
Association for
Computing Machinery

The Status of the
	P versus NP Problem

Medical Nanobots

An Interview with Maurice Wilkes

What IP Law Should Learn
From Software

Spamalytics

COMMUNICATIONS
OF THE ACMcACM.acm.org� 09/2009 VOL.52 NO.09

http://CACM.ACM.ORG

http://www.reviews.com
http://Reviews.com
http://Reviews.com

014090x

ABCD springer.com

Easy Ways to Order for the Americas 7 Write: Springer Order Department, PO Box 2485, Secaucus, NJ 07096-2485, USA 7 Call: (toll free) 1-800-SPRINGER
7 Fax: 1-201-348-4505 7 Email: orders-ny@springer.com or for outside the Americas 7 Write: Springer Customer Service Center GmbH, Haberstrasse 7,
69126 Heidelberg, Germany 7 Call: +49 (0) 6221-345-4301 7 Fax : +49 (0) 6221-345-4229 7 Email: orders-hd-individuals@springer.com
7 Prices are subject to change without notice. All prices are net prices.

Computer Science Textbooks
An Introduction
to Computer
Graphics and
Creative 3-D
Environments
B. G. Blundell, Auckland
University of Technology,
Auckland, New Zealand

This book introduces the fundamentals of 2-D
and 3-D computer graphics. Additionally, a
range of emerging, creative 3-D display tech-
nologies are described, including stereoscopic
systems, immersive virtual reality, volumetric,
varifocal, and others. Designed to be a core
teaching text at the undergraduate level,
accessible to students with wide-ranging
backgrounds, only an elementary grounding in
mathematics is assumed as key maths is provided.

2008. XX, 480 p. 248 illus., 227 in color. Hardcover
ISBN 978-1-84800-041-4 7 $69.95

The Semantic
Web
Semantics for Data
and Services on the
Web

V. Kashyap, Partners
HealthCare System,
Wellesley, MA, USA; C.

Bussler, Merced Systems Inc., Redwood Shores,
CA, USA; M. Moran, Nortel, Galway, Ireland

The Semantic Web is a vision – the idea of
having data on the Web defined and linked in
such a way that it can be used by machines not
just for display purposes but for automation,
integration and reuse of data across various
applications. Technically, however, there is a
widespread misconception that the Semantic
Web is primarily a rehash of existing AI and
database work focused on encoding knowl-
edge representation formalisms in markup
languages such as RDF(S), DAML+OIL or OWL.

2008. XVI, 414 p. 61 illus. (Data-Centric Systems
and Applications) Hardcover
ISBN 978-3-540-76451-9 7 $79.95

Foundations
of 3D Graphics
Programming
Using JOGL and
Java3D

J. X. Chen, George
Mason University,
Fairfax, VA, USA; C. Chen,

Southwest Jiaotong University, Sichuan, China

This second edition contains 3 new chapters,
a new appendix and is updated and enhanced
throughout Supreme reference on JOGL
programming, with extensive and complete
examples Also covers Java3D, with detailed
example programs Serves as an ideal shortcut
to 3D graphics theory Written by a recognized
leader in 3D graphics, virtual experiences and
statistical data visualization, based on years of
teaching and research experience

2nd ed. 2008. XVI, 400 p. 141 illus., 40 in color.
Hardcover
ISBN 978-1-84800-283-8 7 $79.95

Computer
Graphics for
Artists: An
Introduction
A. Paquette, School
of Game Architecture
and Design, Breda, The
Netherlands

Computer Graphics for Artists: an introduction
is an application-independent, reader-friendly
primer for anyone with a serious desire to
understand 3D Computer Graphics. Opening
with the first and most basic elements of
computer graphics, the book rapidly advances
into progressively more complex concepts.
Each of the elements, however simple, are
important to understand because each is an
essential link in a chain that allows an artist to
master any computer graphics application.

2008. XVIII, 270 p. 453 illus., 222 in color. Softcover
ISBN 978-1-84800-140-4 7 $59.95

Touch of Class
Learning to Program
Well with Objects
and Contracts

B. Meyer, ETH Zurich,
Switzerland

From object technology
pioneer and ETH Zurich

professor Bertrand Meyer, winner of the Jolt
award and the ACM Software System Award, a
revolutionary textbook that makes learning
programming fun and rewarding. Meyer builds
his presentation on a rich object-oriented
software system supporting graphics and
multimedia, which students can use to produce
impressive applications from day one, then
understand inside out as they learn new
programming techniques.

2009. Approx. 700 p. Hardcover
ISBN 978-3-540-92144-8 7 $79.95

Algorithms and
Data Structures
The Basic Toolbox
K. Mehlhorn, Max-
Planck-Institut für
Informatik, Saarbrücken,
Germany; P. Sanders,
University of Karlsruhe,
Germany

This book is a concise introduction addressed
to students and professionals familiar with
programming and basic mathematical
language. Individual chapters cover arrays and
linked lists, hash tables and associative arrays,
sorting and selection, priority queues, sorted
sequences, graph representation, graph
traversal, shortest paths, minimum spanning
trees, and optimization.

2008. XII, 300 p. 112 illus. Hardcover
ISBN 978-3-540-77977-3 7 $44.95

http://springer.com
mailto:orders-ny@springer.com
mailto:orders-hd-individuals@springer.com

2 communications of the acm | september 2009 | vol. 52 | no. 9

communications of the acm

Association for Computing Machinery
Advancing Computing as a Science & Profession

Departments

5	 Editor’s Letter
The Financial Meltdown
and Computing
By Moshe Y. Vardi

8	 Letters to the Editor
Computer Science Does Matter

10	 In the Virtual Extension

12	 blog@CACM
Saying Good-bye to DBMSs,
Designing Effective Interfaces
Michael Stonebraker discusses
the problems with relational
database management systems
and possible solutions, and
Jason Hong writes about interfaces
and usable privacy and security.

14	 CACM Online
What You Read on
Your Summer Vacation
By David Roman

37	 Calendar

108	 Careers

Last Byte

110	 Puzzled
Solutions and Sources
By Peter Winkler

112	 Future Tense
Confusions of the Hive Mind
By Jaron Lanier

News

15	 Entering a Parallel Universe
The multicore processors that
help extend Moore’s Law may run
afoul of Amdahl’s Law.
By Gregory Goth

18	 Medical Nanobots
Researchers working in medical
nanorobotics are creating
technologies that could lead to novel
health-care applications, such
as new ways of accessing areas
of the human body that would
otherwise be unreachable without
invasive surgery.
By Kirk L. Kroeker

20	 Facing an Age-Old Problem
Researchers are addressing
the computing challenges
of older individuals, whose
needs are different—and too
often disregarded.
By Samuel Greengard

23	 Computer Science Meets
Environmental Science
Scientists share knowledge and
seek collaborators at computational
sustainability conference.
By Karen A. Frenkel

Viewpoints

24	 Law and Technology
Keeping Track of
Telecommunications Surveillance
The creation of a statistical index
of U.S. telecommunications
surveillance activities and their
results will benefit both civil liberties
and law enforcement.
By Paul M. Schwartz

27	 The Profession of IT
Computing: The Fourth
Great Domain of Science
Computing is as fundamental as
the physical, life, and social sciences.
By Peter J. Denning
and Paul S. Rosenbloom

30	 Emerging Markets
How ICT Advances Might
Help Developing Nations
Some predictions for technology
developments, deployments, and
the associated societal implications.
By Mark Cleverley

33	 IT Policy
The Long Road to Computer
Science Education Reform
Viewing the factors impeding
improvements to CS education from
kindergarten through grade 12
from a policy perspective.
By Cameron Wilson and Peter Harsha

36	 Viewpoint
Face the Inevitable,
Embrace Parallelism
Hardware, software, and applications
must all evolve in anticipation of
the proliferation of parallelism.
By Anwar Ghuloum

39	 Interview
An Interview with Maurice Wilkes
Maurice Wilkes, the designer and
builder of the EDSAC—the first
computer with an internally stored
program—reflects on his career.
By David P. Anderson

About the Cover:
C.E.B. Reas lives and
works in Los Angeles.
He is a professor in the
Department of Design
Media Arts at the
University of California,
Los Angeles. His work
has been exhibited
internationally. In 2001
with Ben Fry, Reas
initiated Processing,
an open source
programming language
and environment for

creating images, animation, and interaction.

http://CACM.ACM.ORG

september 2009 | vol. 52 | no. 9 | communications of the acm 3

09/2009
vol. 52 no. 09

Practice

44	 Reveling in Constraints
The Google Web Toolkit is
an end-run around Web
development obstacles.
By Bruce Johnson

49	 Monitoring and Control
of Large Systems with MonALISA
MonALISA developers describe how
it works, the key design principles
behind it, and the biggest technical
challenges in building it.
By Iosif Legrand, Ramiro Voicu,
Catalin Cirstoiu, Costin Grigoras,
Latchezar Betev, and Alexandru Costan

56	 Making Sense of
Revision-Control Systems
All revision-control systems come
with complicated sets of trade-offs.
How do you find the best match
between tool and team?
By Bryan O’Sullivan

 Article development led by
 queue.acm.org

Contributed Articles

64	 Sound Index: Charts For the People,
By the People
Mining the wisdom of the online
crowds generates music business
intelligence, identifying what’s hot
and what’s not.
By Varun Bhagwan, Tyrone Grandison,
and Daniel Gruhl

71	 What Intellectual Property Law
Should Learn from Software
Software’s close encounters
with the law provide some lessons
for our future.
By James Boyle

Review Article

78 	 The Status of the P versus NP Problem
It’s one of the fundamental
mathematical problems of our time,
and its importance grows with the
rise of powerful computers.
By Lance Fortnow

Research Highlights

88	 Technical Perspective
Abstraction for Parallelism
By Katherine Yelick

89	 Optimistic Parallelism
Requires Abstractions
By Milind Kulkarni,
Keshav Pingali, Bruce Walter,
Ganesh Ramanarayanan,
Kavita Bala, and L. Paul Chew

98	 Technical Perspective
They Do Click, Don’t They?
By Marc Dacier

99	 Spamalytics: An Empirical Analysis
of Spam Marketing Conversion
By Chris Kanich, Christian Kreibich,
Kirill Levchenko, Brandon Enright,
Geoffrey M. Voelker, Vern Paxson,
and Stefan Savage

Virtual Extension

As with all magazines, page limitations often
prevent the publication of articles that might
otherwise be included in the print edition.
To ensure timely publication, ACM created
Communications’ Virtual Extension (VE).
	 VE articles undergo the same rigorous review
process as those in the print edition and are
accepted for publication on their merit. These
articles are now available to ACM members in
the Digital Library.

	 Ballot Box Communication
in Online Communities
Mu Xia, Yun Huang, Wenjing Duan,
and Andrew B. Whinston

	 Examining User Involvement in
Continuous Software Development
Achita (Mi) Muthitacharoen
and Khawaja A. Saeed

	 Constructive Function-based
Modeling in Multilevel Education
Alexander Pasko and Valery Adzhiev

	 One Size Does Not Fit All:
Legal Protection for
Non-Copyrightable Data
Hongwei Zhu and Stuart E. Madnick

	 The State of Corporate
Web Site Accessibility
Eleanor T. Loiacono, Nicholas C.
Romano, Jr., and Scott McCoy

	 Reducing Employee Computer
Crime through Situational
Crime Prevention
Robert Willison and Mikko Siponen

	 Modified Agile Practices for
Outsourced Software Projects
Dinesh Batra

	 Technical Opinion
Falling into the Net: Main Street
America Playing Games and
Making Friends Online
James Katz and Ronald E. Rice

I
llu

s
trati

o
n

 b
y

 j
o

h
n

 her

s

e
y

http://queue.acm.org

4 communications of the acm | september 2009 | vol. 52 | no. 9

communications of the acm
Trusted insights for computing’s leading professionals.

Communications of the ACM is the leading monthly print and online magazine for the computing and information technology fields.
Communications is recognized as the most trusted and knowledgeable source of industry information for today’s computing professional.
Communications brings its readership in-depth coverage of emerging areas of computer science, new trends in information technology,
and practical applications. Industry leaders use Communications as a platform to present and debate various technology implications,
public policies, engineering challenges, and market trends. The prestige and unmatched reputation that Communications of the ACM
enjoys today is built upon a 50-year commitment to high-quality editorial content and a steadfast dedication to advancing the arts,
sciences, and applications of information technology.

ACM, the world’s largest educational
and scientific computing society, delivers
resources that advance computing as a
science and profession. ACM provides the
computing field’s premier Digital Library
and serves its members and the computing
profession with leading-edge publications,
conferences, and career resources.

Executive Director and CEO
John White
Deputy Executive Director and COO
Patricia Ryan
Director, Office of Information Systems
Wayne Graves
Director, Office of Financial Services
Russell Harris
Director, Office of Membership
Lillian Israel
Director, Office of SIG Services
Donna Cappo

ACM Council
President
Wendy Hall
Vice-President
Alain Chesnais
Secretary/Treasurer
Barbara Ryder
Past President
Stuart I. Feldman
Chair, SGB Board
Alexander Wolf
Co-Chairs, Publications Board
Ronald Boisvert, Holly Rushmeier
Members-at-Large
Carlo Ghezzi;
Anthony Joseph;
Mathai Joseph;
Kelly Lyons;
Bruce Maggs;
Mary Lou Soffa;
Fei-Yue Wang
SGB Council Representatives
Joseph A. Konstan;
Robert A. Walker;
Jack Davidson

Publications Board
Co-Chairs
Ronald F. Boisvert and Holly Rushmeier
Board Members
Gul Agha; Michel Beaudouin-Lafon;
Jack Davidson; Nikil Dutt; Carol Hutchins;
Ee-Peng Lim; M. Tamer Ozsu; Vincent
Shen; Mary Lou Soffa; Ricardo Baeza-Yates

ACM U.S. Public Policy Office
Cameron Wilson, Director

1100 Seventeenth St., NW, Suite 50
Washington, DC 20036 USA
T (202) 659-9711; F (202) 667-1066

Computer Science Teachers
Association
Chris Stephenson
Executive Director
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA
T (800) 401-1799; F (541) 687-1840

Association for Computing Machinery
(ACM)
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA
T (212) 869-7440; F (212) 869-0481

STAFF

Group Publisher
Scott E. Delman
publisher@cacm.acm.org

Executive Editor
Diane Crawford
Managing Editor
Thomas E. Lambert
Senior Editor
Andrew Rosenbloom
Senior Editor/News
Jack Rosenberger
Web Editor
David Roman
Editorial Assistant
Zarina Strakhan
Rights and Permissions
Deborah Cotton

Art Director
Andrij Borys
Associate Art Director
Alicia Kubista
Assistant Art Director
Mia Angelica Balaquiot
Production Manager
Lynn D’Addesio
Director of Media Sales
Jennifer Ruzicka
Marketing & Communications Manager
Brian Hebert
Public Relations Coordinator
Virgina Gold
Publications Assistant
Emily Eng

Columnists
Alok Aggarwal; Phillip G. Armour;
Martin Campbell-Kelly;
Michael Cusumano; Peter J. Denning;
Shane Greenstein; Mark Guzdial;
Peter Harsha; Leah Hoffmann;
Mari Sako; Pamela Samuelson;
Gene Spafford; Cameron Wilson

Contact Points
Copyright permission
permissions@cacm.acm.org
Calendar items
calendar@cacm.acm.org
Change of address
acmcoa@cacm.acm.org
Letters to the Editor
letters@cacm.acm.org

Web SITE
http://cacm.acm.org

Author Guidelines
http://cacm.acm.org/guidelines

Advertising

ACM Advertising Department
2 Penn Plaza, Suite 701, New York, NY
10121-0701
T (212) 869-7440
F (212) 869-0481

Director of Media Sales
Jennifer Ruzicka
jen.ruzicka@hq.acm.org

Media Kit acmmediasales@acm.org

editorial Board

Editor-in-chief
Moshe Y. Vardi
eic@cacm.acm.org

News
Co-chairs
Marc Najork and Prabhakar Raghavan
Board Members
Brian Bershad; Hsiao-Wuen Hon;
Mei Kobayashi; Rajeev Rastogi;
Jeannette Wing

Viewpoints
Co-chairs
Susanne E. Hambrusch; John Leslie King;
J Strother Moore
Board Members
P. Anandan; William Aspray; Stefan
Bechtold; Judith Bishop;
Stuart I. Feldman; Peter Freeman;
Seymour Goodman; Shane Greenstein;
Mark Guzdial; Richard Heeks; Richard Ladner;
Susan Landau; Carlos Jose Pereira de Lucena;
Helen Nissenbaum; Beng Chin Ooi;
Loren Terveen

 Practice
Chair
Stephen Bourne
Board Members
Eric Allman; Charles Beeler;
David J. Brown; Bryan Cantrill;
Terry Coatta; Mark Compton;
Benjamin Fried; Pat Hanrahan;
Marshall Kirk McKusick;
George Neville-Neil

The Practice section of the CACM
Editorial Board also serves as
the Editorial Board of .

Contributed Articles
Co-chairs
Al Aho and Georg Gottlob
Board Members
Yannis Bakos; Gilles Brassard; Alan Bundy;
Peter Buneman; Ghezzi Carlo;
Andrew Chien; Anja Feldmann;
Blake Ives; James Larus; Igor Markov;
Gail C. Murphy; Shree Nayar; Lionel M. Ni;
Sriram Rajamani; Jennifer Rexford;
Marie-Christine Rousset; Avi Rubin;
Abigail Sellen; Ron Shamir; Marc Snir;
Larry Snyder; Veda Storey;
Manuela Veloso; Michael Vitale;
Wolfgang Wahlster;
Andy Chi-Chih Yao; Willy Zwaenepoel

Research Highlights
Co-chairs
David A. Patterson and
Stuart J. Russell
Board Members
Martin Abadi; Stuart K. Card;
Deborah Estrin; Shafi Goldwasser;
Monika Henzinger; Maurice Herlihy;
Norm Jouppi; Andrew B. Kahng;
Linda Petzold; Michael Reiter;
Mendel Rosenblum; Ronitt Rubinfeld;
David Salesin; Lawrence K. Saul;
Guy Steele, Jr.; Gerhard Weikum;
Alexander L. Wolf

Web
Co-chairs
Marti Hearst and James Landay
Board Members
Jason I. Hong; Jeff Johnson;
Greg Linden; Wendy E. MacKay

 

ACM Copyright Notice
Copyright © 2009 by Association for
Computing Machinery, Inc. (ACM).
Permission to make digital or hard copies
of part or all of this work for personal
or classroom use is granted without
fee provided that copies are not made
or distributed for profit or commercial
advantage and that copies bear this
notice and full citation on the first
page. Copyright for components of this
work owned by others than ACM must
be honored. Abstracting with credit is
permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to
lists, requires prior specific permission
and/or fee. Request permission to publish
from permissions@acm.org or fax
(212) 869-0481.

For other copying of articles that carry a
code at the bottom of the first or last page
or screen display, copying is permitted
provided that the per-copy fee indicated
in the code is paid through the Copyright
Clearance Center; www.copyright.com.

Subscriptions
An annual subscription cost is included
in ACM member dues of $99 ($40 of
which is allocated to a subscription to
Communications); for students, cost
is included in $42 dues ($20 of which
is allocated to a Communications
subscription). A nonmember annual
subscription is $100.

ACM Media Advertising Policy
Communications of the ACM and other
ACM Media publications accept advertising
in both print and electronic formats. All
advertising in ACM Media publications is
at the discretion of ACM and is intended
to provide financial support for the various
activities and services for ACM members.
Current Advertising Rates can be found
by visiting http://www.acm-media.org or
by contacting ACM Media Sales at
(212) 626-0654.

Single Copies
Single copies of Communications of the
ACM are available for purchase. Please
contact acmhelp@acm.org.

Communications of the ACM
(ISSN 0001-0782) is published monthly
by ACM Media, 2 Penn Plaza, Suite 701,
New York, NY 10121-0701. Periodicals
postage paid at New York, NY 10001,
and other mailing offices.

POSTMASTER
Please send address changes to
Communications of the ACM
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA

Printed in the U.S.A.

P
L

E

A
S E R E C Y

C
L

E

T
H

I

S
 M A G A Z

I
N

E

mailto:publisher@cacm.acm.org
mailto:permissions@cacm.acm.org
mailto:calendar@cacm.acm.org
mailto:acmcoa@cacm.acm.org
mailto:letters@cacm.acm.org
http://cacm.acm.org
http://cacm.acm.org/guidelines
mailto:jen.ruzicka@hq.acm.org
mailto:acmmediasales@acm.org
mailto:eic@cacm.acm.org
mailto:permissions@acm.org
http://www.copyright.com
http://www.acm-media.org
mailto:acmhelp@acm.org

september 2009 | vol. 52 | no. 9 | communications of the acm 5

editor’s letter

The Financial Meltdown
and Computing
For many of us, the past year has been one of the most
unsettling in our lifetime. In the late 1980s and early
1990s, we watched communism collapse of its own dead
weight. In late 2008, we saw capitalism nearly crumble.

complexity that makes it opaque even
to the “high priests” of finance.

You may recall the “computer-pro-
ductivity paradox” of the late 1980s
and early 1990s, referring to the gap
between the level of investment in in-
formation technology and the slow
growth of productivity. I always thought
that discussions of this “paradox” often
miss an important point. To assess the
value of information technology to the
economy, one must contemplate how
the economy would have fared without
it. The obvious answer is that today’s
complex economic world would sim-
ply be infeasible without information
technology.

In his 1986 book, The Control Revo-
lution: Technological and Economic Ori-
gins of the Information Society, James
Beniger showed how the introduc-
tion of railroads and the telegraph in
the 19th century enabled the growing
complexity of the economy. JoAnne
Yates described the intimate connec-
tion between information technology
and economic complexity in her 1989
book, Control through Communica-
tion: The Rise of System in American
Management. Modern technology has
enhanced this trend to the point that
Bruce Lindsay, a well-known IBM da-
tabase researcher, recently quipped
that “relational databases form the
bedrock of Western civilization.” In-
deed, if a massive electromagnetic
pulse wiped out our computing in-
frastructure, our society would face a
catastrophic collapse.

Lehman Brothers, a major U.S. invest-
ment bank, declared bankruptcy last
September, sending the world’s fi-
nancial system into a tailspin. Only a
massive intervention by central banks
saved the system from collapse.

Many reasons have been offered for
the near-collapse of the global econ-
omy: Alan Greenspan kept interest
rates too low too long, greedy lenders
pushed subprime loans on unquali-
fied borrowers, and so on. A common
thread to these explanations is that
our financial system harbored a sys-
temic risk that evaded attention until
it was too late. From the perspective
of computing professionals, the crisis
was caused by “them,” and we are its
hapless victims. I’d like to offer here
another explanation. I think informa-
tion technology played a major role in
the crisis.

The latest financial crisis is the third
in the last 25 years. In Oct. 1987, stock
markets around the world crashed. That
crisis was blamed on program trading,
which is trading driven by computer
programs, implementing arbitrage
and portfolio-insurance strategies. Ten
years later, the Asian Financial Crisis
hit mostly Asian markets, but led to the
bailout of Long-Term Capital Manage-
ment, a large U.S. hedge fund, whose
arbitrage strategies threatened the sta-
bility of the U.S. financial market. No
other period has witnessed financial
crises with such frequency. A common
thread to these disasters is that our fi-
nancial system has reached a level of

Information technology has enabled
the development of a global financial
system of incredible sophistication.
At the same time, it has enabled the
development of a global financial sys-
tem of such complexity that our abil-
ity to comprehend it and assess risk,
both localized and systemic, is severely
limited. Financial-oversight reform is
now a topic of great discussion. The
focus of these talks is primarily over
the structure and authority of regula-
tory agencies. Little attention has been
given to what I consider a key issue—
the opaqueness of our financial sys-
tem—which is driven by its fantastic
complexity. The problem is not a lack
of models. To the contrary, the prolif-
eration of models may have created an
illusion of understanding and control,
as is argued in a recent report titled
“The Financial Crisis and the Systemic
Failure of Academic Economics.”

The question for computing as a dis-
cipline is whether we have something to
contribute to this discussion. Our tech-
nology has enabled the development
of this highly complex system, but can
it help penetrate this complexity? Can
we build computational models for the
global financial system that would help
us understand rather than obscure its
behavior? Most importantly, I believe,
we must understand that technology
has societal consequences; it played a
key role in creating the mess we are in.
It is not only “them,” it is also “us.”

Moshe Y. Vardi, editor-in-chief

DOI:10.1145/1562164.1562165		 Moshe Y. Vardi

ACM, Uniting the World’s Computing Professionals,
Researchers, Educators, and Students

Advancing Computing as a Science & Profession

Dear Colleague,

At a time when computing is at the center of the growing demand for technology jobs world-
wide, ACM is continuing its work on initiatives to help computing professionals stay competitive in

the global community. ACM’s increasing involvement in activities aimed at ensuring the health of the
computing discipline and profession serve to help ACM reach its full potential as a global and

diverse society which continues to serve new and unique opportunities for its members.

As part of ACM’s overall mission to advance computing as a science and a profession, our invaluable member
benefits are designed to help you achieve success by providing you with the resources you need to advance

your career and stay at the forefront of the latest technologies.

I would also like to take this opportunity to mention ACM-W, the membership group within ACM. ACM-W’s purpose is
to elevate the issue of gender diversity within the association and the broader computing community. You can join the
ACM-W email distribution list at http://women.acm.org/joinlist.

ACM MEMBER BENEFITS:

• A subscription to ACM’s newly redesigned monthly magazine, Communications of the ACM
• Access to ACM’s Career & Job Center offering a host of exclusive career-enhancing benefits
• Free e-mentoring services provided by MentorNet®
• Full access to over 2,500 online courses in multiple languages, and 1,000 virtual labs
• Full access to 600 online books from Safari® Books Online, featuring leading publishers,

including O’Reilly (Professional Members only)
• Full access to 500 online books from Books24x7®
• Full access to the new acmqueue website featuring blogs, online discussions and debates,

plus multimedia content
• The option to subscribe to the complete ACM Digital Library
• The Guide to Computing Literature, with over one million searchable bibliographic citations
• The option to connect with the best thinkers in computing by joining 34 Special Interest Groups

or hundreds of local chapters
• ACM’s 40+ journals and magazines at special member-only rates
• TechNews, ACM’s tri-weekly email digest delivering stories on the latest IT news
• CareerNews, ACM’s bi-monthly email digest providing career-related topics
• MemberNet, ACM’s e-newsletter, covering ACM people and activities
• Email forwarding service & filtering service, providing members with a free acm.org email address

and Postini spam filtering
• And much, much more

ACM’s worldwide network of over 92,000 members range from students to seasoned professionals and includes many
of the leaders in the field. ACM members get access to this network and the advantages that come from their expertise
to keep you at the forefront of the technology world.

Please take a moment to consider the value of an ACM membership for your career and your future in the dynamic
computing profession.

Sincerely,

Wendy Hall

President
Association for Computing Machinery

CACM app_revised_03_18_09:Layout 1 4/9/09 11:46 AM Page 1

http://women.acm.org/joinlist
http://acm.org

Priority Code: ACACM10

Online
http://www.acm.org/join

Phone
+1-800-342-6626 (US & Canada)

+1-212-626-0500 (Global)

Fax
+1-212-944-1318

membership application &
digital library order form

PROFESSIONALMEMBERSHIP:

� ACM Professional Membership: $99 USD

� ACM Professional Membership plus the ACMDigital Library:

$198 USD ($99 dues + $99 DL)

� ACMDigital Library: $99 USD (must be an ACMmember)

STUDENTMEMBERSHIP:

� ACM Student Membership: $19 USD

� ACM StudentMembershipplus theACMDigital Library: $42USD

� ACM StudentMembership PLUSPrintCACMMagazine: $42USD

� ACM Student Membership w/Digital Library PLUS Print

CACMMagazine: $62 USD

choose onemembership option:

Name

Address

City State/Province Postal code/Zip

Country E-mail address

Area code & Daytime phone Fax Member number, if applicable

Payment must accompany application. If paying by check or
money order, make payable to ACM, Inc. in US dollars or foreign
currency at current exchange rate.

� Visa/MasterCard � American Express � Check/money order

� Professional Member Dues ($99 or $198) $ ______________________

� ACM Digital Library ($99) $ ______________________

� Student Member Dues ($19, $42, or $62) $ ______________________

Total Amount Due $ ______________________

Card # Expiration date

Signature

Professional membership dues include $40 toward a subscription
to Communications of the ACM. Member dues, subscriptions,
and optional contributions are tax-deductible under certain
circumstances. Please consult with your tax advisor.

payment:

RETURN COMPLETED APPLICATIONTO:

All new ACMmembers will receive an
ACMmembership card.

For more information, please visit us at www.acm.org

Association for Computing Machinery, Inc.
General Post Office
P.O. Box 30777
NewYork, NY 10087-0777

Questions? E-mail us at acmhelp@acm.org
Or call +1-800-342-6626 to speak to a live representative

Satisfaction Guaranteed!

Purposes of ACM
ACM is dedicated to:
1) advancing the art, science, engineering,
and application of information technology
2) fostering the open interchange of
information to serve both professionals and
the public
3) promoting the highest professional and
ethics standards

I agree with the Purposes of ACM:

Signature

ACM Code of Ethics:
http://www.acm.org/serving/ethics.html

You can join ACM in several easy ways:

Or, complete this application and return with payment via postal mail

Special rates for residents of developing countries:
http://www.acm.org/membership/L2-3/

Special rates for members of sister societies:
http://www.acm.org/membership/dues.html

Advancing Computing as a Science & Profession

Please print clearly

http://www.acm.org/join
http://www.acm.org/membership/L2-3/
http://www.acm.org/membership/dues.html
http://www.acm.org/serving/ethics.html
http://www.acm.org
mailto:acmhelp@acm.org

8 communications of the acm | september 2009 | vol. 52 | no. 9

letters to the editor

Computer Science Does Matter
DOI:10.1145/1562164.1562167		

build a much stronger curriculum and
public image.

Peter J. Denning (past president
of ACM), Monterey, CA

Authors Respond:
Freeman correctly recognizes that we
called for additional CS education, not less.
He can certainly try to convince schools to
introduce computing but will likely meet
the response that it’s already provided in
the courses that teach Word and Excel.
This is indeed what we’ve learned from our
14 years in the trenches of outreach.

Our vision offers students a strong
foundation for abstraction, engineering,
and science—with compelling content from
the bottom up, not by fiat imposed from the
top down.

Matthia Felleisen, Boston
Shriram Krishnamurthi, Providence, RI

ACM Content Wants to Be Free
Addressing the question of why ACM
doesn’t adopt the open-access model
for its publications in his Editor’s Let-
ter “Open, Closed, or Clopen Access?”
(July 2009), Moshe Y. Vardi wrote that
“‘free’ is not a sound business model.”

Though he was rebutting the con-
ventional wisdom that “information
wants to be free,” here the word “free”
meant freedom, not price. Freedom is
not a sound business model. It is not
a business model at all but rather a
mode of social interaction that human
beings value and aspire to achieve.

Moreover, ACM is not a conven-
tional business enterprise, describing
itself, right on the Communications
masthead, as “the world’s largest ed-
ucational and scientific computing
society.” As such, its mission is not
to generate profits by implementing
business models, sound or unsound,
but to promote the open exchange of
ideas. This means ACM publications
should be, as defined by the Budapest
Open Access Initiative (http://www.so-
ros.org/openaccess/read.shtml), avail-
able to the public, so everyone is able
to “read, download, copy, distribute,

I
t was disappointing that two
competent computer scien-
tists—Matthias Felleisen and
Shiram Krishnamurthi—took
such a narrow view in their

Viewpoint “Why Computer Science
Doesn’t Matter” (July 2009). For them
programming is apparently the es-
sence of computer science, at its best
when coupled with mathematics prac-
tice; therefore the science and engi-
neering don’t matter in the contest for
young minds in high school.

They wrote, but did not justify, that
“programming is our field’s single
most valuable skill” (what about the
ability to abstract?); that graphics is
“frosting” (really?); that the “three Rs”
are the driving force in the K–12 cur-
riculum (a view no longer shared by
leading educators); and that leading
CS educators want to emphasize engi-
neering and science while marginal-
izing programming (say again?). This
odd amalgam of unfounded assump-
tions led them to the untenable con-
clusion that hiding computing in a
mathematics curriculum strengthens
CS in high schools.

Their extended example of “imagi-
native programming” illustrates a
genuinely creative way to make high
school mathematics more engaging.
It also seemed to be an argument for
more CS, not less; CS and computa-
tional thinking can provide students
valuable concepts and frameworks
for understanding complex subjects
while making courses more interest-
ing to them.

I agree with them that the ETS deci-
sion to abolish AP tests in CS was de-
plorable, and we should all be work-
ing to reverse it.

Education leaders have long known
that the best way to get K–12 schools
to teach a particular subject is for uni-
versities to require that their students
have prior education in that subject.
This strategy has been particularly ef-
fective in California, which has a domi-
nant, respected university system. If we
want entering freshman to have more
rigorous preparation in computing, we

need to work on our respective univer-
sities to require it. In some cases, it may
be as simple as instituting the require-
ment in one’s own department.

Felleisen’s and Krishnamurthi’s
exhortation to hide behind mathe-
matics makes no sense. We should in-
stead be proactively making the case
not only for CS qua CS but for CS as a
powerful conceptual tool in a variety
of endeavors.

They were right to call attention to
the early stages of the university cur-
riculum. Ignoring them, CS will never
attract the students it wants. Here,
because the definition of CS comes
to the fore, consider two principles:
Insisting on a narrow definition of a
field is not a sound idea in a period of
growth and discovery, as it limits in-
novation. And we know from experi-
ence and research that the best way to
motivate students to learn the funda-
mentals is to show them how they are
used. A broad definition and relevant
examples help all students, especially
those who have decided to not major
in computing.

Peter A. Freeman, Atlanta, GA

Matthias Felleisen and Shiram Krish-
namurthi (July 2009) referred to my
and Andrew McGettrick’s “The Profes-
sion of IT” column “Recentering Com-
puter Science” (Nov. 2005), claiming
we sought to marginalize “our field’s
most valuable skill (programming).”
That is not what we sought or accom-
plished. We wrote because we were
deeply concerned about an external
view of the field that marginalized us
because it deeply misunderstands
what we mean by programming. We
speculated that the public percep-
tion that CS = programming, coupled
with the narrow public view of the
definition of “programming,” cast the
entire field in a poor light. We wrote
that programming is an essential core
practice that won’t disappear. We
suggested that recentering our own
thinking (making it less focused on
programming while including more
engineering and science) would help

http:///www.soros.org/openaccess/read.shtml
http:///www.soros.org/openaccess/read.shtml

september 2009 | vol. 52 | no. 9 | communications of the acm 9

letters to the editor

print, search, or link to the full texts
of these articles, or use them for any
other lawful purpose, without finan-
cial, legal, or technical barriers other
than those inseparable from gaining
access to the Internet itself.” Vardi, to
his credit, is a signer of the Initiative.
I urge him to reconsider its implica-
tions for ACM journals.

His more general point was that the
status quo should be good enough,
since the price of ACM’s publications
is, in his words, “very reasonable.” He
invited readers to consult their librar-
ians for confirmation. My librarian,
Kevin Engel of the Kistle Science Li-
brary at Grinnell College, says that the
prices charged for ACM publications
are roughly comparable to those of oth-
er professional organizations, perhaps
not quite as outrageous as those of, say,
the American Chemical Society, though
somewhat more outrageous than the
American Psychological Association.

However, Engel also says that ACM
stands out as the only professional or-
ganization that views the print version
of its publications as its main profit
center and hence refuses to offer an
online-only subscription bundle, put-
ting many researchers and students at
a disadvantage.

As a signer of the Budapest Initia-
tive, I strongly prefer open access to
ACM journals for everyone. Even if
ACM is unwilling to take such a step,
we could move incrementally in this
general direction by unbundling its
subscriptions and making the online
editions of its publications separately
available for purchase.

John David Stone, Grinnell, IA

I’d like to thank Moshe Y. Vardi for
his thoughtful analysis of open access
(July 2009) and offer a few additional
points. (My employer, O’Reilly Me-
dia, provides technical information
in the form of books and other media
in both open and closed forms; this
comment does not necessarily rep-
resent the views of O’Reilly Media.)
The most valuable benefit of provid-
ing open access to publications is it
allows us to be “part of the conversa-
tion” in vibrant and productive online
forums. ACM publications are widely
cited; I just checked my own articles
and blogs over the past few years and
found I referred to Communications

16 times. Were the articles easier to
search, read, and link to on the Web,
they would play an even more impor-
tant role in online discussions, as they
do in professional publications. Read-
er comments would further enhance
the value of the content.

However, this would not solve
Vardi’s concern over the cost of edit-
ing and publishing. He wrote that the
prices charged for ACM journals not
only cover the cost of their publication
(an impressive achievement in itself)
but yield a surplus that supports other
ACM activities (truly commendable).
I don’t blame ACM for sticking to its
partly closed model.

An alternative, if ACM were to go
open, would be to subsidize publica-
tions through increased dues or other
charges. I’m sure it would alter the cal-
culation for ACM members (particu-
larly students) when deciding whether
to join for the first time or renew their
memberships each year and might
require new forms of fundraising. It’s
certainly common for organizations to
ask members and donors to pay for de-
velopment of information otherwise
offered free to the world. If these pub-
lications represent the core offering to
ACM members, the strategy is risky.

Andy Oram, Cambridge, MA

I’d like to propose yet another business
model for the ACM Digital Library that
blends both sides of the open vs. closed
access debate, per Moshe Y. Vardi (July
2009). I agree that high-quality science
publishing bears unavoidable costs
even for electronic-only journals read-
ers should pay for. But scientific pa-
pers should be shared free of charge
with the largest audience possible.
As a teacher, I must often explain ba-
sic algorithms and data structures by
citing original pioneering papers. Be-
cause these “old” papers are still un-
der copyright, students cannot freely
and securely access them in digital
libraries. They get only a limited view
of their full technical coverage, getting
the main aspects of highly cited pa-
pers while missing the full scope of the
techniques being covered.

ACM should consider making avail-
able (for free) a set of highly rated CS
papers from the Digital Library. This
would offer students the historical pa-
pers that forged the science in the first

place, letting them in turn explore the
functionalities of the Digital Library
and inspiring their future interest in
being subscribers. One way to do so
might be to offer a free Education Li-
brary as a subset of the Digital Library.

Frank Nielsen, Paris, France

ACM Responds:
Concerning Stone’s comments, please
know that ACM does offer online-only
subscriptions; a library need not buy a
print package in order to subscribe to the
Digital Library. In fact, most ACM library
customers today belong to consortia for
which the basic package is online-only
access to the Digital Library with one free
print package included; additional print
packages are available to every member of
a consortium, though few opt to buy them.
Meanwhile, print long ago ceased to be
ACM’s “main profit center”; revenue from
digital offerings far exceeds revenue from
print. In any case, it is increasingly difficult
to make a financial case for continuing
print. For a number of publications, the
print side must be subsidized, mainly to
satisfy a dwindling set of library customers.
Finally, ACM does offer electronic-only
subscriptions to individual titles. Members
and non-members alike are able to buy
print-only subscriptions, electronic-
only subscriptions, or print+electronic
subscriptions to individual titles.

Bernard Rous, ACM Electronic Pub-
lishing Program Director, New York

Communications welcomes your opinion. To submit a
Letter to the Editor, please limit your comments to 500
words or less and send to letters@cacm.acm.org.

© 2009 ACM 0001-0782/09/0900 $10.00

Coming Next Month in

Communications
A View of the Parallel
Computing Landscape

 An Interview with
David E. Shaw

 Probing the Biomolecular
Landscape

Smoothed Analysis

Plus, the latest news in shape-shifting
devices, e-health records, and
supercomputing, data management,
and analysis.

mailto:letters@cacm.acm.org

10 communications of the acm | september 2009 | vol. 52 | no. 9

in the virtual extension

In the Virtual Extension
Communications’ Virtual Extension brings more quality articles to ACM
members. These articles are now available in the ACM Digital Library.

DOI:10.1145/1562164.1562168		

Ballot Box Communication in
Online Communities
Mu Xia, Yun Huang, Wenjing Duan,
and Andrew B. Whinston

User interaction in online communities
is one of the most noted features in the
Web 2.0 era. A variety of sites devoted to
sharing pictures (Flickr), video (YouTube),
collective music recommendations (last.
fm), and even voting for news articles that
deserve attention (Digg), as well as social
bookmarking (del.icio.us) have, for the
first time, opened the door for users to
interact with each other through short
messages and other types of interaction.
Nonmessage-based interactions have
become a major force behind successful
online communities. Recognition of this
new type of user participation is crucial
to understanding the dynamics of online
social communities and community
monetization.

Examining User Involvement in
Continuous Software Development
Achita (Mi) Muthitacharoen
and Khawaja A. Saeed

This study examines different factors
that help promote users’ participation
in sending error reports through error
report systems (ERS) that take a proactive
approach by allowing users to send error-
related information directly to the software
firms when their software experiences a
mishap. A survey conducted on 317 users
and ERS factors were ranked according to
their impacts on user’s intention to send
error report. Among several findings, the
results reveal that value compatibility is
the most influential factor. The study also
discovered initial evidence of user’s reflexive
behavior in their interaction with the ERS.

Constructive Function-based
Modeling in Multilevel Education
Alexander Pasko and Valery Adzhiev

The authors describe how a shape modeling
and rendering framework based on the
rapidly progressing function representation
is used in the spirit of the educational
constructionism theory to implement
an active, creative, and collaborative
learning process. The modeling language
and software are being developed within
an international HyperFun Project. The
authors applied the theoretical framework
and software tools on different levels of
education starting from elementary schools

to doctoral thesis research in various
areas related to mathematics, computer
graphics, programming languages,
artistic design, animation, and digital
fabrication. They illustrate the presented
approach by practical experience examples
from different educational institutions
and countries.

One Size Does Not Fit All:
Legal Protection for
Non-Copyrightable Data
Hongwei Zhu and Stuart E. Madnick

The Web is the largest data repository
on earth and Tim Berners-Lee has noted
“the exciting thing is serendipitous
reuse of data: one person puts data up
there for one thing, and another person
uses it another way.” However, data
reuse faces certain legal challenges. As
computing professionals develop new Web
technologies, we must understand the legal
implications of using them for data reuse
purposes. After reviewing legal and policy
issues, the authors discuss a framework
for policies that maximally allow value-
creating data reuse without diminishing
the incentives of compiling databases and
making them available on the Web.

The State of Corporate
Web Site Accessibility
Eleanor T. Loiacono, Nicholas C. Romano,
Jr., and Scott McCoy

Web accessibility continues to have
important social, legal, and economic
implications for e-commerce. Over 50
million Americans and around 600 million
people worldwide possess some sort
of disability. In this study, the authors
expound on a previous Communications
article that surveyed Fortune 100 Web
sites for their level of accessibility at a
snapshot in time. This study adds three
additional data sets for a total of four—
2000, 2002, 2004, and 2005—to present
a longitudinal perspective. The authors
examine the reasons why global companies
should care about accessibility and offer
recommendations on how to get started.

Reducing Employee Computer
Crime through Situational
Crime Prevention
Robert Willison and Mikko Siponen

Employee computer crime represents
a substantial threat for organizations.

Yet information security researchers
and practitioners currently lack a clear
understanding of how these crimes
are perpetrated, which consequently
hinders security efforts. The authors
argue that recent developments in
criminology can help to address the
insider threat. More specifically, they
demonstrate how an approach, entitled
Situational Crime Prevention, can not
only enhance an understanding of
employee computer crime, but also
strengthen security practices designed
to address this problem.

Modified Agile Practices for
Outsourced Software Projects
Dinesh Batra

In recent years, agile practices have
become popular in the software
development industry. However, some
agile practices break down when
faced with the realities of outsourced
development, including the larger size of
the typical project, and the geographical,
language, temporal, social, and cultural
barriers. This article explores how
agile practices must be reevaluated
in the broader software development
environment.

Technical Opinion:
Falling into the Net:
Main Street America
Playing Games and
Making Friends Online
James Katz and Ronald E. Rice

Findings from a U.S. survey of the
general population identify how the
Internet is affecting the daily lives
of ordinary people. A nationally
representative random survey of 1,404
people finds that, on balance, there is
almost no evidence to support the harsh
contentions that the Internet is harmful
or breeds sad, lonely people as has been
asserted. Neither is there evidence to
indicate the Internet is male-dominated.
Rather, the survey findings indicate
that millions of people find community
online, and many new friendships have
been forged. In fact, a significant fraction
of those friendships have extended from
the virtual to the face-to-face world. So
rather than people “dropping out” of life
to become hermits, data shows the Net
is a pro-social medium, resource, and
network that brings people together.

http://del.icio.us
http://last.fm
http://last.fm

To join ACM and/or subscribe to the Digital Library, contact ACM:

Phone: 1.800.342.6626 (U.S. and Canada)
+1.212.626.0500 (Global)

Fax: +1.212.944.1318
Hours: 8:30 a.m.-4:30 p.m., Eastern Time

Email: acmhelp@acm.org
Join URL: www.acm.org/joinacm

Mail: ACM Member Services
General Post Office
PO Box 30777
New York, NY 10087-0777 USAAD29

The Ultimate Online
INFORMATION TECHNOLOGY

Resource!

*Guide access is included with
Professional, Student and SIG member-
ship. ACM Professional Members can
add the full ACM Digital Library for
only $99 (USD). Student Portal Package
membership includes the Digital
Library. Institutional, Corporate, and
Consortia Packages are also available.

Powerful and vast in scope, the ACM Digital Library is
the ultimate online resource offering unlimited access and value!

The ACM Digital Library interface includes:

• The ACM Digital Library offers over 40 publications
including all ACM journals, magazines, and conference proceedings,
plus vast archives, representing over 2 million pages of text. The
ACM DL includes full-text articles from all ACM publications dating
back to the 1950s, as well as third-party content with selected
archives. PLUS NEW: Author Profile Pages with citation and usage
counts and New Guided Navigation search functionality!
www.acm.org/dl

• The Guide to Computing Literature offers an
 enormous bank of over one million bibliographic citations extending
far beyond ACM’s proprietary literature, covering all types of works in
computing such as journals, proceedings, books, technical reports,
and theses! www.acm.org/guide

• The Online Computing Reviews Service
includes reviews by computing experts, providing timely commen-
tary and critiques of the most essential books and articles.

Available only to ACM Members.
Join ACM online at www.acm.org/joinacm

www.acm.org/dl

ACM Digital Library

Advancing Computing as a Science & Profession

4-C Ad_09:DL 4-C queue ad 7/30/09 5:45 PM Page 1

http://www.acm.org/dl
http://www.acm.org/dl
http://www.acm.org/guide
http://www.acm.org/joinacm
mailto:acmhelp@acm.org
http://www.acm.org/joinacm

12 communications of the acm | september 2009 | vol. 52 | no. 9

The Communications Web site, http://cacm.acm.org,
features 13 bloggers in the BLOG@CACM community.
In each issue of Communications, we’ll publish excerpts
from selected posts, plus readers’ comments.

ers have never liked relational DBMSs
and want a non-relational model and
query facility. (This was the topic of my
last CACM blog, “DBMSs for Science
Applications: A Possible Solution.”)

If you are storing Resource Descrip-
tion Framework (RDF) data, which
is popular in the bio community and
elsewhere, then column stores are
very good at certain RDF workloads. In
addition, other ideas, such as RDF-3X,
will beat conventional DBMSs in other
situations. Lastly, native RDF engines
(e.g., Virtuoso, Sesame, and Jena) may
well gain traction. The point is that
something else will beat conventional
row stores in this market.

Text applications have never used
relational DBMSs. This was pointed
out to me most clearly by Eric Brewer
nearly 15 years ago in the early days of
Inktomi. He wanted to use a relational
DBMS to store the results of Web crawl-
ing, but found relational DBMSs to be
two orders of magnitude slower than
a home-brew system. All the major
Web-search engines use home-brew
text software to serve us search results.
None use relational DBMSs.

Even in XML, where the current ma-
jor vendors have spent a great deal of
energy extending their engines, it is
claimed that specialized engines, such
as Mark Logic or Tamino, run circles
around the major vendors, according
to a private communication by Dave
Kellogg.

In summary, one can leverage at
least the following ideas to get superior
performance:

A non-relational data model. If the

From Michael
Stonebraker’s
“The End of a DBMS
Era (Might be Upon Us)”
Relational database
management systems

(DBMSs) have been remarkably suc-
cessful in capturing the DBMS market-
place. To a first approximation they are
“the only game in town,” and the major
vendors (IBM, Oracle, and Microsoft)
enjoy an overwhelming market share.
They are selling “one size fits all”; i.e.,
a single relational engine appropriate
for all DBMS needs. Moreover, the code
line from all of the major vendors is
quite elderly, in all cases dating from
the 1980s. Hence, the major vendors sell
software that is a quarter century old,
and has been extended and morphed
to meet today’s needs. In my opinion,
these legacy systems are at the end of
their useful life. They deserve to be sent
to the “home for tired software.”

Here’s why.
If we examine the nontrivial-sized

DBMS markets, it turns out that cur-

rent relational DBMSs can be beaten
by approximately a factor of 50 in most
any market I can think of. What follows
are a few examples.

In the data warehouse market, a
column store beats a row store by ap-
proximately a factor of 50 on typical
business intelligence queries. The
reason is because column stores read
only the columns of interest to the
query and not all of them. In addition,
compression is more effective in a col-
umn store. Since the legacy systems
are all row stores, they are vulnerable
to competition from the newer col-
umn stores.

In the online transaction process-
ing (OLTP) market, a lightweight main
memory DBMS beats a row store by a
factor of 50. Leveraging main memory
and the fact that no DBMS application
will send a message to a human user
in the middle of a transaction allows
an OLTP DBMS to run transactions to
completion with no resource conten-
tion or locking overhead.

In the science DBMS market, us-

Saying Good-bye to
DBMSs, Designing
Effective Interfaces
Michael Stonebraker discusses the problems with relational database
management systems and possible solutions, and Jason Hong writes
about interfaces and usable privacy and security.

doi:10.1145/1562164.1562169			 http://cacm.acm.org/blogs/blog-cacm

http://cacm.acm.org
http://cacm.acm.org/blogs/blog-cacm

blog@cacm

september 2009 | vol. 52 | no. 9 | communications of the acm 13

user’s data is naturally something
other than tables and if simulat-
ing his natural data model on top of
tables is awkward, then chances are
that a native implementation of the
natural data model will significantly
outperform a conventional relational
DBMS. This is certainly true in scien-
tific data.

A different implementation of ta-
bles. If something other than a row store
accelerates the user’s queries, then a di-
rect implementation of the relational
model using non-row store technol-
ogy will run circles around a conven-
tional relational DBMS. This is true in
the data warehouse marketplace.

A different implementation of
transactions. Current row stores give
you a “one size fits all” implementation
of transactions. This can be radically
beaten if a user has lesser requirements
or if the system can take advantage of
workload-specific features. This is true
in the OLTP marketplace.

One of these characteristics is true
in every market I can think of. Hence,
in my opinion, the days of a “one size
fits all” monolithic DBMS are at an end.
The replacement will be a collection of
vertical market-specific engines, with
much higher performance.

You might ask, “What if I don’t care
about performance?” The answer:
Run one of the open source relation-
al DBMSs. They are mature, reliable,
and, best of all, free.

You might also ask, “I am dug in
deep with my current vendor(s). What
do I do?” The answer: Take some por-
tion of your DBMS budget and allocate
it to new solutions. Over time, you will
move onto better technology.

Reader’s comment
It is very true that relational DBMSs
are overhyped for not so valid reasons.
The current trends also showcase that
there are viable alternatives to relational
DBMSs, which can beat them at their own
game. Also, the emergence of distributed
key-value stores, such as Cassandra and
Voldemort, proves the efficiency and cost
effectiveness of their approaches.

Also, the recently concluded NoSQL
conference discussed at length how
distributed, non-relational databases
work, along with overview of the emerging
alternatives in this space.

Pavan Yara—

From Jason Hong’s
“Designing Effective
Interfaces for Usable
Privacy and Security”
I often cringe when I hear
highly technical engi-

neers talk about people.
I usually hear broad generalizations

tossed about, like “people are lazy,
that’s why they can’t use the system”
or “people don’t understand security.”
The worst is “people are just stupid.”

With this kind of attitude, it’s no
surprise there are so many complicated
user interfaces in the world, let alone
in privacy and security. Failing to try
to understand things from the user’s
point of view is the cardinal sin in user
interface design.

With this in mind, I thought it
would be good to shift focus in this
blog entry away from individual case
studies of usable privacy and security,
and look at the bigger picture of how
to design better user interfaces.

Now, how to craft an effective user
interface is a very involved topic that
one can study for years, and there are
lots of great Web sites and books out
there. Effective user interface design
combines our understanding of aes-
thetics, technology, and human behav-
ior to develop artifacts that are useful,
usable, and desirable for a specific tar-
get audience.

What makes usable privacy and
security different from designing
other interfaces is that privacy and
security are often secondary tasks.
People don’t go to an e-commerce
site explicitly wanting to protect
their credit cards and email address-
es; they go there to buy things. Secu-
rity and privacy are obvious things
they want while accomplishing their
main goal, in the same manner that
they want the Web site to also be fast
and usable.

Roughly, there are three broad strat-
egies for usable privacy and security
(note that these aren’t mutually exclu-
sive):

make the interface invisible˲˲

make the interface more under-˲˲

standable
train the users˲˲

A good example of better security
by making the interface invisible is
Secure Sockets Layer. End users don’t
have to do anything special, and all

of their network traffic is transparent-
ly encrypted.

Oftentimes, we just need to make
the user interface more understand-
able to end users. This might be ac-
complished through better layout, sim-
plified task flows, better visualizations,
or more appropriate metaphors (why
do we sign digital documents using
keys, anyway?).

Finally, some user interfaces may
also require training the users. One
common misconception about user
interfaces is that they should be “intui-
tive” (a description that always raises
a red flag with me). If you’re a Star
Trek fan like I am, you might remem-
ber that famous scene in Star Trek IV
where Montgomery Scott, the ship’s
engineer, tries to use a Macintosh
computer. After attempting to talk to
the computer and getting no response,
he picks up the mouse and tries talk-
ing into it. Intuitive indeed.

Applications are always designed
for a specific context, for specific pur-
poses, and for a specific target audi-
ence. The best designs will empower
people and let them get started quick-
ly, while also providing a way for them
to get better.

As such, some applications will
require some level of training. The
training might range from a basic un-
derstanding of how to zoom in and out
on the iPhone (which Apple cleverly
trained people how to do, with their
television ads), all the way to learning
how to drive a car (something we actu-
ally start training our children to do
since birth, given how ingrained cars
are in society).

Now, this doesn’t mean that you
can get away with a disastrous user
interface and expect people to have to
train how to use it, but it also doesn’t
mean that all user interfaces should
be walk up and use either. You have
to balance ease-of-use with power and
flexibility for your specific audience and
your specific goals. As Silicon Valley
pioneer Doug Engelbart once noted, if
ease of use was all that mattered, we’d
all still be riding tricycles.	

Michael Stonebraker is an adjunct professor at the
Massachusetts Institute of Technology. Jason Hong is
an assistant professor at Carnegie Mellon University.

© 2009 ACM 0001-0782/09/0900 $10.00

14 communications of the acm | september 2009 | vol. 52 | no. 9

cacm online

As publishers, it is imperative we always stay attuned to the kind of editorial
material our audience finds most professionally valuable and engaging. In-
deed, we devour Web analytics about Communications’ site to better serve our
current audience and to draw more into the fold. And we intend to share that
information with you on a regular basis. Here, we present the most popular
articles and sections this past summer (starting with the Memorial Day week-
end, May 22) as indicated by our latest site statistics.

What You Read on
Your Summer Vacation

DOI:10.1145/1562164.1562170	 David Roman

ACM
Member
News
New Image for
Computing Initiative
An interim report by ACM
and the WGBH Educational
Foundation as part of a project
to improve the image of
computer science among high
school students confirms a
significant gender gap among
college-bound students in their
opinions about computing
as a college major or career.
Funded by the National Science
Foundation, the research
found that 74% of boys,
regardless of race or ethnicity,
reported that a college major
in computer science was a
“very good” or “good” choice
for them. However, only 32%
of girls rated it as a “very
good” or “good” choice. The
ACM-WGBH Educational
Foundation report, which
covers the first phase of the
New Image for Computing
initiative, seeks to answer why
interest in computer science
in U.S. colleges and pursuing
computer-related careers is
declining.

“We know that the number
of computer science majors
is not meeting projected
work force needs,” noted
John White, ACM CEO and
co-principal investigator for
the project. “Many factors
contribute to the low interest
in computer science, but the
image of the field is a key
element in current perceptions
among this population.”

The gender gap extended to
computer science as a potential
career choice as well as a field
of study. From a selection of
15 possible careers, computer
science came in fourth among
the respondents, with 46%
rating it “very good” or “good.”
However, while 67% of all boys
rated computer science highly as
a career choice, only 26% of girls
rated it “very good” or “good.”

The research showed little
racial or ethnic differentiation
in young people’s attitudes
toward computer science, with
it being held in high regard
by college-bound African
American and Hispanic boys,
but these two groups remain
underrepresented in both
academia and the computer
science work force.

Top Articles
FYI: Only full-text articles are ranked, though some abstracts got more pageviews.

1.	T he Five-Minute Rule 20 Years Later
	 cacm.acm.org/magazines/2009/7/32091

6.	 Award-Winning Paper Reveals Key to Netflix Prize
	 cacm.acm.org/news/32450

2.	O ne Laptop Per Child: Vision vs. Reality
	 cacm.acm.org/magazines/2009/6/28497

7.	T ime for Computer Science to Grow Up
	 cacm.acm.org/magazines/2009/8/34492

3.	 Whither Sockets?
	 cacm.acm.org/magazines/2009/6/28495

8.	H ow Computer Science Serves the Developing World
	 cacm.acm.org/magazines/2009/6/28498

4.	 CS Education in the U.S.:
	 Heading in the Wrong Direction?
	 cacm.acm.org/magazines/2009/7/32090

9.	 Why ‘Open Source’ Misses the Point
	 of Free Software
	 cacm.acm.org/magazines/2009/6/28491

5.	 API Design Matters
	 cacm.acm.org/magazines/2009/5/24646

10.	Conferences vs. Journals in Computing Research
	 cacm.acm.org/magazines/2009/5/24632

Top Blog Posts
FYI: Michael Stonebraker’s #1 entry had more
than 10 times the traffic of his #5 entry.

