
COMMuNICATIONS
OF THE ACM

Being human
in the
Digital age
Better Scripts,
Better Games

The evolution
of virtualization

acm Fellows

an Interview with
c.a.r. hoare

cacm.acm.oRG 03/2009 vol.52 no.03

Association for
Computing Machinery

03/2009 vol.52 no.03

cacm.acm.oRG

ReBooteD!

http://CACM.ACM.ORG
http://CACM.ACM.ORG

CHI09_Ad_Interaction_communication_ot_v3.pdf 12/11/2008 8:36:10 PM

http://www.chi2009.org

http://fellows.acm.org

Congratulations
2008 ACM Fellows

ACM honors 44 new inductees as ACM Fellows in recognition of their extraordinary
leadership and ongoing contributions to the development of the Information Age

Martín Abadi
Microsoft Research Silicon Valley /

University of California, Santa Cruz

Gregory Abowd
Georgia Institute of Technology

Alexander Aiken
Stanford University

Sanjeev Arora
Princeton University

Hari Balakrishnan
Massachusetts Institute of Technology

William Buxton
Microsoft Research

Kenneth L. Clarkson
IBM Almaden Research Center

Jason (Jingsheng) Cong
University of California at Los Angeles

Perry R. Cook
Princeton University

Stephen A. Cook
University of Toronto

Jack W. Davidson
University of Virginia

Umeshwar Dayal
Hewlett-Packard Laboratories

Xiaotie Deng
City University of Hong Kong

Jose J. Garcia-Luna-Aceves
University of California, Santa Cruz /

Palo Alto Research Center

Michel X. Goemans
Massachusetts Institute of Technology

Patrick Hanrahan
Stanford University

Charles H. House
Stanford University MediaX Program

Watts S. Humphrey
SEI, Carnegie Mellon University

Alan C. Kay
Viewpoints Research Institute

Joseph A. Konstan
University of Minnesota

Roy Levin
Microsoft Research Silicon Valley

P. Geoffrey Lowney
Intel Corporation

Jitendra Malik
University of California, Berkeley

Kathryn S. McKinley
The University of Texas at Austin

Bertrand Meyer
ETH Zurich

John C. Mitchell
Stanford University

Joel Moses
Massachusetts Institute of Technology

J. Ian Munro
University of Waterloo

Judith S. Olson
University of California at Irvine

Lawrence C. Paulson
University of Cambridge Computer Laboratory

Hamid Pirahesh
IBM Almaden Research Center

Brian Randell
Newcastle University

Michael K. Reiter
University of North Carolina at Chapel Hill

Jennifer Rexford
Princeton University

Jonathan S. Rose
University of Toronto

Mendel Rosenblum
Stanford University

Rob A. Rutenbar
Carnegie Mellon University

Tuomas Sandholm
Carnegie Mellon University

Vivek Sarkar
Rice University

Mark S. Squillante
IBM Thomas J. Watson Research Center

Per Stenström
Chalmers University of Technology

Madhu Sudan
Massachusetts Institute of Technology

Richard Szeliski
Microsoft Research

Douglas Terry
Microsoft Research Silicon Valley

ACM_Fellow_Ad_FIN.indd 1 1/27/09 4:21:48 PM

http://fellows.acm.org

2 communications of the acm | march 2009 | vol. 52 | no. 3

communications of the acm

Association for Computing Machinery
Advancing Computing as a Science & Profession

P
h

o
t

o
g

r
a

p
h

s
 c

o
u

r
t

e
s

y
 o

f
 B

o
o

t
s

t
r

a
p

 A
l

l
i

a
n

c
e

Departments

5	 Editor’s Letter
Yes, It Can Be Done
By Moshe Y. Vardi

7	 Publisher’s Corner
Communications’ Web Site
to Launch in March
By Scott E. Delman

8	 Letters To The Editor
Children’s Magic Won’t
Deliver the Semantic Web

12	 CACM Online
Prepare to Launch
By David Roman

37	 Calendar

106	 Careers

Last Byte

110	 Puzzled
Solutions and Sources
By Peter Winkler

112	 Future Tense
Radical Evolution
Technologies powerful enough
to modify our minds, memories,
metabolisms, personalities, and
progeny are powerful enough
to transform our own evolution.
By Joel Garreau

News

13	 Betting on Ideas
Advanced computational models
are enabling researchers to create
increasingly sophisticated prediction
markets.
By Gregory Goth

16	 Crowd Control
Using crowdsourcing applications,
humans around the world are
transcribing audio files, conducting
market research, and labeling
data, for work or pleasure.
By Leah Hoffmann

18	 The Evolution of Virtualization
Virtualization is moving out
of the data center and making
inroads with mobile computing,
security, and software delivery.
By Kirk L. Kroeker

21	 A Difficult, Unforgettable Idea
On the 40th anniversary of Douglas
C. Engelbart’s “The Mother of All
Demos,” computer scientists discuss
the event’s influence—and imagine
what could have been.
By Karen A. Frenkel

22	 ACM Fellows Honored
Forty-four men and women
are being inducted this year
as 2008 ACM Fellows.

Viewpoints

24	 The Profession of IT
Is Software Engineering
Engineering?
Software engineering continues
to be dogged by claims it is not
engineering. Adopting more of a
computer-systems view may help.
By Peter J. Denning
and Richard D. Riehle

27	 Legally Speaking
When is a “License” Really a Sale?
Can you resell software even if
the package says you can’t? What
are the implications for copyright
law of the Quanta decision discussed
in the November 2008 column?
By Pamela Samuelson

30	 Viewpoint
Your Students Are Your Legacy
This Viewpoint boils down into
a few magazine pages what
I’ve learned in my 32 years
of mentoring Ph.D. students.
By David A. Patterson

34	 Viewpoint
Advising Students for Success
Some advice for those doing
the advising (and what the advisors
can learn from the advisees).
By Jeffrey D. Ullman

38	 Interview
An Interview with C.A.R. Hoare
C.A.R. Hoare, developer of the
Quicksort algorithm and a lifelong
contributor to the theory and
design of programming languages,
discusses the practical application
of his theoretical ideas.
By Len Shustek, Editor

Douglas C. Engelbart

march 2009 | vol. 52 | no. 3 | communications of the acm 3

03/2009
vol. 52 no. 3

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 A
n

d
y

 G
i

l
m

o
r

e

Practice

42	 Better Scripts, Better Games
Smarter, more powerful scripting
languages will improve game
performance while making gameplay
development more efficient.
By Walker White, Christoph Koch,
Johannes Gehrke, and Alan Demers

48	 Erlang for Concurrent Programming
Designed for concurrency from the
ground up, the Erlang language
can be a valuable tool to help solve
concurrent problems.
By Jim Larson

Contributed Articles

58	 Reflecting Human Values
in the Digital Age
HCI experts must broaden the field’s
scope and adopt new methods
to be useful in 21st-century
sociotechnical environments.
by Abigail Sellen, Yvonne Rogers,
Richard Harper, and Tom Rodden

67	 Statecharts in the Making:
A Personal Account
How avionics work led to a graphical
language for reactive systems
where the diagrams themselves
define the system’s behavior.
By David Harel

Review Articles

76	 Probabilistically Checkable Proofs
Can a proof be checked
without reading it?
By Madhu Sudan

Research Highlights

86	 Technical Perspective
The Beauty of
Error-Correcting Codes
By Daniel A. Spielman

87	 Error Correction up to the
Information-Theoretic Limit
By Venkatesan Guruswami
and Atri Rudra

96	 Technical Perspective
Where Biology Meets Computing
By Bud Mishra

97	 Learning and Detecting
Emergent Behavior in Networks
of Cardiac Myocytes
By Radu Grosu, Scott A. Smolka,
Flavio Corradini, Anita Wasilewska,
Emilia Entcheva, and Ezio Bartocci

Virtual Extension

As with all magazines, page limitations often
prevent the publication of articles that might
otherwise be included in the print edition.
To ensure timely publication, ACM created
Communications’ Virtual Extension (VE).
	 VE articles undergo the same rigorous review
process as those in the print edition and are
accepted for publication on their merit. These
articles are now available to ACM members in
the Digital Library.

	 Online Privacy Practices in Higher
Education: Making the Grade?
Mary J. Culnan and Thomas J. Carlin

	 Who Captures Value in Global
Innovation Network?
The Case of Apple’s iPod
Greg Linden, Kenneth L. Kraemer,
and Jason Dedrick

	 Open Access Publishing in Science
Florian Mann, Benedikt von Walter,
Thomas Hess, and Rolf T. Wigand

	 A New Map for Knowledge
Dissemination Channels
Clyde W. Holsapple

	 Digital Inclusion with the
McInternet: Would You Like
Fries With That?
Alexandre Sacchi, Emerson Giannini,
Regiane Bochic, Nicolau Reinhard,
and Alexandre B. Lopes

	 Ensuring Transparency in
Computational Modeling
Kenneth R. Fleischmann
and William A. Wallace

	 Concept Similarity by Evaluating
Information Contents and Feature
Vectors: A Combined Approach
Anna Formica

	 Technical Opinion
Security Threats of
Smartphones and Bluetooth
Alfred Loo

About the Cover:
The relationship between
humans and computers
has changed radically in the
last quarter century—along
with the sociotechnical
landscape—calling the
relevancy of current HCI
methods into question.
Illustration by Bryan
Christie Design.

4 communications of the acm | march 2009 | vol. 52 | no. 3

communications of the acm
a monthly publication of acm media

ACM, the world’s largest educational
and scientifi c computing society, delivers
resources that advance computing as a
science and profession. ACM provides the
computing fi eld’s premier Digital Library
and serves its members and the computing
profession with leading-edge publications,
conferences, and career resources.

Executive Director and CEO
John White
Deputy Executive Director and COO
Patricia ryan
Director, Offi ce of Information Systems
Wayne graves
Director, Offi ce of Financial Services
russell harris
Director, Offi ce of Membership
lillian israel
Director, Offi ce of SIG Services
donna cappo

acm coUncIl
President
Wendy hall
Vice-President
alain chenais
Secretary/Treasurer
Barbara ryder
Past President
stuart i. feldman
Chair, SGB Board
alexander Wolf
Co-Chairs, Publications Board
ronald Boisvert, holly rushmeier
Members-at-Large
carlo ghezzi;
anthony Joseph;
mathai Joseph;
kelly lyons;
Bruce maggs;
mary lou soffa;
SGB Council Representatives
norman Jouppi;
robert a. Walker;
Jack davidson

PUBlIcaTIonS BoarD
Co-Chairs
ronald f. Boisvert and holly rushmeier
Board Members
gul agha; michel Beaudouin-lafon;
Jack davidson; nikil dutt; carol hutchins;
ee-Peng lim; m. tamer ozsu; Vincent
shen; mary lou soffa; ricardo Baeza-yates

ACM U.S. Public Policy Offi ce
cameron Wilson, director
1100 seventeenth st., nW, suite 507
Washington, dc 20036 usa
t (202) 659-9711; f (202) 667-1066

Computer Science Teachers
Association
chris stephenson
executive director
2 Penn Plaza, suite 701
new york, ny 10121-0701 usa
t (800) 401-1799; f (541) 687-1840

Association for Computing Machinery
(ACM)
2 Penn Plaza, suite 701
new york, ny 10121-0701 usa
t (212) 869-7440; f (212) 869-0481

STaFF

GROUP PUBLISHER
scott e. delman
publisher@cacm.acm.org

Executive Editor
diane crawford
Managing Editor
thomas e. lambert
Senior Editor
andrew rosenbloom
Senior Editor/News
Jack rosenberger
Web Editor
david roman
Editorial Assistant
Zarina strakhan
Rights and Permissions
deborah cotton

Art Director
andrij Borys
Associate Art Director
alicia kubista
Assistant Art Director
mia angelica Balaquiot
Production Manager
lynn d’addesio
Director of Media Sales
Jonathan Just
Advertising Coordinator
Jennifer ruzicka
Marketing & Communications Manager
Brian hebert
Public Relations Coordinator
Virgina gold
Publications Assistant
emily eng

Columnists
alok aggarwal; Phillip g. armour;
martin campbell-kelly;
michael cusumano; Peter J. denning;
shane greenstein; mark guzdial;
Peter harsha; leah hoffmann;
mari sako; Pamela samuelson;
gene spafford; cameron Wilson

conTacT PoInTS
Copyright permission
permissions@cacm.acm.org
Calendar items
calendar@cacm.acm.org
Change of address
acmcoa@cacm.acm.org
Letters to the Editor
letters@cacm.acm.org

WeB SITe
http://cacm.acm.org

aUThor GUIDelIneS
http://cacm.acm.org/guidelines

aDverTISInG

ACM ADVERTISING DEPARTMENT
2 Penn Plaza, suite 701, new york, ny
10121-0701
t (212) 869-7440
f (212) 869-0481

Director of Media Sales
Jonathan m. Just
jonathan.just@acm.org

Media Kit acmmediasales@acm.org

eDITorIal BoarD

EDITOR-IN-CHIEF
moshe y. Vardi
eic@cacm.acm.org

NEWS
Co-chairs
marc najork and Prabhakar raghavan
Board Members
Brian Bershad; hsiao-Wuen hon;
mei kobayashi; rajeev rastogi;
Jeannette Wing

VIEWPOINTS
Co-chairs
susanne e. hambrusch;
John leslie king;
J strother moore
Board Members
stefan Bechtold; Judith Bishop;
Peter van den Besselaar; soumitra dutta;
Peter freeman; seymour goodman;
shane greenstein; mark guzdial;
richard heeks; susan landau;
carlos Jose Pereira de lucena;
helen nissenbaum; Beng chin ooi

PRACTICE
Chair
stephen Bourne
Board Members
eric allman; charles Beeler;
david J. Brown; Bryan cantrill;
terry coatta; mark compton;
Benjamin fried; Pat hanrahan;
marshall kirk mckusick;
george neville-neil

the Practice section of the cacm
editorial Board also serves as
the editorial Board of ACM Queue.

CONTRIBUTED ARTICLES
Co-chairs
al aho and georg gottlob
Board Members
yannis Bakos; gilles Brassard; Peter
Buneman; andrew chien; anja feldmann;
Blake ives; takeo kanade; James larus;
igor markov; gail c. murphy; shree nayar;
lionel m. ni; sriram rajamani; avi rubin;
abigail sellen; ron shamir; larry snyder;
Wolfgang Wahlster; andy chi-chih yao;
Willy Zwaenepoel

RESEARCH HIGHLIGHTS
Co-chairs
david a. Patterson and
stuart J. russell
Board Members
martin abadi; P. anandan; stuart k. card;
deborah estrin; stuart i. feldman;
shafi goldwasser; maurice herlihy;
norm Jouppi; andrew B. kahng; linda
Petzold; michael reiter;
mendel rosenblum; ronitt rubinfeld;
david salesin; lawrence k. saul;
guy steele, Jr.; gerhard Weikum;
alexander l. Wolf

WEB
Co-chairs
marti hearst and James landay
Board Members
Jason i. hong; Jeff Johnson;
greg linden; Wendy e. mackay;
Jian Wang

 BPa audit Pending

ACM Copyright Notice
copyright © 2009 by association for
computing machinery, inc. (acm).
Permission to make digital or hard copies
of part or all of this work for personal
or classroom use is granted without
fee provided that copies are not made
or distributed for profi t or commercial
advantage and that copies bear this
notice and full citation on the fi rst
page. copyright for components of this
work owned by others than acm must
be honored. abstracting with credit is
permitted. to copy otherwise, to republish,
to post on servers, or to redistribute to
lists, requires prior specifi c permission
and/or fee. request permission to publish
from permissions@acm.org or fax
(212) 869-0481.

for other copying of articles that carry a
code at the bottom of the fi rst or last page
or screen display, copying is permitted
provided that the per-copy fee indicated
in the code is paid through the copyright
clearance center; www.copyright.com.

Subscriptions
annual subscription cost is included in
the society member dues of $99.00 (for
students, cost is included in $42.00 dues);
the nonmember annual subscription rate
is $100.00.

ACM Media Advertising Policy
Communications of the ACM and other
acm media publications accept advertising
in both print and electronic formats. all
advertising in acm media publications is
at the discretion of acm and is intended
to provide fi nancial support for the various
activities and services for acm members.
current advertising rates can be found
by visiting http://www.acm-media.org or
by contacting acm media sales at
(212) 626-0654.

Single Copies
single copies of Communications of the
ACM are available for purchase. Please
contact acmhelp@acm.org.

commUnIcaTIonS oF The acm
(issn 0001-0782) is published monthly
by acm media, 2 Penn Plaza, suite 701,
new york, ny 10121-0701. Periodicals
postage paid at new york, ny 10001,
and other mailing offi ces.

PoSTmaSTer
Please send address changes to
Communications of the ACM
2 Penn Plaza, suite 701
new york, ny 10121-0701 usa

Printed in the u.s.a.

Communications of the ACM is the leading monthly print and online magazine for the computing and information technology fi elds.
Communications is recognized as the most trusted and knowledgeable source of industry information for today’s computing professional.
Communications brings its readership in-depth coverage of emerging areas of computer science, new trends in information technology,
and practical applications. industry leaders use Communications as a platform to present and debate various technology implications,
public policies, engineering challenges, and market trends. the prestige and unmatched reputation that Communications of the ACM
enjoys today is built upon a 50-year commitment to high-quality editorial content and a steadfast dedication to advancing the arts,
sciences, and applications of information technology.

P
L

E

A
S E R E C Y

C
L

E

T
H

I

S
 M A G A Z

I
N

E

mailto:publisher@cacm.acm.org
mailto:permissions@cacm.acm.org
mailto:calendar@cacm.acm.org
mailto:acmcoa@cacm.acm.org
mailto:letters@cacm.acm.org
http://cacm.acm.org
http://cacm.acm.org/guidelines
mailto:jonathan.just@acm.org
mailto:acmmediasales@acm.org
mailto:eic@cacm.acm.org
mailto:permissions@acm.org
http://www.copyright.com
http://www.acm-media.org
mailto:acmhelp@acm.org

march 2009 | vol. 52 | no. 3 | communications of the acm 5

editor’s letter

“Yes, It Can Be Done”
The 2008 presidential campaign slogan
“Yes, We Can” is the English translation
of the United Farm Workers’ 1972 slogan
“Sí, se puede,” or “Yes, it can be done.”

lated, but independent, task of devel-
oping practitioner content for ACM,
primarily through the Queue Portal,
at queue.acm.org. This board thrives
on intense face-to-face interaction,
meeting monthly to discuss emerg-
ing technologies. They identify topics
of current interest to software archi-
tects, project leaders, IT managers,
and corporate decision makers. The
board also identifies potential au-
thors and then commissions them to
develop articles, under the guidance
of board members and invited guest
experts.

The Contributed Articles Board,
chaired by Al Aho and Georg Gottlob,
operates like a traditional editorial
board of a scientific journal. Unso-
licited manuscripts are submitted
via Manuscript Central, a Web-based
system for facilitating a fully online
review process. As this board handles
both Contributed and Review articles,
the co-chairs assign each submission
to an associate editor, who oversees
a scholarly review process. The co-
chairs and associate editors can de-
cide to decline a paper without fur-
ther review, if they judge it does not
fit our new content model.

The bar for acceptance is very high;
articles must be of the highest quality
and reach out to a very broad techni-
cal audience. A significant fraction of
the submissions fit Communications’
previous editorial model and must be
declined. A major task of this board
is to encourage submissions by au-
thors inspired by the new editorial
model. It is fair to say that attracting

In 2005, I had a conversation with a
member of ACM’s Publications Board
about the (then nascent) idea of revi-
talizing Communications. I was very
pessimistic then, saying, “It cannot
be done.” About a year later, in the fall
of 2006, I undertook that very task.
Now, it is March of 2009, and we can
say, “Yes, it can be done.”

Why was I wrong in 2005? To start,
I underestimated the determination
of ACM’s leadership to turn Communi-
cations around. I also underestimated
the willingness of Communications’
staff to undertake a radical change in
the way they go about their jobs. Most
of all, I underestimated ACM mem-
bership’s intense desire for change
and willingness to volunteer their ef-
fort toward the development of a flag-
ship publication of which we can all
be proud.

In my January 2008 editorial, I de-
scribed Communications’ editorial
model as we envisioned it. Since I view
this publication as a joint project be-
tween our Editorial Board and ACM’s
membership, it is important, I be-
lieve, that our editorial model be well
understood. In January, I explained
how our News and Viewpoints boards
operate.

Our Practice Board, chaired by Ste-
phen Bourne, with James Maurer as
publisher, has a dual personality. On
one hand, it is part of Communica-
tions’ Editorial Board, with respon-
sibility for developing the content
for the Practice section. On the other
hand, that same board is also Queue’s
Editorial Board, with the closely re-

high-quality Contributed and Review
articles is an ongoing effort.

The Research Highlights Board
aims to leverage the unique feature of
computing research from our highly
selective conferences. Their goal is
to provide readers with a collection
of outstanding research articles, se-
lected from the broad spectrum of
computing-research conferences,
and reposition them for a far more di-
versified audience. Submissions are
first nominated by Board Members or
Approved Nominating Organizations
and are subject to final selection by
the Board. Authors are invited to re-
write and expand the scope of their
research papers to address Communi-
cations’ broad readership.

Each of these articles is accompa-
nied by a Technical Perspective essay,
providing readers with a one-page
overview of the underlying motiva-
tion and important ideas of the fea-
tured research as well as its scientific
and practical significance. Technical
Perspective essays are written by ris-
ing stars and established luminaries
invited by the Board. The challenge
for this Board is to develop a reach
into hundreds of computing-research
conferences. So far, only about 10
ACM SIGs have applied to become Ap-
proved Nominating Organizations.
We hope to see more SIGs applying
this year, as well as non-ACM organi-
zations.

This, in a nutshell, is how Com-
munications’ editorial work is carried
out. I’ve also tried to give you a sense
of the ongoing challenges. Producing
a top-notch flagship publication is an
evolving project. I am pleased with
the progress we have made so far, and
am acutely aware of the efforts re-
quired to sustain and improve upon
the quality of this magazine. Yes, it
can be done, if we, ACM members,
collectively shoulder this effort.

Moshe Y. Vardi, Editor-in-Chief

DOI:10.1145/1467247.1467248		 Moshe Y. Vardi

http://queue.acm.org

mailto:paper@oopsla.org
mailto:chair@oopsla.org
mailto:chair@onward-conference.org
http://www.oopsla.org/submit

march 2009 | vol. 52 | no. 3 | communications of the acm 7

publisher’s corner

DOI: 10.1145/1467247.1467249	 Scott E. Delman

Communications’ Web
Site to Launch in March

launch a new Communications’ Web site,
which will go live this month. The new
site will complement the magazine by
providing an easy access point to all the
content found in the magazine’s print
pages, but perhaps more importantly the
site will extend beyond Communications’
current reach and help bring us closer to
fulfilling the flagship’s original promise
as the primary “communication” tool in
the field of computing.

Let me say a few words about the
new site. Many in the community are
now used to downloading Communica-
tions’ articles from the ACM Digital Li-
brary, reading the print publication on
the train or plane, or scanning through
the pages of the Digital Edition on your
desktop or mobile device (as an aside,
the iPhone version is worth trying). For
those of you who have your preferred
way of digesting and archiving the ar-
ticles published each month, nothing
should change and we will do our best
to continue to improve the experience
for you. The new site, however, offers
you for the first time a robust gateway or
digital storefront from which to not only
read and download articles, but to com-
ment, share, and interact with the com-
puting community in a meaningful way
and in real time without the limitations
of page budgets and print schedules.

The new site will be content- and
feature-rich with an emphasis on high-
quality editorial. Everything found in
the print publication will be available
via the Web site, but the site will also
contain additional news content up-

dated more frequently than is possible
in print. A variety of user-generated con-
tent, such as the new Expert Blog aptly
named the Blog@CACM, will be con-
tributed to by a growing list of distin-
guished practitioners and researchers.
Periodically, the best of those entries
and comments will make their way into
the print magazine and the result will be
a cross-fertilization of content between
the print and online Communications.
So, for those of you who still prefer to
see your name appear in print there is
another incentive to go online. The new
site will also serve as a gateway to some
of the most interesting and relevant ex-
isting blogs (see Blog Roll) in the com-
puting community and provide links to
related content, books, courses, confer-
ences, SIGs, and other resources. The
site will also be heavily integrated with
the ACM Digital Library, so as to provide
a single entry point for searching both
Communications articles and other ar-
ticles published by ACM.

It is important to say that the site
will not be all things to all people. That
is not the intention. But, if you are a
regular reader of Communications and
you are looking for a way to find more
high-quality information on advanced
computing topics (for practitioners and
researchers), we believe this new site
will be a great place to start and over
time will find its way into your favorites
folder and become a highly respected
and valuable resource. At least, that is
our ultimate goal.

Scott E. Delman, group publisher

2008 was a year of significant change for
Communications. The same will be the case in
2009. After a successful relaunch of the print
magazine last year, ACM is getting ready to

The site will
extend beyond
Communications’
current reach
and help bring us
closer to fulfilling
the flagship’s
original promise
as the primary
“communication”
tool in the field
of computing.

8 communications of the acm | march 2009 | vol. 52 | no. 3

letters to the editor

quality of tools and is a major factor in their
popularity.

Finally, the W3C standards relate only
to the languages themselves, leaving
the design and implementation of tools
to developers. The OWL standard does
not specify any particular reasoning
algorithm, and existing OWL/DL reasoners
are based variously on (at least) analytic
tableau, resolution, hyper-resolution, query
rewriting, saturation, and rule-extended
triple stores.

Ian Horrocks, Oxford, U.K.

Give Me the Science of
Virtualization, Not Buzzwords
The “CTO Roundtable on Virtualiza-
tion, Parts I and II” moderated by Ma-
che Creeger (Nov. and Dec. 2008) was a
rambling discussion filled with vague
assertions, buzzwords, and brand
names but few clear concepts. The an-
ecdotal discussion touched on cloud
computing, late binding, even the ter-
ror attacks of 9/11, without clear logical
sequence or relationship with deeper
(unstated) definitions or principles.

As far as I know, VM is an operating
system concept first implemented by
IBM 40 years ago on its punched-card-
era mainframes (360–67) and commer-
cially available on PCs for at least the
past 10 years. VM was invented for essen-
tially the same reasons it is used today:
run multiple operating systems on one
machine in fully isolated ways. Some of
these operating systems may be less re-
liable than others or may still be under
test but are unable to interfere with one
another. Even if we are talking about the
same thing, the roundtable highlighted
none of these basic concepts. VM was
widely used within a few years of its ear-
liest implementation. One roundtable
participant (in Part I, Nov. 2008) said: “I
support virtualization.” OK, so I support
transistor radios.

To me, this is further confirmation
of the fact that IT progress is fast on
the surface but slow in terms of basic
concepts.

Luigi Logrippo, Gatineau,
Québec, Canada

T
o e xpla in the nature of
“Ontologies and the Seman-
tic Web” in his contributed
article (Dec. 2008), Ian Hor-
rocks, a leading figure be-

hind the theory and practice of Descrip-
tion Logics (DLs), employed analogous
characters and language of the fiction-
al Harry Potter children’s novels. Not-
withstanding the fact this did not help
readers not already familiar with Pot-
ter or even those, as there may exist a
few, who find the novels utterly boring
and repetitive, hearing the same story
over again in a new guise prompts me
to ask: When will such presentations
evolve from toy examples into more
realistic accounts of larger, complex
ontologies? That is, when will the im-
portant issue of scalability in the stor-
age, retrieval, and use of large ontolo-
gies (millions of concepts, hundreds of
millions of roles/attributes, nontrivial
reasoning) be addressed?

Horrocks wrote, “A key feature of
OWL is its basis in Description Log-
ics, a family of logic-based knowledge-
representation formalisms that are
descendants of Semantic Networks
and KL-ONE but that have a formal
semantics based on first-order logic.”
While this may be true, it could also
mislead a neophyte to conclude that
DL is somehow the only formalism for
representing and using ontologies.
This is far from true. There is at least
one alternative formalism, also a direct
descendant of KL-ONE—Order-Sorted
Feature (OSF) constraint logica—that
lends itself quite well to the task. Else-
where, I also covered how various DLs
and OSF constraint logics formally re-
late to one another.b

The trouble I see in such publica-
tions by influential members of the

a	 Ait-Kaci, H. Data models as constraint systems:
A key to the semantic Web. Constraint Program-
ming Letters 1 (Nov. 2007), 33–88; www.cs.brown.
edu/people/pvh/CPL/Papers/v1/hak.pdf.

b	 Ait-Kaci, H. Description logic vs. order-sorted
feature logic. In Proceedings of the 20th Interna-
tional Workshop on Description Logics. Lecture
Notes in Computer Science. Springer-Verlag,
2007; sunsite.informatik.rwth-aachen.de/Pub-
lications/CEUR-WS/Vol-250/paper_2.pdf.

World Wide Web Consortium (W3C) is
that one particular formalism—DL—
is being confused with the general is-
sue of formal representation and use
of ontologies. It would be like saying
Prolog and SLD-Resolution is the only
way to do Logic Programming. To some
extent, the LP community’s insistence
on clinging to this “exclusive method”
has contributed to the relative disin-
terest in LP following its development
in the 1980s and 1990s. Similarly, DL
formalists have built a de facto ex-
clusive reasoning method—Analytic
Tableaux—into their formalism so the
same causes always result in the same
consequences.

Whether the various languages pro-
posed by the W3C are able to fly beyond
toy applications has yet to be proved,
especially in light of the huge financial
investment being poured into the se-
mantic Web. To realize this promise, we
must not mistake the tools for the goal.
Indeed, while DLs are admittedly one
tool among several for representing and
using ontologies, the goal is still to make
semantic Web ontology languages work,
no matter which method is used, as long
as it is formal, effective, and efficient on
real data. Otherwise, the semantic Web
might well end up being built on noth-
ing more than children’s magic.

Hassan Aït-Kaci, Vancouver, Canada

Author’s Response:
The Harry Potter example was not
intended to be representative of realistic
application ontologies. As I discussed in
the article, such ontologies are often large
and complex, making them unsuitable for
didactic purposes.

I certainly didn’t mean to suggest that
DL is the only possible formal basis for an
ontology language. However, it is important
to agree on the use of some formalism in
order to facilitate the exchange and reuse of
ontologies and encourage the development
of the tools and infrastructure needed for
large-scale ontology development and
deployment. This is a major success of
RDF and OWL; users now have access
to a previously undreamt of range and

Children’s Magic Won’t Deliver the Semantic Web
DOI:10.1145/1467247.1467250			

http://www.cs.brown.edu/people/pvh/CPL/Papers/v1/hak.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-250/paper_2.pdf
http://www.cs.brown.edu/people/pvh/CPL/Papers/v1/hak.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-250/paper_2.pdf

march 2009 | vol. 52 | no. 3 | communications of the acm 9

letters to the editor

Creeger’s Response:
The CTO Roundtables are conversations,
not well-defined treatises with clear-
cut conclusions. Discussing early-stage
adoption of commercial technology involves
differences of opinion about definition, best
practices, product maturity, and best ways
forward. We provide the discussion; the
reader decides.

My focus as moderator is commercial
benefits and best ways to realize them,
conceding that my success varies. Logrippo
suggests and I agree we need to do more
to extract key ideas and make them more
accessible to the reader.

While virtualization goes back more
than 40 years, it has gained renewed
commercial appeal in the past decade as a
better way to provide application services.
Overhead, risk, cost, and resulting benefit
must be evaluated in the context of the
commercial problems being addressed.
The goal is not to define virtualization
as a new CS technique but address its
relatively recent status as an attractive
commercial technology. When a panelist
supports virtualization, it mean to him its
benefits far outweigh its impact on service
infrastructure.

Mache Creeger, Head Wrangler, CTO
Roundtable Series, Portola Valley, CA

More Legacy from Gates
Michael Cusumano really knows some-
thing about Microsoft, and his View-
point column “Technology Strategy
and Management” on “The Legacy of
Bill Gates” (Jan. 2009) is the best popu-
lar assessment I’ve read on the subject.
However, for the public to fully un-
derstand how Gates affects the world,
three more aspects of that legacy must
be understood:

Product lock-in. In the marketplace
for everyday consumer software, con-
sumers’ decisions are overwhelmed by
their need for compatibility with popu-
lar file formats; all other desirable at-
tributes, including cost, quality, speed,
security, ergonomics, simplicity, size,
and feature sets, are simply inactivated
by this one imperative. Gates under-
stood this network dynamic at the time
he founded Microsoft and has pursued
it relentlessly ever since. Never before
has a popular world market been so
tightly constrained by this idea; bil-
lions of consumers have thus been
deprived of choices through a single
mechanism. Paradoxically, this lock

on the market happened even as the
technical capacity to produce cheap al-
ternative products mushroomed;

Wheels of justice. As a business cal-
culation, Microsoft ignored a court-im-
posed fine of one million Euros per day
every day for three years. This action
(as well as others by Microsoft) created
a new level of frustration for court sys-
tems and represents a phenomenon of
corporate behavior that may now need
specific new methods of redress. Speed
of compliance with court orders is cru-
cial in a marketplace moving as quickly
as IT. As long as the wheels of justice
turn slower than marketplace evolu-
tion, many laws may be reduced to ir-
relevance; and

Battle against standards. Microsoft is
fully aware that open public standards
are an impediment to the perpetuation
of its monopolies and spends billions
to defeat them. Public standards are a
pillar of efficiency in free markets, ad-
dressing the lock-in problem by solv-
ing the compatibility problems, and
hence of immense value to consumers.
Unfortunately, the tactics in this battle
are largely out of the public’s view.

Such business behaviors are only ca-
sually understood by the public. None
are new, but globalization and the ex-
traordinary new arithmetic of marginal
costs in the software industry have in-
tensified their effects. Gates elevated
each one to the level of boardroom
stratagem, using it to prevent the mar-
ket from becoming as competitive and
productive as it could be. It behooves
the world to pay as much explicit atten-
tion to these things as Gates did and
decide if a response is needed. As econ-
omies change, our free-market system
requires diligent protection from every
scheme that suppresses efficient com-
petition.

J. Stephen Judd, Plainsboro, NJ

Deserves More Than an
Ad Hominem Response
When columnist Michael Cusumano
used the phrase “religious-like re-
sponses from the faithful” in his re-
sponse to a comment (by Ian Joyner,
Dec. 2008, concerning his Viewpoint
column “Technology Strategy and
Management, Sept. 2008) to simply
dismiss the comment, it constituted
an ad hominem and self-referential

attack, not a principled response, and
was unworthy of the professional stan-
dards ACM is attempting to establish
in the new Communications.

Rosemary M. Simpson, Providence, RI

Cusumano’s Response:
It was quite a rude comment to me, and
I reacted to the tone of it. No doubt it is
best in such cases to wait awhile before
responding. But when a reader criticizes
every argument by saying I am simply
“anti-Apple,” there is not much use in
replying point by point. I have had many
such encounters with Apple users, given
my extensive work on Microsoft and
concluded there is indeed such a thing as
“the Apple faithful” and a strong element of
religiousness to them. But I disagree that
I am simply anti-Apple. I have been much
more critical of Microsoft and Bill Gates. The
main point was that I believe Apple could
have become the dominant PC technology
had Steve Jobs adopted more of an open
“platform” strategy, much as Japan Victor
did with VHS, which dominated Beta mainly
because of the much greater availability of
prerecorded tapes (software) and extensive
OEM licensing deals (hardware).

Michael Cusumano, Cambridge, MA

Communications welcomes your opinion. To submit a
Letter to the Editor, please limit your comments to 500
words or less and send to letters@cacm.acm.org.

Coming Next Month in

Communications
A Direct Path
to Dependable Software

 Q&A with Professor
Dame Wendy Hall

Computing as a Social Science

The Future of Database
Systems and Information
Retrieval

The Roofline Visual-
Performance Model

And the latest news on active
learning, sentiment analysis, and
virtual colonoscopy technology.

mailto:letters@cacm.acm.org

ACM, Uniting the World’s Computing Professionals,
Researchers, Educators, and Students

Advancing Computing as a Science & Profession

Dear Colleague,

At a time when computing is at the center of the growing demand for technology jobs worldwide,
ACM is continuing its work on initiatives to help computing professionals stay competitive in the

global community. ACM’s increasing involvement in initiatives aimed at ensuring the health of the com-
puting discipline and profession serve to help ACM reach its full potential as a global and diverse society

which continues to serve new and unique opportunities for its members.

As part of ACM’s overall mission to advance computing as a science and a profession, our invaluable member ben-
efits are designed to help you achieve success by providing you with the resources you need to advance your career

and stay at the forefront of the latest technologies.

MEMBER BENEFITS INCLUDE:

• Access to ACM’s Career & Job Center offering a host of exclusive career-enhancing benefits
• Free e-mentoring services provided by MentorNet®
• Full access to over 3,000 online courses from SkillSoft®
• Full access to 600 online books from Safari® Books Online, featuring leading publishers,

including O’Reilly (Professional Members only)
• Full access to 500 online books from Books24x7®
• A subscription to ACM’s flagship monthly magazine, Communications of the ACM
• Full member access to the new ACM Queue website featuring blogs, online discussions and debates,

plus video and audio content
• The option to subscribe to the full ACM Digital Library
• The Guide to Computing Literature, with over one million searchable bibliographic citations
• The option to connect with the best thinkers in computing by joining 34 Special Interest Groups

or hundreds of local chapters
• ACM’s 40+ journals and magazines at special member-only rates
• TechNews, ACM’s tri-weekly email digest delivering stories on the latest IT news
• CareerNews, ACM’s bi-monthly email digest providing career-related topics
• MemberNet, ACM’s e-newsletter, covering ACM people and activities
• Email forwarding service & filtering service, providing members with a free acm.org email address

and Postini spam filtering
• And much, much more

ACM’s worldwide network of over 92,000 members range from students to seasoned professionals and includes many
of the leaders in the field. ACM members get access to this network and the advantages that come from their expertise
to keep you at the forefront of the technology world.

Please take a moment to consider the value of an ACM membership for your career and your future in the dynamic
computing profession.

Sincerely,

Wendy Hall

President
Association for Computing Machinery

CACM app_revised:Layout 1 10/29/08 10:21 AM Page 1

http://acm.org

Priority Code: ACACM28

Online
http://www.acm.org/join

Phone
+1-800-342-6626 (US & Canada)

+1-212-626-0500 (Global)

Fax
+1-212-944-1318

membership application &
digital library order form

PROFESSIONAL MEMBERSHIP:

❏ ACM Professional Membership: $99 USD

❏ ACM Professional Membership plus the ACM Digital Library:

$198 USD ($99 dues + $99 DL)

❏ ACM Digital Library: $99 USD (must be an ACM member)

STUDENT MEMBERSHIP:

❏ ACM Student Membership: $19 USD

❏ ACM Student Membership plus the ACM Digital Library: $42 USD

❏ ACM Student Membership PLUS Print CACM Magazine: $42 USD

❏ ACM Student Membership w/Digital Library PLUS Print

CACM Magazine: $62 USD

choose one membership option:

Name

Address

City State/Province Postal code/Zip

Country E-mail address

Area code & Daytime phone Fax Member number, if applicable

 Payment must accompany application. If paying by check or
money order, make payable to ACM, Inc. in US dollars or foreign
currency at current exchange rate.

❏ Visa/MasterCard ❏ American Express ❏ Check/money order

❏ Professional Member Dues ($99 or $198) $ ______________________

❏ ACM Digital Library ($99) $ ______________________

❏ Student Member Dues ($19, $42, or $62) $ ______________________

Total Amount Due $ ______________________

Card # Expiration date

Signature

Professional membership dues include $40 toward a subscription
to Communications of the ACM. Member dues, subscriptions,
and optional contributions are tax-deductible under certain
circumstances. Please consult with your tax advisor.

payment:

RETURN COMPLETED APPLICATION TO:

All new ACM members will receive an
ACM membership card.

For more information, please visit us at www.acm.org

Association for Computing Machinery, Inc.
General Post Office
P.O. Box 30777
New York, NY 10087-0777

Questions? E-mail us at acmhelp@acm.org
Or call +1-800-342-6626 to speak to a live representative

Satisfaction Guaranteed!

Purposes of ACM
ACM is dedicated to:
1) advancing the art, science, engineering,
and application of information technology

2) fostering the open interchange of
information to serve both professionals and
the public

3) promoting the highest professional and
ethics standards

I agree with the Purposes of ACM:

Signature

ACM Code of Ethics:
http://www.acm.org/serving/ethics.html

You can join ACM in several easy ways:

Or, complete this application and return with payment via postal mail

Special rates for residents of developing countries:
http://www.acm.org/membership/L2-3/

Special rates for members of sister societies:
http://www.acm.org/membership/dues.html

Advancing Computing as a Science & Profession

Please print clearly

CACM app_revised:Layout 1 10/29/08 10:21 AM Page 2

http://www.acm.org/join
http://www.acm.org/membership/L2-3/
http://www.acm.org/membership/dues.html
http://www.acm.org/serving/ethics.html
http://www.acm.org
mailto:acmhelp@acm.org

12 communications of the acm | march 2009 | vol. 52 | no. 3

cacm online

DOI:00.000/0000.0000	 David Roman

The task identified by ACM in 2005 has
come to fruition. Communications of the
ACM has been remade both in print and
online. The magazine was relaunched in
July 2008, and now we are putting the fin-
ishing touches on the Web site to launch
in March at cacm.acm.org.

To say a Web site is preparing to
‘launch’ hints at manned spaceflight and
adds an element of drama that aggran-
dizes a site’s unveiling. That’s unneces-
sary. The development of the Communi-
cations’ Web site was dramatic enough.

The drama could be found in the faces
of ACM managers when they recognized
the developers’ simpatico braininess. It
was in the musings of stakeholders shar-
ing wouldn’t-it-be-nice lists, and then re-
alizing that some wishes do come true.
It was in the scrupulous attention that
Communications’ Web board members
paid to idiosyncratic design details such
as fonts, column widths, and bread-
crumb trails, and in their elation when

they realized their suggestions begat change. And as the launch date drew near, it
was in the unbending determination of all parties to work through and past every
clash, to square the uncompromising conflict between getting things right and
hitting each deadline.

The site is ready, but not finished. That’s not to say it is not a complete product.
It is. Unlike its predecessor, it delivers a daily dose of news, blogs, and opinion
pieces from ACM and from around the Web. It reflects the rich history of Commu-
nications’ 52 years and introduces a new chapter in its editorial scope and global
coverage. Indeed, its plentiful content will make you a frequent visitor.

But there are more features, content, and services in the offing. The site’s ad-
herence to user-centered design will influence future developments, as will Web
trends, user predilections, and hard economics (for more details, see the Publish-
er’s Corner on page 7). The site does and will mirror the membership’s diverse
and changing interests. Enjoy it!

Prepare for Launch
DOI:10.1145/1467247.1467251	 David Roman

ACM
Member
News
Wendy Hall Appointed
Dame Commander
ACM President Wendy Hall
has been appointed Dame
Commander of the Order
of the British Empire by Queen
Elizabeth II for services to science
and technology. The appointment
was announced by Buckingham
Palace as part of the 2009 New
Year Honours list.

“Hall is a member of the
United Kingdom’s Prime
Minister’s Council for Science
and Technology, former president
of the British Computer Society,
professor of computer science at
the University of Southampton,
U.K., and a renowned researcher
in Web science including
multimedia and hypermedia,”
said ACM CEO John White in
a statement. “This honor from
The Queen recognizes her service
and speaks to Hall’s life-long
commitment to advancing the
field of computer science, as
well as supporting her goal of
promoting the use of technology
to connect people across
international boundaries.”

Hall is well known throughout
the computer science community
for her energy and vision, and
for being a vocal advocate of
women’s opportunities in
science, engineering, and
technology. In addition to her
large number of commitments
in areas of policy development,
she continues to advance new
research directions. In 2006, she
was one of the founders of the
Web Science Research Initiative,
along with Sir Tim Berners-Lee,
Nigel Shadbolt, and Daniel
Weitzner. They are pioneering the
new discipline of Web Science, to
develop a better understanding
of the architectural principles
that led to the Web’s growth
and success, and ensure that
these support the Web’s future
development.

Tapia 09
The Richard Tapia Celebration
of Diversity in Computing
conference is being held in
Portland, OR, from April 1–4, and
will include a technical program,
plenary talks, a poster session,
a doctoral consortium, a robotics
competition, and networking
opportunities. For more information,
visit tapiaconference.org. P

h
o

t
o

g
r

a
p

h
 b

y
 NASA

/B

i
l

l
 I

n
g

a
l

l
s

http://cacm.acm.org
http://tapiaconference.org

 N
news

march 2009 | vol. 52 | no. 3 | communications of the acm 13

S
c

r
e

e
n

s
h

o
t

 f
r

o
m

 I
n

T
r

a
d

e
.c

o
m

T
he U.S. presidential elec-
tions offer social scientists
and statisticians many av-
enues for dissecting the
mood of the nation. Among

the well-publicized polls and sur-
veys conducted by well-known and
well-funded organizations, a lower-
key method of capturing the likely
outcome of the election—prediction
markets—is steadily gaining attention
from academic researchers and busi-
ness leaders for use beyond elections,
movie box-office earnings, and sport-
ing contest outcomes.

Like other futures markets, predic-
tion markets offer participants the op-
portunity to trade on their hunches,
the difference being that a prediction
market offers payout odds based on ag-
gregate hunches of forthcoming events
instead of prices.

Prediction markets are gaining inter-
est because the Internet allows greater
worldwide access to them, as well as
to the ever-increasing amount of data
stored on any topic imaginable (which
theoretically allows participants to
make more informed predictions, indi-
vidually and in aggregate). These factors,
plus the enormous amount of comput-
ing power that will make it possible to
instantly calculate exponentially small

odds, are stimulating new research on
advanced computational models in pre-
diction markets. These models could
be capable of analyzing entire events
such as the annual NCAA collegiate
basketball tournament, which begins a
63-game schedule with 263 possible out-
comes by the tournament’s end.

“I still think it’s a growth area,” says
David Pennock, a principal researcher

Science | doi:10.1145/1467247.1467252	 Gregory Goth

Betting on Ideas
Advanced computational models are enabling researchers
to create increasingly sophisticated prediction markets.

at Yahoo!, who is working on expand-
ing the capabilities of prediction mar-
ket outcomes. “Yes, prediction mar-
kets get lots of attention every four
years during a presidential election,
but every election cycle, they get more
attention than they did the previous
one. The perception of them is grow-
ing, startup companies using predic-
tion markets are emerging, and there
are a lot of research questions and in-
dustry growth still.”

In fact, Pennock says, the U.S. Com-
modities Futures Trading Commission
(CFTC) is considering expanding the use
of prediction markets beyond low-bud-
get research functions or “play money”
markets to regulated public exchanges

The world’s largest prediction market, Intrade, offers bets on everything from the Academy
Awards to whether the Higgs boson particle will be observed before or on a certain date.

http://INTRADE.COM

14 communications of the acm | march 2009 | vol. 52 | no. 3

news

IEM steering committee member
Thomas Rietz, a professor of finance at
the university, says the aggregate zero-
risk design of the IEM allows the mar-
kets to perfectly reflect the aggregate
forecast opinions of its participants. By
aggregate zero-risk, Rietz explains that
when a trader enters a particular bilat-
eral (either/or) market, he or she must
buy one share of each choice, called a
bundle, for a total cost of $1. If the trad-
er holds the bundle until the market
concludes, there is neither profit nor
gain. If the trader guesses the outcome
successfully, and sells the losing unit of
the bundle to another trader while the
market is running, he or she picks up
the original $1 bet plus whatever price
was agreed upon for the losing share
that was sold. If the trader chooses to
hold onto the loser and sell the even-
tual winner, however, they will incur
the $1 loss at payout time. At any given

similar to the world’s largest prediction
market, Ireland-based Intrade.

“The request for comments was ac-
tually very well written and it’s clear
they understand a lot of the issues,”
Pennock says. Even if public prediction
markets for substantial sums are not
approved in the U.S., the markets offer
considerable promise for enterprise
planners who want the latest informa-
tion on questions such as a product’s
likely launch date or revenue projec-
tions, and public policy forecasters,
who can design markets exempt from
CFTC oversight.

Growing opportunities in internal pri-
vate-sector prediction markets are also
revealing divergent philosophies among
the markets’ designers. Many of the pub-
lic markets feature price-adjustment
algorithms built around answering
discrete multiple-choice outcomes,
such as which candidate will win an
election or if a product will launch in
month x, y, or z. However, Mat Foga-
rty, CEO of prediction markets startup
Xpree, says enterprise clients need to
address questions expressed as con-
tinuous variables, such as a date range
in which a product will launch or how
many units will sell, and those markets
need to feature an intuitive interface
that encourages participation among
those without a great interest in finan-
cial or mathematic complexities. The
front end of these new prediction mar-
kets, as designed by Xpree, will feature
interfaces inspired by computer game
design, while the back end will replace
multiple-choice algorithms with auto-
mated market makers based on Bayes-
ian probability, enabling participants
to place bets on a range of options.

Forecasting Events
The pioneering, modern public-policy
prediction market, the University of
Iowa’s Iowa Electronic Markets (IEM),
is now 21 years old and still offering
new events for traders to forecast. First
used in the 1988 U.S. presidential elec-
tion, the IEM has offered markets on
congressional elections, federal mon-
etary policy, and inspired university
colleagues to run a prediction market
on national influenza infection trends.
The IEM’s unique design also inspired
the latest corporate prediction market,
a virtual-money internal market oper-
ated by Google.

The most visible
enterprise use of
prediction markets
is to help companies
improve product and
process development.

time, the number of eventual winning
shares and losing shares is equal and
held by the traders. So, the university
bears no counterparty risk and there
is no need to provide hedging margins
that irrationally affect outcomes.

“The price you would be willing to
buy or sell for today is your expectation
of its value in the future—the prices
can be directly interpreted as a fore-
cast,” Rietz says. “In ordinary futures
markets, there is a long-lasting debate,
going back to John Maynard Keynes
in the 1930s, over whether prices can
legitimately be used as forecasts, and
it all hinges on whether or not people
demand a return or face a risk in ag-
gregate when they’re investing in these
contracts.”

The enterprise markets are offering
intriguing design opportunities, as ex-
pressed by Xpree’s Fogarty, as well as
possible benefits beyond mining col-
lective beliefs of what may make a suc-
cessful product. The Google prediction
market, for example, was examined by
Bo Cowgill of Google, Justin Wolfers of
the University of Pennsylvania’s Whar-
ton School of Business, and Eric Zitze-
witz of Dartmouth College as a vehicle
for the way information flows within an
organization. Prediction markets, they
assert, provide employees with incen-
tives for truthful revelation and can cap-
ture changes in opinion at a much high-
er frequency than surveys, allowing one
to track how information moves inside
an organization and how it responds

David Pennock of Yahoo! at a “Prediction Markets: Tapping the Wisdom of Crowds”
conference organized by Yahoo!’s Technology Development Group.

P
h

o
t

o
g

r
a

p
h

 b
y

 D
a

v
i

d
 r

o
u

t

news

march 2009 | vol. 52 | no. 3 | communications of the acm 15

to external events. Proactive managers
can use the analysis of those informa-
tion flows to reorganize the company, if
necessary, says Wolfers.

“A problem for economists is you can’t
measure information flows, and a mar-
ket actually kind of makes those flows
measurable,” Wolfers says. “I would nev-
er suggest you set up a prediction market
just to learn about the sociology of your
organization. But it tracks, and can also
change, how organizations operate.”

Better Public Policies
Although Wolfers concedes the most
visible enterprise use of prediction
markets is to help companies improve
product and process development, he
also says, “As an economist, I am much
more enthusiastic about how predic-
tion markets could help in producing
better public policies.”

One public policy market that is
gaining momentum is the University of
Iowa’s Iowa Health Prediction Market,
funded by a $1.1 million grant from
the Robert Wood Johnson Foundation.
The market supplies invited healthcare
professionals with $100 to begin trad-
ing their forecasts on flu activity in the
coming season (winners are allowed to
spend their trading earnings on profes-
sional advancement, thereby reducing
public opprobrium about people prof-
iting from others’ illness).

Improving the flu markets’ utility
will entail expanding the regions the
markets cover, and also tackling the
most challenging computational is-
sues facing prediction market design-
ers—creating combinatorial markets
that allow a much wider range of pos-
sible outcomes, and more granular ex-
pression of them, than the traditional
win-lose, bilateral markets such as
election markets. Yahoo!’s Pennock is
experimenting with multiple examples
of these combinatorial markets, which
allow both conditional “if” questions
and conjunctive “and” questions to be
combined in virtually unlimited mul-
tiple arrangements.

For the flu market, which Pennock
says he has discussed with the Iowa
researchers, a combinatorial interface
would allow traders to bet on more
than the expected severity of outbreaks
in one region.

With a combinatorial interface, he
says, “you would choose a region of the

country and choose a date range, and
then also choose an outbreak range.
This is a combination of things you
think will happen—‘In this region, dur-
ing this time frame, flu outbreak level
will be red.’ And the market will price
it for you.”

One enduring research problem on
combinatorial markets is mitigating
the effects a virtually unlimited spec-
trum of outcomes will have on creating
markets that are so thin in trades they
do not serve their purpose of aggregat-
ing information.

In such markets, which might bear
a resemblance to an enterprise pre-
diction market in that there are not
enough participants to provide a statis-
tically valid spread of opinion, Pennock
says a market-maker algorithm might
serve as a price setter within widely ac-
ceptable limits.

“I believe that approximation al-
gorithms will be fine for the market
maker, because people don’t really
care about making bets on things
that are incredibly unlikely, like 10-6
chance,” Pennock says. “But as long
as you’re betting on something with a
10% chance of happening, we’ll be able
to approximate pretty quickly with a
market-maker price.”

Pennock says the continuous in-
crease of computational power is
making advanced research into some
of these exponentially based markets
feasible. “I don’t think it would have
happened 10 years ago,” he says. “The
horsepower to do a good approxima-
tion is somewhat more recent.”	

Gregory Goth is an Oakerville, CT-based writer
specializing in science and technology.

Combinatorial markets
allow a wider range
of outcomes and
a more granular
expression of them
than traditional
bilateral markets.

Data Mining

Slice,
Then
Stitch
Researchers at the University
of California, Davis, and
Lawrence Livermore National
Laboratory have developed
software that makes the
analysis and visualization of
large data sets possible without
the use of a supercomputer,
reports Technology Review. The
researchers’ algorithm slices
data into manageable chunks,
then stitches it back together,
so the data can be manipulated
in three dimensions, all on a
computer with the power and
capacity of an expensive laptop.

The researchers’ algorithm
offers a method of obtaining
structural information about
materials, proteins, and fluids,
says Attila Gyulassy, the UC Davis
researcher who led the project.
It allows users to “interactively
visualize, rotate, apply different
transfer functions, and highlight
different aspects of the data,”
he says.

The software uses a
mathematical tool called the
Morse-Smale complex, which
has been used to extract and
visualize elements of large
data sets by sorting them
into segments that contain
mathematically similar features.
The Morse-Smale complex has
been known for decades, but
it normally requires enormous
amounts of computer memory.

Gyulassy and his colleagues
overcame this memory problem
by writing an algorithm that
breaks apart a data set before
using the Morse-Smale complex,
then stitches the blocks back
together. As a result, only a
small amount of data is needed
at each step, so much less data
must be stored in memory.

Peter Schröder, a professor
of computer science at
the California Institute of
Technology, notes that memory
has been one of the limiting
factors for the complex analysis
of massive data sets. “You can’t
even fit the stuff in memory,”
he says. “But [the researchers]
have addressed it.”

The researchers plan to
release an open source software
library this spring to allow
researchers to take advantage
of the approach, and revise it
according to their needs.

16 communications of the acm | march 2009 | vol. 52 | no. 3

news

I
m

a
g

e
 f

r
o

m
 t

h
e

s
h

e
e

p
m

a
r

k
e

t
.c

o
m

 b
y

 a
r

o
n

 K
o

b
l

i
n

T
h o ug h c o m p u t e rs h av e
outstripped us in arithme-
tic and chess, there are still
plenty of areas where the
human mind excels, such

as visual cognition and language pro-
cessing. And if one mind is good, as
the proverb goes, two—or two thou-
sand—are often better. That insight,
and its consequences, drew worldwide
interest with the 2004 publication of
James Surowiecki’s best-selling The
Wisdom of Crowds, which argued that
a large group of people are superior at
certain types of rational tasks than in-
dividuals or even experts.

Now researchers are turning to
computers to help us take advantage
of our own cognitive abilities and
of the wisdom of crowds. Through a
distributed problem-solving process
variously known as crowdsourcing,
human computation, and computer-
aided micro-consulting, answers are
solicited online to a set of simple, spe-
cific questions that computers can’t
solve. Is this a picture of a fish? Do
you like that style of shoe? How many
hotels are on St. George’s Island, and
which ones have Internet access?

The amateur, often anonymous
workers who agree to execute these
tasks are usually given some sort of
social or financial incentive. A few
cents might buy the answer to a simple
data-labeling task, while a more ardu-

ous job like audio transcription could
require a couple of dollars. Reposition
the task as a game, and many people
even “work” for free. Either way, the
possibilities—for creating corpuses of
annotated data, conducting market re-
search, and more—have both comput-
er scientists and companies excited.

One of the oldest commercial
crowdsourcing applications is Ama-
zon’s Mechanical Turk. Named after
a famous 18th century chess-playing
“machine” that was secretly operated
by a human, it offers a flexible, Web-
based platform for creating and pub-
licizing tasks and distributing micro-
payments. Since its launch in 2006,
Turk has spawned both a vocabulary
and a mini-marketplace. Workers,
or “Turkers” (there are more than
200,000 in 185,000 countries, accord-
ing to Amazon), select “Human Intel-
ligence Tasks” (HITs) that match their
interests and abilities. Motivations
vary. Some work odd hours or at night
to generate extra income, while oth-
ers simply desire a more productive
way to kill time online, like solitaire
with financial rewards. As in the of-
fline world, more money buys faster
results, and Amazon’s HIT requesters
often experiment to find a pay scale
that matches their needs.

Also part of the Turk economy are
companies like Dolores Labs and Cast-
ingWords, which rely on Amazon’s

technology to power their own crowd-
sourcing applications. Dolores Labs,
based in San Francisco, posts Turk
HITs on behalf of its clients, then filters
the answers through custom-built soft-
ware systems to check for quality and
generate meaningful results. Data is ul-
timately used to perform tasks like filter
comment spam, tag data for search en-
gine optimization, and research market
trends.

“Many companies don’t have the
resources to describe tasks, put them
up online, and manage the data they
get,” explains Lukas Biewald, the
company’s founder and CEO. Nor do
they have time for Dolores’s extensive
quality-control measures, which in-
clude creating “test” questions whose
answers are already known, checking
responses against one another, track-
ing individual answer histories, and
creating a confidence measure with
which to weight the resulting data.

Dolores also guides clients through
the many variables that are involved
in designing a crowdsourced project.
How arduous is each task? How quick-
ly are results needed? How would cli-
ents like to deal with the statistical
outliers that are caught by Dolores’
quality-control algorithms? If you’re
checking user-generated content for
pornography, for example, you might
err on the side of caution.

According to Biewald’s estimates,

Crowd Control
Using crowdsourcing applications, humans around the world are transcribing
audio files, conducting market research, and labeling data, for work or pleasure.

Society | doi:10.1145/1467247.1467254	 Leah Hoffmann

Some of the 10,000 sheep created for Aaron Koblin’s TheSheepMarket.com by workers for Amazon’s Mechanical Turk who were paid .02
cents to “draw a sheep facing to the left.”

http://TheSheepMarket.com
http://THESHEEPMARKET.COM

news

march 2009 | vol. 52 | no. 3 | communications of the acm 17

age as the other player slowly reveals it.
In fact, designing a game is much like
designing an algorithm, as von Ahn has
pointed out: “It must be proven correct,
its efficiency can be analyzed, a more ef-
ficient version can supersede a less effi-
cient one.” And since many people are
inherently competitive, building a com-
munity around each game to recognize
outstanding performers helps increase
participation, as well.

