
Association for
Computing Machinery

COMMUNICATIONS
OF THE ACMcAcM.AcM.org 05/2009 VoL.52 No.05

Security in
the Browser
Spending Moore’s
Dividend

Algorithmic
Systems Biology

Computing
Needs Time

Rethinking
Signal Processing

The Net Neutrality
Debate Hits Europe

http://CACM.ACM.ORG

http://www.reviews.com
http://Reviews.com
http://Reviews.com

THE ACM
A. M. TURING
AWARD

ACM, INTEL, AND

GOOGLE CONGRATULATE

BARBARA H. LISKOV

FOR HER FOUNDATIONAL

INNOVATIONS IN

PROGRAMMING LANGUAGE

DESIGN THAT HAVE MADE

SOFTWARE MORE

RELIABLE AND HER

MANY CONTRIBUTIONS

TO BUILDING AND

INFLUENCING THE

PERVASIVE COMPUTER

SYSTEMS THAT POWER

DAILY LIFE.

BY THE COMMUNITY...

FROM THE COMMUNITY...

FOR THE COMMUNITY...

Intel is a proud sponsor of the ACM A. M. Turing Award, and
is pleased to join the community in congratulating this year’s
recipient, Professor Barbara Liskov. Her contributions lie at
the foundation of all modern programming languages and
complex distributed software. Barbara’s work consistently
refl ects rigorous problem formulation and sound mathematics,
a potent combination she used to create lasting solutions.”

Andrew A. Chien
Vice President, Corporate Technology Group
Director, Intel Research

For more information see www.intel.com/research.

“Google is delighted to help recognize Professor Liskov for her
research contributions in the areas of data abstraction, modular
architectures, and distributed computing fundamentals—areas
of fundamental importance to Google. We are proud to be a
sponsor of the ACM A. M. Turing Award to recognize and encour-
age the research that is essential not only to computer science,
but to all the fi elds that depend on its continued advancement.

Alfred Z. Spector
Vice President, Research and
Special Initiatives, Google

For more information, see http://www.google.com/corporate/
index.html and http://research.google.com/.

Financial support for the ACM A. M. Turing Award is provided by Intel Corporation and Google.

http://www.google.com/corporate/index.html
http://research.google.com/
http://www.intel.com/research
http://www.google.com/corporate/index.html

2 communicationS of the acm | MAy 2009 | vol. 52 | No. 5

coMMuNicAtioNs of the AcM

Association for Computing Machinery
Advancing Computing as a Science & Profession

p
h

o
t

o
g

r
a

p
h

 b
y

 a
n

d
y

 m
c

n
e

i
l

l

Departments

5 Editor’s Letter
Conferences vs. Journals
in Computing Research
By Moshe Y. Vardi

7 Letters To The Editor
Logic of Lemmings in
Compiler Innovation

10 blog@CACM
Recommendation Algorithms,
Online Privacy, and More
Greg Linden, Jason Hong,
Michael Stonebraker, and Mark
Guzdial discuss recommendation
algorithms, online privacy,
scientific databases, and
programming in introductory
computer science classes.

12 CACM Online
The Print-Web Partnership
Turns the Page
By David Roman

27 Calendar

109 Careers

Last Byte

112 Puzzled
Understanding Relationships
Among Numbers
By Peter Winkler

News

13 Rethinking Signal Processing
Compressed sensing, which draws
on information theory, probability
theory, and other fields, has
generated a great deal of excitement
with its nontraditional approach to
signal processing.
By Kirk L. Kroeker

16 Matchmaker, Matchmaker
Computational advertising seeks to
place the best ad in the best context
before the right customer.
By David Essex

18 Learning Goes Global
In a world that’s increasingly global
and interconnected, international
education is growing, changing,
and evolving.
By Samuel Greengard

21 Liskov Wins Turing Award
MIT’s Barbara Liskov is the 55th
person, and the second woman,
to win the ACM A.M. Turing Award.

Viewpoints

22 Law and Technology
The Network Neutrality Debate
Hits Europe
Differences in telecommunications
regulation between the U.S.
and the European Union are
a key factor in viewing the network
neutrality discussion from
a European perspective.
By Pierre Larouche

25 Economic and Business Dimensions
Increasing Gender Diversity
in the IT Work Force
Want to increase participation of
women in IT work? Change the work.
By LeAnne Coder, Joshua L. Rosenbloom,
 Ronald A. Ash, and Brandon R. Dupont

28 Historical Reflections
The Rise, Fall, and Resurrection
of Software as a Service
A look at the volatile history of
remote computing and online
software services.
By Martin Campbell-Kelly

31 Education
Teaching Computing to Everyone
Studying the lessons learned
from creating high-demand
computer science courses for
non-computing majors.
By Mark Guzdial

34 Viewpoint
Program Committee
Overload in Systems
Conference program committees
must adapt their review and
selection process dynamics in
response to evolving research
cultural changes and challenges.
By Ken Birman and Fred B. Schneider

education is fast becoming a global affair.

MAy 2009 | vol. 52 | No. 5 | communicationS of the acm 3

i
l

l
u

s
t

r
a

t
i

o
n

 b
y

 r
o

b
e

r
t

 h
o

d
g

i
n

Practice

40 Security in the Browser
What can be done to make Web
browsers secure while preserving
their usability?
By Thomas Wadlow and Vlad Gorelik

46 API Design Matters
Bad application programming
interfaces plague software engineering.
How do we get things right?
By Michi Henning

57 Debugging AJAX in Production
Lacking proper browser support,
what steps can we take to debug
production AJAX code?
By Eric Schrock

 Article development led by
 queue.acm.org

Contributed Articles

62 Spending Moore’s Dividend
Multicore computers shift the
burden of software performance
from chip designers and processor
architects to software developers.
By James Larus

70 Computing Needs Time
The passage of time is essential
to ensuring the repeatability and
predictability of software and
networks in cyber-physical systems.
By Edward A. Lee

Review Articles

80 Algorithmic Systems Biology
The convergence of CS and biology
will serve both disciplines,
providing each with greater power
and relevance.
By Corrado Priami

Research Highlights

90 Technical Perspective
A Chilly Sense of Security
By Ross Anderson

91 Lest We Remember: Cold-Boot
Attacks on Encryption Keys
By J. Alex Halderman, Seth D. Schoen,
Nadia Heninger, William Clarkson,
William Paul, Joseph A. Calandrino,
Ariel J. Feldman, Jacob Appelbaum,
and Edward W. Felten

99 Technical Perspective
Highly Concurrent Data Structures
By Maurice Herlihy

100 Scalable Synchronous Queues
By William N. Scherer III, Doug Lea,
and Michael L. Scott

Virtual Extension

as with all magazines, page limitations often
prevent the publication of articles that might
otherwise be included in the print edition.
to ensure timely publication, aCm created
Communications’ Virtual extension (Ve).
 Ve articles undergo the same rigorous review
process as those in the print edition and are
accepted for publication on their merit. these
articles are now available to aCm members in
the digital library.

 Software Developers’ Views
of End-Users and Project Success
J. Drew Procaccino and June M. Verner

 Designing Ubiquitous Computing
Environments to Support Work
Life Balance
Karlene C. Cousins and Upkar Varshney

 An Overview of IT Service Management
Stuart D. Galup, Ronald Dattero,
Jim J. Quan and Sue Conger

 Toward an Information-Compatible
Anti-Spam Strategy
Robert K. Plice, Nigel P. Melville
and Oleg V. Pavlov

 Cross-Bidding In Simultaneous
Online Auctions
James A. McCart, Varol O. Kayhan,
and Anol Bhattacherjee

 To Trust or To Distrust, That is
the Question—Investigation
the Trust-Distrust Paradox
Carol Xiaojuan Ou and Choon Ling Sia

 Reflections Today Prevent
Failures Tomorrow
Gary W. Brock, Denise J. McManus
and Joanne E. Hale

 Technical Opinion
Semantic Ambiguity—Babylon,
Rosetta, or Beyond?
Michael Rebstock

05/2009
VoL. 52 No. 05

about the cover:
users want a browser to
be as safe as a vault, but
they also want usability
features that compromise
its security. Can we find
a happy—and effective—
balance?

illustration by
Jonathan barkat.

http://queue.acm.org

4 communicationS of the acm | MAy 2009 | vol. 52 | No. 5

coMMuNicAtioNs of the AcM
A monthly publication of AcM Media

Communications of the ACM is the leading monthly print and online magazine for the computing and information technology fi elds.
Communications is recognized as the most trusted and knowledgeable source of industry information for today’s computing professional.
Communications brings its readership in-depth coverage of emerging areas of computer science, new trends in information technology,
and practical applications. industry leaders use Communications as a platform to present and debate various technology implications,
public policies, engineering challenges, and market trends. the prestige and unmatched reputation that Communications of the ACM
enjoys today is built upon a 50-year commitment to high-quality editorial content and a steadfast dedication to advancing the arts,
sciences, and applications of information technology.

P
L

E

A
S E R E C Y

C
L

E

T
H

I

S
 M A G A Z

I
N

E

ACM, the world’s largest educational
and scientifi c computing society, delivers
resources that advance computing as a
science and profession. ACM provides the
computing fi eld’s premier Digital Library
and serves its members and the computing
profession with leading-edge publications,
conferences, and career resources.

Executive Director and CEO
John White
Deputy Executive Director and COO
patricia ryan
Director, Offi ce of Information Systems
Wayne graves
Director, Offi ce of Financial Services
russell harris
Director, Offi ce of Membership
lillian israel
Director, Offi ce of SIG Services
donna Cappo

ACM CoUNCIl
President
Wendy hall
Vice-President
alain Chesnais
Secretary/Treasurer
barbara ryder
Past President
stuart i. Feldman
Chair, SGB Board
alexander Wolf
Co-Chairs, Publications Board
ronald boisvert, holly rushmeier
Members-at-Large
Carlo ghezzi;
anthony Joseph;
mathai Joseph;
Kelly lyons;
bruce maggs;
mary lou soffa;
SGB Council Representatives
norman Jouppi;
robert a. Walker;
Jack davidson

PUBlICATIoNS BoARD
Co-Chairs
ronald F. boisvert and holly rushmeier
Board Members
gul agha; michel beaudouin-lafon;
Jack davidson; nikil dutt; Carol hutchins;
ee-peng lim; m. tamer ozsu; Vincent
shen; mary lou soffa; ricardo baeza-yates

ACM U.S. Public Policy Offi ce
Cameron Wilson, director
1100 seventeenth st., nW, suite 507
Washington, dC 20036 usa
t (202) 659-9711; F (202) 667-1066

Computer Science Teachers
Association
Chris stephenson
executive director
2 penn plaza, suite 701
new york, ny 10121-0701 usa
t (800) 401-1799; F (541) 687-1840

Association for Computing Machinery
(ACM)
2 penn plaza, suite 701
new york, ny 10121-0701 usa
t (212) 869-7440; F (212) 869-0481

STAFF

GROUP PUBLISHER
scott e. delman
publisher@cacm.acm.org

Executive Editor
diane Crawford
Managing Editor
thomas e. lambert
Senior Editor
andrew rosenbloom
Senior Editor/News
Jack rosenberger
Web Editor
david roman
Editorial Assistant
Zarina strakhan
Rights and Permissions
deborah Cotton

Art Director
andrij borys
Associate Art Director
alicia Kubista
Assistant Art Director
mia angelica balaquiot
Production Manager
lynn d’addesio
Director of Media Sales
Jennifer ruzicka
Marketing & Communications Manager
brian hebert
Public Relations Coordinator
Virgina gold
Publications Assistant
emily eng

Columnists
alok aggarwal; phillip g. armour;
martin Campbell-Kelly;
michael Cusumano; peter J. denning;
shane greenstein; mark guzdial;
peter harsha; leah hoffmann;
mari sako; pamela samuelson;
gene spafford; Cameron Wilson

CoNTACT PoINTS
Copyright permission
permissions@cacm.acm.org
Calendar items
calendar@cacm.acm.org
Change of address
acmcoa@cacm.acm.org
Letters to the Editor
letters@cacm.acm.org

WEB SITE
http://cacm.acm.org

AUTHoR GUIDElINES
http://cacm.acm.org/guidelines

ADvERTISING

ACM ADVERTISING DEPARTMENT
2 penn plaza, suite 701, new york, ny
10121-0701
t (212) 869-7440
F (212) 869-0481

Director of Media Sales
Jennifer ruzicka
jen.ruzicka@hq.acm.org

Media Kit acmmediasales@acm.org

EDIToRIAl BoARD

EDITOR-IN-CHIEF
moshe y. Vardi
eic@cacm.acm.org

NEWS
Co-chairs
marc najork and prabhakar raghavan
Board Members
brian bershad; hsiao-Wuen hon;
mei Kobayashi; rajeev rastogi;
Jeannette Wing

VIEWPOINTS
Co-chairs
susanne e. hambrusch;
John leslie King;
J strother moore
Board Members
William aspray; stefan bechtold;
Judith bishop; peter van den besselaar;
soumitra dutta; stuart i. Feldman;
peter Freeman; seymour goodman;
shane greenstein; mark guzdial;
richard heeks; susan landau;
Carlos Jose pereira de lucena;
helen nissenbaum; beng Chin ooi

 PRACTICE
Chair
stephen bourne
Board Members
eric allman; Charles beeler;
david J. brown; bryan Cantrill;
terry Coatta; mark Compton;
benjamin Fried; pat hanrahan;
marshall Kirk mcKusick;
george neville-neil

the practice section of the CaCm
editorial board also serves as
the editorial board of .

CONTRIBUTED ARTICLES
Co-chairs
al aho and georg gottlob
Board Members
yannis bakos; gilles brassard; peter
buneman; andrew Chien; anja Feldmann;
blake ives; James larus; igor markov;
gail C. murphy; shree nayar; lionel m. ni;
sriram rajamani; avi rubin; abigail sellen;
ron shamir; marc snir; larry snyder;
Wolfgang Wahlster; andy Chi-Chih yao;
Willy Zwaenepoel

RESEARCH HIGHLIGHTS
Co-chairs
david a. patterson and
stuart J. russell
Board Members
martin abadi; p. anandan; stuart K. Card;
deborah estrin; shafi goldwasser;
maurice herlihy; norm Jouppi;
andrew b. Kahng; linda petzold;
michael reiter; mendel rosenblum;
ronitt rubinfeld; david salesin;
lawrence K. saul; guy steele, Jr.;
gerhard Weikum; alexander l. Wolf

WEB
Co-chairs
marti hearst and James landay
Board Members
Jason i. hong; Jeff Johnson;
greg linden; Wendy e. macKay;
Jian Wang

 bpa audit pending

ACM Copyright Notice
Copyright © 2009 by association for
Computing machinery, inc. (aCm).
permission to make digital or hard copies
of part or all of this work for personal
or classroom use is granted without
fee provided that copies are not made
or distributed for profi t or commercial
advantage and that copies bear this
notice and full citation on the fi rst
page. Copyright for components of this
work owned by others than aCm must
be honored. abstracting with credit is
permitted. to copy otherwise, to republish,
to post on servers, or to redistribute to
lists, requires prior specifi c permission
and/or fee. request permission to publish
from permissions@acm.org or fax
(212) 869-0481.

For other copying of articles that carry a
code at the bottom of the fi rst or last page
or screen display, copying is permitted
provided that the per-copy fee indicated
in the code is paid through the Copyright
Clearance Center; www.copyright.com.

Subscriptions
annual subscription cost is included in
the society member dues of $99.00 (for
students, cost is included in $42.00 dues);
the nonmember annual subscription rate
is $100.00.

ACM Media Advertising Policy
Communications of the ACM and other
aCm media publications accept advertising
in both print and electronic formats. all
advertising in aCm media publications is
at the discretion of aCm and is intended
to provide fi nancial support for the various
activities and services for aCm members.
Current advertising rates can be found
by visiting http://www.acm-media.org or
by contacting aCm media sales at
(212) 626-0654.

Single Copies
single copies of Communications of the
ACM are available for purchase. please
contact acmhelp@acm.org.

CoMMUNICATIoNS oF THE ACM
(issn 0001-0782) is published monthly
by aCm media, 2 penn plaza, suite 701,
new york, ny 10121-0701. periodicals
postage paid at new york, ny 10001,
and other mailing offi ces.

PoSTMASTER
please send address changes to
Communications of the ACM
2 penn plaza, suite 701
new york, ny 10121-0701 usa

printed in the u.s.a.

mailto:publisher@cacm.acm.org
mailto:permissions@cacm.acm.org
mailto:calendar@cacm.acm.org
mailto:acmcoa@cacm.acm.org
mailto:letters@cacm.acm.org
http://cacm.acm.org
http://cacm.acm.org/guidelines
mailto:jen.ruzicka@hq.acm.org
mailto:acmmediasales@acm.org
mailto:eic@cacm.acm.org
mailto:permissions@acm.org
http://www.copyright.com
http://www.acm-media.org
mailto:acmhelp@acm.org

MAy 2009 | vol. 52 | No. 5 | communicationS of the acm 5

editor’s letter

conferences vs. Journals
in computing Research
An old joke tells of a driver, returning home from a party
where he had one drink too many, who hears a warning
over the radio about a car careening down the wrong
side of the highway. “A car?” he wondered aloud,
“There are lots of cars on the wrong side
of the road!”

I am afraid that driver is us, the
computing-research community. What
I’m referring to is the way we go about
publishing our research results. As far
as I know, we are the only scientific
community that considers conference
publication as the primary means of
publishing our research results. In con-
trast, the prevailing academic standard
of “publish” is “publish in archival jour-
nals.” Why are we the only discipline
driving on the conference side of the
“publication road?”

Conference publication has had a
dominant presence in computing re-
search since the early 1980s. Still, dur-
ing the 1980s and 1990s, there was am-
bivalence in the community, partly due
to pressure from promotion and tenure
committees about conference vs. jour-
nal publication. Then, in 1999, the Com-
puting Research Association published
a Best Practices Memo, titled “Evaluat-
ing Computer Scientists and Engineers
for Promotion and Tenure,” that legiti-
mized conference publication as the pri-
mary means of publication in computer
research. Since then, the dominance of
conference publication over journals
has increased, though the ambivalence
has not completely disappeared. (In fact,
ACM publishes 36 technical journals.)

Recently, our community has begun
voicing discomfort with conference
publication. A Usenix Workshop on
Organizing Workshops, Conferences,
and Symposia for Computer Systems

(WOWCS), held in San Francisco in
April 2008, focused on the paper se-
lection process, which is not working
too well these days, according to many
people. (You can find the proceedings
at http://www.usenix.net/events/wow-
cs08/ and a follow-up wiki at http://
wiki.usenix.org/bin/view/Main/Con-
ference/CollectedWisdom.)

Two presentations at the workshop
evolved into thought-provoking Com-
munications’ Viewpoint columns. In
the January 2009 issue, we published
“Scaling the Academic Publication Pro-
cess to Internet Scale” by J. Crowcroft, S.
Keshav, and N. McKeown (p. 27). In this
issue, you will find “Program Commit-
tee Overload in Systems” by K. Birman
and F.B. Schneider (p. 34). The former
attempts to offer a technical solution
to the paper-selection problem, while
the latter points us to the nontechnical
origins of the problem, expressing hope
to “to initiate an informed debate and a
community response.”

I hope the outcome from WOWCS
and the Viewpoint columns published
here will initiate an informed debate. But
I fear these efforts have not addressed
the most fundamental question: Is the
conference-publication “system” serv-
ing us well today? Before we try to fix the
conference publication system, we must
determine whether it is worth fixing.

My concern is our system has com-
promised one of the cornerstones of sci-
entific publication—peer review. Some
call computing-research conferences
“refereed conferences,” but we all know

this is just an attempt to mollify promo-
tion and tenure committees. The re-
viewing process performed by program
committees is done under extreme time
and workload pressures, and it does not
rise to the level of careful refereeing.
There is some expectation that confer-
ence papers will be followed up by jour-
nal papers, where careful refereeing will
ultimately take place. In truth, only a
small fraction of conference papers are
followed up by journal papers.

Years ago, I was told that the ratio-
nale behind conference publication is
that it ensures fast dissemination, but
physicists ensure fast dissemination by
depositing preprints at www.arxiv.org
and by having a very fast review cycle.
For example, a submission to Science,
a premier scientific journal, typically
reaches an editorial decision in two
months. This is faster than our confer-
ence publication cycle!

So, I want to raise the question
whether “we are driving on the wrong
side of the publication road.” I believe
that our community must have a broad
and frank conversation on this topic.
This discussion began in earnest in a
workshop at the 2008 Snowbird Confer-
ence on “Paper and Proposal Reviews:
Is the Process Flawed?” (see http://doi.
acm.org/10.1145/1462571.1462581).

I cannot think of a forum better than
Communications in which to continue
this conversation. I am looking forward
to your opinions.

Moshe Y. Vardi, EDITor-In-CHIE f

DOI:10.1145/1506409.1506410 Moshe Y. Vardi

http://www.usenix.net/events/wowcs08/
http://www.arxiv.org
http://doi.acm.org/10.1145/1462571.1462581
http://www.usenix.net/events/wowcs08/
http://wiki.usenix.org/bin/view/Main/Conference/CollectedWisdom
http://wiki.usenix.org/bin/view/Main/Conference/CollectedWisdom
http://wiki.usenix.org/bin/view/Main/Conference/CollectedWisdom
http://doi.acm.org/10.1145/1462571.1462581

Online Books
& Courses Programs!ACM’s

Helping Members Meet Today’s Career Challenges

NEW! Over 2,500 Online Courses in Multiple Languages
Plus 1,000 Virtual Labs from Element K!

The ACM Online Books Collection includes full
access to 600 online books from Safari® Books
Online, featuring leading publishers including
O’Reilly. Safari puts a complete IT and business
e-reference library right on your desktop. Available
to ACM Professional Members, Safari will help you
zero in on exactly the information you need, right
when you need it.

All Professional and Student Members also
have full access to 500 online books from
Books24x7®, in ACM’s rotating collection of
complete unabridged books on the hottest
computing topics. This virtual library puts
information at your fingertips. Search, book-
mark, or read cover-to-cover. Your bookshelf
allows for quick retrieval and bookmarks let
you easily return to specific places in a book.

pd.acm.org
www.acm.org/join

ACM’s new Online Course Collection includes over 2,500 online
courses in multiple languages, 1,000 virtual labs, e-reference
tools, and offline capability. Program highlights:

The ACM E-Learning Catalog - round-the-clock access to 2,500+ online courses on a wide range of
computing and business topics, in multiple languages.

Exclusive vLab® Virtual Labs - 1,000 unique vLab® exercises place users on systems using real
hardware and software allowing them to gain important job-related experience.

Reference Tools - an e-Reference Library extends technical knowledge outside of the classroom, plus
online Executive Summaries and quick reference cards to answer on-the-job questions instantly.

Offline Player - members can access assessments and self-study courses offline, anywhere and anytime,
without a live Internet connection.

A downloadable Quick Reference Guide and a 15-minute site orientation course for new users are also
available to help members get started.

The ACM Online Course Program is open to ACM Professional and Student Members.

600 Online Books from Safari

ACM members are eligible for a special
40% savings offer to upgrade to a Premium or
Full Library subscription through June 15, 2009.

For more details visit:
http://pd.acm.org/books/about_sel.cfm

500 Online Books
from Books24x7

CACM_ACM_Books_and_Courses_4C_full-page_LMNTK:Layout 1 4/9/09 11:59 AM Page 1

http://pd.acm.org/books/about_sel.cfm
http://pd.acm.org
http://www.acm.org/join

letters to the editor

MAy 2009 | vol. 52 | No. 5 | communicationS of the acm 7

about how women should compete in
the workplace is to “Look like a girl.
Act like a lady. Think like a man. Work
like a dog” (Jean Bartik, programmer
for the Eniac computer). What pre-
cisely does each sentence mean? The
whole statement sounds sexist to me,
to say the least.

I deeply disagree with Caitlin Kelle-
her’s statement “If we want young girls
to choose to learn how to program
computers, we need to deeply under-
stand the kinds of programs girls will
be motivated to create and design pro-
gramming environments that make
those programs readily achievable.”
This, too, makes no sense. Science is
science, and the main motivation for
doing science is the learning itself and
the inner satisfaction and understand-
ing knowledge delivers. If women
cannot be motivated by learning and
knowledge, they should not be doing
science.

More important than making com-
puting something that would please
women so as to attract them is to
educate them about the importance
of science and knowledge and the in-
herent satisfaction they can bring any
person.

Many of the “strategies” described
as successful for the recruitment and
retention of women in computing are,
in my view, ways of reinforcing the ex-
isting bias against women in science
(such as redesigning introductory CS
courses to emphasize applications
in areas of interest to women). This
would succeed only at a superficial
level, turning women into, perhaps,
competent CS users.

maria do carmo nicoletti,
 São Paulo, Brazil

to Learn Software engineering,
Study application Logic
The question posed by the “The Pro-
fession of IT” Viewpoint “Is Software
Engineering Engineering?” (Mar.
2009) by Peter J. Denning and Richard
D. Riehle was much too narrow. The
fact is that most of us aren’t math-

I
am deeply ambivalent about
what I read in the contributed
article “Compiler Research:
The Next 50 Years” by Mary
Hall et al. (Feb. 2009). On the

one hand, its description of the field’s
challenges and opportunities evoke
great excitement; on the other, the re-
alities cast a discouraging pall on that
excitement.

The practical adoption of useful re-
search results is generally a slow pro-
cess, taking up to a decade or more to
achieve. In compilers, however, tech-
nology transfer has actually proceed-
ed negatively.

It has been at least four decades
since the idea first emerged that, be-
sides translating to machine code, a
compiler must be able to perform a
second important function: automate
detection of a large class of program-
ming errors without the need for mas-
sive test suites. What followed was a
series of programming languages and
their compilers embodying this idea
that at first (1970s and 1980s) software
practitioners began to adopt at a typi-
cal rate.

But in the following decade, the
industry reversed course, choosing C
and later C++, which not only allow,
but routinely require, highly unsafe
methods scarcely above the assem-
bly-language level, with huge regions
of semantics that are explicitly dis-
avowed as “undefined.” Academic re-
searchers and educators resisted this
reversal for another decade, reasoning
that safe languages would teach better
habits, improve unsafe languages, and
be all the more important when using
unsafe languages. Eventually, how-
ever, they also succumbed to intense
pressure and acquiesced to their role
as industry minion.

Advocating for better language and
compiler technology, I have almost
never been rebutted by an argument
beyond “It’s what everybody is doing.”
It seems that the logic of lemmings is
the only persuasive reasoning in the
area.

The trend has now shifted toward

pervasive use of scripting languages
that abandon static safety altogether.
The result is that developing large test
suites is the only significant, viable
means of ensuring quality and securi-
ty. This has happened at the same time
Internet attacks and concurrency have
made these very qualities much more
important. It is perhaps a difficult call
whether better dynamic safety but
worse static safety is good or bad but
is certainly not a step forward.

The unpleasant truth is that almost
the entire software community has re-
soundingly rejected the best research
in compilers and languages, despite
being well-proven as eminently practi-
cal for decades. Unless someone finds
a way to dramatically change the atti-
tudes of software developers, much of
the exciting work Hall et al. envision
for the next 50 years will be relegated
to the role of academic exercise, as has
happened for the past 40.

Rodney m. Bates, Wichita, KS

authors’ Response:
We agree with Bates that the software
industry has been slow to adopt research
ideas invented by the programming-
languages and compiler communities.

Nevertheless, tools based on model
checking are routinely used to verify
Windows device drivers, and Google uses
its MapReduce programming model for
processing large-scale data sets.

Both model checking and MapReduce
are based on research from the
programming languages and compiler
communities. We anticipate many more
successful technology transitions of this
sort in the future.

mary hall, Salt lake City, UT
 David Padua, Urbana-Champaign, Il
 Keshav Pingali, Austin, TX

to attract Women to computer
Science, Stress Love of Learning
I could hardly believe that a review ar-
ticle discussing “Women in Comput-
ing” (Feb. 2009) would quote a woman
saying the best advice she received

Logic of Lemmings in compiler innovation
DOI:10.1145/1506409.1506412

You’ve come a long way.
Share what you’ve learned.

ACM has partnered with MentorNet, the award-winning nonprofit e-mentoring
network in engineering, science and mathematics. MentorNet’s award-winning
One-on-One Mentoring Programs pair ACM student members with mentors
from industry, government, higher education, and other sectors.

• Communicate by email about career goals, course work, and many other topics.
• Spend just 20 minutes a week - and make a huge difference in a student’s life.
• Take part in a lively online community of professionals and students all over the world.

Make a difference to a student in your field.

Sign up today at: www.mentornet.net

Find out more at: www.acm.org/mentornet

MentorNet’s sponsors include 3M Foundation, ACM, Alcoa Foundation, Agilent Technologies, Amylin Pharmaceuticals,
Bechtel Group Foundation, Cisco Systems, Hewlett-Packard Company, IBM Corporation, Intel Foundation, Lockheed
Martin Space Systems, National Science Foundation, Naval Research Laboratory, NVIDIA, Sandia National Laboratories,
Schlumberger, S.D. Bechtel, Jr. Foundation, Texas Instruments, and The Henry Luce Foundation.

CM Ad:Layout 1 3/3/09 3:08 PM Page 1

http://www.mentornet.net
http://www.acm.org/mentornet

MAy 2009 | vol. 52 | No. 5 | communicationS of the acm 9

letters to the editor

ematicians, scientists, or engineers
but rather accountants. I am a case in
point, having spent half of my career
working either directly on account-
ing/business applications or on the
operating-system kernels underlying
database servers.

Although the production of com-
puter software does not typically re-
semble anything a mathematician
would endorse or condone, it is nev-
ertheless analogous to mathematics
in that it serves as handmaiden to
science, engineering, business, enter-
tainment, and sometimes even math-
ematics. Therefore, the relationship
between software engineering and the
traditional engineering disciplines
depends on which of these masters it
happens to be serving, in other words,
its context.

Paul e. mcKenney, Beaverton, oR

authors’ Response:
Rather than take on the whole of software
development, we restricted ourselves to
whether software engineering is genuine
engineering. Behind our question is the
frequent sniping from other engineering
fields that CS graduates cannot do basic
engineering things (such as predict the
failure modes of software and their
attendant risks).

It is an interesting question whether
augmenting software engineering with
other aspects of software development
would make it more like engineering. We
doubt it would, but it is a great topic for a
future column.

Peter J. Denning and Richard D. Riehle,
 Monterey, CA

Praise for the Gt.m
Database engine
In his article “Parallel Programming
with Transaction Memory” (Feb.
2009), Ulrich Drepper said that al-
though transactions are familiar to da-
tabase developers, their packaging is
unfamiliar to systems programmers.
Although he views software transac-
tional memory (STM) as current re-
search, the fact is that STM (embodied
in the GT.M database engine, fis-gtm.
com) is mature, proven technology in
daily production use. GT.M provides
so-called ACID, or atomic, consistent,
isolated, and durable, transactions

but in a schema-less database engine
packaged as scalar and multidimen-
sional associative memory (arrays)
familiar to systems programmers. As
the platform for the Fidelity Informa-
tion Services Profile banking applica-
tion (fis-profile), GT.M has been avail-
able for years, notably in banking and
finance (tens of millions of accounts
worldwide), running one of the largest,
if not the largest, real-time core pro-
cessing system at any bank anywhere
in the world (tinyurl.com/asmque).

Drepper’s sample function f1 _ 1()
he used to illustrate STM could be
coded in GT.M in a procedural style fa-
miliar to systems programmers:
f11(r,t)
 TStart ()
 Set @t=timestamp1
 Set @r=$Increment(counter1)
 TCommit
 Quit

For code bracketed by TStart/
TCommit commands, the GT.M run-
time system ensures the ACID proper-
ties, no matter how many processes
execute the code at the same time. At
TCommit, if no variables accessed by
the transaction have changed since
TStart, the runtime system commits
the updates. If one or more variables
has changed, the code automatical-
ly restarts from Tstart. Except for a
small critical section internal to the
runtime during TCommit, the pro-
cesses run in parallel; to prevent “live
locks” in the event the updates can-
not be committed on the third try, the
entire transaction is executed within
a critical section on the fourth try. In
the SMP multicore environments on
which we benchmark Profile/GT.M,
we routinely observe linear to near-
linear scalability (up to tens of proces-
sors/cores and hundreds of concur-
rent processes).

GT.M includes a compiler and
language environment for the M (or
MUMPS) language, so M and C are able
to call each other, and the top-level
program can be a C main(). Since the
software is freely available under the
AGPL v3 FOSS license (sourceforge.
net/projects/fis-gtm), no technical or
licensing barriers prevent creation of
a preferred API to expose the under-
lying engine to a C programmer. Also
worth noting is that the database en-
gine uses a daemonless architecture

and requires only ordinary user and
group privileges to run.

GT.M’s software transactional
memory is a mature, proven technol-
ogy, though more research is always
welcome.

K.S. Bhaskar, Malvern, PA

crediting SaBRe’s Sources
The “Economic and Business Deci-
sions” Viewpoint “The Extent of Glo-
balization of Software Innovation” by
Ashish Arora et al. (Feb. 2009) referred
to “…IBM’s SABRE airline reserva-
tion…” There is indeed no such entity.
SABRE is software developed by Amer-
ican Airlines that runs (in part) on
IBM’s Transaction Processing Facility
operating system. TPF’s predecessor,
the Airlines Control Program, was de-
veloped from work done at American
Airlines (and other organizations,
including United Airlines) where the
reservation system is called APOLLO.
So there is a close association between
IBM and SABRE, but SABRE is not an
IBM product and never has been.

John Schlesinger, london, U.K.

authors’ Response:
Computer industry histories like
Martin Campbell-Kelly’s From Airline
Reservations to Sonic the Hedgehog: A
History of the Software Industry, MIT
Press, 2004, show that the SABRE system
was a joint IBM-American Airlines project,
developing the airline industry’s first
passenger-name record system. Similar
systems were developed for other airlines
by IBM. Our use of “IBM’s SABRE airline
reservation” was informal and consistent
with the intent of the paragraph, namely
that development of innovative systems
typically involves close collaboration with
lead users.

ashish arora, Pittsburgh, PA
 matej Drev, Pittsburgh, PA
 chris forman, Atlanta, GA

Communications welcomes your opinion. to submit a
letter to the editor, please limit your comments to 500
words or less and send to letters@cacm.acm.org.

© 2009 aCm 0001-0782/09/0500 $5.00

http://tinyurl.com/asmque
mailto:letters@cacm.acm.org
http://fis-gtm.com
http://fis-gtm.com
http://sourceforge.net/projects/fis-gtm
http://sourceforge.net/projects/fis-gtm

10 communicationS of the acm | MAy 2009 | vol. 52 | No. 5

cacm online

DOI:10.1145/1506409.1506434 cacm.acm.org/blogs/blog-cacm

errors on movies you do not care about
seeing as it does errors on great mov-
ies, but perhaps what we really care
about is minimizing the error when
predicting great movies.

There are parallels here with Web
search. Web search engines primarily
care about precision (relevant results
in the top 10 or top three). They only
care about recall when someone would
notice something they need missing
from the results they are likely to see.
Search engines do not care about errors
scoring arbitrary documents, just their
ability to find the TopN documents.

Aggravating matters further, in
both recommender systems and Web
search, people’s perception of quality
is easily influenced by factors other
than the items shown. People hate
slow Web sites and perceive slowly
appearing results to be worse than
fast-appearing results. Differences in
the information provided about each
item, especially missing data or mis-
spellings, can influence perceived
quality. Presentation issues, even the
color of links, can change how people
focus their attention and which rec-
ommendations they see. People trust
recommendations more when the en-
gine can explain why it made them.
People like recommendations that up-
date immediately when new informa-
tion is available. Diversity is valued;
near duplicates disliked. New items
attract attention, but people tend to
judge unfamiliar or unrecognized rec-
ommendations harshly.

In the end, what we want is happy,
satisfied users. Will a recommenda-

from Greg Linden’s
“What is a Good
Recommendation
algorithm?”
Netflix is offering one
million dollars for a bet-

ter recommendation engine. Better
recommendations clearly are worth a
lot.

But what are better recommenda-
tions? What do we mean by “better”?

In the Netflix Prize, the meaning of
better is quite specific. It is the root
mean squared error (RMSE) between
the actual ratings Netflix customers
gave the movies and the predictions of
the algorithm.

Let’s say we build a recommender
that wins the contest. We reduce the
error between our predictions and
what people actually will rate by 10%
over what Netflix used to be able to do.
Is that good?

Depending on what we want, it
might be very good. If what we want
to do is show people how much they

might like a movie, it would be good
to be as accurate as possible on every
movie.

However, this might not be what
we want. Even in a feature that shows
people how much they might like any
particular movie, people care a lot
more about misses at the extremes.
For example, it could be much worse
to say that you will be lukewarm (a
prediction of 3½ stars) on a movie you
love (an actual of 4½ stars) than to say
you will be slightly less lukewarm (a
prediction of 2½ stars) on a movie you
are lukewarm about (an actual of 3½
stars).

Moreover, what we often want is
not to make a prediction for any mov-
ie, but find the best movies. In TopN
recommendations, a recommender is
trying to pick the best 10 or so items
for someone.

A recommender that does a good
job predicting across all movies might
not do the best job predicting the
TopN movies. RMSE equally penalizes

Recommendation
algorithms, online
Privacy, and more
Greg Linden, Jason Hong, Michael Stonebraker, and Mark Guzdial
discuss recommendation algorithms, online privacy, scientific
databases, and programming in introductory computer
science classes.

the Communications Web site, cacm.acm.org,
features 13 bloggers in the BLoG@cacm
community. in each issue of Communications,
we’ll publish excerpts from some of
their posts, plus readers’ comments.

http://cacm.acm.org
http://cacm.acm.org/blogs/blog-cacm

MAy 2009 | vol. 52 | No. 5 | communicationS of the acm 11

tion engine that minimizes RMSE
make people happy?

Reader’s comment:
Another thing that seems to be often
overlooked is how you get users to trust
recommendations. When I first started
playing with recommendation algorithms I
was trying to produce novel results—things
that the user didn’t know about and would
be interesting to them, rather than using
some of the more basic counting algorithms
that are used for Amazon’s related
products.

What I realized pretty quickly is that
even I didn’t trust the recommendations.
They seemed disconnected, even if upon
clicking on them I’d realize they were, in
fact, interesting and related.

What I came to from that was that in a
set of recommendations you usually want
to scale them such that you slip in a couple
of obvious results to establish trust—things
the user almost certainly knows of, and
probably won’t click on, but they establish,
“OK, yeah, these are my taste.” Then you
apply a second ranking scheme and jump to
things they don’t know about. Once you’ve
established trust of the recommendations
they’re much more likely to follow up on the
more novel ones.

Scott Wheeler—

from Jason hong’s
“Privacy as… Sharing
more information?”
What I am saying is that,
rather than just viewing
privacy as not sharing in-

formation with others, or viewing pri-
vacy as projecting a desired persona,
we should also consider how to make
systems so that people can safely share
more information and get the associ-
ated benefits from doing so….

There are many dimensions here in
this design space. We can change what
is shared, how it is shared, when some-
thing is shared, and who it is shared
with. One key challenge is in balancing
privacy, utility, and the overhead for
end users in setting up these policies.
Another key challenge is understand-
ing how to help people change these
policies over time to adapt to people’s
needs. These are issues I’ll discuss in
future blog postings.

For me, a particularly intriguing
way of thinking here is safe staging,
an idea that Alma Whitten brought

cacm online

to the attention of security specialists
in her seminal paper Why Johnny Can’t
Encrypt. The basic idea is that people
progressively get more powerful tools
as they become comfortable with a sys-
tem, but are kept in a safe state as much
as possible as they learn how to use the
system. A real-world example would be
training wheels on a bicycle. For systems
that provide any level of awareness, the
defaults might be set, for example, so
that at first only close friends and fam-
ily see anything, while over time people
can easily share more information as
they understand how the system works
and how to control things.

from michael
Stonebraker’s
“DBmSs for Science
applications:
a Possible Solution”
Personally, I believe that

there are a collection of planet-threaten-
ing problems, such as climate change
and ozone depletion, that only scien-
tists are in a position to solve. Hence,
the sorry state of DBMS support in par-
ticular (and system software support
in general) for this class of users is very
troubling.

Science users, of course, want a
commercial-quality DBMS, i.e., one
that is reliable, scalable, and comes
with good documentation and sup-
port. They also want something that
is open source. There is no hope that
such a software system can be built in
a research lab or university. Such insti-
tutions are good at prototypes, but not
production software. Hence, the obvi-
ous solution is a nonprofit foundation,
along the lines of Apache or Mozilla,
whose charter would be to build such
a DBMS. It could not be financed by
venture capital, because of market size
issues. As such, support must come
from governments and foundations.

It is high time that the United States
got behind such an initiative.

Reader’s comment:
While I agree that RDBMS is not an optimal
technology for scientific applications and
that an open source initiative may lead to
some good innovation, I’d be cautious in
separating the data model from the query
and management language.

There are proprietary tools, such as
kx.com, that have done so successfully.

The speed and capacity of such tools is
phenomenal (as are the licensing fees one
must pay).

Leonidas Irakliotis —

from mark Guzdial’s
“the importance of
Programming in
introductory
computing courses”
In computer science, the

way that we investigate computation is
with programming. We don’t want to
teach computing as a pile of “accumu-
lated knowledge.” We know that that
doesn’t lead to learning. We need to
teach computation with exploration
and investigation, which implies pro-
gramming.

The best research study that I know
of that addresses this question is Chris
Hundhausen’s study where he used
algorithmic visualization in CS1. He
had two groups of students. One group
was to create a visualization of an algo-
rithm using art supplies. The students
were learning theory and describing
the process without programming. The
second group had to use a visualization
system, ALVIS. The students were learn-
ing theory and encoding their under-
standing in order to create a presenta-
tion. As Chris says in his paper, “In fact,
our findings suggest that ALVIS actually
had a key advantage over art supplies:
namely, it focused discussions more in-
tently on algorithm details, leading to
the collaborative identification and re-
pair of semantic errors.” If you have no
computer system, it’s all too easy to say
“And magic happens here.” It’s too easy
to rely on intuitive understanding, on
what we think ought to happen. Having
to encode a solution in something that
a computer can execute forces an exact-
ness such that errors can be identified.

The idea isn’t that programming cre-
ates barriers or makes it harder. Rather,
using the computer makes it easier to
learn it right. Without a computer, it’s
easier to learn it wrong, where you just
learn computing as a set of accumulat-
ed knowledge (as described in the AAAS
report) or with semantic errors (as with
art supply algorithm visualization). If
you don’t use programming in CS1,
you avoid tedious detail at the possible
(even likely) loss of real learning.

© 2009 aCm 0001-0782/09/0500 $5.00

http://kx.com

12 communicationS of the acm | MAy 2009 | vol. 52 | No. 5

cacm online

ACM
Member
News
VeLoSo WinS
SiGaRt aWaRD
manuela a. Veloso, a professor
of computer science at Carnegie
mellon University, received
the 2009 autonomous agents
research award from sIgarT.
“professor Veloso’s research is
particularly noteworthy for its
focus on the effective construction
of teams of robot agents, where
cognition, perception and action
are seamlessly integrated to
address planning, execution
and learning tasks,” noted the
sIgarT award citation.

mYeRS ReceiVeS
SiGPLan aWaRD
andrew C. myers, a professor
of computer science at Cornell
University, won an award for
the most Infl uential popl
paper presented at the popl
symposium held 10 years prior
to the award year. In its award
announcement, the judges noted
that myers’ 1999 paper, JFlow:
Practical Mostly-Static Information
Flow Control, “demonstrated
the practicality of using static
information fl ow analysis to
protect privacy and preserve
integrity by giving an effi cient
information fl ow type checker for
an extension of the widely used
Java language.”

conStantine WinS
SteVenS aWaRD
aCm Fellow larry Constantine,
director of the laboratory
for Usage-Centered software
engineering at the University of
madeira, is this year’s recipient
of the stevens award. The award,
managed by the reengineering
Forum, recognizes “outstanding
contributions to the literature or
practice of methods for software
and systems development.”

GRace hoPPeR ceLeBRation
of Women in comPutinG
The 9th annual grace Hopper
Celebration of Women in
Computing will take place from
september 30 to october 3, 2009
in Tucson, aZ. This year’s theme,
“Creating Technology for social
good,” recognizes the signifi cant
role women play in defi ning
technology used to solve social
issues. scholarship applications
are now being accepted; the
deadline is may 27.

The relationship between Communications’ Web
site and its print forefather is entering a new era
this month with the debut of the blog@CACM.
In this issue (p. 10), you’ll fi nd excerpts from es-
says published online at http://cacm.acm.org/
blogs/blog-cacm, plus some recent online reader
comments. The reason we’ve chosen to publish
select blogs each month is simple: Communica-
tions’ expert bloggers write valuable posts and
Communications’ credo is to disseminate valu-
able information that advances the arts, scienc-

es, and applications of information technology. Readers have noticed the high
quality of these blogs, making them, as well as our syndicated blogs (http://cacm.
acm.org/blogs), some of the site’s most popular sections.

The blog@CACM also gives the online Communications a unique bonus: a
commenting feature that enables sometimes extensive discussions of industry
issues, which is, of course, the beauty of blogs. The back-and-forth exchanges and
clarifi cation of blog posts and other site content create a round-the-clock equiva-
lent of the Greek forum.

The magazine’s blog pages might change over time as we learn readers’ pref-
erences: be they more or fewer posts, shorter or longer excerpts, with or without
related comments. For now we’re marking the beginning of a productive relation-
ship between print and online outlets.

exploring the Relevant Past
Clicking through the magazine archive (http://
cacm.acm.org/magazines) is a pleasure similar to
paging through an old photo album. There are fa-
miliar names and familiar topics. Most striking
is the prescience and enduring relevance of many
articles. Peruse the decades and see the early work
of future A.M. Turing Award winners and industry
icons. Read about the computer industry’s man-
power shortage concerns in “U.S. Productivity in
Crisis” (June 1981). China’s growing prowess is the
subject of “Computer Technology in Communist
China” in September 1966. Steve Jobs, then with
NeXT Inc., describes the importance of user inter-
faces and user apps in April 1989. And that’s just
scratching the surface.

The magazine’s covers followed their own trends.
The blue-and-white period in the 1960s transformed
into the stark blue-and-black period in the 1970s,
that gave way to full-color illustrations by the 1980s.

There’s mystery as well. Why was Miss U.S.A. on
the June 1965 cover of Communications?

the Print-Web Partnership
turns the Page

DOI:10.1145/1506409.1506413 David Roman

http://cacm.acm.org/blogs/blog-cacm
http://cacm.acm.org/blogs
http://cacm.acm.org/magazines
http://cacm.acm.org/blogs/blog-cacm
http://cacm.acm.org/blogs
http://cacm.acm.org/magazines

 N
news

MAy 2009 | vol. 52 | No. 5 | communicationS of the acm 13

F
or many years, traditional sig-
nal processing has relied on
the Shannon-Nyquist theory,
which states that the number
of samples required to cap-

ture a signal must be determined by
the signal’s bandwidth. An alternative
sampling theory, called compressed
sensing or compressive sampling,
turns the Shannon-Nyquist theory on
its head. The idea behind compressed
sensing is to accurately acquire signals
from relatively few samples. The theory
was so revolutionary when it was cre-
ated a few years ago that an early paper
outlining it was initially rejected on the
basis that its claims appeared impos-
sible to substantiate.

Today, however, compressed sensing
is attracting a great deal of interest from
mathematicians, computer scientists,
and both optical and electrical engi-
neers. And the theory is inspiring a new
wave of lab work to produce systems that
require far less power and operate more
efficiently than those that rely on the tra-
ditional capture-compress paradigm.
These systems include applications for
industrial imaging, digital photogra-
phy, biomedical imaging, and other
forms of analog-to-digital conversion.

Compressed sensing emerged ini-
tially from an experiment inspired by a
real-world problem with magnetic reso-
nance imaging (MRI). The goal of the ex-
periment, headed by Charles Mistretta
at the University of Wisconsin, Madison,
was to speed up the notoriously slow MRI
process to make it more comfortable for
patients, compensate for their minor
movements, increase MRI throughput,
and possibly even make the process fast
enough to conduct 3D imaging. Because

MRI hardware relies on a quantum ef-
fect to determine the density of protons
in a patient’s body, the data-capture pro-
cess cannot be shortened by improving
the hardware’s core technology. There-
fore, the question initially posed by the
researchers working on the problem is
whether the time it takes to perform an
MRI can be reduced by capturing fewer
samples and reconstructing a full image
from only a small fraction of the tradi-
tional amount of required data. While
conventional sampling theory suggests
doing so would not be possible, the
University of Wisconsin researchers ap-
plied standard image-reconstruction
algorithms on heavily subsampled MRI
data. But the results were inadequate,
so the researchers turned to Emman-
uel Candes, a professor of applied and
computational mathematics at the Cali-
fornia Institute of Technology, for as-

Rethinking
Signal Processing
Compressed sensing, which draws on information theory, probability
theory, and other fields, has generated a great deal of excitement
with its nontraditional approach to signal processing.

Science | DOI:10.1145/1506409.1506414 Kirk L. Kroeker

the left mRi image suffers from blurred edges, numerous artifacts, and low resolution. the
phantom image on the right was produced with minimally sampled fourier coefficients using
5% of the original mRi data, and is the same as the original mRi phantom (not shown here).

14 communicationS of the acm | MAy 2009 | vol. 52 | No. 5

news

labs around the world to build hardware
that can leverage some of the core ideas
associated with compressed sensing, so
one might assume that the theory has
come of age. But given the requirement
to know some structure of the expected
signal prior to sampling—implying that
a random signal or one consisting en-
tirely of noise would not be well suited
to compressed sensing—the research
team sought to establish firm math-
ematical foundations for their results.
“For the theory, we know a lot today,
not all that we would like to know,” says
Candes. “But in broad strokes, the foun-
dation is there.”

theoretical applications
One of the people who helped establish
this foundation is Terence Tao, a profes-
sor of mathematics at the University of
California, Los Angeles. “Emmanuel had
found a toy problem in pure mathemat-
ics which, if solved, could lead to a prac-
tical demonstration that compressed
sensing could actually work effectively,”
says Tao. “That problem was in two areas
in my own expertise—Fourier analysis
and random matrices—and so I started
to play around with it.” Eventually, says

Tao, he, Candes, and Romberg solved
that toy problem, establishing that com-
pressed sensing worked for a certain
type of measurement related to the Fou-
rier transform, and started working to-
gether to further develop the theory. “I
would not say that the field is anywhere
as mature as, say, Shannon’s theory of
information, or the statistical theory
of least squares regression, which are
some of the precursors to this subject,”
says Tao. “But the core ideas of the sub-
ject are by now quite well understood,
even if there are still many areas where
we would like to develop them further.”

One of the areas that needs more
attention, according to Tao, is how the
theory is centered around linear mea-
surement. “We don’t yet know what to
do if our measurement devices behave
nonlinearly with respect to the data,”
Tao says. “We are still exploring ex-
actly what type of measurement mod-
els compressed sensing excels at, and
where the paradigm reaches its limits
and must be replaced or supplemented
by a different type of method.”

Compressed sensing works for a
large number of special-purpose situ-
ations, says Tao, but is probably not
suitable as a general-purpose tool. For
instance, he says, it is unlikely that gen-
eral-purpose digital cameras will rely
on compressed sensing, given that con-
sumers might want to take pictures that
look like random, unstructured images.
“But a dedicated sensor network that is
devoted to detecting a certain special
type of signal might benefit substan-
tially from this paradigm,” he says.

Indeed, compressed sensing is hav-
ing an impact on the designs of a broad
array of such applications, given that
sensors can be found almost every-
where. Engineers at Rice University, for
example, are working on a single-pixel
camera that can take high-quality pho-
tos by using compressed sensing and a
digital micromirror array. In addition,
space agencies have shown interest in
the theory, with initial designs outlined
for cameras that rely on compressed
sensing to save power in deep space.
And Candes and Romberg are working
on a project with DARPA to overcome
some of the traditional limitations as-
sociated with the analog-to-digital con-
version of radio signals. The project’s
goal is to design a system for monitor-
ing radio frequency bands much more

sistance. Candes and his Caltech team
set out to reconstruct the MRI images
without any artifacts and by using only
5% of the sampled imaging data.

“When I looked at the artifacts, I dis-
covered that they had certain features
that I knew I could make go away by pe-
nalizing them in the reconstruction,”
says Candes, who notes he was simply
hoping his algorithm would improve
the quality of the images. “That’s where
the surprise came in,” he says. “What I
was not expecting was that it would give
me the truth.” Candes says that he and
his team quickly realized they could do
something that nobody thought was
possible: simultaneous acquisition
and compression. “That was the birth
of compressed sensing,” he says. “We
found that you can reconstruct images
from dramatically fewer samples than
what was previously necessary.”

Justin Romberg, who worked with
Candes on the initial MRI project,
points out that finding sparse signals
that satisfy a set of linear constraints
was an idea “floating around in the lit-
erature” at the time. However, he says,
no existing theories supported the no-
tion that it would be possible to per-
form reconstruction from limited data.
“We were the first people to talk about it
in this way,” says Romberg, a professor
of electrical and computer engineering
at the Georgia Institute of Technology.
Of course, compressed sensing does
not make it possible to reconstruct
anything and everything from limited
information. The target image or data
set must have some special structure.
“If there is structure, you can actually do
much better than the Shannon-Nyquist
theorem dictates,” says Romberg. “You
can sample more efficiently.”

There are many projects in research

compressed sensing
is leading to new
ways of looking
at math problems
in seemingly
unrelated areas.

the left image represents high-frequency radar pulses. in the right image, the original signal
(blue) is overlapped by the reconstructed signal (red), which was built through compressed
sensing at a rate that is 6% of what is required by the Shannon-nyquist theory.

Time

W
av

e
A

m
pl

itu
de

Time

W
av

e
A

m
pl

itu
de

MAy 2009 | vol. 52 | No. 5 | communicationS of the acm 15

news

efficiently than is currently possible.
The first chip for the project, which will
sample frequencies at a rate of 800 mil-
lion data points per second, is in fabri-
cation now, and should soon be ready
for testing. “One application for this
kind of system,” says Romberg, “would
be for monitoring large swaths of com-
munications bandwidth, where you
don’t necessarily know which frequen-
cy would be used for communicating.”

mathematical insights
In addition to having an impact on the
design of sensor systems and other in-
dustrial applications, compressed sens-
ing is leading to new ways of looking at
math problems in seemingly unrelated
areas. Candes and Tao, for example,
are currently working on the problem
of matrix prediction, the most widely
known example of which is the Netflix
Prize. The goal of those working to win
the prize is to improve the accuracy of
the Netflix movie-recommendation
system. Each Netflix customer watches
and rates a small fraction of movies, so
it is possible to know only a little of the
matrix in advance. While other math-
ematical approaches, such as spectral
graph theory, have been applied to such
matrix-prediction problems, Candes
and Tao say there are strong parallels to
the kinds of problems that compressed
sensing can address. “The point is that
we believe the ratings matrix to be struc-
tured,” says Tao. “Emmanuel and I are
not working directly on the Netflix Prize
problem, but on some more founda-

tional mathematical issues related to
one approach to solving this problem.”