1.	T he End of a DBMS Era (Might Be Upon Us)
	 cacm.acm.org/blogs/blog-cacm/32212

2.	T he Siren Song of Startups
	 cacm.acm.org/blogs/blog-cacm/29807

3.	T he Biggest Gains Come From Knowing Your Data
	 cacm.acm.org/blogs/blog-cacm/33805

4.	 What Is a Good Recommendation Algorithm?
	 cacm.acm.org/blogs/blog-cacm/22925

5.	DB MSs for Science Applications:
	 A Possible Solution
	 cacm.acm.org/blogs/blog-cacm/22489

Top Issues:
FYI: The site’s momentum is evident.

1.	 June 2009: cacm.acm.org/magazines/2009/6

2.	 July 2009: cacm.acm.org/magazines/2009/7

3.	 May 2009: cacm.acm.org/magazines/2009/5

4.	 April 2009: cacm.acm.org/magazines/2009/4

5.	 March 2009: cacm.acm.org/magazines/2009/3

Top Sections:
FYI: The homepage got more pageviews
than all of these sections combined.

1.	 Magazine Archive: cacm.acm.org/magazines

2.	B LOG@CACM: cacm.acm.org/blogs/blog-cacm

3.	 News: cacm.acm.org/news

4.	B logs: cacm.acm.org/blogs

5.	 Author Guidelines: 	
	 cacm.acm.org/about-communications/author-center

http://cacm.acm.org/magazines/2009/7/32091
http://cacm.acm.org/news/32450
http://cacm.acm.org/magazines/2009/6/28497
http://cacm.acm.org/magazines/2009/8/34492
http://cacm.acm.org/magazines/2009/6/28495
http://cacm.acm.org/magazines/2009/6/28498
http://cacm.acm.org/magazines/2009/7/32090
http://cacm.acm.org/magazines/2009/6/28491
http://cacm.acm.org/magazines/2009/5/24646
http://cacm.acm.org/magazines/2009/5/24632
http://cacm.acm.org/blogs/blog-cacm/32212
http://cacm.acm.org/blogs/blog-cacm/29807
http://cacm.acm.org/blogs/blog-cacm/33805
http://cacm.acm.org/blogs/blog-cacm/22925
http://cacm.acm.org/blogs/blog-cacm/22489
http://cacm.acm.org/magazines
http://cacm.acm.org/blogs/blog-cacm
http://cacm.acm.org/news
http://cacm.acm.org/blogs
http://cacm.acm.org/about-communications/author-center
http://cacm.acm.org/magazines/2009/6
http://cacm.acm.org/magazines/2009/7
http://cacm.acm.org/magazines/2009/5
http://cacm.acm.org/magazines/2009/4
http://cacm.acm.org/magazines/2009/3

 N
news

september 2009 | vol. 52 | no. 9 | communications of the acm 15

F
or years, software program-
mers had it easy when they
wanted to write faster and
more feature-laden applica-
tions. They just did it, thanks

to the seemingly eternal verity of
Moore’s Law, which states that the den-
sity of transistors on a chip will double
every two years. The size of transistors
has continued to shrink, making it pos-
sible for more transistors to be placed
on a die of the same size, but clock
speeds haven’t increased, due to ther-
mal issues. Intel and other chip manu-
facturers have opted to use the extra
transistors to build multiple processor
cores on the same die, as opposed to
increasing the functionality or sophis-
tication of each individual core. In or-
der to take advantage of these multiple
cores, applications must be rewritten
to accomplish their task, using multi-
ple parallel threads of execution.

Parallel programming is not new;
it has been a mainstay in high-perfor-
mance computing for decades. How-
ever, the vast majority of general-pur-
pose platforms have been designed
to operate sequential applications,
in which one instruction logically fol-
lows its predecessor to accomplish a
given task. In parallel programming,

numerous calculations are performed
simultaneously, operating on the prin-
ciple that large problems can often be
divided into many smaller ones, which
are then solved concurrently. However,
generations of programmers for main-
stream platforms have never had to
work in parallel.

“We have come to parallel program-
ming not because of the success of our
software, but because of the failure of
our hardware,” says Tim Mattson, a se-
nior research scientist at Intel. “If the
hardware can’t give it to you with a sin-
gle thread anymore you have to figure
out how to do parallel. So it’s kind of an

urgent situation here. We have to crack
this one.” (See “Face the Inevitable,
Embrace Parallelism,” on p. 36.)

What to Parallelize
There are numerous “yes, but…” sce-
narios inherent in bringing parallel
programming to mainstream machines
and developers. For instance, many
programming experts say the return
on investment for changing sequential
code for the next generation of dual-
core or quad-core machines might not
be large enough to make the transition
worthwhile. As a result, researchers and
toolmakers have a short grace period in
which to examine exactly which appli-
cations are worth parallelizing.

“The consequence of having to
move to multicore is that we have to
figure out how to use parallelism in
places where we need more perfor-
mance,” says Jim Larus, director of
software architecture for cloud com-
puting futures at Microsoft. “Not ev-

Entering a Parallel
Universe
The multicore processors that help extend
Moore’s Law may run afoul of Amdahl’s Law.

Science | doi:10.1145/1562164.1562171	 Gregory Goth

Students participating in a class on multicore programming at the University of Illinois at
Urbana-Champaign’s Universal Parallel Computing Research Center in June 2009.P

h
o

t
o

graph

 b

y
 A

ar

o
n

 T
er

s

teeg

16 communications of the acm | september 2009 | vol. 52 | no. 9

news

consciousness raising is important
at all levels, from industry veterans to
undergraduate students. “Sequential
programming models do not work well
enough,” says Maurice Herlihy, a pro-
fessor of computer science at Brown
University. “We can more or less keep
busy” four cores or fewer, he says, “but
beyond that we’ll have to rethink some
things. If you can’t deliver more value
with more cores, why would anybody
ever upgrade?” Herlihy sees a peril that
the engine of progress that has driven
computer science for decades could
run out of fuel, with dire consequenc-
es. “If this were to dissipate, then all
the smart students would go to bioen-
gineering or something, and computer
science as a field would suffer.” Indeed,
he says, “even one generation of stag-
nation could do lasting damage.”

Incremental Integration
Computer scientists on university fac-
ulties say academia is debating how
and when to introduce parallel pro-
gramming throughout the curricu-
lum, instead of just offering an upper-
level course as is now common. Both
Brown’s Herlihy and Guy Blelloch, a
professor of computer science at Car-
negie Mellon University, say the early
emphasis should be on higher-level

parallel concepts and not on coding
particulars such as languages or devel-
opment frameworks.

Yet without some sort of introduc-
tion to the emerging post-collegiate
parallel programming practice and
tools environment, these new engineers
might need even more training. Herlihy
says that existing parallel frameworks—
such as OpenMP, which dates to 1997,
and the newly released OpenCL—are
well suited for professional program-
mers, but not for students, who largely
program in Java. This lack of grounding
in the fundamentals of parallel code
writing could lead to a looming discon-
nect between what new programmers
know and what industry needs.

Intel’s Mattson, who worked on
both frameworks, says one of the major
blind spots of both OpenMP and Open-
CL is a lack of support for managed
languages such as Java. He also says
the idea that there may be some type
of revolutionary parallel programming
language or approach on the near-term
horizon that solves the multicore co-
nundrum is misplaced. “Programmers
insist on incremental approaches,”
Mattson says. “They have a huge base
of code written in established languag-
es they will not throw away to adopt a
whole new language, and they have to
be able to incrementally evolve this leg-
acy of code into the parallel space.”

The good news is that tools to assist
programmers in this task of incremen-
tally parallelizing code are proliferat-
ing on the market. Examples include
Cilk++ from Cilk Arts, a Burlington,
MA, company that extends the work
of the Cilk Project at MIT. Cilk++ al-
lows parallel programs written in C++
to retain serial semantics, which in
turn permits programmers to use se-
rial methodologies. CriticalBlue, an
Edinburgh, Scotland-based company,
recently released Prism, a parallel anal-
ysis and coding tool that CEO David
Stewart says works with C or C++ and
that allows users to explore paralleliza-
tion strategies—which pieces to run in
parallel, which dependencies to break,
how many cores to use, and so on—be-
fore touching the code.

The most sensible way to imple-
ment parallelism, Stewart contends, is
to enable software developers to ana-
lyze how much potential parallelism is
in their code and to determine the min-

erything needs to be parallel. What’s it
going to do for you to make Word run a
little faster?”

Larus says some applications, such
as speech recognition, for which par-
allel programming is seen as a re-
quirement, might benefit more from
algorithmic improvements of existing
serially written applications instead of
converting to parallel processing. “The
people working on [speech recogni-
tion] at Microsoft say a machine that’s
10 times faster would probably reduce
the error rate by a few tenths of a per-
cent,” says Larus. “They see the future
in terms of better algorithms, not more
computation. We’re saying we can
keep giving you exponential growth in
compute power for certain types of pro-
grams, and people are telling us ‘That’s
not really what we need for what we’re
doing’ or ‘That’s not enough for what
we’re doing.’”

Larus’s cautions aside, the comput-
er industry is moving en masse to mul-
ticore machines, and users will expect
to receive additional performance for
their money—performance that will
often depend on parallel applications.
Therefore, some experts say, there is
a danger in not immediately starting
to train programmers on the require-
ments of parallel programming. This

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

S
pe

ed
up

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
4

8

4
0

96

81
92

16
38

4

32
76

8

65
53

6

Number of Processors

Parallel Portion

 50%

 75%

 90%

 95%

G
raph

 fr

o

m
 W

ikipedia

Named after computer architect Gene Amdahl, Amdahl’s Law is frequently used in parallel
programming to predict the theoretical maximum speedup using multiple processors.

Amdahl’s Law

news

september 2009 | vol. 52 | no. 9 | communications of the acm 17

imum set of code changes required to
exploit that parallelism. “Put another
way,” Stewart says, “how much does
Amdahl’s Law screw me up?”

A Firm Ceiling
For years, the promise of parallel com-
puting has run afoul of the harsh reality
of an axiom posited by computer archi-
tect Gene Amdahl in 1967. Amdahl’s
Law puts a firm ceiling on the benefit
of converting code from sequential to
parallel. It states that the speedup of
an application using multiple proces-
sors in parallel computing is limited by
the time needed for the sequential frac-
tion of the program. The upshot: going
down the path of parallelism will not
necessarily reap rewards.

“If 50% of your program is serial and
the other half can be parallelized, the
biggest speedup you’re going to see is
a factor of two,” says Microsoft’s Larus.
“It doesn’t matter how many cores you
have. And that doesn’t seem very com-
pelling if you’re going to have to rewrite
a huge amount of software.” Amdahl’s
Law, Larus says, might very well mean
that a wholesale rush to convert serial
applications to parallel platforms in
order to preserve a Moore’s Law pace
of progress would be misguided. In
many cases, it will be more cost-ef-
fective to improve serial applications’
performance via algorithmic advances
and custom circuitry rather than going
for the marginal return on investment
that parallelizing those applications
might provide.

For Larus, reconciling the true com-
putational needs of future applications
with the overall move to parallel-capa-

ble multicore processors must entail
rigorous evaluation of what type of ap-
plication might deliver the most ben-
efit to users. Because the bulk of gener-
al-purpose computing has been done
successfully on serial platforms, he says
it’s been difficult to pin down exactly
which applications might derive the
most benefit from parallelization.

“This is a challenging problem,” he
says. “A lot of people take the attitude,
‘If we build it they will come,’ and that
may very well happen—there might
be a killer app. But not knowing what
that is makes it really hard to build the
infrastructure and the tools to facili-
tate the app.”

So far, Larus says, the computer engi-
neering community is basing its idea of
what future general-purpose multicore
platforms are capable of due to niche
applications such as high-performance
scientific data analysis software, where
parallelization has shown its value. But
there’s no guarantee it will be possible
to extrapolate from this experience to
create the development frameworks
most programmers will need as paral-
lelism goes mainstream in general-pur-
pose computing.

“In this case we’re going backwards;
we’re building the tools based on our ex-
perience with high-performance com-
puting or scientific computing and say-
ing people are going to need this. And
that may be true, but it has a funny feel
to me—to have the tools leading.”

Larus says the key to successful par-
allel platforms might be in finding a
way to combine existing discrete serial
platforms. One example, he says, might
be a virtual receptionist that needs
to process visual cues from a camera
taking images of a visitor while also
responding to spoken queries such as
the visitor’s request for directions to a
nearby restaurant. “This type of thing
has been gradually building up in dis-
crete fields over the years,” Larus says.
“When you put it together there are all
these big, independent pieces that only
interact at these well-defined boundar-
ies. That’s a problem that’s actually
easy to parallelize.”	

Gregory Goth is an Oakville, CT-based writer who
specializes in science and technology. David A. Patterson,
University of California, Berkeley, contributed to the
development of this article.

© 2009 ACM 0001-0782/09/0900 $10.00

Academia is
debating when and
how to add parallel
programming to the
curriculum, instead
of only offering an
upper-level course
as is now common.

Milestones

Computer
Science
Awards
President Barack Obama and
the National Science Foundation
(NSF) recently honored members
of the computer science
community for their innovative
research. Among them:

NSF Career Award
Tiffany Barnes, an
assistant professor
in the department
of computer
science at the
University of North

Carolina at Charlotte, has
received a Career Award from
the NSF for her research on
artificial intelligence and
education. The goal of Barnes’
project is to create technology
for a new generation of
data-driven intelligent tutors,
enabling the rapid creation of
individualized instruction to
support learning in science,
technology, engineering, and
mathematics fields.

Presidential Early
Career Awards
President Obama has named
100 beginning researchers as
recipients of the Presidential
Early Career Awards for
Scientists and Engineers
(PECASE), the highest
honor bestowed by the
U.S. government on young
professionals in the early
stages of their independent
research careers.

Of the 100 PECASE winners,
15 are computer scientists. They
are: Cecilia R. Aragon, Lawrence
Berkeley National Laboratory;
David P. Arnold, University of
Florida; Seth R. Bank, University
of Texas, Austin; Joel L. Dawson,
Massachusetts Institute of
Technology; Chris L. Dwyer,
Duke University; Anthony Grbic,
University of Michigan; Carlos
E. Guestrin, Carnegie Mellon
University; Sean Hallgren, Penn
State University; Yu Huang,
University of California, Los
Angeles; Gregory H. Huff,
Texas A&M University; Sanjay
Kumar, University of California,
Berkeley; Rada F. Mihalcea,
University of North Texas; Adam
D. Smith, Penn State University;
Adrienne D. Stiff-Roberts, Duke
University; and Sharon M.
Weiss, Vanderbilt University.

18 communications of the acm | september 2009 | vol. 52 | no. 9

news

image

 c

o
urte

s

y
 o

f
 M

eti

n

 Sitti

,

C
ar

n

egie

 M
ell

o
n

 U
n

iver

s
it

y

Technology | doi:10.1145/1562164.1562172	 Kirk L. Kroeker

Medical Nanobots
Researchers working in medical nanorobotics are creating
technologies that could lead to novel health-care applications,
such as new ways of accessing areas of the human body that
would otherwise be unreachable without invasive surgery.

S
in ce K a rel Capek first used
the word “robot” in print
in a 1920 play, a vast array
of autonomous electro-
mechanical systems have

emerged from research labs, making
their way onto production lines for
industrial tasks, into toy stores for en-
tertainment, and even into homes to
perform simple household jobs. While
the bulk of robotics research strives to
make robots more useful and more ca-
pable of even greater levels of autono-
my, several labs are attempting to make
robotic systems much smaller. One of
the most active areas of such research
is medical nanorobotics, an emerging
field positioned at the intersection of
several sciences.

As a discipline, medical nanorobot-
ics remains young for now, but many
scientists are already demonstrating
new developments they say will form
the foundations for the next major
breakthroughs in this area. Such break-
throughs could lead to novel applica-
tions that offer new ways of accessing
small spaces in the human body that
would otherwise be unreachable with-
out invasive surgery.

“Nanorobotics can play a major role
in medical applications, especially for
target interventions into the human
body through the vascular network,”
says Sylvain Martel, director of the nan-
orobotics laboratory at École Polytech-
nique de Montréal. “In many types of
interventions, medical specialists are
lacking appropriate tools to do a good
job, and I believe that nanorobotics
could bring new methods and tools to
these particular applications.”

Recent fabrication, actuation, and
steering demonstrations of nanoscale
robots represent the first crucial steps
toward developing real-world applica-
tions for targeted drug delivery and
other uses. But researchers say that with

many engineering and medical chal-
lenges remaining to be met, clinically
usable medical nanobots might be via-
ble only after several more years of work
in this area. “I believe that the first real
application that will have a huge impact
is in targeted cancer therapy, such as
delivering therapeutic agents directly
to the tumor through the vascular net-
work,” says Martel.

Currently, Martel and his team are
focused on developing a medical ap-
plication designed to target regions
inaccessible to traditional catheteriza-
tion techniques. The platform they cre-
ated uses magnetic resonance imaging
(MRI) for feeding information to a con-
troller that is responsible for steering
the nanobots along blood vessels. The
nanobots, which consist of magnetic
carriers and flagellated bacteria that can
be controlled by computer and loaded
with therapeutic and sensing agents, es-
sentially serve as wireless robotic arms
that can perform remote tasks.

“Unlike known magnetic targeting

methods, the present platform allows
us to reach locations deep in the hu-
man body using real-time control,”
Martel says. Still, he predicts it will take
three to five years before the system
reaches maturity, meaning complete
computer-based control of the propul-
sion and steering mechanisms.

Another researcher designing a sim-
ilar approach to controlling nanobots
is Metin Sitti, director of the nanoro-
botics lab at Carnegie Mellon Univer-
sity. Sitti and his team are working on
building nanobots for drug-delivery
applications. In one recent project,
he and his team have used bacteria to
move nanoscale robots, which use the
chemical energy inside the bacteria
and in the environment for propulsion.
In addition to this propulsion method,
Sitti and his team have experimented
with optical and magnetic stimuli to
coax the bacteria into decelerating,
stopping, and moving again.

But as with other similar projects in
this area, Sitti and his team are facing

Direction of rotation
of the flagella

Bacteria
Polymer disk

Bacteria

Robot Body

Polymer disk

A nanobot created at Carnegie Mellon University and demonstrated to be functional
in real-world experiments. The flagella motion of the bacteria’s cells propel the nanobot,
which is controlled by the application of environmental stimuli.

news

september 2009 | vol. 52 | no. 9 | communications of the acm 19

several nanorobotics labs focus spe-
cifically on projects that might have
near-term practical applications. “One
aspect of entering these fields that was
particularly important to me, as an en-
gineer, was to make sure there were
genuine applications on the horizon
that made sense,” says Bradley Nelson,
head of the institute of robotics and
intelligent systems at ETH Zürich. “It
rapidly became clear that applications
in biological research were possible,
but then it became even more clear
that the potential in medicine was the
real reason for pursing these fields.”

Among many projects, Nelson’s
group is creating artificial flagella de-
signed to mimic natural bacteria in
both size and swimming technique and
is working on nanobots for retinal sur-
gery. The challenges he and his team
face, as with other researchers working
in this area, are numerous. Still, Nelson
says he remains optimistic, and points
to a recent spinoff called FemtoTools,
in Zürich, Switzerland, that is already
marketing micromanipulation prod-
ucts, such as force sensors and micro-
grippers. “With sufficient resources
and energy and the backing of doctors
and business people,” he says, “retinal
therapies using nanobots will be pos-
sible within five years.”

With nanorobotics labs working
hard to address fundamental issues in
physics, biology, and computer science
as they seek to create viable medical
applications, at least one major chal-
lenge resides on a more social level.
One of the most frequently cited dif-
ficulties of working in this field is the

interdisciplinary nature of the research
itself, which requires not only combin-
ing advanced science in health with ad-
vanced science in robotics, but also the
ability to communicate in the language
that medical professionals use.

Nelson’s group, for example, con-
sists of roboticists, mechanical engi-
neers, electrical engineers, software
engineers, computer vision research-
ers, materials scientists, and chem-
ists. And the team works directly with
doctors and biologists. “Trying to un-
derstand what all these disciplines are
about and how they can work together
is a major challenge and, to me, one of
the most stimulating aspects of this
field,” Nelson says. Martel points to a
similar experience. “In my office, I can
talk about a new imaging algorithm on
an MRI machine, and five minutes later
have a conversation about microelec-
tronic circuits, antibodies to connect
nanoparticles to miniature robots, or
genetics to enhance the molecular mo-
tor of flagellated bacteria,” he says.

Requicha, for his part, says inter-
disciplinary work is exciting but not
easy. “This is an issue not only at the
research level, but also educationally,”
he says. “How do we prepare students
to work in this field?”

In addition to the challenges associ-
ated with the interdisciplinary nature
of the research, researchers cite safety
issues, health concerns, and govern-
ment regulation as other key issues.
Swallowing or injecting miniature ro-
bots is not something many patients
would readily agree to do without as-
surances of safety, or at least some de-
monstrable evidence that the potential
benefits outweigh the possible risks.
Because human physiology is complex,
dynamic, and even different from per-
son to person, reliably producing such
evidence likely will remain an engi-
neering challenge for years to come.

Despite the many challenges, re-
searchers say the efforts will yield posi-
tive results in the end, with technology
that revolutionizes medicine by mak-
ing health care less expensive and less
painful, and enabling medical profes-
sionals to target diseases for diagnosis
and treatment, precisely and locally. 	

Based in Los Angeles, Kirk L. Kroeker is a freelance
editor and writer specializing in science and technology.

© 2009 ACM 0001-0782/09/0900 $10.00

several fundamental challenges. “Such
bacteria-propelled nanobots are lim-
ited by the stochastic nature of cellular
motion, and by the relatively brief life-
times of bacteria,” he says. In addition,
Sitti says he and his team must develop
more effective ways to communicate
with nanobots once they are inside a
body. “Methods must be found to pro-
gram and control large numbers of
nanobots,” Sitti says. “This will be nec-
essary if such devices are to treat large
areas of the body, to increase the speed
and success of medical operations, and
to deliver sufficient amounts of drugs
to their targets.”

Scientists working in this area say
the nanorobotic systems developed
by Martel, Sitti, and other researchers
could lead to new surgical techniques
far more sophisticated and far less in-
vasive than methods currently in use.
Such techniques would rely on devices
capable of entering the human body
through natural orifices or very small
incisions to perform diagnostic pro-
cedures or repair tissue. “The mecha-
nisms of life operate at the nanoscale,”
says Aristides Requicha, director of the
laboratory for molecular robotics at the
University of Southern California. “If we
build devices at their scale, we will be
able to interact intimately with them.”

One goal of Requicha’s work in this
area is to overturn the basic paradigm
of today’s medicine, and to shift from a
treatment model to a prevention model
through the use of in-body sensors that
check for and kill pathogens before the
patient has any symptoms. Essentially,
Requicha’s vision entails rethinking
the traditional sequence of patients
demonstrating symptoms and then
seeking medical care for their ills. “In
the long run,” he says, “I would like to
build artificial and preferably program-
mable cells.” In the meantime, though,
one project Requicha and his team are
working on is a network of wireless
nanosensors capable of operating in
biological environments. “This net-
work would give us unprecedented ca-
pabilities to study cell biology by being
able to acquire data in real time and for
extended periods,” he says.

Near-Term Applications
While some research in this field re-
mains theoretical and might never di-
rectly lead to real-world applications,

Aristides Requicha’s
research aims for
a preventive health
model in which
in-body sensors
check for and kill
pathogens before a
patient exhibits
any symptoms.

20 communications of the acm | september 2009 | vol. 52 | no. 9

news

P
h

o
t

o
graph

 b
y

 dieph

o

s
i

/I
s

t
o

ckph

o
t

o
.c

o
m

Society | doi:10.1145/1562164.1562173	 Samuel Greengard

Facing an Age-Old Problem
Researchers are addressing the computing challenges of older individuals,
whose needs are different—and too often disregarded.

I
t’s n o sec re t that computers
and the Internet have changed
society in ways that weren’t
imaginable only a quarter-cen-
tury ago. The ability to connect

with other people all over the globe,
read about events as they unfold, shop
online, and manage information has
profoundly changed the landscape—
and mind-set—of modern society.
More than three-quarters of households
in the U.S. have computers, and the num-
bers are exploding all over the world.

Today, it’s difficult to imagine a
world without computers. And while
the so-called digital divide remains—
the gulf between the affluent and poor
in terms of computer accessibility—re-
searchers are discovering that another
important barrier exists. “Many older
people face formidable challenges
when it comes to using computers,”
says Vicki Hanson, manager for the ac-
cessibility research group at IBM. “They
are different from other segments of
the population in terms of both cogni-
tive and physical capabilities.”

The challenges of dealing with an ag-
ing world population haven’t been lost
on researchers, psychologists, and tech-
nology designers. Although computer
and software manufacturers have made
some strides in building easier-to-use
systems—including specialized Web
browsers, ergonomic mice and key-
boards, and accessibility functions such
as the ability to zoom and magnify text
and graphics—there is still a long way to
go to provide a computing environment
that’s ideal for older individuals.

“Technology creates a lot of poten-
tial in terms of enhancing the quality
of life, independence, and well-being
of older adults,” observes Sara J. Czaja,
professor of psychiatry and behavioral
sciences and director of the center on
research and education for aging and
technology at the University of Miami.
“It opens up work and personal oppor-
tunities and allows older adults to stay
socially connected. But this group has

different needs and they’re too often
overlooked.”

Age Matters
As commerce, health care, government
services, and work migrate online,
the need to use computing devices is
shifting from desirable to essential.
According to Czaja, older individu-
als don’t have any particular aversion

to using computers and technology.
“They are entirely receptive,” she says.
So, where does the problem lie? “They
often don’t understand the benefits or
they’re unable to use the system eas-
ily,” she says. “When people of any age
can’t figure things out, they tend to
avoid the technology.”

The challenges are growing. As
computing expands from desktop
and notebook systems to a wider uni-
verse of devices—including phones,
home entertainment centers, naviga-
tion systems in cars, security systems,
and high-tech climate controls—older
adults are increasingly feeling over-
whelmed and frustrated. “There are
a lot of older people who have a lot of
trouble with mobile phones. They sim-
ply can’t use a typical phone because
the interface is confusing and the but-
tons are too small,” Czaja explains.

Yet, poor vision, shaky fingers, and
fading memory are only a few of the
manifestations of older age. It’s not
unusual for individuals to experience

“When people of
any age can’t figure
things out,” says
Sara J. Czaja,
“they tend to avoid
the technology.”

Creating an ideal computing environment for older adults poses many challenges.

http://ISTOCKPHOTO.COM

september 2009 | vol. 52 | no. 9 | communications of the acm 21

news

problems related to hearing, tactile
perception, and the ability to recognize
movement, notes Takashi Saito, man-
ager of the accessibility center for IBM’s
Tokyo Research Lab. In fact, many of
these older individuals have “multiple
slight disabilities” that create a unique
set of challenges. As a result, it’s not
simple to engineer a straightforward
solution for a single problem.

For example, a person with failing
eyesight might benefit from a “blind
touch” keyboard, but deteriorating
motor skills might make it a challenge
to use any keyboard. Another older per-
son might find it easier to use a special-
ized Web browser—or an alternative
Web site—that simplifies layout and
design elements, but she may still have
problems figuring out what to put in
the search box of a Web search engine.
Further complicating matters, aging—
and age-related problems—don’t oc-
cur in any predictable or uniform way.
Oftentimes, it is difficult to ascertain
who needs assistance and when they
need it.

“The major problem arising from
the aging process is that most sensory,
motor, and cognitive abilities decline
gradually with age, and at different
relative rates for different individu-
als,” observes Peter Gregor, professor
of interactive systems design and dean
of the school of computing at the Uni-
versity of Dundee in Scotland. What’s
more, “compared with younger adults,
there is a wider diversity of characteris-
tics among older people,” says Gregor.
This makes it more difficult to design a
system to address specific issues. Fac-
tor in that older people didn’t grow up
with computers, smartphones, and oth-
er devices, and “the odds are stacked
against them,” Gregor concludes.

Designs on Usability
Addressing the computing challenges
of older individuals requires ongoing
analysis and creativity. Researchers
know they must find ways to lighten
the load on sensory and motor capabil-
ities. Says Gregor, “We should be ask-
ing whether systems do all that is pos-
sible to minimize the cognitive load
required to carry out tasks? Is support
available if it is apparent a user doesn’t
know what to do next? Does the system
support error-free learning? Do people
feel that they, not the machine, are in

control of the interaction at all times?”
No less important, Gregor says, is

to understand that older individuals
are less enamored with the coolness of
technology than they are about getting
a specific task done. They also tend to
treat machines with respect and are
thus less likely to try things out—for
fear of damaging or breaking some-
thing. “They are more prone to blame
themselves when things inevitably go
wrong.” As a result, part of the focus for
designers, engineers, and others is to
educate and train older individuals to
use systems effectively.

Wading through the tangle of issues
is daunting, to be sure. A tool or feature
that simplifies computing for one per-
son may wreak havoc for another. For
instance, using a larger font may cre-
ate a longer page that involves more
scrolling. A text-to-speech feature may
eliminate the need to actually read the
page but also test an older person’s
cognitive ability to comprehend every-
thing he’s hearing. What’s more, if the
system reads too fast or a person needs
to replay a portion of the text and finds
that he has to listen to the entire screen
again (rather than being able to restart
at a given point), he may give up.

However, some designers are be-
ginning to take notice and develop vi-
able solutions. For instance, IBM has
introduced Easy Web Browsing (EWB),
a set of features that make it simpler
for older individuals to traverse the
Internet in a user-friendly way. The
browsing tool—used by more than
140 Web sites—serves as a bridge be-
tween standard Web site design and a
format that takes into account factors
such as vision loss and lack of experi-

“Ultimately,” says
Peter Gregor,
“operating a Web
browser should be
as straightforward
as turning up the
volume on a radio.”

Survey

Scientists
and the
Public
A survey of American
scientists and the general
public, conducted by the Pew
Research Center for the People
& the Press, has turned up
some surprising results. The
public rates scientists very
highly, with 70% saying they
contribute a lot to society’s
well being; only members of
the military (84%) and teachers
(77%) received a higher rating.
However, scientists do not
have such a high view of the
public’s scientific knowledge
and expectations, with 85% of
scientists viewing the public’s
lack of scientific knowledge as a
major problem for science and
nearly half of scientists blaming
the public for unrealistic
expectations about the speed of
scientific achievements.

Many scientists fault the
media for its science reporting,
with 76% of scientists saying that
a major problem for science is
the media’s failure to distinguish
between results that are well
founded and those that are not.

In terms of obstacles to
high-quality research, 87% of
scientists rate a lack of funding
as an impediment to research.
Moreover, 56% of scientists
say that visa and immigration
problems for foreign scientists
and students hinder high-quality
research. Both scientists and
the public are in agreement on
the importance of government
funding of research, with 84% of
scientists citing a government
entity as an important source of
funding for their research (49%
cited the National Institutes of
Health and 47% cited the National
Science Foundation), while 60%
of the public says government
investment in research is
essential for scientific progress.
A majority of the general public
believe that government funding
of basic research (73%) and
engineering and technology (74%)
pay off in the long run.

The Pew Research survey
was conducted via phone
interviews with 3,006 members
of the public and via an online
survey of a random sample of
2,533 members of the American
Association for the Advancement
of Science, the nation’s largest
general scientific society.

22 communications of the acm | september 2009 | vol. 52 | no. 9

news

among other things, can automati-
cally reformat text so that it’s more
easily viewed. Keyboard filters offer
word prediction utilities to reduce typ-
ing and interaction. And light signaler
alerts monitor sounds along with oth-
er events and alert users with a light
signal. This makes it possible for a
person with hearing problems to know
when an email message has arrived or
a computing task is completed.

The World Wide Web Consortium
has also entered the picture. Its WAI-
AGE project is currently studying Web
accessibility barriers for older people.
“Ultimately,” Gregor says, “operating
a Web browser should be as straight-
forward as turning up the volume on
a radio.”

Others are exploring ways to make
input easier. IBM has developed key-
board software that monitors how a
person is typing. Based on accuracy,
speed, and other overall input patterns,
it can adjust settings in a computer’s
control panel. “If you are hitting keys
over and over again, it learns to filter
out the repeated keys for you,” Hanson
explains. In addition, R&D continues
on speech recognition, which could
solve many of the interface problems
plaguing the elderly. Saito at IBM is
taking the concept a step further by
studying speech symbolization, which
creates icons or representations that
serve as a bridge between human and
machine interaction.

Not surprisingly, mobile phone
manufacturers are also introducing
devices that offer bigger and more
prominent keys as well as larger text.
Some, like the Samsung Jitterbug,
also provides a simple “Yes” and

ence. “It provides a more comfortable
way for seniors to use the Internet,”
Saito explains.

EWB, which has captured several
industry awards, offers a number of
advantages. It is easy to install, requir-
ing the user to do nothing more than
click a link. It’s easy to use, reading text
aloud automatically when users point
the mouse to an area of the Web page
they want to read. It also presents con-
trols in a convenient and consistent
location on the screen for easy access,
and provides a full screen mode that
prevents the browsing screen from
becoming hidden. Finally, it offers a
high level of customization, includ-
ing text magnification and the ability
to read text aloud at different speeds
and volumes.

Meanwhile, both Microsoft and
Apple have built magnification tools,
text-to-speech conversion, alternative
keyboards, and specialized display
options into their operating systems.
Although these features are generally
intended for those with disabilities,
they’re also useful to many older indi-
viduals. In fact, for some, accessibility
is what makes computer use possible
in the first place. A study conducted
by Microsoft found that one in four
adults in the U.S. suffers from vision
difficulties, one in four faces challeng-
es with dexterity, and one in five has
hearing problems.

Overall, Microsoft has developed
more than 300 specialty assistive tech-
nology products for Windows comput-
ers. Not surprisingly, some of these
tools provide sophisticated function-
ality. For example, reading tools now
include software and hardware that,

“No” menu system that reduces the
complexity of the device—along with
the cognitive demands placed on an
older person. And a few organizations
have worked to make their Web sites
easier to navigate. For example, the
National Institutes for Health’s NIH
SeniorHealth site offers built-in tools
for adjusting text size and contrast. It
also provides a text-to-speech tool that
reads pages aloud.

Hanson says the widespread be-
lief that the problem will simply “go
away” as the current generation of
younger adults ages is entirely mis-
guided. “Today’s older adults were
proficient with the technology of their
generation,” she says. “Technology
is changing more rapidly now than it
has at any time in the past. There is no
reason to expect that future genera-
tions of older adults will be any better
equipped to deal with new technology
than today’s older adults are with to-
day’s new technology.”

One thing is certain: addressing
the needs and requirements of older
individuals is paramount as employ-
ers, retailers, government, and oth-
ers head online. Ultimately, it’s vital
to recognize that gray matters and
age counts. Concludes Czaja: “Older
adults must be connected to society
and we must ensure that they have
access to information and opportuni-
ties. Researchers, designers, and engi-
neers must find ways to make online
information and services available to
older adults.”	

Samuel Greengard is an author and freelance writer
based in West Linn, OR.

© 2009 ACM 0001-0782/09/0900 $10.00

The Computing Community
Consortium’s Network Science
and Engineering (NetSE) Council,
led by Ellen W. Zegura, chair of
computer science at Georgia
Institute of Technology, has
released Network Science and
Engineering (NetSE) Research
Agenda, a comprehensive
report about the development
of better networks, in particular
the Internet, with the goal of

increased security, accessibility,
predictability, and reliability.

“Literally hundreds of
researchers contributed to
the agenda by participating in
workshops, authoring sections,
and reviewing the overall
document,” Zegura said via email.
“While probably no one endorses
every word, this deep engagement
speaks to the entire research
community’s appreciation of

the importance of ratcheting up
networking research, and better
supporting experimental efforts,
long-term foundational efforts,
and interdisciplinary efforts.”

The 116-page report is a
living document, and the NetSE
Council welcomes feedback and
comments at http://www.cra.org/
ccc/netse.php.

Zegura sees two primary
research challenges. “First,

experimental research, and the
tools and facilities required for
that research, are not traditionally
very well supported in our field,”
Zegura said. “Second, in all
fields—and ours is no exception—
interdisciplinary research is
hard to carry out. There are
many areas of networking
where only an interdisciplinary
approach can make a significant
dent in the problem.”

Networking

CCC’s Research Agenda for a Better Internet

http://www.cra.org/ccc/netse.php
http://www.cra.org/ccc/netse.php

september 2009 | vol. 52 | no. 9 | communications of the acm 23

news

Conference | doi:10.1145/1562164.1562174	 Karen A. Frenkel

Computer Science Meets
Environmental Science
Scientists share knowledge and seek collaborators
at computational sustainability conference.

T
wo hun d red environmen-

ta l and computer scientists
convened for four days in
June for the First Interna-
tional Conference on Com-

putational Sustainability, held at Cor-
nell University. The conference’s goal
was to establish and develop a research
community around the field of compu-
tational sustainability, which aims to
develop computational and mathemat-
ical models and methods for the man-
agement of resources needed to solve
the problems confronting sustainability
in today’s rapidly developing world.

As some conservationists and envi-
ronmental scientists gave their presen-
tations, however, it became apparent
that their knowledge of the compu-
tational techniques applicable to the
problems they want to solve lags behind
the state of the art in computer science.
Likewise, some computer scientists and
mathematicians are unaware that eco-
logical problems often translate into
interesting decision optimization and
statistical learning problems involv-
ing combinatorial decisions, dynamic
modeling, and uncertainty, says Carla
Gomes, director of Cornell’s Institute
for Computational Sustainability. “We
must first find a common language,”
Gomes said. “This is new intellectual
territory with great potential, and with
unique societal benefits.”

Several computer scientists who
have created algorithms for environ-
mental applications presented at the
conference. Carlos Guestrin, a profes-
sor of computer science at Carnegie
Mellon University and his former grad-
uate student Andreas Krause (now an
assistant professor of computer science
at Caltech), for example, are optimizing
the placement of sensors to detect con-
tamination in drinking water distribu-
tion systems. They have also developed
an algorithm that enables lake-trolling,

sensor-equipped robots to detect algal
bloom and predict, even if no previous
data exists, where it will occur next.

Vipin Kumar, head of the computer
science and engineering department
at the University of Minnesota, spoke
about global scale patterns in bio-
sphere processes and their impact on
the global carbon cycle. He and col-
leagues at NASA are investigating the
use of data mining algorithms to de-
tect changes in the global land cover
using satellite data. Kumar’s team
developed a novel recursive merging
algorithm to identify changes in time
series data, which they applied to the
MODIS enhanced vegetation index for
California from 2001 to 2008 and pro-
duced detailed information on forest
fires, the conversion of farmland to
residential areas, and the conversion
of desert to farmland and other com-
mercial uses.

Throughout the conference, environ-
mental scientists encouraged computer
scientists to collaborate with them. Mi-
chael Runge, a research ecologist at the
U.S. Geological Survey’s Patuxent Wild-

life Research Center, said he and his col-
leagues had believed there were no solu-
tions to many of the complex ways they
wanted to formulate ecological decision
problems. “I’ve realized that we were
over-constraining how we were think-
ing about problems,” he said. “I’ve had
my eyes opened to the number of tools
available from the mathematics and
computational side. The question is:
How do we connect these amazing tools
and the huge demand for their applica-
tion to ecological problems?

“We need people to bridge com-
munication between all these fields,
people who can see that a disease dy-
namics or water supply contamination
problem looks a lot like a telecom-
munications network problem,” says
Runge. “We also need people to do
the ‘plug and chug’ applied work that
is not necessarily novel from the aca-
demic standpoint, but critical from the
applied standpoint.”	

Based in Manhattan, Karen A. Frenkel is a freelance
writer and editor specializing in science and technology.

© 2009 ACM 0001-0782/09/0900 $10.00

Carla Gomes, director of Cornell’s Institute for Computational Sustainability, with associate
director David Shmoys.

P
h

o
t

o
graph

 b
y

 L
i

n
d

s
a

y
 F

ra

n
ce

,

C
o

r
n

ell

 U

n
iver

s

it

y
 P

h
o

t
o

graph

y

24 communications of the acm | september 2009 | vol. 52 | no. 9

V
viewpoints

T
elecommunications surveil-

lance raises complex policy
and political issues. It is also
a matter of great concern for
the general public. Surpris-

ingly enough, however, the phenom-
enon of telecommunications surveil-
lance is poorly measured in the U.S.
at present. As a result, any attempt at
rational inquiry about telecommuni-
cations surveillance is hampered by
the haphazard and incomplete infor-
mation the U.S. government collects
about its own behavior and activities.

Neither the U.S. government nor
outside experts know basic facts
about the level of surveillance prac-
tices. As a consequence, U.S. citizens
have limited ability to decide if there
is too much or too little telecommu-
nications surveillance. It is also im-
possible to determine if telecommu-
nications surveillance is increasing
or decreasing, or if law enforcement
is using its surveillance capacities
most effectively.4

Ideally, it would be possible to
reach conclusions about these issues
by examining data about U.S. govern-

ment surveillance practices and their
results. As a general model, federal
and state crime statistics are publicly
available and criminologists pore over
these databases to spot trends and
determine police activities that are ef-
fective. No such database is available
about the full range of telecommuni-
cations surveillance.

The Telecommunications
Surveillance Index
Congress should create one annual
report card that measures and pub-
licizes government’s performance
of telecommunications surveillance.
This index will replace the bits and
pieces of scattered reports that dif-
ferent governmental entities some-
times release. Such an index will
allow year-by-year comparisons of
changes in the levels of government
telecommunications surveillance
and permit meaningful judgments
about the extent of privacy invasions
and the effectiveness of the activity.
In this column, I describe the gap
left by the reporting provisions in
current statutes, which create only
an incomplete and discontinuous
picture of the governmental activity.
The creation of an annual telecom-
munications surveillance index is an
urgent matter, and I will conclude by
discussing four issues related to this
necessary task.

To understand the shortcomings of
the statutes that permit U.S. telecom-
munications surveillance, one needs a

doi:10.1145/1562164.1562175	 Paul M. Schwartz

Law and Technology
Keeping Track of
Telecommunications Surveillance
The creation of a statistical index of U.S. telecommunications surveillance activities and their results
will benefit both civil liberties and law enforcement.

Congress should
create one annual
report card
that measures
and publicizes
government’s
performance of
telecommunications
surveillance.

V
viewpoints

september 2009 | vol. 52 | no. 9 | communications of the acm 25

sense of how they collect information
about government use. The critical
statutory regulations are the Wiretap
Act; the Pen Register Act; the Stored
Communications Act; the Foreign
Intelligence Surveillance Act (FISA);
and the different provisions for Na-
tional Security Letters. The first three
laws concern the use of surveillance
for domestic purposes—that is, in the
context of ordinary criminal investiga-
tions. The last two statutes regulate
the use of surveillance for foreign in-
telligence purposes, such as counter-
terrorism. And, in a nutshell, the most
public information is generated about
the U.S. government’s use of the Wire-
tap Act. Yet, this law in many ways has
become less important than other
telecommunications surveillance stat-
utes, and we know far less about the
use of these other statutes.

Telecommunications Surveillance
for Criminal Investigations
A review of the legal basis for telecom-
munications surveillance starts, logi-
cally, with the Wiretap Act, which is
the oldest of the modern statutory au-
thorities in this area. Enacted in 1968,
the Wiretap Act sets a high statutory
standard before the government can
“intercept” a “wire or oral communi-
cation.” It also requires the govern-
ment to publish relatively detailed
data sets about its use. The Wiretap
Act assigns the task of collecting this
information to the Administrative Of-
fice of the United States Courts, which
then publishes the statistics.1

What is the problem then? The dif-
ficulty is that the Wiretap Act regu-
lates only the capturing of the content
of messages contemporaneously with
their transmission. As an example of
its coverage, if law enforcement wish-
es to intercept a telephone call as it is
occurring, the Wiretap Act will apply.
Yet, technological changes have cre-
ated a variety of information that falls
outside the Wiretap Act, whether be-
cause it is “telecommunications attri-
butes” rather than content, or stored
on a server. Telecommunications at-
tributes are generally regulated by
the Pen Register Act, and information
stored on a server generally falls under
the Stored Communications Act. I will
consider each law in turn.

The Pen Register Act, as first en-

acted in 1986, regulated only access to
telephone numbers dialed from a spe-
cific phone, or received by it. Today,
the Pen Register Act, as amended by
the Patriot Act in 2001, more broadly
regulates access to “dialing, routing,
addressing, or signaling informa-
tion.” Examples of such information
are IP addresses and email address-
ing information.

Like the Wiretap Act, the Pen Reg-
ister Act requires collection of infor-
mation about its use. Yet, reports pur-
suant to it are far less detailed than
those under the Wiretap Act, and the
U.S. government does not make them
publicly available. And perhaps the
greatest surprise is that Congress has
shown scant interest in even ensur-
ing it actually receives the informa-
tion to which it is statutorily entitled
from the Department of Justice. Over-

all, the situation is reminiscent of the
anarchic administrative conditions
prior to the New Deal’s creation of
the Federal Register and other means
for the orderly publication of govern-
mental records.

As a further shortcoming, pen reg-
ister reports only list federal collection
of information pursuant to the law. If
use of the Pen Register Act follows the

pattern of the Wiretap Act, however,
states are now engaging in far greater
use of their authority than are federal
law enforcement authorities.

The third statutory authority for
telecommunications surveillance is
the Stored Communications Act. This
statute is particularly significant today
because so many kinds of telecommu-
nications occur in asynchronous fash-
ion. For example, sending an email
message may be the most prevalent I

llu

s

trati

o

n
 b

y
 s

tuart

 bradf

o
rd

26 communications of the acm | september 2009 | vol. 52 | no. 9

viewpoints

form of telecommunications in the
U.S. today. Yet, an email message is
in transmission, as the term is under-
stood under the Wiretap Act, for only a
short period. Transmission is the time
it takes from clicking on the “send”
command to the moment the mes-
sage arrives at the server of the recipi-
ent’s ISP. Rather than recourse to the
Wiretap Act, law enforcement typical-
ly seeks collection of email from ISPs
under the Stored Communications
Act, which contains requirements for
obtaining access to information that
are generally less rigorous than under
the Wiretap Act.

Despite the centrality of the Stored
Communications Act, there are almost
no official statistics collected about
law enforcement’s use of this statute.
This statute contains only a single re-
porting exception, which regards dis-
closure in an emergency. Information
about its use is given to House and
Senate committees, but is not made
publicly available at present. In this
regard, Switzerland offers a step in
the right direction: in that country,
the Federal Department of Justice and
the police publish annual information
about the number of orders for stored
information.2

Telecommunications Surveillance
for Foreign Intelligence Purposes
The three statutory authorities thus
far surveyed all regulate access to tele-
communications information for do-
mestic law enforcement purposes. On
the intelligence side, FISA provides the
chief statutory regulation for the gov-
ernment’s collection of information
about foreign intelligence within the
U.S. In addition to FISA, several stat-

utes permit the FBI to obtain personal
information from third parties through
National Security Letters (NSLs). A NSL
is a written directive from the FBI in
cases involving national security; it
does not require judicial review.

FISA requires the Department of
Justice to file annual reports with Con-
gress and the Administrative Office
of the Courts. These reports provide
merely skeletal information about
the use of FISA authorities. FISA also
requires the Attorney General to file
reports with the Senate and House
regarding all uses of pen register de-
vices, pursuant to this statute. This in-
formation is made publicly available.

As for the NSLs, in its reauthoriza-
tion of the Patriot Act in 2005, Con-
gress required two important kinds of
information to be collected about this
kind of information gathering. First,
it expanded an existing reporting re-
quirement that sent information to
Congress, and required annual pub-
lic data on the FBI’s request for NSLs.
Second, the law required the Depart-
ment of Justice to carry out audits of
the use of NSLs. The resulting audits
have already demonstrated substan-
tial underreporting of the actual num-
ber of NSLs and misuse of statutory
authorities.

Steps to Take
As I’ve described here, there is cur-
rently inadequate data about telecom-
munications surveillance in the U.S. I
conclude by discussing four themes
related to creation of a national tele-
communications surveillance index.
First, a central role should be given to
the Administrative Office of the U.S.
Courts, as under the Wiretap Act, in
collecting and publicizing telecom-
munications surveillance statistics.
Since 1968, the Administrative Office
has successfully carried out this role
pursuant to the Wiretap Act, and the
other applicable statutes should be
amended so that applicable informa-
tion goes to this entity.

Second, the annual index should
include information about all statu-
tory authorities, not just the Wiretap
Act. As noted earlier, this statute is
less important as a source of statutory
authorization for surveillance activity
than the Stored Communications Act
and other statutes.

Third, one of the most difficult tasks
in creating an annual report card will
be harmonizing the information col-
lected within a single index. The goal
is clear: to provide a picture of how
activities in different statutory areas
relate to each other. Nonetheless,
development of a workable yardstick
raises a series of complex issues be-
cause each statute sweeps in different
kinds of data and, sometimes subtly,
different kinds of surveillance.

Fourth, telecommunications sur-
veillance statutes should increase
independent audit functions. It is
essential to have an independent as-
sessment of the accuracy of the sup-
plied data and the completeness of
supplied reports. As part of this as-
sessment, the use of statistical sam-
pling of case files will be a useful
technique. The Inspector General of
the Department of Justice has already
taken this approach in assessing use
of NSLs pursuant to its audit author-
ity. In an international illustration of
this methodology, the Max Planck In-
stitute for Foreign and International
Criminal Law published an ambitious
statistical analysis of a sample of tele-
communications surveillance orders
issued in Germany.3

The twin goals of an annual tele-
communications surveillance index
should be to minimize the impact of
surveillance on civil liberties and to
maximize its effectiveness for law en-
forcement. There is a compelling need
at present for Congress to require sta-
tistical benchmarks to accompany all
the laws that authorize telecommuni-
cations surveillance. 	

References
1.	 Administrative Office of the United States Courts.

2007 Wiretap Report; http://www.uscourts.gov/
wiretap07/contents.html.

2.	 Eidgenössisches Justiz und Polizeidepartement,
Überwachung des Post und Fernmeldeverkehrs;
http://www.ejpd.admin.ch/ejpd/de/home/themen/
sicherheit/ueberwachung_des_post-/statistik.html.

3.	 Albrecht, H.J., Grafe, A., and Kilching, M. Max-Planck-
Institut fűr ausländisches und internationalises
Strafrecht, Rechtswirklichkeit der Auskunftserteilung
űber Telekommunikationsverbindungsdaten nach
§§ 100g, 100h StPO (March 2008), Deutscher
Bundestag, Drucksache 16/8434.

4.	S chwartz, P.M. Reviving Telecommunications
Surveillance Law. University of Chicago Law Review
287 (2008); http://www.paulschwartz.net/pdf/12%20
Schwartz%20Final%202.19.pdf.

Paul M. Schwartz is a professor of Law at the University
of California, Berkeley Law School, and a director at the
Berkeley Center for Law and Technology.

Copyright held by author.

The annual index
should include
information about
all statutory
authorities, not just
the Wiretap Act.

http://www.uscourts.gov/wiretap07/contents.html
http://www.ejpd.admin.ch/ejpd/de/home/themen/sicherheit/ueberwachung_des_post-/statistik.html
http://www.paulschwartz.net/pdf/12%20Schwartz%20Final%202.19.pdf
http://www.uscourts.gov/wiretap07/contents.html
http://www.ejpd.admin.ch/ejpd/de/home/themen/sicherheit/ueberwachung_des_post-/statistik.html
http://www.paulschwartz.net/pdf/12%20Schwartz%20Final%202.19.pdf

SePteMber 2009 | voL. 52 | No. 9 | commuNicaTioNS of The acm 27

V
viewpoints

?

?

T
HErE is MUCH discussion about
the generality and pervasive-
ness of computing. Is com-
puting really an inescapable
part of the world? What does

that imply about science? Engineering?
Education? How can we build new sto-
ries and education experiences that at-
tract new young people to the fi eld? Can
computing, like other sciences, advance
technology and applications through
strong scientifi c advances? Can com-
puter science rightfully claim a place at
the table of science? And so on.

Many people have been warming up
to the ideas that computing is science,

the profession of it
Computing: the Fourth
great domain of science
Computing is as fundamental as the physical, life, and social sciences.

DOI:10.1145/1562164.1562176 Peter J. Denning and Paul S. Rosenbloom

deserves a place at the table of science,
and is a rewarding profession. Yet a
question nags at the edge of perception.
Computers are admittedly everywhere.
Roads, electricity, radio, television, and
food are everywhere too, but they are not
science. They are infrastructure. Why is
computing any different?

We recently discovered a new answer
to this old question. We noticed that all
the acknowledged sciences are grouped
into three great domains: physical, life,
and social. We asked, what makes them
great domains of science? And we found
that computing meets all the same cri-
teria. In other words, computing is the

fourth great domain of science.
We will show you why we make this

claim. We hope that you will not only
want to discuss it, but that you will
warm up to it too.

Great Scientifi c Domains
Most of us understand science as the
quest to understand what is so about
the world. Through observation and
experimentation, scientists seek to dis-
cover recurrent phenomena. They for-
mulate models to capture recurrences
and enable predictions, and they seek
to validate or refute models through
experiments. Much of computing con-
forms to these ideals.7, 10

Science has a long-standing tradi-
tion of grouping fi elds into three cat-
egories: the physical, life, and social
sciences. The physical sciences focus
on physical phenomena, especially
materials, energy, electromagnetism,
gravity, motion, and quantum effects.
The life sciences focus on living things,
especially species, metabolism, repro-
duction, and evolution. The social sci-
ences focus on human behavior, mind,
economic, and social interactions.8

We use the term “great domains of sci-
ence” for these categories.9

These domains share three com-
mon features: their foci are distinctive
phenomena important in all sciences;
the fi elds of each category have rich
sets of structures and processes that
evolve together through constant inter-
action; and their infl uence is extensive,
touching all parts of life and providing
unique and useful perspectives.

28 communications of the acm | september 2009 | vol. 52 | no. 9

viewpoints

Computing does not seem to fit nice-
ly into any of the traditional domains.
Computation is realized in physical
media and is even part of some physi-
cal processes (for example, quantum
mechanical waves). More recently com-
putation has been found in living sys-
tems (for example, DNA transcription)
and social systems (for example, evolu-
tion of scale-free networks). Although
computational methods are used ex-
tensively in all the domains, none stud-
ies computation per se—computation
is not a physical effect, a living entity,
or a social entity.

What if computing is a separate do-
main? It satisfies the three criteria. It

has a distinctive focus—computation
and information processes. Its con-
stituent fields—computer science,
informatics, information technology,
computer engineering, software engi-
neering, and information systems—
and its structures and processes are in
constant interaction. Its influence is
pervasive, reaching deep into people’s
lives and work.

The core phenomena of the com-
puting sciences domain—computa-
tion, communication, coordination,
recollection, automation, evaluation,
and design2,6—apply universally,
whether in the artificial information
processes generated by computers or
in the natural information processes
found in the other domains. Thus,
information processes in quantum
physics, materials science, chemistry,
biology, genetics, business, organi-
zations, economics, psychology, and
mind are all subject to the same space
and time limitations predicted by
universal Turing machines. That fact
underpins many of the interactions
between computing and the other
fields and underlies the recent claim
that computing is a science of both
the natural and the artificial.3–5

It might be asked whether mathe-
matics is a great domain of science. Al-
though mathematics is clearly a great
domain, it has traditionally not been
considered a science.

The Nature of Interactions
Two out of the three criteria listed ear-
lier involve interactions, either among
structures and processes or among
domains. These interactions generate
the essential richness of science. They
also complicate how we observe and
understand science.

Hierarchical taxonomies are the
usual ways of observing a domain of
science. It is easy to craft a tree hier-
archy representing all the parent and
child relationships among fields in
the domain. For example, the physical
sciences are partitioned into chemis-
try, physics, astronomy, geology, etc.,
and each of those may be partitioned
further, for example, regular and or-
ganic chemistry. Each field has its
own “body of knowledge,” often rep-
resented with a taxonomy or a tree.
Computing is likewise divided into
constituent fields and subfields, each
with a body of knowledge.

Hierarchical structures are very
good for understanding static aspects
of a field, but not its dynamics. Within
a field, the interesting phenomena are
not simply the properties of “things”;
they are interactions among multiple
things. Chemistry is not simply chem-
icals; it is the reactions among ele-
ments. Mechanics is not simply gears
and levers; it is the forces among these
parts. Psychology is not simply emo-
tions, urges, and mental states; it is
transactions and relationships. Simi-
larly, computing is not just algorithms
and data structures; it is transforma-
tions of representations.

The interactions are the real action
of a field. Their complexities and uncer-
tainties demand constant experimen-
tation and validation in science and
engineering. They make things messy
and unpredictable. They are sources of
innovation.

Scientific phenomena can affect each
other in one of two ways: implementation
and interaction. A combination of exist-
ing things implements a phenomenon
by generating the intended behaviors
of the phenomenon. Digital hardware
physically implements computation.

Computing interacts
not only with people
and other living
systems, but with
the physical world.

Examples of computing interacting with other domains.8

Physical Social Life Computing

Implemented by mechanical,
optical, electronic,
quantum,
and chemical
computing

Wizard of Oz,
mechanical turks,
human cognition

genomic, neural,
immunological,
DNA transcription,
evolutionary
computing

compilers, OS,
emulation,
reflection,
abstractions,
procedures,
architectures,
languages

Implements modeling,
simulation,
databases, data
systems, digital
physics, quantum
cryptography

artificial
intelligence,
cognitive
modeling,
virtual humans,
autonomic
systems

artificial life,
biomimetics,
systems biology

Influenced by sensors,
scanners,
computer vision,
optical character
recognition,
localization

mouse, keyboard,
learning,
programming,
user modeling,
authorization,
speech
understanding

eye, gesture,
expression,
and movement
tracking,
biosensors

networking,
security, parallel
computing,
distributed
systems, grids

Influences locomotion,
fabrication,
manipulation,
open-loop control

screens, printers,
graphics, speech
generation,
network science,
cognitive
augmentation

bioeffectors,
haptics, sensory
immersion

Bidirectional
Influence

robots, closed-loop
control

human-computer
interaction, full
immersion, games

brain-computer
interfaces

viewpoints

september 2009 | vol. 52 | no. 9 | communications of the acm 29

Artificial intelligence implements as-
pects of human thought. A compiler
implements a high-level language with
machine code. In chemistry, hydrogen
and oxygen implement water. In mo-
lecular biology, complex combinations
of amino acids implement life.

