 

rather slow. I thought of Quicksort as 
the second thing. It didn’t occur to me 
that this was anything very difficult. It 
was all an interesting exercise in pro-
gramming. I think Quicksort is the 
only really interesting algorithm that 
I ever developed.

Where did you work after 
returning to England?
I met my future employers in Russia. I 
was an interpreter at an exhibition in 
Moscow, where Elliott Brothers, which 
at that time made small scientific 
computers, were exhibiting and sell-
ing their computer in Moscow. They 
offered me employment when I came 
back, with an additional 100 pounds a 
year on my salary because I knew Rus-
sian. I never had a formal interview.

What did you work on at Elliott?
They were embarking on the design of 
a new and very much faster computer, 
and they thought they would celebrate 
by inventing a new language to pro-
gram it in. As a recent employee, with 
six months experience, I was put to 
designing the language. Fortunately I 
happened to see a copy of the Report on 
the Algorithmic Language Algol 60, and 
I was able to recommend to the com-
pany to implement that, rather than 
inventing a language of their own. 
That proved a very good commercial 
decision. And a good personal one, 
because I eventually married Jill, the 
other programmer who came to work 
on the same project. She had experi-
ence writing a compiler before, which 
in those days was quite unusual, and 
she was a much better-disciplined pro-
grammer than I ever was.

Was Algol well defined?
The syntax was formally defined. The 

grammar of the language was written 
up in a way that was, I think, complete-
ly unambiguous. The semantics was 
a little less formally defined. It used 
ordinary English to describe what the 
effect of executing a program would 
be. But it was very well written by Pe-
ter Naur, and it was sufficient to en-
able us to write a compiler without 
ever consulting the original designers 
of the language. And it was sufficient 
for programmers in the language to 
write programs, which in the end actu-
ally ran on our compiler, without ever 
consulting us or the original design-
ers of the language. It was a really very 
remarkable achievement—rather be-
yond what maybe we can achieve these 
days in the design of languages.

Did you collaborate with 
other compiler writers?
We didn’t correspond with other peo-
ple writing compilers, even for Algol, 
in those days. We didn’t know each 
other. There was no real scientific 
community that one could join to talk 
over problems with other people who 
encountered the same problems. We 
worked pretty well on our own.

After moving to Queen’s 
University in Belfast in 1968, you 
wrote a very important paper 
on the axiomatic approach to 
computer programming, now 
known as “Hoare Logic.”
I was interested, as indeed many peo-
ple were at that time, in making good 
the perceived deficiency of the Algol 
report: that while the syntax was ex-
tremely carefully and formally defined, 
the semantics was left a little vaguer. 
We were pursuing the goal of trying to 
get an equally good formalization of 
the semantics of the language, a goal 
that I think still is pretty advanced and 
maybe beyond our grasp. 

I put forward the view that we didn’t 
want the specification to be too pre-
cise. We didn’t want the specification 
of a programming language to concen-
trate in too much detail on the way in 
which the programs were executed, 
but rather we should set limits on the 
uncertainty of the execution of the pro-
grams, to allow different implementa-
tions to implement the language in 
different ways. In those days the word 
lengths and the arithmetic of all of the 

I think Quicksort  
is the only really 
interesting algorithm 
that I’ve ever 
developed.
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computers was different. Based on 
the ideas of mathematical logic that I 
studied at university, I put forward a 
set of axioms that describe the prop-
erties of the implementation without 
describing exactly how it worked. It 
would be possible, I hoped, to state 
those properties sufficiently precisely 
that programmers would be able to 
write programs using only those prop-
erties, and leave the implementers the 
freedom to implement the language 
in different ways, but at the same time 
taking responsibility for the fact that 
their implementation actually satis-
fied the properties that the program 
was relying on. 

I haven’t abandoned this idea, but 
it didn’t turn out to be very popular 
among language designers. 

You then turned to “structured 
programming,” and collaborated 
with Edsger Dijkstra and Ole-
Johan Dahl on an important book.
I met Dijkstra and Dahl at a working 
conference in 1972 on formal lan-
guage definition. Dijkstra was the oth-
er person writing an Algol compiler at 
the same time as I was, and Dahl was 
inventing a new simulation language 
called Simula, in which he introduced 
the ideas of object-oriented program-
ming that would later have a great 
influence on programming and pro-
gramming languages. All three of us 
had written draft monographs on our 
favorite topics: one by Dijkstra called 
“Notes on Structured Programming,” 
one by Dahl on hierarchical program 
structures, and my own notes on data 
structuring. I thought it would be in-
teresting to collect these three togeth-
er and publish them as a single book. 

I spent quite some time trying to 
understand what Dahl had written. 
He was a very brilliant but very dense 
writer. I had great fun trying to simpli-
fy some of his really brilliant ideas on 
how to structure programs in the large. 
I did not work on Dijkstra’s material; 
that was pretty clear and well written.

What was your involvement 
with Pascal?
Pascal was the language designed 
as a teaching language by my friend 
Niklaus Wirth, after the language we 
had designed together in the early 
1960s had not been recommended. 

We used to meet quite frequently to 
talk about the design. My research on 
applying the axiomatic method to pro-
gramming language semantics had 
made quite considerable progress by 
then, and I thought it was time to see 
whether I could tackle a complete lan-
guage using this style of definition. I 
managed to do the easy bits, but there 
were still quite a lot of challenges left 
over, which we just omitted from the 
definition of the language.

When did you start to look at 
monitors for operating systems?
In 1972 I organized a conference in 
Belfast where we assembled quite a 
brilliant group of scientists to talk 
about operating system techniques. I 
was interested in exploring the ideas 
of from an axiomatic point of view. 
Could I define axioms that would en-
able people to safely write concurrent 
programs in the same way as they can 
write sequential programs today? We 
devoted an afternoon to discussing the 
emerging ideas of monitors; I and Per 
Brinch Hansen were the main people 
to contribute to that discussion.

How did you come to move from 
monitors to communicating 
sequential processes?
The idea of a communicating process 
is that instead of calling its compo-
nents as subroutine, or a method, 
you’d actually communicate the val-
ues that you wanted to transmit to it 
by some input or output channel, and 
it would communicate its results back 
by a similar medium. The reason for 
this was a technological advance in 

the hardware: the advent of the micro-
processor, a cheap and small machine 
with not very much store, but capable 
of communicating with other micro-
processors of a similar nature along 
wires. It was easy to predict that the 
best way of making a large and fast 
computer would be to assemble a 
large number of very cheap micropro-
cessors together, and allow them to 
cooperate with each other on a single 
task by communicating along wires 
that connected them. For this, a new 
architecture of programs would be ap-
propriate, and perhaps a new language 
for expressing the programs. That was 
how the communicating sequential 
processes came to take a leading role 
in my subsequent research.

You’ve always been interested 
in the connection between 
theory and practice.
My move back to Oxford was partially 
motivated by my idea to study the Ox-
ford ideas on the semantics of pro-
gramming languages again. I hoped 
that it would be possible, using the Ox-
ford techniques of defining semantics, 
to clarify the exact meaning of commu-
nicating processes in a way that would 
be helpful to people writing programs 
in that idiom.

It was a great loss that Christopher 
Strachey had recently died. I took 
over his chair at Oxford, quite literally 
sitting in his chair and sitting at his 
desk. I happened to open the drawer, 
and come across a final report on one 
of his research projects, in which he 
put forward his ideals for keeping the 
theory and practice of programming 
and computer science very much 
in step with each other. He said the 
theory could easily become sterile, 
and the practice could easily become 
ad hoc and unreliable, if you weren’t 
able to keep one firmly based on the 
other, and the other firmly studying 
problems with the practical uses of 
computers.

Have there been successes using 
formal methods in practice?
At a keynote lecture for the British 
Computer Society I talked a bit about 
formalization and verification, and 
put forward a conjecture, fairly tenta-
tively, that maybe the time was right 
to scale these things up by trial use 

It was easy to predict 
that the best way of 
making a large and 
fast computer would 
be to assemble a large 
number of very cheap 
microprocessors 
together.
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programs is still an idea for the fu-
ture, although there are beginnings 
of using scientific technology to make 
the programs more reliable. The full 
functional verification of a computer 
program against formally specified re-
quirements is still something we have 
to look forward to in the future. But 
the progress that we’ve made has re-
ally been quite spectacular in the last 
10 years.  

My other project is concurrency. 
I’ve set myself the challenge of under-
standing and formalizing methods for 
programming concurrent programs 
where the programs actually share the 
store of the same computer, rather 
than being executed on distinct com-
puters as they are in the communicat-
ing sequential process architecture. 
Again, the motivation for studying this 
different form of concurrency is the 
advance of hardware technology: it 
now appears that the only way in which 
processors can get faster is for them to 
include more processing units on the 
same chip, and share the same store. 

I’d always felt that parallel programs 
that actually shared main memory, and 
could interleave their actions at a very 
fine level of granularity—just a single 
memory access—were far too difficult 
for me. I could see no real prospect 
of working out a theory that would 
help people to write correct programs 
to exploit this capability. I thought it 
would be interesting to try again, and 
see whether the experience in formal-
ization that has been built up over the 
last 20 or 30 years could be applied ef-
fectively to this extremely complicated 
form of programming. 

What is on the horizon for 
computer science?
I expect the future to be as wonderful as 
the past has been. There’s still an enor-
mous amount of interesting work to 
do. As far as the fundamental science 
is concerned, we still certainly do not 
know how to prove programs correct. 
We need a lot of steady progress in this 
area, which one can foresee, and a lot 
of breakthroughs where people sud-
denly find there’s a simple way to do 
something that everybody hitherto has 
thought to be far too difficult.	

Edited by Len Shustek, Chair, Computer History Museum, 
Mountain View, CA.

in industry. A senior director from 
IBM at Hursley came up to me after 
the lecture and invited me to put 
my commitment where my mouth 
was, and do something in collabora-
tion with IBM. That made me gulp 
a bit, because I had the impression 
that IBM had produced some pretty 
complicated software, and this re-
ally would be a challenge. There was 
a good chance that we would fall flat 
on our faces. But you can’t turn down 
an opportunity like that. So some 
colleagues and I set to work, and 
actually produced some very useful 
analyses for them using the Z nota-
tion of Jean-Raymond Abrial to help 
them with an ongoing project for 
restructuring and rewriting parts of 
their popular customer information 
software system, CICS. That work 
eventually led to a Queen’s award for 
technology.

The Transputer was 
another example of a very 
practical application of 
your theoretical ideas.
The INMOS Transputer was as em-
bodiment of the ideas that I described 
earlier, of building microprocessors 
that could communicate with each 
other along wires that would stretch 
between their terminals. The founder 
had the vision that the CSP ideas were 
ripe for industrial exploitation, and he 
made that the basis of the language for 
programming Transputers, which was 
called Occam.

When they came to develop the 
second version of their Transputer 
that had a floating- point unit at-
tached, my colleagues Bill Roscoe 
and Jeff Barrett at Oxford actually 
used formal models of communicat-
ing processes, and techniques of pro-
gram verification, to check that their 
designs for the implementation of 
the IEEE floating-point specification 
were in fact correct. The company 
estimated it enabled them to deliver 
the hardware one year earlier than 
would otherwise have happened. 
They applied for and won a Queen’s 
award for technological achieve-
ment, in conjunction with Oxford 
University Computing Laboratory, 
for that achievement. It still stands 
out as one of the first applications of 
formal methods to hardware design. 

What projects are you 
working on at Microsoft?
One of them is the pursuit of my life-
time goal of verification of programs. 
I was very interested in the ideas of as-
sertions, which had been put forward 
by Bob Floyd and before; already in 
1947 the idea of an assertion was de-
scribed by Alan Turing in a lecture he 
gave to the London Mathematical So-
ciety. This idea of assertions lies at the 
very basis of proving programs correct, 
and at the very basis of my ideas for de-
fining the semantics of programming 
languages. I already knew when I en-
tered academic life way back in 1968 
that these ideas would be unlikely 
to find commercial exploitation, re-
ally, throughout my academic career. 
I could look forward to 30 years of re-
search uninterrupted by anybody who 
actually wanted to apply its results. 

I thought that when I retired, 
it would be very interesting to see 
whether the positive side of my predic-
tion would also come true, that these 
ideas would begin to be applied. And 
indeed, even since I’ve joined Micro-
soft in 1999, I’ve seen quite a bit of ex-
pansion in their use of assertions and 
other techniques for improving con-
fidence in the reliability of programs. 
There are program analysis tools now 
that stop far short of actually proving 
correctness of programs, but they’re 
very good at detecting certain kinds of 
errors. Some quite dangerous errors, 
which make the software vulnerable 
to intrusions and virus attacks, have 
been detected and removed as a result 
of the use of formal techniques of pro-
gram analysis.

The idea of verifying computer 

I expect the future  
to be as wonderful  
as the past has  
been. There’s still  
an enormous  
amount of interesting 
work to do.
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developed in coordination with, the 
film industry. Unlike film, however, 
games need to be interactive. Player 
actions require visual feedback; game 
characters should react to player choic-
es. Adding interactive features typically 
requires some form of programming. 
These features are also a form of artis-
tic content, and game studios would 
prefer they be created by designers—
developers who understand how the 
player will interact with the game, and 
what makes it fun—rather than soft-
ware engineers.

The idea of game software as artis-
tic content has led many game studios 
to split their software developers into 
two groups. Software engineers work 
on technical aspects of the game that 
will be reused over multiple titles. They 
work on core technology such as anima-
tion, networking, or motion planning, 
and they build the tools that make up 
the content-creation pipeline. Game-
play programmers, on the other hand, 
create the behavior specific to a single 
game. Part designer, part programmer, 
they implement and tune the interac-
tive features that challenge and reward 
the player.  

The gameplay programmer should 
produce fun, not complex, algorithms. 
Game studios design their program-
ming workflow to relieve gameplay 
programmers of any technical burdens 
that keep them from producing fun. 
Often this involves an iterative process 
between the gameplay programmers 
and the engineers. The gameplay pro-
grammers develop feature prototypes 
to play-test before adding them to the 
game. The software engineers then use 
these feature prototypes to design sup-
port libraries, which are used to build 
another round of prototypes. This is an 
effective workflow, but game companies 
are always looking for ways to speed up 
or even automate this process.

In addition to supporting the inter-
action between gameplay program-
mers and software engineers, the 
studios are always looking for ways to 
integrate the designers into the pro-
gramming process. Designers often 

The video game industry earned $8.85 billion in 
revenue in 2007, almost as much as movies made at 
the box office. Much of this revenue was generated by 
blockbuster titles created by large groups of people. 
Though large development teams are not unheard of in 
the software industry, game studios tend to have unique 
collections of developers. Software engineers make 
up a relatively small portion of the game development 
team, while the majority of the team consists of content 
creators such as artists, musicians, and designers.

Since content creation is such a major part of 
game development, game studios spend many re-
sources developing tools to integrate content into 
their software. For example, entry-level programmers 
typically make tools to allow artists to manage assets 
or to allow designers to place challenges and rewards 
in the game. These tools export information in a 
format usable by the software engineers, either as auto-
generated code or as standardized data files. 

This content-creation pipeline is not very well 
understood, and each studio has its own philosophy 
and set of tools. Many tools are taken from, or

doi:10.1145/1467247.1467262

Smarter, more powerful scripting languages 
will improve game performance while making 
gameplay development more efficient. 

by Walker White, Christoph Koch,  
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have very little programming experi-
ence, but they have the best intuitions 
for how the game should play. Thus, 
studios want tools that allow design-
ers, if not actually to program behav-
ior, at least to fine-tune the parameters 
behind it.

The Role of Scripting Languages
Many game studios rely on scripting 
languages to enable gameplay pro-
grammers and designers to program 
parts of their games. These languages 
allow developers to easily specify how 
an object or character is supposed to 
behave, without having to worry about 
how to integrate this behavior into the 
game itself. Scripting languages are 
particularly important for massively 
multiplayer games where any piece of 
code must interact with multiple sub-
systems, from the application layer to 
the networking layer to the database.

User-created content is another 

reason for games to support scripting. 
Open-ended virtual worlds such as Sec-
ond Life have made player scripting a 
common topic of conversation. Even 
before that, games had a long tradi-
tion of player-developed mods. Given 
tools—either official or third party—to 
modify the data files that came with the 
game, players have been able to create 
completely new experiences. Gener-
ally, modding has been seen as a way 
to extend the lifespan of older games. 
In some cases, however, it can create 
completely new games: the commer-
cially successful Counter-Strike was a 
player modification of the game Half-
Life and relied heavily on scripting fea-
tures present in its parent game. 

Scripting languages allow players to 
modify game behavior without access 
to the code base. Just as important, 
they provide a sandbox that—unlike a 
traditional programming language—
limits the types of behavior the player 

can introduce. If the game has a mul-
tiplayer component, the game develop-
ers do not want players creating scripts 
to give themselves an undue advantage. 
Overly powerful scripting languages 
have facilitated many of the bots—au-
tomated players performing repetitive 
tasks—that currently populate mas-
sively multiplayer games. Sandboxing 
can even be useful in-house. By limit-
ing the types of behaviors that their 
designers can create, the studios can 
reduce the number of bugs that they 
can introduce—bugs that cost valuable 
time to find and eliminate.

The Need for Game-Specific 
Scripting Languages
The foremost criterion for a scripting 
language is that it should make game-
play development fast and efficient. 
Often game objects—rocks, plants, 
or even intelligent characters—share 
many common attributes. Game script-

In this Second Life photograph avatars Alpha Auer and MosMax Hax explore a pose stand that allows users to program poses and run two 
scripts. One script cycles through the poses, and the other one makes the pose stand invisible/visible. 
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ing languages are often part of IDEs 
(such as the one shown in Figure 1) 
that provide forms for quickly modify-
ing these attributes. The scripting lan-
guages themselves, however, are fairly 
conventional. Many companies use 
traditional scripting languages such as 
Lua or Python for scripting. Even com-
panies that design their own languages 
usually stick with traditional format 
and control structures. Little effort has 
been spent tailoring these scripting 
languages for games.

One of the major problems with tra-
ditional scripting languages is that the 
programmer must be explicitly aware 
of low-level processing issues that have 
little to do with gameplay. Performance 
is a classic example of such a low-level 
issue. Animation frame rate is so im-
portant to developers that they opti-
mize by counting the number of mul-
tiplies or adds in their code. This type 
of analysis is beyond the skill of most 
designers, however. Furthermore, ex-
isting languages provide almost no 
tools to help designers improve script 
performance.

Designers must also take perfor-
mance into account when creating con-
tent. If the game runs too slowly, they 
may be forced to reduce the number of 
objects in the game, which in turn can 
significantly alter the playing experi-
ence. This is what occurred when The 
Sims was ported to consoles. In this 
game, a player indirectly controls a 
character (Sim) by purchasing furniture 

or other possessions for it. Each piece 
of furniture is scripted to advertise its 
capabilities to the Sim periodically. The 
Sim then compares these capabilities 
with its needs in order to determine its 
next action. Furniture does not exist in 
isolation, however; a couch in front of a 
television is much more versatile than 
one alone in a room. Therefore, pieces 
of furniture also periodically poll the 
other furniture in the room to update 
their capabilities. As each piece of fur-
niture may communicate with other 
pieces of furniture, the cost of process-
ing a room can grow quadratically with 
the number of objects in the room. 
When the title was ported to consoles, 
the performance issue became so pro-
nounced that the designers had to in-
troduce a “feng shui meter” to prevent 
players from filling rooms with too 
many possessions. 

Game developers have many tech-
niques available to them for improving 
performance. Spatial indexes are one 
popular way of handling interactions 
between game objects at less than qua-
dratic cost. Parallel execution is an-
other possibility; many games are em-
barrassingly parallel, and developers 
leverage this fact for multicore CPUs 
and distributed multiplayer environ-
ments. These techniques are beyond 
the skill of the typical game designer, 
however, and are left to the software 
engineers.  

Another low-level issue with script-
ing languages is the lack of transac-

tion support for massively multiplayer 
games. Individual scripts are often exe-
cuted concurrently, particularly in mas-
sively multiplayer games, so designers 
need some form of transaction to avoid 
inconsistent updates to the game state. 
Indeed, script-level concurrency vio-
lations are one of the major causes of 
bugs in multiplayer environments.

To make scripting easier for design-
ers, we have to provide them with sim-
ple tools for addressing these low-level 
issues. None of these problems is really 
new; many programming languages 
have been developed over the years to 
address them, but most of these lan-
guages make programming more diffi-
cult, not easier. Fortunately, designers 
do not need an arbitrary scripting lan-
guage; they just need a language that 
helps them write games.

From Patterns to 
Language Features
Despite these problems, games are be-
ing developed. Game developers have 
come up with many ideas that, if not 
complete solutions, do ameliorate the 
problems. These ideas typically come in 
the form of programming patterns that 
have proven over time to be successful. 
Though developers use these program-
ming patterns in creating game behav-
ior, the scripting languages usually do 
not support them explicitly. One of the 
reasons object-oriented programming 
languages have been so successful is 
that object-oriented programming pat-
terns existed long before the languages 
that supported them. Similarly, by ex-
amining existing programming prac-
tices in game development, we can de-
sign scripting languages that require 
very little retraining of developers. The 
challenge in developing a scripting lan-
guage is identifying those patterns and 
creating language features to support 
them most effectively.

The State-Effect Pattern
One popular pattern in game develop-
ment is the state-effect pattern. Every 
game consists of a long-running simu-
lation loop. The responsiveness of the 
game to player input depends entirely 
on the speed at which the simulation 
loop can be processed. In the state-ef-
fect pattern, each iteration of the sim-
ulation loop consists of two phases: 
effect and update. In the effect phase, 

Figure 1. The Neverwinter Nights 2 toolset is an extensive IDE that allows users to create 
new content for the game. 
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each game object selects an action and 
determines individually the effects of 
this action. In the update phase, all the 
effects are combined and update the 
current state of the game to create the 
new state for the next iteration of the 
simulation loop. 

Because of these two phases, we can 
separate the attributes of game objects 
into states and effects. State attributes 
represent the snapshot of the world 
after the last iteration of the simula-
tion loop. They are altered only in the 
update phase and are read-only in the 
effect phase. Effect attributes, on the 
other hand, contain the new actions of 
the game objects, and the state of the 
game is updated with effects during the 
update phase. Because interactions be-
tween game objects are logically simul-
taneous, effect values are never read 
until the update phase. Hence, effect 
values are, in some sense, write-only 
during the effect phase.

Game physics provides many exam-
ples of this pattern. At the beginning of 
the simulation loop, each game object 
has a current position and velocity re-
corded as state attributes. To compute 
the new velocity, each object computes 
the vector sum of all of the forces act-
ing upon it, such as collisions, gravity, 
or friction. In other words, the force 
attribute may be written to multiple 
times during the simulation loop, but 
it is never read until all of the force val-
ues have been summed together at the 
end of the loop. The example in Figure 
2 illustrates the use of the state-effect 
pattern to simulate objects moving 
about in a potential field. The variable 
force is an effect in this calculation. 
During the effect phase we only incre-
ment its value and never read it to de-
termine control flow. Whereas most 
implementations would read the old 
value of force to perform this incre-
ment, this is not necessary; we could 
also gather all of these force values in a 
list and add them together at the end of 
the effect phase.

Most of the time, game developers 
use the state-effect pattern to manually 
design high-performance algorithms 
for very specific cases. That is because 
it has several properties that allow 
them to significantly enhance the per-
formance of the simulation loop. The 
effect phase can be parallelized since 
the effect assignments do not influence 

each other. The update phase can also 
be parallelized since it consists only of 
the aggregation of effects and updates 
to state variables. This does not need 
to be done by hand; if the scripting 
language knew which attributes were 
state attributes and which were effect 
attributes, it could perform much of 
this parallelization automatically, even 
in scripts written by inexperienced de-
signers. This is similar to what Google 
achieves with its Sawzall language and 
the MapReduce pattern; special ag-
gregate variables perform much the 
same function as effect attributes, and 
the language allows programmers at 
Google to process data without any 
knowledge of how the program is be-
ing parallelized.1

Automatic parallelization is an 
example of an alternative execution 
model; the game runs the script using 
a control flow that is different from the 
one specified by the programmer. Since 
the simulation loop logically processes 
all of the game objects simultaneously, 
we can process them in any order, pro-

vided that we always produce the same 
outcome. Thus, alternative execution 
models are among the easiest ways of 
optimizing game scripts. Another un-
usual execution model is used by the 
SGL scripting language, which is being 
developed at Cornell University.2 This 
language is based on the observation 
that game scripts written in the state-
effect pattern can often be optimized 
and processed with database tech-
niques. The script compiler gathers 
all of the scripts together and converts 
them into a single in-memory query 
plan. Instead of using explicit threads, 
it constructs a data pipeline that allows 
the code to be parallelized in natural 
ways. Many of these data pipelines are 
similar to the ones that game program-
mers create when they program on the 
graphics processing unit, except that 
these are generated automatically.  

The Restricted Iteration Pattern
Iteration is another common source of 
problems in game development. Allow-
ing arbitrary iteration can quickly lead 

Figure 2: Example of the state-effect pattern.

// Outer simulation loop
for each timestep {

	 // Compute effects for all for each particle o {
		  o.effectPhase();
	 }

// Update state for all for each particle o {
	 o.updatePhase() ;
	 }

}

// State variables 
vector position, velocity;
scalar q, damping, mass;

// Effect variables
vector force;

// Read state, write effects
	 effectPhase() {
		  for each particle p {
			   r = position-this.p.position;
			   s = ((this.q*p.q)/(r.magnitude())^3;
			   force += s*r;
		  }
	 }

// Read and write state, read effects
updatePhase() {
	 velocity = damping*velocity+force/mass;
}
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to significant performance degrada-
tion of the simulation loop. Iteration 
can be even more dangerous in the 
hands of inexperienced designers. Dur-
ing the development of City of Heroes, 
Cryptic Studios discovered that many 
of the scripts had interdependencies 
that produced hard-to-find infinite 
loops. To prevent this, the developers 
removed unbounded iteration from 
the scripting language. 

Although this was a fairly drastic 
solution, most games do not need ar-
bitrary iteration in their scripts. The 
scripts just need to perform a compu-
tation over a finite set of objects; such 
scripts follow the restricted iteration 
pattern, which obviously guarantees 
termination on all loops. In addition, 
it may enable code analysis and com-
pile-time code transformations that 
improve performance. For example, 
SGL can take nested loops that pro-
duce quadratic behavior and generate 
an index structure from them;2 it then 
replaces the nested loops with a single 
loop that performs lookups into that 
index.

Examples of the restricted iteration 
pattern appear throughout the scripts 
in Warcraft III, a real-time strategy 
game that has to process armies of in-
dividual units. The NudgeObjectsIn-
Rect script in Figure 3 appears in the 
Blizzard.j file. This function takes a 
rectangle and loops through all of the 
military units that appear in that rect-
angle; in that loop, it uses the function 
NudgeUnitsInRectEnum to push 
units apart so that there is a minimum 
distance between pairs of units.

All the operations in this script are 
external functions provided by the soft-
ware engineers. The scripting language 

be eliminated by the addition of locks 
or synchronization primitives to the 
scripting language. Locks can be ex-
pensive and error-prone, however, so 
game developers like to avoid them 
if at all possible. They are particularly 
dangerous in the hands of designers.

Additionally, lock-based synchroni-
zation is incompatible with the state-ef-
fect pattern. In the state-effect pattern, 
the state of the container consists of the 
contents at the end of the last iteration 
of the simulation loop, while an effect 
attribute is used to gather the items be-
ing added to the container. Effect vari-
ables cannot be read, even with locks, 
so the script cannot test for conflicting 
items being added simultaneously.

Instead of trying to solve this prob-
lem with traditional concurrency ap-
proaches, it is best to step back and 
understand what the programmer is 
trying to do in this pattern. The pro-
grammer wants to update an object, 
but under some conditions this update 
may result in an inconsistent state. The 
function TestPutItem defines which 
states are consistent. If the language 
knew this was the consistency function 
for PutItemInContainer, it could 
delay the check to ensure consistency 
without a lock. The language could 
first gather all of the items to be added 
to the container and then use the con-
sistency check to place as many as the 
container can hold. In some cases, the 
language could even place multiple ob-
jects with a single consistency check.

Of course, this approach does not 
solve arbitrary problems with parallel 
execution, but game companies use lan-
guages with almost no concurrency sup-
port, and they rely on coding conven-
tions to limit consistency errors. Adding 
features that provide concurrency guar-
antees for the more common design 
patterns in games would allow the game 
developers to trust their scriptwriters 
with a wider variety of scripts, increas-
ing their artistic freedom.

Game-Aware Runtimes
Language features provide the runtime 
with clues on how best to execute the 
code, but some games have properties 
outside of the scripting language that 
the runtime can also leverage. For ex-
ample, the right optimization strategy 
for a set of scripts depends on the cur-
rent state of the game. If the game is 

is not aware that these functions im-
plement the equivalent of a for-each 
loop (a loop over a fixed set of objects); 
otherwise, the compiler would be able 
to perform loop optimizations on it. 
Given the number of times this pattern 
appears in the Warcraft III scripts, this 
could result in significant performance 
improvements.

Concurrency Patterns
Iteration is not the only case in which 
developers could benefit from alterna-
tive control structures. Many games 
execute scripts in parallel, which re-
quires scriptwriters to be cognizant 
of concurrency issues. As an example, 
consider inventory management in on-
line games, a notoriously problematic 
scenario, with consistency violations 
resulting in lost or duplicated objects. 
Consider the following simple script 
written to put an item in a container 
such as a sack or a backpack:

//	Test a container, and  
	 insert an object if okay 
success = TestPutItem(me, 
container, item)
if (!success):	

Bail()
else:
	 PutItemInContainer(item, 
	 container)

This script tests if a container has 
the capacity to hold an item, then adds 
the item if there is space. Nothing in 
the script says that this action must be 
executed atomically, so in a distributed 
or concurrent setting, the container 
could fill up between the time it is 
tested and the time the item is added 
to the container. Obviously, this could 

Figure 3: Example of the restricted iteration pattern.

//=====================================================================
// Nudge items and units within a given rect, so that they can fi nd
// locations where they can peacefully coexist
function NudgeObjectsInRect takes rect nudgeArea returns nothing
	 local group g

	 set g = CreateGroup()
	 call GroupEnumUnitsInRect(g, nudgeArea, null)
	 call ForGroup(g, function NudgeUnitsInRectEnum)
	 call DestroyGroup(g)
	
	 call EnumItemsInRect(nudgeArea, null, function NudgeItemsInRectEnum)
endfunction
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controlling a large army marching to-
ward an enemy, then the game should 
optimize movement of soldiers; on 
the other hand, if the army is guarding 
against an attack, the game should op-
timize individual perception. Games 
often have a small number of these 
high-level states, and changes between 
them happen relatively slowly. If the 
runtime can recognize which state 
the game is in, it can switch to an op-
timized execution plan and improve 
performance.   

To some degree, game developers 
already take advantage of this fact in 
their performance tuning. Currently 
they log runs of the game during play-
testing, and later data-mine these logs 
for recurring patterns. If these patterns 
are easy to detect, developers can take 
advantage of them. This type of optimi-
zation, however, is very difficult for de-
signers or for players developing user-
created content. Ideally, a game-aware 
runtime would have some knowledge 
of common patterns and be able to ad-
just for them automatically.

Performance is not the only reason 
for the runtime to monitor how the 
game changes over time; it is also use-
ful for debugging. Debugging a game 
is not as simple as stepping through a 
single script. Each object is scripted in-
dividually, and these scripts can inter-
act with one another in subtle ways. An 
incorrect data value in one script may 
be the result of an error in a completely 
different script. In addition, many er-
rors are the result of user input that is 
not always easy to reproduce. A script 
designer needs some way of visualiz-
ing which scripts modify which objects 
and how these objects change over 
time.  This is an application of data 
provenance, which is an active area of 
development in the field of scientific 
computation. Like designers, the sci-
entists targeted by data provenance 
tools often have little programming 
experience; instead, the provenance 
techniques model the way they natu-
rally think about the data. As yet, no 
game scripting language supports data 
provenance.

Data provenance is even more im-
portant if the script runtime has an 
unusual execution model. In the previ-
ous script to place items in a container, 
efficient execution involved reordering 
portions of the script. Instead of hav-

ing the programmer debug the scripts 
in an execution model that is differ-
ent from the one in which the bug ap-
peared, it is best to give him or her a 
higher-level visualization of how that 
bug might have occurred.

Game-aware runtimes are more dif-
ficult to implement than language fea-
tures. Language features can often be 
implemented piecemeal; as program-
ming patterns are identified, new lan-
guage features can be added without 
adversely affecting the old. Runtimes, 
once architected, can be very interde-
pendent and difficult to change. For 
example, any changes to the order in 
which operations are processed will 
affect the debugger. Thus, while lan-
guages can have an attitude of “see 
what works,” runtimes need to be well 
understood from the beginning.

Conclusion
Scripting languages are an integral part 
of both game development and mod-
ding, and their design has huge impact 
on both correctness and performance 
of the resulting game. Game develop-
ers earn money from the titles that they 
publish, not the engineering problems 
that they solve. Therefore, anything 
that reduces technical challenges for 
the developers and allows them to cre-
ate more content is a welcome innova-
tion. Advances in design patterns and 
scripting languages will influence the 
way games are programmed for years 
to come. 	
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easy to reason about the behavior of 
programs (though there are limits to 
how easy this can ever be). 

The implementation makes the ˲˲

simple primitives fast and scalable, 
and makes effective use of modern 
multicore hardware, eliminating the 
need for more complex mechanisms. 

The execution model eliminates ˲˲

some classes of errors from unsynchro-
nized access to shared state—or at least 
makes these errors more noticeable. 

The model of concurrency is nat-˲˲

ural to think about and requires no 
mathematical sophistication. 

The environment makes failures ˲˲

detectable and recoverable, making it 
possible to deploy a less-than-perfect 
system in the field that can nonethe-
less maintain high availability. 

The concurrency model maps nat-˲˲

urally to distributed deployments. 
This article introduces the Erlang 

language and shows how it can be used 
in practice to implement concurrent 
programs correctly and quickly. 

Sequential Erlang
Erlang is built from a small number 
of sequential programming types and 
concepts, and an even smaller num-
ber of concurrent programming types 
and concepts. Those who want a full 
introduction can find several excellent 
tutorials on the Web,b but the following 
examples (required by functional pro-
gramming union regulations) should 
convey the essentials. 

As shown in Figure 1A, every file 
of Erlang code is a module. Declara-
tions within the file name the module 
(which must match the filename) and 
declare which functions can be called 
from other modules. Comments run 
from the percent sign (%) to the end of 
the line. 

Factorial is implemented by two 
functions. Both are named facto-
rial, but they have different numbers 
of arguments; hence, they are distinct. 
The definition of factorial/2 (the 

b	 See Erlang course www.erlang.org/download/
armstrong_thesis_2003.pdf.

Erlang is a language developed to let mere mortals 
write, test, deploy, and debug fault-tolerant concurrent 
software.a Developed at the Swedish telecom company 
Ericsson in the late 1980s, it started as a platform 
for developing soft real-time software for managing 
phone switches.1 It has since been open sourced and 
ported to several common platforms, finding a natural 
fit not only in distributed Internet server applications, 
but also in graphical user interfaces and ordinary 
batch applications. 

Erlang’s minimal set of concurrency primitives, 
together with its rich and well-used libraries, give 
guidance to anyone trying to design a concurrent 
program. Erlang provides an effective platform for 
concurrent programming for the following reasons: 

The language, the standard libraries (Open ˲˲
Telecom Platform, or OTP), and the tools have been 
designed from ground up for supporting concurrency. 

There are only a few concurrency primitives, so it’s ˲˲

a	 See Erlang Web site www.erlang.org.

doi:10.1145/1467247.1467263

Designed for concurrency from the ground  
up, the Erlang language can be a valuable tool 
to help solve concurrent problems.

by Jim Larson

Erlang for 
Concurrent 
Programming

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 A
n

d
y

 G
i

l
m

o
r

e

http://www.erlang.org
http://www.erlang.org/download/armstrong_thesis_2003.pdf
http://www.erlang.org/download/armstrong_thesis_2003.pdf


march 2009  |   vol.  52  |   no.  3  |   communications of the acm     49



50    communications of the acm    |   march 2009  |   vol.  52  |   no.  3

practice

	 }

// Re-initialize counter to zero.
	 public synchronized void  
	 reset() {
		  nextVal = 0;
	 }
}

A sequence is created as an object 
on the heap, potentially accessible by 
multiple threads. The synchronized 
keyword means that all threads call-
ing the method must first take a lock 
on the object. Under the protection of 
the lock, the shared state is read and 
updated, returning the pre-increment 
value. Without this synchronization, 
two threads could obtain the same val-
ue from getNext(), or the effects of a 
reset() could be ignored. 

Let’s start with a “raw” approach to 
Erlang, using the concurrency primi-
tives directly. 

two-argument version) is split into 
two clauses, separated by a semico-
lon. When factorial/2 is called, the 
actual parameters are tested against 
the patterns in each clause head in 
turn to find the first match, then the 
body (after the arrow) is evaluated. 
The value of the final expression in the 
body is the return value of the call; no 
explicit return statement is needed. 
Erlang is dynamically typed, so a call 
to factorial(“pancake”) will com-
pile but will raise a runtime exception 
when it fails to match any clause. Tail-
calls are optimized, so this code will 
run in constant space. 

Lists are enclosed in square brack-
ets (see Figure 1B). A single vertical 
bar separates the first element from 
the rest of the list. If a list is used in 
a clause head pattern, it will match 
list values, separating them into their 
components. A list with a double verti-
cal bar is a “list comprehension,” con-
structing a list through generator and 
filter expressions. A double-plus (++) 
concatenates lists. 