As for the future of the theory, Rom-
berg says that one challenge remaining
for those working on compressed sens-
ing is convincing people that there is
some value in it, and a corresponding
value in changing sensor systems that
have been implemented in certain ways
since the beginning of signal process-
ing. “A lot of the theory of compressed
sensing,” he says, “goes against every-
thing that sensors have been designed
to do.” Another challenge is develop-
ing more efficient reconstruction al-
gorithms. Traditionally, the signal-
processing workload happens during
encoding (such as for music and image
files), while the decoder does very little.
In compressed sensing, the workload
is reversed; the encoder does very little,
but the decoder has to work to find the
location of the signal, its amplitude,

and other characteristics. “A question
that is active and that must remain ac-
tive is how to get very fast algorithms to
do the reconstruction,” says Candes.

For his part, Tao says compressed
sensing is here to stay. “Perhaps in five
or 10 years most of the issues people are
actively studying now will be resolved
or their limitations understood much
better,” he says. “There is certainly a
lot of potential, particularly in specific
fields such as MRI, in which there was
a definite need to squeeze more infor-
mation out of fewer measurements.”

But compressed sensing’s impact,
Tao says, is likely to be uneven, given
that traditional methods might be more
effective for some applications due to
the limitations of compressed sensing
that aren’t completely understood.

According to Candes, at least one
impact of the theory is happening out-
side the research labs and on a more
organic, social level. Candes says that
when he attends conferences related to
compressed sensing, he regularly sees
pure mathematicians, applied math-
ematicians, computer scientists, and
hardware engineers coming together
to share ideas about the theory and its
applications. “It’s really exciting to see
all these people talk together,” Candes
says. “I know compressed sensing is
changing the way people think about
data acquisition.”

based in los angeles, Kirk L. Kroeker is a freelance
editor and writer specializing in science and technology.

© 2009 aCm 0001-0782/09/0500 $5.00

compressed sensing
has applications for
biomedical imaging,
digital photography,
and other forms of
analog-to-digital
conversion.

Jacob T. “Jack” schwartz, a
mathematician and computer
scientist who conducted
important research in a wide
variety of fields and founded the
department of computer science
at new york University, died on
march 2. He was 79.

schwartz was well respected
by his peers for his brilliance as
a scientist, his skill and vision
as a department chair, and a
seemingly boundless intellectual
curiosity. He first made a name
for himself as a mathematics
graduate student at yale when
he co-authored, with his ph.d.

advisor nelson dunford, the
three-volume Linear Operators.
The text was first published in
1958 and, a half-century later,
is still in print. (dunford and
schwartz were jointly awarded
the leroy p. steele prize from the
american mathematical society
for Linear Operators in 1981.)

among schwartz’s many
achievements was pioneering
work in optimizing compilers at
IBm, with John Cocke and Frances
e. allen, as a visiting scientist; the
development of seTl, an early
programming language, and
the Ultracomputer, one of the

first parallel computers; and the
authorship of 18 books and more
than 100 papers and reports.

schwartz was chair of the
department of computer science
at new york University’s Courant
Institute of mathematical
sciences from 1964 to 1980,
which thrived during and after
his term as chair. a fellow
professor, edmond schonberg,
recalls how “in the early 1980s,
Jack attended a conference on
robotics in Washington, d.C.,
and when he returned, he said,
‘This is a subject full of interesting
scientific questions—and it is

eminently fundable.’ ” as a result,
the department launched a large-
scale robotics effort.

during his time at nyU,
schwartz taught nearly every
class offered by the department
of computer science. “When
Jack got interested in a subject,
he would teach a course on it,”
says schonberg. “as the course
evolved, he would reinvent
the subject for himself and
define his own approach to it.
and when he came to class, he
would be ecstatic about having
discovered something new, and
this was contagious.”

Obituary

Jacob T. Schwartz, 79, Dies

16 communicationS of the acm | MAy 2009 | vol. 52 | No. 5

news

T
He rapIdly C Ha n gIn g adver-
tisements that appear on
Web pages are often chosen
by sophisticated algorithms
that match ad keywords to

words on a Web page. Take the Chevy
ad, for example, that frequently ap-
pears on your favorite news site. A
real-time ad network at one of the
major search engines—Google, MSN,
and Yahoo!—might place it on a page
of automotive news. But what if the
news page’s featured article is about a
tragic accident caused by a mechani-
cal failure in a Chevy SUV? That’s not a
page General Motors wants to be asso-
ciated with, let alone pay good money
to advertise on.

Costly mishaps like this could be
avoided by a new discipline called
computational advertising, which
seeks to put the best ad in the best
context before the right customer. It
draws from numerous fields, includ-
ing information retrieval, machine
learning, natural-language process-
ing, microeconomics, and game theo-
ry, and tries to match ads with a variety
of user scenarios, such as querying a
search engine, reading a Web page,
watching a video on YouTube, or in-
stant messaging a friend.

Computational advertising could
spur the Web’s growth as a medium of
mass customization. Better ad match-
ing could quicken the trend toward
personalization, making highly spe-
cialized magazines, Web sites, and TV
channels more financially viable. “Ad-
vertising has been the engine that has
powered the huge development of the
Web,” says Andrei Broder, fellow and
vice president for computational ad-
vertising at Yahoo! Research. “With-
out advertising, you would not have
blogs and search engines.”

Computational advertising is a
type of automation that tries to rep-
licate what humans might do if they
had the time to read Web pages to dis-
cern their content and find relevant

ads among the millions available. “In
the old world of advertising, they deal
with few choices and large amounts of
money for each choice,” Broder says.
“We deal with maybe a hundred mil-
lion potential ads, each worth a frac-
tion of a cent.”

a Perfect match
There are basically three kinds of
Web ads. Sponsored search ads are
matched to the results of search en-
gine queries; banner ads target par-
ticular demographics and venues,
typically without regard to a page’s
content; and contextual advertising,
also called context match, applies to
other types of Web pages, such as the
home page of a financial news site.
Computational advertising addresses
all three types of ads.

Google, MSN, and Yahoo! use elec-
tronic auctions to assign ads to their
own results pages and the pages of
other Web sites. “Google is a yenta,” or
matchmaker, says Google chief econo-

mist Hal Varian. “The goal is to get a
perfect match.”

In sponsored search, advertisers
bid to place ads that contain keywords
correlated to words in a user’s search
string. For contextual advertising, the
keywords are related to words on the
entire page, and the search engine’s
advertising service places the ads. For
banner ads, online ad networks place
ads on sites whose topics and audi-
ences match the advertiser’s criteria.

Before the advent of computational
advertising, ad engines could make
mistakes more simple-minded than
the Chevy SUV scenario. Suppose,
for example, a news page contains
the word “flowers.” If the article isn’t
about flowers but instead revisits the
Rolling Stones’ underrated 1967 re-
cord Flowers, the reader is unlikely to
want ads from florists. The old meth-
od of analyzing co-occurring words
and phrases doesn’t help much, and
neither does frequency. “You could ex-
tract a word used many times in the ar-

matchmaker, matchmaker
Computational advertising seeks to place the best ad
in the best context before the right customer.

Technology | DOI:10.1145/1506409.1506415 David Essex

andrei Broder, vice president for computational advertising at Yahoo! Research,
presenting a tutorial on Web search and advertising at the 30th annual international
acm SiGiR conference in amsterdam.

p
h

o
t

o
g

r
a

p
h

 b
y

 n
i

r
 n

u
s

s
b

a
u

m

news

MAy 2009 | vol. 52 | No. 5 | communicationS of the acm 17

ticle and it still is not what the article
is about,” Broder says.

Therefore, Broder and the 30 re-
searchers who work for him are finding
ways to glean the meaning of a page.
One promising avenue combines se-
mantic and syntactic features. A seman-
tic phrase categorizes the page and the
ads into a 6,000-node topic taxonomy
and compares the proximity of the two
types of classes as a factor in ranking
ads. The hierarchical taxonomy also im-
proves the matching of ads that don’t fit
a page’s exact topic. Keyword matching
is still needed to capture more granu-
lar content, such as a specific brand of
automobile. “We decided that what the
article is about should count for about
80% and the words should count for
20%,” Broder says.

Another area of interest is using sta-
tistical analysis to measure the effect of
exogenous events on browsing behavior
and adjust the advertisements accord-
ingly. Varian cites short-lived examples,
such as this year’s rare snowfall in Eng-
land, or longer-term ones such as the
worldwide recession. “In the last few
months, there is a big increase in inter-
est in price-sensitive products,” Varian
says. “The advertisers, in turn, are try-
ing to respond.”

All three companies are close-lipped
about which of their research has been
commercialized, but say that new ideas
for algorithms are quickly incorporated
into their bidding mechanisms and ad-
vertiser tools. Bottom-line results are
secret, but the search engines all collect
metrics such as revenue per search.

Machine learning, another major
focus, concentrates on training al-
gorithms to scan pages for meaning,
a technique employed successfully
on single-topic documents with the
aid of machine-generated labels, but
trickier to perform on Web pages, with
their assortment of graphics, text, and
topics. Microsoft researchers have
learned how to employ a type of mul-
tiple instance learning to automate
classification of sub-documents on
pages with incomplete labels and to
detect the presence of certain types of
content.

“Most of what we do can be boiled
down to understanding intent,” says
Eric Brill, general manager of Micro-
soft adCenter Labs. By analyzing search
strings, for example, algorithms can
predict if a person is interested in ads.
Some strings are pure attempts at find-
ing information, while others, such as
“buy Canon digital camera,” have clear
commercial intent. “When consum-
ers don’t have commercial intent, you
don’t want to put ads in front of them,”
Brill says.

Much work focuses on ensuring that
new bidding mechanisms don’t have
incentives for advertisers to misrepre-
sent click-through rates to get better ad
placement. In the decentralized econ-
omy of the Internet, truthfulness is a
currency reinforced by carefully crafted
algorithms. “People are out there to
make money,” says Thore Graepel, a se-
nior researcher at Microsoft Research.
“We need to build mechanisms where
everyone benefits.”

One might expect the speed and vol-
ume of data to create a capacity prob-
lem, but the researchers express mixed
opinions. Graepel says semantic analy-
sis creates an extra burden. “You will
hit a computational bottleneck, that’s
pretty clear,” he says. To avoid this, re-
searchers optimize algorithms to make
the best decisions with the smallest
possible data sets. But they also have
faith in engineers’ ability to exploit
techniques such as parallel process-
ing. “It’s surprising how they are always
able to scale to deal with these new al-
gorithms,” Varian says.

Privacy regulations remain an obsta-
cle to personalizing ads, says Graepel.
The existing opt-in, opt-out model lets
users choose to reveal personal data in
exchange for discounts and other in-
centives. Researchers are also investi-
gating aggregating data on Web traffic
to more accurately match ad categories
with coarsely defined groups of users
who identify their interests simply by
visiting certain types of Web sites.

Fortunately, there is hope for avoid-
ing embarrassments like the ill-placed
Chevy ad. Researchers at Microsoft
adCenter Labs claim their sub-docu-
ment classification methods can pre-
vent incompatible ads and Web sites
from ever hooking up. You might call
it a reverse matchmaker, just the sort
of odd little entity the Internet’s in-
ventors might never have imagined.

David Essex is a freelance science writer based in
peterborough, nh.

© 2009 aCm 0001-0782/09/0500 $5.00

Education

Computer Science Enrollment Increases
enrollment in computer
science classes in the United
states has increased for the
first time in six years, according
to the Computing research
association’s (Cra’s) annual
Taulbee survey.

Total enrollment by majors
and pre-majors in computer
science is up 6.2% per department
over last year. If only majors are
considered, the increase is 8.1%,
according to the Cra survey,
which collected enrollment
data in fall 2008 from computer

science and computer
engineering departments at 192
ph.d.-granting universities.

“The upward surge of
student interest is real and
bigger than anyone expected,”
says peter lee, incoming chair
of Cra. “The fact that computer
science graduates usually find
themselves in high-paying jobs
accounts for part of the reversal.
Increasingly students also are
attracted to the intellectual
depth and societal benefits of
computing technology.”

Computer science graduates
on average earn 13% more than
the average college graduate,
according to the U.s. department
of labor, and future job prospects
for computer science graduates
are higher than for any other
science or engineering field.

The average number of
new students per department
majoring in computer science is
up 9.5% over last year. Computer
science departments are
replenishing the freshman and
sophomore ranks with larger

groups than they are graduating
as seniors, and computer science
graduation rates should increase
in two to four years as these new
students graduate.

The total number of ph.d.
graduates among responding
departments grew to 1,877 for
the period July 2007 to June 2008, a
5.7% increase over the previous year.

one area that didn’t show
improvement is the number
of women pursuing computer
science degrees, which held
steady at 11.8%.

18 communicationS of the acm | MAy 2009 | vol. 52 | No. 5

news

Society | DOI:10.1145/1506409.1506416 Samuel Greengard

Learning Goes Global
In a world that’s increasingly global and interconnected,
international education is growing, changing, and evolving.

I
nTernaTIonal edUCaTIon Isn’T ex-
actly a new concept. For years,
students have traveled abroad
for exchange programs and to
obtain degrees. “For many, at-

tending a university in another coun-
try is viewed as an ideal way to gain
exposure to another culture, learn a
language, and participate in an in-
teresting and enriching experience,”
explains Peggy Blumenthal, chief op-
erating officer for the Institute of In-
ternational Education in New York
City. “It’s an important part of the aca-
demic environment.”

However, in a world that’s increas-
ingly global and interconnected, in-
ternational education is growing,
changing, and evolving. Overall, more
than 1.5 million students a year study
at schools outside their country’s bor-
ders. According to the Institute of In-
ternational Education, 173,122 new
students enrolled in undergraduate,
graduate, and non-degree programs
worldwide in 2008—an increase of
7% over the previous year. At the same
time, the number of U.S. students
studying abroad grew by about 8% to a
total of more than 241,791. Some plac-
es, such as China, are now experienc-
ing double-digit growth rates.

It’s certainly not your mom and
dad’s summer abroad. What’s more, a
growing number of these students are
from fields such as mathematics, com-
puter science, and natural sciences.
“The nature and types of programs are
expanding. We’re seeing everything
from short-term programs that are
eight weeks or less to master’s pro-
grams with a full term abroad,” states
Brian Whalen, president and CEO of
the Forum on Education Abroad and
associate provost at Dickinson College
in Carlisle, PA. “Technology and com-
munication are changing the way peo-
ple think about education and making
international studies more accessible
and popular.”

making the Grade
Study abroad programs once centered
mostly on sketching pictures of the
Eiffel Tower or learning the finer points
of Italian art or German literature. Stu-
dents in disciplines such as mathemat-
ics, computer science, or engineering
usually found it difficult, if not impos-
sible, to leave their home institution’s
program without risking falling behind
or veering off track. What’s more, most
universities weren’t inclined to develop
exchange programs for those majoring
in the sciences.

The situation is changing, however.
Thanks to computers, the Internet, and
other communication and collabora-
tion tools, the ability to link people and

course content is entirely viable. Email,
social networking applications such as
Facebook, and low- or no-cost calling
services such as Skype make it possible
for international students to stay in
touch with family and friends. In ad-
dition, technology and collaboration
software—as well as ultra-high-speed
Internet2—have made it possible for
schools to link programs to one anoth-
er and create a seamless learning expe-
rience. Increasingly, these programs
include master’s degrees and doctor-
ate degrees.

Hochschule Darmstadt Univer-
sity of Applied Sciences in Germa-
ny is among the schools that have
jumped onto the international stud-

Students learn about studying abroad at the university of Wisconsin, Platteville’s
international Programs fair.

p
h

o
t

o
g

r
a

p
h

 b
y

 a
n

d
y

 m
c

n
e

i
l

l

news

MAy 2009 | vol. 52 | No. 5 | communicationS of the acm 19

Setting a course
Not surprisingly, the growth of inter-
national studies has opened up an en-
tire world of opportunities. Chinese or
Argentine students may travel to Ger-
many to receive advanced instruction
in mathematics; American or Russian
students may venture to New Zealand
to receive an education in volcanol-
ogy. As increasing numbers of schools
introduce joint programs—and many
institutions turn to U.S. accreditation
organizations to gain international
acceptance and stature—the playing
field is leveling out.

Schools in English-speaking coun-
tries, including England, Scotland,
Ireland, and Australia, are increasing-
ly the beneficiaries of the trend toward
international education. Many of these
schools offer outstanding programs at
a lower price than students would pay
back home.

For example, at the University of Lim-
erick in Ireland, Liam O’Dochartaigh,
director of international education, has
witnessed an enormous transforma-
tion over the last decade. The University
of Limerick now has 1,283 students at-
tending from abroad, including about
400 students from the U.S. It also boasts
259 of its own students attending class-
rooms abroad. The number of interna-
tional students has spiked more than
100% from a decade ago, he says, and
approximately 10% of the student pop-
ulation (the school has approximately
12,500 students) now comes from out-
side Ireland.

“Universities realize that interna-
tional study and accessibility is impor-
tant for financial reasons as well as for
international standing,” O’Dochartaigh

ies platform. The institution, which
serves 11,000 students, commenced
its Joint International Master program
for computer sciences in 2003. The
school partners with the University of
Wisconsin, Platteville and James Cook
University in Townsville, Australia. At any
given time a dozen or so students from
these schools venture abroad to study
for half-a-year at the partner school. At
Hochschule Darmstadt, master’s level
instruction is entirely in English and
graduates receive a joint degree.

“The program provides students with
a global perspective and helps them
become more attractive on the inter-
national job market,” says Lucia Koch,
director of the International Office for
Hochschule Darmstadt. “It also raises
the visibility of the school and makes it
more attractive and respected.”

Koch believes that students who par-
ticipate in the program gain knowledge
and expertise that isn’t available in a
conventional classroom. “They gain a
perspective that can help them under-
stand the field and their future profes-
sion better.”

Nearly 4,400 miles away in Platteville,
WI, Richard D. Shultz, dean of the Col-
lege of Engineering, Mathematics and
Sciences, is reaping benefits as well. A
decade ago the school formed a part-
nership with Hochschule Darmstadt at
the undergraduate level. It allowed stu-
dents from both schools to participate
in a conventional exchange program.
The relationship evolved after Hoch-
schule Darmstadt suggested expand-
ing the exchange to include its mas-
ter’s program. “It made sense to have
a degree that helps students become a
citizen of the world,” Shultz says. “Stu-
dents learn different perspectives and
discover how people research and work
in different parts of the world.”

Megan Brenn-White, executive di-
rector of the Hessen Universities Con-
sortium, which represents Hochschule
Darmstadt and 10 other schools in
Germany, believes that an increasingly
competitive recruiting environment
and a shrinking globe will continue to
boost international studies. “Schools
are looking to become world-class in-
stitutions or boost their stature in the
research arena. They’re also looking to
attract international students for full
degree programs because it’s often
more profitable.”

says. He points out that universities
are increasingly internationalizing
curriculum and schools in different
countries even collaborate on course-
work and content. The University of
Limerick currently has partnerships
with 24 schools in Europe and 15
schools in the U.S. and Canada. Tu-
ition derived from international stu-
dents supplements state funding
sources, O’Dochartaigh notes. One
foreign student can bring in more
than €12,000 per year.

Government organizations are
promoting international education
programs as well. In the U.S., the Na-
tional Science Foundation (NSF) has
matched more than 2,000 students
with intensive eight-week science
study grants under its East Asia and
Pacific Summer Institutes program
since 1990. “There has long been a
large interest in students coming to
the U.S. to study and do research,” says
Jong-on Hahm, program manager for
the NSF. “But there’s a lot of very inter-
esting research that goes on in other
countries and American students now
have access to it.”

The march toward international
education will undoubtedly continue.
Fueling the trend is the adoption of
international standards and the abil-
ity to put credits to work at home. In
Europe, for example, the Bologna Pro-
cess—which links ministries, higher-
education institutions, students, and
staff from 46 countries—guarantees
that students receive credits for time
spent studying abroad. In addition,
schools are increasingly developing
joint curriculum and collaborating
on courses and studies—particularly
in the computer science, engineering,
and natural sciences arena.

To be sure, this brave new world
of education is creating new vistas.
“The educational boundaries between
countries are disappearing,” says
Whalen of Dickinson College. “Stu-
dents and schools are recognizing
that there is a world far beyond their
local campus. They’re learning that
studying aboard presents tremendous
opportunities—and advantages.”

Samuel Greengard is an author and freelance writer
based in West linn, or.

© 2009 aCm 0001-0782/09/0500 $5.00

Schools are
increasingly developing
joint curriculum and
collaborating on
courses, particularly
in computer science
and engineering.

Nominations are invited for the 2009 ACM A.M. Turing Award. This, ACM’s
oldest and most prestigious award, is presented for contributions of a
technical nature to the computing community. Although the long-term
influences of the nominee’s work are taken into consideration, there should
be a particular outstanding technical achievement that constitutes the
principal claim to the award. The award carries a prize of $250,000 and
the recipient is expected to present an address that will be published in an
ACM journal. Financial support of the Turing Award is provided by the
Intel Corporation and Google Inc.

Nominations should include:

1) A curriculum vitae, listing publications, patents, honors, other awards, etc.

2) A letter from the principal nominator, which describes the work of the
nominee, and draws particular attention to the contribution which is seen
as meriting the award.

3) Supporting letters from at least three endorsers. The letters should not
all be from colleagues or co-workers who are closely associated with the
nominee, and preferably should come from individuals at more than
one organization. Successful Turing Award nominations usually include
substantive letters of support from a group of prominent individuals
broadly representative of the candidate’s field.

For additional information on ACM’s award program
please visit: www.acm.org/awards/

Nominations should be sent electronically
by November 30, 2009 to:
Alan Kay, turing@vpri.org

ACM A.M. TURING AWARD
NOMINATIONS SOLICITED

Previous
A.M. Turing Award
Recipients

1966 A.J. Perlis
1967 Maurice Wilkes
1968 R.W. Hamming
1969 Marvin Minsky
1970 J.H. Wilkinson
1971 John McCarthy
1972 E.W. Dijkstra
1973 Charles Bachman
1974 Donald Knuth
1975 Allen Newell
1975 Herbert Simon
1976 Michael Rabin
1976 Dana Scott
1977 John Backus
1978 Robert Floyd
1979 Kenneth Iverson
1980 C.A.R Hoare
1981 Edgar Codd
1982 Stephen Cook
1983 Ken Thompson
1983 Dennis Ritchie
1984 Niklaus Wirth
1985 Richard Karp
1986 John Hopcroft
1986 Robert Tarjan
1987 John Cocke
1988 Ivan Sutherland
1989 William Kahan
1990 Fernando Corbató
1991 Robin Milner
1992 Butler Lampson
1993 Juris Hartmanis
1993 Richard Stearns
1994 Edward Feigenbaum
1994 Raj Reddy
1995 Manuel Blum
1996 Amir Pnueli
1997 Douglas Engelbart
1998 James Gray
1999 Frederick Brooks
2000 Andrew Yao
2001 Ole-Johan Dahl
2001 Kristen Nygaard
2002 Leonard Adleman
2002 Ronald Rivest
2002 Adi Shamir
2003 Alan Kay
2004 Vinton Cerf
2004 Robert Kahn
2005 Peter Naur
2006 Frances E. Allen
2007 Edmund Clarke
2007 E. Allen Emerson
2007 Joseph Sifakis
2008 Barbara Liskov

Additional information
on the past recipients of
the A.M. Turing Award
is available on: http://
awards.acm.org/home
page.cfm?awd=140

http://www.acm.org/awards/
mailto:turing@vpri.org
http://awards.acm.org/homepage.cfm?awd=140
http://awards.acm.org/homepage.cfm?awd=140
http://awards.acm.org/homepage.cfm?awd=140

MAy 2009 | vol. 52 | No. 5 | communicationS of the acm 21

news

Liskov Wins turing award
MIT’s Barbara Liskov is the 55th person, and the second woman, to win the ACM A.M. Turing Award.

Milestones | DOI:10.1145/1506409.1506433

A
Wards Were reCenTly an-
nounced by ACM, the Brit-
ish Computer Society, the
Computing Research Asso-
ciation, the International

Society for Computational Biology, and
the National Science Foundation hon-
oring innovative researchers for their
contributions to the fields of engineer-
ing and computer science.

acm a.m. turing award
Association for Computing Machinery
Barbara Liskov, a professor of engi-
neering and computer science at the
Massachusetts Institute of Technol-
ogy, is the winner of the 2008 ACM A.M.
Turing Award. Liskov was cited for her
foundational innovations to designing
and building the pervasive computer
system designs that power daily life.
Her achievements in programming lan-
guage design have made software more
reliable and easier to maintain. They are
now the basis of every important pro-
gramming language since 1975, includ-
ing Ada, C++, Java, and C#.

Previously, computer programs were
composed of strings of numbers and
characters, but Liskov’s work led to the
development of object-oriented pro-
gramming, now the most widespread
approach to software development.
“Her elegant solutions have enriched
the research community, but they have
also had a practical effect as well,” says
ACM president Wendy Hall. “They have
led to the design and construction of
real products that are more reliable than
were believed practical not long ago. In
addition to her design features, she fo-
cused on engineering innovations that
changed the way people thought about
programming languages and building
complex software. These accomplish-
ments were instrumental in moving
concepts out of academia and into the
real world.”

The Turing Award, widely considered
the Nobel Prize in computing, is named
for the British mathematician Alan M.
Turing. The award carries a $250,000

prize, with financial support provided
by Intel Corporation and Google Inc.

Lovelace medal
British Computer Society
Yorick Wilks, a professor of artificial in-
telligence at Sheffield University, won
the Lovelace Medal for his pioneering
work on developing virtual agents to
assist older people. “I am delighted the
BCS is able to recognize the outstanding
and sustained contribution Professor
Wilks has made during his career to the
subject of AI through such a prestigious
award,” says BCS chief executive David
Clarke. “The increasing complexity of
the Web will have a profound impact on
the way everyone, including the elderly,
will live in the future and his work will
have a lasting impact on society.”

Roger needham award
British Computer Society
Byron Cook, a researcher at Micro-
soft Research at Cambridge Uni-
versity and a professor of computer
science at Queen Mary, University of
London, won the Needham Award
for his creation of TERMINATOR,
the first practical tool for automati-
cally proving termination of real-
world, imperative programs. “TER-
MINATOR caused a major stir in the
program verification research com-
munity when it appeared because it
extended Alan Turing’s statement on
the halting of programs,” according
to BCS’s award announcement. “It
has rapidly spilled beyond research
circles to the point where TERMINA-

TOR is to be productized by the Win-
dows kernel team.”

Distinguished Service award
Computing Research Association
Eugene Spafford, executive director
of CERIAS at Purdue University, won
the 2009 Distinguished Service Award
in honor of his being “an effective and
tireless advocate for the cause of infor-
mation security research,” noted the
Computing Research Association in its
announcement. “He has been instru-
mental in keeping public attention on
this important research area.”

Senior Scientist award
International Society for Computational
Biology
A professor of computer science at
Pennsylvania State University, Webb
Miller won the Senior Scientist Award
for his extensive research in vertebrate
genome sequencing.

overton Prize
International Society for Computational
Biology
Trey Ideker, a professor of bioengineer-
ing at the University of California, San
Diego, who has developed several in-
fluential bioinformatics methods and
resources, received the Overton Prize as
“a scientist in early- or mid-career who
has already made a significant contribu-
tion to computational biology.”

Vannevar Bush award
National Science Foundation
Millie Dresselhaus, a professor of phys-
ics and electrical engineering at the Mas-
sachusetts Institute of Technology, was
honored with the Vannevar Bush Award
for “for her leadership through public
service in science and engineering, her
perseverance and advocacy in increas-
ing opportunities for women in science,
and for her extraordinary contributions
in the field of condensed-matter physics
and nanoscience.”

© 2009 aCm 0001-0782/09/0500 $5.00p
h

o
t

o
g

r
a

p
h

 b
y

 d
o

n
n

a
 C

o
V

e
n

e
y

/m
i

t

22 communicationS of the acm | MAy 2009 | vol. 52 | No. 5

V
viewpoints

law and Technology
The network neutrality
debate Hits europe
Differences in telecommunications regulation between the U.S. and the European Union
are a key factor in viewing the network neutrality discussion from a European perspective.

DOI:10.1145/1506409.1506418 Pierre Larouche

so forth being distributed randomly),
these ISPs would want to introduce
differentiated quality of service (QoS)
levels. Technically, ISPs would then
need to inspect packets more inten-
sively than they usually do in order to
determine the QoS level with which to
handle them.

In the EU as in the U.S., ISPs have
two main reasons for desiring differ-
entiated QoS. In the shorter term, it
responds to perceived network man-
agement problems, in the wake of ex-

R
e a d e r s oF THIs magazine
will be familiar with the
network neutrality debate
currently occurring in the
U.S. The February 2009 is-

sue featured a Point/Counterpoint col-
umn by Barbara van Schewick and Da-
vid Farber, respectively arguing in favor
of and against legislative intervention
to secure network neutrality (page 31).
Many readers might have wondered
whether the European Union has also
been engulfed in the debate. The an-
swer is yes, but as is often the case the
EU and the U.S. are starting from dif-
ferent situations and working within
different policy frameworks.

“Network neutrality” has become
a slogan of sorts, which covers a more
complex reality than either side of the
U.S. debate is willing to admit. The key
development that prompted the debate
everywhere were statements by certain
broadband Internet service providers
that they wanted to move away from the
“best-efforts” model currently prevail-
ing. Instead of deploying best efforts
to convey all the packets they handle to
their destination (with delay, jitter, and

plosive Internet traffic growth with the
rise of video-based applications, servic-
es, and content. For most ISPs today, a
small fraction of their users (usually
less than 10%) account for most of the
use of their networks (usually around
80%). This imbalance is not reflected
in the subscription rates, even though
that small fraction of users generates
network management problems that
affect the quality of service provided
to other users. Differentiated QoS—as
a network management tool—would
enable ISPs to correct some of that im-
balance, since users (including appli-
cation, service, and content providers)
would then decide how much quality of
service (priority) they want to purchase
and their traffic would be treated ac-
cordingly. In economic terms, it is too
early to tell whether such a develop-
ment will increase welfare. In theory,
tailoring QoS more closely to the prefer-
ences of each user is an improvement,
but in practice the verdict will depend
on the extent to which the users who
opt for lower QoS offerings are properly
compensated if—as is likely—they ex-
perience an inferior level of service.

the iSP landscape
in europe looks
different than in the
u.S. and is likely
to remain so in the
foreseeable future.

V

MAy 2009 | vol. 52 | No. 5 | communicationS of the acm 23

In the longer term, differentiated
QoS can have much larger implications
by affecting the balance of power be-
tween ISPs, their users, and content pro-
viders (including also service providers
such as Google or application providers
such as Skype). ISPs are under pressure
to deliver ever faster connections to
users and content providers, yet Inter-
net access is becoming a commodity,
with the price of subscriptions falling
steadily. The trend can be reversed by
turning the ISP network into a “plat-
form,” that is, offering specific QoS and
performance levels to users and con-
tent providers alike, thereby making
the ISP attractive to deal with (“the best
video delivery,” “the best gaming expe-
rience”), as opposed to just one of many
alternatives on the market.

In addition, by positioning itself as
a distinctive “platform,” an ISP should
be able to maintain, if not expand, its
revenue stream; at a time when ISPs
must carry out considerable invest-
ment in upgrading their networks
(fixed and mobile alike), this could be a
welcome evolution. Yet this would also
imply a reshuffling of innovation pat-

terns. So far the Internet has been very
successfully driven through innovation
“at the edge,” outside of the networks
(consider Google, Amazon, Skype,
iTunes, and all the Web 2.0 providers).
In the future, innovation could equally
be coming from the ISPs on their plat-
forms. It is not clear for now whether
this will substitute for or complement
innovation at the edge, that is, whether
innovation at the edge will be reduced
(because innovative upstarts would be
shut out) or further spurred.

What is more, technically no one
knows yet how such differentiated QoS
offerings could be implemented across
the various networks that typically
make up the fabled Internet cloud.
This brings me to mention some sig-
nificant differences between the EU
and the U.S. In the U.S., the provision
of broadband Internet access is con-
centrated in a few hands, namely those
of the remaining local exchange car-
riers providing ADSL (AT&T, Verizon,
Qwest) and the large cable TV provid-
ers. The official FCC policy is to bank
on competition between the relatively
few providers of these infrastructure

platforms (ADSL, cable, mobile). The
Internet cloud would then give way
to a limited number of single-firm
platforms, each controlled by one
of these providers, with two or more
platforms being present at any given
location in the U.S.

In the EU, the prospects for infra-
structure competition are dimmer,
since only a few areas (Benelux, parts
of France, Germany, and the U.K.) are
now served by competing broadband
infrastructures (cable and ADSL).
In most of the EU, it is thought that
the rollout of competing broadband
networks—effectively from scratch—
cannot be achieved without some form
of access to incumbent networks, at
least in a starting phase. This means
the ISP landscape in Europe looks dif-
ferent than in the U.S. and is likely to
remain so in the foreseeable future:
fewer competing infrastructures, but
more market players, many of which
rely on access to the incumbent’s net-
work. Furthermore, that landscape is
structured along national lines. In the
end, it is difficult to conceive how dif-
ferentiated QoS could be successfully

24 communicationS of the acm | MAy 2009 | vol. 52 | No. 5

viewpoints

ators with significant market power or
SMP) could be made applicable to the
market for the transmission of content
over the Internet. National regulatory
agencies would then have the power to
impose access and nondiscrimination
obligations, in line with the EC regula-
tory framework.

Furthermore, if all ISPs were to en-
gage in blocking to such an extent that
the Internet became “patchy” and its
ability to deliver benefits to society was
impaired, the current regulatory frame-
work also offers a possibility to inter-
vene to restore interconnectivity. Yet
any intervention on this point would
need to be very finely tuned: introduc-
ing differentiated QoS to improve net-
work management implies that some
users will choose not to purchase the
top level of service, without them be-
ing in any way blocked from accessing
what they desire.

In the end, even if the introduction
of differentiated QoS entails some
risks in addition to the benefits it could
bring, it is too early to tell, and at this
moment the case against differenti-
ated QoS is not solid enough to warrant
specific legislative intervention to im-
pose network neutrality in the EU. The
most important open issue for now is
that subscribers know which QoS level
they are getting from their ISP. Unfor-
tunately, this is not always explained
properly by ISPs.

As it turned out, the network neu-
trality debate hit Europe just as the
EU lawmakers were conducting a gen-
eral review of telecommunications
regulation. The European Commis-
sion carried out the review and in 2007

introduced on single-firm platforms in
the EU. More likely than not, significant
coordination—through consortia/alli-
ances, industrywide standardization or
both—will be needed.

It is against that background that EU
policymakers are considering whether
to intervene. Their toolkit is different
from that of their counterparts in the
U.S. The EU regulatory framework for
electronic communications (telecom-
munications) is formulated as a set
of policy objectives, which national
regulatory agencies implement with
the help of instruments defined at the
European level. Regulation must be
based on sound economic analysis
(as opposed to technology or history),
and it is meant to be used only when it
provides added value over the applica-
tion of competition law. The regulatory
framework is intended to be robust
and sustainable without constant leg-
islative intervention. In a sense, the
discussion of network neutrality is a
good test of these principles. So far,
the dominant view is that the various
issues raised by the introduction of
differentiated QoS can largely be dealt
with using existing legislation.

Indeed, many of the concrete dif-
ficulties experienced so far fall under
EU competition law. For instance, in
the U.S., the FCC inquired into the
practices of Madison River—an ADSL
provider that blocked access to voice
over IP providers competing with its
telephone service; and of Comcast—
the large cable provider that blocked
peer-to-peer traffic potentially com-
peting with its cable TV service. In
the EU, if an incumbent or any other
ISP with enough market power to be
found dominant engaged in a simi-
lar practice, it would most likely run
afoul of Article 82 EC, which prohib-
its abuses of such dominant position
(conduct that undermines competi-
tion by excluding competitors from
the market).

Similarly, a dominant ISP would
likely breach Article 82 EC if it at-
tempted to create a walled garden or
gated community whereby its own or
affiliated content, applications, or ser-
vices would be favored over those of
competitors. If competition law were
found not to have enough bite, then
the regulatory regime specifically con-
cerned with dominant operators (oper-

the regulatory
debate surrounding
the introduction
of differentiated
QoS and network
neutrality in
europe is not over
by any means.

submitted legislative proposals to the
Council (made up of Member State
governments) and the European Parlia-
ment for enactment. The Commission
proposed to introduce a general princi-
ple that end users should be able to ac-
cess and distribute any lawful content
and use any lawful applications and/or
services of their choice and to require
ISPs to inform their users of any limi-
tations imposed on that right. It also
reserved for itself the right to develop
minimum QoS requirements to be im-
posed on ISPs, if necessary.

In first reading, the European Par-
liament brought these proposals much
further by framing the issue as a mat-
ter of fundamental rights and en-
trusting national regulatory agencies
directly with the ability to introduce
minimum QoS requirements. Yet the
Member States, meeting in the Coun-
cil, are much more prudent, and at the
time this column was written, their
view appears likely to prevail when the
legislative process ends later in 2009.
Contrary to the Commission and the
Parliament, the Member States do not
want at this time to enshrine any prin-
ciple that users should have access
to content, applications, and services
of their choice. They would, however,
require ISPs to inform users of traffic
management policies and QoS levels.
Finally, they would follow the Parlia-
ment in empowering national regula-
tory agencies to introduce minimum
QoS requirements.

The regulatory debate surrounding
the introduction of differentiated QoS
and network neutrality in Europe is
not over by any means. Legislative in-
tervention for the time being is likely
to be limited to strengthening trans-
parency toward consumers, with the
threat of minimal QoS requirements
if the evolution took a turn for the
worse. For the rest, the current regu-
latory framework will undoubtedly
be used to deal with problems as they
arise in specific cases. The next leg-
islative review, probably in 2012, will
then take stock of developments and
lead to more definitive and informed
legislative proposals if needed.

Pierre Larouche (pierre.larouche@uvt.nl) is professor
of Competition law and the director of the tilburg law
and economics Center (tileC) at tilburg university, the
netherlands.

Copyright held by author.

mailto:pierre.larouche@uvt.nl

MAy 2009 | vol. 52 | No. 5 | communicationS of the acm 25

V
viewpoints

i
l

l
u

s
t

r
a

t
i

o
n

 b
y

 J
o

n
 h

a
n

I
T Is Commonly understood
that the IT work force lacks
gender diversity. In 1983 wom-
en made up approximately 43%
of the IT work force according

to the U.S. Bureau of Labor Statistics
Current Population Survey. By 2008,
while the total IT work force had more
than doubled, the female percentage
had dropped to 26%. In comparison,
women represented approximately
46% of administrative, science, and
technical workers and approximately
42% of all other occupations. A variety
of explanations have been offered to ac-
count for the small share of women in
IT. But based on our research4, 5 we be-
lieve choice plays an important role in
explaining why there are so few women
in IT, and this in turn has important
policy implications for what kinds of
interventions will be effective in en-
couraging more women to enter IT.

Encouraging more women and mi-
norities to choose IT careers would help
raise the numbers in the field. Beyond
this, however, increasing the diversity
of IT will produce additional benefits
by ensuring that IT professionals have
a broad range of experience and inter-
ests. As Wulf has argued, “…those dif-
ferences in experience are the “gene
pool” from which creativity springs.”6

The dearth of females in IT fields is
part of a larger phenomenon of occupa-
tional segregation by gender. Explana-
tions for these occupational differenc-

es can be grouped under three broad
headings: discrimination; differences
in ability; and choice. Identifying the
reasons so few women enter IT careers
is not simply an academic exercise; it
also suggests some possible solutions

that may help to rectify this situation.
In the past few years a number of pi-

lot efforts have been undertaken to ad-
dress a variety of perceived obstacles to
women’s participation in IT. These pol-
icy initiatives have focused on a variety

DOI:10.1145/1506409.1506417 LeAnne Coder, Joshua L. Rosenbloom, Ronald A. Ash, and Brandon R. Dupont

economic and
Business dimensions
Increasing gender diversity
in the IT Work Force
Want to increase participation of women in IT work? Change the work.

26 communicationS of the acm | MAy 2009 | vol. 52 | No. 5

viewpoints

of ways the problem of underrepresen-
tation might be addressed. We think
these policy proposals must, however,
be informed by a clear understanding
of the underlying reasons for the lim-
ited numbers of women in IT careers.

the Ku Professional Worker career
experience Study
To shed light on how men and women
make career choices we conducted four
in-depth focus groups with IT profes-
sionals in the greater Kansas City area,
and then collected detailed information
from a sample of over 500 IT and non-
IT professionals. Participants in the
survey were solicited from employees at
several large organizations with offices
in the central U.S. and from business
school and computer science alumni of
a large Midwestern university.

We sought to compare the family
backgrounds, work histories, educa-
tional experiences, and personal-
ity characteristics of IT professionals
with those of individuals working in
equally demanding careers that re-
quired roughly comparable levels of
education and skills. This quasi-exper-
imental design allowed us to isolate
the reasons for gender-based differ-
ences in career choice.

The sample consists of 523 work-
ing professionals. The non-IT profes-
sionals include accountants, auditors,
CEOs, CFOs, presidents, consultants,
engineers, managers, administra-
tors, management analysts, scientists,
technicians, nurses, and teachers. The
IT professionals include application
developers, programmers, software
engineers, database administrators,

systems analysts, Web administrators,
and Web developers.

About three-quarters of the sample
(73%) are non-IT professionals, with
the remainder being IT professionals.
The overall sample is almost evenly
divided between men (54%) and wom-
en (46%), but consistent with broader
national patterns the IT workers were
mostly male (68%), while the non-
IT professionals were nearly evenly
divided between men and women.
The average age of participants in our
survey was 39 years and they averaged
17 years of formal education (92% held
four-year college degrees).

Personality matters
for career choice
Vocational psychologists have devel-
oped a way of quantifying the person-
ality differences between individuals
and how those differences affect the
choice of occupation. This line of re-
search began in 1927 when E.K. Strong
developed the Strong Vocational Inter-
est Bank (SVIB; now the Strong Interest
Inventory, SII). By the 1950s, Holland
had augmented Strong’s work by intro-
ducing six basic occupational interest
categories that closely resembled the
dimensions found in research on voca-
tional interests using the SVIB.

In 1974, the theories developed by
Holland and by Strong were combined
to create the Strong Interest Inventory,
which is used to measure six general
occupational themes (GOT) for both
people and jobs, and this approach re-
mains one of the leading tools used by
career counselors to match individuals
to careers. These six vocational types
(RIASEC) are:

Realistic (R) refers to a person’s ˲

preference for activities that entail the
explicit, ordered, or systematic manipu-
lation of objects, tools, and machines.

Investigative (I) refers to a person’s ˲

preference for activities that entail the
systematic or creative investigation of
physical, biological, and cultural phe-
nomena.

Artistic (A) refers to a person’s ˲

preference for activities that are am-
biguous, free, non-systematic and that
entail the manipulation of materials to
create art forms or products.

Social (S) refers to a person’s prefer- ˲

ence to lead others or for activities that
entail the manipulation of others to in-

form, train, develop, cure, or enlighten.
Enterprising (E) refers to a person’s ˲

preference for activities that entail the
manipulation of others to attain orga-
nization goals or economic gain.

Conventional (C) refers to a per- ˲

son’s preference for activities that en-
tail the explicit, ordered, systematic
manipulation of data.

Career fields are often chosen when
a person finds a career that “matches”
his or her personality. For example,
accountants typically score very high
on the Conventional GOT. Accounting
jobs typically involve a systematic ap-
proach to credits and debits and finan-
cial statements. Similarly, computer
programmers typically score highly
on the Realistic GOT. Programming
requires a focus on concrete problem
solving to abstract reasoning.

We know from decades of work by
vocational psychologists that the oc-
cupational themes measured by the
SII are not distributed equally between
men and women. Men, for example,
score higher on Realistic and Investiga-
tive themes, while women score higher
in Artistic, Social, Enterprising, and
Conventional themes.1,2

Our analysis of the survey data we
collected indicates that more than two-
thirds of the gender difference between
IT professions and our control group can
be accounted for by differences in the
distribution of GOT scores between men
and women.4 Based on these figures we
estimate that in the absence of system-
atic gender differences in the distribu-
tion of GOT scores the IT work force to-
day would be close to 40% female, rather
than the actual figure of 26%.

IT workers in our study had higher
scores on the Realistic and Investiga-
tive GOT. As discussed previously, fewer
women have these types of occupation-
al personalities, preferring occupations
higher in the other four GOTs. Women
do not view IT professions as artistic,
social, enterprising, or conventional so
they choose other occupations they feel
will better match their personality.

Another recent study, by David Lu-
binski and Camilla Persson Benbow3
supports our conclusions. Their work
found that among a group of math-
ematically precocious youths who have
been followed for up to 20 years women
and men make quite different career
choices. They note that mathematically

the dearth of
females in it fields
is part of a larger
phenomenon
of occupational
segregation
by gender.

viewpoints

MAy 2009 | vol. 52 | No. 5 | communicationS of the acm 27

talented women are typically endowed
with more highly developed verbal-
linguistic skills than are men of similar
mathematical ability and this versatility
encourages different career choices.

finding Ways to increase
female Participation in it
Finding that differences in occupation-
al personality appear to explain much of
the gender difference in career choice
does not mean it is impossible to in-
crease the number of women entering
IT careers. Our discussions with focus
group participants indicated there are
important differences in how men and
women entered IT, and that these offer
a number of possible routes through
which it may be possible to address
current gender imbalances in IT.

Many of our focus group participants
felt they had “fallen into” their IT ca-
reers, coming into IT by way of another
career field. More systematic results
from our survey echo this observation.
Women in IT were significantly less
likely than men or than women in non-
IT careers to say their current career
choice had been influenced by courses
they had taken in high school or their
high school teachers.

Focus group participants told us they
discovered they had a natural aptitude
for IT that led them to their current ca-
reer field. Only six out of the 16 women
in the focus groups actually had com-
puter science degrees, suggesting the
importance of maintaining multiple
routes into IT professions.

In addition, conversations with the
focus group participants emphasized
that there are many misconceptions
regarding what IT professionals ac-
tually do and that many IT jobs actu-
ally require occupational personalities
that are more common among women.
Several focus group participants men-
tioned they found the reality of their
IT jobs to be different from what they
had anticipated. These participants
observed that their jobs often required
them to act as a translator between the
end user and the person actually writ-
ing the program code, something that
made the job more social.

Their experiences suggest many IT
jobs can be redesigned in ways that are
more attractive to women by emphasiz-
ing the artistic, social, and convention-
al dimensions of the tasks they require.

There are many women in other profes-
sions with the requisite skills needed
to succeed in IT. But recruiting them
will require careful thought about how
job responsibilities are structured and
communicated. The benefits of this ef-
fort will be a more diverse and creative
IT work force.

References
1. donnay, d.a.C., morris, m.l., schaubhut, n.a., and

thompson, r.C. Strong Interest Inventory Manual,
Revised Edition. Cpp, inc., mountain View, Ca, 2004.

2. holland, J.l. Making Vocational Choices: A Theory of
Vocational Personalities and Work Environments, Third
Edition. lutz, psychological assessment resources,
1997.

3. lubinski, d. and benbow, C.p. study of mathematically
precocious youth after 35 years: uncovering
antecedents for the development of math-science
expertise. Perspectives on Psychological Science 1, 4
(apr. 2006), 316–345.

4. rosenbloom, J. l., ash, r.a., Coder, l., and dupont,
b. Why are there so few women in information
technology? assessing the role of personality in
career choices. Journal of Economic Psychology 29, 4
(apr. 2008), 543–554.

5. rosenbloom, J.l., ash, r.a., dupont, b.r., and
Coder, l. examining the obstacles to broadening
participation in computing: evidence from a survey of
professional workers. Contemporary Economic Policy.
(Forthcoming).

6. Wulf, W.a. diversity in engineering. in Moving Beyond
Individual Programs to Systemic Change. Women
in engineering programs and advocates network
member services, West lafayette, in, 1999.

LeAnne Coder (leanne.coder@wku.edu) is an assistant
professor of business at the university of Western
Kentucky.

Joshua L. Rosenbloom (jrosenbloom@ku.edu) is
associate Vice provost, research and graduate studies
and a professor of economics at the university of Kansas
and research associate, national bureau of economic
research.

Ronald A. Ash (rash@ku.edu) is a professor of business
at the university of Kansas.

Brandon R. Dupont (brandon.dupont@wwu.edu) is an
assistant professor of economics at Western Washington
university.

this material is based upon work supported by
the national science Foundation under grant no.
0204464. any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of
the national science Foundation.

Copyright held by author.

there are many
women in other
professions with
the requisite
skills needed to
succeed in it.

Calendar
of Events
may 16–24
International Conference on
software engineering,
Vancouver, Canada,
sponsored: sIgsoFT,
Contact: stephen Fickas,
email: fickas@cs.uoregon.edu

may 18–20
Computing Frontiers
Conference,
Ischia, Italy,
sponsored: sIgmICro,
Contact: gerald r Johnson,
email: gerry_johnson@
yahoo.com

may 27–29
The second International
Conference on Immersive
Telecommunications,
Berkeley, Ca,
Contact: ruzena r. Bajcsy,
email: bajcsy@eecs.
berkeley.edu

may 28–30
2009 Computer personnel
research Conference,
limerick, Ireland,
Contact: norah power,
email: norah.power@ul.ie

may 31–June 2
symposium on Theory of
Computing Conference,
Bethesda, md,
Contact: aravind srinivasan,
email: srin@cs.umd.edu

June 1–4
CFp ’09: Computers,
Freedom and privacy,
Washington metro
north area dC,
sponsored: proFessIonal,
Contact: Cindy southworth,
email: cs@nnedv.org

June 3–5
euro american
Conference on Telematics
and Information systems,
prague, Czech republic,
Contact: miroslav svitek,
email: svitek@fd.cvut.cz

June 3–5
The 19th International
Workshop on network and
operating systems support for
digital audio and Video,
Williamsburg, Va,
Contact: Wei Tsang ooi,
email: ooiwt@comp.nus.edu.sg

mailto:leanne.coder@wku.edu
mailto:jrosenbloom@ku.edu
mailto:rash@ku.edu
mailto:brandon.dupont@wwu.edu
mailto:fickas@cs.uoregon.edu
mailto:gerry_johnson@yahoo.com
mailto:bajcsy@eecs.berkeley.edu
mailto:norah.power@ul.ie
mailto:srin@cs.umd.edu
mailto:cs@nnedv.org
mailto:svitek@fd.cvut.cz
mailto:ooiwt@comp.nus.edu.sg
mailto:gerry_johnson@yahoo.com
mailto:bajcsy@eecs.berkeley.edu

28 communicationS of the acm | MAy 2009 | vol. 52 | No. 5

p
h

o
t

o
g

r
a

p
h

 b
y

 l
i

n
d

a
 l

a
n

e

V
viewpoints

O
ne oF THe more hyped com-
mercial opportunities these
days appears to be software
as a service or SaaS. In this
form of computing, a cus-

tomer runs software remotely, via the
Internet, using the service provider’s
programs and computer infrastruc-
ture. One of the first and most success-

ful firms in the SaaS space is Salesforce.
com, which was launched in 1999.
Salesforce.com provides a customer-
relationship management service. Us-
ing the service, a mobile salesperson,
for example, can access the software
from a laptop while on the road, and
the head office is relieved of all the
problems of infrastructure provision,

the complexities of managing and up-
grading software, and synchronizing
data from multiple sources. Another
big player is Google, which now offers
email and office productivity applica-
tions in its version of cloud comput-
ing.

Many people think that the future
of software lies in SaaS and cloud com-
puting. They may well be right in the
medium term, but history shows that
one cannot be sure that the trend will
last indefinitely.

There are two main components to
SaaS: The software itself and the com-
puting infrastructure on which it runs.
Customers are at least as concerned
about the quality of service as they are
about the software. Indeed, for provid-
ers who use freely available open source
software, quality of service is their only
competitive advantage.

Organizations use in-house com-
puting facilities or SaaS largely accord-
ing to the economics of the situation—
whether it is cheaper to own one’s
software and infrastructure or to buy
services on-demand. This dilemma is
not new. It is as old—indeed, older—
than the computer industry itself.

Before computers came on the scene
in the mid-1950s, the most advanced
information processing equipment
that organizations could buy (or lease)
was punched-card electric accounting
machines, or EAMs. The main vendor
of this type of equipment, IBM, opened
the first of several service bureaus in
1932. Customers brought their data
processing needs to a bureau and came

Historical reflections
The rise, Fall, and resurrection
of software as a service
A look at the volatile history of remote computing and online software services.

DOI:10.1145/1506409.1506419 Martin Campbell-Kelly

Salesforce marketing campaign.

http://Salesforce.com
http://salesforces.com

viewpoints

MAy 2009 | vol. 52 | No. 5 | communicationS of the acm 29

F
r

o
m

 t
o

p
 p

h
o

t
o

g
r

a
p

h
 C

o
u

r
t

e
s

y
 o

F
 i

b
m

,
a

d
p

,
d

a
V

i
d

 l
.

m
i

l
l

s

back later for the results. The bureau
provided customers with advanced
information processing on-demand,
thereby eliminating the cost of main-
taining and staffing an EAM installa-
tion. Depending on the volume of data
to be processed, using a service bureau
tended to be more expensive per trans-
action than using one’s own installa-
tion. Users had a choice. If one had a
low volume of transactions then the
economics favored the service bureau,
but if one had a high volume of transac-
tions it was cheaper to have one’s own
installation.

In 1949 a small firm, Automatic Pay-
rolls Inc., was founded in New Jersey
and used a variant of the service bureau
business model. The firm specialized
in payroll processing. It developed its
own procedures—at first using book-
keeping machines, and then punched-
card machines that were programmed
with plug-boards. It would send a van to
its customers to collect time sheets or
punched cards, process the data, and
drop off the results to its customers lat-
er. This made excellent business sense
not only for organizations that did not
want to maintain a bookkeeping ma-
chine or an EAM installation, but also
for firms that simply wanted to offload
the non-core activity of managing the
payroll. In 1958, the company changed
its name to Automatic Data Processing
Inc., or simply ADP, and in 1961 it ac-
quired an IBM 1401 computer. ADP ex-
panded into new locations and by the
mid-1960s it was using the emerging
capabilities of data communications
to eliminate some of the physical col-
lection and return of data.

introduced in 1937, the iBm
77 collator rented for $80
a month. it was capable of
handling 240 cards a minute,
and was 40.5 inches long
and 51 inches high.

top: henry taub (left)
in aDP’s first computer room.
Bottom: teletype.

timesharing thrived
just as long as its cost
and convenience was
competitive with a
mainframe computer
installation. the
arrival of the Pc
changed everything.