ReCAPTCHA, on the other hand, is
an attempt to take advantage of a task
that millions of people perform in the
course of their everyday online lives:
solve the ubiquitous character recog-
nition tests known as CAPTCHAs to
prove they are human. “I developed
reCAPTCHA because I found out that
we’re wasting 500,000 collective hours
each day solving these mindless tasks,”
says von Ahn. To put that brainpower
to use, reCAPTCHA presents users with
scanned images from old books and
newspapers, which computers have dif-
ficulty deciphering. By solving the re-
CAPTCHA they help digitize the works.
Since 2007, some 400 million people
have helped digitize more than five bil-
lion words, according to von Ahn.

Crowdsourcing’s critics claim it
is unethical and exploitive, paying
pennies or nothing for honest labor
(though diligent workers often make
close to minimum wage). In a strug-
gling economy, people may grow
choosier about the ways they earn extra
income. On the other hand, they may
also be more interested in blowing off
steam on the Internet—and being re-
warded with a few extra dollars.	

Leah Hoffmann is a Brooklyn-based science and
technology writer. Valerie Nygaard, Microsoft,
contributed to the development of this article.

Online Social Networks

Adults
Get Social
The percentage of Internet
users age 55 and older who
have a profile on an online
social network has quadrupled
during the last four years, from
8% in 2005 to 35% in 2008,
according to a new survey by
the Pew Internet & American
Life Project.

Although media coverage
has largely focused on how
children and young adults use
social network sites, adults still
comprise the majority of the
users of the social network sites
because adults make up a larger
portion of the U.S. population
than teens, 65% of whom use
social network sites.

Overall, however, younger
adults are much more likely
than older adults to use social
networks. For instance, 75% of
online adults age 18–24 have a
profile on a social network; 57% of
online adults 25–34 have a profile;
30% of online adults 35–44 have
a profile; 19% of online adults
45–54 have a profile; 10% of adults
55–64 have a profile; and only 7%
of online adults 65 and older have
a profile.

In terms of gender, adult
women and men are equally
likely to use social networks.

The Pew study also reported
that minority groups are more
prevalent on social sites than
previously expected. It found
that 48% of African-American
adults and 43% of nonwhite
Hispanic adults have a social
profile, compared to 31% of
white adults.

The personal use of social
networks is more prevalent
than professional use, both in
the orientation of the networks
that adults choose to use as
well as the reasons they give
for using the applications. For
instance, 50% of adult users
have a profile on MySpace,
22% on Facebook, and 6% on
LinkedIn.

The applications are mostly
used to explain and maintain
personal networks, and most
older adults are using them
to connect with people they
already know, usually to keep
up with (89%), make plans with
friends (57%), or to make new
friends (49%). Other uses include
organizing with others for an
event, cause or issue; flirting;
promoting one’s self or work; and
making new business contacts.

Since 2007, some 400
million people have
helped digitize more
than five billion words,
says Carnegie Mellon’s
Luis von Ahn.

the cost for a crowdsourced proj-
ect ranges from $2,000 to $4,000 for
simple tagging projects to $10,000
to $20,000 for more complex custom
applications. Stephen Mechler, man-
aging director of the German crowd-
sourcing Web site Floxter, which uses
its own technologies to handle the
mechanics of creating and assigning
tasks and compensating workers, cal-
culates that it is 33% less expensive to
crowdsource projects like data classi-
fication and tagging than to complete
them with in-house employees.

Other companies focus their crowd-
sourcing efforts on specific types of
projects. New Mexico-based Casting-
Words uses Turk to transcribe audio
files. Through a propriety algorithm,
files are first split into three- to four-
minute chunks. Next, Turkers listen to
a few seconds of each clip to judge the
quality of the recording, which in turn
helps determine pay rates for the tran-
scription work. Once each file has been
transcribed, a full draft is assembled
and sent back to Turk to be graded for
consistency and precision, and re-
transcribed where necessary. Finally,
Turkers edit and polish the transcript
to be sent back to the client. Total costs
range from $.75 to $2.50 per audio min-
ute, depending on how quickly a client
needs the work completed.

Researchers like Carnegie Mellon
University computer science professor
Luis von Ahn are also finding ways to put
crowdsourcing to work. Unlike his cor-
porate peers, von Ahn is unable to pay
for the completion of a task, so he relies
on social incentives—and tries to make
tasks fun. To entice people to manu-
ally label a collection of digital images,
for instance, von Ahn created the ESP
Game, which randomly matches each
player with an anonymous partner. Play-
ers try to guess which words or phrases
their partners (whom they can’t com-
municate with) would use to describe
a certain image. Once both players type
the same descriptor, a new image ap-
pears and the process begins anew. In
2006, Google licensed the idea and cre-
ated its own version of the game in order
to improve image search results.

Since then, von Ahn has developed
other games with a purpose to harness
the wisdom of crowds. In Peekaboom,
for example, one player attempts to guess
the word associated with a particular im-

18 communications of the acm | march 2009 | vol. 52 | no. 3

news

S
c

r
e

e
n

s
h

o
t

 b
y

 C
h

r
i

s
t

o
p

h
e

r
 G

l
i

s
s

o
n

I
t’s no secret that virtualization,
a technology long associated
with mainframe computers,
has been transforming data
centers due to its ability to

consolidate hardware resources and
reduce energy costs. But in addition to
its impact on data centers, virtualiza-
tion is emerging as a viable technolo-
gy for smartphones and virtual private
networks, as well as being used to re-
conceive agile and cloud computing.

Over the past decade there has
been a great deal of work on improv-
ing the performance, enhancing the
flexibility, and increasing the manage-
ability of virtualization technologies.
Developments in the past five years
alone, for example, include the abil-
ity to move a running virtual machine,
along with its live operating system
and applications, to a physical host
without major downtime. The indus-
try has also recently witnessed the
ability of virtualization to log the ac-
tions of a virtual machine in real time,
with the purpose of being able to roll
back an entire system to an arbitrary
point and then roll it forward for de-
bugging or auditing. These and other
recent developments have positioned
virtualization as a core technology in
cloud computing and have facilitated
the technology’s move to the desktop.

“It’s clear that virtualization is here
to stay,” says Steve Herrod, chief tech-
nology officer at VMware. “In the fu-
ture, we’ll look back at the nonvirtual-
ized compute models as we look back
at the phonograph and bulky CRTs.”
But Herrod also says that the industry is
far from realizing the full benefits that
virtualization can bring to desktops,
laptops, and smartphones. “Virtual-
ization is picking up steam rapidly for
desktop users, but it has certainly not
achieved ubiquity yet,” he says. “End
users don’t want or need to know that

virtualization is being used; they want
access to their applications, and they
want the very rich media experiences
that many modern applications offer.”

Arguably, one of the most interest-
ing and novel uses of the technology
is on mobile devices, where virtual-
ization enables several new use-cas-
es, such as isolating work and home
smartphones on a single physical
handset. Gartner predicts that more
than 50% of new smartphones will
have a virtualization layer by the year
2012. The need for virtualization on
smartphones is strong, says Herrod,
particularly as these devices become
more powerful, as mobile applica-
tions become more advanced, and as
security becomes a bigger issue. “Just
as in the early days of our x86 desktop
virtualization efforts, we see many dif-
ferent benefits that will come with this
virtualization,” says Herrod.

As one example, Herrod cites the
substantial testing procedures that
every new handset must undergo

prior to shipping. Virtualization, he
says, will let handset manufactur-
ers test once and deploy on different
handsets. For the carriers, Herrod pre-
dicts that virtualization will enable a
new set of services, such as allowing
users to deploy a virtual copy of their
mobile data to a newly purchased
handset. And for businesses, he says
that those who want a single handset
for home and work will be able to use
different virtual phones. “Their work
phone could be restricted to very spe-
cific applications and corporate data
that is secure and completely isolated
from their home phone, where they
may have personal information and
games,” he says. “The more we talk
with people about this new area, the
more use-cases we find.”

Enhanced Security
The notion that one of the strengths
of virtualization is its ability to isolate
data and applications corresponds
to another aspect of the technology

Technology | doi:10.1145/1467247.1467253	 Kirk L. Kroeker

The Evolution
of Virtualization
Virtualization is moving out of the data center and making inroads
with mobile computing, security, and software delivery.

An iMac computer, with VMware Fusion, which enables it to run Windows XP Pro on the left
screen, Windows Vista Home on the right, and Mac OS X Leopard in the background.

news

march 2009 | vol. 52 | no. 3 | communications of the acm 19

Quantum Computing

Atoms
Teleported
A team of scientists from the
University of Maryland and
the University of Michigan
have successfully teleported
information between a pair
of atoms, housed in separate
and enclosed containers,
across a distance of one meter,
reports Science. According to
the scientists, this is the first
time that information has
been teleported between two
separate atoms in unconnected
containers.

With their protocol,
the scientists successfully
teleported quantum
information between two
ytterbium ions, using a method
of teleportation in which the
ions are stimulated to emit
photons and the quantum states
are inferred from the color of
the emissions. The scientists
report that atom-to-atom
teleported information can be
recovered with perfect accuracy
approximately 90% of the time,
and they believe that figure can
be improved.

“Our system has the
potential to form the basis for a
large-scale ‘quantum repeater’
that can network quantum
memories over vast distances,”
says Christopher Monroe,
the team leader and a physics
professor at the University
of Maryland. “Moreover,
our methods can be used in
conjunction with quantum
bit operations to create a
key component needed for
quantum computation.

“One particularly attractive
aspect of our method is
that it combines the unique
advantages of both photons and
atoms,” says Monroe. “Photons
are ideal for transferring
information fast over long
distances, whereas atoms
offer a valuable medium for
long-lived quantum memory.
The combination represents
an attractive architecture for a
‘quantum repeater,’ that would
allow quantum information to
be communicated over much
larger distances than can be
done with just photons. Also,
the teleportation of quantum
information in this way could
form the basis of a new type of
quantum Internet that could
outperform any conventional
type of classical network for
certain tasks.”

that has become increasingly popu-
lar. While it might be easy to think
of virtualization as adding a software
layer that requires additional controls
to maintain security, proponents of
virtualization argue that it serves the
opposite purpose, and instead rep-
resents a core enhancement to secu-
rity. “The only way we know how to
get strong isolation is to keep things
simple,” says Mendel Rosenblum,
founder of VMware and a professor of
computer science at Stanford Univer-
sity. “And the only way we know how to
do that is to have isolation enforced at
the lowest level.”

Modern operating systems have a
high level of functionality—and a cor-
responding level of complexity and
number of potential weaknesses. “I
look at virtualization as a step toward
getting out of the mess we have in
terms of these systems being so in-
secure,” says Rosenblum, who main-
tains that better security is a natural
result of virtualization. Still, he says, it
is incumbent on those working on vir-
tualization to build layers that don’t
make virtualized systems so full of fea-
tures and complex that they become
difficult to secure.

Ian Pratt, founder of XenSource and
vice president of advanced products at
Citrix, has a similar view of virtualiza-
tion’s relationship to security. “If you
look at hypervisors for laptops and
phones, it’s not about consolidation,”
he says. “It’s about security and being
able to secure different partitions on
a device.”

Citrix is developing software for
a model of mobile computing that
the company calls “bring your own
computer,” with the idea being for
employees to use their own laptop
for securely connecting to the corpo-
rate network. In this model, the lap-
top runs a corporate virtual machine
directly on top of a hypervisor rather
than in a hosted virtual environment
contained by the employee’s personal
operating system.

“You need to provide very strict iso-
lation between those environments
because you really don’t trust the per-
sonal environment,” says Pratt. “It is
only through using a hypervisor where
you can achieve that strong isolation
between those environments.”

Like VMware’s Herrod, Pratt points

to smartphones as one manifestation
of this new way of thinking about vir-
tualization and security. In Pratt’s
example, a handset might have one
virtual machine that controls the ra-
dio, another that contains all the de-
fault software and applications, and a
third that operates everything the user
downloads and installs. “The whole
idea behind this,” says Pratt, “is that
because you have this strong isolation,
no matter what rubbish you download
and install on the phone, you are still
going to be able to make that 911 call
whenever you need it.”

Proponents of virtualization say
that, in addition to facilitating new
ways of enforcing security, virtual-
ization technologies are leading to
new ways of distributing software.
“Virtualization not only gives you the
ability to manage hardware more ef-
fectively,” says Rosenblum, “but also
allows you to treat the software you’re
running differently.” One way of lever-
aging virtualization’s capabilities is
to ship complete packages of running
virtual machines rather than having
users assemble operating systems
and applications themselves, he says.
The idea represents a different take
on software as a service, a model that
obviates the need for users to assem-
ble applications themselves. “It’s not
like you buy all the separate parts to
make a car, but that’s what we do with
computers,” says Rosenblum, who
predicts that virtualization will lead to
users simply invoking complete, au-
thenticated virtual machines tailored
to their particular needs.

Core Challenges
While virtualization is continuing to
make inroads in several new areas and

With virtualization,
people will be able
to use both their
work phone and
home phone on
a single handset.

20 communications of the acm | march 2009 | vol. 52 | no. 3

news

L
e

f
t

:
P

h
o

t
o

g
r

a
p

h
 c

o
u

r
t

e
s

y
 o

f
 C

a
r

o
l

i
n

e
 S

e
l

f
r

i
d

g
e

,
R

i
g

h
t

 P
h

o
t

o
g

r
a

p
h

 c
o

u
r

t
e

s
y

 o
f

 I
n

f
o

r
m

a
t

i
o

n
s

d
i

e
n

s
t

 W
i

s
s

e
n

s
c

h
a

f
t

is leading to speculation about new
models of computing, the technology’s
overhead remains a core challenge.
Recent advances in hardware and
software have been removing some of
the performance concerns associated
with virtualization, but the goal is to
eliminate the performance gap alto-
gether. “We are not there yet, but what
you’re going to see is enhancements
in processors and other technolo-
gies to make the performance gap go
away,” says Leendert van Doorn, who
is a senior fellow at AMD and respon-
sible for AMD’s virtualization technol-
ogy, including the AMD virtualization
extensions in the company’s latest
quad-core Opteron processor, which
are designed to reduce the perfor-
mance overhead of software-based vir-
tualization. “The big problem with vir-
tualization right now is performance
guarantees,” he says. “If you have a
database transaction requirement of a
few milliseconds, it is very difficult to
provide that guarantee in a virtualized
environment.”

Still, van Doorn says he is confident
that this overhead will be reduced in
the coming years with better hardware
and software support for virtualiza-
tion. Currently, overhead in virtual-

ized environments varies from a few
percent to upward of 20%, a figure that
van Doorn says depends on several
factors, including how the hypervisor
is implemented and whether the oper-
ating system running atop the hypervi-
sor is aware that it is being virtualized.
“The Holy Grail is to get near-native
performance,” he says. “We are get-
ting closer to that goal.”

In addition to the performance is-
sue, there remains the issue of man-
ageability in the data center and else-
where. “For the next generation, every
big software company is working on
comprehensive management tools,”
says van Doorn. The goal is to deal with
a massive number of virtual machines

In the future, all
new machines might
have virtualization
capabilities embedded
in their firmware.

and effectively make global optimiza-
tion decisions for thousands of virtual
systems running in data centers or in
the hands of a large work force. So-
phisticated management tools will be
essential in the future imagined by vir-
tualization’s proponents, who predict
that industry is moving toward a world
in which the technology is ubiquitous,
and where all new machines will have
virtualization capabilities embedded
in firmware.

Certainly, says Citrix’s Pratt, all
servers, desktops, laptops, smart-
phones, routers, storage arrays, and
anything else running software that
must be isolated from other applica-
tions will be virtualized. The result?
“The main noticeable thing will be
more trustworthy computing,” says
Pratt. Echoing this sentiment, Herrod
predicts that users won’t think about
virtualization as a different form of
computing. “It will seamlessly fit into
our notion of computing,” he says,
“enabling a much simpler and more
productive experience for all of us.”	

Based in Los Angeles, Kirk L. Kroeker is a freelance
editor and writer specializing in science and technology.
Steven Hand, Citrix, and Carl Waldspurger, VMware,
assisted in the development of this article.

Obituaries

In Memoriam
The world of computer science
recently lost two esteemed
members: Oliver G. Selfridge,
who died at 82, and Ingo
Wegener, 57.

Selfridge, whose career
included positions at MIT,

BBN, and GTE
Laboratories, is
widely regarded as
a leading pioneer
in the field of
artificial
intelligence and

the father of machine perception.
“In prescient research in the
1950s,” says Eric Horvitz,
president of the American
Association of Artificial
Intelligence, “he introduced and
tackled key problems that are
now well known to machine
learning researchers, including
the challenges of search and
optimization over large
parameter spaces, feature

definition and selection,
dependencies among variables,
and unsupervised learning—
learning without explicit access
to signals about success versus
failure.”

In 1956, Selfridge, with
four colleagues, organized a
conference at Dartmouth College
that led to the creation of the
field of artificial intelligence. And
his 1958 paper, “Pandemonium:
A Paradigm for Learning,” is a
classic AI treatise that essentially
provides a blueprint for machine
learning research.

“The Pandemonium work
introduced a distributed model
for pattern recognition, where
a community of interacting
‘demons’ or agents with different
competencies and functions
perform different subtasks
that are then combined into
final answers or behaviors,”
Horvitz notes. “Rather than

being handcrafted ahead of time
and fixed, the agents and their
networks of communication
could evolve with experience.

“For decades, Oliver
communicated an exciting vision
where computers would one day
learn to infer human intentions
and act to assist people without
the need for detailed expression
of problems,” says Horvitz. “Such
a vision has evolved to be central
in research on human-computer
interaction.”

Ingo Wegener, a professor of
computer science at the
Technical University of
Dortmund, is well known for his
groundbreaking work in
complexity theory. He wrote a
pair of important monographs,
The Complexity of Boolean Functions
(1987) and Branching Programs
and Binary Decision Diagrams
(2000). In the early 1990s, he
worked in the formal analysis of

metaheuristics, and his
conviction that optimization
algorithms based on
metaheuristics, like evolutionary
algorithms and simulated
annealing, should be studied
with the methods from

the theory of
efficient
algorithms and
complexity theory.
Wegener’s new,
theoretical
approach

produced a profound
understanding of the limitations
of such metaheuristics.

Wegener was appointed a
member of the German Council
of Science and Humanities,
the leading scientific advisory
committee to the German
government, in 2004, and
won the Konrad-Zuse-Medal,
Germany’s most prestigious
computer science award, in 2006.

march 2009 | vol. 52 | no. 3 | communications of the acm 21

news

silos—application programs that mir-
ror the development organizations that
produced them” and whose “common
denominator is importing and export-
ing bitmaps,” he said. Computing, van
Dam suggested, should “go back to the
future.”

Alan Kay, president of Viewpoints
Research Institute, said what most at-
tracted him to Engelbart’s goal was to
use computers to improve the world.
However, people disagreed about
what it means to augment intellect.
Furthermore, he said, the biggest
unsolved problem is how to capture
group wisdom and the difficulty of
summarizing it.

Kay and van Dam both lamented
today’s practitioners’ lack of curiosity
and historical context. “We’re incredi-
bly wedged… conceptually, technically,
emotionally, and psychologically into a
tiny and boring form of computing that
is not even utilitarian,” said Kay. “I’d be

O
n D e ce mber 9, 1968, Doug-
las C. Engelbart and his
Stanford Research Institute
(SRI) team demonstrated
their latest inventions at

the Fall Joint Computer Conference
in San Francisco in an event popularly
known as “The Mother of All Demos.”
Engelbart’s demonstration includ-
ed the world debut of the computer
mouse, plus the introduction of inter-
active text, email, teleconferencing and
videoconferencing, and hypertext.

But Engelbart, director of SRI’s Aug-
mentation Research Center, had lofty
aspirations for the system, called NLS
(for oNLine System). His goal was to
create an integrated system that would
“augment human intellect” by facili-
tating collaboration and bootstrap-
ping—continually improving the im-
provement process—and thereby help
people better the world. NLS, he hoped,
would enable a new way of thinking
about how humans work, learn, and
live together.

Last December two celebrations—
one at the Tech Museum of Innova-
tion in San Jose, and another at Stan-
ford University—commemorated the
demonstration’s 40th anniversary,
and industry luminaries honored En-
gelbart and his team’s achievements,
discussed how the event changed their
thinking, and examined its impact on
computing.

Andries van Dam, a professor of
computer science at Brown University,
extolled what he had felt back then was
so “mind-blowing” about the demo—
that it reflected a broad, new way of
thinking about design. “It was a huge
beautiful suite of tools that allowed a
recursive, self-improvement process—
very fast progressive refinement cycles
that really raised the collective IQ of the
group and made the tools more power-
ful,” he said.

However, van Dam was disappoint-
ed that the idealism of an integrated
system has been lost. “Today we have

happy to burn the whole thing down
and start over again.”

Kay said few people objected when
browsers were no longer WYSIWYG-
capable “because [people] were not
sophisticated enough to have the per-
spective to complain.” And van Dam
objected to “dumbed-down” links. In
the past, “we had fine-grained, bidi-
rectional, tagged links useful for infor-
mation retrieval and viewing specifica-
tions for links and their destinations,”
he said. “We need to get them back and
not just be stuck with URLs.”

Kay warned that suboptimal tools
can reshape us, and called on attend-
ees to spread Engelbart’s vision. “Per-
haps the real significance of NLS,”
he said, “is that it put an idea into the
world that is a difficult one, but… it’s
an idea none of us can forget.” 	

Based in Manhattan, Karen A. Frenkel is a freelance
writer and editor specializing in science and technology.

A Difficult, Unforgettable Idea
On the 40th anniversary of Douglas C. Engelbart’s “The Mother of All Demos,”
computer scientists discuss the event’s influence—and imagine what could have been.

News | doi:10.1145/1467247.1467255	 Karen A. Frenkel

Clockwise from top left: A video still of Douglas C. Engelbart during “The Mother of All
Demos” in 1968; Engelbart conducting a workshop circa 1967; and a closeup view of the
ergonomic keyboard and mouse setup used in the 1968 demonstration.

P
h

o
t

o
g

r
a

p
h

s
 c

o
u

r
t

e
s

y
 o

f
 B

o
o

t
s

t
r

a
p

 A
l

l
i

a
n

c
e

22 communications of the acm | march 2009 | vol. 52 | no. 3

news

ACM Fellows Honored
Forty-four men and women are being inducted this year as 2008 ACM Fellows.

News | doi:10.1145/1467247.1467256 	

P. Geoffrey Lowney, Intel Corporation
Jitendra Malik, University of

California, Berkeley
Kathryn S. McKinley, The University of

Texas at Austin
Bertrand Meyer, ETH Zurich
John C. Mitchell, Stanford University
Joel Moses, Massachusetts Institute of

Technology
J. Ian Munro, University of Waterloo
Judith S. Olson, University of

California at Irvine
Lawrence C. Paulson, University of

Cambridge Computer Laboratory
Hamid Pirahesh, IBM Almaden

Research Center
Brian Randell, Newcastle University
Michael K. Reiter, University of North

Carolina at Chapel Hill
Jennifer Rexford, Princeton University
Jonathan S. Rose, University of Toronto
Mendel Rosenblum, Stanford University
Rob A. Rutenbar, Carnegie Mellon

University
Tuomas Sandholm, Carnegie

Mellon University
Vivek Sarkar, Rice University
Mark S. Squillante, IBM Thomas J.

Watson Research Center
Per Stenström, Chalmers University of

Technology
Madhu Sudan, Massachusetts

Institute of Technology
Richard Szeliski, Microsoft Research
Douglas Terry, Microsoft Research

Silicon Valley

Institute of Technology
William Buxton, Microsoft Research
Kenneth L. Clarkson, IBM Almaden

Research Center
Jason (Jingsheng) Cong, University of

California at Los Angeles
Perry R. Cook, Princeton University
Stephen A. Cook, University of Toronto
Jack W. Davidson, University of Virginia
Umeshwar Dayal, Hewlett-Packard

Laboratories
Xiaotie Deng, City University of Hong

Kong
Jose J. Garcia-Luna-Aceves, University

of California, Santa Cruz/Palo Alto
Research Center

Michel X. Goemans, Massachusetts
Institute of Technology

Patrick Hanrahan, Stanford University
Charles H. House, Stanford University

MediaX Program
Watts S. Humphrey, SEI, Carnegie

Mellon University
Alan C. Kay, Viewpoints Research

Institute
Joseph A. Konstan, University of

Minnesota
Roy Levin, Microsoft Research
 Silicon Valley

technology and for their significant
contributions to the mission of the
ACM. The ACM Fellows serve as distin-
guished colleagues to whom the ACM
and its members look for guidance and
leadership as the world of information
technology evolves.

The men and women honored as Fel-
lows have made critical contributions
toward and continue to exhibit extraor-
dinary leadership in the development
of the Information Age, and will be in-
ducted at the ACM Awards Banquet on
June 27, 2009, in San Diego, CA.

This year’s 44 new inductees bring
the total number of ACM Fellows to 675
(see www.acm.org/awards/fellows/ for
a complete list of ACM Fellows).

ACM Fellows
Martín Abadi, Microsoft Research

Silicon Valley/University of
California, Santa Cruz

Gregory Abowd, Georgia Institute of
Technology

Alexander Aiken, Stanford University
Sanjeev Arora, Princeton University
Hari Balakrishnan, Massachusetts

The ACM Fellows Program was established
in 1993 to recognize and honor outstanding
ACM members for their achievements
in computer science and information

The designation “ACM Fellow”
may be conferred upon those
ACM members who have
distinguished themselves by
outstanding technical and
professional achievements
in information technology,
who are current professional
members of ACM, and have

been professional members for
the preceding five years. Any
professional member of ACM
may nominate another member
for this distinction.

Nomination information
organized by a principal
nominator should include
excerpts from the candidate’s

current curriculum vitae, listing
selected publications, patents,
technical achievements,
honors, and other awards; a
description of the work of the
nominee, drawing attention to
the contributions that merit
designation as Fellow; and
supporting endorsements

from five ACM members.
Nominations and endorse-

ments must be submitted to
the ACM Fellows Web site by
September 1, 2009. For more
information about ACM Fellows
and other member grades, visit
http://awards.acm.org/html/
amg_call.cfm.

Call for 2009 ACM Fellows Nominations

http://www.acm.org/awards/fellows/
http://awards.acm.org/html/amg_call.cfm
http://awards.acm.org/html/amg_call.cfm

Call for Submissions and Participation

The 5th International Symposium on Wikis (WikiSym 2009)

Submission deadline: March 27, 2009
Symposium: October 25 – 27, 2009

Symposium location: Orlando, FL, U.S.A.

Symposium Chair: Dirk Riehle, SAP Labs LLC
Program Chair: Amy Bruckman, Georgia Tech

For more information see
http://www.wikisym.org/ws2009

http://www.wikisym.org/ws2009

24 communications of the acm | march 2009 | vol. 52 | no. 3

V
viewpoints

I
t is a time of considerable in-
trospection for the computing
field. We recognize the need to
transcend the time-honored,
but narrow image of, “We are

programmers.” That image conveys
no hint of our larger responsibilities
as software professionals and limits us
in our pursuit of an engineering model
for software practice.

The search for an alternative to the
programmer image is already a gen-
eration old. In 1989 we asked: Are we
mathematicians? Scientists? Engi-
neers?3 We concluded that we are all
three. We adopted the term “comput-
ing,” an analogue to the European “in-
formatics,” to avoid bias toward any
one label or description.

Today, we want all three faces to be
credible in an expanding world. The
cases for computing as mathemat-
ics and as science appear to be widely
accepted outside the field.1 However,
the case for computing as engineer-
ing is still disputed by traditional en-
gineers. Computer engineering (the
architecture and design of computing
machines) is accepted, but software

engineering remains controversial.
In this column, we examine reasons

for the persistent questions about soft-
ware engineering and suggest direc-
tions to overcome them.

Engineering Process
The dictionary defines engineering as
the application of scientific and math-
ematical principles to achieve the de-
sign, manufacture, and operation of
efficient and economical structures,
machines, processes, and systems.

When applied to software engineer-
ing, this definition calls attention to
the importance of science and math
principles of computing. Software en-
gineering has also contributed prin-
ciples for managing complexity in soft-
ware systems.

Some definitions insist that engi-
neering mobilizes properties of matter
and sources of energy in nature. Al-
though software engineering does not
directly involve forces of nature, this
difference is less important in modern
engineering.

The main point of contention is
whether the engineering practices for
software are able to deliver reliable,
dependable, and affordable software.
With this in mind, the founders of the
software engineering field, at the leg-
endary 1968 NATO conference, pro-
posed that rigorous engineering pro-
cess in the design and implementation
of software would help to overcome the
“software crisis.”

In its most general form, the “en-
gineering process” consists of a re-
peated cycle through requirements,
specifications, prototypes, and test-

The Profession of IT
Is Software Engineering
Engineering?
Software engineering continues to be dogged by claims it is not engineering.
Adopting more of a computer-systems view may help.

doi:10.1145/1467247.1467257	 Peter J. Denning and Richard D. Riehle

Software engineering
may suffer from
our habit of paying
too little attention to
how other engineers
do engineering.

V
viewpoints

march 2009 | vol. 52 | no. 3 | communications of the acm 25

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 C
a

m
i

l
l

e
 C

h
i

s
h

o
l

m
/t

h
e

i
s

p
o

t
.c

o
m

ing. In software engineering, the pro-
cess models have evolved into several
forms that range from highly struc-
tured preplanning (waterfalls, spirals,
Vs, and CMM) to relatively unstruc-
tured agile (XP, SCRUM, Crystal, and
evolutionary). No one process is best
for every problem.

Despite long experience with these
processes, none consistently delivers
reliable, dependable, and affordable
software systems. Approximately one-
third of software projects fail to deliver
anything, and another third deliver
something workable but not satisfac-
tory. Often, even successful projects
took longer than expected and had sig-
nificant cost overruns. Large systems,
which rely on careful preplanning, are
routinely obsolescent by the time of
delivery years after the design started.2
Faithful following of a process, by it-
self, is not enough to achieve the re-
sults sought by engineering.

Engineering Practice
Gerald Weinberg once wrote, “If soft-
ware engineering truly is engineering,
then it ought to be able to learn from
the evolution of other engineering
disciplines.” Robert Glass and his col-
leagues provocatively evaluated how
often software engineering literature
does this.4 They concluded that the lit-
erature relies heavily on software anec-
dotes and draws very lightly from other
engineering fields. Walter Tichy found
that fewer than 50% of the published
software engineering papers tested
their hypotheses, compared to 90% in
most other fields.8

So software engineering may suffer
from our habit of paying too little at-
tention to how other engineers do en-
gineering. In a recent extensive study
of practices engineers expect explicitly
or tacitly, Riehle found six we do not do
well.5

Predictable outcomes (principle of ˲˲

least surprise). Engineers believe that
unexpected behaviors can be not only
costly, but dangerous; consequently,
they work hard to build systems whose
behavior they can predict. In software
engineering, we try to eliminate sur-
prises by deriving rigorous specifica-
tions from well-researched require-
ments, then using tools from program
verification and process management
to assure that the specifications are

met. The ACM Risks Forum docu-
ments a seemingly unending series of
surprises from systems on which such
attention has been lavished. Writing
in ACM SIGSOFT in 2005, Riehle sug-
gested a cultural side of this: where
researchers and artists have a high tol-
erance, if not love, for surprises, engi-
neers do everything in their power to
eliminate surprises.6 Many of our soft-
ware developers have been raised in a
research tradition, not an engineering
tradition.

Design metrics, including design to ˲˲

tolerances. Every branch of modern
engineering involves design metrics
including allowable stresses, toler-
ances, performance ranges, structural
complexity, and failure probabilities
for various conditions. Engineers use
these metrics in calculations of risk
and in sensitivity analyses. Software
engineers do not consistently work
with such measures. They tend to use
simple retrospective measures such
as lines of code or benchmark per-
formance ranges. The challenge is to
incorporate more of these traditional

engineering design metrics into the
software development process. Sang-
wan gives a successful example.7

Failure tolerance.˲˲ Henry Petroski
writes, “An idea that unifies all engi-
neering is the concept of failure. Vir-
tually every calculation an engineer
performs…is a failure calculation…
to provide the limits than cannot be
exceeded.” There is probably no more
important task in engineering than
that of risk management. Software en-
gineers could more thoroughly exam-
ine and test their engineering solutions
for their failure modes, and calculating
the risks of all failures identified.

Separation of design from imple-˲˲

mentation. For physical world projects,
engineers and architects represent a
design with blueprints and hand off
implementation to construction spe-
cialists. In current practice, software
engineers do both, design and build
(write the programs). Would separa-
tion be a better way?

Reconciliation of conflicting forces ˲˲

and constraints. Today’s engineers
face many trade-offs between conflict-

http://THEISPOT.COM

26 communications of the acm | march 2009 | vol. 52 | no. 3

viewpoints

ing natural forces and a dizzying array
of non-technical economic, statutory,
societal, and logical constraints. Soft-
ware engineering is similar except
that fewer forces involve the natural
world.

Adapting to changing environments. ˲˲

Most environments that use comput-
ing constantly change and expand.
With drawn-out acquisition processes
for complex software systems, it is not
unusual for the system to be obsolete
by the time of delivery. What waste!
Mastering evolutionary development is
the new challenge.2

The System
The problems surrounding the six is-
sues listed here are in large measure
the consequence of an overly narrow
view of the system for which the soft-
ware engineer is responsible. Although
controlled by software, the system is
usually a complex combination of soft-
ware, hardware, and environment.

Platform independence is an ideal
of many software systems. It means
that the software should work under
a choice of operating systems and
computing hardware. To achieve this,
all the platform-dependent functions
are gathered into a platform inter-
face module; then, porting the sys-
tem to another platform entails only
the building of that module for the
new platform. Examples of this are
the Basic Input-Output System (BIOS)
component of operating systems and
the Java Virtual Machine (JVM). When
this can be achieved, the software en-
gineer is justified in a software-centric
view of the system.

But not all software systems are
platform independent. A prominent
example is the control system for ad-
vanced aircraft. The control system is
implemented as a distributed system
across many processors throughout
the structure where they can be close
to sensors and control surfaces. An-
other example is software in any large
system that must constantly adapt in
a rapidly changing environment. In
these cases the characteristics of the
hardware, the interconnections, and
the environment continually influence
the software design. The software en-
gineer must either know the system
well, or must interact well with some-
one who does. In such cases adding

a system engineer to the team will be
very important.

Engineering Team
No matter what process engineers use
to achieve their system objectives, they
must form and manage an engineering
team. Much has been written on this
topic. Software engineering curricula
are getting better at teaching students
how to form and work on effective
teams, but many have a long way to go.

Every software team has four im-
portant roles to fill. These roles can be
spread out among several people.

The software architect gathers the
requirements and turns them into
specifications, seeks an understanding
of the entire system and its trade-offs,
and develops an architecture plan for
the system and its user interfaces.

The software engineer creates a
system that best meets the architec-
ture plan. The engineer identifies and
addresses conflicts and constraints
missed by the architect, and designs
controls and feedbacks to address
them. The engineer also designs and
oversees tests. The engineer must have
the experience and knowledge to de-
sign an economical and effective solu-
tion with a predictable outcome.

The programmer converts the engi-
neering designs into working, tested
code. Programmers are problem-solv-
ers in their own right because they
must develop efficient, dependable
programs for the design. Moreover,
anyone who has been a programmer
knows how easy it is to make mistakes
and how much time and effort are
needed to detect and remove mistakes
from code. When the software engi-
neer has provided a good specification,
with known exceptions predefined and
controls clearly delineated, the pro-

grammer can work within a model that
makes the job of implementation less
error-prone.

The project manager is responsible
for coordinating all the parts of the
team, meeting the schedules, getting
the resources, and staying within bud-
gets. The project manager interfaces
with the stakeholders, architects, engi-
neers, and programmers to ensure the
project produces value for the stake-
holders.

In some cases, as noted previously,
a systems engineer will also be needed
on the team.

Conclusion
We have not arrived at that point in
software engineering practice where
we can satisfy all the engineering cri-
teria described in this column. We still
need more effective tools, better soft-
ware engineering education, and wider
adoption of the most effective practic-
es. Even more, we need to encourage
system thinking that embraces hard-
ware and user environment as well as
software.

By understanding the fundamen-
tal ideas that link all engineering dis-
ciplines, we can recognize how those
ideas can contribute to better software
production. This will help us construct
the engineering reference discipline
that Glass tells us is missing from our
profession. Let us put this controversy
to rest.	

References
1.	D enning, P. Computing is a natural science. Commun.

ACM 50, 7 (July 2007), 13–18.
2.	D enning, P., Gunderson, C., and Hayes-Roth, R.

Evolutionary system development. Commun. ACM 51,
12 (Dec. 2008), 29–31.

3.	D enning, P. et al. Computing as a discipline. Commun.
ACM 32, 1 (Jan. 1989), 9–23.

4.	G lass, R., Vessey, I., and Ramesh, V. Research in
software engineering: An analysis of the literature.
Information and Software Technology 44, 8 (2002),
491–506.

5.	R iehle, R. An Engineering Context for Software
Engineering. Ph.D. thesis, 2008; theses.nps.navy.
mil/08Sep_Riehle_PhD.pdf.

6.	R iehle, R. Engineering on the surprise continuum: As
applied to software practice. ACM SIGSOFT Software
Engineering News 30, 5 (Sept 2005), 1–6.

7.	S angwan, R., Lin, L-P, and Neill, C. Structural
complexity in architecture-centric software. IEEE
Computer (Mar. 2008), 96–99.

8.	T ichy, W. Should computer scientists experiment
more? IEEE Computer (May 1998), 32–40.

Peter J. Denning (pjd@nps.edu) is the director of the
Cebrowski Institute for Information Innovation and
Superiority at the Naval Postgraduate School in Monterey,
CA, and is a past president of ACM.

Richard Riehle (rdriehle@nps.edu) is a visiting professor
at Naval Postgraduate School in Monterey, CA, and is
author of numerous articles on software engineering and
the popular textbook Ada Distilled.

We need to encourage
system thinking that
embraces hardware
and user environment
as well as software.

mailto:pjd@nps.edu
mailto:rdriehle@nps.edu
http://theses.nps.navy.mil/08Sep_Riehle_PhD.pdf
http://theses.nps.navy.mil/08Sep_Riehle_PhD.pdf

march 2009 | vol. 52 | no. 3 | communications of the acm 27

V
viewpoints

W
he n you purchase a
software package, the
package will often in-
form you (or the soft-
ware will inform you

when you install it on your computer),
that you are not the “owner” of a copy of
it, but only a “licensee” whose entitle-
ment to use the software is subject to
certain restrictions. This may include a
restriction on transferring your copy of
that software to anyone else.

Suppose you ignore the no-transfer
restriction and sell the software to
someone. Have you breached an en-
forceable contractual obligation to the
software’s developer? By transferring
the package to someone else, have you
infringed copyright or induced the pur-
chaser of the software to infringe copy-
right? Is the purchaser of the used soft-
ware an infringer when he loads it on
his computer? Is he too bound by the
license restrictions?

There is, oddly enough, no defini-
tive court ruling on these questions. In
Vernor v. Autodesk, Inc., a judge recently
ruled that a purchaser of used software
could lawfully sell the package on eBay
because he was entitled to the benefits of
the “first sale” rule of copyright law. This
rule provides that although copyright
owners may control distributions of
their works to the public, the first sale of
a particular copy to the public exhausts
their right to control any further distri-
bution of that copy. The rule applies to
all transfers of ownership, including
gifts or bequests, but not to licenses.

Reinforcing the Vernor ruling was
UMG Recordings, Inc. v. Augusto, in which
a judge recently refused to enforce a re-
strictive legend forbidding recipients of
promotional CDs from selling or other-
wise transferring the CDs to other peo-
ple. As in Vernor, the court ruled that it
was lawful for Augusto to sell the used
CDs on eBay under the first sale rule.

UMG has already appealed the Au-
gusto ruling to the Ninth Circuit Court
of Appeals (which reviews lower court

decisions from California and Wash-
ington where Vernor and Augusto were
rendered), and Autodesk is likely to ap-
peal as well. I predict that the Augusto
ruling will be affirmed. Vernor is a clos-
er case, but it too may be affirmed un-
less the Ninth Circuit overturns one of
its long-standing precedents.

UMG v. Augusto
Augusto buys and sells promotional
CDs that UMG, among others, ship

Legally Speaking
When is a “License”
Really a Sale?
Can you resell software even if the package says you can’t? What are the implications
for copyright law of the Quanta decision discussed in the November 2008 column?

doi:10.1145/1467247.1467258	 Pamela Samuelson

i
l

l
u

s
t

r
a

t
i

o
n

 b
y

 a
l

i
c

i
a

 k
u

b
i

s
t

a

28 communications of the acm | march 2009 | vol. 52 | no. 3

viewpoints

to insiders in the music business
in hopes they will listen to the CDs
and thereafter promote the music by
spreading positive buzz about it. The
CD packaging typically states: “This
CD is the property of the record com-
pany and is licensed to the intended
recipient for personal use only. Ac-
ceptance of this CD shall constitute
an agreement to comply with the
terms of the license. Resale or trans-
fer of possession is not allowed and
may be punishable under federal and
state laws.”

Augusto buys promotional CDs
from music stores and online auctions
and advertises them on eBay. When
UMG found out about this practice, it
sent Augusto a cease and desist letter,
asserting that selling these CDs would
infringe its copyrights. UMG made a
similar claim to eBay and asked it to
suspend Augusto’s account. EBay ini-
tially did so, but later reinstated the
account after Augusto asserted that
his sale of these CDs was lawful under
the first sale rule.

UMG then sued Augusto for copy-
right infringement, alleging that the
eBay sales infringed its exclusive right
to control distribution of its works. The
first sale rule did not apply, in UMG’s
view, because the CDs had been li-
censed, not sold, to recipients.

Characterizing a transaction as a
license does not, however, automati-
cally make it so. The judge in Augusto
looked to economic realities to see if
the transaction was more like a sale or
a license.

One important incident of owner-
ship is a right to an unlimited duration
of possession, whereas an incident of a
license is an expectation that the prop-

erty will be returned to its owner when
the license expires or is breached. Re-
cipients of the CDs seemed to be en-
titled to keep the CDs, and UMG pro-
duced no evidence that it expected to
repossess the CDs. UMG could do noth-
ing, moreover, if recipients destroyed
these CDs, even though this would
extinguish UMG’s claimed property
rights. Nor were insider recipients of
the CDs under any obligation to UMG
to promote the music.

The judge concluded that UMG’s
shipment of the CDs was a gift to the
recipients, not a license. The recipi-
ents were, therefore, entitled to trans-
fer their ownership interests in the CDs
to Augusto under the first sale rule, and
Augusto was free to resell the CDs on
eBay.

Vernor v. Autodesk
CTA is an architectural firm that
bought 10 copies of AutoCAD software.
Some years later, it sold four copies of
this software to Vernor at an office sale.
Vernor has sold some of them already
on eBay. Each time Vernor has tried to
sell used AutoCAD software on eBay,
Autodesk has contacted him and eBay
to assert that the sale would infringe its
copyrights because the software had
been licensed, not sold, to CTA.

Although eBay initially suspended
Vernor’s account, Vernor told eBay that
the resales were lawful under the first
sale rule. Autodesk ultimately acqui-
esced to some earlier resales by Vernor,
but after it objected to his most recent
effort to sell a copy of AutoCAD, Vernor
sought a declaratory judgment that his
resale of the software was lawful under

the first sale rule. Autodesk moved to
dismiss the complaint, arguing that
the first sale rule did not apply.

The judge concluded that Vernor
could resell the Autodesk software on
eBay because the economic realities
of the transaction rendered it a “sale.”
CTA, after all, had made a one-time
payment for permanent use of the soft-
ware, which is typical of sales transac-
tions. Unlike typically licensed proper-
ty, Autodesk had no interest in return
of the software.

The judge relied on the Ninth Cir-
cuit’s ruling U.S. v. Wise. It held that
an actress was the owner of a copy of
a film, not a licensee, because she had
obtained the right to possess it for an
indefinite period and without an obli-
gation to return it, even though she had
also agreed not to transfer it and to use
it only for personal use.

Applying Wise, the judge held that
Autodesk had sold the software to CTA,
and because of this, the first sale rule
protected Vernor’s resale of the soft-
ware on eBay.

What Will the Ninth Circuit Do?
Augusto is an easier first sale case be-
cause the restrictive legend printed on
the CDs resembles one that was print-
ed in a book that the Supreme Court re-
fused to enforce in Bobbs Merrill Co. v.
Straus, which established the first sale
rule in copyright law.

Recipients of the CDs cannot rea-
sonably be understood to have agreed
to UMG’s restrictive legend. Indeed,
they demonstrated their lack of assent
to it by selling or giving the CDs away.
Because they were free to transfer the
CDs to anyone, so was Augusto.

Consumers Union is submitting
an amicus curiae (friend of the court)
brief in Augusto pointing out that if the
Ninth Circuit enforces UMG’s restric-
tive legend and rules that Augusto in-
fringes copyright by reselling the CDs
on eBay, this precedent would encour-
age manufacturers of all types of goods
embodying some patented or copy-
righted innovation to adopt similar re-
strictive legends. Such a ruling would
substantially undermine competition
in the marketplace for used goods.

Enforcing UMG’s restrictive leg-
end also seems inconsistent with
the Supreme Court’s recent decision
in Quanta v. LGE Enterprises. As I ex-

One can generally
not obtain broader
property rights in
an artifact than had
the person from
whom you got it.

The software
industry will likely
weigh in heavily on
the Augusto and
Vernor cases, for the
decisions challenge
a long-standing
industry practice.

viewpoints

march 2009 | vol. 52 | no. 3 | communications of the acm 29

plained in my November 2008 column,
the Supreme Court ruled that a patent
owner’s effort to restrict commerce in
licensed technologies was inconsis-
tent with patent law’s first sale rule.
The Court left open the question about
whether purchasers of the technologies
could be held liable for breaching con-
tractual restrictions, but made clear
that they were not patent infringers.

Vernor is a tougher first sale case
than Augusto for at least two reasons.
First, CTA had agreed to abide by terms
of the AutoCAD license. More general-
ly, there is a stronger basis for inferring
assent to “license” restrictions when a
purchaser of a software package clicks
“I agree” to terms of a license when in-
stalling the software (although it is not
clear from the Vernor opinion whether
CTA had installed the Autodesk pro-
grams). Second, the case law on wheth-
er the first sale rule applies to mass-
marketed software is mixed.

Some judges have been persuaded
that software developers should be free
to contract as they wish with their cus-
tomers who may return the software if
they find license terms unacceptable.

Some defer to the widespread practice
in the software industry of licensing
software rather than selling it. If cus-
tomers have agreed to be licensees and
the license forbids transfer of the soft-
ware, moreover, third-party purchasers
such as Vernor are arguably incapable
of being “owners” of that software. One
can generally not obtain broader prop-
erty rights in an artifact than had the
person from whom you got it.

Yet, other judges have agreed with
the Vernor decision that a one-time
payment of money for a package of
mass-marketed software that gives the
purchaser rights to use software for an
unlimited duration should be treated
as a sale, even if it may be subject to
some restrictions. Unless the Ninth
Circuit overrules the Wise decision,
Vernor may win the right to resell used
software on eBay.

It is a separate question whether
CTA breached a contractual obligation
to Autodesk by transferring the soft-
ware to Vernor. But even so, should Ver-
nor be bound by the contract’s restric-
tions on transfers? It would seem not
since he has not installed the software

on his computer and has not agreed
to its terms. A fundamental difference
between contract rights and intellec-
tual property rights is that the former
bind only the parties to the agreement,
whereas the latter bind the world. Be-
sides, Autodesk chose to make the li-
cense nontransferable, so how could
it bind Vernor or his customers? The
Ninth Circuit may view Vernor as an
ordinary guy trying to make a buck in
the used goods market, rather than an
infringer of copyrights.

The software industry will likely
weigh in heavily on the Augusto and
Vernor cases, for the decisions chal-
lenge a long-standing industry prac-
tice. (Negotiated licenses will be unaf-
fected if the Ninth Circuit affirms both
rulings.) It remains to be seen whether
the Ninth Circuit will recognize as le-
gitimate the interests of people like
Augusto and Vernor and their custom-
ers in the existence of a market for used
goods protected by copyright law. 	

Pamela Samuelson (pam@law.berkeley.edu) is the
Richard M. Sherman Distinguished Professor of Law and
Information at the University of California, Berkeley.

◆ ACM Professional Members can enjoy the convenience of making a single payment for their
entire tenure as an ACM Member, and also be protected from future price increases by
taking advantage of ACM's Lifetime Membership option.

◆ ACM Lifetime Membership dues may be tax deductible under certain circumstances, so
becoming a Lifetime Member can have additional advantages if you act before the end of
2008. (Please consult with your tax advisor.)

◆ Lifetime Members receive a certificate of recognition suitable for framing, and enjoy all of
the benefits of ACM Professional Membership.

Learn more and apply at:
http://www.acm.org/life

Take Advantage of
ACM’s Lifetime Membership Plan!

CACM lifetime mem half page ad:Layout 1 9/4/08 4:04 PM Page 1

mailto:pam@law.berkeley.edu
http://www.acm.org/life

30 communications of the acm | march 2009 | vol. 52 | no. 3

V
viewpoints

P
h

o
t

o
g

r
a

p
h

 b
y

 E
r

i
c

 A
n

d
e

r
s

o
n

O
n e of my favorite activities
is advising, so I was happy
to accept the invitation
to give advice about giv-
ing advice. Some faculty

members give new students a list of
their expectations and student rights.
One student did so well that I asked
him if he knew why. He said I gave him
helpful guidance upon entering gradu-
ate school, when he was eager to hear
it. He then told me what I said, which
I’ve been telling to new students ever
since:

Show initiative, for fortune favors ˲˲

the bold. Don’t wait for professors to tell
you what to do; if we were good manag-
ers, we probably wouldn’t be faculty. Ex-
plore, challenge assumptions, and don’t
let lots of prior art discourage you.

Sink or swim.˲˲ We’ll offer you what
we think are great projects with plenty
of potential, and we’ll support you the
best we can, but it’s what you do with
the opportunity that makes or breaks
your graduate student career.

Educate your professor.˲˲ We’re in a
fast-moving field, so for us to give you
good advice we need to know what
you’re working on. Teach us!

It Takes a Village to Raise a Child
Advising is simpler if you foster an en-
vironment that helps students learn
how to become successful researchers.
The general goals of the environment
should be:

Acquiring research taste. ˲˲ Provide
ways for students to acquire research

taste; in particular, how to identify
problems that if solved are more likely
to scale and have impact.

Frequent feedback.˲˲ Offer opportuni-
ties for students to practice communi-
cation skills by presenting to outsiders,
to improve their research via honest
feedback, to inspire them with earned
praise, and to set milestones for their
research.

Foster camaraderie and enthusiasm. ˲˲

Create a community that provides ca-
maraderie, group learning, mentoring
from senior students, and learning
from peers to make the whole Ph.D.
process more enjoyable.

Meeting these goals is not always
easy. I’ll describe three techniques

that have worked well for me and many
Berkeley systems students: team-ori-
ented, multidisciplinary projects; re-
search retreats; and open, collabora-
tive research labs.

Exciting multidisciplinary projects.
I try to work with colleagues to cre-
ate exciting, five-year projects that I
would die to work on if I were a grad-
uate student again. We self-assem-
ble into teams of typically two to four
faculty members with the right areas
of expertise to tackle a challenging
and important problem, then recruit
10 to 20 graduate students to work
toward building a prototype that
demonstrates our proposed solu-
tion. The accompanying table shows

Viewpoint
Your Students
Are Your Legacy
This Viewpoint boils down into a few magazine pages what
I’ve learned in my 32 years of mentoring Ph.D. students.

doi:10.1145/1467247.1467259	 David A. Patterson

Network of Workstations (NOW) group reunion in 2008.

V
viewpoints

march 2009 | vol. 52 | no. 3 | communications of the acm 31

the 10 Berkeley projects on which I
participated.

The multidisciplinary nature of the
project means students gain hands-on
knowledge about other areas by work-
ing closely with students and faculty
in other fields. The experience they
gain building the common prototype
helps them develop taste in research
topics, which in turn helps them pick
interesting research topics for their
dissertations and later in the rest of
their careers.

Group projects create communities
where students have others with whom
to interact. In particular, the more se-
nior students can mentor the junior
ones. Being a Ph.D. student can be a
very lonely experience, especially when
it comes time to write a dissertation;
being part of a larger group can allay
those feelings of isolation.

We recently started celebrating
the 10-year anniversary of the end of
projects. The high participation level
at these reunions indicates that these
personal ties in such communities re-
main 10 years later. The accompany-
ing photo shows the Network of Work-
stations (NOW) group reunion held
last year.a

Research retreats. Key to the success
of these projects, and to the develop-
ment of Berkeley systems graduate
students, has been twice-a-year, three-
day retreats where students on the
project present their results to one- or
two-dozen guests from industry or
non-academic labs. These are inten-
sive events, lasting from early break-
fast to late-night discussions, although
we do take off one afternoon to have
some fun. Retreats act as project mile-
stones, with the specter of presenting
to outside visitors motivating students
to meet the milestones. We close the
retreats with an outsider feedback ses-
sion that offers advice on any aspect of
the research. It’s surprisingly rare in
academia to get frank feedback about
research, but who can’t benefit from
constructive criticism?

Retreats give graduate students two
chances per year to give a serious talk

a	 Additional photos are included with the ver-
sion of this Viewpoint available at the Commu-
nications Web site, cacm.acm.org. The online
version has names and group photos for RAID
and SPUR reunions and for the most recent
Par Lab and RAD Lab retreats.

and receive advice from experienced re-
searchers outside academia with differ-
ent experience and perspectives from
the faculty on the project. Students are
energized when external people care
about their work and find it impor-
tant. When we advisers say something
is good, many students will assume
we are just acting as cheerleaders or
just trying to get them to work harder.
I believe interaction with thoughtful
colleagues from industry and non-
academic labs is vital to acquiring re-
search taste in computer systems by
learning to identify critical problems
and impactful solutions. Retreats also
introduce students to a network of col-
leagues that may prove useful later in
their careers.

Such projects and retreats might be
difficult at some places. Building col-
laborations with local universities and
industry can produce many of the same
benefits. The key is to get everyone to
stay the full time and have people out-
side your group provide candid feed-
back. For example, there is an annual
Boston Area Architecture workshop
involving Brown, Harvard, UMass,
Northeast, RPI, and local industry so
that their students can cut their teeth
in front of a friendly audience and get
feedback from outsiders.

We have been doing retreats for
25 years. To my surprise, three years
ago we discovered another technique
that is becoming just as important to
the success of projects and graduate

students.
Open collaborative laboratory. We

were increasingly seeing people opti-
mize their schedules to avoid disrup-
tions by working from home when they
didn’t have classes or meetings, since
computers and networks were just as
fast at home as in the office. The nega-
tive global impact of such a local opti-
mization can be thought of as corollary
of Metcalf’s Law: if the value of a net-
work is proportional to the square of
the number of connected users, even a
small group leaving a network can sig-
nificantly decrease its value. This drop
in value can in turn cause others to
leave, with the negative feedback loop
continuing until the network nearly
collapses.

In 2006, we experimented by creat-
ing a physical office area with contigu-
ous open space for everyone in the proj-
ect, including the faculty. We hoped
that easy access to faculty would draw
students to campus and that the open
space would inspire innovation by in-
creasing the chances of spontaneous
discussions.1

The open space makes it very conve-
nient to quickly grab a group of inter-
ested people on a moment’s notice for
a discussion rather than trying to wan-
der around the building or exchange a
volley of email messages to schedule a
meeting. We have also been surprised
to see new students in this space quick-
ly act like senior graduate students.
Apparently, easy access to faculty plus

Patterson’s research projects.

Years Title Professors Students

1977–1981 X-Tree: A Tree-Structured Multiprocessor 3 12

1980–1984 RISC: Reduced Instruction Set Computer 3 17

1983–1986 SOAR: Smalltalk On A RISC 2 12

1985–1989 SPUR: Symbolic Processing
Using RISCs

6 21

1988–1992 RAID: Redundant Array
of Inexpensive Disks

3 16

1993–1998 NOW: Network of Workstations 4 25

1997–2002 IRAM: Intelligent RAM 3 12

2001–2005 ROC: Recovery Oriented Computing 2 11

2005–2010 RAD Lab: Reliable Adaptive
Distributed Computing Lab

7 30

2007–2012 Par Lab: Parallel Computing Lab 8 40

http://cacm.acm.org

32 communications of the acm | march 2009 | vol. 52 | no. 3

viewpoints

watching how senior graduate students
operate helps new students move up
the learning curve quickly.

The research retreats and open
space also build esprit de corps, as
we play together one afternoon at re-
treats—for example, skiing, paint ball,
and river rafting—and in the lab we
collectively watch presidential debates,
movies, and big sports events.

The challenge of our open space is
then to preserve concentration while
enhancing communication,1 for other-
wise people will still stay home. Distrac-
tions are reduced with large displays,
headphones, and relying on cellphones
instead of landline phones; the custom
is to make and take calls outside the
open space. We also included many
small meeting rooms in which to hold
vigorous conversations. The result is an
open space about as quiet as a library or
coffee shop, which is good enough for
most to concentrate while encouraging
spontaneous communication.

Actual Advising
Clearly, the students who always do
well are a joy to meet. I do wonder how
much advising you are really doing for
them. For those students who need
more help, the only thing I can say with
confidence after 32 years is that every
student is different, and its unlikely
there is a single path that works for all.
Moreover, there are limits to how much
you can change, since students have
had at least 20 years of people shaping
their personalities before they even
meet you. You can tell new students
that being a successful researcher
is different from being a successful
undergraduate student, as they gen-
erally have no opinions on the topic
when they arrive. For example, it’s of-
ten a surprise that grades are less im-
portant than research, and that they
need to learn how to work on their
own rather than just follow orders.
They also need to find the right bal-
ance between learning the literature
and starting to build. Clearly, advice
changes over time. New students may
need a “starter” project, and you give
them larger tasks as students mature:
reviewing, mentoring, and even help-
ing write proposals.

Here are a half-dozen other topics
for advisors, including bolstering con-
fidence, helping with speaking, spend-

ing time together, giving quick feed-
back, counseling them, and acting like
a role model.

Bolster confidence. Self-confidence
can be a problem for students, espe-
cially early in their careers and for
some belonging to underrepresented
groups, so look for chances for them
to succeed. Perhaps it’s suggesting
a paper they can be lead author on,
taking a summer internship at a com-
pany that is a good match for their
talents, or even having success as a
teaching assistant. I have seen even
very senior students blossom late in
their careers when they have some
wins under their belts that everyone
recognizes.

Make sure that you praise such stu-
dents when they do have real success;
all of us love praise for a job well done,
but some of us need it more than oth-
ers do. Students learn from criticism as
well as praise, just be careful it doesn’t
deflate potentially fragile egos. I try to
remember to phrase critiques as ques-
tions—“What do you think about…?”—
both orally and in my written comments
on papers. I try to include something to
praise in all the red ink that I put on a
student’s paper, but keep in mind that
false praise for a mediocre job may hurt
more than help.3

Practice public speaking. Good work
is often lost due to poor presentation,
yet giving good talks is a problem for
many students. Our culture is that
practice talks are good for everyone, so
we all do them, including me. We prac-
tice answering difficult questions as
well as delivering smooth talks to avoid
a “deer-in-headlights” incident during

the actual talk.
Spend the time. Weekly meetings

gives students a chance to talk about
what they’re working on and forces
them to think in advance about how to
utilize their time with you. I tell Ph.D.
students in their last six months that
they have highest priority on my sched-
ule and can meet as often as they want,
which helps reduce their anxiety.