Tuples (vectors) are enclosed in 
curly braces (see Figure 1C). Tuples in 
patterns will extract components out 
of tuples that they match. Identifiers 
that start with an uppercase letter are 
variables; those that start in lowercase 
are atoms (symbolic constants such as 
enum values, but with no need to define 
a numerical representation). Boolean 
values are represented simply as atoms 
true and false. An underscore (_) in 
a pattern matches any value and does 
not create a binding. If the same fresh 
variable occurs several times in a pat-
tern, the occurrences must be equal to 
match. Variables in Erlang are single-
assignment (once a variable is bound to 
a value, that value never changes). 

Not all list-processing operations 
can be expressed in list comprehen-
sions. When we do need to write list-
processing code directly, a common 
idiom is to provide one clause for han-
dling the empty list and another for 
processing the first element of a non-
empty list. The foldl/3 function shown 
in Figure 1D is a common utility that 
chains a two-argument function across 
a list, seeded by an initial value. Erlang 
allows anonymous functions (“fun’s” 
or closures) to be defined on the fly, 
passed as arguments, or returned from 
functions. 

Erlang has expressions that look 
like assignments but have a differ-
ent semantics. The right-hand side 
of = is evaluated and then matched 
against the pattern on the left-hand 
side, just as when selecting a clause 
to match a function call. A new vari-
able in a pattern will match against 
the corresponding value from the 
right-hand side. 

Concurrent Erlang
Let’s introduce concurrent Erlang by 
translating a small example from Java: 

Sequence.java 
// A shared counter. 
public class Sequence {
	 private int nextVal = 0;
	 // Retrieve counter and 
	 // increment.
	 public synchronized int  
		  getNext() {	  
			   return nextVal++;

Figure 1: Example1.erl.

A	
-module(example1).
-export([factorial/1, qsort/1, member/2, foldl/3, sum/1]).

% Compute the factorial of a positive integer.
factorial(N) when is_integer(N), N > 0 -> factorial(N, 1).

% A helper function which maintains an accumulator.
factorial(1, Acc) -> Acc;
factorial(N, Acc) when N > 1 -> factorial(N - 1, N * Acc).

B	
% Return a sorted copy of a list.
qsort([]) -> [];
qsort([Pivot | Xs]) ->
	 qsort([X || X <- Xs, X < Pivot])
		  ++ [Pivot]
		  ++ qsort([X || X <- Xs, X >= Pivot]).

C	
% Is X an element of a binary search tree?
member(_, empty) -> false;
member(X, {_, X, _}) -> true;
member(X, {Left, Y, _}) when X < Y -> member(X, Left);
member(X, {_, _, Right}) -> member(X, Right).

D	
% “Fold” a function across elements of a list, seeding
% with an initial value.
% e.g. foldl(F, A0, [A, B, C]) = F(C, F(B, F(A, A0)))
foldl(_, Acc, []) -> Acc;
foldl(F, Acc, [X | Xs]) ->
	 NewAcc = F(X, Acc),
	 foldl(F, NewAcc, Xs).

% Give the sum of a list of numbers.
sum(Numbers) -> foldl(fun(N, Total) -> N + Total end, 0, Numbers).
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sequence1.erl (raw implementation)
-module(sequence1).
-export([make_sequence/0, 
  get_next/1, reset/1]).

% Create a new shared counter.
make_sequence() ->
  spawn(fun() ->
     sequence_loop(0)
  end).

sequence_loop(N) ->
  receive
	 {From, get_next} ->
		  From ! {self(), N},
		  sequence_loop(N + 1);
	 reset ->
		  sequence_loop(0)
  end.

% Retrieve and increment.
get_next(Sequence) ->
  Sequence ! {self(), get_next},
  receive
	 {Sequence, N} -> N
  end.

% Re-initialize counter to zero.
reset(Sequence) ->
  Sequence ! reset.

The spawn/1 primitive creates a 
new process, returning its process iden-
tifier (pid) to the caller. An Erlang pro-
cess, like a thread, is an independently 
scheduled sequential activity with its 
own call stack, but like an operating-
system process, it shares no data with 
other processes—processes interact 
only by sending messages to each 
other. The self/0 primitive returns 
the pid of the caller. A pid is used to 
address messages to a process. Here 
the pid is also the data abstraction—a 
sequence is just the pid of a server pro-
cess that understands our sequence-
specific messaging protocol. 

The new process starts executing 
the function specified in spawn/1 
and will terminate when that function 
returns. Long-lived processes there-
fore avoid premature returns, often 
by executing a loop function. Tail-call 
optimization ensures that the stack 
does not grow in functions such as 
sequence_loop/1. The state of the 
sequence process is carried in the ar-
gument to this eternal call. 

Messages are sent with the syntax 
pid ! message. A message can be any 

ing for a response message. Here, the 
get_next/1 call request message is a 
two-element tuple: the client’s own pid 
followed by the atom get_next. The 
client sends its own pid to let the serv-
er know where to send the response, 
and the get_next atom will let us 
differentiate this protocol operation 
from others. The server responds with 
its own two-element tuple: the server 
pid followed by the retrieved counter 
value. Including the server pid lets the 
client distinguish this response from 
other messages that might be sitting it 
its mailbox. 

A cast is a request to a server that 
needs no response, so the protocol is 
just a request message. The reset/1 
cast has a request message of just a 
bare atom. 

Abstracting Protocols
Brief as it is, the Erlang implementa-
tion of sequences is much longer and 
less clear than the original Java ver-
sion. Much of the code is not particu-
lar to sequences, however, so it should 

Erlang value, and it is sent atomically 
and immutably. The message is sent to 
the receiving process’s mailbox, and 
the sender continues to execute—it 
does not wait for the receiving process 
to retrieve the message. 

A process uses the receive expres-
sion to extract messages from its mail-
box. It specifies a set of patterns and 
associated handler code and scans 
the mailbox looking for the first mes-
sage that matches any of the patterns, 
blocking if no such message is found. 
This is the only blocking primitive in 
Erlang. Like the patterns in function 
clauses, the patterns in receive op-
tions match structures and bind new 
variables. If a pattern uses a variable 
that has already been bound to a value, 
then matching the pattern requires a 
match with that value, as in the value 
for Sequence in the receive expression 
in get_next/1. 

The code here implements a simple 
client-server protocol. In a call, the cli-
ent process sends a request message 
to the server process and blocks wait-

Figure 2: server.erl.

-module(server).
-export([start/1, loop/2, call/2, cast/2]).
% Client-server messaging framework.
%
% The callback module implements the following callbacks:
% init() -> InitialState
% handle_call(Params, State) -> {Reply, NewState}
% handle_cast(Params, State) -> NewState

% Return the pid of a new server with the given callback module.
start(Module) ->
	 spawn(fun() -> loop(Module, Module:init()) end).

loop(Module, State) ->
	 receive
		  {call, {Client, Id}, Params} ->
			   {Reply, NewState} = Module:handle_call(Params, State),
			   Client ! {Id, Reply},
			   loop(Module, NewState);
		  {cast, Params} ->
			   NewState = Module:handle_cast(Params, State),
			   loop(Module, NewState)
	 end.

% Client-side function to call the server and return its reply.
call(Server, Params) ->
	 Id = make_ref(),
	 Server ! {call, {self(), Id}, Params},
	 receive
		  {Id, Reply} -> Reply
	 end.

% Like call, but no reply is returned.
cast(Server, Params) ->
	 Server ! {cast, Params}.
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use it instead of the server pid to dis-
tinguish the reply. 

As shown in Figure 2, the server 
module contains the same structure 
as the sequence1 module with the se-
quence-specific pieces removed. The 
syntax Module:function calls func-
tion in a module specified at runtime 
by an atom. Unique identifiers are gen-
erated by the make_ref/0 primitive. 
It returns a new reference, which is a 
value guaranteed to be distinct from 
all other values in the program. 

The server side of sequences is now 
boiled down to three one-line func-
tions, as shown in Figure 3. Moreover, 
they are purely sequential, functional, 
and deterministic without message 
passing. This makes writing, analyz-
ing, testing, and debugging much eas-
ier, so some sample unit tests are 
thrown in. 

Standard Behaviours
Erlang’s abstraction of a protocol pat-
tern is called a behaviour. (We use the 
Commonwealth spelling as used in 
Erlang’s source-code annotations.) 
A behaviour consists of a library that 
implements a common pattern of 
communication, plus the expected sig-
natures of the callback functions. An 
instance of a behaviour needs some 
interface code wrapping the calls to 
the library plus the implementation 
callbacks, all largely free of message 
passing. 

Such segregation of code improves 
robustness. When the callback func-
tions avoid message-passing primi-
tives, they become deterministic and 
frequently exhibit simple static types. 
By contrast, the behaviour library code 
is nondeterministic and challenges 
static type analysis. The behaviours are 
usually well tested and part of the stan-
dard library, however, leaving the ap-
plication programmer the easier task 
of just coding the callbacks. 

Callbacks have a purely functional 
interface. Information about any trig-
gering message and current behaviour 
state are given as arguments, and out-
going messages and a new state are 
given in the return value. The process’s 
“eternally looping function” is imple-
mented in the library. This allows for 
simple unit testing of the callback 
functions. 

Large Erlang applications make 

be possible to extract the message-
passing machinery common to all 
client-server protocols into a common 
library. 

Since we want to make the proto-
col independent of the specifics of se-
quences, we need to change it slightly. 

First, we distinguish client call re-
quests from cast requests by tagging 
each sort of request message explicitly. 
Second, we strengthen the association 
of the request and response by tagging 
them with a per-call unique value. 
Armed with such a unique value, we 

Figure 3: sequence2.erl (callback implementation).

-module(sequence2).
-export([make_sequence/0, get_next/1, reset/1]).
-export([init/0, handle_call/2, handle_cast/2]).
-export([test/0]).

% API
make_sequence() 		 -> server:start(sequence2).
get_next(Sequence) 	 -> server:call(Sequence, get_next).
reset(Sequence) 		 -> server:cast(Sequence, reset).

% Server callbacks
init() 			   -> 0.
handle_call(get_next, N) 	-> {N, N + 1}.
handle_cast(reset, _) 	 -> 0.

% Unit test: Return ‘ok’ or throw an exception.
test() ->
	 0 = init(),
	 {6, 7} = handle_call(get_next, 6),
	 0 = handle_cast(reset, 101),
	 ok.

Figure 4: Parallel call implementations.

A	
% Make a set of server calls in parallel and return a
% list of their corresponding results.
% Calls is a list of {Server, Params} tuples.
multicall1(Calls) ->
	 Ids = [send_call(Call) || Call <- Calls],
	 collect_replies(Ids).

% Send a server call request message.
send_call({Server, Params}) ->
	 Id = make_ref(),
	 Server ! {call, {self(), Id}, Params},
	 Id.

% Collect all replies in order.
collect_replies(Ids) ->
	 [receive {Id, Result} -> Result end || Id <- Ids].

B	
multicall2(Calls) ->
	 Parent = self(),
	 Pids = [worker(Parent, Call) || Call <- Calls],
	 wait_all(Pids).

worker(Parent, {Server, Params}) ->
	 spawn(fun() -> % create a worker process
		  Result = server:call(Server, Params),
		  Parent ! {self(), Result}
	 end).

wait_all(Pids) ->
	 [receive {Pid, Result} -> Result end || Pid <- Pids].
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heavy use of behaviours—direct use of 
the raw message-sending or receiving 
expressions is uncommon. In the 
Ericsson AXD301 telecom switch—
the largest known Erlang project, 
with more than a million lines of 
code—nearly all the application 
code uses standard behaviours, a 
majority of which are the server be-
haviour.1 

Erlang’s OTP standard library pro-
vides three main behaviours: 

Generic server (gen_server). The 
generic server is the most common 
behaviour. It abstracts the standard 
request-response message pattern 
used in client-server or remote pro-
cedure call protocols in distributed 
computing. It provides sophisticated 
functionality beyond our simple server 
module: 

Responses can be delayed by the ˲˲

server or delegated to another process. 
Calls have optional timeouts. ˲˲

The client monitors the server so ˲˲

that it receives immediate notification 
of a server failure instead of waiting for 
a timeout. 

Generic finite state machine (gen_
fsm). Many concurrent algorithms are 
specified in terms of a finite state ma-
chine model. The OTP library provides 
a convenient behaviour for this pattern. 
The message protocol that it obeys 
provides for clients to signal events to 
the state machine, possibly waiting for 
a synchronous reply. The application-
specific callbacks handle these events, 
receiving the current state and passing 
a new state as a return value. 

Generic event handler (gen_event). 
An event manager is a process that re-
ceives events as incoming messages, 
then dispatches those events to an 
arbitrary number of event handlers, 
each of which has its own module of 
callback functions and its own private 
state. Handlers can be dynamically 
added, changed, and deleted. Event 
handlers run application code for 
events, frequently selecting a subset 
to take action upon and ignoring the 
rest. This behaviour naturally models 
logging, monitoring, and “pubsub” 
systems. The OTP library provides off-
the-shelf event handlers for spooling 
events to files or to a remote process 
or host. 

The behaviour libraries provide 
functionality for dynamic debugging 

of a running program. They can be 
requested to display the current be-
haviour state, produce traces of mes-
sages received and sent, and provide 
statistics. Having this functionality au-
tomatically available to all applications 
gives Erlang programmers a profound 
advantage in delivering production-
quality systems. 

Worker Processes
Erlang applications can implement 
most of their functionality using 
long-lived processes that naturally fit 
a standard behaviour. Many applica-
tions, however, also need to create 
concurrent activities on the fly, often 
following a more ad-hoc protocol too 
unusual or trivial to be captured in the 
standard libraries. 

Suppose we have a client that wants 
to make multiple server calls in paral-
lel. One approach is to send the server 
protocol messages directly, shown 
in Figure 4A. The client sends well-
formed server call messages to all serv-
ers, then collects their replies. The 
replies may arrive in the inbox in any 
order, but collect_replies/1 will 
gather them in the order of the origi-
nal list. The client may block waiting 
for the next reply even though other re-
plies may be waiting. This doesn’t slow 
things down, however, since the speed 
of the overall operation is determined 
by the slowest call. 

To reimplement the protocol, we 
had to break the abstraction that the 
server behaviour offered. While this 
was simple for our toy example, the 
production-quality generic server in 
the Erlang standard library is far more 
involved. The setup for monitoring the 
server processes and the calculations 
for timeout management would make 
this code run on for several pages, and 
it would need to be rewritten if new 
features were added to the standard 
library. 

Instead, we can reuse the exist-
ing behaviour code entirely by using 
worker processes—short-lived, special-
purpose processes that don’t execute a 
standard behaviour. Using worker pro-
cesses, this code becomes that shown 
in Figure 4B.

We spawn a new worker process for 
each call. Each makes the requested 
call and then replies to the parent, 
using its own pid as a tag. The parent 

Large Erlang 
applications make 
heavy use of 
behaviours—direct 
use of the raw 
message-sending 
or receiving 
expressions is 
uncommon.
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Failure and Supervision
Erlang is a safe language—all run-
time faults, such as division by zero, 
an out-of-range index, or sending a 
message to a process that has termi-
nated, result in clearly defined behav-
ior, usually an exception. Application 
code can install exception handlers 
to contain and recover from expect-
ed faults, but an uncaught exception 
means that the process cannot con-
tinue to run. Such a process is said to 
have failed. 

Sometimes a process can get stuck 
in an infinite loop instead of failing 
overtly. We can guard against stuck 
processes with internal watchdog 
processes. These watchdogs make pe-
riodic calls to various corners of the 
running application, ideally causing 
a chain of events that cover all long-
lived processes, and fail if they don’t 
receive a response within a generous 
but finite timeout. Process failure is 
the uniform way of detecting errors in 
Erlang. 

Erlang’s error-handling philoso-
phy stems from the observation that 
any robust cluster of hardware must 
consist of at least two machines, one 
of which can react to the failure of the 
other and take steps toward recovery.2 
If the recovery mechanism were on the 
broken machine, it would be broken, 
too. The recovery mechanism must be 
outside the range of the failure. In Er-
lang, the process is not only the unit of 
concurrency, but also the range of fail-
ure. Since processes share no state, a 
fatal error in a process makes its state 
unavailable but won’t corrupt the state 
of other processes. 

Erlang provides two primitives for 
one process to notice the failure of 
another. Establishing monitoring of 
another process creates a one-way no-
tification of failure, and linking two 
processes establishes mutual notifica-
tion. Monitoring is used during tem-
porary relationships, such as a client-
server call, and mutual linking is used 
for more permanent relationships. By 
default, when a fault notification is 
delivered to a linked process, it causes 
the receiver to fail as well, but a pro-
cess-local flag can be set to turn fault 
notification into an ordinary message 
that can be handled by a receive ex-
pression. 

In general application program-

then receives each reply in turn, gath-
ering them in a list. The client-side 
code for a server call is reused entirely 
as is. 

By using worker processes, libraries 
are free to use receive expressions as 
needed without worrying about block-
ing their caller. If the caller does not 
wish to block, it is always free to spawn 
a worker. 

Dangers of Concurrency
Though it eliminates shared state, 
Erlang is not immune to races. The 
server behaviour allows its application 
code to execute as a critical section ac-
cessing protected data, but it’s always 
possible to draw the lines of this pro-
tection incorrectly. 

Figure 5, for example, illustrates 
that if we had implemented sequenc-
es with raw primitives to read and 
write the counter, we would be just as 
vulnerable to races as a shared-state 
implementation that forgot to take 
locks. 

This code is insidious as it will pass 
simple unit tests and can perform reli-
ably in the field for a long time before 
it silently encounters an error. Both 
the client-side wrappers and server-
side call-backs, however, look quite 
different from those of the correct 
implementation. By contrast, an in-
correct shared-state program would 
look nearly identical to a correct one. It 
takes a trained eye to inspect a shared-
state program and notice the missing 

lock requests. 
All standard errors in concurrent 

programming have their equivalents in 
Erlang: races, deadlock, livelock, star-
vation, and so on. Even with the help 
Erlang provides, concurrent program-
ming is far from easy, and the nonde-
terminism of concurrency means that 
it is always difficult to know when the 
last bug has been removed. 

Testing helps eliminate most gross 
errors—to the extent that the test cas-
es model the behaviour encountered 
in the field. Injecting timing jitter and 
allowing long burn-in times will help 
the coverage; the combinatorial explo-
sion of possible event orderings in a 
concurrent system means that no non-
trivial application can be tested for all 
possible cases. 

When reasonable efforts at testing 
reach their end, the remaining bugs 
are usually heisenbugs,5 which occur 
nondeterministically but rarely. They 
can be seen only when some unusual 
timing pattern emerges in execution. 
They are the bane of debugging since 
they are difficult to reproduce, but this 
curse is also a blessing in disguise. If 
a heisenbug is difficult to reproduce, 
then if you rerun the computation, you 
might not see the bug. This suggests 
that flaws in concurrent programs, 
while unavoidable, can have their im-
pact lessened with an automatic retry 
mechanism—as long as the impact of 
the initial bug event can be detected 
and constrained.

Figure 5: badsequence.erl.

% BAD - race-prone implementation - do not use - BAD
-module(badsequence).
-export([make_sequence/0, get_next/1, reset/1]).
-export([init/0, handle_call/2, handle_cast/2]).

% API
make_sequence() -> server:start(badsequence).
get_next(Sequence) ->

N = read(Sequence),
write(Sequence, N + 1), % BAD: race!
N.

reset(Sequence) -> write(Sequence, 0).
read(Sequence) -> server:call (Sequence, read).
write(Sequence, N) -> 
	 server:cast(Sequence, {write, N}).

% Server callbacks
init()				    -> 0.
handle_call(read, N)		  -> {N, N}.
handle_cast({write, N}, _)	 -> N.
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ming, robust server deployments in-
clude an external “nanny” that will 
monitor the running operating system 
process and restart it if it fails. The re-
started process reinitializes itself by 
reading its persistent state from disk 
and then resumes running. Any pend-
ing operations and volatile state will 
be lost, but assuming that the persis-
tent state isn’t irreparably corrupted, 
the service can resume. 

The Erlang version of a nanny is 
the supervisor behaviour. A supervi-
sor process spawns a set of child pro-
cesses and links to them so it will be 
informed if they fail. A supervisor uses 
an ini-tialization callback to specify 
a strategy and a list of child specifi-
cations. A child specification gives 
instructions on how to launch a new 
child. The strategy tells the supervisor 
what to do if one of its children dies: 
restart that child, restart all children, 
or several other possibilities. If the 
child died from a persistent condition 
rather than a bad command or a rare 
heisenbug, then the restarted child 
will just fail again. To avoid looping 
forever, the supervisor’s strategy also 
gives a maximum rate of restarting. If 
restarts exceed this rate, the supervisor 
itself will fail. 

Children can be normal behaviour-
running processes, or they can be su-
pervisors themselves, giving rise to a 
tree structure of supervision. If a re-
start fails to clear an error, then it will 
trigger a supervisor subtree failure, re-
sulting in a restart with an even wider 
scope. At the root of the supervision 
tree, an application can choose the 
overall strategy, such as retrying forev-
er, quitting, or possibly restarting the 
Erlang virtual machine. 

Since linkage is bidirectional, a 
failing server will notify or fail the 
children under it. Ephemeral worker 
processes are usually spawned linked 
to their long-lived parent. If the parent 
fails, the workers automatically fail, 
too. This linking prevents uncollected 
workers from accumulating in the sys-
tem. In a properly written Erlang ap-
plication, all processes are linked into 
the supervision tree so that a top-level 
supervision restart can clean up all 
running processes. 

In this way, a concurrent Erlang 
application vulnerable to occasional 
deadlocks, starvations, or infinite 

loops can still work robustly in the 
field unattended. 

Implementation, Performance, 
and Scalability
Erlang’s concurrency is built upon the 
simple primitives of process spawn-
ing and message passing, and its 
programming style is built on the as-
sumption that these primitives have 
a low overhead. The number of pro-
cesses must scale as well—imagine 
how constrained object-oriented pro-
gramming would be if there could be 
no more than a few hundred objects in 
the system. 

For Erlang to be portable, it cannot 
assume that its host operating system 
has fast interprocess communication 
and context switching or allows a truly 
scalable number of schedulable activi-
ties in the kernel. Therefore, the Erlang 
emulator (virtual machine) takes care 
of scheduling, memory management, 
and message passing at the user level. 

An Erlang instance is a single op-
erating-system process with multiple 
operating-system threads executing in 
it, possibly scheduled across multiple 
processors or cores. These threads 
execute a user-level scheduler to run 
Erlang processes. A scheduled pro-
cess will run until it blocks or until its 
time slice runs out. Since the process 
is running Erlang code, the emulator 
can arrange for the scheduling slice to 
end at a time when the process context 
is minimal, minimizing the context 
switch time. 

Each process has a small, dedi-
cated memory area for its heap and 
stack. A two-generation copying col-
lector reclaims storage, and the mem-
ory area may grow over time. The size 
starts small—a few hundred machine 
words—but can grow to gigabytes. The 
Erlang process stack is separate from 
the C runtime stack in the emulator 
and has no minimal size or required 
granularity. This lets processes be 
lightweight. 

By default, the Erlang emulator 
interprets the intermediate code pro-
duced by the compiler. Many sub-
stantial Erlang programs can run 
sufficiently fast without using the na-
tive-code compiler. This is because Er-
lang is a high-level language and deals 
with large, abstract objects. When run-
ning, even the interpreter spends most 

With the increasing 
importance 
of concurrent 
programming, 
Erlang is seeing 
growing interest 
and adoption. 
Indeed, Erlang 
is branded as a 
“concurrency-
oriented” language.
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active development. Many high-quali-
ty libraries and applications are freely 
available for: 

Network services˲˲

GUIs for 3D modeling˲˲

Batch typesetting˲˲

Telecom protocol stacks˲˲

Electronic payment systems ˲˲

HTML and XML generation and ˲˲

parsing 
Database implementations and ˲˲

ODBC (Open Database Connectivity) 
bindings 

Several companies offer commer-
cial products and services implement-
ed in Erlang for telecom, electronic 
payment systems, and social network-
ing chat. Erlang-based Web servers are 
notable for their high performance 
and scalability.3

Concurrent programming will nev-
er be easy, but with Erlang, developers 
have a chance to use a language built 
from the ground up for the task and 
with incredible resilience engineered 
in its runtime system and standard li-
braries. 

The standard Erlang implementa-
tion and its documentation, ported 
to Unix and Microsoft Windows plat-
forms, is open source and available for 
free download from http://erlang.org. 
You can find a community forum at 
http://trapexit.org, which also mirrors 
several mailing lists. 	

The author would like to thank Romain Lenglet and JJ 
Furman for their feedback. 
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of its time executing within the highly 
tuned runtime system written in C. 
For example, when copying bulk data 
between network sockets, interpreted 
Erlang performs on par with a custom 
C program to do the same task.4

The significant test of the imple-
mentation’s efficiency is the practi-
cality of the worker process idiom, 
as demonstrated by the multicall2 
code shown earlier. Spawning worker 
processes would seem to be much less 
efficient than sending messages di-
rectly. Not only does the parent have to 
spawn and destroy a process, but also 
the worker needs extra message hops 
to return the results. In most program-
ming environments, these overheads 
would be prohibitive, but in Erlang, 
the concurrency primitives (includ-
ing process spawning) are lightweight 
enough that the overhead is usually 
negligible. 

Not only do worker processes have 
negligible overhead, but they also in-
crease efficiency in many cases. When 
a process exits, all of its memory can be 
immediately reclaimed. A short-lived 
process might not even need a collec-
tion cycle. Per-process heaps also elim-
inate global collection pauses, achiev-
ing soft real-time levels of latency. 
For this reason, Erlang programmers 
avoid reusable pools of processes and 
instead create new processes when 
needed and discard them afterward. 

Since values in Erlang are immu-
table, it’s up to the implementation 
whether the message is copied when 
sent or whether it is sent by reference. 
Copying would seem to be the slower 
option in all situations, but sending 
messages by reference requires coordi-
nation of garbage collection between 
processes: either a shared heap space 
or maintenance of interregion links. 
For many applications, the overhead 
of copying is small compared with the 
benefit from short collection times 
and fast reclamation of space from 
ephemeral processes. The low penalty 
for copying is driven by an important 
exception in send-by-copy: raw binary 
data is always sent by reference, which 
doesn’t complicate garbage collection 
since the raw binary data cannot con-
tain pointers to other structures. 

The Erlang emulator can create a 
new Erlang process in less than a mi-
crosecond and run millions of process-

es simultaneously. Each process takes 
less than a kilobyte of space. Message 
passing and context switching take 
hundreds of nanoseconds. 

Because of its performance charac-
teristics and language and library sup-
port, Erlang is particularly good for: 

Irregular concurrency—applica-˲˲

tions that need to derive parallelism 
from disparate concurrent tasks 

Network servers ˲˲

Distributed systems ˲˲

Parallel databases ˲˲

GUIs and other interactive pro-˲˲

grams 
Monitoring, control, and testing ˲˲

tools 
So when is Erlang not an appropri-

ate programming language, for effi-
ciency or other reasons? Erlang tends 
not to be good for: 

Concurrency more appropriate to ˲˲

synchronized parallel execution
Floating-point-intensive code˲˲

Code requiring nonportable in-˲˲

structions 
Code requiring an aggressive ˲˲

compiler (Erlang entries in language 
benchmark shoot-outs are unimpres-
sive—except for process spawning and 
message passing) 

Projects to implement libraries ˲˲

that must run under other execution 
environments, such as JVM (Java Vir-
tual Machine) or CLR (Common Lan-
guage Runtime) 

Projects that require the use of ex-˲˲

tensive libraries written in other lan-
guages 

Erlang can still form part of a larg-
er solution in combination with other 
languages, however. At a minimum, 
Erlang programs can speak text or bi-
nary protocols over standard interpro-
cess communication mechanisms. In 
addition, Erlang provides a C library 
that other applications can link with 
that will allow them to send and re-
ceive Erlang messages and be moni-
tored by an Erlang controlling pro-
gram, appearing to it as just another 
(Erlang) process. 

Conclusion
With the increasing importance of 
concurrent programming, Erlang is 
seeing growing interest and adop-
tion. Indeed, Erlang is branded as a 
“concurrency-oriented” language. The 
standard Erlang distribution is under 
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The field of human-computer interaction (HCI)  
came into being more than 25 years ago with the 
mission of understanding the relationship between 
humans and computers, often with an eye toward 
improving the technology’s design. But that 
relationship has since been altered so radically—
changes in the sociotechnical landscape have been 
so great—that many in the community of HCI 
researchers and practitioners are questioning where 
the field is headed. Computer systems now intrude 
on our lives as well as disappear into the world 
around us, they monitor as well as guide us, and they 
coerce as well as aid us. Thus there are debates about 
such fundamentals as what HCI’s goals should be, 
how it should do its work, and whether its methods 
remain relevant.

doi:10.1145/1467247.1467265

HCI experts must broaden the field’s scope  
and adopt new methods to be useful in  
21st-century sociotechnical environments. 

by Abigail Sellen, Yvonne Rogers,  
Richard Harper, and Tom Rodden

Reflecting 
Human  
Values in the  
Digital Age

The complexity of technologies that HCI now 
encounters can be attributed to the major 
transformations that have redefined our 
relationship with technology. This article 
explores five such transformations, also 
reflected in this image. Can you find them?  
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that link computers. Researchers 
started asking how users, with the aid 
of computers, might interact with each 
other.13 Researchers with backgrounds 
in more socially oriented sciences, 
such as sociology and anthropology, 
began to engage with HCI. These dis-
ciplines emphasized not only the ef-
fects of computing on groups of users 
but also how those very same groups 
appropriated computers, interpreted 
them, and socially and emotionally ex-
perienced their relationships with the 
technology. Several of the approaches 
of these disciplines were added to the 
mix with ethnographic approaches be-
ing especially visible.

The practical result of these devel-
opments is that HCI has become an ac-
ademic discipline in its own right, with 
conferences dedicated to the subject as 
well as departments and courses offer-
ing HCI as a speciality, and it has also 
become an integral part of the design 
processes—typically, user-centered—
for nearly all technology companies.14 
Moreover, an understanding of HCI 
(if not its details or techniques) has 
seeped into the broader conscious-
ness, as the common use of terms such 
as “user-friendliness” and “user expe-
rience” in the news media and everyday 
conversation attest. Such awareness, 
among practitioners and users alike, 
has encompassed computers not only in 
the conventional sense of, say, desktop 
systems but also as they are manifested 
in cars, airplanes, mobile phones, and 
a broad array of other products. 

In parallel, important changes in 
research objectives have also taken 
place within the field. The HCI of to-
day is exploring diverse new areas be-
yond the workplace, including the role 
of technology in home life and educa-
tion and even delving into such diverse 
areas as play, spirituality, and sexual-
ity. HCI is now more multidisciplinary 
than ever, with a significant percent-
age of the community coming from 
the design world. This shift has caused 
the field’s practitioners to think more 
broadly about their design goals, tak-
ing into account not just how technol-
ogy might be functional or useful but 
also how it might provoke, engage, dis-
turb, or delight. 

Transformations in Interaction
Despite the progress, gradual but now 

In March 2007, academic and in-
dustrial researchers from many dif-
ferent countries and diverse back-
grounds, including computing, social 
science, and design, met in Seville, 
Spain, for a two-day workshop entitled 
“HCI in 2020.” The event, sponsored 
by Microsoft Research Cambridge, 
U.K., was a chance to air views, reflect, 
and discuss the future of HCI as well 
as issues of central importance to the 
field. Needless to say, participants ex-
pressed a wide range of opinions, but 
they were virtually unanimous that the 
field of HCI must change its scope and 
methods if it is to remain relevant in 
the 21st century. 

While the researchers agreed as 
well on the need to keep human val-
ues at HCI’s core, they highlighted the 
fact that our changing relationship 
with computers means that determin-
ing what these values might be and 
coming to understand them require 
greater finesse than ever before. If in 
the past HCI was in the business of 
understanding how people could be-
come more efficient through the use of 
computers, the challenge confronting 
the field now is to deal with issues that 
are much more complex and subtle. 
Here we summarize these issues, bas-
ing our discussion on the workshop’s 
report Being Human: Human-Computer 
Interaction in the Year 2020.1

A Brief Look Back
When the field of HCI was in its infan-
cy, a common activity was to model a 
user’s interaction with a desktop com-
puter so that the interface between per-
son and machine could be optimized. 
HCI was mainly a scientific and engi-
neering endeavor, using techniques 
derived from cognitive psychology and 
human-factors engineering.8 What 
went on “inside the head” of a user was 
specified by observing behavior under 
controlled conditions, inferring what 
kinds of perceptual, cognitive, and 
motor processes were involved, and 
developing pertinent theories.2 Meth-
ods for optimizing “usability” were 
devised, and iterative testing with real 
users was seen as prerequisite to intro-
ducing any new software or hardware 
product. 

During the 1990s, the objectives of 
HCI began changing along with the 
growth of communication networks 

Values are not 
something that can 
be catalogued like 
books in a library 
but are bound 
to each other in 
complex weaves 
that, when tugged 
in one place, pull 
values elsewhere 
out of shape. 
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very visible transformations in our re-
lationship to computers are leading 
many in HCI—including participants 
in the Seville workshop—to urge a 
radical rethinking of the underpin-
nings of HCI: its mission, goals, and 
philosophical approach, both for re-
search and practice. In essence, the 
claim is that the interaction between 
values and technology needs to be 
much more carefully navigated than 
before. This is not a simple choice be-
tween designing for what is desirable 
as opposed to what is reprehensible; 
HCI specialists also need to be as-
tutely aware of how one set of design 
choices might highlight certain val-
ues at the expense of others. In other 
words, values are not something that 
can be catalogued like books in a li-
brary but are bound to each other in 
complex weaves that, when tugged in 
one place, pull values elsewhere out of 
shape. Further, now more than ever, 
the diversity, scope, and complexity of 
the technologies that HCI deals with 
make tradeoffs between values a co-
nundrum, not a platitude. 

The reasons for this new complex-
ity can be attributed in large part to 
the major transformations that have 
redefined our relationship with tech-
nology. Here we characterize five such 
transformations, each of which contin-
ues to alter the ways in which humans 
coexist with computers, interact with 
them, decide what problems to focus 
on, and pursue solutions. 

The first transformation—the end of 
interface stability—has to do with how 
computers can no longer be defined 
by reference to a single interface but 
rather by many different interfaces or, 
alternatively, none at all. For example, 

structure. But what is different about 
this transformation is that computa-
tional dependence is more complex, 
fraught with more snag points, and 
vulnerable to more forms of attack. 
It is not simply that we are increas-
ingly using computers in routine but 
selected activities, such as to write 
reports or do our tax returns. Com-
puting now underpins almost every 
aspect of our lives, from shopping to 
travel, from work to medicine. At the 
same time, computers are becoming 
ever more sophisticated and autono-
mous. As a result, not only is our reli-
ance on them growing but computers 
themselves are increasingly reliant on 
each other. The extent of our need for 
computers—characterized by a wide 
diversity of technologies, an “always-
on” infrastructure, and an intercon-
nected web of systems—creates new 
concerns, new design opportunities, 
and new research topics that special-
ists in HCI are obliged to address. 

A third transformation is the growth 
in hyperconnectivity, the influential 
role of communication technologies 
in tying us together in ways that were 
unimaginable even as recently as 10 
years ago. Despite the ability of such 
new tools to improve efficiency and 
save us time, such “digital presence” 
increasingly consumes our time rather 
than saves it. Communication devices 
are now filling our lives up instead 
of releasing us from burden. Yet hy-

some computers encroach ever more 
deeply into our own personal spaces: 
we carry them, wear them, and may 
even have them implanted within us. 
Other forms of computers are disap-
pearing into the richness and com-
plexity of the world around us. They 
are increasingly embedded in everyday 
objects; not just toys, home applianc-
es, and cars but also books, clothing, 
and furniture. And they are increasing-
ly part of our environments, in public 
spaces such as airports, garages, and 
shopping malls as well as in the private 
spaces of homes and offices. In each 
case, where the interface might be, or 
even if there is an interface at all, is an 
open question. All of this has conse-
quences for HCI. After all, the assump-
tion that the locus of human-machine 
interaction is obvious (and hence can 
be observed, researched, and designed 
for) has been at the core of HCI since 
its foundation. If this is no longer the 
case, then what an interface might be, 
where it is, what it allows a user to do, 
and even whether there is one at all are 
now the issues that a future-looking 
HCI must address.

A second transformation, the 
growth of techno-dependency, refers 
to the fact that changes in how we 
live with and use technology have re-
sulted in our becoming ever more reli-
ant on it. There is of course no news 
in saying that society and individuals 
alike depend on a technological infra-

The growth in hyperconnectivity carries 
with it both the benefits and the pressures of 
being connected “anywhere, anytime.” 

The “interface” between humans and computers is harder than ever to define.  
We can interact with computers just by walking through a public space. T
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and complex, these new questions deal 
with how we design for the emerging 
interaction paradigms. 

For example, the end of interface 
stability raises questions such as: 

What interaction techniques are ˲˲

appropriate if devices embedded with-
in us have no explicit or recognizable 
“interface?” 

Should new interaction tech-˲˲

niques build on the skills we have al-
ready acquired for dealing with far less 
complicated systems? And if so, how? 

How do we enable people to un-˲˲

derstand the complexity of new eco-
systems of technologies, and the re-
sults of interacting with them, so as to 
proceed most effectively? 