Interaction occurs when two phe-
nomena influence each other. In phys-
ics, atoms arise from interactions
among the forces generated by protons,
neutrons, and electrons. In astronomy,
galaxies interact via gravitational waves.
In computing, humans interact with
computers.

Interactions exist not only within
domains but across domains. Comput-
ing is implemented not only by physi-
cal processes, but by life processes (for
example, DNA computing) and social
processes (for example, games that
produce outputs1). Likewise, comput-
ing can implement, or at least simulate,
structures and processes in these other
domains. Computing interacts not only
with people and other living systems,
but with the physical world (for example,
through sensor networks and robots).

The accompanying table illustrates
a wide range of implementation and
interaction relationships between
computing and the four domains (in-
cluding itself). An entry in the table
identifies a way that computing inter-
acts with a domain. For example, the
entry for “quantum computing” in the
“Physical” column and “implemented
by” row means that computation is
implemented by quantum processes
from the physical sciences domain.

The examples in the table are suffi-
cient to demonstrate the amazing ex-
tent of interactions between comput-
ing and the other domains. Computing
is much more than infrastructure; it is
an equal partner that strongly influenc-
es thought, practice, and approach.

There is still more to the story. Many
other interactions involve more than
two fields or domains. For example, the
emerging field of “network science” is
built on multi-way interactions among
the computing, physical, and social
sciences.

Down to the Basics
We’ve used the term “computation” as
if everyone agrees on its meaning. In
fact, this is not so. Typical definitions
include “activity of a computer,” “phe-

nomena surrounding computers,” and
“transformation of content.” None of
these captures all the notions of com-
puting we can see at work in the table.
For example, biologists believe DNA
encodes information about the living
body and that DNA transcription is
a natural information-transforming
process that creates the amino acids
that generate new life. They clearly do
not think of information as something
stored in a computer database or tran-
scription as an activity of a computer.

One way to define computing in a
sense broad enough to cover everything
in the table is to base it on the evolution
of representations.6 Except in artifi-
cial intelligence, representations are a
somewhat neglected aspect of comput-
ing. Computing scientists need to get
better answers to key questions. What
do we mean by a representation? What
does it mean to represent something in
a computationally amenable format?
Should representations be grounded in
the world, or projected from a mathe-
matical definition? What is not a repre-
sentation? In what way is computation
an evolution of representations?

In fact, representations are not the
only fundamental principle of comput-
ing in need of new answers. Many of the
oldest questions are being reopened.11
What is computation? What is informa-
tion? What is intelligence? How can we
build complex systems simply?

Conclusion
Computing is pervasive because it is a
fundamental way of approaching the
world that helps understand its own cru-

cial questions while also assisting other
domains advance their understandings
of the world. Understanding computing
as a great domain of science will help to
achieve better explanations of comput-
ing, increase the attraction of the field
to newcomers, and demonstrate parity
with other fields of science.

To say that computing is a domain
of science does not conflict with com-
puting’s status as a field of engineer-
ing or even mathematics. Computing
has large slices that qualify as science,
engineering, and mathematics. No
one of those slices tells the whole story
of the field.

The exercise of examining com-
puting as a domain of science reveals
that the extent of computing’s reach
and influence cannot be seen with-
out a map that explicitly displays the
modes of implementation and inter-
action. It also reveals that we need to
revisit deep questions in computing
because our standard answers, devel-
oped for computer scientists, do not
apply to other fields of science. Finally,
it confirms that computing principles
are distinct from the principles of the
other domains.	

References
1.	 von Ahn, L. Games with a purpose. IEEE Computer

Magazine (June 2006), 96–98.
2.	 Denning, P. Great principles of computing. Commun.

ACM 46, 11 (Nov. 2003), 15–20.
3.	 Denning, P. Is computer science science? Commun.

ACM 48, 4 (Apr. 2005), 27–31.
4.	 Denning, P. Computing is a natural science. Commun.

ACM 50, 7 (July 2007), 13–18.
5.	 Denning, P. Beyond computational thinking. Commun.

ACM 52, 6 (June 2009), 28–30.
6.	 Denning, P. and Martell, C. Great Principles of

Computing Project; http://cs.gmu.edu/cne/pjd/GP
7.	N ewell, A., Perlis, A.J., and Simon, H.A. “Computer

Science,” letter in Science 157, 3795 (Sept. 1967),
1373–1374.

8.	 Rosenbloom, P.S. A new framework for computer
science and engineering. IEEE Computer (Nov. 2004),
31–36.

9.	 Rosenbloom, P.S. Computing as a Great Scientific
Domain: A Multidisciplinary Perspective. To be
published (2009).

10.	S imon, H.A. Sciences of the Artificial, Third Edition.
MIT Press, Boston, MA, 1996.

11.	 Wing, J. Five deep questions in computing. Commun.
ACM 51, 1 (Jan. 2008), 58–60.

Peter J. Denning (pjd@nps.edu) is the director of
the Cebrowski Institute for Information Innovation
and Superiority at the Naval Postgraduate School in
Monterey, CA, and is a past president of ACM.

Paul S. Rosenbloom (rosenbloom@usc.edu) is a
professor of computer science in the Viterbi School of
Engineering at the University of Southern California,
a project leader at the USC institute for Creative
Technologies, and the former deputy director of the USC
Information Sciences Institute.

Copyright held by author.

To say that
computing is
a domain of science
does not conflict
with computing’s
status as a field
of engineering or
even mathematics.

http://cs.gmu.edu/cne/pjd/GP
mailto:pjd@nps.edu
mailto:rosenbloom@usc.edu

30 communications of the acm | september 2009 | vol. 52 | no. 9

V
viewpoints

P
e o p le m a ke p r e d i c t i o n s
in hope (and sometimes
despair) or in expectation.
These simple speculations
are about technology, about

how the art of the possible has a habit
of becoming the everyday, and about
how certain advances might help the
developing world. But they are toward
the hope end, rather than the expecta-
tion end, of that spectrum—because
technology alone is not enough. To
take optimum advantage of these and
other advances we need to think ho-
listically and must develop some new
business models. I encourage you to
think creatively about not just what
capabilities the information commu-
nication technologies (ICT) develop-
ments I discuss in this column might
enable but the new ways we might or-
ganize to deliver them.

Connection will become more perva-
sive. The world is connecting. Slowly,
in many places, but every day we un-
derstand better how to bring more
parts of the world into the connected
space. So look ahead and hope—per-
haps expect—that nations currently
underserved will be able to join the
networked world, across networks
that are fast, always on, and pervasive-
ly available through low-cost devices,
accessing systems that are more intel-
ligent, easier to use, with more natural
user interfaces.

We need this connecting more than
ever because we face difficult challeng-
es—differently felt in different nations

at different times, but nonetheless in-
timidating in their scope and impact.
Among them are six major forces pre-
senting governments of the world with
their toughest problems in the next
decade or so: accelerating globaliza-
tion, changing demographics, rising
environmental concerns, evolving so-
cietal relations and expectations, grow-
ing threats to social stability and order,
and the impact of new technology. And
now the world also faces economic

disruption in the form of broad and
deep recession that promises to shrink
global gross domestic product.

Cloud computing will help developing
nations “leapfrog” the developed world.
As connections become more avail-
able, cloud computing can become
an important platform through which
emerging nations can access modern
government capabilities and systems.
All governments need financial man-
agement and administration as well as

doi:10.1145/1562164.1562177	 Mark Cleverley

Emerging Markets
How ICT Advances Might
Help Developing Nations
Some predictions for technology developments,
deployments, and the associated societal implications.

I
llu

s
trati

o
n

 b
y

 Sim

o

n
 P

embert

o
n

V
viewpoints

september 2009 | vol. 52 | no. 9 | communications of the acm 31

But beyond that, the 3D Internet will
enable whole new kinds of interactive
education, remote medicine and citizen
access, transforming how people can in-
teract with our friends, family, doctors,
teachers, government, and more.

The initial hype has abated a little.
But it is still early, and there remains
much promise for the immersive, so-
cial attributes of these virtual worlds,
which, in a connected world, can reflect
real-life experiences and bring new lev-
els of education and training to remote
and underserved communities.

Technology will help to tackle envi-
ronmental and resource challenges. We
are learning how ICT can be applied
in new ways to diverse environmental
challenges. We know that the develop-
ing world, while not alone in this, is at
the forefront of tackling energy, envi-
ronment, and resource problems. So
what might be possible?

More effective water filtration is
emerging from nanotechnology re-
search. As we think more about water
management and conservation as an
information problem, using sensors
and actuators connected across net-
works to large-scale computing re-
sources, it changes our approaches to
managing quality and supply.

Intelligent transportation systems
are proving they can reduce conges-
tion and cut greenhouse gas emis-
sions. Intelligent grids make better
use of power, wasting less and allow-
ing easier access to alternative genera-
tion sources.

Silicon technology research is find-
ing new ways to build solar power tech-
nology. Have you ever considered how
much energy could be created by having
solar technology embedded in roads,
in the frames of buildings, in paint,
rooftops, and windows? Until now, the
materials and the process of producing
solar cells for solar energy conversion
have been too costly for widespread
adoption. But now this is changing with
the creation of “thin-film” solar cells, a
new type of cost-efficient solar cell that
can be 100 times thinner than silicon-
wafer cells and produced at a lower
cost. These new thin-film solar cells can
be “printed” and arranged on a flex-
ible backing, suitable for not only the
tops, but also the sides of buildings,
tinted windows, cellphones, notebook
computers, cars, and even clothing.

business and citizen services such as
permitting, licensing, benefits deter-
mination and distribution, and health
information. But those without them
might not need to acquire them the way
the developed world has—somewhat
haphazardly over the years, with large
capital and operational spending on
data centers and heavily customized
suites of application software, with
legacies that do not easily link.

Not today, and not quite tomorrow—
but when we have worked out the issues
around what software can really take ad-
vantage of the cloud model, and what
government concerns there are around
security, location of data, and so on—
will the cloud become a cost-effective
platform and a way to deliver signifi-
cant changes in governments’ capabili-
ties without huge cost? Tying a cloud
platform together with mobile devices
creates a versatile and cost-effective
platform for all kinds of services.

Perhaps cloud centers, regionally
placed, with public and private invest-
ment, could allow the developing world
to access the kinds of systems that help
developed nations’ governments—but
without the “legacy” and level of invest-
ment that it took. Perhaps they could
show international organizations some
ways to better leverage their invest-
ments. I hope such approaches could
be game-changing in how we help na-
tions improve transparency and ac-
countability, enhance citizen services,
and generate economic development.

Early examples are proliferating—
in Vietnam a government agency uses
a cloud approach to provide a collab-
orative infrastructure for innovation:
linking government, universities,
private-sector research, startups, and
other organizations. And a Chinese
city wanting to create a software in-
dustry for the region plans to support
several hundred thousand developers
across hundreds of companies—but it
won’t build a data center to do it. It will
provide a cloud-based development
environment that can scale as the vi-
sion grows.

“Mashing up” medical services, con-
sumer electronics, and connectivity will
allow broader and more cost-effective
access to health care. Telepresence is
already enabling remote consultations.
Over time, new, smaller, less-expensive
sensors will allow condition monitoring

of potentially millions of patients. We’ll
see new ways of navigating medical in-
formation drawn from multiple sourc-
es, and in particular radical new visual-
izations—think of a “Google Earth” for
the body. Already researchers have dem-
onstrated prototype visualization soft-
ware that allows doctors to interact with
medical data the same way they interact
with their patients: by looking at the hu-
man body—through a 3D avatar.

In another example, to overcome
the problems of deploying expensive
imaging equipment in many different
places, imaging and diagnosis will be
able to use relatively inexpensive and
accessible components, then use the
network to access high-performance
computing facilities to create key im-
ages and transmit them. Splitting in-
formation collection, processing, and
visualization will enable much wider
deployment into remote and less pros-
perous parts of the world.

The immersive Internet—becoming
a multidimensional place. Early virtual
worlds, including games, are precur-
sors to a “3D” Net, one that integrates
with the existing Web and allows for
new applications with enhanced im-
mediacy and interactivity. Such an
environment will encourage the for-
mation of in-world social groups—
collaborations, teams, guilds, clubs,
neighborhoods, and so forth. The
Internet will go even further toward
satisfying two key aspects of being
human: our innately social and visual
natures.

The developed nations are explor-
ing the retail possibilities of the 3D
Internet—an immersive world where
you’ll “walk” the aisles of supermar-
kets, bookstores, and other shops and
you’ll encounter experts you’d rarely
find in your local store.

We are learning how
ICT can be applied in
new ways to diverse
environmental
challenges.

32 communications of the acm | september 2009 | vol. 52 | no. 9

viewpoints

For the developing world—perhaps,
one day, a village school might “bid”
for cheaper electricity cycles—and
the solar cells of a neighboring village
might provide them.

People will talk to the Web…and it
will talk back. People will be able to
use the Internet through natural voice
interaction—eliminating the need
for visuals or keypads. New technol-
ogy will change how people create,
build, and interact with information
and e-commerce Web sites—using
speech instead of text. We know this
can happen because the technology
is available, but we also know it can
happen because it must. In places like
India, where the spoken word is more
prominent than the written word in
education, government, and culture,
“talking” to the Web is leapfrogging all
other interfaces, and the mobile phone
is outpacing the PC.

Researchers creating the “spoken
Web” will enable people without tradi-
tional access to the Internet, but with
access to a mobile or landline phone,
to gain access to a worldwide collection
of “voice sites”: Web sites accessible by
voice commands over a telephone net-
work. It particularly helps people who
are not able to read or write, the elderly,
and the economically disadvantaged. It
has enormous potential, for example,
for providing ways that village commu-
nities can offer their products and ser-
vices worldwide using a voice-enabled
Web portal.

Imagine adding to the spoken Web
advances in language translation,
speech recognition, and speech syn-
thesis. During the Beijing Olympics,
visitors could use a modified mobile

device in a novel way: they could speak
their destination and the machine
would recognize, translate, and synthe-
size the Mandarin equivalent for their
taxi driver. U.S. soldiers in Iraq have pi-
lot-tested handheld translators to take
spoken English and produce spoken
Arabic, or vice versa.

And once the Web is more acces-
sible by using voice, it will become
easier to use for everyone. Imagine be-
ing within a phone call’s reach from
the ability to post, scan, and respond to
email and instant messages—without
typing. Think of being able to search
the Web verbally and have the infor-
mation read back to you, just as if it
were an actual conversation.

Conclusion
These are speculations, not guaran-
tees. And they are selections, taken
from the broad universe of technology
advances. But they might illuminate
two important things I hope we can
achieve. Of one I am pretty sure—the
world will continue to become more
interconnected, instrumented, and
intelligent. Of the other: well, who
needs to benefit the most from those
attributes? If we have learned anything
from recent trials, it is that the big
problems of the world are intimately
intertwined. Climate change knows no
borders; shifting demographics affect
us all, one way or another; and we all
suffer when the poorest suffer. So my
conjecture is that these elements of
the increasingly connected world will
enable those in the poorest nations to
participate in ways they have not expe-
rienced before.

But to use those capabilities re-
sponsibly and effectively, we will need
creativity—to conceive of the new solu-
tions we can build for the developing
world as much as for the developed;
collaboration—to break down the
boundaries that inhibit change, and
to leverage the minds and skills of the
many; and courage—to move beyond
current business models to drive desir-
able change.	

Mark Cleverley (mark.cleverley@us.ibm.com) is a
solutions executive with IBM Global Government
Industry.

The writer’s views are his own—though not exclusively—
and do not necessarily represent the views of IBM
Corporation.

Copyright held by author.

Imagine being within
a phone call’s reach
from the ability
to post, scan, and
respond to email and
instant messages
—without typing.

ACM
Journal on

Computing and
Cultural
Heritage

◆ ◆ ◆ ◆ ◆

JOCCH publishes papers of
significant and lasting value in
all areas relating to the use of ICT
in support of Cultural Heritage,
seeking to combine the best of
computing science with real
attention to any aspect of the
cultural heritage sector.

◆ ◆ ◆ ◆ ◆

www.acm.org/jocch
www.acm.org/subscribe

CACM_JOCCH_one-third_page_vertical:Layout 1 7/30/09 5:50 PM Page 1

http://www.acm.org/jocch
http://www.acm.org/subscribe
mailto:mark.cleverley@us.ibm.com

september 2009 | vol. 52 | no. 9 | communications of the acm 33

V
viewpoints

W
henever computer sci-

entists discuss the hu-
man capital issues that
plague the computing
fields—the significant

lack of diversity among computer sci-
ence graduates (especially at the mas-
ter’s and Ph.D. levels),a the underrep-
resentation of women in computing,
and the general decline in interest
among U.S. students in the science
and engineering fields—inevitably, the
lamentable state of computer science
education in the U.S.’s primary and
secondary schools figures prominently.

While there are significant issues
within higher education, there is a
growing realization that we must ad-
dress challenges at the beginning of
the education pipeline. Excellent com-
puter science classes are being taught
in U.S. schools today, but looking
across the country they are the excep-
tion to the rule. In general, we find too
few students have the opportunity to
take engaging and rigorous computer
science courses in high school; there is
little diversity among those that do. Too
few opportunities exist for professional
development for teachers. Too little in-
novation has happened in creating an
engaging and rigorous curriculum for

a	 Traditionally underrepresented minorities
(Black or African-American, Hispanic, Ameri-
can Indian or Alaska Native) are even more un-
derrepresented at the master’s and Ph.D. lev-
els, according to the 2007–2008 CRA Taulbee
Survey; see http://www.cra.org/taulbee/CRA-
TaulbeeReport-StudentEnrollment-07-08.pdf

students. There is general agreement
that this is a national failing—and one
that we can ill afford—as computing is
a central part of society, and key enabler
of innovation and economic growth.

If “fixing” computer science educa-
tion in kindergarten through grade 12
(K–12) is so clearly necessary, why has
there not been more progress in the
U.S.? In an age when the ability to think
computationally already is, or certainly
will be, a prerequisite for success in so
many endeavors, why do we still strug-

gle to reform K–12 computer science
and make it more relevant?

In large part, it is because reform of
the K–12 education system at any level
or in any subject is notoriously diffi-
cult. Control over education is decen-
tralized. States and school districts
play varying leadership roles in de-
termining what students must learn.
Federal policy and bureaucracy, driv-
en largely through strings attached
to federal funds, layer on top of state
and local responsibilities. Add to this

IT Policy
The Long Road to Computer
Science Education Reform
Viewing the factors impeding improvements to CS education
from kindergarten through grade 12 from a policy perspective.

doi:10.1145/1562164.1562178	 Cameron Wilson and Peter Harsha

Approximately 200 7th–10th grade students from around the U.S. attended the 2009 Summer
Science, Technology, Engineering and Math (STEM) Program at the U.S. Naval Academy
in Annapolis, MD. The five-day program offered real-life applications in subjects including
forensics, mechanics, robotics, biometrics, and computer stimulation and encourages
students to pursue engineering and technology studies in high school and college.

P
h

o
t

o
graph

 c
o

urte

s
y

 o
f

 the

 U

n
ited

 State

s
 Naval

 A
cadem

y

http://www.cra.org/taulbee/CRATaulbeeReport-StudentEnrollment-07-08.pdf
http://www.cra.org/taulbee/CRATaulbeeReport-StudentEnrollment-07-08.pdf

34 communications of the acm | september 2009 | vol. 52 | no. 9

viewpoints

law is the controversial No Child Left
Behind Act. Its accountability provi-
sions require that states test in read-
ing, mathematics, and science at cer-
tain grade levels. If individual schools
do not meet state-based benchmarks
for student achievement in reading or
mathematics then those schools can
face federal sanctions.

Because standards, assessments,
curriculum, and graduation require-
ments are state and/or local decisions,
advocates for national STEM reform
face a difficult challenge of making
their case to policymakers in each
state, or even to the 14,000 school
boards across the nation. Local gover-
nance of education has rendered any
discussions of “national standards”
political nonstarters. However, as
President Obama’s speech signified,
the political landscape for reform
has begun to change. Two years ago,
the National Science Board identified
the crises in STEM educatione stating
that the system was failing America’s
youth and curriculum needed reform
and coordination both within and
among the states. Soon after the presi-
dent’s speech, powerful state educa-
tion groups announced that 46 states
would work toward harmonizing (not
nationalizing) some standards.f The
administration is also putting money
on the line with $5 billion targeted
for overall education reform efforts,
some of which will likely go to STEM
education. All of this points to a solu-
tion that is driven from the bottom,
but with top-down pressure and in-
centives being applied.

However, there are some important
caveats to this progress—particularly
for computer science education. First,
harmonizing standards between states
is politically difficult because standards
affect what is assessed and therefore
tested. Scores on those tests can affect
federal funding and parents’ percep-
tions of schools. Second, of the $5 bil-
lion in new federal education funding,
it is not clear how much of it will go to
STEM education reform. Third, it ap-
pears that states will focus initially on
harmonizing math and reading stan-
dards, then turn to reviewing science

e	 http://www.nsf.gov/nsb/stem/
f	 http://www.washingtonpost.com/wp-dyn/con-

tent/article/2009/05/31/AR2009053102339.html

mix numerous outside organizations
from teachers’ advocates to parent
groups demanding a range of reforms
and the result is an immensely com-
plex web of policies, institutions, and
players shaping the U.S. education
system. From the outside looking in,
any large-scale reform effort seems
doomed for marginalization within
this behemoth.

To further complicate the calculus,
pressure is increasing, both nation-
ally and internationally, for countries
to take immediate steps to strengthen
science and mathematics education to
foster future innovation in high-tech-
nology fields.b President Barack Obama
made this national push plain in a
major speech to the May 2009 annual
meeting of the prestigious National
Academies in Washington D.C. stating,
“since we know that the progress and
prosperity of future generations will de-
pend on what we do now to educate the
next generation, today I’m announcing
a renewed commitment to education in
mathematics and science.”c This state-
ment moved discussions of improving
science, technology, engineering and
mathematics education (also known as
STEM) to the forefront of national de-
bates about education reform.

With the stage thus set for STEM
education reform, two important ques-
tions come to mind: First, is this going
to be the classic case of the irresistible

b	 This was one of the key conclusions of ACM’s
Globalization and Offshoring report: http://
www.acm.org/globalizationreport/

c	 April 27, 2009, remarks by President Obama,
http://www.whitehouse.gov/the_press_office/
Remarks-by-the-President-at-the-National-
Academy-of-Sciences-Annual-Meeting/

force (the need for coordinated STEM
reform) meeting the immovable object
(state and local control of education)?
Second, and most relevant to the com-
puting community, how does comput-
ing fit into overall K–12 STEM educa-
tion reform? Before we can begin to
answer these questions it is useful to
understand the basic workings of the
education system in the U.S.

Any reform discussion starts with
two important state-based concepts:
standards and assessments. These are
the backbone of the education land-
scape. Each state sets learning stan-
dards for students in the state’s K–12
school system. For example, one part
of the state of Virginia’s sixth-grade
mathematics standard is that students
should be able to “…identify, represent,
order, and compare integers.”d Then,
in most states, it is up to the school
districts to establish curriculum imple-
menting these standards. State and
school districts assess whether the con-
cepts are learned through testing. And
yes, just because something is in the
standards does not mean students will
be exposed to it, and just because they
are tested does not mean they know it.
The point is to understand the educa-
tion policy framework because it looms
large in efforts to reform education.

Graduation requirements are equal-
ly important. Most states set or pro-
vide guidance on the credits students
must accumulate to graduate from
high school (also known as secondary
school). These requirements fall into
two general categories: a set of “core”
courses that students must take to
graduate; and electives that consti-
tute everything not in the core. For ex-
ample, the state of Texas requires that
students have four years of high school
mathematics credits in order to gradu-
ate. California aligns its graduation re-
quirements with the higher education
system by mandating a set of courses
that are the minimum admission re-
quirements to state-funded schools.

While states and/or local govern-
ments generally make graduation and
curriculum decisions, these decisions
are influenced by national goals and
accountability requirements of certain
federal laws. The most notable federal

d	 http://www.doe.virginia.gov/VDOE/Superin-
tendent/Sols/math6.pdf

Any reform
discussion starts
with two important
state-based
concepts: standards
and assessments.

http://www.acm.org/globalizationreport/
http://www.whitehouse.gov/the_press_office/Remarks-by-the-President-at-the-National-Academy-of-Sciences-Annual-Meeting/
http://www.doe.virginia.gov/VDOE/Superintendent/Sols/math6.pdf
http://www.nsf.gov/nsb/stem/
http://www.washingtonpost.com/wp-dyn/content/article/2009/05/31/AR2009053102339.html
http://www.acm.org/globalizationreport/
http://www.whitehouse.gov/the_press_office/Remarks-by-the-President-at-the-National-Academy-of-Sciences-Annual-Meeting/
http://www.whitehouse.gov/the_press_office/Remarks-by-the-President-at-the-National-Academy-of-Sciences-Annual-Meeting/
http://www.doe.virginia.gov/VDOE/Superintendent/Sols/math6.pdf
http://www.washingtonpost.com/wp-dyn/content/article/2009/05/31/AR2009053102339.html

viewpoints

september 2009 | vol. 52 | no. 9 | communications of the acm 35

standards. Most states do not have a
specific set of computer science stan-
dards, but even if they exist, the state’s
focus on the “common core” likely will
not include existing computer science
standards. We need to delve even deep-
er into the education system to under-
stand this.

Standards, graduation credits, and
No Child Left Behind drive students
and administrators toward emphasiz-
ing—both in terms of what students
take and resources dedicated to devel-
oping them—the “core” courses of the
curriculum. It is a gross oversimplifica-
tion of an incredibly complex system
to say that students across the nation
are taking a similar set of core courses.
The key issue for computer science
education is, as a general rule, comput-
ing is absent from the “core.” Much of
what is called computing education
by states at the K–12 level, particularly
high school, is placed within the tech-
nology curriculum both in the states
standards and the schools. However,
the curriculum of so-called comput-
ing classes within this category largely
focuses on the use of technology (key-
boarding, or learning word processing/
spreadsheets) instead of core comput-
ing concepts. Further, technology class-
es are generally elective credits for stu-
dents on par with health or shop class.

This categorization puts efforts
to get rigorous computing courses
into the college-bound academic cur-
riculum at a significant disadvan-
tage. What is considered technology
in school is typically not an academic
subject area for the college-bound stu-
dent; rather classes to help bolster vo-
cational education for those about to
enter the work force. Students pursing
college often do not have the time for
elective credits, particularly those fo-
cused on a vocation.

Despite these daunting obstacles,
there are exciting efforts already under
way led by different parts of the com-
munity to address this national failing:

Two years ago, ACM created an ˲˲

Education Policy Committeeg to focus
on public policy issues in science and
math education relevant to comput-
ing and computer science. Since its
inception, the committee has identi-

g	 http://www.acm.org/public-policy/education-
policy-committee

fied many of the issues outlined in this
column. Two key parts of its agenda
are: First, educate policymakers and
national groups on the importance
of the field of computing, the value of
teaching computer science, and that
computer science curricula focus is
on conceptual knowledge. Second, en-
sure that rigorous computer science
classes count toward a student’s core
graduation requirements in math or
science areas.

Realizing that reform begins ˲˲

with the states, the Computer Sci-
ence Teachers Association (CSTA) has
formed a cohort of master teachers in
many states to serve as a network for
sharing information and communi-
cating issues to state and local educa-
tion leaders.

The single point of national lever-˲˲

age for computer science reform is the
current Advanced Placement (AP) com-
puter science course. The AP system
is run by the College Board, which is a
national non-profit organization that
helps set the curriculum and writes and
administers the tests. Every student
taking an AP course is, or should be,
exposed to the same curriculum, and
every student takes the same test to as-
sess the knowledge. The National Sci-
ence Foundation is currently funding a
project to create a new rigorous and en-
gaging Advanced Placement Computer
Science (AP CS) course that will attract
more college-bound students.

Some states are moving toward ˲˲

allowing the AP CS course to count to-
ward a credit in students’ core courses
requirements. Texas now allows AP CS
to count as a mathematics credit as part
of the student’s four-year mathematics
requirement. North Carolina and Ohio
also are moving toward allowing AP CS
to count as a mathematics credit.

Georgia has launched its Georgia ˲˲

Computes! program. As part of this ef-
fort Georgia overhauled its state stan-
dards for computing and now counts
AP CS as a science credit.

The National Center for Women ˲˲

and Information Technology (NCWIT)
has formed the K–12 alliance, bringing
together leaders from more than 20
organizations with a potential reach
of approximately half the girls in the
U.S. to provide resources and advocate
for reform.

As noted in a previous issue of ˲˲

Communications,h recognizing the need
for a rigorous and engaging computing
course taken before AP, Joanna Goode
and Jane Margolis are working with a
team to create an exciting new curricu-
lum based on the ACM and CSTA mod-
el curriculum for K–12 education.i This
course is being scaled up in the Los An-
geles school district, and they are work-
ing with the state to build it into their
higher-education requirements.

These are all promising signs, but
any education reform, whether it is
STEM broadly or computing specifi-
cally, will have to be measured over
years, if not decades. Progress can be
made, but the states will have to lead,
with federal policymakers offering
support with resources and a height-
ened sense of national urgency. There
is a significant risk that computing
will be left on the outside looking in.
The community needs to come to-
gether and use the existing efforts
mentioned in this column as a start-
ing point for reform. We need to work
together to prove why rigorous and en-
gaging computing education should
be included in the K–12 landscape.
In short, we need to ensure computer
science education is part of the na-
tional dialogue of what students need
to learn in the high-technology and
highly competitive global economy.	

h	 Reprogramming college preparatory comput-
er science. Commun. ACM 51, 11 (Nov. 2008),
31–33.

i	 The model curriculum can be found here:
http://www.csta.acm.org/Curriculum/sub/AC-
MK12CSModel.html

Cameron Wilson (wilson_c@hq.acm.org) is the director of
the ACM U.S. Public Policy Office in Washington, D.C.

Peter Harsha (harsha@cra.org) is the director of
government affairs at the Computing Research
Association (CRA) in Washington, D.C.

Copyright held by author.

Reform of the K–12
education system at
any level or subject is
notoriously difficult.

http://www.acm.org/public-policy/educationpolicy-committee
http://www.csta.acm.org/Curriculum/sub/ACMK12CSModel.html
http://www.csta.acm.org/Curriculum/sub/ACMK12CSModel.html
mailto:wilson_c@hq.acm.org
mailto:harsha@cra.org
http://www.acm.org/public-policy/educationpolicy-committee

36 communications of the acm | september 2009 | vol. 52 | no. 9

V
viewpoints

I
took my first parallel program-
ming class in graduate school,
approximately 20 years ago.
Having attended a fairly well-
funded and well-equipped grad-

uate program, my fellow students and
I had at our disposal a shared-memory
multiprocessor system we could use for
experiments. Moreover, we had access
to a Cray supercomputer at a nearby su-

percomputing center. The tools avail-
able at the time for parallel program-
ming amounted to auto-vectorizing
compilers, some vendor-specific per-
formance libraries, and non-standard
threading application programming in-
terfaces. Much of the hardware we used
was relatively unstable and the tools
buggy. It was a daunting task, though
we were merely asked to develop paral-

lel versions of simple algorithms, like
sorts. The zeitgeist was one of experi-
mentation with immature program-
ming models on cold-war-fueled super-
computer innovation.

How things have changed. While
some of the functional components
we experimented with were quite large,
they really did not approach the vast
complexities faced by today’s develop-
ers. With the exception of the rarified
air of research labs (academic or oth-
erwise), sequential microprocessors
comprised the vast majority of com-
puters that were used. However, in the
two decades since, mainstream micro-
processors have abruptly evolved to
become increasingly (overtly) parallel
devices.

How Software Has Changed
Calling modern applications complex
does not quite do justice to the state of
affairs. It may surprise some readers to
learn that hardware vendors often have
insight into the architectures of a broad
range of applications. For Intel, this
spans a fairly large variety of market
segments. The reason, of course, is that
hardware platform companies have a
vested interest in ensuring software
runs well (running best is the goal) on
their products.

Applications that span hundreds of
thousands or millions of lines of code
are the norm. The use of externally
sourced libraries is fairly common-
place. Many application frameworks are
implemented at such a level of abstrac-

Viewpoint
Face the Inevitable,
Embrace Parallelism
Hardware, software, and applications must all evolve
in anticipation of the proliferation of parallelism.

doi:10.1145/1562164.1562179	 Anwar Ghuloum

I
llu

s
trati

o
n

 b
y

 A
n

drea

s
 W

etterberg

V
viewpoints

september 2009 | vol. 52 | no. 9 | communications of the acm 37

tion that the effective control paths and
data dependencies are, for all intents
and purposes, opaque to compilers
used to build the applications (an inter-
esting analysis is presented in Mitchell
et al.3). Applications often simultane-
ously deploy what is viewed as distinct
functional idioms in application de-
velopment. Manipulation of dynamic
and persistent databases, functional-
ity implemented via remote servers
or peers, event-based programming,
graphical processing, other compute-
intensive processing (of many flavors),
and more occur in many modern client
applications (that is, applications you
might be running on your laptop).

Moreover, multi-language devel-
opment has become far less surpris-
ing for the past two decades. Driven
recently by Web-based application
development (and most likely to be
continued by parallel software devel-
opment), the last 15 years or so have
seen new programming languages
successfully adopted commercially
at a rate of approximately one ev-
ery 18 months. Consider Java, C#,
JavaScript, PHP, Perl, Python, Ruby,
Erlang, OCaml, and Haskell, to name
a few. Call it a Moore’s Law analogy
for programming tools (driven this
time by the economics of software de-
velopment rather than silicon manu-
facturing). This may also surprise
many, especially C or C++ developers.

Productivity is one of the primary
drivers of software development tech-
nology, usually even more of a factor
than performance. For many market
segments, time to market or deploy-
ment is the biggest influencer of tool
use. Productivity is also another way to
quantify development costs. It is be-

The trend toward
increasing software
abstraction and
heterogeneity to
manage complexity
is accelerating.

cause of this emphasis on productivity
that we are not at a plateau; instead,
the trend toward increasing software
abstraction and heterogeneity to man-
age complexity is accelerating.

And that is the challenge that hard-
ware and software developers face in
the age of mainstream highly paral-
lel processing. Before diving into that,
I will take a diversion into the trends
driving increasing (software-exposed)
parallelism in hardware.

How Hardware Is Changing
The oft-cited Moore’s Law has been
remarkably accurate at predicting the
macro trends in transistor scaling on
silicon manufacturing processes for
the past four decades. In a nutshell,
transistor densities double every two
years, indirectly to a doubling of per-
formance for the same power budget.
For the most part, this performance
improvement was manifested for sin-
gle-threaded applications running on
microprocessors. In this era, new fea-
tures in microprocessors were evalu-
ated by how effectively they used area
in return for performance.

However, in the last five years or so,
semiconductor manufacturers ran into
a power wall, which was essentially a
slowing of the power-scaling trend. In
another nutshell, whereas power den-
sity per area of silicon was roughly flat
from generation to generation, power
was increasing somewhat. There are
several physical reasons for this (some
discussed in Borkar1), but one mani-
festation was a slowing of voltage scal-
ing trends (factoring in frequency,
power is effectively cubic in voltage).
So, in this era, new performance-ori-
ented features in microprocessors are
largely evaluated by how they use the
power budget for performance.

Examples of power-efficient perfor-
mance features are simpler cores that
increase IPC (instructions per cycle),
utilize less power-intensive techniques
for latency hiding like simultaneous
multithreading (rather than deeper,
more speculative execution), wider ex-
ecution payload per instruction (as in
vector instructions, like Intel’s Stream-
ing SIMD Extensions or SSE), and more
cores per die. (To be sure, microproces-
sor vendors are adding features that
enable many other important features,
like improved manageability, virtual-

Calendar
of Events
September 15–18
MobileHCI ’09: 11th
International Conference on
Human Computer Interaction
with Mobile Devices
and Services,
Bonn, Germany,
Contact: Reinhard Oppermann,
Email: reinhard.oppermann@
fit.fraunhofer.de

September 16–18
ACM Symposium on Document
Engineering,
Munich, Germany,
Contact: Uwe M. Borghoff,
Email: uwe.borghoff@unibw.de

September 21–22
International Conference on
Automotive User Interfaces
and Interactive Vehicular
Applications,
Essen, Germany,
Contact: Albrecht Schmidt,
Email: albrecht.schmidt.2006@
gmail.com

September 21–23
Performance Metrics for
Intelligent Systems,
Gaithersburg, MD,
Contact: Elena R Messina,
Email: Elena.messina@nist.gov

September 25–26
2009 Information Security
Curriculum Development
Conference,
Kennesaw, GA,
Contact: Michael Whitman,
Email: mwhitman@kennesaw.
edu

September 30–October 2
ACM Symposium on Applied
Perception in Graphics and
Visualization,
Chania, Crete,
Contact: Katerina Mania,
Email: k.mania@ced.tuc.gr

September 30–October 2
MindTrek 2009,
Tampere Finland,
Contact: Artur R. Lugmayr,
Email: artur.lugmayr@tut.fi

September 30–October 2
European Conference on
Cognitive Ergonomics,
Helsinki, Finland,
Contact: Leena Norros,
Email: leena.norros@vtt.fi

mailto:reinhard.oppermann@fit.fraunhofer.de
mailto:uwe.borghoff@unibw.de
mailto:albrecht.schmidt.2006@gmail.com
mailto:albrecht.schmidt.2006@gmail.com
mailto:Elena.messina@nist.gov
mailto:k.mania@ced.tuc.gr
mailto:artur.lugmayr@tut.fi
mailto:leena.norros@vtt.fi
mailto:mwhitman@kennesaw.edu
mailto:mwhitman@kennesaw.edu
mailto:reinhard.oppermann@fit.fraunhofer.de

38 communications of the acm | september 2009 | vol. 52 | no. 9

viewpoints

ization, and so on.) The basic impact
of these performance features is to use
software-exposed parallelism to drive
much of the performance improve-
ment. For example, not utilizing SSE
instruction and multiple cores in a
quad-core microprocessor leaves over
90% of the peak floating point perfor-
mance on the floor. Simply stated: the
trend to software-exposed parallelism is
also accelerating (at the exponential pace
of Moore’s Law).

Facing Parallelism
For the last three decades, software
development has largely evolved to
improve productivity while hardware
development has largely evolved to
transparently deliver sustained perfor-
mance improvements to this software.
This has resulted in a divergence that
must be reconciled. Many of the pro-
ductivity-driven software development
trends are either at odds with hardware
performance trends or are outpacing
the abilities of tools and various frame-
works to adapt. If this seems like a very
hardware-centric way to look at things,
I will restate this from a software de-
veloper’s perspective: microprocessor
architecture is evolving in a direction
that existing software components will
be hard-pressed to leverage.

This may seem like an overly bleak
outlook; it is intended to be a reality
check. It is almost certain that software
developers will adapt to parallelism in-
crementally. It is also a certainty that
the physics of semiconductor manufac-
turing is unlikely to change in the com-
ing years.

I have been on both sides of the
discussion between software and
hardware vendors. Software vendors
demand improved performance for
their applications through hardware
and tool enhancements (aka “the free
lunch”). Hardware vendors ask soft-
ware vendors to make somewhat risky
(from a productivity and adoption point
of view) efforts to tap new performance
opportunities.

Most of the time, a middle path
between these perspectives is taken
wherein software vendors incremen-
tally adopt performance features while
hardware vendors enhance tools and
provide consultative engineering sup-
port to ensure this happens. The end
result is/will be that the path to a com-

plete refactoring of their applications
will take a longer, more gradual road.
This middle road may be all you can
hope for applications that do not evolve
significantly in terms of either usage
modes and data intensiveness.

However, for many applications
there should be a long list of features
that are enabled or enhanced by the
parallelism in hardware. For those de-
velopers, there is a better, though still
risky, option: Embrace parallelism now
and architect your software (and the com-
ponents used therein) to anticipate very
high degrees of parallelism.

Embracing Parallelism Is Important
to Software Developers
The software architect and engineering
manager need only look at published
hardware roadmaps and extrapolate
forward a few years to justify this. Ex-
amining Intel’s public roadmap alone,
we get a sense of what is happening very
concretely. The width of vector instruc-
tions is going from 128 bits (SSE), to
256 bits (AVX2), to 512 bits (Larrabee4)
within a two-year period. The richness
of the vector instructions is increasing
significantly, as well. The core counts
have gone from one to two to four to six
within a couple of years. And, two- and
four-way simultaneous multithreading
is back. Considering a quad-core pro-
cessor that has been shipping for over
a year, the combined software-exposed
parallelism (in the form of multiple
cores and SSE instructions) is 16-way
(in terms of single-precision floating-
point operations) in a single-socket
system (for example, desktop personal
computers). Leaving this performance

“on the floor” diminishes a key ingre-
dient in the cycle of hardware and soft-
ware improvements and upgrades that
has so greatly benefitted the computing
ecosystem.

There is another rationalization I
have observed in certain market seg-
ments. In some application spaces,
performance translates more directly
to perceived end-user experience to-
day. Gaming is a good example of this.
Increasing model complexity, graph-
ics resolution, better game-play (in-
fluenced by game AI), and improved
physical simulation are often enabled
directly by increasing performance
headroom in the platform. In applica-
tion domains like this, the first-mov-
ers often enjoy a significant advantage
over their competitors (thus rational-
izing the risk).

I do not mean to absolve hardware
and tool vendors from responsibil-
ity. But, as I previously mentioned,
hardware vendors tend to understand
the requirements from the examples
that software developers provide.
Tool vendors are actively working to
provide parallel programming tools.
However, this work is somewhat ham-
pered by history. Parallel program-
ming in the mainstream is relatively
new, while many of the tools and ac-
cumulated knowledge were informed
by niche uses. In fact, the usage mod-
els (for example, scientific computing)
that drive parallel computing are not
all that different from the programs I
was looking at 20 years ago in that par-
allel programming class. Re-architect-
ing software now for scalability onto
(what appears to be) a highly parallel
processor roadmap for the foresee-
able future will accelerate the assis-
tance that hardware and tool vendors
can provide. 	

References
1.	 Borkar, S. Design challenges of technology scaling.

IEEE Micro (Mar.–Apr. 2006), 58–66.
2.	 Intel. Intel AVX (April 2, 2008); http://

softwareprojects.intel.com/avx/.
3.	 Mitchell, N., Sevitsky, G., and Srinivasan, H. The Diary of

a Datum: Modeling Runtime Complexity in Framework-
Based Applications. (2007); http://domino.research.
ibm.com/comm/research_people.nsf/pages/sevitsky.
pubs.html/$FILE/diary%20talk.pdf.

4.	S eiler, L. et al. Larrabee: A many-core x86 architecture
for visual computing. In Proceedings of ACM
SIGGRAPH 2008.

Anwar Ghuloum (anwar.ghuloum@intel.com) is a
principal engineer in Intel Corporation’s Software and
Services Group, Santa Clara, CA.

Copyright held by author.

Parallel programming
in the mainstream
is relatively new,
while many of the
tools and accumulated
knowledge were
informed by niche
uses.

http://softwareprojects.intel.com/avx/
http://domino.research.ibm.com/comm/research_people.nsf/pages/sevitsky.pubs.html/$FILE/diary%20talk.pdf
http://domino.research.ibm.com/comm/research_people.nsf/pages/sevitsky.pubs.html/$FILE/diary%20talk.pdf
http://domino.research.ibm.com/comm/research_people.nsf/pages/sevitsky.pubs.html/$FILE/diary%20talk.pdf
mailto:anwar.ghuloum@intel.com
http://softwareprojects.intel.com/avx/

september 2009 | vol. 52 | no. 9 | communications of the acm 39

V
viewpoints

Who was leading that activity?
We had here [John] Lennard-Jonesa
who was a great pioneer of structural
chemistry. And he and his small group
of very able people showed that in
spite of the computational bottleneck
you could, in fact, achieve quite signifi-
cant results. Lennard-Jones was a man
of much vision and he was successful
persuading the university to establish
a computing laboratory, which was
initially called a mathematical labo-
ratory. It was Lennard-Jones who gave
me my first opportunity to get practi-
cal experience of computing.

a	 Sir John Edward Lennard-Jones (1894–1954)

P
resented here are excerpts
from an interview with Sir
Maurice Vincent Wilkes, the
developer of the Electronic
Display Storage Automatic

Calculator (EDSAC), microprogram-
ming, symbolic labels, macros, and
subroutine libraries. Wilkes, the 1967
ACM A.M Turing Award recipient and
winner of the ACM lifetime member-
ship award, is a former member of
Olivetti’s Research Strategy Board
and an emeritus professor at the Uni-
versity of Cambridge Computer Labo-
ratory in the U.K. David P. Anderson,
Principal Lecturer in the History of
Computing at the School of Creative
Technologies, University of Ports-
mouth, U.K., conducted the interview
with Wilkes, 96, earlier this year.

When did you first get
involved with computers?
Well, you’ve got to realize that although
there were no digital computers in the
immediate pre-war period, there was
a lot of digital computing. The impor-
tance and power of it was beginning to
be recognized.

The actual computing was then on
desk machines with people to work
them, mostly research students, but pro-
fessional computers were beginning to
be employed for organizations such as
the army, for calculating range tables
or firing tables as they were called in
America. That was all beginning to
grow up. Cambridge was a very lively
example of this digital computing.

What was your role?
The university took me on as the boy
who did the work! Analog computers
were much in the air then and a differ-
ential analyzer was ordered. We were
starting up this mathematical labora-
tory when I received an invitation to
join in the war effort working on radar.
Of course, I didn’t know the exact na-
ture of the work at the time of the invi-
tation but I was one of a small group of
people from the Cavendish who were
let into the secret.

Who was it that told you?
It was [Robert] Watson-Wattb himself at
the Air Ministry. So, I went off to do that,
deserting Lennard-Jones very ungrate-
fully because he’d got it all fixed up.

How did Lennard-Jones
react to losing you?
He didn’t mind—I went off anyway.
When I came back after the war, in Sep-
tember 1945, I found myself tempo-
rarily, but later permanently, head of
the Mathematical Laboratory.

How much latitude did you
have in deciding the priorities
of the laboratory?
As head of the laboratory I didn’t have
to ask people if I could do things. The
overall terms of reference were to de-
velop mathematical methods and
equipment for doing computation. So
that was all fine. As I had been doing

b	 Sir Robert Alexander Watson-Watt (1892–1973)

Interview
An Interview with
Maurice Wilkes
Maurice Wilkes, the designer and builder of the EDSAC—the first
computer with an internally stored program—reflects on his career.

doi:10.1145/1562164.1562180	 David P. Anderson

P
H

O
T

O
G

R
A

P
H

 B
Y

 B
ill

 T
h

o
mp

s

o
n

40 communications of the acm | september 2009 | vol. 52 | no. 9

viewpoints

radar I didn’t know anything about
what was going on with mathematical
machines but I soon began to learn.

Did you have any help with your
education in computing machinery?
I learned a great deal from [Douglas]
Hartreec who was in touch with Ameri-
can people and one day I had a tele-
gram out of the blue from the Moore
School at Philadelphia asking me to go
to a course. I got there with great diffi-
culty as crossing the Atlantic in those
days was no simple matter. I missed
the early part of the course.

Did that cause you any
serious difficulties?
No, I had got a singular set of qualifica-
tions because I had done some comput-
ing as a student. I was one of the people
that worked a hand-operated calculating
machine. I was a thoroughly qualified
electronics person having done ham ra-
dio and all that sort of thing. I had the
mathematical background insofar as it
was necessary for computing.

[John Presper] Eckertd and [John]
Mauchlye were the instructors and
they put me absolutely and fully in the
picture. I heard them talking about
stored-program computers—people
say the Von Neumannf computer, it’s
really the Eckert-Von Neumann com-
puter and I thought I might have a shot
at building one.

Was that the first time that you
had encountered the notion of

c	 Douglas Rayner Hartree (1897–1958)
d	 John Presper Eckert Jr. (1919–1995)
e	 John William Mauchly (1907–1980)
f	 John von Neumann (1903–1957)

the stored-program computer?
No, John Von Neumann wrote a report
on behalf of the group and [Leslie]
Comrieg was given a copy in America
and he showed it to me. He lent it to
me and I sat up all night reading it, so
it wasn’t the first time.

How did Comrie come to
have a copy of the report?
They gave copies away to people who
visited. Comrie’s copy is now in the li-
brary of the Computer Laboratory.

What did you do next?
The first thing to do was to make sure
an ultrasonic memory would work and
we did that by January 1947 and then we
went ahead.

This was quite a departure from
the pre-war work of the laboratory.
Did you need any special
permission to start this work?
Cambridge is a very strange place,
there are little departments like mine,
and big ones like the Cavendish. But
from the administrative point of view
they are on a level. That meant I didn’t
have to ask anybody or make any pro-
posals. I was able to just go ahead and
do it. There were some funds that went
with the lab in effect and I guessed that
more funds would become available in
due course.

Did you have a large staff
at your disposal?
No, no; very small. Most projects—in
industry and university—depend on a
small handful of three or four people
and we had less than that to provide
the drive. There were a lot of people
who were paid on the funds, math-
ematicians and other hangers-on and
there were also a number of assistants.
We had instrument makers and elec-
tronic people on the assistant level.
But I was the one who brought all the
information about computers into it
so there was no argument with me you
see; it all came from me. I had a very
loyal team and so we went ahead.

How long was it before you
achieved some success?
The EDSAC began to work in the sum-
mer of 1949 on May 6th. That was the

g	 Leslie John Comrie (1893–1950)

day we did the first program and we’d
all got little programs ready to run.

How was computer development
viewed at Cambridge?
Oh I don’t know, I always like to make a
joke and say that they thought we were
mad and if, at a cocktail party, you en-
larged on your enthusiasm you would
find people moving away from you!

You see, I never tried to do any pros-
elytizing, I simply built a computer.

Did you have a clear sense
from the start of who your
users were likely to be?
They were all around me, they were
students who didn’t like spending
weeks, or a week, or more computing.
They rushed at a computer, even an
unsatisfactory experimental one, as
EDSAC was to begin with. And it was
through those students that the idea
spread. They went to their supervisors
and said “Look what I’ve done.” The
supervisors were duly impressed and
before very long important people in
Cambridge were saying that comput-
ers were important. It was very low-
key, bottom-up, students-upward.
That’s not a bad way for ideas to
spread.

Did you have any concerns
about how the computer-building
work of the laboratory would
be funded going forward?
Well, I assumed it would all happen. We
were a very low-cost outfit because we
didn’t have a lot of the mathematicians
and people on the payroll for the sake
of the money and I was in 100% charge,
which made it very easy.

Am I correct in thinking that
the initial capital budget or the
laboratory in 1936 was around
£10,000?
Yes.

That was a very large
sum at the time.
It was. Lennard-Jones was a man of
enormous vision and although analog
computers were in the air the labora-
tory was not biased toward analog com-
puters. We could drop them as soon as
it appeared that they didn’t work out
and I could go ahead and build a stored-
program computer.

Although there were
no digital computers
in the immediate
pre-war period,
there was a lot of
digital computing.

viewpoints

september 2009 | vol. 52 | no. 9 | communications of the acm 41

That must have been a very
liberating environment
in which to work?
Very. Yes, it was a very responsible one.
I mean no one else in the laboratory
was sure that it was going to work but I
was the one who could see it first. And
so you see, we then had an enormous
advantage. This is what really gave us
the edge. Because quite a number of
these computers, especially the one in
Manchester, were beginning to work at
the same time. But they all had to hire
an engineer to build a computer for
them but that wasn’t the case with me.

I was fully qualified on both sides.
I got a group of students working on
programming before the computer
was running and so we could make a
very quick and rapid transition to the
user side and that was where we got the
edge.

Could you say a little about
the different contributions
mathematicians and engineers
made to early attempts to
build computers? Was there
any tension between them?
Well, of course. Mathematicians
weren’t particularly well qualified.
They’d all done a bit of numerical
analysis but it wasn’t the same as digi-
tal computing. I think perhaps tension
arose from entirely different back-
grounds. Take the question of Boolean
algebra. Mathematicians often write
and speak as though Boolean algebra
and mathematical logic was at the ba-
sis of computing but it wasn’t that
way at all. The mathematicians did not
understand switching really, electronic
switching; the engineers did.

Mathematicians, when it was point-
ed out to them, that Boolean algebra
modeled electronic switching at once
understood and because they could un-
derstand digital switching to a certain
degree by understanding mathematical
logic, they assumed that everyone would
look at it that way.

Whereas engineers, when they
were first told about Boolean algebra,
thought “What a daft idea this all is!”
and it was only later when Shannon told
them about the connection that they
saw any use for Boolean algebra.

But there wasn’t any use. Boolean
algebra has no time element to it and
while it is good for shaking up a bit of

complex logic we didn’t have complex
logic. We all had very simple logic in
the early days. Eckert is on record some-
where saying that he looked at Boolean
algebra but it didn’t seem to him to be
useful. None of the practical people
made much use of Boolean algebra but
it was regarded as absolutely essential
to the mathematicians. But there was a
tension between them that is perfectly
true.

Did that give rise to any problems
at Cambridge or elsewhere?
Of course so many of the physicists
of the period had been through the
mathematical tripos that was one of
its strengths. But not all of them, many
Cavendish people and supervisors like
[John Ashworth] Ratcliffeh had no un-
derstanding of mathematics.

I was ensconced in the four walls
of a computer laboratory and I never
counted myself as a mathematician.

Von Neumann, of course, rather de-
spised engineers. He got on with them
all right but I don’t think he regarded
them as important for such matters as
having credit for what they were doing.

[Alan] Turingi was an exact contem-
porary of mine and that means that I
don’t have to regard him as a great man
because you don’t regard your contem-
poraries as great men. I don’t remem-
ber him very clearly from the under-
graduate days but he was certainly in
the class and we took the tripos togeth-

h	 John Ashworth Ratcliffe (1902–1987)
i	 Alan Mathison Turing (1912–1954)

er and we both got the highest honors
you could. So that was all right.

He was a real mathematician except
that he only learned one little bit of
mathematics and then didn’t learn any
more. He was no practical organizer
and, well, if you had Turing around in
the place you wouldn’t get it going.

That certainly wasn’t a
problem with the EDSAC.
No, I mean we just barged ahead on
the EDSAC and the rule was that if
you had got something that would
work you didn’t spend another hour
on making it simpler or cheaper, you
went ahead with it.

It demanded very strict discipline
and keeping your eye on the ball. There
were all sorts of interesting things to
follow up but we resisted them.

We concentrated on the one ob-
jective with no demonstrations on
the way. We didn’t need to show that
the ultrasonic memory would work.
I mean when the electronics end,
it was working that was sufficient.
Whereas, you see, at Manchester
they had an electrostatic storage
depending on quantum theory and
they had to be very sure that it would
work. It was [Tom] Kilburn’sj idea
to build a ‘Baby’. He was able to do
it. Validating the memory was what
the Baby was all about. It was abso-
lutely essential because they had to
validate it not for themselves but for
their sponsors.

I wasn’t troubled with sponsors.
Somehow the money came.

To what extent would you say
that the work of [Charles]
Babbagek was significant in
shaping the early development
of stored-program computers?
I didn’t know anything about Babbage.
People started writing letters to the
Times and Hartree got interested and I
remember him coming into our build-
ing with a copy of Babbage’s memoirs
in his hand. It was Hartree who got
me interested in Babbage. Of course,
Babbage never had the concept of the
stored program, instructions being
coded as numbers; Babbage certainly
wasn’t influencing me.

j	 Tom Kilburn (1921–2001)
k	 Charles Babbage, FRS (1791–1871)

M.V. Wilkes during EDSAC I construction;
EDSAC I became operational in 1949.

P
H

O
T

O
G

R
A

P
H

 C
O

P
Y

R
I

G
H

T
 C

o
mputer

 L

ab

o
rat

o
r

y
,

U
n

iver

s
it

y

 o
f

 C
ambridge

.

R
epr

o
duced

 b
y

 permi

s

s
i

o
N

42 communications of the acm | september 2009 | vol. 52 | no. 9

viewpoints

Looking back, what would
you say was the significance
of Turing’s 1936 Entscheidungs-
problem paper?
I always felt people liked to make a
song and dance. Something like the
doctrine of the Trinity involved where-
as to an engineer you’ve only got to be
told about the stored program idea and
you’d say at once “That’s absolutely
first-rate, that’s the way to do it.” That
was all there was to know.

There was no distinction in that pa-
per that had any practical significance.
He was lucky to get it published at all
but I’m very glad he did. I mean [Alon-
zo] Churchl had got the same result by
other methods.

I liked Turing; I mean we got on very
well together. He liked to lay down the
law and that didn’t endear him to me
but he and I got on quite well. People
sometimes say I didn’t get on with Tur-
ing but it’s just not true. But then I was
very careful not to get involved.

Was he a difficult man with
whom to get along?
Yes, I think that’s probably true and he
was not in any sense a team leader. He
didn’t know how to get things done.

Of course I had another advantage
there. I had war service, six years of
it, and I had done real staff jobs and
that teaches you a lot about how to get
things done. [Max] Newmanm was a
great admirer of Turing. But he was not
in the line management of the comput-
ing work; I mean Newman was never
an engineer. The professor of electrical
engineering did that.

[Freddie] Williams?n
Yes, everybody at TRE [Telecommuni-
cations Research Establishment] had
some experience of management. Wil-
liams was in charge of the computer at
Manchester and he was a very strong-
minded person. Mind you he was a
leader too—he ran it like a dictator!