30 communicationS of the acm | MAy 2009 | vol. 52 | No. 5

viewpoints

Many other firms began to compete
with ADP, offering different services in
what became the biggest sector of the
“data processing services industry.” In
1961 the industry formed its own trade
association, ADAPSO—the Association
of Data Processing Services Organiza-
tions, the ancestor of today’s ITAA. By
1970 processing services accounted
for more than one-quarter of total U.S.
computing purchases. While firms have
come and gone, ADP seems to have
found the perfect niche—today it is still
the world’s biggest payroll processor,
preparing the paychecks for one-sixth
of the total U.S. work force.a

In the mid-1960s timesharing com-
puters came on the scene. In these sys-
tems customers could access a main-
frame computer remotely. Connected
to a mainframe computer via a regular
telephone line, users ran programs
using a clunky, 10-characters-per-sec-
ond, model ASR-33 teletype. It made
for a noisy working environment, but
on-demand computing had real ben-
efits. Salespeople for the timesharing
firms touted their systems using the
computer-utility argument: Firms did
not maintain their own electric plants,
it was argued, instead, they bought
power on-demand from an electric util-
ity; likewise, firms should not maintain
mainframe computers, but instead get
computing power from a “computer
utility.” Several national computer util-
ity companies had emerged by the end
of the 1960s. But then came the first
computer recession in 1970. The com-
puter utility model turned out to be very
vulnerable to an economic downturn.
Similar to the way firms cut back on
discretionary travel during a recession,
they also reduced spending on comput-
er services. There were many firm fail-
ures and bankruptcies. For example,
one of the most prominent firms, Uni-
versity Computing—which had com-
puter centers in 30 states and a dozen
countries—saw its revenues hemor-
rhage, and its stock price dramatically
declined from a peak of $186 to $17.

The timesharing industry recov-
ered, however. In the 1970s major
players included General Electric,

a For a history of ADP Inc. see: ADP Fiftieth An-
niversary 1949–1999; http://www.investquest.
com/iq/a/adp/main/archives/anniversary.
htm#.

Timeshare Inc., and CDC. They built
massive global computer centers that
serviced thousands of users. By then
those clunky teletypes had been re-
placed with visual display units, or
“glass teletypes” as they were some-
times known. They were silent and
relatively pleasant to use, giving an ex-
perience somewhat like using an early
personal computer. Increasingly firms
sought to differentiate their offerings
by providing exclusive software. For ex-
ample, they devised financial analysis
programs that can now be seen as fore-
runners of spreadsheet software. They
implemented some of the first email
systems. They also hosted the products
of the independent software industry,
usually paying them on a royalty basis,
with typically 20% of revenues going to
the software provider.

The timesharing industry died a sec-
ond time around 1983–1984. This time
it was not a computer recession that
was the cause, but the personal com-
puter. Timesharing services cost $10 to
$20 per hour, with regular users billing
perhaps $300 a month. The PC com-
pletely destroyed the economic basis
of the timesharing industry. Compared
with a timesharing service, a PC would
pay for itself in well under a year, and
it had the further advantages of elimi-
nating the telephone connection and
providing an instantaneous response.
Furthermore, a standalone PC was not
like a mainframe computer—it was a
fuss-free, virtually maintenance-free,
piece of office equipment. As the time-
sharing industry went into decline, a
few of the firms morphed into consum-
er networks, such as CompuServe and

GE’s Genie, but mostly they just faded
away with their vanishing revenues.b

Today, the very things that killed the
timesharing industry in the 1980s have
been reversed. Despite falling hard-
ware costs, computing infrastructure
has become increasingly complex and
expensive to maintain—for example,
having to deal with security issues and
frequent software upgrades. Converse-
ly, communications costs have all but
disappeared compared with the 1980s.
No wonder remote computing is back
on the agenda.

Cloud computing has many paral-
lels with the 20-year reign of timeshar-
ing systems. Timesharing thrived just
as long as its cost and convenience was
competitive with a mainframe com-
puter installation. The arrival of the PC
changed everything. Today, cloud com-
puting offers tremendous advantages
over the in-house alternative of main-
taining a cluster of servers, applica-
tion programs, and database software.
However, if the cost of maintaining this
infrastructure was to fall dramatically
(which is entirely possible in the next
few years) the economic advantage of
cloud computing could be reversed.
The other threat to cloud computing
is a major economic downturn. Now
that U.S. industry experiencing a reces-
sion, the demand for remote comput-
ing could decline, just like the demand
for electric power. Further, many on-
line services are currently funded by
advertising revenues—take away the
demand for advertising and there will
be little to support these services.

Of course, none of the aforemen-
tioned items should be construed as
a forecast of the impending demise of
software as a service. Rather, this col-
umn is intended as a salutary remind-
er that nothing in IT lasts forever, and
that technological evolution and eco-
nomic factors can rapidly alter the tra-
jectory of the industry.

b For a history of the timesharing industry see:
M. Campbell-Kelly and D.D. Garcia-Swartz,
“Economic Perspectives on the History of
the Computer Timesharing Industry, 1965–
1985,” IEEE Annals of the History of Comput-
ing 30, 1 (Jan. 2008), 16–36.

the timesharing
industry died a
second time around
1983–1984. this time
it was not a computer
recession that was
the cause, but the
personal computer.

Martin Campbell-Kelly (m.Campbell-Kelly@warwick.
ac.uk) is a professor in the department of Computer
science at the university of Warwick, where he specializes
in the history of computing.

Copyright held by author.

http://www.investquest.com/iq/a/adp/main/archives/anniversary.htm#
mailto:M.Campbell-Kelly@warwick.ac.uk
http://www.investquest.com/iq/a/adp/main/archives/anniversary.htm#
http://www.investquest.com/iq/a/adp/main/archives/anniversary.htm#
mailto:m.Campbell-Kelly@warwick.ac.uk

MAy 2009 | vol. 52 | No. 5 | communicationS of the acm 31

V
viewpoints

p
h

o
t

o
g

r
a

p
h

 b
y

 J
u

d
s

o
n

 C
o

l
l

i
e

r

dents, but couldn’t decide who should
teach it. The creation of the College of
Computing in 1990 answered the ques-
tion of whose job it was to teach com-
puter science at Georgia Tech. Faculty
in the Ivan Allen College of Liberal Arts
(and in other colleges) embraced the
new requirement. Computing was in-
creasingly relevant for their disciplines,
and was a value-added requirement for
their graduates. The campus adminis-
tration was kept abreast and involved
throughout to maintain support. The
new general education requirement
was defined as an outcome—students
would be able “to make algorithmic
and data structures choices” when writ-
ing programs. That simple phrase de-

scribes a serious introductory course.

teaching everyone in one class
For the first four years of the require-
ment, only a single class met the re-
quirement: CS1321. There were sev-
eral reasons for having only a single
course. While we were already teaching
approximately two-thirds of the stu-
dents at Georgia Tech (because several
of the largest degree programs already
required computing), teaching every-
one on campus meant well over 1,200
students a semester. The immensity of
the task was daunting—splitting our
resources over several courses seemed
a bad start-up strategy. We were also
explicitly concerned about creating

S
e V e r a l CompUTI ng pro-

gr a m s in the U.S. are de-
veloping new kinds of
introductory computing
courses for non-comput-

ing majors, some with support from
the NSF CPATH program. At Georgia
Institute of Technology (Georgia Tech),
we are entering our 10th year of teach-
ing computing to every undergradu-
ate on campus. Our experience gained
during the last decade may be useful to
others working to understand how to
satisfy the growing interest in comput-
ing education across the academy.

computing in General education
In fall 1999, the faculty at Georgia Tech
adopted a requirement that all stu-
dents must take a course in computing.
We modified the academic year from
quarters to semesters, which gave the
campus the opportunity to rethink the
curriculum and our general education
requirements. Russ Shackelford, Rich
Leblanc, Kurt Eiselt, and the College
of Computing’s then-dean, Peter Free-
man, convinced the rest of Georgia Tech
that all students who graduated from
an Institute of Technology should know
computing. We started before publica-
tion of the National Research Council
report Being Fluent with Information
Technology,3 though that report signifi-
cantly influenced implementation.

The new requirement wasn’t a hard
sell. Faculty in the College of Engineer-
ing had wanted to implement a pro-
gramming requirement for their stu-

education
Teaching Computing
to everyone
Studying the lessons learned from creating high-demand
computer science courses for non-computing majors.

DOI:10.1145/1506409.1506420 Mark Guzdial

the christopher W. Klaus advanced computing Building on the Georgia tech campus is home
to the institute’s college of computing and School of electrical and computer engineering.

32 communicationS of the acm | MAy 2009 | vol. 52 | No. 5

viewpoints

a course that no faculty cared about.
Courses just offered as a “service” get
less attention. By putting all students
in one class, it is in everyone’s interest
to ensure the class is good.

The class received significant facul-
ty interest and used innovative curricu-
la. We started out using Shackelford’s
pseudocode approach to learning.7
Faculty in the other majors complained
about students not gaining experience
debugging programs. We later moved
to Felleisen et al.’s How to Design Pro-
grams text using Scheme.4 These were,
and are, approaches for teaching com-
puting that have been successfully used
at many institutions.

By 2002, however, CS1321 may have
been the most hated course on cam-
pus. From 1999 to 2002, the overall
success rate (leaving the course with
an A, B, or C—not counting those stu-
dents who received a D, a failing grade,
or withdrew from the course) was 78%.
That’s not too bad for an introduc-
tory computing course.1 However,
this was a course with everyone in it.
When we examine those majors where
a computing requirement is atypical,
we see 46.7% of architecture students
succeeding each semester, 48.5% in
management, and 47.9% in public
policy. We failed more than half of the
students in those majors each semes-
ter; females failed at nearly twice the
rate of males. Statistics like these are a
concern for both the Georgia Tech and
the College of Computing—it hinders
our relations with the rest of campus
when computing is the gatekeeper
holding back their students.

Developing contextualized
computing education
Around this time, several studies
were published critiquing computing
courses, including the AAUW’s Tech-
Savvy report2 and Unlocking the Club-
house by Margolis and Fisher.6 These
reports describe students’ experiences
in computing as “tedious,” “asocial,”
and surprisingly, “irrelevant.” A 2002
task force, chaired by Jim Foley, found
similar issues at Georgia Tech. How
could computing be “irrelevant” when
it pervades so much of our world? Per-
haps the problem was that our course
had little connection to the computing
in our students’ world. While students
are amazed at the Web, handheld video

games, and smartphones, most intro-
ductory courses introduce students to
the computing concepts behind these
wonders with Fibonacci numbers and
the Towers of Hanoi. What students
saw as computing was disconnected
from what we showed them in our com-
puting class.

We adopted an approach that we call
contextualized computing education.
We chose to teach computing in terms
of practical domains (a “context”) that
students recognize as important. The
context permeates the course, from
examples in lecture, to homework as-
signments, and even to the textbooks
specially written for the courses. We
decided to teach multiple courses, to
match majors to relevant contexts.

In spring 2003, the College of Com-
puting began offering three different
introductory computing courses. The
first was a continuation of CS1321,
aimed at computing and sciences ma-
jors. The second was a new course for
students in the College of Engineer-
ing, with much the same content, but
in MATLAB and using an engineering
context. The third was a new course for
students in the colleges of liberal arts,
architecture, and management using a
context of manipulating digital media.

The engineering course was de-
veloped jointly with faculty from the
schools of aerospace, civil, mechanical,
and chemical engineering. Several fac-
ulty members in these schools had al-
ready started developing an alternative
to CS1321, using MATLAB, a common
programming language in engineering.
Their model involved small classes in a
closed lab working on real engineering
problems. That course was prohibitive-
ly expensive to ramp up to over 1,000
engineering students each semester.

The engineering faculty worked with
David Smith of the College of Comput-
ing to create a course that used their
examples and MATLAB, but taught the
same computing concepts as CS1321.9

The course around “media compu-
tation” was built with an advisory board
of faculty from the colleges of liberal
arts, architecture, and management.
The board’s awareness and support
for the course was important in getting
the course approved as fulfilling the
computing requirement in programs
of those colleges. The advisory board
favored a programming language that
was perceived as being easy to learn
but was not associated with “serious”
computer science. We chose the Py-
thon implementation, over concerns
about both Scheme and Java.

Media computation is the context of
how digital media tools like Photoshop
and GIMP work. We created cross-plat-
form libraries to manipulate pixels in
a picture and samples in a sound. We
taught, for example, iterating across
an array by generating grayscale and
negative versions of an image and array
concatenation by splicing sounds. We
were able to cover all the introductory
computing concepts using media ex-
amples. In their homework, students
created pictures, sounds, HTML pages,
and animations. We created an inte-
grated development environment that
provided the media functions as well
as tools for inspecting pictures and
sounds.5

impact of contextualized
computing education
Faculty and students are happier with
the new courses. The success rates rose
above 80% in both the engineering and
media courses. When comparing suc-
cess rates to those same majors men-
tioned previously, we found the average
success rate in the first two years for ar-
chitecture students rose to 85.7%, man-
agement to 87.8%, and public policy to
85.4% per semester. The media com-
putation course has been majority fe-
male, and women succeed at the same
or better rates than the male students.
Similar improvements in success rates
in media computation courses have
been seen among underrepresented
groups at other campuses.8

New opportunities appear on cam-
pus when all students succeed at com-

We chose to teach
computing in terms
of practical domains
(a “context”) that
students recognize
as important.

viewpoints

MAy 2009 | vol. 52 | No. 5 | communicationS of the acm 33

p
h

o
t

o
g

r
a

p
h

 b
y

 C
i

n
d

i
 t

r
a

i
n

o
r

mations. While the common research
interests were clearly the motivating
factor in deciding to create the new de-
gree program, having a media compu-
tation course that could draw students
into the new program from liberal arts,
as well as from computing, facilitated
the joint effort.

We see an increasing number of
courses around campus that require
students to write programs, though
not necessarily as an outcome of the
computing requirement. Computing
is growing in importance in all fields.
Non-computing faculty request us to
include particular concepts or tools in
the introductory courses and to pro-
vide prerequisite knowledge and skills
for advanced courses. In this way, the
computing requirement has become
part of curricula across campus.

In the first years, the success rates
for the new courses were sometimes
higher than the success rate in the
continuing CS1321. We realized that
even computer science majors need
introductory courses that connect
explicitly to a context that students
recognize as computing. In a joint ef-
fort with Bryn Mawr College and with
funding by Microsoft Research, we
launched the Institute for Personal
Robotics in Education (IPRE, http://
www.roboteducation.org) to develop
a new introductory course that uses
robotics as the context for teaching in-

puting. We have introduced a minor
in computer science. We had enough
students interested in computing after
the media course that we now offer a
second course, on data structures with-
in a media context. A second course
was also developed for engineering
students, so we now teach three second
computing courses, as well as three in-
troductory courses.

Faculty in the School of Interactive
Computing and the School of Litera-
ture, Culture, and Communication (in
the College of Liberal Arts) now offer
a new joint undergraduate degree, a
bachelor of science degree in com-
putational media. The course was de-
veloped because of growing common
interest in areas like video games,
augmented reality, and computer ani-

troductory computing.

Lessons Learned
We in the College of Computing be-
lieve the use of contextualized comput-
ing education has been a significant
step in making Georgia Tech’s univer-
sal computing requirement success-
ful. Developing contextualized courses
is challenging and expensive (for ex-
ample, writing textbooks, developing
new integrated development environ-
ments), but the results can be shared.
Other campuses are adopting our con-
textualized approaches, and some are
developing their own.

We recommend involving faculty
from the other departments in build-
ing courses for non-major students.
They understand their students’ needs
in later courses and in their students’
future professions. Further, we need
them as context informants as we de-
velop courses that teach through ex-
amples from their domains.

Finally, building successful, high-
demand courses for non-computing
majors gives us a different perspec-
tive on the current enrollment crisis.
Students want these courses. Other
schools on campus want to collaborate
with us to build even more contextual-
ized classes. While we still want more
majors, we have an immediate need for
more faculty time to develop and teach
these courses that bring real comput-
ing to all students on campus.

References
1. bennedsen, J. and Caspersen, m.e. Failure rates in

introductory programming. ACM SIGCSE Bulletin 39, 2
(2007), 32–36.

2. Commission on technology, gender, and teacher
education. Tech Savvy: Educating Girls in the New
Computer Age, american association of university
Women, 2000.

3. Committee on information technology literacy,
national research Council. Being Fluent with
Information Technology. the national academies
press, 1999.

4. Felleisen, m., Findler, r.b., Flatt, m., and Krishnamurthi,
s. How to Design Programs: An Introduction to
Programming and Computing. mit press, 2001.

5. guzdial, m. Introduction to Computing and
Programming in Python, A Multimedia Approach.
prentice hall, 2005.

6. margolis, J. and Fisher, a. Unlocking the Clubhouse:
Women in Computing. mit press, 2001.

7. shackelford, r.l. Introduction to Computing and
Algorithms. addison Wesley, 1997.

8. sloan, r.h. and troy, p. Cs 0.5: a better approach
to introductory computer science for majors. ACM
SIGCSE Bulletin 40, 1 (2008), 271–275.

9. smith, d.m. Engineering Computation with MATLAB.
addison Wesley, 2007.

Mark Guzdial (guzdial@cc.gatech.edu) is a professor
in the College of Computing at georgia institute of
technology in atlanta, ga.

Copyright held by author.

Developing
contextualized
courses is challenging
and expensive, but
the results can
be shared.

the Georgia tech LWc Productivity computer cluster.

http://www.roboteducation.org
mailto:guzdial@cc.gatech.edu
http://www.roboteducation.org

C
r

e
d

i
t

 t
K

34 communicationS of the acm | MAy 2009 | vol. 52 | No. 5

V
viewpoints

M
a J or Con FerenCes In
the systems communi-
ty—and increasingly in
other areas of comput-
er science—are over-

whelmed by submissions. This could
be a good sign, indicative of a large
community of researchers exploring a
rich space of exciting problems. We’re
concerned that it is instead symptomat-
ic of a dramatic shift in the behavior of
researchers in the systems community,
and this behavior will stunt the impact
of our work and retard evolution of the
scientific enterprise. This Viewpoint
explains the reasoning behind our con-
cern, discusses the trends, and sketch-
es possible responses. However, some
problems defy simple solutions, and
we suspect this is one of them. So our
primary goal is to initiate an informed
debate and a community response.

the Growing crisis
The organizers of SOSP, OSDI, NSDI,
SIGCOMM,a and other high-ranked
systems conferences are struggling
to review rapidly growing numbers
of submissions. Program committee
(PC) members are overwhelmed. Good

a ACM Symposium on Operating Systems Prin-
ciples (SOSP), ACM-USENIX Symposium on
Operating Systems, Design and Implementa-
tion (OSDI), ACM Symposium on Networked
Systems Design and Implementation (NSDI);
the Annual Conference of the Special Interest
Group on Data Communication (SIGCOMM).
This is a partial list and includes at most half
of the high-prestige conferences in our field.

papers are being rejected on the basis
of low-quality reviews. And arguably it
is the more innovative papers that suf-
fer, because they are time consuming
to read and understand, so they are
the most likely to be either completely
misunderstood or underappreciated
by an increasingly error-prone pro-
cess. These symptoms aren’t unique
to systems, but our focus here is on
the systems area because culture, tra-
ditions, and values differ across fields

even within computer science—we are
wary of speculating about research com-
munities with which we are unfamiliar.

The sheer volume of submissions
to top systems conferences is in some
ways a consequence of success: as the
number of researchers increases, so
does the amount of research getting
done. To have impact—on the field or
the author’s career—this work needs to
be published. Yet the number of high-
quality conferences cannot continue

Viewpoint
program Committee
overload in systems
Conference program committees must adapt their review and selection process
dynamics in response to evolving research cultural changes and challenges.

DOI:10.1145/1506409.1506421 Ken Birman and Fred B. Schneider

V
viewpoints

MAy 2009 | vol. 52 | No. 5 | communicationS of the acm 35

growing in proportion to the number of
submissions and still promise present-
ers an influential audience, because
there are limits on the number of con-
ferences that researchers can attend.
So attention by an ever-growing com-
munity necessarily remains focused on
a small set of conferences.

The high volume of submissions is
also triggering a second scaling prob-
lem: the shrinking pool of qualified
and willing PC candidates. The same
trends that are making the field excit-
ing also bring all manner of opportuni-
ties to top researchers (who are highly
sought as PC members). Those who do
serve on PCs rightly complain that they
are overworked and unable to read all
the submissions.

If submissions are read by only a ˲

few PC members then there will be few-
er broad discussions at PC meetings
about the most exciting new research
directions. Yet senior PC members of-
ten cite such dialogue as their main in-
centive for service.

If fewer senior researchers are ˲

present at the PC meeting then serving
on the PC no longer provides informal
opportunities for younger PC members
to interact with senior ones.

And a growing sense that the pro-
cess is broken has begun to reduce

the prestige associated with serving
on a PC. Service becomes more of a
burden and less likely to help in career
advancement. When serving on a PC
becomes unattractive, a sort of death
spiral is created.

In the past, journal publications
were mandatory for promotions at
the leading departments. Today, pro-
motions can be justified with publi-
cations in top conferences (see, for
example, the CRA guidelines on ten-
ureb). Yet conference publications are
shorter. This leads to more publica-
tions per researcher and per project,
even though the aggregate scientific
content of all these papers is likely
the same (albeit with repetition for
context-setting). So our current cul-
ture creates more units to review with
a lower density of new ideas.

Conference publications are an ex-
cellent way to alert the community to
a general line of inquiry or to publicize
an exciting recent result. Nevertheless,
we believe that journal papers remain
the better way to document significant
pieces of systems research. For one
thing, journals do not force the work
to be fractured into 12-page units. For
another, the review process, while po-
tentially time consuming, often leads
to better science and a more useful
publication. Perhaps it is time for the
pendulum to swing back a bit.

Looking Back and Peering ahead
How did we get to this point? Histori-
cally, journals accepted longer papers
and imposed a process involving mul-

b See http://www.cra.org/reports/tenure_review.
html.

tiple rounds of revision based on care-
ful review. Publication decisions were
made by standing boards of editors,
who are independent and reflective.
So journal papers were justifiably per-
ceived as archival, definitive publica-
tions. And thus they were required for
tenure and promotions.

This pattern shifted at least two de-
cades ago, when the systems research-
ers themselves voted with their feet.
Given the choice between writing a
definitive journal paper about their
last system (having already published
a paper in a strong conference) ver-
sus building the next exciting system,
systems researchers usually opted to
build that next system. Computer sci-
ence departments couldn’t face hav-
ing their promising young leaders de-
nied promotion over a lack of journal
publications, so they educated their
administrations about the unique cul-
ture of the systems area. With journal
publication no longer central to career
advancement, increasing numbers of
researchers chose the path offering
quicker turnaround, less dialogue with
reviewers, and that accepted smaller
contributions (which are easier to de-
vise and document).

As submissions declined, journals
started to fill their pages by publishing
material from top conferences. Simul-
taneously, under cost pressure, jour-
nals limited paper lengths, undercut-
ting one of their advantages. Reviewers
for journals receive little visibility or
thanks for their efforts, so it is a task
that often receives lower priority. And
that leads to publication delays that
some researchers argue make journal
publication unattractive, although
when ACM TOCSc (a top systems jour-
nal) reduced reviewer delay, research-
ers remained resistant to submitting
papers there.

Simultaneously, the top confer-
ences have also evolved. Once, SOSP
and SIGCOMM were self-policed: sub-
missions were not blinded, so sub-
mitting immature work to be read by
a program committee populated by
the field’s top researchers could tar-
nish your reputation. And the program
committees read all the submissions,
debating each acceptance decision
(and many rejections) as a group. An

c ACM Transactions on Computer Systems (TOCS).

We see a confluence
of factors that
amplify—increasing
the magnitude without
adding content to
a signal—the pool
of submissions.

http://www.cra.org/reports/tenure_review.html
http://www.cra.org/reports/tenure_review.html

36 communicationS of the acm | MAy 2009 | vol. 52 | No. 5

viewpoints

author learned little about that debate,
though, receiving only a few sentences
of hastily written feedback with an ac-
ceptance or rejection decision.

Today, author names are hidden
from the program committee, the top
conferences provide authors of all sub-
missions detailed reviews, and there
are more top conferences (for example,
OSDI and NSDI) for an author to target.
So authors feel emboldened to submit
almost any paper to almost any confer-
ence, because acceptance will advance
their research and career goals, but re-
jection does them virtually no harm. In
fact, a new dynamic has evolved, where
work is routinely submitted in rough,
preliminary form under a mentality that
favors a cycle of incremental improve-
ments based on the detailed program
committee feedback until the work ex-
ceeds the acceptance threshold of some
PC. And often that threshold is reached
before the work is fully refined. Thus, it
is not uncommon to see publication of
an initial paper containing a clever but
poorly executed idea, a much improved
follow-on paper published elsewhere,
and then a series of incremental re-
sults being published. Perversely, this
maximizes author visibility but harms
the broader scientific enterprise.

Thus we see a confluence of factors
that amplify—increasing the magni-
tude without adding content to a sig-
nal—the pool of submissions. Faced
with huge numbers of papers, it is in-
evitable that the PC would grow larger,
that reviewing would be done outside
the core PC, or that each PC member
would write reviews for only a few pa-
pers. The trend toward Web-based PCs

that don’t actually meet begins to look
sensible, because it enables ever-larger
sets of reviewers to be employed with-
out having to assemble for an actual
meeting. Indeed, even in the face-to-
face PC model, it is not uncommon
for the PC meeting to devolve into a
series of subgroup discussions, with
paper after paper debated by just two
or three participants while 20 others
read their email.

Reviews written by non-PC mem-
bers, perhaps even Ph.D. students
new to the field, introduce a new set of
problems. What does it mean when an
external reviewer checks “clear accept”
if he or she has read just two or three
out of 200 submissions and knows
little of the prior work? The quality
rating of a paper is often submerged
in a sea of random numbers. Yet lack-
ing any alternative, PCs continue to
use these numbers for ranking paper
quality. Moreover, because author-
ship by a visible researcher is difficult
to hide in a blinded submission (and
such an author is better off not being
anonymous), work by famous authors
is less likely to experience this phe-
nomenon, amplifying a perception of
PC unfairness.

Faced with the painful reality of
large numbers of submissions to eval-
uate, PC members focus on flaws in
an effort to expeditiously narrow the
field of papers under consideration.
Genuinely innovative papers that have
issues, but could have been condition-
ally accepted, are all too often rejected
in this climate of negativism. So the
less ambitious, but well-executed work
trumps what could have been the more
exciting result.

Looking to the future, one might ex-
pect electronic publishing in its many
manifestations to reshape conference
proceedings and journal publications,
with both positive and negative conse-
quences. For example, longer papers
can be easily accommodated in elec-
tronic forums, but authors who take
advantage of this option may make less
effort to communicate their findings
efficiently. The author submits camera-
ready material, reducing production
delays, but the considerable value add-
ed by having a professional production
and editing staff is simultaneously lost.

As the nature of research publication
evolves, the community needs to con-

a solution must
accommodate
a field that is
becoming more
interdisciplinary in
some areas and more
specialized in others.

ACM
Journal on

Computing and
Cultural
Heritage

� � � � �

JOCCH publishes papers of
significant and lasting value in
all areas relating to the use of ICT
in support of Cultural Heritage,
seeking to combine the best of
computing science with real
attention to any aspect of the
cultural heritage sector.

� � � � �

www.acm.org/jocch
www.acm.org/subscribe

http://www.acm.org/jocch
http://www.acm.org/subscribe

viewpoints

MAy 2009 | vol. 52 | No. 5 | communicationS of the acm 37

template two fundamental questions:
What should be the nature of the ˲

review and revision process? How rig-
orous need it be for a given kind of pub-
lication venue? Should a dialogue in-
volving referees’ reviews and authors’
revisions plus rebuttals be required for
all publication venues or just journals?
How should promotion committees
treat publication venues—like con-
ferences—where acceptance is highly
competitive but the decision process is
less deliberative and nobody scrutiniz-
es final versions of papers to confirm
that issues were satisfactorily resolved?
How do we grow a science where the
definitive publications for important
research are neither detailed nor care-
fully checked?

Should we continue to have high- ˲

quality, “must-attend” conferences,
with the excitement, simultaneity, and
ad hoc in-the-halls discussions that
these bring? If we do, and they remain
few in number, does it make sense for
these to be structured as a series of ple-
nary sessions in which (only) the very
best work is presented? As an alterna-
tive, conferences could make much
greater use of large poster sessions or
“brief presentation” sessions, struc-
tured so that no credible submission
is excluded (printing associated full
papers in the proceedings). By offering
authors an early path to visibility, could
these kinds of steps reduce pressure?

a high-Level View: What must
change (and What must not)
An important role—if not the role—of
conferences and journals is to com-
municate research results: impact
is the real metric. And in this we see
some reason for hope, because a com-
munity seeking to maximize its impact
would surely not pursue a strategy of
publishing modest innovations rather
than revolutionary ones. Force fields
are needed to encourage researchers
to maximize their impact, but creat-
ing these force fields will likely require
changing our culture and values.

Another Viewpoint columnd in this
magazine suggested a game-based for-
mulation of the situation, where the

d J. Crowcroft, S. Keshav, and N. McKeown. Scal-
ing the academic publication process to In-
ternet scale. Commun. ACM 52, 1 (Jan. 2009),
27–30.

winning strategy is one that incentiv-
izes both authors and program com-
mittees to behave in ways that remedy
the problems discussed here. One can
easily conjure other characterizations
of the situation and other means of re-
dress. But any solution must be broad
and flexible, since systems research
is far from a static enterprise. A solu-
tion must accommodate a field that
is becoming more interdisciplinary in
some areas and more specialized in
others, challenging the very definition
of “systems.” For example, the systems
research community is starting to em-
brace studying corporate infrastruc-
ture components that (realistically) can
only be investigated in highly exclusive
proprietary settings—publication and
validation of results now brings new
challenges.

Nevertheless, some initial steps to
solving the field’s problems are evi-
dent. Why not make a deliberate effort
to evaluate accomplishments in terms
of impact? To the extent that we are a
field of professionals who advance in
our careers (or stall) on the basis of rig-
orous peer reviews, such a shift could
have a dramatic effect. We need to
learn to filter CVs inflated by the phe-
nomena discussed previously, and we
need to publicize and apply appropri-
ate standards in promotions, awards,
and in who we perceive as our leaders.

Program committees need to adapt
their behavior. Today, PCs are not only
decision-making bodies for paper ac-
ceptances but they have turned into
rapid-response reviewing services for

any and all. If authors of the bottom
two-thirds of the submissions did not
receive detailed reviews, then there
would be less incentive for them to
submit premature work. And even if
they did submit poorly developed pa-
pers, the workload of the PC would be
substantially decreased given the re-
duced reviewing load. If some sort of
reviewing service is needed by the field
(beyond asking one’s research peers
for their feedback on a draft) rather
than overloading our PCs, we should
endeavor to create one—the Web, so-
cial networks, and ad hoc cooperative
enterprises like Wikipedia surely can
be adapted to facilitate such a service.

Finally, authors must revisit what
they submit and where they submit it,
being mindful of their obligation as
scientists to help create an archival lit-
erature for the field. Early, unpolished
work should be submitted to work-
shops or conference tracks specifically
designed for cutting-edge but less vali-
dated results. Presentation of work at
such a workshop should not preclude
later submitting a refined paper to a
conference. And publishing papers at
a conference should not block submit-
ting a definitive work on that topic for
careful review and ultimate publica-
tion in an archival journal.

Absent such steps or others that
a communitywide discussion might
yield, we shall find ourselves standing
on the toes of our predecessors rather
than on their shoulders. And we shall
become less effective at solving the
important problems that lie ahead, as
systems become critical in society. Old-
er and larger fields, such as medicine
and physics, long ago confronted and
resolved similar challenges. We are a
much younger discipline, and we can
overcome those problems too.

Ken Birman (ken@cs.cornell.edu) is the n. rama rao
professor of Computer science in the department of
Computer science at Cornell university, ithaca, ny.

Fred B. Schneider (fbs@cs.cornell.edu) is the samuel b.
eckert professor of Computer science in the department
of Computer science at Cornell university, ithaca, ny.

We are grateful to three Communications reviewers for
their comments on our original submission; Jon Crowcroft,
robbert van renesse, and gün sirer also provided
extremely helpful feedback on an early draft. We are also
grateful to the organizers and attendees of the 2008
nsdi Workshop on organizing Workshops, Conferences
and symposia (WoWCs), at which many of the topics
discussed in this Viewpoint were raised.

Copyright held by author.

absent such steps
or others that a
communitywide
discussion might yield,
we shall find ourselves
standing on the toes
of our predecessors
rather than on their
shoulders.

mailto:ken@cs.cornell.edu
mailto:fbs@cs.cornell.edu

ACM, Uniting the World’s Computing Professionals,
Researchers, Educators, and Students

Advancing Computing as a Science & Profession

Dear Colleague,

At a time when computing is at the center of the growing demand for technology jobs world-
wide, ACM is continuing its work on initiatives to help computing professionals stay competitive in

the global community. ACM’s increasing involvement in activities aimed at ensuring the health of the
computing discipline and profession serve to help ACM reach its full potential as a global and

diverse society which continues to serve new and unique opportunities for its members.

As part of ACM’s overall mission to advance computing as a science and a profession, our invaluable member
benefits are designed to help you achieve success by providing you with the resources you need to advance

your career and stay at the forefront of the latest technologies.

I would also like to take this opportunity to mention ACM-W, the membership group within ACM. ACM-W’s purpose is
to elevate the issue of gender diversity within the association and the broader computing community. You can join the
ACM-W email distribution list at http://women.acm.org/joinlist.

ACM MEMBER BENEFITS:

• A subscription to ACM’s newly redesigned monthly magazine, Communications of the ACM
• Access to ACM’s Career & Job Center offering a host of exclusive career-enhancing benefits
• Free e-mentoring services provided by MentorNet®
• Full access to over 2,500 online courses in multiple languages, and 1,000 virtual labs
• Full access to 600 online books from Safari® Books Online, featuring leading publishers,

including O’Reilly (Professional Members only)
• Full access to 500 online books from Books24x7®
• Full access to the new acmqueue website featuring blogs, online discussions and debates,

plus multimedia content
• The option to subscribe to the complete ACM Digital Library
• The Guide to Computing Literature, with over one million searchable bibliographic citations
• The option to connect with the best thinkers in computing by joining 34 Special Interest Groups

or hundreds of local chapters
• ACM’s 40+ journals and magazines at special member-only rates
• TechNews, ACM’s tri-weekly email digest delivering stories on the latest IT news
• CareerNews, ACM’s bi-monthly email digest providing career-related topics
• MemberNet, ACM’s e-newsletter, covering ACM people and activities
• Email forwarding service & filtering service, providing members with a free acm.org email address

and Postini spam filtering
• And much, much more

ACM’s worldwide network of over 92,000 members range from students to seasoned professionals and includes many
of the leaders in the field. ACM members get access to this network and the advantages that come from their expertise
to keep you at the forefront of the technology world.

Please take a moment to consider the value of an ACM membership for your career and your future in the dynamic
computing profession.

Sincerely,

Wendy Hall

President
Association for Computing Machinery

CACM app_revised_03_18_09:Layout 1 4/9/09 11:46 AM Page 1

http://women.acm.org/joinlist
http://acm.org

Priority Code: ACACM10

Online
http://www.acm.org/join

Phone
+1-800-342-6626 (US & Canada)

+1-212-626-0500 (Global)

Fax
+1-212-944-1318

membership application &
digital library order form

PROFESSIONALMEMBERSHIP:

� ACM Professional Membership: $99 USD

� ACM Professional Membership plus the ACMDigital Library:

$198 USD ($99 dues + $99 DL)

� ACMDigital Library: $99 USD (must be an ACMmember)

STUDENTMEMBERSHIP:

� ACM Student Membership: $19 USD

� ACM StudentMembershipplus theACMDigital Library: $42USD

� ACM StudentMembership PLUSPrintCACMMagazine: $42USD

� ACM Student Membership w/Digital Library PLUS Print

CACMMagazine: $62 USD

choose onemembership option:

Name

Address

City State/Province Postal code/Zip

Country E-mail address

Area code & Daytime phone Fax Member number, if applicable

Payment must accompany application. If paying by check or
money order, make payable to ACM, Inc. in US dollars or foreign
currency at current exchange rate.

� Visa/MasterCard � American Express � Check/money order

� Professional Member Dues ($99 or $198) $ ______________________

� ACM Digital Library ($99) $ ______________________

� Student Member Dues ($19, $42, or $62) $ ______________________

Total Amount Due $ ______________________

Card # Expiration date

Signature

Professional membership dues include $40 toward a subscription
to Communications of the ACM. Member dues, subscriptions,
and optional contributions are tax-deductible under certain
circumstances. Please consult with your tax advisor.

payment:

RETURN COMPLETED APPLICATIONTO:

All new ACMmembers will receive an
ACMmembership card.

For more information, please visit us at www.acm.org

Association for Computing Machinery, Inc.
General Post Office
P.O. Box 30777
NewYork, NY 10087-0777

Questions? E-mail us at acmhelp@acm.org
Or call +1-800-342-6626 to speak to a live representative

Satisfaction Guaranteed!

Purposes of ACM
ACM is dedicated to:
1) advancing the art, science, engineering,
and application of information technology
2) fostering the open interchange of
information to serve both professionals and
the public
3) promoting the highest professional and
ethics standards

I agree with the Purposes of ACM:

Signature

ACM Code of Ethics:
http://www.acm.org/serving/ethics.html

You can join ACM in several easy ways:

Or, complete this application and return with payment via postal mail

Special rates for residents of developing countries:
http://www.acm.org/membership/L2-3/

Special rates for members of sister societies:
http://www.acm.org/membership/dues.html

Advancing Computing as a Science & Profession

Please print clearly

http://www.acm.org/join
http://www.acm.org/membership/L2-3/
http://www.acm.org/membership/dues.html
http://www.acm.org/serving/ethics.html
http://www.acm.org
mailto:acmhelp@acm.org

40 communicationS of the acm | MAy 2009 | vol. 52 | No. 5

practice
Doi:10.1145/1506409.1506422

 Article development led by
 queue.acm.org

What can be done to make Web browsers
secure while preserving their usability?

BY thomaS WaDLoW anD VLaD GoReLiK

“sealed In a depleted uranium sphere at the bottom
of the ocean.” That’s the oft-quoted description of
what it takes to make a computer reasonably secure.
obviously, in the Internet age or any other, such a
machine would be fairly useless as well.

We live in interesting times. That computer on
your desktop embodies the contradiction that faces
a security engineer in the 21st century. It must be
kept safe; and a lot of time, effort, and money is spent
attempting to do exactly that. firewalls are built to
separate that machine from the Internet. Security
audits tell us what programs must be deleted and what
permissions changed so that the machine cannot be
compromised. Virus checkers test all new software
loaded on the machine for malicious content.

Security
in the
Browser

i
l

l
u

s
t

r
a

t
i

o
n

 b
y

 J
o

n
a

t
h

a
n

 b
a

r
K

a
t

http://queue.acm.org

MAy 2009 | vol. 52 | No. 5 | communicationS of the acm 41

42 communicationS of the acm | MAy 2009 | vol. 52 | No. 5

practice

And yet, to make that fortress useful
to us we demand that holes be chopped
through the walls to permit us to run
a Web browser. We complain if that
browser is not given enough access to
the rest of the computer. We insist on
ease of use and speed, even if it makes
all of our other defenses meaningless.
And in many cases, we use browsers
downloaded from the Internet without
precaution, and configured by the own-
er of the desktop who has no security
training or interest.

Browsers are at the heart of the In-
ternet experience, and as such they are
also at the heart of many of the security
problems that plague users and devel-
opers alike.

the use model is evolving…
Key features of early browsers included
encryption and cookies, which were
fine for the simple uses of the day.
These techniques enabled the start of
e-commerce, and monetizing the Web
was what brought in the rest of the prob-
lems. Attackers who want money go
where the money is, and there is money
to be had on the Web.

Today, users expect far more from
a browser. It should be able to handle
sophisticated banking and shopping
systems, display a wide variety of media,

Web page. It is a powerful tool, but one
that is open to a number of attacks.2

Flash, JavaScript, and Java all allow
programs written by unknown third
parties to run within the browser. Yes,
there are sandboxes and safeguards,
but as any attacker will tell you, a big
step toward penetration is getting the
target machine to run your code.

…and So is the threat model
Early browsers had several major and
noteworthy vulnerabilities, but they also
had fewer types of attackers. The early
attackers tended to be motivated by cu-
riosity or scoring points with their peer
groups. Modern browsers must defend
against increasingly well-organized
criminals who are looking for ways to
turn browser vulnerabilities into mon-
ey. They are aggressive, methodical, and
willing to try a variety of attacks to see
what works. And then there are those
who work in gray areas, not quite violat-
ing the law, but pushing the envelope as
much as possible to make a few dollars.

With more aggressive threats come
more aggressive defenders. Security ex-
perts wanting to make names for them-
selves can release vulnerability informa-
tion about browsers faster than browser
developers may be prepared to react.
While the roots of this type of disclosure

including video, audio, and animation,
interact with the network on a micro
scale (such as what happens when you
move the cursor over a DVD selection in
Netflix and see a summary of the mov-
ie), and update in as close to real time as
possible—all without divulging sensi-
tive information to bad guys or opening
the door for attackers.

Consider AJAX, also known as Asyn-
chronous JavaScript and XML. A Web
page can contain code that establishes
a network connection back to a server
and conducts a conversation with that
server that might bypass any number
of security mechanisms integrated into
the browser. The growing popularity
of AJAX as a user-interface technique
means an enterprise network often al-
lows these connections, so that popular
sites can function correctly.

The underlying mechanism of AJAX
(which, despite the name, may not
necessarily use JavaScript, XML, or be
Asynchronous), is a function called XM-
LHttpRequest,6 originally introduced
by Microsoft for Internet Explorer, but
now supported by Firefox, Safari, Opera
and others. XMLHttpRequest allows a
part of a Web page to make what is ef-
fectively a remote procedure call to a
server across the Internet and use the
results of that call in the context of the

PWSLineage: this trojan steals the
account information for the game called
“Lineage ii” from the victim’s machine.
there are several variants of the trojan.

IRCbot

Trojan Agent.Il

Security Risks Visualized
malwarez is a series of visualization of worms, viruses,
trojans, and spyware code by alex Dragulescu. for
each piece of disassembled code, aPi calls, memory
addresses, and subroutines are tracked and analyzed.
their frequency, density, and grouping are mapped to
the inputs of an algorithm that grows a virtual 3D entity.
http://www.sq.ro/malwarez.php

http://www.sq.ro/malwarez.php

practice

MAy 2009 | vol. 52 | No. 5 | communicationS of the acm 43

are often driven by noble motives, the
results can be devastating if they are not
handled properly by all parties.

The flip side of early disclosure is the
zero-day exploit. In this type of attack,
an attacker learns of a flaw in a browser
and moves to exploit it and profit from
it before the security community has an
opportunity to mount a defense.

Injection attacks (sometimes known
as cross-site scripting, XSS) are when an
attacker embeds commands or code in
an otherwise legitimate Web request.
This might include embedded SQL
commands, stack-smashing attempts,
in which data is crafted to exploit a
programming vulnerability in the com-
mand interpreter, HTML injection, in
which a post by a user (such as a com-
ment in a blog) contains code intended
to be executed by a viewer of that post.

Cross-site reference forgery (XSRF) is
similar to XSS but it basically steals your
cookie from another tab within your
browser. This is relatively new, since
tabbed browsing has only become pop-
ular in the last few years. It’s an inter-
esting demonstration of how a browser
feature sometimes amplifies old prob-
lems. One of the reasons Google engi-
neers implemented each tab in a sepa-
rate process in Chrome was to avoid
XSRF attacks.

A similarly named but different at-
tack is the cross-site request forgery, in
which, for example, the victim loads an
HTML page that references an image
whose src has been replaced by a call to
another Web site, perhaps one that the
victim has an account on. Variations of
this attack include such things as map-
ping networks within the victim’s enter-
prise for later use by another attack.

Add to this threats that are more
social and less technical in nature—
phishing,5 for example, where a victim
might receive a perfectly reasonable
email message from a company that he
does business with containing a link to
a Web site that appears to be legitimate
as well. He logs in, and the fake Web site
snatches his username and password,
which is then used for much less legiti-
mate purposes than he would care for. A
phishing scam depends much more on
the gullibility of the user than the tech-
nology of the browser, but browsers of-
ten take much of the blame.

There are attacks of this nature
based on the mistyping or misidentifi-

cation of characters in a host name. A
simple example of this would be that it
is tricky to spot the difference between
“google.com” and “googIe.com” (where
the lowercase “L” has been replaced by
an uppercase “I”) in the sans-serif font
so frequently used by browser URL en-
try fields. Expand that attack to Unicode
and internationalization and you have
something very painful and difficult to
defend against.

Cookies are a long-used mechanism
for storing information about a user or a
session. They can be stolen, forged, poi-
soned, hijacked, or abused for denial-of-
service attacks.4 Yet, they remain an es-
sential mechanism for many Web sites.
Looking through the list of stored cookies
on your browser can be very educational.

Similar to browser cookies are Flash
Cookies. A regular HTTP cookie has a
maximum size of 4KB and can usually
be erased from a dialog box within the
browser control panel. Flash Cookies, or
Local Shared Objects (LSO)s are related
to Adobe’s Flash Player. They can store
up to 100KB of data, have no expiration
date, and normally cannot be deleted by
the browser user, though some browser
extensions are becoming available to as-
sist with deleting them. Although Flash
is run with a sandbox model, LSOs are
stored on the user’s disk and may be
used in conjunction with other attacks.

In addition to Flash Cookies, the Ac-
tionScript language (how one writes a
Flash application) supports XMLSock-
ets that give Flash the ability to open net-
work communication sessions. XML-
Sockets have some limitations—they
aren’t permitted to access ports lower
than 1024 (where most system services
reside), and they are allowed to connect
only to the same subdomain where the
originating Flash application resides.
However, consider the case of a Flash
game covertly run by an attacker. The at-
tacker runs a high-numbered proxy on
the same site, which can be accessed by
XMLSockets from the victim’s machine
and redirected anywhere, for any pur-
pose, bypassing XMLSocket limitations.
This trick has already been used to un-
mask users who attempt to use anony-
mizing proxies to hide their identities.

Clickjacking is a relatively new at-
tack, in which attackers present an
apparently reasonable page, such as
a Web game, but overlay on top of it a
transparent page linked to another ser-

the browser
designer faces the
Goldilocks problem.
either the porridge
is too cold (not
usable due to the
demands of the
security lockdown),
or too hot (easy to
abuse because not
enough security
measures are in
place, or are too
weak). Designing
a configuration
that is “just right”
is nearly impossible
because of evolving
threats, uncovered
bugs, and differing
user tolerances
for frustration.

http://google.com
http://googIe.com

44 communicationS of the acm | MAy 2009 | vol. 52 | No. 5

practice

vice (such as the e-commerce interface
for a store at which the victim has an
account). By carefully positioning the
buttons of the game, the attacker can
cause the victim to perform actions
from their store account without know-
ing that they’ve done so.

Security vs. usability
Usability and security have long been at
odds with each other in software design.
The browser is no exception to that rule.

When browsing the Web or down-
loading files the user constantly needs
to make choices about whether to trust
a site or the content accessed from that
site. Browser approaches to this have
evolved over time—for example, brows-
ers used to give a slight warning if you
accessed a site with an invalid HTTPS
certificate; now most browsers block
sites with invalid certificates and make
the user figure out how to unblock
them. Similar approaches are taken
with file downloads. Internet Explorer
tends to ask the user several times be-
fore opening a downloaded file, espe-
cially if the file is not signed. Prompting
the user for actions that are legitimate
most of the time often creates user fa-
tigue, which makes the user careless in
walking the tightrope between software
with a “reasonable but not excessive”
security posture and a package that is
either too open for safety or too closed
to be useful. Most browsers today have
evolved from the “make the user make
the choice” model to the “block and re-
quire explicit override action” model.

In some cases the security of the
browser has had a major impact on Web
site design and usability. Browsers pres-
ent a clear target for identity theft mal-
ware, since a lot of personal informa-
tion flows through the browser at one
time or another. This type of malware
uses various techniques to steal users’
credentials. One of these techniques
is form grabbing—basically hooking
the browser’s internal code for sending
form data to capture login information
before it is encrypted by the SSL layer.
Another technique is to log keyboard
strokes to steal credentials when the
user is typing information into a brows-
er. These techniques have spawned vari-
ous attempts by Web site designers to
provide more advanced authentication
methods, such as multifactor authenti-
cation with a hardware token and use of

various click-based keyboards to avoid
key loggers. In some cases some banks
ask the user to authenticate each trans-
action with a hardware token. Although
some of these techniques definitely im-
prove security, they can place a pretty
heavy burden on the end user.

Another usability feature of the Web
browser that has been attacked by mal-
ware is the auto-complete functionality.
Auto-complete saves the form informa-
tion in a safe location and presents the
user with options for what he typed be-
fore into a similar form. Several families
of malware, such as the Goldun/Trojan
Hearse, used this technique very effec-
tively. The malware cracked the encrypt-
ed autocomplete data from the browser
and send it back to the central server
location without even having to wait for
the user to log in to the site.

Given all the vulnerabilities out there
and the willingness of attackers to ex-
ploit them, you might think that users
would be clamoring for more security
from their browsers. And some of them
do…as long as it doesn’t prevent any of
their desired features from working.

Let’s start with the browser software
itself. From a security engineering per-
spective, the obvious choice for browser
software (or any software) is to ship it
in a “locked down” state, with all se-
curity features turned on, and let the
user or enterprise weaken the security
by enabling functions that they want.
Consumer software that has done this
has generally failed in the marketplace.
Consumers want security, but they don’t
want to think about it or configure it. If
the shipped configuration does what
they want, they probably will not alter
the configuration much, if at all.

So the browser designer faces the
Goldilocks problem. Either the por-
ridge is too cold (not usable because of
the demands of the security lockdown)
or too hot (too easy to abuse because not
enough security measures are in place,
or are too weak). Designing a configura-
tion that is “just right” is nearly impos-
sible because of evolving threats, uncov-
ered bugs, and differing user tolerances
for frustration.

There are a number of documents
available that list steps one can take to
lock down a Web browser. For example,
one of those steps often is something
like “Disable JavaScript.” But few peo-
ple actually ever do that—at least not

modern browsers
must defend
against increasingly
well-organized
criminals who are
looking for ways
to turn browser
vulnerabilities
into money. they
are aggressive,
methodical, and
willing to try a
variety of attacks
to see what works.

practice

MAy 2009 | vol. 52 | No. 5 | communicationS of the acm 45

permanently, because using a browser
with JavaScript turned off is annoying,
and in many cases prevents you from
visiting sites you have legitimate rea-
sons to visit.

Cookies, while sometimes flushed to
solve a problem, are essential to many
Web sites, and having them disabled
will prevent a wide range of services
from working.

What is a Browser Designer to Do?
Browser developers have been work-
ing overtime to try and address some of
these issues— and with some success—
but it is definitely an uphill battle.

Proactive and reactive develop-
ers can generate an endless series of
software updates. As a responsible de-
fender, your dilemma is that allowing
user these untested updates may break
applications or even introduce security
holes, but not allowing them may leave
your enterprise open to even more seri-
ous attacks.

Distributed management provides
some help in this area, but all major
browsers are weaker than many de-
fenders would like them to be. Micro-
soft provides the free Internet Explorer
Administration Kit, which sets the bar
for enterprise browser deployment and
management tools, but that bar is lower
than many would desire. FirefoxADM,
an open source project for managing col-
lections of Firefox browsers, is far more
limited but a step in the right direction.
FrontMotion provides a Web-based tool
that allows a defender to create packages
with approved software, configuration,
and plugins for Firefox. All are available
for the Windows platforms only.

Firefox and Google’s Chrome brows-
er have implemented “sandboxes,” in
which code run by the browser (such
as JavaScript or Flash) is run in a com-
partmentalized area of the program
that provides only limited resources for
the program to run and whose design
is heavily scrutinized for security flaws.
Internet Explorer uses a zone-based se-
curity model, in which security features
are enabled or disabled depending
on what site is being accessed. Under
Vista, it runs in what is known as Pro-
tected Mode, which limits the operat-
ing system privileges that the browser
program can exercise.

However, open source developers
must be especially careful about design-

trolled hole in your organization’s fire-
wall that leads to the heart of what it is
you are trying to protect. While browser
designers do try to limit what attackers
can do from within a browser, much of
the security relies far too heavily on the
browser user, who often has other inter-
ests besides security. There are limits
to what a browser developer can com-
pensate for, and browser users will not
always accept the constraints of security
that a browser establishes.

As this issue gets more exposure,
browser developers are cooperating to
some degree to share strategies for de-
fense. Google has published an excel-
lent Browser Security Handbook1 that
compares various browser features and
defenses.

Attack and defense strategies are co-
evolving, as are the use and threat mod-
els. As always, anybody can break into
anything if they have sufficient skill,
motivation and opportunity. The job of
browser developers, network adminis-
trators, and browser users is to modu-
late those three quantities to minimize
the number of successful attacks.

And that is a very big job indeed.

 Related articles
 on queue.acm.org

Criminal Code

Tom Wadlow and Vlad Gorelik
http://queue.acm.org/detail.cfm?id=1180192

Cybercrime: An Epidemic

Team Cymru
http://queue.acm.org/detail.cfm?id=1180190

Building Secure Web Applications
George Neville-Neil
http://queue.acm.org/detail.cfm?id=1281889

References
1. google. Browser Security Handbook; http://code.google.

com/p/browsersec/wiki/main.
2. isecpartners. Attacking AJAX Applications; http://

www.isecpartners.com/files/iseC-attacking_aJaX_
applications.bh2006.pdf.

3. Wikipedia. Comparison of Web browsers; http://
en.wikipedia.org/wiki/Comparison_of_web_browsers.

4. Wikipedia. http cookie; http://en.wikipedia.org/wiki/
http_cookie.

5. Wikipedia. phishing; http://en.wikipedia.org/wiki/phishing.
6. Wikipedia. Xmlhttprequest; http://en.wikipedia.org/

wiki/Xmlhttprequest.

Thomas A. Wadlow is a network and computer security
consultant, and the author of The Process of Network
Security, addison-Wesley professional, 2000.

Vlad Gorelik is vice president of engineering at aVg
technologies where he heads up the development of
behavioral malware detection and removal technologies.
previously he spent several years as Cto of sana security,
leading the company’s efforts in creating products to
fight malware. he has multiple patents and filed patent
applications in software technology and computer security.

© 2009 aCm 0001-0782/09/0500 $5.00

ing and implementing sandbox systems
because their sandbox source code is
available to the attacker for study and
testing. This is, of course, no surprise to
the sandbox developers and one reason
why open source sandboxes tend to im-
prove quickly.

Browser developers have come up
with several ways to combat phishing
attacks as well, primarily heuristics to
detect an attempted visit to a fraudulent
site, techniques to aggregate lists of and
warn about known phishing sites, and
augmentation of login security.

Injection attacks are most properly
defended against at the server, but the
victim will often be the browser user, not
the server owner. Therefore, browsers
may implement policies that hamper
the injection attack by limiting where
resources may be accessed from within
a particular page.

Firefox has aggressively pursued a
strategy of patching known vulnerabili-
ties and generates updates regularly.
Internet Explorer 7 is a significant im-
provement over Internet Explorer 6 in
this regard, though many more known-
but-unpatched vulnerabilities exist in
IE 7 than in Firefox. Chrome seems to
be emulating Firefox, though it lacks
the mindshare of the other two at the
moment so fewer eyeballs are looking
critically at it for flaws.3

Some browser developers are em-
ploying and refining their system for
detecting, reporting, and responding to
security flaws. Mozilla.org, the support
and development organization for Fire-
fox, enlists open source developers to
assist with code reviews and offers open
bug tracking systems so that bugs can
be reported and the follow-up tracked.