Our growing dependency on com-
puting provokes a different set of ques-
tions, including: 

How do we design computer sys-˲˲

tems to help people cope when infra-
structures break down or when devices 
malfunction or are lost? 

What will be the taken-for-granted ˲˲

technologies of the future and how 
might they alter the skill sets of the 
people for whom we must design? 

With computers becoming in-˲˲

creasingly autonomous, seemingly 
able to make their own decisions, what 
will be an appropriate style of human-
computer interaction? 

The end of the ephemeral leads us 
to consider what is being recorded, 
stored, and analyzed regarding our 
beliefs, preferences, and everyday 

perconnectivity also has the power to 
mobilize us, as citizens and members 
of global communities; we are now in 
touch in more ways, and with more 
people, than ever. What these changes 
mean, how one designs for them, and 
how one judges value within the myri-
ad forms of being in touch are all sub-
stantive issues for HCI.

Fourth, our heightened ability to 
be in touch is equalled by a passion to 
capture more and more information 
about people’s lives and actions—
information that hitherto would have 
been discarded or forgotten. This 
trend is reflecting as well as driving 
the massive gains in computer net-
works’ capacity. What it means to re-
cord, why we record, and what we do 
with the collected material is chang-
ing hand-in-hand with the systems we 
use to capture, manage, share, and ar-
chive these burgeoning stores of per-
sonal data. Each of us is developing an 
ever-increasing “digital footprint”—
sometimes in ways we desire, some-
times not, and often in ways we know 
little about—not only on a personal 
level but also within the databases of 
government agencies and other pub-
lic, as well as private, institutions. We 
call this transformation the end of the 
ephemeral. 

Finally, the proliferation of new 
kinds of digital tools (exemplified by 
Web 2.0) and their appropriation by 
people from all walks of life are en-
abling us to work, play, and express 

ourselves in new ways. Computers 
were once limited to the automation 
and mechanization of routine aspects 
of work or problem-solving. Now, more 
than ever, they are also instruments 
for creativity. This trend is manifested 
not only in the explosion of computer 
tools for play and self-expression; it 
also propels more “serious” pursuits. 
For example, computational tools 
are enabling advances in the world 
of science and medicine as they as-
sist researchers in discerning, analyz-
ing, and solving problems. This fifth 
transformation—the growth of creative 
engagement—underscores the fact 
that flexible computer tools, which 
can be assembled and appropriated 
in new ways, allows us to see the world 
in wholly new ways too. Computer-
enabled creativity means we can all 
become our own producers, program-
mers, and publishers, whether in our 
personal or professional lives, with po-
tentially far-reaching consequences. 

New Questions for  
a Future-Looking HCI
The five transformations are provok-
ing questions that HCI has not had to 
address before, as they concern issues 
that simply did not arise in a world 
where using a computer essentially 
meant a person sitting in front of a 
desktop machine doing email, writing 
a document, or working on a spread-
sheet. Because our relationship with 
computing is now far more extensive 

Questions of Broader Impact 
Computers will soon be able to 
monitor the bodily functions 
of people without requiring 
their awareness or necessarily 
seeking their permission. 

Who should have the right to 
access and control information from 
embedded devices? It is obvious that 
such devices will alter the knowledge 
that medical professionals will have 
of a patient’s body, but less obvious 
is how this will alter their perception 
of the sanctity of the body. Similarly, 
the output of such devices will alter 
the conception that people have of 
themselves, but in what ways and to 
what end? 

An increasingly complex 
set of computing devices will 

pervade our homes.
Who is responsible for 

preventing breakdowns, 
fixing problems, and ensuring 
protection from unplanned and 
undesirable consequences? Users 
or householders will need to be 
accountable to some extent, but 
in other cases it may need to be the 
service provider or government. In 
addition, the identity of the user 
can be difficult to ascertain when 
venturing beyond the work setting. 
At home, are children to be held 
responsible for the consequences of 
their interactions with technology? 
Or does responsibility rest on a 
child’s parents or legal custodians? 

New technologies will 

continue to shift the balance 
of labor between people and 
machines in ways that will 
change our skills, strengthening 
some and atrophying others. 

The increased burdens taken 
on by machines may come at a cost, 
in terms of human skills, that is 
not so easy to see or understand. 
How do we examine and judge 
what is the best balance? Human 
factors engineers sought to answer 
this question for the workplace, 
but what about social systems or 
households, for example? How does 
one analyze the relationship between 
loss of engagement in one area and 
the opening up of opportunities 
elsewhere if the activities involved 

have to do with play rather than 
work, expressiveness rather than 
calculation, desire rather than labor? 

Digital footprints are 
expanding in ways that we 
understand and are visible 
but also in ways that we don’t 
comprehend or see. 

As an example, we place tagged 
photos of ourselves on photo-sharing 
sites only to find images of ourselves 
already there. Should we have the 
right to remove such pictures? 
What about other kinds of stored 
information about ourselves? Do we 
want to have a copyright on our own 
digital footprints? If this applies to 
the digital world, what does it imply 
for the physical world? 
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actions—and interactions. Questions 
include:

What computer technologies are ˲˲

needed to effectively manage vast 
quantities of personal data? 

How do people learn about their ˲˲

digital footprint as well as the tools 
that can help them interrogate the sys-
tems involved and analyze the data? 

How do we design computer sys-˲˲

tems so as to give people feedback 
about, and control over, information-
capturing processes? 

How can the capture of informa-˲˲

tion and the need for privacy be bal-
anced through design?

Taken together, these and other 
transformation-related questions 
point to a very different kind of agen-
da, for researchers, practitioners, and 
technology designers alike, from the 
one that was appropriate for HCI in 
the 1980s and 1990s. 

But in addition to new questions 
about interaction and design, many 
of the issues these transformations 
raise are much more far-reaching. 
They include how society should re-
act to the changes that computer sys-
tems engender—how their impact will 
be dealt with in different situations, 
places, and cultures—and a range of 
moral concerns. The sidebar here—
“Questions of Broader Impact”—pos-
its some of these changes, followed by 
examples of the new kinds of ethical 
questions they raise.

Human Values in  
the Face of Change
Should the HCI community be ad-
dressing these more far-reaching kinds 
of questions? And if so, is it equipped 
to take on the task? The participants 
at the Seville workshop agreed that it 
should—and also that a quite different 
mind-set is required.1 

To begin with, researchers and 
practitioners in HCI need to analyze 
the wider set of issues that are now in 
play. Central to the new agenda is rec-
ognizing what it means to be human 
in a digital future. Human values, in 
all their diversity, should be charted 
in relation to how they are supported, 
augmented, or constrained by techno-
logical developments. In many ways, 
this is arguing for a strengthening 
of what has always been important 
to HCI: a focus on human-centered 

design, keeping firmly in mind what 
users—people—need and want from 
technology. The trouble is that the val-
ues that systems often impinge on are 
not the kind that can be easily inven-
toried. For instance, values related to 
technologies that capture our digital 
footprint may support our recollection 
of the past and influence ideas of self-
hood just as much as they might im-
ply more measurable ideals related to 
bureaucratic efficiency (for example, 
keeping good records). Computation-
al technology affects both, though the 
audit of one is considerably more dif-
ficult than that of the other. 

It follows that the field of HCI 
needs to extend its approach in order 
to encompass the often complex and 
diverse patterns of human interests 
and aspirations. This means that the 
methods of HCI, and the disciplines it 
engages with, will have to change.

Important steps have already been 
taken in this direction—in the concept 
of “use,” for example. A growing num-
ber of researchers and practitioners 
have begun explicating the nature of 
use as a question of “experience” and 
how it unfolds over time. This has 
largely involved the definition of sub-
jective qualities. Analysts have used 
concepts like pleasure, aesthetics, fun, 
and flow, on the one hand, and bore-
dom, annoyance, and intrusiveness, 
on the other, to describe the multifac-
eted nature of “felt” experiences.10 In 
addition, HCI specialists such as Nor-
man11 have modeled how we respond 
to technology at a visceral or emotion-
al level as well as at a deliberate and re-
flective one. They have also described 
a more comprehensive life cycle of our 
response to technology, from when it 
first grabs our attention and entices 
us, through our ongoing relationship 
with that technology, and finally to 
when it is eclipsed by other technolo-
gies and we abandon it. These ways 
of conceptualizing users’ experience 
have opened up many new possibili-
ties for research and design. 

An emphasis on the individual and 
the phenomenology of his or her ex-
periences is a natural consequence of 
HCI’s traditional starting point: the 
user. But it should be obvious that as 
HCI moves forward and seeks to ad-
dress the changes cited previously, 
the user, however well understood, is 

Making judgments 
about new computer 
technologies,  
and how they 
will affect us and 
the social fabric 
of which we are 
a part, is not 
straightforward. 
Research methods 
must capture  
how the use  
of technologies  
may unfold over 
time and in  
different situations. 
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the audience does not especially want 
to listen. As Peters notes in Speaking 
into the Air,12 communications can be 
about communion as well as about 
information exchange. So design 
tradeoffs need to be considered not 
just in terms of our local interaction 
with a technology but also in terms of 
weighing the various moral, personal, 
and institutional consequences. 

A New Approach for HCI
We propose, then, that a broader ap-
proach is needed for tackling the new 
kinds of questions that the transfor-
mations are raising. But what are the 
practical implications of such an av-
enue? What does it mean for the field 
of HCI? 

Folding human values into the re-
search and design cycle. Our first sug-
gestion, described more fully in the 
Seville workshop’s Being Human re-
port, is to extend the ways in which 
user-centered research and design are 
conducted by explicitly addressing hu-
man values. 

A simplified but helpful model of 
current practice is that projects typi-
cally follow an iterative cycle, com-
prised of four fundamental stages, 
in which HCI specialists sequentially 
study, design, build, and evaluate tech-
nology with users. The goal, for ex-
ample, may be to design a particular 
computing technology in order to im-
prove upon a given experience. Initial 
research involves finding out about 
people’s current practices, for which 
ethnographic studies, logging of user 
interactions, and surveys are com-
monly employed. Based on the infor-
mation gathered, the specialists begin 
to focus on the why, what, and how of 
designing something better. To aid in 
the process, usability and user-experi-
ence goals are identified and concep-
tual models developed. Prototypes are 
built, evaluated, and iterated on until 
it is determined whether the new tech-
nology can meet the user goals and 
whether the new user experience is 
judged by the target group to be valu-
able and enjoyable. 

The Being Human report proposes 
that a new agenda for HCI should 
enhance this model by adding an-
other stage—an initial stage, called 
understand—which aims to pinpoint 
the human values that the technology 

only part of a larger system—or set of 
systems. Much effort also needs to be 
expended on determining what is de-
sirable within a place, an institution, 
or a society. Values such as personal 
privacy, health, ownership, fair play, 
and security are obvious candidates 
for analysis, but so too are public, in-
stitutional, and civic identities. The 
values treasured by the individual are 
not always in harmony with those of 
institutions or the society; nor, on the 
other hand, are they always inimical to 
one another. Here specialists in HCI 
can learn a great deal from disciplines, 
such as sociology and anthropology, 
that focus on organizations and cul-
tures. The bottom line is that the field 
of HCI needs to take into account the 
broader context within which human 
values are expressed. 

Some HCI researchers are indeed 
beginning to emphasize human values 
as central to research and design,3, 5, 6, 13 
while others have been attempting to 
define a “third paradigm”9 that draws 
on ideas of  embodiment4 such as, 
taking into account the interactions 
and conversations that happen in our 
physical and social worlds that provide 
meaning. These alternative approach-
es stress that a deep understanding of 
our interactions with technology can-
not be divorced from their contexts. 
The meaning of technology is created 
within specific situations, and not 
just by individuals but often by many 
stakeholders.

Yet making judgments about new 
computer technologies, and how they 
will affect us and the social fabric of 
which we are a part, is not straightfor-
ward. Research methods must capture 
how the use of technologies may un-
fold over time and in different situa-
tions. Consider that computers can 
help connect us to others, but by the 
same token it is important that they 
sometimes allow us to be isolated. 
Likewise, computers can support our 
industriousness but at other times we 
may want to “switch off.” 

Moreover, such choices are not al-
ways ours alone to make; it is not sim-
ply users and their own particular aspi-
rations that are involved. For example, 
workplaces reserve the right to sum-
mon their staff to be industrious. In 
other words, sometimes communica-
tions are meant to be heard even when 

In a world  
where people’s 
movements and 
transactions can  
be tracked—where  
individuals trigger  
nondeliberate  
events just by  
being in a certain 
place, physical  
or virtual, at a 
certain time— 
the notion of 
interaction 
itself is being 
fundamentally 
altered.
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in question will be designed to serve. 
Depending on the values of interest, 
this analysis might need to draw on 
disciplines as diverse as philosophy, 
psychology, art, sociology, cultural 
studies, and architecture, for example. 
It might also mean collaborating with 
the stakeholders behind the technolo-
gy to ascertain what kinds of enduring 
values they expect their users to derive 
from the product. 

Consider, for example, that there 
might be an interest in developing 
new interactive tabletop applications 
for working with digital photos. The 
understand stage of the work would in-
volve clarifying what kinds of human 
values might be made possible through 
such interactions. Is it about support-
ing social connectivity around photo-
graphs? About play and creativity with 
digital images? About archiving pho-
tographs and other materials in order 
to preserve and honor family history? 
Or is it about allowing individuals to 
reflect on their personal past through 
images? The list could go on.

Ultimately, this stage is about mak-
ing basic choices. It requires specifying 
up front the kinds of users targeted, 
and in which domains of activity, envi-
ronments, or cultures. In other words, 
the stage involves choosing the values 
being designed for. Its investigations 
will then point to some fundamental 
research that needs to be conducted, 

provide guidance in the study, design, 
build, and evaluate phases. Key here is 
that the analysis should not just take 
into account people’s interactions 
with computer technology but also 
with the environment, with everyday 
objects, with other human beings, and 
with the changing landscape that the 
“new tech” brings to their world. 

Forming new partnerships. Aside 
from changes in methodology, HCI 
also needs to develop partnerships 
with other disciplines that tradition-
ally have not been part of the field. One 
reason has been outlined here—that 
different human values, as expressed 
in diverse contexts, point to the need 
for all kinds of expertise to deeply un-
derstand and creatively design for the 
relationships between those values 
and technology. 

But other reasons have to do with 
questions that are even more difficult 
for the field of HCI alone to address. As 
we have outlined, new computer tech-
nologies and the transformations they 
are bringing about raise issues with 
much broader societal, moral, and 
ethical implications than HCI has had 
to deal with in the past. It is not clear 
that all of these concerns are within 
the scope of the field, but certainly HCI 
needs to be part of a wider interdisci-
plinary exchange. Technologies that 
store personal data, that take on new 
roles and responsibilities in our lives, 
that alter our behavior in public plac-
es, and that track our movements and 

relevant research that has already been 
carried out, or some combination of 
the two. The stage may equally well in-
volve experts from diverse disciplines, 
such as social historians, game design-
ers, or specialists in the psychology of 
memory, to cite but a few.

Further, the extended approach to 
HCI is intended to enable human val-
ues to be folded into the mix not just at 
the understand stage but the other four 
stages as well. In the report, we give 
fuller examples of how choices made 
about the human values of interest can 

The latest billboards (such as those by Quividi) judge the gender and approximate age of 
people viewing them, with the potential of changing the nature of the advertisements they 
display. Technologies like these highlight the increasingly hybrid forms that interaction 
takes, as well as the scope of the “data” used to authenticate such interactions. 

 The “History Tablecloth,” developed by the Interaction Research Studio (Goldsmith’s 
College, University of London), is an example of embedding computing in everyday objects. 
When items are left on the cloth it begins to glow beneath them, creating a slowly expanding 
halo. When the items are removed, the glow gradually fades. 
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desires and concerns and who function 
within a social, economic, and political 
ecology. HCI must also be flexible, giv-
en that people’s forms of engagement 
with technology and the nature of their 
interactions with it will continually be 
changing, often becoming more so-
phisticated, as they grow older. Under-
standing the new forms of interaction 
between humans and computers will 
involve asking questions about the 
qualitative—process, potential, and 
change—rather than quantifiable at-
tributes and capabilities alone. 	
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activities are as much sociological as 
architectural and as much about poli-
tics as cognitive reasoning. Given the 
scope and complexity of these issues, 
HCI professionals need to engage in 
discourses that may at one time have 
seemed distant, if not entirely alien to 
them.

Redefining the H, C, and I. It is with 
these concerns in mind that the report 
suggests redefining the three elements 
of HCI—human, computer, and inter-
action. 

The “H,” representing the “user,” 
clearly needs revision, especially given 
that people nowadays are as much con-
sumers, creators, and producers as they 
are users of computers, and they often 
employ computers just for the fun of 
it. Conceptualizing the emotional as-
pects of experiencing technologies is 
already starting to happen. Words like 
magic, enchantment, pleasure, won-
der, excitement, and surprise have be-
gun to creep into the vocabulary when 
researchers and designers discuss the 
value of technology to people. But HCI 
specialists also need to ask what these 
terms really mean and how technolo-
gies may engender such experiences. 
The aesthetics of computational prod-
ucts has also gained importance in 
helping to define users’ relationships 
to technology. Therefore new models 
would provide a better understanding 
of how the emotional aspects of com-
puting relate to human values. 

A new conception of the “C” in HCI 
is also needed so that we may better 
understand how the embedding of 
digital technologies in everyday ob-
jects, in the built structures around 
us, and in the natural landscape is 
transforming our surrounding envi-
ronment into a physical-digital ecosys-
tem. Thus we need to address not just 
the design of artifacts per se but also 
the spaces within which they reside. 
And the design has to deal with deeper 
and more systemic issues. As the com-
puter becomes increasingly reliant on 
a larger world, and in particular as the 
connection to a network becomes an 
essential part of the computer’s op-
eration, the opportunity for improving 
the user experience simply through a 
better interface is rapidly disappear-
ing. HCI needs concepts, frameworks, 
and methods that will enable it to con-
sider people and computers as part of 

a messy world full of social, physical, 
technological, and physiological limi-
tations and opportunities.

It follows that the “I” in HCI will 
also need to be understood at many 
different levels. As Greenfield7 has 
so elegantly described, we will have 
to consider different sites of interac-
tion—for example, interactions on 
and in the body, interactions between 
bodies, interactions between bodies 
and objects (properties such as grasp-
able, pushable, and other human-cen-
tered descriptors may be important 
here), and interactions at the scale of 
kiosks, rooms, buildings, streets, and 
other public spaces. All these levels 
of interaction offer different physi-
cal and social “affordances”—readily 
perceivable action possibilities—that 
technologies can potentially change. 

In redefining H, C, and I, and in 
extending what the field of HCI may 
achieve, we will need to develop a lin-
gua franca that expresses not only new 
metaphors but also new principles. 
Such a common language will enable 
the diverse parties to better under-
stand each other, to talk in detail about 
the emergent transformations, and to 
productively explore how to steer them 
in human directions.

In a world where people’s move-
ments and transactions can be 
tracked—where individuals trigger 
non-deliberate events just by being in 
a certain place, physical or virtual, at a 
certain time—the notion of interaction 
itself is being fundamentally altered. 
As the conception of technology use 
as a conscious act becomes difficult 
to sustain, other models of interaction 
and communication will have to be de-
veloped. At the other extreme, digital 
technologies will continue to be used 
in more deliberate and engaged ways 
as media for self-expression, commu-
nity-building, identity-construction, 
self-presentation, and interpersonal 
relations. HCI professionals must un-
derstand the complexity of the new 
forms of social relations and interac-
tions if they are to help develop tech-
nology that enables people’s effective 
engagement.

The fact that we now live with tech-
nology and not just use it means that 
HCI must also take into account the truly 
human element, conceptualizing “us-
ers” as embodied individuals who have 
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How avionics work led to a graphical language 
for reactive systems where the diagrams 
themselves define the system’s behavior. 

by David Harel 

Statecharts  
in the Making:  
A Personal 
Account

odologist responsible for evaluating 
and recommending software engineer-
ing methods and tools at IAI, described 
some problems IAI avionics engineers 
were having. This was part of the massive 
effort then under way to build a fighter 
aircraft, the Lavi (no connection with 
Jonah’s surname). Following that meet-
ing, I began consulting at IAI on a one-
day-a-week basis, and for several months 
Thursday became my IAI day. 

The first few weeks were devoted to 
trying to understand the general issues 
from Lavi. Then it was time to be exposed 
to the details of the project and its specif-
ic difficulties, since I hadn’t yet met the 
project’s engineers. For several weeks, 
I spent my Thursdays with Lavi’s assis-
tant, Yitzhak Shai, and a select group of 

broader perspective.6 The present ar-
ticle is a greatly abridged version of 
the resulting conference paper. The 
implicit claim is that the emergence of 
the language brought to the forefront a 
number of ideas that today are central 
to software and systems engineering, 
including the general notions of visual 
formalisms, reactive systems, model-
based development, model executabil-
ity, and full code generation. 

In 1979 I published a paper on a 
tree-like language based on the idea of 
alternation called “And/Or Programs,”18 
prompting Jonah Lavi of Israel Aircraft 
Industries (IAI) to contact me. We met in 
late 1982, at which time I’d been on the 
faculty of the Weizmann Institute of Sci-
ence for two years. Lavi, who was a meth-

Writing a historical paper about something you  
yourself are heavily involved in is clearly difficult;  
the result is bound to be personal and idiosyncratic  
and might well sound presumptuous. I thus viewed  
an invitation to write about statecharts for the third 
History of Programming Languages conference in  
2007 as an opportunity to put the language in a 
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this button is pressed?” In response, a 
weighty two-volume document would 
be brought out and volume A would be 
opened to page 389, clause 6.11.6.10, 
which says that if you press that button 
such then such a thing would occur. At 
which point (having by then learned 
some of the system’s buzzwords) I would 
say: “Yes, but is that true even when an 
infrared missile is locked on a ground 
target?” To which someone might say, 
“Oh no, in volume B, page 895, clause 
19.12.3.7, it says that in such a case 
this other thing happens.” These Q&A 
sessions would continue, and when it 
would get to the fifth or sixth question 
the engineers were no longer sure of 
the answer and would have to call the 
customer (the Air Force people) for a re-
sponse. By the time we got to the eighth 
or ninth question even the customer 
didn’t have an answer. 

Obviously, someone would eventual-
ly have to decide what happens when you 
press a certain button under a certain 
set of circumstances. However, this per-
son might turn out to be a low-level pro-
grammer assigned to write some remote 
part of the code, inadvertently making 
decisions that influenced crucial behav-
ior on a much higher level. Coming, as 
I did, from a clean-slate background in 
terms of avionics (a polite way of saying 
I knew nothing about the subject), this 
was shocking. It seemed extraordinary 
that such a talented and professional 
team knew in detail the algorithm used 
to measure the distance to a target but 
not many of the far more basic behavior-
al facts involving the system’s response 
to a simple event. 

To illustrate, consider the following 
three occurrences of a tiny piece of be-
havior buried in three totally different 
locations in a large specification of a 
chemical manufacturing plant: 

“If the system sends a signal hot then 
send a message to the operator”; 

“If the system sends a signal hot with 
T >60° then send a message to the op-
erator”; and 

“When the temperature is maximum, 
the system should display a message on 
the screen, unless no operator is on the 
site except when T <60°.” 

Despite my formal education in 
mathematical logic, I’ve never been 
able to understand the third item. Sar-
casm aside, the real problem is that all 
three were obviously written by three 

experts from the Lavi avionics team, no-
tably Akiva Kaspi and Yigal Livne. 

An avionics system is a wonder-
ful example of what my colleague at 
Weizmann Amir Pnueli and I later 
identified as a reactive system.17 The 
main behavior that dominates such 
a system is its reactivity, that is, its 
event-driven, control-driven, event-
response nature. The behavior is of-
ten highly parallel and includes strict 
time constraints and possibly stochas-
tic and continuous behavior. A typical 
reactive system is not predominantly 
data-intensive or algorithmic in na-
ture. Behavior is the crucial problem 
in its development—the need to pro-
vide a clear yet precise description of 
what the system does or should do 
over time in response to both external 

and internal events. 
The Lavi avionics team consisted of 

extremely talented people, including 
those involved in radar, flight control, 
electronic warfare, hardware, com-
munication, and software. The radar 
people could provide the precise algo-
rithm used to measure the distance to 
a target. The flight-control people could 
talk about synchronizing the controls in 
the cockpit with the flaps on the wings. 
The communications people could talk 
about formatting information traveling 
through the MuxBus communication 
line. Each had his own idiosyncratic 
ways of thinking about and explaining 
the system, as well as his own diagrams 
and emphases. 

I would ask seemingly simple ques-
tions, such as: “What happens when 

Figure 1: Page from my early IAI notes (1983). Statechart constructs include hyper-edges, 
nested orthogonality (a kind of concurrency), and transitions that reset a collection of 
states (chart on right). Note the use of Cartesian products of sets of states (set-theoretic 
formulation at the top) to capture the meaning of the orthogonality and the straightforward 
algebraic notation for transitions between state vectors (lower right). 
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different people for three different rea-
sons. It is almost certain that the code 
for this critical aspect of the chemical 
plant would be problematic in the best 
case and catastrophic in the worst. The 
specification documents the Lavi avi-
onics group had produced at IAI were 
no better. If anything, they were longer 
and more complex. Some subcontrac-
tors even refused to work from them, 
claiming they were incomprehensible, 
inconsistent, and incomplete. 

This confusion prompted the ques-
tion: How should an engineering team 
specify the behavior of such a complex 
reactive system in an intuitively clear yet 
mathematically rigorous fashion? This 
was what I aimed to try to answer. 

Statecharts Emerging 
My initial goal was not to invent a lan-
guage but to try to recommend, from 
the toolset of the software and systems 
engineer, appropriate means for saying 
what the avionics engineers seemed to 
already have in mind. It turned out they 
really did understand the system and 
could answer many questions about be-
havior but often hadn’t thought through 
things properly because the informa-
tion wasn’t well-organized in their docu-
ments (or heads). I had to spend a lot of 
the time getting them to talk; I kept ask-
ing questions, prodding them to state 
clearly how the aircraft behaves under 
certain sets of circumstances. We would 
then brainstorm, trying to make sense 
of the information that had piled up. 

It was clear from the start that the 
basic idea of states/modes was funda-
mental to their way of thinking. (This 
insight was consistent with the work of 
David Parnas on the avionics of the A-7 
jet fighter.19) The IAI avionics engineers 
would repeatedly say things like, “When 
the aircraft is in air-ground mode and 
you press this button, it goes into air-air 
mode, but only if the radar is not locked 
on a ground target.” This is familiar to 
anyone in computer science; what we 
have here is really the likes of a finite-
state automaton with its state transi-
tion mechanism. Nevertheless, having 
one big state machine describing what 
is going on would be fruitless, not only 
because of the exponentially growing 
number of states but also because sim-
ply listing all possible states and the 
transitions leading from one to the other 
is unstructured and nonintuitive; it pro-

How should  
an engineering  
team specify  
the behavior  
of such a complex 
reactive system  
in an intuitively  
clear yet 
mathematically 
rigorous fashion? 
This was what  
I aimed to try  
to answer. 

vides no means for modularity, hiding 
of information, clustering, and separa-
tion of concerns and would not work for 
highly complex behavior. I was quickly 
convinced of the need for a structured 
and hierarchical extension of the con-
ventional state machine formalism. 

Following my initial attempt to use 
temporal-logic-like notation, I resorted 
to writing down the state-based behav-
ior textually, in a kind of structured 
state-based dialect of “state protocols” 
made up on the fly (see the figures in 6). 
The dialect was hierarchical; within a 
state there could be other states, and if 
you were in this state and the event oc-
curred, you would enter the other state, 
and so on. As this went on, things would 
get increasingly complicated. The avi-
onics engineers would bring up more 
of the system’s behavior, and I would 
respond by extending the state-based 
structured description, often having to 
enrich the syntax in real time. 

When the multitude of emerging be-
havioral details caused things to be even 
more complicated, I would doodle on 
the side of the page to explain (visually) 
what was meant. I recall the first time I 
used visual encapsulation to illustrate 
for the engineers the state hierarchy and 
an arrow emanating from the higher 
level to show a compound “leave-any-
state” transition. I also recall the first 
time I used side-by-side adjacency with a 
dashed separator line to depict orthogo-
nal (concurrent) state components (see 
Figure 1). 

I drew these informal diagrams in 
order to explain what the nongraphical 
text-based state protocols meant. The 
text was still the real thing, however, and 
the diagrams were merely an aid. But 
after a while it dawned on me that ev-
eryone around the table seemed to un-
derstand these back-of-the-napkin dia-
grams much better, relating to them far 
more naturally. The pictures simply did 
a much better job of setting down on pa-
per the system’s behavior, as understood 
by the avionics engineers, and we found 
ourselves discussing the diagrams and 
arguing about the avionics over them, 
not over the state protocols. Still, the 
mathematician in me found this diffi-
cult to accept; I told myself that doodled 
diagrams could not really be better than 
a real mathematical-looking artifact. So 
it really took a leap of my own faith to be 
able to think: “Hmmm…couldn’t the 
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The pilot stood 
there studying  
the blackboard  
for a couple of 
minutes, then said, 
“I think you have  
a mistake down 
here; this arrow 
should go over here 
and not over there.” 
He was right.

dard source-target; they can be full hy-
peredges, since both sources and targets 
of transitions can be sets of states. At any 
given point in time a statechart is in a 
combination (vector) of states, the length 
of which is not fixed, since entering and 
exiting orthogonal components on vari-
ous levels of the hierarchy changes the 
size of the state vector dynamically (see 
the nongraphical portions of the figure). 
Default states generalize start states, and 
the small arrows leading to them can be 
level-crossing and hyperedge in nature. 
In addition, statecharts also have special 
history connectors, conditions, output 
events, selection connectors, and more. 

The fact that the technical part of the 
statechart story started out with And/Or 
Programs18 is interesting and relevant. 
Encapsulated substates represent OR 
(actually XOR, exclusive or), and or-
thogonality is AND. Thus, a minimalist 
might view statecharts as a state-based 
language with an underlying structur-
ing mechanism of classical alternation. 

As for the graphic renditions, the two 
novel visual constructs in statecharts—
blob encapsulation and partitioning—
are both topological in nature and 
therefore worthy companions to edges 
in graphs. Indeed, when designing a 
graphical language, topology should 
be used whenever possible, since it is 
a more basic branch of mathematics 
than geometry. Being inside something 
is more fundamental and robust than 
being smaller or larger or than being a 
rectangle or a circle. Being connected 
to something is more basic than being 
green or yellow or being drawn with a 
thick line or a thin line. The human vi-
sual system notices and comprehends 
such things immediately. 

Still, statecharts are not exclu-
sively visual/diagrammatic. Transi-
tions can be labeled not only with the 
events that cause the transitions but 
also with the conditions that guard 
against taking them and the actions 
(output events) that are to be car-
ried out when they are taken. More-
over, statecharts borrow from both 
the Moore and the Mealy variants of 
state machines, allowing actions on 
transitions between states, as well as 
on entrances to or exits from states. 
Statecharts also allow “throughput” 
conditions attached to a state and are 
to hold through the entire time the 
system is in that state. 

pictures be turned into the real thing, 
replacing, rather than supplementing, 
the textual structured-programming-
like formalism?” So I gradually stopped 
using the text or used it only to capture 
supplementary information inside the 
states or along transitions, and the dia-
grams became the actual specification 
we were constructing. 

This process of turning the diagrams 
into the specification language had to be 
done in a disciplined way, making sure 
the emerging pictures were not just pic-
tures. You couldn’t just throw in features 
because they looked good and the avion-
ics team seemed to understand them. 
Unless the exact mathematical meaning 
of an intended feature was given—in any 
allowed context and under any allowed 
set of circumstances—it simply couldn’t 
be considered. This was how the basics 
of the language emerged. I chose to use 
the term “statecharts” for the resulting 
creatures, which at the time was the only 
unused combination of “state” or “flow” 
with “chart” or “diagram” (see Figure 2). 

Comments on the Language 
Besides a host of secondary constructs, 
the two main ideas in statecharts—
hierarchy and orthogonality—can be 
intermixed on all levels (see the figure). 
The language can be viewed as begin-
ning with classical finite-state machines 
and their diagrams and extending them 
through a semantically meaningful hi-
erarchical substating mechanism and 
through a notion of orthogonal simul-
taneity. Both extensions are reflected in 
the graphics—hierarchy by encapsula-
tion of the blobs depicting states and 
orthogonality by partitioning a blob us-
ing dashed separator lines. Orthogonal 
components of the state space coop-
erate in several ways, including direct 
sensing of the state status in another 
component or through actions. The 
mechanism within a statechart thus has 
a broadcasting flavor whereby any part 
of the (same) statechart can sense what 
is happening in any other part. 

As a result of the new constructs for 
hierarchy and orthogonality and their 
graphical renditions, transitions be-
come far more elaborate and rich than 
in conventional state machines. They 
are still labeled with their triggering 
events and conditions but can now start 
or stop at any level of the hierarchy, cross 
levels, and in general be richer than stan-
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Speaking in the strict mathematical 
sense of power of expression, hierarchy 
and orthogonality are but helpful ab-
breviations and can be eliminated; the 
hierarchy can be flattened, writing ev-
erything out explicitly on a low level, and 
orthogonality can be removed by taking 
the Cartesian product of the compo-
nents (as in the top of the figure). Thus, 
these features do not add raw expres-
sive power, and their value is reflected 
mainly in additional naturalness and 
convenience. However, they also (in gen-
eral) provide great savings in size; for ex-
ample, orthogonality can yield an expo-
nential improvement in succinctness in 
both upper- and lower-bound senses.3 

Incidentally, orthogonal state-com-
ponents in statecharts do not necessari-
ly represent concurrent or parallel com-
ponents of the system being specified. 
They need not represent different parts 
of the system at all but can be intro-
duced to help structure its state space 

to be able to sense properties of a part 
of the specification in another without 
worrying about implementation details. 
I definitely do not recommend having a 
single statechart for an entire system. 
Rather, as I discuss later, there will al-
most always be a decomposition of the 
system into functions, tasks, objects, 
and the like, each endowed with its own 
behavior (described by, for example, a 
statechart). In this way, the concurrency 
occurs on a higher level. 

I return now to the two adjectives dis-
cussed earlier—“clear” and “precise”—
behind the choice of the term “visual 
formalism.”14,16 Concerning clarity, the 
fact that a picture is worth a thousand 
words demands special caution. Not ev-
erything is beneficially depicted visually, 
but the basic topology-inspired graphics 
of statecharts seemed from the start to 
jibe well with the IAI avionics engineers; 
they quickly grasped the hierarchy and 
orthogonality, high- and low-level tran-

and arrange the behavior in portions 
that are conceptually and intuitively 
separate, independent, and orthogo-
nal. I emphasize the word “conceptu-
ally” because what counts is whatever 
is in the mind of the person doing the 
specification. 

This motivation has many ramifica-
tions. I chose the broadcast communi-
cation mechanism of statecharts not 
because it is preferred for actual com-
munication between a system’s compo-
nents. It is merely one way to coordinate 
the orthogonal components of the stat-
echart, between its “chunks” of state-
space, if you will; these will often not 
be the components—physical or soft-
ware—of the system itself. Broadcasting 
is a way to sense in one part of the state 
space what is going on in another part 
and does not necessarily reflect actual 
communication between tangible as-
pects of the actual system. On certain lev-
els of abstraction one often really wants 

Figure 2: Explaining statecharts (1984); note the temporal logic bottom right. 
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sitions, default entries, and more. 
Interestingly, the same quick compre-

hension applied to nonexperts outside 
the avionics group. I recall an anecdote 
from late 1983 in which in the midst of 
one session the blackboard showed a 
complicated statechart specifying the 
behavior of some intricate portion of 
the Lavi’s avionics. A knock on the door 
brought in an Air Force pilot from the 
“customer” team who knew a lot about 
the aircraft being developed and its de-
sired behavior but had never seen a state 
machine or a state diagram before, not 
to mention a statechart. I remember 
him staring at this intricate diagram (the 
statechart) on the blackboard, with its 
complicated mess of blobs inside other 
blobs, arrows splitting and merging, and 

the right track (see Figure 3). Very en-
couraging. 

So much for clarity. As for precision 
and formality, full executability was al-
ways central to the development of the 
language. I found it difficult to imagine 
the usefulness of a method that merely 
makes it possible to say things about 
behavior, give snippets of the dynam-
ics or observations about what happens 
or what could happen, or provide some 
partially connected pieces of behavior. 
The whole idea was that if one builds 
a statechart-based specification every-
thing must be rigorous enough to be 
run (executed) just like software written 
in a programming language. Executabil-
ity was a basic, not-to-be-compromised, 
underlying concern during the process 
of designing the language. It might 
sound strange to a reader 26 years later, 
but in 1983 system-development tools 
did not execute models at all. Thus, 
turning doodles like those in the figure 
into a real language could be done only 
with great care. 

Building a Tool 
Once the basics of the language were 
established, it seemed natural to want 
a tool that could be used not only to 
prepare statecharts but also to execute 
them. So in April 1984, three colleagues 
(the brothers Ido and Hagi Lachover and 
Amir Pnueli) and I founded a company, 
Ad Cad, Ltd., later (1987) reorganizing it 
as I-Logix, Inc., with Ad Cad as its R&D 
branch. By 1986, we had built a tool for 
statecharts called Statemate. 