You can’t design or build a computer
unless you’re an engineer. I mean that’s
what you mean by being an engineer.
Newman exerted very little influence on
what went on in Manchester. Williams
saw to that all right.

l	 Alonzo Church (1903–1995)
m	 Maxwell Herman Alexander Newman (1897–1984)
n	 Sir Frederic Calland Williams (1911–1977)

Did Newman’s involvement
with the Colossus have any
effect on developments at
Manchester do you think?
No, I don’t think Williams would have
been interested in the technology be-
cause, as I say, when technology moves,
it moves very fast. And the technology
that was used in the Colossus was very
different from the sort of technology that
took root in Bawdsey [radar station].

Was there any rivalry between the
various computer-building projects
about who would get there first?
Well, as I always say, it was a funny race
because we were all aiming at different
finishing points. You see, we wanted
something that was business-like and
would fit into this existing digital envi-
ronment. Eckert and Mauchly wanted
to produce a commercially viable com-
puter and I don’t quite know what Wil-
liams wanted to do. He had no perma-
nent interest in computers. He wasn’t
very interested in computers at all. He
was interested in showing that CRT
memory would work but I don’t think
he had any interest beyond that and he
handed it over to Kilburn who made
very good use of it. Kilburn was a very,
very great success.

What are your recollections
of Kilburn?
I knew him very well. Of course we
were very good friends and we were
both determined that we wouldn’t al-
low any Manchester-Cambridge rival-
ries to show up in our groups and we
achieved that on the whole, I mean we
always had a high respect for each oth-
er. It could so easily have happened,
you know. But it didn’t and that was
due to Kilburn’s common sense really
and mine. It was very important but I
mean we were complimentary.

What was Kilburn’s
interest in computers?
He was interested in providing a com-
puting service as I was.

Returning to Newman for a
moment. We now know that
in 1945, Newman took Willis-
Jackson, who was William’s
predecessor, to Bletchley Park to
see the Colossus. Did Newman ever
discuss the Colossus with you—

even in the most general terms?
No, and I don’t think Williams would
have been interested in the technol-
ogy because, as I say, when technology
moves, it moves very fast. And the tech-
nology that was used in the Colossus
was very different from the sort of tech-
nology that took root in Bawdsey.

Another important figure at
Manchester at that time was
Patrick Blackett.o Did you have
anything to do with Blackett?
Blackett? Oh, I knew Blackett, he was
always very nice to me. He said he
didn’t know anything about computers
and that was perfectly true. He was of
an age. Above a certain age people are
never really happy with computers.

He helped Williams and
Newman though?
Well, he was a busybody so he would
be everywhere. He was very energetic
and he knew how to get things done.
He thought socialism was a great thing,
whereas I thought socialism was a
great mistake and indeed it was.

What have you found most
surprising about the developments
that have taken place in
computers since 1949?
Well, of course, it’s the speed. We had
great vision, we saw that computers
were going to be a big thing, not only
for arithmetic calculation but in oth-
er things as well, business and what-
not. We had great vision but we could
have no idea of timescale. For one
thing, young men don’t but the oth-
er reason was of course we couldn’t
see the coming of semiconductors.
Now semiconductors have given
us various things, small size, small
cost, high power but the important
thing they have given us is reliability.
We used to pray for reliability—our
prayer was answered. In my lectures
on this sort of thing I say that it was
St. Theresa who was credited with
the remark that it is prayers that are
answered that create more problems
than those that aren’t!	

o	 Lord Patrick Maynard Stuart Blackett (1897–
1974)

Copyright held by author.

3132851 35648 (7/07) © Seabury & Smith, Inc. 2007

The plans are subject to the terms, conditions, exclusions and limitations of the group policy. For costs and complete details of coverage,
contact the plan administrator. Coverage may vary and may not be available in all states.

*Underwritten by The United States Life Insurance Company in the City of New York, a member company of American International Group, Inc.

**Underwritten by American General Assurance Company, a member company of American International Group, Inc.

***Coverage is available through Assurant Health and underwritten by Time Insurance Company.

AG5217

Group Term Life Insurance**

10- or 20-Year Group Term
Life Insurance*

Group Disability Income Insurance*

Group Accidental Death &
Dismemberment Insurance*

Group Catastrophic Major
Medical Insurance*

Group Dental Plan*

Long-Term Care Plan

Major Medical Insurance

Short-Term Medical Plan***

Who has time to think
about insurance?

35648 ACM All Plans ad 7/07
4-color
Trim size: 8 1/8 x 10 7/8

Today, it’s likely you’re busier than ever. So, the last thing you probably have on your mind is

whether or not you are properly insured.

But in about the same time it takes to enjoy a cup of coffee, you can learn more about your

ACM-sponsored group insurance program — a special member benefit that can help provide

you financial security at economical group rates.

Take just a few minutes today to make sure you’re properly insured.

Call Marsh Affinity Group Services at 1-800-503-9230 or visit www.personal-plans.com/acm.

http://www.personal-plans.com/acm

44 communications of the acm | september 2009 | vol. 52 | no. 9

practice

browser to manipulate the browser
DOM as a means for actually rendering
the UI and responding to user events;
CSS (cascading style sheets) are used
to control the visual style of the UI;
and the XHR (XmlHttpRequest) sub-
system allows JavaScript application
code to communicate asynchronously
with a Web server without requiring a
full-page refresh, thus making incre-
mental UI updates possible. There are
many more browser technologies that
read like alphabet soup: XML, VML,
SVG, JSON, XHTML, DTD … the list
goes on.

Curiously, these browser technolo-
gies have been available for many
years, yet it has taken until now for
mainstream developers to cobble
them together to create compellingly
interactive Web applications. Why?
The opinion of the Google Web Tool-
kit team—a perspective that can, of
course, be endlessly debated—is that
the primary obstacle is literally the
implementation details. It is simply
too difficult to code them all to work
together in a way that provides quick
and reliable performance on the wide
range of browsers available.

Our response was to design Google
Web Toolkit (GWT) to allow develop-
ers to spend most of their time writ-
ing and debugging application code
using the Java language rather than
JavaScript. Working in Java means de-
velopers can leverage the productivity
of Java IDEs (integrated development
environments). Once they are pleased
with their Java code, developers can
use GWT’s cross-compiler to convert
Java source code into functionally
equivalent, and optimized, JavaScript.
The idea of cross-compilation tends
to raise eyebrows, and we’ve heard
more than our fair share of incredulity
about this, so let’s take a step back to
describe how we decided on this ap-
proach—and how things have actually
worked out.

GWT began life as a prototype that
Google software engineer Joel Web-
ber and I produced as a way to address
what might best be described as the

The Web’s trajectory toward interactivity, which
began with humble snippets of JavaScript used to
validate HTML forms, has really started to accelerate
of late. A new breed of Web applications is starting
to emerge that sports increasingly interactive user
interfaces based on direct manipulations of the
browser document object model (DOM) via ever-
increasing amounts of JavaScript. Google Wave,
publicly demonstrated for the first time in May
2009 at the Google I/O Developer Conference in
San Francisco, exemplifies this new style of Web
application. Instead of being implemented as a
sequence of individual HTML “pages” rendered
by the server, Wave might be described as a client/
server application in which the client is a browser
executing a JavaScript application, while the server
is “the cloud.”

The key browser technologies responsible for
enabling this new generation of Web applications
are not especially new: JavaScript runs within the

doi:10.1145/1562164.1562181

 Article development led by
 queue.acm.org

The Google Web Toolkit is an end-run around
Web development obstacles.

By Bruce Johnson

Reveling in
Constraints

I
llu

s
trati

o
n

 b
y

 j
o

h
n

 her

s

e
y

http://queue.acm.org

september 2009 | vol. 52 | no. 9 | communications of the acm 45

46 communications of the acm | september 2009 | vol. 52 | no. 9

practice

over-constrained problem of Web de-
velopment. Thanks largely to the suc-
cess of Google Maps and Gmail, sever-
al points had simultaneously become
clear to us:

End users really liked and wanted ˲˲

browser-based applications.
Rich client-side interactivity (for ˲˲

example, Maps and Gmail) made such
applications much more responsive
and usable than typical Web 1.0 page-
at-a-time applications and thus much
more compelling.

Each major browser was techni-˲˲

cally capable of enabling such inter-
active applications. They could all run
JavaScript and support dynamic HTML,
but bugs, inconsistencies, and propri-
etary APIs and behaviors prevented any
single JavaScript program from work-
ing consistently and efficiently on the
majority of the modern browsers.

Support for the JavaScript lan-˲˲

guage itself—that is, for the “pure”
language syntax and core JS libraries,
excluding DOM APIs—was, to our sur-
prise, quite consistent and reliable
across browsers.

In other words, the browser—in
particular, XHR, JavaScript, and the
DOM—presented a capable, albeit
frustrating, platform for delivering ap-
plications.

Javascript Reservations
At the same time, we had questions
about whether JavaScript was a good
language in which to write business-
critical applications. On the one hand,
JavaScript is a flexible, dynamically
typed language that makes certain
types of code easy to write and pleas-
antly succinct. On the other hand, that
same flexibility can make JavaScript
harder to use within a team environ-
ment because there is no easy way to
enforce the use of consistent conven-
tions automatically across an entire
codebase. It is true that, with sig-
nificant extra work, a JavaScript team
could insist that all script be augment-
ed with extra metadata (JSDoc, for ex-
ample) and then use additional tools to
verify that all script complies with the
agreed-upon conventions. This would
also necessarily restrict the develop-
ers to a statically analyzable subset of
JavaScript, since some of JavaScript’s
most dynamic constructs—eval() and
the with statement are good exam-

JavaScript. For example, it isn’t possi-
ble to provide sound code completion
in a JavaScript editor in the general
case because different runtime code
paths can produce different meanings
for the same symbols. Consider this
legal JavaScript:

function foo(m) {
 alert("You called foo with
 the message: " + m); }

if (dayOfWeek() == "Wednesday") {
 foo = 3;
}
foo("Hello?"); // [1]

ples—thoroughly defeat static analy-
sis. All this extra stuff—the metadata
and verification tools—seemed an aw-
ful lot like an ad-hoc static type system
and a compiler front end.

Furthermore, we badly wanted an
IDE. Our experience had thoroughly
convinced us that IDEs are a boon
to productivity, quality, and mainte-
nance. Features that are status quo
in modern Java IDEs such as code
completion, debugging, integrated
unit testing, refactoring, and syntax-
aware search were virtually nonexis-
tent for JavaScript. The reason for this,
again, is related to the dynamism of

Box 1. Shape hierarchy as it might appear in Javascript (a) and Java (b).

function Shape() { } 						 (a)
Shape.prototype.getArea = function() { }

function Circle(radius) { this.radius = radius; }
Circle.prototype = new Shape();
Circle.prototype.getArea = function() { return this.radius * this.radius *
 Math.PI; }

function Square(length) { this.length = length; }
Square.prototype = new Shape();
Square.prototype.getArea = function() { return this.length * this.length; }

function displayArea(shape) { alert(“The area is “ + shape.getArea()); }

function runTest() {
 var shape1 = new Circle(3);
 var shape2 = new Square(2);
 displayArea(shape1);
 displayArea(shape2);
}

In Java language for use with GWT					 (b)

abstract class Shape {
 public abstract double getArea();
}

class Circle extends Shape {
 private final double radius;
 public Circle(double radius) { this.radius = radius; }
 @Override public double getArea() { return radius * radius * Math.PI; }
}

class Square extends Shape {
 private final double length;
 public Square(double length) { this.length = length; }
 @Override public double getArea() { return length * length; }
}

static void displayArea(Shape shape) { Window.alert(“The area is “ +
 shape.getArea()); }

static void runTest() {
 Shape shape1 = new Circle(3);
 Shape shape2 = new Square(2);
 displayArea(shape1);
 displayArea(shape2);
}

practice

september 2009 | vol. 52 | no. 9 | communications of the acm 47

At [1], it’s impossible to tell statically
whether foo is a function or a variable,
so IDE code completion can only pro-
vide “potentially correct” suggestions,
which is an optimistic way of saying
that you must double-check the IDE’s
code completion suggestions, which
in turn is likely to diminish much of
the would-be productivity gain to be
realized from a JavaScript IDE. For
similar reasons, automated refactor-
ing tools for JavaScript are rarely seen,
even while such tools are ubiquitous
in the Java world. These observations
made JavaScript seem less attractive as
a language in which to write large ap-
plications.

We finally realized that we wanted to
develop our source code in the Java lan-
guage, yet deploy it as pure JavaScript.
By choosing the Java language as the
origination language, we could imme-
diately leverage the great ecosystem
of Java tools, especially the great Java
IDEs out there. The only question was
how to produce JavaScript from the
Java source input. Our answer was to
build a Java-to-JavaScript compiler—
an optimizing compiler, in fact, be-
cause we figured that since we were go-
ing to the trouble of writing a compiler
anyway, why not make sure it produced
small, efficient JavaScript? Further-
more, we discovered that because Java
has a static type system, it allowed for
many compile-time optimizations that
JavaScript—being dynamically typed—
would not.

As an example of this, consider the
interaction between inlining and devir-

sulting in a minor size reduction. Even
better, the inlined code is amenable to
being further optimized in a usage-spe-
cific context where more information
is available to the optimizer.

Next, the optimizer noticed that the
types of shape1 and shape2 could
be “tightened” to types more specific
than their original declaration. In oth-
er words, although shape1 was de-
clared to be a Shape, the compiler saw
that it was actually a Circle. Similarly,
the type of shape2 was tightened to
Square. Consequently, the calls to
getArea() in [1] and [2] were made
more specific. The former became a
call to Circle’s getArea(), and the lat-
ter became a call to Square’s getAr-
ea(). Thus, all the method calls were
statically bound, and all polymor-
phism was removed.

Finally, with all polymorphism re-
moved, the optimizer inlined Circle’s
getArea() into [1] and Square’s
getArea() into [2]. Both getArea()
methods are absent from the compiled
script, having been inlined away. Math.
PI is a compile-time constant and was
also trivially inlined into [1].

The benefit of all these optimiza-
tions is speed. The script produced
by the GWT compiler executes more
quickly because it eliminates multiple
levels of function calls.

For obvious reasons, large codebas-
es tend to be written with an emphasis
on clarity and maintainability rather
than just on sheer performance. When
it comes to maintainability, abstrac-
tion, reuse, and modularity are abso-
lute cornerstones. Yet, in the previous
example, maintainability and perfor-
mance come into direct conflict: the
inlined code is faster, yet no software
engineer would write it that way. The
“maintainability vs. performance”
dichotomy isn’t unique to Java code,
of course. It is equally true that writ-
ing modular, maintainable JavaScript
tends to produce slower, larger script
than one would prefer. Thus, all de-
velopers building complex Web ap-
plications have to face the reality of
this trade-off. The pivotal question
would seem to be just how amenable
your codebase is to optimization once
you’ve written it. In that regard, the
Java type system provides great lever-
age, and that is how the GWT compiler
is able to include many optimizations

tualization (that is, the removal of poly-
morphism in a method invocation). In
JavaScript, developers often simulate
object-oriented constructs such as
polymorphism. Box 1, for example, il-
lustrates how a simple Shape hierarchy
might appear written in JavaScript and
Java language for use GWT.

The source for the two examples
looks nearly identical, except for minor
syntax differences, the use of @Over-
ride (which is useful for helping to
prevent bugs), and the presence of ex-
plicit type names sprinkled on fields,
methods, and local variables.

Because of the extra type informa-
tion, the GWT compiler is able to per-
form some optimizations. The unob-
fuscated version of the GWT compiler
output looks approximately like this:

function runTest() {
 var shape1, shape2;
 shape1 = $Circle(new Circle(), 3);
 shape2 = $Square(new Square(), 2);
 alert(‘The area is ‘ +
shape1.radius * shape1.radius *
3.141592653589793); // [1]
 alert(‘The area is ‘ + shape2.
length * shape2.length); // [2]
}

Note that in [1] and [2] , a cascade of
optimizations was made.

First, the compiler inlined both calls
to the displayArea() method. This
proved helpful because it removed the
need to generate code for that method.
Indeed, displayArea() is completely
absent from the compiled script, re-

Box 2. Implementing native Java methods in handwritten JavaScript.

// This is Java!
static native Element createDivElement() /*-{
 // This is JavaScript!
 return document.createElement(“div”);
}-*/;

The CCL knows about JSNI and rewrites it to look something like this:

// A static initializer is introduced in the class.
static {
 hostedBrowser.injectFunc(“createDivElement”, “return document.
createElement(\”div\”);”);
}

// The method becomes all-Java and is no longer native.
static Element createDivElement() {
 return hostedBrowser.invokeInjectedFunc(this, “createDivElement”);
};

48 communications of the acm | september 2009 | vol. 52 | no. 9

practice

similar to the ones shown here to help
mitigate the “abstraction penalty” you
might otherwise end up having to pay
in a well-designed object-oriented
codebase.

Bringing Together Two Worlds
Of course, the creation of an environ-
ment that allows developers to build
browser-based applications in Java
addresses only one part of the devel-
opment cycle. Like most developers,
we do not produce perfect code, so we
knew we would also have to address the
issues involved in debugging GWT pro-
grams.

Upon first hearing about GWT, peo-
ple often assume you use it in the fol-
lowing way:

Write Java source.1.	
Compile to JavaScript with GWT’s 2.	

compiler.
Run and debug the JavaScript in a 3.	

browser.
In fact, that is not the way you work

in GWT at all. You spend most of your
time in GWT’s hosted mode, which al-
lows you to run and debug your Java
code in a normal Java debugger (for
example, Eclipse), just as you’re ac-
customed to doing. Only when the ap-
plication is written and debugged do
you need actually to compile it into
JavaScript. Thus, everyone’s reflexive
fear of never being able to understand
and debug the compiled JavaScript
proves to be unfounded.

The secret to making hosted mode
an effective debugging environment is
that it does not merely simulate the be-
havior of a browser while debugging in
Java. Hosted mode directly combines
true Java debugging with a real brows-
er UI and event system. Hosted mode
is conceptually simple, and it executes
in a single JVM (Java Virtual Machine)
process:

Launch an instance of an actual 1.	
browser, embedded in-process, that
can be controlled by Java code via JNI
(Java Native Interface). We call this the
hosted browser.

Create a CCL (compiling class 2.	
loader) to load the GWT module’s en-
try-point classes.

Whenever the CCL is asked to 3.	
fetch a class, it checks to see if the class
has JSNI (JavaScript Native Interface)
methods. If not, the class can be used
directly. If native methods are found,

put script, but an arbitrary number of
them, each optimized for a particular
set of circumstances.

Each compiled output is a combina-
tion of many different implementation
choices, such that each script has ex-
actly (and only) the amount of code it
requires. It’s worth mentioning that in
addition to dealing with browser varia-
tions, deferred binding can specialize
compilations along other axes as well.
For example, deferred binding is used
to create per-locale specializations (for
example, why should a French user
have to download strings localized for
English, or vice versa?). In fact, deferred
binding is completely open ended, so
developers can add axes of specializa-
tion based on their needs.

This approach does create a large
number of compiled scripts, but we
reasoned it was a welcome trade-off:
you end up spending cheap server disk
space on many optimized scripts, and,
as a result, applications download and
run more quickly, making end users
happier.

In any event, our experience in de-
veloping GWT has thoroughly con-
vinced us that there’s no need to give
in to the typical constraints of Web
development. That is, with a bit of
creativity and some dedicated effort,
we now know it is indeed possible to
retain the richness of more familiar
development environments without
compromising the experience appli-
cation users are ultimately to enjoy.

 Related articles
 on queue.acm.org

Case Study: Making the Move to AJAX

Jeff Norwalk
http://queue.acm.org/detail.cfm?id=1515744

Coding Smart: People vs. Tools

Don Seeley
http://queue.acm.org/detail.cfm?id=945135

Debugging AJAX in Production
Eric Shrock
http://queue.acm.org/detail.cfm?id=1506423

Bruce Johnson founded Google’s engineering office
in Atlanta, right next door to his alma mater Georgia
Tech, with the goal of producing Google Web Toolkit
and a number of related tools intended to make Web
development more efficient, effective, and a whole lot
more fun.

© 2009 ACM 0001-0782/09/0900 $10.00

the class gets compiled from source
and the JSNI methods are rewritten.

Run the bytecode of the entry-4.	
point class, which will in turn request
other classes be loaded by the CCL,
which repeats the process from Step 3.

Step 3, rewriting JSNI methods, is
the really neat part here. JSNI is the
way to implement native Java methods
in handwritten JavaScript, as shown in
Box 2.

Thus, the hosted-mode CCL turns
JSNI methods into thunks that redirect
their calls into the hosted browser’s
JavaScript engine, which in turn drives
the real browser DOM.

From the JVM’s point of view, every-
thing described here is pure Java byte-
code and can therefore be debugged
normally using a Java debugger. From
the developer’s point of view, he or
she can see the true behavior of a real
browser being driven by the Java source
code without it first having been cross-
compiled into pure JavaScript.

Which brings up perhaps the most
exciting point about hosted mode: be-
cause it works dynamically with Java
code and does not depend on invoking
the GWT cross-compiler (which can be
slow), hosted mode is really fast. This
means developers get the same kind
of run/tweak/refresh behavior they
enjoy whenever working directly with
JavaScript.

GWT thus manages to combine
the benefits of a traditional optimiz-
ing compiler with the quick develop-
ment turn-around of dynamic lan-
guages. Although the compilation
technology may appear complex, it is
actually fairly standard fare for opti-
mizing compilers. The real technical
problems we encountered along the
way revolved around our efforts to
create UI libraries to simultaneously
account for browser-specific quirks
without compromising size or speed.
In other words, we needed to supply
many different implementations of UI
functionality—version A for Firefox,
version B for Safari, and so forth—
without burdening the compiled ap-
plication with the union of all the vari-
ations, thereby forcing each browser
to download at least some amount
of irrelevant code. Our solution is a
unique mechanism we dubbed de-
ferred binding, which arranges for the
GWT compiler to produce not one out-

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1515744
http://queue.acm.org/detail.cfm?id=945135
http://queue.acm.org/detail.cfm?id=1506423

september 2009 | vol. 52 | no. 9 | communications of the acm 49

capable of controlling and optimiz-
ing large-scale, data-intensive appli-
cations.11 Its initial target field of ap-
plications is the grid systems and the
networks supporting data processing
and analysis for HEP collaborations.
Our strategy in trying to satisfy the de-
mands of data-intensive applications
was to move to more synergetic rela-
tionships between the applications,
computing, and storage facilities and
the network infrastructure.

An essential part of managing
large-scale, distributed data-process-
ing facilities is a monitoring system
for computing facilities, storage, net-

works, and the very large number of
applications running on these sys-
tems in near real time. The monitor-
ing information gathered for all the
subsystems is essential for develop-
ing the required higher-level servic-
es—the components that provide
decision support and some degree of
automated decisions—and for main-
taining and optimizing workflow in
large-scale distributed systems. These
management and global optimization
functions are performed by higher-
level agent-based services. Current ap-
plications of MonALISA’s higher-level
services include optimized dynamic

The high energy physics (HEP) group at California
Institute of Technology started developing the
MonALISA (Monitoring Agents using a Large
Integrated Services Architecture) framework in 2002,
aiming to provide a distributed service system

doi:10.1145/1562164.1562182

 Article development led by
 queue.acm.org

MonALISA developers describe how it works,
the key design principles behind it, and the
biggest technical challenges in building it.

by Iosif Legrand, Ramiro Voicu, Catalin Cirstoiu,
Costin Grigoras, Latchezar Betev, and Alexandru Costan

Monitoring
and Control
of Large
Systems with
MonALISA

http://queue.acm.org

50 communications of the acm | september 2009 | vol. 52 | no. 9

practice

routing, control, and optimization for
large-scale data transfers on dedicat-
ed circuits, data-transfer scheduling,
distributed job scheduling, and auto-
mated management of remote servic-
es among a large set of grid facilities.

The initial design of the MonALISA
system was inspired by the Jini archi-
tecture.10 MonALISA is designed as an
ensemble of autonomous self-describ-
ing agent-based subsystems that are
registered as dynamic services. These
services are able to collaborate and
cooperate in performing a wide range
of distributed information-gathering
and processing tasks.

The MonALISA architecture, sche-
matically presented in Figure 1, is based
on four layers of global services. The en-

pled agents that analyze the collected
information in real time. The frame-
work also integrates a set of existing
monitoring tools and procedures to
collect parameters describing com-
putational nodes, applications, and
network performance. The collected
information can be stored locally
in databases. Dynamically loadable
agents and filters are able to process
information locally and communicate
with other services or agents in order
to perform global optimization tasks.
A service in the MonALISA framework
is a component that interacts auton-
omously with other services either
through dynamic proxies or via agents
that use self-describing protocols. By
using the network of lookup services,

tire system is based on Java technology.9
The first layer is the lookup services

(LUS) network that provides dynamic
registration and discovery for all other
services and agents. MonALISA ser-
vices are able to discover each other in
the distributed environment and to be
discovered by interested clients. The
registration uses a lease mechanism. If
a service fails to renew its lease, it is re-
moved from the LUS and a notification
is sent to all the services or other appli-
cations that subscribed to such events.

The second layer of the MonALISA
framework represents the network
of MonALISA services. They provide
the multithreaded execution engine
that accommodates many monitoring
modules and a variety of loosely cou-

Figure 1. The four layers, main services, and components of the MonALISA framework.

Agents

Network of
Lookup Services

MonALISA

Proxies

High-Level
Services

practice

september 2009 | vol. 52 | no. 9 | communications of the acm 51

veloping the MonALISA system was
the communication mechanism for
all these services in the wide area net-
work. The system tries to establish
and maintain reliable communica-
tion among services, using the abil-
ity to reconnect automatically or find
alternative services in case of network
or hardware problems. Although, the
fashion of the time was to implement
remote call protocols over XML and to
use Web services, we decided to use a
binary protocol especially to avoid the
overhead of wrapping everything in
a text-based protocol and because of
the lack of remote notification except
for a pull-based approach (the Oasis
Web Services Notification14 appeared
later and still used a pull-based ap-
proach in the first implementations).
Although XML or Web services still
make perfect sense for certain appli-
cations, they are not appropriate for
large dynamic data.

Initially we used the Java RMI (re-
mote method invocation) as the com-
munication protocol between clients
and services. It was an elegant solu-
tion and helped us in the beginning
to develop the other components of
the framework without focusing too
much on the underlying communica-
tion protocol. As soon as we started
deploying the monitoring service on
more and more sites, however, we
had to replace this approach for two
main reasons. The first was security
concerns for the computing centers
within HEP and the difficulty opening
ports in the firewalls of those centers
for incoming TCP connections. In
some cases even the outgoing con-
nectivity had to be restricted to a few
IP addresses and ports. This was in
fact the main reason for developing
the layer of proxy services, allowing all
the other MonALISA services to com-
municate with each other even when
running behind firewalls or local NAT
(network address translation) envi-
ronments.

The second reason we had to re-
place RMI was because of its relatively
low performance and stability in WAN
connections (see Figure 2). The main
operating system used in the HEP
community was and still is Linux,
but different flavors of it—kernels
and libraries—and, of course, under
a heterogeneous administration. Java

a distributed services registry, and
the discovery and notification mecha-
nisms, the services are able to access
each other seamlessly. The use of dy-
namic remote event subscription al-
lows a service to register an interest
in a selected set of event types, even in
the absence of a notification provider
at registration time.

Proxy services make up the third
layer of the MonALISA framework.
They provide an intelligent multi-
plexing of the information requested
by the clients or other services and
are used for reliable communication
among agents. This layer can also be
used for access-control enforcement
to provide secure access to the col-
lected information and the remote
services management.

Higher-level services and clients ac-
cess the collected information using
the proxies’ layer. A location-aware,
load-balancing mechanism is used to
allocate these services dynamically to
the best proxy service. The clients, oth-
er services, or agents can get real time
or historical data by using a predicate
mechanism for requesting or sub-
scribing to selected measured values.
These predicates are based on regular
expressions to match the attribute de-
scription of the measured values that a
client is interested in. They may also be
used to impose additional conditions
or constraints for selecting the values.
The subscription requests create a
dedicated priority queue for messages.
The communication with the clients
is served by a pool of threads. The al-
located thread performs the matching
tests for all the predicates submitted
by a client with the monitoring values
in the data flow. The same thread is re-
sponsible for sending the selected re-
sults back to the client as compressed
serialized objects.

Having independent threads for cli-
ents allows sending the information
they need in a fast and reliable way,
avoiding the interference caused by
communication errors that may occur
with other clients. In case of communi-
cation problems, these threads will try
to reestablish the connection or clean
up the subscriptions for a client or ser-
vice that is no longer active.

Communication Lessons
One of the most difficult parts in de-

Our strategy in
trying to satisfy
the demands of
data-intensive
applications
was to move to
more synergetic
relationships
between the
applications,
computing, and
storage facilities
and the network
infrastructure.

52 communications of the acm | september 2009 | vol. 52 | no. 9

practice

helped a lot, but we have experienced
stalled sockets and poor network
throughput because of the TCP stack
implementation in the 2.4 kernels
used at the time.

We tried to find the best balance
between performance and time spent
developing a custom protocol, so we
still used the native Java serialization.
Because of the initial aim to react in
almost real time, we had to develop
our keep-alive mechanism at the ap-
plication level; we could not control
and also had problems with the one
at the kernel level. Implementing our
own communication protocol over
standard TCP sockets helped us to
have a finer control in case of network
I/O errors for quick and clean recov-
ery. Although the TCP implementa-
tion5 has changed in the latest 2.6
kernels—and even though the default
congestion protocol works reasonably
well without any special settings—we
still believe that, depending on the
time constraints for the application,
any remote call protocol will be an is-
sue in WAN environments because of
the intrinsic overhead combined with
network latency.

At the other end, for the LAN com-
munication between thousands of
monitored entities and the local
MonALISA service, we decided to take
another approach: use a UDP (User
Datagram Protocol)-based binary but
highly portable protocol employing
external data representation (XDR)15
for data encoding. This choice proved

Challenges of a Large,
Data-Intensive Scientific Project
One of the largest communities using
the MonALISA system is ALICE (A Large
Ion Collider Experiment),1 one of four
LHC (Large Hadron Collider) experi-
ments at CERN (European Organiza-
tion for Nuclear Research).4 The ALICE
collaboration, consisting of more than
1,000 members from 29 countries and
86 institutes, is strongly dependent on
a distributed computing environment
to perform its physics program. The
ALICE experiment will start running
this year and will collect data at a rate
of up to four petabytes per year. During
its design lifetime of 20 years, ALICE
will produce more than 109 data files
per year, and require tens of thousands
of CPUs to process and analyze them.
The CPU and storage capacities are dis-
tributed over more than 80 computing
centers worldwide. These resources
are heterogeneous in all aspects, from
CPU model and count to operating sys-
tem and batch queuing software. The
allocated resources should increase
over time to match the increase in the
data-acquisition rate resulting from
changes in experiment parameters, so
that a doubling is foreseen in two years,
and so on.

The ALICE computing model re-
quires a dedicated node in each com-

to be effective and allowed the service
to collect more than 5,000 messages
per second without any loss—TCP
would not have scaled to receive data
simultaneously from all the nodes in
a large computing farm. The ApMon
client library (available in Java, C, Perl,
and Python) that we developed for this
purpose became the preferred way of
tracing remote jobs and nodes, as it
could send not only user-specific data,
but also process and machine moni-
toring information.

Figure 2. Monitoring the quality of WAN links.

Figure 3. The MonALISA repository for ALICE. Lines represent
site relations (Tier0-Tier1-Tier2).

practice

september 2009 | vol. 52 | no. 9 | communications of the acm 53

nating site and can be consulted with
the GUI client. This approach proved
to be very useful for debugging purpos-
es—for example, to track the behavior
of a particular application or host.

The ALICE computing model
matched closely with MonALISA’s ar-
chitecture so the pieces fit naturally
together, but it also provided us big op-
portunity to fulfill the project’s initial
goal: using the monitoring data to im-
prove the observed system. Indeed, the
actions framework implemented with-
in MonALISA represents the first step
toward the automation of decisions
that can be made based on the monitor-
ing information. It is worth noting that
actions can be used in two key points:
locally, close to the data source (in the
MonALISA service) where simple ac-
tions can be taken; and globally, in a
MonALISA client where the logic for
triggering the action can be more so-
phisticated, as it can depend on several
flows of data. Hence, the central cli-
ent is equipped with several decision-
making agents that help in operating
this complex system: restarting remote
services when they don’t pass the func-
tional tests, sending e-mail alerts or in-
stant messages when automatic restart

puting center that runs the manage-
ment software for the local resources.
The same node is also running a Mon-
ALISA service that collects monitoring
information from all computing nodes,
storage systems, data-transfer applica-
tions, and software running in the local
cluster. This yields more than 1.1 mil-
lion parameters published in MonAL-
ISA, each with an update frequency of
one minute. Moreover, ALICE-specific
filters aggregate the raw parameters to
produce system-overview parameters
in realtime. These higher-level values
are usually collected, stored, and dis-
played in the central MonALISA Repos-
itory for ALICE12 (see Figure 3) and are
the fuel for taking automatic actions.

In this particular case we have man-
aged to reduce the data volume to only
about 35,000 parameters by aggregat-
ing, for example, the entire CPU usage
by all the jobs in the local cluster in a
single parameter, by summing up net-
work traffic on all machines, and so on.
These overviews are usually enough to
identify problems and take global ac-
tions in the system, and they can be
stored in a central database for long-
term archival and analysis. The details
are available on demand on the origi-

procedures do not fix the problems,
coordinating network-bandwidth tests
between pairs of remote sites, manag-
ing the DNS-based load balancing of
the central machines, and automati-
cally executing standard applications
when CPU resources are idle.

The actions framework has become
a key component of the ALICE grid.
Apart from monitoring the state of the
various grid components and alerting
the appropriate people to any problems
that occur during the operation, this
framework is also used to automate the
processes. One such automation takes
care of generating Monte Carlo data
that simulates the experiment’s behav-
ior or analyzes the data. In normal cases
jobs run for 10 to 12 hours and gener-
ate or analyze files on the order of 10GB
each. ALICE jobs, however, can fail for
a number of reasons: among the most
frequent are network issues and local
machine, storage, or central services
problems. By continuously monitoring
the central task queue for production
jobs, the MonALISA repository takes ac-
tion when the number of waiting jobs
goes below the preset threshold (4,000
jobs at the moment). First, it looks to
see whether any failed jobs can be re-

Figure 4. EVO overlay network topology—A Dynamic Minimum Spanning Tree.

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100
100

100

100

100

100

100

100

100
100 100

100

100
100

100 100

100

100

100
100

100

100

100

100

100
95

100

100

100 100

100

100

100 100

100
100

97.5
99.7

100
100

100

100

100

100
100 100

URL_GT

UES_SV

PUCP_PE

EVOLA_US

CERNext_CH

EVOEU_CH

EVO03_CH

UPJS01_SK

RedIRIS_ES
EVO2_US

REUNA_CL

BACKUP_NZ

KISTI01_KR

BeSTGRID_NZ

KISTI02_KR
EVO07_US

EVOCHI_US

RenaLY_FR

TRIUMF_CA

DESY01_DE

DESY02_DE

STUBA_SK

GRAZ_AT

FUNET_FI

ROKSON_RU

WUT_PL

ZILINA_SK

UPJS_SK

CITbeta_US

INFN_IT

WIND_IT

EVO08_US

UKERNA1_UK

GRNET_GR

UKERNA_UK

ORSAY_FR

KIT_DE

USP01_BR

CORNELL_US

AARNet_AU

54 communications of the acm | september 2009 | vol. 52 | no. 9

practice

scheduled to run; then if the queue
length is still too short, it will schedule
new bunches of 1,000 jobs. The same
framework is used to copy data auto-
matically to remote sites and to test the
network connectivity among all end-
points. Combining the continuous test-
ing of network and storages with error
reporting has proved to be an efficient
tool in debugging the system.

Having so many parameters to store
and display on demand in a reason-
ably short time was a challenge—made
even more difficult because the charts
are generated on the fly based on users’
options. Database response time de-
pends on the number of values, so one
step toward generating charts on de-
mand was storing averaged values over
increasing time intervals, saving space
but losing resolution. Three database
structures are filled in parallel: from
one with high resolution that keeps
data only for the last couple of months
to one with very low resolution that
keeps data forever. The data controller
automatically selects which portions
of data to extract from which structure
to meet user requests, and it can fetch
data from more than one structure if
the request parameters demand it.

The second step to reduce the re-
sponse time was spreading the queries
to more than one database back end.
Three identical database instances
now receive all the updates while the
select queries are split so that different
parameters are fetched in parallel from
all active back ends. Having these two
options in place allows serving some
20,000 dynamic pages per day from a
single front-end machine while the da-
tabase size has reached 170GB.

Data-Transfer Services and
Optimized Communication
To support large-scale data-driven ap-
plications, such as those specific to the
HEP community—particularly as the
amount of data becomes more preva-
lent—a large set of subsystems has to
be configured and tuned simultane-
ously. Performing these operations
manually not only demands expen-
sive human expertise, but also limits
the maximum practical size of such
a system. Also, it becomes difficult to
deal with dynamically changing con-
ditions and errors and to coordinate
the resource requirements of different

applications. Within the MonALISA
framework, we developed a large set
of modules and agents able to moni-
tor different network devices, the net-
work topology, and connectivity, and
we tried to use this information in near
real time to optimize the communica-
tion and data transfer in the WAN. This
framework has been used for the past
three years to monitor and coordinate
large data transfers; we made demon-
strations of the entire system at the
Supercomputing conference in 2006,8
2007,2 and 2008.3

One example of such a system is the
optimization of the global connectiv-
ity for the EVO collaboration network’s
videoconferencing system.6 The opti-
mization is based on continuous end-
to-end monitoring, including the end
user’s computer, as well as the network
infrastructure. This way the user is in-
formed of any potential or arising prob-
lems (for example, excessive CPU load
or packet loss), and when possible, the
problems are resolved automatically
and transparently on the user’s behalf
(for example, switching to another
server node in the network, reducing
the number of received video streams,
among others). The EVO servers com-
municate with each other through a
set of channels—secure TCP connec-
tions—that form an overlay network
on top of the actual network topology.
Dedicated MonALISA services are used
to collect the monitoring data from all
the EVO servers and to maintain the
connectivity tree (minimum spanning
tree) that connects the reflectors. This
tree is used to compute the optimal
routes for the videoconferencing data
streams dynamically, based on infor-
mation about the quality of alternative
possible connections between each
pair of reflectors. If one or more links
goes down or is substantially degrad-
ed, the tree is rebuilt and reoptimized
in real time, making EVO resistant to
failures (see Figure 4).

A second example in which we used
MonALISA was for monitoring and
controlling optical switches and pro-
viding a global service to create on-de-
mand optical paths/trees for end-user
applications.13 The agents use MonAL-
ISA’s discovery layer to “discover” each
other and then communicate among
themselves autonomously, using the
proxy services. Each proxy service can

It is fair to say that
at the beginning
of this project
we underestimated
some of the
potential problems
in developing
a large distributed
system in WAN,
and indeed the
“eight fallacies
of distributed
computing” are
very important
lessons.

practice

september 2009 | vol. 52 | no. 9 | communications of the acm 55

handle more than 15,000 messages per
second, and several such services are
typically used in parallel. This ensures
that communication among the agents
is highly reliable, even at very high mes-
sage-passing rates.

The set of agents is also used to cre-
ate a global path or tree, as it knows the
state and performance of each local
and wide area network link, and the
state of the cross connections in each
switch. The routing algorithm provides
global optimization by considering the
“cost” of each link or cross-connect.
This makes the optimization algorithm
capable of being adapted to handle
various policies on priorities and prer-
eservation schemes. The time to deter-
mine and construct an optical path (or
a multicast tree) end to end is typically
less than one second, independent of
the number of links along the path and
the overall length of the path. If net-
work errors are detected, an alternative
path is set up rapidly enough to avoid
a TCP timeout, so that data transport
continues uninterrupted.

The most laborious part of devel-
oping such global services that try to
control the connectivity in the WAN
is the handling of communication er-
rors. Parts of our environment are in
hybrid networks—some in research
or dedicated networks only and some
reachable from both academic and
commercial networks. Most of the
time everything works as expected and
problems do not occur very frequently.
When they do occur, however, it is im-
portant to understand what’s happen-
ing before acting upon it. In particular,
we would like to discuss two possible
cases of asymmetry in the system.
When this happens only at the routing
level, both sides involved in communi-
cation can reach each other, but by us-
ing different routes—this impacts the
throughput and reliability of the com-
munication, is not hard to detect, and
is usually easy to recover from.

Another more serious problem oc-
curs when different parts of the distrib-
uted framework involved in decisions
have different views of the system. We
had a case where some services in Eu-
rope could not reach the services in
the U.S., while at the same time, some
of them could see all the others. When
you have a partial but consistent view
of the system, you can act locally, but

 Related articles
 on queue.acm.org

Monitoring, at Your Service

Bill Hoffman
http://queue.acm.org/detail.cfm?id=1113335

Modern Performance Monitoring

Mark Purdy
http://queue.acm.org/detail.cfm?id=1117404

Web Services and IT Management
Pankaj Kumar
http://queue.acm.org/detail.cfm?id=1080876

References
1.	 ALICE Collaboration; http://aliceinfo.cern.ch/

Collaboration.
2.	 Caltech High Energy Physics. High Energy Physicists

Set New Record for Network Data Transfer.
Supercomputing 2007 (Reno); http://media.caltech.
edu/press_releases/13073.

3.	 Caltech High Energy Physics. High Energy Physics
Team Sets New Data-Transfer World Records.
Supercomputing 2008 (Austin); http://media.caltech.
edu/press_releases/13216.

4.	 CERN; http://www.cern.ch.
5.	 Default TCP implementation in Linux 2.6 kernels;

http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC.
6.	 EVO Collaboration Network; http://evo.caltech.edu.
7.	 Fallacies of distributed computing; http://

en.wikipedia.org/wiki/Fallacies_of_Distributed_
Computing.

8.	 HPC Wire. Physicists set record for network data
transfer. Supercomputing 2006; http://www.hpcwire.
com/topic/networks/17889729.html.

9.	J ava; http://java.sun.com/.
10.	J ini: http://www.jini.org/.
11.	 MonALISA; http://monalisa.caltech.edu.
12.	 MonALISA Repository for ALICE; http://

pcalimonitor.cern.ch.
13.	 Voicu, R., Legrand, I., Newman, H., Dobre, C., and

Tapus, N. A distributed agent system for dynamic
optical path provisioning. In Proceedings of
Intelligent Systems and Agents (ISA), part of the
IADIS Multi Conference on Computer Science and
Information Systems (Lisbon, 2007).

14.	 WS Notification; http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=wsn.

15.	 XDR; http://en.wikipedia.org/wiki/External_Data_
Representation.

Iosif Legrand is a senior research engineer at Caltech
and the technical lead of the MonALISA project. He
has worked for more than 16 years in high-performance
computing, algorithms, modeling, and simulation,
control and optimization for distributed systems.

Ramiro Voicu is a research engineer at Caltech working
for USLHCNet at CERN, where he was a Marie Curie
fellow. His research interests include global optimization
in distributed systems and high-performance data
transfers.

Catalin Cirstoiu is a software engineer in the finance
industry. He works on parallel and distributed systems,
focusing on reliability, optimizations, and high-
performance issues.

Costin Grigoras is a software engineer in ALICE at
CERN, where he is a fellow. His research interests
include distributed systems monitoring and automated
decision making.

Latchezar Betev is working in the offline team of the
ALICE collaboration at CERN and is responsible for the
operation of the Grid infrastructure of the experiment.
His main interests include large-scale distributed
computing, monitoring, and control of remote systems.

Alexandru Costan is a Ph.D. student and teaching
assistant at the computer science department of
the University Politehnica of Bucharest. His research
interests include grid computing, data storage and
modeling, and P2P systems.

© 2009 ACM 0001-0782/09/0900 $10.00

in this case we reached the conclusion
that the best approach was to stay on
the safe side and not make any deci-
sions. Such problems do not occur fre-
quently in our environment, but it is
really difficult to detect them and avoid
making wrong decisions for the types
of systems we described.

Conclusion
During the past seven years we have
been developing a monitoring plat-
form that provides the functionality to
acquire, process, analyze, and create
hierarchical structures for informa-
tion on the fly in a large distributed
environment. The system is based on
principles that allow for scalability and
reliability together with easing com-
munication among the distributed en-
tities. This approach to collecting any
type of monitoring information in such
a flexible distributed framework can be
used in further developments to help
operate and efficiently use distributed
computing facilities.

It is fair to say that at the begin-
ning of this project we underestimated
some of the potential problems in de-
veloping a large distributed system in
WAN, and indeed the “eight fallacies
of distributed computing” are very im-
portant lessons.7

The distributed architecture we
used, without single points of failure,
proved to offer a reliable distributed
service system. In round-the-clock
operation over the past five years we
never had a breakdown of the entire
system. Replicated major services in
several academic centers successfully
handled major network breakdowns
and outages.

As of this writing, more than 350
MonALISA services are running around
the clock throughout the world. These
services monitor more than 20,000
compute servers, hundreds of WAN
links, and tens of thousands of concur-
rent jobs. Over 1.5 million parameters
are monitored in near real time with an
aggregate update rate of approximately
25,000 parameters per second. Global
MonALISA repositories are used by
many communities to aggregate in-
formation from many sites, properly
organize them for the users, and keep
long-term histories. During the past
year, the repository system served more
than 8 million user requests.	

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1113335
http://queue.acm.org/detail.cfm?id=1117404
http://queue.acm.org/detail.cfm?id=1080876
http://aliceinfo.cern.ch/Collaboration
http://media.caltech.edu/press_releases/13073
http://media.caltech.edu/press_releases/13216
http://www.cern.ch
http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
http://evo.caltech.edu
http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing
http://www.hpcwire.com/topic/networks/17889729.html
http://java.sun.com/
http://www.jini.org/
http://monalisa.caltech.edu
http://pcalimonitor.cern.ch
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn
http://en.wikipedia.org/wiki/External_Data_Representation
http://aliceinfo.cern.ch/Collaboration
http://media.caltech.edu/press_releases/13073
http://media.caltech.edu/press_releases/13216
http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing
http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing
http://www.hpcwire.com/topic/networks/17889729.html
http://pcalimonitor.cern.ch
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn
http://en.wikipedia.org/wiki/External_Data_Representation

september 2009 | vol. 52 | no. 9 | communications of the acm 57

Modern s o ftware is tremendously complicated,
and the methods that teams use to manage its
development reflect this complexity. Though many
organizations use revision-control software to track
and manage the complexity of a project as it evolves,
the topic of how to make an informed choice of

revision-control tools has received
scant attention. Until fairly recently,
the world of revision control was mori-
bund, so there was simply not much to
say on this subject.

The past half-decade, however, has
seen an explosion of creativity in re-
vision-control software, and now the
leaders of a team are faced with a bewil-
dering array of choices.

Concurrent Versions System (CVS)
was the dominant open source revi-
sion-control system for more than a
decade. While it has a number of severe
shortcomings, it is still in wide use as a
legacy system. Subversion, which was
written to supplant CVS, became popu-
lar in the mid-2000s. (Perforce is a nota-

ble commercial competitor to Subver-
sion) Both Subversion and CVS follow
the client-server model: a single central
server hosts a project’s metadata, and
developers “check out” a limited view
of this data onto the machines where
they work.

In the early 2000s, several projects
began to move away from the central-
ized development model. Of the initial
crop of a half-dozen or so, the most pop-
ular today are Git and Mercurial. The
distinguishing feature of these distrib-
uted tools is that they operate in a peer-
to-peer manner. Every copy of a project
contains all of the project’s history and
metadata. Developers can share chang-
es in whatever arrangement suits their

doi:10.1145/1562164.1562183

 Article development led by
 queue.acm.org

All revision-control systems come with
complicated sets of trade-offs. How do you
find the best match between tool and team?

By Bryan O’Sullivan

Making Sense
of Revision-
Control
Systems

I
llu

s
trati

o
n

 b
y

 lea

n

der

 herz

o

g

http://queue.acm.org

58 communications of the acm | september 2009 | vol. 52 | no. 9

practice

these sections as conflicts that need to
be resolved by hand. Whoever resolves
the conflict must choose one branch’s
version, the other, or a hybrid.

Code in one branch may depend on ˲˲

functionality that has changed in the
other branch. In many cases, this de-
pendency will be obvious: it will lead to
a broken build. Sometimes the effects
can be much more insidious, causing
an unanticipated kind of failure.

Some systems do not cope well if ˲˲

files have been renamed or copied in
one branch but modified under their
old names in another. (These are more
often bugs than fundamental deficien-
cies, but longstanding bugs are impor-
tant in their own right.)

Since merges introduce risk beyond
the sort that normal development in-
curs, how a revision-control system
handles both branches and merges
is of great importance. Under Subver-
sion, creating a new branch is a matter
of making a copy of an existing branch,
then checking out a local view of it. Al-
though branches are relatively cheap to
create, Subversion allows several devel-
opers to work concurrently in a single
branch. Since working out of a single
branch carries no immediately obvi-
ous costs, most teams maintain few
branches.

This mode of work introduces a new
risk. Suppose Alice and Bob are con-
currently working on the same files in
a single branch. Subversion treats the
history of a branch as linear: revision
103 follows revision 102 and precedes
revision 104. Alice and Bob have each
checked out a copy of revision 105 of the
branch from the server onto their own
laptops. These working copies contain
their uncommitted work, isolated from
each other until one commits his or her
changes.

If Alice commits her work first, it
will become revision 106. Subversion
will not allow Bob to commit his work
as revision 107 until he has merged his
work with Alice’s revision 106. Since
Bob cannot commit his work, what will
happen if something goes wrong with
his merge? He will have no permanent
record of what he did and faces some
scary possibilities: his work might be
lost or quietly corrupted. Because Sub-
version offers working out of a shared
branch as the path of least resistance,
developers tend to do so blindly with-

needs, instead of through a central
server.

Whether centralized or distributed,
a revision-control system allows mem-
bers of a team to perform a handful of
core tasks:

It allows a team to track the history ˲˲

of the files they work on during the de-
velopment of a project. People can see
who made a change; understand when
and why it was made; inspect the details
of the change; and re-create the state of
the project at the time the change was
made.

People can work on independent ˲˲

subprojects without being disturbed
by other people’s changes and without
affecting the work of their colleagues.
These self-contained lines of develop-
ment are usually referred to as branch-
es. Branches are also used to manage
the maintenance of releases that are no
longer actively developed.

When the work on a subproject is
complete, it can be integrated back into
the larger project. This is referred to as
merging.

Each revision-control tool emphasiz-
es a distinct approach to working and
collaboration. This in turn influences
how a team works. As a result, no revi-
sion-control tool will suit every team:
each tool comes with a complicated set
of trade-offs that can be difficult even to
see, much less to evaluate.

Branches and Merging:
Balancing Safety and Risk
On a large project, managing concur-
rent development is a substantial stick-
ing point. Developers are sadly familiar
with progress on their feature being
stalled by a bug in an unrelated mod-
ule, so they prefer to manage this risk
by working in isolated branches. When
a branch is sequestered for too long,
a different kind of risk arises: that of
teams working in different branches
making conflicting changes to the
same code.

Merging changes from one branch
into another can be frustrating and
dangerous—one that can silently re-
introduce fixed bugs or create entirely
new problems. These risks can arise in
several ways:

Developers working in separate ˲˲

branches may modify the same sections
of one or more files in different ways.
A revision-control system will identify

The major
difference between
Subversion and
the distributed
tools is this:
with Subversion,
committing
a change implicitly
publishes it,
whereas with
the distributed
tools, the two
are decoupled.

practice

september 2009 | vol. 52 | no. 9 | communications of the acm 59

out understanding the risk they face.
In fact, the risks are even subtler: sup-
pose that Alice’s changes do not textu-
ally conflict with Bob’s; she will not be
forced to check out Bob’s changes be-
fore she commits, so she can commit
her changes to the server unimpeded,
resulting in a new tree state that no hu-
man has ever seen or tested.

Mercurial and Git are distributed,
so they lack Subversion’s concept of a
single central server where metadata is
hosted. A repository contains a stand-
alone copy of a project’s complete
history and a working directory that
contains a snapshot of the project’s
files. If Alice and Bob are working to-
gether on a project, Alice might clone
a copy of Bob’s repository, or she could
clone a copy from some server. When
she commits a change, it stays local
to her repository on her machine un-
til she chooses to share it somehow.
She could do this by publishing it to a
server or by letting Bob pull it directly
from her.

Both Mercurial and Git decouple
fetching remote changes from merging
them with local changes. If Bob fetches
Alice’s revisions, he can still commit
his changes without needing to merge
with hers first. When he merges after-
ward, he will still have a permanent re-
cord of his committed changes. If the
merge runs into trouble, he will be able
to recover his earlier work.

Under the distributed view of revi-
sion control, every commit is potential-
ly a branch of its own. If Bob and Alice
start from the exact same view of histo-
ry, and each one makes a commit, they
have already created a tiny anonymous
fork in the history of the project. Neither
will know about this until one pulls the
other’s changes in, at which point they
will have to merge with them.

These tiny branches and merges
are so frequent with Mercurial and Git
that users of these tools look at branch-
ing and merging in a very different way
from Subversion users. The parallel
and branchy nature of a project’s devel-
opment is clearly visible in its history,
making it obvious who made which
changes when, and exactly which other
changes theirs were based upon. Both
Mercurial and Git can associate names
with longer-lived lines of development
(for example, “the code that will be-
come version 2.0”), so a development

that is important enough to deserve a
name can have one.

Degrees of Freedom
It is instructive to take a look at where
Subversion and the distributed tools
give users degrees of freedom. Subver-
sion imposes almost no structure on
the hierarchy of files and directories
that it manages. It lacks the concept
of a branch, beyond what it provides
via the svn copy command. Users find
branches by convention in a portion of
the hierarchy where people agree that
branches ought to live. By convention,
a single “main line of development” is
called /trunk, and branches live under
/branches.

Since Subversion doesn’t enforce
a policy for structuring branches, it
has some interesting behaviors. To
perform an operation across an entire
branch, you have to know where in
the namespace the root of the branch
is. Most Subversion commands oper-
ate only on whatever portion of the
namespace they are told to. If Alice has
checked out /branches/myfeature and
runs svn commit in her working copy
of /branches/myfeature/deep/sub/dir,
she will commit changes only in and
beneath the deep/sub/dir directory of
the branch. An absentminded commit
from the wrong directory can leave Al-
ice thinking that everything is fine but
leave her colleagues with an inconsis-
tent, broken tree.

The svn update command operates
in the same way: it is possible to have
portions of a working copy synced up to
different revisions of a branch’s history.
This can easily lead to a working copy
looking inconsistent when in fact it is
accidentally composed of fragments
from different times in a branch’s his-
tory.

In contrast, the distributed tools
treat the entire contents of a repository
as the unit to work with. If you run git
commit -a in any directory inside a re-
pository, it will take a snapshot of all
outstanding changes. With Mercurial,
hg update operates similarly, bring-
ing the entire working directory up to
date with respect to a specific point in
history. Neither tool makes it possible
to check out an inconsistent view of a
branch accidentally. If you manually re-
vert a file or directory to some specific
revision, the user interfaces make this

clear by displaying the affected files as
modified.

Publishing Changes
Even though Subversion does not im-
pose a structure on projects that use
branches, it suggests a convention for
naming branches. Thus, Subversion
users who collaborate through a cen-
tral server are likely to have an easy time
finding each other’s projects. Both Mer-
curial and Git make it fairly easy to pub-
lish a read-only repository on a server,
but the repository’s owner has to tell
other people where the repository is:
it could be anywhere on the Internet,
not merely a well-known location on a
single server host. In addition, neither
system makes read-write publishing es-
pecially easy. This is by design.

Subversion’s single-server model
demands that collaborators who want
to share changes with other people
must have write access to the shared
repository, so that they may publish
their changes. With Git and Mercurial,
it is certainly possible to follow this
centralized model, but this is a matter
of convention. Users often host their re-
positories on their own servers or with a
hosting provider. Instead of publishing
their changes to a shared server, their
collaborators pull changes from them
and publish their own modifications
elsewhere.

The major difference between Sub-
version and the distributed tools is this:
with Subversion, committing a change
implicitly publishes it, whereas with
the distributed tools, the two are de-
coupled. Combining committing with
publishing is convenient in settings
where all participants have write access
to the server and where everyone is al-
ways connected to the same network.
Separating the two adds an extra publi-
cation step but opens up the possibili-
ties of working offline and using novel
publication techniques.

For an example of novel publication,
Mercurial supports ad hoc publication
of repositories over a LAN using its
built-in Web server, and it supports dis-
covery of repositories using the Bonjour
protocol. This is a potent combination
for rapid development settings such as
a software project’s sprint: just open
your laptop, share your repositories,
and your Wi-Fi neighbors can find and
pull your changes immediately, with no

60 communications of the acm | september 2009 | vol. 52 | no. 9

practice

the bug, and the revision that you know
does have the bug. It then checks out a
revision and asks you whether that re-
vision contains the bug; it repeats this
until it identifies the revision where the
bug first arose.

This is appealing to developers in
part because it is easy to automate.
Write a tiny script that builds your
software and tests for the presence of
the bug; fire off a bisect; then come
back later and find out which revision
introduced the problem, with no fur-
ther manual intervention required. The
other reason that bisect is appeal-
ing is that it operates in logarithmic
time. Tell it to search a range of 1,000
revisions, and it will ask only about 10
questions. Widen the search to 10,000
revisions, and the number of questions
increases to just 14.

It would be difficult to overempha-
size the importance of bisect. Not
only does it completely change the way
that you find bugs, but if you routinely
drive it using scripts, you’ll have effec-
tively developed regression tests on the
fly, for free. Save those tests and use
them!

The wily reader will observe that
searching the commit history is much
easier with Subversion than with the
distributed tools, since its history is
much more linear. The counterpoint
to this is that the bisect command
is built into the other tools, and hence
more readily available and amenable to
reliable automation.

Daggy Fixes and Cherry-Picking
Once you have found a bug in a piece
of software, merely fixing it is rarely
enough. Suppose that your bug is sever-
al years old, and there are three versions
of your software in the field that need
to be patched. Each version is likely to
have a “sustaining” branch where bug
fixes accumulate. The problem is that
although the idea of copying a fix from
one branch to another is simple, the
practice is not so straightforward.