From a defender point-of-view, these
efforts are a mixed blessing. Because
browser software may be freely down-
loaded from the Internet by any user, all
browsers are suspect. A prudent defend-
er might hope that the browser is suffi-
ciently rugged, but he cannot count on
that fact. Desktop *nix systems and Mac
OS X allow browser software to be run at
a lower permission level than Windows
often does, but that safeguard may be
circumvented by other user-driven con-
figuration changes.

conclusion
From a network security perspective, a
browser is essentially a somewhat con-

http://Mozilla.org
http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1180192
http://queue.acm.org/detail.cfm?id=1180190
http://queue.acm.org/detail.cfm?id=1281889
http://en.wikipedia.org/wiki/Comparison_of_web_browsers
http://en.wikipedia.org/wiki/http_cookie
http://en.wikipedia.org/wiki/phishing
http://en.wikipedia.org/wiki/xmlhttprequest
http://code.google.com/p/browsersec/wiki/main
http://code.google.com/p/browsersec/wiki/main
http://www.isecpartners.com/files/iseC-attacking_aJaX_applications.bh2006.pdf
http://www.isecpartners.com/files/iseC-attacking_aJaX_applications.bh2006.pdf
http://www.isecpartners.com/files/iseC-attacking_aJaX_applications.bh2006.pdf
http://en.wikipedia.org/wiki/Comparison_of_web_browsers
http://en.wikipedia.org/wiki/http_cookie
http://en.wikipedia.org/wiki/xmlhttprequest

46 communications of the acm | may 2009 | vol. 52 | no. 5

practice

aPi
Design
matters

Doi:10.1145/1506409.1506424

 article development led by
 queue.acm.org

Bad application programming interfaces
plague software engineering. How do we
get things right?

BY michi henning

After more thAn 25 years as a software engineer,
I still find myself underestimating the time it
takes to complete a particular programming task.
Sometimes, the resulting schedule slip is caused
by my own shortcomings: as I dig into a problem, I
simply discover it is a lot more difficult than I initially
thought, so the problem takes longer to solve—such
is life as a programmer. Just as often I know exactly
what I want to achieve and how to achieve it, but it
still takes far longer than anticipated. When that
happens, it is usually because I am struggling with

an application programming interface
(API) that seems to do its level best to
throw rocks in my path and make my
life difficult. What I find telling is that,
even after 25 years of progress in soft-
ware engineering, this still happens.
Worse, recent APIs implemented in
modern programming languages
make the same mistakes as their
20-year-old counterparts written in C.
There seems to be something elusive
about API design that, despite years of
progress, we have yet to master.

Good APIs are hard. We all recognize
a good API when we get to use one.
Good APIs are a joy to use. They work
without friction and almost disappear

http://queue.acm.org

may 2009 | vol. 52 | no. 5 | communications of the acm 47

from sight: the right call for a particu-
lar job is available at just the right time,
can be found and memorized easily, is
well documented, has an interface that
is intuitive to use, and deals correctly
with boundary conditions.

So, why are there so many bad APIs
around? The prime reason is that, for
every way to design an API correctly,
there are usually dozens of ways to
design it incorrectly. Simply put, it is
very easy to create a bad API and rather
difficult to create a good one. Even mi-
nor and quite innocent design flaws
have a tendency to get magnified out
of all proportion because APIs are pro-
vided once, but are called many times.

If a design flaw results in awkward or
inefficient code, the resulting prob-
lems show up at every point the API
is called. In addition, separate design
flaws that in isolation are minor can
interact with each other in surprising-
ly damaging ways and quickly lead to a
huge amount of collateral damage.

Bad APIs are easy. Let me show you
by example how seemingly innocuous
design choices can have far-reaching
ramifications. This example, which
I came across in my day-to-day work,
nicely illustrates the consequences
of bad design. (Literally hundreds of
similar examples can be found in vir-
tually every platform; my intent is not

to single out .NET in particular.)
Figure 1 shows the interface to the

.NET socket Select() function in C#.
The call accepts three lists of sockets
that are to be monitored: a list of sock-
ets to check for readability, a list of
sockets to check for writeability, and
a list of sockets to check for errors. A
typical use of Select() is in servers
that accept incoming requests from
multiple clients; the server calls Se-
lect() in a loop and, in each iteration
of the loop, deals with whatever sock-
ets are ready before calling Select()
again. This loop looks something like
the one shown in Figure 1.

The first observation is that Se-I
l

l
u

s
t

r
a

t
I

o
n

 b
y

 l
e

a
n

d
e

r
 H

e
r

z
o

g

48 communications of the acm | may 2009 | vol. 52 | no. 5

practice

no further explanation of the mean-
ing of this parameter. Of course, the
question immediately arises, “How
do I wait indefinitely?” Seeing that
.NET Select() is just a thin wrapper
around the underlying Win32 API, the
caller is likely to assume that a nega-
tive time-out value indicates that Se-
lect() should wait forever. A quick ex-
periment, however, confirms that any
time-out value equal to or less than
zero is taken to mean “return immedi-
ately if no socket is ready.” (This prob-
lem has been fixed in the .NET 2.0 ver-
sion of Select().) To wait “forever,”
the best thing the caller can do is pass
Int.MaxValue (231-1). That turns out
to be a little over 35 minutes, which
is nowhere near “forever.” Moreover,
how should Select() be used if a time-
out is required that is not infinite, but
longer than 35 minutes?

When I first came across this prob-
lem, I thought, “Well, this is unfortu-
nate, but not a big deal. I’ll simply write
a wrapper for Select() that transpar-
ently restarts the call if it times out af-
ter 35 minutes. Then I change all calls
to Select() in the code to call that
wrapper instead.”

So, let’s take a look at creating this
drop-in replacement, called doSe-
lect(), shown in Figure 2. The signa-
ture (prototype) of the call is the same
as for the normal Select(), but we
want to ensure that negative time-out
values cause it to wait forever and that
it is possible to wait for more than 35
minutes. Using a granularity of mil-
liseconds for the time-out allows a
time-out of a little more than 24 days,
which I will assume is sufficient.

Note the terminating condition of
the do-loop in the code in Figure 2: it
is necessary to check the length of all
three lists because Select() does not
indicate whether it returned because
of a time-out or because a socket is
ready. Moreover, if the caller is not
interested in using one or two of the
three lists, it can pass either null or an
empty list. This forces the code to use
the awkward test to control the loop
because, when Select() returns, one
or two of the three lists may be null (if
the caller passed null) or may be not
null, but empty.

The problem here is that there are
two legal parameter values for one and
the same thing: both null and an emp-

lect() overwrites its arguments: the
lists passed into the call are replaced
with lists containing only those sock-
ets that are ready. As a rule, however,
the set of sockets to be monitored
rarely changes, and the most common
case is that the server passes the same
lists in each iteration. Because Se-
lect() overwrites its arguments, the
caller must make a copy of each list
before passing it to Select(). This is
inconvenient and does not scale well:
servers frequently need to monitor
hundreds of sockets so, on each itera-
tion, the code has to copy the lists be-
fore calling Select(). The cost of do-
ing this is considerable.

A second observation is that, al-
most always, the list of sockets to
monitor for errors is simply the union
of the sockets to monitor for reading
and writing. (It is rare that the caller
wants to monitor a socket only for er-
ror conditions, but not for readability
or writeability.) If a server monitors
100 sockets each for reading and writ-
ing, it ends up copying 300 list ele-
ments on each iteration: 100 each for
the read, write, and error lists. If the
sockets monitored for reading are not
the same as the ones monitored for
writing, but overlap for some sockets,
constructing the error list gets harder
because of the need to avoid placing
the same socket more than once on
the error list (or even more inefficient,
if such duplicates are accepted).

Yet another observation is that Se-
lect() accepts a time-out value in
microseconds: if no socket becomes
ready within the specified time-out,
Select() returns. Note, however,
that the function has a void return
type—that is, it does not indicate on
return whether any sockets are ready.
To determine whether any sockets are
ready, the caller must test the length of
all three lists; no socket is ready only if
all three lists have zero length. If the
caller happens to be interested in this
case, it has to write a rather awkward
test. Worse, Select() clobbers the
caller’s arguments if it times out and
no socket is ready: the caller needs to
make a copy of the three lists on each
iteration even if nothing happens!

The documentation for Select()
in .NET 1.1 states this about the time-
out parameter: “The time to wait for a
response, in microseconds.” It offers

it is very easy to
create a bad aPi
and rather difficult
to create a good
one. even minor
and quite innocent
design flaws have
a tendency to get
magnified out
of all proportion
because aPis are
provided once,
but are called
many times.

practice

may 2009 | vol. 52 | no. 5 | communications of the acm 49

ty list indicate that the caller is not
interested in monitoring one of the
passed lists. In itself, this is not a big
deal but, if I want to reuse Select() as
in the preceding code, it turns out to
be rather inconvenient.

The second part of the code, which
deals with restarting Select() for
time-outs greater than 35 minutes,
also gets rather complex, both be-
cause of the awkward test needed to
detect whether a time-out has indeed
occurred and because of the need to
deal with the case in which millisec-
onds * 1000 does not divide Int.Max-
Value without leaving a remainder.

We are not finished yet: the preced-
ing code still contains comments in
place of copying the input parameters
and copying the results back into those
parameters. One would think that this
is easy: simply call a Clone() method,
as one would do in Java. Unlike Java,
however, .NET’s type Object (which is
the ultimate base type of all types) does
not provide a Clone method; instead,
for a type to be cloneable, it must ex-
plicitly derive from an ICloneable in-
terface. The formal parameter type of
the lists passed to Select() is IList,
which is an interface and, therefore,
abstract: I cannot instantiate things of
type IList, only things derived from
IList. The problem is that IList does
not derive from ICloneable, so there
is no convenient way to copy an IList
except by explicitly iterating over the
list contents and doing the job ele-
ment by element. Similarly, there is
no method on IList that would al-
low it to be easily overwritten with
the contents of another list (which is
necessary to copy the results back into
the parameters before doSelect() re-
turns). Again, the only way to achieve
this is to iterate and copy the elements
one at a time.

Another problem with Select() is
that it accepts lists of sockets. Lists
allow the same socket to appear more
than once in each list, but doing so
doesn’t make sense: conceptually,
what is passed are sets of sockets. So,
why does Select()use lists? The an-
swer is simple: the .NET collection
classes do not include a set abstrac-
tion. Using IList to model a set is un-
fortunate: it creates a semantic prob-
lem because lists allow duplicates.
(The behavior of Select() in the pres-

ence of duplicates is anybody’s guess
because it is not documented; check-
ing against the actual behavior of the
implementation is not all that useful
because, in the absence of documen-
tation, the behavior can change with-
out warning.) Using IList to model a
set is also detrimental in other ways:
when a connection closes, the serv-
er must remove the corresponding
socket from its lists. Doing so requires
the server either to perform a linear
search (which does not scale well) or
to maintain the lists in sorted order so
it can use a split search (which is more
work). This is a good example of how
design flaws have a tendency to spread
and cause collateral damage: an over-
sight in one API causes grief in an un-
related API.

I will spare you the details of how
to complete the wrapper code. Suffice
it to say that the supposedly simple
wrapper I set out to write, by the time
I had added parameter copying, error
handling, and a few comments, ran to
nearly 100 lines of fairly complex code.
All this because of a few seemingly mi-
nor design flaws:

Select() ˲ overwrites its arguments.
Select() ˲ does not provide a sim-

ple indicator that would allow the
caller to distinguish a return because

of a time-out from a return because a
socket is ready.

Select() ˲ does not allow a time-out
longer than 35 minutes.

Select() ˲ uses lists instead of sets
of sockets.

Here is what Select() could look
like instead:

public static int
Select(ISet checkRead,
 ISet checkWrite,
 Timespan seconds,
 out ISet readable,
 out ISet writeable,
 out ISet error);

With this version, the caller pro-
vides sets to monitor sockets for read-
ing and writing, but no error set: sock-
ets in both the read set and the write
set are automatically monitored for
errors. The time-out is provided as a
Timespan (a type provided by .NET)
that has resolution down to 100 nano-
seconds, a range of more than 10
million days, and can be negative (or
null) to cover the “wait forever” case.
Instead of overwriting its arguments,
this version returns the sockets that
are ready for reading, writing, and have
encountered an error as separate sets,
and it returns the number of sockets

figure 1: the .net socket select() in c++.

public static void Select(List checkRead, List checkWrite,
 List checkError, int microseconds);
// Server code
int timeout = ...;
ArrayList readList = ...; // Sockets to monitor for reading.
ArrayList writeList = ...; // Sockets to monitor for writing.
ArrayList errorList; // Sockets to monitor for errors.

while (!done) {
SocketList readTmp = readList.Clone();
SocketList writeTmp = writeList.Clone();
SocketList errorTmp = readList.Clone();
Select(readTmp, writeTmp, errorTmp, timeout);
for (int i = 0; i < readTmp.Count; ++i) {
 // Deal with each socket that is ready for reading...
}
for (int i = 0; i < writeTmp.Count; ++i) {
 // Deal with each socket that is redy for writing...
}
for (int i = 0; i < errorTmp.Count; ++i) {
 // Deal with each socket that encountered an error...
}
if (readTmp.Count == 0 &&
 writeTmp.Count == 0 &&
 errorTmp.Count == 0) {
 // No sockets are ready...
}

}

50 communications of the acm | may 2009 | vol. 52 | no. 5

practice

that are ready or zero, in which case
the call returned because the time-out
was reached. With this simple change,
the usability problems disappear and,
because the caller no longer needs to
copy the arguments, the code is far
more efficient as well.

There are many other ways to fix the
problems with Select() (such as the
approach used by epoll()). The point
of this example is not to come up with
the ultimate version of Select(), but
to demonstrate how a small number
of minor oversights can quickly add
up to create code that is messy, dif-
ficult to maintain, error prone, and
inefficient. With a slightly better in-
terface to Select(), none of the code I
outlined here would be necessary, and
I (and probably many other program-
mers) would have saved considerable
time and effort.

the cost of Poor aPis
The consequences of poor API design
are numerous and serious. Poor APIs
are difficult to program with and often
require additional code to be written,
as in the preceding example. If noth-
ing else, this additional code makes
programs larger and less efficient be-
cause each line of unnecessary code
increases working set size and reduc-
es CPU cache hits. Moreover, as in the
preceding example, poor design can
lead to inherently inefficient code by
forcing unnecessary data copies. (An-
other popular design flaw—namely,
throwing exceptions for expected
outcomes—also causes inefficiencies
because catching and handling ex-
ceptions is almost always slower than
testing a return value.)

The effects of poor APIs, however,
go far beyond inefficient code: poor
APIs are harder to understand and
more difficult to work with than good
ones. In other words, programmers
take longer to write code against poor
APIs than against good ones, so poor
APIs directly lead to increased develop-
ment cost. Poor APIs often require not
only extra code, but also more complex
code that provides more places where
bugs can hide. The cost is increased
testing effort and increased likelihood
for bugs to go undetected until the
software is deployed in the field, when
the cost of fixing bugs is highest.

Much of software development

colleagues suffer. If I mis-design a
function in a widely published library,
potentially tens of thousands of pro-
grammers suffer.

Of course, end users also suffer. The
suffering can take many forms, but the
cumulative cost is invariably high. For
example, if Microsoft Word contains a
bug that causes it to crash occasionally
because of a mis-designed API, thou-
sands or hundreds of thousands of
end users lose valuable time. Similarly,
consider the numerous security holes
in countless applications and system
software that, ultimately, are caused
by unsafe I/O and string manipulation
functions in the standard C library
(such as scanf() and strcpy()). The
effects of these poorly designed APIs
are still with us more than 30 years
after they were created, and the cumu-
lative cost of the design defects easily
runs to many billions of dollars.

Perversely, layering of abstractions
is often used to trivialize the impact
of a bad API: “It doesn’t matter—we
can just write a wrapper to hide the
problems.” This argument could not
be more wrong because it ignores the

is about creating abstractions, and
APIs are the visible interfaces to these
abstractions. Abstractions reduce
complexity because they throw away
irrelevant detail and retain only the
information that is necessary for a
particular job. Abstractions do not
exist in isolation; rather, we layer ab-
stractions on top of each other. Appli-
cation code calls higher-level libraries
that, in turn, are often implemented
by calling on the services provided by
lower-level libraries that, in turn, call
on the services provided by the system
call interface of an operating system.
This hierarchy of abstraction layers
is an immensely powerful and useful
concept. Without it, software as we
know it could not exist because pro-
grammers would be completely over-
whelmed by complexity.

The lower in the abstraction hier-
archy an API defect occurs, the more
serious are the consequences. If I mis-
design a function in my own code, the
only person affected is me, because
I am the only caller of the function. If
I mis-design a function in one of our
project libraries, potentially all of my

figure 2: the doselect() function.

public void doSelect(List checkRead, List checkWrite,
 List checkError, int milliseconds)
{
 ArrayList readCopy; // Copies of the three parameters because
 ArrayList writeCopy; // Select() clobbers them.
 ArrayList errorCopy;
 if (milliseconds <= 0) {
 // Simulate waiting forever.
 do {
 // Make copy of the three lists here...
 Select(readCopy, writeCopy, errorCopy, Int32.MaxValue);
 } while ((readCopy == null || readCopy.Count == 0) &&
 (writeCopy == null || writeCopy.Count == 0) &&
 (errorCopy == null || errorCopy.Count == 0));
 } else {
 // Deal with non-infinite timeouts.
 while ((milliseconds > Int32.MaxValue / 1000) &&
 (readCopy == null || readCopy.Count == 0) &&
 (writeCopy == null || writeCopy.Count == 0) &&
 (errorCopy == null || errorCopy.Count == 0)) {
 // Make a copy of the three lists here...
 Select(readCopy, writeCopy, errorCopy,
 (Int32.MaxValue / 1000) * 1000);
 milliseconds -= Int32.MaxValue / 1000;
 }
 }
 if ((readCopy == null || readCopy.Count == 0) &&
 (writeCopy == null || writeCopy.Count == 0) &&
 (errorCopy == null || errorCopy == 0)) {
 Select(checkRead, checkWrite, checkError, milliseconds*1000);
 }
 // Copy the three lists back into the original parameters here...
}

practice

may 2009 | vol. 52 | no. 5 | communications of the acm 51

cost of doing so. First, even the most
efficient wrapper adds some cost in
terms of memory and execution speed
(and wrappers are often far from effi-
cient). Second, for a widely used API,
the wrapper will be written thousands
of times, whereas getting the API right
in the first place needs to be done only
once. Third, more often than not, the
wrapper creates its own set of prob-
lems: the .NET Select() function is
a wrapper around the underlying C
function; the .NET version first fails to
fix the poor interface of the original,
and then adds its own share of prob-
lems by omitting the return value, get-
ting the time-out wrong, and passing
lists instead of sets. So, while creating
a wrapper can help to make bad APIs
more usable, that does not mean that
bad APIs do not matter: two wrongs
don’t make a right, and unnecessary
wrappers just lead to bloatware.

how to do Better
There are a few guidelines to use when
designing an API. These are not sure-
fire ways to guarantee success, but
being aware of these guidelines and
taking them explicitly into account
during design makes it much more
likely that the result will turn out to be
usable. The list is necessarily incom-
plete—doing the topic justice would
require a large book. Nevertheless,
here are a few of my favorite things to
think about when creating an API.

An API must provide sufficient func-
tionality for the caller to achieve its
task. This seems obvious: an API that
provides insufficient functionality is
not complete. As illustrated by the in-
ability of Select() to wait more than
35 minutes, however, such insuffi-
ciency can go undetected. It pays to
go through a checklist of functional-
ity during the design and ask, “Have I
missed anything?”

An API should be minimal, with-
out imposing undue inconvenience on
the caller. This guideline simply says
“smaller is better.” The fewer types,
functions, and parameters an API
uses, the easier it is to learn, remem-
ber, and use correctly. This minimal-
ism is important. Many APIs end up
as a kitchen sink of convenience func-
tions that can be composed of other,
more fundamental functions. (The
C++ standard string class with its

more than 100 member functions is
an example. After many years of pro-
gramming in C++, I still find myself
unable to use standard strings for any-
thing nontrivial without consulting
the manual.) The qualification of this
guideline, without imposing undue
inconvenience on the caller, is im-
portant because it draws attention to
real-world use cases. To design an API
well, the designer must have an under-
standing of the environment in which
the API will be used and design to that
environment. Whether or not to pro-
vide a nonfundamental convenience
function depends on how often the
designer anticipates that function
will be needed. If the function will be
used frequently, it is worth adding; if
it is used only occasionally, the added
complexity is unlikely to be worth the
rare gain in convenience.

The Unix kernel violates this guide-
line with wait(), waitpid(), wait3(),
and wait4(). The wait4() function
is sufficient because it can be used
to implement the functionality of
the first three. There is also waitid(),
which could almost, but not quite, be
implemented in terms of wait4(). The
caller has to read the documentation
for all five functions in order to work
out which one to use. It would be sim-
pler and easier for the caller to have
a single combined function instead.
This is also an example of how con-
cerns about backward compatibility
erode APIs over time: the API accu-
mulates crud that, eventually, does
more damage than the good it ever
did by remaining backward compat-
ible. (And the sordid history of stum-
bling design remains for all the world
to see.)

APIs cannot be designed without an
understanding of their context. Consid-
er a class that provides access to a set
of name value pairs of strings, such as
environment variables:

class NVPairs {
 public string
 lookup(string name);
 // ...
}

The lookup method provides ac-
cess to the value stored by the named
variable. Obviously, if a variable with
the given name is set, the function re-

a big problem with
aPi documentation
is that it is usually
written after the
aPi is implemented,
and often written by
the implementer.

52 communications of the acm | may 2009 | vol. 52 | no. 5

practice

turns its value. How should the func-
tion behave if the variable is not set?
There are several options:

Throw a ˲ VariableNotSet exception.
Return null. ˲

Return the empty string. ˲

Throwing an exception is appro-
priate if the designer anticipates that
looking for a variable that isn’t there
is not a common case and likely to
indicate something that the caller
would treat as an error. If so, throwing
an exception is exactly the right thing
because exceptions force the caller to
deal with the error. On the other hand,
the caller may look up a variable and, if
it is not set, substitute a default value.
If so, throwing an exception is exactly
the wrong thing because handling an
exception breaks the normal flow of
control and is more difficult than test-
ing for a null or empty return value.

Assuming that we decide not to
throw an exception if a variable is not
set, two obvious choices indicate that a
lookup failed: return null or the empty
string. Which one is correct? Again,
the answer depends on the anticipat-
ed use cases. Returning null allows the
caller to distinguish a variable that is
not set at all from a variable that is set
to the empty string, whereas return-
ing the empty string for variables that
are not set makes it impossible to dis-
tinguish a variable that was never set
from a variable that was explicitly set
to the empty string. Returning null is
necessary if it is deemed important to
be able to make this distinction; but,
if the distinction is not important, it is
better to return the empty string and
never return null.

General-purpose APIs should be “pol-
icy-free;” special-purpose APIs should be
“policy-rich.” In the preceding guide-
line, I mentioned that correct design
of an API depends on its context. This
leads to a more fundamental design
issue—namely, that APIs inevitably
dictate policy: an API performs opti-
mally only if the caller’s use of the API
is in agreement with the designer’s
anticipated use cases. Conversely, the
designer of an API cannot help but
dictate to the caller a particular set
of semantics and a particular style of
programming. It is important for de-
signers to be aware of this: the extent
to which an API sets policy has pro-
found influence on its usability.

If little is known about the context
in which an API is going to be used, the
designer has little choice but to keep
all options open and allow the API to
be as widely applicable as possible. In
the preceding lookup example, this
calls for returning null for variables
that are not set, because that choice
allows the caller to layer its own policy
on top of the API; with a few extra lines
of code, the caller can treat lookup of
a nonexistent variable as a hard er-
ror, substitute a default value, or treat
unset and empty variables as equiva-
lent. This generality, however, comes
at a price for those callers who do not
need the flexibility because it makes it
harder for the caller to treat lookup of
a nonexistent variable as an error.

This design tension is present in
almost every API—the line between
what should and should not be an er-
ror is very fine, and placing the line
incorrectly quickly causes major pain.
The more that is known about the con-
text of an API, the more “fascist” the
API can become—that is, the more
policy it can set. Doing so is doing a
favor to the caller because it catches
errors that otherwise would go unde-
tected. With careful design of types
and parameters, errors can often be
caught at compile time instead of be-
ing delayed until run time. Making the
effort to do this is worthwhile because
every error caught at compile time is
one less bug that can incur extra cost
during testing or in the field.

The Select() API fails this guide-
line because, by overwriting its argu-
ments, it sets a policy that is in direct
conflict with the most common use
case. Similarly, the .NET Receive()
API commits this crime for nonblock-
ing sockets: it throws an exception if
the call worked but no data is ready,
and it returns zero without an excep-
tion if the connection is lost. This is
the precise opposite of what the caller
needs, and it is sobering to look at the
mess of control flow this causes for
the caller.

Sometimes, the design tension
cannot be resolved despite the best ef-
forts of the designer. This is often the
case when little can be known about
context because an API is low-level
or must, by its nature, work in many
different contexts (as is the case for
general-purpose collection classes,

for example). In this case, the strat-
egy pattern can often be used to good
effect. It allows the caller to supply
a policy (for example, in the form of
a caller-provided comparison func-
tion that is used to maintain ordered
collections) and so keeps the design
open. Depending on the programming
language, caller-provided policies can
be implemented with callbacks, vir-
tual functions, delegates, or template
parameters (among others). If the API
provides sensible defaults, such exter-
nalized policies can lead to more flexi-
bility without compromising usability
and clarity. (Be careful, though, not to
“pass the buck,” as described later in
this article.)

APIs should be designed from the per-
spective of the caller. When a program-
mer is given the job of creating an
API, he or she is usually immediately
in problem-solving mode: What data
structures and algorithms do I need
for the job, and what input and out-
put parameters are necessary to get
it done? It’s all downhill from there:
the implementer is focused on solving
the problem, and the concerns of the
caller are quickly forgotten. Here is a
typical example of this:

makeTV(false, true);

This evidently is a function call that
creates a TV. But what is the meaning
of the parameters? Compare with the
following:

makeTV(Color, FlatScreen);

The second version is much more
readable to the caller: even without
reading the manual, it is obvious that
the call creates a color flat-screen TV.
To the implementer, however, the first
version is just as usable:

void makeTV(
 bool isBlackAndWhite,
 bool isFlatScreen)
{ /* ... */ }

The implementer gets nicely named
variables that indicate whether the TV
is black and white or color, and wheth-
er it has a flat screen or a conventional
one, but that information is lost to the
caller. The second version requires
the implementer to do more work—

practice

may 2009 | vol. 52 | no. 5 | communications of the acm 53

namely, to add enum definitions and
change the function signature:

enum ColorType {
 Color,
 BlackAndWhite };
enum ScreenType {
 CRT,
 FlatScreen };
void makeTV(
 ColorType col,
 ScreenType st);

This alternative definition requires
the implementer to think about the
problem in terms of the caller. How-
ever, the implementer is preoccupied
with getting the TV created, so there is
little room in the implementer’s mind
for worrying about somebody else’s
problems.

A great way to get usable APIs is to
let the customer (namely, the caller)
write the function signature, and to
give that signature to a programmer to
implement. This step alone eliminates
at least half of poor APIs: too often, the
implementers of APIs never use their
own creations, with disastrous con-
sequences for usability. Moreover, an
API is not about programming, data
structures, or algorithms—an API is a
user interface, just as much as a GUI.
The user at the using end of the API is a
programmer—that is, a human being.
Even though we tend to think of APIs
as machine interfaces, they are not:
they are human–machine interfaces.

What should drive the design of
APIs is not the needs of the imple-
menter. After all, the implementer
needs to implement the API only once,
but the callers of the API need to call it
hundreds or thousands of times. This
means that good APIs are designed
with the needs of the caller in mind,
even if that makes the implementer’s
job more complicated.

Good APIs don’t pass the buck. There
are many ways to “pass the buck”
when designing an API. A favorite way
is to be afraid of setting policy: “Well,
the caller might want to do this or that,
and I can’t be sure which, so I’ll make
it configurable.” The typical outcome
of this approach is functions that take
five or 10 parameters. Because the de-
signer does not have the spine to set
policy and be clear about what the
API should and should not do, the API

ends up with far more complexity than
necessary. This approach also violates
minimalism and the principle of “I
should not pay for what I don’t use”:
if a function has 10 parameters, five of
which are irrelevant for the majority of
use cases, callers pay the price of sup-
plying 10 parameters every time they
make a call, even when they could not
care less about the functionality pro-
vided by the extra five parameters. A
good API is clear about what it wants
to achieve and what it does not want
to achieve, and is not afraid to be up-
front about it. The resulting simplicity
usually amply repays the minor loss of
functionality, especially if the API has
well-chosen fundamental operations
that can easily be composed into more
complex ones.

Another way of passing the buck is
to sacrifice usability on the altar of ef-
ficiency. For example, the CORBA C++
mapping requires callers to fastidious-
ly keep track of memory allocation and
deallocation responsibilities; the re-
sult is an API that makes it incredibly
easy to corrupt memory. When bench-
marking the mapping, it turns out to
be quite fast because it avoids many
memory allocations and deallocations.
The performance gain, however, is an
illusion because, instead of the API do-
ing the dirty work, it makes the caller
responsible for doing the dirty work—
overall, the same number of memory
allocations takes place regardless. In
other words, a safer API could be pro-
vided with zero runtime overhead. By
benchmarking only the work done
inside the API (instead of the overall
work done by both caller and API), the
designers can claim to have created a
better-performing API, even though
the performance advantage is due only
to selective accounting.

The original C version of Select()
exhibits the same approach:

int select(int nfds,
 fd _ set *readfds,
 fd _ set *writefds,
 fd _ set *exceptfds,
 struct timeval *timeout);

Like the .NET version, the C ver-
sion also overwrites its arguments.
This again reflects the needs of the
implementer rather than the caller: it
is easier and more efficient to clobber

there is also a
belief that older
programmers
“lose the edge.”
that belief is
mistaken in my
opinion; older
programmers may
not burn as much
midnight oil as
younger ones, but
that’s not because
they are old, but
because they get
the job done without
having to stay up
past midnight.

54 communications of the acm | may 2009 | vol. 52 | no. 5

practice

the arguments than to allocate sepa-
rate output arrays of file descriptors,
and it avoids the problems of how to
deallocate the output arrays again. All
this really does, however, is shift the
burden from implementer to caller—
at a net efficiency gain of zero.

The Unix kernel also is not with-
out blemish and passes the buck oc-
casionally: many a programmer has
cursed the decision to allow some
system calls to be interrupted, forcing
programmers to deal explicitly with
EINTR and restart interrupted system
calls manually, instead of having the
kernel do this transparently.

Passing the buck can take many
different forms, the details of which
vary greatly from API to API. The key
questions for the designer are: Is there
anything I could reasonably do for the
caller I am not doing? If so, do I have
valid reasons for not doing it? Explic-
itly asking these questions makes de-
sign the result of a conscious process
and discourages “design by accident.”

APIs should be documented before
they are implemented. A big prob-
lem with API documentation is that
it is usually written after the API is
implemented, and often written by
the implementer. The implementer,
however, is mentally contaminated
by the implementation and will have
a tendency simply to write down what
he or she has done. This often leads to
incomplete documentation because
the implementer is too familiar with
the API and assumes that some things
are obvious when they are not. Worse,
it often leads to APIs that miss impor-
tant use cases entirely. On the other
hand, if the caller (not the imple-
menter) writes the documentation,
the caller can approach the problem
from a “this is what I need” perspec-
tive, unburdened by implementation
concerns. This makes it more likely
that the API addresses the needs of the
caller and prevents many design flaws
from arising in the first place.

Of course, the caller may ask for
something that turns out to be unrea-
sonable from an implementation per-
spective. Caller and implementer can
then iterate over the design until they
reach agreement. That way, neither
caller nor implementation concerns
are neglected.

Once documented and imple-

mented, the API should be tried out by
someone unfamiliar with it. Initially,
that person should check how much
of the API can be understood without
looking at the documentation. If an
API can be used without documen-
tation, chances are that it is good: a
self-documenting API is the best kind
of API there is. While test driving the
API and its documentation, the user
is likely to ask important “what if”
questions: What if the third param-
eter is null? Is that legal? What if I
want to wait indefinitely for a socket
to become ready? Can I do that? These
questions often pinpoint design flaws,
and a cross-check with the documen-
tation will confirm whether the ques-
tions have answers and whether the
answers are reasonable.

Make sure that documentation is
complete, particularly with respect
to error behavior. The behavior of an
API when things go wrong is as much
a part of the formal contract as when
things go right. Does the documenta-
tion say whether the API maintains
the strong exception guarantee? Does
it detail the state of out and in-out
parameters in case of an error? Does
it detail any side effects that may
linger after an error has occurred?
Does it provide enough information
for the caller to make sense of an er-
ror? (Throwing a DidntWork excep-
tion from all socket operations just
doesn’t cut it!) Programmers do need
to know how an API behaves when
something goes wrong, and they do
need to get detailed error information
they can process programmatically.
(Human-readable error messages are
nice for diagnostics and debugging,
but not nice if they are the only things
available—there is nothing worse
than having to write a parser for error
strings just so I can control the flow of
my program.)

Unit and system testing also have
an impact on APIs because they can
expose things that no one thought of
earlier. Test results can help improve
the documentation and, therefore, the
API. (Yes, the documentation is part of
the API.)

The worst person to write docu-
mentation is the implementer, and
the worst time to write documenta-
tion is after implementation. Doing
so greatly increases the chance that

With the
ever-growing
importance of
computing,
there are aPis
whose correct
functioning is
important almost
beyond description.

practice

may 2009 | vol. 52 | no. 5 | communications of the acm 55

interface, implementation, and docu-
mentation will all have problems.

Good APIs are ergonomic. Ergonom-
ics is a major field of study in its own
right, and probably one of the hardest
parts of API design to pin down. Much
has been written about this topic in
the form of style guides that define
naming conventions, code layout, doc-
umentation style, and so on. Beyond
mere style issues though, achieving
good ergonomics is hard because it
raises complex cognitive and psycho-
logical issues. Programmers are hu-
mans and are not created with cookie
cutters, so an API that seems fine to
one programmer can be perceived as
only so-so by another.

Especially for large and complex
APIs, a major part of ergonomics re-
lates to consistency. For example, an
API is easier to use if its functions al-
ways place parameters of a particular
type in the same order. Similarly, APIs
are easier to use if they establish nam-
ing themes that group related func-
tions together with a particular nam-
ing style. The same is true for APIs that
establish simple and uniform conven-
tions for related tasks and that use
uniform error handling.

Consistency is important because
not only does it make things easier
to use and memorize, but it also en-
ables transference of learning: having
learned a part of an API, the caller also
has learned much of the remainder of
the API and so experiences minimal
friction. Transference is important
not only within APIs but also across
APIs—the more concepts APIs can
adopt from each other, the easier it
becomes to master all of them. (The
Unix standard I/O library violates this
idea in a number of places. For exam-
ple, the read() and write() system
calls place the file descriptor first, but
the standard library I/O calls, such as
fgets() and fputs(), place the stream
pointer last, except for fscan()and
fprint(), which place it first. This
lack of parallelism is jarring to many
people.)

Good ergonomics and getting an
API to “feel” right require a lot of ex-
pertise because the designer has to
juggle numerous and often conflict-
ing demands. Finding the correct
trade-off among these demands is the
hallmark of good design.

grating existing functionality or about
repackaging it in some way. To put it
differently: API design today is much
more important than it was 20 years
ago, not only because we are designing
more APIs, but also because these APIs
tend to provide access to much richer
and more complex functionality.

Looking at the curriculum of many
universities, it seems that this shift in
emphasis has gone largely unnoticed.
In my days as an undergraduate, no
one ever bothered to explain how to
decide whether something should
be a return value or an out param-
eter, how to choose between raising
an exception and returning an error
code, or how to decide if it might be
appropriate for a function to modify
its arguments. Little seems to have
changed since then: my son, who is
currently working toward a software
engineering degree at the same uni-
versity where I earned my degree, tells
me that still no one bothers to explain
these things. Little wonder then that
we see so many poorly designed APIs:
it is not reasonable to expect program-
mers to be good at something they
have never been taught.

Yet, good API design, even though
complex, is something that can be
taught. If undergraduates can learn
how to write hash tables, they can also
learn when it is appropriate to throw
an exception as opposed to return-
ing an error code, and they can learn
to distinguish a poor API from a good
one. What is needed is recognition
of the importance of the topic; much
of the research and wisdom are avail-
able already—all we need to do is pass
them on.

Career Path. I am 49, and I write
code. Looking around me, I realize
how unusual this is: in my company,
all of my programming colleagues
are younger than I and, when I look
at former programming colleagues,
most of them no longer write code; in-
stead, they have moved on to different
positions (such as project manager)
or have left the industry entirely. I see
this trend everywhere in the software
industry: older programmers are rare,
quite often because no career path ex-
ists for them beyond a certain point.
I recall how much effort it took me
to resist a forced “promotion” into
a management position at a former

aPi change Requires
cultural change
I am convinced that it is possible to
do better when it comes to API design.
Apart from the nitty-gritty technical is-
sues, I believe that we need to address
a number of cultural issues to get on
top of the API problem. What we need
is not only technical wisdom, but also
a change in the way we teach and prac-
tice software engineering.

Education. Back in the late 1970s
and early 1980s, when I was cutting
my teeth as a programmer and getting
my degree, much of the emphasis in a
budding programmer’s education was
on data structures and algorithms.
They were the bread and butter of pro-
gramming, and a good understand-
ing of data structures such as lists,
balanced trees, and hash tables was
essential, as was a good understand-
ing of common algorithms and their
performance trade-offs. These were
also the days when system libraries
provided only the most basic func-
tions, such as simple I/O and string
manipulation; higher-level functions
such as bsearch() and qsort() were
the exception rather than the rule.
This meant that it was de rigueur for a
competent programmer to know how
to write various data structures and
manipulate them efficiently.

We have moved on considerably
since then. Virtually every major de-
velopment platform today comes with
libraries full of pre-canned data struc-
tures and algorithms. In fact, these
days, if I catch a programmer writing
a linked list, that person had better
have a very good reason for doing so
instead of using an implementation
provided by a system library.

Similarly, during this period, if I
wanted to create software, I had to
write pretty much everything from
scratch: if I needed encryption, I wrote
it from scratch; if I needed compres-
sion, I wrote it from scratch; if I needed
inter-process communication, I wrote
it from scratch. All this has changed
dramatically with the open source
movement. Today, open source is
available for almost every imaginable
kind of reusable functionality. As a re-
sult, the process of creating software
has changed considerably: instead of
creating functionality, much of today’s
software engineering is about inte-

56 communications of the acm | may 2009 | vol. 52 | no. 5

practice

company—I ended up staying a pro-
grammer, but was told that future pay
increases were pretty much out of the
question if I was unwilling to move
into management.

There is also a belief that older pro-
grammers “lose the edge” and don’t
cut it anymore. That belief is mistak-
en in my opinion; older programmers
may not burn as much midnight oil as
younger ones, but that’s not because
they are old, but because they get the
job done without having to stay up
past midnight.

This loss of older programmers
is unfortunate, particularly when it
comes to API design. While good API
design can be learned, there is no sub-
stitute for experience. Many good APIs
were created by programmers who had
to suffer under a bad one and then de-
cided to redo the job, but properly this
time. It takes time and a healthy dose of
“once burned, twice shy” to gather the
expertise that is necessary to do better.
Unfortunately, the industry trend is to
promote precisely its most experienced
people away from programming, just
when they could put their accumulated
expertise to good use.

Another trend is for companies to
promote their best programmers to
designer or system architect. Typically,
these programmers are farmed out to
various projects as consultants, with
the aim of ensuring that the project
takes off on the right track and avoids
mistakes it might make without the
wisdom of the consultants. The intent
of this practice is laudable, but the
outcome is usually sobering: because
the consultants are so valuable, having
given their advice, they are moved to
the next project long before implemen-
tation is finished, let alone testing and
delivery. By the time the consultants
have moved on, any problems with
their earlier sage advice are no longer
their problems, but the problems of a
project they have long since left behind.
In other words, the consultants never
get to live through the consequences of
their own design decisions, which is a
perfect way to breed them into incom-
petence. The way to keep designers
sharp and honest is to make them eat
their own dog food. Any process that
deprives designers of that feedback is
ultimately doomed to failure.

External Controls. Years ago, I was

working on a large development proj-
ect that, for contractual reasons, was
forced into an operating-system up-
grade during a critical phase shortly
before a delivery deadline. After the
upgrade, the previously working sys-
tem started behaving strangely and
occasionally produced random and
inexplicable failures. The process
of tracking down the problem took
nearly two days, during which a large
team of programmers was mostly twid-
dling its thumbs. Ultimately, the cause
turned out to be a change in the behav-
ior of awk’s index() function. Once
we identified the problem, the fix was
trivial—we simply installed the previ-
ous version of awk. The point is that a
minor change in the semantics of a mi-
nor part of an API had cost the project
thousands of dollars, and the change
was the result of a side effect of a pro-
grammer fixing an unrelated bug.

This anecdote hints at a problem
we will increasingly have to face in
the future. With the ever-growing im-
portance of computing, there are APIs
whose correct functioning is impor-
tant almost beyond description. For
example, consider the importance of
APIs such as the Unix system call inter-
face, the C library, Win32, or OpenSSL.
Any change in interface or semantics
of these APIs incurs an enormous eco-
nomic cost and can introduce vulner-
abilities. It is irresponsible to allow a
single company (let alone a single de-
veloper) to make changes to such criti-
cal APIs without external controls.

As an analogy, a building contractor
cannot simply try out a new concrete
mixture to see how well it performs. To
use a new concrete mixture, a lengthy
testing and approval process must be
followed, and failure to follow that
process incurs criminal penalties. At
least for mission-critical APIs, a simi-
lar process is necessary, as a matter of
self-defense: if a substantial fraction
of the world’s economy depends on
the safety and correct functioning of
certain APIs, it stands to reason that
any changes to these APIs should be
carefully monitored.

Whether such controls should take
the form of legislation and criminal
penalties is debatable. Legislation
would likely introduce an entirely new
set of problems, such as stifling in-
novation and making software more

expensive. (The ongoing legal battle
between Microsoft and the European
Union is a case in point.) I see a real
danger of just such a scenario occur-
ring. Up to now, we have been lucky,
and the damage caused by malware
such as worms has been relatively
minor. We won’t be lucky forever: the
first worm to exploit an API flaw to
wipe out more than 10% of the world’s
PCs would cause economic and hu-
man damage on such a scale that leg-
islators would be kicked into action. If
that were to happen, we would likely
swap one set of problems for another
one that is worse.

What are the alternatives to legisla-
tion? The open source community has
shown the way for many years: open
peer review of APIs and implementa-
tions has proven an extremely effec-
tive way to ferret out design flaws, in-
efficiencies, and security holes. This
process avoids the problems associ-
ated with legislation, catches many
flaws before an API is widely used, and
makes it more likely that, when a zero-
day defect is discovered, it is fixed and
a patch distributed promptly.

In the future, we will likely see a
combination of both tighter legislative
controls and more open peer review.
Finding the right balance between the
two is crucial to the future of comput-
ing and our economy. API design truly
matters—but we had better realize
it before events run away with things
and remove any choice.

 Related articles
 on queue.acm.org

The Rise and Fall of CORBA
Michi Henning
http://queue.acm.org/detail.cfm?id=1142044

APIs with an Appetite

(Kode Vicious column)
http://queue.acm.org/detail.cfm?id=1229903

From COM to Common
Greg Olsen
http://queue.acm.org/detail.cfm?id=1142043

Michi Henning (michi@zeroc.com) is chief scientist
of zeroC, where he’s working on the design and
implementation of Ice—zeroC’s next-generation
middleware. He previously worked on Corba as a
member of the object Management group’s architecture
board and as an orb implementer, consultant, and
trainer. With steve Vinoski, he wrote Advanced CORBA
Programming with C++, addison-Wesley, 1999.

© 2009 aCM 0001-0782/09/0500 $5.00

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1142044
http://queue.acm.org/detail.cfm?id=1229903
http://queue.acm.org/detail.cfm?id=1142043
mailto:michi@zeroc.com

may 2009 | vol. 52 | no. 5 | communications of the acm 57

Doi:Doi:10.1145/1506409.1506423

 article development led by
 queue.acm.org

Lacking proper browser support, what steps
can we take to debug production AJAX code?

BY eRic schRock

the JAvAScript lAnguAge has a curious history. What
began as a simple tool to let Web developers add
dynamic elements to otherwise static Web pages has
since evolved into the core of a complex platform for
delivering Web-based applications. In the early days,

Debugging
aJaX in
Production

the language’s ability to handle failure
silently was seen as a benefit. If an im-
age rollover failed, it was better to pre-
serve a seamless Web experience than
to present the user with unsightly er-
ror dialogs.

This tolerance of failure has be-
come a central design principle of
modern browsers, where errors are
silently logged to a hidden error con-
sole. Even when users are aware of the
console, they find only a modicum of
information, under the assumption
that scripts are small and a single
message indicating file and line num-
ber should be sufficient to identify the
source of a problem.

This assumption no longer holds
true, however, as the proliferation of
sophisticated AJAX applications has
permanently changed the design cen-
ter of the JavaScript environment.

Scripts are large and complex,
spanning a multitude of files and mak-
ing extensive use of asynchronous,

dynamically instantiated functions.
Now, at best, script execution failure
results in an awkward experience. At
worst, the application ceases to work
or corrupts server-side state. Tacitly
accepting script errors is no longer
appropriate, nor is a one-line number
and message sufficient to identify a
failure in a complex AJAX application.
Accordingly, the lack of robust error
messages and native stack traces has
become one of the major difficulties
with AJAX development today.

The severity of the problem de-
pends on the nature of the debugging
environment. During development,
engineers have nearly unlimited free-
dom. They can recreate problems at
will, launch an interactive debugger,
or quickly modify and deploy test
code, providing the ability to form and
test hypotheses rapidly in order to de-
termine the root cause of a problem.
Everything changes, however, once an
application leaves this haven for the

http://queue.acm.org

58 communications of the acm | may 2009 | vol. 52 | no. 5

practice

production environment. Problems
can be impossible to reproduce out-
side the user’s environment, and gain-
ing access to a system for interactive
debugging is often out of the ques-
tion. Running test code, even without
requiring downtime, can prove worse
than the problem itself. For these
environments, the ability to debug
problems after the fact is a necessity.
When a bug is encountered in produc-
tion, enough information must be
preserved such that the root cause can
be accurately determined, and this in-
formation must be made available in
a form that can be easily transported
from the user to engineering.

Depending on the browser,
JavaScript has a rich set of tools for
identifying the bugs at the root of
problems during the development
phase. Tools such as Firebug, Venk-
man, and built-in DOM (document ob-
ject model) inspectors are immensely
valuable. As with most languages,
however, things become more diffi-
cult in production. Ideally, we would
like to be able to obtain a complete
dump of the JavaScript execution con-
text, but no browser can support such
a feature in a safe or practical manner.
This leaves error messages as our only
hope. These error messages must pro-
vide sufficient context to identify the
root cause of an issue, and they must
be integrated into the application ex-
perience such that the user can man-
age streams of errors and understand
how to get the required information to
developers for further analysis.

The first step in this process is to
provide a means for displaying errors
within the application. Although it is
tempting simply to rely on alert()
and its simple pop-up message, the vi-
sual experience associated with that is
quite jarring. Large amounts of text do
not scale well to pop-ups, and a flurry
of such errors can require repeatedly
dismissing the dialogs in rapid suc-
cession—sometimes making forward
progress impossible. Many frame-
works provide built-in consoles for
this purpose, but a very simple hid-
den DOM element that allows us to
expand, collapse, clear, and hide the
console does the job nicely. With this
integrated console, we can catch and
display errors that would normally be
lost to the browser error console. On

Browser support.

Browser event message file Line stack

Firefox 3.0.5 window.onerror x x1 x1

Dom exception x x x

runtime exception x x x x

user exception x2

IE 7.0.5730.13 window.onerror x x x

Dom exception x

runtime exception x

Safari 3.2.1 window.onerror

Dom exception x x x

runtime exception x x x

user exception x x

Chrome 1.0.154.36 window.onerror

Dom exception x

runtime exception x

user exception

Opera 9.63 window.onerror

Dom exception x x3

runtime exception x x

user exception x3

1. Dom errors in Firefox do not have explicit file and line numbers,
but the information is contained within the message.

2. arbitrary exceptions do not have stack traces in Firefox, but those that use the Error() constructor do.
3. opera can be configured to generate stack traces for exceptions, but it is not enabled by default.

figure 1: automatically handling exceptions.

function mySetTimeout(callback, timeout)
 {
 var wrapper = function () {
 try {
 callback();
 } catch (e) {
 myHandleException(e);
 }
 };

 return (setTimeout(wrapper, timeout));
 }

function myAddEventListener(obj, event, callback, capture)
 {
 var wrapper = function (evt) {
 try {
 callback(evt);
 } catch (e) {
 myHandleException(e);
 }
 };
 if (!obj.listeners)
 obj.listeners = new Array();
 obj.listeners.push({
 event: event,
 wrapper: wrapper,
 capture: capture,
 callback: callback
 });
 obj.addEventListener(event, wrapper, capture);
 }

(a)

(b)

practice

may 2009 | vol. 52 | no. 5 | communications of the acm 59

most browsers, errors can be caught
by a top-level window.onerror()
handler that provides a browser-spe-
cific message, file, and line number.

Simply dumping these messages to
a user-visible console represents a ma-
jor step forward, but even an accurate
message, file, and line number can be
worthless when debugging a problem
in an AJAX application. Unless the bug
is a simple typographical error, we
need to better understand the context
in which the error was encountered.

Faced with an unexpected error,
the next question is almost always:
“How and why are we here?” If we’re
lucky, we can just look at the source
code and make some educated guess-
es. The most common method of im-
proving this process is through stack
traces. The ability to generate stack
traces is the hallmark of a robust pro-
gramming environment, but unfor-
tunately this is also one feature often
overlooked. Stack traces are often
viewed as too difficult to construct,
too expensive to make available in
production, or simply not worth the
effort to implement. Because they are
commonly viewed as something that’s
required only in exceptional circum-
stances, stack traces can often be ex-
pensive to calculate. As the complexity
of a system grows and as asynchrony is
employed to a larger extent, however,
this view becomes less tenable. In a
message-passing system, for example,
the context in which the original mes-
sage was enqueued is often more im-
portant than the context of the failure
once the message has been dequeued.
In an AJAX environment (where asyn-
chronous was worthy of a spot in the
acronym), the need for closures often
makes the context in which they have
been instantiated more useful than
the closures themselves.

Sadly, JavaScript support for stack
traces is sorely lacking. The brows-
ers that do support stack traces make
them available only via thrown excep-
tions, and most browsers don’t pro-
vide them at all. Stack traces are never
available within global handlers such
as window.onerror(), as the argu-
ments are defined by a DOM that opti-
mizes for the lowest common denom-
inator. A window.onexception()
handler that’s passed as an exception
object would be a welcome addition.

Instead, we’re forced to catch all ex-
ceptions explicitly. On the surface,
this seems like a daunting task—we
don’t want to wrap every piece of code
in a try/catch block. In an AJAX appli-
cation, however, all JavaScript code is
executed in one of four contexts:

Global context while loading ˲

scripts;
From an event handler in response ˲

to user interaction;
From a timeout or interval; or ˲

From a callback when processing ˲

an XMLHTTPRequest.
The first case we must defer to

window.onerror(), but since it
happens while scripts are loading,
it would be hard for such bugs to es-
cape development. For the remain-
ing cases, we can automatically wrap
callbacks in try/catch blocks through
our own registration function as illus-
trated in Figure 1a.

The table here describes the infor-
mation that is available from a global
context and when catching particular
types of exceptions for different brows-
ers. The table demonstrates the limits
of integrated browser support. Without
reliable stack traces on every exception,
we are forced to generate programmatic
stack traces for better coverage. Thank-
fully, the semantics of the arguments
object allows us to write a function to
generate a programmatic stack trace as
depicted in Figure 2.

A full implementation would pro-
vide a means for skipping uninter-
esting frames, including native stack
traces (via a try/catch block), and pro-
viding a toString() method for
converting the results. We don’t have
file and line numbers, but we do have
function names and arguments. Sadly,
the proliferation of anonymous func-
tions in JavaScript makes it difficult
to get the canonical name of a func-
tion. The toString() method can
give us the source for a particular func-
tion, but when printing a stack trace
we need a name. The only effective
way to accomplish this is to search the
global namespace of all objects while
constructing a human-readable name
for the function along the way. This
seems expensive, but we need to print
the stack trace only in case of error.
Most functions are either in the global
namespace, one level deep, or two lev-
els deep in the prototype of a particu-

When a bug is
encountered in
production, enough
information must
be preserved such
that the root cause
can be accurately
determined, and
this information
must be made
available in
a form that can be
easily transported
from the user
to engineering.

60 communications of the acm | may 2009 | vol. 52 | no. 5

practice

tom exceptions is useful, the true pow-
er of this mechanism is evident when
dealing with asynchronous closures
in a complex environment, particu-
larly asynchronous XMLHTTPRequest
objects. In a complicated AJAX appli-
cation, all server activity must hap-
pen asynchronously; otherwise, the
browser will hang while waiting for a
response. A typical service model will
look something like Figure 3a.

If an exception occurs in the pro-
cess() function, then a wrapper em-
bedded in the service implementation
will catch the result and hand it off to
our exception handler. But the stack
trace will end at process(), when
what we really want is the stack trace
at the point when dosomething()
was called. Because our stack traces
are generated on demand and are in-

expensive to assemble, we can achieve
this by recording the stack trace before
dispatching every asynchronous call
and then chaining it to any caught ex-
ception. The global exception handler
will print all members of the exception,
displaying both stack traces in the pro-
cess. Our core dispatch routine would
look something like Figure 3b. This
allows transparent handling of server-
side failures using the same exception
handler. If an asynchronous closure
generates an unanticipated exception,
we can include the context in which the
original XMLHTTPRequest was made.

By carefully following these design
principles, we can construct an envi-
ronment that dramatically improves
our ability to debug issues by enabling
users to provide developers with richer
information that will allow for further
analysis. Unfortunately, this environ-
ment is required to overcome the inad-
equacies of current JavaScript runtime
environments. Without a single point
to handle all uncaught exceptions, we
are forced to wrap all callbacks in a try/
catch block; and without reliable stack
traces, we are forced to generate our
own debugging infrastructure. It seems
clear that a browser that implements
these two features would soon become
the preferred development environ-
ment for AJAX applications. Until that
happens, careful design of the AJAX en-
vironment can still yield dramatic im-
provements in debuggability and ser-
viceability for users of an application.