In extensive discussions with the 
two most senior technical people as-
sociated with the company, Rivi Sher-
man and Michal Politi, along with 
Amir Pnueli, we were able to figure out 
during the Ad Cad period how to em-
bed statecharts into a broader frame-
work that was capable of capturing 
the structure and functionality of a 
large complex system. To this end, we 
proposed a diagrammatic language 
to structure a model that we called 
activity-charts, an enriched kind of hi-
erarchical data-flow diagram whereby 
arrows represent the possible flow 
of information between the incident 
functions (activities). Each activity 
can be associated with a controlling 
statechart (or code) that would also be 
responsible for interfunction commu-
nication and cooperation. 

asking, “What’s that?” One of the engi-
neers said, “That’s the behavior of the 
so-and-so part of the system, and, by the 
way, these rounded rectangles are states, 
and the arrows are transitions between 
states.” The pilot studied the blackboard 
for a couple of minutes, then said, “I 
think you have a mistake down here; this 
arrow should go over here and not over 
there.” He was right. 

For me, this little event indicated that 
we might be doing something right, that 
maybe what I was proposing was a good 
and useful way of specifying reactive 
behavior. If an outsider could come in, 
just like that, and grasp something that 
complicated without being exposed to 
the technical details of the language or 
the approach, then maybe we were on 

Figure 3: Page from the IAI notes (1983, events in Hebrew) showing a relatively “clean” draft  
of the top levels of behavior for the main flight modes of the Lavi avionics, including  
A/A (air-air), A/G (air-ground), NAV (automatic navigation), and ON GRD (on ground).  
Note early use of a history connector in the A/G mode.
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Statemate also enabled one to spec-
ify the actual structure of the system 
itself, using module-charts that specify 
the components in the implementation 
of the system and their connections. In 
this way, the tool supported a three-way 
model-based development framework 
for systems consisting of structure, 
functionality, and behavior. The user 
could draw the statecharts and the mod-
el’s other artifacts, link them together 
rigorously, check and analyze them, pro-
duce documents from them, and man-
age their configurations and versions. 
Most important, Statemate could fully 
execute them and generate from them, 
automatically, executable code in, say, 
Ada and C and later also in appropriate 
hardware description languages. 

Even then, more than 20 years ago, 
Statemate could link the model to a 
GUI mockup of the system under de-
velopment (or even to real hardware). 
Executability of the model could be 
done directly or by using the generated 
code and carried out in many ways with 
increasing sophistication. Verification 
wasn’t in vogue in the 1980s, so analy-
sis of the models was limited to various 
kinds of testing offered by Statemate in 
abundance. One could execute the mod-
el interactively (with the user playing the 
role of the system’s environment), in 
batch mode (reading in external events 
from files) or in programmed mode. 
One could use breakpoints and random 
events to help set up and control a com-
plex execution from which you could 
gather the results of interest. In prin-
ciple, you could thus set up Statemate 
to “fly the aircraft” for you under pro-
grammed sets of circumstances, then 
come in the following day and find out 
what had happened. These capabilities, 
allowing us to “see” the model in opera-
tion, either via a GUI or following the 
statecharts as they were animated on the 
fly, were extremely useful to Statemate 
users. The tool was an eye-opener for 
software and systems engineers used to 
writing and debugging code in the usual 
way and was particularly beneficial for 
real-time and embedded systems. 

Statemate is considered by some to 
be the first real-world tool to carry out 
true model executability and full code 
generation. The underlying ideas were 
the first serious proposal for model-
driven system development. They might 
have been somewhat before their time 

We we also outlined a new tool for 
supporting all this, and I-Logix prompt-
ly built it under the name Rhapsody.11 
One important difference between the 
function-oriented Statemate and the 
object-oriented Rhapsody is that the 
semantics of statecharts in Statemate is 
synchronous and in Rhapsody is (by and 
large) asynchronous. Another subtle but 
significant difference is reflected in the 
fact that Statemate was set up to execute 
statecharts directly in an interpreter 
mode separate from the code genera-
tor. In contrast, the model execution in 
Rhapsody is carried out by running the 
code generated from the model. A third 
difference is our decision to make the 
action language of Rhapsody a subset 
of the target programming language; 
for example, the events, conditions, and 
actions specified along state transitions 
are fragments of, say, C++ or Java. In any 
event, the statechart language may be 
considered a level higher than classi-
cal programming languages in that the 
code generated from it is in, say, C++, 
Java, or C; we thus might say that stat-
echarts are high above C level. 

Several software vendors have since 
developed tools based on statecharts 
or its many variants, including Ros-
eRT (which grew out of ObjecTime), 
StateRover, and Stateflow (the statechart 
tool embedded in Matlab). 

The implementation and tool-
building issue can also be viewed in a 
broader perspective. In the early 1980s, 
no system-development tool based on 
graphical languages was able to execute 
models or generate full running code. 
Such CASE tools essentially consisted of 
graphic editors, document generators, 
and configuration managers and were 
thus like programming environments 
without a compiler. In contrast, I have 
always felt that a tool for developing 
complex systems must have the ability 
to not only describe behavior but also to 
analyze and execute it in full. This phi-
losophy underlies the notion of a visual 
formalism, which must come endowed 
with sufficiently well-defined semantics 
so as to enable tools to be built around 
it that can carry out dynamic analysis, 
full model execution, and the automatic 
generation of running code. 

On Semantics 
It is worth dwelling further on the issue 
of semantics, which is a prerequisite for 

but were deeply significant in bring-
ing about the change in attitude that 
permeates modern-day software engi-
neering, as exemplified by such efforts 
as the Unified Modeling Language. A 
decade after Statemate, we built the ob-
ject-oriented Rhapsody tool at I-Logix 
(discussed later). 

Woes of Publication 
I wrote the first version of a paper de-
scribing statecharts in late 1983.16 The 
process of trying to get it published 
was long and tedious but interesting in 
its own right. The details appear in the 
full version of the present article,6 but 
I can say that the paper was rejected by 
several leading journals, including Com-
munications and IEEE Computer. My 
files contain an interesting collection 
of referee comments and editor rejec-
tion letters, one of which asserted: “The 
basic problem […] is that […] the paper 
does not make a specific contribution 
in any area.” It was only in July 1987 
that the paper was finally published, in 
Science of Computer Programming.16 The 
full version of the present article6 also 
contains information (and anecdotes) 
about other publications on statecharts, 
including a paper I wrote with Pnueli de-
fining reactive systems,17 a Communica-
tions article on visual formalisms and 
higraphs,14 an eight-author paper on 
Statemate,13 the definitive paper on the 
Statemate semantics of statecharts,13 
and a Statemate book with Politi.10 

Object-Oriented Statecharts 
In the early 1990s, Eran Gery from  
I-Logix became interested in the work of 
James Rumbaugh and Grady Booch on 
the use of statecharts in an object-ori-
ented framework. Gery did some gentle 
prodding to get me interested, with the 
ultimate result being a 1997 paper11 in 
which we defined object-oriented stat-
echarts and worked out the way we felt 
they should be linked up with objects 
and executed. In particular, we pro-
posed two modes of communication 
between objects: direct synchronous in-
vocation of methods and asynchronous 
queued events. The paper considered 
other issues, too, including creation 
and destruction of objects and multi-
threaded execution. The main structur-
ing mechanism involved classes and ob-
jects, each of which could be associated 
with a statechart. 
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sulting paper22 claimed implicitly that 
statecharts are not well defined due 
to these many different semantics (it 
listed approximately 20). Interestingly, 
while 22 reported on the many variants 
of the language with their semantics, 
it did not report what should probably 
have been considered the language’s 
“official” semantics, the one we de-
fined and adopted in 1986 when build-
ing Statemate13 but unfortunately also 
the only semantics not published at the 
time in the open public literature. 

As to the semantic issues them-
selves, von der Beeck22 discussed only 
the differences between variants of 
pre-object-oriented statecharts, but 
they are far less important than the dif-
ferences between the non-object-ori-
ented and the object-oriented versions 
of the language. The main semantic 
difference between Statemate and 
Rhapsody semantics is in synchron-
icity. In Statemate, the version of the 
statecharts language is based on func-
tional decomposition and is a synchro-
nous language, whereas the object-
oriented-based Rhapsody version of 
statecharts is asynchronous. There are 
other substantial differences in modes 
of communication between objects; 
there are also issues arising from the 
presence of dynamic objects and their 
creation and destruction, inheritance, 
composition, and multithreading. The 
semantics of object-oriented state-
charts was described in my 2004 paper 
with Hillel Kugler8 (analogous to 12) de-
scribing the differences between these 
two versions of the language. 

Meanwhile, the Unified Modeling 
Language, or UML, which was stan-
dardized by the Object Management 
Group in 1997, featured many graphi-
cal languages, some of which are still 
not endowed with satisfactorily rigor-
ous semantics. The heart of UML—
its driving behavioral kernel—is the 
object-oriented version of statecharts. 
In the mid-1990s Eran Gery and I took 
part in helping the UML design team 
define the intended meaning of stat-
echarts, resulting in UML statecharts 
being similar to those in 11 that we im-
plemented in Rhapsody. For a mani-
festo about the subtle issues involved 
in defining the semantics of languag-
es for reactive systems, see 7, with its 
whimsical subtitle “What’s the Seman-
tics of ‘Semantics’?” 

understanding the true meaning of any 
language, particularly executable ones. 
In a letter to me in 1984, Tony Hoare 
said that the statecharts language “badly 
needs a semantics.” He was right. Being 
overly naïve at the time, I figured that 
writing a paper that explained the basics 
of the language’s operation and then 
building a tool that executes statecharts 
and generates code from them would 
be enough. This approach took its cue 
from programming language research, 
where developers invent languages and 
then simply build compilers for them. 

In retrospect, I didn’t fully realize 
in those early years how different stat-
echarts are from previous specification 
languages for real-time embedded sys-
tems. I knew, of course, that the lan-
guage had to be executable, as well as 
easily understandable, even by people 
with no training in formal semantics. At 
the same time, as a tool-building team, 
we also had to demonstrate quickly to 
our sponsors, the first being IAI, that our 
efforts were economically viable. Due 
to the high level of abstraction of state-
charts, we had to make decisions regard-
ing rather deep semantic problems that 
apparently hadn’t been adequately con-
sidered in the literature, at least not in 
the context of building a real-world tool 
intended for large, complex systems. 
Moreover, some of these issues were 
then being investigated independently 
by leading French researchers, including 
Gérard Berry, Nicholas Halbwachs, and 
Paul le Guernic, who coined the French 
phrase L’approche synchrone—the syn-
chronous approach—for this kind of 
work.1 Thus, when designing Statemate 
from 1984 to 1986, we did not do such a 
good job of deciding on the semantics. 

We had to address a number of di-
lemmas regarding central semantic is-
sues. One had to do with whether a step 
of the system should take zero time or 
more; another had to do with whether 
the effects of a step should be calculated 
and applied in a fixpoint-like manner in 
the same step or take effect only in the 
following step. The two issues are inde-
pendent. The first concerns whether or 
not one adopts Berry’s pure synchrony 
hypothesis,1 whereby each step takes 
zero time. Clearly, these questions have 
many consequences in terms of how 
the language operates, whether events 
might interfere with chain reactions trig-
gered by other events, how time itself is 

modeled, and how time interleaves with 
the system’s discrete event dynamics. 

At the time, we used the terms Se-
mantics A and B to refer to the two main 
approaches we were considering. Both 
were synchronous in the sense of Ben-
veniste et al.,1 differing mainly in the 
second issue—regarding when the ef-
fects of a step take place. In Semantics A 
all events generated in the current step 
serve as inputs to the next step, whereas 
in Semantics B the system responds to 
all events generated internally in the 
current step until no further system re-
sponse is possible. We called this chain 
of reactions a “super-step.” The paper we 
published in 1987 was based on Seman-
tics B,15 but we later adopted semantics 
A for the Statemate tool itself.10,13 Thus, 
Statemate statecharts constitute a syn-
chronous language1 and in that respect 
are similar to other, nonvisual lan-
guages in that family, including Esterel, 
Lustre (in commercial guise, known as 
Scade), and Signal. 

We decided to implement Seman-
tics A mainly because calculating the 
total effects of a step and carrying them 
out in the following step was easier to 
implement; we were also convinced 
that it was easier to understand for a 
typical systems engineer. Another con-
sideration was related to the semantic 
level of compositionality; Semantics B 
strengthens the distinction between the 
system and its environment or between 
two parts of the system. If at some point 
in the development a system developer 
wants to consider part of the system to 
serve as an environment for the other 
part, the behaviors under Semantics B 
will be separated (as they should be), be-
cause chain reactions that go back and 
forth between the two halves are no lon-
ger all contained in a single super-step. 

A number of other researchers had 
also begun looking into statechart se-
mantics, often severely limiting the lan-
guage (such as by completely dropping 
orthogonality) so the semantics are eas-
ier to define. Some of this work was mo-
tivated by the fact that our implemented 
semantics had not been published yet 
(we published in 199612) and was not 
known outside the Statemate circle. 
This pre-object-oriented situation was 
summarized by Michael von der Beeck 
who tried to impose some order on the 
multitude of semantics of statecharts 
that were then being published. His re-
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Biology, Hybrid Systems, 
Verification, Scenarios 
Statecharts today are widely used in 
such application areas as aerospace, au-
tomotive, telecommunication, medical 
instrumentation, hardware design, and 
control systems. An interesting devel-
opment also involves the language be-
ing used in such unconventional areas 
as modeling biological systems.4,20,21 

Another important topic is hybrid sys-
tems. Statecharts can include probabili-
ties, thus supporting probabilistic and 
stochastic behavior, but their underly-
ing basis is discrete. It is very natural for 
a software or systems engineer to want 
to model systems with mixed discrete 
and continuous behavior, and it is not 
difficult to imagine using mathematics 
geared for continuous dynamics (such 
as differential equations) to model the 
activities within states in a statechart. 
An active community today is carrying 
out research on such systems. 

Another topic involves exploiting 
the structuring of behavior in stat-
echarts to aid verification of the mod-
eled system. We all know how difficult 
program verification is, yet a number 
of techniques work well in many cases. 
While most common verification tech-
niques do not exploit the hierarchical 
structure or modularity models often 
have, this structure can be used benefi-
cially in verifying statecharts. Work has 
indeed been done on the verification 
of hierarchical state machines, though 
much more remains to be done. 

Finally, I should mention some re-
cent work my colleagues and I have 
carried out on a new approach to vi-
sual formalisms for complex systems. 
It involves a scenario-based specifica-
tion method, rather than the state-
based approach of statecharts. The 
idea is to concentrate on specifying 
the behavior between and among the 
objects (or tasks, functions, and com-
ponents), not within them—inter-
object rather than intra-object. The 
language we have proposed for this—
Live Sequence Charts—was worked 
out jointly with Werner Damm.2 The 
associated play-in and play-out pro-
gramming techniques were devel-
oped later with my Ph.D. student 
Rami Marelly.9 I published a paper 
last year describing a long-term vi-
sion on how this could be made much 
more general.5

Conclusion 
If asked about the lessons to be learned 
from the statecharts story, I would defi-
nitely put tool support for executability 
and experience in real-world use at the 
top of the list. Too much computer sci-
ence research on languages, method-
ologies, and semantics never finds its 
way into the real world, even in the long 
term, because these two issues do not 
get sufficient priority. 

One of the most interesting aspects 
of this story is the fact that the work 
was not done in an academic tower, in-
venting something and trying to push 
it down the throats of real-world en-
gineers. It was done by going into the 
lion’s den, working with the people in 
industry. This is something I would 
not hesitate to recommend to young 
researchers; in order to affect the real 
world, one must go there and roll up 
one’s sleeves. One secret is to try to get 
a handle on the thought processes of 
the engineers doing the real work and 
who will ultimately use these ideas and 
tools. In my case, they were the avion-
ics engineers, and when I do biological 
modeling, they are biologists. If what 
you come up with does not jibe with 
how they think, they will not use it. It’s 
that simple. 

Looking back over the past 26 years, 
the main mistakes I made during the 
early years of statecharts concerned 
getting the message out to real-world 
software and systems engineers. This 
involved the confusing process of de-
ciding on a clear semantics for the 
language and publicizing the chosen 
semantics promptly in the public lit-
erature, as well as not recognizing how 
important it was to quickly publish a 
book to acquaint engineers in industry 
with, and get them to use, a new lan-
guage, method, and tool. 

Nevertheless, despite the effort that 
went into developing the language 
(and later the tools to support it) I am 
convinced that almost anyone could 
have come up with statecharts, given 
the right background, exposure to the 
right kinds of problems, and right 
kinds of people. 
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Can a proof be checked without reading it?

by Madhu Sudan

novel formats for writing proofs of 
mathematical assertions. Associated 
with these formats are probabilistic al-
gorithms that reviewers could (should?) 
use to verify the proofs. A reviewer using 
such a verification algorithm would be 
spared from reading the entire proof 
(and indeed will only read a “constant 
number of bits of the proof”—a notion 
we will elaborate on, and explain later). 
Any researcher who has a proof of a the-
orem can rewrite the proof in the pre-
scribed format and offer it to the review-
er, with the assurance that the reviewer 
will be convinced of this new proof. On 
the other hand, if someone claims a 
faulty assertion to be a theorem, and 
offers any proof (whether in the new for-
mat or not), the reviewer will discover an 
error with overwhelming probability.

In what follows we will attempt to for-
malize some of the notions that we have 
been using in a casual sense above. The 
central notion that will emerge is that 
of a “probabilistically checkable proof 
(PCP).” Existence of such formats and 
verification algorithms often runs con-
trary to our intuition. Nevertheless they 
do exist, and we will discuss two differ-
ent approaches that have been used 
thus far to construct such PCPs.

PCPs are arguably fascinating ob-
jects. They offer a certain robustness 
to the logical process of verification 
that may not have been suspected be-
fore. While the process of proving and 
verifying theorems may seem of limited 
interest (say, only to mathematicians), 
we stress that the notion of a “convinc-
ing” argument/evidence applies much 
more broadly in all walks of life. PCPs 
introduce the fascinating possibility 
that in all such cases, the time taken to 
assess the validity of the evidence in 
supporting some claims may be much 
smaller than the volume of the evi-
dence. In addition to this philosophical 
interest in PCPs, there is a very differ-
ent (and much more concrete) reason 
to study PCPs. It turns out that PCPs 
shed light in the area of combinatorial 
optimization. Unfortunately this light 
is “dark”: The ability to construct PCPs 
mostly says that for many optimization 

The task of verifying a mathematical proof is extremely 
onerous, and the problem is compounded when a 
reviewer really suspects a fatal error in the proof but still 
has to find an explicit one so as to convincingly reject a 
proof. Is there any way to simplify this task? Would not 
it be great if it were possible to scan the proof cursorily 
(such as, flip the pages randomly, reading a sentence 
here and a sentence there) and be confident that if the 
proof was buggy you would be able to find an error by 
such a superficial reading?

Alas, the current day formats of proofs do not allow 
such simple checks. It is possible to build a “proof” of 
any “assertion” (in particular ones that are not true) with 
just one single error, which is subtly hidden. Indeed, if 
you think back to the “proofs” of “1 = 2” that you may 
have seen in the past, they reveled in this flaw of current 
proof systems. 

Fortunately this shortcoming of proofs is not an 
inherent flaw of logic. Over the past two decades, 
theoretical computer scientists have come up with 

Probabilistically 
Checkable  
Proofs
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problems where we knew that optimal 
solutions were (NP-) hard to find, even 
near-optimal solutions are hard to find. 
We discuss these connections soon af-
ter we discuss the definitions of PCPs.

Definitions
We start by formalizing what we mean 
by “theorems,” “proofs,” a “format” 
for proving them, and what it means to 
“change” such a format, that is, what 
changes are allowed, and what qualities 
should be preserved. Hopefully, in the 
process we will also manage to establish 
some links between the topic of this ar-
ticle and computer science.

To answer these questions we go to 
back to the essentials of mathemati-
cal logic. A system of logic attempts 
to classify “assertions” based on their 
“truth value,” that is, separate true the-
orems from false assertions. In particu-
lar, theorems are those assertions that 
have “proofs.” In such a system, every 
sentence, including theorems, asser-
tions, and proofs, is syntactically just a 
finite string of letters from a finite al-
phabet. (Without loss of generality the 
alphabet may be binary, that is, {0, 1}.) 
The system of logic prescribes some 
axioms and some derivation rules. 
For an assertion to be true, it must be 
derivable from the axioms by apply-
ing a sequence of derivation rules. A 
proof of an assertion A may thus be a 
sequence of more and more complex 
assertions ending in the assertion A, 
with each intermediate assertion being 
accompanied with an explanation of 
how the assertion is derived from pre-
vious assertions, or from the axioms. 
The exact set of derivation rules used 
and the complexity of a single step of 
reasoning may vary from one logical 
system to another, but the intent is that 
eventually all logical systems (based on 
the same axioms) should preserve two 
essentials aspects: The set of theorems 
provable in any given system of logic 
should be the same as in any other. 
Furthermore, proofs should be “easy” 
to verify in each.

This final attempt to abstract the 
nature of a logical system leaves us 
with the question: What is “easy?” It is 
this aspect that led to the development 
of Turing and Church’s work on the 
Turing machine. They ascribed “easi-
ness” to being a mechanical process, 
as formalized by the actions of some 

Turing machine. Modern computation-
al complexity is little more careful with 
this concept. The task of verification of 
a proof should not only be “mechani-
cal,” but also “efficient,” that is, should 
be polynomial time computable. This 
leads to the following abstract notion 
of a system of logic: A system of logic 
is given by a polynomial time verifi-
cation algorithm (or simply verifier)  
V  (., .), that takes two inputs, an 
assertion A and some evidence E and 
produces a Boolean verdict “accept/
reject.” If  V  (A, E) = accept then 

and E is a proof of A. If A is an asser-
tion such that there exists some E 
such that  V  (A, E) = accept, then A is  
a theorem. In contrast to the notion 
that a proof is easy to verify, our cur-
rent state of knowledge suggests that 
proofs may be hard to find, and this 
is the essence of the theory of NP-
completeness.11, 25, 27 Indeed the ques-
tion “is NP = P?” is equivalent to the 
question “can every theorem be proved 
efficiently, in time polynomial in the 
length of its shortest proof?”

In what follows we will fix some 
system of logic, that is, some verifier 
V0 and consider other verifiers that are 

equivalent to this verifier. In such cas-
es, when the set of theorems does not 
change, but the “proofs” may, we call 
the new system a “proof system.” So, a 
proof system V would be equivalent to 
V0 if the following conditions hold:

Completeness: If A is a theorem (in V0), 
then A is a theorem in V. Furthermore, 
there is a proof of A in V that is at most a 
polynomial factor longer than its proof 
in V0.
Soundness: If A is not a theorem (in V0), 
then A is not a theorem in V.

By allowing different verifiers, or 
proof systems, for the same system of 
logic, one encounters many different 
ways in which theorems can be proved. 
As an example, we show how the NP-
completeness of the famous problem 
3SAT allows one to produce formats for 
proofs that “localize” errors in errone-
ous proofs. Recall that an instance of 
3SAT is a logical formula f = C1 Ù . . . Cm 
where Cj is the disjunction of three lit-
erals (variables or their complement). 
The NP-completeness of 3SAT implies 
the following: Given any assertion A 
and integer N, there is a 3CNF formula 
f (of length bounded by a polynomial 
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in N) such that f is satisfiable if and 
only if A has a proof of length at most N 
(in V0). Thus the deep logical question 
about the truth of A seems to reduce to 
a merely combinatorial question about 
the satisfiability of f. The natural evi-
dence for the satisfiability of f would 
be an assignment and this is what we 
refer to as a “format” for proofs. The 
advantage of this format is that in order 
to reject an “erroneous proof,” that is, 
an assignment x that fails to satisfy f, 
one only needs to point to one clause 
of f that is not satisfied and thus only 
point to the three bits of the proof of 
x that this clause depends on to reveal 
the error. Thus errors are easily local-
ized in this format.

Can one go further and even “find” 
this error efficiently? This is where 
PCPs come in. In what follows, we will 
attempt to describe verifiers that can 
verify proofs of satisfiability of 3CNF 
formulae (noticing that by the discus-
sion above, this is as general as verifying 
proofs of any mathematical statement 
in any formal system).
Probabilistically checkable proofs. We 
start by formalizing the notion of the 
number of bits of a proof that are “read” 
by the verifier. In order to do so, we allow 
the verifier to have random access (ora-
cle access) to a proof. So while the proof 
may be a binary string p = áp[1] . . . p[]
ñ Î {0,1}, the verifier gets to “read” the 
ith bit of p by querying an “oracle” for 
the ith bit of p and get p[i ] in response, 
and this counts as one query.

PCPs are motivated by the question: 
“how many bits of queries are really es-
sential to gain some confidence into 
the correctness of a theorem?” It is easy 
to argue that if the verifier hopes to get 
away by querying only a constant num-
ber of bits of the proof, then it cannot 
hope to be deterministic (else a con-
stant time brute force search would find 
a proof that the verifier would accept). 
So we will allow the verifier to be proba-
bilistic, and also it to make mistakes 
(with low probability). This leads us to 
the notion of a PCP verifier.

Definition 2.1. A PCP verifier of query 
complexity q(n), and gap e (n) is a proba-
bilistic algorithm V that, given as input 
an assertion A Î {0, 1}n, picks a random 
string R Î {0, 1}*, makes oracle queries 
to a proof oracle p : {1,…,} ® {0, 1} and 
produces an accept/reject verdict.

Running time: V always runs in time 
polynomial in n.
Query complexity: V makes q(n) queries 
into the proof p.
Proof size:  grows polynomial in n.
Completeness: If A is a true assertion, 
then there exists a proof p that the verifier 
accepts on every random string R.
Soundness, with gap e  (n): If A is not true, 
then for every proof p, the probability, over 
the choice of the randomness R, that the 
verifier accepts at most 1 − e (n).

The above definition associates two 
parameters to a PCP verifier, query 
complexity, and gap. The query com-
plexity is the number of bits of the 
proof that the verifier “reads.” The gap 
is related to the “error” probability of 
the verifier, that is, the probability of 
accepting false assertions. The larger 
the gap, the smaller the error. Since the 
definition above introduces several no-
tions and parameters at once, let us use 
a couple of simple examples to see what 
is really going on.

The classical proof of satisfiability 
takes a formula of length n, on up to n 
variables and gives a satisfying assign-
ment. The classical verifier, who just 
reads the entire assignment and verifies 
that every clause is satisfied, is also a 
PCP verifier. Its query complexity q(n) is 
thus equal to n. Since this verifier makes 
no error, its gap is given by e (n) = 1.

Now consider a probabilistic version 
of this verifier who chooses to verify 
just one randomly chosen clause of the 
given 3CNF formula. In this case the 
verifier only needs to query three bits of 
the proof and so we have q(n) = 3. How 
about the gap? Well, if a formula is not 
satisfiable, then at least one of the up 
to n clauses in the formula will be left 
unsatisfied by every assignment. Thus 
once we fix a proof p, the probability that 
the verifier rejects is least 1/n, the prob-
ability with which the verifier happens 
to choose a clause that is not satisfied by 
the assignment p. This corresponds to a 
gap of e (n)  = 1/n. (Unfortunately, there 
do exist (many) unsatisfiable 3CNF for-
mulae which have assignments that 
may satisfy all but one clause of the for-
mula. So the gap of the above verifier is 
really Q(1/n).)

Thus PCP verifiers are just exten-
sions of “classical verifiers” of proofs. 
Every classical verifier is a PCP verifier 
with high query complexity and no error 

(that is, high gap), and can be converted 
into one with low (constant!) query com-
plexity with high error (tiny gap). Indeed 
a smooth trade-off between the param-
eters can also be achieved easily. To 
reduce the error (increase the gap) of a 
PCP verifier with query complexity q and 
gap e , we could just run this verifier sev-
eral, say k, times on a given proof, and 
reject if it ever finds an error. The new 
query complexity is now kq and if the 
theorem is not true then the probability 
of detecting an error is now (1 − e )k. The 
new error is approximately 1 − ke  if k << 
1/e  and thus the gap goes up by a factor 
of roughly k.

The fundamental question in PCP 
research was whether this trade-off was 
essential, or was it possible to get high 
gap without increasing the number 
of queries so much. The PCP theorem 
states that such proof systems can be 
constructed!

Theorem 2.2 (PCP Theorem3, 4, 12). 
3SAT has a PCP verifier of constant query 
complexity and constant positive gap.

There are two distinct proofs of this 
theorem in the literature and both are 
quite nontrivial. In Section 4 we will 
attempt to give some idea of the two 
proofs. But before that we will give a 
brief history of the evolution of the no-
tion of a PCP, and one of the principal 
applications of PCPs in computer sci-
ence. The exact constants (in the query 
complexity and gap) are by now well 
studied and we will comment on them 
later in the concluding section.

History of definitions. The notion 
of a PCP verifier appears quite natural 
given the objective of “quick and dirty” 
verification of long proofs. However, 
historically, the notion did not evolve 
from such considerations. Rather the 
definition fell out as a byproduct of in-
vestigations in cryptography and com-
putational complexity, where the no-
tion of a PCP verifier was one of many 
different elegant notions of probabi-
listic verification procedures among 
interacting entities. Here we attempt 
to use the historic thread to highlight 
some of these notions (see Goldreich18 
for a much more detailed look into 
these notions). We remark that in ad-
dition to leading to the definition of 
PCPs, the surrounding theory also 
influences the constructions of PCP 
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verifiers—indeed one may say that one 
may have never realized that the PCP 
theorem may be true, had it not been 
for some of the prior explorations!
Interactive Proofs: The first notion of a 
probabilistic proof system to emerge 
in the literature was that of an interac-
tive proof. This emerged in the works 
of Goldwasser et al.20 and Babai and 
Moran.7 An interactive proof consists 
of an interaction between two entities 
(or agents), a “prover” and a “verifier.” 
The prover wishes to convince the veri-
fier that some theorem A is true. The 
verifier is again probabilistic and runs 
in polynomial time, and should be 
convinced if the assertion is true and 
should reject any interaction with high 
probability if the assertion is not true.

The goal here was not to improve on 
the efficiency with which, say, proofs 
of 3-satisfiability could be checked. 
Instead the goal was to enhance the 
class of assertions that could be veri-
fied in polynomial time. A nonmath-
ematical, day-to-day, example of an 
interactive proof would be that of 
distinguishing between two drinks. 
Imagine convincing your spouse or 
friend that buying an expensive bot-
tle of wine, brand X, is really worth it. 
They may counter with a cheap bottle, 
brand Y, that they claim tastes exactly 
the same. You insist that they taste 
quite different, but it is hard to prove 
your point with any written proof. But 
this is something we could attempt 
to prove interactively, by a blind taste 
test. You can ask your spouse/friend 
to challenge you with a random glass 
of wine and if by tasting you can tell 
which brand it is, you manage to con-
vince your partner that you may have a 
point—the two drinks do taste differ-
ent. By repeating this test many times, 
you partner’s conviction increases. 
Interactive proofs attempt to such cap-
ture phenomena and more. Indeed, 
this very example is converted to a very 
mathematical one by Goldreich et al.,19 
who use a mathematical version here 
to give proofs that two graphs are dis-
tinguishable, that is, they are not iso-
morphic. (This is a problem for which 
we do not know how to give a polyno-
mially long proof.)

The initial interest in interactive 
proofs came from two very different 
motivations. Goldwasser et al. were in-
terested in the “knowledge” revealed 

in multiparty interactions, from the 
point of view of maintaining secrets. 
To understand this concept, they first 
needed to define interactive protocols 
and interactive proofs, and then a for-
mal measure of the knowledge com-
plexity of this interaction. They noted 
that while interaction may reveal many 
bits of “information” (in the sense of 
Shannon34) to the interacting players, 
it may reveal little knowledge. For ex-
ample, the interactive proof above that 
brand X is distinguishable from brand 
Y reveals no more “knowledge” than 
the bare fact that they are distinguish-
able. It does not, for example, tell you 
what features are present in one brand 
and not in the other.

Babai and Moran’s motivation was 
more oriented towards computational 
complexity of some number-theoretic 
and group-theoretic problems. They 
were able to present interactive proofs 
with just one rounds of interaction 
between verifier and the prover for a 
number of problems not known to be 
in NP (i.e, not reducible to satisfiabil-
ity). The implication, proved formally 
in later works, was that such problems 
may not be very hard computationally.

The theory of interactive proofs saw 
many interesting discoveries through 
the 1980s, and then culminated in 
a surprising result in 1990 when 
Shamir,33 based on the work of Lund 
et  al.,28 showed the set of assertions 
that could be proved interactively were 
exactly those that could be verified by a 
polynomial space bounded verifier.
Multi-prover and Oracle-Interactive 
Proofs: Part of the developments in the 
1980s led to variations on the theme of 
interactive proofs. One such variation 
that became significant to the devel-
opment of PCPs was the notion of a 
“Multi-prover Interactive Proof” (MIP) 
discovered by Ben-Or et al.8 Ben-Or 
et al. were trying to replace some cryp-
tographic assumptions (along the lines 
of statements such as “RSA is secure”) 
in existing interactive proofs with non-
cryptographic ones. This led them to 
propose the study of the setting where 
the proof comes from a pair of provers 
who, for the purpose of the verification 
task, are willing to be separated and 
quizzed by the verifier. The hope is that 
the verifier can quiz them on related 
facts to detect inconsistency on their 
part. This limits the prover’s ability to 

One of the 
somewhat strange 
aspects of PCP 
research has been 
that even though 
the existence of 
PCPs seems to 
be a “positive” 
statement, its use 
is mostly negative. 
We suggest that 
positive uses might 
emerge as more  
of our life turns 
digital, and we start 
worrying not only 
about the integrity  
of the data, but 
some of the 
properties  
they satisfy.
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cheat and Ben-Or et al. leveraged this 
to create protocols where they reveal 
little knowledge about the proof when 
trying to prove their assertion to the 
verifier. (Some of the information be-
ing leaked in single-prover protocols 
was occurring because the prover 
needed to prove its honesty, and this 
information leakage could now stop.)

Fortnow et al.16 tried to study the pow-
er of multiprover interactions when the 
number of provers increased from two to 
three and so on. They noticed that more 
than two provers does not enhance the 
complexity of the assertions that could 
be proved to a polynomial time verifier. 
Key to this discovery was the notion of 
an “Oracle-Interactive Proof.” This is yet 
another variation in the theme of inter-
active proofs where the prover is “semi-
honest.” Specifically, the prover be-
haves as an oracle—it prepares a table 
of answers to every possible question 
that may be asked by the verifier and 
then honestly answers any sequence 
of questions from the verifier accord-
ing to the prepared set of answers. (In 
particular, even if the history of ques-
tions suggests that a different answer 
to the latest question may increase the 
probability that the verifier accepts, the 
oracle does not change its mind at this 
stage.) Fortnow et al. noted that Oracle-
interactive proofs simulate any (polyno-
mial) number of provers, and are in turn 
simulated by 2-prover proof systems 
with just one round of interaction (that 
is, the verifier asks each of the two prov-
ers one question each, without waiting 
for any responses from the provers, and 
then the provers respond).

Subsequent to Shamir’s result on the 
power of IP (single prover interactive 
proofs), Babai et al.6 gave an analogous 
characterization of the power of MIP. 
They showed that the set of assertions 
that can be proved in polynomial time 
to a probabilistic verifier talking to two 
provers is the same as the set of asser-
tions that could be verified in exponen-
tial time by a deterministic (classical) 
verifier. Thus the interaction with mul-
tiple provers reduced verification time 
from exponential to a polynomial!
Holographic Proofs, PCPs: In subsequent 
work, Babai et al.5 noticed that the no-
tion of an oracle-interactive proof was 
not very different from the classical no-
tion of a proof. If one considers the table 
implied by the oracle prover and writes 

it down explicitly, one would get a very 
long string (potentially exponentially 
long in the running time of the verifier), 
which in effect was attempting to prove 
the assertion. In the result of Babai et 
al.,6 this oracle-based proof is not much 
longer than the classical proof (both 
have length exponential in the length of 
the assertion), but the oracle proof was 
much easier to check (could be checked 
in polynomial time). This led Babai et 
al. to name such proofs holographic 
(small pieces of the proof reveal its cor-
rectness/flaws). Babai et al. focussed on 
the computation time of the verifier and 
showed (in some careful model of veri-
fication) that every proof could be con-
verted into a holographic one of slightly 
superlinear size, where the holographic 
one could be verified by the verifier in 
time that was some polynomial in the 
logarithm of the length of the proof.

Around the same time, with a very 
different motivation that we will discuss 
in the next section, Feige et al.15 implic-
itly proposed the concept of a PCP with 
the emphasis now being on the query 
complexity of the verifier (as opposed 
to the computation time in holographic 
proofs). The notion of PCP was finally 
explicitly defined by Arora and Safra.4

We stress that the theory of PCPs in-
herits much more than just the defini-
tion of PCPs from the theory of interac-
tive proofs. The results, techniques, and 
even just the way of thinking, developed 
in the context of interactive proofs 
played a major role in the development 
of the PCP theorem. In particular, the 
notion of 2-player 1-round interactive 
proof and their equivalence  to  oracle-
interactive proofs and hence PCPs plays 
a significant role in this theorem and we 
will use this notion to explain the proofs 
from a high level.

Implications to  
Combinatorial Optimization
The notion of theorems and proofs has 
shed immense light on the complexity 
of combinatorial optimization. Consid-
er a prototypical problem, namely graph 
coloring, that is, the task of coloring the 
vertices of an undirected graph with the 
minimum number of possible colors so 
that the endpoints of every edge have 
distinct colors. The seminal works of 
Cook, Levin, and Karp11, 25, 27 show that 
this task is as hard as finding a proof of 
some given theorem. In other words, 

given an assertion A and estimate N on 
the length a proof, one can construct a 
graph G on O(N 2) vertices with a bound 
K, such that G has a coloring with K or 
fewer colors if and only if A has a proof 
of length at most N. Furthermore, given 
a K-coloring of G, one can reconstruct 
a proof of A in time polynomial in N. 
Thus unless we believe that proofs of 
theorems can be found in time polyno-
mial in the length of the shortest proof 
(something that most mathematicians 
would find very surprising), we should 
also believe that graph coloring cannot 
be solved in polynomial time.