Mercurial, Git, and Subversion all
have the ability to cherry-pick a change
from one branch and apply it to an-
other branch. The trouble with cherry-
picking is that it is very brittle. A change
doesn’t just float freely in space: it has
a context—dependencies on the code
that surrounds it. Some of these depen-
dencies are semantic and will cause

server infrastructure required.
Both the centralized and distributed

approaches to publication offer trade-
offs. With a small, tightly knit team that
is always wired, commit-as-publish can
look like an easier choice. In a more
loosely organized setting—for example,
where team members travel or spend a
lot of time at customer sites—the de-
coupling of commit from publication
may be a better fit.

Centralized tools can be a good fit
for highly structured “rule the team
with an iron fist” models of manage-
ment. Access can be controlled by man-
agers, not peers. Whole sections of the
tree can be made writable or readable
only by employees with specific levels
of clearance. Decentralized systems
don’t currently offer much here other
than the ability to split sensitive data
into separate repositories, which is a
touch awkward.

The Pull Model of Development
Many teams begin using a distributed
revision-control system in almost exact-
ly the same way as the centralized sys-
tem they are replacing. Everyone clones
one of a few central repositories and
pushes the changes back. This familiar
model works well for getting comfort-
able, but it barely scratches the surface
of the possible styles of interaction.

Since the distributed model em-
phasizes pulling changes into a local
repository, it naturally fits well with a
development model that favors code
review. Suppose that Alice manages the
repository that will become version 2.4
of her team’s software project. Bob tells
her that he has some changes ready
to submit and gives her the URL from
which she can pull his changes. When
she reads through his changes, she no-
tices that his code doesn’t handle error
conditions correctly, so she asks him to
revise his work before she will accept,
merge, and publish it.

Of course, a team may agree to use
a “review before merge” policy with a
centralized system, but the default be-
havior of the software is more permis-
sive. Therefore, a team has to take ex-
plicit steps to constrain itself.

Merges, Names, and
Software Archaeology
Given their backgrounds, it is no sur-
prise that Mercurial and Git have simi-

lar approaches to merging changes,
whereas Subversion does things dif-
ferently.

Since merges occur so frequently
with Mercurial and Git, they have well-
engineered capabilities in this realm.
The typical cases that trip up revision-
control systems during merges are files
and directories that have been renamed
or deleted. Both Mercurial and Git han-
dle renames cleanly.

Subversion’s merge machinery is
complicated and fragile. For example,
files that had been renamed used to
disappear in merges. This severe bug
has been partly addressed so that files
are now renamed, but they may contain
the wrong contents. It is not clear that
this is really a step forward.

A subtler problem with file naming
often hits cross-platform development
teams. Windows, OS X, and Unix systems
have different conventions for handling
the case of file names (such as, different
answers to the question of whether FOO.
TXT is the same name as foo.txt). Mer-
curial outshines its competition here.
It can detect—and work safely with—a
case-insensitive file system that is being
used on an operating system that is by
default sensitive to case.

Often, a developer’s first response
to receiving a new bug report will be to
look through a project’s history to see
what has changed recently or to anno-
tate the source files to see who modi-
fied them and when. These operations
are instantaneous with the distributed
tools, because all the data is stored on a
developer’s computer, but they can be
slow when run against a distant or con-
gested Subversion server. Since humans
are impatient creatures, extra wait time
will reduce the frequency with which
these useful commands are run. This
is another way in which responsiveness
has a disproportionate effect on how
people use their software.

A Powerful New Way to Find Bugs
Although a simple display of history is
useful, it would be far more interesting
to have a way of pinpointing the source
of a bug automatically. Git introduced a
technique to do so via the bisect com-
mand (which proved so useful, Mer-
curial acquired a bisect command
of its own). This technique is trivial to
learn: you use the bisect command on
a revision that you know did not have

practice

september 2009 | vol. 52 | no. 9 | communications of the acm 61

change to be cherry-picked cleanly but
to fail later. Many dependencies are
simply textual: someone went through
and changed every instance of the word
banana to orange in the destination
branch, and a cherry-picked change
that refers to bananas can no longer be
applied cleanly.

The usual approach when cherry-
picking fails because of a textual prob-
lem (sadly, a common occurrence) is to
inspect the change by eye and reenter
it by hand in a text editor. Distributed
revision-control systems have come up
with some powerful techniques to han-
dle this type of problem.

Perhaps the most powerful ap-
proach is that taken by Darcs, a dis-
tributed revision-control system that
is truly revolutionary in how it looks at
changes. Instead of a simple chain or
graph of changes, Darcs has a much
more powerful theory of how changes
depend on each other. This allows it to
be enormously more successful at cher-
ry-picking changes than any other dis-
tributed revision-control system. Why
isn’t everyone using Darcs, then? For
years, it had severe performance prob-
lems that made it completely impracti-
cal. These have been addressed, to the
point where it is now merely quite slow.
Its more fundamental problem is that
its theory is tricky to grasp, so two devel-
opers who are not immersed in Darcs
lore can have trouble telling whether
they have the same changes or not.

Let us return to the fold of Mercu-
rial and Git. Since these tools offer the
ability to make a commit on top of any
revision, thereby spawning a tiny anon-
ymous branch, a viable alternative to
cherry-picking is as follows: use bisect
to identify the revision where a bug
arose; check out that revision; fix the
bug; and commit the fix as a child of the
revision that introduced the bug. This
new change can easily be merged into
any branch that had the original bug,
without any sketchy cherry-picking an-
tics required. It uses a revision-control
tool’s normal merge and conflict-reso-
lution machinery, so it is far more re-
liable than cherry-picking (the imple-
mentation of which is almost always a
series of grotesque hacks).

This technique of going back in his-
tory to fix a bug, then merging the fix
into modern branches, was given the
name “daggy fixes” by the authors of

Monotone, an influential distributed
revision-control system. The fixes are
called daggy because they take advan-
tage of a project’s history being struc-
tured as a directed acyclic graph, or
dag. While this approach could be used
with Subversion, its branches are heavy-
weight compared with the distributed
tools, making the daggy-fix method less
practical. This underlines the idea that
a tool’s strengths will inform the tech-
niques that its users bring to bear.

Strengths of Centralized Tools
One area where the distributed tools
have trouble matching their centralized
competitors is with the management of
binary files, large ones in particular. Al-
though many software disciplines have
a policy of never putting binary files
under the management of a revision-
control system, doing so is important
in some fields, such as game develop-
ment and EDA (electronic design auto-
mation). For example, it is common for
a single game project to version tens of
gigabytes of textures, skeletons, anima-
tions, and sounds. Binary files differ
from text files in usually being difficult
to compress and impossible to merge.
Each of these brings its own challenges.

If a moderately large binary file is
stored under revision control and mod-
ified many times, the space needed to
store each revision can quickly become
greater than the space required for all
text files combined. In a centralized
system, this overhead is paid only once,
on the central server. With a distrib-
uted system, each repository on every
laptop will have a complete copy of that
file’s history. This can both ruin perfor-
mance and impose an unacceptable
storage cost.

When two people modify a binary
file, for most file formats there is no way
to tell what the differences are between
their versions of the file, and it is even
rarer for software to help with resolving
conflicts between their respective mod-
ifications. As a way of avoiding merging
binary files, centralized systems offer
the ability to lock files, so that only one
person can edit a file in a given branch
at any time. Distributed systems cannot
by their nature offer locking, so they
must rely on social norms (for example,
a team policy of only one person ever
modifying certain kinds of files).

Relative to its distributed counter-

Choosing a revision-
control system
is a question with
a surprisingly
small number of
absolute answers.
The fundamental
issues to consider
are what kind of
data your team
works with, and
how you want
your team members
to interact.

62 communications of the acm | september 2009 | vol. 52 | no. 9

practice

There are also many second-order
considerations. For example, firewall
management may be an issue: Mer-
curial and Subversion work well over
HTTP and with SSL (Secure Sockets
Layer), but Git is unusably slow over
HTTP. For security, Subversion of-
fers access controls down to the level
of individual files, but Mercurial and
Git do not. For ease of learning and
use, Mercurial and Subversion have
simple command sets that resemble
each other (easing the transition from
one to the other), whereas Git exposes
a potentially overwhelming amount of
complexity. When it comes to integra-
tion with build tools, bug databases,
and the like, all three are easily script-
able. Many software development tools
already support or have plug-ins for
one or more of these tools.

Given the demands of portability,
simplicity, and performance, I usually
choose Mercurial for new projects,
but a developer or team with different
needs or preferences could legitimately
choose any of them and be happy in the
long term. We are fortunate that it is
easy to interoperate among these three
systems, so experimentation with the
unknown is simple and risk-free.

Acknowledgments
I would like to thank Bryan Cantrill,
Eric Kow, Ben Collins-Sussman, and
Brendan Cully for their feedback on
drafts of this article.	

 Related articles
 on queue.acm.org

A Conversation with Steve Bourne, Eric
Allman, and Bryan Cantrill
http://queue.acm.org/detail.cfm?id=1454460

Distributed Development: Lessons Learned

Michael Turnlund
http://queue.acm.org/detail.cfm?id=966801

Kode Vicious Strikes Again
http://queue.acm.org/detail.cfm?id=1036484

References
1.	 Löh, A., Swierstra, W., Leijen, D. A principled approach

to version control, 2007; http://people.cs.uu.nl/andres/
VersionControl.html.

Bryan O’Sullivan is an Irish hacker and writer based
in San Francisco. His interests include functional
programming, HPC, and building large distributed
systems. He is the author of the Jolt Award-winning Real
World Haskell (2008) and Mercurial: The Definitive Guide
(2009), both published by O’Reilly.

© 2009 ACM 0001-0782/09/0900 $10.00

parts, a centralized tool will make the
history of a branch appear more linear.
Whether this is a strength or a weakness
seems to be a matter of perspective. A
more linear history is easier to under-
stand, and so requires less revision-
control sophistication from developers.
On the other hand, a history containing
numerous small branches and merges
more accurately reflects the true history
of a project and makes it clearer which
project state a team member’s code
was based on when working. For teams
that prefer to keep project history tidy,
both Git and Mercurial offer rebase
commands that can turn the chaotic
history of a feature into a neater col-
lection of logical changes, more suited
to an eventual merger into a project’s
main branch.

Centralized tools can offer policy
advantages that are more difficult to
achieve with distributed tools. For
example, it is possible to configure a
pre-commit script that will reject an
attempted commit if it introduces an
automated test-suite failure. With a dis-
tributed tool, this kind of check can be
put in place on a shared central server,
but that cannot protect developers from
sharing inadvertently broken changes
with each other horizontally, from one
laptop to another.

What Behaviors Does a
Distributed Tool Change?
The availability of cheap local commits
makes the use of a rapid-fire style of de-
velopment attractive with distributed
tools. Suppose Alice is partway through
a complicated change and decides
that she wants to speculatively refac-
tor a piece of code. With a distributed
tool, she can commit her change as is,
without worrying too much whether
the project is in a sane state, and try her
speculative change. If that experiment
fails, she can revert it and continue on
her way, eventually using the rebase
command to eliminate some of the in-
progress commits she made while she
figured out what she was doing.

While this style of development is
certainly possible with Subversion,
experience suggests that it is far more
common with the distributed tools.
My conjecture is that the privacy of a
branch on a developer’s laptop, coupled
with the instantaneous responsiveness
of the distributed tools, somehow com-

bine to encourage more aggressive and
pervasive use of revision control.

I have observed a similar effect with
merges. Because they are such bread-
and-butter activities with distributed
tools, in many projects they occur far
more frequently than with their cen-
tralized counterparts. Although all
merges require effort and incur risk,
when branches merge more frequently,
the merges are smaller and less peril-
ous. Ask any seasoned developer about
a long-delayed merge following a few
months of isolated work, and watch the
blood drain out of his or her face.

What the Future Offers
We are not by any means near the end
of the road in the evolution of revision-
control systems. The field has received
only fitful attention from academia.
Much work could be done on its for-
mal foundations, which could lead to
more powerful and safer ways for de-
velopers to work together. Alas, I know
of only one notable publication on the
topic in the past decade.1 As a simple
example, when merging potentially
conflicting changes, almost everybody
uses either three-way merging, which
is decades old, or unpublished ad hoc
approaches in which there is little rea-
son to be confident.

More practically, there are plenty of
advances to be made in the way that
distributed tools handle large projects
with deep histories, for which they are
a poor fit because of the volume of data
involved. For organizations that have
sensitive needs around assurance and
security, the centralized tools do some-
what better than the distributed ones,
but both could improve substantially.

Conclusion
Choosing a revision-control system is
a question with a surprisingly small
number of absolute answers. The fun-
damental issues to consider are what
kind of data your team works with, and
how you want your team members to in-
teract. If you have masses of frequently
edited binary data, a distributed revi-
sion-control system may simply not
suit your needs. If agility, innovation,
and remote work are important to you,
the distributed systems are far more
likely to suit your needs; a centralized
system may slow your team down in
comparison.

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1454460
http://queue.acm.org/detail.cfm?id=966801
http://queue.acm.org/detail.cfm?id=1036484
http://people.cs.uu.nl/andres/VersionControl.html
http://people.cs.uu.nl/andres/VersionControl.html

acmqueue is guided and written by

distinguished and widely known industry

experts. The newly expanded site also offers

more content and unique features such as

planetqueue blogs by queue authors who

“unlock” important content from the ACM Digital

Library and provide commentary; videos;

downloadable audio; roundtable discussions;

plus unique acmqueue case studies.

acmqueue provides a critical perspective

on current and emerging technologies by

bridging the worlds of journalism and peer

review journals. Its distinguished Editorial Board of experts makes sure that acmqueue's high

quality content dives deep into the technical challenges and critical questions software engineers

should be thinking about.

Visit today!

http://queue.acm.org/

BLOGS ARTICLES COMMENTARY CASE STUDIES MULTIMEDIA RSSCTO ROUNDTABLES

acmqueue has now moved completely online!

queue_CACM_ad.qxp:acmqueue 7/30/09 5:14 PM Page 1

http://queue.acm.org/

64 communications of the acm | september 2009 | vol. 52 | no. 9

contributed articles
doi:10.1145/1562164.1562185

Mining the wisdom of the online crowds
generates music business intelligence,
identifying what’s hot and what’s not.

by Varun Bhagwan, Tyrone Grandison, and Daniel Gruhl

incorporating the Web, online com-
munities, and social networks. It en-
ables the capture of what’s hot and
what’s not on the Web while tracking
the popularity of emerging records
and artists in real time. It allows the
music industry to keep tabs on the de-
mographic it considers most impor-
tant and for the public to quickly learn
about new music.

Music charts are useful decision-
support tools that influence the vis-
ibility and success of artists, as well as
help calculate their financial rewards.
Popularity drives radio and television
programming decisions concerning
the music to be covered, the resources
to be allocated, and the premiums ul-
timately paid to artists and their repre-
sentatives. These charts are critical to
the continued success of musicians, as
well as music-industry professionals.

Since the late 1990s, the Web has
emerged as the most popular medium
for young people worldwide. Hun-
dreds of millions of users have moved
to the Web to listen to music, explore
new music, and purchase individual
songs, ringtones, records, and albums.
In fact, 48% of teens in the U.S. did not
buy a single CD in 2007, up from 38% in
2006.12 Thus, traditional music charts
are losing their relevance and appeal
to their key demographics.15,16 Recog-
nizing this long-term business and
cultural trend, music-chart-generating
organizations have begun to incorpo-
rate digital streams, but these streams
still make up only a small proportion
of the data reflected in the charts. In
summer 2009, Apple’s iTunes, which
sells digital singles downloads, was
the largest music retailer in the U.S. in
terms of revenue.

In the U.S., Billboard (http://www.
billboard.com) has published the Bill-
board Hot 100 music charts every week
since 1958 (http://www.billboard.com/
bbcom/charts/chart_display.jsp?g
=Singles&f=The+Billboard+Hot+100).
In the U.K, the British Broadcasting
Corporation (BBC) has published its
Top of the Pops (http://www.bbc.co.uk/
totp/) music charts since 1964. Simi-

How music charts are created has remained relatively
the same for the past 50 years despite dramatic shifts
in the industry’s underlying business, technological,
market, and cultural assumptions. The charts, which
are generated and published periodically, are based
largely on retail sales and radio-listener statistics.
However, one of the most significant demographics for
the industry—the teen market—has notably altered its
new-music-consumption behavior due to the recent
availability of online content and digital downloads.
This phenomenon is recognized by chart creators
eager to incorporate these observations into corporate
marketing strategies in order to stay relevant to the
younger generation and generate sales.

The Sound Index system demonstrates a new
way to measure popularity in the world of music by

Sound Index:
Charts For
the People,
By the People

http://www.billboard.com
http://www.billboard.com/bbcom/charts/chart_display.jsp?g=Singles&f=The+Billboard+Hot+100
http://www.bbc.co.uk/totp/
http://www.billboard.com
http://www.billboard.com/bbcom/charts/chart_display.jsp?g=Singles&f=The+Billboard+Hot+100
http://www.billboard.com/bbcom/charts/chart_display.jsp?g=Singles&f=The+Billboard+Hot+100
http://www.bbc.co.uk/totp/

september 2009 | vol. 52 | no. 9 | communications of the acm 65

lar charts are published in many other
countries. As an examplar, and without
loss of generality, we detail here how
Billboard generates its charts, high-
lighting the reasons for their diminish-
ing relevance.

Traditional charts. Billboard captures
data from multiple sources to pro-
duce a composite ranking of individ-
ual songs, aka singles. Its two primary
sources are Nielsen Soundscan (http://
www.soundscan.com/) and Broadcast
Data Systems (http://www.bdsonline.
com/). Soundscan tracks sales data
in real time across the U.S. and Cana-
da. Because not all retail stores have
Soundscan-enabled cash registers,
the data retrieved from these systems
represents only a limited set of total
sales. However, even this limited set
is an improvement over the previous
mechanism used by Billboard—mak-

ing thousands of individual telephone
calls to stores across the U.S. to ask
about sales.

Broadcast Data Systems collects
Billboard radio-listener statistics gath-
ered from companies contracted by
Billboard to contribute to the chart of
radio airplay. Thus, not all radio air-
plays are captured. Once the data is
captured from Soundscan and Broad-
cast Data Systems, it is weighted by Ar-
bitron statistics (http://www.arbitron.
com/) and compiled by asking a ran-
dom sample of the key demographic
to maintain a written diary describ-
ing each radio program listened to
between the hours of 6 a.m. and mid-
night over a period of a few months as
set by Arbitron. Each diary is returned
to Arbitron by postal mail; Arbitron
publishes a complete set of its statis-
tics four times per year.

In the past few years, Billboard has
moved to incorporate data from digital
downloads and the like, but it still con-
stitutes only a small percentage (about
5%) of the chart’s total points.10

Concerns. The music industry’s de-
sire to promote and sell new music
and remove long-running singles from
charts has led to the fact that the older
singles that consumers are still inter-
ested in are completely ignored in the
charts. Music charts also lack a clear
way to handle the rerelease of singles
and gauge interest in music that gains
popularity over a long period through
word of mouth. Another issue with the
historic chart-generation process is
that there is no measure for the lead-
up to the release of albums or singles.
Though consumers may discuss an
upcoming album release for days, the
charts do not reflect this conversation.

ART TK

I
llu

s
trati

o
n

 b
y

 s
tudi

o

 t
o

n
n

e

http://www.soundscan.com/
http://www.bdsonline.com/
http://www.arbitron.com/
http://www.soundscan.com/
http://www.bdsonline.com/
http://www.arbitron.com/

66 communications of the acm | september 2009 | vol. 52 | no. 9

contributed articles

forms the data into a standard schema.
The now-structured content is then
stored in the system’s database. Final-
ly, the system generates music charts by
applying relevant ordering schemes.

Ingestion. In an ideal world, social
networking data, comments, and click
streams would all have a common
format that sites publish, facilitating
easy download and integration of in-
formation. However, most sites lack
functional application programming
interfaces (APIs). As a result, screen
scrapinga is the rule for data ingestion,2

problematic because screen scrapers
are susceptible to (even fairly minor)
changes in Web sites. Unfortunately,
these changes are common, as sites
strive to stay fashionable in an ever-
changing cultural and business envi-
ronment.

Screen scrapers also require a fair
amount of monitoring and mainte-
nance. They need to log into sites and
download necessary content (such as
comments and view counts), trans-
forming it into a simple format, nor-
mally just a collection of running text
comments broken out (with markup
removed) for further processing.

Some sites provide really simple
syndication-typeb feeds that are espe-
cially useful for ingesting aggregated
data (such as total listens for a particu-
lar song). Sound Index uses a combina-
tion of screen scrapers, RSS feeds, and
APIs to ingest content based on the
quality and reliability of each ingestion
method for a given site.

Providing a reliable stream of data,
even from sites that are flaky and un-
trustworthy, is critical to Sound Index
success. As such we have developed a
suite of tools and techniques to deal
with common error conditions and
quickly identify exotic ones and bring
them to the operator’s attention. In ad-
dition to the sanity-checking of values,
the system monitors a number of bulk
statistics on the streams themselves
at each step in the processing. This
monitoring allows the system to detect
when, say, the quantity of documents
entering the database from MySpace

a	 Screen scraping extracts data from machine-
and display-friendly code.

b	 RSS is a family of Web-feed formats used to
publish frequently updated works (such as
blog entries, news headlines, audio, and video)
in a standard format.

As a result, the all-time Billboard record
for single-week upward movement has
been broken five times since 2006.

Meanwhile, the possibility of a new
payola scandal continues to haunt
radio stations and record-company
executives. This illegal marketing
phenomenon involves record labels
paying radio stations and/or disc jock-
eys broadcasting, and more recently
streaming, records as part of a normal
day’s broadcast. U.S. federal law made
the practice illegal in 1934, yet as of
summer 2009, major record labels, in-
cluding Clearchannel, CBS Radio, EMI,
Sony BMG, Universal Music, and War-
ner Music, have come under federal
investigation and in some cases had to
pay tens of millions of dollars in fines
and settlements. As radio airplay is a
major component of the music charts
and perceived popularity, these inves-
tigations in turn raise concerns about
the validity of the traditional music
charts themselves.

In order to address these issues and
incorporate today’s increasingly popu-
lar platform for music consumption,
the Web, the music-charts industry
must keep evolving or be left behind.

Solution
The Sound Index system catalogs the
hottest artists and tracks being talked
about on the Web. Incorporating “lis-
tens,” plays, downloads, sales, and
comments from a multitude of online
communities and social networks, it
provides a current view of popular mu-
sic content online; the associated fil-
tering enables customized views of the
data to learn about, say, new tracks in a
particular genre of interest.

The system can be divided into four
distinct parts (see Figure 1), leveraging
technology called MONitoring Global
Online Opinions via Semantic Extrac-
tion, or MONGOOSE (http://www.al-
maden.ibm.com/cs/projects/iis/mon-
goose/). The first, ingestion, is the act
of gathering relevant unstructured and
structured content from various Web
sites (such as Bebo, Google Groups,
iTunes, LastFM, MySpace, and You-
Tube). These sources were chosen
because the BBC’s review team of mu-
sic-domain experts identified them as
relevant and important to identifying
the tastes of its target demographic—
teens. The system analyzes and trans-

Sound Index relies
on broken-English-
text analytics
technology,
techniques
for integrating
information from
different modalities,
and ranking
technologies.

http://www.almaden.ibm.com/cs/projects/iis/mongoose/
http://www.almaden.ibm.com/cs/projects/iis/mongoose/
http://www.almaden.ibm.com/cs/projects/iis/mongoose/

contributed articles

september 2009 | vol. 52 | no. 9 | communications of the acm 67

is, say, half of what it was yesterday. The
system then spot-checks the crawler
statistics; if it sees the number of docu-
ments fetched per hour has decreased,
some kind of format change is likely
preventing the low-level parsers from
correctly splitting the comments out
of the discussion pages. While these
bulk statistics don’t tell the operator
or Sound Index itself why something is
not working, they are quite effective at
helping reveal when something is not
working.

Sound Index automates simple cor-
rective actions, including killing and
restarting fetchers and flushing do-
main name system cachesc to correctly
identify changes in, say, the targeted
servers being crawled. Developing and
automating these solutions is criti-
cal, as they reduce the need for early-
morning service calls to system admin-
istrators. Sound Index uses Nagiosd to
monitor all aspects of the system’s per-
formance, raising flags over problems
(such as no data in the ingest feed and
database-connection errors). Alba et
al.2 detailed additional challenges af-
fecting Sound Index data access.

Processing. All acquired data must
be “cleaned” before it undergoes pro-
cessing and analysis. For example,
the cleaning of structured data gen-
erally consists of a few sanity checks.
For numeric data (such as total video
views), which is expected to constantly
increase, the system checks whether
fewer total mentions were made today
compared to yesterday. If they were,
the implication is a negative number of
views and something clearly in error.

Sound Index might report that there
were zero views during this period rath-
er than a clearly broken number for
upstream processing, a scenario that
is surprisingly frequent in the music
domain. Also, some sources perform
corrections that result in big jumps in
structured numbers. As Sound Index re-
ports data every six hours (some source
numbers are updated every week), the
system’s developers incorporated tech-
niques for smoothing these numbers.

A major challenge in developing the

c	 DNS is the hierarchical naming system for
Internet resources; its caches help route, re-
solve, and link domains to IP addresses.

d	 Nagios (http://www.nagios.org/) is open
source network-monitoring software.

appear with some frequency. A good
example is the comment “U R 50 Bad.”
Parsing it is a complex, multi-step pro-
cess. First, common variants must be
rewritten into their more common Eng-
lish equivalents; for example, numbers
as substitutions for letters must be re-
versed and texting abbreviations ex-
panded. This technique results in “You
are so bad” as the comment. The next
step employs a feed of common slang
expressions from sources like Urban
Dictionary (http://www.urbandiction-
ary.com/) to rewrite slang. This gets the
system to “You are very good.”

Sound Index must also identify am-
biguous references. To do so it looks
at all possible artists for “You.” If it ap-
pears on a fan page for, say, Amy Wine-
house, the system would conclude that
she is the artist most likely being men-
tioned. The final parsed comment be-
comes “Amy Winehouse is very good,”
a specific mention of an artist with a
positive sentiment.

The system then examines the de-
mographic data for the poster (if avail-
able), perhaps determining that the
poster is a 17-year-old female in the
U.K. This data is tallied as a single men-
tion, positive, for Amy Winehouse, by
a user with said demographics. Each
such data point serves as a dimension
for aggregation in a subsequent step.

Resolving entity ambiguity is a ma-

system was figuring out how to elimi-
nate “spam” from comment streams.
Popular artists draw many visitors, a
fact advertisers are quick to capitalize
on. Up to 50% of a popular artist’s com-
ments are what could be considered
spam (ranging from the blatant “Check
out my page <URL>” to the relatively
subtle “If you like this artist you will
love <URL>” to the simply off topic “I
like ducks!”). As they are not music-re-
lated expressions, Sound Index needs
to be able to remove them from the
tally; otherwise they could easily domi-
nate (and distort) the results.

The Sound-Index topic-detection
methodology accounts for whether a
post is on- or off-topic, with the latter
consisting of spam or nonsense posts.
Employing a combination of template
spotting for extremely common spam
phrases and a domain dictionary, it
identifies the presence or absence of
music-related terminology. This ap-
proach provides reasonable spam
identification, down to where it has vir-
tually no effect on relative counts. For
on-topic posts, Sound Index extracts
the relevant noun phrases, as well as
the associated sentiment.

The issue of how to identify and re-
move spam is even more challenging
due to unstructured data. Especially in
the music domain, slang and nontypi-
cal spellings and linguistic constructs

Figure 1. Sound Index data flow.

Transliteration

Spam Filter

Profanity Filter

Sentiment

…

C
raw

lers

S
ound Index

System Data Flow

Source

Source

Source

…

Database

Data Ingest
Fetch data
from Web sites,
boards, blogs.

Annotators
Process
incoming
content and
add annotations.

Join and Upload
Perform joins
on the data
and prepare
for upload.

Front-end
Data presented based
on the preferences of
target demographics.

http://www.urbandictionary.com/
http://www.nagios.org/
http://www.urbandictionary.com/

68 communications of the acm | september 2009 | vol. 52 | no. 9

contributed articles

Data fusion for user interface genera-
tion. All data that is cleaned and assem-
bled (into a DB2 database) must still be
coalesced to create a chart, a process
that is difficult in practice, as well as in
theory. How does one combine men-
tions of an artist on a discussion board
with listens from an online radio ser-
vice and views of a parody of the artist’s
recent video? The various methods for
creating such combinations can all
be viewed as a kind of “voting” of the
results of different modalities and are
thus amenable to examination via vot-
ing theory. To do so, the system must
first enumerate the desiderata of the
data-combination system. In discus-
sion with subject-matter experts we
developed several criteria for combin-
ing music-popularity data:

Artists or tracks with broad sup-˲˲

port across the sources should do well
in the ranking, reflecting “the wisdom
of the crowds”;

Artists high on one source for a ˲˲

day and not on other sources should
not be allowed to dominate the chart.

jor challenge in chart creation. Many
song titles (such as those beginning
with “The”) are difficult to spot without
undergoing at least shallow parsing,
a task complicated by the nontypical
grammatical structures often seen in
the music domain. Sound Index uses a
combination of context clues, domain
knowledge, and poster/venue history
to track “activation” of concept nodes
in a domain ontology, using these acti-
vation levels to resolve the ambiguities
to the greatest extent possible. This is
an area of continuing research, as cur-
rent implementations are simple and
error-prone with more difficult resolu-
tions, especially in cases where a band
is implied by a band member with an
interesting nickname (such as “The
Edge” implies “U2”).

Ultimately, Sound Index converts
each data element into a row of demo-
graphic data about the poster, as well
as the unique ID of any track, album, or
artist mentioned, along with a notion
of whether the comment is positive or
negative.

This is a response to the common
phenomenon whereby a group or-
ganizes a “flash mob” to post on the
same day, usually in support of a new
album to drive the band up the charts
of a particular site. This anti-flooding
criterion involves gaming resistance,
enabling the system to handle users
trying to influence or skew the charts
in a particular direction;

All sources must contribute to the ˲˲

final chart with no single source al-
lowed to dominate. Thus, the dispar-
ity between counts (particularly due to
differences in population size) of, say,
iTunes sales and YouTube views must
be reconciled; and

The final results must be amena-˲˲

ble to subsetting or customizable user-
driven filtering; therefore, subcharts
highlighting specific genera or demo-
graphics must be constructable, mak-
ing it possible to produce personalized
music charts.

Voting theory provides two broad
classes of ways to combine these re-
sults. First is to tally the votes, per-
haps through weighting; the artist or
track with the most votes (plurality) is
at the top of the charts. Naively count-
ing votes is problematic, as various
sources provide very different num-
bers; for example, sales numbers are
usually much lower than views. And
determining the relative importance of
various modalities (such as purchases,
listens, views, and posts) is subjective.
Approaches like normalizing sources
so their top selection is number one
and weighting and combining might
be the best that can be done through
this approach. As long as the weights
are constantly considered for changes
in source popularity and the “pulsed”
nature of errors in some sources is ac-
ceptable, the normalization approach
reflects the important advantage of be-
ing fairly transparent. As any chart is
subject to scrutiny, transparency may
thus be worth the high manual cost of
tracking and tuning weights.

Second is merging ranked lists,
whereby each source creates a ranked
list of its top-n choices. These lists are
then combined without consideration
of the “votes” assigned to them. For ex-
ample, in Borda Counts,4 each #1 vote
is worth n points, #2 is worth n minus
1 points, and so on. However, it suffers
when n is very large and the number

Figure 2. Screenshot of the Sound Index interface from the BBC Sound Index Web
site (May 7, 2008).

http://amazon.com

contributed articles

september 2009 | vol. 52 | no. 9 | communications of the acm 69

of voters is small, the reverse of typi-
cal elections but historically the case
for music charts. In this approach, as
n gets larger, the difference in effect
between n and n minus 1 becomes rela-
tively small. For this list, we found that
the Nauru voting method3 (first place
gets 1 point, second place 1/2 point,
third place 1/3 point, and so on) is bet-
ter at highlighting top picks. However,
it is somewhat aggressive in that items
ranking high on one list might also
tend to dominate the overall chart. We
thus introduced a variant, p, to give the
system more control over this poten-
tially skewed result. The score of an art-
ist or track at position n thus becomes

score(n) =
1

p
√n

As p varies up, that is, the system re-
views entries lower on the list (such as
songs at position 499 and 789) and the
need for broad support becomes more
pronounced. Empirical evidence sug-
gests p ~ 2.5 is a good place to start.

These methods for combining data
from multiple, music-related sources
can be applied to full sets of data; alter-
natively, the initial data can be subset-
ted (such as to create a list of only, say,
rap and hip-hop tracks) then “voted”
on to create custom lists.

To evaluate this approach to com-
bining list data, we applied, on the
basis of the criteria set by the subject-
matter experts, two social welfare
functions:e precision optimal aggre-
gation1 and Spearman Footrule dis-
tance.5 The former measures the num-
ber of artists from each source’s top-n
list that made it to the overall top-n list;
the latter emphasizes the preservation
of an artist’s position in the ranking.
We compared the performance of eight
different methods, with performance
defined as the efficacy of a given meth-
od in maximizing the two SWFs. For a
detailed study of the comparison, see
A. Alba. et al.3

Challenges
Sound Index is the first industrial-
strength implementation of the com-
plex idea of combining “dirty” mul-

e	 SWFs map allocations of goods and rights
among people to real numbers, enabling the
modeling of subjectiveness and the capture of
business goals in a semiheuristic way.

the value of traditional information
integration and aggregation tech-
niques,17 whereby systems compare
and contrast items with identical
modalities (such as sales numbers
from multiple sources). Sound In-
dex demonstrates how to integrate
information from multiple different
modalities (such as comments, pas-
sive listens, sales, hits on Web sites,
creation of new Web sites, and views
on television), a solution required in
many domains, including medical-
patient preferences, drugs for certain
medical conditions, cars, wine, finan-
cial products like stocks and bonds,
consumer goods, cameras, computers,
and books.

Nielsen’s BuzzMetrics (http://www.
nielsenbuzzmetrics.com/products)
aims for a similar goal, at least at the
abstract level. Its technology monitors
and analyzes consumer-generated me-
dia (such as blogs, message boards, fo-
rums, Usenet newsgroups, discussions
involving email portals like Yahoo!,
AOL, and MSN, opinion and review
sites, and feedback and complaint
sites), then analyzes, customizes, and
presents the data to marketers and
business-intelligence professionals,
depending on client requirements.
However, as of summer 2009, no pub-
licly available technical informa-
tion is available on BuzzMetrics. We
speculate that its technology relies on
natural-language and sentiment pro-
cessing, whereas Sound Index relies
on broken-English-text analytics tech-
nology, techniques for integrating in-
formation from different modalities,
and ranking technologies.

Alexa Internet (http://www.alexa.
com/site/company/technology) is an-
other technology that crawls Web sites
to produce a ranked list of sites based
on traffic statistics and incoming links.
It aims to generate an ordered list of
the sites with the greatest volume of
(incoming) traffic normally filtered
by geography or other criteria, an ap-
proach that differs from the one used
in Sound Index to combine data from
multiple modalities into a balanced
ordered list.

The effort over the past decade to
address these challenges8,9 represents
approaches to extracting and disam-
biguating entities within unstructured
text. Sound Index faces similar chal-

timodal data, (see Figure 2), using
unstructured information manage-
ment architecture (UIMA)f, 6 and data
mining7 to solve a targeted business
problem. Here, we focus on two related
research challenges:

Noise effects vs. freshness. Tension
between the desire for frequent up-
dates reflects the cutting edge of what
is hot and the desire to minimize the
influence of noise in the charts due to
short-term spikes. Sound Index weighs
effects (such as weekends, nights, and
holidays) against events (such as new
album releases, celebrity gossip cov-
erage, and award shows). The system
must ultimately compromise between
being too sensitive and not reactive
enough; optimizing this balance is
an area for future research. For now,
Sound Index employs a 24-hour win-
dow (four-to-six-hour cycle periods) to
smooth out some of the effects men-
tioned earlier. The development team
is also exploring other approaches
(such as multi-month decays). Ulti-
mately, the system needs a ranking
scheme that is at least somewhat re-
sistant to “noise” while still being able
to capture freshness so, for example,
it is able to identify a rise in interest
in diverse sources and ignore sudden
spikes in a single source.

User interface. Still unclear is the op-
timal way to present what is essentially
an online analytical processingg cube
to end users over the Web for mining
business intelligence, especially when
the target audience is teens. Exploring
the right way to present trending and
selection is key to allowing consumers
of Sound Index to get the most from
the system, but doing so in a way that
is obvious and intuitive is a challenge.
Sound Index does offer a limited set
of dimensionality tools around demo-
graphics and genres, allowing users to
see charts reflecting the interests of,
say, “40-something female electronica
fans in the U.S.”14

Related Work
A wealth of research focuses on busi-
ness intelligence mining, showcasing

f	 UIMA is a component software architecture
that helps develop, discover, compose, and
deploy multimodal analytics for unstructured
information.

g	 OLAP is an approach to answering multidi-
mensional analytical queries.

http://www.nielsenbuzzmetrics.com/products
http://www.alexa.com/site/company/technology
http://www.nielsenbuzzmetrics.com/products
http://www.alexa.com/site/company/technology

70 communications of the acm | september 2009 | vol. 52 | no. 9

contributed articles

lenges, with disambiguation being re-
quired at the artist, band, track, and
album levels.

Determining the entity being re-
ferred to in a particular text is akin to
a classification problem, whereby con-
tent (“comment” in our case) must be
assigned to a specific bucket, or cat-
egory (artist, band, and/or track). Ellen
Riloff13 highlighted domain-cognizant
techniques for text classification; re-
flecting the need to focus on local lin-
guistic context for classification and
retrieval.

In terms of engineering, the world
of mashups mirrors the music data re-
quirements of Sound Index—a robust,
reliable, repeatable means of gather-
ing data from multiple, diverse on-
line sources. ScrAPIs (Screen-scraper
+ API) were proposed by John Musser
in 2006 as a means of mitigating the
problem of unreliable or unavailable
APIs from multiple content provid-
ers,11 though they, too, suffer from the
issues facing traditional screen-scrap-
ers (such as breaking down when site
changes are made).

Pilot
The BBC ran the Sound Index pilot
from March to August 2008. Its mea-
sures for success included feedback
from its editorial team, Web-use sta-
tistics, and general feedback from the
online community. Despite a com-
plete lack of marketing and promo-
tion budget and effort, Sound Index
went from a standing start as public
beta in April 2008 to attract 43,469 vis-
its from 37,900 unique users in June
2008 when it attracted 140,383 page
views at an average of 3.67 per user,
each spending an average of three
minutes and 40 seconds on the site, or
53 seconds per page. In August 2008,
it attracted more than 772,000 Web-
page references.

The Sound Index team monitored
the online feedback by setting up
Google Alerts on all possible permu-
tations of the project name, manually
evaluating each link. There was a lot
of positive comment from the Web
and from the traditional business and
technology press. It was named “Web
2.0 technology of the week” by the U.K.
Observer (http://www.guardian.co.uk/
music) for several consecutive weeks
(during April to August 2008), as well

as “the hottest thing in music” (in
March 2008) by the U.K.’s Guardian
Music Monthly (http://www.guardian.
co.uk/music). It also generated much
debate in European music circles
about what constitutes music popu-
larity and what the results mean. The
pilot closed August 2008, with the BBC
planning for its future.

Conclusion
Called the “first definitive music chart
for the Internet age,”14 Sound Index is
a novel demonstration of research into
processing, analyzing, collating, rank-
ing, and presenting large quantities
of unstructured and structured mul-
timodal information in response to a
change in the behavior of key demo-
graphic groups and a pressing indus-
try need to innovate or risk being irrel-
evant. It is a model for demonstrating
a new approach to service and prod-
uct delivery, integrating (in real time)
multiple, relevant online information
with one’s own data to drive new and
significant value for, reinvigorate con-
nection to, and strengthen brand af-
finity to one’s customer base.

Here, we’ve described the system’s
technical underpinnings, highlighted
some of the technical challenges al-
ready addressed, and showcased the
engineering and research themes that
require further investigation. The un-
derlying concepts and processes are
also applicable to myriad other fields
that depend on the capture of Internet
buzz. We hope it inspires future soft-
ware products and research projects
to harness the wisdom of the crowds.

Acknowledgments
We would like to thank the BBC, spe-
cifically Geoff Goodwin, Head of BBC
Switch, for its vision, support, and
encouragement, as well as Alfredo
Alba (IBM Almaden Research Center),
Jan Pieper (IBM Almaden Research
Center), Anna Liu (IBM Almaden Re-
search Center), Bill J. Scott (formerly
IBM Global Business Services), Aidan
Toase (IBM Global Business Services),
and IBM’s partners at NovaRising, who
helped make the Sound Index system a
reality. 	

References
1.	 Adali, S., Hill, B., and Magdon-Ismail, M. The impact

of ranker quality on rank-aggregation algorithms:

Information vs. robustness. In Proceedings of the
22nd International Conference on Data Engineering
Workshops (Atlanta, GA, Apr. 3–7). IEEE Computer
Society, Washington D.C., 2006, 37.

2.	 Alba, A., Bhagwan, V., and Grandison, T. Accessing the
deep Web: When good ideas go bad. In Proceedings
of the ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA) (Nashville, TN, Oct.
25–29). ACM Press, New York, 2008, 815–818.

3.	 Alba, A., Bhagwan, V., Grace, J., Gruhl, D., Haas, K.,
Nagarajan, M., Pieper, J., Robson, C., and Sahoo, N.
Applications of voting theory to information mashups.
In Proceedings of the Second IEEE International
Conference on Semantic Computing. (Santa Clara, CA,
Aug. 4–7). IEEE Press, 2008, 10–17.

4.	 de Borda, J.-C. Memoire sur les elections au Scrutin.
Histoire de l’Académie Royale des Sciences 1781;
http://asklepios.chez.com/XIX/borda.htm.

5.	 Diaconis, P. and Graham, R Spearman’s footrule as a
measure of disarray. Journal of the Royal Statistics
Society, Series B (Methodological) 39, 2 (1977),
262–268.

6.	 Ferrucci, D. and Lally, A. UIMA: An architectural
approach to unstructured information processing
in the corporate research environment. Journal
of Natural Language Engineering 10, 3–4 (2004),
327–348.

7.	 Han, J. and Kambert, M. Data Mining: Concepts and
Techniques. Morgan Kaufmann Publishers, Inc., San
Francisco, 2001.

8.	 Hassell, J., Aleman-meza, B., and Arpinar, I.B.
Ontology-driven automatic entity disambiguation in
unstructured text. In Proceedings of the International
Semantic Web Conference LNCS 4273 (Athens, GA,
Nov. 5–9). Springer, 2006, 44–57.

9.	 Lloyd, L., Bhagwan, V., Gruhl, D., and Tomkins, A.
Disambiguation of References to Individuals. IBM
Research Report RJ10364 (A0510-011). San Jose,
CA, Oct. 28, 2005; http://domino.watson.ibm.com/
library/cyberdig.nsf/papers/D8265335C0AD4CD5852
570AB00514720/$File/rj10364.pdf.

10.	 Mayfield, G. Billboard Hot 100 to include digital
streams. (July 31, 2007); http://www.billboard.
com/bbcom/news/article_display.jsp?vnu_content_
id=1003619084.

11.	 Musser, J. scrAPIs. (Mar. 21, 2006). http://blog.
programmableweb.com/2006/03/21/scrapis/. 	

12.	 Quinn, M. and Chang, A. More teens dissing discs in
favor of online tunes. Los Angeles Times (Feb. 27,
2008); http://www.latimes.com/news/nationworld/
nation/la-fi-music-270208,1,2028285.story.

13.	 Riloff, E. Little words can make a big difference
for text classification. In Proceedings of the 18th
Annual ACM SIGIR Conference on Research and
Development in Information Retrieval (Seattle, WA,
July 9–13). ACM Press, NY, 1995, 130–136.

14.	S almon, C. Click to download. U.K. Guardian (Apr.
18, 2008); http://arts.guardian.co.uk/filmandmusic/
story/0,,2274132,00.html.

15.	S tyvén, M. Exploring the Online Music Market:
Consumer Characteristics and Value Perceptions. Ph.D.
Thesis. Department of Business Administration and
Social Sciences, Luleå University of Technology, Luleå,
Sweden, 2007; http://epubl.ltu.se/14021544/2007/71/
LTU-DT-0771-SE.pdf.

16.	 Walsh, G., Mitchell, V.-W., Frenzel, T., and Wiedmann,
K.-P. Internet-induced changes in consumer music
procurement behavior: A German perspective. Journal
of Marketing Intelligence & Planning 21, 5 (2003),
305–317.

17.	 Zhu, H., Siegel, M.D., and Madnick, S.E. Information
aggregation: A value-added e-service. In Proceedings
of the International Conference on Technology, Policy,
and Innovation: Critical Infrastructures (The Hague,
The Netherlands, June 26–29, 2001).

Varun Bhagwan (vbhagwan@us.ibm.com) is an advisory
software engineer in the Computer Science Department of
IBM Almaden Research Center, San Jose, CA.

Tyrone Grandison (tyroneg@us.ibm.com) is a manager
in the Computer Science Department of IBM Almaden
Research Center, San Jose, CA.

Daniel Gruhl (dgruhl@almaden.ibm.com) is a senior
software engineer in the Computer Science Department of
IBM Almaden Research Center, San Jose, CA.

© 2009 ACM 0001-0782/09/0900 $10.00

http://www.guardian.co.uk/music
http://www.guardian.co.uk/music
http://www.guardian.co.uk/music
http://asklepios.chez.com/XIX/borda.htm
http://domino.watson.ibm.com/library/cyberdig.nsf/papers/D8265335C0AD4CD5852570AB00514720/$File/rj10364.pdf
http://www.billboard.com/bbcom/news/article_display.jsp?vnu_content_id=1003619084
http://blog.programmableweb.com/2006/03/21/scrapis/
http://www.latimes.com/news/nationworld/nation/la-fi-music-270208,1,2028285.story
http://arts.guardian.co.uk/filmandmusic/story/0,,2274132,00.html
http://epubl.ltu.se/14021544/2007/71/LTU-DT-0771-SE.pdf
mailto:vbhagwan@us.ibm.com
mailto:tyroneg@us.ibm.com
mailto:dgruhl@almaden.ibm.com
http://www.guardian.co.uk/music
http://epubl.ltu.se/14021544/2007/71/LTU-DT-0771-SE.pdf
http://arts.guardian.co.uk/filmandmusic/story/0,,2274132,00.html
http://www.latimes.com/news/nationworld/nation/la-fi-music-270208,1,2028285.story
http://blog.programmableweb.com/2006/03/21/scrapis/
http://www.billboard.com/bbcom/news/article_display.jsp?vnu_content_id=1003619084
http://www.billboard.com/bbcom/news/article_display.jsp?vnu_content_id=1003619084
http://domino.watson.ibm.com/library/cyberdig.nsf/papers/D8265335C0AD4CD5852570AB00514720/$File/rj10364.pdf
http://domino.watson.ibm.com/library/cyberdig.nsf/papers/D8265335C0AD4CD5852570AB00514720/$File/rj10364.pdf

september 2009 | vol. 52 | no. 9 | communications of the acm 71

doi:10.1145/1562164.1562184

Software’s close encounters with the law
provide some lessons for our future.

By James Boyle

What
Intellectual
Property Law
Should Learn
from Software

(for better or for worse) to dispropor-
tionately influence technology policy
worldwide.

At first, the use of copyright stirred
the most concern. Copyright is built
around an assumption of diverging
innovation, the fountain or explo-
sion of expressive activity. Different
people in different situations who sit
down to write a sonnet or love story, it
is presumed, will produce very differ-
ent results rather than be drawn to a
single result. Thus, strong rights over
the resulting work are not supposed to
inhibit future progress. I can find my
own muse, my own path to immortal-
ity. Creative expression is presumed
to be largely independent of the work

being covered by both schemes, partly
due to actions by the U.S. Congress, in-
cluding several references to software
in the Copyright Act, and partly as a re-
sult of decisions by the Copyright Of-
fice, the Patent and Trademark Office
(PTO), and by judges. One could copy-
right one’s code and also gain a patent
over the “non-obvious” novel and use-
ful innovations inside the software. (In
much of the rest of the world, software
also came to be covered by copyright,
though the status of patents over soft-
ware was sometimes more obscure.)
What can we learn from the history
of the years since? A lot, it turns out,
some not limited to the U.S., where
intellectual property law often tends

Twenty-five years ago a vigorous debate raged in
U.S. legal academia over whether software should
be covered by patent or copyright or some third
option. (Pamela Samuelson, who writes regularly in
Communications, was co-author of the best article on
the subject.6) In practice, software ended up

72 communications of the acm | september 2009 | vol. 52 | no. 9

contributed articles

of prior authors. Raw material is not
needed.

There are lots of reasons to doubt
that this vision of “creation out of
nothing” works very well, even in the
arts, the traditional domain of copy-
right law.4 But whatever its merits or
defects in the arts, it seems completely
wrong-headed when it comes to soft-
ware. Software solutions to practical
problems do converge, and program-
mers definitely draw upon prior lines
of code. Worse still, software tends to
exhibit “network effects.” Unlike my
choice of novel, my choice of word-
processing program is strongly in-
fluenced, perhaps dominated, by the
question of what program other people
choose to buy. That means that even if
a programmer could find a completely
different way to write a word-process-
ing program, this programmer has to
be able to make it read the dominant
program’s files and mimic its features
if the programmer is to attract any cus-
tomers at all. This hardly sounds like
completely divergent creation.

Seeing the way software failed to fit
this Procrustean bed of copyright, many
scholars presumed the process of forc-
ing it into place would be catastrophic.
They believed that, lacking patent’s
high standards, copyright’s monopo-
lies would proliferate. Copyright’s
treatment of follow-on, or “derivative,”
works would impede innovation, it was
thought. The force of network effects
would allow the copyright holder of
whatever software became “the stan-
dard” to extract huge monopoly rents
and prevent competing innovation
for many years longer than the pat-
ent term. Users of programs would be
locked in, unable to shift their docu-
ments, data, or skills to a competing
program. Doom and gloom abounded
among copyright scholars, including
many who shared the premise that
software should be covered by property
rights. They simply believed that these
were the wrong property rights to use.

Copyright did indeed cause prob-
lems for software developers, though
it is difficult to judge whether they
outweighed the economic benefits
of encouraging software innovation,
production, and distribution. But
the negative effects of copyright were
minimized by a remarkably prescient
set of actions by courts and, to a much

lesser extent Congress, so the worst
scenarios did not come to pass. Courts
interpreted the copyright over software
narrowly, so it covered little beyond
literal infringement. They developed a
complicated test to work out whether
one program infringes the details of
another program.a The details give law
students headaches, but the effects
were simple. If your software is similar
to mine merely because it performed
the same function or because I picked
the most efficient way to perform some
task or even because there was mar-
ket demand for doing it that way, then
none of those similarities counted for
the purposes of infringement. Nor did
material that was taken from the pub-
lic domain. The result was that while
someone who made literal copies of
Windows Vista was clearly infring-
ing copyright, the person who made a
competing program generally would
not be.

In addition, courts interpreted copy-
right’s fair-use doctrine to cover some-
thing called “decompilation,” basically
taking apart someone else’s program
so you can understand and compete
with it.b As part of the process, the de-
compiler had to make a copy of the pro-
gram. If the law were read literally, de-
compilation would hardly seem a fair
use. The decompiler makes a whole
copy, for a commercial purpose, of a
copyrighted work, precisely in order to
cause harm to its market by offering a
substitute good. But the courts took a
broader view. The copy was a necessary
part of the process of producing a com-
peting product, rather than a piratical
attempt to sell a copy of the same prod-
uct. This limitation on copyright pro-
vided by fair use was needed in order to
foster the innovation that copyright is
supposed to encourage.

These rulings and others like them
meant that software was protected by
copyright but also that the copyright
did not give its owner the right to pre-
vent functional imitation and com-
petition. Is that enough? Clearly the
network effects are real. Most of us use
Windows and Microsoft Word, and one
very big reason is because everyone else

a	 See, for example, Computer Assocs. Int’l, Inc. v.
Altai, Inc., 982 F.2d 693 (2d Cir. 1992).

b	 See, for example, Sega Enters. Ltd. v. Accolade
Inc., 977 F.2d 1510 (9th Cir. 1992).

For some time,
the U.S. Court
of Appeals for the
Federal Circuit
(the leading patent
court in the U.S.)
has seemed
to believe that
computers
can turn an
unpatentable idea
into a patentable
machine.

contributed articles

september 2009 | vol. 52 | no. 9 | communications of the acm 73

have other freedoms, even if not le-
gally guaranteed open access to source
code. Still, it is difficult to deny that the
extension of the property regime had—
bizarrely, at first sight—actually en-
abled the creation of a continuing open
commons. The tempting real-estate
analogy would be environmentalists
using strong property rights over land
to guarantee conservation and open ac-
cess to a green space, whereas without
property rights, the space could be de-
spoiled by all.

So much for copyright. What about
patents? U.S. patent law had customar-

ily drawn a firm line between patent-
able invention and unpatentable idea,
formula, or algorithm. The mousetrap
could be patented, but not the formula
used to calculate the speed at which
it snaps shut. Ideas, algorithms, and
formulae were in the public domain,
as were “business methods.” Or so we
thought.

The line between idea or algorithm
on the one hand and patentable ma-
chine on the other looks nice and easy.
But put that algorithm into a computer
and things begin to look more com-
plex. Say, for example, the algorithm
was the process for converting miles
into kilometers and vice versa. In the
abstract, this is classic public-domain

does. Optimists believe that the lure of
capturing this huge market will keep
potential competitors hungry and mo-
nopolists scared. The lumbering domi-
nant players, goes the argument, will
not become complacent about innova-
tion or try to grab every morsel of mo-
nopoly rent. They still have to fear their
raptor-like competitors lurking in the
shadows. Perhaps. Or perhaps it also
takes the consistent threat of antitrust
enforcement. In any event, whether or
not we hit the optimal point in protect-
ing software with intellectual property
rights, these rights certainly did not
destroy the industry. It appeared that,
even with convergent creativity and
network effects, software could be
crammed into the Procrustean bed of
copyright without killing it off in the
process. Indeed, to some, it seemed to
fare quite well. They would claim that
the easy legal protection provided by
copyright gave a nascent industry just
enough protection to encourage the
investment of time, talent, and dollars,
while not prohibiting the next genera-
tion of companies from building on
the innovations of the past.

In addition, the interaction be-
tween copyright and software has pro-
duced some surprising results. There
is a strong argument that it is the fact
that software is copyrightable that has
enabled the “commons-based creativ-
ity” of free and open source software.3
What is commons-based creativity? Ba-
sically it is creativity that builds on an
open resource available to all. An addi-
tional component of some definitions
is that the results of the creativity must
be fed back into the commons for all to
use. Think of English. You use it with-
out license or fee, and you innovate by
producing new words, slang, or phrases
without clearance from some Academie
Anglaise. After you coin your term, it is
in turn available to me to build upon
or use in my own sentences, novels, or
jokes. And so the cycle continues. But
with words we have commons-based
creativity because there were no prop-
erty rights over the relevant material.
The software commons is different.

The creators of free and open source
software were able to use the fact that
software is copyrighted and that the
right attaches automatically on cre-
ation and fixation to set up new distrib-
uted methods of innovation. For ex-

ample, free and open source software
under the General Public License (such
as Linux) is a “commons” to which all
are granted access. Anyone may use
the software without restriction. All are
guaranteed access to the human-read-
able source code, rather than just the
inscrutable machine code, so they can
understand, tinker, and modify. Modi-
fications can be distributed so long as
the new creation is licensed under the
open terms of the original. This creates
a virtuous cycle whereby each addition
builds on the commons and is returned
to it. The copyright over the software is

the “hook” that allowed software engi-
neers to create a license that gave free
access and the right to modify, and
required future programmers to keep
offering these freedoms. Without the
copyright, those features of the license
would not have been enforceable. For
example, someone could have modified
the open program, releasing it without
the source code, thus denying future
users the right to understand and mod-
ify easily. To use an analogy beloved of
free-software enthusiasts, the hood of
the car would be welded shut. Home re-
pair, tinkering, customization, and re-
design become practically impossible.

If there were no copyright over soft-
ware at all, software engineers would

74 communications of the acm | september 2009 | vol. 52 | no. 9

contributed articles

stuff, no more patentable than E = mc2
or F = ma. What about when those steps
are put onto the tape of the Turing ma-
chine, onto a program running on the
hard drive of a computer?

For some time, the U.S. Court of Ap-
peals for the Federal Circuit (the lead-
ing patent court in the U.S.) has seemed
to believe that computers can turn an
unpatentable idea into a patentable
machine. In fact, in this conception,
the computer sitting on your desk be-
comes multiple patentable machines—
a word-processing machine, an email
machine, a machine running the pro-

gram to calculate the tensile strength of
steel. I want to stress that the other bars
to patentability remain. My example of
miles-to-kilometers conversion would
be patentable subject matter, but, we
hope, no patent would be granted be-
cause the algorithm is not novel and is
obvious. (Though sadly, the PTO seems
determined to undermine this hope
by granting patents on the most mun-
dane and obvious applications; two
excellent books by Besson and Meurer2
and by Jaffe and Lerner5 explore this
point, as well as other deeper prob-
lems with the patent system.) But the
concern here is not limited to the idea
that, without a subject-matter bar, too
many obvious patents will be granted

by an overworked and poorly incentiv-
ized patent office. It is that the patent
was supposed to be granted at the very
end of a process of investigation and
scientific and engineering innovation.
The formulae, algorithms, and scien-
tific discoveries on which the patented
invention was based remained in the
public domain for all to use. It was only
when we got to the very end of the pro-
cess, with a concrete innovation ready
to go to market, that the patent was to
be given. Yet the ability to couple the
abstract algorithm with the concept
of a Turing machine undermines this

conception. Suddenly the patents are
available at the very beginning of the
process, even to people who are merely
specifying, in the abstract, the idea of
a computer running a particular series
of algorithmic activities.