Give feedback, quickly and often. I
try to review a student paper within a
day or two and give my comments for
them to read before we meet, which
means I am not the bottleneck. Making
students write the paper and the guid-
ing them through the revision process
teaches them how to write.

Be a trusted counselor. Students may
ask for personal advice, perhaps even
for serious problems. As they are often
far from family and friends, you must
be there for them.

You’re a role model; act like one. I am
struck from parenting two now-grown
sons that it’s not what you say but what
you do that has lasting impact. I bet
this lesson applies as well to your aca-
demic progeny. Hence, I am conscious
that students are always watching what
I do, and try to act in ways that I’d like
them to emulate later.

For example, my joy of being a pro-
fessor is obvious to everyone I interact
with, whereas I hear that some col-
leagues at competing universities of-
ten complain to their students about
how hectic their lives are. Perhaps dif-
fering advisor behavior explains why
many Berkeley systems students try
academia?

Tricks of the Trade
Surely the most traumatic matter for
the students is picking the thesis topic,
as they believe it determines their ca-
reers. Gerald Estrin, who had worked
with John von Neumann, was one of
my advisors in graduate school. I still
remember him telling me: “Every CS
Ph.D. student I have seen, including
myself, had a least one period when
they are convinced that their disserta-
tion topic is utterly worthless.” Just
retelling this story can help students
cope, but look for opportunities to get
others to praise their work. Projects
and retreats help: there are others to
talk to and they get regular feedback on
their chosen topic from the outsiders,

Advising is simpler
if you foster an
environment that
helps students
learn how to
become successful
researchers.

viewpoints

march 2009 | vol. 52 | no. 3 | communications of the acm 33

which can energize those on the lonely
trail to a Ph.D. My view now is that it’s
not the dissertation topic so much as
what students do with it.

Here are four pieces of advice for
advisors: help if they stumble, aid non-
native speakers, try co-advising, and of-
fer lifelong mentoring.

Help if they stumble. Students may
underperform not because they lack
ability but because they come to think
that “good enough” is OK. Have a heart-
to-heart discussion where you point
this out and ask if they agree, and from
now on they’re expected to perform to
the best of their ability. The book The
One Minute Manager2 offers advice on
handling such touchy situations suc-
cessfully for all involved.

One colleague asks students that
seem stuck to send him a daily report
about their research and progress. Some
days it could just summarize a paper or
talk, or even “I didn’t do anything.” He
finds that three to four weeks of this of-
ten gets them back on track.

When students really stumble in the
program and stop making progress,
I have had luck with sending them to
industry for a six-month leave, as three
months may not be enough to do some-
thing significant. Twice students have
come back fired up knowing what they
want to do for their dissertation and,
perhaps more importantly, why they
want to do it. A third student decided to
stay in industry. That was likely a good
decision, as I didn’t look forward to try-
ing to drag him across the Ph.D. finish
line if he didn’t return with a greater
sense of purpose, and I’m not sure he
would have graduated if he wasn’t rein-
vigorated.

Berkeley CS faculty members hold
two meetings a year to review the prog-
ress and give feedback to all Ph.D. stu-
dents. Students meet with advisors
beforehand to set mutually agreed
upon milestones. Hearing others both
praise and criticize your students pro-
vides a valuable perspective, and col-
lectively we develop ideas on how to
help students in need. Reviews also
ensure that no student falls through
the cracks. Occasionally, after several
warnings, we tell students that their
progress is so slow that they should
drop out. In more than one instance,
these letters lit fires under lethargic
students and they filed their disserta-

tions soon thereafter.
Aid non-native speakers. Non-native

English speakers can offer another set
of challenges. As far as I can tell, they
just need practice speaking and writing
English. (I wish this need were limited
to non-native English speakers!) Strunk
and White’s The Elements of Style4 is my
writing bible, which I share with all my
students. Some colleagues have had
luck hiring graduate students from
other parts of campus to work with CS
graduate students to improve their writ-
ing. One colleague suggests making
sure that if they share an apartment that
their roommates don’t speak the same
language so that they are forced to speak
English. I am trying an experiment to
improve the diction of an international
student by having him take a course
outside the university called “Learn to
Speak like an American.”

Try co-advising. As part of our new
open labs, we are also trying joint advis-
ing. I hear my co-advisors offer great ad-
vice that I wish I’d said, and I hope vice
versa. Co-advising also has the benefit
that when one advisor is traveling there
is someone else to meet with the stu-
dent. It also makes advising more fun
for everyone involved. I believe it works
well if the advisors meet with the stu-
dent simultaneously, so that they give
consistent advice. (From my long years
of experience in academia, I’ve learned
you get just as much credit whether you
are the sole advisor or if you co-advise a
student.)

Mentorship doesn’t end at graduation.
After investing five or six years training
an apprentice, it must be worthwhile
to spend a little more time after gradu-
ation to help him or her succeed. I of-
fer to give a talk at their new institution
to give them one last shove in the right
direction. Danny Cohen recently asked

for advice from Ivan Sutherland—who
supervised his 1968 thesis—adding
that Danny views advisor is a lifetime
job. I agree. I still offer advice to, and
receive it from, my former students. (In
fact, my former student Mark Hill sug-
gested I write this Viewpoint.)

Advising in Retrospect
When I was finishing my Ph.D., I read
a book based on interviews of people
talking about their jobs to help decide
what I would do next.5 What I learned
from the book was that people were
happy with their careers if they de-
signed or built objects that lasted, such
as the Empire State Building or the
Golden Gate Bridge, or if they shaped
people’s lives, such as patients or pa-
rishioners. Thus, I went into the job of
assistant professor with the hypothesis
that my long-lasting impact was not
the papers but the people.

Thirty-two years later, I can confirm
that hypothesis: your main academic
legacy is the dozens of students you
mentor, not the hundreds of papers
you publish. My advice to advisors is
to get your students off to a good start,
create stimulating research environ-
ments, help them acquire research
taste, be a good role model, bolster stu-
dent confidence, teach them to speak
well publicly, and help them up if they
stumble, for students are the real coins
of the academic realm.	

References
1.	A llen, T.J. and Henn, G. The Organization and

Architecture of Innovation: Managing the Flow of
Technology. Butterworth-Heinemann, 2006.

2.	 Blanchard, K.H. and Johnson, S. The One Minute
Manager. William Morrow, 1982.

3.	C arnegie, D. How to Win Friends and Influence People.
Pocket, 1998.

4.	S trunk, W., and White, E.B. The Elements of Style, 4th
ed. Longman, 1999.

5.	T erkel, S. Working: People Talk About What They Do
All Day and How They Feel About What They Do.
Pantheon Books, Random House, New York, 1974.

David A. Patterson (pattrsn@eecs.berkeley.edu) is the
Pardee Professor of Computer Science at U.C. Berkeley
and is a Fellow and a past president of ACM.

I’d first like to thank former students for advice on this
Viewpoint: Remzi Arpaci-Dusseau, Pete Chen, Mike Dahlin,
Garth Gibson, and Mark Hill. Additional thanks to Mark
Hill for suggesting developing this Viewpoint about Ph.D.
advising. The following Berkeley colleagues improved
the draft version of this material: Krste Asanovic, Ruzena
Bajsky, Armando Fox, Ken Goldberg, Marti Hearst, Joe
Hellerstein, Thomas Henzinger, David Hodges, Randy Katz,
Jitendra Malik, John Ousterhout, Alberto Sangiovanni-
Vincentelli, Ion Stoica, Jonathan Shewchuk, and Alan
Smith. Finally, I’d like to thank everyone who worked with
me on the projects listed in the table for helping nurture
great students.

Group projects
create communities
where students
have others with
whom to interact.

mailto:pattrsn@eecs.berkeley.edu

34 communications of the acm | march 2009 | vol. 52 | no. 3

P
h

o
t

o
g

r
a

p
h

 b
y

 H
e

c
t

o
r

 G
a

r
c

i
a

-M
o

l
i

n
a

N
o two d oc toral students
are the same, and the things
an advisor needs to do for
each vary accordingly. I can
look back over my career

and see several approaches that work,
and one approach that is popular but
doesn’t really serve the student well. To
begin, the goal of the advisor is to teach
someone how to become an indepen-
dent thinker, inventor, and problem-
solver. You must take someone barely
out of their teenage years and convince

them that they can do something that
none of the most experienced people
in the field have been able to do. And
they must do that not only once, but
throughout their professional lifetime.
Frankly, when I went off to study for my
doctorate, I had no idea what writing
a thesis entailed; had I known, I never
would have gone to graduate school.

What Not to Do
I was a student, and later faculty mem-
ber, in an electrical engineering de-

partment, where the widely held opin-
ion was that the way you wrote a thesis
was to read many papers. Look at the
last section, where there were always
some “open problems.” Pick one, and
work on it, until you are able to make
a little progress. Then write a paper
of your own about your progress, and
don’t forget to include an “open prob-
lems” section, where you put in every-
thing you were unable to do.

Unfortunately this approach, still
widely practiced today, encourages

Viewpoint
Advising Students
for Success
Some advice for those doing the advising
(and what the advisors can learn from the advisees).

doi:10.1145/1467247.1467260	 Jeffrey D. Ullman

Students and colleagues attend Jeff Ullman’s retirement celebration in 2003.

V
viewpoints

march 2009 | vol. 52 | no. 3 | communications of the acm 35

mediocrity. It gives the illusion that
research is about making small incre-
ments to someone else’s work. But
worse, it almost guarantees that after
a while, the work is driven by what can
be solved, rather than what needs to be
solved. People write papers, and the
papers get accepted because they are
reviewed by the people who wrote the
papers being improved incrementally,
but the influence beyond the world of
paper-writing is minimal.

The Early Model:
Theoretical Theses
In the first years of computer science
as an academic discipline, many the-
ses were “theoretical,” in the sense that
the contribution was mostly pencil-
and-paper: theorems, algorithms and
the like, rather than software. While
much of this work was vulnerable to
the problem just described—paper
building on paper—it is quite possible
for a theoretical thesis to offer a real
contribution. For example, even before
I joined the Princeton faculty, I had a
summer intern at Bell Labs, Ravi Sethi.
At that time Ken Thompson and Den-
nis Ritchie were involved in the Mul-
tics project, an operating system for
the GE635 computer. This beast was
the first to have more than one regis-
ter in which arithmetic could be done,
and the word passed to Ravi and me
that they needed techniques to com-
pile code in a way that made best use
of several registers. Ravi’s thesis was
an algorithm for compiling arithmetic
expressions using any given number of
registers, in the fewest possible steps.
This algorithm actually was put into
the C compiler for the PDP-11, a few
years later.

While Ravi’s thesis was “theo
retical”—neither of us wrote any code—
the work illustrates how I believe any
thesis should develop. The work was
not based on what some paper left
open, but rather on an expressed need:
a way to compile expressions using
several registers. The big advantage
we had was that we were part of an en-
vironment that was pushing the fron-
tiers. Had we not been at Bell Labs, it
is doubtful we would have realized the
problem was worth addressing. We
surely could not have read about it in
a paper. Even Andrei Ershov, who had
previously published the node-num-

bering scheme we used, only saw it as
a way to compile for a one-register ma-
chine, and did not suggest in his paper
that someone else should look at ma-
chines with multiple registers.

The Ideal Ph.D. Student
The best scenario is that the student
tells me what their thesis should be,
and carries it out independently. More-
over, their thesis topic is selected be-
cause they perceive a need on the part
of some “customer.” Sergey Brin came
closest to this ideal, since he and Larry
Page, with no help from me, saw both
the need for a better search engine
and the key ways that goal could be
reached, while students at Stanford.
The one missing element: neither of
them got their degree; but more about
that later.

A close approximation was George
Lueker, who came to visit me one day to
ask if I had any ideas for a thesis topic.
George was not then my student, being
enrolled in the Applied Math Program
at Princeton. I happened to be reading
about chordal graphs that morning,
and suggested an algorithm to detect
chordality. A year later, he came back
and showed me a thesis he had written
on pq-trees, a data structure that even
today has several important applica-
tions beyond chordality testing. Several
other students have dragged me kick-
ing and screaming to learn a new area,
even if I then got involved in selection
of their thesis topic. Matt Hecht had
me learn about data-flow analysis; Al-
len Van Gelder did the same with logic
programming.

Why does it matter who suggests the
thesis topic? We’re trying to get young
scientists to the point where they can
make independent judgments about
what is worth working on. There are
several decisions to be made: what is
worth doing, what is feasible to do, and
how do you do it? While an advisor can
help with all these things, it is won-
derful to meet a student to whom this
comes naturally. Another point that I
tried not to forget as I grew older was
that young people can often see things
that those of us who have become set
in our ways cannot. Trusting the tech-
nical judgment of the young is not a
bad strategy.

What Students Need
To make students successful, we need
to be ready to provide many services.

Finding customers. As mentioned at
the beginning of this Viewpoint, there
needs to be an exposure to problems
that are at the frontier, and that are
needed by a “customer.” Sometimes,
they can find a customer in industry,
as Ravi Sethi did at Bell Labs. Summer
internships can be a great opportu-
nity. However, advisors should en-
courage students to intern at a strong
industrial research group, one where
the goals are more than minor tweaks
to what exists.

Whether the thesis is theoretical
or an implemented solution, students
need to be guided to understand who
will consume their contribution if they
are successful. And the answer can-
not be “people will read the paper I
will write, and they will use the open
problems in it to help form their own
theses.” Especially when dealing with
theoretical theses, the chain of con-
sumption may be long, with idea feed-
ing idea, until the payload is delivered.
Yet if we let students ignore the ques-
tion of whether such a chain and pay-
load plausibly exist, we are doing them
a disservice.

Walking before you run. Exposure
to problems is not enough. Some, al-
though surely not all, Ph.D. students
need to convince themselves that they
can do something original. Here are a
few ideas that have worked:

One way to give a beginning stu-˲˲

dent practice with the mechanics of
research is to think through a small
problem yourself, and then propose

When I went off
to study for my
doctorate, I had
no idea what writing
a thesis entailed;
had I known, I never
would have gone
to graduate school.

viewpoints

36 communications of the acm | march 2009 | vol. 52 | no. 3

viewpoints

be sure that the writing does justice to
those parts.

a

Fear factor. Yet another common
job of the advisor is to teach the stu-
dent to fail cheerfully and without em-
barrassment. Not every student has
a built-in fear of failure, but many as-
sume it is wrong to attempt something
they doubt is possible. Often, the stu-
dent’s model of a “problem” comes
from homework, where the solution is
certainly known. They are ashamed to
report “I didn’t get anything done this
week,” even if it was not for lack of ef-
fort. You don’t want students to spend
a lot of time trying to write a program
that takes another program as input
and removes all bugs (as a fellow stu-
dent of mine was once advised by his
advisor to try), but it is OK to encour-
age a student to do something ambi-
tious and risky, like finding more bugs
than anybody else. In these cases, a

a	 (Aside: While it sounds pedantic at first, you
get a huge increase in clarity by chasing the
“nonreferential this” from students’ writing.
Many students (and others) use “this” to refer
to a whole concept rather than a noun. For ex-
ample: “If you turn the sproggle left, it will jam,
and the glorp will not be able to move. This is
why we foo the bar.” Now the writer of this
prose fully understands about sproggles and
glorps, so they know whether we foo the bar
because glorps do not move, or because the
sproggle jammed. It is important for students
to put themselves in the place of their readers,
who may be a little shaky on how sproggles
and glorps work, and need a more carefully
written paragraph. Today, it is not that hard to
find a “this” that is nonreferential. Almost all
begin sentences, so grepping for ‘This’ will
find them.)

vital job of the advisor is getting stu-
dents to risk their time and effort, and
to deal with the case where nothing
good results.

Group therapy. A popular technique
for encouraging and engaging students
is the free lunch. Not only do Ph.D. stu-
dents benefit, but it can be used to at-
tract undergraduates into the research
community. For the past 15 years, I
have been privileged to be part of the
“Database Group” (now “Infolab”) at
Stanford, consisting of faculty Gio Wie-
derhold, Hector Garcia-Molina, Jen-
nifer Widom, our students, staff, and
visitors. At regular Friday lunches, stu-
dents take turns presenting informal
talks on their work, and good-natured
argument from the floor is the norm.
Students get over the fear of defending
their ideas in public, as well as benefit-
ing from insights of others. Students
also may practice for an upcoming con-
ference talk and receive very detailed
suggestions from fellow students. An-
other important function of the lunch
discussion is bonding, facilitated by a
social committee to run group events,
and by regular trip reports, which serve
as a vehicle for learning about one an-
other’s lives.

A Newer Model: Project-
Oriented Theses
It took many years to reach this point,
but it is now fairly routine to have sub-
stantial software projects carried out
in an academic setting. While there
will always be the occasional thesis
that is purely “pencil-and-paper,” a
much more productive approach is to
introduce beginning Ph.D. students to
a project. Often they enjoy “learning by
doing,” contributing to the software
development, while learning the new
notions that are being investigated by
the project. Senior students often get
the opportunity to help, and even to su-
pervise, junior students.

The best example I’ve seen of how to
use this mode effectively comes from
my colleague Jennifer Widom. In a se-
ries of innovative projects (semistruc-
tured data, stream databases, and now
uncertain databases), she has perfect-
ed a routine, consisting of:

Define a general goal for the re-1.	
search, and get a team of doctoral stu-
dents working together.

Spend a substantial period of time, 2.	

We’re trying
to get young
scientists to
the point where
they can make
independent
judgments about
what is worth
working on.

to a beginning doctoral student that
they work on the problem. Since
you have a path in mind, it is easy to
raise questions that will lead them
where they should go, until they have
worked through to the solution on
their own. A single experience like
this is usually enough to get them
operating independently.

Try getting the student to make an ˲˲

early transition from reading papers to
exploring their own ideas. Certainly,
you need to read enough to get the con-
cepts of your field, but after a point, the
more you read, the closer your mode of
thinking becomes to that of the field at
large, and “out of the box” thinking be-
comes harder. If they produce promis-
ing ideas, then of course a more careful
literature search must be performed.
I’ve seen enough examples to believe
that it is a rare case (although sadly not
impossible) where the student’s ideas
are completely subsumed under what
has already been done.

My colleague Hector Garcia-Moli-˲˲

na often encourages students to start
not by looking for the theoretically op-
timal solution, but for a simple, easily
implementable solution that gets you
90% of the way there. The optimality
might be studied later and can form an
important part of the thesis.

My colleague John Mitchell re-˲˲

minds us that even after getting past
the hurdle of believing one can invent,
the thesis can be intimidating because
of its large scale. He gets students to
focus on writing a single paper (pref-
erably for a conference where they will
meet people, not for a journal). After
they have written a few papers, build-
ing a thesis from them will seem much
less intimidating.

Expressing ideas. An advisor must
make sure that their students can
write clearly. There is little point train-
ing students to generate great ideas if
they cannot communicate them. It is
essential that the advisor reads very
carefully and checks every sentence of
a student’s first attempts at writing. A
common situation, and one that must
be caught early, is writing that goes
into a lot of detail on the easy parts,
and gets fuzzy or overly terse when it
comes to presenting the hard parts: the
proof of a key theorem or the details of
a complex algorithm, for example. So
an advisor must judge what is hard and

viewpoints

march 2009 | vol. 52 | no. 3 | communications of the acm 37

perhaps 6–12 months, in which the the-
ory and models underlying the problem
area are developed. (Jennifer says that
this step—making the students part of
the planning and modeling—is what
distinguishes her approach.)

Then, start an implementation 3.	
project. Get the students working on
pieces. The goal of each project is a
robust, distributable prototype, not
something that can be carried intact to
commercialization.

Allow students to identify their 4.	
own aspect of the broader problem
area on whose difficulties they will fo-
cus. Students develop their own ideas,
which form the core of their thesis, and
are able to validate the ideas by install-
ing them in the larger system.

It is sad that many research-funding
agencies, such as DARPA, have become
so “mission-oriented” recently. While
it may be possible to support a Ph.D.
student doing part of a project imple-
mentation, Step 4 is left out; there is
no room on the project for a student
to explore original work outside the
boundaries of the project. For exam-
ple, I have heard from several indepen-
dent sources that while the European
Union has been supporting “research”
generously, the support is sufficiently
constrained by concrete deliverables
that there is no way to support Step 4 on
the projects. In countries where Ph.D.
support comes from a state source,
this arrangement presents no serious
impediment. However, in countries
where Ph.D. students are dependent
on project support, it becomes hard to
train first-rate researchers.

Students and Startups
One of the trickiest decisions an advi-
sor has to make is how to deal with the
student who wants to found a startup
while they are working on their doc-
torate. Few people agree with me on
this point, but I believe that, unless
the startup idea is insane, they should
go out and do the startup. My theory
is that, while getting a doctorate and
entering the research arena is a high
calling, it is not the highest possible
calling. A startup can have more im-
pact on our lives than a thesis. More-
over, if they miss the opportunity to
do a successful startup, then they
have lost a great deal. If the startup
flops, as many do, they have lost only

a few years, and can resume work on a
doctorate if they wish.

Sergey Brin never asked me whether
or not he should quit the Ph.D. pro-
gram and found Google, but I would
have told him to do so had he asked.
Another student, Anand Rajaraman,
did ask my advice on this matter when
he was about half a year from finishing.
I told him to leave and be a founder
of Junglee. The venture was quite suc-
cessful. A few years later he returned to
Stanford, started an entirely new thesis
topic that abstracted some of what he
had learned at Junglee, and is now Dr.
Rajaraman.

You don’t have to be in Silicon Val-
ley to think about startups. Great ideas
can develop anywhere, and a respon-
sible advisor will, when appropriate,
present to their students the option
that their work might form the basis of
a commercial venture. I recall an email
message from a student at another
school asking the question: “can a
piece of work be both a thesis and use-
ful?” When I replied in the affirmative,
I was then asked to explain this point
to their advisor. That advisor was serv-
ing the student poorly, although their
attitude seems fairly common. Even in
the course of reviewing this Viewpoint,
I encountered the view that a piece of
technical work is more to be admired if
it cannot be commercialized.

Afterword
Of the various things I’ve done in my ca-
reer, I am most proud of my 53 Ph.D. stu-
dents and their academic descendants
(see infolab.stanford.edu/~ullman/
pub/jdutree.txt; also see the photo ap-
pearing on the first page of this View-
point). Many have done things I could
never do myself, and done so remark-
ably well. Each has brought unique tal-
ents to their work, and it has, for me,
been an education just to watch them.
I’d like to imagine that I contributed to
their success, although I’m pretty sure
that the only thing I really did was stay
out of their way so they could realize
their own potential. 	

Jeffrey D. Ullman (ullman@cs.stanford.edu) is the
Stanford W. Ascherman Professor of Computer Science
(Emeritus) at Stanford University.

For this Viewpoint, I have repurposed some of the ideas of
Hector Garcia-Molina, John Mitchell, Jennifer Widom, and
Gio Wiederhold, for which I thank them. Additional thanks
go to Mark Hill for suggesting developing this Viewpoint
about Ph.D. advising.

Calendar
of Events
March 15–19
The 2009 ACM Symposium
on Applied Computing,
Honolulu, HI,
Sponsored: SIGAPP,
Contact: Sung Y. Shin,
Phone: 605-688-6235,
Email: sung.shin@sdstate.edu

March 16–18
10th International Symposium
on Quality Electronic Design,
San Jose, CA,
Contact: Tanay Karnik,
Phone: 503-712-4179,
Email: tanay.karnik@intel.com

March 19–22
Fourth International
Conference on Intelligent
Computing and Information
Systems,
Cairo, Egypt,
Contact: Mohamed Essam
Khalifa,
Phone: 20127937560,
Email: esskhlalifa@yahoo.com

March 22–25
7th Annual IEEE/ACM
International Symposium
on Code Generation and
Optimization,
Seattle, WA,
Sponsored: SIGMICRO,
SIGPLAN,
Contact: David R. Tarditi, Jr.,
Email: dtarditi@microsoft.com

March 22–27
2009 Spring Simulation
Conference,
San Diego, CA,
Contact: Gabriel A. Wainer,
Email: gwainer@cse.carleton.ca

March 23–26
International Conference
on Web Information Systems
and Technologies,
Lisbon, Portugal,
Contact: Joaquim B. Filipe,
Phone: 351-91-983-3996,
Email: jfilipe@insticc.org

March 31–April 1
Second International
Workshop on Social
Computing, Behavioral
Modeling and Prediction,
Phoenix, AZ,
Contact: Huan Liu,
Phone: 480-727-7349,
Email: hliu@asu.edu

http://infolab.stanford.edu/~ullman/pub/jdutree.txt
mailto:ullman@cs.stanford.edu
mailto:sung.shin@sdstate.edu
mailto:tanay.karnik@intel.com
mailto:esskhlalifa@yahoo.com
mailto:dtarditi@microsoft.com
mailto:gwainer@cse.carleton.ca
mailto:jfilipe@insticc.org
mailto:hliu@asu.edu
http://infolab.stanford.edu/~ullman/pub/jdutree.txt

38 communications of the acm | march 2009 | vol. 52 | no. 3

V
viewpoints

T
h e C o m p u t e r H i s to ry Mu-
seum has an active program
to gather videotaped histo-
ries from people who have
done pioneering work in

this first century of the information
age. These tapes are a rich aggregation
of stories that are preserved in the col-
lection, transcribed, and made avail-
able on the Web to researchers, stu-
dents, and anyone curious about how
invention happens. The oral histories
are conversations about people’s lives.
We want to know about their upbring-
ing, their families, their education,
and their jobs. But above all, we want
to know how they came to the passion
and creativity that leads to innovation.

Presented here are excerptsa from
an interview with Sir Charles Antony
Richard Hoare, a senior researcher at
Microsoft Research in Cambridge, U.K.
and Emeritus Professor of Computing
at Oxford University, conducted in Sep-
tember 2006 by Jonathan P. Bowen, the
chairman of Museophile Limited, and
Emeritus Professor at London South
Bank University.

What did you want to
be growing up?
I thought I would like to be a writer. I

a	 Oral histories are not scripted, and a transcript
of casual speech is very different from what
one would write. I have taken the liberty of
editing and reordering freely for presentation.
For the original transcript, see http://archive.
computerhistory.org/search/oh/.

—Len Shustek

didn’t know quite what I was going to
be writing, but at school I was a rather
studious and uncommunicative child,
and so everybody called me “Professor.”
I found the works of Bernard Shaw very
inspiring. He’s of course an iconoclast,
so he would appeal to an adolescent.
Also Bertrand Russell, who wrote on
social matters as well as philosophical
and mathematical matters.

What was your first
exposure to computers?
I began thinking about computers as
a sort of philosophical possibility dur-
ing my undergraduate course at Ox-
ford University. I took an interest in

mathematical logic, which is the basis
of the formal treatment of computer
programming. I was sufficiently inter-
ested that one of my few job interviews
was with the British Steel just after I
finished my university course in 1956.
I was attracted by their use of comput-
ers to control a steel milling line. A
little later I attended an interview at
Leo Computers Ltd. in London, who
were building their own computers
to look after the clerical operations of
their restaurant chain. But I didn’t fol-
low up on either of those prospects of
employment.

What was the first
program you wrote?
In 1958 I attended a course in Mercury
Autocode, which was the programming
language used on a computer that Ox-
ford University was just purchasing
from Ferranti. I wrote a program that
solved a two-person game using a tech-
nique which I found in a book on game
theory by von Neumann and Morgen-
stern. I don’t know whether it worked
or not. It certainly ran to the end, but I
forgot to put in any check on whether
the answers it produced were correct,
and the calculations were too difficult
for me to do by hand afterward.

What was programming
like in those days?
Very different from today. The pro-
grams were all prepared on punched
cards or paper tape. It might take a day
to get them punched up from the cod-

Interview
An Interview
with C.A.R. Hoare
C.A.R. Hoare, developer of the Quicksort algorithm and a lifelong contributor to the theory and
design of programming languages, discusses the practical application of his theoretical ideas.

doi:10.1145/1467247.1467261	 Len Shustek, Editor

P
h

o
t

o
g

r
a

p
h

 c
o

u
r

t
e

s
y

 o
f

 M
i

c
r

o
s

o
f

t
 R

e
s

e
a

r
c

h

http://archive.computerhistory.org/search/oh/
http://archive.computerhistory.org/search/oh/

V
viewpoints

march 2009 | vol. 52 | no. 3 | communications of the acm 39

ing sheets, and then they were submit-
ted to a computer maybe the following
day. It would take a long time, if there
were any faults in the program, to find
out where they were.

How did you come to live in Russia?
I did national service, which was com-
pulsory in those days, in the Royal Navy
studying modern military Russian. I
used to know the names of all the parts
of a ship in Russian, even if I didn’t
know what the actual parts of the ship
were. Later I continued my graduate
career as a visiting student at Moscow
State University for a year.

The 1960s were very exciting times
in Russia, especially after the U.S. spy
plane was shot down. I felt quite free,
and no political problems obtruded.
But our Russian friends were very sus-
picious of each other. We learned quite
early on that you never introduce one
Russian friend to another, because
each of them thinks the other one is
the informer. We knew that our rooms
were bugged, so we would never talk
about Russian friends inside our own
rooms.

You developed the famous
Quicksort algorithm at
about this time. Why?
The National Physical Laboratory was
starting a project for the automatic
translation of Russian into English,
and they offered me a job. I met sev-
eral of the people in Moscow who were
working on machine translation, and
I wrote my first published article, in
Russian, in a journal called Machine
Translation.

In those days the dictionary in
which you had to look up in order to
translate from Russian to English was
stored on a long magnetic tape in al-
phabetical order. Therefore it paid to
sort the words of the sentence into
the same alphabetical order before
consulting the dictionary, so that you
could look up all the words in the sen-
tence on a single pass of the magnetic
tape.

I thought with my knowledge of
Mercury Autocode, I’ll be able to
think up how I would conduct this
preliminary sort. After a few moments
I thought of the obvious algorithm,
which is now called bubble sort, and
rejected that because it was obviously

rather slow. I thought of Quicksort as
the second thing. It didn’t occur to me
that this was anything very difficult. It
was all an interesting exercise in pro-
gramming. I think Quicksort is the
only really interesting algorithm that
I ever developed.

Where did you work after
returning to England?
I met my future employers in Russia. I
was an interpreter at an exhibition in
Moscow, where Elliott Brothers, which
at that time made small scientific
computers, were exhibiting and sell-
ing their computer in Moscow. They
offered me employment when I came
back, with an additional 100 pounds a
year on my salary because I knew Rus-
sian. I never had a formal interview.

What did you work on at Elliott?
They were embarking on the design of
a new and very much faster computer,
and they thought they would celebrate
by inventing a new language to pro-
gram it in. As a recent employee, with
six months experience, I was put to
designing the language. Fortunately I
happened to see a copy of the Report on
the Algorithmic Language Algol 60, and
I was able to recommend to the com-
pany to implement that, rather than
inventing a language of their own.
That proved a very good commercial
decision. And a good personal one,
because I eventually married Jill, the
other programmer who came to work
on the same project. She had experi-
ence writing a compiler before, which
in those days was quite unusual, and
she was a much better-disciplined pro-
grammer than I ever was.

Was Algol well defined?
The syntax was formally defined. The

grammar of the language was written
up in a way that was, I think, complete-
ly unambiguous. The semantics was
a little less formally defined. It used
ordinary English to describe what the
effect of executing a program would
be. But it was very well written by Pe-
ter Naur, and it was sufficient to en-
able us to write a compiler without
ever consulting the original designers
of the language. And it was sufficient
for programmers in the language to
write programs, which in the end actu-
ally ran on our compiler, without ever
consulting us or the original design-
ers of the language. It was a really very
remarkable achievement—rather be-
yond what maybe we can achieve these
days in the design of languages.

Did you collaborate with
other compiler writers?
We didn’t correspond with other peo-
ple writing compilers, even for Algol,
in those days. We didn’t know each
other. There was no real scientific
community that one could join to talk
over problems with other people who
encountered the same problems. We
worked pretty well on our own.

After moving to Queen’s
University in Belfast in 1968, you
wrote a very important paper
on the axiomatic approach to
computer programming, now
known as “Hoare Logic.”
I was interested, as indeed many peo-
ple were at that time, in making good
the perceived deficiency of the Algol
report: that while the syntax was ex-
tremely carefully and formally defined,
the semantics was left a little vaguer.
We were pursuing the goal of trying to
get an equally good formalization of
the semantics of the language, a goal
that I think still is pretty advanced and
maybe beyond our grasp.

I put forward the view that we didn’t
want the specification to be too pre-
cise. We didn’t want the specification
of a programming language to concen-
trate in too much detail on the way in
which the programs were executed,
but rather we should set limits on the
uncertainty of the execution of the pro-
grams, to allow different implementa-
tions to implement the language in
different ways. In those days the word
lengths and the arithmetic of all of the

I think Quicksort
is the only really
interesting algorithm
that I’ve ever
developed.

40 communications of the acm | march 2009 | vol. 52 | no. 3

viewpoints

computers was different. Based on
the ideas of mathematical logic that I
studied at university, I put forward a
set of axioms that describe the prop-
erties of the implementation without
describing exactly how it worked. It
would be possible, I hoped, to state
those properties sufficiently precisely
that programmers would be able to
write programs using only those prop-
erties, and leave the implementers the
freedom to implement the language
in different ways, but at the same time
taking responsibility for the fact that
their implementation actually satis-
fied the properties that the program
was relying on.

I haven’t abandoned this idea, but
it didn’t turn out to be very popular
among language designers.

You then turned to “structured
programming,” and collaborated
with Edsger Dijkstra and Ole-
Johan Dahl on an important book.
I met Dijkstra and Dahl at a working
conference in 1972 on formal lan-
guage definition. Dijkstra was the oth-
er person writing an Algol compiler at
the same time as I was, and Dahl was
inventing a new simulation language
called Simula, in which he introduced
the ideas of object-oriented program-
ming that would later have a great
influence on programming and pro-
gramming languages. All three of us
had written draft monographs on our
favorite topics: one by Dijkstra called
“Notes on Structured Programming,”
one by Dahl on hierarchical program
structures, and my own notes on data
structuring. I thought it would be in-
teresting to collect these three togeth-
er and publish them as a single book.

I spent quite some time trying to
understand what Dahl had written.
He was a very brilliant but very dense
writer. I had great fun trying to simpli-
fy some of his really brilliant ideas on
how to structure programs in the large.
I did not work on Dijkstra’s material;
that was pretty clear and well written.

What was your involvement
with Pascal?
Pascal was the language designed
as a teaching language by my friend
Niklaus Wirth, after the language we
had designed together in the early
1960s had not been recommended.

We used to meet quite frequently to
talk about the design. My research on
applying the axiomatic method to pro-
gramming language semantics had
made quite considerable progress by
then, and I thought it was time to see
whether I could tackle a complete lan-
guage using this style of definition. I
managed to do the easy bits, but there
were still quite a lot of challenges left
over, which we just omitted from the
definition of the language.

When did you start to look at
monitors for operating systems?
In 1972 I organized a conference in
Belfast where we assembled quite a
brilliant group of scientists to talk
about operating system techniques. I
was interested in exploring the ideas
of from an axiomatic point of view.
Could I define axioms that would en-
able people to safely write concurrent
programs in the same way as they can
write sequential programs today? We
devoted an afternoon to discussing the
emerging ideas of monitors; I and Per
Brinch Hansen were the main people
to contribute to that discussion.

How did you come to move from
monitors to communicating
sequential processes?
The idea of a communicating process
is that instead of calling its compo-
nents as subroutine, or a method,
you’d actually communicate the val-
ues that you wanted to transmit to it
by some input or output channel, and
it would communicate its results back
by a similar medium. The reason for
this was a technological advance in

the hardware: the advent of the micro-
processor, a cheap and small machine
with not very much store, but capable
of communicating with other micro-
processors of a similar nature along
wires. It was easy to predict that the
best way of making a large and fast
computer would be to assemble a
large number of very cheap micropro-
cessors together, and allow them to
cooperate with each other on a single
task by communicating along wires
that connected them. For this, a new
architecture of programs would be ap-
propriate, and perhaps a new language
for expressing the programs. That was
how the communicating sequential
processes came to take a leading role
in my subsequent research.

You’ve always been interested
in the connection between
theory and practice.
My move back to Oxford was partially
motivated by my idea to study the Ox-
ford ideas on the semantics of pro-
gramming languages again. I hoped
that it would be possible, using the Ox-
ford techniques of defining semantics,
to clarify the exact meaning of commu-
nicating processes in a way that would
be helpful to people writing programs
in that idiom.

It was a great loss that Christopher
Strachey had recently died. I took
over his chair at Oxford, quite literally
sitting in his chair and sitting at his
desk. I happened to open the drawer,
and come across a final report on one
of his research projects, in which he
put forward his ideals for keeping the
theory and practice of programming
and computer science very much
in step with each other. He said the
theory could easily become sterile,
and the practice could easily become
ad hoc and unreliable, if you weren’t
able to keep one firmly based on the
other, and the other firmly studying
problems with the practical uses of
computers.

Have there been successes using
formal methods in practice?
At a keynote lecture for the British
Computer Society I talked a bit about
formalization and verification, and
put forward a conjecture, fairly tenta-
tively, that maybe the time was right
to scale these things up by trial use

It was easy to predict
that the best way of
making a large and
fast computer would
be to assemble a large
number of very cheap
microprocessors
together.

viewpoints

march 2009 | vol. 52 | no. 3 | communications of the acm 41

programs is still an idea for the fu-
ture, although there are beginnings
of using scientific technology to make
the programs more reliable. The full
functional verification of a computer
program against formally specified re-
quirements is still something we have
to look forward to in the future. But
the progress that we’ve made has re-
ally been quite spectacular in the last
10 years.

My other project is concurrency.
I’ve set myself the challenge of under-
standing and formalizing methods for
programming concurrent programs
where the programs actually share the
store of the same computer, rather
than being executed on distinct com-
puters as they are in the communicat-
ing sequential process architecture.
Again, the motivation for studying this
different form of concurrency is the
advance of hardware technology: it
now appears that the only way in which
processors can get faster is for them to
include more processing units on the
same chip, and share the same store.

I’d always felt that parallel programs
that actually shared main memory, and
could interleave their actions at a very
fine level of granularity—just a single
memory access—were far too difficult
for me. I could see no real prospect
of working out a theory that would
help people to write correct programs
to exploit this capability. I thought it
would be interesting to try again, and
see whether the experience in formal-
ization that has been built up over the
last 20 or 30 years could be applied ef-
fectively to this extremely complicated
form of programming.

What is on the horizon for
computer science?
I expect the future to be as wonderful as
the past has been. There’s still an enor-
mous amount of interesting work to
do. As far as the fundamental science
is concerned, we still certainly do not
know how to prove programs correct.
We need a lot of steady progress in this
area, which one can foresee, and a lot
of breakthroughs where people sud-
denly find there’s a simple way to do
something that everybody hitherto has
thought to be far too difficult.	

Edited by Len Shustek, Chair, Computer History Museum,
Mountain View, CA.

in industry. A senior director from
IBM at Hursley came up to me after
the lecture and invited me to put
my commitment where my mouth
was, and do something in collabora-
tion with IBM. That made me gulp
a bit, because I had the impression
that IBM had produced some pretty
complicated software, and this re-
ally would be a challenge. There was
a good chance that we would fall flat
on our faces. But you can’t turn down
an opportunity like that. So some
colleagues and I set to work, and
actually produced some very useful
analyses for them using the Z nota-
tion of Jean-Raymond Abrial to help
them with an ongoing project for
restructuring and rewriting parts of
their popular customer information
software system, CICS. That work
eventually led to a Queen’s award for
technology.

The Transputer was
another example of a very
practical application of
your theoretical ideas.
The INMOS Transputer was as em-
bodiment of the ideas that I described
earlier, of building microprocessors
that could communicate with each
other along wires that would stretch
between their terminals. The founder
had the vision that the CSP ideas were
ripe for industrial exploitation, and he
made that the basis of the language for
programming Transputers, which was
called Occam.

When they came to develop the
second version of their Transputer
that had a floating- point unit at-
tached, my colleagues Bill Roscoe
and Jeff Barrett at Oxford actually
used formal models of communicat-
ing processes, and techniques of pro-
gram verification, to check that their
designs for the implementation of
the IEEE floating-point specification
were in fact correct. The company
estimated it enabled them to deliver
the hardware one year earlier than
would otherwise have happened.
They applied for and won a Queen’s
award for technological achieve-
ment, in conjunction with Oxford
University Computing Laboratory,
for that achievement. It still stands
out as one of the first applications of
formal methods to hardware design.

What projects are you
working on at Microsoft?
One of them is the pursuit of my life-
time goal of verification of programs.
I was very interested in the ideas of as-
sertions, which had been put forward
by Bob Floyd and before; already in
1947 the idea of an assertion was de-
scribed by Alan Turing in a lecture he
gave to the London Mathematical So-
ciety. This idea of assertions lies at the
very basis of proving programs correct,
and at the very basis of my ideas for de-
fining the semantics of programming
languages. I already knew when I en-
tered academic life way back in 1968
that these ideas would be unlikely
to find commercial exploitation, re-
ally, throughout my academic career.
I could look forward to 30 years of re-
search uninterrupted by anybody who
actually wanted to apply its results.

I thought that when I retired,
it would be very interesting to see
whether the positive side of my predic-
tion would also come true, that these
ideas would begin to be applied. And
indeed, even since I’ve joined Micro-
soft in 1999, I’ve seen quite a bit of ex-
pansion in their use of assertions and
other techniques for improving con-
fidence in the reliability of programs.
There are program analysis tools now
that stop far short of actually proving
correctness of programs, but they’re
very good at detecting certain kinds of
errors. Some quite dangerous errors,
which make the software vulnerable
to intrusions and virus attacks, have
been detected and removed as a result
of the use of formal techniques of pro-
gram analysis.

The idea of verifying computer

I expect the future
to be as wonderful
as the past has
been. There’s still
an enormous
amount of interesting
work to do.

42 communications of the acm | march 2009 | vol. 52 | no. 3

practice

developed in coordination with, the
film industry. Unlike film, however,
games need to be interactive. Player
actions require visual feedback; game
characters should react to player choic-
es. Adding interactive features typically
requires some form of programming.
These features are also a form of artis-
tic content, and game studios would
prefer they be created by designers—
developers who understand how the
player will interact with the game, and
what makes it fun—rather than soft-
ware engineers.

The idea of game software as artis-
tic content has led many game studios
to split their software developers into
two groups. Software engineers work
on technical aspects of the game that
will be reused over multiple titles. They
work on core technology such as anima-
tion, networking, or motion planning,
and they build the tools that make up
the content-creation pipeline. Game-
play programmers, on the other hand,
create the behavior specific to a single
game. Part designer, part programmer,
they implement and tune the interac-
tive features that challenge and reward
the player.

The gameplay programmer should
produce fun, not complex, algorithms.
Game studios design their program-
ming workflow to relieve gameplay
programmers of any technical burdens
that keep them from producing fun.
Often this involves an iterative process
between the gameplay programmers
and the engineers. The gameplay pro-
grammers develop feature prototypes
to play-test before adding them to the
game. The software engineers then use
these feature prototypes to design sup-
port libraries, which are used to build
another round of prototypes. This is an
effective workflow, but game companies
are always looking for ways to speed up
or even automate this process.

In addition to supporting the inter-
action between gameplay program-
mers and software engineers, the
studios are always looking for ways to
integrate the designers into the pro-
gramming process. Designers often

The video game industry earned $8.85 billion in
revenue in 2007, almost as much as movies made at
the box office. Much of this revenue was generated by
blockbuster titles created by large groups of people.
Though large development teams are not unheard of in
the software industry, game studios tend to have unique
collections of developers. Software engineers make
up a relatively small portion of the game development
team, while the majority of the team consists of content
creators such as artists, musicians, and designers.

Since content creation is such a major part of
game development, game studios spend many re-
sources developing tools to integrate content into
their software. For example, entry-level programmers
typically make tools to allow artists to manage assets
or to allow designers to place challenges and rewards
in the game. These tools export information in a
format usable by the software engineers, either as auto-
generated code or as standardized data files.

This content-creation pipeline is not very well
understood, and each studio has its own philosophy
and set of tools. Many tools are taken from, or

doi:10.1145/1467247.1467262

Smarter, more powerful scripting languages
will improve game performance while making
gameplay development more efficient.

by Walker White, Christoph Koch,
Johannes Gehrke, and Alan Demers

Better Scripts,
Better Games

march 2009 | vol. 52 | no. 3 | communications of the acm 43

have very little programming experi-
ence, but they have the best intuitions
for how the game should play. Thus,
studios want tools that allow design-
ers, if not actually to program behav-
ior, at least to fine-tune the parameters
behind it.

The Role of Scripting Languages
Many game studios rely on scripting
languages to enable gameplay pro-
grammers and designers to program
parts of their games. These languages
allow developers to easily specify how
an object or character is supposed to
behave, without having to worry about
how to integrate this behavior into the
game itself. Scripting languages are
particularly important for massively
multiplayer games where any piece of
code must interact with multiple sub-
systems, from the application layer to
the networking layer to the database.

User-created content is another

reason for games to support scripting.
Open-ended virtual worlds such as Sec-
ond Life have made player scripting a
common topic of conversation. Even
before that, games had a long tradi-
tion of player-developed mods. Given
tools—either official or third party—to
modify the data files that came with the
game, players have been able to create
completely new experiences. Gener-
ally, modding has been seen as a way
to extend the lifespan of older games.
In some cases, however, it can create
completely new games: the commer-
cially successful Counter-Strike was a
player modification of the game Half-
Life and relied heavily on scripting fea-
tures present in its parent game.

Scripting languages allow players to
modify game behavior without access
to the code base. Just as important,
they provide a sandbox that—unlike a
traditional programming language—
limits the types of behavior the player

can introduce. If the game has a mul-
tiplayer component, the game develop-
ers do not want players creating scripts
to give themselves an undue advantage.
Overly powerful scripting languages
have facilitated many of the bots—au-
tomated players performing repetitive
tasks—that currently populate mas-
sively multiplayer games. Sandboxing
can even be useful in-house. By limit-
ing the types of behaviors that their
designers can create, the studios can
reduce the number of bugs that they
can introduce—bugs that cost valuable
time to find and eliminate.

The Need for Game-Specific
Scripting Languages
The foremost criterion for a scripting
language is that it should make game-
play development fast and efficient.
Often game objects—rocks, plants,
or even intelligent characters—share
many common attributes. Game script-

In this Second Life photograph avatars Alpha Auer and MosMax Hax explore a pose stand that allows users to program poses and run two
scripts. One script cycles through the poses, and the other one makes the pose stand invisible/visible.

S
e

c
o

n
d

 l
i

f
e

 P
h

o
t

o
g

r
a

p
h

 c
o

u
r

t
e

s
y

 o
f

 A
l

p
h

a
 A

u
e

r
 a

n
d

 M
o

s
M

a
x

 H
a

x

44 communications of the acm | march 2009 | vol. 52 | no. 3

practice

ing languages are often part of IDEs
(such as the one shown in Figure 1)
that provide forms for quickly modify-
ing these attributes. The scripting lan-
guages themselves, however, are fairly
conventional. Many companies use
traditional scripting languages such as
Lua or Python for scripting. Even com-
panies that design their own languages
usually stick with traditional format
and control structures. Little effort has
been spent tailoring these scripting
languages for games.

One of the major problems with tra-
ditional scripting languages is that the
programmer must be explicitly aware
of low-level processing issues that have
little to do with gameplay. Performance
is a classic example of such a low-level
issue. Animation frame rate is so im-
portant to developers that they opti-
mize by counting the number of mul-
tiplies or adds in their code. This type
of analysis is beyond the skill of most
designers, however. Furthermore, ex-
isting languages provide almost no
tools to help designers improve script
performance.

Designers must also take perfor-
mance into account when creating con-
tent. If the game runs too slowly, they
may be forced to reduce the number of
objects in the game, which in turn can
significantly alter the playing experi-
ence. This is what occurred when The
Sims was ported to consoles. In this
game, a player indirectly controls a
character (Sim) by purchasing furniture

or other possessions for it. Each piece
of furniture is scripted to advertise its
capabilities to the Sim periodically. The
Sim then compares these capabilities
with its needs in order to determine its
next action. Furniture does not exist in
isolation, however; a couch in front of a
television is much more versatile than
one alone in a room. Therefore, pieces
of furniture also periodically poll the
other furniture in the room to update
their capabilities. As each piece of fur-
niture may communicate with other
pieces of furniture, the cost of process-
ing a room can grow quadratically with
the number of objects in the room.
When the title was ported to consoles,
the performance issue became so pro-
nounced that the designers had to in-
troduce a “feng shui meter” to prevent
players from filling rooms with too
many possessions.

Game developers have many tech-
niques available to them for improving
performance. Spatial indexes are one
popular way of handling interactions
between game objects at less than qua-
dratic cost. Parallel execution is an-
other possibility; many games are em-
barrassingly parallel, and developers
leverage this fact for multicore CPUs
and distributed multiplayer environ-
ments. These techniques are beyond
the skill of the typical game designer,
however, and are left to the software
engineers.

Another low-level issue with script-
ing languages is the lack of transac-

tion support for massively multiplayer
games. Individual scripts are often exe-
cuted concurrently, particularly in mas-
sively multiplayer games, so designers
need some form of transaction to avoid
inconsistent updates to the game state.
Indeed, script-level concurrency vio-
lations are one of the major causes of
bugs in multiplayer environments.

To make scripting easier for design-
ers, we have to provide them with sim-
ple tools for addressing these low-level
issues. None of these problems is really
new; many programming languages
have been developed over the years to
address them, but most of these lan-
guages make programming more diffi-
cult, not easier. Fortunately, designers
do not need an arbitrary scripting lan-
guage; they just need a language that
helps them write games.

From Patterns to
Language Features
Despite these problems, games are be-
ing developed. Game developers have
come up with many ideas that, if not
complete solutions, do ameliorate the
problems. These ideas typically come in
the form of programming patterns that
have proven over time to be successful.
Though developers use these program-
ming patterns in creating game behav-
ior, the scripting languages usually do
not support them explicitly. One of the
reasons object-oriented programming
languages have been so successful is
that object-oriented programming pat-
terns existed long before the languages
that supported them. Similarly, by ex-
amining existing programming prac-
tices in game development, we can de-
sign scripting languages that require
very little retraining of developers. The
challenge in developing a scripting lan-
guage is identifying those patterns and
creating language features to support
them most effectively.

The State-Effect Pattern
One popular pattern in game develop-
ment is the state-effect pattern. Every
game consists of a long-running simu-
lation loop. The responsiveness of the
game to player input depends entirely
on the speed at which the simulation
loop can be processed. In the state-ef-
fect pattern, each iteration of the sim-
ulation loop consists of two phases:
effect and update. In the effect phase,

Figure 1. The Neverwinter Nights 2 toolset is an extensive IDE that allows users to create
new content for the game.

practice

march 2009 | vol. 52 | no. 3 | communications of the acm 45

each game object selects an action and
determines individually the effects of
this action. In the update phase, all the
effects are combined and update the
current state of the game to create the
new state for the next iteration of the
simulation loop.

Because of these two phases, we can
separate the attributes of game objects
into states and effects. State attributes
represent the snapshot of the world
after the last iteration of the simula-
tion loop. They are altered only in the
update phase and are read-only in the
effect phase. Effect attributes, on the
other hand, contain the new actions of
the game objects, and the state of the
game is updated with effects during the
update phase. Because interactions be-
tween game objects are logically simul-
taneous, effect values are never read
until the update phase. Hence, effect
values are, in some sense, write-only
during the effect phase.

Game physics provides many exam-
ples of this pattern. At the beginning of
the simulation loop, each game object
has a current position and velocity re-
corded as state attributes. To compute
the new velocity, each object computes
the vector sum of all of the forces act-
ing upon it, such as collisions, gravity,
or friction. In other words, the force
attribute may be written to multiple
times during the simulation loop, but
it is never read until all of the force val-
ues have been summed together at the
end of the loop. The example in Figure
2 illustrates the use of the state-effect
pattern to simulate objects moving
about in a potential field. The variable
force is an effect in this calculation.
During the effect phase we only incre-
ment its value and never read it to de-
termine control flow. Whereas most
implementations would read the old
value of force to perform this incre-
ment, this is not necessary; we could
also gather all of these force values in a
list and add them together at the end of
the effect phase.

Most of the time, game developers
use the state-effect pattern to manually
design high-performance algorithms
for very specific cases. That is because
it has several properties that allow
them to significantly enhance the per-
formance of the simulation loop. The
effect phase can be parallelized since
the effect assignments do not influence

each other. The update phase can also
be parallelized since it consists only of
the aggregation of effects and updates
to state variables. This does not need
to be done by hand; if the scripting
language knew which attributes were
state attributes and which were effect
attributes, it could perform much of
this parallelization automatically, even
in scripts written by inexperienced de-
signers. This is similar to what Google
achieves with its Sawzall language and
the MapReduce pattern; special ag-
gregate variables perform much the
same function as effect attributes, and
the language allows programmers at
Google to process data without any
knowledge of how the program is be-
ing parallelized.1

Automatic parallelization is an
example of an alternative execution
model; the game runs the script using
a control flow that is different from the
one specified by the programmer. Since
the simulation loop logically processes
all of the game objects simultaneously,
we can process them in any order, pro-

vided that we always produce the same
outcome. Thus, alternative execution
models are among the easiest ways of
optimizing game scripts. Another un-
usual execution model is used by the
SGL scripting language, which is being
developed at Cornell University.2 This
language is based on the observation
that game scripts written in the state-
effect pattern can often be optimized
and processed with database tech-
niques. The script compiler gathers
all of the scripts together and converts
them into a single in-memory query
plan. Instead of using explicit threads,
it constructs a data pipeline that allows
the code to be parallelized in natural
ways. Many of these data pipelines are
similar to the ones that game program-
mers create when they program on the
graphics processing unit, except that
these are generated automatically.

The Restricted Iteration Pattern
Iteration is another common source of
problems in game development. Allow-
ing arbitrary iteration can quickly lead

Figure 2: Example of the state-effect pattern.

// Outer simulation loop
for each timestep {

	 // Compute effects for all for each particle o {
		 o.effectPhase();
	 }

// Update state for all for each particle o {
	 o.updatePhase() ;
	 }

}

// State variables
vector position, velocity;
scalar q, damping, mass;

// Effect variables
vector force;

// Read state, write effects
	 effectPhase() {
		 for each particle p {
			 r = position-this.p.position;
			 s = ((this.q*p.q)/(r.magnitude())^3;
			 force += s*r;
		 }
	 }

// Read and write state, read effects
updatePhase() {
	 velocity = damping*velocity+force/mass;
}

46 communications of the acm | march 2009 | vol. 52 | no. 3

practice

to significant performance degrada-
tion of the simulation loop. Iteration
can be even more dangerous in the
hands of inexperienced designers. Dur-
ing the development of City of Heroes,
Cryptic Studios discovered that many
of the scripts had interdependencies
that produced hard-to-find infinite
loops. To prevent this, the developers
removed unbounded iteration from
the scripting language.

Although this was a fairly drastic
solution, most games do not need ar-
bitrary iteration in their scripts. The
scripts just need to perform a compu-
tation over a finite set of objects; such
scripts follow the restricted iteration
pattern, which obviously guarantees
termination on all loops. In addition,
it may enable code analysis and com-
pile-time code transformations that
improve performance. For example,
SGL can take nested loops that pro-
duce quadratic behavior and generate
an index structure from them;2 it then
replaces the nested loops with a single
loop that performs lookups into that
index.

Examples of the restricted iteration
pattern appear throughout the scripts
in Warcraft III, a real-time strategy
game that has to process armies of in-
dividual units. The NudgeObjectsIn-
Rect script in Figure 3 appears in the
Blizzard.j file. This function takes a
rectangle and loops through all of the
military units that appear in that rect-
angle; in that loop, it uses the function
NudgeUnitsInRectEnum to push
units apart so that there is a minimum
distance between pairs of units.

All the operations in this script are
external functions provided by the soft-
ware engineers. The scripting language

be eliminated by the addition of locks
or synchronization primitives to the
scripting language. Locks can be ex-
pensive and error-prone, however, so
game developers like to avoid them
if at all possible. They are particularly
dangerous in the hands of designers.

Additionally, lock-based synchroni-
zation is incompatible with the state-ef-
fect pattern. In the state-effect pattern,
the state of the container consists of the
contents at the end of the last iteration
of the simulation loop, while an effect
attribute is used to gather the items be-
ing added to the container. Effect vari-
ables cannot be read, even with locks,
so the script cannot test for conflicting
items being added simultaneously.

Instead of trying to solve this prob-
lem with traditional concurrency ap-
proaches, it is best to step back and
understand what the programmer is
trying to do in this pattern. The pro-
grammer wants to update an object,
but under some conditions this update
may result in an inconsistent state. The
function TestPutItem defines which
states are consistent. If the language
knew this was the consistency function
for PutItemInContainer, it could
delay the check to ensure consistency
without a lock. The language could
first gather all of the items to be added
to the container and then use the con-
sistency check to place as many as the
container can hold. In some cases, the
language could even place multiple ob-
jects with a single consistency check.

Of course, this approach does not
solve arbitrary problems with parallel
execution, but game companies use lan-
guages with almost no concurrency sup-
port, and they rely on coding conven-
tions to limit consistency errors. Adding
features that provide concurrency guar-
antees for the more common design
patterns in games would allow the game
developers to trust their scriptwriters
with a wider variety of scripts, increas-
ing their artistic freedom.

Game-Aware Runtimes
Language features provide the runtime
with clues on how best to execute the
code, but some games have properties
outside of the scripting language that
the runtime can also leverage. For ex-
ample, the right optimization strategy
for a set of scripts depends on the cur-
rent state of the game. If the game is

is not aware that these functions im-
plement the equivalent of a for-each
loop (a loop over a fixed set of objects);
otherwise, the compiler would be able
to perform loop optimizations on it.
Given the number of times this pattern
appears in the Warcraft III scripts, this
could result in significant performance
improvements.

Concurrency Patterns
Iteration is not the only case in which
developers could benefit from alterna-
tive control structures. Many games
execute scripts in parallel, which re-
quires scriptwriters to be cognizant
of concurrency issues. As an example,
consider inventory management in on-
line games, a notoriously problematic
scenario, with consistency violations
resulting in lost or duplicated objects.
Consider the following simple script
written to put an item in a container
such as a sack or a backpack:

//	Test a container, and
	 insert an object if okay
success = TestPutItem(me,
container, item)
if (!success):	

Bail()
else:
	 PutItemInContainer(item,
	 container)

This script tests if a container has
the capacity to hold an item, then adds
the item if there is space. Nothing in
the script says that this action must be
executed atomically, so in a distributed
or concurrent setting, the container
could fill up between the time it is
tested and the time the item is added
to the container. Obviously, this could

Figure 3: Example of the restricted iteration pattern.

//===
// Nudge items and units within a given rect, so that they can fi nd
// locations where they can peacefully coexist
function NudgeObjectsInRect takes rect nudgeArea returns nothing
	 local group g

	 set g = CreateGroup()
	 call GroupEnumUnitsInRect(g, nudgeArea, null)
	 call ForGroup(g, function NudgeUnitsInRectEnum)
	 call DestroyGroup(g)
	
	 call EnumItemsInRect(nudgeArea, null, function NudgeItemsInRectEnum)
endfunction

practice

march 2009 | vol. 52 | no. 3 | communications of the acm 47

controlling a large army marching to-
ward an enemy, then the game should
optimize movement of soldiers; on
the other hand, if the army is guarding
against an attack, the game should op-
timize individual perception. Games
often have a small number of these
high-level states, and changes between
them happen relatively slowly. If the
runtime can recognize which state
the game is in, it can switch to an op-
timized execution plan and improve
performance.