Of course, graph coloring is just one 
example of a combinatorial optimiza-
tion problem that was shown by the 
theory of NP-completeness to be as hard 
as the task of theorem-proving. Finding 
large independent sets in graphs, find-
ing short tours for travelling salesmen, 
packing objects into a knapsack are 
all examples of problems for which 
the same evidence of hardness applies 
(see Garey17 for many more examples). 
The NP-completeness theory unified 
all these problems into the same one, 
equivalent to theorem-proving.

Unfortunately, a somewhat more 
careful look into the different problems 
revealed many differences among them. 
This difference became apparent when 
one looked at their “approximability.” 
Specifically, we say that an algorithm A 
solves a (cost) minimization problem 
Õ to within some approximation fac-
tor a (n) if on every input x of length n, 
A(x) outputs a solution whose cost is no 
more than a (n) factor larger than the 
minimum cost solution. For (profit) 
maximization problems, approximabil-
ity is defined similarly: An a (n) approxi-
mation algorithm should produce a 
solution of cost at least the optimum 
divided by a (n). Thus a (n) ³ 1 for every 
algorithm A and problem Õ.

The NP-completeness theory says 
that for the optimization problems list-
ed above find a 1-approximate solution 
(that is, the optimum one) is as hard as 
theorem-proving. However, for some 
NP-complete minimization problems, 
it may be possible to find a solution of 
cost, say, at most twice the optimum 
in polynomial time for every input. 
Indeed this happens for the travelling 
salesman problem on a metric space 
(a space where distances satisfy triangle 
inequality). If one finds a minimum 
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cost spanning tree of the graph and per-
forms a depth-first-traversal of this tree, 
one gets a “tour” that visits every node 
of the graph at least once and has a cost 
of at most twice the cost of the optimum 
travelling salesperson tour. (This tour 
may visit some vertices more  than 
once, but such extra visits can be short-
circuited. The short-circuiting only pro-
duces a smaller length tour, thanks to 
the triangle inequality.) Thus the trav-
elling salesman problem with triangle 
inequalities (-TSP) admits a polyno-
mial time 2-approximation algorithm. 
Does this imply that every optimization 
problem admits a 2-approximation al-
gorithm? Turns out that not even a - 
approximation algorithm is known 
for graph coloring. On the other hand, 
the knapsack problem has a (1 + e )-
approximation algorithm for every 
positive e, while the same is not known 
-TSP. Thus while the theory of NP-
completeness managed to unify the 
study of optimization problems, the 
theory of “approximability” managed to 
fragment the picture. Till 1990 however 
it was not generally known if the inabil-
ity to find better approximation algo-
rithms was for some inherent reason, 
or was it merely our lack of innovation. 
This is where the PCP theory came in to 
the rescue.

In their seminal work, Feige et al.15 
came up with a startling result. They 
showed that the existence of a PCP veri-
fier as in the PCP theorem (note that 
their work preceded the PCP theorem 
in the form stated here, though weaker 
variants were known) implied that if 
the independent set size in a graph 
could be approximated to within any 
constant factor then NP would equal P! 
Given a PCP verifier V and an assertion 
A, they constructed, in polynomial time, 
a graph G = GV,A with the property that ev-
ery independent set in G corresponded 
to a potential “proof” of the truth of A, 
and the size of the independent set is 
proportional to the probability with 
which the verifier would accept that 
“proof.” Thus if A were true, then there 
would be a large independent set in the 
graph of size, say K. On the other hand, 
if A were false, every independent set 
would be of size at most (1 − e )K. Thus 
the gap in the acceptance probability 
of the verifier turned into a gap in the 
size of the independent set. A 1/(1 − 
e /2)-approximation algorithm would ei- 

ther return an independent set of size 
greater than (1 − e /2)K, in which case 
A must be true, or an independent set 
of size less than (1 − e )K in which case 
we may conclude that A is false. Thus a  
1/(1 − e /2)-approximation algorithm 
for independent sets suffices to get an 
algorithm to decide truth of assertions, 
which is an NP-complete task.

The natural next question is whether 
the connection between independent 
set approximation and PCPs is an iso-
lated one—after all different problems 
do behave very differently with respect 
to their approximability, so there is no 
reason to believe that PCPs would also 
yield inapproximability results for other 
optimization problems. Fortunately, 
it turns out that PCPs do yield inap-
proximability results for many other 
optimization problems. The result of 
Feige et al. was followed shortly there-
after by that of Arora et al.3 who showed 
that for a broad collection of problems, 
there were nontrivial limits to the con-
stant factor to which they were approx-
imable, unless NP = P. (In other words, 
for each problem under consideration 
they gave a constant a > 1 such that the 
existence of an a-factor approximation 
algorithm would imply NP = P.) This col-
lection was the so-called MAX SNP-hard 
problems. The class MAX SNP had been 
discovered earlier by Papadimitriou and 
Yannakakis30 and their work and subse-
quent works had shown that a varied col-
lection of problems including the MAX 
CUT problem in graphs, Vertex Cover 
problem in graphs, Max 3SAT (an opti-
mization version of 3SAT where the goal 
is to satisfy as many clauses as possible), 
-TSP, Steiner trees in metric spac-
es, the shortest superstring problem 
were all MAX SNP-hard. Subsequently 
more problems were added to this set 
by Lund and Yannakakis29 and Arora 
et al.1 The combined effect of these re-
sults was akin to that of Karp’s work25 in 
NP-completeness. They suggested that 
the theory of PCPs was as central to the 
study of approximability of optimization 
problems, as NP-completeness was to 
the exact solvability of optimization 
problems. Over the years, there have 
been many successful results deriving 
inapproximability results from PCP ma-
chinery for a wide host of problems (see 
surveys by Arora and Khot2, 26 for further 
details). Indeed the PCP machinery end-
ed up yielding not only a first cut at the 

approximability of many problems, but 
even very tight analyses in many cases. 
Some notable results here include the 
following:

Håstad˲˲ 22 showed that Max 3SAT 
does not have an a-approximation algo-
rithm for a < 8/7. This is tight by a result 
of Karloff and Zwick24 that gives an 8/7 
approximation algorithm.

Feige˲˲ 14 gave a tight inapproximabil-
ity result for the Set Cover problem.

Håstad˲˲ 21 shows that the clique size 
in n-vertex graphs cannot be approxi-
mated to within a factor of n1−e for any 
positive e .

Again, we refer the reader to some of 
the surveys for more inapproximability 
results2, 26 for further details.

Construction of PCPs:  
A Bird's Eye View
We now give a very high level view of 
the two contrasting approaches to-
wards the proof of the PCP theorem. 
We stress that this is not meant to give 
insight, but rather a sense of how the 
proofs are structured. To understand 
the two approaches, we find it useful 
to work with the notion of 2-prover one 
round proof systems. While the notion 
is the same as the one defined infor-
mally in Section 2, here we define the 
verifier more formally, and introduce 
the parameter corresponding to query 
complexity in this setting.

Definition 4.1 (2IP verifier, Answer 
size, Gap). A 2IP verifier of answer size 
a(n), and gap e (n) is a probabilistic algo-
rithm V who, on input an assertion A Î 
{0,  1}*, picks a random string R Î {0,1}*, 
makes one query each to two provers P1, 
P2 : {1, …, } ® {0, 1}*, and produces 
an accept/reject verdict, denoted 
V P1,  P2 (A; R), with the following restrictions, 
when A Î {0, 1}n:

Running time: V always runs in time 
polynomial in n.
Answer size: The prover’s answers are 
each a(n) bits long.
Prover length: The questions to the prov-
ers are in the range {1,…, (n)} where (n) 
is a polynomial in n.
Completeness: If A is a true assertion, 
there exist provers P1, P2 such that V P1,  P2 (A; 
R) always accepts.
Soundness, with gap e (n): If A is not true, 
then for every pair of provers P1, P2 the 
probability, over the choice of the random-
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ness R, that V P1,  P2 (A; R) outputs accept is 
at most 1 − e (n).

The definition is (intentionally) very 
close to that of a PCP verifier, so let us 
notice the differences. Rather than one 
proof oracle, we now have two provers. 
But each is asked only one question, so 
effectively they are oracles! In PCPs, the 
response to a query is one bit long, but 
now the responses are a(n) bits long. 
On the other hand, in PCPs, the verifier 
is allowed to make q(n) queries to the 
proof oracle, while here the verifier is 
only allowed one query each. Neverthe-
less, PCP verifiers and MIP verifiers are 
closely related. In particular, the follow-
ing proposition is really simple from the 
definitions.

Proposition 4.2. If 3SAT has a 2IP veri-
fier of answer size a(n) and gap e (n), then 
3SAT has a PCP verifier with query com-
plexity 2 · a(n) and gap e (n).

The PCP verifier simply simulates 
the 2IP verifier, with each query to the 
provers being simulated by a(n) queries 
to the proof oracle.

Thus to prove the PCP theorem, it suf-
fices to give a 2IP verifier with constant 
gap and constant answer size. We start 
with the approach of Arora and Safra.4

Reducing answer size. The initial 
proofs of the PCP theorem approached 
their goal by holding the gap to be a 
constant, while allowing the 2IP veri-
fier to have (somewhat) long answer 
sizes. Key to this approach were some 
alphabet reduction lemmas initiated 
in the work of Arora and Safra.4 Here we 
state two from Arora et al.,3 that suffice 
for our purposes.

Lemma 4.3 (Arora et al.3). There exists 
a constant d > 0 such that if 3SAT has a 2IP 
verifier with answer size a(n) and gap e , 
then 3SAT also has a 2IP verifier with an-
swer size (log a(n) )2 and gap e · d.

Lemma 4.4 (Arora et al.3). There exist 
constants c < ∞ and t > 0 such that if 3SAT 
has a 2IP verifier with answer size a(n) = 
o(log n) and gap e , then 3SAT also has a 2IP 
verifier with answer size c and gap e  · t.

Both lemmas above offer (pretty se-
vere) reductions in answer sizes. Below, 
we show how they suffice to get the 
PCP theorem. Of course, the technical 

complexity is all hidden in the proofs 
of the two lemmas, which we will not be 
able to present. We simply mention that 
these lemmas are obtained by revisiting 
several popular “algebraic error-correct-
ing codes” and showing that they admit 
query efficient probabilistic algorithms 
for “error-detection” and “error-correc-
tion.” The reader is referred to the origi-
nal papers3, 4 for further details.

Proof of Theorem 2.2. We start by 
noting that the classical (determinis-
tic) verifier for 3SAT is also a 2IP verifier 
with answer size n and gap 1. Applying 
Lemma 4.3 we then get it thus has a 2IP 
verifier with answer size (log n)2 and  
gap d . Applying Lemma 4.3 again we 
now see that is also has a 2IP veri-
fier with answer size (log(log n) )2 and 
gap  d 2. Since a(n) = o(log n) we can 
now apply Lemma 4.4 to see that it has 
a 2IP  verifier with answer size c and  
gap d2 · t. By Proposition 4.2 we conclude 
that 3SAT has a PCP verifier with query 
complexity 2c and gap d 2t.

Amplifying error. We now turn to 
the new, arguably simpler, proof due to 
Dinur12 of the PCP theorem. Since we are 
hiding most of the details behind some 
of the technical lemmas, we would not 
be able to completely clarify the sim-
plicity of Dinur’s approach. However, 
we will be able to at least show how it 
differs right from the top level.

Dinur’s approach to the PCP theo-
rem is an iterative one, and rather than 
working with large answer sizes, this 
proof works with small gaps (during in-
termediate stages).

The approach fixes a “generalized 
graph k-coloring” problem as the prob-
lem of interest and fixes a canonical 2IP 
verifier for this problem. It starts by ob-
serving that 3SAT can be transformed 
to this generalized graph 3-coloring 
problem. It then iteratively trans-
forms this graph into a different one, 
each time increasing the “gap of the 
instance.” The final instance ends up 
being one that where the canonical 2IP 
verifier either accepts with probability 
1, or rejects with constant probability 
(depending on whether the original 
instance is satisfiable or not), which 
is sufficient for the PCP theorem. We 
go into some more details of this ap-
proach below, before getting into the 
heart of the process which is the single 
iteration.

The literature  
on PCPs is rich  
with a diversity  
of parameters,  
but we chose  
to focus on only 
two: the query 
complexity  
and the gap.
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A generalized graph k-coloring 
problem has as an instance a graph 
G  = (V, E) and constraint functions 
pe : {1,…,k} × {1,…,k} ® {accept, 
reject} for every edge e Î E. The 
canonical 2IP verifier for in instance 
expects as provers two oracles giving 
c1, c2 : V ® {1,…, k} and does one of 
the following: With probability 1/2 it 
picks a random edge e = (u, v) Î E que-
ries for c1(u) and c2(v) and accepts iff 
pe(c1(u), c2(v) ) = accept. With prob-
ability 1/2 it picks a random vertex 
u Î V and queries for c1(u) and c2(u) 
and accepts if and only if c1(u) = c2(v). 
Note that the canonical 2IP verifier 
has answer size [log2 k]. An instance is 
satisfiable if the canonical 2IP verifier 
accepts with probability 1. An instance 
is e -unsatisfiable if the probability that 
the verifier rejects is at least e .

Key to Dinur’s iterations are trans-
formations among generalized graph 
coloring problems that play with the 
gap and the answer size (that is, # of 
colors allowed) of the 2IP verifiers. 
Since these transformations are ap-
plied many times to some fixed start-
ing instance, it is important that the 
transformations do not increase the 
problem size by much and Dinur in-
sists that they only increase them by 
a linear factor. We define this notion 
formally here.

Definition 4.5. A transformation T that 
maps instances of generalized graph k-
coloring to generalized graph K-coloring 
is a (k, K, b, e0)-linear-transformation if it 
satisfies the following properties:

T˲˲ (G) has size linear in the size of G.
T˲˲ (G) is satisfiable if G is satisfiable.
T˲˲ (G) is min{b . e , e 0}-unsatisfiable if 

G is e -unsatisfiable.
Note that the parameter b above may 

be greater than 1 or smaller; and the ef-
fect in the two cases is quite different. If  
b > 1 then the transformation increases 
the gap, while if b < 1 then the transfor-
mation reduces the gap. As we will see 
below, Dinur’s internal lemmas play 
with effects of both kinds (combining 
them in a very clever way).

The key lemma in Dinur’s iterations 
does not play with the answer size and 
simply increase the gap and may be 
stated as below.

Lemma 4.6 (Gap Amplification Lem-
ma). There exists a constant e0 > 0 such that 

there exists a polynomial-time computable 
(3, 3, 2, e0)-linear-transformation T.

Before getting a little into the de-
tails of the proof of this lemma, let us 
note that  it suffices to prove the PCP 
theorem.

Proof of Theorem 2.2. We de-
scribe a 2IP verifier for 3SAT. The verifier 
acts as follows. Given a 3CNF formula 
f of length n, it first applies the stan-
dard reduction from 3SAT to 3-coloring 
to get an instance G0 of (generalized) 
graph 3-coloring which is 3-colorable 
iff f is satisfiable. Note that this in-
stance is 1/m-unsatisfiable for some 
m = O(n). The verifier then iteratively 
applies the transformation T to G0  = 
log m times, that is, it sets Gi = T(Gi−1) 
for i = 1,…,. Finally it simulates the  
canonical 2IP verifier on input G


.

If f is satisfiable, then so is Gi 
for every i, and so the canonical 
2IP verifier accepts with probabil-
ity 1. If f is unsatisfiable then Gi is min  
{2i · 1/m, e 0}-unsatisfiable and so G


 is e 0-

unsatisfiable. Finally note that since each 
iteration increases the size of Gi only by a 
constant factor, the final graph G


 is only 

polynomially larger than f, and the entire 
process only requires polynomial time.

Note that the 2IP verifier thus con-
structed has answer size [log2 3] = 2 bits. 
Its gap is e 0. The conversion to a PCP 
verifier leads to one that has query com-
plexity of 4 bits and gap e0 > 0.

We now turn to the magical gap-
amplifying lemma above. Dinur 
achieves this lemma with two sub-lem-
mas, where the game between answer 
size and gap becomes clear. 

Lemma 4.7 (Gap-Increase). For every k, 
b1 < ∞, there exists a constant K < ∞ and e1 
> 0 such that a (k, K, b1, e1)-linear-transfor-
mation T1 exists.

Note that a large b1 >> 1 implies the 
transformation enhances the unsat-
isfiability of an instance. The Gap-
Increase lemma is claiming that one 
can enhance this unsatisfiability by 
any constant factor for an appropri-
ate price in the answer size. The next 
lemma trades off in the other direction, 
but with a clever and critical switch of 
quantifiers.

Lemma 4.8 (Answer-Reduction). 
For every k there exists a constant b2 > 
0 such that for every K < ∞ a (K, k, b2, 1)- 
linear-transformation T2 exists.

The constant b2 obtained from the 
lemma is quite small (very close to 0). 
But for this price in gap-reduction we 
can go from large answer sizes to small 
ones, and the price we pay in the un-
satisfiability is independent of K! This 
allows us to combine the two lemmas 
to get the powerful gap amplification 
lemma as follows.

Proof of Lemma 4.6. Fix k = 3. Let b2 
and T2 be as in Lemma 4.8. Apply Lem-
ma 4.7 with b1 = 2/b2 and let K, e 1 and T1 
be as guaranteed by Lemma 4.7. Let T(G) 
= T2(T1(G) ). Then, it can be verified that T 
is a (k, k, 2, b2· e 1)-linear-transformation.�

Finally we comment on the proofs 
of Lemmas 4.7 and 4.8. We start with 
the latter. The crux here is the indepen-
dence of b2 and K. A reader who attempts 
to use standard reductions, from say  
k-coloring to K-coloring would realize 
that this is nontrivial to achieve. But 
if one were to ignore the linear-size re-
striction, the PCP literature already gave 
such transformations before. In particu-
lar Lemma 4.4 gives such a transforma-
tion provided K = 2o(log n). When special-
ized to the case K = O(1) the reduction 
also turns out to be a linear one.

Lemma 4.7 is totally novel in Dinur’s 
works.12, 13 To get a sense of this lem-
ma, let us note that its principal goal 
is to reduce the error of the 2IP veri-
fier and so is related to the standard 
question in the context of randomized 
algorithms: that of error-reduction. In 
the context of randomized algorithms 
this is well studied. If one starts with 
any randomized algorithm to compute 
some function and say it produces the 
right answer with probability 2/3 (and 
errs with probability 1/3), then one 
can reduce the error by running this 
algorithm many times and output-
ting the most commonly seen answer. 
Repetition m times reduces the error 
to 2−Ω(m). One could view a 2IP verifier 
as just another randomized procedure 
and attempt to repeat the actions of 
the verifier m times to reduce its er-
ror. This leads to two problems. First 
the natural approach increases the 
number of rounds of communication 
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between the verifier and the prover to 
m-rounds and this is not allowed (by 
our definitions, which were crucial 
to the complementary lemma). A less 
natural, and somewhat optimistic, ap-
proach would be to repeat the random 
coin tosses 2IP verifier m times, col-
lect all the questions that it would like 
to ask, say, the first prover and send 
them together in one batch (and simi-
larly with the second prover). Analysis 
of such parallel repetition of 2IP veri-
fiers was known to be a nontrivial 
problem,16, 32 yet even such an analysis 
would only solve the first of the prob-
lems with the “naive” approach to er-
ror-reduction. The second problem is 
that the transformation does not keep 
the size of the transformed instance 
linear in size and this turns out to be 
a fatal. Dinur manages to overcome 
this barrier by borrowing ideas from 
“recycling” of randomness,10, 23 which 
suggests approaches for saving on this 
blowup of the instance size. Analyzing 
these approaches is nontrivial, but 
Dinur manages to do so, with a rela-
tively clean (and even reasonably 
short) proof. The reader is pointed to 
the original paper12 for full details, 
and to a more detailed survey31 for in-
formation on the context.

Conclusion
The goal of this article is to mainly 
highlight the notion of a PCP, and its 
utility in computational complexity. 
Due to limitations on space and time, 
we were barely able to scratch the sur-
face. In particular we did not focus on 
the explicit parameters and the tightest 
results known. The literature on PCPs 
is rich with a diversity of parameters, 
but we chose to focus on only two: the 
query complexity and the gap. The 
trade-off between the two is already in-
teresting to study and we mention one 
tight version, which is extremely useful 
in “inapproximability” results. Håstad22 
shows that the query complexity in the 
PCP theorem can be reduced to 3 bits, 
while achieving a gap arbitrarily close 
to 1/2. So a verifier confronted with a 
fallacious assertion can read just 3 bits 
of the proof, and would find an error 
with probability (almost) one-half!

One of the somewhat strange aspects 
of PCP research has been that even 
though the existence of PCPs seems to 
be a “positive” statement (verification 

can be very efficient), its use is mostly 
negative (to rule out approximation al-
gorithms). One may wonder why the 
positive aspect has not found a use. We 
suggest that positive uses might emerge 
as more and more of our life turns digi-
tal, and we start worrying not only about 
the integrity of the data, but some of the 
properties they satisfy, that is, we may 
not only wish to store some sequence of 
bits x, but also preserve the information 
that P(x) = y for some program P that 
took x as an input.

One barrier to such uses is the cur-
rent size of PCPs. PCP proofs, even 
though they are only polynomially larg-
er than classical proofs; they are much 
larger, and this can be a prohibitive cost 
in practice. The good news is that this 
parameter is also improving. An opti-
mistic estimate of the size of the PCP 
proof in the work of Håstad22 might be 
around n106, where n is the  size of the 
classical proof! But recent results have 
improved this dramatically since and 
current best proofs9, 12 work with PCPs 
of size around O(n(log n)O(1)) (so the con-
stant in the exponent has dropped from 
106 to 1 + o(1) ). Thus far, this reduc-
tion in PCP size has come at the price 
of increased query complexity, but this 
concern is being looked into by current 
research and so a positive use of PCPs 
may well be seen in the near future.

Acknowledgments
I would like to thank the anonymous 
reviewers for their valuable comments, 
and for detecting (mathematical!) er-
rors in the earlier version of this manu-
script (despite the fact that this article 
is not written in the PCP format).�

References
	 1.	A rora, S., Babai, L., Stern, J., Sweedyk, Z. The hardness 

of approximate optima in lattices, codes and systems 
of linear equations. J. Comput. Syst. Sci. 54, 2 (Apr. 
1997), 317–331.

	 2.	A rora, S., Lund, C. Hardness of approximations. 
Approximation Algorithms for NP-Hard Problems. 
D.S. Hochbaum, ed. PWS, 1995.

	 3.	A rora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M. 
Proof verification and the hardness of approximation 
problems. J. ACM 45, 3 (May 1998), 501–555.

	 4.	A rora, S., Safra, S. Probabilistic checking of proofs: A new 
characterization of NP. J. ACM 45, 1 (Jan. 1998), 70–122.

	 5.	 Babai, L., Fortnow, L., Levin, L.A., Szegedy, M. Checking 
computations in polylogarithmic time. In Proceedings 
of the 23rd ACM Symposium on the Theory of 
Computing (New York, 1991), ACM, 21–32.

	 6.	 Babai, L., Fortnow, L., Lund, C. Non-deterministic 
exponential time has two-prover interactive protocols. 
Comput. Complexity 1, 1 (1991), 3–40.

	 7.	 Babai, L., Moran, S. Arthur-Merlin games: A 
randomized proof system, and a hierarchy of 
complexity class. J. Comput. Syst. Sci. 36, 2 (Apr. 
1988), 254–276.

	 8.	 Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, 

A. Multi-prover interactive proofs: How to remove 
intractability. In Proceedings of the 20th Annual 
ACM Symposium on the Theory of Computing (1988), 
113–131.

	 9.	 Ben-Sasson, E., Sudan, M. Short PCPs with poly-log 
rate and query complexity. In Proceedings of the 37th 
Annual ACM Symposium on Theory of Computing 
(New York, 2005), ACM, 266–275.

	10.	�C ohen, A., Wigderson, A. Dispersers, deterministic 
amplification, and weak random sources (extended 
abstract). In IEEE Symposium on Foundations of 
Computer Science (1989), 14–19.

	11.	C ook, S.A. The complexity of theorem-proving 
procedures. In Proceedings of the 3rd ACM 
Symposium Theory of Computing (Ohio, 1971), Shaker 
Heights, 151–158.

	12.	D inur, I. The PCP theorem by gap amplification. In 
Proceedings of the 38th Annual ACM Symposium on 
Theory of Computing (New York, 2006), ACM, 241–250. 
Preliminary version appeared as an ECCC Technical 
Report TR05-046.

	13.	D inur, I., Reingold, O. Assignment testers: Towards 
a combinatorial proof of the PCP-theorem. In 
Proceedings of the 45th Annual IEEE Symposium on 
Foundations of Computer Science (Loc Alamitos, CA, 
USA, 2004), IEEE, 155–164.

	14.	F eige, U. A threshold of ln n for approximating set 
cover. J. ACM 45, 4 (1998), 634–652.

	15.	F eige, U., Goldwasser, S., Lovász, L., Safra, 
S., Szegedy, M. Interactive proofs and the hardness 
of approximating cliques. J. ACM 43, 2 (1996), 
268–292.

	16.	F ortnow, L., Rompel, J., Sipser, M. On the power of 
multi-prover interactive protocols. Theor. Comput. Sci. 
134, 2 (1994), 545–557.

	17.	G arey, M.A., Johnson, D.S. Computers and 
Intractability. Freeman, 1979.

	18.	G oldreich, O. Modern Cryptography, Probabilistic Proofs 
and Pseudorandomness, volume 17 of Algorithms and 
Combinatorics. Springer-Verlag, 1998.

	19.	G oldreich, O., Micali, S., Wigderson, A. Proofs that yield 
nothing but their validity or all languages in NP have 
zero-knowledge proof systems. J. ACM 38, 1 (July 1991), 
691–729. Preliminary version in IEEE FOCS, 1986.

	20.	G oldwasser, S., Micali, S., Rackoff, C. The knowledge 
complexity of interactive proof systems. SIAM J. 
Comput. 18, 1 (February 1989), 186–208.

	21.	H åstad, J. Clique is hard to approximate within n to 
the power 1-epsilon. Acta Mathemat. 182 (1999), 
105–142.

	22.	H åstad, J. Some optimal inapproximability results. 
J. ACM 48 (2001),798–859.

	23.	I mpagliazzo, R., Zuckerman, D. How to recycle random 
bits. In IEEE Symposium on Foundations of Computer 
Science (1989), 248–253.

	24.	K arloff, H., Zwick, U. A 7/8-approximation algorithm 
for max 3sat? In FOCS ’97: Proceedings of the 38th 
Annual Symposium on Foundations of Computer 
Science (FOCS ’97) (Washington, DC, USA, 1997), IEEE 
Computer Society, 406–415.

	25.	K arp, R.M. Reducibility among combinatorial problems. 
Complexity of Computer Computations. R. Miller, and 
J. Thatcher, eds.1972, 85–103.

	26.	K hot, S. Guest column: Inapproximability results via long 
code based pcps. SIGACT News 36, 2, 25–42, 2005.

	27.	L evin, L.A. Universal search problems. Problemy 
Peredachi Informatsii, 9, 3 (1973), 265–266.

	28.	L und, C., Fortnow, L., Karloff, H.J., Nisan, N. Algebraic 
methods for interactive proof systems. J. ACM 39, 4 
(Oct. 1992), 859–868.

	29.	L und, C., Yannakakis, M. On the hardness of 
approximating minimization problems. J. ACM 41, 5 
(Sept. 1994), 960–981.

	30.	 Papadimitriou, C., Yannakakis, M. Optimization, 
approximation, and complexity classes. J. Comput. 
Syst. Sci. 43 (1991), 425–440.

	31.	R adhakrishnan, J., Sudan, M. On Dinur’s proof of the 
PCP theorem. Bulletin (New Series) Amer. Math. Soc., 
44, 1 (Jan. 2007), 19–61.

	32.	R az, R. A parallel repetition theorem. SIAM J. Comput. 
27, 3 (1998), 763–803.

	33.	S hamir, A. IP = PSPACE. J. ACM 39, 4 (Oct. 1992), 
869–877.

	34.	S hannon, C.E. A mathematical theory of communication. 
Bell Syst. Tech. J. 27, (1948), 379–423, 623–656.

Madhu Sudan is Fujitsu Professor of EECS at MIT's 
Computer Science and Artificial Intelligence Laboratory, 
Cambridge, MA.  

© 2009 ACM 0001-0782/09/0300 $5.00



research highlights 

march 2009  |   vol.  52  |   no.  3  |   communications of the acm     85

p. 97

Learning and Detecting 
Emergent Behavior in  
Networks of Cardiac Myocytes
By Radu Grosu, Scott A. Smolka, Flavio Corradini,  
Anita Wasilewska, Emilia Entcheva, and Ezio Bartocci

p. 96

Technical 
Perspective  
Where Biology  
Meets Computing
By Bud Mishra

p. 87

Error Correction up to the 
Information-Theoretic Limit
By Venkatesan Guruswami and Atri Rudra

p. 86

Technical 
Perspective  
The Beauty of  
Error-Correcting 
Codes
By Daniel A. Spielman



86    communications of the acm    |   march 2009  |   vol.  52  |   no.  3

Error- corre ctin g c odes are the 
means by which we compensate for 
interference in communication, and 
are essential for the accurate trans-
mission and storage of digital data. 
All communication mechanisms and 
storage devices are subject to interfer-
ence, typically called “noise,” which 
corrupts communicated messages and 
stored data. Thus, for a communica-
tion system to faithfully transmit data, 
it must build redundancy into its trans-
missions in such a way that even if a 
transmission is partially corrupted, the 
intended message may be reconstruct-
ed. Error-correcting codes provide the 
mapping from messages to redundant 
transmissions.

For example, a message is usually a 
string of zeros and ones. A redundant 
encoding of a message may be ob-
tained by appending a few parity bits 
to the original message, to form a code-
word. The rate of a code is the ratio of 
the length of a message to the length 
of a codeword, and equals the recipro-
cal of the redundancy. A communica-
tion medium, called a channel, might 
transmit bits, and noise could flip bits 
from zero to one or one to zero. For ex-
ample, the Binary Symmetric Channel 
with crossover probability p transmits 
bits, and flips each bit with probability 
p, independently.  An error-correcting 
code is designed with an abstract mod-
el of the target communication chan-
nel in mind. 

Given a model of a channel, one 
should design a code that maximiz-
es the rate while minimizing some 
tradeoff of error-probability, delay, and 
the computational complexity of en-
coding and decoding. While the goal 
of achieving low probability of error 
in a communication system is funda-
mentally probabilistic, major advances 
in the field have been made through a 
worst-case, deterministic, approach. 
The paper here by Guruswami and 
Rudra surveys developments in the 
worst-case approach to the coding 

problem, and explains their own re-
cent contributions. They build on the 
classical Reed-Solomon codes.

Reed-Solomon codes employ a sig-
naling alphabet containing more ele-
ments than just zero and one: each 
symbol is an element of a finite field, 
such as the integers modulo a prime. In 
a Reed-Solomon code of rate R, classic 
decoding algorithms can efficiently re-
construct a message so long as at most 
a (1−R)/2 fraction of the symbols in the 
transmitted codeword are corrupted. 
This is exactly the fraction of errors up 
to which the problem is guaranteed to 
have a unique solution: there exist rare 
patterns containing just one more er-
ror for which two codewords are equal-
ly close to the corrupted transmission.

A major advance in the decoding 
of Reed-Solomon codes was Sudan’s4 
algorithm for list decoding Reed-Sol-
omon codes. A list-decoding decoder 
returns the list of all codewords within 
some distance of a corrupted transmis-
sion. While the closest codeword is 
usually unique, the algorithmic task is 
simplified by the option of returning a 
list. Guruswami and Sudan’s1 improve-
ment of Sudan’s list decoder efficiently 
returns the list of all codewords that 
differ from a corrupted transmission 
in at most a 1 − R fraction of symbols, 
and the list is guaranteed to be short.

This was a big improvement over 
previous decoding algorithms, but 
made little difference at the desirable 
high rates (near 1), where 1 − R  is ap-
proximately the same as (1−R)/2. Gu-
ruswami and Rudra’s advance exploits 
an idea of Parvaresh and Vardy3 for 
bundling Reed-Solomon alphabet sym-
bols together. This makes the signal-
ing alphabet slightly larger, but greatly 
increases the fraction of errors under 
which efficient list decoding is pos-
sible. They obtain codes of rate R from 
which one can efficiently produce the 
list of all codewords that differ from a 
corrupted transmission in a fraction of 
symbols approaching 1 − R. For high-

rate codes, this is almost twice as many 
errors as previous schemes could cor-
rect. Moreover, we know that one can-
not hope to do better.

While a tremendous theoretical ad-
vance, more work is required before 
these codes can be used in practical 
communication systems. The decod-
ing algorithms run in polynomial time, 
but need to be faster before they can 
be applied in practice. They also need 
to be extended to incorporate informa-
tion from lower levels of the commu-
nication system. Few communication 
media naturally transmit finite field el-
ements, or even zeros and ones. These 
symbols are usually converted into an-
alog waveforms. Receivers of partially 
corrupted waveforms can do more than 
just report which valid waveform is 
closest: they can return the likelihood 
of each valid waveform. A soft-decision 
decoder incorporates this information 
into the decoding process.

Koetter and Vardy2 figured out how 
to incorporate such information in the 
Guruswami-Sudan algorithm, and an 
analogous discovery may be required 
before we communicate using Gurus-
wami-Rudra codes.	
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Abstract
Ever since the birth of coding theory almost 60 years ago, 
researchers have been pursuing the elusive goal of con-
structing the “best codes,” whose encoding introduces the 
minimum possible redundancy for the level of noise they 
can correct. In this article, we survey recent progress in list 
decoding that has led to efficient error-correction schemes 
with an optimal amount of redundancy, even against worst-
case errors caused by a potentially malicious channel. To cor-
rect a proportion r (say 20%) of worst-case errors, these codes 
only need close to a proportion r of redundant symbols. The 
redundancy cannot possibly be any lower information theo-
retically. This new method holds the promise of correcting a 
factor of two more errors compared to the conventional algo-
rithms currently in use in diverse everyday applications.

1. INTRODUCTION
Coping with corrupt data is an essential part of our modern 
day lives; even if most of the time we are blissfully unaware 
of it. When we watch television, the TV has to deal with sig-
nals that get distorted during transmission. While talking on 
our cellphones, the phone has to work with audio signals that 
get corrupted during transmission through the atmosphere 
though we definitely are aware of it when the connection is 
poor. When we surf the Internet, the TCP/IP protocol has to 
account for packets that get lost or garbled while being routed. 
When we watch movies on DVDs, the player has to overcome 
loss of data due to scratches. Even when we buy our groceries, 
the scanner has to deal with distorted barcodes on packages.

The key ingredient in coping with errors in these and 
many other applications is an error-correcting code or just 
code for brevity. The idea behind codes is conceptually sim-
ple: add redundancy to the information so that even if the 
resulting data gets corrupted, e.g. packets get corrupted 
during routing or the DVD gets some scratches, the original 
information can still be recovered.

Ideally, we would like to add a small amount of redun-
dancy and at the same time be able to correct many errors. 
As one might expect, these are conflicting goals and strik-
ing the right balance is where things get interesting. For 
example, consider the code where every information bit is 
repeated say a 100 times (this is known as the repetition 
code). Intuitively, this code should do well. In particular, the 
following is a natural error-recovery procedure or a decoding 
algorithm: for every consecutive 100 bits of the data, iden-
tify whether the majority of the bits is 0 or 1, and output the 
corresponding bit. Unless we happen to be unlucky, this 
decoding algorithm can recover from quite a few errors. The 
downside is that every 100 bits of data contain only one bit 

of information—imagine how large a DVD would need to 
be in order to store a movie with such redundancy. On the 
other extreme is the parity code, which appends the parity 
of the information bits at the end of the message. This code 
uses the minimum amount of redundancy possible but has 
poor error-recovery capabilities. Indeed, even if just two bits 
get flipped, it can go undetected. For example, 0001 gets 
encoded as 00011 under the parity code. If the first two bits 
get corrupted and we receive 11011, we would misinterpret 
the original message to be 1101. Imagine Clark Gable saying 
at the end of your small parity encoded DVD for Gone with 
the Wind, “Frankly, my dear, I don’t give a ham !”

To capture this inherent tension between the redundancy 
and the error tolerance of codes, let us define codes and some 
key parameters formally. A code C is given by an encoding 
map of the form C : Σk → Σn (for integers k < n) which encodes 
a sequence of k symbols from Σ into a larger sequence of n 
symbols. Given a message m Î Σk, C(m) is known as the corre-
sponding codeword. The parameters k, n, and Σ are called the 
dimension, block length, and alphabet of C, respectively. We 
will often use the ratio R = k/n, which is called the rate of C. 
Note that R exactly captures the amount of information con-
tained per bit of a codeword. The Hamming distance between 
two strings in Σn is the number of coordinates where they dif-
fer. The minimum distance of a code is defined to be the small-
est Hamming distance between two distinct codewords.