The words “by means of a com-
puter” seem to be an incantation of
magical power, able to transubstanti-
ate the ideas and formulae of the pub-
lic domain into private property.c And,
like the breaking of a minor taboo that
presages a Victorian literary charac-

c	 See, for example, In re Alappat, 33 F.3d 1526
(Fed. Cir. 1994); in light of the other cases dis-
cussed here, it is a contested issue which parts
of this decision survive today.

ter’s slide into debauchery, once that
first wall protecting the public domain
was breached, the courts found it eas-
ier and easier to breach still others. If
one could turn an algorithm into a pat-
entable machine (by simply adding “by
means of a computer”), then could one
not turn a business method into some-
thing patentable by specifying the orga-
nizational or information technology
structure through which the business
method is to be implemented?

You might wonder why we would
want to patent business methods. In-
tellectual property rights are supposed
to be handed out only when necessary
to produce incentives to supply some
public good, incentives that otherwise
would be lacking. Yet there are already
plenty of incentives to come up with
new business methods. (Greed and
fear are the most obvious.) There is
no evidence to believe we need a state-
backed monopoly to encourage the de-
velopment of new business methods.
In fact, we want people to copy the busi-
nesses of others, lowering the price as a
result. The process of copying business
methods is called “competition” and
is the basis of a free-market economy.
Yet patent law would prohibit it for
20 years. So why introduce patents?
Brushing aside such minor objections
with ease in 1998, in a case called State
Street, the Court of Appeals for the Fed-
eral Circuit declared business meth-
ods to be patentable.d Could this really
be what Thomas Jefferson had in mind
when he said “I know well the difficulty
of drawing a line between the things
which are worth to the public the em-
barrassment of an exclusive patent,
and those which are not”?e I doubt it.

In 2008, the Court of Appeals for the
Federal Circuit revisited this ruling in a
case called In re Bilski.f Perhaps made
wary by several spankings they had re-
cently received at the hands of the U.S.

d	 State St. Bank & Trust Co. v. Signature Fin.
Group, Inc., 149 F.3d 1368 (Fed. Cir. 1998).

e	 Letter from Thomas Jefferson to Isaac McPher-
son (August 13, 1813) in The Writings of Thomas
Jefferson, vol. XIII, A.E. Bergh, ed. The Thomas
Jefferson Memorial Association of the United
States, Washington, D.C., 1907, 326–338; see
p. 335 at http://memory.loc.gov/ammem/col-
lections/jefferson_papers/mtjser1.html and
follow the “May 1, 1812” hyperlink, then navi-
gate to image 1057.

f	 In re Bernard L. Bilski, 545 F.3d 943 (Fed. Cir.
2008).

http://memory.loc.gov/ammem/collections/jefferson_papers/mtjser1.html
http://memory.loc.gov/ammem/collections/jefferson_papers/mtjser1.html

contributed articles

september 2009 | vol. 52 | no. 9 | communications of the acm 75

look at the purpose of the law they are
enforcing when seeking to understand
what it means. In areas of regulation
that are obviously “instrumental”—
aimed at producing some particular
result in the world—this approach is
ubiquitous. In applying the antitrust
laws, for example, courts have given
meaning to the relatively vague words
of the law by turning to economic
analysis of the likely effects of different
rules on different market structures.

Patent law is as instrumental a
structure as one could imagine. In the
U.S., for example, the constitutional
authorization to Congress to make pat-
ent and copyright legislation is very ex-
plicit that these rights are to be made
with a purpose in view. Congress has
the power “to promote the progress of
science and useful arts, by securing for
limited times to authors and inventors
the exclusive right to their respective
writings and discoveries.”j One might
imagine that courts would try to in-
terpret the patent and copyright laws
with that purpose firmly in mind. Yet
utilitarian caution about extending
monopolies is seldom found in the rea-
soning of the U.S.’s chief patent court.
Until Bilski, the court had preferred to
quote a phrase from a congressional
report that patentable subject matter
includes “anything under the sun that
is made by man.”k

The difference is striking. Jefferson
said that the job of those who admin-
istered the patent system was to see
if a patent was worth the embarrass-
ment to the public before granting
it. The Constitution tells Congress to
make only those patent laws that “pro-
mote the progress of science and use-
ful arts.” One might imagine that this
constitutional goal would guide courts
in construing the same laws. Yet in our
chief patent court for the past 20 years,
neither Jeffersonian ideals nor the con-
stitutional text has seemed relevant to
its thinking when interpreting statuto-
ry subject matter. Anything under the
sun made by man is patentable subject
matter, and there’s an end to it. The
case that announced the rule on busi-
ness methods involved a patent over

j	 U.S. Constitution, art. I, § 8, cl. 8.
k	 S. Rep. No. 1979, 82d Cong., 2d Sess., 5 (1952);

H.R.Rep. No. 1979, 82d Cong., 2d Sess., 6
(1952).

Supreme Court for “creatively inter-
preting” prior Supreme Court prece-
dent, a majority of the Court of Appeals
overturned a portion of the State Street
decision. They declared that, to be pat-
entable, an algorithm or method must
result in some transformation or be
embodied in some machine, rejecting
State Street’s more forgiving language,
which looked only for some “useful,
concrete and tangible result.”g Patent
lawyers too, it seems, have their own
metaphysical debates.

But what is the result of all this ab-
straction? Are business methods pat-
entable? Can an algorithm implement-
ed by a Turing machine thereby be
patented? To see how differently Bilski
could be viewed, one need only com-
pare two of the dissents. Judge Newman
lamented the court’s action in restrict-
ing patentability and undermining the
provision of incentives to meet “the
infinite needs of the future”: “It is anti-
thetical to this incentive to restrict eli-
gibility for patenting to what has been
done in the past, and foreclose what
might be done in the future.”h Reading
the opinion one could almost forget
that people have been coming up with
business methods all over the world
for thousands of years without patent
protection, or that having too many
patents can be just as harmful to inno-
vation as having too few. Judge Mayer
strongly disagreed. “Patenting busi-
ness methods allows private parties to
claim exclusive ownership of ideas and
practices which rightfully belong in the
public domain…. The patent system
is intended to protect and promote
advances in science and technology,
not ideas about how to structure com-
mercial transactions.”i In his view, the
Bilski court was too tame. They had not
flatly declared business methods un-
patentable, merely changed the meta-
physical terms in which those patents
needed to be couched. The Supreme
Court has granted certiorari, meaning
that it will hear an appeal of the deci-
sion some time in the next year.

The Bilski case highlights a larger
point. It is commonplace for courts to

g	 State Street, 149 F.3d at 1373.
h	 In re Bilski, 545 F.3d at 998 (Newman, J., dis-

senting).
i	 In re Bilski, 545 F.3d at 998, 1007 (Mayer, J., dis-

senting).

The words
“by means of
a computer”
seem to be
an incantation of
magical power, able
to transubstantiate
the ideas and
formulae of the
public domain into
private property.

76 communications of the acm | september 2009 | vol. 52 | no. 9

contributed articles

the process of keeping accounts in a
“hub-and-spoke” mutual fund, includ-
ing multiplying all of the stock hold-
ings of each fund in a family of funds
by the respective current share price to
get total fund value, then dividing by
the number of mutual-fund shares that
each customer actually holds to find
the balance in their accounts.l As my
son observed, “I couldn’t do that until
nearly the end of third grade!”

In theory of course, if the patent is
not novel or obvious, it will still be re-
fused. The Supreme Court recently held
that the Court of Appeals for the Federal
Circuit made “non-obvious” too easy a
standard to meet.m It is unclear, howev-
er, whether this judgment will produce
concrete effects on actual practices of
patent grants and litigation. The PTO’s
system puts pressure on examiners to
issue patents, and it is very expensive to
challenge those that are granted. Better
would be, where possible, to rule out
certain subject matter (such as busi-
ness methods) in the first place and
more narrowly craft software patents
so as to avoid the dangers the copyright
decisions anticipated so clearly. Judge
Mayer is right. Tempted in part by the
power of the metaphor of “idea made
machine” in the context of a computer,
the Court of Appeals for the Federal
Circuit has not been able to bring itself
to do so. Where copyright law evolved
to wall off, encyst, and minimize the
dangers of extending protection over
software, patent law initially extended
the idea behind software patents to
make patentable any thought process
that might produce a useful result.
Even when it got rid of the “useful re-
sult” language, the court was unable to
bring itself to declare business meth-
ods unpatentable. Once breached, the
walls protecting the public domain in
patent law show a disturbing tendency
to erode at an increasing rate.

To sum up, the conceptual possi-
bilities presented to copyright and pat-
ent law by software were fascinating.
Should we extend copyright or patent
to cover the new technology? The an-
swer was “We will extend both!” Yet the
results of the extension were complex
and unexpected in ways we should try

l	 State Street, 149 F.3d at 1373.
m	 KSR Int’l Co. v. Teleflex Inc., 550 U.S. 398

(2007).

of claiming the most fundamental
building blocks—patenting the idea
of a Turing machine or the precepts of
Boolean algebra. The basics of the field
were there for all to build upon. Will
that be true with future technologies?

It is disquieting to realize that today
the answer to this question is very dif-
ficult to provide. In one particular area,
synthetic biology, which shares aspects
of both software (programming in ge-
netic code) and genetic engineering,
there is considerable reason for alarm.
As my colleague Arti Rai, and I note in
an article on the subject,7 it is quite
possible to imagine a perfect storm
in which the expansive patent law de-
cisions of the past 20 years do to syn-
thetic biology what they could not do to
software—lock up the basic building
blocks before the field can develop.

The fundamental ideas behind
our intellectual property system are
sound. Intellectual property rights can
be important, even vital, for the devel-
opment of a particular area of technol-
ogy. But it is just as easy to harm inno-
vation with rights that are too strong
as too weak. The example of software
could teach us a lot about the future
of good intellectual property policy in
high technology, but first we need to
pay attention to it. 	

References
1.	 Bessen, J. and Hunt, R.M. An empirical look at

software patents. Journal of Economics and
Management Strategy 16, no. 1 (Spring 2007),
157–189.

2.	 Bessen, J. and Meurer, M.J. Patent Failure: How
Judges, Bureaucrats, and Lawyers Put Innovators at
Risk. Princeton University Press, Princeton, NJ, 2008.

3.	 Boyle, J. The Public Domain: Enclosing the Commons
of the Mind. Yale University Press, New Haven, CT,
2008, 185–194.

4.	 Boyle, J. Shamans, Software, and Spleens: Law and
the Construction of the Information Society. Harvard
University Press, Cambridge, MA, 1996.

5.	J affe, A. and Lerner, J. Innovation and Its Discontents:
How Our Broken Patent System Is Endangering
Innovation and Progress, and What To Do About It.
Princeton University Press, Princeton, NJ, 2004.

6.	S amuelson, P., Davis, R., Kapor, M.D., and Reichman,
J.H. A manifesto concerning the legal protection of
computer programs. Columbia Law Review 94, no. 8
(December 1994), 2308–2431.

7.	 Rai, A. and Boyle, J. Synthetic biology: Caught
between property rights, the public domain, and
the commons. PLoS Biology 5, no. 3 (March 2007):
389–393; http://www.plosbiology.org/article/
info%3Adoi%2F10.1371%2Fjournal.pbio.0050058.

James Boyle (boyle@law.duke.edu) is William Neal
Reynolds Professor of law at Duke Law School, Durham,
NC. This article is adapted from his book The Public
Domain: Enclosing the Commons of the Mind (2008
by Yale University Press), which is freely downloadable
from http://thepublicdomain.org under a Creative
Commons license.

Copyright held by author.

to understand if we want to predict the
effect of intellectual property on future
technologies. Who would have predict-
ed that software copyrights could be
used to create a self-perpetuating com-
mons, as well as a monopoly over oper-
ating systems, or that judges would talk
knowingly of network effects in curtail-
ing the scope of coverage? Who would
have predicted that patents would be
extended not only to basic algorithms
implemented by a computer but to
methods of business themselves? (Tru-
ly, a strange return to legalized busi-
ness monopolies for a country whose
founders viewed them as one of the
greatest evils that could be borne.) The
rest of the world has (wisely) been resis-
tant to granting patents over business
methods, and even to so-called “pure”
software patents. (The empirical evi-
dence, of which there is far too little,
suggests that expansive software pat-
ents may actually have a negative effect
on research and development.1) Yet as
global legal harmonization sweeps on-
ward, little attention is being paid to
empirical evidence, and it is not clear
which way the norms will tip. Our at-
titude should be to demand rigorous
empirical and economic study before
we create or extend legal monopolies.
Expansive new rights over emerging
technologies may be necessary to en-
courage innovation, but the case must
be made on facts, not faith.

What can we learn from this history?
First, we should realize that the mere
decision to include a technology with-
in a property regime is only the first in
a sequence. As the copyright system
showed with software, it is possible to
trim protection so as to minimize over-
reaching. As the business-method pat-
ent decisions show us, we don’t always
do it. Second, we should understand
that we have some new methods of
combining property rights and an open
“commons” of raw material. The expe-
rience of free and open source software
should be studied to see whether it has
implications for new technologies. We
need all the innovation tools we can get.
Third, we should be mindful of the fact
that much depends on the moment in
the development of a technology when
property rights begin to be rigorously
applied. For better or for worse, prop-
erty rights came fully to software at a
point when no one would have thought

http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.0050058
mailto:boyle@law.duke.edu
http://thepublicdomain.org
http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.0050058

You’ve come a long way.
Share what you’ve learned.

ACM has partnered with MentorNet, the award-winning nonprofit e-mentoring
network in engineering, science and mathematics. MentorNet’s award-winning
One-on-One Mentoring Programs pair ACM student members with mentors
from industry, government, higher education, and other sectors.

• Communicate by email about career goals, course work, and many other topics.
• Spend just 20 minutes a week - and make a huge difference in a student’s life.
• Take part in a lively online community of professionals and students all over the world.

Make a difference to a student in your field.

Sign up today at: www.mentornet.net

Find out more at: www.acm.org/mentornet

MentorNet’s sponsors include 3M Foundation, ACM, Alcoa Foundation, Agilent Technologies, Amylin Pharmaceuticals,
Bechtel Group Foundation, Cisco Systems, Hewlett-Packard Company, IBM Corporation, Intel Foundation, Lockheed
Martin Space Systems, National Science Foundation, Naval Research Laboratory, NVIDIA, Sandia National Laboratories,
Schlumberger, S.D. Bechtel, Jr. Foundation, Texas Instruments, and The Henry Luce Foundation.

CM Ad:Layout 1 3/3/09 3:08 PM Page 1

http://www.mentornet.net
http://www.acm.org/mentornet

78 communications of the acm | september 2009 | vol. 52 | no. 9

review articles
doi:10.1145/1562164.1562186

It’s one of the fundamental mathematical
problems of our time, and its importance
grows with the rise of powerful computers.

By Lance Fortnow

The Status of
the P versus
NP Problem

When editor-in-chief Moshe Vardi asked me to write
this piece for Communications, my first reaction was
the article could be written in two words:

Still open.
When I started graduate school in the mid-1980s,

many believed that the quickly developing area of
circuit complexity would soon settle the P versus
NP problem, whether every algorithmic problem
with efficiently verifiable solutions have efficiently
computable solutions. But circuit complexity and
other approaches to the problem have stalled and
we have little reason to believe we will see a proof
separating P from NP in the near future.

Nevertheless, the computer science landscape
has dramatically changed in the nearly four decades
since Steve Cook presented his seminal NP-
completeness paper “The Complexity of Theorem-
Proving Procedures”10 in Shaker Heights, OH in early
May, 1971. Computational power has dramatically

increased, the cost of computing has
dramatically decreased, not to men-
tion the power of the Internet. Com-
putation has become a standard tool
in just about every academic field.
Whole subfields of biology, chemis-
try, physics, economics and others are
devoted to large-scale computational
modeling, simulations, and problem
solving.

As we solve larger and more com-
plex problems with greater computa-
tional power and cleverer algorithms,
the problems we cannot tackle begin
to stand out. The theory of NP-com-
pleteness helps us understand these
limitations and the P versus NP prob-
lem begins to loom large not just as
an interesting theoretical question in
computer science, but as a basic prin-
ciple that permeates all the sciences.

So while we don’t expect the P ver-
sus NP problem to be resolved in the
near future, the question has driven
research in a number of topics to help
us understand, handle, and even take

The software written for this illustration
makes a stylized version of a network graph
that draws connections between elements
based on proximity. The graph constantly
changes as the elements sort themselves.

september 2009 | vol. 52 | no. 9 | communications of the acm 79

advantage of the hardness of various
computational problems.

In this article I look at how people
have tried to solve the P versus NP
problem as well as how this question
has shaped so much of the research in
computer science and beyond. I will
look at how to handle NP-complete
problems and the theory that has
developed from those approaches.
I show how a new type of “interac-
tive proof systems” led to limitations
of approximation algorithms and
consider whether quantum comput-
ing can solve NP-complete problems
(short answer: not likely). And I close
by describing a new long-term project
that will try to separate P from NP us-
ing algebraic-geometric techniques.

This article does not try to be totally
accurate or complete either technical-
ly or historically, but rather informally
describes the P versus NP problem
and the major directions in computer
science inspired by this question over
the past several decades.

What is the P versus NP Problem?
Suppose we have a large group of stu-
dents that we need to pair up to work
on projects. We know which students
are compatible with each other and we
want to put them in compatible groups
of two. We could search all possible pair-
ings but even for 40 students we would
have more than 300 billion trillion pos-
sible pairings.

In 1965, Jack Edmonds12 gave an ef-
ficient algorithm to solve this match-
ing problem and suggested a formal
definition of “efficient computation”
(runs in time a fixed polynomial of the
input size). The class of problems with
efficient solutions would later become
known as P for “Polynomial Time.”

But many related problems do not
seem to have such an efficient algo-
rithm. What if we wanted to make
groups of three students with each pair
of students in each group compatible
(Partition into Triangles)? What if we
wanted to find a large group of students
all of whom are compatible with each

other (Clique)? What if we wanted to
sit students around a large round table
with no incompatible students sitting
next to each other (Hamiltonian Cycle)?
What if we put the students into three
groups so that each student is in the
same group with only his or her com-
patibles (3-Coloring)?

All these problems have a similar
favor: Given a potential solution, for
example, a seating chart for the round
table, we can validate that solution ef-
ficiently. The collection of problems
that have efficiently verifiable solutions
is known as NP (for “Nondeterministic
Polynomial-Time,” if you have to ask).

So P = NP means that for every prob-
lem that has an efficiently verifiable
solution, we can find that solution effi-
ciently as well.

We call the very hardest NP problems
(which include Partition into Triangles,
Clique, Hamiltonian Cycle and 3-Col-
oring) “NP-complete,” that is, given an
efficient algorithm for one of them, we
can find an efficient algorithm for all illu

s

trati

o

n
 b

y
 C

.E
.B

.
R

E
A

S

80 communications of the acm | september 2009 | vol. 52 | no. 9

review articles

P = NP then public-key cryptography
becomes impossible. True, but what
we will gain from P = NP will make the
whole Internet look like a footnote in
history.

Since all the NP-complete optimiza-
tion problems become easy, everything
will be much more efficient. Transpor-
tation of all forms will be scheduled
optimally to move people and goods
around quicker and cheaper. Manufac-
turers can improve their production to
increase speed and create less waste.
And I’m just scratching the surface.

Learning becomes easy by using the
principle of Occam’s razor—we simply
find the smallest program consistent
with the data. Near perfect vision rec-
ognition, language comprehension and
translation and all other learning tasks
become trivial. We will also have much
better predictions of weather and earth-
quakes and other natural phenom-
enon.

P = NP would also have big implica-
tions in mathematics. One could find
short, fully logical proofs for theorems

of them and in fact any problem in NP.
Steve Cook, Leonid Levin, and Richard
Karp10, 24, 27 developed the initial theory
of NP-completeness that generated
multiple ACM Turing Awards.

In the 1970s, theoretical comput-
er scientists showed hundreds more
problems NP-complete (see Garey and
Johnson16). An efficient solution to any
NP-complete problem would imply P =
NP and an efficient solution to every NP-
complete problem.

Most computer scientists quickly
came to believe P ≠ NP and trying to
prove it quickly became the single most
important question in all of theoretical
computer science and one of the most
important in all of mathematics. Soon
the P versus NP problem became an im-
portant computational issue in nearly
every scientific discipline.

As computers grew cheaper and
more powerful, computation started
playing a major role in nearly every aca-
demic field, especially the sciences. The
more scientists can do with computers,
the more they realize some problems
seem computationally difficult. Many of
these fundamental problems turn out
to be NP-complete. A small sample:

Finding a DNA sequence that best ˲˲

fits a collection of fragments of the se-
quence (see Gusfield20).

Finding a ground state in the Ising ˲˲

model of phase transitions (see Cipra8).
Finding Nash Equilbriums with ˲˲

specific properties in a number of envi-
ronments (see Conitzer9).

Finding optimal protein threading ˲˲

procedures.26

Determining if a mathematical ˲˲

statement has a short proof (follows
from Cook10).

In 2000, the Clay Math Institute
named the P versus NP problem as one
of the seven most important open ques-
tions in mathematics and has offered a
million-dollar prize for a proof that de-
termines whether or not P = NP.

What If P = NP?
To understand the importance of the
P versus NP problem let us imagine
a world where P = NP. Technically we
could have P = NP, but not have practi-
cal algorithms for most NP-complete
problems. But suppose in fact we do
have very quick algorithms for all these
problems.

Many focus on the negative, that if

What we would
gain from P = NP
will make the whole
Internet look like a
footnote in history.

review articles

september 2009 | vol. 52 | no. 9 | communications of the acm 81

but these proofs are usually extremely
long. But we can use the Occam razor
principle to recognize and verify math-
ematical proofs as typically written in
journals. We can then find proofs of
theorems that have reasonable length
proofs say in under 100 pages. A person
who proves P = NP would walk home
from the Clay Institute not with $1 mil-
lion check but with seven (actually six
since the Poincaré Conjecture appears
solved).

Don’t get your hopes up. Complexity
theorists generally believe P ≠ NP and
such a beautiful world cannot exist.

Approaches to Showing P ≠ NP
Here, I present a number of ways we
have tried and failed to prove P ≠ NP.
The survey of Fortnow and Homer14
gives a fuller historical overview of these
techniques.

Diagonalization. Can we just con-
struct an NP language L specifically
designed so that every single polyno-
mial-time algorithm fails to compute L
properly on some input? This approach,

agonalization techniques to show some
NP-complete problems like Boolean
formula satisfiability cannot have algo-
rithms that use both a small amount of
time and memory,39 but this is a long
way from P ≠ NP.

Circuit Complexity. To show P ≠ NP
it is sufficient to show some -complete
problem cannot be solved by relatively
small circuits of AND, OR, and NOT
gates (the number of gates bounded by
a fixed polynomial in the input size).

In 1984, Furst, Saxe, and Sipser15
showed that small circuits cannot solve
the parity function if the circuits have a
fixed number of layers of gates. In 1985,
Razborov31 showed the NP-complete
problem of finding a large clique does
not have small circuits if one only allows
AND and OR gates (no NOT gates). If one
extends Razborov’s result to general cir-
cuits one will have proved P ≠ NP.

Razborov later showed his techniques
would fail miserably if one allows NOT
gates.32 Razborov and Rudich33 develop
a notion of “natural” proofs and give
evidence that our limited techniques

known as diagonalization, goes back to
the 19th century.

In 1874, Georg Cantor7 showed the
real numbers are uncountable using a
technique known as diagonalization.
Given a countable list of reals, Cantor
showed how to create a new real num-
ber not on that list.

Alan Turing, in his seminal paper on
computation,38 used a similar technique
to show that the Halting problem is not
computable. In the 1960s complexity
theorists used diagonalization to show
that given more time or memory one
can solve more problems. Why not use
diagonalization to separate NP from P?

Diagonalization requires simula-
tion and we don’t know how a fixed NP
machine can simulate an arbitrary P
machine. Also a diagonalization proof
would likely relativize, that is, work even
if all machines involved have access to
the same additional information. Bak-
er, Gill and Solovay6 showed no relativ-
izable proof can settle the P versus NP
problem in either direction.

Complexity theorists have used di-illu

s
trati

o
n

 b
y

 C
.E

.B
.

R
E

A
S

82 communications of the acm | september 2009 | vol. 52 | no. 9

review articles

in circuit complexity cannot be pushed
much further. And, in fact, we haven’t
seen any significantly new circuit lower
bounds in the past 20 years.

Proof Complexity. Consider the set
of Tautologies, the Boolean formulas ø
of variables over ANDs, ORs, and NOTs
such that every setting of the variables
to True and False makes ø true, for ex-
ample the formula

(x AND y) OR (NOT x) OR (NOT y).

A literal is a variable or its negation,
such as x or NOT x. A formula, like the
one here, is in Disjunctive Normal Form
(DNF) if it is the OR of ANDs of one or
more literals.

If a formula ø is not a tautology, we
can give an easy proof of that fact by ex-
hibiting an assignment of the variables
that makes ø false. But if ø were indeed a
tautology, we don’t expect short proofs.
If one could prove there are no short
proofs of tautology that would imply P
≠ NP.

Resolution is a standard approach to
proving tautologies of DNFs by finding
two clauses of the form (y1 AND x) and
(y2 AND NOT x) and adding the clause
(y1 AND y2). A formula is a tautology ex-
actly when one can produce an empty
clause in this manner.

In 1985, Wolfgang Haken21 showed
that tautologies that encode the pigeon-
hole principle (n + 1 pigeons in n holes
means some hole has more than one
pigeon) do not have short resolution
proofs.

Since then complexity theorists have
shown similar weaknesses in a number
of other proof systems including cutting
planes, algebraic proof systems based
on polynomials, and restricted versions
of proofs using the Frege axioms, the
basic axioms one learns in an introduc-
tory logic course.

But to prove P ≠ NP we would need
to show that tautologies cannot have
short proofs in an arbitrary proof sys-
tem. Even a breakthrough result show-
ing tautologies don’t have short general
Frege proofs would not suffice in sepa-
rating NP from P.

Dealing with Hardness
So you have an NP-complete problem
you just have to solve. If, as we believe, P
≠ NP you won’t find a general algorithm
that will correctly and accurately solve

gives a fine-grained analysis of the com-
plexity of NP-complete problems based
on their parameter size.

Approximation. We cannot hope to
solve NP-complete optimization prob-
lems exactly but often we can get a good
approximate answer. Consider the trav-
eling salesperson problem again with
distances between cities given as the
crow flies (Euclidean distance). This
problem remains NP-complete but Aro-
ra4 gives an efficient algorithm that gets
very close to the best possible route.

Consider the MAX-CUT problem
of dividing people into two groups to
maximize the number of incompatibles
between the groups. Goemans and Wil-
liamson17 use semi-definite program-
ming to give a division of people only a
.878567 factor of the best possible.

Heuristics and Average-Case Com-
plexity. The study of NP-completeness
focuses on how algorithms perform on
the worst possible inputs. However the
specific problems that arise in practice
may be much easier to solve. Many com-
puter scientists employ various heuris-
tics to solve NP-complete problems that
arise from the specific problems in their
fields.

While we create heuristics for many
of the NP-complete problems, Boolean
formula Satisfiability (SAT) receives
more attention than any other. Boolean
formulas, especially those in conjunc-
tive normal form (CNF), the AND of ORs
of variables and their negations, have a
very simple description and yet are gen-
eral enough to apply to a large number
of practical scenarios particularly in
software verification and artificial in-
telligence. Most natural NP-complete
problems have simple efficient reduc-
tions to the satisfiability of Boolean for-
mulas. In competition these SAT solvers
can often settle satisfiability of formulas
of one million variables.a

Computational complexity theo-
rists study heuristics by considering
average-case complexity—how well can
algorithms perform on average from in-
stances generated by some specific dis-
tribution.

Leonid Levin28 developed a theory of
efficient algorithms over a specific dis-
tribution and formulated a distribution-
al version of the P versus NP problem.

Some problems, like versions of the

a	 http://www.satcompetition.org.

your problem all the time. But some-
times you need to solve the problem
anyway. All hope is not lost. Here, I de-
scribe some of the tools one can use on
NP-complete problems and how com-
putational complexity theory studies
these approaches. Typically one needs
to combine several of these approaches
when tackling NP-complete problems
in the real world.

Brute Force. Computers have gotten
faster, much faster since NP-complete-
ness was first developed. Brute force
search through all possibilities is now
possible for some small problem in-
stances. With some clever algorithms
we can even solve some moderate size
problems with ease.

The NP-complete traveling sales-
person problem asks for the smallest
distance tour through a set of specified
cities. Using extensions of the cutting-
plane method we can now solve, in
practice, traveling salespeople prob-
lems with more than 10,000 cities (see
Applegate3).

Consider the 3SAT problem, solving
Boolean formula satisfiability where
formulas are in the form of the AND of
several clauses where each clause is the
OR of three literal variables or nega-
tions of variables). 3SAT remains NP-
complete but the best algorithms can
in practice solve SAT problems on about
100 variables. We have similar results
for other variations of satisfiability and
many other NP-complete problems.

But for satisfiability on general for-
mulae and on many other NP-complete
problems we do not know algorithms
better than essentially searching all the
possibilities. In addition, all these algo-
rithms have exponential growth in their
running times, so even a small increase
in the problem size can kill what was an
efficient algorithm. Brute force alone
will not solve NP-complete problems no
matter how clever we are.

Parameterized Complexity. Consider
the Vertex Cover problem, find a set of
k “central people” such that for every
compatible pair of people, at least one
of them is central. For small k we can
determine whether a central set of peo-
ple exists efficiently no matter the total
number n of people we are considering.
For the Clique problem even for small k
the problem can still be difficult.

Downey and Fellows11 developed a
theory of parameterized complexity that

http://www.satcompetition.org

review articles

september 2009 | vol. 52 | no. 9 | communications of the acm 83

shortest vector problem in a lattice or
computing the permanent of a ma-
trix, are hard on average exactly when
they are hard on worst-case inputs, but
neither of these problems is believed
to be NP-complete. Whether similar
worst-to-average reductions hold for
NP-complete sets is an important open
problem.

Average-case complexity plays an im-
portant role in many areas of computer
science, particularly cryptography, as
discussed later.

Interactive Proofs and
Limits of Approximation
Previously, we saw how sometimes one
can get good approximate solutions to
NP-complete optimization problems.
Many times though we seem to hit a
limit on our ability to even get good ap-
proximations. We now know that we
cannot achieve better approximations
on many of these problems unless P =
NP and we could solve these problems
exactly. The techniques to show these
negative results came out of a new mod-
el of proof system originally developed
for cryptography and to classify group
theoretic algorithmic problems.

As mentioned earlier, we don’t ex-
pect to have short traditional proofs of
tautologies. But consider an “interac-
tive proof” model where a prover Peggy
tries to convince a verifier Victor that a
formula ø is a tautology. Victor can ask
Peggy randomly generated questions
and need only be convinced with high
confidence. Quite surprisingly, these
proof systems have been shown to ex-
ist not only for tautologies but for any
problem computable in a reasonable
amount of memory.

A variation known as a “probabilisti-
cally checkable proof system” (PCPs),
where Peggy writes down an encoded
proof and Victor can make random-
ized queries to the bits of the proof, has
applications for approximations. The
“PCP Theorem” optimizes parameters,
which in its strong form shows that ev-
ery language in NP has a PCP where Vic-
tor uses a tiny number of random coins
and queries only three bits of the proof.

One can use this PCP theorem to
show the limitations of approximation
for a large number of optimization ques-
tions. For example, one cannot approxi-
mate the largest clique in a group of n
people by more than a multiplicative ra-

tio of nearly √n unless P = NP. See Mad-
hu Sudan’s recent article in Communi-
cations for more details and references
on PCPs.36

One can do even better assuming
a “Unique Games Conjecture” that
there exists PCPs for NP problems with
some stronger properties. Consider the
MAX-CUT problem of dividing people
discussed earlier. If the unique games
conjecture holds one cannot do bet-
ter than the .878567 factor given by the
Goemans-Williamson approximation
algorithm.26 Recent work shows how to
get a provably best approximation for
essentially any constrained problem as-
suming this conjecture.30

Using Hardness
In “What If P = NP?” we saw the nice
world that arises when we assume P =
NP. But we expect P ≠ NP to hold in very
strong ways. We can use strong hard-
ness assumptions as a positive tool,
particularly to create cryptographic pro-
tocols and to reduce or even eliminate
the need of random bits in probabilistic
algorithms.

Cryptography. We take it for granted
these days, the little key or lock on our
Web page that tells us that someone
listening to the network won’t get the
credit card number I just sent to an on-
line store or the password to the bank
that controls my money. But public-key
cryptography, the ability to send secure
messages between two parties that have
never privately exchanged keys, is a rela-
tively new development based on hard-
ness assumptions of computational
problems.

If P = NP then public-key cryptogra-
phy is impossible. Assuming P ≠ NP is
not enough to get public-key protocols,
instead we need strong average-case as-
sumptions about the difficulty of factor-
ing or related problems.

We can do much more than just pub-
lic-key cryptography using hard prob-
lems. Suppose Alice’s husband Bob is
working on a Sudoku puzzle and Alice
claims she has a solution to the puzzle
(solving a n × n Sudoku puzzle is NP-
complete). Can Alice convince Bob that
she knows a solution without revealing
any piece of it?

Alice can use a “zero-knowledge
proof,” an interactive proof with the ad-
ditional feature that the verifier learns
nothing other than some property

We expect P ≠ NP
to hold in very
strong ways.
We can use
strong hardness
assumptions as
a positive tool,
particularly
to create
cryptographic
protocols and
to reduce or
even eliminate
the need of random
bits in probabilistic
algorithms.

84 communications of the acm | september 2009 | vol. 52 | no. 9

review articles

search problems so any algorithm would
have to use some special structure of NP-
complete problems that we don’t know
about. We have used some algebraic
structure of NP-complete problems for
interactive and zero-knowledge proofs
but quantum algorithms would seem to
require much more.

Lov Grover19 did find a quantum al-
gorithm that works on general NP prob-
lems but that algorithm only achieves
a quadratic speed-up and we have evi-
dence that those techniques will not go
further.

Meanwhile quantum cryptography,
using quantum mechanics to achieve
some cryptographic protocols without
hardness assumptions, has had some
success both in theory and in practice.

A New Hope?
Ketan Mulmuley and Milind Sohoni
have presented an approach to the P
versus NP problem through algebraic
geometry, dubbed Geometric Complex-
ity Theory, or GCT.29

This approach seems to avoid the dif-

holds, like a Sudoku puzzle having a so-
lution. Every NP search problem has a
zero-knowledge proof under the appro-
priate hardness assumptions.

Online poker is generally played
through some “trusted” Web site, usu-
ally somewhere in the Caribbean. Can
we play poker over the Internet without
a trusted server? Using the right cryp-
tographic assumptions, not only poker
but any protocol that uses a trusted par-
ty can be replaced by one that uses no
trusted party and the players can’t cheat
or learn anything new beyond what they
could do with the trusted party.b

Eliminating Randomness. In the 1970s
we saw a new type of algorithm, one that
used random bits to aid in finding a so-
lution to a problem. Most notably we
had probabilistic algorithms35 for deter-
mining whether a number is prime, an
important routine needed for modern
cryptography. In 2004, we discovered
we don’t need randomness at all to effi-
ciently determine if a number is prime.2
Does randomness help us at all in find-
ing solutions to NP problems?

Truly independent and uniform
random bits are either very difficult or
impossible to produce (depending on
your beliefs about quantum mechan-
ics). Computer algorithms instead use
pseudorandom generators to gener-
ate a sequence of bits from some given
seed. The generators typically found on
our computers usually work well but oc-
casionally give incorrect results both in
theory and in practice.

We can create theoretically better
pseudorandom generators in two dif-
ferent ways, one based on the strong
hardness assumptions of cryptography
and the other based on worst-case com-
plexity assumptions. I will focus on this
second approach.

We need to assume a bit more than
P ≠ NP, roughly that NP-complete prob-
lems cannot be solved by smaller than
expected AND-OR-NOT circuits. A long
series of papers showed that, under this
assumption, any problem with an ef-
ficient probabilistic algorithm also has
an efficient algorithm that uses a pseu-
dorandom generator with a very short
seed, a surprising connection between
hard languages and pseudo-random-
ness (see Impagliazzo23). The seed is so
short we can try all possible seeds effi-

b	 See the survey of Goldreich18 for details.

ciently and avoid the need for random-
ness altogether.

Thus complexity theorists generally
believe having randomness does not
help in solving NP search problems and
that NP-complete problems do not have
efficient solutions, either with or with-
out using truly random bits.

While randomness doesn’t seem
necessary for solving search problems,
the unpredictability of random bits
plays a critical role in cryptography and
interactive proof systems and likely can-
not be avoided in these scenarios.

Could Quantum Computers
Solve NP-Complete Problems?
While we have randomized and non-
randomized efficient algorithms for de-
termining whether a number is prime,
these algorithms usually don’t give us
the factors of a composite number.
Much of modern cryptography relies on
the fact that factoring or similar prob-
lems do not have efficient algorithms.

In the mid-1990s, Peter Shor34
showed how to factor numbers using
a hypothetical quantum computer. He
also developed a similar quantum al-
gorithm to solve the discrete logarithm
problem. The hardness of discrete log-
arithm on classical computers is also
used as a basis for many cryptographic
protocols. Nevertheless, we don’t ex-
pect that factoring or finding discrete
logarithms are NP-complete. While we
don’t think we have efficient algorithms
to solve factoring or discrete logarithm,
we also don’t believe we can reduce NP-
complete problems like Clique to the
factoring or discrete logarithm prob-
lems.

So could quantum computers one
day solve NP-complete problems? Un-
likely.

I’m not a physicist so I won’t address
the problem as to whether these ma-
chines can actually be built at a large
enough scale to solve factoring prob-
lems larger than we can with current
technology (about 200 digits). After bil-
lions of dollars of funding of quantum
computing research we still have a long
way to go.

Even if we could build these ma-
chines, Shor’s algorithm relies heavily on
the algebraic structures of numbers that
we don’t see in the known NP-complete
problems. We know that his algorithm
cannot be applied to generic “black-box”

NP can be seen as a graph where every
element is connected to every other
element. Over these pages a deconstruction
of the graph is shown.

review articles

september 2009 | vol. 52 | no. 9 | communications of the acm 85

ficulties mentioned earlier, but requires
deep mathematics that could require
many years or decades to carry through.

In essence, they define a family of
high-dimension polygons Pn based on
group representations on certain alge-
braic varieties. Roughly speaking, for
each n, if Pn contains an integral point,
then any circuit family for the Hamil-
tonian path problem must have size at
least nlog n on inputs of size n, which im-
plies P ≠ NP. Thus, to show that P ≠ NP
it suffices to show that Pn contains an
integral point for all n.

Although all that is necessary is to
show that Pn contains an integral point
for all n, Mulmuley and Sohoni argue
that this direct approach would be dif-
ficult and instead suggest first showing
that the integer programming problem
for the family Pn is, in fact, in P. Under
this approach, there are three signifi-
cant steps remaining:

1. Prove that the LP relaxation solves
the integer programming problem for
Pn in polynomial time;

2. Find an efficient, simple combi-

provide some insight to the P versus NP
problem.

Mulmuley and Sohoni have reduced
a question about the nonexistence of
polynomial-time algorithms for all NP-
complete problems to a question about
the existence of a polynomial-time al-
gorithm (with certain properties) for a
specific problem. This should give us
some hope, even in the face of problems
(1)–(3).

Nevertheless, Mulmuley believes it
will take about 100 years to carry out this
program, if it works at all.

Conclusion
This survey focused on the P versus NP
problem, its importance, our attempts
to prove P ≠ NP and the approaches we
use to deal with the NP-complete prob-
lems that nature and society throws
at us. Much of the work mentioned
required a long series of mathemati-
cally difficult research papers that I
could not hope to adequately cover
in this short article. Also the field of
computational complexity goes well

natorial algorithm for the integer pro-
gramming problem for Pn, and;

3. Prove that this simple algorithm
always answers “yes.”

Since the polygons Pn are algebro-geo-
metric in nature, solving (1) is thought to
require algebraic geometry, representa-
tion theory, and the theory of quantum
groups. Mulmuley and Sohoni have giv-
en reasonable algebro-geometric condi-
tions that imply (1). These conditions
have classical analogues that are known
to hold, based on the Riemann Hypoth-
esis over finite fields (a theorem proved
by André Weil in the 1960s). Mulmuley
and Sohoni suggest that an analogous
Riemann Hypothesis-like statement is
required here (though not the classical
Riemann Hypothesis).

Although step (1) is difficult, Mulmu-
ley and Sohoni have provided definite
conjectures based on reasonable math-
ematical analogies that would solve
(1). In contrast, the path to completing
steps (2) and (3) is less clear. Despite
these remaining hurdles, even solving
the conjectures involved in (1) could illu

s

trati

o

n
 b

y
 C

.E
.B

.
R

E
A

S

86 communications of the acm | september 2009 | vol. 52 | no. 9

review articles

(June 2003).
15.	 Furst, M., Saxe, J., and Sipser, M. Parity, circuits and

the polynomial-time hierarchy. Mathematical Systems
Theory 17 (1984), 13–27.

16.	 Garey, M. and Johnson, D. Computers and Intractability.
A Guide to the Theory of NP-Completeness. W. H.
Freeman and Company, NY, 1979.

17.	 Goemans, M. and Williamson, D. Improved
approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming.
Journal of the ACM 42, 6 (1995), 1115–1145.

18.	 Goldreich, O. Foundations of cryptography|a primer.
Foundations and Trends in Theoretical Computer
Science 1, 1 (2005) 1–116.

19.	 Grover, L. A fast quantum mechanical algorithm for
database search. In Proceedings of the 28th ACM
Symposium on the Theory of Computing. ACM, NY,
1996, 212–219.

20.	 Gusfield, D. Algorithms on Strings, Trees and
Sequences: Computer Science and Computational
Biology. Cambridge University Press, 1997.

21.	 Haken, A. The intractability of resolution. Theoretical
Computer Science, 39 (1985) 297–305.

22.	 Impagliazzo, R. A personal view of average-case
complexity theory. In Proceedings of the 10th Annual
Conference on Structure in Complexity Theory. IEEE
Computer Society Press, 1995, 134–147.

23.	 Impagliazzo, R. and Wigderson, A. P = BPP if E requires
exponential circuits: Derandomizing the XOR lemma. In
Proceedings of the 29th ACM Symposium on the Theory
of Computing. ACM, NY, 1997, 220–229.

24.	 Karp, R. Reducibility among combinatorial problems.
Complexity of Computer Computations. R. Miller and J.
Thatcher, Eds. Plenum Press, 1972, 85–103.

25.	 Khot, S., Kindler, G., Mossel, E., and O’Donnell, R.
Optimal inapproximability results for MAX-CUT and
other 2-variable CSPs? SIAM Journal on Computing
37, 1 (2007), 319–357.

26.	 Lathrop, R. The protein threading problem with
sequence amino acid interaction preferences is NP-
complete. Protein Engineering 7, 9 (1994), 1059–1068.

27.	 Levin, L. Universal’nyie perebornyie zadachi (Universal
search problems: in Russian). Problemy Peredachi
Informatsii 9, 3 (1973), 265–266. Corrected English
translation.37

28.	 Levin, L. Average case complete problems. SIAM
Journal on Computing 15, (1986), 285–286.

29.	 Mulmuley, K. and Sohoni, M. Geometric complexity
theory I: An approach to the P vs. NP and related
problems. SIAM Journal on Computing 31, 2, (2001)
496–526.

30.	 Raghavendra, P. Optimal algorithms and
inapproximability results for every csp? In Proceedings
of the 40th ACM Symposium on the Theory of
Computing. ACM, NY, 2008, 245–254.

31.	 Razborov, A. Lower bounds on the monotone
complexity of some Boolean functions. Soviet
Mathematics-Doklady 31, (1985) 485–493.

32.	 Razborov, A. On the method of approximations. In
Proceedings of the 21st ACM Symposium on the Theory
of Computing. ACM, NY, 1989, 167–176.

33. Razborov, A., and Rudich, S. Natural proofs. Journal
of Computer and System Sciences 55, 1 (Aug. 1997),
24–35.

34.	S hor. P. Polynomial-time algorithms for prime
factorization and discrete logarithms on a quantum
computer. SIAM Journal on Computing 26, 5 (1997)
1484–1509.

35.	S olovay, R. and Strassen, V. A fast Monte-Carlo test for
primality. SIAM Journal on Computing 6 (1977), 84–85.
See also erratum 7:118, 1978.

36.	S udan, M. Probabilistically checkable proofs. Commun.
ACM 52, 3 (Mar. 2009) 76–84.

37.	 Trakhtenbrot, R. A survey of Russian approaches to
Perebor (brute-force search) algorithms. Annals of the
History of Computing 6, 4 (1984), 384–400.

38.	 Turing, A. On computable numbers, with an application
to the Etscheidungs problem. Proceedings of the
London Mathematical Society 42 (1936), 230–265.

39.	 van Melkebeek, D. A survey of lower bounds for
satisfiability and related problems. Foundations and
Trends in Theoretical Computer Science 2, (2007),
197–303.

Lance Fortnow (fortnow@eecs.northwestern.edu) is a
professor of electrical engineering and computer science
at Northwestern University’s McCormick School of
Engineering, Evanston, IL.

© 2009 ACM 0001-0782/09/0900 $10.00

beyond just the P versus NP problem
that I haven’t discussed here. In “Fur-
ther Reading,” a number of references
are presented for those interested in a
deeper understanding of the P versus
NP problem and computational com-
plexity.

The P versus NP problem has gone
from an interesting problem related to
logic to perhaps the most fundamental
and important mathematical question
of our time, whose importance only
grows as computers become more pow-
erful and widespread. The question has
even hit popular culture appearing in
television shows such as The Simpsons
and Numb3rs. Yet many only know of
the basic principles of P versus NP and
I hope this survey has given you a small
feeling of the depth of research inspired
by this mathematical problem.

Proving P ≠ NP would not be the end
of the story, it would just show that NP-
complete problem, don’t have efficient
algorithms for all inputs but many ques-
tions might remain. Cryptography, for
example, would require that a problem
like factoring (not believed to be NP-
complete) is hard for randomly drawn
composite numbers.

Proving P ≠ NP might not be the start
of the story either. Weaker separations
remain perplexingly difficult, for exam-
ple showing that Boolean-formula Satis-
fiability cannot be solved in near-linear
time or showing that some problem
using a certain amount of memory can-
not be solved using roughly the same
amount of time.

None of us truly understands the P
versus NP problem, we have only begun
to peel the layers around this increas-
ingly complex question. Perhaps we will
see a resolution of the P versus NP prob-
lem in the near future but I almost hope
not. The P versus NP problem continues
to inspire and boggle the mind and con-
tinued exploration of this problem will
lead us to yet even new complexities in
that truly mysterious process we call
computation.

Further Reading
Recommendations for a more in-depth
look at the P versus NP problem and the
other topics discussed in this article:

Steve Homer and I have written a ˲˲

detailed historical view of computation-
al complexity.14

The 1979 book of Garey and John-˲˲

son still gives the best overview of the P
versus NP problem with an incredibly
useful list of NP-complete problems.16

Scott Aaronson looks at the unlikely ˲˲

possibility that the P versus NP problem
is formally independent.1

Russell Impagliazzo gives a wonder-˲˲

ful description of five possible worlds of
complexity.22

Sanjeev Arora and Boaz Barak have ˲˲

a new computational complexity text-
book with an emphasis on recent re-
search directions.5

The ˲˲ Foundations and Trends in Theo-
retical Computer Science journal and the
Computational Complexity columns of
the Bulletin of the European Association
of Theoretical Computer Science and SI-
GACT News have many wonderful sur-
veys on various topics in theory includ-
ing those mentioned in this article.

Read the blog Computational Com-˲˲

plexity and you will be among the first to
know about any updates of the status of
the P versus NP problem.13

Acknowledgments
Thanks to Rahul Santhanam for many
useful discussions and comments. Josh
Grochow wrote an early draft. The anon-
ymous referees provided critical advice.
Some of the material in this article has
appeared in my earlier surveys and my
blog.13	

References
1.	 Aaronson, S. Is P versus NP formally independent?

Bulletin of the European Association for Theoretical
Computer Science 81 (Oct. 2003).

2.	 Agrawal, M., Kayal, N., and Saxena, N. PRIMES. In
Annals of Mathematics 160, 2 (2004) 781–793.

3.	 Applegate, D., Bixby, R., Chvátal, V., and Cook, W. On the
solution of traveling salesman problems. Documenta
Mathematica, Extra Volume ICM III (1998), 645–656.

4.	 Arora, S. Polynomial time approximation schemes for
Euclidean traveling salesman and other geometric
problems. J. ACM 45, 5 (Sept. 1998), 753–782.

5.	 Arora, S. and Barak, B. Complexity Theory: A Modern
Approach. Cambridge University Press, Cambridge,
2009.

6.	 Baker, T., Gill, J., and Solovay, R. Relativizations of the P
= NP question. SIAM Journal on Computing 4, 4 (1975),
431–442.

7.	 Cantor, G. Ueber eine Eigenschaft des Inbegriffes
aller reellen algebraischen Zahlen. Crelle’s Journal 77
(1874), 258–262.

8.	 Cipra, B. This Ising model is NP-complete. SIAM News
33, 6 (July/Aug. 2000).

9.	 Conitzer, V. and Sandholm, T. New complexity results
about Nash equilibria. Games and Economic Behavior
63, 2 (July 2008), 621–641.

10.	 Cook, S. The complexity of theorem-proving
procedures. In Proceedings of the 3rd ACM Symposium
on the Theory of Computing, ACM, NY, 1971, 151–158.

11.	 Downey, R. and Fellows, M. Parameterized Complexity.
Springer, 1999.

12.	 Edmonds, J. Paths, trees and owers. Canadian Journal
of Mathematics 17, (1965), 449–467.

13.	 Fortnow, L. and Gasarch, W. Computational complexity;
http://weblog.fortnow.com.

14.	 Fortnow, L. and Homer, S. A short history of
computational complexity. Bulletin of the European
Association for Theoretical Computer Science 80,

http://weblog.fortnow.com
mailto:fortnow@eecs.northwestern.edu

research highlights

september 2009 | vol. 52 | no. 9 | communications of the acm 87

p. 99

Spamalytics:
An Empirical Analysis of Spam
Marketing Conversion
By Chris Kanich, Christian Kreibich, Kirill Levchenko, Brandon Enright,
Geoffrey M. Voelker, Vern Paxson, and Stefan Savage

p. 98

Technical
Perspective
They Do Click,
Don’t They?
By Marc Dacier

p. 89

Optimistic Parallelism
Requires Abstractions
By Milind Kulkarni, Keshav Pingali, Bruce Walter,
Ganesh Ramanarayanan, Kavita Bala, and L. Paul Chew

p. 88

Technical
Perspective
Abstraction
for Parallelism
By Katherine Yelick

88 communications of the acm | september 2009 | vol. 52 | no. 9

Looking for some new insight into an old
problem? The following research paper
by Milind Kulkarni et al. addresses the
familiar problem of writing parallel ap-
plications and uses a fresh approach
based on data abstraction to allow some
challenging programs to be parallelized.
Going back more than 30 years to the
foundational work by Owicki and Gries
on the semantics of parallel programs,
and through decades of work on auto-
matic parallelization of Fortran and C
programs, the focus in the research and
commercial communities has been on
reasoning at the concrete level of read
and write operations: if two iterations
of a loop access the same variable, and
at least one of them performs a write,
then the iterations cannot execute in
parallel. When combined with a static
compile-time approach, the necessarily
conservative analysis techniques mean
that many loops cannot be parallelized,
especially for programs with pointer-
based data structures.

With a computer industry betting
on multicore, the need for solutions
to the parallel software problem has
reached a new level of criticality. There
has been a resurgence of parallelism re-
search, much of it focused on dynamic
discovery of parallelism using specula-
tive techniques. The authors build on
the idea of dynamic parallelism dis-
covery by combining loop constructs
with conflict analysis and a rollback
mechanism to support speculative par-
allelism. The Galois system described
in the paper has both ordered and un-
ordered loops, but presents users with
a serial semantics in both cases. Galois
uses the type system to further control
the behavior of such loops. Objects that
use a traditional model of speculative
parallelism are instances of so-called
“catch-and-keep” classes, because the
runtime system holds a lock through-

out an iteration to ensure that the itera-
tions appear to execute serially.

But an interesting class of algo-
rithms allow for correct behavior even
in the presence of conflicting accesses.
For example, branch and bound search
can proceed in any order but must up-
date the value of a variable represent-
ing the current bound. The authors add
to speculative execution: programmers
are allowed to specify that two method
invocations on an object commute,
meaning they can safely be reordered.
In the branch and bound example, if
a class is defined for the bound, with
only operations to read the bound and
update it monotonically by perform-
ing a max operation with a newly dis-
covered bound, then the update op-
erations commute with one another.
Moreover, methods that have no effect
on the abstract value, but “benevolent
side effects” on the underlying state
will commute at the abstract level de-
spite having conflicting accesses.

Classes that have commutativity
specifications are called “catch-and-
release” classes, because the imple-
mentation holds a lock only during a
method invocation to ensure atomicity
of the operation, but not throughout
the entire iteration. Serialization of the
iterations is ensured instead through
commutativity of the methods and,
if abstract conflicts are discovered,
though rollbacks.

The commutativity specification
combined with unordered loops gives
a programming model that is some-
where between explicit parallelism and
sequential programming, as the pro-
grammer may give many opportunities
for reordering operations, but the pro-
gram still has a serial semantics. The
one final concept needed to parallelize
some complex irregular applications is
the idea that methods with side effects

on catch-and-release classes must have
inverse methods to “undo” the effects
in case an abstract-level conflict is
discovered. This allows iterations to
execute in parallel, possibly with con-
flicting reads and writes to variables,
as long as the methods involved are
known to commute. If an abstract con-
flict is discovered between two method
invocations that are not commutative,
the runtime layer will roll back one of
the iterations using the inverse of the
operations that had been executed.

The authors successfully apply
these ideas to two complex paralleliza-
tion problems—an unstructured mesh
refinement algorithm and a clustering
algorithm used in data mining. Both
problems involve irregular control flow
and pointer-based data structures,
making them intractable for static par-
allelism approaches or even specula-
tive parallelism based on concrete con-
flict detection.

This paper presents the general ideas
using these two compelling examples,
and the concepts are both original and
thought provoking. Abstraction mech-
anisms like object orientation are of-
ten considered deterrents to perfor-
mance and parallelization, but in this
approach data abstraction provides the
specification point for commutativity
and therefore a key to parallelization.
The authors raise a number of interest-
ing semantic issues in the examples
and overall approach, and for those in-
terested in a new perspective on paral-
lel programming, I highly recommend
this paper.	

Katherine Yelick is a professor of Electrical Engineering
and Computer Sciences at the University of California,
Berkeley, and the director of the National Energy
Research Scientific Computing Center (NERSC), a
national supercomputing facility at Lawrence Berkeley
National Laboratory that serves the Department of
Energy.

© 2009 ACM 0001-0782/09/0900 $10.00

Technical Perspective
Abstraction for Parallelism
By Katherine Yelick

research highlights

doi:10.1145/1562164.1562187

september 2009 | vol. 52 | no. 9 | communications of the acm 89

Optimistic Parallelism
Requires Abstractions
By Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita Bala, and L. Paul Chew

doi:10.1145/1562164.1562188

Abstract
The problem of writing software for multicore processors
is greatly simplified if we could automatically parallelize
sequential programs. Although auto-parallelization has
been studied for many decades, it has succeeded only in a
few application areas such as dense matrix computations.
In particular, auto-parallelization of irregular programs,
which are organized around large, pointer-based data struc-
tures like graphs, has seemed intractable.

The Galois project is taking a fresh look at auto-
parallelization. Rather than attempt to parallelize all pro-
grams no matter how obscurely they are written, we are
designing programming abstractions that permit program-
mers to highlight opportunities for exploiting parallelism
in sequential programs, and building a runtime system
that uses these hints to execute the program in parallel. In
this paper, we describe the design and implementation of
a system based on these ideas. Experimental results for two
real-world irregular applications, a Delaunay mesh refine-
ment application and a graphics application that performs
agglomerative clustering, demonstrate that this approach is
promising.

1. INTRODUCTION

A pessimist sees the difficulty in every opportunity; an
optimist sees the opportunity in every difficulty.

—Sir Winston Churchill

Irregular applications are organized around pointer-based
data structures such as graphs and trees, and are ubiquitous
in important application areas such as finite-elements, SAT
solvers, maxflow computations, and compilers. In principle,
it is possible to use a thread library (e.g., pthreads) or a com-
bination of compiler directives and libraries (e.g., OpenMP)
to write parallel code for irregular applications, but it is well
known that writing explicitly parallel code can be very tricky
because of the complexities of memory consistency models,
synchronization, data races, etc. Tim Sweeney, who designed
the multithreaded Unreal 3 game engine, estimates that
writing multithreading code tripled software costs at Epic
Games (quoted in de Galas3).

From the earliest days of parallel computing, it has been
recognized that one way to circumvent the problems of
writing explicitly parallel code is auto-parallelization.10 In
this approach, application programmers write sequential
programs, leaving it to the compiler or runtime system
to extract and exploit the latent parallelism in programs.
There is an enormous literature on algorithms and mecha-
nisms for auto-parallelization, but like the characters in
Pirandello’s play Six Characters in Search of an Author, most

of them are in search of programs that they can parallel-
ize. They can be divided into two categories: compile-time
techniques and runtime techniques. Compile-time tech-
niques use static analyses to find independent computa-
tions in programs, and have succeeded in parallelizing
limited classes of irregular programs such as n-body meth-
ods.1, 5, 20 Runtime techniques use optimistic paralleliza-
tion: computations are parallelized speculatively, and
the runtime system detects conflicts between concurrent
computations and rolls them back as needed to preserve
the sequential semantics of the program. Optimistic paral-
lelism is the basis of the popular Timewarp algorithm for
parallel event-driven simulation,9 but efforts to build gen-
eral-purpose systems based on optimistic parallelization,
such as thread-level speculation (TLS),19, 22, 24 have had lim-
ited success. Because of these problems, interest in auto-
parallelization has waned in recent years.