 Related articles
 on queue.acm.org

Making the Move to AJAX (Case Study)

Jeff Norwalk
http://queue.acm.org/detail.cfm?id=1515744

Debugging in an Asynchronous World

Michael Donat
http://queue.acm.org/detail.cfm?id=945134

Debugging Devices
(Kode Vicious column)
http://queue.acm.org/detail.cfm?id=1483103

Eric Schrock has been a staff engineer at sun
Microsystems since 2003. after starting in the solaris
kernel group—where he worked on zFs, among other
things—schrock spent the past few years helping to
develop the sun storage 7000 series of appliances as
part of the company’s Fishworks engineering team.

The complete source code for the examples included
here, as well as the latest version of the browser support
table, can be found at http://blogs.sun.com/eschrock/
resource/ajax/index.html.

© 2009 aCM 0001-0782/09/0500 $5.00

lar object. To get a function’s name, we
simply need to search the members of
the window object, all of their children,
and all children of their prototype ob-
jects. If we find a match, then we can
construct the name using this lineage.

With the function name and the ar-
guments, we can display a reasonable
facsimile of a stack trace, even on brows-
ers without native support for stack
traces. One caveat, however, is that get-
ting function names doesn’t work with
Internet Explorer 7. For reasons that are
not well understood, global functions
are not included when iterating over
members of the window object.

Careful construction of the global
exception handler allows us to handle
both native browser and dynamically
generated exceptions. Although hav-
ing stack traces attached to our cus-

figure 3: Wrapping asynchronous requests.

 function dosomething(a, b)
 {
 service.dosomething(a + b, function (ret, err) {
 if (err)
 throw (err);
 process(ret);
 });
 }

function dispatch(func, args, callback)
 {
 var stack = new myStack();
 dodispatch(func, args, function (ret, err) {
 try {
 callback(ret, err);
 } catch (e) {
 e.linkedStack = stack;
 myHandleException(e);
 }
 });
 }

(a)

(b)

figure 2: generating stacks.

function myStack()
{
 var caller, depth;
 var stack = new Array();
 for (caller = arguments.callee, depth = 0;
 caller && depth < 12;
 caller = caller.caller, depth++) {
 var args = new Array();
 for (var i = 0; i < caller.arguments.length; i++)
 args.push(caller.arguments[i]);
 stack.push({
 caller: caller,
 args: args
 });
 }
 this.stack = stack;
}

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1515744
http://queue.acm.org/detail.cfm?id=1483103
http://blogs.sun.com/eschrock/resource/ajax/index.html
http://blogs.sun.com/eschrock/resource/ajax/index.html
http://queue.acm.org/detail.cfm?id=945134

acmqueue is guided and written by
distinguished and widely known industry

experts. The newly expanded site also offers

more content and unique features such as

planetqueue blogs by queue authors who

“unlock”important content from the ACMDigital

Library and provide commentary; videos;

downloadable audio; roundtable discussions;

plus unique acmqueue case studies.

acmqueue provides a critical perspective
on current and emerging technologies by

bridging the worlds of journalism and peer

review journals. Its distinguished Editorial Board of experts makes sure that acmqueue's high

quality content dives deep into the technical challenges and critical questions software engineers

should be thinking about.

Visit today!

http://queue.acm.org/

BLOGS ARTICLES COMMENTARY CASE STUDIES MULTIMEDIA RSSCTO ROUNDTABLES

acmqueue has nowmoved completely online!

http://queue.acm.org/

62 communications of the acm | may 2009 | vol. 52 | no. 5

contributed articles
Doi:10.1145/1506409.1506425

Multicore computers shift the burden of
software performance from chip designers and
processor architects to software developers.

BY James LaRus

These decades are also when the
personal computer and packaged soft-
ware industries were born and ma-
tured. Software development was fa-
cilitated by the comforting knowledge
that every processor generation would
run much faster than its predecessor.
This assurance led to the cycle of inno-
vation outlined in Figure 1. Faster pro-
cessors enabled software vendors to
add new features and functionality to
software that in turn demanded larger
development teams. The challenges
of constructing increasingly complex
software increased demand for high-
er-level programming languages and
libraries. Their higher level of abstrac-
tion contributed to slower code and,
in conjunction with larger and more
complex programs, drove demand for
faster processors and closed the cycle.

This era of steady growth of single-
processor performance is over, howev-
er, and the industry has embarked on
a historic transition from sequential
to parallel computation. The introduc-
tion of mainstream parallel (multicore)
processors in 2004 marked the end of
a remarkable 30-year period during
which sequential computer perfor-
mance increased 40%–50% per year.4 It
ended when practical limits on power
dissipation stopped the continual in-
creases in clock speed, and a lack of
exploitable instruction-level parallel-
ism diminished the value of complex
processor architectures.

Fortunately, Moore’s Law has not
been repealed. Semiconductor technol-
ogy still doubles the number of transis-
tors on a chip every two years.7 However,
this flood of transistors is now used to in-
crease the number of independent pro-
cessors on a chip, rather than to make
an individual processor run faster.

The challenge the computing indus-
try faces today is how to make parallel
computing the mainstream method
for improving software performance.
Here, I look at this problem by ask-
ing how software consumed previous

over the pASt three decades, regular, predictable
improvements in computers have been the norm,
progress attributable to Moore’s Law, the steady
40%-per-year increase in the number of transistors
per chip unit area.

The Intel 8086, introduced in 1978, contained 29,000
transistors and ran at 5MHz. The Intel Core 2 Duo,
introduced in 2006, contained 291 million transistors
and ran at 2.93GHz.9 During those 28 years, the number
of transistors increased by 10,034 times and clock
speed 586 times. This hardware evolution made all
kinds of software run much faster. The Intel Pentium
processor, introduced in 1995, achieved a SPECint95
benchmark score of 2.9, while the Intel Core 2 Duo
achieved a SPECint2000 benchmark score of 3108.0, a
375-times increase in performance in 11 years.a

a Benchmarks from the 8080 era look trivial today and say little about modern processor performance.
A realistic comparison over the decades requires a better starting point than the 8080. Moreover,
the revision of the SPEC benchmarks every few years frustrates direct comparison. This comparison
normalizes using the Dell Precision WorkStation 420 (800MHz PIII) that produced 364 SPECint2000
and 38.9 SPECint95, a ratio of 9.4.

spending
moore’s
Dividend

advanced micro Devices multiple 45nm quad
core die based on the opteron processor,
codenamed “shanghai” (www.amd.com/) P

H
o

t
o

g
r

a
P

H
 C

o
u

r
t

e
s

y
 o

F
 a

M
d

http://www.amd.com/

may 2009 | vol. 52 | no. 5 | communications of the acm 63

64 communications of the acm | may 2009 | vol. 52 | no. 5

contributed articles

technology officer at Microsoft, memo-
rably captured this wisdom with his four
laws of software, following the premise
that “software is a gas” due to its ten-
dency to expand to fill the capacity of
any computer (see the sidebar “Nathan
Myhrvold’s Four Laws of Software”).

Support for this belief depends on
the metric for the “volume” of software.
Soon after Myhrvold published the
“laws,” the rate of growth of lines of code
(LoC) in Windows diverged dramati-
cally from the Moore’s Law curve (see
Figure 4). This makes sense intuitively;
a software system might grow quickly
in its early days, as basic functionality
accrues, but exponential growth (such
as the factor-of-four increase in lines
of code between Windows 3.1 and Win-
dows 95 over three years) is difficult to
sustain without a similar increase in
developer headcount or remarkable—
unprecedented—improvement in soft-
ware productivity.

Software volume is also measured
in other ways, including necessary
machine resources (such as proces-
sor speed, memory size, and capacity).
Figure 5 outlines the recommended
resources suggested by Microsoft for
several versions of Windows. With the
exception of disk space (which has in-
creased faster than Moore’s Law), the
recommended configurations grew at
roughly the same rate as Moore’s Law.

How could software’s resource re-
quirements grow faster than its lit-
eral size (in terms of LoC)? Software
changed and improved as computers
became more capable. To most of the
world, the real dividend of Moore’s
Law, and the reason to buy new com-
puters, was this improvement, which
enabled software to do more tasks and
do them better than before.

how Was it spent?
Determining where and how Moore’s
Dividend was spent is difficult for a
number of reasons. Software evolves
over a long period, but no one system-
atically measures changing resource
consumption. It is possible to compare
released systems, but many aspects of
a system or application evolve between
releases and without close investiga-
tion, and it is difficult to attribute vis-
ible differences to a particular factor.
Here, I present some experimental
hypotheses that await further research

processor-performance growth and
whether multicore processors can sat-
isfy the same needs. In short, how did
we use the benefits of Moore’s Law?
Will parallelism continue the cycle of
software innovation?

In 1965, Gordon Moore, a co-found-
er of Intel, postulated that the number
of transistors that could be fabricated
on a semiconductor chip would double
every year,17 a forecast he subsequently
reduced to every second year.10 Amaz-
ingly, this prediction still holds. Each
generation of transistor is smaller
and switches at a faster speed, allow-
ing clock speed (and computer perfor-
mance) to increase at a similar rate.
Moreover, abundant transistors en-
abled architects to improve processor
design by implementing sophisticated
microarchitectures. For convenience, I

call this combination of improvements
in computers Moore’s Dividend. Figure
2 depicts the evolution of Intel’s x86
processors. The number of transistors
in a processor increased at the rate pre-
dicted by Moore’s Law, doubling every
24 months while clock frequency grew
at a slightly slower rate.

These hardware improvements in-
creased software performance. Figure 3
charts the highest SPEC integer bench-
mark score reported each month for
single-processor x86 systems. Over a
decade, integer processor performance
increased by 52 times its former level.

myhrvold’s Laws
A common belief among software devel-
opers is that software grows at least at
the same rate as the platform on which
it runs. Nathan Myhrvold, former chief

figure 1: cycle of innovation in the computer industry.

Slower
programs

High-level
languages and
programming
abstractions

Increased
processor

performance

larger
development

teams

larger, more
feature-rich

software

requires

figure 2: improvement in intel x86 processors; data from olukotum,18
herb sutter, a principal architect at microsoft, and intel.

10,000,000.00

1,000,000.00

100,000.00

10,000.00

1,000.00

100.00

10.00

1.00

0.10

1970 1975 1980 1985 1990

 transistors (000) Clock speed (MHz)

1995 2000 2005 2010

contributed articles

may 2009 | vol. 52 | no. 5 | communications of the acm 65

to quantify their contributions to the
overall computing experience:

Increased functionality. One of the
clearest changes in software over the
past 30 years has been a continually
increasing baseline of expectations
of what a personal computer can and
should do. The changes are both quali-
tative and quantitative, but their cu-
mulative effect has been steady growth
in the computation needed to accom-
plish a specific task.

Software developers will tell you
that improvement is continual and
pervasive throughout the lifetime of
software; new features extend it and, at
the same time, raise its computational
requirements. Consider the Windows
print spooler, with a design that is still
similar to Windows 95. Why does it not
run 50 times faster today? Oliver Foehr,5
a developer at Microsoft, analyzed it in
2008 and estimated the consequences
of its evolution:

Additional code over the years add- ˲

ed new functionality, most notably im-
proved security and notification, that
affected performance by 1.5–4 times,
depending on the scenario;

Printer drivers added functionality ˲

for color management and improved
treatment of text, graphics, and book-
keeping for a performance effect of a
factor of 2;

Printer resolution and color depth ˲

improved from 300*300 dpi at one bit
per pixel to at least 600*600 dpi at 24
bits per pixel, or from 1MB to 96MB of
image; and

Memory latency and bandwidth ˲

did not keep up with processor speed;
the spooler has poor locality due to
large color lookup tables and graph-
ics rendering, so its performance was
slowed by the increased processor-
memory gap.

Software rarely shrinks. Features are
rarely removed, since it is difficult to
ensure that no customers are still using
them. Support for legacy compatibility
ensures that the tide of resource require-
ments always rises and never recedes.

Large-scale, pervasive changes can
affect overall system performance.
Attacks of various sorts have led pro-
grammers to be more careful in writ-
ing low-level, pointer-manipulating
code, forcing them to take extra care
scrutinizing input data. Secure code
requires more computation. One in-

figure 5: Recommended Windows configurations
(maximum values from support.microsoft.com).

1,000.0

100.0

10.0

1.0

J
an

. 9
2

J
an

. 9
3

Win 3.1

Win 95

Win 98

Win 2000

XP

Vista

J
an

. 9
4

J
an

. 9
5

J
an

. 9
6

J
an

. 9
7

J
an

. 9
8

J
an

. 9
9

J
an

. 0
0

J
an

. 0
1

J
an

. 0
2

J
an

. 0
3

J
an

. 0
4

J
an

. 0
5

J
an

. 0
6

J
an

. 0
7

 Processor (sPeCInt) Memory (Mb) disk (Mb) Moore’s law

R
el

at
iv

e
to

 m
ar

ch
 1

9
9

2

figure 3: Performance improvement in single-processor (x86) sPec benchmarks
(data from www.spec.org); the sPecint95 and sPecint2006 benchmark scores
are normalized against sPecint2000.

10,000

1,000

100

10

s
ep

t.
95

s
ep

t.
96

s
ep

t.
97

s
ep

t.
98

s
ep

t.
99

s
ep

t.
0

0

s
ep

t.
0

1

s
ep

t.
0

2

s
ep

t.
0

3

s
ep

t.
0

4

s
ep

t.
0

5

s
ep

t.
0

6

s
ep

t.
0

7

 normalized CPu2000

figure 4: Windows code size (Loc) and intel processor performance.
code size estimates are from various sources.13–15

1,000

100

10

1

J
an

. 9
2

J
an

. 9
3

Win 3.1

Win 95
nt 4.0

Win 98

XP
server 2003

Vista

J
an

. 9
4

J
an

. 9
5

J
an

. 9
6

J
an

. 9
7

J
an

. 9
8

J
an

. 9
9

J
an

. 0
0

J
an

. 0
1

J
an

. 0
2

J
an

. 0
3

J
an

. 0
4

J
an

. 0
5

J
an

. 0
6

J
an

. 0
7

 CPu2000 Moore’s law Windows loC

R
el

at
iv

e
to

 m
ar

ch
 1

9
9

2

http://www.spec.org
http://support.microsoft.com

66 communications of the acm | may 2009 | vol. 52 | no. 5

contributed articles

feature, requires a runtime system to
maintain a large amount of metadata
on every method and class, even if the
reflection features are not invoked. The
second is that high-level languages hide
details of a machine beneath a more ab-
stract programming model. This leaves
developers less aware of performance
considerations and less able to under-
stand and correct problems.

Mitchell et al.16 analyzed the conver-
sion of a date object in SOAP format to a
Java Date object in IBM’s Trade bench-
mark, a sample business application
built on IBM Websphere. The conver-
sion entailed 268 method calls and
allocation of 70 objects. Jann et al.11
analyzed this benchmark on consecu-
tive implementations of IBM’s POWER
architecture, observing that “modern
e-commerce applications are increas-
ingly built out of easy-to-program, gen-
eralized but nonoptimized software
components, resulting in substantive
stress on the memory and storage sub-
systems of the computer.”

I conducted simple programming ex-
periments to compare the cost of imple-
menting the archetypical Hello World
program using various languages and
features. Table 2 compares C and C# ver-
sions of the program, showing the latter
has a working set 4.7–5.2 times larger.
Another experiment measured the cost
of displaying the string “Hello World”
by both writing it to a console window
and displaying it in a pop-up window.
Table 3 shows that a dialog box is 20.7
times computationally more costly in
C++ (using Microsoft Foundation Class)
and 30.6 times more costly in C# (using
Windows Forms). By comparison, the
choice of language and runtime system
made relatively little difference, as C#
was only 1.5 times more costly than C++
for the console and 2.2 times more cost-
ly with a window.

This disparity is not a criticism
of C#, .NET, or window systems; the

dication is that array bounds and null
pointer checks impose a time overhead
of approximately 4.5% in the Singular-
ity OS.1 Also important, and equally dif-
ficult to measure, are the performance
consequences of improved software-
engineering practices (such as layering
software architecture and modulariz-
ing systems to improve development
and allow subsets).

Meanwhile, the data manipulated by
computers is also evolving, from simple
ASCII text to larger, structured objects
(such as Word and Excel documents), to
compressed documents (such as JPEG
images), and more recently to space-
and computation-inefficient formats
(such as XML). The growing popularity
of video introduces yet another format
that is even more computationally ex-
pensive to manipulate.

Programming changes. Over the
past 30 years, programming languages
have evolved from assembly language
and C code to increased use of higher-

level languages. A major step was C++,
which introduced object-oriented
mechanisms (such as virtual-method
dispatch). C++ also introduced abstrac-
tion mechanisms (such as classes and
templates) that made possible rich li-
braries (such as the Standard Template
Library). These language mechanisms
required non-trivial, opaque runtime
implementations that could be expen-
sive to execute but improved software
development through modularity, in-
formation hiding, and increased code
reuse. In turn, these practices enabled
the construction of ever-larger and
more complex software.

Table 1 compares several key object-
oriented complexity metrics between
Windows 2003 and Vista, showing in-
creased use of object-oriented features.
For example, the number of classes per
binary component increased 59% and
the number of subclasses per binary
127% between the two systems.

These changes could have perfor-
mance consequences. Comparing the
SPEC CPU2000 and CPU2006 bench-
marks, Kejariwal et al.12 attributed the
lower performance of the newer suite
to increased complexity and size due
to the inclusion of six new C++ bench-
marks and enhancements to existing
programs.

Safe, managed languages (such as
C# and Java) further increased the
level of programming by introducing
garbage collection, richer class librar-
ies (such as .NET and the Java Class
Library), just-in-time compilation, and
runtime reflection. All these features
provide powerful abstractions for de-
veloping software but also consume
memory and processor resources in
nonobvious ways.

Language features can affect per-
formance in two ways: The first is that
a mechanism can be costly, even when
not being used. Program reflection, a
well-known example of a costly language

table 1: object-oriented complexity
metrics (per binary); from an internal
microsoft Research document by
murphy, B. and nagappan, n.
characterizing Vista Development,
December 15, 2006.

Vista/Win 2003
(mean per binary)

total
functions

1.45

max class
methods

1.22

total class
methods

1.59

max inheritance
Depth

1.33

total inheritance
Depth

1.54

max
subclasses

3.87

total
subclasses

2.27

table 2: hello World benchmark running on intel x86,
Vista enterprise, and Visual studio 2008.

Debug Build optimized Build

Language Working set startup Bytes Working set startup Bytes

c 1,424K 6,162 1,304K 5,874

c++ 6,756K 113,280 6,748K 87,62

table 3: execution cost of displaying
“hello World” string.

mechanism
timer cycles
(280ns)

c++, console 1,760

c++, window 36,375

c#, console 2.628

c#, window 80,348

contributed articles

may 2009 | vol. 52 | no. 5 | communications of the acm 67

overhead comes with a system that
provides a much richer set of func-
tionality that makes programming
(and use) of computers faster and
less error-prone. Moreover, the cost
increases are far less than the per-
formance improvement between the
computers of the 1970s and 1980s—
when C began—and today.

Decreased programmer focus.
Abundant machine resources have al-
lowed programmers to become com-
placent about performance and less
aware of resource consumption in
their code. Bill Gates 30 years ago fa-
mously changed the prompt in Altair
Basic from “READY” to “OK” to save
5B of memory.6 It is inconceivable to-
day that a developer would be aware of
such detail, let alone concerned about
it, and rightly so, since a change of this
magnitude is unnoticeable.

More significant, however, is a change
in the developer mind-set that makes
developers less aware of the resource re-
quirements of the code they write:

Increased computer resources means
fewer programs push the bounds of a com-
puter’s capacity or performance; hence
many programs never receive extensive
performance tuning. Donald Knuth’s
widely known dictum “premature opti-
mization is the root of all evil” captures
the typical practice of deferring per-
formance optimization until code is
nearly complete. When code performs
acceptably on a baseline platform, it
may still consume twice the resources
it might require after further tuning.
This practice ensures that many pro-
grams run at or near machine capacity
and consequently helps guarantee that
Moore’s Dividend is fully spent at each
new release;

Large teams of developers write soft-
ware. The performance of a single de-
veloper’s contribution is often difficult
to understand or improve in isolation;
that is, performance is not a modular
property of software. Moreover, as sys-
tems become more complex, incor-
porate more feedback mechanisms,
and run on less-predictable hardware,
developers find it increasingly difficult
to understand the performance conse-
quences of their own decisions. A prob-
lem that is everyone’s responsibility is
no one’s responsibility;

The performance of computers is in-
creasingly difficult to understand. It used

to suffice to count instructions alone to
estimate code performance. As caches
became more common, instruction
and cache miss counts could identify
program hot spots. However, latency-
tolerant, out-of-order architectures re-
quire a far more detailed understand-
ing of machine architecture to predict
program performance; and

Programs written in high-level lan-
guages depend on compilers to achieve
good performance. Compilers generate
good code on average but are oblivi-
ous to major performance bottlenecks
(such as disks and memory systems)
and cannot fix fundamental flaws (such
as bad algorithms).

This discussion is not a rejection of
today’s development practices. There
is no way anyone could produce today’s
software using the artisan, handcraft
practices that were possible and neces-
sary for machines with 4K of memory.
Moore’s Dividend reduced the cost of
running a program but increased the
cost of developing one by encouraging
ever-larger and more complex systems.
Modern programming practices, start-
ing with higher-level languages and
rich libraries, counter this pressure by
sacrificing runtime performance for
reduced development effort.

multicore and the future
Anyone reading this is able to cite other
scenarios in which Moore’s Dividend
was spent, but in the absence of fur-
ther investigation and evidence, let’s
stop and examine the implications of
these observations for future software
and parallel computers:

Software evolution. Consider the
normal process of software evolu-
tion, extension, and enhancement in
sequential systems and applications.
Sequential in this case excludes code
running on parallel computers (such
as databases, Web servers, scientific
applications, and games) that presum-
ably will continue to exploit parallel-
ism on multicore processors.

Suppose a new product release adds
functionality that uses a parallel algo-
rithm to solve a computationally de-
manding task. Developing a parallel
algorithm is a considerable challenge,
but many problems (such as video pro-
cessing, natural-language interaction,
speech recognition, linear and nonlin-
ear optimization, and machine learn-

Nathan Myhrvold’s

Four
Laws of
Software
nathan myhrvold, a former
astrophysicist, then microsoft
cto, explained the dynamics
of the computer and software
industries as a natural
consequence of his observation
that software, like a gas,
expands to fill its container
(research.microsoft.com/
acm97/nm/tsld026.htm) in the
following ways:

softWaRe is a gas!
Windows nt lines of code
(doubling time 866 days, growth
rate 33.9% per year)
Browser code growth (doubling
time 216 days, growth rate 221%
per year)

softWaRe gRoWs untiL
it Becomes LimiteD BY
mooRe’s LaW
initial growth is quick, like gas
expanding (like a browser)
eventually limited by hardware
(like nt)
Brings any processor to its
knees, just before the new
model is out

softWaRe gRoWth
makes mooRe’s LaW
PossiBLe
that’s why people buy new
hardware, economic motivator
that’s why chips get faster at the
same price, not cheaper
Will continue as long as there is
opportunity for new software

imPossiBLe to haVe
enough
new algorithms
new applications and new users
new notions of what is cool

http://research.microsoft.com/acm97/nm/tsld026.htm
http://research.microsoft.com/acm97/nm/tsld026.htm

68 communications of the acm | may 2009 | vol. 52 | no. 5

contributed articles

Moore’s Law, but giving an application
(or portions of an application) exclu-
sive access to a set of processors might
produce a more responsive system.

Functionality that does not fit these
patterns will not benefit from multi-
core; rather, such functionality will re-
main constrained by the static perfor-
mance of a single processor. In the best
case, the performance of a processor
may continue to improve at a signifi-
cantly slower rate (optimistic estimates
range from 10% to 15% per year). But in
some multicore chips, processors will
run slower, as chip vendors simplify
individual cores to lower power con-
sumption and integrate more cores.

For many applications, most func-
tionality is likely to remain sequential.
For software developers to find the re-
sources to add or change features, it may
be necessary to eliminate old features
or reduce their resource consumption.
A paradoxical consequence of multi-
core is that sequential performance
tuning and code-restructuring tools
are likely to be increasingly important.
Another likely consequence is that soft-
ware vendors will be more aggressive in
eliminating old or redundant features,
making space for new code.

The regular growth in multicore par-
allelism poses an additional challenge
to software evolution. Kathy Yelick, a
professor of computer science at the
University of California, Berkeley, has
said that the experience of the high-
performance computing community is
that each decimal order of magnitude
increase in parallelism requires a major
redesign and rewrite of parallel code.20
Multicore processors are likely to come
into widespread use at the cusp of the
first such change (8 → 16); the next one
(64 → 128) is only three processor gen-
erations (six years) later. This observa-
tion is relevant only to applications that
use scalable algorithms requiring large
numbers of processors. Applications
that stop scaling with Moore’s Law, be-
cause they lack sufficient parallelism
or their developers no longer rewrite
them, are performance dead ends.

Parallelism will also force major
changes in software development.
Moore’s Dividend enabled a shift to
higher-level languages and libraries.
The pressures driving this trend will
not change, because increased abstrac-
tion helps improve security, reliability,

ing) are computationally intensive. If
computational speed inhibits adop-
tion of these techniques—and parallel
algorithms exist or can be developed—
then multicore processors can enable
the addition of compelling new func-
tionality to applications.

Multicore processors are not a magic
elixir, just another way to turn addition-
al transistors into more performance. A
problem solved with a multicore com-
puter would also be solvable on a con-
ventional processor—if sequential per-
formance had continued its exponential
increase. Moreover, multicore does not
increase the rate of performance im-
provement, aside from one-time archi-
tectural shifts (such as replacing a sin-
gle complex processor with a much
larger number of simple cores).

New software features that suc-
cessfully exploit parallelism differ
from the evolutionary features added
to most software written for conven-
tional uniprocessor-based systems. A
feature may benefit from parallelism
if its computation is large enough to
consume the processor for a signifi-
cant amount of time, a characteristic
that excludes incremental software
improvements, small but pervasive
software changes, and many simple
program improvements.

Using parallel computation to im-
plement a feature may not speed up an
application as a whole due to Amdahl’s
Law’s strict connection between the
fraction of sequential execution and
possible parallel speedup.8 Eliminating
sequential computation in the code for
a feature is crucial, because even small
amounts of serial execution can render
a parallel machine ineffective.

An alternative use for multicore
processors is to redesign a sequential
application into a loosely coupled or
asynchronous system in which com-
putations run on separate processors.
This approach uses parallelism to im-
prove software architecture or respon-
siveness, rather than performance. For
example, it is natural to separate moni-
toring and introspection features from
program logic. Running these tasks on
a separate processor can reduce pertur-
bation of the mainline computation.
Alternatively, extra processors can per-
form speculative computations to help
minimize response time. These uses of
parallelism are unlikely to scale with

applications that
stop scaling with
moore’s Law,
either because
they lack sufficient
parallelism or
because their
developers no
longer rewrite
them, will be
evolutionary
dead ends.

contributed articles

may 2009 | vol. 52 | no. 5 | communications of the acm 69

and program productivity. In the best
case, parallelism enables new imple-
mentations of languages and features;
for example, parallel garbage collec-
tors reduce the pause time of compu-
tational threads, thereby enabling the
use of safe languages in applications
with real-time constraints.

Another approach that trades per-
formance for productivity is to hide the
underlying parallel implementation.
Domain-specific languages and librar-
ies can provide an implicitly parallel
programming model that hides par-
allel programming from most devel-
opers, who instead use abstractions
with semantics that do not change
when running in parallel. For example,
Google’s MapReduce library utilizes
a simple, well-known programming
paradigm to initiate and coordinate in-
dependent tasks; equally important, it
hides the complexity of running these
tasks across a large number of comput-
ers.3 The language and library imple-
menters may struggle with parallelism,
but other developers benefit from mul-
ticore without having to learn a new
programming model.

Parallel software. Another major
category of applications and systems
already take advantage of parallelism;
the two most notable examples are serv-
ers and high-performance computing,
each providing different but important
lessons to systems developers.

Servers have long been the main
commercially successful type of paral-
lel system. Their “embarrassingly par-
allel” workload consists of mostly inde-
pendent requests that require little or
no coordination and share little data.
As such, it is relatively easy to build a
parallel Web server application, since
the programming model treats each
request as a sequential computation.
Building a Web site that scales well is
an art; scale comes from replicating
machines, which breaks the sequential
abstraction, exposes parallelism, and
requires coordinating and communi-
cating across machine boundaries.

High-performance computing fol-
lowed a different path that used par-
allel hardware because there was no
alternative with comparable perfor-
mance, not because scientific and
technical computations are especially
well suited to parallel solution. Parallel
hardware is a tool for solving problems.

The popular programming models—
MPI and OpenMP—are performance-
focused, error-prone abstractions that
developers find difficult to use. More
recently, game programming emerged
as another realm of high-performance
computing, with the same attributes
of talented, highly motivated program-
mers spending great effort and time
to squeeze the last bit of performance
from complex hardware.19

If parallel programming is to be a
mainstream programming model, it
must follow the path of servers, not of
high-performance computing. One al-
ternative paradigm for parallel comput-
ing “Software as a Service” delivers soft-
ware functionality across the Internet
and revisits timesharing by executing
some or all of an application on a shared
server in the “cloud.”2 This approach to
computing, like servers in general, is
embarrassingly parallel and benefits di-
rectly from Moore’s Dividend. Each ap-
plication instance runs independently
on a processor in a server. Moore’s Divi-
dend accrues directly to the service pro-
vider, even if the application is sequen-
tial. Each new generation of multicore
processors halves the number of com-
puters needed to serve a fixed workload
or provide the headroom needed to add
features or handle greater workloads.
Despite the challenges of creating a
new software paradigm and industry,
this model of computation is likely to
be popular, particularly for applications
that do not benefit from multicore.

conclusion
Moore’s Dividend was spent in many
ways and places, ranging from pro-
gramming languages, models, archi-
tectures, and development practices,
up through software functionality.
Parallelism is not a surrogate for faster
processors and cannot directly step
into their roles. Multicore processors
will change software as profoundly as
previous hardware revolutions (such
as the shift from vacuum tubes to tran-
sistors or transistors to integrated cir-
cuits) radically altered the size and cost
of computers, the software written for
them, and the industry that produced
and sold the hardware and software.
Parallelism will drive software in new
directions (such as computationally in-
tensive, game-like interfaces or services
provided by the cloud) rather than con-

tinuing the evolutionary improvements
made familiar by Moore’s Dividend.

acknowledgments
Many thanks to Al Aho (Columbia Uni-
versity), Doug Burger (Microsoft), Da-
vid Callahan (Microsoft), Dennis Gan-
non (Microsoft), Mark Hill (University
of Wisconsin), and Scott Wadsworth
(Microsoft) for helpful comments and
to Oliver Foehr (Microsoft) and Nachi
Nagappan (Microsoft) for assistance
with Microsoft data.

References
1. aiken, M., Fähndrich, M., Hawblitzel, C., Hunt, g.,

and larus, J.r. deconstructing process isolation.
In Proceedings of the ACM SIGPLAN Workshop on
Memory Systems Performance and Correctness (san
Jose, Ca, oct.). aCM Press, new york, 2006, 1–10.

2. Carr, n. The Big Switch: Rewiring the World, From
Edison to Google. W.W. norton, new york, 2008.

3. dean, J. and ghemawat, s. Mapreduce: simplified
data processing on large clusters. Commun. ACM 51,
1 (Jan. 2008), 107–113.

4. ekman, M., Warg, F., and nilsson, J. an in-depth look
at computer performance growth. ACM SIGARCH
Computer Architecture News 33, 1 (Mar. 2005), 144–147.

5. Foehr, o. personal email communications, June 30, 2008.
6. gates, b. Personal email (apr. 10, 2008).
7. Hachman, M. Intel’s gelsinger predicts Intel Inside

everything. PC Magazine (July 3, 2008).
8. Hill, M.d. and Marty, M.r. amdahl’s law in the multicore

era. IEEE Computer 41, 7 (July 2008), 33–38.
9. Intel. the evolution of a revolution. santa Clara,

Ca, 2008; download.intel.com/pressroom/kits/
IntelProcessorHistory.pdf.

10. Intel. Excerpts from A Conversation with Gordon
Moore: Moore’s Law. Video transcript, santa Clara,
Ca, 2005; ftp://download.intel.com/museum/Moores_
law/Video-transcripts/excepts_a_Conversation_
with_gordon_Moore.pdf.

11. Jann, J., burugula, r.s., dubey, n., and Pattnaik, P.
end-to-end performance of commercial applications
in the face of changing hardware. ACM SIGOPS
Operating Systems Review 42, 1 (Jan. 2008), 13–20.

12. Kejariwal, a., Hoflehner, g.F., desai, d. lavery, d.M.,
nicolau, a., and Veidenbaum, a.V. Comparative
characterization of sPeC CPu2000 and CPu2006
on Itanium architecture. In Proceedings of the 2007
ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems (san
diego, Ca, June). aCM Press, new york, 2007, 361–362.

13. lohr, s. and Markoff, J. Windows is so slow, but why?
New York Times (Mar. 27, 2006); www.nytimes.
com/2006/03/27/technology/27soft.html.

14. Maraia, V. The Build Master: Microsoft’s Software
Configuration Management Best Practices. addison-
Wesley, upper saddle river, nJ, 2006.

15. Mcgraw, g. Software Security: Building Security In.
addison-Wesley Professional, boston, Ma, 2006.

16. Mitchell, n., sevitsky, g., and srinivasan, H. the diary of
a datum: an approach to analyzing runtime complexity
in framework-based applications. In Proceedings of
the Workshop on Library-Centric Software Design (san
diego, Ca, oct.). aCM Press, new york 2005, 85–90.

17. Moore, g.e. Cramming more components onto
integrated circuits. Electronics 38, 8 (apr. 1965), 56–59.

18. olukotun, K. and Hammond, l. the future of
microprocessors. ACM Queue 3, 7 (sept. 2005), 26–29.

19. sweeney, t. the next mainstream programming language:
a game developer’s perspective. In Proceedings of
the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (Charleston,
sC, Jan.). aCM Press, new york, 2006, 269–269.

20. yelick, K. alttab. discussion on parallelism at
Microsoft research, redmond, Wa, July 19, 2006.

James Larus (larus@microsoft.com) is director of
software architecture in the Cloud Computing Futures
project in Microsoft research, redmond, Wa.

© 2009 aCM 0001-0782/09/0500 $5.00

http://download.intel.com/pressroom/kits/IntelProcessorHistory.pdf
http://download.intel.com/museum/Moores_law/Video-transcripts/excepts_a_Conversation_with_gordon_Moore.pdf
mailto:larus@microsoft.com
http://download.intel.com/pressroom/kits/IntelProcessorHistory.pdf
http://download.intel.com/museum/Moores_law/Video-transcripts/excepts_a_Conversation_with_gordon_Moore.pdf
http://download.intel.com/museum/Moores_law/Video-transcripts/excepts_a_Conversation_with_gordon_Moore.pdf
http://www.nytimes.com/2006/03/27/technology/27soft.html
http://www.nytimes.com/2006/03/27/technology/27soft.html

70 communications of the acm | may 2009 | vol. 52 | no. 5

contributed articles

moSt microproceSSorS Are embedded in systems
that are not first-and-foremost computers. Rather,
these systems are cars, medical devices, instruments,
communication systems, industrial robots, toys,
and games. Key to them is that they interact with
physical processes through sensors and actuators.
However, they increasingly resemble general-purpose
computers, becoming networked and intelligent, often
at the cost of dependability.

Even general-purpose computers are increasingly
asked to interact with physical processes. They
integrate media (such as video and audio), and through
their migration to handheld platforms and pervasive
computing systems, sense physical dynamics and
control physical devices. They don’t always do it well.
The technological basis that engineers and computer
scientists have chosen for general-purpose computing
and networking does not support these applications
well. Changes that ensure this support could improve
them and enable many others.

The foundations of computing, rooted in Turing,
Church, and von Neumann, are about the

transformation of data, not physical dy-
namics. Computer scientists must re-
think the core abstractions if they truly
want to integrate computing with phys-
ical processes. That’s why I focus here
on a key aspect of physical processes—
the passage of time—that is almost en-
tirely absent in computing. This is not
just about real-time systems, which ac-
cept the foundations and retrofit them
with temporal properties. Although that
technology has much to contribute to
systems involving physical processes, it
cannot solve the problem of computers
functioning in the physical world alone
because it is built on flawed technologi-
cal foundations.

Many readers might object here.
Computers are so fast that surely the
passage of time in most physical pro-
cesses is so slow it can be handled
without special accommodation. But
modern techniques (such as instruc-
tion scheduling, memory hierarchies,
garbage collection, multitasking, and
reusable component libraries that
do not expose temporal properties in
their interfaces) introduce enormous
variability and unpredictability into
computer-supported physical sys-
tems. These innovations are built on
a key premise: that time is irrelevant
to correctness and is at most a mea-
sure of quality. Faster is better, if you
are willing to pay the price in terms
of power consumption and hardware.
By contrast, what these systems need
is not faster computing but physical
actions taken at the right time. Time-
liness is a semantic property, not a
quality factor.

But surely the “right time” is ex-
pecting too much, you might say. The
physical world is neither precise nor
reliable, so why should we demand
such properties from computing sys-
tems? Instead, these systems must be
robust and adaptive, performing reli-
ably, despite being built out of unreli-
able components. While I agree that
systems must be designed to be robust,
we should not blithely discard the reli-
ability we have. Electronics technology
is astonishingly precise and reliable,

Doi:10.1145/1506409.1506426

The passage of time is essential to ensuring
the repeatability and predictability of software
and networks in cyber-physical systems.

BY eDWaRD a. Lee

computing
needs time

may 2009 | vol. 52 | no. 5 | communications of the acm 71

more than any other human invention
ever made. Designers routinely deliver
circuits that perform a logical function
essentially perfectly, on time, billions
of times per second, for years on end.
Shouldn’t we aggressively exploit this
remarkable achievement?

We have been lulled into a false
sense of confidence by the consider-
able success of embedded software in,
say, automotive, aviation, and robotics
applications. But the potential is much
greater; hardware and software design
has reached a tipping point, where
computing and networking can indeed
be integrated into the vast majority of
artifacts made by humans. However, as
we move to more networked, complex,
intelligent applications, the problems
of real-world compatibility and coordi-
nation are going to get worse. Embed-
ded systems will no longer be black
boxes, designed once and immutable
in the field; they will be pieces of larger
systems, a dance of electronics, net-
working, and physical processes. An
emerging buzzword for such systems is
cyber-physical systems, or CPS.

The charter for the CPS Summit
in April 2008 (ike.ece.cmu.edu/twiki/

bin/view/CpsSummit/WebHome) says
“The integration of physical systems
and processes with networked com-
puting has led to the emergence of a
new generation of engineered systems:
cyber-physical systems. Such systems
use computations and communica-
tion deeply embedded in and interact-
ing with physical processes to add new
capabilities to physical systems. These
cyber-physical systems range from
miniscule (pacemakers) to large-scale
(the national power grid). Because
computer-augmented devices are ev-
erywhere, they are a huge source of eco-
nomic leverage.

“…it is a profound revolution that
turns entire industrial sectors into pro-
ducers of cyber-physical systems. This
is not about adding computing and
communication equipment to conven-
tional products where both sides main-
tain separate identities. This is about
merging computing and networking
with physical systems to create new
revolutionary science, technical capa-
bilities and products.”

The challenge of integrating com-
puting and physical processes has been
recognized for years,20 motivating the

emergence of hybrid systems theories.
However, progress is limited to relative-
ly simple systems combining ordinary
differential equations with automata.
Needed now are new breakthroughs in
modeling, design, and analysis of such
integrated systems.

CPS applications, arguably with the
potential to rival the 20th century IT
revolution, include high-confidence
medical devices, assisted living, traffic
control and safety, advanced automo-
tive systems, process control, energy
conservation, environmental control,
avionics, instrumentation, critical in-
frastructure control (electric power,
water resources, and communica-
tions systems), distributed robotics
(telepresence, telemedicine), defense
systems, manufacturing, and smart
structures. It is easy to envision new
capabilities that are technically well
within striking distance but that would
be extremely difficult to deploy with to-
day’s methods. Consider a city without
traffic lights, where each car gives its
driver adaptive information on speed
limits and clearances to pass through
intersections. We have all the technical
pieces for such a system, but achieving

http://ike.ece.cmu.edu/twiki/bin/view/CpsSummit/WebHome
http://ike.ece.cmu.edu/twiki/bin/view/CpsSummit/WebHome

72 communications of the acm | may 2009 | vol. 52 | no. 5

contributed articles

the requisite level of confidence in the
technology is decades off.

Other applications seem inevitable
but will be deployed without benefit of
many (or most) developments in com-
puting. For example, consider distrib-
uted real-time games that integrate
sensors and actuators to change the
(relatively passive) nature of online so-
cial interaction.

Today’s computing and networking
technologies unnecessarily impede
progress toward these applications. In
a 2005 article on “physical computing
systems,” Stankovic et al.25 said “Ex-
isting technology for RTES [real-time
embedded systems] design does not
effectively support development of re-
liable and robust embedded systems.”
Here, I focus on the lack of temporal
semantics. Today’s “best-effort” oper-
ating system and networking technolo-
gies cannot produce the precision and
reliability demanded by most of these
applications.

glib Responses
Calling for a fundamental change in
the core abstractions of computing is
asking a lot of computer science. You
may say that the problems can be ad-
dressed without such a revolution. To
illustrate that a revolution is needed, I
examine popular but misleading apho-
risms, some suggesting that incremen-
tal changes will suffice:

Computing takes time. This brief sen-
tence might suggest that if only soft-
ware designers would accept this fact
of life, then the problems of CPS could
be dealt with. The word “computing”
refers to an abstraction of a physical
process that takes time. Every abstrac-
tion omits some detail (or it wouldn’t
be an abstraction), and one detail that
computing omits is time. The choice
to omit time has been beneficial to
the development of computer science,
enabling very sophisticated technol-
ogy. But there is a price to pay in terms
of predictability and reliability. This
choice has resulted in a mismatch with
many applications to which comput-
ing is applied. Asking software design-
ers to accept the fact that computing
takes time is the same as asking them
to forgo a key aspect of their most ef-
fective abstractions, without offering a
replacement.

If the term “computing” referred to

the physical processes inside a com-
puter, rather than to the abstraction,
then a program in a programming lan-
guage would not define a computation.
One could define a computation only
by describing the physical process. A
computation is the same regardless of
how it is executed. This consistency is,
in fact, the essence of the abstraction.
When considering CPS, it is arguable
that we (the computer science commu-
nity) have picked a rather inconvenient
abstraction.

Moreover, the fact that the physical
processes that implement computing
take time is only one reason the ab-
straction is inconvenient. It would still
be inconvenient if the physical process
were infinitely fast. In order for compu-
tations to interact meaningfully with
other physical processes, they must in-
clude time in the domain of discourse.

Time is a resource. Computation, as
expressed in modern programming
languages, obscures many resource-
management problems. Memory is
provided without bound by stacks and
heaps. Power and energy consumption
are (mostly) not the concern of a pro-
grammer. Even when resource-man-
agement problems are important to a
particular application, there is no way
for a programmer to talk about them
within the semantics of a program-
ming language.

Time is not like these other re-
sources. First, barring metaphysical
discourse, it is genuinely unbounded.
To consider it a bounded resource, we
would have to say that the available
time per unit time is bounded, a tautol-
ogy. Second, time is expended whether
we use it or not. It cannot be conserved
and saved for later. This is true, to a
point, with, say, battery power, which
is unquestionably a resource. Batter-
ies leak, so their power cannot be con-
served indefinitely, but designers rarely
optimize a system to use as much bat-
tery power before it leaks away as they
can. Yet that is what they do with time.

If time is indeed a resource, it is a
rather unique one. Lumping together
the problem of managing time with the
problems of managing other more con-
ventional resources inevitably leads to
the wrong solutions. Conventional re-
source-management problems are op-
timization problems, not correctness
problems. Using fewer resources is

embedded systems
will no longer
be black boxes,
designed once and
immutable in the
field; they will be
pieces of larger
systems, a dance
of electronics,
networking, and
physical processes.

contributed articles

may 2009 | vol. 52 | no. 5 | communications of the acm 73

always better than using more. Hence,
there is no need to make energy con-
sumption a semantic property of com-
puting. Time, on the other hand, needs
to be a semantic property.

Time is a nonfunctional property.
What is the “function” of a program?
In computation, it is a mapping from
sequences of input bits to sequences
of output bits (or an equivalent finite
alphabet). The Turing-Church thesis
defines “computable functions” as
those that can be expressed by a ter-
minating sequence of such bits-to-bits
functions or mathematically by a finite
composition of functions whose do-
main and co-domain are the set of se-
quences of bits.

In a CPS application, the function of
a computation is defined by its effect
on the physical world. This effect is no
less a function than a mapping from
bits to bits. It is a function in the in-
tuitive sense of “what is the function of
the system” and can be expressed as a
function in the mathematical sense of
a mapping from a domain to a co-do-
main.15 But as a function, the domain
and co-domain are not sequences of
bits. Why do software designers insist
on the wrong definition of “function”?

Designers of operating systems,
Web servers, and communication pro-
tocols reactively view programs as a
sequence of input/output events rather
than as a mapping from bits to bits.
This view needs to be elevated from
the theoretical level to the application-
programmer level and augmented with
explicit temporal dynamics.

Real time is a quality-of-service (QoS)
problem. Everybody, from architect to
programmer to user, wants quality.
Higher quality is always better than
lower quality (at least under constant
resource use). Indeed, in general-pur-
pose computing, a key quality measure
is execution time (or “performance”).
But time in embedded systems plays
a different role. Less time is not better
than more time, as it is with perfor-
mance. That less time is better than
more time would imply that it is bet-
ter for an automobile engine control-
ler to fire the spark plugs earlier than
later. Finishing early is not always a
good thing and can lead to paradoxical
behaviors where finishing early causes
deadlines to be missed.7 In an analysis
that remains as valid today as it was

and the output is produced); in this
case, the semantics of the program in-
cludes all possible latencies (outputs
can be produced arbitrarily later than
the corresponding inputs), since noth-
ing about the design language con-
strains timing.

A correct execution is any execution
that is consistent with the semantics of
the design. That is, given a certain set of
inputs, a correct execution finds a be-
havior consistent with these inputs in
the semantics. If the design language
has loose or imprecise semantics, then
“correct” executions may be unexpect-
ed. Conversely, if the design expresses
every last detail of the implementation,
down to printed circuit boards and
wires, then a correct execution may, by
definition, be any execution performed
by said implementation. For the func-
tional program just described, an exe-
cution is correct regardless of how long
it takes to produce the output, because
a program in a functional language
says nothing about timing.

A repeatable property is a property
of behaviors exhibited by every cor-
rect execution, given the same inputs;
for example, the numerical value of
the outputs of a pure functional pro-
gram is repeatable. The timing of the
production of the outputs is not. The
timing can be made repeatable by giv-
ing more detail in the design by, for
example, specifying a particular com-
puter, compiler, and initial condition
on caches and memory. The design has
to get far less abstract to make timing
repeatable.

A predictable property is a property
of behaviors that can be determined
in finite time through analysis of the
design. That is, given only the informa-
tion expressed in the design language,
it needs to be possible to infer that the
property is held by every behavior of a
correct execution. For a particular func-
tional program, the numerical value of
the outputs may be predictable, but
given an expressive-enough functional
language, it will always be possible to
write programs where these outputs
are not predictable. If the language is
Turing complete, then the numerical
value of the outputs may be undecid-
able. In practice, even “finite time” is
insufficient for a property to be predict-
able in practice. To be usefully predict-
able, properties must be inferred by a

when first spelled out by Stankovic26
who lamented the resulting miscon-
ception that real-time computing “is
equivalent to fast computing” or “is
performance engineering.” A CPS re-
quires repeatable behavior much more
than optimized performance.

Precision and variability in timing
are QoS problems, but time itself is
much more than a matter of QoS. If time
is missing from the semantics of pro-
grams, then no amount of QoS will ad-
equately address CPS timing properties.

correctness
To solidify this discussion, I’ll now de-
fine some terms based on the formal
computational model known as the
“tagged signal model.”15 A design is a
description of a system; for example,
a C program is a design, so is a C pro-
gram together with a choice of micro-
processor, peripherals, and operating
system. The latter design (a C program
combined with these design choices) is
more detailed (less abstract) than the
former.

More precisely, a design is a set of
behaviors. A behavior is a valuation
of observable variables, including all
externally supplied inputs. These vari-
ables may themselves be functions;
for example, in a very detailed design,
each behavior may be a trace of electri-
cal signals at the system’s inputs and
outputs. The semantics of a design is a
set of behaviors.

In practice, a design is given in a de-
sign language that may be formal, in-
formal, or some mixture of formal and
informal. A design in a design language
expresses the intent of the designer by
defining the set of acceptable behav-
iors. Clearly, if the design language
has precise (mathematical) semantics,
then the set of behaviors is unambigu-
ous. There could, of course, be errors
in the expression, in which case the
semantics will include behaviors not
intended by the designer. For example,
a function given in a pure functional
programming language is a design. A
designer can define a behavior to be a
pair of inputs and outputs (arguments
and results). The semantics of the pro-
gram is the set of all possible behaviors
that defines the function specified by
the program. Alternatively, we could
define a behavior to include timing in-
formation (when the input is provided

74 communications of the acm | may 2009 | vol. 52 | no. 5

contributed articles

programmer or program analysis tool
in reasonable time.

Designs are generally abstractions
of systems, omitting certain details.
For example, even the most detailed
design may not specify how behaviors
change if the system is incinerated or
crushed. However, an implementation
of the design does have specific reac-
tions to these events (albeit probably
not predictable reactions). Reliability is
the extent to which an implementation
of a design delivers correct behaviors
over time and under varying operat-
ing conditions. A system that tolerates
more operating conditions or remains
correct for a longer period of time is
more reliable. Operating conditions in-
clude those in the environment (such
as temperature, input values, timing
of inputs, and humidity) but may also
include those in the system itself (such
as fault conditions like failures in com-
munications and loss of power).

A brittle system is one in which small
changes in the operating conditions or
in the design yield incorrect behaviors.
Conversely, a robust system remains
correct with small changes in operat-
ing conditions or in design. Making
these concepts mathematically precise
is extremely difficult for most design
languages, so engineers are often lim-
ited to intuitive and approximate as-
sessments of these properties.

Requirements
Embedded systems have always been
held to a higher reliability standard
than general-purpose computing sys-
tems. Consumers do not expect their
TVs to crash and reboot. They count
on highly reliable cars in which com-
puter controllers have dramatically
improved both reliability and efficien-
cy compared to electromechanical or
manual controllers. In the transition
to CPS, the expectation of reliability
will only increase. Without improved
reliability, CPS will not be deployed
into such applications as traffic con-
trol, automotive safety, and health care
in which human lives and property are
potentially at risk.

The physical world is never entirely
predictable. A CPS will not operate in
controlled environments and must be
robust to unexpected conditions and
adaptable to subsystem failures. Engi-
neers face an intrinsic tension between

predictable performance and an unpre-
dictable environment; designing reli-
able components makes it easier to as-
semble these components into reliable
systems, but no component is perfectly
reliable, and the physical environment
will inevitably manage to foil reliability
by presenting unexpected conditions.
Given components that are reliable,
how much can designers depend on
that reliability when designing a sys-
tem? How do they avoid brittle design?

The problem of designing reliable
systems is not new in engineering. Two
basic engineering tools are analysis
and testing. Engineers analyze designs
to predict behaviors under various op-
erating conditions. For this analysis to
work, the properties of interest must
be predictable and yield to such analy-
sis. Engineers also test systems under
various operating conditions. Without
repeatable properties, testing yields in-
coherent results.

Digital circuit designers have the
luxury of working with a technology
that delivers predictable and repeat-
able logical function and timing. This
predictability and reliability holds de-
spite the highly random underlying
physics. Circuit designers have learned
to harness intrinsically stochastic
physical processes to deliver a degree
of repeatability and predictability that
is unprecedented in the history of hu-
man innovation. Software designers
should be extremely reluctant to give
up on the harnessing of stochastic
physical processes.

The principle designers must follow
is simple: Components at any level of
abstraction should be made as predict-
able and repeatable as is technological-
ly feasible. The next level of abstraction
above these components must com-
pensate for any remaining variability
with robust design.

Some successful designs today fol-
low this principle. It is (still) technically
feasible to make predictable gates with
repeatable behaviors that include both
logical function and timing. Engineers
design systems that count on these
behaviors being repeatable. It is more
difficult to make wireless links predict-
able and repeatable. Engineers compen-
sate one level up, using robust coding
schemes and adaptive protocols.

Is it technically feasible to make
software systems that yield predictable

and repeatable properties for a CPS? At
the foundation of computer architec-
ture and programming languages, soft-
ware is essentially perfectly predictable
and repeatable, if we consider only the
properties expressed by the program-
ming languages. Given an imperative
language with no concurrency, well-
defined semantics, and a correct com-
piler, designers can, with nearly 100%
confidence, count on any computer
with adequate memory to perform ex-
actly what is specified in the program.

The problem of how to ensure reli-
able and predictable behavior arises
when we scale up from simple pro-
grams to software systems, particularly
to CPS. Even the simplest C program is
not predictable and repeatable in the
context of CPS applications because
the design does not express properties
that are essential to the system. It may
execute perfectly, exactly matching its
semantics (to the extent that C has se-
mantics) yet still fail to deliver the prop-
erties needed by the system; it could,
for example, miss timing deadlines.
Since timing is not in the semantics
of C, whether or not a program misses
deadlines is irrelevant to determining
whether it has executed correctly but
is very relevant to determining whether
the system has performed correctly. A
component that is perfectly predict-
able and repeatable turns out not to be
predictable and repeatable in the di-
mensions that matter. Such lack of pre-
dictability and repeatability is a failure
of abstraction.

The problem of how to ensure pre-
dictable and repeatable behavior gets
more difficult as software systems get
more complex. If software designers
step outside C and use operating sys-
tem primitives to perform I/O or set up
concurrent threads, they immediately
move from essentially perfect predict-
ability and repeatability to wildly non-
deterministic behavior that must be
carefully anticipated and reigned in by
the software designer.14 Semaphores,
mutual exclusion locks, transactions,
and priorities are some of the tools
software designers have developed to
attempt to compensate for the loss of
predictability and repeatability.

But computer scientists must ask
whether the loss of predictability and
repeatability is necessary. No, it is not.
If we find a way to deliver predictable

contributed articles

may 2009 | vol. 52 | no. 5 | communications of the acm 75

and repeatable timing, then we do not
eliminate the core need to design ro-
bust systems but dramatically change
the nature of the challenge. We must
follow the principle of making systems
predictable and repeatable, if techni-
cally feasible, and give up only when
there is convincing evidence that deliv-
ering this result is not possible or cost-
effective. There is no such evidence
that delivering predictable and repeat-
able timing in software is not possible

or cost effective. Moreover, we have
an enormous asset: The substrate on
which we build software systems (digi-
tal circuits) is essentially perfectly pre-
dictable and repeatable with respect to
properties we most care about—timing
and logical functionality.