Thus, our question of interest can be now re-stated as fol-
lows: given a code C of rate R, what is the maximum fraction 
of errors (which we will henceforth refer to as r) that can 
be tolerated by C? Now as every codeword has k symbols of 
information, it is intuitive that in the worst case at least k 
symbols of a codeword should be uncorrupted to have any 
hope of recovering the original information. In other words, 
we can only have r ≤ (n − k)/n = 1 − R, irrespective of the com-
putational power of the decoder.

The main focus of this article is the following question:

Can we construct a code C of rate R that can be efficiently 
decoded from close to a 1 − R fraction of errors?

Quite surprisingly, we will show the answer to be yes. Thus, 
the above simple information-theoretic limit can in fact be 
approached. In particular, for small rates, we can recover from 
situations where almost all of the data can be corrupted. For 
example, we will be able to recover even if Clark Gable were 
to spout “alhfksa, hy meap xH don’z hive b hayn!” There are 
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in fact two parts to the above question. First, the code should 
be such that the identity of the message is uniquely (or near 
uniquely) pinned down based on the noisy version of its 
encoding. Second, we need an efficient procedure to recover 
the message based on the corrupted codeword, with run-
time bounded by a hopefully small polynomial in the block 
length n. Brute-force approaches such as searching through 
all codewords require time exponential in n, and are com-
putationally prohibitive. The main message of this article is 
that a variant of the widely deployed Reed–Solomon codes 
can in fact be error-corrected efficiently, even as the fraction 
of errors approaches the absolute 1 − R limit.

We stress that in the above question, the noise model is 
a worst-case one, where the channel is modeled as an adver-
sary/jammer that can corrupt the codeword in an arbitrary 
manner, subject only to a limit on the total number of errors. 
No assumptions are made on how the errors are distributed. 
The worst-case model was put forth in Hamming’s influen-
tial paper.12 An alternate approach, pioneered by Shannon 
in his seminal work,16 is to model the noisy channel as a 
stochastic process whose behavior is governed by a pre-
cisely known probability law. A simple example is the binary 
symmetric channel (BSCr ) where each bit transmitted gets 
flipped with a probability r, independent of all other bits. 
For every such channel, Shannon exactly characterized the 
largest rate at which reliable communication is possible.

We note that obtaining algorithmic results is more diffi-
cult in worst-case noise model. In fact, traditionally it was 
believed that codes designed for worst-case noise faced a 
limit of (1 − R)/2 fraction of errors, which is factor 2 off from 
the information-theoretic limit of a (1 − R) fraction of errors. 
In attempting to correct e > (n − k)/2 errors, we face a prob-
lem: there may be more than one codeword within Hamming 
distance e from the received word. In any code mapping k 
symbols to n symbols, there must be two codewords at dis-
tance (n − k + 1) or less. If one of these codewords is transmit-
ted and gets distorted by errors to halfway between the two 
codewords, unambiguous recovery of the original message 
becomes infeasible. This suggests that beyond a fraction  
(1 − R)/2 of worst-case errors, the original message is unre-
coverable. This was indeed the conventional wisdom in cod-
ing theory till the 1990s.

A natural strategy, in the event of multiple close-by code-
words, would be to allow the decoder to output a list of code-
words. This model is called list decoding. It was introduced 
in the late 1950s by Elias2 and Wozencraft,19 and revived 
with an algorithmic focus for a cryptographic application by 
Goldreich and Levin.4 Further, it turns out that the bad case 
above is rather pathological—for typical patterns of e errors, 
for e much bigger than (n − k)/2, the original codeword will 
be the only codeword within distance e. Thus, list decoding 
in addition to handling the bad error patterns for “unique” 
decoding, also allows us to uniquely recover the transmitted 
codeword for most error patterns.

It is interesting to note that even though the list decod-
ing problem has a long history in the coding theory world,a a 

large share of the algorithmic progress in list decoding has 
happened in the theoretical computer science community. 
One of the reasons for this happy coincidence is that list 
decoding has found numerous applications in cryptography 
and computational complexity theory (e.g., see the discus-
sion on randomness extractors in Section 5).

In particular, in the last decade, the subject of list decod-
ing has witnessed a lot of activity, culminating in algorithms 
that correct close to the information-theoretically optimal  
1 − R fraction of errors with rate R. The purpose of this arti-
cle is to discuss this recent body of results which deliver the 
full promise of codes against worst-case errors. We begin in 
Section 2 by describing a popular family of codes and a few 
decoding algorithms for it.

2. REED–SOLOMON CODES
In 1960, Irving Reed and Gustave Solomon described a 
construction of error-correcting codes, which are called 
Reed–Solomon codes after them, based on polynomials 
over finite fields.b Almost 50 years after their invention, 
Reed–Solomon codes (henceforth, RS codes) remain ubiq-
uitous today in diverse applications ranging from magnetic 
recording to UPS bar codes to satellite communications. 
To describe the simple and elegant idea behind RS codes, 
imagine Alice wishes to communicate a pair of numbers 
(a, b) to Bob. We can think of (a, b) as specifying a line in the 
plane (with X, Y axes) with equation Y = aX + b. Clearly, to 
specify the line, it suffices to communicate just two points 
on the line. To guard against errors, Alice can oversample 
this line and send more points to Bob, so that even if a 
few points are distorted by errors, the collection of points 
resembles the original line more closely than any other line 
(Figure 1). Thus, Bob can hope to recover the correct line, 
and in particular (a, b).

To encode longer messages consisting of k symbols via 
an RS code, one thinks of these as the coefficients of a poly-
nomial f (X) of degree k − 1 in a natural way, and encodes 
the message as n > k points from the curve Y − f (X) = 0. 

Figure 1: Oversampling from a line Y = aX + b to tolerate errors, 
which occur at X = 3 and 5.

X
1 2 3 4 5 6 7

b

Y

a  The problem was introduced about 50 years ago and the main combinato-
rial limitations of list decoding were established in the 1970s and 1980s.

b  For this article, readers not conversant with fields can think of a finite field 
as {0, 1, . . . , p−1) for a prime p with addition and multiplication operations 
defined modulo p.
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Equivalently, the encoding consists of the values of the poly-
nomial f (X) at n different points. Formally, if F is a finite 
field with at least n elements, and S = (a1, a2, . . . ,an) is a 
sequence of n distinct elements, the RS encoding RS

F, S, n, k (m) 
of a message m = (m0, m1, . . . , mk − 1) is given by

RS
F,s,n,k(m) = (  f  (a1), f  (a2), . . . , f  (a3))

where f (X) = m0 + m1X + . . . + mk − 1 Xk − 1. We stress here that the 
choice of S is up to the code designer—we will exploit this 
feature in Section 3.2.

The following basic algebraic fact will be crucial:

A non-zero polynomial p(X) of degree D over a field F can 
have at most D distinct roots, i.e., at most D elements a Î F 
can satisfy p(a) = 0.

This fact implies that the encodings of two distinct messages 
m and ḿ  by RSF, S, n, k must differ in more than n − k locations.c 
The minimum distance of the RS code is thus at least  
n − k + 1. It is in fact equal to n − k + 1: e.g., consider encod-
ings of the messages corresponding to the zero polynomial 
and the polynomial . A minimum distance  
of (n − k + 1) is the best possible for a code of dimension k,  
making RS codes optimal in this regard.

2.1. Correcting errors in RS codewords
Why is the above large distance useful? If at most (n − k)/2 
errors corrupt the evaluations of a polynomial f (X), then the 
encoding of f (X) remains the best fit of the corrupted data in 
terms of agreements than the encoding of any other polyno-
mial g (X) of degree less than k. Thus, one can hope to recover 
f (X) and the correct message even in the presence of (n − k)/2 
errors. However, it is not immediate how to isolate the errors 
and recover f (X) efficiently. We do not know the locations of the 
errors, and trying all possibilities will need exponential time.

Back in 1960, even before polynomial running time was 
formalized as the notion underlying efficient algorithms, 
Peterson15 described a polynomial time algorithm to solve 
the above problem. We now describe the high-level idea 
behind a different algorithm, due to Welch and Berlekamp,18 
following the elegant description in Gemmell and Sudan.3

Assume that the encoding ( f (a1),…, f (an) ) of a polynomial 
f (X) was transmitted, and we receive a corrupted version ( y1, 
y2, . . . , yn), where the set E = {i : yi ≠ f(ai)} of error locations 
has size at most (n − k)/2. Suppose we miraculously knew the 
set E. Then we could simply discard the yi’s corresponding 
to these locations, and interpolate f (X) through the rest of 
the correct data points. We will have at least (n + k)/2 ≥ k loca-
tions, so interpolation will uniquely identify f (X).
Error Location via Bivariate Interpolation: The key is thus a 
clever method to locate the set E of error locations quickly. 
To motivate this, let us cast the problem geometrically as an 
equivalent noisy curve fitting problem. We are given n points 
(ai, yi), i = 1, 2, . . . , n, in the “plane” F × F. The goal is to find 

the unique curve with equation Y − f (X) = 0 where degree( f ) 
< k that passes through all but e ≤ (n − k)/2 locations i, namely 
those in E. If there was no noise, fitting a curve through all n 
points is easy—it is just polynomial interpolation. We know 
Y − f (X) passes through n − e points, so we can get a curve 
that passes through all the points by fitting vertical lines 
through the error points along with the curve Y − f (X) = 0; 
see Figure 2. Algebraically, if we define

	 	 (1)

then the curve P(X, Y) = 0 passes through all the points, i.e., 
P(ai, yi) = 0 for every i. The second factor in the expression (1) 
is called the error-locator polynomial, which has the error 
locations as its roots.

Given P(X, Y), one can find its factors (which can be done 
efficiently) and thus read off the message polynomial f (X) 
from the Y − f (X) factor. But how do we find P(X, Y)? Finding 
P(X, Y) in its factored form (1) is begging the question, but 
note that we can also write P(X, Y) in the form P(X, Y) = D1(X)
Y − N1(X) where degree(D1)   ≤   e   ≤   (n − k)/2 and degree(N1) < e 
+ k   ≤   (n + k)/2.

Knowing such a polynomial exists, we can try to find a non-
zero bivariate polynomial Q(X, Y) = D2(X)Y − N2(X) satisfying

1.  degree(D2) ≤ (n − k)/2 and degree (N2) < (n + k)/2
2.  Q(ai, yi) = 0 for i = 1, 2, . . . , n

This can be done by setting up a system of linear equations 
over F with unknowns being the coefficients of D2(X) and 
N2(X), and n linear constraints Q(ai, yi) = 0. We have called the 
polynomial Q(X, Y) since we cannot assume that the solu-
tion will in fact equal P(X, Y) (there may be multiple nonzero 
solutions to the above system). Solving this linear system 
can certainly be done in polynomial time, and also admits 
fast, practical methods.

One can prove, using elementary algebra, that when the 
number of errors e ≤ (n − k)/2, any interpolated Q(X, Y) satis-
fying the above two conditions must have P(X, Y) as a factor, 

Figure 2: An RS codeword (polynomial f(X) evaluated on points a1, 
a2, . . . , a11); its corruption by two errors (at locations a2 and a5); and 
illustration of the curve fitting through the noisy data using correct 
curve and “error-locator lines.”

c  If not, RSF, S, n, k(m)−RSF,S,n,k(ḿ ), which corresponds to the evaluation of 
the non-zero polynomial  of degree at most k − 1, has at least k 
zeroes: a contradiction.
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and be of the form P(X, Y) A(X) for some nonzero (possibly 
constant) polynomial A(X). The intuitive reason is that since 
there are so few errors in the data compared to the curve  
Y − f (X) = 0, the curve P(X,Y) = 0 is the most economical way to 
fit all the data points. The formal proof proceeds by consider-
ing the polynomial , and arguing it must be 
identically zero since (i) it has at least (n + k)/2 roots (namely 
all ai’s for which f (ai) = yi) and (ii) it has degree less than  
(n + k)/2 (by design of Q(X, Y) ). Thus, Q(X, Y) also has Y − f (X) 
as a factor, and we can recover f (X) by factoring Q(X, Y). (The 
actual task here is easier than general bivariate polynomial 
factorization, and admits near-linear time algorithms.)

2.2. List decoding Reed–Solomon codes
We now turn to list decoding of Reed–Solomon codes. The 
setup is as before: given n points (ai, yi) Î F2, find polynomi-
als f (X) of degree less than k such that f (ai) ≠ yi for at most e 
locations i. The difference is that now e >> (n − k)/2, and so 
there may be more than one such polynomial f (X) that the 
decoder needs to output.

Before delving into the algorithms, we pause to con-
sider how large a number of errors e one can target to cor-
rect. Clearly, we need the guarantee there will be only a few 
(say, at most polynomially many in n) solution polynomials 
f (X) or else there is no hope for the decoder to output all of 
them in polynomial time. Using the fact that encodings of 
any two polynomials differ in more than (n − k) locations, 
it can be shown (via the so-called “Johnson bound”) that 
for  the number of solutions (called the list size) 
is guaranteed to be polynomially small. Whether one can 
prove a polynomial list size bound for certain RS codes for 
even larger e remains a key open question.

We now describe the idea underlying Sudan’s break-
through algorithm for list decoding RS codes.17 Recall that 
we want to solve a noisy curve fitting problem, and output all 
curves Y − f (X) = 0 with deg( f ) < k that pass through n − e or 
more of the n points (ai, yi). For e ≤ (n − k)/2, the Berlekamp–
Welch algorithm interpolated a bivariate polynomial Q(X, Y) 
of a very specific format  through all the n points. Sudan’s idea 
for e > (n − k)/2 was to interpolate/fit a general nonzero curve 
Q(X, Y) = 0 of just high enough “degree” (so that its existence is 
guaranteed) through all the n points. Fitting such a curve can 
be done efficiently by solving a system of linear equations to 
determine the coefficients of Q(X, Y).

For the Berlekamp–Welch algorithm, arguing that Y − f (X) 
was a factor of Q(X, Y) followed from the very special struc-
ture of Q(X, Y). In the list decoding case, Sudan exploited 
special properties of intersections of curves of the form  
Y − f (X) with any interpolated bivariate polynomial Q(X, Y) 
with appropriate degree constraints. Informally, Sudan’s 
idea is that given the strong degree constraint on Q(X, Y ), 
every curve Y − f (X) = 0 with deg( f ) < k that picks up at least 
n − e of points must be “used” by the interpolated curve in 
meeting the requirement to pass through all n points. As an 
example, in Figure 3, the goal is to find all lines (i.e., we have 
k = 2) that pass through all but e = 9 of the n = 14 input points 
(there are two such lines, marked in the figure as L1(X, Y ) and 
L2(X, Y ) ). There are enough degrees of freedom in the equa-
tion of a degree 4 curve so that one can fit a degree 4 curve 

through any set of 14 points. The figure illustrates one such 
curve, which is the product of the two lines with an “ellipse” 
E(X, Y ). (Note that the total degree of Q(X, Y ) is 4.) Further, we 
see that the two relevant lines pop out as factors. This is not 
a coincidence, and every degree 4 curve passing through the 
14 points must have these two lines as factors. The reason: 
if a line is not a factor, then it can intersect a degree 4 curve 
in at most 4 points. Since each of these lines intersects any 
interpolated curve in at least 5 points, it must be a factor.

More formally, the “degree” measure of the interpolated 
polynomial Q(X,Y) will be the (1, k − 1)-degree, which is defined 
as the maximum of i + (k − 1) j over all monomials X iY j that 
occur with a nonzero coefficient in Q(X, Y). Let D denote the  
(1, k − 1) degree of Q(X, Y). Generalizing the above argument for 
lines, if a curve Y − f(X) = 0 with deg( f ) < k passes through more 
than D points, then Y − f(X) must be a factor of Q(X, Y). With 
a counting argument, one can show that a (1, k − 1)-degree D 
of suffices to fit a nonzero curve. Together, this leads to 
an algorithm that can correct  errors, or a fraction 

 of errors as a function of the rate R.
For low rates, this algorithm enables recovery even in 

settings when noise overwhelms correct data, and close to 
100% of the symbols may be in error. This feature sets the 
stage for several powerful applications in cryptography and 
complexity theory. However, the algorithm does not give any 
improvement over the (1 − R)/2 error fraction corrected by 
traditional algorithms for rates > 1/3, and also falls short of 
the radius suggested by the combinatorial bounds.

We now turn to the improved algorithm correcting a 
fraction  of errors due to Guruswami and Sudan.10 
The key new idea is to insist that the interpolated polyno-
mial Q(X, Y ) has multiple zeroes at each of the n points. To 
explain this, we attempt a high-level geometric description. 
Consider the example in Figure 4 with n = 10 points, the goal 
being to output all lines that pass through at least n − e = 4 
points. This example cannot be solved by Sudan’s algorithm. 
Indeed, since there are five solution lines, if they are all fac-
tors of some interpolated curve, the curve must have degree 
at least 5. However, there is no guarantee that an arbitrary 
degree 5 curve through the points must have every line pass-
ing through 4 of the points as a factor (the line has to pass 

Figure 3: Illustration of list decoding of RS code that evaluates lines 
over the points −7, −5, −4, . . . , 4, 5, 6, 7. The two lines are recovered 
as factors of a degree 4 interpolated curve through all the points.
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L1(X,Y) = Y + X

Q(X,Y) = L1(X,Y) • L2(X,Y) • E(X,Y)

n = 14, k = 2, e = 9



march 2009  |   vol.  52  |   no.  3   |   communications of the acm     91

 

through 6 points to guarantee this). Let C* be the degree 5 
curve that is the product of the five solution lines. As men-
tioned above, if we interpolate a degree 5 curve through 
the 10 points, we will in general not get C* as the solution. 
However, notice a special property of C*—it passes through 
each point twice; a priori there is no reason to expect that an 
interpolated curve will have this property. The Guruswami–
Sudan idea is to insist that the interpolation stage produces 
a degree 5 curve with zero of multiplicity at least 2 at each 
point (i.e., the curve intersects each point twice). One can 
then argue that each of the five lines must be a factor of the 
curve. In fact, this will be the case for degree up to 7. This 
is because the number of intersections of each of these 
lines with the curve, counting multiplicities, is at least 4 × 
2 = 8 which is greater than the degree of the curve. Finally, 
one can always fit a degree 7 curve passing through any 10 
points twice (again by a counting argument). So by insisting 
on multiplicities in the interpolation step, one can solve this 
example.

In general, the interpolation stage of the Guruswami–
Sudan list decoder finds a polynomial Q(X, Y) that has a 
zero of multiplicity w for some suitable integer w at each 
(ai, yi).d Of course this can always be accomplished with a  
(1, k − 1)-degree that is a factor w larger (by simply raising the 
earlier interpolation polynomial to the w’th power). The key 
gain is that the required multiplicity can be achieved with 
a degree only about a factor    larger. The second step 
remains the same, and here each correct data point counts 
for w zeroes. This       factor savings translates into the 
improvement of r from  to . See Figure 5 for a 
plot of this trade-off between rate and fraction of errors, as 
well as the (1 − R)/2 trade-off of traditional unique decoding 
algorithms. Note that we now get an improvement for every 
rate. Also plotted are the information-theoretic limit 1 − R, 

and the Parvaresh–Vardy improvement for low rates that we 
will discuss shortly.
Soft Decoding: We now comment on a further crucial ben-
efit of the multiplicities idea which is relevant to potential 
practical applications of list decoding. The multiplicities 
can be used to encode the relative importance of different 
codeword positions, using a higher multiplicity for symbols 
whose value we are more confident about, and a lower mul-
tiplicity for the less reliable symbols that have lower confi-
dence estimates. In practice, such confidence estimates 
(called “soft inputs”) are available in abundance at the 
input to the decoder (e.g., from demodulation of the analog 
signal). This has led to a promising soft-decision decoder for 
RS codes with good coding gains in practice,13 which was 
adopted in the Moonbounce program to improve commu-
nication between Ham radio operators who bounce radio 
signals off the moon to make long distance contacts.

3. FOLDED REED–SOLOMON CODES
We now discuss a variant of RS codes called folded Reed–
Solomon codes (henceforth folded RS codes), which will let 
us approach the optimal error-correction radius of a fraction 
1 − R of errors. The codewords in the folded RS code will be 
in one-to-one correspondence with RS codewords. We begin 
with an informal description. Consider the RS codeword cor-
responding to the polynomial f (X) that is evaluated at the 
points x0, x1, . . . , xn − 1 from F, as depicted by the codeword on 
top in Figure 6. The corresponding codeword in the folded RS 
code (with folding parameter of m = 4) is obtained by juxtapos-
ing together four consecutive symbols on the RS codeword as 
shown at the bottom of Figure 6. In other words, we think of 
the RS code as a code over a larger alphabet (of four times the 
“packet size”) and of block length four times smaller. This 
repackaging reduces the number of error patterns one has to 
handle. For example, if we are targeting correcting errors in 
up to a 1/4 fraction of the new larger symbols, then we are no 
longer required to correct the error pattern corresponding 
to the (pink) shaded columns in Figure 6 (whereas the same 

Figure 5: Rate vs. error-correction radius for RS codes. The optimal 
trade-off is also plotted, as is the Parvaresh–Vardy’s improvement 
over RS codes.
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deg(Q) = 5

d  We skip formalizing the notion of multiple zeroes in this description, 
but this follows along standard lines and we refer the interested reader to 
Guruswami and Sudan10 for the details.
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error pattern over the original symbols needs to be taken care 
of in the Reed–Solomon case).

We would like to stress on a subtle point here: in the 
worst-case error model, the “atomic” unit of error is an 
alphabet character. This was used crucially in the example 
above to rule out an error pattern that was admissible for 
the smaller alphabet. For the reader who might we worried 
that this constitutes “cheating,” e.g., what if one collapses 
the entire RS codeword into one large symbol, we offer two 
counter-points. First, since we will only use a constant fold-
ing parameter, the increase in alphabet size from that of RS 
codes is modest. Second, in Section 4, we will see how to 
convert folded RS codes into codes over alphabets whose 
size does not depend at all on the block length, while still 
maintaining similar error-correction properties.

We now formally define the folded RS code. Let the non-
zero elements of the field F be generated by g, i.e., every 
nonzero element is g i for some 0 ≤ i ≤ |F| −2 (such a g always 
exists for any finite field F). Let m ≥ 1 be the folding parameter 
and let n be an integer that is divisible by m and n ≤ |F| − 1. 
The folded RS encoding (with folding parameter m) of the 
message polynomial f (X) has as its j’th symbol for 0 ≤ j < n/m, 
the m-tuple ( f (g  j m), f (g  jm + 1), . . . , f (g  jm + m−1) ).

The block length of these codes is N = n/m. The rate of the 
code remains k/n, since the folding operation does not intro-
duce any further redundancy.

The folding operation does restrict the error patterns that 
one needs to worry about. But how can one actually exploit 
this in a decoding algorithm and manage to correct a larger 
fraction of errors compared to the unfolded RS codes? We 
turn to this question next.

3.1. Multivariate decoding
Recall the two step Guruswami–Sudan (GS) algorithm. 
First, we interpolate a bivariate polynomial Q(X, Y) through 
the points (ai, yi) Î F2. Then in the second step, we factor-
ize the bivariate polynomial and retain factors of the form  
Y − f (X), where f (X) is a polynomial of degree less than k (there 
might be factors that are not linear in Y: we ignore them). 
Let us recast the second step in an equivalent description, 
which will be useful later. In particular, consider the univari-
ate polynomial RX(Y ) equivalent to Q(X, Y ), where the coef-
ficients themselves are polynomials in indeterminate X with 
their own coefficients from F: given the polynomial Q(X, Y) 
one can compute RX(Y) by collecting all the coefficients of 
the same power of Y together (e.g., if Q(X, Y) = (Y −(X − 1) ) 
(Y 2 + X 3) then RX(Y) = a3 Y 3 + a2 . Y 2 + a1 . Y + a0, where a3 = 1, 

a2 = −X + 1, a1 = X 3 and a0 − X 4 + X 3). Now note that Y − f (X) 
is a factor of Q(X, Y) if and only if f (X) is a root of the uni-
variate polynomial RX(Y), that is, the polynomial RY ( f (X) ) is 
the same as the zero polynomial (in the example, Y −(X − 1) 
divides Q(X, Y) and RX(X − 1) ≡ 0).

Let us now return to problem of list decoding folded RS 
code with m = 4. Given the received word whose ith symbol 
(for 0 ≤ i < N) is ( yi,0, yi,1, yi,2, yi,3), we need to output all the 
close-by folded RS codewords. To motivate the idea behind 
the algorithm, for the time being assume that the transmit-
ted codeword was from the so-called interleaved RS code of 
order 4. Any codeword in such a code will have as its ith symbol 
(0 ≤ i ≤ N − 1) the 4-tuple (  f (g  4i), f1(g  4i), f2(g  4i), f3(g  4i) ), where  
f (X), f1(X), f2(X) and f3(X) are some polynomials of degree at 
most k − 1. We remark that the folded RS code is a subcodee 

of the interleaved RS code where fj(X ) = f (g  j X) for 1 ≤ j ≤ 3.
Given the setup above, the first thing to explore is whether 

one can generalize the GS algorithm to the setting of inter-
leaved RS codes. To see one such generalization, note that 
RS codes are interleaved RS codes of order 1. The GS algo-
rithm interpolated a nonzero bivariate polynomial Q(X, Y) in 
this case. Thus, for an interleaved RS code of order 4, a natu-
ral attempt would be to compute a nonzero 5-variate poly-
nomial Q(X, Y, Z, U, W), where (as before) Y is a placeholder 
for f (X) and (this part is the generalization) Z, U, and W are 
placeholders for f1(X), f2(X), and f3(X), respectively. For the 
next step of root finding, we compute the 4-variate polyno-
mial RX(Y, Z, U, W) that is equivalent to Q(X, Y, Z, U, W ). Now 
the hope would be to find out all the tuples (Y, Z, U, W ) that 
make RX(Y, Z, U, W) vanish and that the required tuple (  f  (X), 
f1(X), f2(X), f3(X) ) is one of them. The latter condition can in 
fact be satisfied, but the trouble is that the number of tuples 
that make RX zero could be very large (growing exponentially 
in n). To see intuitively what goes wrong, recall that in the 
Guruswami–Sudan setting, we had one unknown Y and one 
constraint RX(Y) = 0. However, in the interleaved RS setting, 
we have four unknowns Y, Z, U, W but only one constraint 
RX(Y, Z, U, W) = 0. This essentially means that three of the 
four unknowns are unconstrained and can thus be almost 
any polynomial of degree less than k.

The generalization above (and similar ideas) were 
tried out in a few works, but could not decode beyond  
the  radius. Finally, 7 years after the GS algorithm 
was published, Parvaresh and Vardy14 had an ingenious 
idea: force the polynomials f1(X), f2(X) and f3(X) to be related 
to f  (X). In particular, they only look at the subcode of the 
interleaved RS code where fj(X) = (  fj − 1(X) )d mod (E(X) ) for  
1 ≤ j ≤ 3 (we set f0(X) = f  (X) ), for some positive integer param-
eter d and an irreducible polynomial E(X). The reason we 
compute the modulus using an irreducible polynomial is 
that the relationships between these polynomials translate 
to the following relationships between their corresponding 
placeholders: Z = Y d, U = Y d

2

, and W = Y d
3

. In other words, we 
gain three new constraints on the four variables Y, Z, U, W. 
Together with the interpolation constraint RX(Y, Z, U, W) = 0, 
this restores equality in the number of unknowns and the 
number of constraints. This in turn implies that the number 

Figure 6: Folding of the Reed–Solomon code with parameter m = 4. 
Each column represents an alphabet character.
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f(xn−1)

e  This is the same as looking at an appropriate subset of messages.
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of possible solutions is polynomially bounded. (There are 
some steps involved to obtain this conclusion but they are 
mostly all “low-level details.”) Further, this method not only 
establishes a bound on the number of solutions, but also 
gives a polynomial time algorithm to find these solutions. 
To see this, note that given the three new constraints, we are 
looking for roots of the univariate polynomial RX(Y, Y d, Y d

2

, 
Y d

3

), which can be accomplished by well-known polynomial 
time algorithms.1

Finally, let us return to the problem of list decoding 
folded RS codes with m = 4. In folded RS codes also, we have 
the property that fj(X) is related to f (X) for 1 ≤ j ≤ 3. In fact, 
combining a couple of well-known results in finite fields, 
in Guruswami and Rudra9 we show that f (g X) = (  f (X) )|F|−1 
mod (É (X) ), where É (X) = X|F|−1 − g  is an irreducible poly-
nomial. We remark that the irreducible polynomial E(X) in 
the Parvaresh–Vardy (henceforth, PV) codes only has some 
degree requirements. Our restriction on É (X) is stricter and 
thus, folded RS codes are a special case of PV codes. How
ever, we are not done yet. Until now all we can claim is that 
folded RS code of rate R with folding parameter m = 4 can be 
list decoded from the same fraction of errors as the corre-
sponding PV codes, which happens to be . We have 
4R appearing instead of R because the rate of the PV code is 
1/4’th the rate of the original RS code, since the encoding 
of the message f (X) now consists of the evaluations of four 
polynomials instead of just those of f (X). Next we expand on 
our other main idea which “compresses” the PV encoding to 
avoid this rate loss, and enables correcting close to a fraction  
1 − R of errors.

3.2. The final piece
The improvement over Parvaresh–Vardy comes from com-
paring apples to oranges. In particular, till now we have 
seen that the folded RS code with folding parameter 4 is a 
special case of the PV code of order 4. Instead let us com-
pare the folded RS code with a PV code of smaller order, say 
2. It turns out that the folded RS code with folding param-
eter 4 are compressed forms of certain specific PV codes of 
order 2 and we will exploit this observation. In particular, 
as in Figure 7 compare the folded RS codeword with the 
PV code of order 2 (where the polynomial f (X) is evaluated 
at the points {1, g , . . . , g  n−1}\{g  3, g  7, . . . , g  n−1}). We find that 
in  the PV encoding of f, for every 0 ≤ i ≤ n/m − 1 and every  
0 < j < m − 1, f (g  mi + j) appears exactly twice (once as f (g  mi + j) 
and another time as f1(g  −1g  m i + j ) ), whereas it appears only 
once in the folded RS encoding. In other words, the infor-
mation contained in one symbol in the folded RS codeword 
(which is worth four elements from F) is repeated over three 
symbols in the PV codeword (which is worth six elements 
from F). This implies that even though both the folded RS 
codeword and the PV codeword have exactly the same infor-
mation, the folded RS codeword is compressed by a factor 
of 3/2. This in turn bumps up the rate of the folded RS code 
by the same factor. Hence, we can list decode folded RS 
codes with folding parameter 4 and rate R from a fraction 

of errors.
Thus, our list decoding algorithm for folded RS with 

folding parameter m can be modularly defined as follows: 

unfold the received word for the appropriate PV code of order 
s ≤ m and then run the Parvaresh–Vardy list decoder on this 
unfolded received word. It turns out that this list decoder can 
correct such a folded RS code of R from up to 

s
 frac-

tion of errors. By picking m to be (somewhat) larger than s 
and picking s to be sufficiently large (in terms of 1/e), we can 
conclude the following result.

Theorem 1. For every e > 0 and 0 < R < 1, there is a family 
of folded RS codes that have rate at least R and which can be list 
decoded up to a fraction 1 − R − e of errors in time (N/e 2)O(e −1 log(1/R) ) 
where N is the block length of the code. The alphabet size of the 
code is (N/e 2)O(1/e 2).

We note that the time complexity has an undesirable 
dependence on e, with 1/e in the exponent. Improving this 
bound remains a challenging open question.

4. DECODING OVER SMALL ALPHABETS
So far we have discussed codes over large alphabets. For 
example, folded RS codes of rates R that can be list decoded 
from 1 − R − e fraction of errors need alphabet size of roughly 
nO(1/e 2), where n is the block length of the code. This large 
alphabet size can be a shortcoming. Next, we discuss known 
techniques that help us reduce the alphabet size.

We start with perhaps the most natural small alphabet: 
{0, 1}. For codes defined over this alphabet (also called 
binary codes), it turns out that to list decode from r fraction 
of errors the best possible rate is 1 − H(r), where H(x) = − xlog2 
x − (1 − x) log2(1 − x) is the entropy function. Two remarks are 
in order. First, the rate 1 − H(r) is much smaller than the rate 
of 1 − r that folded RS codes can achieve. (It turns out that to 
attain a rate of 1 − r − e, the alphabet size needs to be at least 
21/e; more on this later in the section.) Second, as shown in 
Shannon’s seminal paper,16 the quantity 1 − H(r) is exactly 
the same as the best possible rate (aka “capacity”) that can 
be achieved in the binary symmetric channel BSCr. Thus, list 
decoding can bridge the traditionally perceived gap between 
the Shannon stochastic model and the Hamming worst-case 
model.

We “transfer” our result for folded RS codes to a result for 
binary codes via a natural method for composing together 
codes called code concatenation, proposed by Forney over 

PV codeword

FRS codeword

f(x0)

f(x0)

f(g x0)

f(g x0)

f(g 2x0)

f(g 2x0) f(x4) f(g x4) f(g 2x4)

f(g x0) f(g 2x0) f(g x4) f(g 2x4)f(g 3x0) f(g 3x4)

f(g 3x0)

f(x0)

f(g x0)

f(g 2x0)

f(g 3x0)

f(x4)

f(g x4)

f(g 2x4)

f(g 3x4)

Figure 7: The correspondence between a folded RS code (with m = 4 
and xi = g i) and the PV code (of order s = 2) evaluated over {1, g , g 2, g 4, 
. . . , g   n−4, . . . , g   n−2}. The correspondence for the first block in the folded 
RS codeword and the first three blocks in the PV codeword is shown 
explicitly in the left corner of the figure.
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40 years ago. Thanks to the powerful algorithms for decod-
ing folded RS codes, we can use this approach to achieve a 
certain trade-off called the Zyablov bound between rate and 
fraction of errors corrected.9 In a subsequent work, using 
another generalization of code concatenation, we improved 
the trade-off to the Blokh–Zyablov bound.8 Figure 8 plots 
these two trade-offs along with the best possible trade-off 
(list-decoding capacity). There is a large gap between the 
list-decoding capacity of binary codes and the best bound 
known to be achievable with efficient algorithms. Closing 
this gap remains a central and extremely challenging open 
question.

We now briefly mention how we resolve the large alphabet 
issue that was raised in Section 3. When the folding param-
eter of the folded RS code is a constant (as in Theorem 1), 
the number of bits needed to represent a symbol from the 
alphabet is no larger than roughly the logarithm of the block 
length of the folded RS code. This is small enough to use the 
idea of code concatenation mentioned above to reduce the 
alphabet. In order to maintain the optimal trade-off between 
rate and fraction of errors list decoded, we need to combine 
concatenation with an approach to redistribute symbols 
using expander graphs.6 This leads to codes of rate R that 
can be list decoded from a fraction 1 − R − e of errors over an 
alphabet of size 21/e 4, which is close to the lower bound of 21/e 
mentioned earlier.

5. CONCLUDING REMARKS
First, we mention some related work that appeared subse-
quent to the initial publication of our result. Further work 
on extending the results in this article to the framework 
of algebraic-geometric codes has been done in Guruswami5 
and Guruswami and Patthak.7 A surprising application of 
the ideas in the Parvaresh–Vardy list decoder is the con-
struction of randomness extractors by Guruswami, Umans, 
and Vadhan.11 Randomness extractors convert input from 
a weakly random source into an almost perfectly random 
string, and have been intensively studied in theoretical 

computer science for over 15 years. This recent extractor 
is almost optimal in all parameters, while having a simple, 
self-contained description and proof.

Even though the work presented in this article makes 
good progress in our theoretical understanding of list 
decoding, applying these ideas into practice requires fur-
ther innovation. We conclude by posing two practical 
challenges.

The first challenge is specific to making the list decod-
ing algorithms for folded RS codes more practical. Recall 
that the algorithm involved an interpolation step and a 
“root-finding” step. There are fast heuristic approaches 
for the latter step that could be used in practice. The inter-
polation step, however, seems too inefficient for practical 
purposes due to the large size of the linear systems that 
need to be solved. It would be very useful to have more effi-
cient algorithms for this step. We note that such improve-
ments for the Guruswami–Sudan algorithm have been 
obtained.

The second challenge is more general. Codes have found 
numerous practical applications in domains such as com-
munication and data storage. Despite its promise and the 
recent advances, list decoding has not yet found widespread 
use in practical systems (though as mentioned earlier, the 
Moonbounce program does use the multiplicities based 
list decoder). One possible reason could be that the previ-
ous list decoding algorithms do not provide much gain for 
the high rate regime over traditional unique decoding algo-
rithms. However, this is no longer a concern—we now have 
algorithms that obtain much better theoretical bounds in 
this regime. Further, folded RS codes are very similar to RS 
codes that are ubiquitous in practice. Hopefully in the near 
future, list decoding will be used more widely in practical 
systems.
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Technical Perspective
Where Biology  
Meets Computing  
By Bud Mishra

Alan Turing died in 1954 in his labora-
tory after eating a cyanide-laced apple. 
Though Turing’s mother believed her 
son’s death to be a result of the kind of 
accidents that befalls absent-minded 
mathematicians engaged in labora-
tory experiments, it is generally as-
sumed to be a suicide.

During his last years, Turing had 
become an experimentalist, interested 
in bio-chemical systems. He had pro-
posed a reaction-diffusion model in 
his 1952 paper entitled “The Chemical 
Basis of Morphogenesis,” putting forth 
his hypothesis of biological pattern 
formation. Turing’s models describe 
how the concentration of certain sub-
stances (called morphogens) distrib-
uted in space change under two con-
tinuous-time processes: local chemical 
reactions, in which the substances are 
converted into each other, and diffu-
sion, which causes the substances to 
spread out in space.  The solutions to 
Turing’s Reaction-Diffusion equation 
display diverse patterns such as travel-
ing waves, spirals, spots, stripes and 
dissipative solitons. Turing’s models 
focused on only continuously varying 
concentrations of morphogens: he fa-
mously wrote, “since the role of genes 
is presumably catalytic, …they may be 
eliminated from the discussion.” 