To some degree, game developers
already take advantage of this fact in
their performance tuning. Currently
they log runs of the game during play-
testing, and later data-mine these logs
for recurring patterns. If these patterns
are easy to detect, developers can take
advantage of them. This type of optimi-
zation, however, is very difficult for de-
signers or for players developing user-
created content. Ideally, a game-aware
runtime would have some knowledge
of common patterns and be able to ad-
just for them automatically.

Performance is not the only reason
for the runtime to monitor how the
game changes over time; it is also use-
ful for debugging. Debugging a game
is not as simple as stepping through a
single script. Each object is scripted in-
dividually, and these scripts can inter-
act with one another in subtle ways. An
incorrect data value in one script may
be the result of an error in a completely
different script. In addition, many er-
rors are the result of user input that is
not always easy to reproduce. A script
designer needs some way of visualiz-
ing which scripts modify which objects
and how these objects change over
time. This is an application of data
provenance, which is an active area of
development in the field of scientific
computation. Like designers, the sci-
entists targeted by data provenance
tools often have little programming
experience; instead, the provenance
techniques model the way they natu-
rally think about the data. As yet, no
game scripting language supports data
provenance.

Data provenance is even more im-
portant if the script runtime has an
unusual execution model. In the previ-
ous script to place items in a container,
efficient execution involved reordering
portions of the script. Instead of hav-

ing the programmer debug the scripts
in an execution model that is differ-
ent from the one in which the bug ap-
peared, it is best to give him or her a
higher-level visualization of how that
bug might have occurred.

Game-aware runtimes are more dif-
ficult to implement than language fea-
tures. Language features can often be
implemented piecemeal; as program-
ming patterns are identified, new lan-
guage features can be added without
adversely affecting the old. Runtimes,
once architected, can be very interde-
pendent and difficult to change. For
example, any changes to the order in
which operations are processed will
affect the debugger. Thus, while lan-
guages can have an attitude of “see
what works,” runtimes need to be well
understood from the beginning.

Conclusion
Scripting languages are an integral part
of both game development and mod-
ding, and their design has huge impact
on both correctness and performance
of the resulting game. Game develop-
ers earn money from the titles that they
publish, not the engineering problems
that they solve. Therefore, anything
that reduces technical challenges for
the developers and allows them to cre-
ate more content is a welcome innova-
tion. Advances in design patterns and
scripting languages will influence the
way games are programmed for years
to come. 	

References
1.	D ean, J. and Ghemawat, S. MapReduce: Simplified

data processing on large clusters. Commun.
ACM 51, 1 (Jan. 2008): 107–113; doi.acm.
org/10.1145/1327452.1327492.

2.	 White, W., Sowell, B., Gehrke, J., and Demers, A.
Declarative processing for computer games. In
Proceedings of the 2008 ACM SIGGRAPH Sandbox
Symposium; doi.acm.org/10.1145/1401843.1401847.

Walker White is the director of the Game Design
Initiative, an interdisciplinary undergraduate program
training students in the design and development of
computer games, at Cornell University, Ithaca, NY.

Christoph Koch is an associate professor of computer
science at Cornell University, Ithaca, NY.

Johannes Gehrke is an associate professor in the
department of computer science at Cornell University,
Ithaca, NY. He co-authored Database Management
Systems (McGraw-Hill, 2002), currently in its third edition.

Al Demers is a principal research scientist in the
department of computer science at Cornell University.
His current work focuses on scalability and data
management for computer games and virtual worlds.

A previous version of this article appeared in the
November/December 2008 issue of ACM Queue.

© 2009 ACM 0001-0782/09/0300 $5.00

By examining
existing
programming
practices in game
development,
we can design
scripting languages
that require very
little retraining
of developers.
The challenge
in developing
a scripting language
is identifying
those patterns
and creating
language features
to support them
most effectively.

http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1401843.1401847
http://doi.acm.org/10.1145/1327452.1327492

48 communications of the acm | march 2009 | vol. 52 | no. 3

practice

easy to reason about the behavior of
programs (though there are limits to
how easy this can ever be).

The implementation makes the ˲˲

simple primitives fast and scalable,
and makes effective use of modern
multicore hardware, eliminating the
need for more complex mechanisms.

The execution model eliminates ˲˲

some classes of errors from unsynchro-
nized access to shared state—or at least
makes these errors more noticeable.

The model of concurrency is nat-˲˲

ural to think about and requires no
mathematical sophistication.

The environment makes failures ˲˲

detectable and recoverable, making it
possible to deploy a less-than-perfect
system in the field that can nonethe-
less maintain high availability.

The concurrency model maps nat-˲˲

urally to distributed deployments.
This article introduces the Erlang

language and shows how it can be used
in practice to implement concurrent
programs correctly and quickly.

Sequential Erlang
Erlang is built from a small number
of sequential programming types and
concepts, and an even smaller num-
ber of concurrent programming types
and concepts. Those who want a full
introduction can find several excellent
tutorials on the Web,b but the following
examples (required by functional pro-
gramming union regulations) should
convey the essentials.

As shown in Figure 1A, every file
of Erlang code is a module. Declara-
tions within the file name the module
(which must match the filename) and
declare which functions can be called
from other modules. Comments run
from the percent sign (%) to the end of
the line.

Factorial is implemented by two
functions. Both are named facto-
rial, but they have different numbers
of arguments; hence, they are distinct.
The definition of factorial/2 (the

b	 See Erlang course www.erlang.org/download/
armstrong_thesis_2003.pdf.

Erlang is a language developed to let mere mortals
write, test, deploy, and debug fault-tolerant concurrent
software.a Developed at the Swedish telecom company
Ericsson in the late 1980s, it started as a platform
for developing soft real-time software for managing
phone switches.1 It has since been open sourced and
ported to several common platforms, finding a natural
fit not only in distributed Internet server applications,
but also in graphical user interfaces and ordinary
batch applications.

Erlang’s minimal set of concurrency primitives,
together with its rich and well-used libraries, give
guidance to anyone trying to design a concurrent
program. Erlang provides an effective platform for
concurrent programming for the following reasons:

The language, the standard libraries (Open ˲˲
Telecom Platform, or OTP), and the tools have been
designed from ground up for supporting concurrency.

There are only a few concurrency primitives, so it’s ˲˲

a	 See Erlang Web site www.erlang.org.

doi:10.1145/1467247.1467263

Designed for concurrency from the ground
up, the Erlang language can be a valuable tool
to help solve concurrent problems.

by Jim Larson

Erlang for
Concurrent
Programming

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 A
n

d
y

 G
i

l
m

o
r

e

http://www.erlang.org
http://www.erlang.org/download/armstrong_thesis_2003.pdf
http://www.erlang.org/download/armstrong_thesis_2003.pdf

march 2009 | vol. 52 | no. 3 | communications of the acm 49

50 communications of the acm | march 2009 | vol. 52 | no. 3

practice

	 }

// Re-initialize counter to zero.
	 public synchronized void
	 reset() {
		 nextVal = 0;
	 }
}

A sequence is created as an object
on the heap, potentially accessible by
multiple threads. The synchronized
keyword means that all threads call-
ing the method must first take a lock
on the object. Under the protection of
the lock, the shared state is read and
updated, returning the pre-increment
value. Without this synchronization,
two threads could obtain the same val-
ue from getNext(), or the effects of a
reset() could be ignored.

Let’s start with a “raw” approach to
Erlang, using the concurrency primi-
tives directly.

two-argument version) is split into
two clauses, separated by a semico-
lon. When factorial/2 is called, the
actual parameters are tested against
the patterns in each clause head in
turn to find the first match, then the
body (after the arrow) is evaluated.
The value of the final expression in the
body is the return value of the call; no
explicit return statement is needed.
Erlang is dynamically typed, so a call
to factorial(“pancake”) will com-
pile but will raise a runtime exception
when it fails to match any clause. Tail-
calls are optimized, so this code will
run in constant space.

Lists are enclosed in square brack-
ets (see Figure 1B). A single vertical
bar separates the first element from
the rest of the list. If a list is used in
a clause head pattern, it will match
list values, separating them into their
components. A list with a double verti-
cal bar is a “list comprehension,” con-
structing a list through generator and
filter expressions. A double-plus (++)
concatenates lists.

Tuples (vectors) are enclosed in
curly braces (see Figure 1C). Tuples in
patterns will extract components out
of tuples that they match. Identifiers
that start with an uppercase letter are
variables; those that start in lowercase
are atoms (symbolic constants such as
enum values, but with no need to define
a numerical representation). Boolean
values are represented simply as atoms
true and false. An underscore (_) in
a pattern matches any value and does
not create a binding. If the same fresh
variable occurs several times in a pat-
tern, the occurrences must be equal to
match. Variables in Erlang are single-
assignment (once a variable is bound to
a value, that value never changes).

Not all list-processing operations
can be expressed in list comprehen-
sions. When we do need to write list-
processing code directly, a common
idiom is to provide one clause for han-
dling the empty list and another for
processing the first element of a non-
empty list. The foldl/3 function shown
in Figure 1D is a common utility that
chains a two-argument function across
a list, seeded by an initial value. Erlang
allows anonymous functions (“fun’s”
or closures) to be defined on the fly,
passed as arguments, or returned from
functions.

Erlang has expressions that look
like assignments but have a differ-
ent semantics. The right-hand side
of = is evaluated and then matched
against the pattern on the left-hand
side, just as when selecting a clause
to match a function call. A new vari-
able in a pattern will match against
the corresponding value from the
right-hand side.

Concurrent Erlang
Let’s introduce concurrent Erlang by
translating a small example from Java:

Sequence.java
// A shared counter.
public class Sequence {
	 private int nextVal = 0;
	 // Retrieve counter and
	 // increment.
	 public synchronized int
		 getNext() {	
			 return nextVal++;

Figure 1: Example1.erl.

A	
-module(example1).
-export([factorial/1, qsort/1, member/2, foldl/3, sum/1]).

% Compute the factorial of a positive integer.
factorial(N) when is_integer(N), N > 0 -> factorial(N, 1).

% A helper function which maintains an accumulator.
factorial(1, Acc) -> Acc;
factorial(N, Acc) when N > 1 -> factorial(N - 1, N * Acc).

B	
% Return a sorted copy of a list.
qsort([]) -> [];
qsort([Pivot | Xs]) ->
	 qsort([X || X <- Xs, X < Pivot])
		 ++ [Pivot]
		 ++ qsort([X || X <- Xs, X >= Pivot]).

C	
% Is X an element of a binary search tree?
member(_, empty) -> false;
member(X, {_, X, _}) -> true;
member(X, {Left, Y, _}) when X < Y -> member(X, Left);
member(X, {_, _, Right}) -> member(X, Right).

D	
% “Fold” a function across elements of a list, seeding
% with an initial value.
% e.g. foldl(F, A0, [A, B, C]) = F(C, F(B, F(A, A0)))
foldl(_, Acc, []) -> Acc;
foldl(F, Acc, [X | Xs]) ->
	 NewAcc = F(X, Acc),
	 foldl(F, NewAcc, Xs).

% Give the sum of a list of numbers.
sum(Numbers) -> foldl(fun(N, Total) -> N + Total end, 0, Numbers).

practice

march 2009 | vol. 52 | no. 3 | communications of the acm 51

sequence1.erl (raw implementation)
-module(sequence1).
-export([make_sequence/0,
 get_next/1, reset/1]).

% Create a new shared counter.
make_sequence() ->
 spawn(fun() ->
 sequence_loop(0)
 end).

sequence_loop(N) ->
 receive
	 {From, get_next} ->
		 From ! {self(), N},
		 sequence_loop(N + 1);
	 reset ->
		 sequence_loop(0)
 end.

% Retrieve and increment.
get_next(Sequence) ->
 Sequence ! {self(), get_next},
 receive
	 {Sequence, N} -> N
 end.

% Re-initialize counter to zero.
reset(Sequence) ->
 Sequence ! reset.

The spawn/1 primitive creates a
new process, returning its process iden-
tifier (pid) to the caller. An Erlang pro-
cess, like a thread, is an independently
scheduled sequential activity with its
own call stack, but like an operating-
system process, it shares no data with
other processes—processes interact
only by sending messages to each
other. The self/0 primitive returns
the pid of the caller. A pid is used to
address messages to a process. Here
the pid is also the data abstraction—a
sequence is just the pid of a server pro-
cess that understands our sequence-
specific messaging protocol.

The new process starts executing
the function specified in spawn/1
and will terminate when that function
returns. Long-lived processes there-
fore avoid premature returns, often
by executing a loop function. Tail-call
optimization ensures that the stack
does not grow in functions such as
sequence_loop/1. The state of the
sequence process is carried in the ar-
gument to this eternal call.

Messages are sent with the syntax
pid ! message. A message can be any

ing for a response message. Here, the
get_next/1 call request message is a
two-element tuple: the client’s own pid
followed by the atom get_next. The
client sends its own pid to let the serv-
er know where to send the response,
and the get_next atom will let us
differentiate this protocol operation
from others. The server responds with
its own two-element tuple: the server
pid followed by the retrieved counter
value. Including the server pid lets the
client distinguish this response from
other messages that might be sitting it
its mailbox.

A cast is a request to a server that
needs no response, so the protocol is
just a request message. The reset/1
cast has a request message of just a
bare atom.

Abstracting Protocols
Brief as it is, the Erlang implementa-
tion of sequences is much longer and
less clear than the original Java ver-
sion. Much of the code is not particu-
lar to sequences, however, so it should

Erlang value, and it is sent atomically
and immutably. The message is sent to
the receiving process’s mailbox, and
the sender continues to execute—it
does not wait for the receiving process
to retrieve the message.

A process uses the receive expres-
sion to extract messages from its mail-
box. It specifies a set of patterns and
associated handler code and scans
the mailbox looking for the first mes-
sage that matches any of the patterns,
blocking if no such message is found.
This is the only blocking primitive in
Erlang. Like the patterns in function
clauses, the patterns in receive op-
tions match structures and bind new
variables. If a pattern uses a variable
that has already been bound to a value,
then matching the pattern requires a
match with that value, as in the value
for Sequence in the receive expression
in get_next/1.

The code here implements a simple
client-server protocol. In a call, the cli-
ent process sends a request message
to the server process and blocks wait-

Figure 2: server.erl.

-module(server).
-export([start/1, loop/2, call/2, cast/2]).
% Client-server messaging framework.
%
% The callback module implements the following callbacks:
% init() -> InitialState
% handle_call(Params, State) -> {Reply, NewState}
% handle_cast(Params, State) -> NewState

% Return the pid of a new server with the given callback module.
start(Module) ->
	 spawn(fun() -> loop(Module, Module:init()) end).

loop(Module, State) ->
	 receive
		 {call, {Client, Id}, Params} ->
			 {Reply, NewState} = Module:handle_call(Params, State),
			 Client ! {Id, Reply},
			 loop(Module, NewState);
		 {cast, Params} ->
			 NewState = Module:handle_cast(Params, State),
			 loop(Module, NewState)
	 end.

% Client-side function to call the server and return its reply.
call(Server, Params) ->
	 Id = make_ref(),
	 Server ! {call, {self(), Id}, Params},
	 receive
		 {Id, Reply} -> Reply
	 end.

% Like call, but no reply is returned.
cast(Server, Params) ->
	 Server ! {cast, Params}.

52 communications of the acm | march 2009 | vol. 52 | no. 3

practice

use it instead of the server pid to dis-
tinguish the reply.

As shown in Figure 2, the server
module contains the same structure
as the sequence1 module with the se-
quence-specific pieces removed. The
syntax Module:function calls func-
tion in a module specified at runtime
by an atom. Unique identifiers are gen-
erated by the make_ref/0 primitive.
It returns a new reference, which is a
value guaranteed to be distinct from
all other values in the program.

The server side of sequences is now
boiled down to three one-line func-
tions, as shown in Figure 3. Moreover,
they are purely sequential, functional,
and deterministic without message
passing. This makes writing, analyz-
ing, testing, and debugging much eas-
ier, so some sample unit tests are
thrown in.

Standard Behaviours
Erlang’s abstraction of a protocol pat-
tern is called a behaviour. (We use the
Commonwealth spelling as used in
Erlang’s source-code annotations.)
A behaviour consists of a library that
implements a common pattern of
communication, plus the expected sig-
natures of the callback functions. An
instance of a behaviour needs some
interface code wrapping the calls to
the library plus the implementation
callbacks, all largely free of message
passing.

Such segregation of code improves
robustness. When the callback func-
tions avoid message-passing primi-
tives, they become deterministic and
frequently exhibit simple static types.
By contrast, the behaviour library code
is nondeterministic and challenges
static type analysis. The behaviours are
usually well tested and part of the stan-
dard library, however, leaving the ap-
plication programmer the easier task
of just coding the callbacks.

Callbacks have a purely functional
interface. Information about any trig-
gering message and current behaviour
state are given as arguments, and out-
going messages and a new state are
given in the return value. The process’s
“eternally looping function” is imple-
mented in the library. This allows for
simple unit testing of the callback
functions.

Large Erlang applications make

be possible to extract the message-
passing machinery common to all
client-server protocols into a common
library.

Since we want to make the proto-
col independent of the specifics of se-
quences, we need to change it slightly.

First, we distinguish client call re-
quests from cast requests by tagging
each sort of request message explicitly.
Second, we strengthen the association
of the request and response by tagging
them with a per-call unique value.
Armed with such a unique value, we

Figure 3: sequence2.erl (callback implementation).

-module(sequence2).
-export([make_sequence/0, get_next/1, reset/1]).
-export([init/0, handle_call/2, handle_cast/2]).
-export([test/0]).

% API
make_sequence() 		 -> server:start(sequence2).
get_next(Sequence) 	 -> server:call(Sequence, get_next).
reset(Sequence) 		 -> server:cast(Sequence, reset).

% Server callbacks
init() 			 -> 0.
handle_call(get_next, N) 	-> {N, N + 1}.
handle_cast(reset, _) 	 -> 0.

% Unit test: Return ‘ok’ or throw an exception.
test() ->
	 0 = init(),
	 {6, 7} = handle_call(get_next, 6),
	 0 = handle_cast(reset, 101),
	 ok.

Figure 4: Parallel call implementations.

A	
% Make a set of server calls in parallel and return a
% list of their corresponding results.
% Calls is a list of {Server, Params} tuples.
multicall1(Calls) ->
	 Ids = [send_call(Call) || Call <- Calls],
	 collect_replies(Ids).

% Send a server call request message.
send_call({Server, Params}) ->
	 Id = make_ref(),
	 Server ! {call, {self(), Id}, Params},
	 Id.

% Collect all replies in order.
collect_replies(Ids) ->
	 [receive {Id, Result} -> Result end || Id <- Ids].

B	
multicall2(Calls) ->
	 Parent = self(),
	 Pids = [worker(Parent, Call) || Call <- Calls],
	 wait_all(Pids).

worker(Parent, {Server, Params}) ->
	 spawn(fun() -> % create a worker process
		 Result = server:call(Server, Params),
		 Parent ! {self(), Result}
	 end).

wait_all(Pids) ->
	 [receive {Pid, Result} -> Result end || Pid <- Pids].

practice

march 2009 | vol. 52 | no. 3 | communications of the acm 53

heavy use of behaviours—direct use of
the raw message-sending or receiving
expressions is uncommon. In the
Ericsson AXD301 telecom switch—
the largest known Erlang project,
with more than a million lines of
code—nearly all the application
code uses standard behaviours, a
majority of which are the server be-
haviour.1

Erlang’s OTP standard library pro-
vides three main behaviours:

Generic server (gen_server). The
generic server is the most common
behaviour. It abstracts the standard
request-response message pattern
used in client-server or remote pro-
cedure call protocols in distributed
computing. It provides sophisticated
functionality beyond our simple server
module:

Responses can be delayed by the ˲˲

server or delegated to another process.
Calls have optional timeouts. ˲˲

The client monitors the server so ˲˲

that it receives immediate notification
of a server failure instead of waiting for
a timeout.

Generic finite state machine (gen_
fsm). Many concurrent algorithms are
specified in terms of a finite state ma-
chine model. The OTP library provides
a convenient behaviour for this pattern.
The message protocol that it obeys
provides for clients to signal events to
the state machine, possibly waiting for
a synchronous reply. The application-
specific callbacks handle these events,
receiving the current state and passing
a new state as a return value.

Generic event handler (gen_event).
An event manager is a process that re-
ceives events as incoming messages,
then dispatches those events to an
arbitrary number of event handlers,
each of which has its own module of
callback functions and its own private
state. Handlers can be dynamically
added, changed, and deleted. Event
handlers run application code for
events, frequently selecting a subset
to take action upon and ignoring the
rest. This behaviour naturally models
logging, monitoring, and “pubsub”
systems. The OTP library provides off-
the-shelf event handlers for spooling
events to files or to a remote process
or host.

The behaviour libraries provide
functionality for dynamic debugging

of a running program. They can be
requested to display the current be-
haviour state, produce traces of mes-
sages received and sent, and provide
statistics. Having this functionality au-
tomatically available to all applications
gives Erlang programmers a profound
advantage in delivering production-
quality systems.

Worker Processes
Erlang applications can implement
most of their functionality using
long-lived processes that naturally fit
a standard behaviour. Many applica-
tions, however, also need to create
concurrent activities on the fly, often
following a more ad-hoc protocol too
unusual or trivial to be captured in the
standard libraries.

Suppose we have a client that wants
to make multiple server calls in paral-
lel. One approach is to send the server
protocol messages directly, shown
in Figure 4A. The client sends well-
formed server call messages to all serv-
ers, then collects their replies. The
replies may arrive in the inbox in any
order, but collect_replies/1 will
gather them in the order of the origi-
nal list. The client may block waiting
for the next reply even though other re-
plies may be waiting. This doesn’t slow
things down, however, since the speed
of the overall operation is determined
by the slowest call.

To reimplement the protocol, we
had to break the abstraction that the
server behaviour offered. While this
was simple for our toy example, the
production-quality generic server in
the Erlang standard library is far more
involved. The setup for monitoring the
server processes and the calculations
for timeout management would make
this code run on for several pages, and
it would need to be rewritten if new
features were added to the standard
library.

Instead, we can reuse the exist-
ing behaviour code entirely by using
worker processes—short-lived, special-
purpose processes that don’t execute a
standard behaviour. Using worker pro-
cesses, this code becomes that shown
in Figure 4B.

We spawn a new worker process for
each call. Each makes the requested
call and then replies to the parent,
using its own pid as a tag. The parent

Large Erlang
applications make
heavy use of
behaviours—direct
use of the raw
message-sending
or receiving
expressions is
uncommon.

54 communications of the acm | march 2009 | vol. 52 | no. 3

practice

Failure and Supervision
Erlang is a safe language—all run-
time faults, such as division by zero,
an out-of-range index, or sending a
message to a process that has termi-
nated, result in clearly defined behav-
ior, usually an exception. Application
code can install exception handlers
to contain and recover from expect-
ed faults, but an uncaught exception
means that the process cannot con-
tinue to run. Such a process is said to
have failed.

Sometimes a process can get stuck
in an infinite loop instead of failing
overtly. We can guard against stuck
processes with internal watchdog
processes. These watchdogs make pe-
riodic calls to various corners of the
running application, ideally causing
a chain of events that cover all long-
lived processes, and fail if they don’t
receive a response within a generous
but finite timeout. Process failure is
the uniform way of detecting errors in
Erlang.

Erlang’s error-handling philoso-
phy stems from the observation that
any robust cluster of hardware must
consist of at least two machines, one
of which can react to the failure of the
other and take steps toward recovery.2
If the recovery mechanism were on the
broken machine, it would be broken,
too. The recovery mechanism must be
outside the range of the failure. In Er-
lang, the process is not only the unit of
concurrency, but also the range of fail-
ure. Since processes share no state, a
fatal error in a process makes its state
unavailable but won’t corrupt the state
of other processes.

Erlang provides two primitives for
one process to notice the failure of
another. Establishing monitoring of
another process creates a one-way no-
tification of failure, and linking two
processes establishes mutual notifica-
tion. Monitoring is used during tem-
porary relationships, such as a client-
server call, and mutual linking is used
for more permanent relationships. By
default, when a fault notification is
delivered to a linked process, it causes
the receiver to fail as well, but a pro-
cess-local flag can be set to turn fault
notification into an ordinary message
that can be handled by a receive ex-
pression.

In general application program-

then receives each reply in turn, gath-
ering them in a list. The client-side
code for a server call is reused entirely
as is.

By using worker processes, libraries
are free to use receive expressions as
needed without worrying about block-
ing their caller. If the caller does not
wish to block, it is always free to spawn
a worker.

Dangers of Concurrency
Though it eliminates shared state,
Erlang is not immune to races. The
server behaviour allows its application
code to execute as a critical section ac-
cessing protected data, but it’s always
possible to draw the lines of this pro-
tection incorrectly.

Figure 5, for example, illustrates
that if we had implemented sequenc-
es with raw primitives to read and
write the counter, we would be just as
vulnerable to races as a shared-state
implementation that forgot to take
locks.

This code is insidious as it will pass
simple unit tests and can perform reli-
ably in the field for a long time before
it silently encounters an error. Both
the client-side wrappers and server-
side call-backs, however, look quite
different from those of the correct
implementation. By contrast, an in-
correct shared-state program would
look nearly identical to a correct one. It
takes a trained eye to inspect a shared-
state program and notice the missing

lock requests.
All standard errors in concurrent

programming have their equivalents in
Erlang: races, deadlock, livelock, star-
vation, and so on. Even with the help
Erlang provides, concurrent program-
ming is far from easy, and the nonde-
terminism of concurrency means that
it is always difficult to know when the
last bug has been removed.

Testing helps eliminate most gross
errors—to the extent that the test cas-
es model the behaviour encountered
in the field. Injecting timing jitter and
allowing long burn-in times will help
the coverage; the combinatorial explo-
sion of possible event orderings in a
concurrent system means that no non-
trivial application can be tested for all
possible cases.

When reasonable efforts at testing
reach their end, the remaining bugs
are usually heisenbugs,5 which occur
nondeterministically but rarely. They
can be seen only when some unusual
timing pattern emerges in execution.
They are the bane of debugging since
they are difficult to reproduce, but this
curse is also a blessing in disguise. If
a heisenbug is difficult to reproduce,
then if you rerun the computation, you
might not see the bug. This suggests
that flaws in concurrent programs,
while unavoidable, can have their im-
pact lessened with an automatic retry
mechanism—as long as the impact of
the initial bug event can be detected
and constrained.

Figure 5: badsequence.erl.

% BAD - race-prone implementation - do not use - BAD
-module(badsequence).
-export([make_sequence/0, get_next/1, reset/1]).
-export([init/0, handle_call/2, handle_cast/2]).

% API
make_sequence() -> server:start(badsequence).
get_next(Sequence) ->

N = read(Sequence),
write(Sequence, N + 1), % BAD: race!
N.

reset(Sequence) -> write(Sequence, 0).
read(Sequence) -> server:call (Sequence, read).
write(Sequence, N) ->
	 server:cast(Sequence, {write, N}).

% Server callbacks
init()				 -> 0.
handle_call(read, N)		 -> {N, N}.
handle_cast({write, N}, _)	 -> N.

practice

march 2009 | vol. 52 | no. 3 | communications of the acm 55

ming, robust server deployments in-
clude an external “nanny” that will
monitor the running operating system
process and restart it if it fails. The re-
started process reinitializes itself by
reading its persistent state from disk
and then resumes running. Any pend-
ing operations and volatile state will
be lost, but assuming that the persis-
tent state isn’t irreparably corrupted,
the service can resume.

The Erlang version of a nanny is
the supervisor behaviour. A supervi-
sor process spawns a set of child pro-
cesses and links to them so it will be
informed if they fail. A supervisor uses
an ini-tialization callback to specify
a strategy and a list of child specifi-
cations. A child specification gives
instructions on how to launch a new
child. The strategy tells the supervisor
what to do if one of its children dies:
restart that child, restart all children,
or several other possibilities. If the
child died from a persistent condition
rather than a bad command or a rare
heisenbug, then the restarted child
will just fail again. To avoid looping
forever, the supervisor’s strategy also
gives a maximum rate of restarting. If
restarts exceed this rate, the supervisor
itself will fail.

Children can be normal behaviour-
running processes, or they can be su-
pervisors themselves, giving rise to a
tree structure of supervision. If a re-
start fails to clear an error, then it will
trigger a supervisor subtree failure, re-
sulting in a restart with an even wider
scope. At the root of the supervision
tree, an application can choose the
overall strategy, such as retrying forev-
er, quitting, or possibly restarting the
Erlang virtual machine.

Since linkage is bidirectional, a
failing server will notify or fail the
children under it. Ephemeral worker
processes are usually spawned linked
to their long-lived parent. If the parent
fails, the workers automatically fail,
too. This linking prevents uncollected
workers from accumulating in the sys-
tem. In a properly written Erlang ap-
plication, all processes are linked into
the supervision tree so that a top-level
supervision restart can clean up all
running processes.

In this way, a concurrent Erlang
application vulnerable to occasional
deadlocks, starvations, or infinite

loops can still work robustly in the
field unattended.

Implementation, Performance,
and Scalability
Erlang’s concurrency is built upon the
simple primitives of process spawn-
ing and message passing, and its
programming style is built on the as-
sumption that these primitives have
a low overhead. The number of pro-
cesses must scale as well—imagine
how constrained object-oriented pro-
gramming would be if there could be
no more than a few hundred objects in
the system.

For Erlang to be portable, it cannot
assume that its host operating system
has fast interprocess communication
and context switching or allows a truly
scalable number of schedulable activi-
ties in the kernel. Therefore, the Erlang
emulator (virtual machine) takes care
of scheduling, memory management,
and message passing at the user level.

An Erlang instance is a single op-
erating-system process with multiple
operating-system threads executing in
it, possibly scheduled across multiple
processors or cores. These threads
execute a user-level scheduler to run
Erlang processes. A scheduled pro-
cess will run until it blocks or until its
time slice runs out. Since the process
is running Erlang code, the emulator
can arrange for the scheduling slice to
end at a time when the process context
is minimal, minimizing the context
switch time.

Each process has a small, dedi-
cated memory area for its heap and
stack. A two-generation copying col-
lector reclaims storage, and the mem-
ory area may grow over time. The size
starts small—a few hundred machine
words—but can grow to gigabytes. The
Erlang process stack is separate from
the C runtime stack in the emulator
and has no minimal size or required
granularity. This lets processes be
lightweight.

By default, the Erlang emulator
interprets the intermediate code pro-
duced by the compiler. Many sub-
stantial Erlang programs can run
sufficiently fast without using the na-
tive-code compiler. This is because Er-
lang is a high-level language and deals
with large, abstract objects. When run-
ning, even the interpreter spends most

With the increasing
importance
of concurrent
programming,
Erlang is seeing
growing interest
and adoption.
Indeed, Erlang
is branded as a
“concurrency-
oriented” language.

56 communications of the acm | march 2009 | vol. 52 | no. 3

practice

active development. Many high-quali-
ty libraries and applications are freely
available for:

Network services˲˲

GUIs for 3D modeling˲˲

Batch typesetting˲˲

Telecom protocol stacks˲˲

Electronic payment systems ˲˲

HTML and XML generation and ˲˲

parsing
Database implementations and ˲˲

ODBC (Open Database Connectivity)
bindings

Several companies offer commer-
cial products and services implement-
ed in Erlang for telecom, electronic
payment systems, and social network-
ing chat. Erlang-based Web servers are
notable for their high performance
and scalability.3

Concurrent programming will nev-
er be easy, but with Erlang, developers
have a chance to use a language built
from the ground up for the task and
with incredible resilience engineered
in its runtime system and standard li-
braries.

The standard Erlang implementa-
tion and its documentation, ported
to Unix and Microsoft Windows plat-
forms, is open source and available for
free download from http://erlang.org.
You can find a community forum at
http://trapexit.org, which also mirrors
several mailing lists. 	

The author would like to thank Romain Lenglet and JJ
Furman for their feedback.

References
1.	A rmstrong, J. Making reliable distributed systems in

the presence of software errors. Ph.D. thesis (2003).
Swedish Institute of Computer Science; www.erlang.
org/download/armstrong_thesis_2003.pdf.

2.	A rmstrong, J. Programming Erlang: Software for a
Concurrent World. The Pragmatic Bookshelf, Raleigh,
NC, 2007.

3.	 Brown, B. Application server performance testing,
includes Django, ErlyWeb, Rails, and others; http://
berlinbrowndev.blogspot.com/2008/08/application-
server-benchmarks-including.html.

4.	L ystig Fritchie, S., Larson, J., Christenson, N., Jones,
D., and Ohman, L. Sendmail meets Erlang: Experiences
using Erlang for email applications. In Proceedings of
the Erlang User’s Conference, 2000; www.erlang.se/
euc/00/euc00-sendmail.ps.

5.	S teele, G.L. and Raymond, E.S. The New Hacker’s
Dictionary, 3rd edition. MIT Press, Cambridge, MA,
1996.

Jim Larson (jimlarson@google.com) is a software
engineer at Google, implementing large-scale distributed
storage systems. He has worked with Erlang for
commercial products since 1999 and is the architect
of the replication engine of the Amazon SimpleDB Web
service at Amazon.com.

A previous version of this article appeared in the
September 2008 issue of ACM Queue.

2009 © ACM 0001-0782/09/0300 $5.00

of its time executing within the highly
tuned runtime system written in C.
For example, when copying bulk data
between network sockets, interpreted
Erlang performs on par with a custom
C program to do the same task.4

The significant test of the imple-
mentation’s efficiency is the practi-
cality of the worker process idiom,
as demonstrated by the multicall2
code shown earlier. Spawning worker
processes would seem to be much less
efficient than sending messages di-
rectly. Not only does the parent have to
spawn and destroy a process, but also
the worker needs extra message hops
to return the results. In most program-
ming environments, these overheads
would be prohibitive, but in Erlang,
the concurrency primitives (includ-
ing process spawning) are lightweight
enough that the overhead is usually
negligible.

Not only do worker processes have
negligible overhead, but they also in-
crease efficiency in many cases. When
a process exits, all of its memory can be
immediately reclaimed. A short-lived
process might not even need a collec-
tion cycle. Per-process heaps also elim-
inate global collection pauses, achiev-
ing soft real-time levels of latency.
For this reason, Erlang programmers
avoid reusable pools of processes and
instead create new processes when
needed and discard them afterward.

Since values in Erlang are immu-
table, it’s up to the implementation
whether the message is copied when
sent or whether it is sent by reference.
Copying would seem to be the slower
option in all situations, but sending
messages by reference requires coordi-
nation of garbage collection between
processes: either a shared heap space
or maintenance of interregion links.
For many applications, the overhead
of copying is small compared with the
benefit from short collection times
and fast reclamation of space from
ephemeral processes. The low penalty
for copying is driven by an important
exception in send-by-copy: raw binary
data is always sent by reference, which
doesn’t complicate garbage collection
since the raw binary data cannot con-
tain pointers to other structures.

The Erlang emulator can create a
new Erlang process in less than a mi-
crosecond and run millions of process-

es simultaneously. Each process takes
less than a kilobyte of space. Message
passing and context switching take
hundreds of nanoseconds.

Because of its performance charac-
teristics and language and library sup-
port, Erlang is particularly good for:

Irregular concurrency—applica-˲˲

tions that need to derive parallelism
from disparate concurrent tasks

Network servers ˲˲

Distributed systems ˲˲

Parallel databases ˲˲

GUIs and other interactive pro-˲˲

grams
Monitoring, control, and testing ˲˲

tools
So when is Erlang not an appropri-

ate programming language, for effi-
ciency or other reasons? Erlang tends
not to be good for:

Concurrency more appropriate to ˲˲

synchronized parallel execution
Floating-point-intensive code˲˲

Code requiring nonportable in-˲˲

structions
Code requiring an aggressive ˲˲

compiler (Erlang entries in language
benchmark shoot-outs are unimpres-
sive—except for process spawning and
message passing)

Projects to implement libraries ˲˲

that must run under other execution
environments, such as JVM (Java Vir-
tual Machine) or CLR (Common Lan-
guage Runtime)

Projects that require the use of ex-˲˲

tensive libraries written in other lan-
guages

Erlang can still form part of a larg-
er solution in combination with other
languages, however. At a minimum,
Erlang programs can speak text or bi-
nary protocols over standard interpro-
cess communication mechanisms. In
addition, Erlang provides a C library
that other applications can link with
that will allow them to send and re-
ceive Erlang messages and be moni-
tored by an Erlang controlling pro-
gram, appearing to it as just another
(Erlang) process.

Conclusion
With the increasing importance of
concurrent programming, Erlang is
seeing growing interest and adop-
tion. Indeed, Erlang is branded as a
“concurrency-oriented” language. The
standard Erlang distribution is under

http://erlang.org
http://trapexit.org
http://www.erlang.org/download/armstrong_thesis_2003.pdf
http://berlinbrowndev.blogspot.com/2008/08/application-server-benchmarks-including.html
http://berlinbrowndev.blogspot.com/2008/08/application-server-benchmarks-including.html
http://www.erlang.se/euc/00/euc00-sendmail.ps
http://www.erlang.se/euc/00/euc00-sendmail.ps
mailto:jimlarson@google.com
http://Amazon.com
http://www.erlang.org/download/armstrong_thesis_2003.pdf
http://berlinbrowndev.blogspot.com/2008/08/application-server-benchmarks-including.html

Newly Expanded
Online Books
& Courses Programs!ACM’s

Helping Members Meet Today’s Career Challenges

introducing...

3,000+ Online Courses from SkillSoft

The ACM Online Course Collection features full access to 3,000+ online courses from SkillSoft, a
leading provider of e-learning solutions. This new collection of courses offers a
host of valuable resources that will help to maximize your learning experience.
Available on a wide range of information technology and business subjects,
these courses are open to ACM Professional and Student Members.

SkillSoft courses offer a number of valuable features, including:
• Job Aids, tools and forms that complement and support course content
• Skillbriefs, condensed summaries of the instructional content of a course topic
• Mentoring via email, online chats, threaded discussions - 24/7
• Exercises, offering a thorough interactive practice session appropriate to

the learning points covered previously in the course
• Downloadable content for easy and convenient access
• Downloadable Certificate of Completion

“The course Certificate
of Completion is
great to attach to
job applications!”

ACM Professional Member

600 Online Books from Safari 500 Online Books from Books24x7

The ACM Online Books Collection includes
full access to 600 online books from Safari®
Books Online, featuring leading publishers
including O’Reilly. Safari puts a complete IT
and business e-reference library right on
your desktop. Available to ACM Professional
Members, Safari will help you zero in on
exactly the information you need, right when
you need it.

All Professional and Student Members also
have full access to 500 online books from
Books24x7®, in ACM’s rotating collection of
complete unabridged books on the hottest
computing topics. This virtual library puts
information at your fingertips. Search, book-
mark, or read cover-to-cover. Your bookshelf
allows for quick retrieval and bookmarks let
you easily return to specific places in a book.

pd.acm.org
www.acm.org/join

CACM_ACM_Books_and_Courses_4C_full-page:Layout 1 1/27/09 4:43 PM Page 1

http://pd.acm.org
http://www.acm.org/join

58 communications of the acm | march 2009 | vol. 52 | no. 3

contributed articles

The field of human-computer interaction (HCI)
came into being more than 25 years ago with the
mission of understanding the relationship between
humans and computers, often with an eye toward
improving the technology’s design. But that
relationship has since been altered so radically—
changes in the sociotechnical landscape have been
so great—that many in the community of HCI
researchers and practitioners are questioning where
the field is headed. Computer systems now intrude
on our lives as well as disappear into the world
around us, they monitor as well as guide us, and they
coerce as well as aid us. Thus there are debates about
such fundamentals as what HCI’s goals should be,
how it should do its work, and whether its methods
remain relevant.

doi:10.1145/1467247.1467265

HCI experts must broaden the field’s scope
and adopt new methods to be useful in
21st-century sociotechnical environments.

by Abigail Sellen, Yvonne Rogers,
Richard Harper, and Tom Rodden

Reflecting
Human
Values in the
Digital Age

The complexity of technologies that HCI now
encounters can be attributed to the major
transformations that have redefined our
relationship with technology. This article
explores five such transformations, also
reflected in this image. Can you find them?

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 B
r

y
a

n
 C

h
r

i
s

t
i

e
 D

e
s

i
g

n

60 communications of the acm | march 2009 | vol. 52 | no. 3

contributed articles

that link computers. Researchers
started asking how users, with the aid
of computers, might interact with each
other.13 Researchers with backgrounds
in more socially oriented sciences,
such as sociology and anthropology,
began to engage with HCI. These dis-
ciplines emphasized not only the ef-
fects of computing on groups of users
but also how those very same groups
appropriated computers, interpreted
them, and socially and emotionally ex-
perienced their relationships with the
technology. Several of the approaches
of these disciplines were added to the
mix with ethnographic approaches be-
ing especially visible.

The practical result of these devel-
opments is that HCI has become an ac-
ademic discipline in its own right, with
conferences dedicated to the subject as
well as departments and courses offer-
ing HCI as a speciality, and it has also
become an integral part of the design
processes—typically, user-centered—
for nearly all technology companies.14
Moreover, an understanding of HCI
(if not its details or techniques) has
seeped into the broader conscious-
ness, as the common use of terms such
as “user-friendliness” and “user expe-
rience” in the news media and everyday
conversation attest. Such awareness,
among practitioners and users alike,
has encompassed computers not only in
the conventional sense of, say, desktop
systems but also as they are manifested
in cars, airplanes, mobile phones, and
a broad array of other products.

In parallel, important changes in
research objectives have also taken
place within the field. The HCI of to-
day is exploring diverse new areas be-
yond the workplace, including the role
of technology in home life and educa-
tion and even delving into such diverse
areas as play, spirituality, and sexual-
ity. HCI is now more multidisciplinary
than ever, with a significant percent-
age of the community coming from
the design world. This shift has caused
the field’s practitioners to think more
broadly about their design goals, tak-
ing into account not just how technol-
ogy might be functional or useful but
also how it might provoke, engage, dis-
turb, or delight.

Transformations in Interaction
Despite the progress, gradual but now

In March 2007, academic and in-
dustrial researchers from many dif-
ferent countries and diverse back-
grounds, including computing, social
science, and design, met in Seville,
Spain, for a two-day workshop entitled
“HCI in 2020.” The event, sponsored
by Microsoft Research Cambridge,
U.K., was a chance to air views, reflect,
and discuss the future of HCI as well
as issues of central importance to the
field. Needless to say, participants ex-
pressed a wide range of opinions, but
they were virtually unanimous that the
field of HCI must change its scope and
methods if it is to remain relevant in
the 21st century.

While the researchers agreed as
well on the need to keep human val-
ues at HCI’s core, they highlighted the
fact that our changing relationship
with computers means that determin-
ing what these values might be and
coming to understand them require
greater finesse than ever before. If in
the past HCI was in the business of
understanding how people could be-
come more efficient through the use of
computers, the challenge confronting
the field now is to deal with issues that
are much more complex and subtle.
Here we summarize these issues, bas-
ing our discussion on the workshop’s
report Being Human: Human-Computer
Interaction in the Year 2020.1

A Brief Look Back
When the field of HCI was in its infan-
cy, a common activity was to model a
user’s interaction with a desktop com-
puter so that the interface between per-
son and machine could be optimized.
HCI was mainly a scientific and engi-
neering endeavor, using techniques
derived from cognitive psychology and
human-factors engineering.8 What
went on “inside the head” of a user was
specified by observing behavior under
controlled conditions, inferring what
kinds of perceptual, cognitive, and
motor processes were involved, and
developing pertinent theories.2 Meth-
ods for optimizing “usability” were
devised, and iterative testing with real
users was seen as prerequisite to intro-
ducing any new software or hardware
product.

During the 1990s, the objectives of
HCI began changing along with the
growth of communication networks

Values are not
something that can
be catalogued like
books in a library
but are bound
to each other in
complex weaves
that, when tugged
in one place, pull
values elsewhere
out of shape.

contributed articles

march 2009 | vol. 52 | no. 3 | communications of the acm 61

very visible transformations in our re-
lationship to computers are leading
many in HCI—including participants
in the Seville workshop—to urge a
radical rethinking of the underpin-
nings of HCI: its mission, goals, and
philosophical approach, both for re-
search and practice. In essence, the
claim is that the interaction between
values and technology needs to be
much more carefully navigated than
before. This is not a simple choice be-
tween designing for what is desirable
as opposed to what is reprehensible;
HCI specialists also need to be as-
tutely aware of how one set of design
choices might highlight certain val-
ues at the expense of others. In other
words, values are not something that
can be catalogued like books in a li-
brary but are bound to each other in
complex weaves that, when tugged in
one place, pull values elsewhere out of
shape. Further, now more than ever,
the diversity, scope, and complexity of
the technologies that HCI deals with
make tradeoffs between values a co-
nundrum, not a platitude.

The reasons for this new complex-
ity can be attributed in large part to
the major transformations that have
redefined our relationship with tech-
nology. Here we characterize five such
transformations, each of which contin-
ues to alter the ways in which humans
coexist with computers, interact with
them, decide what problems to focus
on, and pursue solutions.

The first transformation—the end of
interface stability—has to do with how
computers can no longer be defined
by reference to a single interface but
rather by many different interfaces or,
alternatively, none at all. For example,

structure. But what is different about
this transformation is that computa-
tional dependence is more complex,
fraught with more snag points, and
vulnerable to more forms of attack.
It is not simply that we are increas-
ingly using computers in routine but
selected activities, such as to write
reports or do our tax returns. Com-
puting now underpins almost every
aspect of our lives, from shopping to
travel, from work to medicine. At the
same time, computers are becoming
ever more sophisticated and autono-
mous. As a result, not only is our reli-
ance on them growing but computers
themselves are increasingly reliant on
each other. The extent of our need for
computers—characterized by a wide
diversity of technologies, an “always-
on” infrastructure, and an intercon-
nected web of systems—creates new
concerns, new design opportunities,
and new research topics that special-
ists in HCI are obliged to address.

A third transformation is the growth
in hyperconnectivity, the influential
role of communication technologies
in tying us together in ways that were
unimaginable even as recently as 10
years ago. Despite the ability of such
new tools to improve efficiency and
save us time, such “digital presence”
increasingly consumes our time rather
than saves it. Communication devices
are now filling our lives up instead
of releasing us from burden. Yet hy-

some computers encroach ever more
deeply into our own personal spaces:
we carry them, wear them, and may
even have them implanted within us.
Other forms of computers are disap-
pearing into the richness and com-
plexity of the world around us. They
are increasingly embedded in everyday
objects; not just toys, home applianc-
es, and cars but also books, clothing,
and furniture. And they are increasing-
ly part of our environments, in public
spaces such as airports, garages, and
shopping malls as well as in the private
spaces of homes and offices. In each
case, where the interface might be, or
even if there is an interface at all, is an
open question. All of this has conse-
quences for HCI. After all, the assump-
tion that the locus of human-machine
interaction is obvious (and hence can
be observed, researched, and designed
for) has been at the core of HCI since
its foundation. If this is no longer the
case, then what an interface might be,
where it is, what it allows a user to do,
and even whether there is one at all are
now the issues that a future-looking
HCI must address.

A second transformation, the
growth of techno-dependency, refers
to the fact that changes in how we
live with and use technology have re-
sulted in our becoming ever more reli-
ant on it. There is of course no news
in saying that society and individuals
alike depend on a technological infra-

The growth in hyperconnectivity carries
with it both the benefits and the pressures of
being connected “anywhere, anytime.”

The “interface” between humans and computers is harder than ever to define.
We can interact with computers just by walking through a public space. T

o
p

:
p

h
o

t
o

g
r

a
p

h
 b

y
 I

a
n

 F
o

r
r

e
s

t
e

r
,

B
o

t
t

o
m

:
P

h
o

t
o

g
r

a
p

h
y

 c
o

u
r

t
e

s
y

 o
f

 p
h

i
l

i
p

s
 d

e
s

i
g

n

62 communications of the acm | march 2009 | vol. 52 | no. 3

contributed articles

and complex, these new questions deal
with how we design for the emerging
interaction paradigms.

For example, the end of interface
stability raises questions such as:

What interaction techniques are ˲˲

appropriate if devices embedded with-
in us have no explicit or recognizable
“interface?”

Should new interaction tech-˲˲

niques build on the skills we have al-
ready acquired for dealing with far less
complicated systems? And if so, how?

How do we enable people to un-˲˲

derstand the complexity of new eco-
systems of technologies, and the re-
sults of interacting with them, so as to
proceed most effectively?

Our growing dependency on com-
puting provokes a different set of ques-
tions, including:

How do we design computer sys-˲˲

tems to help people cope when infra-
structures break down or when devices
malfunction or are lost?

What will be the taken-for-granted ˲˲

technologies of the future and how
might they alter the skill sets of the
people for whom we must design?

With computers becoming in-˲˲

creasingly autonomous, seemingly
able to make their own decisions, what
will be an appropriate style of human-
computer interaction?

The end of the ephemeral leads us
to consider what is being recorded,
stored, and analyzed regarding our
beliefs, preferences, and everyday

perconnectivity also has the power to
mobilize us, as citizens and members
of global communities; we are now in
touch in more ways, and with more
people, than ever. What these changes
mean, how one designs for them, and
how one judges value within the myri-
ad forms of being in touch are all sub-
stantive issues for HCI.

Fourth, our heightened ability to
be in touch is equalled by a passion to
capture more and more information
about people’s lives and actions—
information that hitherto would have
been discarded or forgotten. This
trend is reflecting as well as driving
the massive gains in computer net-
works’ capacity. What it means to re-
cord, why we record, and what we do
with the collected material is chang-
ing hand-in-hand with the systems we
use to capture, manage, share, and ar-
chive these burgeoning stores of per-
sonal data. Each of us is developing an
ever-increasing “digital footprint”—
sometimes in ways we desire, some-
times not, and often in ways we know
little about—not only on a personal
level but also within the databases of
government agencies and other pub-
lic, as well as private, institutions. We
call this transformation the end of the
ephemeral.

Finally, the proliferation of new
kinds of digital tools (exemplified by
Web 2.0) and their appropriation by
people from all walks of life are en-
abling us to work, play, and express

ourselves in new ways. Computers
were once limited to the automation
and mechanization of routine aspects
of work or problem-solving. Now, more
than ever, they are also instruments
for creativity. This trend is manifested
not only in the explosion of computer
tools for play and self-expression; it
also propels more “serious” pursuits.
For example, computational tools
are enabling advances in the world
of science and medicine as they as-
sist researchers in discerning, analyz-
ing, and solving problems. This fifth
transformation—the growth of creative
engagement—underscores the fact
that flexible computer tools, which
can be assembled and appropriated
in new ways, allows us to see the world
in wholly new ways too. Computer-
enabled creativity means we can all
become our own producers, program-
mers, and publishers, whether in our
personal or professional lives, with po-
tentially far-reaching consequences.

New Questions for
a Future-Looking HCI
The five transformations are provok-
ing questions that HCI has not had to
address before, as they concern issues
that simply did not arise in a world
where using a computer essentially
meant a person sitting in front of a
desktop machine doing email, writing
a document, or working on a spread-
sheet. Because our relationship with
computing is now far more extensive

Questions of Broader Impact
Computers will soon be able to
monitor the bodily functions
of people without requiring
their awareness or necessarily
seeking their permission.

Who should have the right to
access and control information from
embedded devices? It is obvious that
such devices will alter the knowledge
that medical professionals will have
of a patient’s body, but less obvious
is how this will alter their perception
of the sanctity of the body. Similarly,
the output of such devices will alter
the conception that people have of
themselves, but in what ways and to
what end?

An increasingly complex
set of computing devices will

pervade our homes.
Who is responsible for

preventing breakdowns,
fixing problems, and ensuring
protection from unplanned and
undesirable consequences? Users
or householders will need to be
accountable to some extent, but
in other cases it may need to be the
service provider or government. In
addition, the identity of the user
can be difficult to ascertain when
venturing beyond the work setting.
At home, are children to be held
responsible for the consequences of
their interactions with technology?
Or does responsibility rest on a
child’s parents or legal custodians?

New technologies will

continue to shift the balance
of labor between people and
machines in ways that will
change our skills, strengthening
some and atrophying others.

The increased burdens taken
on by machines may come at a cost,
in terms of human skills, that is
not so easy to see or understand.
How do we examine and judge
what is the best balance? Human
factors engineers sought to answer
this question for the workplace,
but what about social systems or
households, for example? How does
one analyze the relationship between
loss of engagement in one area and
the opening up of opportunities
elsewhere if the activities involved

have to do with play rather than
work, expressiveness rather than
calculation, desire rather than labor?

Digital footprints are
expanding in ways that we
understand and are visible
but also in ways that we don’t
comprehend or see.

As an example, we place tagged
photos of ourselves on photo-sharing
sites only to find images of ourselves
already there. Should we have the
right to remove such pictures?
What about other kinds of stored
information about ourselves? Do we
want to have a copyright on our own
digital footprints? If this applies to
the digital world, what does it imply
for the physical world?

contributed articles

march 2009 | vol. 52 | no. 3 | communications of the acm 63

actions—and interactions. Questions
include:

What computer technologies are ˲˲

needed to effectively manage vast
quantities of personal data?

How do people learn about their ˲˲

digital footprint as well as the tools
that can help them interrogate the sys-
tems involved and analyze the data?

How do we design computer sys-˲˲

tems so as to give people feedback
about, and control over, information-
capturing processes?

How can the capture of informa-˲˲

tion and the need for privacy be bal-
anced through design?

Taken together, these and other
transformation-related questions
point to a very different kind of agen-
da, for researchers, practitioners, and
technology designers alike, from the
one that was appropriate for HCI in
the 1980s and 1990s.

But in addition to new questions
about interaction and design, many
of the issues these transformations
raise are much more far-reaching.
They include how society should re-
act to the changes that computer sys-
tems engender—how their impact will
be dealt with in different situations,
places, and cultures—and a range of
moral concerns. The sidebar here—
“Questions of Broader Impact”—pos-
its some of these changes, followed by
examples of the new kinds of ethical
questions they raise.

Human Values in
the Face of Change
Should the HCI community be ad-
dressing these more far-reaching kinds
of questions? And if so, is it equipped
to take on the task? The participants
at the Seville workshop agreed that it
should—and also that a quite different
mind-set is required.1

To begin with, researchers and
practitioners in HCI need to analyze
the wider set of issues that are now in
play. Central to the new agenda is rec-
ognizing what it means to be human
in a digital future. Human values, in
all their diversity, should be charted
in relation to how they are supported,
augmented, or constrained by techno-
logical developments. In many ways,
this is arguing for a strengthening
of what has always been important
to HCI: a focus on human-centered

design, keeping firmly in mind what
users—people—need and want from
technology. The trouble is that the val-
ues that systems often impinge on are
not the kind that can be easily inven-
toried. For instance, values related to
technologies that capture our digital
footprint may support our recollection
of the past and influence ideas of self-
hood just as much as they might im-
ply more measurable ideals related to
bureaucratic efficiency (for example,
keeping good records). Computation-
al technology affects both, though the
audit of one is considerably more dif-
ficult than that of the other.

It follows that the field of HCI
needs to extend its approach in order
to encompass the often complex and
diverse patterns of human interests
and aspirations. This means that the
methods of HCI, and the disciplines it
engages with, will have to change.

Important steps have already been
taken in this direction—in the concept
of “use,” for example. A growing num-
ber of researchers and practitioners
have begun explicating the nature of
use as a question of “experience” and
how it unfolds over time. This has
largely involved the definition of sub-
jective qualities. Analysts have used
concepts like pleasure, aesthetics, fun,
and flow, on the one hand, and bore-
dom, annoyance, and intrusiveness,
on the other, to describe the multifac-
eted nature of “felt” experiences.10 In
addition, HCI specialists such as Nor-
man11 have modeled how we respond
to technology at a visceral or emotion-
al level as well as at a deliberate and re-
flective one. They have also described
a more comprehensive life cycle of our
response to technology, from when it
first grabs our attention and entices
us, through our ongoing relationship
with that technology, and finally to
when it is eclipsed by other technolo-
gies and we abandon it. These ways
of conceptualizing users’ experience
have opened up many new possibili-
ties for research and design.

An emphasis on the individual and
the phenomenology of his or her ex-
periences is a natural consequence of
HCI’s traditional starting point: the
user. But it should be obvious that as
HCI moves forward and seeks to ad-
dress the changes cited previously,
the user, however well understood, is

Making judgments
about new computer
technologies,
and how they
will affect us and
the social fabric
of which we are
a part, is not
straightforward.
Research methods
must capture
how the use
of technologies
may unfold over
time and in
different situations.

64 communications of the acm | march 2009 | vol. 52 | no. 3

contributed articles

the audience does not especially want
to listen. As Peters notes in Speaking
into the Air,12 communications can be
about communion as well as about
information exchange. So design
tradeoffs need to be considered not
just in terms of our local interaction
with a technology but also in terms of
weighing the various moral, personal,
and institutional consequences.

A New Approach for HCI
We propose, then, that a broader ap-
proach is needed for tackling the new
kinds of questions that the transfor-
mations are raising. But what are the
practical implications of such an av-
enue? What does it mean for the field
of HCI?

Folding human values into the re-
search and design cycle. Our first sug-
gestion, described more fully in the
Seville workshop’s Being Human re-
port, is to extend the ways in which
user-centered research and design are
conducted by explicitly addressing hu-
man values.

A simplified but helpful model of
current practice is that projects typi-
cally follow an iterative cycle, com-
prised of four fundamental stages,
in which HCI specialists sequentially
study, design, build, and evaluate tech-
nology with users. The goal, for ex-
ample, may be to design a particular
computing technology in order to im-
prove upon a given experience. Initial
research involves finding out about
people’s current practices, for which
ethnographic studies, logging of user
interactions, and surveys are com-
monly employed. Based on the infor-
mation gathered, the specialists begin
to focus on the why, what, and how of
designing something better. To aid in
the process, usability and user-experi-
ence goals are identified and concep-
tual models developed. Prototypes are
built, evaluated, and iterated on until
it is determined whether the new tech-
nology can meet the user goals and
whether the new user experience is
judged by the target group to be valu-
able and enjoyable.

The Being Human report proposes
that a new agenda for HCI should
enhance this model by adding an-
other stage—an initial stage, called
understand—which aims to pinpoint
the human values that the technology

only part of a larger system—or set of
systems. Much effort also needs to be
expended on determining what is de-
sirable within a place, an institution,
or a society. Values such as personal
privacy, health, ownership, fair play,
and security are obvious candidates
for analysis, but so too are public, in-
stitutional, and civic identities. The
values treasured by the individual are
not always in harmony with those of
institutions or the society; nor, on the
other hand, are they always inimical to
one another. Here specialists in HCI
can learn a great deal from disciplines,
such as sociology and anthropology,
that focus on organizations and cul-
tures. The bottom line is that the field
of HCI needs to take into account the
broader context within which human
values are expressed.

Some HCI researchers are indeed
beginning to emphasize human values
as central to research and design,3, 5, 6, 13
while others have been attempting to
define a “third paradigm”9 that draws
on ideas of embodiment4 such as,
taking into account the interactions
and conversations that happen in our
physical and social worlds that provide
meaning. These alternative approach-
es stress that a deep understanding of
our interactions with technology can-
not be divorced from their contexts.
The meaning of technology is created
within specific situations, and not
just by individuals but often by many
stakeholders.