Considering the enormous poten-
tial of CPS, I’ll now further examine the
failure of abstraction. The figure here
schematically outlines some of the
abstraction layers on which engineers

depend when designing embedded
systems. In the 3D Venn diagram, each
box represents a set of designs. At the
bottom is the set of all microproces-
sors; an element of this set (such as the
Intel P4-M 1.6GHz) is a particular mi-
croprocessor design. Above that is the
set of all x86 programs, each of which
can run on that processor; this set is
defined precisely (unlike the previous
set of microprocessors, which is dif-
ficult to define) by the x86 instruction

actor-oriented models

Posix threads

Linux processes

C programs

SystemC programs

standard cell designs

ASIC chips

microprocessors

P4-M 1.6GHz

JVM

FPGAs

Java bytecode programs

ja
va

c

exe
cu

te
s

x86 programs

FPGA configurations

synthesizable
VHDL programs

VHDL programs

C++ programs

Java programs

task-level models

programs

executables

silicon chips

performance models

abstraction layers in computing.

76 communications of the acm | may 2009 | vol. 52 | no. 5

contributed articles

The design of an abstraction layer
involves many choices, and computer
scientists have uniformly chosen to
hide timing properties from all higher
abstractions. Wirth30 says, “It is pru-
dent to extend the conceptual frame-
work of sequential programming as
little as possible and, in particular, to
avoid the notion of execution time.”
However, in an embedded system,
computations interact directly with the
physical world, where time cannot be
abstracted away.

Designers have traditionally cov-
ered these failures by finding worst-
case execution time (WCET) bounds29
and using real-time operating systems
(RTOSs) with well-understood schedul-
ing policies.7 Despite recent improve-
ments, these policies often require
substantial margins for reliability,
particularly as processor architectures
develop increasingly elaborate tech-
niques for dealing stochastically with
deep pipelines, memory hierarchy, and
parallelism.11, 28

Modern processor architectures
render WCET virtually unknowable;
even simple problems demand heroic
efforts by the designer. In practice, reli-
able WCET numbers come with many
caveats that are increasingly rare in
software. Worse, any analysis that is
done, no matter how tight the bounds,
applies to only a specific program on a
specific piece of hardware.

Any change in either hardware or
software renders the analysis invalid.
The processor ISA has failed to pro-
vide adequate abstraction. Worse, even
perfectly tight WCET bounds for soft-
ware components do not guarantee
repeatability. The so-called “Richard’s
anomalies,” explained nicely by But-
tazzo,7 show that under popular ear-
liest-deadline first (EDF) scheduling
policies, the fact that all tasks finish
early might cause consequential dead-
lines to be missed that would not have
been missed if the tasks had finished
at the WCET bound. Designers must
be very careful to analyze their sched-
uling strategies under worst-case and
best-case execution times, along with
everything in between.

Timing behavior in RTOSs is coarse
and increasingly uncontrollable as
the complexity of the system increases
(such as by adding inter-process com-
munication). Locks, priority inversion,

set architecture (ISA). Any program
coded in that instruction set is a mem-
ber of the set; for example, a particular
implementation of a Java virtual ma-
chine may be a member of the set. As-
sociated with that member is another
set—all JVM bytecode programs—each
of which (typically) synthesized by a
compiler from a Java program, which is
a member of the set of all syntactically
valid Java programs. Again, this set is
defined precisely by Java syntax.

Each of these sets provides an ab-
straction layer intended to isolate a
designer (the person or program that
selects elements of the set) from the
details below. Many of the best inno-
vations in computing have come from
careful and innovative construction
and definition of these sets.

However, in the current state of em-
bedded software, nearly every abstrac-
tion has failed. The ISA, meant to hide
hardware implementation details from
the software, has failed because ISA us-
ers care about timing properties ISA
cannot express. The programming lan-
guage, which hides details of ISA from
the program logic, has failed because
no widely used programming language
expresses timing properties. Timing is
an accident of implementation. A real-
time operating system hides details
of the program from their concurrent
orchestration yet fails if the timing of
the underlying platform is not repeat-
able or execution times cannot be de-
termined. The network hides details
of electrical or optical signaling from
systems, but most standard networks
provide no timing guarantees and fail
to provide an appropriate abstraction.
A system designer is stuck with a sys-
tem design (not just implementation)
in silicon and wires.

All embedded systems designers
face this problem. For example, air-
craft manufacturers must stockpile (in
advance) the electronic parts needed
for the entire production line of a par-
ticular aircraft model to ensure they
don’t have to recertify the software if
the hardware changes. “Upgrading” a
microprocessor in an engine control
unit for a car requires thorough re-test-
ing of the system.

Even “bug fixes” in the software or
hardware can be extremely risky, since
they can inadvertently change the sys-
tem’s overall timing behavior.

interrupts, and similar concurrency
issues break the formalisms, forcing
designers to rely on bench testing that
is often incapable of identifying subtle
timing bugs. Worse, these techniques
generally produce brittle systems in
which small changes cause big failures.

While there are no absolute guaran-
tees in life, or in computing, we should
not blithely discard achievable predict-
ability and repeatability. Synchronous
digital hardware—the most basic tech-
nology on which computers are built—
reliably delivers astonishingly precise
timing behavior. However, software
abstractions discard several orders
of magnitude of precision. Compare
the nanosecond-scale precision with
which hardware raises an interrupt
request to the millisecond-level preci-
sion with which software threads re-
spond. Computer science doesn’t have
to do it this way.

solutions
The timing problems I raise here per-
vade computing abstractions from top
to bottom. As a consequence, most
specialties within the field have work
to do. I suggest a few directions, all
drawn from existing contributions,
suggesting that the vision I’ve out-
lined, though radical, is indeed achiev-
able. We do not need to restart com-
puter science from scratch.

Computer architecture. The ISA of a
processor provides an abstraction of
computing hardware for the benefit of
software designers. The value of this
abstraction is enormous, including
that generations of CPUs that imple-
ment the same ISA can have different
performance numbers without com-
promising compatibility with exist-
ing software. Today’s ISAs hide most
temporal properties of the underlying
hardware. Perhaps the time is right
to augment the ISA abstraction with
carefully selected timing properties,
so the compatibility extends to time-
sensitive systems. This is the objec-
tive of a new generation of “precision
timed” machines.9

Achieving timing precision is easy
if system designers are willing to forgo
performance; the engineering chal-
lenge is to deliver both precision and
performance. For example, although
cache memories may introduce unac-
ceptable timing variability, cost-effec-

contributed articles

may 2009 | vol. 52 | no. 5 | communications of the acm 77

tive system design cannot do without
memory hierarchy. The challenge is to
provide memory hierarchy with repeat-
able timing. Similar challenges apply
to pipelining, bus architectures, and
I/O mechanisms.

Programming languages. Program-
ming languages provide an abstrac-
tion layer above the ISA. If the ISA is to
expose selected temporal properties
and programmers wish to exploit the
exposed properties, then one approach
would be to reflect these properties in
the languages.

There is a long and somewhat check-
ered history of attempts by language
developers to insert timing features
into programming languages. For ex-
ample, Ada can express a delay opera-
tion but not timing constraints. Real-
Time Java augments the Java model
with ad-hoc features that reduce the
variability of timing. The synchronous
languages5 (such as Esterel, Lustre, and
Signal) lack explicit timing constructs
but, in light of their predictable and
repeatable approach to concurrency,
can yield more predictable and repeat-
able timing than most alternatives.
They are limited only by the underlying
platform. In the 1970s, Modula-2 gave
control over scheduling of co-routines,
making it possible, albeit laboriously,
for programmers to exercise coarse
control over timing. Like the synchro-
nous languages, timing properties of
programs developed with Modula-2 are
not explicit in the program. Real-time
Euclid, on the other hand, expresses
process periods and absolute start
times.

Rather than create new languages,
an alternative is to annotate programs
written in conventional languages. For
example, Lee16 gave a taxonomy of tim-
ing properties that must be expressible
in such annotations. TimeC17 introduc-
es extensions to specify timing require-
ments based on events, with the objec-
tive of controlling code generation in
compilers to exploit instruction-level
pipelining. Domain-specific languages
with temporal semantics have taken
hold in some. For example, Simulink,
from The MathWorks, provides a graph-
ical syntax and language for timed sys-
tems that can be compiled into embed-
ded real-time code for control systems.
LabVIEW, from National Instruments,
which is widely used in instrumenta-

tion systems, recently added timed
extensions. Another example from the
1970s, PEARL,22 was also aimed at con-
trol systems and could specify absolute
and relative start times, deadlines, and
periods.

However, all these programming
environments and languages remain
outside the mainstream of software
engineering, are not well integrated
into software engineering processes
and tools, and have not benefited from
many innovations in programming
languages.

Software components. Software engi-
neering innovations (such as data ab-
straction, object-orientation, and com-
ponent libraries) have made it much
easier to design large complex software
systems. Today’s most successful com-
ponent technologies—class libraries
and utility functions—do not export
even the most rudimentary temporal
properties in their APIs. Although a
knowledgeable programmer may be
savvy enough to use a hash table over
a linked list when random access is
required, the API for these data struc-
tures expresses nothing about access
times. Component technologies with
temporal properties are required, pro-
viding an attractive alternative to real-
time programming languages. An early
example from the mid-1980s, Larch,4
gave a task-level specification language
that integrated functional descriptions
with timing constraints. Other exam-
ples function at the level of coordina-
tion language rather than specification
language. A coordination language ex-
ecutes at runtime; a specification lan-
guage does not.

For example, Broy6 focused on
timed concurrent components com-
municating via timed streams. Zhao
et al.31 developed an actor-based coor-
dination language for distributed real-
time systems based on discrete-event
systems semantics. New coordination
languages, where the components are
given using established programming
languages (such as Java and C++), may
be more likely to gain acceptance than
new programming languages that re-
place established languages. When co-
ordination languages are given rigor-
ous timed semantics, designs function
more like models than like programs.

Many challenges remain in devel-
oping coordination languages with

in an
embedded
system,
computations
interact directly
with the
physical world,
where time
cannot be
abstracted away.

78 communications of the acm | may 2009 | vol. 52 | no. 5

contributed articles

timed semantics. Naïve abstractions of
time (such as the discrete-time models
commonly used to analyze control and
signal-processing systems) do not re-
flect the true behavior of software and
networks.23 The concept of “logical ex-
ecution time”10 offers a more promis-
ing abstraction but ultimately relies on
being able to achieve worst-case execu-
tion times for software components.
This top-down solution depends on a
corresponding bottom-up solution.

Formal methods. Formal methods
use mathematical models to infer and
prove system properties. Formal meth-
ods that handle temporal dynamics are
less prevalent than those that handle
sequences of state changes, but there
is good work on which to draw. For ex-
ample, in interface theories,8 software
components export temporal inter-
faces, and behavioral-type systems vali-
date the composition of components
and infer interfaces for compositions
of components; for specific interface
theories of this type, see Kopetz and
Suri13 and Thiele et al.27

Various temporal logics support rea-
soning about the timing properties of
systems.3 Temporal logics mostly deal
with “eventually” and “always” proper-
ties to reason about safety and liveness,
and various extensions support metric
time.1,21 A few process algebras also
support reasoning about time.19, 24 The
most accepted formalism for the speci-
fication of real-time requirements is
timed automata and its variations.2

Another approach widely used in in-
strumentation systems uses static anal-
ysis of programs coupled with models
of the underlying hardware.29 Despite
gaining traction in industry, it suffers
from fundamental limitations, with
brittleness the most important. Even
small changes in either the hardware
or the software invalidate the analysis.
A less-important limitation, though
worth noting, is that the use of Turing-
complete programming languages
and models leads to undecidability. In
other words, not all programs can be
analyzed.

All these techniques enable some
form of formal verification. However,
properties that are not formally speci-
fied cannot be formally verified. Thus,
for example, the timing behavior of
software that is not expressed in the
software must be separately specified,

and the connections between specifi-
cations and between specification and
implementations become tenuous.
Moreover, despite considerable prog-
ress in automated abstraction, scal-
ability to real-world systems remains a
challenging hurdle. Although offering
a wealth of elegant results, the effect
of most of these formal techniques on
engineering practice has been small
(though not zero). In general-purpose
computing, type systems are formal
methods that have had enormous ef-
fect by enabling compilers to catch
many programming errors. What is
needed is time systems with the power
of type systems.

Operating systems. Scheduling is a
key service of any operating system,
and scheduling of real-time tasks is a
venerable, established area of inquiry
in software design. Classic techniques
(such as rate-monotonic scheduling
and EDF) are well studied and have
many elaborations. With a few excep-
tions,10, 12 the field of operating system
development has seen less emphasis
on repeatability over optimization. Re-
peatability is not highly valued in gener-
al-purpose applications. Consider this
challenge: To get repeatable real-time
behavior, a CPS designer may use the
notion of logical execution time (LET)10
for the time-sensitive portions of a sys-
tem and best-effort execution for the
less-time-sensitive portions. The best-
effort portions typically have no dead-
lines, so EDF gives them lowest priority.
However, the correct optimization is to
execute the best-effort portions as early
as possible, subject to the constraint
that the LET portions match their tim-
ing specifications. Even though the LET
portions have deadlines, they should
not necessarily be given higher prior-
ity during program execution than the
best-effort portions.

Designers of embedded systems de-
liberately avoid mixing time-sensitive
operations with best-effort operations.
Every cellphone in use has at least two
CPUs, one for the difficult real-time
tasks of speech coding and radio func-
tions, the other for the user interface,
database, email, and networking func-
tionality. The situation is more compli-
cated in cars and manufacturing sys-
tems, where distinct CPUs tend to be
used for myriad distinct features. The
design is this way, not because there are

Designers must
be very careful
to analyze their
scheduling
strategies under
worst-case and
best-case execution
times, along
with everything
in between.

contributed articles

may 2009 | vol. 52 | no. 5 | communications of the acm 79

not enough cycles in the CPUs to com-
bine the tasks, but because software
designers lack reliable technology for
mixing distinct types of tasks. Focus-
ing on repeatability of timing behavior
could lead to such a mixing technol-
ogy; work on deferrable/sporadic serv-
ers18 may provide a promising point of
departure.

Networking. In the context of gener-
al-purpose networks, timing behavior
is viewed as a QoS problem. Consider-
able activity in the mid-1980s to mid-
1990s led to many ideas for address-
ing QoS concerns, few of which were
deployed with any long-lasting benefit.
Today, designers of time-sensitive ap-
plications on general-purpose net-
works (such as voice over IP) struggle
with inadequate control over network
behavior.

Meanwhile, in embedded systems,
specialized networks (such as FlexRay
and the time-triggered architecture12)
have emerged to provide timing as a cor-
rectness property rather than as a QoS
property. A flurry of recent activity has
led to a number of innovations (such as
time synchronization, IEEE 1588), syn-
chronous Ethernet, and time-triggered
Ethernet). At least one of them—syn-
chronous Ethernet—is encroaching on
general-purpose networking, driven by
demand for convergence of telephony
and video services with the Internet,
as well as by the potential for real-time
interactive games. However, introduc-
ing timing into networks as a semantic
property rather than as a QoS problem
inevitably leads to an explosion of new
time-sensitive applications, helping re-
alize the CPS vision.

conclusion
Realizing the potential of CPS requires
first rethinking the core abstractions
of computing. Incremental improve-
ments will continue to help, but ef-
fective orchestration of software and
physical processes requires semantic
models that reflect properties of inter-
est in both.

I’ve focused on making temporal dy-
namics explicit in computing abstrac-
tions so timing properties become
correctness criteria rather than a QoS
measure. The timing of programs and
networks should be as repeatable and
predictable as is technologically fea-
sible at reasonable cost. Repeatability

for comparing models of computation. IEEE
Transactions on Computer-Aided Design of Circuits
and Systems 17, 12 (dec. 1998), 1217–1229.

16. lee, I., davidson, s., and Wolfe, V. Motivating Time as
a First-Class Entity, Technical Report MS-CIS-87-54.
department of Computer and Information science,
university of Pennsylvania, Philadelphia, Pa, aug.
(revised oct.) 1987.

17. leung, a., Palem, K.V., and Pnueli, a. TimeC: A Time-
Constraint Language for ILP Processor Compilation,
Technical Report TR1998-764. new york university,
new york, 1998.

18. liu, J.W.s. Real-Time Systems. Prentice-Hall, upper
saddle river, nJ, 2000.

19. liu, X. and lee, e.a. CPO Semantics of Timed
Interactive Actor Networks, Technical Report EECS-
2006-67. university of California, berkeley, May 18,
2006.

20. Maler, o., Manna, z., and Pnueli, a. In Real-Time:
Theory in Practice: Proceedings of the REX Workshop,
Vol. 600 LNCS, J.W. de bakker, C. Huizing, W.P.
de roever, and g. rozenberg, eds. (Mook, the
netherlands, June 3–7). springer, berlin/Heidelberg,
1991, 447–484.

21. Manna, z and Pnueli, a. The Temporal Logic of
Reactive and Concurrent Systems. springer, berlin,
1992.

22. Martin, t. real-time programming language Pearl:
Concept and characteristics. In Proceedings of the
Computer Software and Applications Conference,
Ieee Press, 1978, 301–306.

23. nghiem, t., Pappas, g.J., girard, a., and alur, r. time-
triggered implementations of dynamic controllers.
In Proceedings of 6th ACM & IEEE Conference on
Embedded Software (seoul, Korea, oct. 23–25). aCM
Press, new york, 2006, 2–11.

24. reed, g.M. and roscoe, a.W. a timed model for
communicating sequential processes. Theoretical
Computer Science 58, 1–3 (June 1988), 249–261.

25. stankovic, J.a., lee, I., Mok, a., and rajkumar, r.
opportunities and obligations for physical computing
systems. Computer 38, 11 (nov. 2005), 23–31.

26. stankovic, J.a. Misconceptions about real-time
computing: a serious problem for next-generation
systems. Computer 21, 10 (oct. 1998), 10–19.

27. thiele, l., Wandeler, e., and stoimenov, n. real-time
interfaces for composing real-time systems. In
Proceedings of Sixth ACM & IEEE Conference on
Embedded Software (seoul, Korea, oct. 23–25). aCM
Press, new york, 2006, 34–43.

28. thiele, l. and Wilhelm, r. design for timing
predictability. Real-Time Systems 28, 2–3 (nov. 2004),
157–177.

29. Wilhelm, r., engblom, J., ermedahl, a., Holsti, n.,
thesing, s., Whalley, d., bernat, g., Ferdinand, C.,
Heckmann, r., Mitra, t., Mueller, F., Puaut, I., Puschner,
P., staschulat, J., and stenstr, P. the worst-case
execution-time problem: overview of methods and
survey of tools. ACM Transactions on Embedded
Computing Systems 7, 3 (apr. 2008), 1–53.

30. Wirth, n. toward a discipline of real-time
programming. Commun. ACM 20, 8 (aug. 1977),
577–583.

31. zhao, y., lee, e.a., and liu, J. a programming model
for time-synchronized distributed real-time systems.
In Proceedings of the Real-Time and Embedded
Technology and Applications Symposium (bellevue,
Wa, apr. 3–6). Ieee Computer society Press, new
york. 2007, 1–10.

this work is supported in part by the Center for Hybrid
and embedded software systems at the university of
California, berkeley, which receives support from the u.s.
national science Foundation, army research office, air
Force office of scientific research, air Force research
lab, state of California Micro Program, and the following
companies: agilent, bosch, lockheed-Martin, national
Instruments, and toyota. For an extended version go
to www.eecs.berkeley.edu/Pubs/techrpts/2009/eeCs-
2009-30.html.

Edward A. Lee (eal@eecs.berkeley.edu) is the robert
s. Pepper distinguished Professor in the department
of electrical engineering and Computer sciences at the
university of California, berkeley.

© 2009 aCM 0001-0782/09/0500 $5.00

and predictability will not eliminate
timing variability and hence not elimi-
nate the need for adaptive techniques
and validation methods that work with
bounds on timing. But they do elimi-
nate spurious sources of timing vari-
ability, enabling precise and repeatable
timing when needed. The result will be
computing and networking technolo-
gies that enable vastly more sophisti-
cated CPS applications.

acknowledgments
Special thanks to Tom Henzinger, In-
sup Lee, Al Mok, Sanjit Seshia, Jack
Stankovic, Lothar Thiele, Reinhard
Wilhelm, Moshe Vardi, and the anony-
mous reviewers for their helpful com-
ments and suggestions.

References
1. abadi, M. and lamport, l. an old-fashioned recipe

for real time. ACM Transactions on Programming
Languages and Systems 16, 5 (sept. 1994), 1543–
1571.

2. alur, r. and dill, d.l. a theory of timed automata.
Theoretical Computer Science 126, 2 (apr. 1994),
183–235.

3. alur, r. and Henzinger, t. logics and models of real
time: a survey. In Real-Time: Theory in Practice:
Proceedings of the REX Workshop, Vol. 600 LNCS,
J.W. de bakker, C. Huizing, W.P. de roever, and g.
rozenberg, eds. (Mook, the netherlands, June 3–7).
springer, berlin/Heidelberg 1991, 74–106.

4. barbacci, M.r. and Wing, J.M. Specifying Functional
and Timing Behavior for Real-Time Applications,
Technical Report ESD-TR-86-208. Carnegie Mellon
university, Pittsburgh, Pa, dec. 1986.

5. benveniste, a. and berry, g. the synchronous
approach to reactive and real-time systems.
Proceedings of the IEEE 79, 9 (sept. 1991), 1270–
1282.

6. broy, M. refinement of time. Theoretical Computer
Science 253, 1 (Feb. 2001), 3–26.

7. buttazzo, g.C. Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms and Applications,
Second Edition. springer, berlin/Heidelberg, 2005.

8. dealfaro, l. and Henzinger, t.a. Interface theories
for component-based design. In Proceedings of the
First International Workshop on Embedded Software,
Vol. LNCS 2211. springer, berlin/Heidelberg, 2001,
148–165.

9. edwards, s.a. and lee, e.a. the case for the precision
timed (Pret) machine. In Proceedings of the Design
Automation Conference (san diego, Ca, June 4–8).
aCM Press, new york. 2007, 264–265.

10. Henzinger, t.a., Horowitz, b., and Kirsch, C.M. giotto: a
time-triggered language for embedded programming.
In Proceedings of the First International Workshop on
Embedded Software, Vol. LNCS 2211. springer, berlin/
Heidelberg, 2001, 166–184.

11. Kirner, r. and Puschner, P. obstacles in worst-case
execution time analysis. In Proceedings of the
Symposium on Object-Oriented Real-Time Distributed
Computing (orlando, Fl, May 5–7). Ieee Computer
society Press. new york, 2008, 333–339.

12. Kopetz, H. and bauer, g. the time-triggered
architecture. Proceedings of the IEEE 91, 1 (Jan.
2003), 112–126.

13. Kopetz, H. and suri, n. Compositional design of rt
systems: a conceptual basis for specification of
linking interfaces. In Proceedings of the Sixth IEEE
International Symposium on Object-Oriented Real-
Time Distributed Computing (Hakodate, Hokkaido,
Japan, May 14–16). Ieee Computer society Press,
2003, 51–60.

14. lee, e.a. the problem with threads. Computer 39, 5
(May 2006), 33–42.

15. lee, e.a and sangiovanni-Vincentelli, a. a framework

mailto:eal@eecs.berkeley.edu
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-30.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-30.html

80 communications of the acm | may 2009 | vol. 52 | no. 5

review articles

ThroughouT The hisTory of computer science, leading
researchers—including Turing, von Neumann, and
Minsky—have looked to nature. This inspiration
has often led to extraordinary results, some of which
acknowledged biology even in their names: cellular
automata, neural networks, and genetic algorithms, for
example.

Computing and biology have been converging ever
more closely for the past two decades, but with a vision
of computing as a resource for biology. The resulting
field of bioinformatics addresses structural aspects
of biology, and it has produced databases, pattern
manipulation and comparison methods, search tools,
and data-mining techniques.47, 48 Bioinformatics’ most
notable and successful application so far has been the
Human Genome Project, which was made possible by
the selection of the correct abstraction for representing
DNA (a language with a four-character alphabet).48 But
things are now proceeding in the reverse direction as
well. Biology is experiencing a heightening of

interest in system dynamics by inter-
preting living organisms as informa-
tion manipulators.30 It is thus moving
toward “systems biology.”31 There is
no general agreement on systems bi-
ology’s definition, but whatever we se-
lect must embrace at least four charac-
terizing concepts. Systems biology is a
transition:

From qualitative biology toward a ˲

quantitative science;
From reductionism to system-level ˲

understanding of biological phenomena;
From structural and static de- ˲

scriptions to functional and dynamic
properties; and

From descriptive biology to mecha- ˲

nistic/causal biology.
These features highlight the fact that

causality between events, the temporal
ordering of interactions and the spatial
distribution of components are becom-
ing essential to addressing biological
questions at the system level. This de-
velopment poses new challenges to de-
scribing the step-by-step mechanistic
components of phenotypical phenom-
ena, which bioinformatics does not ad-
dress.9

One of the philosophical founda-
tions of systems biology is mathemati-
cal modeling, which specifies and tests
hypotheses about systems;7 it is also
a key aspect of computational biology
because it deals with the solution of
systems of equations (models) through
computer programs.37 Solution of sys-
tems of equations is sometimes termed
“simulation.” By whatever name, the
main concept to be exploited involves
instead algorithms and the (program-
ming) languages used to specify them.
We can then recover temporal, spatial,
and causal information on the mod-
eled systems by using well-established
computing techniques that deal with
program analysis, composition, and
verification; integrated software-devel-
opment environments; and debugging
tools as well as computational com-
plexity and algorithm animation. The
convergence between computing and
systems biology on a peer-to-peer basis
is then a valuable opportunity that can

doi:10.1145/1506409.1506427

The convergence of CS and biology will serve
both disciplines, providing each with greater
power and relevance.

by corrado Priami

algorithmic
systems
biology

may 2009 | vol. 52 | no. 5 | communications of the acm 81

I
l

l
u

s
t

r
a

t
I

o
n

 b
y

 r
o

b
e

r
t

 H
o

d
g

I
n

82 communications of the acm | may 2009 | vol. 52 | no. 5

review articles

fuel the discovery of solutions to many
of the current challenges in both fields,
thereby moving toward an algorithmic
view of systems biology.

The main distinction between al-
gorithmic systems biology and other
techniques used to model biological
systems stems from the intrinsic differ-
ence between algorithms (operational
descriptions) and equations (denota-
tional descriptions). Equations specify
dynamic processes by abstracting the
steps performed by the executor, thus
hiding from the user the causal, spa-
tial, and temporal relationships be-
tween those steps. Equations describe
the changing of variables’ values when
a system moves from one state to an-
other, while algorithms highlight why
and how that system transition occurs.
We could simplify the difference by
stating that we move from the pictures
described by equations to the film de-
scribed by algorithms.

Algorithms precisely describe the
behavior of systems with discrete state
spaces, while equations describe an
average behavior of systems with con-
tinuous state spaces. However, it must
be noted that hybrid approaches exist;
they manipulate discrete state spaces
annotated with continuous variables
through algorithms.2, 15

It is well known in computer science
that input-output relationships are not

suitable for characterizing the behav-
ior of concurrent systems, where many
threads of execution are simultaneously
active (in biological systems, millions of
interactions may be involved). Concur-
rency theory was developed as a formal
framework in which to model and ana-
lyze parallel, distributed, and mobile
systems, and this led to the definition
of specific programming primitives and
algorithms. Equations, by contrast, are
sequential tools that attempt to model
a system whose behavior is completely
determined by input-output relations.
The sequential assumption of equations
also impacts the notion of causality that
coincides with the temporal ordering of
events. In a parallel context, causality is
instead a function of concurrency14 and
may not coincide with the temporal or-
dering of the observed events. Therefore
relying on a sequential modeling style
to describe an inherently concurrent
system immediately makes the modeler
lose the connection with causality.

The full involvement of computer
science in systems biology can be an
arena in which to distinguish between
computing and mathematics, thereby
clarifying a discussion that has been go-
ing on for 40 years.21, 33 Algorithms and
the coupling of executions/executors
are key to that differentiation.

Algorithms force modelers/biolo-
gists to think about the mechanisms

governing the behavior of the system
in question. Therefore they are both a
conceptual tool that helps to elucidate
fundamental biological principles and
a practical tool for expressing and favor-
ing computational thinking.53 Similar
ideas have been recently expressed in
Ciocchetta et al.12

Algorithms are quantitative when
the mechanism for selection of the next
step is based on probabilistic/temporal
distributions associated with either the
rules or the components of the system
being modeled. Because the dynamics
of biological systems are mainly driven
by quantities such as concentrations,
temperatures, and gradients, we must
clearly focus on quantitative algorithms
and languages.

Algorithms can help in coherently
extracting general biological principles
that underlie the enormous amount
of data produced by high-throughput
technologies. Algorithms can also or-
ganize data in a clear and compact way,
thus producing knowledge from infor-
mation (data). This point actually aligns
with the idea of Nobel laureate Sydney
Brenner that biology needs a theory able
to highlight causality and abstract data
into knowledge so as to elucidate the ar-
chitecture of biological complexity.

Algorithms need an associated syn-
tax and semantics in order to specify
their intended meaning so that an ex-
ecutor can precisely and unambigu-
ously perform the steps needed to
implement them. In this way, we are
entering the realm of programming
languages from both a theoretical and
practical perspective.

The use of programming languages
to model biological systems is an emerg-
ing field that enhances current model-
ing capabilities (richness of aspects that
can be described as well as the easiness,
composability, and reusability of mod-
els).42 The underlying metaphor is one
that represents biological entities as
programs being executed simultane-
ously and that represents the interac-
tions of two entities by the exchange of
messages between the programs.46 The
biological entities involved in a bio-
logical process and the corresponding
programs in the abstract model are in a
1:1 correspondence, thus avoiding the
need to deal directly with the combina-
torial explosion of variables needed in
the mathematical approach.

figure 1: algorithms enable a transformation from “pictures” to “films.” the current
practice in biological systems entails modeling the variation of measures through
equations, with no causal explanation given (upper part of the figure). But algorithms
describe the steps from one picture to the next in a causal continuum of the actions that
make the measures change, thus providing a dynamic view of the system in question.

review articles

may 2009 | vol. 52 | no. 5 | communications of the acm 83

This metaphor explicitly refers to
concurrency. Indeed, concurrency is
endemic in nature, and we see this in
examples ranging from atoms to mol-
ecules in living organisms to the organ-
isms themselves to populations to as-
tronomy. If we are going to reengineer
artificial systems to match the efficien-
cy, resilience, adaptability, and robust-
ness of natural systems, then concur-
rency must be a core design principle
that, at the end of the day, will simplify
the entire design and implementation
process. Concurrency, therefore, must
not be considered as just a tool to im-
prove the performance of sequential-
programming languages and architec-
tures, which is the standard practice in
most actual cases.

Some programming languages—
those that address concurrency as a
core primitive issue and that aim at
modeling biological systems—are in
fact emerging from the field of process
calculi.5, 15 These concurrent program-
ming languages are very promising for
establishing a link between artificial
concurrent programming and natural
phenomena, thus contributing to the
exposure of computer science to experi-
mental natural sciences. Further, con-
current programming languages are
suitable candidates for easily and effi-
ciently expressing the mechanistic rules
that propel algorithmic systems biol-
ogy. The suitability of these languages
is reinforced by their clean and formal
definition, which supports both the ver-
ification of properties and the analysis
of systems and provides no engineering
surprises, as could happen with classi-
cal thread and lock mechanisms.52

A recent paper by Nobel laureate Paul
Nurse maintains that a better under-
standing of living organisms requires
“both the development of the appropri-
ate languages to describe information
processing in biological systems and the
generation of more effective methods to
translate biochemical descriptions into
the functioning of the logic circuits that
underpin biological phenomena.”38
This description perfectly reflects the
need for a deeper involvement of com-
puter science in biology and the need of
an algorithmic description of life based
on a suitable language that makes anal-
yses easier. Nurse’s statement implicitly
assumes that the modeling techniques
adopted so far are not adequate to ad-

dress the new challenges raised by sys-
tems biology.

Finally, it is important to note that
process calculi are not the only theoret-
ical basis of algorithmic systems biol-
ogy. Petri nets, logic, rewriting systems,
and membrane computing are other
relevant examples of formal methods
applied to systems biology (for a col-
lection of tutorials see Bernardo et al6).
Other approaches that are more closely
related to software-design principles
are the adaptation of UML to biologi-
cal issues (see www.biouml.org) and
statecharts.28 Finally, cellular automa-
ta27 need to be considered as well, with
their game of life.

the Role of computing
According to Denning,18 the field of
computing addresses information
processes, both artificial and natural,
by manipulating different layers of ab-
straction at the same time and structur-
ing their automation on a machine.53
These abilities are relevant in the con-
vergence of computer science and biol-
ogy in assuring that the correct model-
ing abstraction for biological systems
be found that is not created solely by
mimicking nature. A beautiful example
of this statement is that airplanes do not
flap their wings, though they fly.50

Augmenting the range of applica-
tive domains taken from other fields is
the main strategy for making computer
science grow as a discipline, for improv-
ing the core themes developed so far,
and for making it more accessible to a
broader community.32 Therefore adding
an algorithmic component to systems
biology is an especially valuable oppor-
tunity, as this new approach covers, in
a unique challenge, four core practices
of computer science: programming,
systems thinking, modeling, and inno-
vation.17 Algorithmic systems biology is
a bona fide case of innovation fostered
by computer science, as it uses novel
ideas for modeling and analyzing ex-
periments. Moreover, the biotech and
pharmaceuticals industries could adopt
algorithmic systems biology in order to
streamline their organizations and in-
ternal processes with the aim of improv-
ing productivity.52

To have an impact on the scientific
community and to truly foster innova-
tion, algorithmic systems biology must
provide conceptual and software tools

Design principles
of large software
systems can help
in developing
an algorithmic
discipline not
only for systems
biology but also for
synthetic biology—
a new area of
research that
aims at building,
or synthesizing,
new biological
systems and
functions by
exploiting new
insights from
science and
engineering.

http://www.biouml.org

84 communications of the acm | may 2009 | vol. 52 | no. 5

review articles

that address real biological problems.
Hence the techniques and prototypes
developed and tested on proof-of-con-
cept examples must scale smoothly to
real-life case studies. Scalability is not
a new issue in computing; it was first
raised several decades ago when com-
puters started to become connected
over dispersed geographical regions
and the first high-performance archi-
tectures were emerging.39 Algorithmic
systems biology can build on the large
set of successfully defined and novel
techniques that subsequently were
developed—particularly in the areas
of programming languages, operating
systems, and software-development
environments—to address the scalable
specification and implementation of
large distributed systems.

Consider the exploitation, at user
level, of the Internet. The dynamics
(evolution and use) of the Internet have
no centralized point of control and are
based both on the interaction between
nodes and on the unpredictable birth
and death of new nodes—characteris-
tics similar to the simultaneously active
threads of interactions in living systems.
Yet although biological processes share
many similarities with the dynamics of
large computer networks, they still have
some unique features. These include
self-reproduction of components (dat-
ing back to von Neumann’s self-repro-
ducing automata in computing and to
Rosen’s systems, closed under efficient
causality, in biology), auto-adaptation
to different environments, and self-
repair. Therefore it seems natural to
check whether the programming and
analysis techniques developed for com-
puter networks and their formal theo-
ries could shed light on biology when
suitably adapted.

Such innovation should be facilitated
in the life sciences community by pre-
senting computers as high-throughput
tools for quantitatively analyzing infor-
mation processes and systems—tools
that can be made greatly customized
through software to work with specific
processes or systems. In other words,
software may be used to plan and con-
trol information experiments to serve a
myriad of purposes.

The topic of simulation in particular
needs some consideration. Simulation
has evolved since the early days of com-
puting into a more quantitative algorith-

mic discipline: the rules of interaction
between components are used to build
programs, as opposed to abstracting
overall behavior through equations. The
execution of algorithmic simulations re-
lies on deep computing theories, while
mathematical simulations are solved
with the support of computer programs
(where computing is just a service).22 Ex-
ecution of algorithms therefore exhibits
emergent behavior produced at system
level, through the set of local interac-
tions between components, without
the need to specify that behavior from
the beginning. This property is crucial
to the predictive power of the simula-
tion approach, especially for biological
applications. The complex interactions
of species, the sensitivity of their inter-
actions (expressed through stochastic
parameters), and the localization of the
components in a three-dimensional hi-
erarchical space make it impossible to
understand the dynamic evolution of
a biological system without a compu-
tational execution of the models. The
algorithms that are executed on top of
stochastic engines and governed by the
quantities described here are funda-
mental to discovering new organismic
behavior and thus to creating new bio-
logical hypotheses.

Algorithmic systems biology can also
be easily integrated with bioinformat-
ics. An example that would benefit from
such integration is the modeling of the
immune system, because the dynamics
of an immune response involve a ge-
nomic resolution scale in addition to the
dimensions of time and space. Insert-
ing genomic sequences of viruses into
models is quite easy for an algorithmic
modeling approach, but it is extremely
difficult in a classic mathematical mod-
el,45 which suffers from generalization
because a population of heterogeneous
agents is usually abstracted into a single
continuous variable.8 Deepening our
understanding of the immune system
through computing models is funda-
mental to properly attacking infectious
illnesses such as malaria or HIV as well
as autoimmune diseases that include
rheumatoid arthritis and type I diabe-
tes. Also, computer science can exploit
such models to further propel research
on artificial immune systems in the
field of security.23

Design principles of large software
systems can help in developing an algo-

algorithmic
systems biology
completely adopts
the main assets
of our computing
discipline:
hierarchical,
systems, and
algorithmic thinking
in modeling,
programming and
innovating.

review articles

may 2009 | vol. 52 | no. 5 | communications of the acm 85

collection to knowledge production.
Algorithmic systems biology raises

novel issues in computing by stepping
away from the qualitative descriptions
typical of programming languages to-
ward a new quantitative computing.
Thus computing can fully become an
experimental science, as advocated by
Denning,20 that is suitable to support-
ing systems biology. Core computing
fields would themselves benefit from a
quantitative approach; a measure of the
level of satisfaction from Web service
contracts, for example, or the quality
of services in telecommunication net-
works could enhance our current soft-
ware-development techniques. Another
example is robotics, where a myriad of
sensors must be synchronized accord-
ing to quantitative values. Quantitative
computing would also foster the move
toward a simulation-based science that
is needed to address the increasingly
larger dimension and complexity of sci-
entific questions.

It will easily become impossible to
have the whole system we design avail-
able for testing (examples are the new
Boeing and Airbus aircraft) and hence
we need to find alternatives for studying
and validating the system’s behavior.
Simulation of formal specifications is
one possibility. Indeed, the program-
ming languages used to model biologi-
cal systems implement stochastic run-
time supports that help in addressing
extremely relevant questions in biology
such as “How does order emerge from
disorder?”44 The answers could provide
us with completely new ways of organiz-
ing robust and self-adapting networks
both natural and technological. Fur-
ther, the discrete-state nature of algo-
rithmic descriptions makes them suit-
able for implementing the stochastic
simulation algorithm by Gillespie25 or
its variants. This approach, originally
developed for biochemical simulations,
is also suitable for quantitatively simu-
lating systems from other domains; in
fact, there are cases in which it can be
much faster than classical event-driven
simulation.34

Algorithmic systems biology com-
pletely adopts the main assets of our
computing discipline: hierarchical,
systems, and algorithmic thinking in
modeling, programming and innovat-
ing. Moreover, because breakthrough
results are sometimes the outcome of

rithmic discipline not only for systems
biology but also for synthetic biology—
a new area of biological research that
aims at building, or synthesizing, new
biological systems and functions by ex-
ploiting new insights from science and
engineering. An algorithmic approach
can help propel this field by providing
an in-silico library of biological compo-
nents that can be used to derive models
of large systems; such models could be
ready for simulation and analysis just by
composing the available modules.16

The notion of a library of (biological)
components, equipped with attributes
governing their interaction capabilities
and automatically exploited by the im-
plementation of the language describ-
ing systems dynamics, substantially
contributes to overcoming the mislead-
ing concept of pathways that fills bio-
logical papers, where a pathway is pos-
ited as an almost-sequential chain of
interactions. The theory of concurrency,
however, maintains that neglecting the
context of interactions (all the other
possible routes of the system) produces
an incomplete and untrustworthy un-
derstanding of the system’s dynamics.
Metaphorically, it is not possible to un-
derstand the capacity of the traffic or-
ganization of a city by looking at single

routes from one point to another, or to
fully appreciate a goal in a team sport
by looking at the movements of a single
player.

At a different level of abstraction, the
study of pathways is a reductionist ap-
proach that does not take pathway in-
teractions (crosstalk) into account and
does not help in unraveling emergent
network behavior. The management of
hierarchies of interconnected specifica-
tions, so typical of computer science,
is fundamental for interpreting what
systems behavior means, depending on
the context and the properties of inter-
est. It could be easy to move to biologi-
cal networks by considering the biologi-
cal entities as a collection of interacting
processes and by studying the behavior
of the network through the conceptual
tools of concurrency theory.

Note also that a model reposi-
tory, representing the dynamics of
biological processes in a compact
and mechanistic manner, would be
extremely valuable in heightening the
understanding of biological data and
the basic principles governing life.
Such a repository would favor predic-
tions, allow for the optimal design of
further experiments, and consequent-
ly stimulate the movement from data

figure 2: the biological systems observed through the window showing the life sciences
(green rectangle) can be closely and mechanistically modeled through the use of algorithms
(written on the glass of the window) that add causal, spatial, and temporal dimensions
to classical biological descriptions. moreover, algorithms can concisely represent the
large quantities of data produced by high-throughput experiments (the river of numbers
originating from biological elements within the window). equations, currently considered
the stars of modeling, are more abstract and hence more distant from living matter.
the goal of algorithmic systems biology is to “reach for the moon” through a complete
mechanistic model of living systems. (the lighted hemisphere in the picture represents
a cell under a digitalization process.)

86 communications of the acm | may 2009 | vol. 52 | no. 5

review articles

processes that do not perfectly adhere
to the scientific method based on exper-
iment and observations, creativity can
play a crucial role in opening minds and
propelling visions of new findings in the
future. In fact, we can further exploit al-
gorithmic descriptions of biology for
the synthesis (in silico) of completely
new organisms by using our concep-
tual tools in an imaginative way that is
similar to the engineering of novel so-
lutions and applications via software
in computer science. This approach
would parallel that of another emerging
field—synthetic biology—which aims
to create unnatural systems assembled
from natural components to study their
behavior. Synthesis, in other words, is
a fundamental process that allows us
to understand phenomena that can-
not be easily captured by analysis and
modeling. For instance, the synthesis
of a minimal cell would help in under-
standing the fundamental principles of
self-replicating systems and evolution,
which are the core elements of life.10, 24
Once again, computer science is a per-
fect vehicle for such inquiry, in which
analysis and synthesis are always inter-
woven. Hence its past experience can
substantially help in addressing the key
issues of systems and synthetic biology.

challenges and future Directions
The main challenges inherent in build-
ing algorithmic models for the system-
level understanding of biological pro-
cesses include the relationship between
low-level local interactions and emer-
gent high-level global behavior; the
partial knowledge of the systems under
investigation; the multilevel and mul-
tiscale representations in time, space,
and size; the causal relations between
interactions; and the context-awareness
of the inner components. Therefore
the modeling formalisms that are can-
didates for propelling algorithmic sys-
tems biology should be complementary
to and interoperable with mathemati-
cal modeling, address parallelism and
complexity, be algorithmic and quanti-
tative, express causality, and be interac-
tion-driven, composable, scalable, and
modular.

Composability—the ability to char-
acterize a system starting from the de-
scriptions of its subsystems and a set of
rules for assembling them—is funda-
mental to addressing the complexity of

the applicative domain and at the same
time to exploiting the benefits of par-
allel architectures such as many-mul-
ticore processors. Composability can
either be shallow (that is, syntactic) or
deep (semantic).13 Algorithmic systems
biology needs both of these aspects of
composability: models of biological
systems must be built by shallow com-
position of building blocks taken from a
library, and the specification of the over-
all system’s behavior must be obtained
by deep composition of the representa-
tion of the building blocks’ behavior.

A relevant example relates to inter-
actions, which can be studied on the
molecular-machinery level (at one ex-
treme) and on the population level (at
the other). Metagenomics—the analysis
of complex ecosystems as metaorgan-
isms or complex biological networks—
is an exciting and challenging field in
which algorithms could help explain
fundamental phenomena that are still
not completely understood; one such
phenomenon is horizontal gene trans-
fer between bacteria (whereby bacteria
exchange pieces of genome within the
same generation to improve their ad-
aptation to the environment, as in de-
veloping resistance to antibiotics). The
success of these investigations is strictly
tied to the identification of the right lev-
el of abstraction within the hierarchies
of interactions (from molecules to or-
ganisms). Because the comprehension
of how life organizes itself into cells,
organisms, and communities is a major
challenge that systems biology strives
to understand,40 and because com-
puter science is continuously shifting
between various coherent views of the
same artificial system, depending on
the properties of interest, its capabili-
ties could be crucial in addressing such
issues in natural systems.

Another example is rhythmic behav-
ior, which is so common in biological
systems that understanding it is cru-
cial to unraveling the dynamics of life.26
Rhythms have been a key point of inter-
est in mathematical and computational
biology since their earliest days51—a
century of studies identified feedback
processes (both positive/forward and
negative/backward loops) and coopera-
tivity as main sources of unstable be-
havior. These general control structures
have a strong similarity to the primitives
of concurrent programming languages

used to specify the flow of control—for
instance, the dichotomy of the coop-
eration and competition of processes
to access resources; the infinite behav-
ior of drivers of resources in operating
systems; and conditional guarded com-
mands to choose the next step to be
performed. Once again, the full theory
developed to cope with concurrency in
artificial systems perfectly couples with
algorithmic descriptions of biologi-
cal systems, yielding a new reference
framework in which computer science
is a novel foundation for studying and
understanding cellular rhythms.

Multiscale integration (in space,
time, and size) is a major issue in cur-
rent systems biology3 as well. The very
essence of the multiple levels of abstrac-
tion that govern computer science—
enabling it to address phenomena
that span several orders of magnitude
(from one clock cycle [nanoseconds] to
a whole computations [hours])21—can
help unravel and master the complexity
of genome-wide modeling of biological
systems. Thus the dynamic relationship
between the parts and the whole of a
system that seems to be the essence of
systems biology is also a keystone for
managing artificial (computing) sys-
tems. Such a relationship was even used
to define computer science.36

Another relevant aspect of systems
biology is the sensitivity of a network’s
behavior to the quantitative param-
eters that govern its dynamics41, 51—for
instance, the concentration of species
in a system or their affinity for interac-
tion affects the speed of the reactions,
thereby affecting the system’s overall
behavior. Current developments such
as variance or uncertainty output analy-
sis usually consider a biological system
as a black box that implements a func-
tion from inputs to outputs, assuming
the system is deterministic.35 But as
discussed earlier, I/O relationships are
not the best way, or even a correct way,
of defining the semantics of concur-
rent programs; different runs with the
same inputs may generate different
outcomes because of the relative speed
of subcomponents. Given that biologi-
cal systems are massively concurrent—
not deterministic—a new algorithmic
language-based modeling approach
can certainly create new avenues for
the sensitivity analysis of networks.
That is, simulation-based science can

review articles

may 2009 | vol. 52 | no. 5 | communications of the acm 87

and decentralized (natural/artificial)
systems—in a verifiable, modular, in-
cremental, and composable manner.
Further, the definition of novel mecha-
nisms for quantitative coordination
and orchestration will produce new
conceptual frameworks able to cope
with the growing paradigm of distrib-
uting the logic of application between
local software and global services. The
definition of new schemas to store data
related to the dynamics of systems and
the new query languages needed to re-
trieve and examine such records will
create novel perspectives. They, in turn,
will allow the building of data centers
that provide added value to globally
available services.

Another major scientific impact will
be the definition of a new philosophi-
cal foundation of systems biology that
is algorithmic in nature and allows sci-
entists to raise new questions that are
out of range for the current conceptual
and computational supports. An exam-
ple is the interpretation of pathways
(which do not exist per se in nature)
as a reductionist approach for under-
standing the behavior of networks (col-
lections of interwoven pathways inter-
acting and working simultaneously) at
the system level.

The technological impact of merging
computer science and systems biology
will be the design and implementation
of artificial biology laboratories capable
of performing many more experiments
than what is currently feasible in real
labs—and at lower cost (in terms both
of human and financial resources) and
in less time. These labs will allow biolo-
gists to design, execute, and analyze ex-
periments to generate new hypotheses
and develop novel high-throughput
tools, resulting in advances in experi-
mental design, documentation, and
interpretation as well as a deeper inte-
gration between “wet” (lab-based) and
“dry” research. Moreover, the artificial
biology laboratories will be a main vehi-
cle for moving from single-gene diseas-
es to multifactorial diseases, which ac-
count for more than 90% of the illnesses
affecting our society.

A deeper look at the causes of mul-
tifactorial diseases can positively influ-
ence their diagnosis and management.
But health is not the only practical ap-
plication of algorithmic systems biol-
ogy. Comprehension of the basic mech-

turn sensitivity analysis of highly paral-
lel systems into an observation-driven
analysis, based on model-checking and
verification techniques developed over
the last 30 years for concurrent systems.
The new findings could in turn benefit
computer science itself.

Algorithmic systems biology will be
innovative and successful if the life-
sciences community actually uses the
available conceptual and computation-
al tools for modeling, simulation, and
analysis. To ease this task, computing
tools must hide as many formal details
as possible from users, and here the
growing and important area of software
visualization can play a critical role.
Visual metaphors of algorithm anima-
tions will help biologists understand
how systems evolve, even while the sci-
entists remain bound to their classical
“picture” representations. Such pic-
tures, however, may more profitably be
mapped into “films.”

A final remark pertains to the com-
parison of different systems. Equiva-
lences are a main tool in computer sci-
ence for verifying computing systems;
they can be used, for instance, to ensure
that an implementation is in agree-
ment with a specification. They abstract
as much as possible from syntactic de-
scriptions and instead focus on speci-
fications’ and implementations’ se-
mantics. So far, biology has focused on
syntactic relationships between genes,
genomes, and proteins, but an entirely
new avenue of research is the investiga-
tion of the semantic equivalences of bio-
logical entities’ interactions in complex
networks. This approach could lead to
new visions of systems and reinforce
computer science’s ability to enhance
systems biology.

impact
The integration of computer science
and systems biology into algorithmic
systems biology is a win-win strategy
that will affect both disciplines, scien-
tifically and technologically.

The scientific impact of accomplish-
ing our vision, aided by feedback from
the increased understanding of basic
biological principles, will be in the defi-
nition of new quantitative theoretical
frameworks. These frameworks can
then help us address the increasing
concurrency and complexity—observed
in asynchronous, heterogeneous,

algorithmic
systems biology
can contribute to
the future both
of life sciences
and natural
sciences through
interconnecting
models and
experiments.

88 communications of the acm | may 2009 | vol. 52 | no. 5

review articles

24. Foster, a.C., Church, g.M. towards synthesis of a
minimal cell. Molecular Systems Biology (2006).

25. gillespie, d.t. exact stochastic simulation of coupled
chemical reactions. Journal of Physical Chemistry 81
(1977), 2340–2361.

26. goldbeter, a. Computational approaches to cellular
rhythms. Nature 420 (2002), 238–245.

27. gutowitz, H. Introduction (to cellular automata).
Physica D 45, 1990.

28. Harel, d. statecharts in the making: a personal account.
In Proceedings of the 3rd ACM SIGPLAN History of
Programming Languages Conference, 2007.

29. Hendler, J., shadbolt, n., Hall, W., berners-lee, t., and
Weitzner, d. Web science: an interdisciplinary approach
to understanding the Web. Comm. ACM 51, 7 (July
2008), 60–69.

30. Hood, l., galas, d. the digital code of dna. Nature 421
(2003), 444–448.

31. Kitano, H. systems biology: a brief overview. Science
295 (2002), 1662–1664.

32. Klawe, M. and shneiderman, b. Crisis and opportunity in
computer science. Commun. ACM 48, 11 (nov. 2005).

33. Knuth, d. Computer science and its relation to
mathematics. American Mathematical Monthly 81
(1974), 323–343.

34. Kuwahara, H. and Mura, I. an efficient and exact
stochastic simulation method to analyze rare events in
biological systems. Journal of Chemical Physics 129,
2008.

35. ludtke, n., Panzeri, s., brown, M., broomhead,
d.s., Knowles, J., Montemurro M.a., and Kell, d.b.
Information-theoretic sensitivity analysis: a general
method for credit assignment in complex networks. J.
R. Soc. Interface 5 (2008), 223–235.

36. Minsky, M. aCM turing lecture: Form and content in
computer science. Journal of the ACM 17, 2 (1970),
197–215.

37. nature insight: Computational biology. Nature 420
(2002), 206–251.

38. nurse, P. life, logic and information. Nature 454 (2008),
424–426.

39. nussbaum, d. and agarwal, a. scalability of parallel
machines. Commun. ACM 34, 3 (Mar. 1991), 57–61.

40. o’Malley, M. and dupré, J. Fundamental issues in
systems biology. BioEssays, 27 (2005), 1270–1276.

41. Palsson, b.o. Systems Biology: Properties of
Reconstructed Networks. Cambridge university Press,
2006.

42. Priami, C. and Quaglia, P. Modeling the dynamics
of biosystems. Briefings in Bioinformatics 5 (2004),
259–269.

43. Priami, C., regev, a., shapiro, e., and silvermann, W.
application of a stochastic name-passing calculus to
representation and simulation of molecular processes.
Information Processing Letters 80 (2001), 25–31.

44. rao, C.V., Wolf, d.M., and arkin, a.P. Control, exploitation
and tolerance of intracellular noise. Nature 420 (2002),
231–237.

45. rapin, n., Kesmir, C., Frankild, s., nielsen, M.,
lundegaard, C., brunak, s., and lund, o. Modeling the
human immune system by combining bioinformatics
and systems biology approaches. Journal Biol. Phys. 32
(2006), 335–353.

46. regev, a. and shapiro, e. Cells as computation. Nature
419 (2002), 343.

47. roos, d. Bioinformatics—trying to swim in a sea of data.
Science 291 (2001), 260–1261.

48. searls, d. the language of genes. Nature 420 (2002),
211–217.

49. spengler, s.J. bioinformatics in the information age.
Science 287 (2000), 1221–1223.

50. teuscher, C. biologically uninspired computer science.
Commun. ACM 49, 11 (nov. 2006), 27–29.

51. Volterra, V. Fluctuations in the abundance of species
considered mathematically. Nature 118 (1926),
558–560.

52. Welch, P.H. and barnes, F.r.M. Communicating mobile
processes: Introducing occam-pi. In CSP25, LNCS
3525. springer, 2005, 175–210.

53. Wing, J. Computational thinking. Commun. ACM 49, 3
Mar. 2006), 33–35.

Corrado Priami (Priami@cosbi.eu) is president and Ceo
of the Microsoft research-university of trento Centre
for Computational and systems biology and professor of
Computer science at the department of engineering and
Information sciences of the university of trento.

© 2009 aCM 0001-0782/09/0500 $5.00

anisms of life, coupled with engineered
environments for synthetic biological
design, can lead us toward the use of
ad hoc bacteria to repair environmental
damages as well as to produce energy.