However, genes turned out to be far 
more important in biological pattern 
formation. Triggered by a small group 
of transcriptional activators (proteins 
and microRNAs), the genes turn them-
selves on and off in a complex but 
tightly programmed choreography 
and control the concentration and 
spatial distribution of many biomol-
ecules, including the transcriptional 
activators. Thus, pattern formation in 
biology is better understood by hybrid 
automata, in which the genes form 
complex discrete modes with their 
own program for state-transitions, 
while exhibiting continuous dynam-
ics as the system dwells in various 
modes. 

Another interesting characteristics 
of pattern formation is captured nicely 
in Wolpert’s French-Flag (or PI, Posi-
tional Information) Model, where the 
discrete levels of morphogen-concen-
tration gradients, varying complexly 
over space and time, determine the 
fates of the biological cells in the local 
neighborhoods. This model is highly 
robust, scale-invariant, and asynchro-
nous; they exhibit temporal structures 
in which order of the events are far 
more important than their exact tim-
ing. Thus, while the genotype/syntax 
of these systems are easily described 
by hybrid automata, their phenotype/
semantics can be ideally described by 
temporal logics.

As luck would have it, a growing 
community of computer scientists has 
been thinking about problems like 
these for last few decades and devel-
oping many powerful model-checking 
tools to debug complex asynchronous 
systems. Many of these researchers 
have now turned to systems biology, 
as exemplified by the paper here by 
Grosu et al.

The authors describe a biological 
model of interacting heart cells and 
studies how they form complex elec-
trical patterns, using model-checking 
and machine-learning tools for speci-
fication, learning, and detection of 
emergent behavior/patterns in net-
works of hybrid automata. These tools 
shed important light on the process 
of atrial fibrillation (Afib), an abnor-
mal rhythm originating in the upper 
chambers of the heart and afflicting 
millions, with incidences increasing 
with age. The cardiac tissue is a spa-
tial network of myocytes (muscle fiber 
cells) that must contract in a coordi-
nated fashion in order to pump blood 
effectively. Coordination is ensured 
through a reaction-diffusion system 
(RDS): the pace-making myocytes gen-
erate an electric stimulus that diffuses 
to the neighboring myocytes; these re-
act in an all-or-nothing fashion, which 

reinforces the stimulus and ensures 
its further propagation without damp-
ing. Reaction is governed by specific 
molecules (ion channels) in the myo-
cyte membrane. The authors intro-
duce many innovations to attack this 
problem algorithmically, namely, they 
replace the standard Luo-Rudi model 
of nonlinear partial differential equa-
tions by a network of hybrid automata 
and analyze them through efficient 
mode-abstractions and superposi-
tion; they develop a new modal logic, 
based on spatial-superposition, for 
specifying emergent behavior; they 
devise an ingenious method for learn-
ing the formulae of this logic from 
the spatial patterns; and finally, apply 
bounded model checking to detect 
the onset of one such biomedically 
important emergent patterns, that is, 
spiral waves. 

The authors lead one to believe 
that the future of computer science 
very likely lies not just in devising 
powerful tools to catalyze large-scale 
experiments or to warehouse mas-
sive amount of experimental data to 
be searched and mined, but also as an 
interpreter and re-describer of com-
plex phenomena. In this role, using 
tools described here, computer sci-
entists can revolutionize the way we 
attempt to understand a large tangle 
of interconnected neurons, a large so-
cial-network of presumably altruistic 
individuals, a crowd responding to a 
catastrophe, a global financial market 
interacting through complex trades, 
an interconnected power-grid, and so 
on. We could try to understand their 
topology, structural evolution, spatial 
patterning, self-organization, stochas-
ticities, causal links, and emergent 
behaviors. We could look for design 
principles in these complex systems, 
some of which are thought (by some) 
to have been crafted by an intelligent 
designer, who appears to have cava-
lierly released these systems without 
proper documentation. 	

Bud Mishra (mishra@nyu.edu) is a professor of 
computer science, mathematics, and cell biology at 
New York University’s Courant Institute and School of 
Medicine. He is also a visiting scholar at the Cold Spring 
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Abstract
We address the problem of specifying and detecting emergent 
behavior in networks of cardiac myocytes, spiral electric waves 
in particular, a precursor to atrial and ventricular fibrillation. 
To solve this problem we: (1) apply discrete mode abstraction 
to the cycle-linear hybrid automata (clha) we have recently 
developed for modeling the behavior of myocyte networks; (2) 
introduce the new concept of spatial superposition of clha 
modes; (3) develop a new spatial logic, based on spatial super-
position, for specifying emergent behavior; (4) devise a new 
method for learning the formulae of this logic from the spatial 
patterns under investigation; and (5) apply bounded model 
checking to detect the onset of spiral waves. We have imple-
mented our methodology as the Emerald tool suite, a com-
ponent of our eha framework for specification, simulation, 
analysis, and control of excitable hybrid automata. We illus-
trate the effectiveness of our approach by applying Emerald 
to the scalar electrical fields produced by our CellExcite 
simulation environment for excitable-cell networks.

1. INTRODUCTION
One of the most important and intriguing questions in sys-
tems biology is how to formally specify emergent behavior in 
biological tissue, and how to efficiently predict and detect its 
onset. A prominent example of such behavior is electrical spi-
ral waves in spatial networks of cardiac myocytes (heart cells). 
Electrical impulses regularly circulate through cardiac tissue 
and cause the heart’s muscle fibers to contract. In a healthy 
heart, these electrical impulses travel smoothly and unob-
structed, like a water wave that ripples gently in a pond. These 
waves can, however, sometimes develop into troublesome, 
whirlpool-like spirals of electrical activity. Spiral waves of this 
nature are a precursor to a variety of cardiac disturbances, 
including atrial fibrillation (af), an abnormal rhythm originat-
ing in the upper chambers of the heart. af afflicts two–three 
million Americans alone, putting them at risk for clots and 
strokes. Moreover, the likelihood of developing af increases 
with age.

In this paper, we address this question by proposing a 
simple and efficient method for learning, and automati-
cally detecting the onset of, spiral waves in cardiac tissue. 
See Figure 1 for an overview of our approach. Underlying our 
method is a linear spatial-superposition logic (lssl) we have 
developed for specifying properties of spatial networks. lssl 
is discussed in greater detail below. Our method also builds 
upon hybrid automata, image processing, machine learning, 

and model-checking techniques to first learn an lssl formula 
that characterizes such spirals. The formula is then automati-
cally checked against a quadtree representation20 of the sca-
lar electrical field (sef) produced at each discrete time step 
by a simulation of a hybrid-automata network modeling the 
myocytes. A scalar field is a function that associates a scalar 
value, which in our case is an electric potential, to every point 
in space. The quadtree representation is obtained via discrete 
mode abstraction and hierarchical superposition of the ele-
mentary units within the sef.

The electric behavior of cardiac myocytes is hybrid in nature: 
they exhibit an all-or-nothing electrical response, the so-called 
action potential (ap), to an external excitation. An ap can thus 
be viewed as triggering a discrete mode transition from the 
cell’s resting mode of continuous behavior to its excited mode 
of continuous behavior. Despite their discrete-continuous 
hybrid nature, networks of myocytes have traditionally been 
modeled using nonlinear partial differential equations.13, 17 
While highly accurate in describing the molecular processes 
underlying cell behavior—nonlinear differential equations 
allow one to closely match the values of a multitude of state 
variables to their actual physical values—these models are not 
particularly amenable to formal analysis and typically do not 
scale well for the simulation of complex cell networks.

In Grosu et al.,11 we showed that it is possible to automati-
cally learn a much simpler hybrid automaton (HA)12 model for 
cardiac myocytes, which explicitly captures, up to a prescribed 
error margin, the mixed discrete and continuous behavior of 
the ap. To highlight its cyclic structure and its linear dynam-
ics, which may vary in interesting ways from cycle to cycle, we 
called it a cycle-linear hybrid automaton (clha). Moreover, one 
can use a variant of this clha model to efficiently (up to an 
order of magnitude faster) and accurately simulate the behav-
ior of myocyte networks, and, in particular, induce spirals and 
fibrillation.2,24,25

A key observation concerning our simulations, see Figure 3, 
is that mode abstraction, in which the ap value of each clha in 
the network is abstracted to its corresponding mode, faithfully 
preserves the network’s waveform and other spatial character-
istics. Hence, for the purpose of learning, and detecting the 
onset of, spirals within clha networks, we can exploit mode 
abstraction to dramatically reduce the system state space. A 

Learning and Detecting  
Emergent Behavior in Networks  
of Cardiac Myocytes
By Radu Grosu, Scott A. Smolka, Flavio Corradini, Anita Wasilewska, Emilia Entcheva, and Ezio Bartocci

An earlier version of this paper appeared in Proc. 11th 
International Conference on Hybrid Systems: Caomputation 
and Control (HSCC’08), Springer, LNCS 4981, April 2008.
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similar mode abstraction is possible for voltage recordings in 
live cell networks.

The state space of a 400 × 400 clha network is still prohibi-
tively large, even after applying the above-described abstrac-
tion: it contains 4160,000 modes, as each clha has four mode 
values. To combat state explosion, we use a spatial abstrac-
tion inspired by Kwon and Agha14: we regard the mode of 
each automaton as a probability distribution and define the 
mode superposition of a set of clhas as the probability that an 
arbitrary clha in this set is in a particular mode. By succes-
sively applying superposition to the network, we obtain a tree 
structure, the root of which is the mode superposition of the 
entire clha network, and the leaves of which are the modes 
of the individual clha. The particular structure we employ, 
quadtrees, is inspired by image-processing techniques.20 We 
shall refer to quadtrees obtained in this manner as super
position-quadtrees (sqts).

lssl is an appropriate logic for reasoning about paths in 
sqts, and the spatial properties of clha networks in which we 
are interested, including spirals, can be cast in lssl. For exam-
ple, we have observed that the presence of a spiral can be for-
mulated in lssl as follows: Given an sqt, is there a path from 
its root leading to the core of a spiral? Based on this observa-
tion, we build a machine-learning classifier, the training-set 
records for which correspond to the probability distributions 
associated with the nodes along such paths. Each distribu-
tion, for mode value stimulated, corresponds to an attribute of 
a training-set record, with the number of attributes bounded 
by the depth of the sqt. An additional attribute is used to clas-
sify the record as either spiral or nonspiral. For spiral-free 
sqts, we simply record the path of maximum distribution.

For training purposes, our Cell Excite simulator2 gen-
erates, upon successive time steps, snapshots of a 400 × 400 
clha network and their mode abstraction; see Figures 1 and 
3. Training data for the classifier is then generated by convert-
ing the abstracted snapshots into sqts and selecting paths 
leading to the core of a spiral (if present). The resulting table 
is input to the decision-tree algorithm of the Weka machine-
learning tool suite.8 This produces a classifier, in the form of a 
path-predicate, constraining the distribution of the attribute 
stimulated in each node along the path.

The syntax of lssl is similar to that of linear temporal 
logic, with lssl’s Next operator corresponding to concretiza-
tion (anti-superposition). Moreover, a sequence of lssl Next 
operators corresponds to a path through an sqt. The classi-
fier produced by Weka can therefore be regarded as an lssl 
formula. An sqt path can be thought of as a magnifying 
glass, which starting from the root produces an increasingly 

detailed but more focused view of the image (i.e., abstracted 
snapshot). This effect is analogous to concept hierarchy in data 
mining16 and arguably similar to the way the brain organizes 
knowledge: a human can recognize a word or a picture with-
out having to look at all of the characters in the word or all of 
the details in the picture, respectively.

Although the lssl logic and its underlying semantics 
(Kripke structures) allow us to reason about infinite paths 
through recursive structures (fractals), physical consider-
ations—such as the number of myocytes in a cardiac tissue 
or the screen resolution—impose a maximum length k on 
such paths. We therefore maintain k as a parameter in lssl’s 
semantic definition, permitting us to accommodate any finite 
number of myocytes or screen resolution. Defining lssl’s 
semantics in this manner places us within the framework of 
bounded model checking.3

Our spatial-superposition logic might also be understood 
as a Scale logic, as it allows us to examine an image at various 
scales or levels of detail. The notion of scale is prevalent in bio-
logical systems, ranging from genetic scale to societal scale. 
The built-in notion of scale in our logic therefore makes it well 
suited for reasoning about biological systems.

We are now in a position to view spiral detection as a 
bounded-model-checking problem3: Given the sqt Q gener-
ated from the discrete sef of a clha network and an lssl for-
mula j learned through classification, is there a finite path p 
in Q satisfying j? We use this observation to check every time 
step during simulation whether or not a spiral has been cre-
ated. More precisely, the lssl formula we use states that no 
spiral is present, and we thus obtain as a counterexample 
one or all the paths leading to the core of a spiral. In the latter 
case, we can identify the number of spirals in the sef and their 
actual position.

The above-described method, including user-guided path 
selection, has been fully implemented as the Emerald tool 
suite for automated spiral learning and detection. Emerald is 
written in Java, and it is a new component of our eha environ-
ment for the specification, simulation, analysis, and control 
of clha networks. eha stands for Excitable Hybrid Automata, 
as we have used clha to model various types of excitable cells, 
including neurons and cardiac myocytes.25 The eha environ-
ment is freely available from Grosu et al.10

The rest of the paper is organized as follows. Section 2 
reviews excitable-cell networks and their modeling with 
clha. Section 3 defines superposition and quadtrees, the 
essential ideas underlying lssl, the topic of Section 4. Section 
5 describes our learning and bounded-model-checking tech-
niques; their implementation is considered in Section 6, along 
with our experimental results. Section 7 discusses related 
work. Section 8 offers our concluding remarks and directions 
for future research.

2. BIOLOGICAL BACKGROUND
An excitable cell (ec) has the ability to propagate an electri-
cal signal, known at the cellular level as the action potential 
(ap), to neighboring cells. An ap corresponds to a change of 
potential across the cell membrane, and is caused by the flow 
of ions between the inside and outside of the cell through the 
membrane’s ion channels.

Figure 1: Overview of our method.
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An ap is an externally triggered event (with duration): an ec 
fires an ap as an all-or-nothing response to a suprathreshold 
stimulus, and each ap follows the same sequence of phases 
(described below) and exhibits roughly the same waveform 
regardless of the applied stimulus. During most of the ap 
no re-excitation can generally occur (the ec is in a refractory 
period).

Despite differences in duration, morphology, and underly-
ing ion currents, the following major ap phases can be identi-
fied across different species and ec types: resting, stimulated, 
upstroke, early repolarization, plateau, and final repolariza-
tion. We abbreviate them as r (resting and final repolariza-
tion), s (stimulated), u (upstroke), and p (plateau and early 
repolarization).

Using the ap phases as a guide, we have developed, for sev-
eral representative ec types, clha models that approximate 
the ap and other bioelectrical properties with reasonable 
accuracy. Their derivation was first performed manually.24, 25 
We subsequently showed in Grosu et al.11 how to fully auto-
mate this process by learning various biological aspects of the 
ap of different cell types.

Intuitively, a hybrid automaton12 is an extended finitestate 
automaton, the states of which encode the various phases of 
continuous dynamics a system may undergo, and the transi-
tions of which are used to express the switching logic between 
these dynamics. The clha we obtained are fairly compact in 
nature, employing two or three continuous state variables and 
four to six modes. The term cycle-linear is used to highlight the 
cyclic structure of clha, and the fact that while in each cycle 
they exhibit linear dynamics, the coefficients of the corre-
sponding linear equations and mode-transition guards may 
vary in interesting ways from cycle to cycle.

Figure 2 presents one of our clha models. To understand 
the model, first note that when an ec is subjected to repeated 
stimuli, two important time periods can be identified: ap dura-
tion (apd), the time the cell is in an excited state, and diastolic 
interval (di), the time between the “end” of the ap and the next 
stimulus. Figure 2(a) illustrates the two intervals. The func-
tion relating apd to di is called the apd restitution function. As 
shown in Figure 2(b), the relationship is nonlinear and cap-
tures the phenomenon that a longer recovery time is followed 
by a longer apd. A physiological explanation of a cell’s restitu-
tion is rooted in the ion-channel kinetics as a limiting factor 
in the cell’s frequency response.

The clha model itself, superimposed over the image of a 
typical ap, is given in Figure 2(c). Each mode has an associated 
linear dynamics x. = Ax + Bu, v = Cx, where x is the clha state, 
u is the input, and v (for voltage) is the output. A mode also 
has an associated invariant in v, forcing the outgoing transi-
tion to be eventually taken. The concept of mode dynamics 
and invariant is illustrated in Figure 2(c) for mode p (plateau 
and early repolarization); see that mode’s callout. Transition 
labels are of the form e ∧ g/a, where e is an (optional) event, g 
is a guard, and /a is an optional set of assignments. The only 
events in the model, representing the start and end of stimu-
lation, are denoted by s and s–, respectively. Observe the per-
mode and transition-guard dependence on the di, which is 
measured with the help of clock variable t.

The dynamics of excitable-cell networks play an important 

Figure 2: ap duration, restitution function, and clha model of cardiac 
myocytes.
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role in the physiology of many biological processes. For cardiac 
cells, on each heart beat, an electrical control signal is gener-
ated by the sinoatrial node, the heart’s internal pacemaking 
region. Electrical waves then travel along a prescribed path, 
exciting cells in atria and ventricles and assuring synchronous 
contractions. Of special interest are cardiac arrhythmias: dis-
ruptions of the normal excitation process due to faulty pro-
cesses at the cellular level, single ion-channel level, or at the 
level of cell-to-cell communication. The clinical manifesta-
tion is a rhythm with altered frequency, tachycardia (rapid 
heart beat) or bradycardia (slow heart beat), or the appearance 
of multiple frequencies, polymorphic ventricular tachycardia, 
with subsequent deterioration to a chaotic signal, ventricular 
fibrillation (vf). vf is a typically fatal condition in which there 
is uncoordinated contraction of the cardiac muscle of the ven-
tricles in the heart. As a result, the heart fails to adequately 
pump blood and hypoxia (lack of oxygen) may occur.

In order to simulate the emergent behavior of cardiac 
tissue,  we have developed CellExcite,2 a clha-based sim
ulation environment for excitable-cell networks. CellExcite 
allows the user to sketch a tissue of excitable cells, plan the 
stimuli to be applied during simulation, and customize the 
arrangement of cells by selecting the appropriate lattice. 
Figure 3 presents our simulation results for a 400 × 400 clha 
network of cardiac myocytes. Nine 50-ms simulation steps are 
shown, during which (steps 1 and 4) the network was stimu-
lated twice, at different regions. The results we obtain dem-
onstrate the feasibility of using clha networks to capture and 
mimic different spatiotemporal behavior of wave propagation 
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in 2D isotropic (homogeneous) cardiac tissue, including nor-
mal wave propagation (1–150 ms); the creation of spirals, a 
precursor to fibrillation (200–250 ms); and the break-up of 
such spirals into more complex spatiotemporal patterns, sig-
naling the transition to vf (250–400 ms).

As can be clearly seen in Figure 3, mode abstraction, in 
which the action-potential value of each clha in the network 
is discretely abstracted to its corresponding mode, faithfully 
preserves the network’s waveform and other spatial charac-
teristics. Hence, for the purpose of learning and detecting spi-
rals within clha networks, we can exploit mode abstraction 
to dramatically reduce the system state space.

3. SUPERPOSITION AND QUADTREES
A key benefit of using hybrid automata compared to nonlinear 
odes is their explicit support for finitary abstractions: the infi-
nite range of values of a hybrid automaton’s continuous state 
variables can be abstracted to the automaton’s discrete finite 
set of modes. As discussed in Sections 1 and 2, abstracting 
the ap (voltage) of the constituent clha in a clha network to 

their corresponding mode (s, u, p, or r) turns out to faithfully 
preserve the network’s waveform and other spatial character-
istics. This simplifying approximation allows us to reduce the 
spiral-onset verification problem to a finite-state verification 
problem.

Although in this paper we consider a clha network an exe-
cution at a time, our ultimate goal is exhaustive simulation, 
i.e., model checking. Within this context, the state space of a 
400 × 400 clha network, which would be necessary to simu-
late the behavior of a tissue of about 16 cm2 in size, is still too 
large for analysis purposes: it has 4160,000 mode values! To com-
bat state explosion, we use a spatial abstraction inspired by 
Kwon and Agha.14 Consider the state space of a clha network. 
We regard the current mode of each clha in the network as 
a degenerate probability distribution, and define the super-
position of a set of (possibly superposed) modes as the mean 
of their distributions. By successively applying superposition 
to the clha network, we obtain a tree whose root is the mode 
superposition of the entire network, and whose leaves are 
the individual modes of the component clha. The particu-
lar superposition tree structure we employ, the quadtree, was 
inspired by image-processing techniques.20

Let A be a 2k × 2k matrix of clha modes. A quadtree Q = 
(V, R) representation of A is a quaternary tree, such that each 
vertex v ∈ V represents a sub-matrix of A and the transition 
relation R defines v ’s 4 child vertices (assuming v is not a leaf ). 
For example, the root v0 of the quadtree in Figure 4 represents 
the entire matrix; child v1 represents the matrix {2k−1, …, 2k} × 
{0, …, 2k−1}; child v6 represents the matrix {2k−1, …, 3 * 2k−2} × 
{0, …, 2k−2}; etc.

Due to superposition, a quadtree is in general a more effi-
cient data structure than the matrix it represents: if the sub-
tree rooted at a node of a quadtree is of one “color” (mode in 
our case), then there is no need to descend into the node’s 
subtree as no additional information can be gleaned by doing 
so. Moreover, given a quadtree representation of an image and 
a property of the image in which one is interested—such as 
determining whether a mode-abstracted snapshot of a clha 
network contains a spiral—it may only be necessary to fol-
low a path through the quadtree (as opposed to exploring the 
entire tree) to determine if the property holds. Moreover, the 
path need not necessarily descend all the way to the leaf level, 
but rather may terminate at an interior node. See Sections 4 
and 5 for a further discussion of such quadtree properties.

Definition 1 (Distributions). Let N be a clha network 
whose constituent clha have (ordered) modes M = {s, u, p, 
r}, and let Q be the quadtree representation of N. Then each 
leaf node l ∈ Q has an associated degenerate leaf distribution 
Dl whose probability mass function (also sometimes known 
as the point mass function, and in either case abbreviated 

Figure 3: Simulation of continuous and discrete behavior of a clha 
network.
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as pmf) pl is such that !m∈M . pl(m) = 1. Also, let i ∈ Q be an 
interior node with children i1, …, i4. Then i has an associated 
superposition distribution Di whose pmf pi is such that ∀m∈M . 
pi (m)= ∑4

j = 1 pij(m).
The intuition is as follows. If a leaf node occurs at the maxi-

mum depth of the quadtree, then it corresponds to the cur-
rent mode of a clha. As clha are deterministic, they assume 
one of the values in M with probability 1. (We will weaken this 
restriction at the end of the section when we consider superpo-
sition quad-graphs.) If the leaf does not occur at the maximum 
depth of the quadtree, then it corresponds to the superposi-
tion of identical degenerate distributions, and no additional 
information is obtained by decomposing the leaf into its four 
superposition components. The visual interpretation is that a 
pixel has one definite color, and nothing is learned by decom-
posing an area in which all pixels have the same color.

As for the distribution of an interior node i, if all of i’s chil-
dren are leaves, then, for each mode value m, i’s superposition 
is the mean of the occurrences of m. Hence, the probability that 
the mode of the parent is m is the probability that the mode of 
an arbitrary child is m. If i’s children are interior nodes, it still 
holds that the probability that i’s mode is m is the probability 
that the mode of an arbitrary leaf below i’s children is m.

We call a quadtree whose nodes are labeled with leaf- and 
interior-node distributions a superposition quadtree (sqt). The 
distributions in an sqt are not known in advance; our learning 
algorithm seeks to determine them for what we perceive to be 
spirals. The use of probability distributions is justified by the 
fact that different spirals might have slightly different shapes, 
i.e., slightly different distributions of values for the leaf nodes 
of their associated quadtrees.

The sqts presented so far were constructed over a finite 
matrix A containing 2k * 2k elements. In general, sqts can be 
obtained via the finite unfolding of a quad-graph.

Definition 2 (sqg). A superposition quad-graph (sqg) is a 
4-tuple G = (V, v0, R, L) consisting of:

·	 a finite set of vertices V with initial vertex v0 ∈ V,
·	 a transition relation R ⊆ V × [1..4] × V
	 s.t. ∀v ∈ V, i ∈ [1..4]. ∃ u ∈ V. (v, i, u) ∈ R, and
·	 a probability-distribution labeling L
	 s.t. ∀v ∈ V. L(v) = Σu∈R(v) L(u).

The condition on R ensures that each vertex in V has precisely 
four successors in R. The condition on L ensures that the 
probability distributions are related through superposition. 
The manner in which we construct sqts as finite unfoldings 
of sqgs can be extended to support the definition of infinite 
sqts generated by recursion. That is, it supports the defini-
tion of fractals. Furthermore, just as we use sqts to represent 
finite images, sqgs can be used to represent infinite images, 
i.e., fractals.

Figure 5(a–c) gives sqgs representing the recursive speci-
fication of three fractals and a graphical depiction of the 
unfolding of these sqgs up to depth 3. (The sqg of Figure 5(d), 
for which no depiction is given, is considered below.) Note 
the fractal-like nature of these pictures: the gray areas repre-
sent recursion and correspond to recursive nodes in the sqgs. 
Such nodes are labeled by distribution variables, the values for 

which can be computed by solving a linear system. For exam-
ple, x and y in Figure 5(b) are computed by solving the linear 
system x = 1/4 (x + 1 + y) and y = 1/4 (1 + x). The four self-loops 
of the leaves are not shown for simplicity. Note that leaves may 
now be associated with any constant distribution. Also note 
that the finite-state sqgs of Figure 5 (b) and (d) yield equiva-
lent infinite sqts.

4. LINEAR SUPERPOSITION LOGIC
In this section, we define lssl. Although the lssl logic—espe-
cially its spatial analogues of the temporal fixpoint operators 
of ltl18—and its underlying semantics (Kripke structures) 
allow us to reason about infinite paths, physical consider-
ations such as the number of myocytes in a cardiac tissue or 
screen resolution impose a maximum length k on paths. We 
therefore maintain k as a parameter in lssl’s semantic defi-
nition, placing us within the framework of bounded model 
checking.3

Every finite sqt can be transformed into an sqg by adding 
to each leaf node a self-loop labeled by i, i ∈ [1..4]. Moreover, 
an sqg can be transformed into a Kripke structure by erasing 
(forgetting) the transition labeling, collapsing all resulting 
transitions that share the same source and target nodes into 
one transition, and assuming nondeterminism among transi-
tions emanating from the same node. For example, applying 
this forgetful transformation to the sqgs of Figure 5 yields the 
Kripke structures of Figure 6, where the self-loops are made 
explicit. The Kripke structure of Figure 6(d) can be seen as 
the minimal-state equivalent of the one of Figure 6(b) where 
nodes labeled by 0 or 1 are shared.

Definition 3 (Kripke structure). A Kripke structure (ks) over 
a set of atomic formulas AF is a four-tuple M = (S, I, R, L) con-
sisting of:

·	 a countable set of states S, with initial states I ⊆ S,
·	 a transition relation R ∈ S × S
	 with ∀s ∈ S. ∃t ∈ S. (s,t) ∈ R, and
·	 a labeling (or interpretation) function L : S → 2AF.

The condition associated with the transition relation R 
ensures that every state has a successor in R. Consequently, it 
is always possible to construct an infinite path through a ks, 

Figure 5: Fractals as finite-state sqgs: (a) x = 2/3, (b) x = 5/11, y = 4/11, 
and (c) x = 1/2. sqg (d) is equivalent to sqg (b).
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an important property when dealing with reactive systems. In 
our case, it means that we can reason about recursive sqts, 
i.e., fractals.

The labeling function L defines for each state s ∈ S the set 
L(s) of atomic formulas that are valid in s. Atomic formulas are 
inequalities over distributions of the form P[D = m] ∼ d, where 
D is a distribution function, m ∈ M is a discrete value (e.g. a 
mode), d ∈ [0..1], and ∼ is one of <, ≤, =, ≥, or >. We use P[D = 
m] as a more intuitive notation for p(m), where p is the pmf 
associated with D. (This notation is also reminiscent of P[X = 
m], where X is a random variable.) It should thus be noted that 
the 0–1 state labels used in Figure 6, where the mode in ques-
tion is s, are shorthand for the atomic formula P[D = s] = 0 or 
P[D = s] = 1.

In order to verify properties of a reactive system modeled as 
a ks K, it is customary to use either a linear-time or a branch-
ing-time temporal logic. A model for a linear-time (ltl) for-
mula is an infinite path p in K. A model for a branching-time 
formula is K itself; given a state s of K, this allows one to quan-
tify over the paths originating from s. For our current purposes 
of specifying and detecting the onset of spirals, ltl suffices.

Strictly speaking, our logic is a linear spatial-superposition 
logic (lssl), as a path p in K represents a sequence of concreti-
zations (anti-superpositions). Syntactically, however, our tem-
poral-logic operators are the same as in ltl: the next operator 
X, with Xj meaning that j holds in a concretization of the 
current state; its inverse operator B; the until operator U, with 
j U y meaning that j holds along a path until y holds; and the 
release operator R, with y R j meaning that j holds along a 
path unless released by y.

Definition 4 (lssl Syntax). The syntax of linear spatial- 
superposition logic is defined inductively as follows:

As discussed above, a bound k on the path length is main-
tained as a parameter in lssl’s semantic definition.

Definition 5 (lssl Semantics). Let K be a ks, p a path in K, 
and f ∈ AF an atomic formula. Then, for k ≥ 0, p satisfies an lssl 
formula j with bound k, written p |=kj, only if p |= 0kj, where:

We say that K |=kj if for all paths p in K, p |=kj.

Our until and release operators U and R are bounded ver-
sions of the ltl operators U and R. Similarly, the globally 
operator G, defined as Gj ≡ ⊥ Rj, is a bounded version of 
ltl’s G operator. The finally operator F is defined as usual 
as Fj ≡  Uj. In general, the unbounded ltl version of G 
is assumed to not hold. For example, Gj does not hold as  
could be violated at k + 1; to decide Gj in ltl with respect to 
a bound k, one needs a more sophisticated analysis of the ks 
K, as discussed in Biere3.

To illustrate lssl, consider a k-unfolding of the ks of Figure 
6(a), and assume the distributions labeling the states cor-
respond to mode s. Then, this ks has a path p such that p |=k 
G (P[D = s] = 2/3) holds: the path that always returns to x. To 
automatically find p, we can model check the negation of this 
formula; as discussed in Section 5, p   will be returned as a coun-
terexample. Using the techniques in Biere3, one can show that 
p also satisfies the unbounded ltl version of the formula.

5. MODEL CHECKING AND LEARNING
Bounded Model Checking: Given a ks K, lssl formula j, 
and bound k, a bounded model checker (bmc) efficiently veri-
fies if K |=kj . If not, it returns one or more paths p in K that 
violate j (i.e., counterexamples); otherwise, it returns true. 
Intuitively, a bmc applies the lssl semantics inductively 
defined in Section 4 to each path p in K. We have imple-
mented a simple prototype bmc for ksss derived from 
sqts and lssl formulae, which first enumerates all paths 
in a ks and then for each path applies the lssl semantics. 
This approach is efficient enough to check within millisec-
onds the onset of spirals. We are currently improving our 
handling of safety formulae (those without the F operator) 
by pruning, during sqt traversal, all subtrees of a vertex as 
soon as we detect that the current path satisfies j. A more 
ambitious sat-based bmc is also under development.

Machine Learning: Writing the ltl formulae that a reac-
tive system should satisfy is a nontrivial task. Developers 
often find it difficult to specify system properties of interest. 
The classification of ltl formulae into safety (something 
bad should never happen) and liveness properties (some-
thing good should eventually happen) provides some guid-
ance, but the task remains challenging.

Writing lssl formulae describing emerging proper-
ties of CLHA networks is even more difficult. For example, 
what is the lssl formula for spiral onset? In the following, 
we describe a surprisingly simple, machine-learning-based 
approach that we have successfully applied to spiral detec-
tion. The main idea is to cast the onset property as follows: 
Is there a path in the given sqt leading to the core of a spiral?, 

Figure 6: Kripke structures for sqgs of Figure 5.
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where the core of a spiral is the central point from which 
the spiral emanates, getting progressively farther away as it 
revolves around the point.

The implementation of our approach is simple as well. 
For an sef (a 400×400 array of ap values) produced by the 
CellExcite simulator (see Figure 1), our Emerald tool 
set allows the user to select a path through the sef’s corre-
sponding sqt simply by clicking on a point in the sef, e.g. 
in the core of a spiral. If no spiral is present, the sqt path 
with maximum pmf (probability mass function) is returned. 
Note that this method is not restricted to spirals: path selec-
tion via clicking on a representative point can be applied to 
normal wave propagation, wave collision, etc.

The paths so obtained are then used to learn the lssl 
formula for the property in question, such as spiral onset. 
The learning algorithm works as follows: (1) For each path 
of length k, where k is the height of the sqt, we define k attri-
butes a1,…, ak such that each ai holds the pmf value of vertex 
vi, for the mode we are interested in (for spirals, mode s). (2) 
Each path is classified by Emerald as spiral or nonspiral 
depending on whether or not the user clicked on a point 
(core); the classification is stored as an additional classifier 
attribute c. (3) All records (ai,…, ak, c) are stored in a table, 
which is provided to the data-classification phase. (4) At the 
end of this phase, we obtain a path classifier which we trans-
late into an lssl formula.

Data classification22 is generally a two-step process: train-
ing and testing. For training, we choose a classification algo-
rithm that learns a set of descriptions of our training data 
set. The form of these descriptions depends on the type of 
classification algorithm employed. For testing, we use a test 
data set, disjoint from the training set and containing the 
class attribute with a known value. The accuracy of the clas-
sifier on a given test set is the percentage of the test records 
that are correctly classified. Various techniques can be used 
to obtain test and training sets from an initial set of records, 
such as X-Cross Validation.8

For classification purposes, we use a descriptive clas-
sifier (dc), which returns a set of if–then rules called dis-
criminant rules. Underlying dcs are decision trees, rough 
sets, classification-by-association analysis, etc. A rule r has 
the form

where I is a subset of [1..k]. Usually, each class c has an asso-
ciated set of rules r1, …, rn; i.e., c is characterized by n

i=1ri. 
Using boolean arithmetic, this is equivalent to

The antecedent formula n
i=1 j∈Ii

aij = vij is called the class-
description formula of the class c.

As is customary, we built a classifier for one class only 
(the class c), called the target class, using all other classes as 
one contrasting class. Hence the classifier consists of only 
one class-description formula, describing the target class. 
We say that we learned that formula. We have used Weka’s 

decision-tree algorithm, but any other rule-based algorithm 
could have been used as well. The classifier we have learned 
for spirals is as follows:

if a
7
 <= 0.875 then

if a
2
 <= 0.048 then ∼c else c

else if a3 <= 0.078 then
if a0 <= 0.025 then ∼c else c

else ∼c

Its translation into lssl, where Xk stands for k repetitions 
of X, generated the following formula:

X2  P(D  =  s)>0.048  ∧ X7 P(D  =  s)≤0.875  Ú
P(D  =  s)>0.025  ∧  X3 P(D  =  s)≤0.078  ∧  X7 P(D  =  s)>0.875

This formula is an approximate description of a spiral 
which we use together with Emerald’s bmc to detect spi-
ral onset within milliseconds. In case the bmc returned a 
false positive, we add the corresponding record to the clas-
sification table as part of a retraining phase; see Figure 1.

6. IMPLEMENTATION
Our techniques of Sections 2–5 have been implemented as 
the Emerald tool suite of the eha environment. Emerald 
is a Java application that can be used to learn an lssl for-
mula for a particular spatial pattern, and to check the for-
mula against a set of images (of the kind pictured on the 
right-hand side of Figure 3) that reproduce the discrete 
behavior of a clha network. For ease of use, Emerald pro-
vides two graphical tools, one for Preprocessing (classifica-
tion) and the other for Bounded Model Checking.

The Preprocessing tool enables users to browse the 
various collections of images they have assembled for 
machine-learning purposes, and to view their sqt repre-
sentation. The user can select a path leading to a spiral 
core by clicking on an appropriate stimulated point (in yel-
low) of the image. If the image does not contain a spiral, 
the user can choose the maximum pmf path or a generic 
stimulated point. Each path selected is stored in a data 
table in the form of the pmf sequence of stimulated modes 
in each node of the traversed sqt. All such paths are subse-
quently exported to Weka in a common format. Presently, 
we have customized Emerald for spiral detection, but we 
plan to extend the tool with the capability to classify any 
generic spatial pattern.

The bmc applet (Figure 7) enables the user to check an 
lssl formula against the sqt representation of a specific 
image. As discussed in Section 5, the lssl formula encodes 
the classifier for the spatial pattern under investigation. If 
the sqt in question fails to satisfy the formula, the result-
ing counterexamples (spirals) are reported to the user both 
as rows in the counterexample table and as red dots mark-
ing the core of the spiral contained in the image.

Table 1 contains our preliminary experimental results. 
For training and testing purposes, we used two different 
sets of images, each containing spirals and normal wave 
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propagation. The first set of images was used to train the 
classifier; we supervised the training by discriminating 
between paths leading to a spiral core versus those (of max-
imum pmf) belonging to images that did not contain a spi-
ral. From this first set we extracted 512 possible paths, and 
used Weka to build a ruled-based classifier with a very high 
prediction accuracy (99.25%).