We are taking a fresh look at auto-parallelization, but
from a different perspective than prior work in this area.
Instead of trying to parallelize all application programs no
matter how obscurely written, the Galois project is focusing
on the following questions.

•	 Can we design sequential programming abstractions
that capture the most commonly occurring parallelism
patterns in programs?

•	 If so, what systems support is needed to auto-parallelize
programs that use these abstractions?

A useful analogy is relational database programming.
The SQL programmer views data as if they were organized
as a flat table (relations), and operates on the data using
high-level operations like joins and projections. Inside
the database system, relations are implemented in very
complex ways using B-trees, index structures, etc., and
the high-level operations are performed in parallel using
locks and transactions, but the relational abstractions
enable these complications to be hidden from the SQL
programmer.

Can we carry out a similar program for irregular applica-
tions? Although we are far from having a complete solution,
the outlines of a solution for important patterns of parallel-
ism are emerging from the fog. In this paper, we focus on
understanding and exploiting parallelism in iterative irregu-
lar applications. In Section 2, we describe parallelism pat-
terns in two such applications: a Delaunay mesh refinement

The original version of this paper appeared in the Pro-
ceedings of the 2007 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation.

90 communications of the acm | september 2009 | vol. 52 | no. 9

research highlights

code2 and a graphics application23 that performs agglom-
erative clustering.17 In Section 3, we discuss the Galois pro-
gramming model and runtime system for exploiting this
parallelism. In Section 4, we evaluate the performance of
our system on the two applications. Finally, in Section 5, we
discuss conclusions and ongoing work.

2. TWO IRREGULAR APPLICATIONS
In this section, we describe opportunities for exploiting
parallelism in two irregular applications: Delaunay mesh
refinement,2 and agglomerative clustering17 as used within
a graphics application.23 These applications perform refine-
ment and coarsening, respectively, which are arguably
the two most common operations for bulk modification of
irregular data structures.

2.1. Delaunay mesh refinement
The input to the 2D Delaunay mesh refinement algorithm is a
triangulation of some region in the plane, in which all triangles
satisfy a certain geometric property called the Delaunay con-
dition.2 Some of these triangles may be badly shaped accord-
ing to certain geometric criteria; for example, excessively
large triangles may cause unacceptable discretization errors
in finite-element solutions. The goal of mesh refinement is
to eliminate these badly shaped triangles from the mesh by
replacing them with smaller triangles. However, performing
this operation on a bad triangle may violate the Delauanay
condition for neighboring triangles, so it is necessary to find
all affected triangles (this is called the cavity of that bad tri-
angle), and retriangulate the entire cavity. Figure 1 shows the
initial mesh on the left (badly shaped triangles are colored
black, and cavities are colored gray), and the refined mesh on
the right. Refinement may create new badly shaped triangles,
but there is a mathematical guarantee, at least in 2D, that if
this process is repeated, a mesh without bad triangles will
be produced in the end. The structure of the final mesh may
depend on the order in which bad triangles are eliminated,
but any mesh produced by this process is acceptable.

Figure 2 shows the pseudocode for mesh refinement. It is
natural to organize the program around a work-list contain-
ing the bad triangles, as seen in lines 3 and 4. This work-list
is one of the two key data structures in mesh refinement.
The other is a graph representing the mesh structure; each
triangle in the mesh is represented as one node, and edges
in the graph represent triangle adjacencies in the mesh.

Opportunities for Exploiting Parallelism: Delaunay mesh
refinement is a relatively complicated code since the central
data structure is a graph that is modified repeatedly during
the execution of the algorithm. Nevertheless, there may be a
lot of parallelism in the algorithm since cavities that do not
overlap can be processed in parallel, as in the mesh of Figure 1.
If two cavities overlap, they must be processed sequentially
in some order. How much parallelism is there in mesh refine-
ment? Our studies11 have shown that for a mesh of 100,000
triangles in which roughly half the initial triangles are badly
shaped, there are more than 256 triangles that can be pro-
cessed in parallel until almost the end of execution.

2.2. Agglomerative clustering
The second problem is agglomerative clustering, a well-known
data-mining algorithm.17 This algorithm is used in graphics
applications for handling large numbers of light sources.23

The input to the clustering algorithm is (1) a data-set and
(2) a measure of the similarity between items in the data-set.
The goal of clustering is to construct a binary tree called a
dendrogram whose hierarchical structure exposes the simi-
larity between items in the data-set. Figure 3(a) shows a data-
set containing points in the plane, for which the measure of
similarity between data points is Euclidean distance. The
dendrogram for this data-set is shown in Figure 3(b) and (c).

Agglomerative clustering can be performed by an iterative
algorithm: at each step, the two closest points in the data-
set are clustered together and replaced in the data-set by a
single new point that represents the new cluster. The loca-
tion of this new point may be determined heuristically.17 The
algorithm terminates when there is only one point left in the
data-set. Pseudocode for the algorithm is shown in Figure 4. Figure 1. Fixing bad elements.

(a) Unrefined Mesh (b) Refined Mesh

a

b
c

d

e

a

b
c

d

e

a b c d e

(a) Data points (b) Hierarchical clusters (c) Dendrogram

Figure 3. Agglomerative clustering.

Figure 2. Pseudocode of the mesh refinement algorithm.

1:   Mesh m = /* read in initial mesh */
2:   WorkList wl ;
3:   wl.add (mesh.badTriangles ());
4:   while (wl.size () != 0) {
5:     Element e = wl.get (); //get bad triangle
6:     if (e no longer in mesh) continue;
7:     Cavity c = new Cavity (e);
8:     c.expand ();
9:     c.retriangulate ();
10:    mesh.update (c);
11:    wl.add (c.badTriangles () );
12:   }

september 2009 | vol. 52 | no. 9 | communications of the acm 91

determines dependences between units of work and con-
structs a computation schedule and an executor phase that
executes the resulting schedule in parallel. This approach
does not work for mesh refinement since the dependence
structure changes when the underlying graph is modified by
the algorithm.

These considerations suggest that a fully dynamic
approach in which dependences are detected at runtime
is needed to parallelize codes like mesh refinement and
agglomerative clustering. One such approach to paralleliz-
ing mesh refinement has been proposed by Hudson et al.,8
and it has the following steps: (1) compute the cavities of
all bad triangles without making any modifications to the
graph, (2) build an interference graph in which nodes rep-
resent cavities and edges represent overlapping cavities, (3)
find a maximal independent set of nodes in this graph, and
(4) retriangulate the cavities corresponding to these nodes
in parallel, without any synchronization. These steps are
then repeated for the new mesh until convergence. This
approach can be viewed as an extended inspector–executor
approach in which the execution of the inspector and execu-
tor are interleaved. However, this approach is very specific to
Delaunay mesh refinement. For example, it is not clear that
it can be used for applications like agglomerative clustering
in which iterations are performed over priority queues.

3. THE GALOIS APPROACH
The analysis of Section 2 suggests that optimistic paralleliza-
tion, in which computations are speculatively executed in
parallel and rolled back selectively when dependence con-
flicts are detected by the runtime system, is the only gener-
al-purpose approach to exploiting parallelism in irregular
applications. In this section, we argue that optimistic par-
allelization needs to be coupled with appropriate program-
ming abstractions, and we describe an implementation of
these ideas in the Galois system.

The need for programming abstractions becomes evi-
dent if we consider the mesh refinement code in Figure 2.
The work-list of bad triangles determines a particular order
in which bad triangles are processed by the sequential pro-
gram, and any auto-parallelized version of this code will be
forced to process bad triangles in the same order. The fact
that bad triangles can actually be processed in any order is
important for parallelization, but it is missing from this code.
Abstractly, we can view the processing of each bad triangle
as an operator that is applied to the graph to modify a small
region of it; the fact that bad triangles can be processed in
any order is equivalent to asserting that the applications of
this operator to the graph “commute” with each other. Since
the structure of the final graph may actually be different for
different operator orderings, we call this application-specific
commutativity for obvious reasons.

Opportunities to exploit commutativity may also arise in
abstract data type (ADT) implementations. Consider a set
ADT that is implemented using a linked list. With respect to
the semantics of sets, insert operations commute with each
other since all insertion orders produce the same set even
though the linked list representation internal to the ADT
may be different for different insertion orders. In this case,

The algorithm iterates over a priority queue whose entries
are ordered pairs of points <x, y>, such that y is the nearest
neighbor of x (we call this nearest(x) ). In each iteration
of the while loop, the pair of points at the head of the prior-
ity queue—the closest pair—are clustered. These two points
are replaced by a new, representative point. The nearest
neighbor of this point is determined, and the pair is entered
into the priority queue.

To find the nearest neighbor of a point, we can scan
the entire data-set at each step, but this is too inefficient.
Instead, we use a spatial acceleration structure called a kd-
tree to find nearest neighbors. The kd-tree is built at the start
of the algorithm and is kept up to date as points are removed
and added from the space, as seen in Figure 4.

Opportunities for Exploiting Parallelism: Since each
iteration clusters the two closest points in the current data-
set, it may seem that the algorithm is inherently sequential.
However, if we consider the data-set in Figure 3(a), we see
that points a and b, and points c and d can be clustered con-
currently since neither cluster affects the other. Intuitively,
if the dendrogram is a long and skinny tree, there may be
few independent iterations, whereas if the dendrogram is a
bushy tree, there is parallelism that can be exploited since
the tree can be constructed bottom-up in parallel. As in the
case of Delaunay mesh refinement, the parallelism is very
data-dependent. In experiments on graphics scenes with
20,000 lights, we have found that on average about 100 clus-
ters can be constructed concurrently11; thus, there is sub-
stantial parallelism that can be exploited.

2.3. Discussion
Existing compile-time parallelization techniques for irreg-
ular programs are based on shape analysis,20 which deter-
mines structural invariants in the data structures. The graph
in mesh refinement has no particular structure, and it is also
modified in each iteration of the loop in Figure 2, so com-
pile-time parallelization will not work for this application.
Semi-static approaches using the inspector–executor model18
split computation into two phases: an inspector phase that

Figure 4. Pseudocode for agglomerative clustering.

1:  kdTree :=   new KDTree ( points )
2:  pq := new PriorityQueue ()
3:  foreach p in points {pq.add( <p,kdTree.nearest ( p )> )}
4:  while ( pq.size () != 0 ) do {
5:   Pair <p , n> := pq  .  get (); // return closest pair
6:   if ( p.isAlreadyClustered()) continue;
7:   if ( n.isAlreadyClustered ()) {
8:   pq.add ( <p,kdTree.nearest ( p )> );
9:   continue;
10:    }
11:   Cluster c := new Cluster ( p,n );
12:   dendrogram.add ( c );
13:   kdTree.remove ( p );
14:   kdTree.remove ( n );
15:   kdTree.add ( c );
16:   Point m:= kdTree . nearest ( c );
17:   if ( m != ptAtInfinity ) pq.add ( <c,m> );
18: }

92 communications of the acm | september 2009 | vol. 52 | no. 9

research highlights

Note that new elements may be added to a set while
iterating over it, which is not allowed in conventional set
iterators in languages like SETL or Java. Figure 6 shows
the client code for Delaunay mesh generation. Instead of a
work-list of bad triangles, this code uses a set of bad trian-
gles and a set iterator. Since set elements are not ordered,
the iterator is permitted to iterate over the set in any order.
Therefore, the Galois version makes evident the fact that
the bad triangles can be processed in any order, a fact that
is absent from the more conventional code of Figure 2. For
lack of space, we do not show the Galois version of agglom-
erative clustering, but it uses the ordered-set iterator in the
obvious way.

The parallel execution model is shown in Figure 5(b).
A master thread executes all code outside the Galois set
iterators. When it encounters a Galois set iterator, it enlists
worker threads to help execute iterations concurrently. The
assignment of iterations to threads is done dynamically,
but this policy can be changed by an expert programmer.12
Threads synchronize by barrier synchronization at the end
of the iterator.

Given this execution model, the main technical problem
is to ensure that the parallel execution respects the sequen-
tial semantics of the iterators. For an unordered-set iterator,
this can be accomplished by ensuring that the execution of
each iteration has transactional semantics. These semantics
guarantee serializability; the parallel execution will behave
as if the iterations were executed serially in some order. For
the ordered-set iterator, we must also ensure that the itera-
tions appear to execute in the order prescribed by the order-
ing on set elements. Guaranteeing sequential semantics is
a nontrivial problem because each iteration may read and
write objects in shared memory, so we must ensure that
these reads and writes are properly coordinated. Next, we
describe how this is accomplished.

3.2. Galois library classes
The library has two kinds of classes: catch-and-keep and
catch-and-release. As in Java, a lock is automatically associ-
ated with each object, but the locking policy is different for
the two kinds of classes.

Catch-and-Keep Classes: Catch-and-keep classes are the
default, and they are implemented in Galois using a varia-
tion of the well-known two-phase locking policy. To invoke
a method on a catch-and-keep object, an iteration must

commutativity arises from the fact that there may be several
concrete (memory) states that represent a single abstract
state. Exploiting this kind of ADT commutativity obviously
requires an object-oriented language.

We will refer to application-specific and ADT commutativity
as semantic commutativity. In contrast, traditional compile-time
parallelization techniques such as dependence analysis10 and
Diniz and Rinard’s commutativity analysis4 focus on concrete
commutativity in which all orders of performing operations
result in the same concrete state. Semantic commutativity is
more general, and it permits more interleavings of operations.

The programming abstractions introduced in this sec-
tion permit programmers to highlight opportunities for
exploiting semantic commutativity. They can be added to
any sequential object-oriented language (the results in this
paper are from an implementation in C++). Figure 5(a) is a
conceptual picture of the Galois system. Application pro-
grams use two constructs called Galois set iterators, described
in Section 3.1, for highlighting opportunities for exploiting
parallelism. Section 3.2 describes the data structure library.
Data structures in which there are opportunities to exploit
ADT commutativity are implemented by catch-and-release
classes, while others are implemented in catch-and-keep
classes. The runtime system implements optimistic paral-
lelization, and detects and recovers from potentially unsafe
accesses to shared objects, as explained in Section 3.3.

3.1. Galois set iterators
The Galois programming model is sequential and object-
oriented; programs are written in an object-oriented lan-
guage like C++ or Java extended with two constructs called
Galois set iterators.

•	 Unordered-set iterator: for each e in set S do B(e)
	 The loop body B(e) is executed for each element e of set S.

Since set elements are not ordered, this construct asserts
that in a serial execution of the loop, the iterations can be
executed in any order. There may be dependences between
the iterations, as in the case of Delaunay mesh refinement,
but any serial order of executing iterations is permitted.
When an iteration executes, it may add elements to S.

•	 Ordered-set iterator: for each e in Poset S do B(e)
	 This construct iterates over a partially ordered set

(Poset) S. It is similar to the set iterator above, except
that any execution order must respect the partial order
imposed by the Poset S.

(a) Layered architecture

Library

Runtime system

Catch-and-keep
classes

Catch-and-release
classes

Application
program

main() Master

for each {
. . . .

.

.

.

.

.

}

(b) Execution model

i5

i4

i3i1

i2

Figure 5. The Galois system.
Figure 6. Delaunay mesh refinement using set iterator.

1:  Mesh m = /* read in initial mesh */
2:  Set wl;
3:  wl.add (mesh.badTriangles   (   )   );
4:  for each e in wl do {
5:    if ( e no longer in mesh ) continue;
6:    Cavity c = new Cavity ( e );
7:    c.expand ();
8:    c.retriangulate ();
9:    m.update ( c );
10:    wl.add( c.badTriangles());
11: }

september 2009 | vol. 52 | no. 9 | communications of the acm 93

how can we determine which interleavings are legal, and
which should be disallowed?

The key is semantic commutativity, described at the
beginning of this section. Method invocations to a given
object from two iterations can be interleaved safely pro-
vided that the final abstract state is consistent with some
serial order of iteration execution. In Figure 7(a), the invo-
cation contains(x) does not commute with the opera-
tions from the other thread, so the invocations from the
two iterations must not be interleaved. In Figure 7(b),
contains(y) commutes with the other operations, so
the iterations can execute in parallel. Note that commu-
tativity may depend on the arguments or return values of
methods.

Because iterations are executed in parallel, it is pos-
sible for commutativity conflicts to prevent an iteration
from completing, requiring that iterations be rolled back.
Because semantic commutativity does not track the con-
crete state of an object, simply creating copies of the con-
crete state (as in catch-and-keep classes) does not suffice.
Instead, every method of a catch-and-release object that
may modify the state of that object must have an associated
inverse method that undoes the side-effects of that method
invocation. For example, for a set that does not contain x,
the inverse of a method invocation that adds an element x
to a set is a method invocation that removes it from that set.
As in the case of commutativity, what is relevant for our pur-
pose is an inverse in the semantic sense; invoking a method
and its inverse in succession may not restore the concrete
data structure to what it was.

Note that when an iteration rolls back, all of the methods
which it invokes during roll-back must succeed. Thus, we
must never encounter conflicts when invoking inverse meth-
ods. When the Galois system checks commutativity, it also
checks commutativity with the associated inverse method.
Putting It All Together: ADT commutativity and undo must
be specified by the class designer. Figure 8 illustrates how

first acquire the lock associated with it. This lock is held
until the iteration terminates, at which point the iteration
releases all of its locks. If an iteration is unable to acquire a
lock on an object, this means that a second iteration is cur-
rently accessing the object, and one of the two iterations
must be rolled back. Rollbacks are accomplished by copying
an object before it is modified, and restoring from that copy
upon rollback. Thus, in a system in which all objects use the
catch-and-keep policy, serialization of iterations is easy to
ensure. Acquiring and releasing locks, making backup cop-
ies of objects, etc., is performed automatically by our run-
time system, as explained in Section 3.3. It is also possible to
use hardware transactional memory (TM).7

While catch-and-keep classes are simple to implement,
they may not provide enough concurrency. Work-sets are them-
selves data structures, and they are implemented using classes
in the Galois library. Since each iteration gets an element from
the work-set at the beginning and may add elements to it at the
end, a catch-and-keep implementation of the work-set class
would permit only one iteration to execute at a time.

Catch-and-Release Classes: To solve this problem,
the Galois system supports the catch-and-release policy
for concurrently accessed objects such as the graph and
work-set in mesh refinement, or the kd-tree in agglomera-
tive clustering. To access a catch-and-release object, an
iteration must acquire the lock on the object. However,
unlike in catch-and-keep, the lock is released as soon as
the method completes. Releasing the lock allows interleav-
ing of method invocations from different iterations, which
increases concurrency.

The key problem in catch-and-release is to ensure that
the method interleavings do not violate serializability of
iterations. This is nontrivial, as demonstrated by the pro-
grams in Figure 7, which show iterations manipulating
a set that supports add, remove, and contains, with
the standard semantics. In Figure 7(a), we see that in any
sequential execution, the call contains(x) will return
false. However, for the interleaving shown in the figure, the
call will return true. On the other hand, for the program
in Figure 7(b), all possible interleavings of the methods
match a serial execution. For a catch-and-release object,

Set S Set SS.add(x)

S.remove(x)

S.contains?(x)

(a) (b)

S.add(x)

S.remove(x)

S.contains?(y)

Figure 7. Interleaving method invocations from different iterations.

Figure 8. Example Galois class for a set.

class Set {
  //interface methods
  void add ( Element x );
  [ commutes ]
      — add ( y ) { y != x }
      — remove ( y ) { y != x }
      — contains ( y ) { y != x }
  [ inverse ] remove ( x )
  void remove ( Element x );
  [ commutes ]
      — add ( y ) { y != x }
      — remove ( y ) { y != x }
      — contains ( y ) { y != x }
  [ inverse ] add ( x )
  boolean contains ( Element x );
  [ commutes ]
      — add ( y ) { y != x }
      — remove ( y ) { y != x }
      — contains ( * )//any call to contains
}

94 communications of the acm | september 2009 | vol. 52 | no. 9

research highlights

Conflict Logs: The conflict log is the mechanism for
detecting commutativity conflicts. There is one conflict
log associated with each catch-and-release object. A sim-
ple implementation for the conflict log of an object is a list
containing the method signatures (including the values
of the input and output parameters) of all invocations on
that object made by currently executing iterations (called
“outstanding invocations”). When iteration i attempts to
call a method m1 on an object, the method signature is
compared against all the outstanding invocations in the
conflict log. If one of the entries in the log does not com-
mute with m1, then a commutativity conflict is detected,
and an arbitration process is begun to determine which
iterations should be aborted, as described below. If m1
commutes with all the entries in the log, the signature of
m1 is appended to the log. When i either aborts or com-
mits, all the entries in the conflict log inserted by i are
removed from the conflict log.

Consider the effects of calling contains(x) on a set
implementing the interface shown in Figure 8. The conflict
log contains all the outstanding invocations of methods on
the set. Because contains can only conflict with add or
remove, the runtime system will scan the log to ensure that
no other iteration called add(x) or remove(x).

Note that for efficiency, a runtime system may use an
optimized implementation of conflict logs which does not
require a full scan of all outstanding method invocations to
detect conflicts. The full version of this paper describes a
number of these optimizations in more detail.14

Commit Pool: When an iteration attempts to commit, the
commit pool checks two things: (1) that the iteration is at
the head of the commit queue, and (2) that the priority of the
iteration is higher than all the elements left in the set/Poset
being iterated over. If both conditions are met, the iteration
can successfully commit. If the conditions are not met, the
iteration must wait until it has the highest priority in the
system; its status is set to RTC, and the thread is allowed to
begin another iteration.

When an iteration successfully commits, the thread that
was running that iteration also checks the commit queue to
see if more iterations in the RTC state can be committed. If
so, it commits those iterations before beginning the execu-
tion of a new iteration. When an iteration has to be aborted,
the status of its record is changed to ABORTED, but the com-
mit pool takes no further action. Such iteration objects are
lazily removed from the commit queue when they reach the
head.

Conflict Arbitration: The other responsibility of the com-
mit pool is to arbitrate conflicts between iterations. When
iterating over an unordered set, the choice of which itera-
tion to roll back in the event of a conflict is irrelevant. For
simplicity, we always choose the iteration which detected
the conflict. However, when iterating over an ordered set,
the lower priority iteration must be rolled back while the
higher priority iteration must continue. Without doing so,
there exists the possibility of deadlock. Thus, when iter-
ation i1 calls a method on a shared object and a conflict
is detected with iteration i2, the commit pool arbitrates
based on the priorities of the two iterations. If i1 has lower

this information is specified in Galois for a class that imple-
ments sets. For each method, the implementor specifies the
following:

•	 Commutes: This section specifies which other methods
the current method commutes with, and under which
conditions. For example, remove(x) commutes with
add(y), as long as the elements are different.

•	 Inverse: This section specifies the inverse of the current
method.

Note that add(x) does not commute with add(x) accord-
ing to this specification. This is because rolling back add(x)
requires invoking remove(x), which would conflict with
other invocations of add(x). This choice simplifies the
implementation.

3.3. Runtime system
The Galois runtime system has two components: (1) a
global structure called the commit pool that is responsible
for creating, aborting, and committing iterations and (2)
structures called conflict logs which detect when com-
mutativity conditions are violated for catch-and-release
objects.

The commit pool maintains an iteration record, shown
in Figure 9, for each ongoing iteration in the system. The
status of an iteration can be RUNNING, RTC (ready-to-com-
mit), or ABORTED. Threads go to the commit pool to obtain
an iteration. The commit pool creates a new iteration
record, obtains the next element from the iterator, assigns
a priority to the iteration record based on the priority of
the element (for a set iterator, all elements have the same
priority), and sets the status field of the iteration record
to RUNNING. When an iteration invokes a method of a
shared object, (1) the conflict log of that object is updated,
as described in more detail below and (2) a callback to the
associated inverse method is pushed onto the undo log of
the iteration record. If a commutativity conflict is detected,
the commit pool arbitrates between the conflicting itera-
tions, and aborts iterations to permit the highest priority
iteration to continue execution. Callbacks in the undo logs
of aborted iterations are executed to undo their effects on
shared objects. Once a thread has completed an iteration,
the status field of that iteration is changed to RTC, and the
thread is allowed to begin a new iteration. When the com-
pleted iteration has the highest priority in the system, it is
allowed to commit. It can be seen that the role of the com-
mit pool is similar to that of a reorder buffer in out-of-order
processors.

Figure 9. Iteration record maintained by runtime system.

IterationRecord {
  Status status;
  Priority p;
  UndoLog ul;
  Lock 1;
}

september 2009 | vol. 52 | no. 9 | communications of the acm 95

call meshgen), as well as an explicitly parallel, fine-grain lock-
ing program (FGL) that uses locks on individual triangles.
The Galois version uses the set iterator, and the runtime sys-
tem described in Section 3.3. In all three implementations,
the mesh was represented by a graph that was implemented
as a set of triangles, where each triangle maintained a set of
its neighbors. For meshgen, code for commutativity checks
was added by hand to this graph class; ultimately, we would
like to generate this code automatically from high-level
commutativity specifications like those in Figure 8. We used
an STL queue to implement the work-set. We refer to these
default implementations of meshgen and FGL as meshgen(d)
and FGL(d).

To understand the effect of scheduling policy on per-
formance, we implemented two more versions, FGL(r)
and meshgen(r), in which the work-set was implemented
by a data structure that returned a random element of the
work-set.

The input data-set was generated automatically using
Jonathan Shewchuk’s Triangle program.21 It had 10,156
triangles and boundary segments, of which 4,837 triangles
were bad.

Execution Times and Speedups: Execution times for the
five implementations on the Itanium machine are shown in
Figure 10(a). The reference version is the fastest on a single
processor. On four processors, FGL(d) and FGL(r) differ only
slightly in performance. Meshgen(r) performed almost as
well as FGL, although surprisingly, meshgen(d) was twice as
slow as FGL.

Statistics on Committed and Aborted Iterations: To
understand these issues better, we determined the total
number of committed and aborted iterations for differ-
ent versions of meshgen, as shown in Figure 10(b). On one
processor, meshgen executed and committed 21,918 itera-
tions. Because of the inherent nondeterminism of the set

priority, it simply performs the standard rollback opera-
tions. The thread which was executing i1 then begins a new
iteration.

This situation is complicated when i2 is the iteration that
must be rolled back. Because the Galois runtime functions
at the user-level, there is no way to roll back an iteration
running on another thread. Instead, i1 undoes the effects
of i2 without explicitly rolling back execution. Next, i1 sets a
flag on i2 telling it to roll back. When the thread running i2
invokes a shared method or attempts to commit, it checks
this flag and completes the rollback.

When an iteration has to be aborted, the callbacks in its
undo log are executed in LIFO order. Note that the argu-
ments used by the callback must have the values present
when the callback was created. This is ensured due to the
LIFO ordering of the undo log, as any later changes to the
arguments will be undone first.

3.4. Discussion
There is no analog of unordered-set iterators or catch-and-
release objects in current TLS systems22, 24 (in fact, most of
these systems auto-parallelize programs in FORTRAN and
C, which have no notion of data abstraction). It is possible
that this might account for the limited performance of these
systems.

The TM paper of Herlihy and Moss7 has inspired a vast
literature on transactions and TM (see Larus and Rajwar15
for a survey of the more important results). The starting
point for the transactional approach is an explicitly parallel
program, and the focus is on reducing the complexities and
overhead of synchronization through the use of the trans-
actional model. In contrast, our starting point is a sequen-
tial program, and the focus is on auto-parallelization. The
Galois runtime system exploits optimistic parallelism just
as TM exploits optimistic synchronization. Hardware TM
can be used to implement catch-and-keep classes with low
overhead, but catch-and-release classes must be supported
in software. Herlihy and Koskinen have recently introduced
catch-and-release objects into a software TM to boost its
performance.6

Ni et al.16 have proposed to extend the conventional trans-
actional model with open nested transactions and abstract
locking to allow more abstract conflict checking. Open nest-
ing is a mechanism, and it does not specify how the abstract
locks should be used. Semantic commutativity provides the
appropriate definition of semantic conflict for data struc-
tures, and open nesting is one possible means of imple-
menting semantic commutativity.

4. EVALUATION
Our initial implementation of the Galois system was in C++.
Our evaluation platform was a 4 processor, 1.5 GHz Itanium
2, with 16KB of L1, 256KB of L2 and 3MB of L3 cache per pro-
cessor. The threading library was pthreads.

4.1. Delaunay mesh refinement
We first wrote a sequential Delaunay mesh refinement pro-
gram without locks, threads etc. to serve as a reference imple-
mentation. We then implemented a Galois version (which we

1 2 3 4

of processors

0

2

4

6

8

E
xe

cu
tio

n
tim

e
(s

)

Reference
FGL (d)
FGL (r)
Meshgen (d)
Meshgen (r)

(a) Execution times

Committed Aborted
of proc. Max Min Avg Max Min Avg

1 21918 21918 21918 n/a n/a n/a
4 (meshgen(d)) 22128 21458 21736 28929 27711 28290
4 (meshgen(r)) 22101 21738 21909 265 151 188

(b) Committed and aborted iterations for meshgen

Source of overhead % of overhead
Abort 10
Commit 10
Scheduler 3
Commutativity 77

(c) Breakdown of Galois overhead for meshgen(r)

Figure 10. Mesh refinement results.

96 communications of the acm | september 2009 | vol. 52 | no. 9

research highlights

clustering code to use Galois interfaces and the Poset itera-
tor for tree construction. The overall structure of the result-
ing code was discussed in Figure 4. We will refer to this
Galois version as treebuild. We compared the running time
of treebuild against a sequential reference version.

Figure 11 gives the performance results. These results
are similar to the Delaunay mesh generation results
discussed in Section 4.1, so we describe only the points
of note. The execution times in Figure 11(a) show that
despite the serial dependence order imposed by the prior-
ity queue, the Galois system is able to expose a significant
amount of parallelism. The mechanism that allows us to
do this is the commit pool, which allows threads to begin
execution of iterations even if earlier iterations have yet to
commit. The overhead introduced by the Galois system is
44% on a single processor. We see that due to the overhead
of managing the commit pool, the scheduler accounts for
a significant percentage of the overall Galois overhead, as
seen in Figure 11(c).

4.3. Ongoing work
In recent work, we introduced the notion of logical data
partitioning into the Galois system.13 For mesh refinement,
each partition of the graph is mapped to a core, and each
core processes bad triangles in its own partition. This
mapping reduces the likelihood of conflicts since differ-
ent cores work in different regions of the graph; unlike the
randomized schedule discussed in Section 4, this approach
also promotes locality of reference. Furthermore, commu-
tativity checks, which are expensive, can be replaced with
locking on partitions. Over-decomposition of the graph
increases the likelihood that a core will have work to do
even if some of its partitions are locked by other cores

iterator, the number of iterations executed by meshgen
in parallel varies from run to run (the same effect will be
seen on one processor if the scheduling policy is varied).
Therefore, we ran the codes a large number of times, and
determined a distribution for the numbers of committed
and aborted iterations. Figure 10(b) shows that on four pro-
cessors, meshgen(d) committed roughly the same number
of iterations as it did on one processor, but also aborted
almost as many iterations due to cavity conflicts. The abort
ratio for meshgen(r) is much lower because the scheduling
policy reduces the likelihood of conflicts between proces-
sors. The lower abort ratio accounts for the performance
difference between meshgen(d) and meshgen(r). Because
the FGL code is carefully tuned by hand, the cost of an
aborted iteration is substantially less than the correspond-
ing cost in meshgen, so FGL(r) performs only a little better
than FGL(d).

It seems counterintuitive that a randomized scheduling
policy could be beneficial, but a deeper investigation into
the source of cavity conflicts showed that the problem could
be attributed to our use of an STL queue to implement the
work-set. When a bad triangle is refined by the algorithm,
a cluster of smaller bad triangles may be created within
the cavity. In the queue data structure, these new bad tri-
angles are adjacent to each other, so it is likely that they will
be scheduled together for refinement on different proces-
sors, leading to cavity conflicts. One conclusion from these
experiments is that domain knowledge is invaluable for
implementing a good scheduling policy.

Overhead Breakdown: The Galois system introduces
some overhead over the reference code, even when run-
ning on one processor; meshgen(r) takes 58% longer to
execute the reference code on the same input. To under-
stand the overheads of the Galois implementations, we
instrumented the code using PAPI. We broke down the
Galois overhead into four categories: (1) commit overhead,
(2) abort overhead, (3) scheduler overhead, which includes
time spent arbitrating conflicts, and (4) commutativity
check overhead. The results, as seen in Figure 10(c), show
that roughly three fourths of the Galois overhead goes in
performing commutativity checks. It is clear that reducing
this overhead is key to reducing the overall overhead of the
Galois runtime.

4.2. Agglomerative clustering
For the agglomerative clustering problem, the two main
data structures are the kd-tree and the priority queue. The
kd-tree interface is essentially the same as set, but with the
addition of the nearest neighbor (nearest) method. The
priority queue is an instance of a Poset. Since the priority
queue is used to sequence iterations, the removal and inser-
tion operations (get and add, respectively) are orchestrated
by the commit pool.

To evaluate the agglomerative clustering algorithm,
we modified an existing graphics application called light-
cuts that provides a scalable approach to illumination.23
The code builds a light hierarchy based on a distance met-
ric that factors in Euclidean distance, light intensity, and
light direction. We modified the objects used in the light

1 2 3 4

of processors

0

2

4

6

8

E
xe

cu
tio

n
tim

e
(s

)

Reference
Treebuild

(a) Execution times

Committed Aborted
of proc. Max Min Avg Max Min Avg

57846 57846 57846 n/a n/a n/a1
4 57870 57849 57861 3128 1887 2528

(b) Committed and aborted iterations in treebuild

Source of overhead % of overhead
Abort 1
Commit 8
Scheduler 39
Commutativity 52

(c) Breakdown of Galois overhead

Figure 11. Agglomerative clustering results.

september 2009 | vol. 52 | no. 9 | communications of the acm 97

working on cavities that span multiple partitions. However,
load-balancing is more of a problem than in the baseline
approach. We also developed a scheduling framework that
gives programmers control over the scheduling policy used
by the Galois runtime.12

We produced a new implementation of the Galois sys-
tem in Java, which incorporates these changes. We then
evaluated an implementation of mesh refinement, using
an input mesh of 100,000 triangles. Figure 12 shows the
performance of this implementation on a 128-core Sunfire
system, normalized to a sequential implementation in
plain Java. We see that the Galois system is able to achieve
significant speedup up to 64 cores, beyond which load
imbalance and communication latency begin to dominate
performance.

5. CONCLUSION
In this paper, we described the Galois system, which is a
fresh approach to automatic parallelization of irregular
applications. Rather than attempt to parallelize all pro-
grams no matter how obscurely they are written, our system
provides programming abstractions that programmers use
to highlight opportunities for exploiting parallelism. The
runtime system uses optimistic parallelization to exploit
these opportunities for parallel execution highlighted by
the programmer. It detects conflicts between concurrent
computations, and rolls back computations appropri-
ately to preserve the sequential semantics of the program.
Experimental results for two real-world irregular appli-
cations, a Delaunay mesh refinement application and a
graphics application that performs agglomerative cluster-
ing, demonstrate that this approach is promising.

The Galois approach should be viewed as a base-
line parallel implementation for irregular applications.
Handwritten parallel versions of many irregular applica-
tions exploit particular kinds of structure in these appli-
cations to reduce parallel overheads. How do we identify
such opportunities for exploiting structure in irregular
programs? Can the relevant optimizations be performed
automatically by the compiler? How do we reduce run-
time overheads? These are some of the exciting research
opportunities that lie ahead.

This work is supported in part by NSF grants 0833162,
0719966, 0702353, 0724966, 0739601, and 0615240, as well
as grants from IBM and Intel Corporation.�

1 2 4 8 16 32 64 128

of Processors

0

5

10

15

20

25

S
pe

ed
up

Figure 12. Speedup vs. # of processors for mesh refinement.

Milind Kulkarni and Keshav Pingali
({milind,pingali}@cs.utexas.edu),
University of Texas, Austin.

Bruce Walter, Ganesh Ramanarayanan,
Kavita Bala, and L. Paul Chew
(bjw@graphics.cornell.edu,
{graman,kb,chew}@cs.cornell.edu),
Cornell University, Ithaca, NY.

© 2009 ACM 0001-0782/09/0900 $10.00

	 1.	 Burke, M., Carini, P., Choi, J.-D.
Interprocedural Pointer Alias
Analysis. Technical Report IBM RC
21055, IBM Yorktown Heights, 1997.

	 2.	 Chew, L.P. Guaranteed-quality mesh
generation for curved surfaces.
In SCG’93: Proceedings of the 9th
Annual Symposium on Computational
Geometry (1993), 274–280.

	 3.	 de Galas, J. The quest for more
processing power: is the single core
CPU doomed? http://www.anandtech.
com/cpuchipsets/showdoc.
aspx?I=2377, February 2005.

	 4.	 Diniz, P.C., Rinard, M.C. Commutativity
analysis: a new analysis technique
for parallelizing compilers. ACM
Trans. Prog. Lang. Syst. 19, 6 (1997),
942–991.

	 5.	 Ghiya, R., Hendren, L. Is it a tree,
a dag, or a cyclic graph? A shape
analysis for heap-directed pointers in
c. In POPL, 1996.

	 6.	 Herlihy, M., Koskinen, E. Transactional
boosting: a methodology for highly-
concurrent transactional objects. In
Principles and Practices of Parallel
Programming (PPoPP), 2008.

	 7.	 Herlihy, M., Moss, J.E.B. Transactional
memory: architectural support
for lock-free data structures. In
ISCA ‘93: Proceedings of the 20th
Annual International Symposium on
Computer Architecture (1993).

	 8.	 Hudson, B., Miller, G.L., Phillips, T.
Sparse parallel Delaunay mesh
refinement. In SPAA (2007).

	 9.	J efferson, D.R. Virtual time. ACM
Trans. Prog. Lang. Syst. 7, 3 (1985),
404–425.

	10.	 Kennedy, K., Allen, J., editors.
Optimizing Compilers for Modern
Architectures: A Dependence-Based
Approach. Morgan Kaufmann, 2001.

	11.	 Kulkarni, M., Burtscher, M., Inkulu,
R., Pingali, K., Cascaval, C. How
much parallelism is there in irregular
applications? In Principles and
Practices of Parallel Programming
(PPoPP), 2009.

	12.	 Kulkarni, M., Carribault, P., Pingali, K.,
Ramanarayanan, G., Walter, B., Bala,
K., Chew, L.P. Scheduling strategies
for optimistic parallel execution of
irregular programs. In Symposium on
Parallel Architectures and Algorithms
(SPAA) (2008).

	13.	 Kulkarni M., Pingali, K.,
Ramanarayanan, G., Walter, B., Bala,
K., Chew, L.P. Optimistic parallelism
benefits from data partitioning.
SIGARCH Comput. Archit. News 36,
1 (2008), 233–243.

	14.	 Kulkarni, M., Pingali, K., Walter,
B., Ramanarayanan, G., Bala, K.,
Chew, L.P. Optimistic parallelism
requires abstractions. SIGPLAN Not
(Proceedings of PLDI 2007) 42, 6
(2007), 211–222.

	15.	 Larus, J., Rajwar, R. Transactional
Memory (Synthesis Lectures on
Computer Architecture). Morgan &
Claypool Publishers, 2007.

	16.	N i, Y., Menon, V., Adl-Tabatabai, A.-R.,
Hosking, A.L., Hudson, R., Moss, J.E.B.,
Saha, B., Shpeisman, T. Open nesting
in software transactional memory. In
Principles and Practices of Parallel
Programming (PPoPP), 2007.

	17.	 Pang-Ning Tan, M.S., Kumar, V.,
editors. Introduction to Data Mining.
Pearson Addison Wesley, 2005.

	18.	 Ponnusamy, R., Saltz, J., Choudhary,
A. Runtime compilation techniques for
data partitioning and communication
schedule reuse. In Proceedings of
the 1993 ACM/IEEE Conference on
Supercomputing (1993).

	19.	 Rauchwerger, L., Padua, D.A.
The LRPD test: Speculative
run-time parallelization of loops
with privatization and reduction
parallelization. IEEE Trans. Parallel
Distrib. Syst. 10, 2 (1999), 160–180.

	20.	S agiv, M., Reps, T., Wilhelm, R.
Solving shape-analysis problems in
languages with destructive updating.
In Proceedings of the 23rd Annual
ACM Symposium on the Principles
of Programming Languages (St.
Petersburg Beach, FL, January 1996).

	21.	S hewchuk, J.R. Triangle: Engineering
a 2D quality mesh generator and
Delaunay triangulator. In Applied
Computational Geometry: Towards
Geometric Engineering, volume 1148
of Lecture Notes in Computer Science.
May 1996, 203–222.

	22.	S teffan, J.G., Colohan, C.B., Zhai, A.,
Mowry, T.C. A scalable approach
to thread-level speculation. In
ISCA ’00: Proceedings of the 27th
Annual International Symposium on
Computer Architecture (2000).

	23.	 Walter, B., Fernandez, S., Arbree, A., Bala,
K., Donikian, M., Greenberg, D. Lightcuts:
a scalable approach to illumination. ACM
Trans. Graphics (SIGGRAPH) 24, 3 (July
2005), 1098–1107.

	24.	 Zhan, L.R.Y., Torrellas, J. Hardware for
speculative run-time parallelization
in distributed shared-memory
multiprocessors. In HPCA ’98:
Proceedings of the 4th International
Symposium on High-Performance
Computer Architecture (1998).

References

http://www.anandtech.com/cpuchipsets/showdoc.aspx?I=2377
mailto:pingali@cs.utexas.edu
mailto:bjw@graphics.cornell.edu
mailto:chew@cs.cornell.edu
http://www.anandtech.com/cpuchipsets/showdoc.aspx?I=2377
http://www.anandtech.com/cpuchipsets/showdoc.aspx?I=2377
mailto:milind@cs.utexas.edu
mailto:kb@cs.cornell.edu
mailto:graman@cs.cornell.edu

98 communications of the acm | september 2009 | vol. 52 | no. 9

research highlights

doi:10.1145/1562164.1562189

You never click on advertisements re-
ceived in spam or in phishing messag-
es, do you? Of course you don’t! No-
body does. At least, that’s the typical
response one hears. So, if that is true,
why are we still getting an enormous
amount of unsolicited email messag-
es? How can this advertisement busi-
ness be profitable if no one follows
any links; if nobody buys anything?

The following paper by Chris Kan-
ich et al. addresses these issues in
very concrete terms, thanks to an im-
pressive experiment that enables the
authors to offer us to look at some
real-world spam campaigns from the
inside. This is a fascinating piece of

work. Not only does it help debunk
some unscientific claims related to
the underground economy, but also,
and more importantly, it is very likely
to become a seminal reference for a
new area of research.

This work could have led to a disas-
ter. The authors could have opened
Pandora’s Box by infiltrating a botnet
as they did. The dark side of the force
is so strong. Fortunately, these authors
are well known for their ability to carry
out scientific experiments with all the
rigor, precision, and discipline re-
quired. They have taken great care ad-
dressing the legal and ethical issues
linked to the measurement campaign
they wanted to carry out. As a result,
this paper is a must-read for all those
who will be tempted in the future to
assess quantitatively the various Inter-
net threats or the motivations and the
modus operandi of the organizations
launching daily attacks. I do sincerely
hope this work will stimulate other
teams to carry out more, and similar,
experimental work.

“Security by obscurity,” that is,
keeping vulnerabilities secret in the
hope that malicious actors will never
find them, is fortunately a concept of
the past. However, 15 years ago the is-
sue was still controversial. Today, nu-
merous forums exist where informa-
tion is shared on the latest exploits,
tools, and techniques to break in to
systems. But, it is still rare to see some-
one openly discussing, in very precise
terms, the dynamics of these threats.
Who is doing what, how often, against
whom, why? Few actors have unbiased
and usable information on these top-
ics. Those who have such a goldmine
are usually unable (for legal reasons)
or unwilling (to preserve some com-
petitive advantage) to describe their

assets and the lessons they learn
when mining them. Experiments such
as the one presented in this paper
highlight the fact that it is possible,
even within the context of a limited
experiment, to learn a lot about these
hidden markets. Of course, I am not
underestimating the amount of effort
the authors have invested in this study.
Indeed, if anyone else has a great idea
for measuring the negative forces we
are facing on the Net, if they define
their experiments very carefully, and
are really cautious when interpreting
their results, then they can also con-
tribute to a better understanding of
the malware economy.

As computer scientists in general,
and computer security researchers in
particular, we do not have a long tradi-
tion of running and presenting experi-
ments in such a way that others can
repeat. This should change. Other sci-
entific communities do much better
than us and we should probably learn
from them. The following paper offers
a unique opportunity to start working
in that direction. Its contributions
are twofold. First, it gives us new in-
sight on the spam market, its dynam-
ics, its actors, and so on. Second, the
precise presentation of the whole ex-
perimental process—before, during,
and after the experiment itself—is a
masterpiece of how to do things the
right way. This second contribution
is probably as important, if not more,
than the first in a domain where the
greatest care must be taken. Before
being tempted to play the sorcerer’s
apprentice, you should definitely read
this paper.	

Marc Dacier is the director of the Symantec Research
Labs in Europe.

© 2009 ACM 0001-0782/09/0900 $10.00

Technical Perspective
They Do Click, Don’t They?
By Marc Dacier

This is a fascinating
piece of work.
Not only does
it help debunk
some unscientific
claims related to
the underground
economy, but
also, and more
importantly, it is
very likely to
become a seminal
reference for a new
area of research.

september 2009 | vol. 52 | no. 9 | communications of the acm 99

Spamalytics: An Empirical
Analysis of Spam Marketing
Conversion
By Chris Kanich, Christian Kreibich, Kirill Levchenko, Brandon Enright, Geoffrey M. Voelker,
Vern Paxson, and Stefan Savage

doi:10.1145/1562164.1562190

Abstract
The “conversion rate” of spam—the probability that an
unsolicited email will ultimately elicit a “sale”—underlies
the entire spam value proposition. However, our under-
standing of this critical behavior is quite limited, and the
literature lacks any quantitative study concerning its true
value. In this paper we present a methodology for measuring
the conversion rate of spam. Using a parasitic infiltration of
an existing botnet’s infrastructure, we analyze two spam
campaigns: one designed to propagate a malware Trojan,
the other marketing online pharmaceuticals. For nearly a
half billion spam emails we identify the number that are
successfully delivered, the number that pass through popu-
lar antispam filters, the number that elicit user visits to the
advertised sites, and the number of “sales” and “infections”
produced.

1. INTRODUCTION
Spam-based marketing is a curious beast. We all receive
the advertisements—“Excellent hardness is easy!”—but
few of us have encountered a person who admits to follow-
ing through on this offer and making a purchase. And yet,
the relentlessness by which such spam continually clogs
Internet inboxes, despite years of energetic deployment of
antispam technology, provides undeniable testament that
spammers find their campaigns profitable. Someone is
clearly buying. But how many, how often, and how much?

Unraveling such questions is essential for understanding
the economic support for spam and hence where any struc-
tural weaknesses may lie. Unfortunately, spammers do not
file quarterly financial reports, and the underground nature
of their activities makes third-party data gathering a chal-
lenge at best. Absent an empirical foundation, defenders are
often left to speculate as to how successful spam campaigns
are and to what degree they are profitable. For example,
IBM’s Joshua Corman was widely quoted as claiming that
spam sent by the Storm worm alone was generating “mil-
lions and millions of dollars every day.”1 While this claim
could in fact be true, we are unaware of any public data or
methodology capable of confirming or refuting it.

The key problem is our limited visibility into the three
basic parameters of the spam value proposition: the cost to
send spam, offset by the “conversion rate” (probability that
an email sent will ultimately yield a “sale”), and the marginal
profit per sale. The first and last of these are self-contained
and can at least be estimated based on the costs charged by

third-party spam senders and through the pricing and gross
margins offered by various Interne marketing “affiliate
programs.”a However, the conversion rate depends funda-
mentally on group actions—on what hundreds of millions
of Internet users do when confronted with a new piece of
spam—and is much harder to obtain. While a range of anec-
dotal numbers exist, we are unaware of any well-documented
measurement of the spam conversion rate.b

In part, this problem is methodological. There are no
apparent methods for indirectly measuring spam conver-
sion. Thus, the only obvious way to extract this data is to
build an e-commerce site, market it via spam, and then
record the number of sales. Moreover, to capture the spam-
mer’s experience with full fidelity, such a study must also
mimic their use of illicit botnets for distributing email and
proxying user responses. In effect, the best way to measure
spam is to be a spammer.

In this paper, we have effectively conducted this study,
though sidestepping the obvious legal and ethical problems
associated with sending spam.c Critically, our study makes
use of an existing spamming botnet. By infiltrating the bot-
net parasitically, we convinced it to modify a subset of the
spam it already sends, thereby directing any interested
recipients to Web sites under our control, rather than those
belonging to the spammer. In turn, our Web sites presented
“defanged” versions of the spammer’s own sites, with func-
tionality removed that would compromise the victim’s sys-
tem or receive sensitive personal information such as name,
address or credit card information.

Using this methodology, we have documented three
spam campaigns comprising over 469 million emails. We
identified how much of this spam is successfully delivered,

A previous version of this paper appeared in Proceedings
of the 15th ACM Conference on Computer and Commu
nications Security, Oct. 2008.

a Our cursory investigations suggest that commissions on pharmaceutical
affiliate programs tend to hover around 40%–50%, while the retail cost for
spam delivery has been estimated at under $80 per million.14

b The best known among these anecdotal figures comes from the Wall Street
Journal’s 2003 investigation of Howard Carmack (a.k.a. the “Buffalo Spam-
mer”), revealing that he obtained a 0.00036 conversion rate on 10 million
messages marketing an herbal stimulant.3

c We conducted our study under the ethical criteria of ensuring neutral
actions so that users should never be worse off due to our activities, while
strictly reducing harm for those situations in which user property was at risk.

100 communications of the acm | september 2009 | vol. 52 | no. 9

research highlights

how much is filtered by popular antispam solutions, and,
most importantly, how many users “click-through” to the
site being advertised (response rate) and how many of those
progress to a “sale” or “infection” (conversion rate).

The remainder of this paper is structured as follows.
Section 2 describes the economic basis for spam and
reviews prior research in this area. Section 4 describes our
experimental methodology for botnet infiltration. Section
5 describes our spam filtering and conversion results,
Section 6 analyzes the effects of blacklisting on spam deliv-
ery, and Section 7 analyzes the possible influences on spam
responses. We synthesize our findings in Section 8 and
conclude.

2. BACKGROUND
Direct marketing has a rich history, dating back to the nine-
teenth century distribution of the first mail-order catalogs.
What makes direct marketing so appealing is that one can
directly measure its return on investment. For example,
the Direct Mail Association reports that direct mail sales
campaigns produce a response rate of 2.15% on average.4
Meanwhile, rough estimates of direct mail cost per mille—the
cost to address, produce and deliver materials to a thousand
targets—range between $250 and $1000. Thus, following
these estimates it might cost $250,000 to send out a million
solicitations, which might then produce 21,500 responses.
The cost of developing these prospects (roughly $12 each)
can be directly computed and, assuming each prospect
completes a sale of an average value, one can balance this
revenue directly against the marketing costs to determine
the profitability of the campaign. As long as the product of
the conversion rate and the marginal profit per sale exceeds
the marginal delivery cost, the campaign is profitable.

Given this underlying value proposition, it is not at all
surprising that bulk direct email marketing emerged very
quickly after email itself. The marginal cost to send an email
is tiny and, thus, an email-based campaign can be profitable
even when the conversion rate is negligible. Unfortunately, a
perverse byproduct of this dynamic is that sending as much
spam as possible is likely to maximize profit.8

While spam has long been understood to be an economic
problem, it is only recently that there has been significant
effort in modeling spam economics and understanding the
value proposition from the spammer’s point of view. Rarely
do spammers talk about financial aspects of their activities
themselves, though such accounts do exist.10, 13 Judge et al.
speculate that response rates as low as 0.000001 are suffi-
cient to maintain profitability.12

However, the work that is most closely related to our own
are the several papers concerning “Stock Spam.”5, 7, 9 Stock
spam refers to the practice of sending positive “touts” for
a low-volume security in order to manipulate its price and
thereby profit on an existing position in the stock. What dis-
tinguishes stock spam is that it is monetized through price
manipulation and not via a sale. Consequently, it is not nec-
essary to measure the conversion rate to understand profit-
ability. Instead, profitability can be inferred by correlating
stock spam message volume with changes in the trading vol-
ume and price for the associated stocks.

3. THE STORM BOTNET
The measurements in this paper are carried out using the
Storm botnet and its spamming agents. Storm is a peer-to-
peer botnet that propagates via spam (usually by directing
recipients to download an executable from a Web site).
Storm Hierarchy: There are three primary classes of
machines that the Storm botnet uses when sending spam.
Worker bots make requests for work and, upon receiving
orders, send spam as requested. Proxy bots act as conduits
between workers and master servers. Finally, the master
servers provide commands to the workers and receive their
status reports. In our experience there are a very small num-
ber of master servers (typically hosted at so-called “bullet-
proof” hosting centers) and these are likely managed by the
botmaster directly.

However, the distinction between worker and proxy is one
that is determined automatically. When Storm first infects a
host it tests if it can be reached externally. If so, then it is
eligible to become a proxy. If not, then it becomes a worker.
All of the bots we ran as part of our experiment existed as
proxy bots, being used by the botmaster to ferry commands
between master servers and the worker bots responsible for
the actual transmission of spam messages.

4. METHODOLOGY
Our measurement approach is based on botnet infiltration—
that is, insinuating ourselves into a botnet’s “command
and control” (C&C) network, passively observing the spam-
related commands and data it distributes and, where
appropriate, actively changing individual elements of
these messages in transit. Storm’s architecture lends itself
particularly well to infiltration since the proxy bots, by
design, interpose on the communications between indi-
vidual worker bots and the master servers who direct them.
Moreover, since Storm compromises hosts indiscrimi-
nately (normally using malware distributed via social engi-
neering Web sites) it is straightforward to create a proxy bot
on demand by infecting a globally reachable host under our
control with the Storm malware.

Figure 1 also illustrates our basic measurement infra-
structure. At the core, we instantiate eight unmodified Storm
proxy bots within a controlled virtual machine environment.
The network traffic for these bots is then routed through a
centralized gateway, providing a means for blocking unan-
ticipated behaviors (e.g., participation in DDoS attacks)
and an interposition point for parsing C&C messages and
“rewriting” them as they pass from proxies to workers. Most
critically, by carefully rewriting the spam template and dic-
tionary entries sent by master servers, we arrange for worker
bots to replace the intended site links in their spam with
URLs of our choosing. From this basic capability we synthe-
size experiments to measure the click-through and conver-
sion rates for several large spam campaigns.
C&C Protocol Rewriting: Our runtime C&C protocol rewriter
consists of two components. A custom router redirects
potential C&C traffic to a fixed IP address and port, where a
user-space proxy server accepts incoming connections and
impersonates the proxy bots. This server in turn forwards
connections back into the router, which redirects the traffic

september 2009 | vol. 52 | no. 9 | communications of the acm 101

In particular, we have focused on two types of Storm
spam campaigns, a self-propagation campaign designed
to spread the Storm malware (typically under the guise of
advertising an electronic postcard site) and the other adver-
tising a pharmacy site. These are the two most popular
Storm spam campaigns and represent over 40% of recent
Storm activity.11 We replaced Storm’s links to its own sites
with links to sites under our control, screenshots of which
are shown in Figure 2.

These sites have been “defanged” in two important ways:
the pharmaceutical site does not accept any personal or pay-
ment information, and the self-propagation site advertises
a completely benign executable which only phones home to
record an execution and exits.

4.1. Measurement ethics
We have been careful to design experiments that we believe
are both consistent with current U.S. legal doctrine and
are fundamentally ethical as well. While it is beyond the
scope of this paper to fully describe the complex legal land-
scape in which active security measurements operate, we
believe the ethical basis for our work is far easier to explain:
we strictly reduce harm. First, our instrumented proxy bots
do not create any new harm. That is, absent our involve-
ment, the same set of users would receive the same set of
spam emails sent by the same worker bots. Storm is a large
self-organizing system and when a proxy fails its worker bots

to the intended proxy bot. Rules for rewriting can be installed
independently for templates, dictionaries, and email address
target lists. The rewriter logs all C&C traffic between worker
and our proxy bots, between the proxy bots and the master
servers, and all rewriting actions on the traffic.
Measuring Spam Delivery: To evaluate the effect of spam
filtering along the email delivery path to user inboxes, we
established a collection of test email accounts and arranged
to have Storm worker bots send spam to those accounts.
These accounts were created at several different vantage
points from which we could evaluate the effectiveness of dif-
ferent email filtering methods. When a worker bot reports
success or failure back to the master servers, we remove any
success reports for our email addresses to hide our modifi-
cations from the botmaster.

We periodically poll each email account (both inbox and
“junk/spam” folders) for the messages that it received, and
we log them with their timestamps, filtering out any mes-
sages not part of this experiment.
Measuring Click-Through and Conversion: To evaluate how
often users who receive spam actually visit the sites adver-
tised requires monitoring the advertised sites themselves.
Since it is generally impractical to monitor sites not under
our control, we have used our botnet infiltration method to
arrange to have a fraction of Storm’s spam advertise sites of
our creation instead.

Figure 1. The Storm spam campaign dataflow and our measurement
and rewriting infrastructure (Section 4). (1) Workers request spam
tasks through proxies, (2) proxies forward spam workload responses
from master servers, (3) workers send the spam, and (4) return
delivery reports. Our infrastructure infiltrates the C&C channels
between workers and proxies.