Another major technological impact
will be computer scientists’ ability to
properly address the challenges posed
by the hardware revolution—increasing-
ly stressing parallelism in place of speed
of processors—through new integrated
programming environments amenable
to concurrency and complexity.

conclusion
Quantitative algorithmic descriptions of
biological processes add causal, spatial,
and temporal dimensions to molecu-
lar machinery’s behavior that is usually
hidden in the equations. Algorithmic
systems biology allows us to take a step
forward in our understanding of life by
transforming collections of pictures
(cartoons) into spectacular films (the
mechanistic dynamics of life). In fact,
the languages and algorithms emerging
from quantitative computing can be in-
strumental not only to systems biology
but also to the scientific understanding
of interactions in general.

Unraveling the basic mechanisms
adopted by living organisms for manip-
ulating information goes to the heart
of computer science: computability.
Life underwent billions of years of tests
and was optimized during this very long
time; we can learn new computational
paradigms from it that will enhance
our field. The same arguments apply to
hardware architectures as well. Starting
from the basics, we can use these new
computational paradigms to strength-
en resource management and hence
operating systems, to develop primi-
tives to instruct highly parallel systems
and hence (concurrent) programming
languages, and to develop software en-
vironments that ensure higher quality
and better properties than current soft-
ware applications.

Algorithmic systems biology can
contribute to the future both of life
sciences and natural sciences through
interconnecting models and experi-
ments. New conceptual and computa-
tional tools, integrated in a user-friend-
ly environment, can be employed by
life scientists to predict the behavior
of multilevel and multiscale biological
systems, as well as of other kinds of sys-

tems, in a modular, composable, scal-
able, and executable manner.

Algorithmic systems biology can also
contribute to the future of computer sci-
ence by developing a new generation of
operating systems and programming
languages. They will enable advanced
simulation-based research, within a
quantitative framework that connects
in-silico replicas and actual systems, and
enabled by biologically inspired tools.

acknowledgments
The author thanks the CoSBi team for
the numerous inspiring discussions.

References
1. alon, u. An Introduction to Systems Biology: Design

Principles of Biological Circuits. Chapman and Hall,
2006.

2. alur, r., Courcoubetis, C., Halbwachs, n., Henzinger,
t.a., Ho, P.-H., nicollin, X., olivero, a., sifakis, J., and
yovine, s. the algorithmic analysis of hybrid systems.
Theoretical Computer Science 138, 1 (1995), 3–34.

3. auffray, C. and nottale, l. scale relativity theory and
integrative systems biology: Founding principles and
scale laws. Progress in Biophysics and Molecular
Biology 97 (2008), 79–114.

4. benner, s.a. and sismour, a.M. synthetic biology.
Nature Reviews Genetics 6 (2005), 533–544.

5. bergstra, J.a., Ponse, a., and smolka, s.a. Handbook of
Process Algebras. elsevier, 2001.

6. bernardo, M., degano, P., and zavattaro, g. Formal
Methods for Computational Systems Biology. lnCs
5016, springer, 2008.

7. boogerd, F. et al. Systems Biology: Philosophical
Foundations. elsevier, 2007.

8. breckling, b. Individual-based modelling: Potentials and
limitations. Scientific World Journal 2 (april 19, 2002),
1044–1062.

9. Cassman, M., arkin, a., doyle, F., Katagiri, F.,
lauffenburg, d., and stokes, C. International Research
and Development in Systems Biology. WteC Panel on
systems biology final report (oct. 2005).

10. Chiarugi, d., degano, P., and Marangoni, r. a
computational approach to the functional screening
of genomes. PLoS Comput Biol 3, 9 (sept. 3, 2007),
1801–1806.

11. Ciocchetta, F. and Hillston, J. Process algebras in
systems biology. In Formal Methods for Computational
Systems Biology, LNCS 5016. springer, 2008, 313–365.

12. Cohen, J. the crucial role of Cs in systems and
synthetic biology. Commun. ACM 51, 5 (May 2008),
15–18.

13. de alfaro, l., Henzinger, t.a., and Jhala, r.
Compositional methods for probabilistic systems. In
CONCUR01, LNCS 2154 (2001).

14. degano, P. and Priami, C. non-interleaving semantics of
mobile processes. Theoretical Computer Science 216
1–2 (1999), 237–270.

15. dematté, l., Priami, C., and romanel, a. the
blenX language: a tutorial. In Formal Methods for
Computational Systems Biology, LNCS 5016. springer,
2008. 313-365.

16. dematté, l., Priami, C., romanel, a. the beta
Workbench: a tool to study the dynamics of biological
systems. Briefings in Bioinformatics, 2008.

17. denning, P.J. great principles of computing. Commun.
ACM 46, 11 (nov. 2003), 15–20.

18. denning, P.J. Is computer science science? Commun.
ACM 48, 4 (apr. 2005), 27–31.

19. denning, P.J. recentering computer science. Commun.
ACM 48, 11 (nov. 2005), 15–19.

20. denning, P.J. Computing is a natural science. Commun.
ACM 50, 5 (July 2007),13–18.

21. dijstra, e.W. Programming as a discipline of
mathematical nature. American Mathematical Monthly
81 (1974), 608–612.

22. Fisher, J. and Henzinger, t. executable cell biology.
Nature Biotechnology 25 (2007), 1239–1249.

23. Forrest, s. and beauchemin, C. Imm. Reviews 216
(2007), 176–197.

mailto:Priami@cosbi.eu

research highlights

may 2009 | vol. 52 | no. 5 | communications of the acm 89

P. 100

Scalable Synchronous Queues
By William N. Scherer III, Doug Lea, and Michael L. Scott

P. 99

technical
Perspective
highly concurrent
Data structures
By Maurice Herlihy

P. 91

Lest We Remember: Cold-Boot
Attacks on Encryption Keys
By J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum,
and Edward W. Felten

P. 90

technical
Perspective
a chilly sense
of security
By Ross Anderson

90 communications of the acm | may 2009 | vol. 52 | no. 5

research highlights

Doi:10.1145/1506409.1506428

the fo lloW in g pA pe r by Alex Halder-
man et al. will change the way people
write and test security software.

Many systems rely on keeping a
master key secret. Sometimes this
involves custom hardware, such as a
smartcard, and sometimes it relies on
an implicit hardware property, such as
the assumption that a computer’s RAM
loses state when it is powered off. And
software writers tend to assume that
hardware works in the intuitively obvi-
ous ways.

But technological progress can un-
dermine old assumptions.

Years ago, Sergei Skorobogatov
showed that memory cells used in
microcontrollers could retain their
contents for many minutes at low tem-
peratures; an attacker could freeze a
chip to stop its keys evaporating while
he depackaged it and probed out the
contents.

That was long thought to be an ar-
cane result of relevance only to engi-
neers designing crypto boxes for banks
and governments. But, as this paper il-
lustrates, progress has made memory
remanence (as it is known) relevant to
the “ordinary” software business, too.
Modern memory chips, when powered
down, will retain their contents for sec-
onds even at room temperature, and
for minutes if they are cooled to the
temperatures of a Canadian winter.

The upshot is that your laptop en-

cryption software is no longer secure.
The key used to protect disk files is

typically kept in RAM, so a locked lap-
top can be unlocked by cooling it, in-
terrupting the power, rebooting with a
new operating system kernel, and read-
ing out the key.

Even if a few bits of the key have de-

cayed, common implementations of
both DES and AES keep redundant rep-
resentations of the key in memory to
improve performance; these not only
provide error correction but enable
keys to be found quickly.

For their pièce de résistance, the au-
thors show how to break BitLocker, the
disk encryption utility in Microsoft Vis-

ta, and the culmination of the 10-year,
multibillion-dollar “Trusted Comput-
ing” research program. BitLocker was
believed to be strong because the mas-
ter keys are kept in the TPM chip on
the motherboard while the machine is
powered down. Hundreds of millions of
PCs now have TPM chips; your PC cost
a few dollars more as a result. But did it
make your PC more secure? It turns out
that keys remain in memory so long as
the machine is powered up; and worse,
they are loaded to memory when the
machine is powered on, before the user
ever has to enter a password. In either
case, the memory remanence attack
can suck them up just fine. The upshot
is that you’re less secure than before.
An old-fashioned disk encryption util-
ity can at least protect your data when
your machine is powered down. Adding
“hardware security” has undermined
even that.

This neat piece of work emphasizes
once more the need for engineers who
build security applications to take a ho-
listic view of the world.

Software alone is not enough; you
need to understand the hardware, and
the people too.

Ross Anderson (ross.anderson@cl.cam.ac.uk) is a
professor of security engineering at the university of
Cambridge, england.

© 2009 aCM 0001-0782/09/0500 $5.00

technical Perspective
a chilly sense of security
By Ross Anderson

this neat piece
of work emphasizes
once more the
need for engineers
who build security
applications to
take a holistic view
of the world.

mailto:ross.anderson@cl.cam.ac.uk

May 2009 | Vol. 52 | no. 5 | communications of the acm 91

Lest We Remember: Cold-Boot
Attacks on Encryption Keys
By J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul,
Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten

Doi:10.1145/1506409.1506429

abstract
Contrary to widespread assumption, dynamic RAM (DRAM),
the main memory in most modern computers, retains its
contents for several seconds after power is lost, even at
room temperature and even if removed from a mother-
board. Although DRAM becomes less reliable when it is not
refreshed, it is not immediately erased, and its contents
persist sufficiently for malicious (or forensic) acquisition of
usable full-system memory images. We show that this phe-
nomenon limits the ability of an operating system to protect
cryptographic key material from an attacker with physical
access to a machine. It poses a particular threat to laptop
users who rely on disk encryption: we demonstrate that it
could be used to compromise several popular disk encryp-
tion products without the need for any special devices or
materials. We experimentally characterize the extent and
predictability of memory retention and report that rema-
nence times can be increased dramatically with simple
cooling techniques. We offer new algorithms for finding
cryptographic keys in memory images and for correcting
errors caused by bit decay. Though we discuss several strate-
gies for mitigating these risks, we know of no simple remedy
that would eliminate them.

1. intRoDuction
Most security practitioners have assumed that a computer’s
memory is erased almost immediately when it loses power,
or that whatever data remains is difficult to retrieve without
specialized equipment. We show that these assumptions are
incorrect. Dynamic RAM (DRAM), the hardware used as the
main memory of most modern computers, loses its contents
gradually over a period of seconds, even at normal operat-
ing temperatures and even if the chips are removed from
the motherboard. This phenomenon is called memory rema-
nence. Data will persist for minutes or even hours if the chips
are kept at low temperatures, and residual data can be recov-
ered using simple, nondestructive techniques that require
only momentary physical access to the machine.

We present a suite of attacks that exploit DRAM rema-
nence to recover cryptographic keys held in memory. They
pose a particular threat to laptop users who rely on disk
encryption products. An adversary who steals a laptop while
an encrypted disk is mounted could employ our attacks to
access the contents, even if the computer is screen-locked or
suspended when it is stolen.

On-the-fly disk encryption software operates between the
file system and the storage driver, encrypting disk blocks as
they are written and decrypting them as they are read. The

encryption key is typically protected with a password typed
by the user at login. The key needs to be kept available so
that programs can access the disk; most implementations
store it in RAM until the disk is unmounted.

The standard argument for disk encryption’s security
goes like this: As long as the computer is screen-locked
when it is stolen, the thief will not be able to access the disk
through the operating system; if the thief reboots or cuts
power to bypass the screen lock, memory will be erased and
the key will be lost, rendering the disk inaccessible. Yet, as
we show, memory is not always erased when the computer
loses power. An attacker can exploit this to learn the encryp-
tion key and decrypt the disk. We demonstrate this risk by
defeating several popular disk encryption systems, includ-
ing BitLocker, TrueCrypt, and FileVault, and we expect many
similar products are also vulnerable.

Our attacks come in three variants of increasing resis-
tance to countermeasures. The simplest is to reboot the
machine and launch a custom kernel with a small memory
footprint that gives the adversary access to the residual
memory. A more advanced attack is to briefly cut power to the
machine, then restore power and boot a custom kernel; this
deprives the operating system of any opportunity to scrub
memory before shutting down. An even stronger attack is
to cut the power, transplant the DRAM modules to a second
PC prepared by the attacker, and use it to extract their state.
This attack additionally deprives the original BIOS and PC
hardware of any chance to clear the memory on boot.

If the attacker is forced to cut power to the memory for
too long, the data will become corrupted. We examine two
methods for reducing corruption and for correcting errors
in recovered encryption keys. The first is to cool the memory
chips prior to cutting power, which dramatically prolongs
data retention times. The second is to apply algorithms we
have developed for correcting errors in private and sym-
metric keys. These techniques can be used alone or in
combination.

While our principal focus is disk encryption, any sensi-
tive data present in memory when an attacker gains physical
access to the system could be subject to attack. For example,
we found that Mac OS X leaves the user’s login password in
memory, where we were able to recover it. SSL-enabled Web

The full version of this paper was published in Proceed-
ings of the 17th USENIX Security Symposium, August 2008,
USENIX Association. The full paper, video demonstrations,
and source code are available at http://citp.princeton.edu/
memory/.

http://citp.princeton.edu/memory/
http://citp.princeton.edu/memory/

92 communications of the acm | May 2009 | Vol. 52 | no. 5

research highlights

servers are vulnerable, since they normally keep in memory
private keys needed to establish SSL sessions. DRM systems
may also face potential compromise; they sometimes rely
on software to prevent users from accessing keys stored in
memory, but attacks like the ones we have developed could
be used to bypass these controls.

It may be difficult to prevent all the attacks that we
describe even with significant changes to the way encryption
products are designed and used, but in practice there are a
number of safeguards that can provide partial resistance.
We suggest a variety of mitigation strategies ranging from
methods that average users can employ today to long-term
software and hardware changes. However, each remedy has
limitations and trade-offs, and we conclude that there is no
simple fix for DRAM remanence vulnerabilities.

Certain segments of the computer security and hard-
ware communities have been conscious of DRAM rema-
nence for some time, but strikingly little about it has been
published. As a result, many who design, deploy, or rely
on secure systems are unaware of these phenomena or
the ease with which they can be exploited. To our knowl-
edge, ours is the first comprehensive study of their security
consequences.

2. chaRacteRiZing Remanence
A DRAM cell is essentially a capacitor that encodes a single
bit when it is charged or discharged.10 Over time, charge
leaks out, and eventually the cell will lose its state, or, more
precisely, it will decay to its ground state, either zero or one
depending on how the cell is wired. To forestall this decay,
each cell must be refreshed, meaning that the capacitor must
be recharged to hold its value—this is what makes DRAM
“dynamic.” Manufacturers specify a maximum refresh
interval—the time allowed before a cell is recharged—that
is typically on the order of a few milliseconds. These times
are chosen conservatively to ensure extremely high reliabil-
ity for normal computer operations where even infrequent
bit errors can cause problems, but, in practice, a failure to
refresh any individual DRAM cell within this time has only a
tiny probability of actually destroying the cell’s contents.

To characterize DRAM decay, we performed experiments
on a selection of recent computers, listed in Figure 1. We
filled representative memory regions with a pseudoran-
dom test pattern, and read back the data after suspending
refreshes for varying periods of time by cutting power to the
machine. We measured the error rate for each sample as

the number of bit errors (the Hamming distance from the
pattern we had written) divided by the total number of bits.
Fully decayed memory would have an error rate of approxi-
mately 50%, since half the bits would match by chance.

2.1. Decay at operating temperature
Our first tests measured the decay rate of each machine’s
memory under normal operating temperature, which
ranged from 25.5°C to 44.1°C. We found that the decay
curves from different machines had similar shapes, with
an initial period of slow decay, followed by an intermediate
period of rapid decay, and then a final period of slow decay,
as shown in Figure 2.

The dimensions of the decay curves varied considerably
between machines, with the fastest exhibiting complete
data loss in approximately 2.5 s and the slowest taking over
a minute. Newer machines tended to exhibit a shorter time
to total decay, possibly because newer chips have higher
density circuits with smaller cells that hold less charge, but
even the shortest times were long enough to enable some
of our attacks. While some attacks will become more dif-
ficult if this trend continues, manufacturers may attempt
to increase retention times to improve reliability or lower
power consumption.

We observed that the DRAMs decayed in highly nonuni-
form patterns. While these varied from chip to chip, they
were very stable across trials. The most prominent pattern is
a gradual decay to the ground state as charge leaks out of the
memory cells. In the decay illustrated in Figure 3, blocks of
cells alternate between a ground state of zero and a ground
state of one, resulting in the horizontal bars. The fainter
vertical bands in the figure are due to manufacturing varia-
tions that cause cells in some parts of the chip to leak charge
slightly faster than those in others.

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

45

50

55

Seconds without power

D
ec

ay
 (%

) B Data

B Fit

D Data

D Fit

E Data

E Fit

F Data

F Fit

figure 2: measuring decay. We measured memory decay after
 various intervals without power. the memories were running at
normal operating temperature, without any special cooling. curves
for machines a and c would be off the scale to the right, with rapid
decay at around 30 and 15 s, respectively.

figure 1: test systems. We experimented with six systems (designated
a–f) that encompass a range of recent DRam architectures and circuit
densities.

 Density type system Year

a 128mB SDRam Dell Dimension 4100 1999
B 512mB DDR Toshiba Portégé R100 2001
C 256mB DDR Dell Inspiron 5100 2003
D 512mB DDR2 IBm Thinkpad T43p 2006
E 512mB DDR2 IBm Thinkpad x60 2007
F 512mB DDR2 lenovo 3000 n100 2007

May 2009 | Vol. 52 | no. 5 | communications of the acm 93

2.2. Decay at reduced temperature
Colder temperatures are known to increase data retention
times. We performed another series of tests to measure
these effects. On machines A–D, we loaded a test pattern
into memory, and, with the computer running, cooled
the memory module to approximately −50°C. We then cut
power to the machine and maintained this temperature
until power and refresh were restored. As expected, we
observed significantly slower rates of decay under these
reduced temperatures (see Figure 4). On all of our test
systems, the decay was slow enough that an attacker who
cut power for 1 min would recover at least 99.9% of bits
correctly.

We were able to obtain even longer retention times by
cooling the chips with liquid nitrogen. After submerging
the memory modules from machine A in liquid nitrogen for
60 min, we measured only 14,000 bit errors within a 1MB
test region (0.13% decay). This suggests that data might be
recoverable for hours or days with sufficient cooling.

3. tooLs anD attacks
Extracting residual memory contents requires no special
equipment. When the system is powered on, the memory
controller immediately starts refreshing the DRAM, read-
ing and rewriting each bit value. At this point, the values
are fixed, decay halts, and programs running on the system
can read any residual data using normal memory-access
instructions.

One challenge is that booting the system will necessar-
ily overwrite some portions of memory. While we observed
in our tests that the BIOS typically overwrote only a small
fraction of memory, loading a full operating system would
be very destructive. Our solution is to use tiny special-pur-
pose programs that, when booted from either a warm or
cold reset state, copy the memory contents to some external

figure 3: Visualizing memory decay. We loaded a bitmap image into memory on test machine a, then cut power for varying intervals. after
5 s (left), the image is nearly indistinguishable from the original; it gradually becomes more degraded, as shown after 30, 60 s, and 5 min.
the chips remained close to room temperature. even after this longest trial, traces of the original remain. the decay shows prominent
 patterns caused by regions with alternating ground states (horizontal bars) and by physical variations in the chip (fainter vertical bands).

medium with minimal disruption to the original state.
Most modern PCs support network booting via Intel’s

Preboot Execution Environment (PXE), which provides rudi-
mentary start-up and network services. We implemented
a tiny (9KB) standalone application that can be booted
directly via PXE and extracts the contents of RAM to another
machine on the network. In a typical attack, a laptop con-
nected to the target machine via an Ethernet crossover cable
would run a client application for receiving the data. This
tool takes around 30 s to copy 1GB of RAM.

Some recent computers, including Intel-based Macintosh
systems, implement the Extensible Firmware Interface
(EFI) instead of a PC BIOS. We implemented a second mem-
ory extractor as an EFI netboot application. Alternatively,
most PCs can boot from an external USB device such as a
USB hard drive or flash device. We created a third imple-
mentation in the form of a 10KB plug-in for the SYSLINUX

figure 4: colder temperatures slow decay. We measured memory
errors for machines a–D after intervals without power, first at
normal operating temperatures (no cooling) and then at a reduced
temperature of −50°c. Decay occurred much more slowly under the
colder conditions.

 average Bit errors

 seconds without Power no cooling (%) -50∞c (%)

a 60 41 [no errors]
 300 50 0.000095

B 360 50 [no errors]
 600 50 0.000036

C 120 41 0.00105
 360 42 0.00144

D 40 50 0.025
 80 50 0.18

94 communications of the acm | May 2009 | Vol. 52 | no. 5

research highlights

bootloader. It can be booted from an external USB device or
a regular hard disk.

An attacker could use tools like these in a number of ways,
depending on his level of access to the system and the coun-
termeasures employed by hardware and software. The sim-
plest attack is to reboot the machine and configure the BIOS
to boot the memory extraction tool. A warm boot, invoked
with the operating system’s restart procedure, will normally
ensure that refresh is not interrupted and the memory has
no chance to decay, though software will have an opportu-
nity to wipe sensitive data. A cold boot, initiated using the
system’s restart switch or by briefly removing power, may
result in a small amount of decay, depending on the memory’s
retention time, but denies software any chance to scrub
memory before shutting down.

Even if an attacker cannot force a target system to boot
memory extraction tools, or if the target employs coun-
termeasures that erase memory contents during boot, an
attacker with sufficient physical access can transfer the
memory modules to a computer he controls and use it to
extract their contents. Cooling the memory before power-
ing it off slows the decay sufficiently to allow it to be trans-
planted with minimal data loss. As shown in Figure 5,
widely available “canned air” dusting spray can be used to
cool the chips to −50°C and below. At these temperatures
data can be recovered with low error rates even after several
minutes.

4. keY ReconstRuction
The attacker’s task is more complicated when the memory
is partially decayed, since there may be errors in the cryp-
tographic keys he extracts, but we find that attacks can
remain practical. We have developed algorithms for correct-
ing errors in symmetric and private keys that can efficiently
reconstruct keys when as few as 27% of the bits are known,
depending on the type of key.

Our algorithms achieve significantly better performance
than brute force by considering information other than the
actual key. Most cryptographic software is optimized by stor-
ing data precomputed from the key, such as a key schedule
for block ciphers or an extended form of the private key for
RSA. This data contains much more structure than the key

itself, and we can use this structure to perform efficient error
correction.

These results imply a trade-off between efficiency and
security. All of the disk encryption systems we studied pre-
compute key schedules and keep them in memory for as
long as the encrypted disk is mounted. While this practice
saves some computation for each disk access, we find that it
also facilitates attacks.

Our algorithms make use of the fact that most decay is
unidirectional. In our experiments, almost all bits decayed
to a predictable ground state with only a tiny fraction flip-
ping in the opposite direction. In practice, the probability
of decaying to the ground state approaches 1 as time goes
on, while the probability of flipping in the opposite direc-
tion remains tiny—less than 0.1% in our tests. We further
assume that the ground state decay probability is known
to the attacker; it can be approximated by comparing the
fractions of zeros and ones in the extracted key data and
assuming that these were roughly equal before the data
decayed.

4.1. Reconstructing Des keys
We begin with a relatively simple application of these
ideas: an error-correction technique for DES keys. Before
software can encrypt or decrypt data with DES, it must
expand the secret key K into a set of round keys that are used
internally by the cipher. The set of round keys is called the
key schedule; since it takes time to compute, programs typi-
cally cache it in memory as long as K is in use. The DES key
schedule consists of 16 round keys, each a permutation of
a 48-bit subset of bits from the original 56-bit key. Every bit
from the key is repeated in about 14 of the 16 round keys.

We begin with a partially decayed DES key schedule. For
each bit of the key, we consider the n bits extracted from
memory that were originally all identical copies of that
key bit. Since we know roughly the probability that each
bit decayed 0 → 1 or 1 → 0, we can calculate whether the
extracted bits were more likely to have resulted from the
decay of reptitions of 0 or repetitions of 1.

If 5% of the bits in the key schedule have decayed to the
ground state, the probability that this technique will get any
of the 56 bits of the key wrong is less than 10−8. Even if 25% of

figure 5: advanced cold-boot attack. in our most powerful attack, the attacker reduces the temperature of the memory chips while the
computer is still running, then physically moves them to another machine configured to read them without overwriting any data. Before
powering off the computer, the attacker can spray the chips with “canned air,” holding the container in an inverted position so that it discharges
cold liquid refrigerant instead of gas (left). this cools the chips to around −50∞c (middle). at this temperature, the data will persist for several
minutes after power loss with minimal error, even if the memory modules are removed from the computer (right).

May 2009 | Vol. 52 | no. 5 | communications of the acm 95

the bits in the key schedule are in error, the probability that
we can correctly reconstruct the key without resorting to a
brute force search is more than 98%.

4.2. Reconstructing aes keys
AES is a more modern cipher than DES, and it uses a key
schedule with a more complex structure, but nevertheless
we can efficiently reconstruct keys. For 128-bit keys, the AES
key schedule consists of 11 round keys, each made up of four
32-bit words. The first round key is equal to the key itself.
Each subsequent word of the key schedule is generated either
by XORing two earlier words, or by performing an operation
called the key schedule core (in which the bytes of a word are
rotated and each byte is mapped to a new value) on an earlier
word and XORing the result with another earlier word.

Instead of trying to correct an entire key at once, we can
examine a smaller set of the bits at a time and then combine
the results. This separability is enabled by the high amount
of linearity in the key schedule. Consider a “slice” of the first
two round keys consisting of byte i from words 1 to 3 of the
first two round keys, and byte i − 1 from word 4 of the first
round key (see Figure 6). This slice is 7 bytes long, but it is
uniquely determined by the 4 bytes from the first round key.

Our algorithm exploits this fact as follows. For each pos-
sible set of 4 key bytes, we generate the relevant 3 bytes of
the next round key, and we order these possibilities by the
likelihood that these 7 bytes might have decayed to the corre-
sponding bytes extracted from memory. Now we may recom-
bine four slices into a candidate key, in order of decreasing
likelihood. For each candidate key, we calculate the key
schedule. If the likelihood of this key schedule decaying to
the bytes we extracted from memory is sufficiently high, we
output the corresponding key.

When the decay is largely unidirectional, this algorithm
will almost certainly output a unique guess for the key. This
is because a single flipped bit in the key results in a cascade
of bit flips through the key schedule, half of which are likely
to flip in the “wrong” direction.

Our implementation of this algorithm is able to recon-
struct keys with 7% of the bits decayed in a fraction of a sec-
ond. It succeeds within 30 s for about half of keys with 15%
of bits decayed.

We have extended this idea to 256-bit AES keys and to
other ciphers. See the full paper for details.

4.3. Reconstructing Rsa private keys
An RSA public key consists of the modulus N and the public
exponent e, while the private key consists of the private expo-
nent d and several optional values: prime factors p and q of
N, d mod (p − 1), d mod (q − 1), and q−1 mod p. Given N and e,
any of the private values is sufficient to efficiently generate
the others. In practice, RSA implementations store some or
all of these values to speed computation.

In this case, the structure of the key information is the
mathematical relationship between the fields of the public
and private key. It is possible to iteratively enumerate poten-
tial RSA private keys and prune those that do not satisfy
these relationships. Subsequent to our initial publication,
Heninger and Shacham11 showed that this leads to an algo-
rithm that is able to recover in seconds an RSA key with all
optional fields when only 27% of the bits are known.

5. iDentifYing keYs in memoRY
After extracting the memory from a running system, an
attacker needs some way to locate the cryptographic keys.
This is like finding a needle in a haystack, since the keys
might occupy only tens of bytes out of gigabytes of data.
Simple approaches, such as attempting decryption using
every block of memory as the key, are intractable if the mem-
ory contains even a small amount of decay.

We have developed fully automatic techniques for locat-
ing encryption keys in memory images, even in the presence
of errors. We target the key schedule instead of the key itself,
searching for blocks of memory that satisfy the properties of
a valid key schedule.

Although previous approaches to key recovery do not
require a key schedule to be present in memory, they have
other practical drawbacks that limit their usefulness for our
purposes. Shamir and van Someren16 conjecture that keys
have higher entropy than the other contents of memory and
claim that they should be distinguishable by a simple visual
test. However, even perfect copies of memory often contain
large blocks of random-looking data (e.g., compressed files).
Pettersson15 suggests locating program data structures con-
taining key material based on the range of likely values for
each field. This approach requires the manual derivation of
search heuristics for each cryptographic application, and it
is not robust to memory errors.

We propose the following algorithm for locating sched-
uled AES keys in extracted memory:

Iterate through each byte of memory. Treat that address 1.
as the start of an AES key schedule.
Calculate the Hamming distance between each word 2.
in the potential key schedule and the value that would
have been generated from the surrounding words in a
real, undecayed key schedule.
If the sum of the Hamming distances is sufficiently 3.
low, the region is close to a correct key schedule; out-
put the key.

We implemented this algorithm for 128- and 256-bit AES
keys in an application called keyfind. The program receives
extracted memory and outputs a list of likely keys. It assumes

figure 6: error correction for aes keys. in the aes-128 key schedule,
4 bytes from each round key completely determine 3 bytes of the
next round key, as shown here. our error correction algorithm
“slices” the key into four groups of bytes with this property. it
computes a list of likely candidate values for each slice, then
checks each combination to see if it is a plausible key.

Round Key 1

Round Key 2

Core

96 communications of the acm | May 2009 | Vol. 52 | no. 5

research highlights

that key schedules are contiguous regions of memory in the
byte order used in the AES specification; this can be adjusted
for particular cipher implementations. A threshold param-
eter controls how many bit errors will be tolerated.

As described in Section 6, we successfully used key-
find to recover keys from closed-source disk encryption
programs without having to reverse engineer their key data
structures. In other tests, we even found key schedules that
were partially overwritten after the memory where they were
stored was reallocated.

This approach can be applied to many other ciphers,
including DES. To locate RSA keys, we can search for known
key data or for characteristics of the standard data structure
used for storing RSA private keys; we successfully located
the SSL private keys in memory extracted from a computer
 running Apache 2.2.3 with mod_ssl. For details, see the full
version of this paper.

6. attacking encRYPteD Disks
We have applied the tools developed in this paper to defeat
several popular on-the-fly disk encryption systems, and we
suspect that many similar products are also vulnerable. Our
results suggest that disk encryption, while valuable, is not
necessarily a sufficient defense against physical data theft.

6.1. BitLocker
BitLocker is a disk encryption feature included with some ver-
sions of Windows Vista and Windows 7. It operates as a filter
driver that resides between the file system and the disk driver,
encrypting and decrypting individual sectors on demand.
As described in a paper by Niels Ferguson of Microsoft,8 the
BitLocker encryption algorithm encrypts data on the disk
using a pair of AES keys, which, we discovered, reside in RAM
in scheduled form for as long as the disk is mounted.

We created a fully automated demonstration attack
tool called BitUnlocker. It consists of an external USB hard
disk containing a Linux distribution, a custom SYSLINUX-
based bootloader, and a custom driver that allows BitLocker
 volumes to be mounted under Linux. To use it against a run-
ning Windows system, one cuts power momentarily to reset
the machine, then connects the USB disk and boots from the
external drive. BitUnlocker automatically dumps the memory
image to the external disk, runs keyfind to locate candidate
keys, tries all combinations of the candidates, and, if the cor-
rect keys are found, mounts the BitLocker encrypted volume.
Once the encrypted volume has been mounted, one can browse
it using the Linux distribution just like any other volume.

We tested this attack on a modern laptop with 2GB of RAM.
We rebooted it by removing the battery and cutting power
for less than a second; although we did not use any cooling,
BitUnlocker successfully recovered the keys with no errors and
decrypted the disk. The entire automated process took around
25 min, and optimizations could greatly reduce this time.

6.2. fileVault
Apple’s FileVault disk encryption software ships with recent ver-
sions of Mac OS X. A user-supplied password decrypts a header
that contains both an AES key used to encrypt stored data and a
second key used to compute IVs (initialization vectors).18

We used our EFI memory extraction program on an
Intel-based Macintosh system running Mac OS X 10.4 with
a FileVault volume mounted. Our keyfind program auto-
matically identified the FileVault AES encryption key, which
did not contain any bit errors in our tests.

As for the IV key, it is present in RAM while the disk is
mounted, and if none of its bits decay, an attacker can iden-
tify it by attempting decryption using all appropriately sized
substrings of memory. FileVault encrypts each disk block in
CBC (cipher-block chaining) mode, so even if the attacker
cannot recover the IV key, he can decrypt 4080 bytes of each
4096 byte disk block (all except the first cipher block) using
only the AES key. The AES and IV keys together allow full
decryption of the volume using programs like vilefault.18

6.3. truecrypt, dm-crypt, and Loop-aes
We tested three popular open-source disk encryption
 systems, TrueCrypt, dm-crypt, and Loop-AES, and found
that they too are vulnerable to attacks like the ones we have
described. In all three cases, once we had extracted a mem-
ory image with our tools, we were able to use keyfind to
locate the encryption keys, which we then used to decrypt
and mount the disks.

7. counteRmeasuRes
Memory remanence attacks are difficult to prevent because
cryptographic keys in active use must be stored somewhere.
Potential countermeasures focus on discarding or obscur-
ing encryption keys before an adversary might gain physical
access, preventing memory extraction software from execut-
ing on the machine, physically protecting the DRAM chips,
and making the contents of memory decay more readily.

7.1. suspending a system safely
Simply locking the screen of a computer (i.e., keeping the
system running but requiring entry of a password before
the system will interact with the user) does not protect the
contents of memory. Suspending a laptop’s state to RAM
(sleeping) is also ineffective, even if the machine enters a
screen-locked state on awakening, since an adversary could
simply awaken the laptop, power-cycle it, and then extract
its memory state. Suspending to disk (hibernating) may also
be ineffective unless an externally held secret key is required
to decrypt the disk when the system is awakened.

With most disk encryption systems, users can protect
themselves by powering off the machine completely when
it is not in use then guarding the machine for a minute or
so until the contents of memory have decayed sufficiently.
Though effective, this countermeasure is inconvenient, since
the user will have to wait through the lengthy boot process
before accessing the machine again.

Suspending can be made safe by requiring a password or
other external secret to reawaken the machine and encrypt-
ing the contents of memory under a key derived from the
password. If encrypting all of the memory is too expensive,
the system could encrypt only those pages or regions con-
taining important keys. An attacker might still try to guess
the password and check his guesses by attempting decryp-
tion (an offline password-guessing attack), so systems

May 2009 | Vol. 52 | no. 5 | communications of the acm 97

should encourage the use of strong passwords and employ
password strengthening techniques2 to make checking
guesses slower. Some existing systems, such as Loop-AES,
can be configured to suspend safely in this sense, although
this is usually not the default behavior.

7.2. storing keys differently
Our attacks show that using precomputation to speed crypto-
graphic operations can make keys more vulnerable, because
redundancy in the precomputed values helps the attacker
reconstruct keys in the presence of memory errors. To miti-
gate this risk, implementations could avoid storing precom-
puted values, instead recomputing them as needed and
erasing the computed information after use. This improves
resistance to memory remanence attacks but can carry a sig-
nificant performance penalty. (These performance costs are
negligible compared to the access time of a hard disk, but
disk encryption is often implemented on top of disk caches
that are fast enough to make them matter.)

Implementations could transform the key as it is stored in
memory in order to make it more difficult to reconstruct in
the case of errors. This problem has been considered from a
theoretical perspective; Canetti et al.3 define the notion of an
exposure-resilient function (ERF) whose input remains secret
even if all but some small fraction of the output is revealed.
This carries a performance penalty because of the need to
reconstruct the key before using it.

7.3. Physical defenses
It may be possible to physically defend memory chips from
being removed from a machine, or to detect attempts to
open a machine or remove the chips and respond by erasing
memory. In the limit, these countermeasures approach the
methods used in secure coprocessors7 and could add con-
siderable cost to a PC. However, a small amount of memory
soldered to a motherboard would provide moderate defense
for sensitive keys and could be added at relatively low cost.

7.4. architectural changes
Some countermeasures involve changes to the computer’s
architecture that might make future machines more secure.
DRAM systems could be designed to lose their state quickly,
though this might be difficult, given the need to keep the prob-
ability of decay within a DRAM refresh interval vanishingly
small. Key-store hardware could be added—perhaps inside
the CPU—to store a few keys securely while erasing them on
power-up, reset, and shutdown. Some proposed architectures
would routinely encrypt the contents of memory for security
purposes6, 12; these would prevent the attacks we describe as
long as the keys are reliably destroyed on reset or power loss.

7.5. encrypting in the disk controller
Another approach is to perform encryption in the disk con-
troller rather than in software running on the main CPU and
to store the key in the controller’s memory instead of the
PC’s DRAM. In a basic form of this approach, the user sup-
plies a secret to the disk at boot, and the disk controller uses
this secret to derive a symmetric key that it uses to encrypt
and decrypt the disk contents.

For this method to be secure, the disk controller must
erase the key from its memory whenever the computer is
rebooted. Otherwise, an attacker could reboot into a mali-
cious kernel that simply reads the disk contents. For similar
reasons, the key must also be erased if an attacker attempts
to transplant the disk to another computer.

While we leave an in-depth study of encryption in the disk
controller to future work, we did perform a cursory test of two
hard disks with this capability, the Seagate Momentus 5400
FDE.2 and the Hitachi 7K200. We found that they do not appear
to defend against the threat of transplantation. We attached
both disks to a PC and confirmed that every time we powered
on the machine, we had to enter a password via the BIOS in
order to decrypt the disks. However, once we had entered the
password, we could disconnect the disks’ SATA cables from
the motherboard (leaving the power cables connected), con-
nect them to another PC, and read the disks’ contents on the
second PC without having to re-enter the password.

7.6. trusted computing
Though useful against some attacks, most Trusted Computing
hardware deployed in PCs today does not prevent the attacks
described here. Such hardware generally does not perform
bulk data encryption itself; instead, it monitors the boot pro-
cess to decide (or help other machines decide) whether it is
safe to store a key in RAM. If a software module wants to safe-
guard a key, it can arrange that the usable form of that key
will not be stored in RAM unless the boot process has gone as
expected. However, once the key is stored in RAM, it is subject
to our attacks. Today’s Trusted Computing devices can pre-
vent a key from being loaded into memory for use, but they
cannot prevent it from being captured once it is in memory.

In some cases, Trusted Computing makes the problem
worse. BitLocker, in its default “basic mode,” protects the
disk keys solely with Trusted Computing hardware. When
the machine boots, BitLocker automatically loads the keys
into RAM from the Trusted Computing hardware without
requiring the user to enter any secrets. Unlike other disk
encryption systems we studied, this configuration is at risk
even if the computer has been shut down for a long time—
the attacks only needs to power on the machine to have the
keys loaded back into memory, where they are vulnerable to
our attacks.

8. PReVious WoRk
We owe the suggestion that DRAM contents can survive cold
boot to Pettersson,15 who seems to have obtained it from
Chow et al.5 Pettersson suggested that remanence across
cold boot could be used to acquire forensic memory images
and cryptographic keys. Chow et al. discovered the prop-
erty during an unrelated experiment, and they remarked on
its security implications. Neither experimented with those
implications.

MacIver stated in a presentation14 that Microsoft con-
sidered memory remanence in designing its BitLocker disk
encryption system. He acknowledged that BitLocker is vul-
nerable to having keys extracted by cold-booting a machine
when used in a “basic mode,” but he asserted that BitLocker
is not vulnerable in “advanced modes” (where a user must

98 communications of the acm | May 2009 | Vol. 52 | no. 5

research highlights

provide key material to access the volume). MacIver appar-
ently has not published on this subject.

Researchers have known since the 1970s that DRAM cell
contents survive to some extent even at room temperature
and that retention times can be increased by cooling.13 In
2002, Skorobogatov17 found significant retention times with
static RAMs at room temperature. Our results for DRAMs
show even longer retention in some cases.

Some past work focuses on “burn-in” effects that
occur when data is stored in RAM for an extended period.
Gutmann9, 10 attributes burn-in to physical changes in mem-
ory cells, and he suggests that keys be relocated periodically
as a defense. Our findings concern a different phenomenon.
The remanence effects we studied occur even when data is
stored only momentarily, and they result not from physical
changes but from the electrical capacitance of DRAM cells.

A number of methods exist for obtaining memory
images from live systems. Unlike existing techniques, our
attacks do not require access to specialized hardware or a
privileged account on the target system, and they are resis-
tant to operating system countermeasures.

9. concLusion
Contrary to common belief, DRAMs hold their values for
surprisingly long intervals without power or refresh. We
show that this fact enables attackers to extract cryptographic
keys and other sensitive information from memory despite
the operating system’s efforts to secure memory contents.
The attacks we describe are practical—for example, we have
used them to defeat several popular disk encryption sys-
tems. These results imply that disk encryption on laptops,
while beneficial, does not guarantee protection.

In recent work Chan et al.4 demonstrate a dangerous exten-
sion to our attacks. They show how to cold-reboot a running
computer, surgically alter its memory, and then restore the
machine to its previous running state. This allows the attacker
to defeat a wide variety of security mechanisms—including
disk encryption, screen locks, and antivirus software—by tam-
pering with data in memory before reanimating the machine.
This attack can potentially compromise data beyond the local
disk; for example, it can be executed quickly enough to bypass
a locked screen before any active VPN connections time out.
Though it appears that this attack would be technically chal-
lenging to execute, it illustrates that memory’s vulnerabil-
ity to physical attacks presents serious threats that security
researchers are only beginning to understand.

There seems to be no easy remedy for memory rema-
nence attacks. Ultimately, it might become necessary to treat
DRAM as untrusted and to avoid storing sensitive data there,
but this will not be feasible until architectures are changed
to give running software a safe place to keep secrets.

acknowledgments
We thank Andrew Appel, Jesse Burns, Grey David, Laura
Felten, Christian Fromme, Dan Good, Peter Gutmann,
Benjamin Mako Hill, David Hulton, Brie Ilenda, Scott Karlin,
David Molnar, Tim Newsham, Chris Palmer, Audrey Penven,
David Robinson, Kragen Sitaker, N.J.A. Sloane, Gregory
Sutter, Sam Taylor, Ralf-Philipp Weinmann, and Bill Zeller

for their helpful contributions. This work was supported in
part by a National Science Foundation Graduate Research
Fellowship and by the Department of Homeland Security
Scholarship and Fellowship Program; it does not necessarily
reflect the views of NSF or DHS.

References

 1. arbaugh, W., Farber, d., smith, J.
a secure and reliable bootstrap
architecture. In Proceedings of the
IEEE Symposium on Security and
Privacy (May 1997), 65–71.

 2. boyen, X. Halting password
puzzles: Hard-to-break encryption
from human-memorable keys. In
Proceedings of the 16th USENIX
Security Symposium (august 2008).

 3. Canetti, r., dodis, y., Halevi, s.,
Kushilevitz, e., sahai, a. exposure-
resilient functions and all-or-nothing
transforms. In EUROCRYPT 2000,
volume 1807/2000 (2000), 453–469.

 4. Chan, e.M., Carlyle, J.C., david, F.M.,
Farivar, r., Campbell, r.H. bootjacker:
Compromising computers using
forced restarts. In Proceedings of the
15th ACM Conference on Computer
and Communications Security
(october 2008), 555–564.

 5. Chow, J., Pfaff, b., garfinkel, t.,
rosenblum, M. shredding your
garbage: reducing data lifetime
through secure deallocation. In
Proceedings of the 14th USENIX
Security Symposium (august 2005),
331–346.

 6. dwoskin, J., lee, r.b. Hardware-rooted
trust for secure key management and
transient trust. In Proceedings of the
14th ACM Conference on Computer
and Communications Security
(october 2007), 389–400.

 7. dyer, J.g., lindemann, M., Perez, r.,
sailer, r., van doorn, l., smith, s.W.,
Weingart, s. building the IbM 4758
secure coprocessor. Computer 34
(oct. 2001), 57–66.

 8. Ferguson, n. aes-CbC + elephant
diffuser: a disk encryption algorithm
for Windows Vista, (august 2006).

 9. gutmann, P. secure deletion of
data from magnetic and solid-state

memory. In Proceedings of the 6th
USENIX Security Symposium (July
1996), 77–90.

 10. gutmann, P. data remanence
in semiconductor devices. In
Proceedings of the 10th USENIX
Security Symposium (august 2001),
39–54.

 11. Heninger, n., shacham, H. Improved
rsa private key reconstruction for
cold boot attacks. Cryptology ePrint
archive, report 2008/510, december
2008.

 12. lie, d., thekkath, C.a., Mitchell, M.,
lincoln, P., boneh, d., Mitchell, J.,
Horowitz, M. architectural support for
copy and tamper resistant software.
In Symposium on Architectural
Support for Programming Languages
and Operating Systems (2000).

 13. link, W., May, H. eigenschaften von
Mos-ein-transistorspeicherzellen
bei tiefen temperaturen. Archiv für
Elektronik und Übertragungstechnik
33 (June 1979), 229–235.

 14. MacIver, d. Penetration testing
Windows Vista bitlocker drive
encryption. Presentation, Hack In the
box (september 2006).

 15. Pettersson, t. Cryptographic key
recovery from linux memory dumps.
Presentation, Chaos Communication
Camp (august 2007).

 16. shamir, a., van someren, n. Playing
“hide and seek” with stored keys.
LNCS 1648 (1999), 118–124.

 17. skorobogatov, s. low-temperature
data remanence in static raM.
university of Cambridge Computer
laborary technical report 536, June
2002.

 18. Weinmann, r.-P., appelbaum, J.
unlocking FileVault. Presentation,
23rd Chaos Communication
Congress, december 2006.

J. Alex Halderman
(jhalderm@eecs.umich.edu)
university of Michigan.

Seth D. Schoen
(schoen@eff.org)
electronic Frontier Foundation.

Nadia Heninger
(nadiah@cs.princeton.edu)
Princeton university.

William Clarkson
(wclarkso@cs.princeton.edu)
Princeton university.

William Paul
(wpaul@windriver.com)
Wind river systems.

Joseph A. Calandrino
(jcalandr@cs.princeton.edu)
Princeton university.

Ariel J. Feldman
(ajfeldma@cs.princeton.edu)
Princeton university.

Jacob Appelbaum
(jacob@appelbaum.net)
the tor Project.

Edward W. Felten
(felten@cs.princeton.edu)
Princeton university.

© 2009 aCM 0001-0782/09/0500 $5.00

mailto:jhalderm@eecs.umich.edu
mailto:schoen@eff.org
mailto:nadiah@cs.princeton.edu
mailto:wclarkso@cs.princeton.edu
mailto:wpaul@windriver.com
mailto:jcalandr@cs.princeton.edu
mailto:ajfeldma@cs.princeton.edu
mailto:jacob@appelbaum.net
mailto:felten@cs.princeton.edu

may 2009 | vol. 52 | no. 5 | communications of the acm 99

technical Perspective
highly concurrent
Data structures
By Maurice Herlihy

the Advent of multicore architec-
tures has produced a Renaissance in
the study of highly concurrent data
structures. Think of these shared
data structures as the ball bearings
of concurrent architectures: they
are the potential “hot spots” where
concurrent threads synchronize. Un-
der-engineered data structures, like
under-engineered ball bearings, can
prevent individually well-engineered
parts from performing well together.
Simplifying somewhat, Amdahl’s Law
states that synchronization granular-
ity matters: even short sequential sec-
tions can hamstring the scalability of
otherwise well-designed concurrent
systems.

The design and implementation
of libraries of highly concurrent data
structures will become increasingly
important as applications adapt to
multicore platforms. Well-designed
concurrent data structures illustrate
the power of abstraction: On the out-
side, they provide clients with simple
sequential specifications that can be
understood and exploited by nonspe-
cialists. For example, a data structure
might simply describe itself as a map
from keys to values. An operation such
as inserting a key-value binding in
the map appears to happen instanta-
neously in the interval between when
the operation is called and when it
returns, a property known as lineariz-
ability. On the inside, however, they
may be highly engineered by special-
ists to match the characteristics of the
underlying platform.

Scherer, Lea, and Scott’s “Scalable
Synchronous Queues” is a welcome
addition to a growing repertoire of
scalable concurrent data structures.
Communications’ Research Highlights
editorial board chose this paper for
several reasons. First, it is a useful al-
gorithm in its own right. Moreover, it
is the very model of a modern concur-
rent data structures paper. The inter-
face is simple, the internal structure,

while clever, is easily understood, the
correctness arguments are concise
and clear. It provides a small number
of useful choices, such as the ability to
time out or to trade performance for
fairness, and the experimental valida-
tion is well described and reproduc-
ible.

This synchronous queue is lock-
free: the delay or failure of one thread
cannot delay others from completing
that operation. There are three prin-
cipal nonblocking progress proper-
ties in the literature. An operation

is wait-free if all threads calling that
operation will eventually succeed.
It is lock-free if some thread will suc-
ceed, and it is obstruction-free if some
thread will succeed provided no con-
flicting thread runs at the same time.
Note that a data structure may provide
different guarantees for different op-
erations: a map might provide lock-
free insertion but wait-free lookups.
In practice, most non-blocking algo-
rithms are lock-free.

Lock-free operations are attractive
for several reasons. They are robust
against unexpected delays. In mod-
ern multicore architectures, threads
are subject to long and unpredictable
delays, ranging from cache misses
(short), signals (long), page faults (very
long), to being descheduled (very,
very long). For example, if a thread

is holding a lock when it is desched-
uled, then other, running threads that
need that lock will also be blocked.
With locks, systems with real-time
constraints may be subject to priority
inversion, where a high-priority thread
is blocked waiting for a low-priority
thread to release a lock. Care must
be taken to avoid deadlocks, where
threads wait forever for one another
to release locks.

Amdahl’s Law says that the shorter
the critical sections, the better. One
can think of lock-free synchronization
as a limiting case of this trend, reduc-
ing critical sections to individual ma-
chine instructions. As a result, how-
ever, lock-free algorithms are often
tricky to implement. The need to avoid
overhead can lead to complicated de-
signs, which may in turn make it diffi-
cult to reason (even informally) about
correctness. Nevertheless, lock-free
algorithms are not necessarily more
difficult than other kinds of highly
concurrent algorithms. Writing lock-
free algorithms, like writing device
drivers or cosine routines, requires
some care and expertise.

Given such difficulty, can lock-free
synchronization live up to its prom-
ise? In fact, lock-free synchronization
has had a number of success stories.
Widely used packages such as Java’s
java.util.concurrent, and C#’s Sys-
tem.Threading.Collections include a
variety of finely tuned lock-free data
structures. Applications that have
benefited from lock-free data struc-
tures fall into categories as diverse
as work-stealing schedulers, memory
allocation programs, operating sys-
tems, music, and games.

For the foreseeable future, con-
current data structures will lie at the
heart of multicore applications, and
the larger our library of scalable con-
current data structures, the better we
can exploit the promise of multicore
architectures.

Maurice Herlihy is a professor of computer science at
brown university, Providence, r.I. He is the recipient of
the 2004 gödel Prize and the 2003 dijkstra Prize and
is a member of the editorial board for Communications’
research Highlights section.

© 2009 aCM 0001-0782/09/0500 $5.00

Writing lock-free
algorithms, like
writing device drivers
and cosine routines,
requires some care
and expertise.

Doi:10.1145/1506409.1506430

100 communications of the acm | May 2009 | Vol. 52 | no. 5

research highlights

Doi:10.1145/1506409.1506431

Scalable Synchronous Queues
By William N. Scherer III, Doug Lea, and Michael L. Scott

abstract
In a thread-safe concurrent queue, consumers typically
wait for producers to make data available. In a synchronous
queue, producers similarly wait for consumers to take the
data. We present two new nonblocking, contention-free syn-
chronous queues that achieve high performance through a
form of dualism: The underlying data structure may hold
both data and, symmetrically, requests.

We present performance results on 16-processor SPARC
and 4-processor Opteron machines. We compare our algo-
rithms to commonly used alternatives from the literature
and from the Java SE 5.0 class java.util.concurrent
.SynchronousQueue both directly in synthetic
microbenchmarks and indirectly as the core of Java’s
ThreadPoolExecutor mechanism. Our new algorithms
consistently outperform the Java SE 5.0 SynchronousQueue
by factors of three in unfair mode and 14 in fair
mode; this translates to factors of two and ten for the
ThreadPoolExecutor. Our synchronous queues have been
adopted for inclusion in Java 6.

1. intRoDuction
Mechanisms to transfer data between threads are among
the most fundamental building blocks of concurrent sys-
tems. Shared memory transfers are typically effected via
a concurrent data structure that may be known variously as a
buffer, a channel, or a concurrent queue. This structure serves
to “pair up” producers and consumers. It can also serve to
smooth out fluctuations in their relative rates of progress by
buffering unconsumed data. This buffering, in systems that
provide it, is naturally asymmetric: A consumer that tries to
take data from an empty concurrent queue will wait for a
producer to perform a matching put operation; however, a
producer need not wait to perform a put unless space has
run out. That is, producers can “run ahead” of consumers,
but consumers cannot “run ahead” of producers.

A synchronous queue provides the “pairing up” function
without the buffering; it is entirely symmetric: Producers
and consumers wait for one another, “shake hands,” and
leave in pairs. For decades, synchronous queues have played
a prominent role in both the theory and practice of concur-
rent programming. They constitute the central synchroniza-
tion primitive of Hoare’s CSP8 and of languages derived from
it, and are closely related to the rendezvous of Ada. They are
also widely used in message-passing software and in stream-
style “hand-off” algorithms.2, Chap. 8 (In this paper we focus on
synchronous queues within a multithreaded program, not
across address spaces or distributed nodes.)

Unfortunately, design-level tractability of synchronous
queues has often come at the price of poor performance.
“Textbook” algorithms for put and take may repeat-

edly suffer from contention (slowdown due to conflicts

with other threads for access to a cache line) and/or block-
ing (loops or scheduling operations that wait for activity in
another thread). Listing 1, for example, shows one of the
most commonly used implementations, due to Hanson.3
It employs three separate semaphores, each of which is a
potential source of contention and (in acquire operations)
blocking.a

The synchronization burden of algorithms like Hanson’s
is especially significant on modern multicore and mul-
tiprocessor machines, where the OS scheduler may take
thousands of cycles to block or unblock threads. Even an
uncontended semaphore operation usually requires special
read-modify-write or memory barrier (fence) instructions,
each of which can take tens of cycles.b

a Semaphores are the original mechanism for scheduler-based synchroniza-
tion (they date from the mid-1960s). Each semaphore contains a counter and
a list of waiting threads. An acquire operation decrements the counter and
then waits for it to be nonnegative. A release operation increments the
counter and unblocks a waiting thread if the result is nonpositive. In effect, a
semaphore functions as a non-synchronous concurrent queue in which the
transferred data is null.
b Read-modify-write instructions (e.g., compare_and_swap [CAS]) faci-
litate constructing concurrent algorithms via atomic memory updates.
Fences enforce ordering constraints on memory operations.

Listing 1: hanson’s synchronous queue. semaphore sync indicates
whether item is valid (initially, no); send holds 1 minus the number
of pending puts; recv holds 0 minus the number of pending takes.

00 public class HansonSQ<E> {
01 E item = null;
02 Semaphore sync = new Semaphore(0);
03 Semaphore send = new Semaphore(1);
04 Semaphore recv = new Semaphore(0);
05
06 Public E take() {
07 recv.acquire();
08 E x = item;
09 sync.release();
10 send.release();
11 return x;
12 }
13
14 public void put(E x) {
15 send.acquire();
16 item = x;
17 recv.release();
18 sync.acquire();
19 }
20 }

A previous version of this paper was published in Proceed-
ings of the 11th ACM Symposium on Principles and Practice
of Parallel Programming, Mar. 2006.