Yet making judgments about new
computer technologies, and how they
will affect us and the social fabric of
which we are a part, is not straightfor-
ward. Research methods must capture
how the use of technologies may un-
fold over time and in different situa-
tions. Consider that computers can
help connect us to others, but by the
same token it is important that they
sometimes allow us to be isolated.
Likewise, computers can support our
industriousness but at other times we
may want to “switch off.”

Moreover, such choices are not al-
ways ours alone to make; it is not sim-
ply users and their own particular aspi-
rations that are involved. For example,
workplaces reserve the right to sum-
mon their staff to be industrious. In
other words, sometimes communica-
tions are meant to be heard even when

In a world
where people’s
movements and
transactions can
be tracked—where
individuals trigger
nondeliberate
events just by
being in a certain
place, physical
or virtual, at a
certain time—
the notion of
interaction
itself is being
fundamentally
altered.

contributed articles

march 2009 | vol. 52 | no. 3 | communications of the acm 65

in question will be designed to serve.
Depending on the values of interest,
this analysis might need to draw on
disciplines as diverse as philosophy,
psychology, art, sociology, cultural
studies, and architecture, for example.
It might also mean collaborating with
the stakeholders behind the technolo-
gy to ascertain what kinds of enduring
values they expect their users to derive
from the product.

Consider, for example, that there
might be an interest in developing
new interactive tabletop applications
for working with digital photos. The
understand stage of the work would in-
volve clarifying what kinds of human
values might be made possible through
such interactions. Is it about support-
ing social connectivity around photo-
graphs? About play and creativity with
digital images? About archiving pho-
tographs and other materials in order
to preserve and honor family history?
Or is it about allowing individuals to
reflect on their personal past through
images? The list could go on.

Ultimately, this stage is about mak-
ing basic choices. It requires specifying
up front the kinds of users targeted,
and in which domains of activity, envi-
ronments, or cultures. In other words,
the stage involves choosing the values
being designed for. Its investigations
will then point to some fundamental
research that needs to be conducted,

provide guidance in the study, design,
build, and evaluate phases. Key here is
that the analysis should not just take
into account people’s interactions
with computer technology but also
with the environment, with everyday
objects, with other human beings, and
with the changing landscape that the
“new tech” brings to their world.

Forming new partnerships. Aside
from changes in methodology, HCI
also needs to develop partnerships
with other disciplines that tradition-
ally have not been part of the field. One
reason has been outlined here—that
different human values, as expressed
in diverse contexts, point to the need
for all kinds of expertise to deeply un-
derstand and creatively design for the
relationships between those values
and technology.

But other reasons have to do with
questions that are even more difficult
for the field of HCI alone to address. As
we have outlined, new computer tech-
nologies and the transformations they
are bringing about raise issues with
much broader societal, moral, and
ethical implications than HCI has had
to deal with in the past. It is not clear
that all of these concerns are within
the scope of the field, but certainly HCI
needs to be part of a wider interdisci-
plinary exchange. Technologies that
store personal data, that take on new
roles and responsibilities in our lives,
that alter our behavior in public plac-
es, and that track our movements and

relevant research that has already been
carried out, or some combination of
the two. The stage may equally well in-
volve experts from diverse disciplines,
such as social historians, game design-
ers, or specialists in the psychology of
memory, to cite but a few.

Further, the extended approach to
HCI is intended to enable human val-
ues to be folded into the mix not just at
the understand stage but the other four
stages as well. In the report, we give
fuller examples of how choices made
about the human values of interest can

The latest billboards (such as those by Quividi) judge the gender and approximate age of
people viewing them, with the potential of changing the nature of the advertisements they
display. Technologies like these highlight the increasingly hybrid forms that interaction
takes, as well as the scope of the “data” used to authenticate such interactions.

 The “History Tablecloth,” developed by the Interaction Research Studio (Goldsmith’s
College, University of London), is an example of embedding computing in everyday objects.
When items are left on the cloth it begins to glow beneath them, creating a slowly expanding
halo. When the items are removed, the glow gradually fades.

T
o

p
:

p
h

o
t

o
g

r
a

p
h

 c
o

u
r

t
e

s
y

 o
f

I

n
t

e
r

a
c

t
i

o
n

 R
e

s
e

a
r

c
h

 S
t

u
d

i
o

,
B

o
t

t
o

m
:

P
h

o
t

o
g

r
a

p
h

 b
y

 H
i

r
o

k
o

 M
a

s
u

i
k

e

66 communications of the acm | march 2009 | vol. 52 | no. 3

contributed articles

desires and concerns and who function
within a social, economic, and political
ecology. HCI must also be flexible, giv-
en that people’s forms of engagement
with technology and the nature of their
interactions with it will continually be
changing, often becoming more so-
phisticated, as they grow older. Under-
standing the new forms of interaction
between humans and computers will
involve asking questions about the
qualitative—process, potential, and
change—rather than quantifiable at-
tributes and capabilities alone. 	

References
1.	H arper, R., Rodden, T., Rogers, Y., and Sellen, A. Being

Human: Human-Computer Interaction in the Year
2020. Microsoft Research, Cambridge, U.K., 2008.
Copies available on request at bhuman@microsoft.
com.

2.	C ard, S., Moran, T., and Newell, A. The Psychology of
Human-Computer Interaction. Lawrence Erlbaum
Associates, Hillsdale, NJ, 1983.

3.	C ockton, G. A development framework for value-
centered design. In Proceedings of CHI ’05, Extended
Abstracts. ACM Press, NY, 2005.

4.	D ourish, P. Where the Action Is: The Foundations of
Embodied Interaction. MIT Press, Cambridge, MA,
2001.

5.	F riedman, B. and Kahn, P. H., Jr. Human values,
ethics, and design. Handbook on Human-Computer
Interaction, Jacko, J. and Sears, A., eds. Lawrence
Erlbaum Associates, Mahwah, NJ, 2003, 1177–1201.
(Revised second edition, 2008, 1241–1266.)

6.	F riedman, B., Kahn, P. H., Jr., and Borning, A.
Value-sensitive design and information systems.
Human-Computer Interaction in Management
Information Systems: Foundations. Zhang, P., and
Galletta, D., Eds. M.E. Sharpe, Armonk, NY, 2006,
348–372.

7.	G reenfield, A. Everyware: The Dawning Age of
Ubiquitous Computing. Preachpit Press, NY, 2006.

8.	G rudin, J. A moving target: The evolution of human-
computer interaction. Human-Computer Interaction
Handbook: Fundamentals, Evolving Technologies, and
Emerging Applications, Sears, A., and Jacko, J. Eds.
Lawrence Erlbaum Associates, Mahwah, NJ, 2007,
1–24.

9.	H arrison, S., Tatar, D., and Sengers, P. The three
paradigms of HCI. In Alt.chi. Proceedings of CHI ’07.
ACM Press, NY, 2006.

10.	M cCarthy, J. and Wright, P. Technology as Experience.
MIT Press, Cambridge, MA, 2004.

11.	N orman, D.A. Emotional Design: Why We Love (or
Hate) Everyday Things. Basic Books, NY, 2004.

12.	 Peters, J.D. Speaking into the Air: A History of the
Idea of Communication. University of Chicago Press,
Chicago/London, 1999.

13.	S proull, L. and Kiesler, S. Connections: New Ways of
Working in the Networked Organization. MIT Press,
Cambridge, MA, 1991.

14.	 Wendell, J., Wood, S., and Holtzblatt, K. Rapid
Contextual Design: A How-To Guide to Key Techniques
for User-Centered Design. Elsevier, 2004.

Abigail Sellen (asellen@microsoft.com) is Principal
Researcher, Microsoft Research Cambridge, Cambridge,
U.K.

Yvonne Rogers (yrogers@open.ac.uk) is a professor in the
Department of Computing, The Open University, Milton
Keynes, U.K.

Richard Harper (r.harper@microsoft.com) is Principal
Researcher, Microsoft Research Cambridge, Cambridge,
U.K.

Tom Rodden (tar@cs.nott.ac.uk) is a professor in the
School of Computer Science, University of Nottingham,
Nottingham, U.K.

© 2009 ACM 0001-0782/09/0300 $5.00

activities are as much sociological as
architectural and as much about poli-
tics as cognitive reasoning. Given the
scope and complexity of these issues,
HCI professionals need to engage in
discourses that may at one time have
seemed distant, if not entirely alien to
them.

Redefining the H, C, and I. It is with
these concerns in mind that the report
suggests redefining the three elements
of HCI—human, computer, and inter-
action.

The “H,” representing the “user,”
clearly needs revision, especially given
that people nowadays are as much con-
sumers, creators, and producers as they
are users of computers, and they often
employ computers just for the fun of
it. Conceptualizing the emotional as-
pects of experiencing technologies is
already starting to happen. Words like
magic, enchantment, pleasure, won-
der, excitement, and surprise have be-
gun to creep into the vocabulary when
researchers and designers discuss the
value of technology to people. But HCI
specialists also need to ask what these
terms really mean and how technolo-
gies may engender such experiences.
The aesthetics of computational prod-
ucts has also gained importance in
helping to define users’ relationships
to technology. Therefore new models
would provide a better understanding
of how the emotional aspects of com-
puting relate to human values.

A new conception of the “C” in HCI
is also needed so that we may better
understand how the embedding of
digital technologies in everyday ob-
jects, in the built structures around
us, and in the natural landscape is
transforming our surrounding envi-
ronment into a physical-digital ecosys-
tem. Thus we need to address not just
the design of artifacts per se but also
the spaces within which they reside.
And the design has to deal with deeper
and more systemic issues. As the com-
puter becomes increasingly reliant on
a larger world, and in particular as the
connection to a network becomes an
essential part of the computer’s op-
eration, the opportunity for improving
the user experience simply through a
better interface is rapidly disappear-
ing. HCI needs concepts, frameworks,
and methods that will enable it to con-
sider people and computers as part of

a messy world full of social, physical,
technological, and physiological limi-
tations and opportunities.

It follows that the “I” in HCI will
also need to be understood at many
different levels. As Greenfield7 has
so elegantly described, we will have
to consider different sites of interac-
tion—for example, interactions on
and in the body, interactions between
bodies, interactions between bodies
and objects (properties such as grasp-
able, pushable, and other human-cen-
tered descriptors may be important
here), and interactions at the scale of
kiosks, rooms, buildings, streets, and
other public spaces. All these levels
of interaction offer different physi-
cal and social “affordances”—readily
perceivable action possibilities—that
technologies can potentially change.

In redefining H, C, and I, and in
extending what the field of HCI may
achieve, we will need to develop a lin-
gua franca that expresses not only new
metaphors but also new principles.
Such a common language will enable
the diverse parties to better under-
stand each other, to talk in detail about
the emergent transformations, and to
productively explore how to steer them
in human directions.

In a world where people’s move-
ments and transactions can be
tracked—where individuals trigger
non-deliberate events just by being in
a certain place, physical or virtual, at a
certain time—the notion of interaction
itself is being fundamentally altered.
As the conception of technology use
as a conscious act becomes difficult
to sustain, other models of interaction
and communication will have to be de-
veloped. At the other extreme, digital
technologies will continue to be used
in more deliberate and engaged ways
as media for self-expression, commu-
nity-building, identity-construction,
self-presentation, and interpersonal
relations. HCI professionals must un-
derstand the complexity of the new
forms of social relations and interac-
tions if they are to help develop tech-
nology that enables people’s effective
engagement.

The fact that we now live with tech-
nology and not just use it means that
HCI must also take into account the truly
human element, conceptualizing “us-
ers” as embodied individuals who have

mailto:asellen@microsoft.com
mailto:yrogers@open.ac.uk
mailto:r.harper@microsoft.com
mailto:tar@cs.nott.ac.uk
mailto:bhuman@microsoft.com
mailto:bhuman@microsoft.com

march 2009 | vol. 52 | no. 3 | communications of the acm 67

doi:10.1145/1467247.1467265

How avionics work led to a graphical language
for reactive systems where the diagrams
themselves define the system’s behavior.

by David Harel

Statecharts
in the Making:
A Personal
Account

odologist responsible for evaluating
and recommending software engineer-
ing methods and tools at IAI, described
some problems IAI avionics engineers
were having. This was part of the massive
effort then under way to build a fighter
aircraft, the Lavi (no connection with
Jonah’s surname). Following that meet-
ing, I began consulting at IAI on a one-
day-a-week basis, and for several months
Thursday became my IAI day.

The first few weeks were devoted to
trying to understand the general issues
from Lavi. Then it was time to be exposed
to the details of the project and its specif-
ic difficulties, since I hadn’t yet met the
project’s engineers. For several weeks,
I spent my Thursdays with Lavi’s assis-
tant, Yitzhak Shai, and a select group of

broader perspective.6 The present ar-
ticle is a greatly abridged version of
the resulting conference paper. The
implicit claim is that the emergence of
the language brought to the forefront a
number of ideas that today are central
to software and systems engineering,
including the general notions of visual
formalisms, reactive systems, model-
based development, model executabil-
ity, and full code generation.

In 1979 I published a paper on a
tree-like language based on the idea of
alternation called “And/Or Programs,”18
prompting Jonah Lavi of Israel Aircraft
Industries (IAI) to contact me. We met in
late 1982, at which time I’d been on the
faculty of the Weizmann Institute of Sci-
ence for two years. Lavi, who was a meth-

Writing a historical paper about something you
yourself are heavily involved in is clearly difficult;
the result is bound to be personal and idiosyncratic
and might well sound presumptuous. I thus viewed
an invitation to write about statecharts for the third
History of Programming Languages conference in
2007 as an opportunity to put the language in a

68 communications of the acm | march 2009 | vol. 52 | no. 3

contributed articles

this button is pressed?” In response, a
weighty two-volume document would
be brought out and volume A would be
opened to page 389, clause 6.11.6.10,
which says that if you press that button
such then such a thing would occur. At
which point (having by then learned
some of the system’s buzzwords) I would
say: “Yes, but is that true even when an
infrared missile is locked on a ground
target?” To which someone might say,
“Oh no, in volume B, page 895, clause
19.12.3.7, it says that in such a case
this other thing happens.” These Q&A
sessions would continue, and when it
would get to the fifth or sixth question
the engineers were no longer sure of
the answer and would have to call the
customer (the Air Force people) for a re-
sponse. By the time we got to the eighth
or ninth question even the customer
didn’t have an answer.

Obviously, someone would eventual-
ly have to decide what happens when you
press a certain button under a certain
set of circumstances. However, this per-
son might turn out to be a low-level pro-
grammer assigned to write some remote
part of the code, inadvertently making
decisions that influenced crucial behav-
ior on a much higher level. Coming, as
I did, from a clean-slate background in
terms of avionics (a polite way of saying
I knew nothing about the subject), this
was shocking. It seemed extraordinary
that such a talented and professional
team knew in detail the algorithm used
to measure the distance to a target but
not many of the far more basic behavior-
al facts involving the system’s response
to a simple event.

To illustrate, consider the following
three occurrences of a tiny piece of be-
havior buried in three totally different
locations in a large specification of a
chemical manufacturing plant:

“If the system sends a signal hot then
send a message to the operator”;

“If the system sends a signal hot with
T >60° then send a message to the op-
erator”; and

“When the temperature is maximum,
the system should display a message on
the screen, unless no operator is on the
site except when T <60°.”

Despite my formal education in
mathematical logic, I’ve never been
able to understand the third item. Sar-
casm aside, the real problem is that all
three were obviously written by three

experts from the Lavi avionics team, no-
tably Akiva Kaspi and Yigal Livne.

An avionics system is a wonder-
ful example of what my colleague at
Weizmann Amir Pnueli and I later
identified as a reactive system.17 The
main behavior that dominates such
a system is its reactivity, that is, its
event-driven, control-driven, event-
response nature. The behavior is of-
ten highly parallel and includes strict
time constraints and possibly stochas-
tic and continuous behavior. A typical
reactive system is not predominantly
data-intensive or algorithmic in na-
ture. Behavior is the crucial problem
in its development—the need to pro-
vide a clear yet precise description of
what the system does or should do
over time in response to both external

and internal events.
The Lavi avionics team consisted of

extremely talented people, including
those involved in radar, flight control,
electronic warfare, hardware, com-
munication, and software. The radar
people could provide the precise algo-
rithm used to measure the distance to
a target. The flight-control people could
talk about synchronizing the controls in
the cockpit with the flaps on the wings.
The communications people could talk
about formatting information traveling
through the MuxBus communication
line. Each had his own idiosyncratic
ways of thinking about and explaining
the system, as well as his own diagrams
and emphases.

I would ask seemingly simple ques-
tions, such as: “What happens when

Figure 1: Page from my early IAI notes (1983). Statechart constructs include hyper-edges,
nested orthogonality (a kind of concurrency), and transitions that reset a collection of
states (chart on right). Note the use of Cartesian products of sets of states (set-theoretic
formulation at the top) to capture the meaning of the orthogonality and the straightforward
algebraic notation for transitions between state vectors (lower right).

contributed articles

march 2009 | vol. 52 | no. 3 | communications of the acm 69

different people for three different rea-
sons. It is almost certain that the code
for this critical aspect of the chemical
plant would be problematic in the best
case and catastrophic in the worst. The
specification documents the Lavi avi-
onics group had produced at IAI were
no better. If anything, they were longer
and more complex. Some subcontrac-
tors even refused to work from them,
claiming they were incomprehensible,
inconsistent, and incomplete.

This confusion prompted the ques-
tion: How should an engineering team
specify the behavior of such a complex
reactive system in an intuitively clear yet
mathematically rigorous fashion? This
was what I aimed to try to answer.

Statecharts Emerging
My initial goal was not to invent a lan-
guage but to try to recommend, from
the toolset of the software and systems
engineer, appropriate means for saying
what the avionics engineers seemed to
already have in mind. It turned out they
really did understand the system and
could answer many questions about be-
havior but often hadn’t thought through
things properly because the informa-
tion wasn’t well-organized in their docu-
ments (or heads). I had to spend a lot of
the time getting them to talk; I kept ask-
ing questions, prodding them to state
clearly how the aircraft behaves under
certain sets of circumstances. We would
then brainstorm, trying to make sense
of the information that had piled up.

It was clear from the start that the
basic idea of states/modes was funda-
mental to their way of thinking. (This
insight was consistent with the work of
David Parnas on the avionics of the A-7
jet fighter.19) The IAI avionics engineers
would repeatedly say things like, “When
the aircraft is in air-ground mode and
you press this button, it goes into air-air
mode, but only if the radar is not locked
on a ground target.” This is familiar to
anyone in computer science; what we
have here is really the likes of a finite-
state automaton with its state transi-
tion mechanism. Nevertheless, having
one big state machine describing what
is going on would be fruitless, not only
because of the exponentially growing
number of states but also because sim-
ply listing all possible states and the
transitions leading from one to the other
is unstructured and nonintuitive; it pro-

How should
an engineering
team specify
the behavior
of such a complex
reactive system
in an intuitively
clear yet
mathematically
rigorous fashion?
This was what
I aimed to try
to answer.

vides no means for modularity, hiding
of information, clustering, and separa-
tion of concerns and would not work for
highly complex behavior. I was quickly
convinced of the need for a structured
and hierarchical extension of the con-
ventional state machine formalism.

Following my initial attempt to use
temporal-logic-like notation, I resorted
to writing down the state-based behav-
ior textually, in a kind of structured
state-based dialect of “state protocols”
made up on the fly (see the figures in 6).
The dialect was hierarchical; within a
state there could be other states, and if
you were in this state and the event oc-
curred, you would enter the other state,
and so on. As this went on, things would
get increasingly complicated. The avi-
onics engineers would bring up more
of the system’s behavior, and I would
respond by extending the state-based
structured description, often having to
enrich the syntax in real time.

When the multitude of emerging be-
havioral details caused things to be even
more complicated, I would doodle on
the side of the page to explain (visually)
what was meant. I recall the first time I
used visual encapsulation to illustrate
for the engineers the state hierarchy and
an arrow emanating from the higher
level to show a compound “leave-any-
state” transition. I also recall the first
time I used side-by-side adjacency with a
dashed separator line to depict orthogo-
nal (concurrent) state components (see
Figure 1).

I drew these informal diagrams in
order to explain what the nongraphical
text-based state protocols meant. The
text was still the real thing, however, and
the diagrams were merely an aid. But
after a while it dawned on me that ev-
eryone around the table seemed to un-
derstand these back-of-the-napkin dia-
grams much better, relating to them far
more naturally. The pictures simply did
a much better job of setting down on pa-
per the system’s behavior, as understood
by the avionics engineers, and we found
ourselves discussing the diagrams and
arguing about the avionics over them,
not over the state protocols. Still, the
mathematician in me found this diffi-
cult to accept; I told myself that doodled
diagrams could not really be better than
a real mathematical-looking artifact. So
it really took a leap of my own faith to be
able to think: “Hmmm…couldn’t the

70 communications of the acm | march 2009 | vol. 52 | no. 3

contributed articles

The pilot stood
there studying
the blackboard
for a couple of
minutes, then said,
“I think you have
a mistake down
here; this arrow
should go over here
and not over there.”
He was right.

dard source-target; they can be full hy-
peredges, since both sources and targets
of transitions can be sets of states. At any
given point in time a statechart is in a
combination (vector) of states, the length
of which is not fixed, since entering and
exiting orthogonal components on vari-
ous levels of the hierarchy changes the
size of the state vector dynamically (see
the nongraphical portions of the figure).
Default states generalize start states, and
the small arrows leading to them can be
level-crossing and hyperedge in nature.
In addition, statecharts also have special
history connectors, conditions, output
events, selection connectors, and more.

The fact that the technical part of the
statechart story started out with And/Or
Programs18 is interesting and relevant.
Encapsulated substates represent OR
(actually XOR, exclusive or), and or-
thogonality is AND. Thus, a minimalist
might view statecharts as a state-based
language with an underlying structur-
ing mechanism of classical alternation.

As for the graphic renditions, the two
novel visual constructs in statecharts—
blob encapsulation and partitioning—
are both topological in nature and
therefore worthy companions to edges
in graphs. Indeed, when designing a
graphical language, topology should
be used whenever possible, since it is
a more basic branch of mathematics
than geometry. Being inside something
is more fundamental and robust than
being smaller or larger or than being a
rectangle or a circle. Being connected
to something is more basic than being
green or yellow or being drawn with a
thick line or a thin line. The human vi-
sual system notices and comprehends
such things immediately.

Still, statecharts are not exclu-
sively visual/diagrammatic. Transi-
tions can be labeled not only with the
events that cause the transitions but
also with the conditions that guard
against taking them and the actions
(output events) that are to be car-
ried out when they are taken. More-
over, statecharts borrow from both
the Moore and the Mealy variants of
state machines, allowing actions on
transitions between states, as well as
on entrances to or exits from states.
Statecharts also allow “throughput”
conditions attached to a state and are
to hold through the entire time the
system is in that state.

pictures be turned into the real thing,
replacing, rather than supplementing,
the textual structured-programming-
like formalism?” So I gradually stopped
using the text or used it only to capture
supplementary information inside the
states or along transitions, and the dia-
grams became the actual specification
we were constructing.

This process of turning the diagrams
into the specification language had to be
done in a disciplined way, making sure
the emerging pictures were not just pic-
tures. You couldn’t just throw in features
because they looked good and the avion-
ics team seemed to understand them.
Unless the exact mathematical meaning
of an intended feature was given—in any
allowed context and under any allowed
set of circumstances—it simply couldn’t
be considered. This was how the basics
of the language emerged. I chose to use
the term “statecharts” for the resulting
creatures, which at the time was the only
unused combination of “state” or “flow”
with “chart” or “diagram” (see Figure 2).

Comments on the Language
Besides a host of secondary constructs,
the two main ideas in statecharts—
hierarchy and orthogonality—can be
intermixed on all levels (see the figure).
The language can be viewed as begin-
ning with classical finite-state machines
and their diagrams and extending them
through a semantically meaningful hi-
erarchical substating mechanism and
through a notion of orthogonal simul-
taneity. Both extensions are reflected in
the graphics—hierarchy by encapsula-
tion of the blobs depicting states and
orthogonality by partitioning a blob us-
ing dashed separator lines. Orthogonal
components of the state space coop-
erate in several ways, including direct
sensing of the state status in another
component or through actions. The
mechanism within a statechart thus has
a broadcasting flavor whereby any part
of the (same) statechart can sense what
is happening in any other part.

As a result of the new constructs for
hierarchy and orthogonality and their
graphical renditions, transitions be-
come far more elaborate and rich than
in conventional state machines. They
are still labeled with their triggering
events and conditions but can now start
or stop at any level of the hierarchy, cross
levels, and in general be richer than stan-

contributed articles

march 2009 | vol. 52 | no. 3 | communications of the acm 71

Speaking in the strict mathematical
sense of power of expression, hierarchy
and orthogonality are but helpful ab-
breviations and can be eliminated; the
hierarchy can be flattened, writing ev-
erything out explicitly on a low level, and
orthogonality can be removed by taking
the Cartesian product of the compo-
nents (as in the top of the figure). Thus,
these features do not add raw expres-
sive power, and their value is reflected
mainly in additional naturalness and
convenience. However, they also (in gen-
eral) provide great savings in size; for ex-
ample, orthogonality can yield an expo-
nential improvement in succinctness in
both upper- and lower-bound senses.3

Incidentally, orthogonal state-com-
ponents in statecharts do not necessari-
ly represent concurrent or parallel com-
ponents of the system being specified.
They need not represent different parts
of the system at all but can be intro-
duced to help structure its state space

to be able to sense properties of a part
of the specification in another without
worrying about implementation details.
I definitely do not recommend having a
single statechart for an entire system.
Rather, as I discuss later, there will al-
most always be a decomposition of the
system into functions, tasks, objects,
and the like, each endowed with its own
behavior (described by, for example, a
statechart). In this way, the concurrency
occurs on a higher level.

I return now to the two adjectives dis-
cussed earlier—“clear” and “precise”—
behind the choice of the term “visual
formalism.”14,16 Concerning clarity, the
fact that a picture is worth a thousand
words demands special caution. Not ev-
erything is beneficially depicted visually,
but the basic topology-inspired graphics
of statecharts seemed from the start to
jibe well with the IAI avionics engineers;
they quickly grasped the hierarchy and
orthogonality, high- and low-level tran-

and arrange the behavior in portions
that are conceptually and intuitively
separate, independent, and orthogo-
nal. I emphasize the word “conceptu-
ally” because what counts is whatever
is in the mind of the person doing the
specification.

This motivation has many ramifica-
tions. I chose the broadcast communi-
cation mechanism of statecharts not
because it is preferred for actual com-
munication between a system’s compo-
nents. It is merely one way to coordinate
the orthogonal components of the stat-
echart, between its “chunks” of state-
space, if you will; these will often not
be the components—physical or soft-
ware—of the system itself. Broadcasting
is a way to sense in one part of the state
space what is going on in another part
and does not necessarily reflect actual
communication between tangible as-
pects of the actual system. On certain lev-
els of abstraction one often really wants

Figure 2: Explaining statecharts (1984); note the temporal logic bottom right.

72 communications of the acm | march 2009 | vol. 52 | no. 3

contributed articles

sitions, default entries, and more.
Interestingly, the same quick compre-

hension applied to nonexperts outside
the avionics group. I recall an anecdote
from late 1983 in which in the midst of
one session the blackboard showed a
complicated statechart specifying the
behavior of some intricate portion of
the Lavi’s avionics. A knock on the door
brought in an Air Force pilot from the
“customer” team who knew a lot about
the aircraft being developed and its de-
sired behavior but had never seen a state
machine or a state diagram before, not
to mention a statechart. I remember
him staring at this intricate diagram (the
statechart) on the blackboard, with its
complicated mess of blobs inside other
blobs, arrows splitting and merging, and

the right track (see Figure 3). Very en-
couraging.

So much for clarity. As for precision
and formality, full executability was al-
ways central to the development of the
language. I found it difficult to imagine
the usefulness of a method that merely
makes it possible to say things about
behavior, give snippets of the dynam-
ics or observations about what happens
or what could happen, or provide some
partially connected pieces of behavior.
The whole idea was that if one builds
a statechart-based specification every-
thing must be rigorous enough to be
run (executed) just like software written
in a programming language. Executabil-
ity was a basic, not-to-be-compromised,
underlying concern during the process
of designing the language. It might
sound strange to a reader 26 years later,
but in 1983 system-development tools
did not execute models at all. Thus,
turning doodles like those in the figure
into a real language could be done only
with great care.

Building a Tool
Once the basics of the language were
established, it seemed natural to want
a tool that could be used not only to
prepare statecharts but also to execute
them. So in April 1984, three colleagues
(the brothers Ido and Hagi Lachover and
Amir Pnueli) and I founded a company,
Ad Cad, Ltd., later (1987) reorganizing it
as I-Logix, Inc., with Ad Cad as its R&D
branch. By 1986, we had built a tool for
statecharts called Statemate.

In extensive discussions with the
two most senior technical people as-
sociated with the company, Rivi Sher-
man and Michal Politi, along with
Amir Pnueli, we were able to figure out
during the Ad Cad period how to em-
bed statecharts into a broader frame-
work that was capable of capturing
the structure and functionality of a
large complex system. To this end, we
proposed a diagrammatic language
to structure a model that we called
activity-charts, an enriched kind of hi-
erarchical data-flow diagram whereby
arrows represent the possible flow
of information between the incident
functions (activities). Each activity
can be associated with a controlling
statechart (or code) that would also be
responsible for interfunction commu-
nication and cooperation.

asking, “What’s that?” One of the engi-
neers said, “That’s the behavior of the
so-and-so part of the system, and, by the
way, these rounded rectangles are states,
and the arrows are transitions between
states.” The pilot studied the blackboard
for a couple of minutes, then said, “I
think you have a mistake down here; this
arrow should go over here and not over
there.” He was right.

For me, this little event indicated that
we might be doing something right, that
maybe what I was proposing was a good
and useful way of specifying reactive
behavior. If an outsider could come in,
just like that, and grasp something that
complicated without being exposed to
the technical details of the language or
the approach, then maybe we were on

Figure 3: Page from the IAI notes (1983, events in Hebrew) showing a relatively “clean” draft
of the top levels of behavior for the main flight modes of the Lavi avionics, including
A/A (air-air), A/G (air-ground), NAV (automatic navigation), and ON GRD (on ground).
Note early use of a history connector in the A/G mode.

contributed articles

march 2009 | vol. 52 | no. 3 | communications of the acm 73

Statemate also enabled one to spec-
ify the actual structure of the system
itself, using module-charts that specify
the components in the implementation
of the system and their connections. In
this way, the tool supported a three-way
model-based development framework
for systems consisting of structure,
functionality, and behavior. The user
could draw the statecharts and the mod-
el’s other artifacts, link them together
rigorously, check and analyze them, pro-
duce documents from them, and man-
age their configurations and versions.
Most important, Statemate could fully
execute them and generate from them,
automatically, executable code in, say,
Ada and C and later also in appropriate
hardware description languages.

Even then, more than 20 years ago,
Statemate could link the model to a
GUI mockup of the system under de-
velopment (or even to real hardware).
Executability of the model could be
done directly or by using the generated
code and carried out in many ways with
increasing sophistication. Verification
wasn’t in vogue in the 1980s, so analy-
sis of the models was limited to various
kinds of testing offered by Statemate in
abundance. One could execute the mod-
el interactively (with the user playing the
role of the system’s environment), in
batch mode (reading in external events
from files) or in programmed mode.
One could use breakpoints and random
events to help set up and control a com-
plex execution from which you could
gather the results of interest. In prin-
ciple, you could thus set up Statemate
to “fly the aircraft” for you under pro-
grammed sets of circumstances, then
come in the following day and find out
what had happened. These capabilities,
allowing us to “see” the model in opera-
tion, either via a GUI or following the
statecharts as they were animated on the
fly, were extremely useful to Statemate
users. The tool was an eye-opener for
software and systems engineers used to
writing and debugging code in the usual
way and was particularly beneficial for
real-time and embedded systems.

Statemate is considered by some to
be the first real-world tool to carry out
true model executability and full code
generation. The underlying ideas were
the first serious proposal for model-
driven system development. They might
have been somewhat before their time

We we also outlined a new tool for
supporting all this, and I-Logix prompt-
ly built it under the name Rhapsody.11
One important difference between the
function-oriented Statemate and the
object-oriented Rhapsody is that the
semantics of statecharts in Statemate is
synchronous and in Rhapsody is (by and
large) asynchronous. Another subtle but
significant difference is reflected in the
fact that Statemate was set up to execute
statecharts directly in an interpreter
mode separate from the code genera-
tor. In contrast, the model execution in
Rhapsody is carried out by running the
code generated from the model. A third
difference is our decision to make the
action language of Rhapsody a subset
of the target programming language;
for example, the events, conditions, and
actions specified along state transitions
are fragments of, say, C++ or Java. In any
event, the statechart language may be
considered a level higher than classi-
cal programming languages in that the
code generated from it is in, say, C++,
Java, or C; we thus might say that stat-
echarts are high above C level.

Several software vendors have since
developed tools based on statecharts
or its many variants, including Ros-
eRT (which grew out of ObjecTime),
StateRover, and Stateflow (the statechart
tool embedded in Matlab).

The implementation and tool-
building issue can also be viewed in a
broader perspective. In the early 1980s,
no system-development tool based on
graphical languages was able to execute
models or generate full running code.
Such CASE tools essentially consisted of
graphic editors, document generators,
and configuration managers and were
thus like programming environments
without a compiler. In contrast, I have
always felt that a tool for developing
complex systems must have the ability
to not only describe behavior but also to
analyze and execute it in full. This phi-
losophy underlies the notion of a visual
formalism, which must come endowed
with sufficiently well-defined semantics
so as to enable tools to be built around
it that can carry out dynamic analysis,
full model execution, and the automatic
generation of running code.

On Semantics
It is worth dwelling further on the issue
of semantics, which is a prerequisite for

but were deeply significant in bring-
ing about the change in attitude that
permeates modern-day software engi-
neering, as exemplified by such efforts
as the Unified Modeling Language. A
decade after Statemate, we built the ob-
ject-oriented Rhapsody tool at I-Logix
(discussed later).

Woes of Publication
I wrote the first version of a paper de-
scribing statecharts in late 1983.16 The
process of trying to get it published
was long and tedious but interesting in
its own right. The details appear in the
full version of the present article,6 but
I can say that the paper was rejected by
several leading journals, including Com-
munications and IEEE Computer. My
files contain an interesting collection
of referee comments and editor rejec-
tion letters, one of which asserted: “The
basic problem […] is that […] the paper
does not make a specific contribution
in any area.” It was only in July 1987
that the paper was finally published, in
Science of Computer Programming.16 The
full version of the present article6 also
contains information (and anecdotes)
about other publications on statecharts,
including a paper I wrote with Pnueli de-
fining reactive systems,17 a Communica-
tions article on visual formalisms and
higraphs,14 an eight-author paper on
Statemate,13 the definitive paper on the
Statemate semantics of statecharts,13
and a Statemate book with Politi.10

Object-Oriented Statecharts
In the early 1990s, Eran Gery from
I-Logix became interested in the work of
James Rumbaugh and Grady Booch on
the use of statecharts in an object-ori-
ented framework. Gery did some gentle
prodding to get me interested, with the
ultimate result being a 1997 paper11 in
which we defined object-oriented stat-
echarts and worked out the way we felt
they should be linked up with objects
and executed. In particular, we pro-
posed two modes of communication
between objects: direct synchronous in-
vocation of methods and asynchronous
queued events. The paper considered
other issues, too, including creation
and destruction of objects and multi-
threaded execution. The main structur-
ing mechanism involved classes and ob-
jects, each of which could be associated
with a statechart.

74 communications of the acm | march 2009 | vol. 52 | no. 3

contributed articles

sulting paper22 claimed implicitly that
statecharts are not well defined due
to these many different semantics (it
listed approximately 20). Interestingly,
while 22 reported on the many variants
of the language with their semantics,
it did not report what should probably
have been considered the language’s
“official” semantics, the one we de-
fined and adopted in 1986 when build-
ing Statemate13 but unfortunately also
the only semantics not published at the
time in the open public literature.

As to the semantic issues them-
selves, von der Beeck22 discussed only
the differences between variants of
pre-object-oriented statecharts, but
they are far less important than the dif-
ferences between the non-object-ori-
ented and the object-oriented versions
of the language. The main semantic
difference between Statemate and
Rhapsody semantics is in synchron-
icity. In Statemate, the version of the
statecharts language is based on func-
tional decomposition and is a synchro-
nous language, whereas the object-
oriented-based Rhapsody version of
statecharts is asynchronous. There are
other substantial differences in modes
of communication between objects;
there are also issues arising from the
presence of dynamic objects and their
creation and destruction, inheritance,
composition, and multithreading. The
semantics of object-oriented state-
charts was described in my 2004 paper
with Hillel Kugler8 (analogous to 12) de-
scribing the differences between these
two versions of the language.

Meanwhile, the Unified Modeling
Language, or UML, which was stan-
dardized by the Object Management
Group in 1997, featured many graphi-
cal languages, some of which are still
not endowed with satisfactorily rigor-
ous semantics. The heart of UML—
its driving behavioral kernel—is the
object-oriented version of statecharts.
In the mid-1990s Eran Gery and I took
part in helping the UML design team
define the intended meaning of stat-
echarts, resulting in UML statecharts
being similar to those in 11 that we im-
plemented in Rhapsody. For a mani-
festo about the subtle issues involved
in defining the semantics of languag-
es for reactive systems, see 7, with its
whimsical subtitle “What’s the Seman-
tics of ‘Semantics’?”

understanding the true meaning of any
language, particularly executable ones.
In a letter to me in 1984, Tony Hoare
said that the statecharts language “badly
needs a semantics.” He was right. Being
overly naïve at the time, I figured that
writing a paper that explained the basics
of the language’s operation and then
building a tool that executes statecharts
and generates code from them would
be enough. This approach took its cue
from programming language research,
where developers invent languages and
then simply build compilers for them.

In retrospect, I didn’t fully realize
in those early years how different stat-
echarts are from previous specification
languages for real-time embedded sys-
tems. I knew, of course, that the lan-
guage had to be executable, as well as
easily understandable, even by people
with no training in formal semantics. At
the same time, as a tool-building team,
we also had to demonstrate quickly to
our sponsors, the first being IAI, that our
efforts were economically viable. Due
to the high level of abstraction of state-
charts, we had to make decisions regard-
ing rather deep semantic problems that
apparently hadn’t been adequately con-
sidered in the literature, at least not in
the context of building a real-world tool
intended for large, complex systems.
Moreover, some of these issues were
then being investigated independently
by leading French researchers, including
Gérard Berry, Nicholas Halbwachs, and
Paul le Guernic, who coined the French
phrase L’approche synchrone—the syn-
chronous approach—for this kind of
work.1 Thus, when designing Statemate
from 1984 to 1986, we did not do such a
good job of deciding on the semantics.

We had to address a number of di-
lemmas regarding central semantic is-
sues. One had to do with whether a step
of the system should take zero time or
more; another had to do with whether
the effects of a step should be calculated
and applied in a fixpoint-like manner in
the same step or take effect only in the
following step. The two issues are inde-
pendent. The first concerns whether or
not one adopts Berry’s pure synchrony
hypothesis,1 whereby each step takes
zero time. Clearly, these questions have
many consequences in terms of how
the language operates, whether events
might interfere with chain reactions trig-
gered by other events, how time itself is

modeled, and how time interleaves with
the system’s discrete event dynamics.

At the time, we used the terms Se-
mantics A and B to refer to the two main
approaches we were considering. Both
were synchronous in the sense of Ben-
veniste et al.,1 differing mainly in the
second issue—regarding when the ef-
fects of a step take place. In Semantics A
all events generated in the current step
serve as inputs to the next step, whereas
in Semantics B the system responds to
all events generated internally in the
current step until no further system re-
sponse is possible. We called this chain
of reactions a “super-step.” The paper we
published in 1987 was based on Seman-
tics B,15 but we later adopted semantics
A for the Statemate tool itself.10,13 Thus,
Statemate statecharts constitute a syn-
chronous language1 and in that respect
are similar to other, nonvisual lan-
guages in that family, including Esterel,
Lustre (in commercial guise, known as
Scade), and Signal.

We decided to implement Seman-
tics A mainly because calculating the
total effects of a step and carrying them
out in the following step was easier to
implement; we were also convinced
that it was easier to understand for a
typical systems engineer. Another con-
sideration was related to the semantic
level of compositionality; Semantics B
strengthens the distinction between the
system and its environment or between
two parts of the system. If at some point
in the development a system developer
wants to consider part of the system to
serve as an environment for the other
part, the behaviors under Semantics B
will be separated (as they should be), be-
cause chain reactions that go back and
forth between the two halves are no lon-
ger all contained in a single super-step.

A number of other researchers had
also begun looking into statechart se-
mantics, often severely limiting the lan-
guage (such as by completely dropping
orthogonality) so the semantics are eas-
ier to define. Some of this work was mo-
tivated by the fact that our implemented
semantics had not been published yet
(we published in 199612) and was not
known outside the Statemate circle.
This pre-object-oriented situation was
summarized by Michael von der Beeck
who tried to impose some order on the
multitude of semantics of statecharts
that were then being published. His re-

contributed articles

march 2009 | vol. 52 | no. 3 | communications of the acm 75

Biology, Hybrid Systems,
Verification, Scenarios
Statecharts today are widely used in
such application areas as aerospace, au-
tomotive, telecommunication, medical
instrumentation, hardware design, and
control systems. An interesting devel-
opment also involves the language be-
ing used in such unconventional areas
as modeling biological systems.4,20,21

Another important topic is hybrid sys-
tems. Statecharts can include probabili-
ties, thus supporting probabilistic and
stochastic behavior, but their underly-
ing basis is discrete. It is very natural for
a software or systems engineer to want
to model systems with mixed discrete
and continuous behavior, and it is not
difficult to imagine using mathematics
geared for continuous dynamics (such
as differential equations) to model the
activities within states in a statechart.
An active community today is carrying
out research on such systems.

Another topic involves exploiting
the structuring of behavior in stat-
echarts to aid verification of the mod-
eled system. We all know how difficult
program verification is, yet a number
of techniques work well in many cases.
While most common verification tech-
niques do not exploit the hierarchical
structure or modularity models often
have, this structure can be used benefi-
cially in verifying statecharts. Work has
indeed been done on the verification
of hierarchical state machines, though
much more remains to be done.

Finally, I should mention some re-
cent work my colleagues and I have
carried out on a new approach to vi-
sual formalisms for complex systems.
It involves a scenario-based specifica-
tion method, rather than the state-
based approach of statecharts. The
idea is to concentrate on specifying
the behavior between and among the
objects (or tasks, functions, and com-
ponents), not within them—inter-
object rather than intra-object. The
language we have proposed for this—
Live Sequence Charts—was worked
out jointly with Werner Damm.2 The
associated play-in and play-out pro-
gramming techniques were devel-
oped later with my Ph.D. student
Rami Marelly.9 I published a paper
last year describing a long-term vi-
sion on how this could be made much
more general.5

Conclusion
If asked about the lessons to be learned
from the statecharts story, I would defi-
nitely put tool support for executability
and experience in real-world use at the
top of the list. Too much computer sci-
ence research on languages, method-
ologies, and semantics never finds its
way into the real world, even in the long
term, because these two issues do not
get sufficient priority.

One of the most interesting aspects
of this story is the fact that the work
was not done in an academic tower, in-
venting something and trying to push
it down the throats of real-world en-
gineers. It was done by going into the
lion’s den, working with the people in
industry. This is something I would
not hesitate to recommend to young
researchers; in order to affect the real
world, one must go there and roll up
one’s sleeves. One secret is to try to get
a handle on the thought processes of
the engineers doing the real work and
who will ultimately use these ideas and
tools. In my case, they were the avion-
ics engineers, and when I do biological
modeling, they are biologists. If what
you come up with does not jibe with
how they think, they will not use it. It’s
that simple.

Looking back over the past 26 years,
the main mistakes I made during the
early years of statecharts concerned
getting the message out to real-world
software and systems engineers. This
involved the confusing process of de-
ciding on a clear semantics for the
language and publicizing the chosen
semantics promptly in the public lit-
erature, as well as not recognizing how
important it was to quickly publish a
book to acquaint engineers in industry
with, and get them to use, a new lan-
guage, method, and tool.

Nevertheless, despite the effort that
went into developing the language
(and later the tools to support it) I am
convinced that almost anyone could
have come up with statecharts, given
the right background, exposure to the
right kinds of problems, and right
kinds of people.

Acknowledgment
Many people influenced this work, but
my deepest gratitude goes to Jonah
Lavi, Amir Pnueli, Eran Gery, Rivi Sher-
man, and Michal Politi. 	

References
1.	 Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs,

N., Le Guernic, P., and de Simone, R. The synchronous
languages 12 years later. Proceedings of the IEEE 91
(2003), 64–83.

2.	D amm, W. and Harel, D. LSCs: Breathing life into
message sequence charts. Formal Methods in System
Design 19, 1 (2001), 45–80.

3.	D rusinsky, D. and Harel, D. On the power of bounded
concurrency I: Finite automata. J. ACM 41 (1994),
517–539.

4.	E froni, S., Harel, D., and Cohen, I.R. Towards
rigorous comprehension of biological complexity:
Modeling, execution, and visualization of thymic T cell
maturation. Genome Research 13 (2003), 2485–2497.

5.	H arel, D. Can programming be liberated, period? IEEE
Computer 41, 1 (Jan. 2008), 28–37.

6.	H arel, D. Statecharts in the making: A personal
account. In Proceedings of the Third ACM SIGPLAN
Conference on History of Programming Languages
(San Diego, CA, June 9-10). ACM Press, New York,
2007.

7.	H arel, D. and Rumpe, B. Meaningful modeling: What’s
the semantics of ‘semantics’? IEEE Computer 37, 10
(2004), 64–72.

8.	H arel, D. and Kugler, H. The Rhapsody semantics of
statecharts (or, on the executable core of the UML). In
Integrations of Software Specification Techniques for
Applications in Engineering, LNCS, Vol. 3147, H. Ehrig
et al., Eds. Springer-Verlag, New York, 2004, 325–354.

9.	H arel, D. and Marelly, R. Come, Let’s Play: Scenario-
Based Programming Using LSCs and the Play-Engine.
Springer-Verlag, New York, 2003.

10.	H arel, D. and Politi, M. Modeling Reactive Systems with
Statecharts: The Statemate Approach. McGraw-Hill,
New York, 1998.

11.	H arel, D. and Gery, E. Executable object modeling with
statecharts. IEEE Computer 30, 7 (1997), 31–42.

12.	H arel, D. and Naamad, A. The statemate semantics
of statecharts. ACM Transactions on Software
Engineering Methods 5, 4 (Oct. 1996), 293–333.

13.	H arel, D., Lachover, H., Naamad, A., Pnueli, A., Politi,
M., Sherman, R., Shtul-Trauring, A., and Trakhtenbrot,
M. Statemate: A working environment for the
development of complex reactive systems. IEEE
Transactions on Software Engineering 16, 4 (1990),
403–414.

14.	H arel, D. On visual formalisms. Commun. ACM 31, 5
(May 1988), 514–530.

15.	H arel, D., Pnueli, A., Schmidt, J., and Sherman, R. On
the formal semantics of statecharts. In Proceedings
of the Second IEEE Symposium on Logic in Computer
Science (Ithaca, NY, 1987), 54–64.

16.	H arel, D. Statecharts: A visual formalism for complex
systems. Science of Computer Programming 8, 3
(June 1987), 231–274.

17.	H arel, D. and Pnueli, A. On the development of reactive
systems. In Logics and Models of Concurrent Systems,
K.R. Apt, Ed. NATO ASI Series, Vol. F-13, Springer-
Verlag, New York, 1985, 477–498.

18.	H arel, D. And/Or programs: A new approach to
structured programming. ACM Transactions on
Programming Languages and Systems 2, 1 (Jan.
1980), 1–17.

19.	H eninger, K.L., Kallander, J.W., Shore, J.E., and Parnas,
D.L. Software Requirements for the A-7E Aircraft, NRL
Report 3876. Washington, D.C., Nov. 1978.

20.	S etty, Y., Cohen, I.R., Dor, Y., and Harel, D. Four-
dimensional realistic modeling of pancreatic
organogenesis. In Proceedings of the National
Academy of Science 105, 51 (2008), 20374–20379.

21.	S werdlin, N., Cohen, I.R., and Harel, D. Toward an
in-silico lymph node: A realistic approach to modeling
dynamic behavior of lymphocytes. In Proceedings of
the IEEE, Special Issue on Computational System
Biology 96, 8 (2008), 1421–1443.

22.	 von der Beeck, M. A comparison of statecharts
variants. In Proceedings of Formal Techniques in Real
Time and Fault Tolerant Systems, LNCS, Vol. 863.
Springer-Verlag, New York, 1994, 128–148.

David Harel (dharel@weizmann.ac.il) is the William
Sussman Professorial Chair in the Department of Computer
Science and Applied Mathematics at The Weizmann
Institute of Science, Rehovot, Israel.

© 2009 ACM 0001-0782/09/0300 $5.00

mailto:dharel@weizmann.ac.il

76 communications of the acm | month 2009 | vol. 00 | no. 00

review articles
doi:10.1145/1467247.1467267

Can a proof be checked without reading it?

by Madhu Sudan

novel formats for writing proofs of
mathematical assertions. Associated
with these formats are probabilistic al-
gorithms that reviewers could (should?)
use to verify the proofs. A reviewer using
such a verification algorithm would be
spared from reading the entire proof
(and indeed will only read a “constant
number of bits of the proof”—a notion
we will elaborate on, and explain later).
Any researcher who has a proof of a the-
orem can rewrite the proof in the pre-
scribed format and offer it to the review-
er, with the assurance that the reviewer
will be convinced of this new proof. On
the other hand, if someone claims a
faulty assertion to be a theorem, and
offers any proof (whether in the new for-
mat or not), the reviewer will discover an
error with overwhelming probability.

In what follows we will attempt to for-
malize some of the notions that we have
been using in a casual sense above. The
central notion that will emerge is that
of a “probabilistically checkable proof
(PCP).” Existence of such formats and
verification algorithms often runs con-
trary to our intuition. Nevertheless they
do exist, and we will discuss two differ-
ent approaches that have been used
thus far to construct such PCPs.

PCPs are arguably fascinating ob-
jects. They offer a certain robustness
to the logical process of verification
that may not have been suspected be-
fore. While the process of proving and
verifying theorems may seem of limited
interest (say, only to mathematicians),
we stress that the notion of a “convinc-
ing” argument/evidence applies much
more broadly in all walks of life. PCPs
introduce the fascinating possibility
that in all such cases, the time taken to
assess the validity of the evidence in
supporting some claims may be much
smaller than the volume of the evi-
dence. In addition to this philosophical
interest in PCPs, there is a very differ-
ent (and much more concrete) reason
to study PCPs. It turns out that PCPs
shed light in the area of combinatorial
optimization. Unfortunately this light
is “dark”: The ability to construct PCPs
mostly says that for many optimization

The task of verifying a mathematical proof is extremely
onerous, and the problem is compounded when a
reviewer really suspects a fatal error in the proof but still
has to find an explicit one so as to convincingly reject a
proof. Is there any way to simplify this task? Would not
it be great if it were possible to scan the proof cursorily
(such as, flip the pages randomly, reading a sentence
here and a sentence there) and be confident that if the
proof was buggy you would be able to find an error by
such a superficial reading?

Alas, the current day formats of proofs do not allow
such simple checks. It is possible to build a “proof” of
any “assertion” (in particular ones that are not true) with
just one single error, which is subtly hidden. Indeed, if
you think back to the “proofs” of “1 = 2” that you may
have seen in the past, they reveled in this flaw of current
proof systems.

Fortunately this shortcoming of proofs is not an
inherent flaw of logic. Over the past two decades,
theoretical computer scientists have come up with

Probabilistically
Checkable
Proofs

review articles

march 2009 | vol. 52 | no. 3 | communications of the acm 77

problems where we knew that optimal
solutions were (NP-) hard to find, even
near-optimal solutions are hard to find.
We discuss these connections soon af-
ter we discuss the definitions of PCPs.

Definitions
We start by formalizing what we mean
by “theorems,” “proofs,” a “format”
for proving them, and what it means to
“change” such a format, that is, what
changes are allowed, and what qualities
should be preserved. Hopefully, in the
process we will also manage to establish
some links between the topic of this ar-
ticle and computer science.

To answer these questions we go to
back to the essentials of mathemati-
cal logic. A system of logic attempts
to classify “assertions” based on their
“truth value,” that is, separate true the-
orems from false assertions. In particu-
lar, theorems are those assertions that
have “proofs.” In such a system, every
sentence, including theorems, asser-
tions, and proofs, is syntactically just a
finite string of letters from a finite al-
phabet. (Without loss of generality the
alphabet may be binary, that is, {0, 1}.)
The system of logic prescribes some
axioms and some derivation rules.
For an assertion to be true, it must be
derivable from the axioms by apply-
ing a sequence of derivation rules. A
proof of an assertion A may thus be a
sequence of more and more complex
assertions ending in the assertion A,
with each intermediate assertion being
accompanied with an explanation of
how the assertion is derived from pre-
vious assertions, or from the axioms.
The exact set of derivation rules used
and the complexity of a single step of
reasoning may vary from one logical
system to another, but the intent is that
eventually all logical systems (based on
the same axioms) should preserve two
essentials aspects: The set of theorems
provable in any given system of logic
should be the same as in any other.
Furthermore, proofs should be “easy”
to verify in each.

This final attempt to abstract the
nature of a logical system leaves us
with the question: What is “easy?” It is
this aspect that led to the development
of Turing and Church’s work on the
Turing machine. They ascribed “easi-
ness” to being a mechanical process,
as formalized by the actions of some

Turing machine. Modern computation-
al complexity is little more careful with
this concept. The task of verification of
a proof should not only be “mechani-
cal,” but also “efficient,” that is, should
be polynomial time computable. This
leads to the following abstract notion
of a system of logic: A system of logic
is given by a polynomial time verifi-
cation algorithm (or simply verifier)
V  (., .), that takes two inputs, an
assertion A and some evidence E and
produces a Boolean verdict “accept/
reject.” If V  (A, E) = accept then

and E is a proof of A. If A is an asser-
tion such that there exists some E
such that V  (A, E) = accept, then A is
a theorem. In contrast to the notion
that a proof is easy to verify, our cur-
rent state of knowledge suggests that
proofs may be hard to find, and this
is the essence of the theory of NP-
completeness.11, 25, 27 Indeed the ques-
tion “is NP = P?” is equivalent to the
question “can every theorem be proved
efficiently, in time polynomial in the
length of its shortest proof?”

In what follows we will fix some
system of logic, that is, some verifier
V0 and consider other verifiers that are

equivalent to this verifier. In such cas-
es, when the set of theorems does not
change, but the “proofs” may, we call
the new system a “proof system.” So, a
proof system V would be equivalent to
V0 if the following conditions hold:

Completeness: If A is a theorem (in V0),
then A is a theorem in V. Furthermore,
there is a proof of A in V that is at most a
polynomial factor longer than its proof
in V0.
Soundness: If A is not a theorem (in V0),
then A is not a theorem in V.

By allowing different verifiers, or
proof systems, for the same system of
logic, one encounters many different
ways in which theorems can be proved.
As an example, we show how the NP-
completeness of the famous problem
3SAT allows one to produce formats for
proofs that “localize” errors in errone-
ous proofs. Recall that an instance of
3SAT is a logical formula f = C1 Ù . . . Cm
where Cj is the disjunction of three lit-
erals (variables or their complement).
The NP-completeness of 3SAT implies
the following: Given any assertion A
and integer N, there is a 3CNF formula
f (of length bounded by a polynomial

78 communications of the acm | march 2009 | vol. 52 | no. 3

review articles

in N) such that f is satisfiable if and
only if A has a proof of length at most N
(in V0). Thus the deep logical question
about the truth of A seems to reduce to
a merely combinatorial question about
the satisfiability of f. The natural evi-
dence for the satisfiability of f would
be an assignment and this is what we
refer to as a “format” for proofs. The
advantage of this format is that in order
to reject an “erroneous proof,” that is,
an assignment x that fails to satisfy f,
one only needs to point to one clause
of f that is not satisfied and thus only
point to the three bits of the proof of
x that this clause depends on to reveal
the error. Thus errors are easily local-
ized in this format.

Can one go further and even “find”
this error efficiently? This is where
PCPs come in. In what follows, we will
attempt to describe verifiers that can
verify proofs of satisfiability of 3CNF
formulae (noticing that by the discus-
sion above, this is as general as verifying
proofs of any mathematical statement
in any formal system).
Probabilistically checkable proofs. We
start by formalizing the notion of the
number of bits of a proof that are “read”
by the verifier. In order to do so, we allow
the verifier to have random access (ora-
cle access) to a proof. So while the proof
may be a binary string p = áp[1] . . . p[]
ñ Î {0,1}, the verifier gets to “read” the
ith bit of p by querying an “oracle” for
the ith bit of p and get p[i ] in response,
and this counts as one query.

PCPs are motivated by the question:
“how many bits of queries are really es-
sential to gain some confidence into
the correctness of a theorem?” It is easy
to argue that if the verifier hopes to get
away by querying only a constant num-
ber of bits of the proof, then it cannot
hope to be deterministic (else a con-
stant time brute force search would find
a proof that the verifier would accept).
So we will allow the verifier to be proba-
bilistic, and also it to make mistakes
(with low probability). This leads us to
the notion of a PCP verifier.

Definition 2.1. A PCP verifier of query
complexity q(n), and gap e (n) is a proba-
bilistic algorithm V that, given as input
an assertion A Î {0, 1}n, picks a random
string R Î {0, 1}*, makes oracle queries
to a proof oracle p : {1,…,} ® {0, 1} and
produces an accept/reject verdict.

Running time: V always runs in time
polynomial in n.
Query complexity: V makes q(n) queries
into the proof p.
Proof size:  grows polynomial in n.
Completeness: If A is a true assertion,
then there exists a proof p that the verifier
accepts on every random string R.
Soundness, with gap e (n): If A is not true,
then for every proof p, the probability, over
the choice of the randomness R, that the
verifier accepts at most 1 − e (n).

The above definition associates two
parameters to a PCP verifier, query
complexity, and gap. The query com-
plexity is the number of bits of the
proof that the verifier “reads.” The gap
is related to the “error” probability of
the verifier, that is, the probability of
accepting false assertions. The larger
the gap, the smaller the error. Since the
definition above introduces several no-
tions and parameters at once, let us use
a couple of simple examples to see what
is really going on.

The classical proof of satisfiability
takes a formula of length n, on up to n
variables and gives a satisfying assign-
ment. The classical verifier, who just
reads the entire assignment and verifies
that every clause is satisfied, is also a
PCP verifier. Its query complexity q(n) is
thus equal to n. Since this verifier makes
no error, its gap is given by e (n) = 1.

Now consider a probabilistic version
of this verifier who chooses to verify
just one randomly chosen clause of the
given 3CNF formula. In this case the
verifier only needs to query three bits of
the proof and so we have q(n) = 3. How
about the gap? Well, if a formula is not
satisfiable, then at least one of the up
to n clauses in the formula will be left
unsatisfied by every assignment. Thus
once we fix a proof p, the probability that
the verifier rejects is least 1/n, the prob-
ability with which the verifier happens
to choose a clause that is not satisfied by
the assignment p. This corresponds to a
gap of e (n) = 1/n. (Unfortunately, there
do exist (many) unsatisfiable 3CNF for-
mulae which have assignments that
may satisfy all but one clause of the for-
mula. So the gap of the above verifier is
really Q(1/n).)