Worker bots

Traffic archive

Storm
C&C

Rewriter

C&C

Injected
Web mail

Users

Spam

3

4 2

1

Injected
regular mail

Target pharmacy/
infection WWW

Proxy bot 8

Proxy bot 2

Proxy bot 1

Master
servers

Gateway

(a) Pharmaceutical site

(b) Postcard-themedself-propagation site

Figure 2. Screenshots of the Web sites operated to measure user
click-through and conversion.

http://www.awesomepostcards.com
http://AwesomePostcard.com
http://www.awesomepostcards.com/

102 communications of the acm | september 2009 | vol. 52 | no. 9

research highlights

automatically switch to other idle proxies (indeed, when our
proxies fail we see workers quickly switch away). Second, our
proxies are passive actors and do not engage themselves in
any behavior that is intrinsically objectionable; they do not
send spam email, they do not compromise hosts, nor do
they even contact worker bots asynchronously. Indeed, their
only function is to provide a conduit between worker bots
making requests and master servers providing responses.
Finally, where we do modify C&C messages in transit, these
actions themselves strictly reduce harm. Users who click on
spam altered by these changes will be directed to one of our
innocuous doppelganger Web sites. Unlike the sites nor-
mally advertised by Storm, our sites do not infect users with
malware and do not collect user credit card information.
Thus, no user should receive more spam due to our involve-
ment, but some users will receive spam that is less danger-
ous that it would otherwise be.

Needless to say, we encourage no one to recreate our
experiments without the utmost preparation and care.
Interacting with thousands of compromised machines
that are sending millions of spam messages is a very deli-
cate procedure, and while we encourage other researchers
to build upon our work, we ask that these experiments only
be attempted by qualified professionals with no less fore-
thought, legal consultation, or safeguards than those out-
lined here.

5. EXPERIMENTAL RESULTS
We now present the overall results of our rewriting experi-
ment. We first describe the spam workload observed by our
C&C rewriting proxy. We then characterize the effects of fil-
tering on the spam workload along the delivery path from
worker bots to user inboxes, as well as the number of users
who browse the advertised Web sites and act on the content
there.
Campaign Datasets: Our study covers three spam cam-
paigns summarized in Table 1. The “Pharmacy” campaign
is a 26-day sample (19 active days) of an ongoing Storm cam-
paign advertising an online pharmacy. The “Postcard” and
“April Fool” campaigns are two distinct, serial instances
of self-propagation campaigns, which attempt to install
an executable on the user’s machine under the guise of
being postcard software. For each campaign, Figure 3
shows the number of messages per hour assigned to bots
for mailing.

Storm’s authors have shown great cunning in exploiting
the cultural and social expectations of users—hence the
April Fool campaign was rolled out for a limited run around
April 1. Our Web site was designed to mimic the earlier

Table 1. Campaigns used in the experiment.

Campaign Dates Workers Emails

Pharmacy March 21–April 15 31,348 347,590,389

Postcard March 9–March 15 17,639 83,665,479

April Fool March 31–April 2 3,678 38,651,124

Total 469,906,992

Postcard campaign and thus our data probably does not per-
fectly reflect user behavior for this campaign, but the two are
similar enough in nature that we surmise that any impact is
small.

We began the experiment with eight proxy bots, of which
seven survived until the end. Figure 4 shows a timeline of the
proxy bot workload. The number of workers connected to
each proxy is roughly uniform across all proxies (23 worker
bots on average), but shows strong spikes corresponding to
new self-propagation campaigns. At peak, 539 worker bots
were connected to our proxies at the same time.

Most workers only connected to our proxies once: 78% of
the workers only connected to our proxies a single time, 92%
at most twice, and 99% at most five times. The most prolific
worker IP address, a host in an academic network in North
Carolina, USA, contacted our proxies 269 times; further
inspection identified this as a NAT egress point for 19 indi-
vidual infections. Conversely, most workers do not connect
to more than one proxy: 81% of the workers only connected
to a single proxy, 12% to two, 3% to four, 4% connected to five

Mar 07 Mar 12 Mar 17 Mar 22 Mar 27 Apr 01 Apr 06 Apr 11 Apr 16
0

0.5

1

1.5

2

2.5

3

Date

E
m

ai
ls

 a
ss

ig
ne

d
pe

r
ho

ur
 (m

ill
io

ns
)

Postcard
Pharmacy
April Fool

Figure 3. Number of email messages assigned per hour for each
campaign.

Mar 24 Mar 29 Apr 02 Apr 06 Apr 10 Apr 14
0

100

200

300

400

500

600

Time

N
um

be
r

of
 c

on
ne

ct
ed

 w
or

ke
rs

Proxy 1
Proxy 2
Proxy 3
Proxy 4
Proxy 5
Proxy 6
Proxy 7
Proxy 8

Figure 4. Timeline of proxy bot workload.

september 2009 | vol. 52 | no. 9 | communications of the acm 103

not know what spam filtering, if any, is used by each mail
provider, and then by each user individually, and therefore
cannot reasonably estimate this number in total. It is pos-
sible, however, to determine this number for individual mail
providers or spam filters. The three mail providers and the
spam filtering appliance we used in this experiment had a
method for separating delivered mails into “junk” and inbox
categories. Table 3 gives the number of messages delivered
a user’s inbox for the free email providers, which together
accounted for about 16.5% of addresses targeted by Storm
(Table 3), as well as our department’s commercial spam
filtering appliance. It is important to note that these are
results from one spam campaign over a short period of time
and should not be used as measures of the relative effective-
ness for each service. That said, we observe that the popular
Web mail providers all do a very a good job at filtering the
campaigns we observed, although it is clear they use differ-
ent methods (e.g., Hotmail rejects most Storm spam at the
mail server level, while Gmail accepts a significant fraction
only to filter it later as junk).

The number of visits (D) is the number of accesses to our
emulated pharmacy and postcard sites, excluding any crawl-
ers. We note that crawler requests came from a small frac-
tion of hosts but accounted for the majority of all requests to
our sites. For the pharmacy site, for instance, of the 11,720
unique IP addresses seen accessing the site with a valid
unique identifier, only 10.2% were blacklisted as crawlers.
In contrast, 55.3% of all unique identifiers used in requests
originated from these crawlers. For all nonimage requests
made, 87.43% were made by blacklisted IP addresses.

The number of conversions (E) is the number of visits to
the purchase page of the pharmacy site, or the number of
executions of the fake self-propagation program.

A B C D E

User left site

Crawler

Converter

Email not
delivered

Blocked by
spam filter

Ignored
by user

T
ar

ge
te

d
ad

dr
es

se
s

Figure 5. The spam conversion pipeline.

Table 2. Filtering at each stage of the spam conversion pipeline for the self-propagation and pharmacy
campaigns. Percentages refer to the conversion rate relative to Stage A.

Stage Pharmacy Postcard April Fool

A—Spam Targets 347,590,389 100% 83,655,479 100% 40,135,487 100%

B—MTA delivery(est.) 82,700,000 23.8% 21,100,000 25.2% 10,100,000 25.2%

C—Inbox delivery – – – – – –

D—User site visits 10,522 0.00303% 3,827 0.00457% 2,721 0.00680%

E—User conversions 28 0.0000081% 316 0.000378% 225 0.000561%

or more, and 90 worker bots connected to all of our proxies.
On average, worker bots remained connected for 40 min,
although over 40% workers connected for less than a min-
ute. The longest connection lasted almost 81 h.

The workers were instructed to send postcard spam to
83,665,479 addresses, of which 74,901,820 (89.53%) are unique.
The April Fool campaign targeted 38,651,124 addresses, of
which 36,909,792 (95.49%) are unique. Pharmacy spam tar-
geted 347,590,389 addresses, of which 213,761,147 (61.50%)
are unique.
Spam Conversion Pipeline: Conceptually, we break down
spam conversion into a pipeline with five “filtering” stages
Figure 5 illustrates this pipeline and shows the type of fil-
tering at each stage. The pipeline starts with delivery lists
of target email addresses sent to worker bots (Stage A). For
a wide range of reasons, workers will successfully deliver
only a subset of their messages to an MTA (Stage B). At this
point, spam filters at the site correctly identify many mes-
sages as spam, and drop them or place them aside in a spam
folder. The remaining messages have survived the gauntlet
and appear in a user’s inbox as valid messages (Stage C).
Users may delete or otherwise ignore them, but some users
will act on the spam, click on the URL in the message, and
visit the advertised site (Stage D). These users may browse
the site, but only a fraction “convert” on the spam (Stage E)
by attempting to purchase products (pharmacy) or by down-
loading and running an executable (self-propagation).

We show the spam flow in two parts, “crawler” and “con-
verter,” to differentiate between real and masquerading
users. For example, the delivery lists given to workers contain
honeypot email addresses. Workers deliver spam to these
honeypots, which then use crawlers to access the sites refer-
enced by the URL in the messages. Since we want to measure
the spam conversion rate for actual users, we separate out
the effects of automated processes like crawlers, including
only clicks we believe to be user-generated in our results.

Table 2 shows the effects of filtering at each stage of the
conversion pipeline for both the self-propagation and phar-
maceutical campaigns. The number of targeted addresses
(A) is simply the total number of addresses on the delivery
lists received by the worker bots during the measurement
period, excluding the test addresses we injected.

We obtain an estimate of the number of messages deliv-
ered to a mail server (B) by relying on delivery reports gener-
ated by the workers. The number of messages delivered to a
user’s inbox (C) is a much harder value to estimate. We do

104 communications of the acm | september 2009 | vol. 52 | no. 9

research highlights

The user and crawler distributions show distinctly differ-
ent behavior. Almost 30% of the crawler accesses are within
20 s of worker bots sending spam. This behavior suggests
that these crawlers are configured to scan sites advertised
in spam immediately upon delivery. Another 10% of crawler
accesses have a time-to-click of 1 day, suggesting crawlers
configured to access spam-advertised sites periodically
in batches. In contrast, only 10% of the user population
accesses spam URLs immediately, and the remaining dis-
tribution is smooth without any distinct modes. The distri-
butions for all users and users who “convert” are roughly
similar, suggesting little correlation between time-to-click
and whether a user visiting a site will convert. While most
user visits occur within the first 24 h, 10% of times-to-click
are a week to a month, indicating that advertised sites need
to be available for long durations to capture full revenue
potential.

6. EFFECTS OF BLACKLISTING
A major effect on the efficacy of spam delivery is the
employment by numerous ISPs of address-based blacklist-
ing to reject email from hosts previously reported as sourc-
ing spam. To assess the impact of blacklisting, during the
course of our experiments we monitored the Composite
Blocking List (CBL),6 a blacklist source used by the opera-
tors of some of our institutions. At any given time the CBL
lists on the order of 4–6 million IP addresses that have
sent email to various spamtraps. We were able to moni-
tor the CBL from March 21–April 2, 2008, from the start
of the pharmacy campaign until the end of the April Fool
campaign.

We downloaded the current CBL blacklist every half hour,
enabling us to determine which worker bots in our measure-
ments were present on the list and how their arrival on the
list related to their botnet activity. Of 40,864 workers that
sent delivery reports, fully 81% appeared on the CBL. Of those
appearing at some point on the list, 77% were on the list
prior to our observing their receipt of spamming directives,
appearing first on the list 4.4 days (median) earlier. Of those
not initially listed but then listed subsequently, the median
interval until listing was 1.5 h, strongly suggesting that the
spamming activity we observed them being instructed to
conduct quickly led to their detection and blacklisting.
Of hosts never appearing on the list, more than 75% never
reported successful delivery of spam, indicating that the
reason for their lack of listing was simply their inability to
effectively annoy anyone.

We would expect that the impact of blacklisting on spam
delivery strongly depends on the domain targeted in a given
email, since some domains incorporate blacklist feeds such
as the CBL into their mailer operations and others do not.
To explore this effect, Figure 7 plots the per-domain deliv-
ery rate: the number of spam emails that workers reported
as successfully delivered to the domain divided by number
attempted to that domain. The x-axis shows the delivery rate
for spams sent by a worker prior to its appearance in the
CBL, and the y-axis shows the rate after its appearance in
the CBL. We limit the plot to the 10,879 domains to which
workers attempted to deliver at least 1,000 spams. We plot

Our results for Storm spam campaigns show that the
spam conversion rate is quite low. For example, out of 350
million pharmacy campaign emails only 28 conversions
resulted (and no crawler ever completed a purchase so errors
in crawler filtering plays no role). However, a very low conver-
sion rate does not necessary imply low revenue or profitabil-
ity. We discuss the implications of the conversion rate on the
spam conversion proposition further in Section 8.
Time-to-Click: The conversion pipeline shows what fraction
of spam ultimately resulted in visits to the advertised sites.
However, it does not reflect the latency between when the
spam was sent and when a user clicked on it. The longer it
takes users to act, the longer the scam hosting infrastruc-
ture will need to remain available to extract revenue from the
spam.2 Put another way, how long does a spam-advertised
site need to be online to collect potential revenue?

Figure 6 shows the cumulative distribution of the “time-
to-click” for accesses to the pharmacy site. The time-to-
click is the time from when spam is sent (when a proxy
forwards a spam workload to a worker bot) to when a user
“clicks” on the URL in the spam (when a host first accesses
the Web site). The graph shows three distributions for the
accesses by all users, the users who visited the purchase
page (“converters”), and the automated crawlers (14,716
such accesses).

1 s 10 s 1 min 10 min 1 h 6 h 1 d 1 w 1 m
0

0.2

0.4

0.6

0.8

1

Time to click

Fr
ac

tio
n

of
 c

lic
ks

Crawlers
Users
Converters

Figure 6. Time-to-click distributions for accesses to the pharmacy site.

Table 3. Number of messages delivered to a user’s inbox as a
fraction of those injected for test accounts at free email providers
and a commercial spam filtering appliance. The test account for the
Barracuda appliance was not included in the Postcard campaign.

Spam Filter Pharmacy Postcard April Fool

Gmail 0.00683% 0.00176% 0.00226%

Yahoo 0.00173% 0.000542% None

Hotmail None None None

Barracuda 0.131% N/A 0.00826%

september 2009 | vol. 52 | no. 9 | communications of the acm 105

28 hosts that visit the purchase page of the emulated phar-
macy site. The map shows that users around the world
respond to spam.

Figure 9 looks at differences in response rates among
nations as determined by prevalent country-code email
domain TLDs. To allow the inclusion of generic TLDs such
as .com, for each email address we consider it a member of
the country hosting its mail server; we remove domains that
resolve to multiple countries, categorizing them as “inter-
national” domains. The x-axis shows the volume of email
(log-scaled) targeting a given country, while the y-axis gives
the number of responses recorded at our Web servers (also
log-scaled), corresponding to Stages A and D in the pipeline
(Figure 5), respectively. The solid line reflects a response rate
of 10−4 and the dashed line a rate of 10−3. Not surprisingly,
we see that the spam campaigns target email addresses
in the United States substantially more than any other

delivery rates for the two different campaigns as separate
circles, though the overall nature of the plot does not change
between them. The radius of each plotted circle scales in
proportion to the number of delivery attempts, the largest
corresponding to domains such as hotmail.com, yahoo.
com, and gmail.com.

From the plot we clearly see a range of blacklisting
behavior by different domains. Some employ other effec-
tive antispam filtering, indicated by their appearance near
the origin—spam did not get through even prior to appear-
ing on the CBL blacklist. Some make heavy use of either
the CBL or a similar list (y-axis near zero, but x-axis greater
than zero), while others appear insensitive to blacklisting
(those lying on the diagonal). Since points lie predomi-
nantly below the diagonal, we see that either blacklisting
or some other effect related to sustained spamming activity
(e.g., learning content signatures) diminishes the delivery
rate seen at most domains. Delisting followed by relisting
may account for some of the spread of points seen here;
those few points above the diagonal may simply be due to
statistical fluctuations. Finally, the cloud of points to the
upper right indicates a large number of domains that are
not targeted much individually, but collectively comprise a
significant population that appears to employ no effective
antispam measures.

7. CONVERSION ANALYSIS
We now turn to a preliminary look at possible factors influ-
encing response to spam. For the present, we confine our
analysis to coarse-grained effects.

We start by mapping the geographic distribution of the
hosts that “convert” on the spam campaigns we moni-
tored. Figure 8 maps the locations of the 541 hosts that
execute the emulated self-propagation program, and the

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1.
0

Delivery rate prior to blacklisting

D
el

iv
er

y
ra

te
 p

os
t

bl
ac

kl
is

tin
g

Figure 7. Change in per-domain delivery rates as seen prior to a
worker bot appearing in the blacklist (x-axis) vs. after appearing
(y-axis). Each circle represents a domain targeted by at least 1,000
analyzable deliveries, with the radius scaled in proportion to the
number of delivery attempts.

Figure 8. Geographic locations of the hosts that “convert” on spam:
the 541 hosts that execute the emulated self-propagation program
(light gray), and the 28 hosts that visit the purchase page of the
emulated pharmacy site (black).

Figure 9. Volume of email targeting (x-axis) vs. responses (y-axis) for
the most prominent country-code TLDs. The x and y axes correspond
to Stages A and D in the pipeline (Figure 5), respectively.

2e + 04 1e + 05 5e + 05 2e + 06 1e + 07

50
10

0
20

0
50

0
10

0
0

20
0

0

Number of email targets

N
um

be
r

of
 r

es
po

nd
er

s

IND

USAFRA

POLRUS
CHN GBR

BRA
MYS CANTUR

BGR KOR DEUUKR JPN
AUS

TWNCZETHASAU
EGY ZAFITAISRHUNPAK ROM MEX NLDARGCHL ESPHKG

SGP
AUT
CHE

SWE

http://hotmail.com
http://gmail.com
http://yahoo.com
http://yahoo.com

106 communications of the acm | september 2009 | vol. 52 | no. 9

research highlights

characterized both the delivery process and the conversion
rate.

We would be the first to admit that these results repre-
sent a single data point and are not necessarily representa-
tive of spam as a whole. Different campaigns, using different
tactics and marketing different products will undoubtedly
produce different outcomes. Indeed, we caution strongly
against researchers using the conversion rates we have mea-
sured for these Storm-based campaigns to justify assump-
tions in any other context. At the same time, it is tempting
to speculate on what the numbers we have measured might
mean. We succumb to this temptation below, with the under-
standing that few of our speculations can be empirically vali-
dated at this time.

After 26 days, and almost 350 million email messages,
only 28 sales resulted—a conversion rate of well under
0.00001%. Of these, all but one was for male-enhancement
products and the average purchase price was close to $100.
Taken together, these conversions would have resulted in
revenues of $2,731.88—a bit over $100 a day for the measure-
ment period or $140 per day for periods when the campaign
was active. However, our study interposed on only a small
fraction of the overall Storm network—we estimate roughly
1.5% based on the fraction of worker bots we proxy. Thus,
the total daily revenue attributable to Storm’s pharmacy
campaign is likely closer to $7000 (or $9500 during periods
of campaign activity). By the same logic, we estimate that
Storm self-propagation campaigns can produce between
3500 and 8500 new bots per day.

Under the assumption that our measurements are repre-
sentative over time (an admittedly dangerous assumption
when dealing with such small samples), we can extrapo-
late that, were it sent continuously at the same rate, Storm-
generated pharmaceutical spam would produce roughly
3.5 million dollars of revenue in a year. This number could
be even higher if spam-advertised pharmacies experience
repeat business, a bit less than “millions of dollars every
day,” but certainly a healthy enterprise.

The next obvious question is, “How much of this revenue
is profit?” Here things are even murkier. First, we must con-
sider how much of the gross revenue is actually recovered
on a sale. Assuming the pharmacy campaign drives traffic
to an affiliate program (and there are very strong anecdotal
reasons to believe this is so) then the gross revenue is likely
split between the affiliate and the program (an annual net
revenue of $1.75 million using our previous estimate). Next,
we must subtract business costs. These include a number of
incidental expenses (domain registration, bullet-proof host-
ing fees, etc.) that are basically fixed sunk costs, and the cost
to distribute the spam itself.

Anecdotal reports place the retail price of spam delivery
at a bit under $80 per million.14 In an examination we con-
ducted of some spam-for-hire service advertisements, we
found prices ranging from $70 to over $100 per million for
delivery to US addresses, with substantial discounts avail-
able for large volumes. This cost is an order of magnitude
less than what legitimate commercial mailers charge, but
is still a significant overhead; sending 350M emails would
cost more than $25,000. Indeed, given the net revenues we

country. Further, India, France, and the United States domi-
nate responses. In terms of response rates, however, India,
Pakistan, and Bulgaria have the highest response rates than
any other countries (furthest away from the diagonal). The
United States, although a dominant target and responder,
has the lowest resulting response rate of any country, fol-
lowed by Japan and Taiwan.

However, the countries with predominant response rates
do not appear to reflect a heightened interest in users from
those countries in the specific spam offerings. Figure 10
plots the rates for the most prominent countries responding
to self-propagation vs. pharmacy spams. The median ratio
between these two rates is 0.38 (diagonal line). We see that
India and Pakistan in fact exhibit almost exactly this ratio
(upper-right corner), and Bulgaria is not far from it. Indeed,
only a few TLDs exhibit significantly different ratios, includ-
ing the United States and France, the two countries other
than India with a high number of responders; users in the
United States respond to the self-propagation spam sub-
stantially more than pharmaceutical spam and vice versa
with users in France. These results suggest that, for the
most part, per-country differences in response rate are due
to structural causes (quality of spam filtering, user educa-
tion) rather than differing degrees of cultural or national
interest in the particular promises or products conveyed by
the spam.

8. CONCLUSION
This paper describes what we believe is the first large-scale
quantitative study of spam conversion. We developed a meth-
odology that uses botnet infiltration to indirectly instru-
ment spam emails such that user clicks on these messages
are taken to replica Web sites under our control. Using this
methodology we instrumented almost 500 million spam mes-
sages, comprising three major campaigns, and quantitatively

2e − 04 5e − 04 1e − 03 2e − 03 5e − 03 1e − 02

5e
 −

 0
5

2e
 −

 0
4

5e
 −

 0
4

2e
 −

 0
3

Response rate for self−prop email

R
es

po
ns

e
ra

te
 fo

r
ph

ar
m

ac
y

e-
m

ai
l

USA

IND

FRA POL
CHN

GBR

CAN

RUS

BRA

AUS

DEU

MYS

ZAF

KOR

THA

JPN

SAU

BGR

TUR

ITA

CZE

UKR
EGY

NLD

ISRROM

PAK

TWN

PHL
VNM

HUN

MEX
CHL

ARG

Figure 10. Response rates (stage D in the pipeline) by TLD for
executable download (x-axis) vs. pharmacy visits (y-axis).

september 2009 | vol. 52 | no. 9 | communications of the acm 107

estimate, retail spam delivery would only make sense if it
were 20 times cheaper still.

And yet, Storm continues to distribute pharmacy
spam—suggesting that it is in fact profitable. One explana-
tion is that Storm’s masters are vertically integrated and
the purveyors of Storm’s pharmacy spam are none other
than the operators of Storm itself (i.e., that Storm does not
deliver these spams for a third-part in exchange for a fee).
There is some evidence for this, since the distribution of
target email domain names between the self-propagation
and pharmacy campaigns is virtually identical. Since the
self-propagation campaigns fundamentally must be run
by the botnet’s owners, this suggests the purveyor of the
pharmacy spam is one and the same. A similar observation
can be made in the harvesting of email addresses from the
local hard drives of Storm hosts. These email addresses
subsequently appear in the target address lists of the phar-
macy campaign and self-propagation campaigns alike.
Moreover, neither of these behaviors is found in any of
the other (smaller) campaigns distributed by Storm (sug-
gesting that these may in fact be fee-for-service distribu-
tion arrangements). If true, then the cost of distribution is
largely that of the labor used in the development and main-
tenance of the botnet software itself. While we are unable
to provide any meaningful estimates of this cost (since we
do not know which labor market Storm is developed in),
we surmize that it is roughly the cost of two or three good
programmers.

If true, this hypothesis is heartening since it suggests
that the third-party retail market for spam distribution has
not grown large or efficient enough to produce competitive
pricing and thus, that profitable spam campaigns require
organizations that can assemble complete “soup-to-nuts”
teams. Put another way, the profit margin for spam (at least
for this one pharmacy campaign) may be meager enough
that spammers must be sensitive to the details of how their
campaigns are run and are economically susceptible to new
defenses.

Acknowledgments
This was one of the most complex measurement studies our
group has ever conducted and would have been impossible
without the contributions of a large and supportive cast.
Here we offer our thanks for their insightful feedback and
individual contributions to our effort.

Jordan Hayes provided decidedly nontrivial help with site
domain registration. Peter Blair, Paul Karkas, Jamie Knight,
and Garrick Lau at Tucows supported this activity (once we
convinced them we were not spammers) and allowed us to
use reputable registrars. Randy Bush provided overall guid-
ance and help concerning Internet operations and policy
issues while Erin Kenneally advised us on legal issues. Brian
Kantor set up and managed our DNS, Web, and SMTP serv-
ers, while Scott Campbell and Stephen Chan performed
massive DNS lookups for us. Jef Poskanzer provided data
access for debugging our experiment, Stephen Chenette
provided technical assistance and Fallon Chen was our in-
house graphic designer. Bill Young and Gregory Ruiz-Ade

Chris Kanich, Kirill Levchenko, Brandon
Enright, Geoffrey M. Voelker, and Stefan
Savage ({ckanich,klevchen,voelker,sava
ge}@cs.ucsd.edu bmenrigh@ucsd.edu),
Department of Computer Science
and Engineering University of California,
San Diego.

Christian Kreibich and Vern Paxson
(christian@icir.org, vern@cs.berkeley.edu),
International Computer Science Institute
Berkeley.

set up target email accounts in UCSD’s CSE department.
Special thanks to Gabriel Lawrence and Jim Madden of
UCSD’s ACT for supporting this activity on UCSD’s systems
and networks. Finally, our thanks to the anonymous review-
ers for their time and commentary.

This work was made possible by the National Science
Foundation grants NSF-0433702 and NSF-0433668 and by
generous research, operational and in-kind support from
Cisco, Microsoft, HP, Intel, VMWare, ESnet, the Lawrence
Berkeley National Laboratory, and UCSD’s Center for
Networked Systems. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are
those of the authors or originators and do not necessarily
reflect the views of these organizations.

References
	 1.	 Akass, C. Storm worm ‘making

millions a day.’ http://www.pcw.
co.uk/personal-computer-world/
news/2209293/strom-worm-
making-millions-day, February
2008.

	 2.	 Anderson, D.S., Fleizach, C., Savage,
S., Voelker, G.M. Spamscatter:
Characterizing internet scam
hosting infrastructure. In
Proceedings of the USENIX Security
Symposium (Boston, MA, August
2007).

	 3.	 Angwin, J. Elusive Spammer Sends
EarthLink on Long Chase. http://
online.wsj.com/article_email/
SB105225593382372600.html, May
2003.

	 4.	 D. M. Association. DMA Releases
5th Annual ‘Response Rate Trends
Report.’ http://www.the-dma.org/
cgi/disppressrelease?article=1008,
October 2007.

	 5.	 Boehme, R., Ho, T. The effect of
stock spam on financial markets.
In Proceedings of the 5th Workshop
on the Economics of Information
Security (WEIS) (June 2006).

	 6.	 Composite Blocking List (CBL). http://
cbl.abuseat.org/, March 2008.

	 7.	 Frieder, L., Zittrain, J. Spam works:
evidence from stock touts and
corresponding market activity.
Berkman Center Research
Publication, 2006.

	 8.	 Goodman, J., Rounthwaite,
R. Stopping outgoing spam.
Proceedings of the 5th ACM
Conference on Electronic Commerce
(2004), 30–39.

	 9.	 Hanke, M., Hauser, F. On the effects of
stock spam emails. J. Financ. Mark.
11, 1 (2008), 57–83.

	10.	 Kirk, J. Former Spammer:
‘I Know I’m Going to Hell.’
http://www.macworld.com/
article/58997/2007/07/spammer.
html, July 2007.

	11.	 Kreibich, C., Kanich, C., Levchenko,
K., Enright, B., Voelker, G.M.,
Paxson, V., Savage, S. On the Spam
Campaign Trail. In First USENIX
Workshop on Large-Scale Exploits
and Emergent Threats (LEET’08),
April 2008.

	12.	J udge, W.Y.P., Alperovitch, D.
Understanding and Reversing the
Profit Model of Spam. In Workshop
on Economics of Information Security
2005 (WEIS 2005) (Boston, MA, USA,
June 2005).

	13.	 Watson, D. All Spammers Go
to Hell (posting to funsec list).
http://www.mail-archive.com/
funsec%40linuxbox.org/msg03346.
html, July 2007.

	14.	 Wilson, T. Competition May Be Driving
Surge in Botnets, Spam. http://www.
darkreading.com/document.asp?doc_
id=142690, 2008.

© 2009 ACM 0001-0782/09/0800 $10.00

http://www.pcw.co.uk/personal-computer-world/news/2209293/strom-wormmaking-millions-day
http://online.wsj.com/article_email/SB105225593382372600.html
http://online.wsj.com/article_email/SB105225593382372600.html
http://www.the-dma.org/cgi/disppressrelease?article=1008
http://cbl.abuseat.org/
http://www.macworld.com/article/58997/2007/07/spammer.html
http://www.mail-archive.com/funsec%40linuxbox.org/msg03346.html
http://www.mail-archive.com/funsec%40linuxbox.org/msg03346.html
http://www.darkreading.com/document.asp?doc_id=142690
mailto:christian@icir.org
mailto:vern@cs.berkeley.edu
http://www.pcw.co.uk/personal-computer-world/news/2209293/strom-wormmaking-millions-day
http://www.pcw.co.uk/personal-computer-world/news/2209293/strom-wormmaking-millions-day
http://www.pcw.co.uk/personal-computer-world/news/2209293/strom-wormmaking-millions-day
http://online.wsj.com/article_email/SB105225593382372600.html
http://www.the-dma.org/cgi/disppressrelease?article=1008
http://cbl.abuseat.org/
http://www.macworld.com/article/58997/2007/07/spammer.html
http://www.macworld.com/article/58997/2007/07/spammer.html
http://www.mail-archive.com/funsec%40linuxbox.org/msg03346.html
http://www.darkreading.com/document.asp?doc_id=142690
http://www.darkreading.com/document.asp?doc_id=142690

108 communications of the acm | september 2009 | vol. 52 | no. 9

careers

Denison University
Assistant Professor of Mathematics and
Computer Science

Denison University invites applications for a ten-
ure track position in Mathematics and Computer
Science, to begin in August, 2010.

Candidates must have earned a Ph.D. in Math-
ematics or Computer Science (or a closely related
field) and also have a significant background in
the other discipline. We seek an individual who is
able to teach a variety of undergraduate courses at
all levels in either Mathematics or Computer Sci-
ence and at least through the intermediate level in
the other discipline. The successful candidate will
also supervise undergraduate research, maintain a
strong scientific research program, and contribute
in other ways to the department and the college.

Denison University is a highly selective, pri-
vate liberal arts college enrolling approximately
2,100 undergraduate students. Denison is locat-
ed in Granville, Ohio, 25 miles east of Columbus.
The Department of Mathematics and Computer
Science offers B.A. and B.S. degrees in both fields.
For more information about Denison and the de-
partment, please see our website at http://www.
denison.edu/academics/departments/mathcs/

The department is currently home to 4 com-
puter scientists and 6 mathematicians; collabora-
tion between members of the two fields is one of
our strongest assets.

To apply, please submit a letter of application,
a curriculum vita, transcripts of graduate work, a
statement on your teaching philosophy, a statement
on your research program, and three letters of rec-
ommendation online at https://employment.deni-
son.edu. At least one recommendation letter must
address your teaching effectiveness or potential.

We will begin reviewing applications on Octo-
ber 15, 2009 and will continue until the position is
filled. Denison University is an Affirmative Action/
Equal Opportunity Employer. Women and minor-
ity candidates are especially encouraged to apply.

Dominican University
Assistant Professor of Computer Science

Dominican University, a comprehensive Catholic
university located ten miles west of downtown Chi-
cago, invites applications for an anticipated full-
time tenure-track faculty position in Computer
Science beginning in August 2010 at the rank of
Assistant Professor. Preferred candidates will have
a doctoral degree in Computer Science or a related
field. Candidates must have excellent communica-
tion skills and the ability and willingness to teach
undergraduate courses at all levels, including the
university’s Core Curriculum. Candidates in all
areas of specialization will be considered. Candi-
dates with expertise in computer graphics/gaming,
multimedia development or bio-informatics are
encouraged to apply. Previous teaching/industry
experience is a plus, but is not essential. Teaching

Lafayette College
Assistant Professor, Tenure Track

Lafayette College Department of Computer Sci-
ence invites applicants for a tenure-track assis-
tant professor position starting in the fall of 2010.
Lafayette College is a selective private liberal arts
institution with an undergraduate body of 2300
students. Lafayette College is located in Easton,
PA, in the Lehigh Valley, within 80 driving miles of
both New York City and Philadelphia.

For more information, visit http://www.
cs.lafayette.edu/search2009.html

Lafayette College is an Equal Employment
Opportunity employer and encourages applica-
tions from women and minorities.

University of Pennsylvania
Faculty

The University of Pennsylvania invites applicants
for tenure-track appointments in computer sci-
ence to start July 1, 2010. Tenured appointments
will also be considered.

The Department of Computer and Informa-
tion Science seeks individuals with exceptional
promise for, or a proven record of, research
achievement who will excel in teaching under-
graduate and graduate courses and take a posi-
tion of international leadership in defining their
field of study. While exceptional candidates in all
areas of core computer science may apply, of par-
ticular interest this year are candidates in who are
working on the foundations of Market and Social
Systems Engineering - the formalization, analysis,
optimization, and realization of systems that in-
creasingly integrate engineering, computational,
and economic systems and methods. Candidates
should have a vision and interest in defining the
research and educational frontiers of this rapidly
growing field.

The University of Pennsylvania is an Equal Op-
portunity/Affirmative Action Employer. The Penn
CIS Faculty is sensitive to “two-body problems”
and would be pleased to assist with opportunities
in the Philadelphia region.

For more detailed information regarding this
position and application link please visit:

http://www.cis.upenn.edu/departmental/
facultyRecruiting.shtml

University of Pennsylvania
Lecturer

The University of Pennsylvania invites appli-
cants for the position of Lecturer in Computer
Science to start July 1, 2010. Applicants should
hold a graduate degree (preferably a Ph.D.) in
Computer Science or Computer Engineering,
and have a strong interest in teaching with prac-
tical application. Lecturer duties include under-
graduate and graduate level courses within the

is the primary responsibility, but other responsi-
bilities include scholarly activity and participating
in university life and governance. Applications will
be reviewed beginning in October 09 until the po-
sition is filled. Salary and benefits are competitive.
Send a CV, letter of interest, statement of teaching
philosophy, three letters of recommendation, and
prior teaching evaluations if available. Applications
can be sent via email to hr@dom.edu or through
the postal service to the following address:

Dominican University
Attn: HR
7900 W Division Street
River Forest, IL 60305

Dominican University is an equal employ-
ment opportunity employer seeking applicants
from underrepresented groups.

Kuwait University
College of Engineering and Petroleum
Kuwait

The Department of Computer Engineering at Ku-
wait University is seeking qualified applicants for
a faculty position in the Networks field at the rank
of Full Professor or Associate Professor for the
academic year 2009-2010.
Required Qualifications:
Ph.D. degree in Computer Engineering with special-
ization in computer networks from a reputable uni-
versity. Applicants should have a minimum GPA of
3.0/4.0 or equivalent at the undergraduate level. Ap-
plicants should have well-established research ex-
perience and publications in refereed international
journals. Applicants should have demonstrated out-
standing teaching experience in the specified field.
The successful candidate is expected to teach at
both the undergraduate and graduate levels and to
establish an active collaborative research program.

The department has state-of-the-art teaching
and research laboratories in various areas sup-
porting the academic programs. Extensive com-
puting network facilities are available for teach-
ing and research. Research is encouraged and
funds are available from Kuwait University and
other government and private institutions.

To apply send by mail or fax, within six weeks
from the date of announcement, a complete applica-
tion form, with required documents as stated in the
application form, a copy of the passport and three
recommendation letters, to the following address:

Administration for Academic Staff
Academic Staff Department
University of Kuwait
P.O. Box 5969
Safat 13060
State of Kuwait
Tel: 00965-24844189; Fax: 00965-24849562

For application forms & further information
inquiries refer to website:

http://www.kuniv.edu/forms.php

http://www.denison.edu/academics/departments/mathcs/
https://employment.denison.edu
https://employment.denison.edu
mailto:hr@dom.edu
http://www.kuniv.edu/forms.php
http://www.cs.lafayette.edu/search2009.html
http://www.cis.upenn.edu/departmental/facultyRecruiting.shtml
http://www.cis.upenn.edu/departmental/facultyRecruiting.shtml
http://www.denison.edu/academics/departments/mathcs/
http://www.cs.lafayette.edu/search2009.html

september 2009 | vol. 52 | no. 9 | communications of the acm 109

a component of The University of Texas System,
is located in the beautiful East Texas lake coun-
try on the I-20 corridor, about 100 miles east of
Dallas and 200 miles north of Houston. With
nine full-time faculty members and two staff as-
sistants, the department offers baccalaureate
and graduate degree programs in a quality learn-
ing environment with new teaching classrooms
and research labs in the Ratliff Engineering and
Science Complex. Further information about the
department, college, university and the Tyler area
can be found by visiting the UT Tyler web site at
http://www.uttyler.edu. Interested individuals
should send a letter of application, curriculum
vitae, and the names and contact information of
three references to: Faculty Search Committee,
Department of Computer Science, The University
of Texas at Tyler, 3900 University Boulevard, Tyler,
TX 75799 or via email to cssearch@uttyler.edu.
The search committee will begin reviewing appli-
cations in October 2009 and will continue until
the position is filled. The University of Texas at
Tyler is an Equal Opportunity Employer. Women
and minorities are strongly encouraged to apply.
The successful applicant must be able to demon-
strate eligibility to work in the United States.

Washington State University Vancouver
Faculty Position in Computer Science

FACULTY POSITION IN COMPUTER SCIENCE –
Washington State University Vancouver invites
applications for a tenure-track position at the as-
sistant professor level beginning 8/16/2010 in the
School of Engineering and Computer Science.
Candidates are sought with expertise in com-
puter security, large scale data management, data
mining or cyber-physical systems.

Required qualifications: Ph.D. in Computer Sci-

Master of Computer and Information Technol-
ogy program,(www.cis.upenn.edu/grad/mcit/). Of
particular interest are applicants with expertise
and/or interest in teaching computer hardware
and architecture. The position is for one year and
is renewable annually up to three years. Success-
ful applicants will find Penn to be a stimulating
environment conducive to professional growth in
both teaching and research.

The University of Pennsylvania is an Equal Op-
portunity/Affirmative Action Employer. The Penn
CIS Faculty is sensitive to “two-body problems”
and would be pleased to assist with opportunities
in the Philadelphia region.

For more detailed information regarding this
position and application link please visit:

http://www.cis.upenn.edu/departmental/
facultyRecruiting.shtml

The University of Texas at Tyler
Computer Science Faculty Position

The Department of Computer Science invites ap-
plications for a tenure-track faculty position at
the assistant professor level. An earned doctor-
ate in computer science, demonstrated English
communication skills, and commitment to excel-
lence in teaching, research, scholarship and ser-
vice are required. The successful candidate must
demonstrate a potential for externally funded
research. While all areas of specialization will be
considered, preferred specialties include com-
puter security, bioinformatics, high-performance
computing, and information systems. UT Tyler,

ence or Computer Engineering at the time of em-
ployment and demonstrated ability to (1) develop
a funded research program, (2) establish strong in-
dustrial collaborations, and (3) teach undergraduate
and graduate courses and laboratories. Preferred
qualifications: relevant industry experience, experi-
ence with ABET accreditation, and commitment to
working with diverse student and community popu-
lations. WSU Vancouver is committed to building a
culturally diverse educational environment.

WSU Vancouver serves about 2600 graduate
and undergraduate students and is fifteen miles
north of Portland, Oregon. The School of Engi-
neering and Computer Science (ENCS) offers
ABET-accredited BS and MS degrees in mechani-
cal engineering and computer science. The State
recently authorized a new BS-EE program along
with funding for a second new building for the
ENCS. The rapidly growing ENCS equally values
both research and teaching. WSU is Washing-
ton’s land grant university with faculty and pro-
grams on four campuses. For more information:
http://www.vancouver.wsu.edu/encs.

Applications must include: (1) cover letter
with a clear description of experience relevant to
the position; (2) vita including a list of references;
and (3) maximum three-page total summary state-
ment of research and teaching experience. This
statement must describe how the candidate’s
research activity will expand or complement the
current research in ENCS. It must also list the ex-
isting ENCS courses the candidate can teach and
proposed new courses the candidate can develop.
Application deadline is December 4, 2009. All
materials should be mailed to CS Search Com-
mittee, School of ENCS - VELS 130, Washington
State University, 14204 NE Salmon Creek Avenue,
Vancouver, WA 98686-9600. WSU employs only
US citizens and lawfully authorized non-citizens.
WSU is an EO/AA educator and employer.

Advertising in Career
Opportunities

How to Submit a Classified Line Ad: Send an e-mail to acmmediasales@
acm.org. Please include text, and indicate the issue/or issues where the
ad will appear, and a contact name and number.
Estimates: An insertion order will then be e-mailed back to you. The ad
will by typeset according to CACM guidelines. NO PROOFS can be sent.
Classified line ads are NOT commissionable.
Rates: $325.00 for six lines of text, 40 characters per line. $32.50 for each
additional line after the first six. The MINIMUM is six lines.
Deadlines: Five weeks prior to the publication date of the issue (which is
the first of every month). Latest deadlines:

http://www.acm.org/publications
Career Opportunities Online: Classified and recruitment display ads
receive a free duplicate listing on our website at:

http://campus.acm.org/careercenter

Ads are listed for a period of 30 days.
For More Information Contact:

ACM Media Sales
at 212-626-0654 or

acmmediasales@acm.org

http://www.cis.upenn.edu/grad/mcit/
http://www.cis.upenn.edu/departmental/facultyRecruiting.shtml
http://www.cis.upenn.edu/departmental/facultyRecruiting.shtml
http://www.uttyler.edu
mailto:cssearch@uttyler.edu
http://www.vancouver.wsu.edu/encs
mailto:acmmediasales@acm.org
http://www.acm.org/publications
http://campus.acm.org/careercenter
mailto:acmmediasales@acm.org
http://www.informatik.tuwien.ac.at/ADS.pdf
http://www.informatik.tuwien.ac.at/ADS.pdf
mailto:acmmediasales@acm.org

110 communications of the acm | september 2009 | vol. 52 | no. 9

last byte

DOI:10.1145/1562164.1562191		 Peter Winkler

Puzzled
Solutions and Sources
Last month (August 2009, p. 104) we posted a trio of brainteasers,
including one as yet unsolved, concerning probability and intuition.

1. Last Night in Vegas
 Solution. This puzzle was

passed to me by math-puzzle con-
noisseur Elwyn Berlekamp during
the seventh Gathering for Gardner
(http://www.g4g4.com/), March 2006,
in Atlanta, GA, one of an ongoing
series of meetings dedicated to the
great puzzle proselytizer Martin Gard-
ner. It later appeared in Berlekamp’s
and Joe Buhler’s “Puzzles Column”
in The Emissary newsletter (http://
www.msri.org/communications/
emissary/index_html) published by the
Mathematical Sciences Research Insti-
tute, Berkeley, CA.

The idea is that most people have
pretty good intuition concerning the
“law of large numbers,” which says
roughly that repeated random events,
like betting on roulette, tend in the long
run to produce approximately the re-
sult predicted by probabilities. At a Las
Vegas roulette table in the puzzle, each
single-number bet loses an average of
$1 – 1/38 × $36 = $1/19, or about five
cents. Thus, a run of 105 bets loses an
average of $5.53 in total, even if it is your
birthday. Sounds like your probability of
coming out ahead should be small.

However, averages don’t tell the
whole story, as we are reminded by the
legend of the statistician who drowned
in a river of average depth three inches.
As it turns out, 105 bets are not nearly
enough to invoke the law of large num-
bers. Much of the time (exact probabil-
ity is (105 × 104 × 103 / 3 × 2 × 1) × (1/38)3
× (37/38)102, or around 0.225) you will
win exactly three times, putting you
ahead by a hair. You would then have
$108 for your $105 investment. A few

more calculations, and you’ll find that
the probability of coming out ahead is
about .5254, or more than a half.

This doesn’t mean you have Las Ve-
gas by the throat. Failing to get your
three wins, you’d lose a lot of your
money, on average, paying $5.53 for
your roulette adventure.

For a more extreme example of this
phenomenon, suppose you approach
the roulette table with $255 but need
$256 to pay your registration fee for an
ACM conference at the same hotel. Your
best course would be to plan on betting
$1, then $2, then $4, $8, $16, $32, $64,
and finally $128 on red (or black). The
first time you win, you collect double
your stake and quit immediately, now
with exactly the $256 you need. You fail
only if you lose all eight bets (and all
your money). But failure occurs with
probability only (20/38)8, or less than
.006, so you’d get to attend the confer-
ence more than 99.4% of the time.

You could also then quit gambling
for the rest of your life. Highly recom-
mended.

2.Fully Booked Aircraft
 Solution. I heard this puzzle at

the fifth Gathering for Gardner, from
Ander Holroyd of Microsoft Research.
It seems to have been circulating for
years, though it often happens that
people who have heard it before are
mystified the second time around as
well. The key is that the last empty
seat must have been the one assigned
to either the last passenger or to the
first. However, just because we have
only two cases doesn’t mean the prob-

abilities are necessarily equal, as vic-
tims of the Monte-Hall-and-the-three-
doors puzzle can testify.

Here, however, the two seats play
identical roles in the boarding process;
each passenger is as likely to take one
seat as the other, as long as both are
free. Hence, the probability that it is
indeed his/her own seat that the last
passenger finds open is exactly ½. The
argument works with 100 replaced by
any number greater than one.

3.Random Arcade
 Conjecture. My intuition, and

perhaps yours, too, suggests that the
best possible situation is if each gum-
ball machine disgorges n+1 gumballs
with probability 1/(n+1), otherwise
none. That way, the player putting a
coin in each machine would succeed
as long as at least one of the n ma-
chines pays off. What is the player’s
success probability in this scenario?

Failure requires that each machine
refuses to cooperate, which happens
with probability (1 – 1/(n+1))n. The play-
er succeeds with probability one mi-
nus that expression. For n equals one
through six, the formula gives success
probabilities 1/2, 5/9, 37/64, 369/625,
4,651/7,776, and 70,993/117,649; to the
nearest thousandth, it would be .500,
.556, .578, .590, .598, and .603. The
numbers approach 1 – 1/e ~ .632, from
below, as n increases. Thus, the answer
appears to be 1 – 1/e.

However, no one has managed to
prove that you can never do better than
1 – 1/e. The puzzle’s creator, Uriel Feige
of the Weizmann Institute of Science,
Rehovot, Israel, has shown that the suc-
cess probability can never exceed 12/13
~ .923. Can you get a better bound?

All readers are encouraged to submit prospective
puzzles for future columns to puzzled@cacm.acm.org.

Peter Winkler (puzzled@cacm.acm.org) is Professor of
Mathematics and of Computer Science and Albert Bradley
Third Century Professor in the Sciences at Dartmouth
College, Hanover, NH.

http://www.g4g4.com/
http://www.msri.org/communications/emissary/index_html
mailto:puzzled@cacm.acm.org
mailto:puzzled@cacm.acm.org
http://www.msri.org/communications/emissary/index_html
http://www.msri.org/communications/emissary/index_html

september 2009 | vol. 52 | no. 9 | communications of the acm 111

last byte

advertising.
The bifurcation of humanity could be
sustained only so long as those on the
receiving end have money to spend.
But as more things become free in
order to support advertising, fewer of
us will be making money. The dénoue-
ment would probably be some sort of
violent swing toward socialism.

This might sound like an extreme
scenario, but consider how much
more difficult it is for certain creative
people to earn a living today than they
did before the public Internet became
a global social phenomenon. The
most tormented examples are prob-
ably recording musicians and investi-
gative journalists.

Alas, it is now common to hear
suggestions that people in this pre-
dicament should revert to retro (in-
evitably more physical) strategies of
sustenance, like selling branded T-
shirts and other merchandise. This
is a sad reversal of what had been one
of the brightest aspects of technologi-
cal progress. Prior to the centrality of
“open culture” and the rise of online
collectivization, technological prog-
ress generally supported ever more
cerebral, creative, and comfortable
means of making a living.

Now extrapolate: How long will it
be before cheap fabricating robots are
able to download T-shirt designs from
the cloud and automatically manufac-
ture customized clothing as easily as
one downloads music today? And how
long after that will it be before per-
sonal robots are able to build copies
of the latest medical implant or other
gadgets from an online design? The
answers are likely to be measured in
decades, not centuries. If robotics is
eventually good enough to harvest the
garbage dumps of the world for mate-
rials and transform them into manu-
factured products, then a plateau will
have been reached. At that time, all
consumer technology will become
media technology. Even those who
hoped to make a living from T-shirts
will join the investigative journalist
and recording musician in poverty.

How far back in history toward the
stone age will people have to devolve
in order to find a way to make a living

when fabricating robots are that good?
Will people be forced by the market-
place to work the fields, as academ-
ics did under various Maoist-type re-
gimes? Not with good robots around.
Surely, robots will eventually also do a
better job tending the crops.

If you go back to some of the ear-
liest thinking about how informa-
tion technology might interact with
the patterns of human life, you’ll
find examples of people who thought
ahead to this potential dilemma. For
instance, Ted Nelson, probably the
first person to really think through
how something like the Web might be
built and how it would influence hu-
man society, proposed in the 1960s
a design in which each copy of a file
existed, from a logical point of view,
in only one instance. Any user could
make micropayments to gain access.
The conflict between file sharing and
DRM would be defused because there
would be little motivation to make
copies. Accessing files would be entic-
ingly cheap, but everyone would make
some incremental amount of money
from sharing files with everyone else.
A new social contract would emerge
based on self-interest. This was not
just a proposal to extend capitalism,

but to broaden its benefits to a great-
er variety of people, since all would
be able to upload interesting bits as
needed.

A popular objection when Nelson
proposed this design was that few
people had anything of interest or
value to say, and if they tried to say
what they could, no one else would be
interested. Fortunately, the rise of so-
cial networking has proved these ob-
jections unfounded.

I directly experienced a later peri-
od, in the 1970s and 1980s, when Nel-
son was no longer a solitary pioneer.
Much of the underlying architecture
and ideology that guides the public
Internet today appeared in rough cut
during those years. The ideas had
shifted. Nelson was attacked by the
campus left of the time over his will-
ingness to imagine a future in which
money continued to be important.
Meanwhile, the culture of AI fasci-
nated engineers, drawing their atten-
tion away from the problem of how to
reward human creativity that had so
fascinated Nelson.

We ended up with an Internet and
Web that is, for the moment, a sort of
cross between mass collective imple-
mentation of a Turing Test, through
designs like Twitter, and the clumsy
fantasy of armchair pseudo-Maoists. I
realize these words could strike many
as alarmist. If this is the case for you,
please look into the history of collec-
tivist design in human affairs. Such
designs often appear enlightened at
first, with a special way of enchanting
idealistic young people. But they have
also engendered the worst social di-
sasters of the past century.

That’s why I reject the idea that a
collective or emergent intelligence
is appearing through the computing
clouds. We’ll never know if it’s really
there, or if we have collectively be-
come idiots. 	

Jaron Lanier is a computer scientist interested in
interpersonal perception, biomimetic computing, and new
displays and sensors. He received a Career Award from
the IEEE in 2009 for his lifetime contributions to virtual
reality research and is presently working at Microsoft on
intriguing unannounced projects.

© 2009 ACM 0001-0782/09/0900 $10.00

How long will
it be before cheap
fabricating robots
are able to download
T-shirt designs
from the cloud
and automatically
manufacture
customized clothing
as easily as one
downloads music
today?

LAST BYTE

[cont in ue d f rom p. 112]

112 communications of the acm | september 2009 | vol. 52 | no. 9

last byte

DOI:10.1145/1562164.1562192		 Jaron Lanier

Future Tense
Confusions of the Hive Mind
Cherish the individual.

Be cautious a b out the artificial in-
telligence approach to computer sci-
ence. It is impossible to differentiate
the actual achievement of AI from the
degree to which people change when
confronted with what is purported
to be intelligent technology. We hu-
mans are vulnerable to bending over
backward, sometimes making our-
selves significantly stupider, in order
to make an algorithm seem smart. A
great many people in the U.S., as well
as elsewhere, demonstrated this dan-
ger when they interacted foolishly
with deeply flawed algorithms related
to the credit and mortgage indus-
tries.

There is an even greater economic
danger ahead as it relates to the idea
of AI. If we are gullible enough to ex-
pect emergent large-scale intelligence
to arise from the vast connections of
the worldwide Internet, as has been
proposed with increasing frequency
in Communications and elsewhere,
then we risk undermining the value
we place on human labor and creativ-
ity. We might thus ruin the most suc-
cessful design yet invented for the
purpose of generating and preserving
individual human dignity and liber-
ty—capitalism.

Those who believe in the imminent
arrival of global AI (possibly emerging
from the computing clouds) pretend
that all the information we humans
upload actually comes from some
mysterious supernatural dimension.
There’s an economic component to
the way we lie to ourselves to support
this confusion. Millions of us anony-
mously upload our online offerings—
thoughts, pictures, videos, links, votes,

might be called the endgame of ba-
sic technological development. Will
technology good enough to provide
comfort and security usher in a gold-
en age for all? Or will we diverge into
two species, one relatively lucky, the
other relatively left out, as predicted
by H.G. Wells in his novel The Time
Machine in 1898?

The rarified beneficiaries might
turn out to be the owners of the com-
puting clouds, while the rest might be
inundated with

and more. Or, if not anonymously,
we often express ourselves in such a
fragmentary way, as with tweets, that
there is no room left for personality.
Under these circumstances we accept
that we will not be paid for our acts of
expression, as if we are engaged in a
massive economic ritual to reify the
falsehood that a global supernatural
brain is speaking, instead of us.

The idea of creativity emerging
autonomously from the computing
clouds has the potential to ruin what

Future Tense, one of the revolving features on this page, presents stories and

essays from the intersection of computational science and technological speculation,

their boundaries limited only by our ability to imagine what will and could be.

[continued on p. 111] P
H

O
T

O
G

R
A

P
H

 B
Y

 R
ami

 K

World Class Journals
from ACM

www.acm.org/pubs

AD29

ACM publishes over 40 magazines and journals that cover a vast array

of established as well as emerging areas of the computing field.

IT professionals worldwide depend on ACM's publications to keep

them abreast of the latest technological developments and industry

news in a timely, comprehensive manner of the highest quality

and integrity. For a complete listing of ACM's leading magazines &

journals, including our renowned Transaction Series, please visit the

ACM publications homepage at:

PLEASE CONTACT ACM MEMBER
SERVICES TO PLACE AN ORDER
Phone: 1.800.342.6626 (U.S. and Canada)

+1.212.626.0500 (Global)

Fax: +1.212.944.1318
(Hours: 8:30 AM – 4:30 PM, Eastern Time)

Email: acmhelp@acm.org
Mail: ACM Member Services

General Post Office
PO Box 30777
New York, NY 10087-0777 USA

ACM Transactions on
Accessible Computing
http://www.is.umbc.edu/taccess/
TACCESS is a quarterly journal that
publishes refereed articles addressing
issues of computing as it impacts the
lives of people with disabilities.

Order Codes: Print – 174 Online – 274
ISSN: 1936-7228
Pricing: $ 50 Professional

$ 45 Student
$ 150 Non-Member
$ 18 Air Service

ACM Journal on Computing and
Cultural Heritage
http://jocch.acm.org/
JOCCH publishes papers of significant
and lasting value in all areas relating
to the use of ICT in support of Cultural
Heritage.

Order Codes: Online – 273
ISSN: 1556-4673
Pricing: $ 50 Professional

$ 45 Student
$ 150 Non-Member
$ 18 Air Service

ACM Transactions on Reconfigurable
Technology and Systems
http://trets.acm.org/
TRETS is a peer-reviewed and archival
journal that covers reconfigurable
technology, systems, and applications
on reconfigurable computers.

Order Codes: Print – 170 Online – 270
ISSN: 1556-4681
Pricing: $ 50 Professional

$ 45 Student
$ 150 Non-Member
$ 18 Air Service

*Air Service is for residents outside North America only.

BS_4C_09.qxp:Layout 1 7/30/09 5:59 PM Page 1

http://jocch.acm.org/
http://www.is.umbc.edu/taccess/
http://trets.acm.org/
http://www.acm.org/pubs
mailto:acmhelp@acm.org

mailto:papers@oopsla.org
mailto:chair@oopsla.org
mailto:chair@onward-conference.org
http://www.oopsla.org

	Table of Contents
	Departments
	Editor’s Letter
	The Financial Meltdown and Computing

	Letters to the Editor
	Computer Science Does Matter

	In the Virtual Extension
	blog@CACM
	Saying Good-bye to DBMSs, Designing Effective Interfaces

	CACM Online
	What You Read on Your Summer Vacation

	Calendar
	Careers

	Last Byte
	Puzzled
	Solutions and Sources

	Future Tense
	Confusions of the Hive Mind

	News
	Entering a Parallel Universe
	Medical Nanobots
	Facing an Age-Old Problem
	Computer Science Meets Environmental Science

	Viewpoints
	Law and Technology
	Keeping Track of Telecommunications Surveillance

	The Profession of IT
	Computing: The Fourth Great Domain of Science

	Emerging Markets
	How ICT Advances Might Help Developing Nations

	IT Policy
	The Long Road to Computer Science Education Reform

	Viewpoint
	Face the Inevitable, Embrace Parallelism

	Interview
	An Interview with Maurice Wilkes

	Practice
	Reveling in Constraints
	Monitoring and Control of Large Systems with MonALISA
	Making Sense of Revision-Control Systems

	Contributed Articles
	Sound Index: Charts For the People, By the People
	What Intellectual Property Law Should Learn from Software

	Review Article
	The Status of the P versus NP Problem

	Research Highlights
	Technical Perspective
	Abstraction for Parallelism

	Optimistic Parallelism Requires Abstractions
	Technical Perspective
	They Do Click, Don’t They?

	Spamalytics: An Empirical Analysis of Spam Marketing Conversion