The test set was divided into increasingly larger sets 
of images: 500, 550, 600, and 650 images. Applying the 
rule-based classifier on the first 500 images produced 67 
wrongly classified paths. We used these paths to obtain a 
new, retrained classifier. We then used both classifiers on 
the remaining sets of images, and for each classifier and 
test set we computed the lssl formula accuracy, as an esti-
mate of how well the formula specifies the spatial pattern. 
As Table 1 shows, retraining considerably improves accu-
racy, and can be repeated each time a false classification 
is returned.

Weka’s decision-tree algorithm took less than 9 s to 
construct a rule-based classifier from the training (512 
records) and retraining (579 records) tables, respectively. 
Our model checker took between 1.67 and 7.09s, with an 
average of 4.72s to model check the sqt for a 400 × 400 sef 
if no spiral was present, and between 1 ms and 4.64s, with 
an average of 230ms otherwise. All results were obtained 
on a PC equipped with a Centrino 2GHz processor with 
1.5GB RAM.

Figure 7: Emerald bounded model checker.

7. RELATED WORK
The use of hybrid automata to model and analyze spatial 
networks is a relatively new subject area, and includes 
application to Delta-Notch signaling networks,9 coordi-
nated control of autonomous underwater vehicles,19 and 
aircraft trajectories and landing protocols.7, 21 In contrast, 
our focus is on emergent behavior (in the form of spiral 
waves) in networks of cardiac myocytes, and the use of spa-
tial superposition as an abstraction mechanism. Predicting 
spirals4 in pure continuous models23 is a more complicated 
process than what is implemented in Emerald, where dis-
crete sqt structures, obtained via mode abstraction and 
superposition, are used. Several logics have recently been 
proposed for describing the behavior and spatial struc-
ture of concurrent systems,5, 6 and for reasoning about the 
topological aspects of modal logics and Kripke structures.1 
Unlike lssl, these logics are not based on an abstraction 
mechanism like spatial-superposition that can be used to 
alleviate state explosion during model checking.

8. CONCLUSION
In this paper, we have presented a framework for specify-
ing and detecting emergent behavior in networks of car-
diac myocytes. Our approach, which uses hybrid automata, 
discrete mode abstraction, and bounded model checking, 
is based on a novel notion of spatial superposition and its 
related logic LSSL, and a new method for the automated 
learning of formulae in this logic from the spatial pat-
terns under investigation. Our framework has been fully 
implemented in the Emerald tool suite. Our preliminary 
experimental results are very encouraging, with a predic-
tion accuracy of over 93% on a test set comprising 650 
images. As future work, we plan to extend our framework 
to the learning of branching-time spatial-superposition 
properties and the more intricate problem of specifying 
and detecting spatiotemporal emergent behavior.

We also experimented with the SIFT (Scale-Invariant 
Feature Transform) algorithm, which detects and matches 
interesting features in images while preserving invari-
ance constraints for scaling, translation, and rotation.15 
We found that SIFT performed matching well on images 
of spirals that were related to one another through rigid 
transformations. It was less successful, due to an insuffi-
cient number of matching keypoints, on spirals with more 
markedly different shapes. Also, SIFT and other image-pro-
cessing techniques tend to process the entire image. Our 
approach, in contrast, uses logical formulae over sqt paths 
and densities of a particular clha mode (stimulated) along 
such paths.

Table 1: Experimental results.

Path Classifier Test Set  
(550)

Test Set  
(600)

Test Set 
(650)

Trained (512 paths) 87.00% 88.83% 88.23%
Retrained (512 paths + 67 
counterexamples)

97.10% 97.33% 93.07%
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Calendar and detailed application information 
at: 

http:     www.inria.fr/travailler/index.en.html 
email:   Laura.Norcy@inria.fr 

North Carolina Central University
Computer Science Faculty Position

The Department of Mathematics and Computer 
Science invites applications for tenure-track fac-
ulty positions in all areas beginning Fall 2009. 
A Ph.D. in computer science or related area is 
required. The successful candidate must have a 
commitment to the academic process, excellence 
in research, education, and service, and to diver-
sity in the community. The candidate must have 
a desire to participate in student academic and 
thesis advising, and curriculum development. 
We are particularly interested in candidates with 
research interests in artificial intelligence, com-
puter vision, computer graphics, grid comput-
ing, robotics, computational biology, software 
engineering, multimedia applications, networks, 
mobile computing, wireless sensor networks and 
security/cryptography.

The campus is located in the Research Trian-
gle Area, an ideal location in NC with several uni-
versities and high-tech companies. Applications 
and inquiries should be sent to ruma@nccu.edu. 
Further information can be found at: http://boole.
cs.nccu.edu/emp2009/employment.html

Departmental resources include extensive 
computing facilities of workstations, servers and 
personal computers with multimedia capabilities 
and specialized networks and devices. Faculty 
members have access to high performance com-
puting platforms provided by the university and 
its partners.

SUNY College at Plattsburgh 
Assistant Professor, Computer Science

The Computer Science Department of the State 
University of New York, College at Plattsburgh 
is seeking qualified applicants for a tenure track 
assistant professor position starting fall 2009.  
SUNY Plattsburgh is a public liberal arts college 
with approximately 80 computer science majors.   

Qualifications: Ph.D. in Computer Science, or 
closely related field.  ABD considered.  Applicants 
with strengths in software engineering, systems 
programming, security, networks, or with indus-
try experience will be highly regarded. We seek a 
candidate with the potential to become an excel-
lent teacher, the ability to excite students about 
involvement in research and applied projects, 
with creative ideas concerning curriculum de-
velopment, an interest in exploring connections 
with other disciplines and an active program of 
scholarship.

Responsibilities include: Supporting under-
graduate degree programs both in Computer 

California State University
Department of Computer Science  
and Engineering

The Department of Computer Science and Engi-
neering invites applications for a tenure rack po-
sition at the Assistant Professor level. Candidates 
must have a Ph.D. in Computer or Electrical Engi-
neering, or a closely related field.  The position is 
primarily to support the new B.S. in Computer En-
gineering program.  The program has strong sup-
port from local industry and government entities.  
In addition, the Department offers the degrees 
B.S. in Computer Science (ABET accredited), B.A. 
in Computer Systems, B.S. in Bioinformatics and 
M.S. in Computer Science.  Women and under-
represented minorities are strongly encouraged 
to apply. For the complete ad please visit http://
cse.csusb.edu.

DEADLINE AND APPLICATION PROCESS: Ap-
plicants should submit a curriculum vitae, state-
ment of teaching philosophy, description of re-
search interests, an official copy of most recent 
transcripts, and have three letters of recommen-
dation sent separately.  Review of applications 
will begin January 15, 2009 and will continue un-
til the position is filled; the position will start in 
September 2009.  Please send all materials to:

Dr. George M. Georgiou, Chair
Department of Computer Science and  

Engineering
California State University, San Bernardino
5500 University Parkway
San Bernardino CA 92407-9393

Gonzaga University
Assistant or Associate Professor  
of Computer Science

Gonzaga University seeks applicants for an Assis-
tant or Associate Professor of Computer Science. 
This is a full-time, tenure track position to begin 
in the fall semester, 2009. Required qualifications: 
demonstrated expertise in data mining, database 
management systems, scientific visualization, 
or bioinformatics; Ph.D. in computer science or 
closely related field. The Department’s facilities 
include a computational science lab with a 512 
node cluster, and a sensor network and robotics 
lab. The department is housed in the newly com-
pleted Paccar Center for Applied Science. 

Gonzaga, with 7000 students, is in the cen-
ter of Spokane, Washington along the Spokane 
River. Research opportunities are available with 
the Pacific Northwest National Laboratories and 
many businesses in the area. Spokane, the health 
care center for the inland Northwest, has a metro-
politan area population of 500,000. The city offers 
one of the finest four-season living environments 
in the Pacific Northwest, with five ski resorts, 
more than 60 lakes, and several national forests 
nearby. 

Review of applications will begin 1/12/09. Appli-
cations will be accepted until the position is filled. 
Please send a letter, complete curriculum vita, a 
statement of research and teaching objectives, and 
the names, addresses, and telephone numbers of 
at least three references to: Paul De Palma, Chair, 
Department of Computer Science, Gonzaga Uni-
versity, Spokane, WA 99258-0026. Electronic sub-
missions in pdf format are preferred and should be 
sent to: depalma@gonzaga.edu. Gonzaga is a Cath-
olic, Jesuit and humanistic university interested 
in candidates who can contribute to its distinctive 
mission. The University is an AA/EEO employer and 
educator committed to diversity

Open Positions at INRIA for 
Tenured and Tenure-track Research Scientists 

INRIA is a French public research institute in 
information and communication science and 
technology. It is an outstanding and highly vis-
ible scientific organization, a major player in the 
European Research Area heavily involved in most 
of research and development programs. INRIA 
has eight research centers in Paris, Bordeaux, 
Grenoble, Lille, Nancy, Nice – Sophia Antipolis, 
Rennes and Saclay that host 160 project-teams in 
partnership with universities and other research 
organizations. INRIA focuses the activity of over 
1100 researchers and faculty members, 1200 
PhD students and about 1000 post-docs and en-
gineers, on fundamental research at the best in-
ternational level, as well as on development and 
transfer activities in the following computer sci-
ence and applied mathematics areas: 

Modeling, simulation and optimization of ˲˲
complex dynamic systems 

Formal methods in programming secure and ˲˲
reliable computing systems 

Networks and ubiquitous information, compu-˲˲
tation and communication systems 

 Vision and human-computer interaction mo-˲˲
dalities, virtual worlds and robotics 

Computational Engineering, Computational ˲˲
Sciences and Computational Medicine 

In 2009, INRIA is opening over 40 new  
positions within its 8 research centers: 

Junior and senior level positions, ˲˲
Tenured and tenure-track positions, ˲˲
Research and joint faculty positions with uni-˲˲

versities 

These positions cover all  
the above research areas. 
INRIA centers provide outstanding scientific envi-
ronments and excellent working conditions. The 
institute offers competitive salaries and social 
benefit programs. It welcomes applications from 
all nationalities; it will arrange if needed visa and 
working permits (also for the spouse).  French 
schooling and social programs for families are 
well organized and highly regarded. 
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FACULTY POSITIONS IN COMPUTER COMMUNICATIONS / COMPUTER SCIENCE / COMPUTING SYSTEMS / INFORMATION
SYSTEMS WITH SINGAPORE’S SCIENCE AND TECHNOLOGY’S UNIVERSITY, NANYANG TECHNOLOGICAL UNIVERSITY

A member of  the College of  Engineering, the School of  Computer Engineering (SCE) originated from the School of  Applied Science that was
established in 1988. Recognizing the rapid growth in the information technology arena, SCE was formed in 2000. It offers undergraduate training
leading to BEng (Hons) in Computer Engineering or Computer Science as well as full-time and part-time graduate training leading to MSc and PhD.
SCE’s strengths lie in constantly maintaining industrial relevance in its training of  undergraduate and graduate students, as well as pioneering
innovative cutting-edge research. The school comprises of  four divisions, namely Division of  Computer Communications (CCM), Division of  Computer
Science (CSC), Division of  Computing Systems (CPS) and Division of  Information Systems (IS).

Applications are invited for appointment as Associate Professor (A/P) or Assistant Professor (Ast/P) in one of  the four divisions.
High-calibre applicants who possess a PhD and with a proven track record in research and teaching at university level are invited to apply for
suitable appointments in the following areas:

• Network System, Seamless Communications, Wireless • Modelling & Simulation (Ast/P in CSC)
Sensor Network (Ast/P in CCM) • Embedded Systems (Ast/P in CPS)

• Multimedia Understanding, Mobile Multimedia • Intelligent Robotics & Control (Ast/P in CPS)
(Ast/P in CCM) • Audio, Speech & Signal Processing (Ast/P in CPS)

• Distributed Systems, Collaborative Computing, or High • Information Retrieval/ Text Mining (A/P or Ast/P in IS)
Performance Computing (Ast/P in CSC) • Agents and Services Computing (A/P or Ast/P in IS)

Candidates for appointment at an Associate Professor level must possess an outstanding track record of  research through publication in top
rank journals, obtaining grants and academic leadership, as well as a willingness and demonstrated ability to teach at the undergraduate and
graduate levels. Candidates for appointment at Assistant Professor level must demonstrate strong research potential and a willingness and
ability to teach at the undergraduate and graduate levels.

The successful candidates are expected to carry out research in one of  the research centres hosted by the school. Candidates are expected
to teach on both MSc programmes and BEng Computer Engineering/Computer Science degrees offered by the school.

Further information about the school can be obtained at http://www.ntu.edu.sg/sce. Informal enquiries and submission of  application
forms can be made to VD-SCE-ACAD@ntu.edu.sg. Guidelines for application submission and application forms can be obtained from
http://www.ntu.edu.sg/ohr/Career/SubmitApplications/Pages/default.aspx.

Closing Date: 15 April 2009

www.ntu.edu.sg

The Computer Systems section of the Department of Computer Science at the Vrije Universiteit 
is looking for two postdocs to work in the group of Prof. Andrew Tanenbaum.  The theme running 
through all our research is how to design and build dependable and secure systems software.  This
research is being funded in part by a European Research Council Advanced Grant of €2.5 million 
awarded to Prof. Tanenbaum. 

The goal of this project is to develop a highly dependable operating system that never goes down and 
which can repair itself and even upgrade itself automaticallwhich can repair itself and even upgrade itself automatically, without rebooting and without stopping 
running applications. The system will be based on MINIX 3 (www.minix3.org), which is a very 
small and reliable microkernel. The postdoc will do research in the area of dependable systems.

Another opening is for a 2-year  postdoc in computer security. The candidate must have  a strong 
publication record in the area of security with a preference for system security. The postdoc will 
carry out research within the project S-Mobile (www.cs.vu.nl/~ast/s-mobile) in the  area of security 
of mobile platforms (e.g., Android).

For more information about both positions, please see

www.cs.vu.nl/~ast/jobs

Postdoc Positions Available in Amsterdam

http://www.ntu.edu.sg/sce
mailto:VD-SCE-ACAD@ntu.edu.sg
http://www.ntu.edu.sg/ohr/Career/SubmitApplications/Pages/default.aspx
http://www.ntu.edu.sg
http://www.minix3.org
http://www.cs.vu.nl/~ast/s-mobile
http://www.cs.vu.nl/~ast/jobs
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Science and Information Technology; course in-
struction; and appropriate research and service 
activities.  

SUNY College at Plattsburgh is an  
equal opportunity employer committed to  

excellence through diversity.

Salary: will be commensurate with qualifi-
cations, with excellent benefits.  Review of ap-
plications will begin on March 1, 2009 and will 
continue until the position is filled.  Original 
transcripts will be required prior to employment.  
Apply online at: https://jobs.plattsburgh.edu/ap-
plicants/Central?quickFind=50483 and include 
a cover letter, curriculum vitae, and three letters 
of reference.

Texas Tech University
Assistant/Associate Professor

Texas Tech University: The Department of 
Computer Science invites applications for a 
tenure-track position at the rank of Assistant /
Associate Professor starting Fall of 2009. Prefer-
ences are given to candidates with background 
in networks. Other areas will be considered for 
excellent candidates. Applicants must have a 
Ph.D. degree in computer science or a closely 
related field. Successful candidates must have 
demonstrated achievements or potentials for 
excellence in research and teaching. The de-
partment of Computer Science is one of eight 
departments in the College of Engineering; it of-
fers a PhD, MS, and BS in computer science and 

MS in Software Engineering. Faculty members 
perform scholarly and funded research in many 
areas, including artificial intelligence, databas-
es, language theory, software engineering, data 
mining, robotics, and distributed and parallel 
computing. Texas Tech University is a compre-
hensive institution that includes law and medi-
cal schools with an enrollment of more than 
28,000 students. Lubbock, a city of over 200,000, 
is a major economic and medical center on the 
Texas South Plains, with an excellent climate 
and numerous cultural opportunities. We offer 
competitive salaries, a friendly and cooperative 
environment, and excellent research facilities. 
Review will begin in January 2009 and continue 
until the position is filled. A letter of application, 
curriculum vitae, a summary of research and 
teaching goals, and three letters of reference 
should be submitted electronically at http://
jobs.texastech.edu. Please use Requisition num-
ber 78066. Additional information is available at 
http://www.cs.ttu.edu. Texas Tech University is 
an equal opportunity/affirmative action employ-
er and actively seeks applications from women, 
members of minority groups, disabled individu-
als, and veterans. 

U.S. Air Force Academy

Department of Computer Science is accepting 
applications for our Coleman-Richardson Chair 
and Visiting Professor positions.  See http://www.
usafa.edu/df/dfcs/index.cfm  or call (719) 333-
3590 for details.  U.S. Citizenship required. 

University at Buffalo,  
The State University of New York
Faculty Positions in Computer Science  
and Engineering

The CSE Department invites excellent candidates 
in high performance computing and ubiquitous 
computing to apply for openings at the assistant 
professor level.

The department is affiliated with successful 
centers devoted to biometrics, bioinformatics, 
biomedical computing, cognitive science, docu-
ment analysis and recognition, high performance 
computing, and information assurance.

Candidates are expected to have a Ph.D. in 
Computer Science/Engineering or related field by 
August 2009, with an excellent publication record 
and potential for developing a strong funded re-
search program.

Applications should be submitted by March 
15, 2009 electronically via recruit.cse.buffalo.edu.

The University at Buffalo is an  
Equal Opportunity Employer/Recruiter.

University of Denver
Professor and Department Chair

The Department of Computer Science (CS) at 
the University of Denver (DU) is seeking a dy-
namic and visionary individual from business or 
academia to lead the department during this ex-
pansion phase of the School of Engineering and 
Computer Science. Through its strategic plan-

Windows Kernel Source and Curriculum Materials for  
Academic Teaching and Research.
The Windows® Academic Program from Microsoft® provides the materials you 
need to integrate Windows kernel technology into the teaching and research 
of operating systems. 

The program includes:

•  Windows Research Kernel (WRK): Sources to build and experiment with a 
fully-functional version of the Windows kernel for x86 and x64 platforms, as 
well as the original design documents for Windows NT.

•  Curriculum Resource Kit (CRK): PowerPoint® slides presenting the details 
of the design and implementation of the Windows kernel, following the 
ACM/IEEE-CS OS Body of Knowledge, and including labs, exercises, quiz 
questions, and links to the relevant sources.

•  ProjectOZ: An OS project environment based on the SPACE kernel-less OS 
project at UC Santa Barbara, allowing students to develop OS kernel projects 
in user-mode.

These materials are available at no cost, but only for non-commercial use by universities.

For more information, visit www.microsoft.com/WindowsAcademic  
or e-mail compsci@microsoft.com. 
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ning, the faculty of our CS department have iden-
tified Software Engineering, Game Development, 
and Cyber Security as the key focus areas for the 
department. Our CS department benefits from 
a top quality faculty, strong partnership with in-
dustry, strong collaborations with other colleges 
within DU and internationally. The CS depart-
ment offers degrees in both traditional and con-
temporary areas such as undergraduate degree 
in gaming, and graduate degree in Computer 
Science Systems Engineering. The primary fo-
cus of this new department chair will be on both 
educational and research programs at graduate 
and undergraduate levels. DU is a private univer-
sity with a strong history of academic excellence, 
small classes, and emphasis on student engage-
ment at all levels. DU is the oldest university in 
Colorado and its campus is located in the Denver 
metro area. 

Individuals with a strong record of research, 
scholarship and excellence in teaching are en-
couraged to apply by sending their resume, state-
ment of interest, and a list of five references to 
www.dujobs.org. PhD or PhD candidate in com-
puter science or related areas and some level of 
leadership experience are required. The Univer-
sity of Denver is an AA/EOE. 

University of Wisconsin-Madison
Assistant Professor

The Department of Computer Sciences at the 
University of Wisconsin-Madison has an open-
ing for a tenure-track Assistant Professor, begin-

ning August 2009. 
We invite applications from outstanding can-

didates in all areas of Computer Science, and 
are especially interested in applications from 
candidates working in human computer inter-
action (HCI).  Applicants should have a Ph.D. in 
computer science or a closely related field, and 
demonstrated strength in scholarly research.  
Successful candidates will be expected to teach at 
the undergraduate and graduate level, in addition 
to establishing a significant and highly-visible re-
search program. 

Applicants should submit a curriculum vita, a 
statement of research objectives and sample pub-
lications, and arrange to have at least three letters 
of reference sent directly to the department.  Elec-
tronic submission of all application materials is 
preferred (see http://www.cs.wisc.edu/recruiting 
for details). 

To ensure full consideration, applications, 
along with supporting material, should be re-
ceived by March 15, 2009.  Early submission is 
appreciated. 

The UW-Madison is an equal opportunity/
affirmative action employer and encourages 
women and minorities to apply.  Unless confi-
dentiality is requested in writing, information 
regarding the applicants must be released on 
request.  Finalists cannot be guaranteed confi-
dentiality.  Employment may require a criminal 
background check. 

For further information, send emails to  
recruiting@cs.wisc.edu .

EXECUTIVE DIRECTOR, 
CSAB Inc.

CSAB Inc. is accepting applications for the position of 
Executive Director. CSAB is a non-profit whose purpose is 
to advance the quality of computing disciplines in the public 
interest. CSAB supports and guides ABET accreditation of 
undergraduate programs of study in computer science, 
information systems, information technology, software 
engineering, and computer engineering.   

The Executive Director reports to a seven-person volunteer 
Board of Directors. The Executive Director works with the 
Board to achieve CSAB goals including recruiting and 
managing the activities of approximately 200 volunteer 
program evaluators. 

Job Summary: The Executive Director is the Chief 
Operating Officer of CSAB Incorporated. The Executive 
Director is responsible for the consistent achievement of 
CSAB’s mission and financial objectives. The job entails a 
wide range of duties from clerical to managerial. 

This is a part time position in which the workload varies 
depending on the schedule of Board activities. Some travel 
is required. Geographic location is negotiable. Salary is 
negotiable. 

Additional information and application  
information may be found at 

www.csab.org

Advertising in Career 
Opportunities 

How to Submit a Classified Line Ad: Send an e-mail to  
acmmediasales@acm.org. Please include text, and indicate 
the issue/or issues where the ad will appear, and a contact 
name and number.

Estimates: An insertion order will then be e-mailed back to 
you. The ad will by typeset according to CACM guidelines.  
NO PROOFS can be sent. Classified line ads are NOT 
commissionable.

Rates: $325.00 for six lines of text, 40 characters per line. 
$32.50 for each additional line after the first six. The MINIMUM 
is six lines.

Deadlines: Five weeks prior to the publication date of the 
issue (which is the first of every month). Latest deadlines: 

http://www.acm.org/publications

Career Opportunities Online: Classified and recruitment 
display ads receive a free duplicate listing on our website at: 

http://campus.acm.org/careercenter 

Ads are listed for a period of 30 days.
For More Information Contact: 

ACM Media Sales
at 212-626-0654 or 

acmmediasales@acm.org

Dean
College of Architecture
Texas A&M University seeks applications 
for dean of the College of Architecture, 
one of the premier design research 
institutions in the world and the largest 
college of its kind in the nation.

The college is dedicated to generating 
knowledge and producing leaders in the 
fields of architecture, construction science, 
landscape architecture, urban planning and 
visualization.

The ideal candidate will share the 
college’s united vision of significantly 
influencing the state of the art in the 
design, planning and construction of built 
and virtual environments and possess 
demonstrated ability to lead in a multi-
disciplinary environment rich in resources.

Applications will be accepted through 
March 1, 2009. Details are available online:

http://deansearch.arch.tamu.edu/
Texas A&M University is an affirmative action, 
equal opportunity institution that is strongly 
and proactively committed to diversity.
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last byte

the fastest uptake of any technology 
in history, including the polio vac-
cine. Suppose as a result you see some 
of the greatest economic and social 
transformations in some of the most 
unexpected places, from Bangladesh 
to Nigeria. I am, of course, describing 
the present. 

If the harbingers of Prevail are the 
appearance of many collaborative, 
bottom-up, worldwide human solu-
tions, what do they say about eBay? 
Not just the world’s biggest flea mar-
ket but a network of millions of people 
producing highly complex solutions 
without leaders. Facebook causes us 
to reconsider the meaning of such a 
basic human institution as “friend.” 
YouTube recently helped shape the 
most interesting election in a life-
time. And what about Twitter? 

Prevail embraces uncertainty. Even 
in the face of unprecedented threats, 
it reflects faith that the ragged hu-
man convoy of divergent perceptions, 
piqued honor, posturing, insecurity, 
and humor will wend its way to glory. 
The embedded assumption is that 
even if a smooth curve of exponential 
change describes the future of tech-
nology, it will not map onto the messy 
world of human fortunes. 

Prevail is driven by faith in human 
cussedness, based on a hunch that 
you can count on humans to throw 
The Curve of exponential change a 
curve of their own. It is also a belief 
that transcendence resulting from 
humans taking control of their own 
evolution is unlikely to be part of any 
simple scheme. 

The significance of all this can 
hardly be understated. Despite the 
billions of galaxies, each with billions 
of stars, we cannot detect any other 
life in the universe. Why not? Per-
haps every intelligent species eventu-
ally takes control of its own evolution. 
Maybe such radical evolution is the 
final exam. Maybe everyone else has 
already flunked.

Let’s not flunk, too. 	

Joel Garreau (www.garreau.com) is the author of 
Radical Evolution: The Promise and Peril of Enhancing 
Our Minds, Our Bodies—and What It Means to Be Human.  

© 2009 ACM 0001-0782/09/0300 $5.00

outcomes are the same—annihilation 
of the human race within 20 years. En-
tirely too imaginable. 

Both Heaven and Hell are tech-
nodeterministic, assuming that our 
gear shapes history. In neither is your 
daughter able to do much to shape 
her generation’s future. The critical 
driver is the smooth curve of Moore’s 
Law, measuring progress by the num-
ber of transistors we get to talk to one 
another. 

As a humanist, however, I root for 
“Prevail,” which is not some middle 
ground between Heaven and Hell. 
Way off in its own territory, it assumes 
what really matters is not how many 
transistors we connect but how many 
ornery, cussed, imaginative, unpre-
dictable humans we connect. Its mea-
sure is not individuals bragging about 
their latest cognitive implants, leav-
ing your daughter and others like her 
frightened and lonely, but something 
far larger, measured in group transfor-
mation. 

How do we know which scenario we 
are entering? Heaven and Hell both 
have the virtue of being obvious. We 
see bellwethers in the headlines every 
day. But suppose you see second-order 
network effects—group effects. Could 
they be early warnings of Prevail? Sup-
pose you’ve seen cellphones going 
from curiosity to commonplace in 30 
years. There are now more than one of 
them for every two humans on earth—

are dismiss
ed as “The Rest”; the poor dears, they 
seem to just keep falling farther and 
farther behind. 

Everyone in your daughter’s law 
school takes it as a matter of course 
that the law they are studying is chang-
ing to match the new enhancements. 
The law will be upgraded, the En-
hanceds believe, just as they get new 
physical and mental upgrades every 
time they go home. In fact, the paper 
your daughter is working on over the 
holidays concerns whether a Natural 
can truly enter into an informed rela-
tionship with an Enhanced, even for 
something as innocuous as a date. 

We are at a turning point in human 
history. Today, for the first time in 
hundreds of thousands of years, our 
technologies are not only aimed out-
ward at modifying our environment. 
Rather, the GRIN technologies—the 
genetic, robotic, information, and 
nano processes, all based on comput-
ing technologies evolving at the pace 
of Moore’s Law if not faster—increas-
ingly aim inward at changing who we 
are and what we can be. Not in some 
distant future but right now, on our 
watch. 

How might such radical evolution 
influence what it means to be human? 
Talk to those deploying the GRIN 
technologies and you hear three sce-
narios—Heaven, Hell, and Prevail. 

In “Heaven,” we conquer pain, suf-
fering, ignorance, stupidity—even 
death—in a perfection of the human 
condition. In it, traditional defini-
tions of humanity are increasingly 
remote. There are few divisions like 
those in your daughter’s law school 
scenario because it’s so difficult to 
remember why anyone would want 
to cling to Version 1.0 humanity. Be-
ing a knowledge-based creature is far 
preferable to being what Ray Kurzweil 
calls “mostly original substrate hu-
mans.” 

In “Hell,” pessimists see a mirror-
image curve in which the power of 
the GRIN technologies inevitably gets 
into the hands of madmen or fools, 
leading to disaster for all. If conflict 
between different species of humans 
doesn’t get us, then the genetically en-
gineered microbes carefully designed 
to be 100% fatal or the self-replicating 
energy-devouring nanobots will. The 

Even in the face 
of unprecedented 
threats, ‘Prevail’ 
reflects faith that 
the ragged human 
convoy of divergent 
perceptions, piqued 
honor, posturing, 
insecurity, and  
humor will wend  
its way to glory.

[continue d  fr om  p.  1 12]
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Puzzled  
Solutions and Sources 
Last month (February 2009, p. 104) we posed a trio of brain teasers concerning 
algorithm termination. Here, we offer some possible solutions. How did you do? 
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1. Pentagon Problem
Solution. This puzzle first appeared, as 
far as I know, at the International Math-
ematics Olympiad of 1986. Known to-
day as “the pentagon problem,” it gen-
erated enormous interest and a variety 
of imaginative solutions. I present one 
of them here, due independently to at 
least two people, one of whom is Ber-
nard Chazelle, a computer scientist at 
Princeton University. Let x0, x1, x2, x3, 
and x4 be the five numbers, summing 
to s > 0, with indices taken modulo 5. 
Define a doubly infinite sequence z by 
z0 = 0 and zi = zi-1 + xi. The sequence z is 
not periodic but is periodically ascend-
ing; zi+5 = zi + s. In the example, the x 
values are 2,4,–3,1,–3; s = 1; and the z 
sequence is 

… –2 0 4 1 2 –1 1 5 2 3 0 2 6 3 4  1 3 7 4 5  
2 4 8 5 6 …

where the rightmost 0 represents z0. 
If xi is negative, zi < zi–1 and flipping 

xi has the effect of switching zi with zi–1 
they are now in ascending order. Si-
multaneously, it does the same for all 
pairs zj, zj–1 whose indices are shifted 
from them by multiples of five. Thus, 
flipping labels amounts to sorting z by 
adjacent transpositions. 

Tracking the progress of the sorting 
process needs a potential function Φ to 
measure the degree to which z is out of or-
der. Let i+ be the number of indices j > i for 
which zj < zi; note i+ is finite and depends 
only on i modulo 5. We let Φ be the sum 
0+ + 1+ + 2+ + 3+ + 4+. In the example, 0+ is 0 
(since there are no entries smaller than 0 
to the right of z0), 1+ is 1, 2+ is 13, 3+ is 2, and 
4+ is 4, for a total of 20. 

When xi+1 is flipped, i+ decreases by 
one, and every other j+ is unchanged, 
so Φ decreases by 1. When Φ hits 0 the 
sequence is fully sorted so all labels are 
non-negative and the process must ter-
minate. In the example, 20 steps later 
the sequence has turned into 

… 1 1 1 1 1  2 2 2 2 2  3 3 3 3 3  4 4 4 4 4  5 
5 5 5 5 … 

where the first 3 is the z0 term, and thus 
the numbers around the pentagon are 
now 0, 0, 0, 0, 1. 

We conclude that the process termi-
nated in exactly the same number (the 
initial value of Φ) of steps regardless 
of choices, and the final configuration 
is independent of choices. The reason 
is there is only one sorted version of z. 
Moreover, the proof works with 5 re-
placed by any integer greater than 2. 

2. Billiard Balls
Solution. If you’ve played with this puz-
zle you’ve found that the algorithm does 
seem to terminate, no matter where you 
start or what you do, but can take rather 
a long time to do so. One might hope 
that (as in Puzzle 1) some non-negative-
integer-valued “potential function” 
must go down at each step, proving that 
the algorithm must terminate, though 
there seems to be no simple one here. 
For example, you might have noticed 
that the sum of the distances between 
each billiard ball’s current position and 
where it belongs cannot go up; alas, it 
may not go down either. 

The following argument was devised 
by Noam Elkies, a mathematician at 
Harvard University. The ball that is de-

liberately moved to its correct position 
in a given step is said to be “placed.” 
Suppose there is an infinite sequence of 
steps. Then, since there are only finitely 
many possible states (permutations), 
there must be a cycle; so, let ball k be the 
highest-numbered ball placed upward 
in the cycle. (If no ball is placed upward, 
the lowest-number ball placed down-
ward is used in a symmetric argument). 
Once ball k is placed, it can be dislodged 
upward and placed downward again, 
but nothing can ever push it below po-
sition k. Hence it can never again be 
placed upward—a contradiction. 

In fact, the algorithm always termi-
nates in at most 2n-1 – 1 steps, but there 
are more than exponentially many 
permutations that can take exactly the 
maximum number of steps to sort. 
These and other results, plus some his-
tory of this horribly inefficient sorting 
algorithm can be found at math.dart-
mouth.edu/~pw/papers/sort.pdf. I am 
indebted to mathematician and writer 
Barry Cipra of Northfield, MN, for bring-
ing the puzzle to my attention. 

3. Notorious Collatz Conjecture
Readers interested in the rich history of 
this puzzle will appreciate a delicious 
survey article by Jeffrey C. Lagarias of 
the University of Michigan in American 
Mathematical Monthly 92 (1985), 3–23;  
www.cecm.sfu.ca/organics/papers/lagarias/ 
paper/html/paper.html. 

All readers are encouraged to submit prospective 
puzzles for future columns to puzzled@cacm.acm.org.

Peter Winkler (puzzled@cacm.acm.org) is Professor 
of Mathematics and of Computer Science and Albert 
Bradley Third Century Professor in the Sciences at 
Dartmouth College, Hanover, NH.

http://math.dartmouth.edu/~pw/papers/sort.pdf
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a lawyer, he plans to be a glassblower, 
after which he wants to be a nanosur-
geon. 

Another fell while jogging, open-
ing up a nasty gash on her knee. But 
instead of rushing to a hospital, she 
just stared at the wound, focusing her 
mind on it, triggering a metabolic cas-
cade that caused the bleeding simply 
to stop. This same friend had been 
vaccinated against acute pain so she 
didn’t feel it for long anyway. 

They always seem to be connected 
to one another, sharing their thoughts 
no matter how far apart, with no appar-
ent gear. They call it “silent messag-
ing.” It seems almost like telepathy. 
They have this odd habit of cocking 
their heads in a certain way whenever 
they want to access information, as if 
waiting for a wireless delivery to ar-
rive; inevitably, it does. They don’t 
sleep for a week or more at a time and 
joke about getting rid of the beds in 
their cramped dorm rooms. 

They are unfailingly polite when 
your daughter can’t keep up with their 
conversations, as if she were deficient 
in some way. They can’t help but con-
descend, however, when she protests 
that embedded technology is not nat-
ural for humans. 

They’ve nicknamed her “Natural,” 
which is what they call all those who 
could be like them but choose not to 
be, referring to themselves as “En-
hanced.” Those with neither the educa-
tion nor the money to consider keeping 
up with the exploding augmentation 
technologies 

honey?,” you say. 
“They’re all really, really smart,” 

she says. How, she wonders, does she 
explain what the enhanced kids are 
like? She knows her parents have read 
about what’s going on. But actually 
dealing with some of her new class-
mates is decidedly strange. These en-
hanced students have amazing think-
ing abilities. They’re not only faster 
and more creative than anybody she’s 
ever met but faster and more creative 
than anybody she’s ever imagined. 
They have photographic memories 
and total recall. They devour books 
in minutes. They’re also beautiful, 
physically. 

They talk casually about living a 
long time, perhaps forever, always dis-
cussing their “next lives.” One men-
tions how, after he makes his pile as 

In 1913, the U.S. Government prosecut-
ed Lee De Forest for telling investors 
that his company, RCA, would soon 
be able to transmit the human voice 
across the Atlantic. This claim was so 
preposterous, prosecutors asserted, 
that he was obviously swindling po-
tential investors. He was ultimately 
released, but not before being lec-
tured by the judge to stop making any 
more fraudulent claims. 

With this legal reasoning in mind, 
consider the scenarios I describe here. 
They are not predictions but meant 
to be credible portrayals of possible 
near-term futures, factually grounded 
in computer-enabled technologies, 
all unquestionably under develop-
ment today. 

Flash forward 15 years. Look at the 
girl who is today your second-grade 
daughter. Imagine she is just home 
for the holidays. You were so proud 
of her when she not only put herself 
through Ohio State but graduated 
summa cum laude. Now she has tak-
en on her most formidable challenge 
yet: competing with her generation’s 
elite in her fancy new law school. You 
want to hear all about it. But the dif-
ference between this touching tab-
leau and those of the past is that in it, 
technologies designed to modify our 
minds, memories, metabolisms, per-
sonalities, progeny—indeed, what it 
means to be human—are now pour-
ing onto the market. She is compet-
ing against all those with the will and 
wherewithal to adopt them. 

“What are your classmates like, 
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Future Tense  
Radical Evolution
Technologies powerful enough to modify our minds, memories, 
metabolisms, personalities, and progeny are powerful enough  
to transform our own evolution. 

Future Tense, one of the revolving features on this page, presents stories  

from the intersection of computational science and technological speculation, 

their boundaries limited only by our ability to imagine what will and could be. 

[continued on p.  110]

What really matters 
is not how many 
transistors we 
connect but how 
many ornery, 
cussed, imaginative, 
unpredictable 
humans we connect. 
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