Thus PCP verifiers are just exten-
sions of “classical verifiers” of proofs.
Every classical verifier is a PCP verifier
with high query complexity and no error

(that is, high gap), and can be converted
into one with low (constant!) query com-
plexity with high error (tiny gap). Indeed
a smooth trade-off between the param-
eters can also be achieved easily. To
reduce the error (increase the gap) of a
PCP verifier with query complexity q and
gap e , we could just run this verifier sev-
eral, say k, times on a given proof, and
reject if it ever finds an error. The new
query complexity is now kq and if the
theorem is not true then the probability
of detecting an error is now (1 − e)k. The
new error is approximately 1 − ke if k <<
1/e and thus the gap goes up by a factor
of roughly k.

The fundamental question in PCP
research was whether this trade-off was
essential, or was it possible to get high
gap without increasing the number
of queries so much. The PCP theorem
states that such proof systems can be
constructed!

Theorem 2.2 (PCP Theorem3, 4, 12).
3SAT has a PCP verifier of constant query
complexity and constant positive gap.

There are two distinct proofs of this
theorem in the literature and both are
quite nontrivial. In Section 4 we will
attempt to give some idea of the two
proofs. But before that we will give a
brief history of the evolution of the no-
tion of a PCP, and one of the principal
applications of PCPs in computer sci-
ence. The exact constants (in the query
complexity and gap) are by now well
studied and we will comment on them
later in the concluding section.

History of definitions. The notion
of a PCP verifier appears quite natural
given the objective of “quick and dirty”
verification of long proofs. However,
historically, the notion did not evolve
from such considerations. Rather the
definition fell out as a byproduct of in-
vestigations in cryptography and com-
putational complexity, where the no-
tion of a PCP verifier was one of many
different elegant notions of probabi-
listic verification procedures among
interacting entities. Here we attempt
to use the historic thread to highlight
some of these notions (see Goldreich18
for a much more detailed look into
these notions). We remark that in ad-
dition to leading to the definition of
PCPs, the surrounding theory also
influences the constructions of PCP

review articles

march 2009 | vol. 52 | no. 3 | communications of the acm 79

verifiers—indeed one may say that one
may have never realized that the PCP
theorem may be true, had it not been
for some of the prior explorations!
Interactive Proofs: The first notion of a
probabilistic proof system to emerge
in the literature was that of an interac-
tive proof. This emerged in the works
of Goldwasser et al.20 and Babai and
Moran.7 An interactive proof consists
of an interaction between two entities
(or agents), a “prover” and a “verifier.”
The prover wishes to convince the veri-
fier that some theorem A is true. The
verifier is again probabilistic and runs
in polynomial time, and should be
convinced if the assertion is true and
should reject any interaction with high
probability if the assertion is not true.

The goal here was not to improve on
the efficiency with which, say, proofs
of 3-satisfiability could be checked.
Instead the goal was to enhance the
class of assertions that could be veri-
fied in polynomial time. A nonmath-
ematical, day-to-day, example of an
interactive proof would be that of
distinguishing between two drinks.
Imagine convincing your spouse or
friend that buying an expensive bot-
tle of wine, brand X, is really worth it.
They may counter with a cheap bottle,
brand Y, that they claim tastes exactly
the same. You insist that they taste
quite different, but it is hard to prove
your point with any written proof. But
this is something we could attempt
to prove interactively, by a blind taste
test. You can ask your spouse/friend
to challenge you with a random glass
of wine and if by tasting you can tell
which brand it is, you manage to con-
vince your partner that you may have a
point—the two drinks do taste differ-
ent. By repeating this test many times,
you partner’s conviction increases.
Interactive proofs attempt to such cap-
ture phenomena and more. Indeed,
this very example is converted to a very
mathematical one by Goldreich et al.,19
who use a mathematical version here
to give proofs that two graphs are dis-
tinguishable, that is, they are not iso-
morphic. (This is a problem for which
we do not know how to give a polyno-
mially long proof.)

The initial interest in interactive
proofs came from two very different
motivations. Goldwasser et al. were in-
terested in the “knowledge” revealed

in multiparty interactions, from the
point of view of maintaining secrets.
To understand this concept, they first
needed to define interactive protocols
and interactive proofs, and then a for-
mal measure of the knowledge com-
plexity of this interaction. They noted
that while interaction may reveal many
bits of “information” (in the sense of
Shannon34) to the interacting players,
it may reveal little knowledge. For ex-
ample, the interactive proof above that
brand X is distinguishable from brand
Y reveals no more “knowledge” than
the bare fact that they are distinguish-
able. It does not, for example, tell you
what features are present in one brand
and not in the other.

Babai and Moran’s motivation was
more oriented towards computational
complexity of some number-theoretic
and group-theoretic problems. They
were able to present interactive proofs
with just one rounds of interaction
between verifier and the prover for a
number of problems not known to be
in NP (i.e, not reducible to satisfiabil-
ity). The implication, proved formally
in later works, was that such problems
may not be very hard computationally.

The theory of interactive proofs saw
many interesting discoveries through
the 1980s, and then culminated in
a surprising result in 1990 when
Shamir,33 based on the work of Lund
et al.,28 showed the set of assertions
that could be proved interactively were
exactly those that could be verified by a
polynomial space bounded verifier.
Multi-prover and Oracle-Interactive
Proofs: Part of the developments in the
1980s led to variations on the theme of
interactive proofs. One such variation
that became significant to the devel-
opment of PCPs was the notion of a
“Multi-prover Interactive Proof” (MIP)
discovered by Ben-Or et al.8 Ben-Or
et al. were trying to replace some cryp-
tographic assumptions (along the lines
of statements such as “RSA is secure”)
in existing interactive proofs with non-
cryptographic ones. This led them to
propose the study of the setting where
the proof comes from a pair of provers
who, for the purpose of the verification
task, are willing to be separated and
quizzed by the verifier. The hope is that
the verifier can quiz them on related
facts to detect inconsistency on their
part. This limits the prover’s ability to

One of the
somewhat strange
aspects of PCP
research has been
that even though
the existence of
PCPs seems to
be a “positive”
statement, its use
is mostly negative.
We suggest that
positive uses might
emerge as more
of our life turns
digital, and we start
worrying not only
about the integrity
of the data, but
some of the
properties
they satisfy.

80 communications of the acm | march 2009 | vol. 52 | no. 3

review articles

cheat and Ben-Or et al. leveraged this
to create protocols where they reveal
little knowledge about the proof when
trying to prove their assertion to the
verifier. (Some of the information be-
ing leaked in single-prover protocols
was occurring because the prover
needed to prove its honesty, and this
information leakage could now stop.)

Fortnow et al.16 tried to study the pow-
er of multiprover interactions when the
number of provers increased from two to
three and so on. They noticed that more
than two provers does not enhance the
complexity of the assertions that could
be proved to a polynomial time verifier.
Key to this discovery was the notion of
an “Oracle-Interactive Proof.” This is yet
another variation in the theme of inter-
active proofs where the prover is “semi-
honest.” Specifically, the prover be-
haves as an oracle—it prepares a table
of answers to every possible question
that may be asked by the verifier and
then honestly answers any sequence
of questions from the verifier accord-
ing to the prepared set of answers. (In
particular, even if the history of ques-
tions suggests that a different answer
to the latest question may increase the
probability that the verifier accepts, the
oracle does not change its mind at this
stage.) Fortnow et al. noted that Oracle-
interactive proofs simulate any (polyno-
mial) number of provers, and are in turn
simulated by 2-prover proof systems
with just one round of interaction (that
is, the verifier asks each of the two prov-
ers one question each, without waiting
for any responses from the provers, and
then the provers respond).

Subsequent to Shamir’s result on the
power of IP (single prover interactive
proofs), Babai et al.6 gave an analogous
characterization of the power of MIP.
They showed that the set of assertions
that can be proved in polynomial time
to a probabilistic verifier talking to two
provers is the same as the set of asser-
tions that could be verified in exponen-
tial time by a deterministic (classical)
verifier. Thus the interaction with mul-
tiple provers reduced verification time
from exponential to a polynomial!
Holographic Proofs, PCPs: In subsequent
work, Babai et al.5 noticed that the no-
tion of an oracle-interactive proof was
not very different from the classical no-
tion of a proof. If one considers the table
implied by the oracle prover and writes

it down explicitly, one would get a very
long string (potentially exponentially
long in the running time of the verifier),
which in effect was attempting to prove
the assertion. In the result of Babai et
al.,6 this oracle-based proof is not much
longer than the classical proof (both
have length exponential in the length of
the assertion), but the oracle proof was
much easier to check (could be checked
in polynomial time). This led Babai et
al. to name such proofs holographic
(small pieces of the proof reveal its cor-
rectness/flaws). Babai et al. focussed on
the computation time of the verifier and
showed (in some careful model of veri-
fication) that every proof could be con-
verted into a holographic one of slightly
superlinear size, where the holographic
one could be verified by the verifier in
time that was some polynomial in the
logarithm of the length of the proof.

Around the same time, with a very
different motivation that we will discuss
in the next section, Feige et al.15 implic-
itly proposed the concept of a PCP with
the emphasis now being on the query
complexity of the verifier (as opposed
to the computation time in holographic
proofs). The notion of PCP was finally
explicitly defined by Arora and Safra.4

We stress that the theory of PCPs in-
herits much more than just the defini-
tion of PCPs from the theory of interac-
tive proofs. The results, techniques, and
even just the way of thinking, developed
in the context of interactive proofs
played a major role in the development
of the PCP theorem. In particular, the
notion of 2-player 1-round interactive
proof and their equivalence to oracle-
interactive proofs and hence PCPs plays
a significant role in this theorem and we
will use this notion to explain the proofs
from a high level.

Implications to
Combinatorial Optimization
The notion of theorems and proofs has
shed immense light on the complexity
of combinatorial optimization. Consid-
er a prototypical problem, namely graph
coloring, that is, the task of coloring the
vertices of an undirected graph with the
minimum number of possible colors so
that the endpoints of every edge have
distinct colors. The seminal works of
Cook, Levin, and Karp11, 25, 27 show that
this task is as hard as finding a proof of
some given theorem. In other words,

given an assertion A and estimate N on
the length a proof, one can construct a
graph G on O(N 2) vertices with a bound
K, such that G has a coloring with K or
fewer colors if and only if A has a proof
of length at most N. Furthermore, given
a K-coloring of G, one can reconstruct
a proof of A in time polynomial in N.
Thus unless we believe that proofs of
theorems can be found in time polyno-
mial in the length of the shortest proof
(something that most mathematicians
would find very surprising), we should
also believe that graph coloring cannot
be solved in polynomial time.

Of course, graph coloring is just one
example of a combinatorial optimiza-
tion problem that was shown by the
theory of NP-completeness to be as hard
as the task of theorem-proving. Finding
large independent sets in graphs, find-
ing short tours for travelling salesmen,
packing objects into a knapsack are
all examples of problems for which
the same evidence of hardness applies
(see Garey17 for many more examples).
The NP-completeness theory unified
all these problems into the same one,
equivalent to theorem-proving.

Unfortunately, a somewhat more
careful look into the different problems
revealed many differences among them.
This difference became apparent when
one looked at their “approximability.”
Specifically, we say that an algorithm A
solves a (cost) minimization problem
Õ to within some approximation fac-
tor a (n) if on every input x of length n,
A(x) outputs a solution whose cost is no
more than a (n) factor larger than the
minimum cost solution. For (profit)
maximization problems, approximabil-
ity is defined similarly: An a (n) approxi-
mation algorithm should produce a
solution of cost at least the optimum
divided by a (n). Thus a (n) ³ 1 for every
algorithm A and problem Õ.

The NP-completeness theory says
that for the optimization problems list-
ed above find a 1-approximate solution
(that is, the optimum one) is as hard as
theorem-proving. However, for some
NP-complete minimization problems,
it may be possible to find a solution of
cost, say, at most twice the optimum
in polynomial time for every input.
Indeed this happens for the travelling
salesman problem on a metric space
(a space where distances satisfy triangle
inequality). If one finds a minimum

review articles

march 2009 | vol. 52 | no. 3 | communications of the acm 81

cost spanning tree of the graph and per-
forms a depth-first-traversal of this tree,
one gets a “tour” that visits every node
of the graph at least once and has a cost
of at most twice the cost of the optimum
travelling salesperson tour. (This tour
may visit some vertices more than
once, but such extra visits can be short-
circuited. The short-circuiting only pro-
duces a smaller length tour, thanks to
the triangle inequality.) Thus the trav-
elling salesman problem with triangle
inequalities (-TSP) admits a polyno-
mial time 2-approximation algorithm.
Does this imply that every optimization
problem admits a 2-approximation al-
gorithm? Turns out that not even a -
approximation algorithm is known
for graph coloring. On the other hand,
the knapsack problem has a (1 + e)-
approximation algorithm for every
positive e, while the same is not known
-TSP. Thus while the theory of NP-
completeness managed to unify the
study of optimization problems, the
theory of “approximability” managed to
fragment the picture. Till 1990 however
it was not generally known if the inabil-
ity to find better approximation algo-
rithms was for some inherent reason,
or was it merely our lack of innovation.
This is where the PCP theory came in to
the rescue.

In their seminal work, Feige et al.15
came up with a startling result. They
showed that the existence of a PCP veri-
fier as in the PCP theorem (note that
their work preceded the PCP theorem
in the form stated here, though weaker
variants were known) implied that if
the independent set size in a graph
could be approximated to within any
constant factor then NP would equal P!
Given a PCP verifier V and an assertion
A, they constructed, in polynomial time,
a graph G = GV,A with the property that ev-
ery independent set in G corresponded
to a potential “proof” of the truth of A,
and the size of the independent set is
proportional to the probability with
which the verifier would accept that
“proof.” Thus if A were true, then there
would be a large independent set in the
graph of size, say K. On the other hand,
if A were false, every independent set
would be of size at most (1 − e)K. Thus
the gap in the acceptance probability
of the verifier turned into a gap in the
size of the independent set. A 1/(1 −
e /2)-approximation algorithm would ei-

ther return an independent set of size
greater than (1 − e /2)K, in which case
A must be true, or an independent set
of size less than (1 − e)K in which case
we may conclude that A is false. Thus a
1/(1 − e /2)-approximation algorithm
for independent sets suffices to get an
algorithm to decide truth of assertions,
which is an NP-complete task.

The natural next question is whether
the connection between independent
set approximation and PCPs is an iso-
lated one—after all different problems
do behave very differently with respect
to their approximability, so there is no
reason to believe that PCPs would also
yield inapproximability results for other
optimization problems. Fortunately,
it turns out that PCPs do yield inap-
proximability results for many other
optimization problems. The result of
Feige et al. was followed shortly there-
after by that of Arora et al.3 who showed
that for a broad collection of problems,
there were nontrivial limits to the con-
stant factor to which they were approx-
imable, unless NP = P. (In other words,
for each problem under consideration
they gave a constant a > 1 such that the
existence of an a-factor approximation
algorithm would imply NP = P.) This col-
lection was the so-called MAX SNP-hard
problems. The class MAX SNP had been
discovered earlier by Papadimitriou and
Yannakakis30 and their work and subse-
quent works had shown that a varied col-
lection of problems including the MAX
CUT problem in graphs, Vertex Cover
problem in graphs, Max 3SAT (an opti-
mization version of 3SAT where the goal
is to satisfy as many clauses as possible),
-TSP, Steiner trees in metric spac-
es, the shortest superstring problem
were all MAX SNP-hard. Subsequently
more problems were added to this set
by Lund and Yannakakis29 and Arora
et al.1 The combined effect of these re-
sults was akin to that of Karp’s work25 in
NP-completeness. They suggested that
the theory of PCPs was as central to the
study of approximability of optimization
problems, as NP-completeness was to
the exact solvability of optimization
problems. Over the years, there have
been many successful results deriving
inapproximability results from PCP ma-
chinery for a wide host of problems (see
surveys by Arora and Khot2, 26 for further
details). Indeed the PCP machinery end-
ed up yielding not only a first cut at the

approximability of many problems, but
even very tight analyses in many cases.
Some notable results here include the
following:

Håstad˲˲ 22 showed that Max 3SAT
does not have an a-approximation algo-
rithm for a < 8/7. This is tight by a result
of Karloff and Zwick24 that gives an 8/7
approximation algorithm.

Feige˲˲ 14 gave a tight inapproximabil-
ity result for the Set Cover problem.

Håstad˲˲ 21 shows that the clique size
in n-vertex graphs cannot be approxi-
mated to within a factor of n1−e for any
positive e .

Again, we refer the reader to some of
the surveys for more inapproximability
results2, 26 for further details.

Construction of PCPs:
A Bird's Eye View
We now give a very high level view of
the two contrasting approaches to-
wards the proof of the PCP theorem.
We stress that this is not meant to give
insight, but rather a sense of how the
proofs are structured. To understand
the two approaches, we find it useful
to work with the notion of 2-prover one
round proof systems. While the notion
is the same as the one defined infor-
mally in Section 2, here we define the
verifier more formally, and introduce
the parameter corresponding to query
complexity in this setting.

Definition 4.1 (2IP verifier, Answer
size, Gap). A 2IP verifier of answer size
a(n), and gap e (n) is a probabilistic algo-
rithm V who, on input an assertion A Î
{0,  1}*, picks a random string R Î {0,1}*,
makes one query each to two provers P1,
P2 : {1, …, } ® {0, 1}*, and produces
an accept/reject verdict, denoted
V P1,  P2 (A; R), with the following restrictions,
when A Î {0, 1}n:

Running time: V always runs in time
polynomial in n.
Answer size: The prover’s answers are
each a(n) bits long.
Prover length: The questions to the prov-
ers are in the range {1,…, (n)} where (n)
is a polynomial in n.
Completeness: If A is a true assertion,
there exist provers P1, P2 such that V P1,  P2 (A;
R) always accepts.
Soundness, with gap e (n): If A is not true,
then for every pair of provers P1, P2 the
probability, over the choice of the random-

82 communications of the acm | march 2009 | vol. 52 | no. 3

review articles

ness R, that V P1,  P2 (A; R) outputs accept is
at most 1 − e (n).

The definition is (intentionally) very
close to that of a PCP verifier, so let us
notice the differences. Rather than one
proof oracle, we now have two provers.
But each is asked only one question, so
effectively they are oracles! In PCPs, the
response to a query is one bit long, but
now the responses are a(n) bits long.
On the other hand, in PCPs, the verifier
is allowed to make q(n) queries to the
proof oracle, while here the verifier is
only allowed one query each. Neverthe-
less, PCP verifiers and MIP verifiers are
closely related. In particular, the follow-
ing proposition is really simple from the
definitions.

Proposition 4.2. If 3SAT has a 2IP veri-
fier of answer size a(n) and gap e (n), then
3SAT has a PCP verifier with query com-
plexity 2 · a(n) and gap e (n).

The PCP verifier simply simulates
the 2IP verifier, with each query to the
provers being simulated by a(n) queries
to the proof oracle.

Thus to prove the PCP theorem, it suf-
fices to give a 2IP verifier with constant
gap and constant answer size. We start
with the approach of Arora and Safra.4

Reducing answer size. The initial
proofs of the PCP theorem approached
their goal by holding the gap to be a
constant, while allowing the 2IP veri-
fier to have (somewhat) long answer
sizes. Key to this approach were some
alphabet reduction lemmas initiated
in the work of Arora and Safra.4 Here we
state two from Arora et al.,3 that suffice
for our purposes.

Lemma 4.3 (Arora et al.3). There exists
a constant d > 0 such that if 3SAT has a 2IP
verifier with answer size a(n) and gap e ,
then 3SAT also has a 2IP verifier with an-
swer size (log a(n) )2 and gap e · d.

Lemma 4.4 (Arora et al.3). There exist
constants c < ∞ and t > 0 such that if 3SAT
has a 2IP verifier with answer size a(n) =
o(log n) and gap e , then 3SAT also has a 2IP
verifier with answer size c and gap e · t.

Both lemmas above offer (pretty se-
vere) reductions in answer sizes. Below,
we show how they suffice to get the
PCP theorem. Of course, the technical

complexity is all hidden in the proofs
of the two lemmas, which we will not be
able to present. We simply mention that
these lemmas are obtained by revisiting
several popular “algebraic error-correct-
ing codes” and showing that they admit
query efficient probabilistic algorithms
for “error-detection” and “error-correc-
tion.” The reader is referred to the origi-
nal papers3, 4 for further details.

Proof of Theorem 2.2. We start by
noting that the classical (determinis-
tic) verifier for 3SAT is also a 2IP verifier
with answer size n and gap 1. Applying
Lemma 4.3 we then get it thus has a 2IP
verifier with answer size (log n)2 and
gap d . Applying Lemma 4.3 again we
now see that is also has a 2IP veri-
fier with answer size (log(log n) )2 and
gap d 2. Since a(n) = o(log n) we can
now apply Lemma 4.4 to see that it has
a 2IP verifier with answer size c and
gap d2 · t. By Proposition 4.2 we conclude
that 3SAT has a PCP verifier with query
complexity 2c and gap d 2t.

Amplifying error. We now turn to
the new, arguably simpler, proof due to
Dinur12 of the PCP theorem. Since we are
hiding most of the details behind some
of the technical lemmas, we would not
be able to completely clarify the sim-
plicity of Dinur’s approach. However,
we will be able to at least show how it
differs right from the top level.

Dinur’s approach to the PCP theo-
rem is an iterative one, and rather than
working with large answer sizes, this
proof works with small gaps (during in-
termediate stages).

The approach fixes a “generalized
graph k-coloring” problem as the prob-
lem of interest and fixes a canonical 2IP
verifier for this problem. It starts by ob-
serving that 3SAT can be transformed
to this generalized graph 3-coloring
problem. It then iteratively trans-
forms this graph into a different one,
each time increasing the “gap of the
instance.” The final instance ends up
being one that where the canonical 2IP
verifier either accepts with probability
1, or rejects with constant probability
(depending on whether the original
instance is satisfiable or not), which
is sufficient for the PCP theorem. We
go into some more details of this ap-
proach below, before getting into the
heart of the process which is the single
iteration.

The literature
on PCPs is rich
with a diversity
of parameters,
but we chose
to focus on only
two: the query
complexity
and the gap.

review articles

march 2009 | vol. 52 | no. 3 | communications of the acm 83

A generalized graph k-coloring
problem has as an instance a graph
G = (V, E) and constraint functions
pe : {1,…,k} × {1,…,k} ® {accept,
reject} for every edge e Î E. The
canonical 2IP verifier for in instance
expects as provers two oracles giving
c1, c2 : V ® {1,…, k} and does one of
the following: With probability 1/2 it
picks a random edge e = (u, v) Î E que-
ries for c1(u) and c2(v) and accepts iff
pe(c1(u), c2(v) ) = accept. With prob-
ability 1/2 it picks a random vertex
u Î V and queries for c1(u) and c2(u)
and accepts if and only if c1(u) = c2(v).
Note that the canonical 2IP verifier
has answer size [log2 k]. An instance is
satisfiable if the canonical 2IP verifier
accepts with probability 1. An instance
is e -unsatisfiable if the probability that
the verifier rejects is at least e .

Key to Dinur’s iterations are trans-
formations among generalized graph
coloring problems that play with the
gap and the answer size (that is, # of
colors allowed) of the 2IP verifiers.
Since these transformations are ap-
plied many times to some fixed start-
ing instance, it is important that the
transformations do not increase the
problem size by much and Dinur in-
sists that they only increase them by
a linear factor. We define this notion
formally here.

Definition 4.5. A transformation T that
maps instances of generalized graph k-
coloring to generalized graph K-coloring
is a (k, K, b, e0)-linear-transformation if it
satisfies the following properties:

T˲˲ (G) has size linear in the size of G.
T˲˲ (G) is satisfiable if G is satisfiable.
T˲˲ (G) is min{b . e , e 0}-unsatisfiable if

G is e -unsatisfiable.
Note that the parameter b above may

be greater than 1 or smaller; and the ef-
fect in the two cases is quite different. If
b > 1 then the transformation increases
the gap, while if b < 1 then the transfor-
mation reduces the gap. As we will see
below, Dinur’s internal lemmas play
with effects of both kinds (combining
them in a very clever way).

The key lemma in Dinur’s iterations
does not play with the answer size and
simply increase the gap and may be
stated as below.

Lemma 4.6 (Gap Amplification Lem-
ma). There exists a constant e0 > 0 such that

there exists a polynomial-time computable
(3, 3, 2, e0)-linear-transformation T.

Before getting a little into the de-
tails of the proof of this lemma, let us
note that it suffices to prove the PCP
theorem.

Proof of Theorem 2.2. We de-
scribe a 2IP verifier for 3SAT. The verifier
acts as follows. Given a 3CNF formula
f of length n, it first applies the stan-
dard reduction from 3SAT to 3-coloring
to get an instance G0 of (generalized)
graph 3-coloring which is 3-colorable
iff f is satisfiable. Note that this in-
stance is 1/m-unsatisfiable for some
m = O(n). The verifier then iteratively
applies the transformation T to G0  =
log m times, that is, it sets Gi = T(Gi−1)
for i = 1,…,. Finally it simulates the
canonical 2IP verifier on input G


.

If f is satisfiable, then so is Gi
for every i, and so the canonical
2IP verifier accepts with probabil-
ity 1. If f is unsatisfiable then Gi is min
{2i · 1/m, e 0}-unsatisfiable and so G


 is e 0-

unsatisfiable. Finally note that since each
iteration increases the size of Gi only by a
constant factor, the final graph G


 is only

polynomially larger than f, and the entire
process only requires polynomial time.

Note that the 2IP verifier thus con-
structed has answer size [log2 3] = 2 bits.
Its gap is e 0. The conversion to a PCP
verifier leads to one that has query com-
plexity of 4 bits and gap e0 > 0.

We now turn to the magical gap-
amplifying lemma above. Dinur
achieves this lemma with two sub-lem-
mas, where the game between answer
size and gap becomes clear.

Lemma 4.7 (Gap-Increase). For every k,
b1 < ∞, there exists a constant K < ∞ and e1
> 0 such that a (k, K, b1, e1)-linear-transfor-
mation T1 exists.

Note that a large b1 >> 1 implies the
transformation enhances the unsat-
isfiability of an instance. The Gap-
Increase lemma is claiming that one
can enhance this unsatisfiability by
any constant factor for an appropri-
ate price in the answer size. The next
lemma trades off in the other direction,
but with a clever and critical switch of
quantifiers.

Lemma 4.8 (Answer-Reduction).
For every k there exists a constant b2 >
0 such that for every K < ∞ a (K, k, b2, 1)-
linear-transformation T2 exists.

The constant b2 obtained from the
lemma is quite small (very close to 0).
But for this price in gap-reduction we
can go from large answer sizes to small
ones, and the price we pay in the un-
satisfiability is independent of K! This
allows us to combine the two lemmas
to get the powerful gap amplification
lemma as follows.

Proof of Lemma 4.6. Fix k = 3. Let b2
and T2 be as in Lemma 4.8. Apply Lem-
ma 4.7 with b1 = 2/b2 and let K, e 1 and T1
be as guaranteed by Lemma 4.7. Let T(G)
= T2(T1(G) ). Then, it can be verified that T
is a (k, k, 2, b2· e 1)-linear-transformation.�

Finally we comment on the proofs
of Lemmas 4.7 and 4.8. We start with
the latter. The crux here is the indepen-
dence of b2 and K. A reader who attempts
to use standard reductions, from say
k-coloring to K-coloring would realize
that this is nontrivial to achieve. But
if one were to ignore the linear-size re-
striction, the PCP literature already gave
such transformations before. In particu-
lar Lemma 4.4 gives such a transforma-
tion provided K = 2o(log n). When special-
ized to the case K = O(1) the reduction
also turns out to be a linear one.

Lemma 4.7 is totally novel in Dinur’s
works.12, 13 To get a sense of this lem-
ma, let us note that its principal goal
is to reduce the error of the 2IP veri-
fier and so is related to the standard
question in the context of randomized
algorithms: that of error-reduction. In
the context of randomized algorithms
this is well studied. If one starts with
any randomized algorithm to compute
some function and say it produces the
right answer with probability 2/3 (and
errs with probability 1/3), then one
can reduce the error by running this
algorithm many times and output-
ting the most commonly seen answer.
Repetition m times reduces the error
to 2−Ω(m). One could view a 2IP verifier
as just another randomized procedure
and attempt to repeat the actions of
the verifier m times to reduce its er-
ror. This leads to two problems. First
the natural approach increases the
number of rounds of communication

84 communications of the acm | march 2009 | vol. 52 | no. 3

review articles

between the verifier and the prover to
m-rounds and this is not allowed (by
our definitions, which were crucial
to the complementary lemma). A less
natural, and somewhat optimistic, ap-
proach would be to repeat the random
coin tosses 2IP verifier m times, col-
lect all the questions that it would like
to ask, say, the first prover and send
them together in one batch (and simi-
larly with the second prover). Analysis
of such parallel repetition of 2IP veri-
fiers was known to be a nontrivial
problem,16, 32 yet even such an analysis
would only solve the first of the prob-
lems with the “naive” approach to er-
ror-reduction. The second problem is
that the transformation does not keep
the size of the transformed instance
linear in size and this turns out to be
a fatal. Dinur manages to overcome
this barrier by borrowing ideas from
“recycling” of randomness,10, 23 which
suggests approaches for saving on this
blowup of the instance size. Analyzing
these approaches is nontrivial, but
Dinur manages to do so, with a rela-
tively clean (and even reasonably
short) proof. The reader is pointed to
the original paper12 for full details,
and to a more detailed survey31 for in-
formation on the context.

Conclusion
The goal of this article is to mainly
highlight the notion of a PCP, and its
utility in computational complexity.
Due to limitations on space and time,
we were barely able to scratch the sur-
face. In particular we did not focus on
the explicit parameters and the tightest
results known. The literature on PCPs
is rich with a diversity of parameters,
but we chose to focus on only two: the
query complexity and the gap. The
trade-off between the two is already in-
teresting to study and we mention one
tight version, which is extremely useful
in “inapproximability” results. Håstad22
shows that the query complexity in the
PCP theorem can be reduced to 3 bits,
while achieving a gap arbitrarily close
to 1/2. So a verifier confronted with a
fallacious assertion can read just 3 bits
of the proof, and would find an error
with probability (almost) one-half!

One of the somewhat strange aspects
of PCP research has been that even
though the existence of PCPs seems to
be a “positive” statement (verification

can be very efficient), its use is mostly
negative (to rule out approximation al-
gorithms). One may wonder why the
positive aspect has not found a use. We
suggest that positive uses might emerge
as more and more of our life turns digi-
tal, and we start worrying not only about
the integrity of the data, but some of the
properties they satisfy, that is, we may
not only wish to store some sequence of
bits x, but also preserve the information
that P(x) = y for some program P that
took x as an input.

One barrier to such uses is the cur-
rent size of PCPs. PCP proofs, even
though they are only polynomially larg-
er than classical proofs; they are much
larger, and this can be a prohibitive cost
in practice. The good news is that this
parameter is also improving. An opti-
mistic estimate of the size of the PCP
proof in the work of Håstad22 might be
around n106, where n is the size of the
classical proof! But recent results have
improved this dramatically since and
current best proofs9, 12 work with PCPs
of size around O(n(log n)O(1)) (so the con-
stant in the exponent has dropped from
106 to 1 + o(1) ). Thus far, this reduc-
tion in PCP size has come at the price
of increased query complexity, but this
concern is being looked into by current
research and so a positive use of PCPs
may well be seen in the near future.

Acknowledgments
I would like to thank the anonymous
reviewers for their valuable comments,
and for detecting (mathematical!) er-
rors in the earlier version of this manu-
script (despite the fact that this article
is not written in the PCP format).�

References
	 1.	A rora, S., Babai, L., Stern, J., Sweedyk, Z. The hardness

of approximate optima in lattices, codes and systems
of linear equations. J. Comput. Syst. Sci. 54, 2 (Apr.
1997), 317–331.

	 2.	A rora, S., Lund, C. Hardness of approximations.
Approximation Algorithms for NP-Hard Problems.
D.S. Hochbaum, ed. PWS, 1995.

	 3.	A rora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.
Proof verification and the hardness of approximation
problems. J. ACM 45, 3 (May 1998), 501–555.

	 4.	A rora, S., Safra, S. Probabilistic checking of proofs: A new
characterization of NP. J. ACM 45, 1 (Jan. 1998), 70–122.

	 5.	 Babai, L., Fortnow, L., Levin, L.A., Szegedy, M. Checking
computations in polylogarithmic time. In Proceedings
of the 23rd ACM Symposium on the Theory of
Computing (New York, 1991), ACM, 21–32.

	 6.	 Babai, L., Fortnow, L., Lund, C. Non-deterministic
exponential time has two-prover interactive protocols.
Comput. Complexity 1, 1 (1991), 3–40.

	 7.	 Babai, L., Moran, S. Arthur-Merlin games: A
randomized proof system, and a hierarchy of
complexity class. J. Comput. Syst. Sci. 36, 2 (Apr.
1988), 254–276.

	 8.	 Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson,

A. Multi-prover interactive proofs: How to remove
intractability. In Proceedings of the 20th Annual
ACM Symposium on the Theory of Computing (1988),
113–131.

	 9.	 Ben-Sasson, E., Sudan, M. Short PCPs with poly-log
rate and query complexity. In Proceedings of the 37th
Annual ACM Symposium on Theory of Computing
(New York, 2005), ACM, 266–275.

	10.	�C ohen, A., Wigderson, A. Dispersers, deterministic
amplification, and weak random sources (extended
abstract). In IEEE Symposium on Foundations of
Computer Science (1989), 14–19.

	11.	C ook, S.A. The complexity of theorem-proving
procedures. In Proceedings of the 3rd ACM
Symposium Theory of Computing (Ohio, 1971), Shaker
Heights, 151–158.

	12.	D inur, I. The PCP theorem by gap amplification. In
Proceedings of the 38th Annual ACM Symposium on
Theory of Computing (New York, 2006), ACM, 241–250.
Preliminary version appeared as an ECCC Technical
Report TR05-046.

	13.	D inur, I., Reingold, O. Assignment testers: Towards
a combinatorial proof of the PCP-theorem. In
Proceedings of the 45th Annual IEEE Symposium on
Foundations of Computer Science (Loc Alamitos, CA,
USA, 2004), IEEE, 155–164.

	14.	F eige, U. A threshold of ln n for approximating set
cover. J. ACM 45, 4 (1998), 634–652.

	15.	F eige, U., Goldwasser, S., Lovász, L., Safra,
S., Szegedy, M. Interactive proofs and the hardness
of approximating cliques. J. ACM 43, 2 (1996),
268–292.

	16.	F ortnow, L., Rompel, J., Sipser, M. On the power of
multi-prover interactive protocols. Theor. Comput. Sci.
134, 2 (1994), 545–557.

	17.	G arey, M.A., Johnson, D.S. Computers and
Intractability. Freeman, 1979.

	18.	G oldreich, O. Modern Cryptography, Probabilistic Proofs
and Pseudorandomness, volume 17 of Algorithms and
Combinatorics. Springer-Verlag, 1998.

	19.	G oldreich, O., Micali, S., Wigderson, A. Proofs that yield
nothing but their validity or all languages in NP have
zero-knowledge proof systems. J. ACM 38, 1 (July 1991),
691–729. Preliminary version in IEEE FOCS, 1986.

	20.	G oldwasser, S., Micali, S., Rackoff, C. The knowledge
complexity of interactive proof systems. SIAM J.
Comput. 18, 1 (February 1989), 186–208.

	21.	H åstad, J. Clique is hard to approximate within n to
the power 1-epsilon. Acta Mathemat. 182 (1999),
105–142.

	22.	H åstad, J. Some optimal inapproximability results.
J. ACM 48 (2001),798–859.

	23.	I mpagliazzo, R., Zuckerman, D. How to recycle random
bits. In IEEE Symposium on Foundations of Computer
Science (1989), 248–253.

	24.	K arloff, H., Zwick, U. A 7/8-approximation algorithm
for max 3sat? In FOCS ’97: Proceedings of the 38th
Annual Symposium on Foundations of Computer
Science (FOCS ’97) (Washington, DC, USA, 1997), IEEE
Computer Society, 406–415.

	25.	K arp, R.M. Reducibility among combinatorial problems.
Complexity of Computer Computations. R. Miller, and
J. Thatcher, eds.1972, 85–103.

	26.	K hot, S. Guest column: Inapproximability results via long
code based pcps. SIGACT News 36, 2, 25–42, 2005.

	27.	L evin, L.A. Universal search problems. Problemy
Peredachi Informatsii, 9, 3 (1973), 265–266.

	28.	L und, C., Fortnow, L., Karloff, H.J., Nisan, N. Algebraic
methods for interactive proof systems. J. ACM 39, 4
(Oct. 1992), 859–868.

	29.	L und, C., Yannakakis, M. On the hardness of
approximating minimization problems. J. ACM 41, 5
(Sept. 1994), 960–981.

	30.	 Papadimitriou, C., Yannakakis, M. Optimization,
approximation, and complexity classes. J. Comput.
Syst. Sci. 43 (1991), 425–440.

	31.	R adhakrishnan, J., Sudan, M. On Dinur’s proof of the
PCP theorem. Bulletin (New Series) Amer. Math. Soc.,
44, 1 (Jan. 2007), 19–61.

	32.	R az, R. A parallel repetition theorem. SIAM J. Comput.
27, 3 (1998), 763–803.

	33.	S hamir, A. IP = PSPACE. J. ACM 39, 4 (Oct. 1992),
869–877.

	34.	S hannon, C.E. A mathematical theory of communication.
Bell Syst. Tech. J. 27, (1948), 379–423, 623–656.

Madhu Sudan is Fujitsu Professor of EECS at MIT's
Computer Science and Artificial Intelligence Laboratory,
Cambridge, MA.

© 2009 ACM 0001-0782/09/0300 $5.00

research highlights

march 2009 | vol. 52 | no. 3 | communications of the acm 85

p. 97

Learning and Detecting
Emergent Behavior in
Networks of Cardiac Myocytes
By Radu Grosu, Scott A. Smolka, Flavio Corradini,
Anita Wasilewska, Emilia Entcheva, and Ezio Bartocci

p. 96

Technical
Perspective
Where Biology
Meets Computing
By Bud Mishra

p. 87

Error Correction up to the
Information-Theoretic Limit
By Venkatesan Guruswami and Atri Rudra

p. 86

Technical
Perspective
The Beauty of
Error-Correcting
Codes
By Daniel A. Spielman

86 communications of the acm | march 2009 | vol. 52 | no. 3

Error- corre ctin g c odes are the
means by which we compensate for
interference in communication, and
are essential for the accurate trans-
mission and storage of digital data.
All communication mechanisms and
storage devices are subject to interfer-
ence, typically called “noise,” which
corrupts communicated messages and
stored data. Thus, for a communica-
tion system to faithfully transmit data,
it must build redundancy into its trans-
missions in such a way that even if a
transmission is partially corrupted, the
intended message may be reconstruct-
ed. Error-correcting codes provide the
mapping from messages to redundant
transmissions.

For example, a message is usually a
string of zeros and ones. A redundant
encoding of a message may be ob-
tained by appending a few parity bits
to the original message, to form a code-
word. The rate of a code is the ratio of
the length of a message to the length
of a codeword, and equals the recipro-
cal of the redundancy. A communica-
tion medium, called a channel, might
transmit bits, and noise could flip bits
from zero to one or one to zero. For ex-
ample, the Binary Symmetric Channel
with crossover probability p transmits
bits, and flips each bit with probability
p, independently. An error-correcting
code is designed with an abstract mod-
el of the target communication chan-
nel in mind.

Given a model of a channel, one
should design a code that maximiz-
es the rate while minimizing some
tradeoff of error-probability, delay, and
the computational complexity of en-
coding and decoding. While the goal
of achieving low probability of error
in a communication system is funda-
mentally probabilistic, major advances
in the field have been made through a
worst-case, deterministic, approach.
The paper here by Guruswami and
Rudra surveys developments in the
worst-case approach to the coding

problem, and explains their own re-
cent contributions. They build on the
classical Reed-Solomon codes.

Reed-Solomon codes employ a sig-
naling alphabet containing more ele-
ments than just zero and one: each
symbol is an element of a finite field,
such as the integers modulo a prime. In
a Reed-Solomon code of rate R, classic
decoding algorithms can efficiently re-
construct a message so long as at most
a (1−R)/2 fraction of the symbols in the
transmitted codeword are corrupted.
This is exactly the fraction of errors up
to which the problem is guaranteed to
have a unique solution: there exist rare
patterns containing just one more er-
ror for which two codewords are equal-
ly close to the corrupted transmission.

A major advance in the decoding
of Reed-Solomon codes was Sudan’s4
algorithm for list decoding Reed-Sol-
omon codes. A list-decoding decoder
returns the list of all codewords within
some distance of a corrupted transmis-
sion. While the closest codeword is
usually unique, the algorithmic task is
simplified by the option of returning a
list. Guruswami and Sudan’s1 improve-
ment of Sudan’s list decoder efficiently
returns the list of all codewords that
differ from a corrupted transmission
in at most a 1 − R fraction of symbols,
and the list is guaranteed to be short.

This was a big improvement over
previous decoding algorithms, but
made little difference at the desirable
high rates (near 1), where 1 − R is ap-
proximately the same as (1−R)/2. Gu-
ruswami and Rudra’s advance exploits
an idea of Parvaresh and Vardy3 for
bundling Reed-Solomon alphabet sym-
bols together. This makes the signal-
ing alphabet slightly larger, but greatly
increases the fraction of errors under
which efficient list decoding is pos-
sible. They obtain codes of rate R from
which one can efficiently produce the
list of all codewords that differ from a
corrupted transmission in a fraction of
symbols approaching 1 − R. For high-

rate codes, this is almost twice as many
errors as previous schemes could cor-
rect. Moreover, we know that one can-
not hope to do better.

While a tremendous theoretical ad-
vance, more work is required before
these codes can be used in practical
communication systems. The decod-
ing algorithms run in polynomial time,
but need to be faster before they can
be applied in practice. They also need
to be extended to incorporate informa-
tion from lower levels of the commu-
nication system. Few communication
media naturally transmit finite field el-
ements, or even zeros and ones. These
symbols are usually converted into an-
alog waveforms. Receivers of partially
corrupted waveforms can do more than
just report which valid waveform is
closest: they can return the likelihood
of each valid waveform. A soft-decision
decoder incorporates this information
into the decoding process.

Koetter and Vardy2 figured out how
to incorporate such information in the
Guruswami-Sudan algorithm, and an
analogous discovery may be required
before we communicate using Gurus-
wami-Rudra codes.	

References
1.	G uruswami, V. and Sudan, M. Improved decoding of

Reed-Solomon and algebraic-geometric codes. IEEE
Trans. on Info. Theory, 45 (1999), 1757–1767.

2.	K oetter, R. and Vardy, A. Algebraic soft-decision
decoding of Reed-Solomon codes. IEEE Trans. on
Info. Theory 49, 112 (2003), 2809–2825.

3.	 Parvaresh, F. and Vardy, A. Correcting errors beyond
the Guruswami-Sudan radius in polynomial time.
In Proceedings of the 46th IEEE Symposium on
Foundations of Computer Science (2005), 285–294.

4.	S udan, M. Decoding the Reed-Solomon codes beyond
the error-correction bound. Journal of Complexity 13,
1 (1997), 180–193.

Daniel A. Spielman (Spielman@cs.yale.edu) is a
professor of applied mathematics and computer science
at Yale University, New Haven, CT.

research highlights

doi:10.1145/1467247.1467268

Technical Perspective
The Beauty of Error-
Correcting Codes
By Daniel A. Spielman

mailto:Spielman@cs.yale.edu

March 2009 | vol. 52 | no. 3 | communications of the acm 87

doi:10.1145/1467247.1467269

Abstract
Ever since the birth of coding theory almost 60 years ago,
researchers have been pursuing the elusive goal of con-
structing the “best codes,” whose encoding introduces the
minimum possible redundancy for the level of noise they
can correct. In this article, we survey recent progress in list
decoding that has led to efficient error-correction schemes
with an optimal amount of redundancy, even against worst-
case errors caused by a potentially malicious channel. To cor-
rect a proportion r (say 20%) of worst-case errors, these codes
only need close to a proportion r of redundant symbols. The
redundancy cannot possibly be any lower information theo-
retically. This new method holds the promise of correcting a
factor of two more errors compared to the conventional algo-
rithms currently in use in diverse everyday applications.

1. INTRODUCTION
Coping with corrupt data is an essential part of our modern
day lives; even if most of the time we are blissfully unaware
of it. When we watch television, the TV has to deal with sig-
nals that get distorted during transmission. While talking on
our cellphones, the phone has to work with audio signals that
get corrupted during transmission through the atmosphere
though we definitely are aware of it when the connection is
poor. When we surf the Internet, the TCP/IP protocol has to
account for packets that get lost or garbled while being routed.
When we watch movies on DVDs, the player has to overcome
loss of data due to scratches. Even when we buy our groceries,
the scanner has to deal with distorted barcodes on packages.

The key ingredient in coping with errors in these and
many other applications is an error-correcting code or just
code for brevity. The idea behind codes is conceptually sim-
ple: add redundancy to the information so that even if the
resulting data gets corrupted, e.g. packets get corrupted
during routing or the DVD gets some scratches, the original
information can still be recovered.

Ideally, we would like to add a small amount of redun-
dancy and at the same time be able to correct many errors.
As one might expect, these are conflicting goals and strik-
ing the right balance is where things get interesting. For
example, consider the code where every information bit is
repeated say a 100 times (this is known as the repetition
code). Intuitively, this code should do well. In particular, the
following is a natural error-recovery procedure or a decoding
algorithm: for every consecutive 100 bits of the data, iden-
tify whether the majority of the bits is 0 or 1, and output the
corresponding bit. Unless we happen to be unlucky, this
decoding algorithm can recover from quite a few errors. The
downside is that every 100 bits of data contain only one bit

of information—imagine how large a DVD would need to
be in order to store a movie with such redundancy. On the
other extreme is the parity code, which appends the parity
of the information bits at the end of the message. This code
uses the minimum amount of redundancy possible but has
poor error-recovery capabilities. Indeed, even if just two bits
get flipped, it can go undetected. For example, 0001 gets
encoded as 00011 under the parity code. If the first two bits
get corrupted and we receive 11011, we would misinterpret
the original message to be 1101. Imagine Clark Gable saying
at the end of your small parity encoded DVD for Gone with
the Wind, “Frankly, my dear, I don’t give a ham !”

To capture this inherent tension between the redundancy
and the error tolerance of codes, let us define codes and some
key parameters formally. A code C is given by an encoding
map of the form C : Σk → Σn (for integers k < n) which encodes
a sequence of k symbols from Σ into a larger sequence of n
symbols. Given a message m Î Σk, C(m) is known as the corre-
sponding codeword. The parameters k, n, and Σ are called the
dimension, block length, and alphabet of C, respectively. We
will often use the ratio R = k/n, which is called the rate of C.
Note that R exactly captures the amount of information con-
tained per bit of a codeword. The Hamming distance between
two strings in Σn is the number of coordinates where they dif-
fer. The minimum distance of a code is defined to be the small-
est Hamming distance between two distinct codewords.

Thus, our question of interest can be now re-stated as fol-
lows: given a code C of rate R, what is the maximum fraction
of errors (which we will henceforth refer to as r) that can
be tolerated by C? Now as every codeword has k symbols of
information, it is intuitive that in the worst case at least k
symbols of a codeword should be uncorrupted to have any
hope of recovering the original information. In other words,
we can only have r ≤ (n − k)/n = 1 − R, irrespective of the com-
putational power of the decoder.

The main focus of this article is the following question:

Can we construct a code C of rate R that can be efficiently
decoded from close to a 1 − R fraction of errors?

Quite surprisingly, we will show the answer to be yes. Thus,
the above simple information-theoretic limit can in fact be
approached. In particular, for small rates, we can recover from
situations where almost all of the data can be corrupted. For
example, we will be able to recover even if Clark Gable were
to spout “alhfksa, hy meap xH don’z hive b hayn!” There are

Error Correction up to the
Information-Theoretic Limit
By Venkatesan Guruswami and Atri Rudra

The original version of this paper was published in IEEE
Transactions on Information Theory, 2008.

88 communications of the acm | march 2009 | vol. 52 | no. 3

research highlights

in fact two parts to the above question. First, the code should
be such that the identity of the message is uniquely (or near
uniquely) pinned down based on the noisy version of its
encoding. Second, we need an efficient procedure to recover
the message based on the corrupted codeword, with run-
time bounded by a hopefully small polynomial in the block
length n. Brute-force approaches such as searching through
all codewords require time exponential in n, and are com-
putationally prohibitive. The main message of this article is
that a variant of the widely deployed Reed–Solomon codes
can in fact be error-corrected efficiently, even as the fraction
of errors approaches the absolute 1 − R limit.

We stress that in the above question, the noise model is
a worst-case one, where the channel is modeled as an adver-
sary/jammer that can corrupt the codeword in an arbitrary
manner, subject only to a limit on the total number of errors.
No assumptions are made on how the errors are distributed.
The worst-case model was put forth in Hamming’s influen-
tial paper.12 An alternate approach, pioneered by Shannon
in his seminal work,16 is to model the noisy channel as a
stochastic process whose behavior is governed by a pre-
cisely known probability law. A simple example is the binary
symmetric channel (BSCr) where each bit transmitted gets
flipped with a probability r, independent of all other bits.
For every such channel, Shannon exactly characterized the
largest rate at which reliable communication is possible.

We note that obtaining algorithmic results is more diffi-
cult in worst-case noise model. In fact, traditionally it was
believed that codes designed for worst-case noise faced a
limit of (1 − R)/2 fraction of errors, which is factor 2 off from
the information-theoretic limit of a (1 − R) fraction of errors.
In attempting to correct e > (n − k)/2 errors, we face a prob-
lem: there may be more than one codeword within Hamming
distance e from the received word. In any code mapping k
symbols to n symbols, there must be two codewords at dis-
tance (n − k + 1) or less. If one of these codewords is transmit-
ted and gets distorted by errors to halfway between the two
codewords, unambiguous recovery of the original message
becomes infeasible. This suggests that beyond a fraction
(1 − R)/2 of worst-case errors, the original message is unre-
coverable. This was indeed the conventional wisdom in cod-
ing theory till the 1990s.

A natural strategy, in the event of multiple close-by code-
words, would be to allow the decoder to output a list of code-
words. This model is called list decoding. It was introduced
in the late 1950s by Elias2 and Wozencraft,19 and revived
with an algorithmic focus for a cryptographic application by
Goldreich and Levin.4 Further, it turns out that the bad case
above is rather pathological—for typical patterns of e errors,
for e much bigger than (n − k)/2, the original codeword will
be the only codeword within distance e. Thus, list decoding
in addition to handling the bad error patterns for “unique”
decoding, also allows us to uniquely recover the transmitted
codeword for most error patterns.

It is interesting to note that even though the list decod-
ing problem has a long history in the coding theory world,a a

large share of the algorithmic progress in list decoding has
happened in the theoretical computer science community.
One of the reasons for this happy coincidence is that list
decoding has found numerous applications in cryptography
and computational complexity theory (e.g., see the discus-
sion on randomness extractors in Section 5).

In particular, in the last decade, the subject of list decod-
ing has witnessed a lot of activity, culminating in algorithms
that correct close to the information-theoretically optimal
1 − R fraction of errors with rate R. The purpose of this arti-
cle is to discuss this recent body of results which deliver the
full promise of codes against worst-case errors. We begin in
Section 2 by describing a popular family of codes and a few
decoding algorithms for it.

2. REED–SOLOMON CODES
In 1960, Irving Reed and Gustave Solomon described a
construction of error-correcting codes, which are called
Reed–Solomon codes after them, based on polynomials
over finite fields.b Almost 50 years after their invention,
Reed–Solomon codes (henceforth, RS codes) remain ubiq-
uitous today in diverse applications ranging from magnetic
recording to UPS bar codes to satellite communications.
To describe the simple and elegant idea behind RS codes,
imagine Alice wishes to communicate a pair of numbers
(a, b) to Bob. We can think of (a, b) as specifying a line in the
plane (with X, Y axes) with equation Y = aX + b. Clearly, to
specify the line, it suffices to communicate just two points
on the line. To guard against errors, Alice can oversample
this line and send more points to Bob, so that even if a
few points are distorted by errors, the collection of points
resembles the original line more closely than any other line
(Figure 1). Thus, Bob can hope to recover the correct line,
and in particular (a, b).

To encode longer messages consisting of k symbols via
an RS code, one thinks of these as the coefficients of a poly-
nomial f (X) of degree k − 1 in a natural way, and encodes
the message as n > k points from the curve Y − f (X) = 0.

Figure 1: Oversampling from a line Y = aX + b to tolerate errors,
which occur at X = 3 and 5.

X
1 2 3 4 5 6 7

b

Y

a  The problem was introduced about 50 years ago and the main combinato-
rial limitations of list decoding were established in the 1970s and 1980s.

b  For this article, readers not conversant with fields can think of a finite field
as {0, 1, . . . , p−1) for a prime p with addition and multiplication operations
defined modulo p.

march 2009 | vol. 52 | no. 3 | communications of the acm 89

Equivalently, the encoding consists of the values of the poly-
nomial f (X) at n different points. Formally, if F is a finite
field with at least n elements, and S = (a1, a2, . . . ,an) is a
sequence of n distinct elements, the RS encoding RS

F, S, n, k (m)
of a message m = (m0, m1, . . . , mk − 1) is given by

RS
F,s,n,k(m) = (  f  (a1), f  (a2), . . . , f  (a3))

where f (X) = m0 + m1X + . . . + mk − 1 Xk − 1. We stress here that the
choice of S is up to the code designer—we will exploit this
feature in Section 3.2.

The following basic algebraic fact will be crucial:

A non-zero polynomial p(X) of degree D over a field F can
have at most D distinct roots, i.e., at most D elements a Î F
can satisfy p(a) = 0.

This fact implies that the encodings of two distinct messages
m and ḿ by RSF, S, n, k must differ in more than n − k locations.c
The minimum distance of the RS code is thus at least
n − k + 1. It is in fact equal to n − k + 1: e.g., consider encod-
ings of the messages corresponding to the zero polynomial
and the polynomial . A minimum distance
of (n − k + 1) is the best possible for a code of dimension k,
making RS codes optimal in this regard.

2.1. Correcting errors in RS codewords
Why is the above large distance useful? If at most (n − k)/2
errors corrupt the evaluations of a polynomial f (X), then the
encoding of f (X) remains the best fit of the corrupted data in
terms of agreements than the encoding of any other polyno-
mial g (X) of degree less than k. Thus, one can hope to recover
f (X) and the correct message even in the presence of (n − k)/2
errors. However, it is not immediate how to isolate the errors
and recover f (X) efficiently. We do not know the locations of the
errors, and trying all possibilities will need exponential time.

Back in 1960, even before polynomial running time was
formalized as the notion underlying efficient algorithms,
Peterson15 described a polynomial time algorithm to solve
the above problem. We now describe the high-level idea
behind a different algorithm, due to Welch and Berlekamp,18
following the elegant description in Gemmell and Sudan.3

Assume that the encoding (f (a1),…, f (an) ) of a polynomial
f (X) was transmitted, and we receive a corrupted version (y1,
y2, . . . , yn), where the set E = {i : yi ≠ f(ai)} of error locations
has size at most (n − k)/2. Suppose we miraculously knew the
set E. Then we could simply discard the yi’s corresponding
to these locations, and interpolate f (X) through the rest of
the correct data points. We will have at least (n + k)/2 ≥ k loca-
tions, so interpolation will uniquely identify f (X).
Error Location via Bivariate Interpolation: The key is thus a
clever method to locate the set E of error locations quickly.
To motivate this, let us cast the problem geometrically as an
equivalent noisy curve fitting problem. We are given n points
(ai, yi), i = 1, 2, . . . , n, in the “plane” F × F. The goal is to find

the unique curve with equation Y − f (X) = 0 where degree(f)
< k that passes through all but e ≤ (n − k)/2 locations i, namely
those in E. If there was no noise, fitting a curve through all n
points is easy—it is just polynomial interpolation. We know
Y − f (X) passes through n − e points, so we can get a curve
that passes through all the points by fitting vertical lines
through the error points along with the curve Y − f (X) = 0;
see Figure 2. Algebraically, if we define

	 	 (1)

then the curve P(X, Y) = 0 passes through all the points, i.e.,
P(ai, yi) = 0 for every i. The second factor in the expression (1)
is called the error-locator polynomial, which has the error
locations as its roots.

Given P(X, Y), one can find its factors (which can be done
efficiently) and thus read off the message polynomial f (X)
from the Y − f (X) factor. But how do we find P(X, Y)? Finding
P(X, Y) in its factored form (1) is begging the question, but
note that we can also write P(X, Y) in the form P(X, Y) = D1(X)
Y − N1(X) where degree(D1)   ≤   e   ≤   (n − k)/2 and degree(N1) < e
+ k   ≤   (n + k)/2.

Knowing such a polynomial exists, we can try to find a non-
zero bivariate polynomial Q(X, Y) = D2(X)Y − N2(X) satisfying

1.  degree(D2) ≤ (n − k)/2 and degree (N2) < (n + k)/2
2.  Q(ai, yi) = 0 for i = 1, 2, . . . , n

This can be done by setting up a system of linear equations
over F with unknowns being the coefficients of D2(X) and
N2(X), and n linear constraints Q(ai, yi) = 0. We have called the
polynomial Q(X, Y) since we cannot assume that the solu-
tion will in fact equal P(X, Y) (there may be multiple nonzero
solutions to the above system). Solving this linear system
can certainly be done in polynomial time, and also admits
fast, practical methods.

One can prove, using elementary algebra, that when the
number of errors e ≤ (n − k)/2, any interpolated Q(X, Y) satis-
fying the above two conditions must have P(X, Y) as a factor,

Figure 2: An RS codeword (polynomial f(X) evaluated on points a1,
a2, . . . , a11); its corruption by two errors (at locations a2 and a5); and
illustration of the curve fitting through the noisy data using correct
curve and “error-locator lines.”

c  If not, RSF, S, n, k(m)−RSF,S,n,k(ḿ), which corresponds to the evaluation of
the non-zero polynomial of degree at most k − 1, has at least k
zeroes: a contradiction.

90 communications of the acm | march 2009 | vol. 52 | no. 3

research highlights

and be of the form P(X, Y) A(X) for some nonzero (possibly
constant) polynomial A(X). The intuitive reason is that since
there are so few errors in the data compared to the curve
Y − f (X) = 0, the curve P(X,Y) = 0 is the most economical way to
fit all the data points. The formal proof proceeds by consider-
ing the polynomial , and arguing it must be
identically zero since (i) it has at least (n + k)/2 roots (namely
all ai’s for which f (ai) = yi) and (ii) it has degree less than
(n + k)/2 (by design of Q(X, Y) ). Thus, Q(X, Y) also has Y − f (X)
as a factor, and we can recover f (X) by factoring Q(X, Y). (The
actual task here is easier than general bivariate polynomial
factorization, and admits near-linear time algorithms.)

2.2. List decoding Reed–Solomon codes
We now turn to list decoding of Reed–Solomon codes. The
setup is as before: given n points (ai, yi) Î F2, find polynomi-
als f (X) of degree less than k such that f (ai) ≠ yi for at most e
locations i. The difference is that now e >> (n − k)/2, and so
there may be more than one such polynomial f (X) that the
decoder needs to output.

Before delving into the algorithms, we pause to con-
sider how large a number of errors e one can target to cor-
rect. Clearly, we need the guarantee there will be only a few
(say, at most polynomially many in n) solution polynomials
f (X) or else there is no hope for the decoder to output all of
them in polynomial time. Using the fact that encodings of
any two polynomials differ in more than (n − k) locations,
it can be shown (via the so-called “Johnson bound”) that
for the number of solutions (called the list size)
is guaranteed to be polynomially small. Whether one can
prove a polynomial list size bound for certain RS codes for
even larger e remains a key open question.