May 2009 | Vol. 52 | no. 5 | communications of the acm 101

It is also difficult to extend Listing 1 and other “clas-
sic” synchronous queue algorithms to provide addi-
tional functionality. Many applications require poll
and offer operations, which take an item only if a
producer is already present, or put an item only if a con-
sumer is already waiting (otherwise, these operations
return an error). Similarly, many applications require
the ability to time out if producers or consumers do not
appear within a certain patience interval or if the wait-
ing thread is asynchronously interrupted. In the java.util
.concurrent library, one of the ThreadPoolExecutor imple-
mentations uses all of these capabilities: Producers deliver
tasks to waiting worker threads if immediately available, but
otherwise create new worker threads. Conversely, worker
threads terminate themselves if no work appears within a
given keep-alive period (or if the pool is shut down via an
interrupt).

Additionally, applications using synchronous queues vary
in their need for fairness: Given multiple waiting producers,
it may or may not be important to an application whether the
one waiting the longest (or shortest) will be the next to pair
up with the next arriving consumer (and vice versa). Since
these choices amount to application-level policy decisions,
algorithms should minimize imposed constraints. For exam-
ple, while fairness is often considered a virtue, a thread pool
normally runs faster if the most-recently-used waiting worker
thread usually receives incoming work, due to the footprint
retained in the cache and the translation lookaside buffer.

In this paper we present synchronous queue algorithms
that combine a rich programming interface with very low
intrinsic overhead. Our algorithms avoid all blocking other
than that intrinsic to the notion of synchronous handoff:
A producer thread must wait until a consumer appears (and
vice versa); there is no other way for one thread’s delay to
impede another’s progress. We describe two algorithmic
variants: a fair algorithm that ensures strict FIFO ordering
and an unfair algorithm that makes no guarantees about
ordering (but is actually based on a LIFO stack). Section 2
of this paper presents the background for our approach.
Section 3 describes the algorithms and Section 4 presents
empirical performance data. We conclude and discuss
potential extensions to this work in Section 5.

2. BackgRounD

2.1. nonblocking synchronization
Concurrent data structures are commonly protected with
locks, which enforce mutual exclusion on critical sections
executed by different threads. A naive synchronous queue
might be protected by a single lock, forcing all put and
take operations to execute serially. (A thread that blocked
waiting for a peer would of course release the lock, allowing
the peer to execute the matching operation.) With a bit of
care and a second lock, we might allow one producer and
one consumer to execute concurrently in many cases.

Unfortunately, locks suffer from several serious prob-
lems. Among other things, they introduce blocking beyond
that required by data structure semantics: If thread A holds a
lock that thread B needs, then B must wait, even if A has been

preempted and will not run again for quite a while. A multi-
programmed system with thread priorities or asynchronous
events may suffer spurious deadlocks due to priority inver-
sion: B needs the lock A holds, but A cannot run, because B is
a handler or has higher priority.

Nonblocking concurrent objects address these prob-
lems by avoiding mutual exclusion. Loosely speaking, their
methods ensure that the object’s invariants hold after every
single instruction, and that its state can safely be seen—and
manipulated—by other concurrent threads. Unsurprisingly,
devising such methods can be a tricky business, and indeed
the number of data structures for which correct nonblock-
ing implementations are known is fairly small.

Linearizability7 is the standard technique for demon-
strating that a nonblocking implementation of an object
is correct (i.e., that it continuously maintains object invari-
ants). Informally, linearizability “provides the illusion that
each operation… takes effect instantaneously at some point
between its invocation and its response.”7, abstract Orthogon-
ally, nonblocking implementations may provide guarantees
of various strength regarding the progress of method calls.
In a wait-free implementation, every contending thread is
guaranteed to complete its method call within a bounded
number of its own execution steps.5 Wait-free algorithms
tend to have unacceptably high overheads in practice, due
to the need to finish operations on other threads’ behalf. In
a lock-free implementation, some contending thread is guar-
anteed to complete its method call within a bounded num-
ber of any thread’s steps.5 The algorithms we present in this
paper are all lock-free. Some algorithms provide a weaker
guarantee known as obstruction freedom; it ensures that a
thread can complete its method call within a bounded num-
ber of steps in the absence of contention, i.e., if no other
threads execute competing methods concurrently.6

2.2. Dual data structures
In traditional nonblocking implementations of concurrent
objects, every method is total: It has no preconditions that
must be satisfied before it can complete. Operations that
might normally block before completing, such as dequeuing
from an empty queue, are generally totalized to simply return
a failure code when their preconditions are not met. By call-
ing the totalized method in a loop until it succeeds, one can
simulate the partial operation. This simulation, however,
does not necessarily respect our intuition for object seman-
tics. For example, consider the following sequence of events
for threads A, B, C, and D:

A calls dequeue
B calls dequeue
C enqueues a 1
D enqueues a 2
B’s call returns the 1
A’s call returns the 2

If thread A’s call to dequeue is known to have started
before thread B’s call, then intuitively, we would think that
A should get the first result out of the queue. Yet, with the
call-in-a-loop idiom, ordering is simply a function of which

102 communications of the acm | May 2009 | Vol. 52 | no. 5

research highlights

thread happens to retry its dequeue operation first once data
becomes available. Further, each invocation of the totalized
method introduces performance-degrading contention for
memory–interconnect bandwidth.

As an alternative, suppose we could register a request for a
hand-off partner. Inserting this reservation could be done in a
nonblocking manner, and checking to see whether a partner
has arrived to fulfill our reservation could consist of reading a
Boolean flag in the request data structure. A dual data struc-
ture16, 19 takes precisely this approach: Objects may contain
both data and reservations. We divide partial methods into
separate, first-class request and follow-up operations, each of
which has its own invocation and response. A total queue, for
example, would provide dequeue_request and dequeue_
followup methods (Listing 2). By analogy with Lamport’s
bakery algorithm,10 the request operation returns a unique
ticket that represents the reservation and is then passed as an
argument to the follow-up method. The follow-up, for its part,
returns either the desired result (if one is matched to the ticket)
or, if the method’s precondition has not yet been satisfied, an
error indication.

The key difference between a dual data structure and
a “totalized” partial method is that linearization of the
p_request call allows the dual data structure to deter-
mine the fulfillment order for pending requests. In addi-
tion, unsuccessful follow-ups, unlike unsuccessful calls
to totalized methods, are readily designed to avoid bus or
memory contention. For programmer convenience, we pro-
vide demand methods, which wait until they can return suc-
cessfully. Our implementations use both busy-wait spinning
and scheduler-based suspension to effect waiting in threads
whose preconditions are not met.

When reasoning about progress, we must deal with the fact
that a partial method may wait for an arbitrary amount of time
(perform an arbitrary number of unsuccessful follow-ups)
before its precondition is satisfied. Clearly it is desirable that
requests and follow-ups be nonblocking. In practice, good
system performance will also typically require that unsuccess-
ful follow-ups not interfere with other threads’ progress. We
define a data structure as contention-free if none of its follow-up
operations, in any execution, performs more than a constant
number of remote memory accesses across all unsuccessful
invocations with the same request ticket. On a machine with
an invalidation-based cache coherence protocol, a read of

location o by thread t is said to be remote if o has been written
by some thread other than t since t last accessed it; a write by
t is remote if o has been accessed by some thread other than t
since t last wrote it. On a machine that cannot cache remote
locations, an access is remote if it refers to memory allocated
on another node. Compared to the local-spin property,13 con-
tention freedom allows operations to block in ways other than
busy-wait spinning; in particular, it allows other actions to be
performed while waiting for a request to be satisfied.

3. aLgoRithm DescRiPtions
In this section we discuss various implementations of syn-
chronous queues. We start with classic algorithms used
extensively in production software, then we review newer
implementations that improve upon them. Finally, we
describe our new algorithms.

3.1. classic synchronous queues
Perhaps the simplest implementation of synchronous queues
is the naive monitor-based algorithm that appears in Listing 3.
In this implementation, a single monitor serializes access to
a single item and to a putting flag that indicates whether a
producer has currently supplied data. Producers wait for the
flag to be clear (lines 15–16), set the flag (17), insert an item
(18), and then wait until a consumer takes the data (20–21).
Consumers await the presence of an item (05–06), take it (07),
and mark it as taken (08) before returning. At each point where
their actions might potentially unblock another thread, pro-
ducer and consumer threads awaken all possible candidates
(09, 20, 24). Unfortunately, this approach results in a number
of wake-ups quadratic in the number of waiting producer and
consumer threads; coupled with the high cost of blocking or

datum dequeue(SynchronousQueue Q) {
 reservation r = Q.dequeue_reserve();
 do {
 datum d = Q.dequeue_followup(r);
 if (failed != d) return d;
 /* else delay -- spinning and/or scheduler-based */
 while (!timed_out());
 if (Q.dequeue_abort(r)) return failed;
 return Q.dequeue_followup(r);
}

Listing 2: combined operations: dequeue pseudocode (enqueue is
symmetric).

00 public class NaiveSQ<E> {
01 boolean putting = false;
02 E item = null;
03
04 public synchronized E take() {
05 while (item == null)
06 wait();
07 E e = item;
08 item = null;
09 notifyAll();
10 return e;
11 }
12
13 public synchronized void put (E e) {
14 if (e == null) return;
15 while (putting)
16 wait();
17 putting = true;
18 item = e;
19 notifyAll();
20 while (item != null)
21 wait();
22 putting = false;
23 notifyAll();
24 }
25 }

Listing 3: naive synchronous queue.

May 2009 | Vol. 52 | no. 5 | communications of the acm 103

the Synchronous dual Queue: We represent the synchro-
nous dual queue as a singly linked list with head and tail
pointers. The list may contain data nodes or request nodes
(reservations), but never both at once. Listing 5 shows the
enqueue method. (Except for the direction of data transfer,
dequeue is symmetric.) To enqueue, we first read the head
and tail pointers (lines 06–07). From here, there are two main
cases. The first occurs when the queue is empty (h == t) or
contains data (line 08). We read the next pointer for the tail-
most node in the queue (09). If all values read are mutually
consistent (10) and the queue’s tail pointer is current (11), we
attempt to insert our offering at the tail of the queue (13–14).
If successful, we wait until a consumer signals that it has

unblocking a thread, this results in poor performance.
Hanson’s synchronous queue (Listing 1) improves upon

the naive approach by using semaphores to target wake-
ups to only the single producer or consumer thread that an
operation has unblocked. However, as noted in Section 1, it
still incurs the overhead of three separate synchronization
events per transfer for each of the producer and consumer;
further, it normally blocks at least once per operation. It is
possible to streamline some of these synchronization points
in common execution scenarios by using a fast-path acquire
sequence;11 this was done in early releases of the dl.util
. concurrent package which evolved into java.util.concurrent.

3.2. the Java se 5.0 synchronous queue
The Java SE 5.0 synchronous queue (Listing 4) uses a pair of
queues (in fair mode; stacks for unfair mode) to separately hold
waiting producers and consumers. This approach echoes the
scheduler data structures of Anderson et al;.1 it improves con-
siderably on semaphore-based approaches. When a producer
or consumer finds its counterpart already waiting, the new
arrival needs to perform only one synchronization operation:
acquiring a lock that protects both queues (line 18 or 33). Even
if no counterpart is waiting, the only additional synchroniza-
tion required is to await one (25 or 40). A transfer thus requires
only three synchronization operations, compared to the six
incurred by Hanson’s algorithm. In particular, using a queue
instead of a semaphore allows producers to publish data items
as they arrive (line 36) instead of having to first awaken after
blocking on a semaphore; consumers need not wait.

3.3. combining dual data structures with
 synchronous queues
A key limitation of the Java SE 5.0 SynchronousQueue class is
its reliance on a single lock to protect both queues. Coarse-
grained synchronization of this form is well known for intro-
ducing serialization bottlenecks; by creating nonblocking
implementations, we eliminate a major impediment to
scalability.

Our new algorithms add support for time-out and for bidi-
rectional synchronous waiting to our previous nonblocking
dual queue and dual stack algorithms19 (those in turn were
derived from the classic Treiber stack21 and the M&S queue14).
The nonsynchronous dual data structures already block when a
consumer arrives before a producer; our challenge is to arrange
for producers to block until a consumer arrives as well. In the
queue, waiting is accomplished by spinning until a pointer
changes from null to non-null, or vice versa; in the stack, it is
accomplished by pushing a “fulfilling” node and arranging for
adjacent matching nodes to “annihilate” one another.

We describe basic versions of the synchronous dual
queue and stack in the sections “The synchronous dual
queue” and “The synchronous dual stack,” respectively. The
section “Time-out” then sketches the manner in which we
add time-out support. The section “Pragmatics” discusses
additional pragmatic issues. Throughout the discussion,
we present fragments of code to illustrate particular fea-
tures; full source is available online at http://gee.cs.oswego
.edu /cgi-bin /viewcvs.cgi/jsr166/src/main/java/util/concurrent/
SynchronousQueue.java.

00 public class Java5SQ<E> {
01 ReentrantLock qlock = new ReentrantLock();
02 Queue waitingProducers = new Queue();
03 Queue waitingConsumers = new Queue();
04
05 static class Node
06 extends AbstractQueuedSynchronizer {
07 E item;
08 Node next;
09
10 Node(Object x) { item = x; }
11 void waitForTake() { /* (uses AQS) */ }
12 E waitForPut() { /* (uses AQS) */ }
13 }
14
15 public E take() {
16 Node node;
17 boolean mustWait;
18 qlock.lock();
19 node = waitingProducers.pop();
20 if(mustWait = (node == null))
21 node = waitingConsumers.push(null);
22 qlock.unlock();
23
24 if (mustWait)
25 return node.waitForPut();
26 else
27 return node.item;
28 }
29
30 public void put(E e) {
31 Node node;
32 boolean mustWait;
33 qlock.lock();
34 node = waitingConsumers.pop();
35 if (mustWait = (node == null))
36 node = waitingProducers.push(e);
37 qlock.unlock();
38
39 if (mustWait)
40 node.waitForTake();
41 else
42 node.item = e;
43 }
44 }

Listing 4: the Java se 5.0 SynchronousQueue class, fair (queue-based)
version. the unfair version uses stacks instead of queues, but is
otherwise identical. (for clarity, we have omitted details of the way in
which abstractQueuedsynchronizers are used, and code to generalize
waitingProducers and waitingconsumers to either stacks or queues.)

http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent/SynchronousQueue.java
http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent/SynchronousQueue.java
http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent/SynchronousQueue.java

104 communications of the acm | May 2009 | Vol. 52 | no. 5

research highlights

reservations, except that in this case there may, temporarily,
be a single node of the opposite type at the head.

Code for the push operation appears in Listing 6. (Except
for the direction of data transfer, pop is symmetric.) We
begin by reading the node at the top of the stack (line 06).

claimed our data (15–16), which it does by updating our node’s
data pointer to null. Then we help remove our node from the
head of the queue and return (18–20). The request linear-
izes in this code path at line 13 when we successfully insert
our offering into the queue; a successful follow-up linearizes
when we notice at line 15 that our data has been taken.

The other case occurs when the queue consists of reser-
vations, and is depicted in Figure 1. After originally reading
the head node (step A), we read its successor (line 24/step B)
and verify consistency (25). Then, we attempt to supply our
data to the headmost reservation (27/c). If this succeeds, we
dequeue the former dummy node (28/d) and return (30). If
it fails, we need to go to the next reservation, so we dequeue
the old dummy node anyway (28) and retry the entire opera-
tion (32, 05). The request linearizes in this code path when
we successfully supply data to a waiting consumer at line
27; the follow-up linearization point occurs immediately
thereafter.

the Synchronous dual Stack: We represent the synchro-
nous dual stack as a singly linked list with head pointer.
Like the dual queue, the stack may contain either data or

Listing 5: synchronous dual queue: spin-based enqueue; dequeue
is symmetric except for the direction of data transfer. the various
cas field (old,new) operations attempt to change field from old to
new, and return a success/failure indication. on modern processors
they can be implemented with a single atomic compare_and_swap
instruction, or its equivalent.

00 class Node { E data; Node next;...}
01
02 void enqueue(E e) {
03 Node offer = new Node(e, Data);
04
05 while (true) {
06 Node t = tail;
07 Node h = head;
08 if (h == t || !t.isRequest()) {
09 Node n = t.next;
10 if (t == tail) {
11 if (null != n) {
12 casTail(t, n);
13 } else if(t.casNext(n, offer)) {
14 casTail(t, offer);
15 while (offer.data == e)
16 /* spin */;
17 h = head;
18 if (offer == h.next)
19 casHead(h, offer);
20 return;
21 }
22 }
23 } else {
24 Node n = h.next;
25 if (t != tail || h != head || n == null)
26 continue; // inconsistent snapshot
27 boolean success = n.casData(null, e);
28 casHead(h, n);
29 if (success)
30 return;
31 }
32 }
33 }

00 class Node { E data; Node next, match; ... }
01
02 void push (E e) {
03 Node f, d = new Node(e, Data);
04
05 while (true) {
06 Node h = head;
07 if (null == h || h.isData()) {
08 d.next = h;
09 if (!casHead(h, d))
10 continue;
11 while (d.match == null)
12 /* spin */;
13 h = head;
14 if (null != h && d == h.next)
15 casHead(h, d.next);
16 return;
17 } else if (h.isRequest()) {
18 f = new Node(e, Data | Fulfilling, h);
19 if (!casHead(h, f))
20 continue;
21 h = f.next;
22 Node n = h.next;
23 h.casMatch(null, f);
24 casHead(f, n);
25 return;
26 } else { // h is fulfilling
27 Node n = h.next;
28 Node nn = n.next;
29 n.casMatch(null, h);
30 casHead(h, nn);
31 }
32 }
33 }

Listing 6: synchronous dual stack: spin-based annihilating push; pop
is symmetric except for the direction of data transfer. (for clarity,
code for time-out is omitted.)

Head Tail

Dummy

Item

Cancel

A

B

C

D

C�

Reserv. Reserv.

Item

figure 1: synchronous dual queue: enqueuing when reservations
are present.

May 2009 | Vol. 52 | no. 5 | communications of the acm 105

Synchronous Dual Stack” are complete implementations
of synchronous queues, real systems require the ability to
specify limited patience so that a producer (or consumer)
can time out if no consumer (producer) arrives soon enough
to pair up. As noted earlier, Hanson’s synchronous queue
offers no simple way to do this. Space limitations preclude
discussion of the relatively straightforward manner in
which we add time-out support to our synchronous queue;
interested readers may find this information in our original
publication.17

pragmatics: Our synchronous queue implementations
reflect a few additional pragmatic considerations to main-
tain good performance. First, because Java does not allow
us to set flag bits in pointers (to distinguish among the
types of pointed-to nodes), we add an extra word to nodes,
in which we mark mode bits. We chose this technique over
two primary alternatives. The class java.util.concurrent.
AtomicMarkableReference allows direct association of tag bits
with a pointer, but exhibits very poor performance. Using
runtime type identification (RTTI) to distinguish between
multiple subclasses of the Node classes would similarly
allow us to embed tag bits in the object type information.
While this approach performs well in isolation, it increases
long-term pressure on the JVM’s memory allocation and gar-
bage collection routines by requiring construction of a new
node after each contention failure.

Time-out support requires careful management of mem-
ory ownership to ensure that canceled nodes are reclaimed
properly. Automatic garbage collection eases the burden in
Java. We must, however, take care to “forget” references to
data, nodes, and threads that might be retained for a long
time by blocked threads (preventing the garbage collector
from reclaiming them).

The simplest approach to time-out involves marking
nodes as “canceled,” and abandoning them for another
thread to eventually unlink and reclaim. If, however, items
are offered at a very high rate, but with a very low time-out
patience, this “abandonment” cleaning strategy can result in
a long-term build-up of canceled nodes, exhausting memory
supplies and degrading performance. It is important to effect
a more sophisticated cleaning strategy. Space limitations
preclude further discussion here, but interested readers may
find more details in the conference version of this paper.17

For sake of clarity, the synchronous queues of Figures 5
and 6 blocked with busy-wait spinning to await a counterpart
consumer. In practice, however, busy-wait is useless over-
head on a uniprocessor and can be of limited value on even
a small-scale multiprocessor. Alternatives include desched-
uling a thread until it is signaled, or yielding the processor
within a spin loop.9 In practice, we mainly choose the spin-
then-yield approach, using the park and unpark meth-
ods contained in java.util.concurrent.locks.LockSupport12 to
remove threads from and restore threads to the ready list.
On multiprocessors (only), nodes next in line for fulfillment
spin briefly (about one-quarter the time of a typical context
switch) before parking. On very busy synchronous queues,
spinning can dramatically improve throughput because it
handles the case of a near-simultaneous “flyby” between a
producer and consumer without stalling either. On less busy

The three main conditional branches (beginning at lines 07,
17, and 26) correspond to the type of node we find.

The first case occurs when the stack is empty or contains
only data (line 07). We attempt to insert a new datum (09),
and wait for a consumer to claim that datum (11–12) before
returning. The reservation linearizes in this code path when
we push our datum at line 09; a successful follow-up linear-
izes when we notice that our data has been taken at line 11.

The second case occurs when the stack contains (only)
reservations (17). We attempt to place a fulfilling datum on
the top of the stack (19); if we succeed, any other thread that
wishes to perform an operation must now help us fulfill the
request before proceeding to its own work. We then read our
way down the stack to find the successor node to the res-
ervation we are fulfilling (21–22) and mark the reservation
fulfilled (23). Note that our CAS could fail if another thread
helps us and performs it first. Finally, we pop both the reser-
vation and our fulfilling node from the stack (24) and return.
The reservation linearizes in this code path at line 19, when
we push our fulfilling datum above a reservation; the follow-
up linearization point occurs immediately thereafter.

The remaining case occurs when we find another thread’s
fulfilling datum or reservation (26) at the top of the stack.
We must complete the pairing and annihilation of the top
two stack nodes before we can continue our own work. We
first read our way down the stack to find the data or reserva-
tion for which the fulfilling node is present (27–28) and then
we mark the underlying node as fulfilled (29) and pop the
paired nodes from the stack (30).

Referring to Figure 2, when a consumer wishes to retrieve
data from an empty stack, it first must insert a reservation
(step A). It then waits until its data pointer (branching to the
right) is non-null. Meanwhile, if a producer appears, it satisfies
the consumer in a two-step process. First (step B), it pushes a
fulfilling data node at the top of the stack. Then, it swings the
reservation’s data pointer to its fulfilling node (step c). Finally,
it updates the top-of-stack pointer to match the reservation
node’s next pointer (step d, not shown). After the producer
has completed step B, other threads can help update the res-
ervation’s data pointer (step c); and the consumer thread can
additionally help remove itself from the stack (step d).

time-out: Although the algorithms presented in
the sections “The Synchronous Dual Queue” and “The

figure 2: synchronous dual stack: satisfying a reservation.

Top

Reserv.

Top

Reserv.

Top

Reserv.

Fulfill
data

Fulfill
data

A B

C

106 communications of the acm | May 2009 | Vol. 52 | no. 5

research highlights

Figure 3 displays the rate at which data is transferred
from multiple producers to multiple consumers; Figure 4
displays the rate at which data is transferred from a single
producer to multiple consumers; Figure 5 displays the rate
at which a single consumer receives data from multiple pro-
ducers. Figure 6 presents execution time per task for our
ThreadPoolExecutor benchmark.

As can be seen from Figure 3, Hanson’s synchronous
queue and the Java SE 5.0 fair-mode synchronous queue both
perform relatively poorly, taking 4 (Opteron) to 8 (SPARC)
times as long to effect a transfer relative to the faster algo-
rithms. The unfair (stack-based) Java SE 5.0 synchronous
queue in turn incurs twice the overhead of either the fair or
unfair version of our new algorithm, both versions of which
are comparable in performance. The main reason that the
Java SE 5.0 fair-mode queue is so much slower than unfair
is that the fair-mode version uses a fair-mode entry lock to
ensure FIFO wait ordering. This causes pileups that block
the threads that will fulfill waiting threads. This difference
supports our claim that blocking and contention surround-
ing the synchronization state of synchronous queues are
major impediments to scalability.

When a single producer struggles to satisfy multiple con-
sumers (Figure 4), or a single consumer struggles to receive
data from multiple producers (Figure 5), the disadvantages

queues, the amount of spinning is small enough not to be
noticeable.

4. eXPeRimentaL ResuLts
We present results for several microbenchmarks and one
“real-world” scenario. The microbenchmarks employ
threads that produce and consume as fast as they can; this
represents the limiting case of producer-consumer applica-
tions as the cost to process elements approaches zero. We
consider producer-consumer ratios of 1 : N, N : 1, and N : N.

Our “real-world” scenario instantiates synchronous
queues as the core of the Java SE 5.0 class java.util.concur-
rent.ThreadPoolExecutor, which in turn forms the backbone
of many Java-based server applications. Our benchmark
produces tasks to be run by a pool of worker threads man-
aged by the ThreadPoolExecutor.

We obtained results on a SunFire V40z with four 2.4GHz
AMD Opteron processors and on a SunFire 6800 with 16
1.3GHz Ultra-SPARC III processors. On both machines,
we used Sun’s Java SE 5.0 HotSpot VM and we varied the
level of concurrency from 2 to 64. We tested each bench-
mark with both the fair and unfair (stack-based) versions
of the Java SE 5.0 java.util.concurrent.SynchronousQueue,
Hanson’s synchronous queue, and our new nonblocking
algorithms.

figure 3: synchronous handoff: N producers, N consumers. figure 4: synchronous handoff: 1 producer, N consumers.

0

1 2 3 5 8 12 18 27 41 62

1 2 3 5 8 12 18 27 41 62

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

Single producer (Opteron)

0

5,000

10,000

15,000

20,000

25,000

Consumers

SynchronousQueue

New SynchQueue (fair) HansonSQ

New SynchQueueSynchronousQueue (fair)

SynchronousQueue

New SynchQueue (fair) HansonSQ

New SynchQueueSynchronousQueue (fair)

Single producer (SPARC)

Consumers

n
s/

tr
an

sf
er

n
s/

tr
an

sf
er

0

10,000

20,000

30,000

40,000

50,000

Pairs

1 2 3 4 6 8 12 16 24 32 48 64

SynchronousQueue

New SynchQueue (fair) HansonSQ

Producer-consumer (SPARC)

n
s/

tr
an

sf
er

60,000

New SynchQueueSynchronousQueue (fair)

1 2 3 4 6 8 12 16 24 32 48 64

Producer-consumer (Opteron)

0

5,000

10,000

15,000

20,000

25,000

30,000

Pairs

n
s/

tr
an

sf
er

SynchronousQueue SynchronousQueue (fair) New SynchQueue

New SynchQueue (fair) HansonSQ

May 2009 | Vol. 52 | no. 5 | communications of the acm 107

Across all benchmarks, our fair synchronous queue uni-
versally outperforms all other fair synchronous queues and
our unfair synchronous queue outperforms all other unfair
synchronous queues, regardless of preemption or level of
concurrency.

5. concLusion
In this paper, we have presented two new lock-free and
contention-free synchronous queues that outperform all
previously known algorithms by a wide margin. In striking
contrast to previous implementations, there is little perfor-
mance cost for fairness.

In a head-to-head comparison, our algorithms consis-
tently outperform the Java SE 5.0 SynchronousQueue by a
factor of three in unfair mode and up to a factor of 14 in
fair mode. We have further shown that this performance
differential translates directly to factors of two and ten
when substituting our new synchronous queue in for the
core of the Java SE 5.0 ThreadPoolExecutor, which is itself at
the heart of many Java-based server implementations. Our
new synchronous queues have been adopted for inclusion
in Java 6.

More recently, we have extended the approach described
in this paper to TransferQueues. TransferQueues per-
mit producers to enqueue data either synchronously or

of Hanson’s synchronous queue are accentuated. Because
the singleton necessarily blocks for every operation, the
time it takes to produce or consume data increases notice-
ably. Our new synchronous queue consistently outperforms
the Java SE 5.0 implementation (fair vs. fair and unfair vs.
unfair) at all levels of concurrency.

Finally, in Figure 6, we see that the performance differ-
entials from java.util.concurrent’s SynchronousQueue trans-
late directly into overhead in the ThreadPoolExecutor: Our
new fair version outperforms the Java SE 5.0 implementa-
tion by factors of 14 (SPARC) and 6 (Opteron); our unfair
version outperforms Java SE 5.0 by a factor of three on both
platforms. Interestingly, the relative performance of fair
and unfair versions of our new algorithm differs between
the two platforms. Generally, unfair mode tends to improve
locality by keeping some threads “hot” and others buried
at the bottom of the stack. Conversely, however, it tends to
increase the number of times threads are scheduled and
descheduled. On the SPARC, context switches have a higher
relative overhead compared to other factors; this is why our
fair synchronous queue eventually catches and surpasses
the unfair version’s performance. In contrast, the cost of
context switches is relatively smaller on the Opteron, so the
trade-off tips in favor of increased locality and the unfair
version performs best.

figure 5: synchronous handoff: N producers, 1 consumer.

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

Single consumer (Opteron)

0

5,000

10,000

15,000

20,000

25,000

Producers

n
s/

tr
an

sf
er

Single consumer (SPARC)

n
s/

tr
an

sf
er

1 2 3 5 8 12 18 27 41 62

1 2 3 5 8 12 18 27 41 62

Producers

SynchronousQueue

New SynchQueue (fair) HansonSQ

New SynchQueueSynchronousQueue (fair)

SynchronousQueue

New SynchQueue (fair) HansonSQ

New SynchQueueSynchronousQueue (fair)

figure 6: threadPoolexecutor benchmark.

0

10,000

20,000

30,000

40,000

50,000

60,000

CachedThreadPool (Opteron)

0

5,000

10,000

15,000

20,000

25,000

30,000

n
s/

ta
sk

SynchronousQueue

New SynchQueue (fair) New SynchQueue

SynchronousQueue (fair)

SynchronousQueue

New SynchQueue (fair) New SynchQueue

SynchronousQueue (fair)

CachedThreadPool (SPARC)

1 2 3 4 6 8 12 16 24 32 48 64

Threads

1 2 3 4 6 8 12 16 24 32 48 64

Threads

n
s/

ta
sk

108 communications of the acm | May 2009 | Vol. 52 | no. 5

research highlights

asynchronously. TransferQueues are useful for example in
supporting messaging frameworks that allow messages to
be either synchronous or asynchronous. The base synchro-
nous support in TransferQueues mirrors our fair synchro-
nous queue. The asynchronous additions differ only by
releasing producers before items are taken.

Although we have improved the scalability of the syn-
chronous queue, there may remain potential for improve-
ment in some contexts. Most of the inter-thread contention
in enqueue and dequeue operations occurs at the memory
containing the head (and, for fair queues, tail). Reducing
such contention by spreading it out is the idea behind elimi-
nation techniques introduced by Shavit and Touitou.20 These
may be applied to components featuring pairs of opera-
tions that collectively effect no change to a data structure,
for example, a concurrent push and pop on a stack. Using
elimination, multiple locations (comprising an arena) are
employed as potential targets of the main atomic instruc-
tions underlying these operations. If two threads meet in
one of these lower-traffic areas, they cancel each other out.
Otherwise, the threads must eventually fall back (usually, in
a tree-like fashion) to try the main location.

Elimination techniques have been used by Hendler et al.4
to improve the scalability of stacks, and by us18 to improve
the scalability of the swapping channels in the java.util.con-
current Exchanger class. Moir et al.15 have also used elimina-
tion in concurrent queues, although at the price of weaker
ordering semantics than desired in some applications due
to stack-like (LIFO) operation of the elimination arena.
Similar ideas could be applied to our synchronous queues.
However, to be worthwhile here, the reduced contention
benefits would need to outweigh the delayed release (lower
throughput) experienced when threads do not meet in arena
locations. In preliminary work, we have found elimination
to be beneficial only in cases of artificially extreme conten-
tion. We leave fuller exploration to future work.

acknowledgments
We are grateful to Dave Dice, Brian Goetz, David Holmes,
Mark Moir, Bill Pugh, and the PPoPP referees for feed-
back that significantly improved the presentation of this
paper. This work was supported in part by NSF grants num-
bers EIA-0080124, CCR-0204344, and CNS-0411127, and by
financial and equipment grants from Sun Microsystems
Laboratories.

References
 1. anderson, t.e., lazowska, e.d.,

levy, H.M. the performance
implications of thread management
alternatives for shared-memory
multiprocessors. IEEE Trans.
Comput. 38, 12 (dec. 1989),
1631–1644.

 2. andrews, g.r. Concurrent
Programming: Principles and Practice.
benjamin/Cummings, 1991.

 3. Hanson, d.r. C Interfaces and
Implementations: Techniques for
Creating Reusable Software.
addison-Wesley, 1997.

 4. Hendler, d., shavit, n., yerushalmi, l.
a scalable lock-free stack
algorithm. In Proceedings of the
16th Annual ACM Symposium
on Parallelism in Algorithms and
Architectures (Jun. 2004), 206–215.

 5. Herlihy, M. Wait-free synchronization.
ACM Trans. Prog. Lang. Syst. 13, 1
(Jan. 1991), 124–149.

 6. Herlihy, M., luchangco, V., Moir, M.
obstruction-free synchronization:
double-ended queues as an
example. In Proceedings of the
23rd International Conference on
Distributed Computing Systems
(May 2003).

 7. Herlihy, M.P., Wing, J.M.
linearizability: a correctness
condition for concurrent objects.
ACM Trans. Prog. Lang. Syst. 12, 3
(Jul. 1990), 463–492.

 8. Hoare, C.a.r. Communicating
sequential processes. Commun.
ACM 21, 8 (aug. 1978), 666–677.

 9. Karlin, a.r., li, K., Manasse, M.s.,
owicki, s. empirical studies
of competitive spinning for a
shared-memory multiprocessor.
In Proceedings of the 13th ACM
Symposium on Operating Systems
Principles (oct. 1991), 41–55.

 10. lamport, l. a new solution of
dijkstra’s concurrent programming
problem. Commun. ACM 17, 8
(aug. 1974), 453–455.

 11. lamport, l. a fast mutual exclusion
algorithm. ACM Trans. Comput. Syst.
5, 1 (Feb. 1987), 1–11.

 12. lea, d. the java.util.concurrent
synchronizer Framework. Sci.

Comput. Prog. 58, 3 (dec. 2005),
293–309.

 13. Mellor-Crummey, J.M., scott, M.l.
algorithms for scalable
synchronization on shared-memory
multiprocessors. ACM Trans.
Comput. Syst. 9, 1 (Feb. 1991), 21–65.

 14. Michael, M.M., scott, M.l. simple,
fast, and practical non-blocking and
blocking concurrent queue algorithms.
In Proceedings of the 15th ACM
Symposium on Principles of Distributed
Computing (May 1996), 267–275.

 15. Moir, M., nussbaum, d., shalev, o.,
shavit, n. using elimination to
implement scalable and lock-free
FIFo queues. In Proceedings of
the 17th Annual ACM Symposium
on Parallelism in Algorithms and
Architectures (Jul. 2005), 253–262.

 16. scherer III, W.n. synchronization
and concurrency in user-level
software systems. Ph.d. dissertation,
department of Computer science,
university of rochester
(Jan. 2006).

 17. scherer III, W.n., lea, d., scott, M.l.
scalable synchronous queues.
In Proceedings of the 11th ACM
Symposium on Principles and
Practice of Parallel Programming
(Mar. 2006).

 18. scherer III, W.n., lea, d., scott, M.l.
a scalable elimination-based
exchange channel. In Proceedings,
Workshop on Synchronization and
Concurrency in Object-Oriented
Languages (oct. 2005). In
conjunction with ooPsla ‘05.

 19. scherer III, W.n., scott, M.l.
nonblocking concurrent objects
with condition synchronization. In
Proceedings of the 18th International
Symposium on Distributed Computing
(oct. 2004).

 20. shavit, n., touitou, d. elimination
trees and the construction of pools
and stacks. In Proceedings of the
7th Annual ACM Symposium on
Parallel Algorithms and Architectures
(Jul. 1995).

 21. treiber, r.K. systems programming:
Coping with parallelism. technical
report rJ 5118, IbM almaden
research Center, apr. 1986.

William N. Scherer III (scherer@edu)
department of Computer science
rice university, Houston, tX.

Doug Lea (dl@cs.oswego.edu)
department of Computer science
suny oswego, oswego, ny.

Michael L. Scott (scott@cs.rochester.edu)
department of Computer science
university of rochester, rochester, ny.

© 2009 aCM 0001-0782/09/0500 $5.00

mailto:dl@cs.oswego.edu
mailto:scott@cs.rochester.edu

may 2009 | vol. 52 | no. 5 | communications of the acm 109

CAREERS
Pacific northwest national Laboratory
Software Architect

The Applied Computer Science Group within the
Computational Sciences & Mathematics Division
seeks an experienced software architect to lead
R&D projects in a variety of scientific application
domains. The ideal candidate will have extensive
technical knowledge and successful demonstra-
tion of designing and delivering complex, middle-
ware-based systems that can support a wide range
of specific problem areas. They will also be capable
of innovating to create next-generation architec-
tures to solve data intensive computing problems,
work with clients to propose and develop projects,
and publish results in the scientific literature.

The Computational Sciences & Mathematics
Division at PNNL provides science, technologies,
and leadership to solve significant problems of
national interest in energy, environment, national
security, and fundamental science. Our research is
aimed at creating new, state-of-the-art computa-
tional capabilities using extreme-scale simulation
and peta-scale data analytics that enable scientific
breakthroughs. Computational scientists at PNNL
have interdisciplinary expertise in high-perfor-
mance computing; data management research
and development; extreme workflow management
for scientific applications; mathematics; and com-
putational biology and bioinformatics. We invite
you to apply for this position and join a dynamic
organization that is advancing scientific frontiers.

bioinformatics options at all levels; computation-
al mathematics option at doctoral level.

Computer Science faculty received approxi-
mately $3.8M in last two years in external research
funding from NSF, DoD, DOH, and corporations,
including two NSF Career awards.

Must hold PhD in computer science or closely
related discipline, and be committed to develop-
ing/sustaining externally funded research pro-
gram. Preference to outstanding candidates in
areas of data mining and databases, who would
be able to teach one graduate-level core course,
which include algorithms, computing theory,
and design of programming languages.

Exceptional senior level candidates in any ma-
jor computer science research area will be consid-
ered (those who have made substantial contribu-
tions to their fields and have ongoing research
projects funded by major US funding agencies).
In addition to developing a research program,
will contribute to collaborative research of exist-
ing departmental groups.

More information at: http://www.cs.uml.edu
Review of applications will begin immediate-

ly, continuing until position is filled. Applications
received by April 1, 2009 will receive full consider-
ation. Women and under-represented minorities
strongly encouraged to apply.

To Apply:
Mail current CV, research statement, teaching
statement, selected relevant publications, and

U.S. citizenship and the ability to obtain a U.S.
Department of Energy clearance are required.

To apply or learn more about the responsi-
bilities and minimum requirements to quality for
the Software Architect, go to http://jobs.pnl.gov
and post your resume to Job ID 116621. You can
learn more about our organization at http://www.
pnl.gov/science/.

tulane university
Lecturer in Computational Science

The Tulane University Center for Computational
Science seeks a Masters-level instructor starting
fall 2009. Candidates must be excellent teachers
for C++ Programming, Data Visualization & Large
Scale Computing. Visit http://www.ccs.tulane.edu.

university of massachusetts Lowell
Department of Computer Science
Faculty Position at All Ranks

Anticipated tenure-track faculty position to start
in September 2009. Rank/tenure status depen-
dent on qualifications.

UMass Lowell is located 30 miles northwest
of Boston in the high-tech corridor of Massachu-
setts. Department has 18 tenured/ and tenure-
track faculty and offers degree programs at bach-
elor’s, master’s, and doctoral levels. Also offers

Nokia Research Center Beijing
Research Leader and Research Staff Positions

Nokia Research Center (NRC) invites applications for Research
Leader and Research Staff positions affiliated with NRC Beijing.
NRC Beijing aims at the pursuit of long-term research and the
development of breakthrough technologies in the areas of mobile
computing, with particular foci in the areas of rich context modeling
and new user interface. Rich context is characterized by the use of a
wide range of sensor information to aggregate data into a coherent
context model. These data and their analysis form the backbone
for a new class of services in areas like weather, traffic, wellness,
or entertainment. Future user interfaces will need to integrate the
personalization and adaptive aspects of the device side with data-
sharing enabled by the back-end infrastructure.

There are a number of positions of research staff and research leaders
available at NRC Beijing (http://research.nokia.com/research/labs/
nrc_beijing_laboratory). Qualified candidates for Research Staff
are expected to have a proven scientific publication record, strong
programming capability and excellent communication skills, with a
Ph. D. in computer science or electronics engineering, or related
fields. Qualified candidates for Research Leaders are expected to
be recognized technical leaders in the respective areas, and to be
hands-on with demonstrated research team leadership experience
in academic or industrial research institutions.

Details for the open positions are available on our on-line recruitment
website http://www.nokia.com/careers/jobs <http://www.nokia.
com/careers/jobs>. Please enter the following codes into the “Job
Number” field when searching: BEI000001MT, BEI000001MS,
BEI000001NU, BEI000001OS, BEI000001OT, BEI000001OR,
BEI000001ON, BEI000001MA, BEI000001MB, BEI000001M9.

Applications are accepted on-line until the positions are filled.

aDVeRtising in caReeR
oPPoRtunities

how to submit a classified Line ad: send an e-mail to
acmmediasales@acm.org. Please include text, and indicate
the issue/or issues where the ad will appear, and a contact
name and number.

estimates: an insertion order will then be e-mailed back to
you. the ad will by typeset according to cacm guidelines.
no PRoofs can be sent. classified line ads are not
commissionable.

Rates: $325.00 for six lines of text, 40 characters per line.
$32.50 for each additional line after the first six. the minimum
is six lines.

Deadlines: five weeks prior to the publication date of the
issue (which is the first of every month). Latest deadlines:

http://www.acm.org/publications

career opportunities online: classified and recruitment
display ads receive a free duplicate listing on our website at:

http://campus.acm.org/careercenter

ads are listed for a period of 30 days.
for more information contact:

acm media sales
at 212-626-0686 or

acmmediasales@acm.org

http://jobs.pnl.gov
http://www.pnl.gov/science/
http://www.ccs.tulane.edu
http://www.cs.uml.edu
mailto:acmmediasales@acm.org
http://www.acm.org/publications
http://campus.acm.org/careercenter
mailto:acmmediasales@acm.org
http://research.nokia.com/research/labs/nrc_beijing_laboratory
http://www.nokia.com/careers/jobs
http://www.pnl.gov/science/
http://research.nokia.com/research/labs/nrc_beijing_laboratory
http://www.nokia.com/careers/jobs
http://www.nokia.com/careers/jobs

110 communications of the acm | may 2009 | vol. 52 | no. 5

CaREERS

residency status to address below. Applicants for
Assistant Professor should also arrange three let-
ters of recommendations sent directly.

Search Committee for Department of
Computer Science

University of Massachusetts Lowell
One University Avenue
Lowell, MA 01854
Job Reference Number: FC04070901

Or
E-mail (preferred) all materials stated above

to: hiring@cs.uml.edu.

Include reference number in subject line of
e-mail. Applicants for Assistant Professor should
also arrange three letters of recommendations
sent directly.

The University of Massachusetts is an Equal
Opportunity/Affirmative Action Title IX, H/V, ADA
1990 Employer and Executive Order 11246, 41
CFR60-741 4, 41 CRF60-250 4, 41CRF60-1 40 and
41 CFR60-1,4 are hereby incorporated. Please in-
clude reference number in subject line of e-mail.

Vrije universiteit
Postdoc Positions Available in Amsterdam

The Department of Computer Science at the Vr-
ije Universiteit is looking for two postdocs and a
programmer to work in the group of Prof. Andrew
Tanenbaum. Our research is about how to design
and build dependable and secure systems soft-
ware. For more information about the positions,
please see www.cs.vu.nl/~ast/jobs

Windows Kernel Source and Curriculum Materials for
Academic Teaching and Research.
The Windows® Academic Program from Microsoft® provides the materials you
need to integrate Windows kernel technology into the teaching and research
of operating systems.

The program includes:

• Windows Research Kernel (WRK): Sources to build and experiment with a
fully-functional version of the Windows kernel for x86 and x64 platforms, as
well as the original design documents for Windows NT.

• Curriculum Resource Kit (CRK): PowerPoint® slides presenting the details
of the design and implementation of the Windows kernel, following the
ACM/IEEE-CS OS Body of Knowledge, and including labs, exercises, quiz
questions, and links to the relevant sources.

• ProjectOZ: An OS project environment based on the SPACE kernel-less OS
project at UC Santa Barbara, allowing students to develop OS kernel projects
in user-mode.

These materials are available at no cost, but only for non-commercial use by universities.

For more information, visit www.microsoft.com/WindowsAcademic
or e-mail compsci@microsoft.com.

�ACM Professional Members can enjoy the convenience of making a single payment for their
entire tenure as an ACMMember, and also be protected from future price increases by
taking advantage of ACM's Lifetime Membership option.

�ACM Lifetime Membership dues may be tax deductible under certain circumstances, so
becoming a Lifetime Member can have additional advantages if you act before the end of
2009. (Please consult with your tax advisor.)

�Lifetime Members receive a certificate of recognition suitable for framing, and enjoy all of
the benefits of ACM Professional Membership.

Learn more and apply at:
http://www.acm.org/life

Take Advantage of
ACM’s LifetimeMembership Plan!

mailto:hiring@cs.uml.edu
http://www.cs.vu.nl/~ast/jobs
http://www.microsoft.com/WindowsAcademic
mailto:compsci@microsoft.com
http://www.acm.org/life

may 2009 | vol. 52 | no. 5 | communications of the acm 111

King Abdullah University of
Science and Technology (KAUST)
Faculty Openings in Computer Science
and Applied Mathematics
King Abdullah University of Science and Technology (KAUST) is being established in
Saudi Arabia as an international graduate-level research university dedicated to inspir-
ing a new age of scientific achievement that will benefit the region and the world. As
an independent and merit-based institution and one of the best endowed universities
in the world, KAUST intends to become a major new contributor to the global network
of collaborative research. It will enable researchers from around the globe to work to-
gether to solve challenging scientific and technological problems. The admission of
students, the appointment, promotion and retention of faculty and staff, and all the
educational, administrative and other activities of the University shall be conducted on
the basis of equality, without regard to race, color, religion or gender.

KAUST is located on the Red Sea at Thuwal (80km north of Jeddah). Opening in Sep-
tember 2009, KAUST welcomes exceptional researchers, faculty and students from
around the world. To be competitive, KAUST will offer very attractive base salaries
and a wide range of benefits. Further information about KAUST can be found at
http://www.kaust.edu.sa/.

KAUST invites applications for faculty position at all ranks (Assistant, Associate, Full) in
Applied Mathematics (with domain applications in the modeling of biological, physi-
cal, engineering, and financial systems) and Computer Science, including areas such
as Computational Mathematics, High-Performance Scientific Computing, Operations
Research, Optimization, Probability, Statistics, Computer Systems, Software Engineer-
ing, Algorithms and Computing Theory, Artificial Intelligence, Graphics, Databases,
Human-Computer Interaction, Computer Vision and Perception, Robotics, and Bio-
Informatics (this list is not exhaustive). KAUST is also interested in applicants doing
research at the interface of Computer Science and Applied Mathematics with other sci-
ence and engineering disciplines. High priority will be given to the overall originality
and promise of the candidate’s work rather than the candidate’s sub-area of specializa-
tion within Applied Mathematics and Computer Science.

An earned Ph.D. in Applied Mathematics, Computer Science, Computational Mathe-
matics, Computational Science and Engineering, Operations Research, Statistics, or a
related field, evidence of the ability to pursue a program of research, and a strong com-
mitment to graduate teaching are required. A successful candidate will be expected to
teach courses at the graduate level and to build and lead a team of graduate students in
Master’s and Ph.D. research.

Applications should be submitted in a pdf format and include a curriculum vita, brief
statements of research and teaching interests, and the names of at least 3 references for
an Assistant Professor position, 6 references for an Associate Professor position, and 9
references for a Full Professor position. Candidates are requested to ask references to
send their letters directly to the search committee. Applications and letters should be
sent via electronic mail to kaust-search@cs.stanford.edu. The review of applications
will begin immediately, and applicants are strongly encouraged to submit applications
as soon as possible; however, applications will continue to be accepted until December
2009, or all 10 available positions have been filled.

In 2008 and 2009, as part of an Academic Excellence Alliance agreement between KAUST
and Stanford University, the KAUST faculty search committee consisting of professors
from the Computer Science Department and the Institute of Computational and Math-
ematical Engineering at Stanford University, will evaluate applicants for the faculty posi-
tions at KAUST. However, KAUST will be responsible for all hiring decisions, appoint-
ment offers, recruiting, and explanations of employment benefits. The recruited faculty
will be employed by KAUST, not by Stanford. Faculty members in Applied Mathemat-
ics and Computer Science recruited by KAUST before September 2009 will be hosted at
Stanford University as Visiting Fellows until KAUST opens in September 2009.

ACM
Transactions on
Reconfigurable
Technology and

Systems

� � � � �

This quarterly publication is a peer-
reviewed and archival journal that
covers reconfigurable technology,
systems, and applications on recon-
figurable computers. Topics include
all levels of reconfigurable system
abstractionsandall aspectsof recon-
figurable technology including plat-
forms, programming environments
and application successes.

� � � � �

www.acm.org/trets
www.acm.org/subscribe

http://www.kaust.edu.sa/
mailto:kaust-search@cs.stanford.edu
http://www.acm.org/trets
http://www.acm.org/subscribe

112 communications of the acm | may 2009 | vol. 52 | no. 5

last byte

DOI:10.1145/1506409.1506432 Peter Winkler

Puzzled
understanding Relationships
among numbers
Welcome to three new challenging mathematical puzzles. Solutions to the first
two will be published next month; the third is as yet (famously) unsolved. In each
puzzle, the issue is how numbers interact with one another.

1.A colony of chameleons
includes 20 red, 18 blue,

and 16 green individuals.
Whenever two chameleons
of different colors meet, each
changes to the third color.
Some time passes during
which no chameleons are born
or die nor do any enter or
leave the colony. Is it possible
that at the end of this period,
all 54 chameleons are the
same color?

2.Four non-negative
integers are written on a

line. Below each number, now
write the (absolute) difference
between that number and
the one to its right (that is,
the result of subtracting the
smaller from the larger of
the two numbers). Below the
fourth, write the absolute
difference between it and
the first number. The result
is a new row of four non-
negative integers. These four
subtractions constitute one

“operation” you can repeat on
the four new numbers. Now
show that after a finite number
of such operations, you must
reach a point where all four
numbers are 0.

For example, if you start with
the sequence 43, 11, 21, 3,
here’s what happens:

 43 11 21 3
 32 10 18 40
 22 8 22 8
 14 14 14 14
 0 0 0 0

As you see, 0 0 0 0 was reached
after only four operations.

Try it yourself with, say,
random numbers between 0
and 100; you’ll be amazed how
quickly you get to 0 0 0 0.

Note, however, that if you
do the same thing with five
numbers, you might never stop.

If you found the first part of this
problem too easy, try answering
this question: For which n is
it the case that this process,
beginning with n numbers,
always gets you to n zeroes?

3.The “lonely runner,” an
intriguing open problem

in number theory, asks whether
the following is true: Suppose
you are one of n runners who
start together on a circular
track one kilometer in length,
each running at a different
constant speed. Then, at some
moment in time you will be at
distance at least 1/n kilometers
from all the other runners.
Note when the ratios between
speeds are irrational, as they
would, almost surely, be, if
the speeds were, say, random
real numbers between 0 and
1, then it is indeed true. It’s
when the speeds are rationally
related that things start to get
interesting.

Readers are encouraged to submit prospective puzzles for future columns to puzzled@cacm.acm.org.

Peter Winkler (puzzled@cacm.acm.org) is Professor of Mathematics and of Computer science and albert bradley third
Century Professor in the sciences at dartmouth College, Hanover, nH.

mailto:puzzled@cacm.acm.org
mailto:puzzled@cacm.acm.org

To join ACM and/or subscribe to the Digital Library, contact ACM:

Phone: 1.800.342.6626 (U.S. and Canada)
+1.212.626.0500 (Global)

Fax: +1.212.944.1318
Hours: 8:30 a.m.-4:30 p.m., Eastern Time

Email: acmhelp@acm.org
Join URL: www.acm.org/joinacm

Mail: ACM Member Services
General Post Office
PO Box 30777
New York, NY 10087-0777 USAAD29

The Ultimate Online
INFORMATION TECHNOLOGY

Resource!

*Guide access is included with
Professional, Student and SIG member-
ship. ACM Professional Members can
add the full ACM Digital Library for
only $99 (USD). Student Portal Package
membership includes the Digital
Library. Institutional, Corporate, and
Consortia Packages are also available.

Powerful and vast in scope, the ACM Digital Library is
the ultimate online resource offering unlimited access and value!

The ACM Digital Library interface includes:

• The ACM Digital Library offers over 40 publications
including all ACM journals, magazines, and conference proceedings,
plus vast archives, representing over 2 million pages of text. The
ACM DL includes full-text articles from all ACM publications dating
back to the 1950s, as well as third-party content with selected
archives. PLUS NEW: Author Profile Pages with citation and usage
counts and New Guided Navigation search functionality!
www.acm.org/dl

• The Guide to Computing Literature offers an
 enormous bank of over one million bibliographic citations extending
far beyond ACM’s proprietary literature, covering all types of works in
computing such as journals, proceedings, books, technical reports,
and theses! www.acm.org/guide

• The Online Computing Reviews Service
includes reviews by computing experts, providing timely commen-
tary and critiques of the most essential books and articles.

Available only to ACM Members.
Join ACM online at www.acm.org/joinacm

www.acm.org/dl

ACM Digital Library

Advancing Computing as a Science & Profession

4-C Ad_09:DL 4-C queue ad 3/3/09 4:40 PM Page 1

http://www.acm.org/dl
http://www.acm.org/dl
http://www.acm.org/guide
http://www.acm.org/joinacm
mailto:acmhelp@acm.org
http://www.acm.org/joinacm

http://www.acm.org/careercenter

	Table of Contents
	Departments
	Editor's Letter
	Letters to the Editor
	Blog@CACM
	CACM Online
	Calendar
	Careers

	Last Byte
	Puzzled

	News
	Rethinking Signal Processing
	Matchmaker, Matchmaker
	Learning Goes Global
	Liskov Wins Turing Award

	Viewpoints
	Law and Technology
	Economic and Business Dimensions
	Historical Reflections
	Education
	Viewpoint

	Practice
	Security in the Browser
	API Design Matters
	Debugging AJAX in Production

	Contributed Articles
	Spending Moore’s Dividend
	Computing Needs Time

	Review Articles
	Algorithmic Systems Biology

	Research Highlights
	Technical Perspective
	Lest We Remember: Cold-Boot Attacks on Encryption Keys
	Technical Perspective
	Scalable Synchronous Queues