We now describe the idea underlying Sudan’s break-
through algorithm for list decoding RS codes.17 Recall that
we want to solve a noisy curve fitting problem, and output all
curves Y − f (X) = 0 with deg(f) < k that pass through n − e or
more of the n points (ai, yi). For e ≤ (n − k)/2, the Berlekamp–
Welch algorithm interpolated a bivariate polynomial Q(X, Y)
of a very specific format through all the n points. Sudan’s idea
for e > (n − k)/2 was to interpolate/fit a general nonzero curve
Q(X, Y) = 0 of just high enough “degree” (so that its existence is
guaranteed) through all the n points. Fitting such a curve can
be done efficiently by solving a system of linear equations to
determine the coefficients of Q(X, Y).

For the Berlekamp–Welch algorithm, arguing that Y − f (X)
was a factor of Q(X, Y) followed from the very special struc-
ture of Q(X, Y). In the list decoding case, Sudan exploited
special properties of intersections of curves of the form
Y − f (X) with any interpolated bivariate polynomial Q(X, Y)
with appropriate degree constraints. Informally, Sudan’s
idea is that given the strong degree constraint on Q(X, Y),
every curve Y − f (X) = 0 with deg(f) < k that picks up at least
n − e of points must be “used” by the interpolated curve in
meeting the requirement to pass through all n points. As an
example, in Figure 3, the goal is to find all lines (i.e., we have
k = 2) that pass through all but e = 9 of the n = 14 input points
(there are two such lines, marked in the figure as L1(X, Y) and
L2(X, Y) ). There are enough degrees of freedom in the equa-
tion of a degree 4 curve so that one can fit a degree 4 curve

through any set of 14 points. The figure illustrates one such
curve, which is the product of the two lines with an “ellipse”
E(X, Y). (Note that the total degree of Q(X, Y) is 4.) Further, we
see that the two relevant lines pop out as factors. This is not
a coincidence, and every degree 4 curve passing through the
14 points must have these two lines as factors. The reason:
if a line is not a factor, then it can intersect a degree 4 curve
in at most 4 points. Since each of these lines intersects any
interpolated curve in at least 5 points, it must be a factor.

More formally, the “degree” measure of the interpolated
polynomial Q(X,Y) will be the (1, k − 1)-degree, which is defined
as the maximum of i + (k − 1) j over all monomials X iY j that
occur with a nonzero coefficient in Q(X, Y). Let D denote the
(1, k − 1) degree of Q(X, Y). Generalizing the above argument for
lines, if a curve Y − f(X) = 0 with deg(f) < k passes through more
than D points, then Y − f(X) must be a factor of Q(X, Y). With
a counting argument, one can show that a (1, k − 1)-degree D
of suffices to fit a nonzero curve. Together, this leads to
an algorithm that can correct errors, or a fraction

 of errors as a function of the rate R.
For low rates, this algorithm enables recovery even in

settings when noise overwhelms correct data, and close to
100% of the symbols may be in error. This feature sets the
stage for several powerful applications in cryptography and
complexity theory. However, the algorithm does not give any
improvement over the (1 − R)/2 error fraction corrected by
traditional algorithms for rates > 1/3, and also falls short of
the radius suggested by the combinatorial bounds.

We now turn to the improved algorithm correcting a
fraction of errors due to Guruswami and Sudan.10
The key new idea is to insist that the interpolated polyno-
mial Q(X, Y) has multiple zeroes at each of the n points. To
explain this, we attempt a high-level geometric description.
Consider the example in Figure 4 with n = 10 points, the goal
being to output all lines that pass through at least n − e = 4
points. This example cannot be solved by Sudan’s algorithm.
Indeed, since there are five solution lines, if they are all fac-
tors of some interpolated curve, the curve must have degree
at least 5. However, there is no guarantee that an arbitrary
degree 5 curve through the points must have every line pass-
ing through 4 of the points as a factor (the line has to pass

Figure 3: Illustration of list decoding of RS code that evaluates lines
over the points −7, −5, −4, . . . , 4, 5, 6, 7. The two lines are recovered
as factors of a degree 4 interpolated curve through all the points.

Y

X

2

3

1 3 5

2 4 6

4

1
−6 −4 −2

−5 −3 −1
−1

−2

−3

−4

L2(X,Y) = Y − X

E(X,Y) = Y2/16 + X2/49 − 1

L1(X,Y) = Y + X

Q(X,Y) = L1(X,Y) • L2(X,Y) • E(X,Y)

n = 14, k = 2, e = 9

march 2009 | vol. 52 | no. 3 | communications of the acm 91

through 6 points to guarantee this). Let C* be the degree 5
curve that is the product of the five solution lines. As men-
tioned above, if we interpolate a degree 5 curve through
the 10 points, we will in general not get C* as the solution.
However, notice a special property of C*—it passes through
each point twice; a priori there is no reason to expect that an
interpolated curve will have this property. The Guruswami–
Sudan idea is to insist that the interpolation stage produces
a degree 5 curve with zero of multiplicity at least 2 at each
point (i.e., the curve intersects each point twice). One can
then argue that each of the five lines must be a factor of the
curve. In fact, this will be the case for degree up to 7. This
is because the number of intersections of each of these
lines with the curve, counting multiplicities, is at least 4 ×
2 = 8 which is greater than the degree of the curve. Finally,
one can always fit a degree 7 curve passing through any 10
points twice (again by a counting argument). So by insisting
on multiplicities in the interpolation step, one can solve this
example.

In general, the interpolation stage of the Guruswami–
Sudan list decoder finds a polynomial Q(X, Y) that has a
zero of multiplicity w for some suitable integer w at each
(ai, yi).d Of course this can always be accomplished with a
(1, k − 1)-degree that is a factor w larger (by simply raising the
earlier interpolation polynomial to the w’th power). The key
gain is that the required multiplicity can be achieved with
a degree only about a factor    larger. The second step
remains the same, and here each correct data point counts
for w zeroes. This       factor savings translates into the
improvement of r from to . See Figure 5 for a
plot of this trade-off between rate and fraction of errors, as
well as the (1 − R)/2 trade-off of traditional unique decoding
algorithms. Note that we now get an improvement for every
rate. Also plotted are the information-theoretic limit 1 − R,

and the Parvaresh–Vardy improvement for low rates that we
will discuss shortly.
Soft Decoding: We now comment on a further crucial ben-
efit of the multiplicities idea which is relevant to potential
practical applications of list decoding. The multiplicities
can be used to encode the relative importance of different
codeword positions, using a higher multiplicity for symbols
whose value we are more confident about, and a lower mul-
tiplicity for the less reliable symbols that have lower confi-
dence estimates. In practice, such confidence estimates
(called “soft inputs”) are available in abundance at the
input to the decoder (e.g., from demodulation of the analog
signal). This has led to a promising soft-decision decoder for
RS codes with good coding gains in practice,13 which was
adopted in the Moonbounce program to improve commu-
nication between Ham radio operators who bounce radio
signals off the moon to make long distance contacts.

3. FOLDED REED–SOLOMON CODES
We now discuss a variant of RS codes called folded Reed–
Solomon codes (henceforth folded RS codes), which will let
us approach the optimal error-correction radius of a fraction
1 − R of errors. The codewords in the folded RS code will be
in one-to-one correspondence with RS codewords. We begin
with an informal description. Consider the RS codeword cor-
responding to the polynomial f (X) that is evaluated at the
points x0, x1, . . . , xn − 1 from F, as depicted by the codeword on
top in Figure 6. The corresponding codeword in the folded RS
code (with folding parameter of m = 4) is obtained by juxtapos-
ing together four consecutive symbols on the RS codeword as
shown at the bottom of Figure 6. In other words, we think of
the RS code as a code over a larger alphabet (of four times the
“packet size”) and of block length four times smaller. This
repackaging reduces the number of error patterns one has to
handle. For example, if we are targeting correcting errors in
up to a 1/4 fraction of the new larger symbols, then we are no
longer required to correct the error pattern corresponding
to the (pink) shaded columns in Figure 6 (whereas the same

Figure 5: Rate vs. error-correction radius for RS codes. The optimal
trade-off is also plotted, as is the Parvaresh–Vardy’s improvement
over RS codes.

 0

0.2

 0.4

 0.6

 0.8

1

 0 0.2 0.4 0.6 0.8 1

r
(F

ra
ct

io
n

of
 E

rr
or

s)
 -

--
>

R (Rate) --->

Information-theoretic bound
Unique decoding bound

Guruswami−Sudan
Parvaresh−Vardy

Figure 4: Illustration of Guruswami–Sudan algorithm for list decod-
ing RS codes. The lines are recovered as factors of a degree 5 curve
that passes through each point twice.

n = 10, k = 2, e = 6

deg(Q) = 5

d  We skip formalizing the notion of multiple zeroes in this description,
but this follows along standard lines and we refer the interested reader to
Guruswami and Sudan10 for the details.

92 communications of the acm | march 2009 | vol. 52 | no. 3

research highlights

error pattern over the original symbols needs to be taken care
of in the Reed–Solomon case).

We would like to stress on a subtle point here: in the
worst-case error model, the “atomic” unit of error is an
alphabet character. This was used crucially in the example
above to rule out an error pattern that was admissible for
the smaller alphabet. For the reader who might we worried
that this constitutes “cheating,” e.g., what if one collapses
the entire RS codeword into one large symbol, we offer two
counter-points. First, since we will only use a constant fold-
ing parameter, the increase in alphabet size from that of RS
codes is modest. Second, in Section 4, we will see how to
convert folded RS codes into codes over alphabets whose
size does not depend at all on the block length, while still
maintaining similar error-correction properties.

We now formally define the folded RS code. Let the non-
zero elements of the field F be generated by g, i.e., every
nonzero element is g i for some 0 ≤ i ≤ |F| −2 (such a g always
exists for any finite field F). Let m ≥ 1 be the folding parameter
and let n be an integer that is divisible by m and n ≤ |F| − 1.
The folded RS encoding (with folding parameter m) of the
message polynomial f (X) has as its j’th symbol for 0 ≤ j < n/m,
the m-tuple ( f (g  j m), f (g  jm + 1), . . . , f (g  jm + m−1) ).

The block length of these codes is N = n/m. The rate of the
code remains k/n, since the folding operation does not intro-
duce any further redundancy.

The folding operation does restrict the error patterns that
one needs to worry about. But how can one actually exploit
this in a decoding algorithm and manage to correct a larger
fraction of errors compared to the unfolded RS codes? We
turn to this question next.

3.1. Multivariate decoding
Recall the two step Guruswami–Sudan (GS) algorithm.
First, we interpolate a bivariate polynomial Q(X, Y) through
the points (ai, yi) Î F2. Then in the second step, we factor-
ize the bivariate polynomial and retain factors of the form
Y − f (X), where f (X) is a polynomial of degree less than k (there
might be factors that are not linear in Y: we ignore them).
Let us recast the second step in an equivalent description,
which will be useful later. In particular, consider the univari-
ate polynomial RX(Y ) equivalent to Q(X, Y ), where the coef-
ficients themselves are polynomials in indeterminate X with
their own coefficients from F: given the polynomial Q(X, Y)
one can compute RX(Y) by collecting all the coefficients of
the same power of Y together (e.g., if Q(X, Y) = (Y −(X − 1) )
(Y 2 + X 3) then RX(Y) = a3 Y 3 + a2 . Y 2 + a1 . Y + a0, where a3 = 1,

a2 = −X + 1, a1 = X 3 and a0 − X 4 + X 3). Now note that Y − f (X)
is a factor of Q(X, Y) if and only if f (X) is a root of the uni-
variate polynomial RX(Y), that is, the polynomial RY (f (X) ) is
the same as the zero polynomial (in the example, Y −(X − 1)
divides Q(X, Y) and RX(X − 1) ≡ 0).

Let us now return to problem of list decoding folded RS
code with m = 4. Given the received word whose ith symbol
(for 0 ≤ i < N) is ( yi,0, yi,1, yi,2, yi,3), we need to output all the
close-by folded RS codewords. To motivate the idea behind
the algorithm, for the time being assume that the transmit-
ted codeword was from the so-called interleaved RS code of
order 4. Any codeword in such a code will have as its ith symbol
(0 ≤ i ≤ N − 1) the 4-tuple (  f (g  4i), f1(g  4i), f2(g  4i), f3(g  4i) ), where
f (X), f1(X), f2(X) and f3(X) are some polynomials of degree at
most k − 1. We remark that the folded RS code is a subcodee

of the interleaved RS code where fj(X ) = f (g  j X) for 1 ≤ j ≤ 3.
Given the setup above, the first thing to explore is whether

one can generalize the GS algorithm to the setting of inter-
leaved RS codes. To see one such generalization, note that
RS codes are interleaved RS codes of order 1. The GS algo-
rithm interpolated a nonzero bivariate polynomial Q(X, Y) in
this case. Thus, for an interleaved RS code of order 4, a natu-
ral attempt would be to compute a nonzero 5-variate poly-
nomial Q(X, Y, Z, U, W), where (as before) Y is a placeholder
for f (X) and (this part is the generalization) Z, U, and W are
placeholders for f1(X), f2(X), and f3(X), respectively. For the
next step of root finding, we compute the 4-variate polyno-
mial RX(Y, Z, U, W) that is equivalent to Q(X, Y, Z, U, W ). Now
the hope would be to find out all the tuples (Y, Z, U, W ) that
make RX(Y, Z, U, W) vanish and that the required tuple (  f  (X),
f1(X), f2(X), f3(X) ) is one of them. The latter condition can in
fact be satisfied, but the trouble is that the number of tuples
that make RX zero could be very large (growing exponentially
in n). To see intuitively what goes wrong, recall that in the
Guruswami–Sudan setting, we had one unknown Y and one
constraint RX(Y) = 0. However, in the interleaved RS setting,
we have four unknowns Y, Z, U, W but only one constraint
RX(Y, Z, U, W) = 0. This essentially means that three of the
four unknowns are unconstrained and can thus be almost
any polynomial of degree less than k.

The generalization above (and similar ideas) were
tried out in a few works, but could not decode beyond
the radius. Finally, 7 years after the GS algorithm
was published, Parvaresh and Vardy14 had an ingenious
idea: force the polynomials f1(X), f2(X) and f3(X) to be related
to f  (X). In particular, they only look at the subcode of the
interleaved RS code where fj(X) = (  fj − 1(X) )d mod (E(X) ) for
1 ≤ j ≤ 3 (we set f0(X) = f  (X) ), for some positive integer param-
eter d and an irreducible polynomial E(X). The reason we
compute the modulus using an irreducible polynomial is
that the relationships between these polynomials translate
to the following relationships between their corresponding
placeholders: Z = Y d, U = Y d

2

, and W = Y d
3

. In other words, we
gain three new constraints on the four variables Y, Z, U, W.
Together with the interpolation constraint RX(Y, Z, U, W) = 0,
this restores equality in the number of unknowns and the
number of constraints. This in turn implies that the number

Figure 6: Folding of the Reed–Solomon code with parameter m = 4.
Each column represents an alphabet character.

f(x0) f(x1) f(x2) f(x3) f(x4) f(x5) f(x6) f(x7)

f(x7)

f(x6)

f(x5)

f(x4)

f(x3)

f(x2)

f(x1)

f(x0)

f(xn−4) f(xn−3) f(xn−2) f(xn−1)

f(xn−4)

f(xn−3)

f(xn−2)

f(xn−1)

e  This is the same as looking at an appropriate subset of messages.

march 2009 | vol. 52 | no. 3 | communications of the acm 93

of possible solutions is polynomially bounded. (There are
some steps involved to obtain this conclusion but they are
mostly all “low-level details.”) Further, this method not only
establishes a bound on the number of solutions, but also
gives a polynomial time algorithm to find these solutions.
To see this, note that given the three new constraints, we are
looking for roots of the univariate polynomial RX(Y, Y d, Y d

2

,
Y d

3

), which can be accomplished by well-known polynomial
time algorithms.1

Finally, let us return to the problem of list decoding
folded RS codes with m = 4. In folded RS codes also, we have
the property that fj(X) is related to f (X) for 1 ≤ j ≤ 3. In fact,
combining a couple of well-known results in finite fields,
in Guruswami and Rudra9 we show that f (g X) = (  f (X) )|F|−1
mod (É (X) ), where É (X) = X|F|−1 − g is an irreducible poly-
nomial. We remark that the irreducible polynomial E(X) in
the Parvaresh–Vardy (henceforth, PV) codes only has some
degree requirements. Our restriction on É (X) is stricter and
thus, folded RS codes are a special case of PV codes. How
ever, we are not done yet. Until now all we can claim is that
folded RS code of rate R with folding parameter m = 4 can be
list decoded from the same fraction of errors as the corre-
sponding PV codes, which happens to be . We have
4R appearing instead of R because the rate of the PV code is
1/4’th the rate of the original RS code, since the encoding
of the message f (X) now consists of the evaluations of four
polynomials instead of just those of f (X). Next we expand on
our other main idea which “compresses” the PV encoding to
avoid this rate loss, and enables correcting close to a fraction
1 − R of errors.

3.2. The final piece
The improvement over Parvaresh–Vardy comes from com-
paring apples to oranges. In particular, till now we have
seen that the folded RS code with folding parameter 4 is a
special case of the PV code of order 4. Instead let us com-
pare the folded RS code with a PV code of smaller order, say
2. It turns out that the folded RS code with folding param-
eter 4 are compressed forms of certain specific PV codes of
order 2 and we will exploit this observation. In particular,
as in Figure 7 compare the folded RS codeword with the
PV code of order 2 (where the polynomial f (X) is evaluated
at the points {1, g , . . . , g  n−1}\{g  3, g  7, . . . , g  n−1}). We find that
in the PV encoding of f, for every 0 ≤ i ≤ n/m − 1 and every
0 < j < m − 1, f (g  mi + j) appears exactly twice (once as f (g  mi + j)
and another time as f1(g  −1g  m i + j ) ), whereas it appears only
once in the folded RS encoding. In other words, the infor-
mation contained in one symbol in the folded RS codeword
(which is worth four elements from F) is repeated over three
symbols in the PV codeword (which is worth six elements
from F). This implies that even though both the folded RS
codeword and the PV codeword have exactly the same infor-
mation, the folded RS codeword is compressed by a factor
of 3/2. This in turn bumps up the rate of the folded RS code
by the same factor. Hence, we can list decode folded RS
codes with folding parameter 4 and rate R from a fraction

of errors.
Thus, our list decoding algorithm for folded RS with

folding parameter m can be modularly defined as follows:

unfold the received word for the appropriate PV code of order
s ≤ m and then run the Parvaresh–Vardy list decoder on this
unfolded received word. It turns out that this list decoder can
correct such a folded RS code of R from up to

s
 frac-

tion of errors. By picking m to be (somewhat) larger than s
and picking s to be sufficiently large (in terms of 1/e), we can
conclude the following result.

Theorem 1. For every e > 0 and 0 < R < 1, there is a family
of folded RS codes that have rate at least R and which can be list
decoded up to a fraction 1 − R − e of errors in time (N/e 2)O(e −1 log(1/R) )
where N is the block length of the code. The alphabet size of the
code is (N/e 2)O(1/e 2).

We note that the time complexity has an undesirable
dependence on e, with 1/e in the exponent. Improving this
bound remains a challenging open question.

4. DECODING OVER SMALL ALPHABETS
So far we have discussed codes over large alphabets. For
example, folded RS codes of rates R that can be list decoded
from 1 − R − e fraction of errors need alphabet size of roughly
nO(1/e 2), where n is the block length of the code. This large
alphabet size can be a shortcoming. Next, we discuss known
techniques that help us reduce the alphabet size.

We start with perhaps the most natural small alphabet:
{0, 1}. For codes defined over this alphabet (also called
binary codes), it turns out that to list decode from r fraction
of errors the best possible rate is 1 − H(r), where H(x) = − xlog2
x − (1 − x) log2(1 − x) is the entropy function. Two remarks are
in order. First, the rate 1 − H(r) is much smaller than the rate
of 1 − r that folded RS codes can achieve. (It turns out that to
attain a rate of 1 − r − e, the alphabet size needs to be at least
21/e; more on this later in the section.) Second, as shown in
Shannon’s seminal paper,16 the quantity 1 − H(r) is exactly
the same as the best possible rate (aka “capacity”) that can
be achieved in the binary symmetric channel BSCr. Thus, list
decoding can bridge the traditionally perceived gap between
the Shannon stochastic model and the Hamming worst-case
model.

We “transfer” our result for folded RS codes to a result for
binary codes via a natural method for composing together
codes called code concatenation, proposed by Forney over

PV codeword

FRS codeword

f(x0)

f(x0)

f(g x0)

f(g x0)

f(g 2x0)

f(g 2x0) f(x4) f(g x4) f(g 2x4)

f(g x0) f(g 2x0) f(g x4) f(g 2x4)f(g 3x0) f(g 3x4)

f(g 3x0)

f(x0)

f(g x0)

f(g 2x0)

f(g 3x0)

f(x4)

f(g x4)

f(g 2x4)

f(g 3x4)

Figure 7: The correspondence between a folded RS code (with m = 4
and xi = g i) and the PV code (of order s = 2) evaluated over {1, g , g 2, g 4,
. . . , g   n−4, . . . , g   n−2}. The correspondence for the first block in the folded
RS codeword and the first three blocks in the PV codeword is shown
explicitly in the left corner of the figure.

94 communications of the acm | march 2009 | vol. 52 | no. 3

research highlights

40 years ago. Thanks to the powerful algorithms for decod-
ing folded RS codes, we can use this approach to achieve a
certain trade-off called the Zyablov bound between rate and
fraction of errors corrected.9 In a subsequent work, using
another generalization of code concatenation, we improved
the trade-off to the Blokh–Zyablov bound.8 Figure 8 plots
these two trade-offs along with the best possible trade-off
(list-decoding capacity). There is a large gap between the
list-decoding capacity of binary codes and the best bound
known to be achievable with efficient algorithms. Closing
this gap remains a central and extremely challenging open
question.

We now briefly mention how we resolve the large alphabet
issue that was raised in Section 3. When the folding param-
eter of the folded RS code is a constant (as in Theorem 1),
the number of bits needed to represent a symbol from the
alphabet is no larger than roughly the logarithm of the block
length of the folded RS code. This is small enough to use the
idea of code concatenation mentioned above to reduce the
alphabet. In order to maintain the optimal trade-off between
rate and fraction of errors list decoded, we need to combine
concatenation with an approach to redistribute symbols
using expander graphs.6 This leads to codes of rate R that
can be list decoded from a fraction 1 − R − e of errors over an
alphabet of size 21/e 4, which is close to the lower bound of 21/e
mentioned earlier.

5. CONCLUDING REMARKS
First, we mention some related work that appeared subse-
quent to the initial publication of our result. Further work
on extending the results in this article to the framework
of algebraic-geometric codes has been done in Guruswami5
and Guruswami and Patthak.7 A surprising application of
the ideas in the Parvaresh–Vardy list decoder is the con-
struction of randomness extractors by Guruswami, Umans,
and Vadhan.11 Randomness extractors convert input from
a weakly random source into an almost perfectly random
string, and have been intensively studied in theoretical

computer science for over 15 years. This recent extractor
is almost optimal in all parameters, while having a simple,
self-contained description and proof.

Even though the work presented in this article makes
good progress in our theoretical understanding of list
decoding, applying these ideas into practice requires fur-
ther innovation. We conclude by posing two practical
challenges.

The first challenge is specific to making the list decod-
ing algorithms for folded RS codes more practical. Recall
that the algorithm involved an interpolation step and a
“root-finding” step. There are fast heuristic approaches
for the latter step that could be used in practice. The inter-
polation step, however, seems too inefficient for practical
purposes due to the large size of the linear systems that
need to be solved. It would be very useful to have more effi-
cient algorithms for this step. We note that such improve-
ments for the Guruswami–Sudan algorithm have been
obtained.

The second challenge is more general. Codes have found
numerous practical applications in domains such as com-
munication and data storage. Despite its promise and the
recent advances, list decoding has not yet found widespread
use in practical systems (though as mentioned earlier, the
Moonbounce program does use the multiplicities based
list decoder). One possible reason could be that the previ-
ous list decoding algorithms do not provide much gain for
the high rate regime over traditional unique decoding algo-
rithms. However, this is no longer a concern—we now have
algorithms that obtain much better theoretical bounds in
this regime. Further, folded RS codes are very similar to RS
codes that are ubiquitous in practice. Hopefully in the near
future, list decoding will be used more widely in practical
systems.

Acknowledgments
The research described here was supported in part by NSF
award CCF-0343672 and fellowships from the Sloan and
Packard Foundations. We thank Ronitt Rubinfeld for several
valuable comments on an earlier draft of this paper.	Figure 8: Error-correction radius r of our algorithms for binary codes

plotted against the rate R. The best possible trade-off, i.e., list decod-
ing capacity, is r = H −1(1 − R), and is also plotted.

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

 r
 (F

ra
ct

io
n

of
 E

rr
or

s)
 -

--
>

R (Rate) --->

List decoding capacity
Zyablov bound

Blokh Zyablov bound

References

	 1.	 Berlekamp, E. Factoring polynomials
over large finite fields. Math.
Comput. 24 (1970), 713–735.

	 2. 	Elias, P. List decoding for noisy
channels. Technical Report 335,
MIT Research Lab of Electronics,
1957.

	 3. 	Gemmell, P., Sudan, M. Highly
resilient correctors for multivariate
polynomials. Information
Processing Lett. 43, 4 (1992),
169–174.

	 4. 	Goldreich, O., Levin, L. A hard-core
predicate for all one-way functions.
In Proceedings of the 21st ACM
Symposium on Theory of Computing,
1989, 25–32.

	 5. 	Guruswami, V. Artin automorphisms,
cyclotomic function fields, and
folded list-decodable codes, 2008.
Manuscript.

	 6. 	Guruswami, V., Indyk, P. Linear-
time encodable/decodable codes
with near-optimal rate. IEEE Trans.
Information Theory 51, 10 (2005),

3393–3400.
	 7. 	Guruswami, V., Patthak, A.

Correlated algebraic-geometric
codes: Improved list decoding over
bounded alphabets. Math. Comput.
77, 261 (Jan. 2008), 447–473.

	 8. 	Guruswami, V., Rudra, A. Better
binary list-decodable codes via
multilevel concatenation. In
Proceedings of the 11th International
Workshop on Randomization and
Computation, 2007, 554–568.

	 9. 	Guruswami, V., Rudra, A. Explicit
codes achieving list decoding
capacity: Error-correction up to
the Singleton bound. IEEE Trans.
Information Theory 54, 1 (2008),
135–150. Preliminary version in
STOC’06.

	10. 	Guruswami, V., Sudan, M. Improved
decoding of Reed–Solomon and
algebraic-geometric codes. IEEE
Trans. Information Theory, 45
(1999), 1757–1767.

	11. 	Guruswami, V., Umans, C.,

march 2009 | vol. 52 | no. 3 | communications of the acm 95

Vadhan, S.P. Unbalanced expanders
and randomness extractors
from Parvaresh–Vardy codes.
In Proceedings of 22nd IEEE
Conference on Computational
Complexity, 2007, 96–108.

	12. 	Hamming, R.W. Error detecting
and error correcting codes. Bell
System Technical J. 29 (Apr. 1950),
147–160.

	13. 	Koetter, R., Vardy, A. Algebraic soft-
decision decoding of Reed–Solomon
codes. IEEE Trans. Information
Theory 49, 11 (2003), 2809–2825.

	14. 	Parvaresh, F., Vardy, A. Correcting
errors beyond the Guruswami–
Sudan radius in polynomial time.
In Proceedings of the 46th IEEE
Symposium on Foundations of
Computer Science, 2005, 285–294.

	15. 	Peterson, W.W. Encoding and
error-correction procedures for
Bose–Chaudhuri codes. IEEE Trans.
Information Theory, 6 (1960),
459–470.

	16. 	Shannon, C.E. A mathematical
theory of communication. Bell
System Technical J. 27 (1948),
379–423, 623–656.

	17. 	Sudan, M. Decoding of
Reed–Solomon codes beyond
the error-correction bound.
J. Complexity, 13, 1 (1997),
180–193.

	18. 	Welch, L.R., Berlekamp, E.R. Error
correction of algebraic block
codes. US Patent Number 4,633,470,
December 1986.

	19. 	Wozencraft, J.M. List Decoding.
Quarterly Progress Report,
Research Laboratory of Electronics,
MIT, 48 (1958), 90–95.

Venkatesan Guruswami (venkat@
cs.washington.edu), Computer
Science and Engineering, University of
Washington, Seattle, WA 98105, USA
Currently visiting the Computer Science
Department, Carnegie Mellon University,
Pittsburgh, PA.

Atri Rudra (atri@cse.buffalo.edu),
Computer Science and Engineering,
University at Buffalo, SUNY, Buffalo, NY.

© 2009 ACM 0001-0782/09/0300 $5.00

Marsh Affinity Group Services Administered Plans,

a Service of Seabury and Smith:

Life Insurance

• Group Term

• Group 10-Year Term

• Group 20-Year Term

Health Care

• Major Medical

• Short Term Medical

• Catastrophe Major Medical

Group Dental Insurance

Accidental Death & Dismemberment

Long Term Care

Disability Income

Liberty Mutual Administered Plans:
• Group Savings Plus® Auto and Homeowners
Insurance

www.acm.org/membership/insurance

ACM Insurance Programs
www.acm.org/membership/insurance

ACM’s Insurance Programs Offer
Members Great Value!

ACM offers association-sponsored insurance programs

in a variety of important areas. These plans are

endorsed by ACM because they offer flexibility and

solid protection. Please check the ACM Insurance

Program Site www.acm.org/membership/insurance

for plan details and updated information.

This month, ACM is launching a fully redesigned Web site
for Communications of the ACM to complement the re-
cently remade magazine, offering additional content, the
latest technology news and advanced features for
an enhanced experience.

Visit cacm.acm.org to see this exciting development

The Launch
of the New
CACM Web Site

News
Articles
Blogs
Interviews
Opinions
Careers and
more…

cacm.acm.org

mailto:venkat@cs.washington.edu
mailto:atri@cse.buffalo.edu
http://cacm.acm.org
http://cacm.acm.org
http://www.acm.org/membership/insurance
http://www.acm.org/membership/insurance
http://www.acm.org/membership/insurance
mailto:venkat@cs.washington.edu

96 communications of the acm | march 2009 | vol. 52 | no. 3

research highlights

doi:10.1145/1467247.1467270

Technical Perspective
Where Biology
Meets Computing
By Bud Mishra

Alan Turing died in 1954 in his labora-
tory after eating a cyanide-laced apple.
Though Turing’s mother believed her
son’s death to be a result of the kind of
accidents that befalls absent-minded
mathematicians engaged in labora-
tory experiments, it is generally as-
sumed to be a suicide.

During his last years, Turing had
become an experimentalist, interested
in bio-chemical systems. He had pro-
posed a reaction-diffusion model in
his 1952 paper entitled “The Chemical
Basis of Morphogenesis,” putting forth
his hypothesis of biological pattern
formation. Turing’s models describe
how the concentration of certain sub-
stances (called morphogens) distrib-
uted in space change under two con-
tinuous-time processes: local chemical
reactions, in which the substances are
converted into each other, and diffu-
sion, which causes the substances to
spread out in space. The solutions to
Turing’s Reaction-Diffusion equation
display diverse patterns such as travel-
ing waves, spirals, spots, stripes and
dissipative solitons. Turing’s models
focused on only continuously varying
concentrations of morphogens: he fa-
mously wrote, “since the role of genes
is presumably catalytic, …they may be
eliminated from the discussion.”

However, genes turned out to be far
more important in biological pattern
formation. Triggered by a small group
of transcriptional activators (proteins
and microRNAs), the genes turn them-
selves on and off in a complex but
tightly programmed choreography
and control the concentration and
spatial distribution of many biomol-
ecules, including the transcriptional
activators. Thus, pattern formation in
biology is better understood by hybrid
automata, in which the genes form
complex discrete modes with their
own program for state-transitions,
while exhibiting continuous dynam-
ics as the system dwells in various
modes.

Another interesting characteristics
of pattern formation is captured nicely
in Wolpert’s French-Flag (or PI, Posi-
tional Information) Model, where the
discrete levels of morphogen-concen-
tration gradients, varying complexly
over space and time, determine the
fates of the biological cells in the local
neighborhoods. This model is highly
robust, scale-invariant, and asynchro-
nous; they exhibit temporal structures
in which order of the events are far
more important than their exact tim-
ing. Thus, while the genotype/syntax
of these systems are easily described
by hybrid automata, their phenotype/
semantics can be ideally described by
temporal logics.

As luck would have it, a growing
community of computer scientists has
been thinking about problems like
these for last few decades and devel-
oping many powerful model-checking
tools to debug complex asynchronous
systems. Many of these researchers
have now turned to systems biology,
as exemplified by the paper here by
Grosu et al.

The authors describe a biological
model of interacting heart cells and
studies how they form complex elec-
trical patterns, using model-checking
and machine-learning tools for speci-
fication, learning, and detection of
emergent behavior/patterns in net-
works of hybrid automata. These tools
shed important light on the process
of atrial fibrillation (Afib), an abnor-
mal rhythm originating in the upper
chambers of the heart and afflicting
millions, with incidences increasing
with age. The cardiac tissue is a spa-
tial network of myocytes (muscle fiber
cells) that must contract in a coordi-
nated fashion in order to pump blood
effectively. Coordination is ensured
through a reaction-diffusion system
(RDS): the pace-making myocytes gen-
erate an electric stimulus that diffuses
to the neighboring myocytes; these re-
act in an all-or-nothing fashion, which

reinforces the stimulus and ensures
its further propagation without damp-
ing. Reaction is governed by specific
molecules (ion channels) in the myo-
cyte membrane. The authors intro-
duce many innovations to attack this
problem algorithmically, namely, they
replace the standard Luo-Rudi model
of nonlinear partial differential equa-
tions by a network of hybrid automata
and analyze them through efficient
mode-abstractions and superposi-
tion; they develop a new modal logic,
based on spatial-superposition, for
specifying emergent behavior; they
devise an ingenious method for learn-
ing the formulae of this logic from
the spatial patterns; and finally, apply
bounded model checking to detect
the onset of one such biomedically
important emergent patterns, that is,
spiral waves.

The authors lead one to believe
that the future of computer science
very likely lies not just in devising
powerful tools to catalyze large-scale
experiments or to warehouse mas-
sive amount of experimental data to
be searched and mined, but also as an
interpreter and re-describer of com-
plex phenomena. In this role, using
tools described here, computer sci-
entists can revolutionize the way we
attempt to understand a large tangle
of interconnected neurons, a large so-
cial-network of presumably altruistic
individuals, a crowd responding to a
catastrophe, a global financial market
interacting through complex trades,
an interconnected power-grid, and so
on. We could try to understand their
topology, structural evolution, spatial
patterning, self-organization, stochas-
ticities, causal links, and emergent
behaviors. We could look for design
principles in these complex systems,
some of which are thought (by some)
to have been crafted by an intelligent
designer, who appears to have cava-
lierly released these systems without
proper documentation. 	

Bud Mishra (mishra@nyu.edu) is a professor of
computer science, mathematics, and cell biology at
New York University’s Courant Institute and School of
Medicine. He is also a visiting scholar at the Cold Spring
Harbor Laboratory and a fellow of both ACM and IEEE.

mailto:mishra@nyu.edu

March 2009 | vol. 52 | no. 3 | communications of the acm 97

doi:10.1145/1467247.1467271

Abstract
We address the problem of specifying and detecting emergent
behavior in networks of cardiac myocytes, spiral electric waves
in particular, a precursor to atrial and ventricular fibrillation.
To solve this problem we: (1) apply discrete mode abstraction
to the cycle-linear hybrid automata (clha) we have recently
developed for modeling the behavior of myocyte networks; (2)
introduce the new concept of spatial superposition of clha
modes; (3) develop a new spatial logic, based on spatial super-
position, for specifying emergent behavior; (4) devise a new
method for learning the formulae of this logic from the spatial
patterns under investigation; and (5) apply bounded model
checking to detect the onset of spiral waves. We have imple-
mented our methodology as the Emerald tool suite, a com-
ponent of our eha framework for specification, simulation,
analysis, and control of excitable hybrid automata. We illus-
trate the effectiveness of our approach by applying Emerald
to the scalar electrical fields produced by our CellExcite
simulation environment for excitable-cell networks.

1. INTRODUCTION
One of the most important and intriguing questions in sys-
tems biology is how to formally specify emergent behavior in
biological tissue, and how to efficiently predict and detect its
onset. A prominent example of such behavior is electrical spi-
ral waves in spatial networks of cardiac myocytes (heart cells).
Electrical impulses regularly circulate through cardiac tissue
and cause the heart’s muscle fibers to contract. In a healthy
heart, these electrical impulses travel smoothly and unob-
structed, like a water wave that ripples gently in a pond. These
waves can, however, sometimes develop into troublesome,
whirlpool-like spirals of electrical activity. Spiral waves of this
nature are a precursor to a variety of cardiac disturbances,
including atrial fibrillation (af), an abnormal rhythm originat-
ing in the upper chambers of the heart. af afflicts two–three
million Americans alone, putting them at risk for clots and
strokes. Moreover, the likelihood of developing af increases
with age.

In this paper, we address this question by proposing a
simple and efficient method for learning, and automati-
cally detecting the onset of, spiral waves in cardiac tissue.
See Figure 1 for an overview of our approach. Underlying our
method is a linear spatial-superposition logic (lssl) we have
developed for specifying properties of spatial networks. lssl
is discussed in greater detail below. Our method also builds
upon hybrid automata, image processing, machine learning,

and model-checking techniques to first learn an lssl formula
that characterizes such spirals. The formula is then automati-
cally checked against a quadtree representation20 of the sca-
lar electrical field (sef) produced at each discrete time step
by a simulation of a hybrid-automata network modeling the
myocytes. A scalar field is a function that associates a scalar
value, which in our case is an electric potential, to every point
in space. The quadtree representation is obtained via discrete
mode abstraction and hierarchical superposition of the ele-
mentary units within the sef.

The electric behavior of cardiac myocytes is hybrid in nature:
they exhibit an all-or-nothing electrical response, the so-called
action potential (ap), to an external excitation. An ap can thus
be viewed as triggering a discrete mode transition from the
cell’s resting mode of continuous behavior to its excited mode
of continuous behavior. Despite their discrete-continuous
hybrid nature, networks of myocytes have traditionally been
modeled using nonlinear partial differential equations.13, 17
While highly accurate in describing the molecular processes
underlying cell behavior—nonlinear differential equations
allow one to closely match the values of a multitude of state
variables to their actual physical values—these models are not
particularly amenable to formal analysis and typically do not
scale well for the simulation of complex cell networks.

In Grosu et al.,11 we showed that it is possible to automati-
cally learn a much simpler hybrid automaton (HA)12 model for
cardiac myocytes, which explicitly captures, up to a prescribed
error margin, the mixed discrete and continuous behavior of
the ap. To highlight its cyclic structure and its linear dynam-
ics, which may vary in interesting ways from cycle to cycle, we
called it a cycle-linear hybrid automaton (clha). Moreover, one
can use a variant of this clha model to efficiently (up to an
order of magnitude faster) and accurately simulate the behav-
ior of myocyte networks, and, in particular, induce spirals and
fibrillation.2,24,25

A key observation concerning our simulations, see Figure 3,
is that mode abstraction, in which the ap value of each clha in
the network is abstracted to its corresponding mode, faithfully
preserves the network’s waveform and other spatial character-
istics. Hence, for the purpose of learning, and detecting the
onset of, spirals within clha networks, we can exploit mode
abstraction to dramatically reduce the system state space. A

Learning and Detecting
Emergent Behavior in Networks
of Cardiac Myocytes
By Radu Grosu, Scott A. Smolka, Flavio Corradini, Anita Wasilewska, Emilia Entcheva, and Ezio Bartocci

An earlier version of this paper appeared in Proc. 11th
International Conference on Hybrid Systems: Caomputation
and Control (HSCC’08), Springer, LNCS 4981, April 2008.

98 communications of the acm | march 2009 | vol. 52 | no. 3

research highlights

similar mode abstraction is possible for voltage recordings in
live cell networks.

The state space of a 400 × 400 clha network is still prohibi-
tively large, even after applying the above-described abstrac-
tion: it contains 4160,000 modes, as each clha has four mode
values. To combat state explosion, we use a spatial abstrac-
tion inspired by Kwon and Agha14: we regard the mode of
each automaton as a probability distribution and define the
mode superposition of a set of clhas as the probability that an
arbitrary clha in this set is in a particular mode. By succes-
sively applying superposition to the network, we obtain a tree
structure, the root of which is the mode superposition of the
entire clha network, and the leaves of which are the modes
of the individual clha. The particular structure we employ,
quadtrees, is inspired by image-processing techniques.20 We
shall refer to quadtrees obtained in this manner as super
position-quadtrees (sqts).

lssl is an appropriate logic for reasoning about paths in
sqts, and the spatial properties of clha networks in which we
are interested, including spirals, can be cast in lssl. For exam-
ple, we have observed that the presence of a spiral can be for-
mulated in lssl as follows: Given an sqt, is there a path from
its root leading to the core of a spiral? Based on this observa-
tion, we build a machine-learning classifier, the training-set
records for which correspond to the probability distributions
associated with the nodes along such paths. Each distribu-
tion, for mode value stimulated, corresponds to an attribute of
a training-set record, with the number of attributes bounded
by the depth of the sqt. An additional attribute is used to clas-
sify the record as either spiral or nonspiral. For spiral-free
sqts, we simply record the path of maximum distribution.

For training purposes, our Cell Excite simulator2 gen-
erates, upon successive time steps, snapshots of a 400 × 400
clha network and their mode abstraction; see Figures 1 and
3. Training data for the classifier is then generated by convert-
ing the abstracted snapshots into sqts and selecting paths
leading to the core of a spiral (if present). The resulting table
is input to the decision-tree algorithm of the Weka machine-
learning tool suite.8 This produces a classifier, in the form of a
path-predicate, constraining the distribution of the attribute
stimulated in each node along the path.

The syntax of lssl is similar to that of linear temporal
logic, with lssl’s Next operator corresponding to concretiza-
tion (anti-superposition). Moreover, a sequence of lssl Next
operators corresponds to a path through an sqt. The classi-
fier produced by Weka can therefore be regarded as an lssl
formula. An sqt path can be thought of as a magnifying
glass, which starting from the root produces an increasingly

detailed but more focused view of the image (i.e., abstracted
snapshot). This effect is analogous to concept hierarchy in data
mining16 and arguably similar to the way the brain organizes
knowledge: a human can recognize a word or a picture with-
out having to look at all of the characters in the word or all of
the details in the picture, respectively.

Although the lssl logic and its underlying semantics
(Kripke structures) allow us to reason about infinite paths
through recursive structures (fractals), physical consider-
ations—such as the number of myocytes in a cardiac tissue
or the screen resolution—impose a maximum length k on
such paths. We therefore maintain k as a parameter in lssl’s
semantic definition, permitting us to accommodate any finite
number of myocytes or screen resolution. Defining lssl’s
semantics in this manner places us within the framework of
bounded model checking.3

Our spatial-superposition logic might also be understood
as a Scale logic, as it allows us to examine an image at various
scales or levels of detail. The notion of scale is prevalent in bio-
logical systems, ranging from genetic scale to societal scale.
The built-in notion of scale in our logic therefore makes it well
suited for reasoning about biological systems.

We are now in a position to view spiral detection as a
bounded-model-checking problem3: Given the sqt Q gener-
ated from the discrete sef of a clha network and an lssl for-
mula j learned through classification, is there a finite path p
in Q satisfying j? We use this observation to check every time
step during simulation whether or not a spiral has been cre-
ated. More precisely, the lssl formula we use states that no
spiral is present, and we thus obtain as a counterexample
one or all the paths leading to the core of a spiral. In the latter
case, we can identify the number of spirals in the sef and their
actual position.

The above-described method, including user-guided path
selection, has been fully implemented as the Emerald tool
suite for automated spiral learning and detection. Emerald is
written in Java, and it is a new component of our eha environ-
ment for the specification, simulation, analysis, and control
of clha networks. eha stands for Excitable Hybrid Automata,
as we have used clha to model various types of excitable cells,
including neurons and cardiac myocytes.25 The eha environ-
ment is freely available from Grosu et al.10

The rest of the paper is organized as follows. Section 2
reviews excitable-cell networks and their modeling with
clha. Section 3 defines superposition and quadtrees, the
essential ideas underlying lssl, the topic of Section 4. Section
5 describes our learning and bounded-model-checking tech-
niques; their implementation is considered in Section 6, along
with our experimental results. Section 7 discusses related
work. Section 8 offers our concluding remarks and directions
for future research.

2. BIOLOGICAL BACKGROUND
An excitable cell (ec) has the ability to propagate an electri-
cal signal, known at the cellular level as the action potential
(ap), to neighboring cells. An ap corresponds to a change of
potential across the cell membrane, and is caused by the flow
of ions between the inside and outside of the cell through the
membrane’s ion channels.

Figure 1: Overview of our method.

Superposition

SQT

CX-Simulation

Discrete
SEF

QTPSelection

SQT PathCLHA
network SQT Path

ClassificationBM checking

LSSL
Formula

CX: CellExcite Tool
SEF: Scalar Electrical Field

SQT: Supeposition QuadTree
BMC: Bounded Model Checking

QTP: QuadTree Path

march 2009 | vol. 52 | no. 3 | communications of the acm 99

An ap is an externally triggered event (with duration): an ec
fires an ap as an all-or-nothing response to a suprathreshold
stimulus, and each ap follows the same sequence of phases
(described below) and exhibits roughly the same waveform
regardless of the applied stimulus. During most of the ap
no re-excitation can generally occur (the ec is in a refractory
period).

Despite differences in duration, morphology, and underly-
ing ion currents, the following major ap phases can be identi-
fied across different species and ec types: resting, stimulated,
upstroke, early repolarization, plateau, and final repolariza-
tion. We abbreviate them as r (resting and final repolariza-
tion), s (stimulated), u (upstroke), and p (plateau and early
repolarization).

Using the ap phases as a guide, we have developed, for sev-
eral representative ec types, clha models that approximate
the ap and other bioelectrical properties with reasonable
accuracy. Their derivation was first performed manually.24, 25
We subsequently showed in Grosu et al.11 how to fully auto-
mate this process by learning various biological aspects of the
ap of different cell types.

Intuitively, a hybrid automaton12 is an extended finitestate
automaton, the states of which encode the various phases of
continuous dynamics a system may undergo, and the transi-
tions of which are used to express the switching logic between
these dynamics. The clha we obtained are fairly compact in
nature, employing two or three continuous state variables and
four to six modes. The term cycle-linear is used to highlight the
cyclic structure of clha, and the fact that while in each cycle
they exhibit linear dynamics, the coefficients of the corre-
sponding linear equations and mode-transition guards may
vary in interesting ways from cycle to cycle.

Figure 2 presents one of our clha models. To understand
the model, first note that when an ec is subjected to repeated
stimuli, two important time periods can be identified: ap dura-
tion (apd), the time the cell is in an excited state, and diastolic
interval (di), the time between the “end” of the ap and the next
stimulus. Figure 2(a) illustrates the two intervals. The func-
tion relating apd to di is called the apd restitution function. As
shown in Figure 2(b), the relationship is nonlinear and cap-
tures the phenomenon that a longer recovery time is followed
by a longer apd. A physiological explanation of a cell’s restitu-
tion is rooted in the ion-channel kinetics as a limiting factor
in the cell’s frequency response.

The clha model itself, superimposed over the image of a
typical ap, is given in Figure 2(c). Each mode has an associated
linear dynamics x. = Ax + Bu, v = Cx, where x is the clha state,
u is the input, and v (for voltage) is the output. A mode also
has an associated invariant in v, forcing the outgoing transi-
tion to be eventually taken. The concept of mode dynamics
and invariant is illustrated in Figure 2(c) for mode p (plateau
and early repolarization); see that mode’s callout. Transition
labels are of the form e ∧ g/a, where e is an (optional) event, g
is a guard, and /a is an optional set of assignments. The only
events in the model, representing the start and end of stimu-
lation, are denoted by s and s–, respectively. Observe the per-
mode and transition-guard dependence on the di, which is
measured with the help of clock variable t.

The dynamics of excitable-cell networks play an important

Figure 2: ap duration, restitution function, and clha model of cardiac
myocytes.

−100
500 100 150

Time (ms)

DI

S1 S2

APD

(a)
250200 300

−50

0

50

V
ol

ta
g

e
(m

v)

(b)
500 100 150

DI (ms)

250200 300
70

80

90

100

110

120

130

A
P

D
 (m

s)

−20

0

20

V
ol

ta
g

e
(m

v)

40

60

80

100

120

140

0

(c)
50 100 150

Time (ms)

Final repolarization

Early repolarization

and

RestingStimulated

Upstroke

and

Plateau

200 250 300

role in the physiology of many biological processes. For cardiac
cells, on each heart beat, an electrical control signal is gener-
ated by the sinoatrial node, the heart’s internal pacemaking
region. Electrical waves then travel along a prescribed path,
exciting cells in atria and ventricles and assuring synchronous
contractions. Of special interest are cardiac arrhythmias: dis-
ruptions of the normal excitation process due to faulty pro-
cesses at the cellular level, single ion-channel level, or at the
level of cell-to-cell communication. The clinical manifesta-
tion is a rhythm with altered frequency, tachycardia (rapid
heart beat) or bradycardia (slow heart beat), or the appearance
of multiple frequencies, polymorphic ventricular tachycardia,
with subsequent deterioration to a chaotic signal, ventricular
fibrillation (vf). vf is a typically fatal condition in which there
is uncoordinated contraction of the cardiac muscle of the ven-
tricles in the heart. As a result, the heart fails to adequately
pump blood and hypoxia (lack of oxygen) may occur.

In order to simulate the emergent behavior of cardiac
tissue, we have developed CellExcite,2 a clha-based sim
ulation environment for excitable-cell networks. CellExcite
allows the user to sketch a tissue of excitable cells, plan the
stimuli to be applied during simulation, and customize the
arrangement of cells by selecting the appropriate lattice.
Figure 3 presents our simulation results for a 400 × 400 clha
network of cardiac myocytes. Nine 50-ms simulation steps are
shown, during which (steps 1 and 4) the network was stimu-
lated twice, at different regions. The results we obtain dem-
onstrate the feasibility of using clha networks to capture and
mimic different spatiotemporal behavior of wave propagation

100 communications of the acm | march 2009 | vol. 52 | no. 3

research highlights

in 2D isotropic (homogeneous) cardiac tissue, including nor-
mal wave propagation (1–150 ms); the creation of spirals, a
precursor to fibrillation (200–250 ms); and the break-up of
such spirals into more complex spatiotemporal patterns, sig-
naling the transition to vf (250–400 ms).

As can be clearly seen in Figure 3, mode abstraction, in
which the action-potential value of each clha in the network
is discretely abstracted to its corresponding mode, faithfully
preserves the network’s waveform and other spatial charac-
teristics. Hence, for the purpose of learning and detecting spi-
rals within clha networks, we can exploit mode abstraction
to dramatically reduce the system state space.

3. SUPERPOSITION AND QUADTREES
A key benefit of using hybrid automata compared to nonlinear
odes is their explicit support for finitary abstractions: the infi-
nite range of values of a hybrid automaton’s continuous state
variables can be abstracted to the automaton’s discrete finite
set of modes. As discussed in Sections 1 and 2, abstracting
the ap (voltage) of the constituent clha in a clha network to

their corresponding mode (s, u, p, or r) turns out to faithfully
preserve the network’s waveform and other spatial character-
istics. This simplifying approximation allows us to reduce the
spiral-onset verification problem to a finite-state verification
problem.

Although in this paper we consider a clha network an exe-
cution at a time, our ultimate goal is exhaustive simulation,
i.e., model checking. Within this context, the state space of a
400 × 400 clha network, which would be necessary to simu-
late the behavior of a tissue of about 16 cm2 in size, is still too
large for analysis purposes: it has 4160,000 mode values! To com-
bat state explosion, we use a spatial abstraction inspired by
Kwon and Agha.14 Consider the state space of a clha network.
We regard the current mode of each clha in the network as
a degenerate probability distribution, and define the super-
position of a set of (possibly superposed) modes as the mean
of their distributions. By successively applying superposition
to the clha network, we obtain a tree whose root is the mode
superposition of the entire network, and whose leaves are
the individual modes of the component clha. The particu-
lar superposition tree structure we employ, the quadtree, was
inspired by image-processing techniques.20

Let A be a 2k × 2k matrix of clha modes. A quadtree Q =
(V, R) representation of A is a quaternary tree, such that each
vertex v ∈ V represents a sub-matrix of A and the transition
relation R defines v ’s 4 child vertices (assuming v is not a leaf ).
For example, the root v0 of the quadtree in Figure 4 represents
the entire matrix; child v1 represents the matrix {2k−1, …, 2k} ×
{0, …, 2k−1}; child v6 represents the matrix {2k−1, …, 3 * 2k−2} ×
{0, …, 2k−2}; etc.

Due to superposition, a quadtree is in general a more effi-
cient data structure than the matrix it represents: if the sub-
tree rooted at a node of a quadtree is of one “color” (mode in
our case), then there is no need to descend into the node’s
subtree as no additional information can be gleaned by doing
so. Moreover, given a quadtree representation of an image and
a property of the image in which one is interested—such as
determining whether a mode-abstracted snapshot of a clha
network contains a spiral—it may only be necessary to fol-
low a path through the quadtree (as opposed to exploring the
entire tree) to determine if the property holds. Moreover, the
path need not necessarily descend all the way to the leaf level,
but rather may terminate at an interior node. See Sections 4
and 5 for a further discussion of such quadtree properties.

Definition 1 (Distributions). Let N be a clha network
whose constituent clha have (ordered) modes M = {s, u, p,
r}, and let Q be the quadtree representation of N. Then each
leaf node l ∈ Q has an associated degenerate leaf distribution
Dl whose probability mass function (also sometimes known
as the point mass function, and in either case abbreviated

Figure 3: Simulation of continuous and discrete behavior of a clha
network.

Continuous behavior Discrete behavior

Resting
Stimulated

mV

−80 604632184−10−24−38−52−66

Plateau
Upstroke

1� Stimulus

2� Stimulus

Normal wave
propagation

1 ms

50 ms

100 ms

150 ms

200 ms

250 ms

300 ms

350 ms

400 ms

Ventricular
fibrillation

Figure 4: Quadtree representation.

v8v7v6v5

v6 v5

v8v7
v2

41

41 32

32

d = 2

d = 1

d = 0

(b)(a)

v4v3

v2

v0

v1

v1

v0

v4v3

march 2009 | vol. 52 | no. 3 | communications of the acm 101

as pmf) pl is such that !m∈M . pl(m) = 1. Also, let i ∈ Q be an
interior node with children i1, …, i4. Then i has an associated
superposition distribution Di whose pmf pi is such that ∀m∈M .
pi (m)= ∑4

j = 1 pij(m).
The intuition is as follows. If a leaf node occurs at the maxi-

mum depth of the quadtree, then it corresponds to the cur-
rent mode of a clha. As clha are deterministic, they assume
one of the values in M with probability 1. (We will weaken this
restriction at the end of the section when we consider superpo-
sition quad-graphs.) If the leaf does not occur at the maximum
depth of the quadtree, then it corresponds to the superposi-
tion of identical degenerate distributions, and no additional
information is obtained by decomposing the leaf into its four
superposition components. The visual interpretation is that a
pixel has one definite color, and nothing is learned by decom-
posing an area in which all pixels have the same color.

As for the distribution of an interior node i, if all of i’s chil-
dren are leaves, then, for each mode value m, i’s superposition
is the mean of the occurrences of m. Hence, the probability that
the mode of the parent is m is the probability that the mode of
an arbitrary child is m. If i’s children are interior nodes, it still
holds that the probability that i’s mode is m is the probability
that the mode of an arbitrary leaf below i’s children is m.

We call a quadtree whose nodes are labeled with leaf- and
interior-node distributions a superposition quadtree (sqt). The
distributions in an sqt are not known in advance; our learning
algorithm seeks to determine them for what we perceive to be
spirals. The use of probability distributions is justified by the
fact that different spirals might have slightly different shapes,
i.e., slightly different distributions of values for the leaf nodes
of their associated quadtrees.

The sqts presented so far were constructed over a finite
matrix A containing 2k * 2k elements. In general, sqts can be
obtained via the finite unfolding of a quad-graph.

Definition 2 (sqg). A superposition quad-graph (sqg) is a
4-tuple G = (V, v0, R, L) consisting of:

·	 a finite set of vertices V with initial vertex v0 ∈ V,
·	 a transition relation R ⊆ V × [1..4] × V
	 s.t. ∀v ∈ V, i ∈ [1..4]. ∃ u ∈ V. (v, i, u) ∈ R, and
·	 a probability-distribution labeling L
	 s.t. ∀v ∈ V. L(v) = Σu∈R(v) L(u).

The condition on R ensures that each vertex in V has precisely
four successors in R. The condition on L ensures that the
probability distributions are related through superposition.
The manner in which we construct sqts as finite unfoldings
of sqgs can be extended to support the definition of infinite
sqts generated by recursion. That is, it supports the defini-
tion of fractals. Furthermore, just as we use sqts to represent
finite images, sqgs can be used to represent infinite images,
i.e., fractals.

Figure 5(a–c) gives sqgs representing the recursive speci-
fication of three fractals and a graphical depiction of the
unfolding of these sqgs up to depth 3. (The sqg of Figure 5(d),
for which no depiction is given, is considered below.) Note
the fractal-like nature of these pictures: the gray areas repre-
sent recursion and correspond to recursive nodes in the sqgs.
Such nodes are labeled by distribution variables, the values for

which can be computed by solving a linear system. For exam-
ple, x and y in Figure 5(b) are computed by solving the linear
system x = 1/4 (x + 1 + y) and y = 1/4 (1 + x). The four self-loops
of the leaves are not shown for simplicity. Note that leaves may
now be associated with any constant distribution. Also note
that the finite-state sqgs of Figure 5 (b) and (d) yield equiva-
lent infinite sqts.

4. LINEAR SUPERPOSITION LOGIC
In this section, we define lssl. Although the lssl logic—espe-
cially its spatial analogues of the temporal fixpoint operators
of ltl18—and its underlying semantics (Kripke structures)
allow us to reason about infinite paths, physical consider-
ations such as the number of myocytes in a cardiac tissue or
screen resolution impose a maximum length k on paths. We
therefore maintain k as a parameter in lssl’s semantic defi-
nition, placing us within the framework of bounded model
checking.3

Every finite sqt can be transformed into an sqg by adding
to each leaf node a self-loop labeled by i, i ∈ [1..4]. Moreover,
an sqg can be transformed into a Kripke structure by erasing
(forgetting) the transition labeling, collapsing all resulting
transitions that share the same source and target nodes into
one transition, and assuming nondeterminism among transi-
tions emanating from the same node. For example, applying
this forgetful transformation to the sqgs of Figure 5 yields the
Kripke structures of Figure 6, where the self-loops are made
explicit. The Kripke structure of Figure 6(d) can be seen as
the minimal-state equivalent of the one of Figure 6(b) where
nodes labeled by 0 or 1 are shared.

Definition 3 (Kripke structure). A Kripke structure (ks) over
a set of atomic formulas AF is a four-tuple M = (S, I, R, L) con-
sisting of:

·	 a countable set of states S, with initial states I ⊆ S,
·	 a transition relation R ∈ S × S
	 with ∀s ∈ S. ∃t ∈ S. (s,t) ∈ R, and
·	 a labeling (or interpretation) function L : S → 2AF.

The condition associated with the transition relation R
ensures that every state has a successor in R. Consequently, it
is always possible to construct an infinite path through a ks,

Figure 5: Fractals as finite-state sqgs: (a) x = 2/3, (b) x = 5/11, y = 4/11,
and (c) x = 1/2. sqg (d) is equivalent to sqg (b).

1

(d)

1

(a)

(c)

(b)

x

y

3

1

4

x
2

4

x

y

1

1

4

3 3

2 3

1 2

4

1,3

x

2

4

1

2

1

1 4

2 3

0

1

0

1

0

0

1

0

0

102 communications of the acm | march 2009 | vol. 52 | no. 3

research highlights

an important property when dealing with reactive systems. In
our case, it means that we can reason about recursive sqts,
i.e., fractals.

The labeling function L defines for each state s ∈ S the set
L(s) of atomic formulas that are valid in s. Atomic formulas are
inequalities over distributions of the form P[D = m] ∼ d, where
D is a distribution function, m ∈ M is a discrete value (e.g. a
mode), d ∈ [0..1], and ∼ is one of <, ≤, =, ≥, or >. We use P[D =
m] as a more intuitive notation for p(m), where p is the pmf
associated with D. (This notation is also reminiscent of P[X =
m], where X is a random variable.) It should thus be noted that
the 0–1 state labels used in Figure 6, where the mode in ques-
tion is s, are shorthand for the atomic formula P[D = s] = 0 or
P[D = s] = 1.

In order to verify properties of a reactive system modeled as
a ks K, it is customary to use either a linear-time or a branch-
ing-time temporal logic. A model for a linear-time (ltl) for-
mula is an infinite path p in K. A model for a branching-time
formula is K itself; given a state s of K, this allows one to quan-
tify over the paths originating from s. For our current purposes
of specifying and detecting the onset of spirals, ltl suffices.

Strictly speaking, our logic is a linear spatial-superposition
logic (lssl), as a path p in K represents a sequence of concreti-
zations (anti-superpositions). Syntactically, however, our tem-
poral-logic operators are the same as in ltl: the next operator
X, with Xj meaning that j holds in a concretization of the
current state; its inverse operator B; the until operator U, with
j U y meaning that j holds along a path until y holds; and the
release operator R, with y R j meaning that j holds along a
path unless released by y.

Definition 4 (lssl Syntax). The syntax of linear spatial-
superposition logic is defined inductively as follows:

As discussed above, a bound k on the path length is main-
tained as a parameter in lssl’s semantic definition.

Definition 5 (lssl Semantics). Let K be a ks, p a path in K,
and f ∈ AF an atomic formula. Then, for k ≥ 0, p satisfies an lssl
formula j with bound k, written p |=kj, only if p |= 0kj, where:

We say that K |=kj if for all paths p in K, p |=kj.

Our until and release operators U and R are bounded ver-
sions of the ltl operators U and R. Similarly, the globally
operator G, defined as Gj ≡ ⊥ Rj, is a bounded version of
ltl’s G operator. The finally operator F is defined as usual
as Fj ≡  Uj. In general, the unbounded ltl version of G
is assumed to not hold. For example, Gj does not hold as
could be violated at k + 1; to decide Gj in ltl with respect to
a bound k, one needs a more sophisticated analysis of the ks
K, as discussed in Biere3.

To illustrate lssl, consider a k-unfolding of the ks of Figure
6(a), and assume the distributions labeling the states cor-
respond to mode s. Then, this ks has a path p such that p |=k
G (P[D = s] = 2/3) holds: the path that always returns to x. To
automatically find p, we can model check the negation of this
formula; as discussed in Section 5, p will be returned as a coun-
terexample. Using the techniques in Biere3, one can show that
p also satisfies the unbounded ltl version of the formula.

5. MODEL CHECKING AND LEARNING
Bounded Model Checking: Given a ks K, lssl formula j,
and bound k, a bounded model checker (bmc) efficiently veri-
fies if K |=kj . If not, it returns one or more paths p in K that
violate j (i.e., counterexamples); otherwise, it returns true.
Intuitively, a bmc applies the lssl semantics inductively
defined in Section 4 to each path p in K. We have imple-
mented a simple prototype bmc for ksss derived from
sqts and lssl formulae, which first enumerates all paths
in a ks and then for each path applies the lssl semantics.
This approach is efficient enough to check within millisec-
onds the onset of spirals. We are currently improving our
handling of safety formulae (those without the F operator)
by pruning, during sqt traversal, all subtrees of a vertex as
soon as we detect that the current path satisfies j. A more
ambitious sat-based bmc is also under development.

Machine Learning: Writing the ltl formulae that a reac-
tive system should satisfy is a nontrivial task. Developers
often find it difficult to specify system properties of interest.
The classification of ltl formulae into safety (something
bad should never happen) and liveness properties (some-
thing good should eventually happen) provides some guid-
ance, but the task remains challenging.

Writing lssl formulae describing emerging proper-
ties of CLHA networks is even more difficult. For example,
what is the lssl formula for spiral onset? In the following,
we describe a surprisingly simple, machine-learning-based
approach that we have successfully applied to spiral detec-
tion. The main idea is to cast the onset property as follows:
Is there a path in the given sqt leading to the core of a spiral?,

Figure 6: Kripke structures for sqgs of Figure 5.

(a) (b)

1

(c) (d)

1

y

1

x

x

0 1

y x

x

1

1 00

001

1 0

march 2009 | vol. 52 | no. 3 | communications of the acm 103

where the core of a spiral is the central point from which
the spiral emanates, getting progressively farther away as it
revolves around the point.

The implementation of our approach is simple as well.
For an sef (a 400×400 array of ap values) produced by the
CellExcite simulator (see Figure 1), our Emerald tool
set allows the user to select a path through the sef’s corre-
sponding sqt simply by clicking on a point in the sef, e.g.
in the core of a spiral. If no spiral is present, the sqt path
with maximum pmf (probability mass function) is returned.
Note that this method is not restricted to spirals: path selec-
tion via clicking on a representative point can be applied to
normal wave propagation, wave collision, etc.

The paths so obtained are then used to learn the lssl
formula for the property in question, such as spiral onset.
The learning algorithm works as follows: (1) For each path
of length k, where k is the height of the sqt, we define k attri-
butes a1,…, ak such that each ai holds the pmf value of vertex
vi, for the mode we are interested in (for spirals, mode s). (2)
Each path is classified by Emerald as spiral or nonspiral
depending on whether or not the user clicked on a point
(core); the classification is stored as an additional classifier
attribute c. (3) All records (ai,…, ak, c) are stored in a table,
which is provided to the data-classification phase. (4) At the
end of this phase, we obtain a path classifier which we trans-
late into an lssl formula.

Data classification22 is generally a two-step process: train-
ing and testing. For training, we choose a classification algo-
rithm that learns a set of descriptions of our training data
set. The form of these descriptions depends on the type of
classification algorithm employed. For testing, we use a test
data set, disjoint from the training set and containing the
class attribute with a known value. The accuracy of the clas-
sifier on a given test set is the percentage of the test records
that are correctly classified. Various techniques can be used
to obtain test and training sets from an initial set of records,
such as X-Cross Validation.8

For classification purposes, we use a descriptive clas-
sifier (dc), which returns a set of if–then rules called dis-
criminant rules. Underlying dcs are decision trees, rough
sets, classification-by-association analysis, etc. A rule r has
the form

where I is a subset of [1..k]. Usually, each class c has an asso-
ciated set of rules r1, …, rn; i.e., c is characterized by n

i=1ri.
Using boolean arithmetic, this is equivalent to

The antecedent formula n
i=1 j∈Ii

aij = vij is called the class-
description formula of the class c.

As is customary, we built a classifier for one class only
(the class c), called the target class, using all other classes as
one contrasting class. Hence the classifier consists of only
one class-description formula, describing the target class.
We say that we learned that formula. We have used Weka’s

decision-tree algorithm, but any other rule-based algorithm
could have been used as well. The classifier we have learned
for spirals is as follows:

if a
7
 <= 0.875 then

if a
2
 <= 0.048 then ∼c else c

else if a3 <= 0.078 then
if a0 <= 0.025 then ∼c else c

else ∼c

Its translation into lssl, where Xk stands for k repetitions
of X, generated the following formula:

X2  P(D  =  s)>0.048  ∧ X7 P(D  =  s)≤0.875  Ú
P(D  =  s)>0.025  ∧  X3 P(D  =  s)≤0.078  ∧  X7 P(D  =  s)>0.875

This formula is an approximate description of a spiral
which we use together with Emerald’s bmc to detect spi-
ral onset within milliseconds. In case the bmc returned a
false positive, we add the corresponding record to the clas-
sification table as part of a retraining phase; see Figure 1.

6. IMPLEMENTATION
Our techniques of Sections 2–5 have been implemented as
the Emerald tool suite of the eha environment. Emerald
is a Java application that can be used to learn an lssl for-
mula for a particular spatial pattern, and to check the for-
mula against a set of images (of the kind pictured on the
right-hand side of Figure 3) that reproduce the discrete
behavior of a clha network. For ease of use, Emerald pro-
vides two graphical tools, one for Preprocessing (classifica-
tion) and the other for Bounded Model Checking.

The Preprocessing tool enables users to browse the
various collections of images they have assembled for
machine-learning purposes, and to view their sqt repre-
sentation. The user can select a path leading to a spiral
core by clicking on an appropriate stimulated point (in yel-
low) of the image. If the image does not contain a spiral,
the user can choose the maximum pmf path or a generic
stimulated point. Each path selected is stored in a data
table in the form of the pmf sequence of stimulated modes
in each node of the traversed sqt. All such paths are subse-
quently exported to Weka in a common format. Presently,
we have customized Emerald for spiral detection, but we
plan to extend the tool with the capability to classify any
generic spatial pattern.

The bmc applet (Figure 7) enables the user to check an
lssl formula against the sqt representation of a specific
image. As discussed in Section 5, the lssl formula encodes
the classifier for the spatial pattern under investigation. If
the sqt in question fails to satisfy the formula, the result-
ing counterexamples (spirals) are reported to the user both
as rows in the counterexample table and as red dots mark-
ing the core of the spiral contained in the image.

Table 1 contains our preliminary experimental results.
For training and testing purposes, we used two different
sets of images, each containing spirals and normal wave

104 communications of the acm | march 2009 | vol. 52 | no. 3

research highlights

propagation. The first set of images was used to train the
classifier; we supervised the training by discriminating
between paths leading to a spiral core versus those (of max-
imum pmf) belonging to images that did not contain a spi-
ral. From this first set we extracted 512 possible paths, and
used Weka to build a ruled-based classifier with a very high
prediction accuracy (99.25%).

The test set was divided into increasingly larger sets
of images: 500, 550, 600, and 650 images. Applying the
rule-based classifier on the first 500 images produced 67
wrongly classified paths. We used these paths to obtain a
new, retrained classifier. We then used both classifiers on
the remaining sets of images, and for each classifier and
test set we computed the lssl formula accuracy, as an esti-
mate of how well the formula specifies the spatial pattern.
As Table 1 shows, retraining considerably improves accu-
racy, and can be repeated each time a false classification
is returned.

Weka’s decision-tree algorithm took less than 9 s to
construct a rule-based classifier from the training (512
records) and retraining (579 records) tables, respectively.
Our model checker took between 1.67 and 7.09s, with an
average of 4.72s to model check the sqt for a 400 × 400 sef
if no spiral was present, and between 1 ms and 4.64s, with
an average of 230ms otherwise. All results were obtained
on a PC equipped with a Centrino 2GHz processor with
1.5GB RAM.

Figure 7: Emerald bounded model checker.

7. RELATED WORK
The use of hybrid automata to model and analyze spatial
networks is a relatively new subject area, and includes
application to Delta-Notch signaling networks,9 coordi-
nated control of autonomous underwater vehicles,19 and
aircraft trajectories and landing protocols.7, 21 In contrast,
our focus is on emergent behavior (in the form of spiral
waves) in networks of cardiac myocytes, and the use of spa-
tial superposition as an abstraction mechanism. Predicting
spirals4 in pure continuous models23 is a more complicated
process than what is implemented in Emerald, where dis-
crete sqt structures, obtained via mode abstraction and
superposition, are used. Several logics have recently been
proposed for describing the behavior and spatial struc-
ture of concurrent systems,5, 6 and for reasoning about the
topological aspects of modal logics and Kripke structures.1
Unlike lssl, these logics are not based on an abstraction
mechanism like spatial-superposition that can be used to
alleviate state explosion during model checking.

8. CONCLUSION
In this paper, we have presented a framework for specify-
ing and detecting emergent behavior in networks of car-
diac myocytes. Our approach, which uses hybrid automata,
discrete mode abstraction, and bounded model checking,
is based on a novel notion of spatial superposition and its
related logic LSSL, and a new method for the automated
learning of formulae in this logic from the spatial pat-
terns under investigation. Our framework has been fully
implemented in the Emerald tool suite. Our preliminary
experimental results are very encouraging, with a predic-
tion accuracy of over 93% on a test set comprising 650
images. As future work, we plan to extend our framework
to the learning of branching-time spatial-superposition
properties and the more intricate problem of specifying
and detecting spatiotemporal emergent behavior.

We also experimented with the SIFT (Scale-Invariant
Feature Transform) algorithm, which detects and matches
interesting features in images while preserving invari-
ance constraints for scaling, translation, and rotation.15
We found that SIFT performed matching well on images
of spirals that were related to one another through rigid
transformations. It was less successful, due to an insuffi-
cient number of matching keypoints, on spirals with more
markedly different shapes. Also, SIFT and other image-pro-
cessing techniques tend to process the entire image. Our
approach, in contrast, uses logical formulae over sqt paths
and densities of a particular clha mode (stimulated) along
such paths.

Table 1: Experimental results.

Path Classifier Test Set
(550)

Test Set
(600)

Test Set
(650)

Trained (512 paths) 87.00% 88.83% 88.23%
Retrained (512 paths + 67
counterexamples)

97.10% 97.33% 93.07%

march 2009 | vol. 52 | no. 3 | communications of the acm 105

Acknowledgments
We would like to thank the anonymous reviewers for their valu-
able comments. Research supported in part by NSF awards
CCR-0133583, CNS-0509230, and CCF-0523863.�

References
	 1.	A iello, M., Benthem, J., and

Bezhanishvili, G. Reasoning about
space: The modal way. J. Log.
Comput. 13, 6 (2003), 889–920.

	 2.	 Bartocci, E., Corradini, F., Entcheva,
E., Grosu, R., and Smolka, S.A.
CellExcite: An efficient simulation
environment for excitable cells. BMC
Bioinformatics, 9, Suppl 2 (2008), S3.

	 3.	 Biere, A., Cimatti, A., Clarke, E.,
Strichman, O., and Zhu, Y. Bounded
model checking. In Adv. in Comp.
vol. 58: Highly Depend. Software.
Acad. Press, 2003.

	 4.	 Bray, M.A., Lin, S.F., Aliev, R.R., Roth,
B.J., and Wikswo, J.P.J. Experimental
and theoretical analysis of phase
singularity dynamics in cardiac tissue.
J. Cardiovasc. Electrophysiol. 12, 6
(2001), 716–722.

	 5.	C aires, L., and Cardelli, L. A spatial
logic for concurrency (part I). Inf.
Comput. 186, 2 (2003), 194–235.

	 6.	C aires, L., and Cardelli, L. A spatial
logic for concurrency (part II). Theor.
Comput. Sci. 322, 3 (2004), 517–565.

	 7.	 deOliveira, I., and Cugnasca, P.
Checking safe trajectories of
aircraft using hybrid automata. In
Proceedings of SAFECOMP 2002.
Springer-Verlag, Sept. 2002.

	 8.	F rank, E., Hall, M.A., Holmes, G.,
Kirkby, R., Pfahringer, B. Witten,
I.H., and Trigg, L. WEKA: A machine
learning workbench for data mining.
In The Data Mining and Knowledge

Discovery Handbook, 1305–1314.
Springer, 2005.

	 9.	G hosh, R., Tiwari, A., and Tomlin, C.
Automated symbolic reachability
analysis: with application to Delta-
Notch signaling automata. In HSCC,
233–248, 2003.

	10.	G rosu, R., Bartocci, E., Corradini,
F., Entcheva, E., Smolka, S.A., and
Ye, P. EHA: An environment for the
specification, simulation, analysis
and control of networks of excitable
hybrid automata. http://www.
cs.sunysb.edu/∼eha, 2009.

	11.	G rosu, R., Mitra, S., Ye, P., Entcheva,
E., Ramakrishnan, I.V., and Smolka,
S.A. Learning cycle-linear hybrid
automata for excitable cells. In
Proceedings of HSCC’07, the 10th
International Conference on Hybrid
Systems: Computation and Control,
volume 4416 of LNCS, Pisa, Italy,
April 2007. Springer Verlag, 245–258.

	12.	H enzinger, T.A. The theory of
hybrid automata. In Proceedings of
11th IEEE Symposium on Logic in
Computer Science, 1996, 278–293.

	13.	H odgkin, A.L. and Huxley, A.F. A
quantitative description of membrane
currents and its application to
conduction and excitation in nerve.
J. Physiol., 117 (1952), 500–544.

	14.	K won, Y., and Agha, G. Scalable
modeling and performance evaluation
of wireless sensor networks. In IEEE
RT Tech. and App. Symp., 2006, 49–58.

	15.	L owe, D.G. Object recognition from

local scale-invariant features. In
Proceedings of the International
Conference on Computer Vision 2,
1999, 1150–1157.

	16.	L u, Y. Concept hierarchy in data
mining: Specification, generation and
implementation. Master’s thesis,
Simon Fraser University, Dec. 1997.

	17.	L uo, C.H., and Rudy, Y. A dymanic
model of the cardiac ventricular
action potential: I. simulations of ionic
currents and concentration changes.
Circ. Res., 74 (1994), 1071–1096.

	18.	M anna, Z., and Pnueli, A. The
Temporal Logic of Reactive and
Concurrent Systems: Specification.
Springer, 1992.

	19.	 Pereira, F., and deSousa, J.
Coordinated control of networked
vehicles: An autonomous underwater
system. Aut. Remote Ctrl. 65, 7
(2004), 1037–1045.

	20.	S husterman, E., and Feder, M.
Image compression via improved
quadtree decomposition algorithms.
IEEE Trans. Image Processing 3, 2
(Mar. 1994), 207–215.

	21.	U meno, S., and Lynch, N. Safety
verification of an aircraft landing
protocol: A refinement approach. In
Proceedings of HSCC 2007, Apr. 2007.

	22.	 Wasilewska, A., and Ruiz, E.M. A
classification model: Syntax and
semantics for classification. In
RSFDGrC (2), 2005, 59–68.

	23.	 Wedge, N.A., Branicky, M.S., and
Cavusoglu, M.C. Computationally
efficient cardiac biolectricity models
toward whole-heart simulation. In
Proceedings of International Conference
on IEEE Engineering in Medicine and
Biology Society, 2004, 1–4.

	24.	Y e, P., Entcheva, E., Grosu, R., and
Smolka, S. Efficient modeling of
excitable cells using hybrid automata.
In Proceedings of CMSB’05, the Third
Workshop on Computational Methods
in Systems Biology, Edinburgh,
Scotland, April 2005, 216–227.

	25.	Y e, P., Entcheva, E., Smolka, S.A., and
Grosu, R. Modeling excitable cells
using cycle-linear hybrid automata.
IET Syst. Biol., 2 (Jan. 2008), 24–32.

Radu Grosu
(grosu@cs.sunysb.edu), Department of
Computer Science, Stony Brook University,
Stony Brook, NY.

Scott A. Smolka
(sas@cs.sunysb.edu), Department of
Computer Science, Stony Brook University,
Stony Brook, NY.

Flavio Corradini
(flavio.corradini@unicam.it), Department
of Mathematics and Computer Science,
University of Camerino, Camerino (MC),
Italy.

Anita Wasilewska
(anita@cs.sunysb.edu), Department of
Computer Science, Stony Brook University,
Stony Brook, NY.

Emilia Entcheva
(emilia.entcheva@sunysb.edu), Department
of Biomedical Engineering, Stony Brook
University, Stony Brook, NY.

Ezio Bartocci
(ezio.bartocci@unicam.it), Department
of Mathematics and Computer Science,
University of Camerino, Camerino (MC),
Italy. Currently visiting the Department
of Computer Science, Stony Brook
University, Stony Brook, NY.© 2009 ACM 0001-0782/09/0300 $5.00

You’ve come a long way.
Share what you’ve learned.

ACM has partnered with MentorNet, the award-winning nonprofit e-mentoring network in engineering,
science and mathematics. MentorNet’s award-winning One-on-OneMentoring Programs pair ACM
student members with mentors from industry, government, higher education, and other sectors.

• Communicate by email about career goals, course work, and many other topics.
• Spend just 20minutes a week - and make a huge difference in a student’s life.
• Take part in a lively online community of professionals and students all over the world.

Make a difference to a student in your field.
Sign up today at: www.mentornet.net

Find out more at: www.acm.org/mentornet
MentorNet’s sponsors include 3M Foundation, ACM, Alcoa Foundation, Agilent Technologies, Amylin Pharmaceuticals, Bechtel Group Foundation, Cisco
Systems, Hewlett-Packard Company, IBM Corporation, Intel Foundation, Lockheed Martin Space Systems, National Science Foundation, Naval Research
Laboratory, NVIDIA, Sandia National Laboratories, Schlumberger, S.D. Bechtel, Jr. Foundation, Texas Instruments, and The Henry Luce Foundation.

http://www.cs.sunysb.edu/~eha
mailto:grosu@cs.sunysb.edu
mailto:sas@cs.sunysb.edu
mailto:flavio.corradini@unicam.it
mailto:anita@cs.sunysb.edu
mailto:emilia.entcheva@sunysb.edu
mailto:ezio.bartocci@unicam.it
http://www.mentornet.net
http://www.acm.org/mentornet
http://www.cs.sunysb.edu/~eha

106 communications of the acm | march 2009 | vol. 52 | no. 3

careers

Calendar and detailed application information
at:

http: www.inria.fr/travailler/index.en.html
email: Laura.Norcy@inria.fr

North Carolina Central University
Computer Science Faculty Position

The Department of Mathematics and Computer
Science invites applications for tenure-track fac-
ulty positions in all areas beginning Fall 2009.
A Ph.D. in computer science or related area is
required. The successful candidate must have a
commitment to the academic process, excellence
in research, education, and service, and to diver-
sity in the community. The candidate must have
a desire to participate in student academic and
thesis advising, and curriculum development.
We are particularly interested in candidates with
research interests in artificial intelligence, com-
puter vision, computer graphics, grid comput-
ing, robotics, computational biology, software
engineering, multimedia applications, networks,
mobile computing, wireless sensor networks and
security/cryptography.

The campus is located in the Research Trian-
gle Area, an ideal location in NC with several uni-
versities and high-tech companies. Applications
and inquiries should be sent to ruma@nccu.edu.
Further information can be found at: http://boole.
cs.nccu.edu/emp2009/employment.html

Departmental resources include extensive
computing facilities of workstations, servers and
personal computers with multimedia capabilities
and specialized networks and devices. Faculty
members have access to high performance com-
puting platforms provided by the university and
its partners.

SUNY College at Plattsburgh
Assistant Professor, Computer Science

The Computer Science Department of the State
University of New York, College at Plattsburgh
is seeking qualified applicants for a tenure track
assistant professor position starting fall 2009.
SUNY Plattsburgh is a public liberal arts college
with approximately 80 computer science majors.

Qualifications: Ph.D. in Computer Science, or
closely related field. ABD considered. Applicants
with strengths in software engineering, systems
programming, security, networks, or with indus-
try experience will be highly regarded. We seek a
candidate with the potential to become an excel-
lent teacher, the ability to excite students about
involvement in research and applied projects,
with creative ideas concerning curriculum de-
velopment, an interest in exploring connections
with other disciplines and an active program of
scholarship.

Responsibilities include: Supporting under-
graduate degree programs both in Computer

California State University
Department of Computer Science
and Engineering

The Department of Computer Science and Engi-
neering invites applications for a tenure rack po-
sition at the Assistant Professor level. Candidates
must have a Ph.D. in Computer or Electrical Engi-
neering, or a closely related field. The position is
primarily to support the new B.S. in Computer En-
gineering program. The program has strong sup-
port from local industry and government entities.
In addition, the Department offers the degrees
B.S. in Computer Science (ABET accredited), B.A.
in Computer Systems, B.S. in Bioinformatics and
M.S. in Computer Science. Women and under-
represented minorities are strongly encouraged
to apply. For the complete ad please visit http://
cse.csusb.edu.

DEADLINE AND APPLICATION PROCESS: Ap-
plicants should submit a curriculum vitae, state-
ment of teaching philosophy, description of re-
search interests, an official copy of most recent
transcripts, and have three letters of recommen-
dation sent separately. Review of applications
will begin January 15, 2009 and will continue un-
til the position is filled; the position will start in
September 2009. Please send all materials to:

Dr. George M. Georgiou, Chair
Department of Computer Science and

Engineering
California State University, San Bernardino
5500 University Parkway
San Bernardino CA 92407-9393

Gonzaga University
Assistant or Associate Professor
of Computer Science

Gonzaga University seeks applicants for an Assis-
tant or Associate Professor of Computer Science.
This is a full-time, tenure track position to begin
in the fall semester, 2009. Required qualifications:
demonstrated expertise in data mining, database
management systems, scientific visualization,
or bioinformatics; Ph.D. in computer science or
closely related field. The Department’s facilities
include a computational science lab with a 512
node cluster, and a sensor network and robotics
lab. The department is housed in the newly com-
pleted Paccar Center for Applied Science.

Gonzaga, with 7000 students, is in the cen-
ter of Spokane, Washington along the Spokane
River. Research opportunities are available with
the Pacific Northwest National Laboratories and
many businesses in the area. Spokane, the health
care center for the inland Northwest, has a metro-
politan area population of 500,000. The city offers
one of the finest four-season living environments
in the Pacific Northwest, with five ski resorts,
more than 60 lakes, and several national forests
nearby.

Review of applications will begin 1/12/09. Appli-
cations will be accepted until the position is filled.
Please send a letter, complete curriculum vita, a
statement of research and teaching objectives, and
the names, addresses, and telephone numbers of
at least three references to: Paul De Palma, Chair,
Department of Computer Science, Gonzaga Uni-
versity, Spokane, WA 99258-0026. Electronic sub-
missions in pdf format are preferred and should be
sent to: depalma@gonzaga.edu. Gonzaga is a Cath-
olic, Jesuit and humanistic university interested
in candidates who can contribute to its distinctive
mission. The University is an AA/EEO employer and
educator committed to diversity

Open Positions at INRIA for
Tenured and Tenure-track Research Scientists

INRIA is a French public research institute in
information and communication science and
technology. It is an outstanding and highly vis-
ible scientific organization, a major player in the
European Research Area heavily involved in most
of research and development programs. INRIA
has eight research centers in Paris, Bordeaux,
Grenoble, Lille, Nancy, Nice – Sophia Antipolis,
Rennes and Saclay that host 160 project-teams in
partnership with universities and other research
organizations. INRIA focuses the activity of over
1100 researchers and faculty members, 1200
PhD students and about 1000 post-docs and en-
gineers, on fundamental research at the best in-
ternational level, as well as on development and
transfer activities in the following computer sci-
ence and applied mathematics areas:

Modeling, simulation and optimization of ˲˲
complex dynamic systems

Formal methods in programming secure and ˲˲
reliable computing systems

Networks and ubiquitous information, compu-˲˲
tation and communication systems

 Vision and human-computer interaction mo-˲˲
dalities, virtual worlds and robotics

Computational Engineering, Computational ˲˲
Sciences and Computational Medicine

In 2009, INRIA is opening over 40 new
positions within its 8 research centers:

Junior and senior level positions, ˲˲
Tenured and tenure-track positions, ˲˲
Research and joint faculty positions with uni-˲˲

versities

These positions cover all
the above research areas.
INRIA centers provide outstanding scientific envi-
ronments and excellent working conditions. The
institute offers competitive salaries and social
benefit programs. It welcomes applications from
all nationalities; it will arrange if needed visa and
working permits (also for the spouse). French
schooling and social programs for families are
well organized and highly regarded.

http://cse.csusb.edu
mailto:depalma@gonzaga.edu
http://www.inria.fr/travailler/index.en.html
mailto:Laura.Norcy@inria.fr
mailto:ruma@nccu.edu
http://boole.cs.nccu.edu/emp2009/employment.html
http://cse.csusb.edu
http://boole.cs.nccu.edu/emp2009/employment.html

march 2009 | vol. 52 | no. 3 | communications of the acm 107

FACULTY POSITIONS IN COMPUTER COMMUNICATIONS / COMPUTER SCIENCE / COMPUTING SYSTEMS / INFORMATION
SYSTEMS WITH SINGAPORE’S SCIENCE AND TECHNOLOGY’S UNIVERSITY, NANYANG TECHNOLOGICAL UNIVERSITY

A member of the College of Engineering, the School of Computer Engineering (SCE) originated from the School of Applied Science that was
established in 1988. Recognizing the rapid growth in the information technology arena, SCE was formed in 2000. It offers undergraduate training
leading to BEng (Hons) in Computer Engineering or Computer Science as well as full-time and part-time graduate training leading to MSc and PhD.
SCE’s strengths lie in constantly maintaining industrial relevance in its training of undergraduate and graduate students, as well as pioneering
innovative cutting-edge research. The school comprises of four divisions, namely Division of Computer Communications (CCM), Division of Computer
Science (CSC), Division of Computing Systems (CPS) and Division of Information Systems (IS).

Applications are invited for appointment as Associate Professor (A/P) or Assistant Professor (Ast/P) in one of the four divisions.
High-calibre applicants who possess a PhD and with a proven track record in research and teaching at university level are invited to apply for
suitable appointments in the following areas:

• Network System, Seamless Communications, Wireless • Modelling & Simulation (Ast/P in CSC)
Sensor Network (Ast/P in CCM) • Embedded Systems (Ast/P in CPS)

• Multimedia Understanding, Mobile Multimedia • Intelligent Robotics & Control (Ast/P in CPS)
(Ast/P in CCM) • Audio, Speech & Signal Processing (Ast/P in CPS)

• Distributed Systems, Collaborative Computing, or High • Information Retrieval/ Text Mining (A/P or Ast/P in IS)
Performance Computing (Ast/P in CSC) • Agents and Services Computing (A/P or Ast/P in IS)

Candidates for appointment at an Associate Professor level must possess an outstanding track record of research through publication in top
rank journals, obtaining grants and academic leadership, as well as a willingness and demonstrated ability to teach at the undergraduate and
graduate levels. Candidates for appointment at Assistant Professor level must demonstrate strong research potential and a willingness and
ability to teach at the undergraduate and graduate levels.

The successful candidates are expected to carry out research in one of the research centres hosted by the school. Candidates are expected
to teach on both MSc programmes and BEng Computer Engineering/Computer Science degrees offered by the school.

Further information about the school can be obtained at http://www.ntu.edu.sg/sce. Informal enquiries and submission of application
forms can be made to VD-SCE-ACAD@ntu.edu.sg. Guidelines for application submission and application forms can be obtained from
http://www.ntu.edu.sg/ohr/Career/SubmitApplications/Pages/default.aspx.

Closing Date: 15 April 2009

www.ntu.edu.sg

The Computer Systems section of the Department of Computer Science at the Vrije Universiteit
is looking for two postdocs to work in the group of Prof. Andrew Tanenbaum. The theme running
through all our research is how to design and build dependable and secure systems software. This
research is being funded in part by a European Research Council Advanced Grant of €2.5 million
awarded to Prof. Tanenbaum.

The goal of this project is to develop a highly dependable operating system that never goes down and
which can repair itself and even upgrade itself automaticallwhich can repair itself and even upgrade itself automatically, without rebooting and without stopping
running applications. The system will be based on MINIX 3 (www.minix3.org), which is a very
small and reliable microkernel. The postdoc will do research in the area of dependable systems.

Another opening is for a 2-year postdoc in computer security. The candidate must have a strong
publication record in the area of security with a preference for system security. The postdoc will
carry out research within the project S-Mobile (www.cs.vu.nl/~ast/s-mobile) in the area of security
of mobile platforms (e.g., Android).

For more information about both positions, please see

www.cs.vu.nl/~ast/jobs

Postdoc Positions Available in Amsterdam

http://www.ntu.edu.sg/sce
mailto:VD-SCE-ACAD@ntu.edu.sg
http://www.ntu.edu.sg/ohr/Career/SubmitApplications/Pages/default.aspx
http://www.ntu.edu.sg
http://www.minix3.org
http://www.cs.vu.nl/~ast/s-mobile
http://www.cs.vu.nl/~ast/jobs

108 communications of the acm | march 2009 | vol. 52 | no. 3

careers

Science and Information Technology; course in-
struction; and appropriate research and service
activities.

SUNY College at Plattsburgh is an
equal opportunity employer committed to

excellence through diversity.

Salary: will be commensurate with qualifi-
cations, with excellent benefits. Review of ap-
plications will begin on March 1, 2009 and will
continue until the position is filled. Original
transcripts will be required prior to employment.
Apply online at: https://jobs.plattsburgh.edu/ap-
plicants/Central?quickFind=50483 and include
a cover letter, curriculum vitae, and three letters
of reference.

Texas Tech University
Assistant/Associate Professor

Texas Tech University: The Department of
Computer Science invites applications for a
tenure-track position at the rank of Assistant /
Associate Professor starting Fall of 2009. Prefer-
ences are given to candidates with background
in networks. Other areas will be considered for
excellent candidates. Applicants must have a
Ph.D. degree in computer science or a closely
related field. Successful candidates must have
demonstrated achievements or potentials for
excellence in research and teaching. The de-
partment of Computer Science is one of eight
departments in the College of Engineering; it of-
fers a PhD, MS, and BS in computer science and

MS in Software Engineering. Faculty members
perform scholarly and funded research in many
areas, including artificial intelligence, databas-
es, language theory, software engineering, data
mining, robotics, and distributed and parallel
computing. Texas Tech University is a compre-
hensive institution that includes law and medi-
cal schools with an enrollment of more than
28,000 students. Lubbock, a city of over 200,000,
is a major economic and medical center on the
Texas South Plains, with an excellent climate
and numerous cultural opportunities. We offer
competitive salaries, a friendly and cooperative
environment, and excellent research facilities.
Review will begin in January 2009 and continue
until the position is filled. A letter of application,
curriculum vitae, a summary of research and
teaching goals, and three letters of reference
should be submitted electronically at http://
jobs.texastech.edu. Please use Requisition num-
ber 78066. Additional information is available at
http://www.cs.ttu.edu. Texas Tech University is
an equal opportunity/affirmative action employ-
er and actively seeks applications from women,
members of minority groups, disabled individu-
als, and veterans.

U.S. Air Force Academy

Department of Computer Science is accepting
applications for our Coleman-Richardson Chair
and Visiting Professor positions. See http://www.
usafa.edu/df/dfcs/index.cfm or call (719) 333-
3590 for details. U.S. Citizenship required.

University at Buffalo,
The State University of New York
Faculty Positions in Computer Science
and Engineering

The CSE Department invites excellent candidates
in high performance computing and ubiquitous
computing to apply for openings at the assistant
professor level.

The department is affiliated with successful
centers devoted to biometrics, bioinformatics,
biomedical computing, cognitive science, docu-
ment analysis and recognition, high performance
computing, and information assurance.

Candidates are expected to have a Ph.D. in
Computer Science/Engineering or related field by
August 2009, with an excellent publication record
and potential for developing a strong funded re-
search program.

Applications should be submitted by March
15, 2009 electronically via recruit.cse.buffalo.edu.

The University at Buffalo is an
Equal Opportunity Employer/Recruiter.

University of Denver
Professor and Department Chair

The Department of Computer Science (CS) at
the University of Denver (DU) is seeking a dy-
namic and visionary individual from business or
academia to lead the department during this ex-
pansion phase of the School of Engineering and
Computer Science. Through its strategic plan-

Windows Kernel Source and Curriculum Materials for
Academic Teaching and Research.
The Windows® Academic Program from Microsoft® provides the materials you
need to integrate Windows kernel technology into the teaching and research
of operating systems.

The program includes:

• Windows Research Kernel (WRK): Sources to build and experiment with a
fully-functional version of the Windows kernel for x86 and x64 platforms, as
well as the original design documents for Windows NT.

• Curriculum Resource Kit (CRK): PowerPoint® slides presenting the details
of the design and implementation of the Windows kernel, following the
ACM/IEEE-CS OS Body of Knowledge, and including labs, exercises, quiz
questions, and links to the relevant sources.

• ProjectOZ: An OS project environment based on the SPACE kernel-less OS
project at UC Santa Barbara, allowing students to develop OS kernel projects
in user-mode.

These materials are available at no cost, but only for non-commercial use by universities.

For more information, visit www.microsoft.com/WindowsAcademic
or e-mail compsci@microsoft.com.

https://jobs.plattsburgh.edu/applicants/Central?quickFind=50483
http://jobs.texastech.edu
http://www.cs.ttu.edu
http://www.usafa.edu/df/dfcs/index.cfm
http://recruit.cse.buffalo.edu
http://www.microsoft.com/WindowsAcademic
mailto:compsci@microsoft.com
https://jobs.plattsburgh.edu/applicants/Central?quickFind=50483
http://jobs.texastech.edu
http://www.usafa.edu/df/dfcs/index.cfm
mailto:dekanat@ira.uka.de

march 2009 | vol. 52 | no. 3 | communications of the acm 109

ning, the faculty of our CS department have iden-
tified Software Engineering, Game Development,
and Cyber Security as the key focus areas for the
department. Our CS department benefits from
a top quality faculty, strong partnership with in-
dustry, strong collaborations with other colleges
within DU and internationally. The CS depart-
ment offers degrees in both traditional and con-
temporary areas such as undergraduate degree
in gaming, and graduate degree in Computer
Science Systems Engineering. The primary fo-
cus of this new department chair will be on both
educational and research programs at graduate
and undergraduate levels. DU is a private univer-
sity with a strong history of academic excellence,
small classes, and emphasis on student engage-
ment at all levels. DU is the oldest university in
Colorado and its campus is located in the Denver
metro area.

Individuals with a strong record of research,
scholarship and excellence in teaching are en-
couraged to apply by sending their resume, state-
ment of interest, and a list of five references to
www.dujobs.org. PhD or PhD candidate in com-
puter science or related areas and some level of
leadership experience are required. The Univer-
sity of Denver is an AA/EOE.

University of Wisconsin-Madison
Assistant Professor

The Department of Computer Sciences at the
University of Wisconsin-Madison has an open-
ing for a tenure-track Assistant Professor, begin-

ning August 2009.
We invite applications from outstanding can-

didates in all areas of Computer Science, and
are especially interested in applications from
candidates working in human computer inter-
action (HCI). Applicants should have a Ph.D. in
computer science or a closely related field, and
demonstrated strength in scholarly research.
Successful candidates will be expected to teach at
the undergraduate and graduate level, in addition
to establishing a significant and highly-visible re-
search program.

Applicants should submit a curriculum vita, a
statement of research objectives and sample pub-
lications, and arrange to have at least three letters
of reference sent directly to the department. Elec-
tronic submission of all application materials is
preferred (see http://www.cs.wisc.edu/recruiting
for details).

To ensure full consideration, applications,
along with supporting material, should be re-
ceived by March 15, 2009. Early submission is
appreciated.

The UW-Madison is an equal opportunity/
affirmative action employer and encourages
women and minorities to apply. Unless confi-
dentiality is requested in writing, information
regarding the applicants must be released on
request. Finalists cannot be guaranteed confi-
dentiality. Employment may require a criminal
background check.

For further information, send emails to
recruiting@cs.wisc.edu .

EXECUTIVE DIRECTOR,
CSAB Inc.

CSAB Inc. is accepting applications for the position of
Executive Director. CSAB is a non-profit whose purpose is
to advance the quality of computing disciplines in the public
interest. CSAB supports and guides ABET accreditation of
undergraduate programs of study in computer science,
information systems, information technology, software
engineering, and computer engineering.

The Executive Director reports to a seven-person volunteer
Board of Directors. The Executive Director works with the
Board to achieve CSAB goals including recruiting and
managing the activities of approximately 200 volunteer
program evaluators.

Job Summary: The Executive Director is the Chief
Operating Officer of CSAB Incorporated. The Executive
Director is responsible for the consistent achievement of
CSAB’s mission and financial objectives. The job entails a
wide range of duties from clerical to managerial.

This is a part time position in which the workload varies
depending on the schedule of Board activities. Some travel
is required. Geographic location is negotiable. Salary is
negotiable.

Additional information and application
information may be found at

www.csab.org

Advertising in Career
Opportunities

How to Submit a Classified Line Ad: Send an e-mail to
acmmediasales@acm.org. Please include text, and indicate
the issue/or issues where the ad will appear, and a contact
name and number.

Estimates: An insertion order will then be e-mailed back to
you. The ad will by typeset according to CACM guidelines.
NO PROOFS can be sent. Classified line ads are NOT
commissionable.

Rates: $325.00 for six lines of text, 40 characters per line.
$32.50 for each additional line after the first six. The MINIMUM
is six lines.

Deadlines: Five weeks prior to the publication date of the
issue (which is the first of every month). Latest deadlines:

http://www.acm.org/publications

Career Opportunities Online: Classified and recruitment
display ads receive a free duplicate listing on our website at:

http://campus.acm.org/careercenter

Ads are listed for a period of 30 days.
For More Information Contact:

ACM Media Sales
at 212-626-0654 or

acmmediasales@acm.org

Dean
College of Architecture
Texas A&M University seeks applications
for dean of the College of Architecture,
one of the premier design research
institutions in the world and the largest
college of its kind in the nation.

The college is dedicated to generating
knowledge and producing leaders in the
fields of architecture, construction science,
landscape architecture, urban planning and
visualization.

The ideal candidate will share the
college’s united vision of significantly
influencing the state of the art in the
design, planning and construction of built
and virtual environments and possess
demonstrated ability to lead in a multi-
disciplinary environment rich in resources.

Applications will be accepted through
March 1, 2009. Details are available online:

http://deansearch.arch.tamu.edu/
Texas A&M University is an affirmative action,
equal opportunity institution that is strongly
and proactively committed to diversity.

http://www.dujobs.org
http://www.cs.wisc.edu/recruiting
mailto:recruiting@cs.wisc.edu
http://deansearch.arch.tamu.edu/
http://www.csab.org
mailto:acmmediasales@acm.org
http://www.acm.org/publications
http://campus.acm.org/careercenter
mailto:acmmediasales@acm.org

110 communications of the acm | march 2009 | vol. 52 | no. 3

last byte

the fastest uptake of any technology
in history, including the polio vac-
cine. Suppose as a result you see some
of the greatest economic and social
transformations in some of the most
unexpected places, from Bangladesh
to Nigeria. I am, of course, describing
the present.

If the harbingers of Prevail are the
appearance of many collaborative,
bottom-up, worldwide human solu-
tions, what do they say about eBay?
Not just the world’s biggest flea mar-
ket but a network of millions of people
producing highly complex solutions
without leaders. Facebook causes us
to reconsider the meaning of such a
basic human institution as “friend.”
YouTube recently helped shape the
most interesting election in a life-
time. And what about Twitter?

Prevail embraces uncertainty. Even
in the face of unprecedented threats,
it reflects faith that the ragged hu-
man convoy of divergent perceptions,
piqued honor, posturing, insecurity,
and humor will wend its way to glory.
The embedded assumption is that
even if a smooth curve of exponential
change describes the future of tech-
nology, it will not map onto the messy
world of human fortunes.

Prevail is driven by faith in human
cussedness, based on a hunch that
you can count on humans to throw
The Curve of exponential change a
curve of their own. It is also a belief
that transcendence resulting from
humans taking control of their own
evolution is unlikely to be part of any
simple scheme.

The significance of all this can
hardly be understated. Despite the
billions of galaxies, each with billions
of stars, we cannot detect any other
life in the universe. Why not? Per-
haps every intelligent species eventu-
ally takes control of its own evolution.
Maybe such radical evolution is the
final exam. Maybe everyone else has
already flunked.

Let’s not flunk, too. 	

Joel Garreau (www.garreau.com) is the author of
Radical Evolution: The Promise and Peril of Enhancing
Our Minds, Our Bodies—and What It Means to Be Human.

© 2009 ACM 0001-0782/09/0300 $5.00

outcomes are the same—annihilation
of the human race within 20 years. En-
tirely too imaginable.

Both Heaven and Hell are tech-
nodeterministic, assuming that our
gear shapes history. In neither is your
daughter able to do much to shape
her generation’s future. The critical
driver is the smooth curve of Moore’s
Law, measuring progress by the num-
ber of transistors we get to talk to one
another.

As a humanist, however, I root for
“Prevail,” which is not some middle
ground between Heaven and Hell.
Way off in its own territory, it assumes
what really matters is not how many
transistors we connect but how many
ornery, cussed, imaginative, unpre-
dictable humans we connect. Its mea-
sure is not individuals bragging about
their latest cognitive implants, leav-
ing your daughter and others like her
frightened and lonely, but something
far larger, measured in group transfor-
mation.

How do we know which scenario we
are entering? Heaven and Hell both
have the virtue of being obvious. We
see bellwethers in the headlines every
day. But suppose you see second-order
network effects—group effects. Could
they be early warnings of Prevail? Sup-
pose you’ve seen cellphones going
from curiosity to commonplace in 30
years. There are now more than one of
them for every two humans on earth—

are dismiss
ed as “The Rest”; the poor dears, they
seem to just keep falling farther and
farther behind.

Everyone in your daughter’s law
school takes it as a matter of course
that the law they are studying is chang-
ing to match the new enhancements.
The law will be upgraded, the En-
hanceds believe, just as they get new
physical and mental upgrades every
time they go home. In fact, the paper
your daughter is working on over the
holidays concerns whether a Natural
can truly enter into an informed rela-
tionship with an Enhanced, even for
something as innocuous as a date.

We are at a turning point in human
history. Today, for the first time in
hundreds of thousands of years, our
technologies are not only aimed out-
ward at modifying our environment.
Rather, the GRIN technologies—the
genetic, robotic, information, and
nano processes, all based on comput-
ing technologies evolving at the pace
of Moore’s Law if not faster—increas-
ingly aim inward at changing who we
are and what we can be. Not in some
distant future but right now, on our
watch.

How might such radical evolution
influence what it means to be human?
Talk to those deploying the GRIN
technologies and you hear three sce-
narios—Heaven, Hell, and Prevail.

In “Heaven,” we conquer pain, suf-
fering, ignorance, stupidity—even
death—in a perfection of the human
condition. In it, traditional defini-
tions of humanity are increasingly
remote. There are few divisions like
those in your daughter’s law school
scenario because it’s so difficult to
remember why anyone would want
to cling to Version 1.0 humanity. Be-
ing a knowledge-based creature is far
preferable to being what Ray Kurzweil
calls “mostly original substrate hu-
mans.”

In “Hell,” pessimists see a mirror-
image curve in which the power of
the GRIN technologies inevitably gets
into the hands of madmen or fools,
leading to disaster for all. If conflict
between different species of humans
doesn’t get us, then the genetically en-
gineered microbes carefully designed
to be 100% fatal or the self-replicating
energy-devouring nanobots will. The

Even in the face
of unprecedented
threats, ‘Prevail’
reflects faith that
the ragged human
convoy of divergent
perceptions, piqued
honor, posturing,
insecurity, and
humor will wend
its way to glory.

[continue d fr om p. 1 12]

http://www.garreau.com

march 2009 | vol. 52 | no. 3 | communications of the acm 111

last byte

Puzzled
Solutions and Sources
Last month (February 2009, p. 104) we posed a trio of brain teasers concerning
algorithm termination. Here, we offer some possible solutions. How did you do?

DOI:10.1145/1467247.1467272		 Peter Winkler

1. Pentagon Problem
Solution. This puzzle first appeared, as
far as I know, at the International Math-
ematics Olympiad of 1986. Known to-
day as “the pentagon problem,” it gen-
erated enormous interest and a variety
of imaginative solutions. I present one
of them here, due independently to at
least two people, one of whom is Ber-
nard Chazelle, a computer scientist at
Princeton University. Let x0, x1, x2, x3,
and x4 be the five numbers, summing
to s > 0, with indices taken modulo 5.
Define a doubly infinite sequence z by
z0 = 0 and zi = zi-1 + xi. The sequence z is
not periodic but is periodically ascend-
ing; zi+5 = zi + s. In the example, the x
values are 2,4,–3,1,–3; s = 1; and the z
sequence is

… –2 0 4 1 2 –1 1 5 2 3 0 2 6 3 4 1 3 7 4 5
2 4 8 5 6 …

where the rightmost 0 represents z0.
If xi is negative, zi < zi–1 and flipping

xi has the effect of switching zi with zi–1
they are now in ascending order. Si-
multaneously, it does the same for all
pairs zj, zj–1 whose indices are shifted
from them by multiples of five. Thus,
flipping labels amounts to sorting z by
adjacent transpositions.

Tracking the progress of the sorting
process needs a potential function Φ to
measure the degree to which z is out of or-
der. Let i+ be the number of indices j > i for
which zj < zi; note i+ is finite and depends
only on i modulo 5. We let Φ be the sum
0+ + 1+ + 2+ + 3+ + 4+. In the example, 0+ is 0
(since there are no entries smaller than 0
to the right of z0), 1+ is 1, 2+ is 13, 3+ is 2, and
4+ is 4, for a total of 20.

When xi+1 is flipped, i+ decreases by
one, and every other j+ is unchanged,
so Φ decreases by 1. When Φ hits 0 the
sequence is fully sorted so all labels are
non-negative and the process must ter-
minate. In the example, 20 steps later
the sequence has turned into

… 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5
5 5 5 5 …

where the first 3 is the z0 term, and thus
the numbers around the pentagon are
now 0, 0, 0, 0, 1.

We conclude that the process termi-
nated in exactly the same number (the
initial value of Φ) of steps regardless
of choices, and the final configuration
is independent of choices. The reason
is there is only one sorted version of z.
Moreover, the proof works with 5 re-
placed by any integer greater than 2.

2. Billiard Balls
Solution. If you’ve played with this puz-
zle you’ve found that the algorithm does
seem to terminate, no matter where you
start or what you do, but can take rather
a long time to do so. One might hope
that (as in Puzzle 1) some non-negative-
integer-valued “potential function”
must go down at each step, proving that
the algorithm must terminate, though
there seems to be no simple one here.
For example, you might have noticed
that the sum of the distances between
each billiard ball’s current position and
where it belongs cannot go up; alas, it
may not go down either.

The following argument was devised
by Noam Elkies, a mathematician at
Harvard University. The ball that is de-

liberately moved to its correct position
in a given step is said to be “placed.”
Suppose there is an infinite sequence of
steps. Then, since there are only finitely
many possible states (permutations),
there must be a cycle; so, let ball k be the
highest-numbered ball placed upward
in the cycle. (If no ball is placed upward,
the lowest-number ball placed down-
ward is used in a symmetric argument).
Once ball k is placed, it can be dislodged
upward and placed downward again,
but nothing can ever push it below po-
sition k. Hence it can never again be
placed upward—a contradiction.

In fact, the algorithm always termi-
nates in at most 2n-1 – 1 steps, but there
are more than exponentially many
permutations that can take exactly the
maximum number of steps to sort.
These and other results, plus some his-
tory of this horribly inefficient sorting
algorithm can be found at math.dart-
mouth.edu/~pw/papers/sort.pdf. I am
indebted to mathematician and writer
Barry Cipra of Northfield, MN, for bring-
ing the puzzle to my attention.

3. Notorious Collatz Conjecture
Readers interested in the rich history of
this puzzle will appreciate a delicious
survey article by Jeffrey C. Lagarias of
the University of Michigan in American
Mathematical Monthly 92 (1985), 3–23;
www.cecm.sfu.ca/organics/papers/lagarias/
paper/html/paper.html.

All readers are encouraged to submit prospective
puzzles for future columns to puzzled@cacm.acm.org.

Peter Winkler (puzzled@cacm.acm.org) is Professor
of Mathematics and of Computer Science and Albert
Bradley Third Century Professor in the Sciences at
Dartmouth College, Hanover, NH.

http://math.dartmouth.edu/~pw/papers/sort.pdf
http://www.cecm.sfu.ca/organics/papers/lagarias/paper/html/paper.html
mailto:puzzled@cacm.acm.org
mailto:puzzled@cacm.acm.org
http://math.dartmouth.edu/~pw/papers/sort.pdf
http://www.cecm.sfu.ca/organics/papers/lagarias/paper/html/paper.html

last byte

112 communications of the acm | march 2009 | vol. 52 | no. 3

a lawyer, he plans to be a glassblower,
after which he wants to be a nanosur-
geon.

Another fell while jogging, open-
ing up a nasty gash on her knee. But
instead of rushing to a hospital, she
just stared at the wound, focusing her
mind on it, triggering a metabolic cas-
cade that caused the bleeding simply
to stop. This same friend had been
vaccinated against acute pain so she
didn’t feel it for long anyway.

They always seem to be connected
to one another, sharing their thoughts
no matter how far apart, with no appar-
ent gear. They call it “silent messag-
ing.” It seems almost like telepathy.
They have this odd habit of cocking
their heads in a certain way whenever
they want to access information, as if
waiting for a wireless delivery to ar-
rive; inevitably, it does. They don’t
sleep for a week or more at a time and
joke about getting rid of the beds in
their cramped dorm rooms.

They are unfailingly polite when
your daughter can’t keep up with their
conversations, as if she were deficient
in some way. They can’t help but con-
descend, however, when she protests
that embedded technology is not nat-
ural for humans.

They’ve nicknamed her “Natural,”
which is what they call all those who
could be like them but choose not to
be, referring to themselves as “En-
hanced.” Those with neither the educa-
tion nor the money to consider keeping
up with the exploding augmentation
technologies

honey?,” you say.
“They’re all really, really smart,”

she says. How, she wonders, does she
explain what the enhanced kids are
like? She knows her parents have read
about what’s going on. But actually
dealing with some of her new class-
mates is decidedly strange. These en-
hanced students have amazing think-
ing abilities. They’re not only faster
and more creative than anybody she’s
ever met but faster and more creative
than anybody she’s ever imagined.
They have photographic memories
and total recall. They devour books
in minutes. They’re also beautiful,
physically.

They talk casually about living a
long time, perhaps forever, always dis-
cussing their “next lives.” One men-
tions how, after he makes his pile as

In 1913, the U.S. Government prosecut-
ed Lee De Forest for telling investors
that his company, RCA, would soon
be able to transmit the human voice
across the Atlantic. This claim was so
preposterous, prosecutors asserted,
that he was obviously swindling po-
tential investors. He was ultimately
released, but not before being lec-
tured by the judge to stop making any
more fraudulent claims.

With this legal reasoning in mind,
consider the scenarios I describe here.
They are not predictions but meant
to be credible portrayals of possible
near-term futures, factually grounded
in computer-enabled technologies,
all unquestionably under develop-
ment today.

Flash forward 15 years. Look at the
girl who is today your second-grade
daughter. Imagine she is just home
for the holidays. You were so proud
of her when she not only put herself
through Ohio State but graduated
summa cum laude. Now she has tak-
en on her most formidable challenge
yet: competing with her generation’s
elite in her fancy new law school. You
want to hear all about it. But the dif-
ference between this touching tab-
leau and those of the past is that in it,
technologies designed to modify our
minds, memories, metabolisms, per-
sonalities, progeny—indeed, what it
means to be human—are now pour-
ing onto the market. She is compet-
ing against all those with the will and
wherewithal to adopt them.

“What are your classmates like,

DOI:10.1145/1467247.1467273		 Joel Garreau

Future Tense
Radical Evolution
Technologies powerful enough to modify our minds, memories,
metabolisms, personalities, and progeny are powerful enough
to transform our own evolution.

Future Tense, one of the revolving features on this page, presents stories

from the intersection of computational science and technological speculation,

their boundaries limited only by our ability to imagine what will and could be.

[continued on p. 110]

What really matters
is not how many
transistors we
connect but how
many ornery,
cussed, imaginative,
unpredictable
humans we connect.

>
CONFERENCE COMMITTEE General Chair Nick Bryan-Kinns [UK] Program Chair Mark Gross [USA] Program Co-Chair Ron Wakkary [Canada] Program Co-Chair Hilary Johnson

[UK] Program Co-Chair Jack OX [USA] Demonstrations & Posters Chair Yukari Nagai [Japan] Tutorials Chair Yusuf Pisan [Australia] Workshops Chair Ryohei Nakatsu [Singapore]

Graduate Student Symposium Co-Chair John C Thomas [USA] Graduate Student Symposium Co-Chair Celine Latulipe [USA] Art Exhibition Chair Jennifer Sheridan [UK] Art Exhibition

Executive Committee Sara Diamond [Canada] Treasurer Ellen Do [USA] Sponsorship Doug Riecken [USA] Publicity David A Shamma [USA] Local Inspiration Richard Rinehart [USA]

Local Committee Chair Daniela Rosner [USA] Steering Ernest Edmonds [Australia]

Berkeley Art Museum & UC Berkeley

CREATIVITY IS PRESENT IN ALL WE DO...
The 7th Creativity and Cognition Conference is to be held at the Berkeley Art Museum and the University
of California, Berkeley (USA). The conference provides a forum for lively interdisciplinary debate
exploring methods and tools to support creativity at the intersection of art and technology.
We welcome submissions from academics and practitioners, makers and scientists,
artists and theoreticians.

*FULL PAPERS *ART EXHIBITION *LIVE PERFORMANCES
*DEMONSTRATIONS *POSTERS *WORKSHOPS
*TUTORIALS *GRADUATE SYMPOSIUM

PRINTED PROCEEDINGS PUBLISHED BY ACM PRESS & APPEAR IN THE ACM DIGITAL LIBRARY

KEYNOTE SPEAKERS

MIHÁLY CSÍKSZENTMIHÁLYI
PROFESSOR OF PSYCHOLOGY & MANAGEMENT
Claremont Graduate University [CA, USA]

JOANN KUCHERA-MORIN
DIRECTOR, ALLOSPHERE RESEARCH
LABORATORY
California Nanosystems Institute [CA, USA]

CALL FOR
PARTICIPATION

SUBMISSION BY: APRIL 24 FOR MORE INFO SEE: WWW.CREATIVITYANDCOGNITION09.ORG

ACM CREATIVITY & COGNITION 2009

AdvertFinal.indd 1 19/1/09 9:27:43 am

http://WWW.CREATIVITYANDCOGNITION09.ORG

http://www.acm.org/careercenter

	Table of Contents

	Departments
	Editor’s Letter
	Publisher’s Corner
	Letters To The Editor
	CACM Online
	Calendar
	Careers

	Last Byte
	Puzzled
	Future Tense

	News
	Betting on Ideas
	Crowd Control
	The Evolution of Virtualization
	A Difficult, Unforgettable Idea
	ACM Fellows Honored

	Viewpoints
	The Profession of IT: Is Software Engineering Engineering?
	Legally Speaking: When is a “License” Really a Sale?
	Viewpoint: Your Students Are Your Legacy
	Viewpoint: Advising Students for Success
	Interview: An Interview with C.A.R. Hoare

	Practice
	Better Scripts, Better Games
	Erlang for Concurrent Programming

	Contributed Articles
	Reflecting Human Values in the Digital Age
	Statecharts in the Making: A Personal Account

	Review Articles
	Probabilistically Checkable Proofs

	Research Highlights
	Technical Perspective: The Beauty of Error-Correction Codes
	Error Correction up to the Information-Theoretic Limit
	Technical Perspective: Where Biology Meets Computing
	Learning and Detecting Emergent Behavior in Networks of Cardiac Myocytes

