
COMMUNICATIONS
OF	THE	ACMcacm.acm.oRG 06/2010 vol.53 no.06

Association for
Computing Machinery

Robin milner
the elegant Pragmatist

Managing scientifi c data

Privacy by design

An interview with
ed Feigenbaum

beyond the smart Grid

straightening out
heavy tails

http://CACM.ACM.ORG

ACM,Uniting theWorld’s Computing Professionals,
Researchers, Educators, and Students

Advancing Computing as a Science & Profession

Dear Colleague,

At a timewhen computing is at the center of the growing demand for technology jobs world-
wide, ACM is continuing its work on initiatives to help computing professionals stay competitive

in the global community. ACM’s increasing involvement in activities aimed at ensuring the health of
the computing discipline and profession serve to help ACM reach its full potential as a global and

diverse society which continues to serve new and unique opportunities for its members.

As part of ACM’s overall mission to advance computing as a science and a profession, our invaluable member
benefits are designed to help you achieve success by providing you with the resources you need to advance

your career and stay at the forefront of the latest technologies.

I would also like to take this opportunity to mention ACM-W, the membership group within ACM. ACM-W’s purpose is
to elevate the issue of gender diversity within the association and the broader computing community. You can join the
ACM-W email distribution list at http://women.acm.org/joinlist.

ACMMEMBER BENEFITS:

• A subscription to ACM’s newly redesigned monthly magazine, Communications of the ACM
• Access to ACM’s Career & Job Center offering a host of exclusive career-enhancing benefits
• Free e-mentoring services provided by MentorNet®
• Full access to over 2,500 online courses in multiple languages, and 1,000 virtual labs
• Full access to 600 online books from Safari® Books Online, featuring leading publishers,
including O’Reilly (Professional Members only)

• Full access to 500 online books from Books24x7®
• Full access to the new acmqueuewebsite featuring blogs, online discussions and debates,
plus multimedia content

• The option to subscribe to the complete ACMDigital Library
• The Guide to Computing Literature, with over one million searchable bibliographic citations
• The option to connect with the best thinkers in computing by joining 34 Special Interest Groups
or hundreds of local chapters

• ACM’s 40+ journals andmagazines at special member-only rates
• TechNews, ACM’s tri-weekly email digest delivering stories on the latest IT news
• CareerNews, ACM’s bi-monthly email digest providing career-related topics
• MemberNet, ACM’s e-newsletter, covering ACM people and activities
• Email forwarding service & filtering service, providing members with a free acm.org email address
and Postini spam filtering

• And much, much more

ACM’s worldwide network of over 92,000 members range from students to seasoned professionals and includes many
of the leaders in the field. ACMmembers get access to this network and the advantages that come from their expertise
to keep you at the forefront of the technology world.

Please take a moment to consider the value of an ACMmembership for your career and your future in the dynamic
computing profession.

Sincerely,

Wendy Hall

President
Association for Computing Machinery

http://women.acm.org/joinlist
http://acm.org

Priority Code: ACACM10

Online
http://www.acm.org/join

Phone
+1-800-342-6626 (US & Canada)

+1-212-626-0500 (Global)

Fax
+1-212-944-1318

membership application &
digital library order form

PROFESSIONALMEMBERSHIP:

� ACM Professional Membership: $99 USD

� ACM Professional Membership plus the ACMDigital Library:

$198 USD ($99 dues + $99 DL)

� ACMDigital Library: $99 USD (must be an ACMmember)

STUDENTMEMBERSHIP:

� ACM Student Membership: $19 USD

� ACM StudentMembershipplus theACMDigital Library: $42USD

� ACM StudentMembership PLUSPrintCACMMagazine: $42USD

� ACM Student Membership w/Digital Library PLUS Print

CACMMagazine: $62 USD

choose onemembership option:

Name

Address

City State/Province Postal code/Zip

Country E-mail address

Area code & Daytime phone Fax Member number, if applicable

Payment must accompany application. If paying by check or
money order, make payable to ACM, Inc. in US dollars or foreign
currency at current exchange rate.

� Visa/MasterCard � American Express � Check/money order

� Professional Member Dues ($99 or $198) $ ______________________

� ACM Digital Library ($99) $ ______________________

� Student Member Dues ($19, $42, or $62) $ ______________________

Total Amount Due $ ______________________

Card # Expiration date

Signature

Professional membership dues include $40 toward a subscription
to Communications of the ACM. Member dues, subscriptions,
and optional contributions are tax-deductible under certain
circumstances. Please consult with your tax advisor.

payment:

RETURN COMPLETED APPLICATIONTO:

All new ACMmembers will receive an
ACMmembership card.

For more information, please visit us at www.acm.org

Association for Computing Machinery, Inc.
General Post Office
P.O. Box 30777
NewYork, NY 10087-0777

Questions? E-mail us at acmhelp@acm.org
Or call +1-800-342-6626 to speak to a live representative

Satisfaction Guaranteed!

Purposes of ACM
ACM is dedicated to:
1) advancing the art, science, engineering,
and application of information technology
2) fostering the open interchange of
information to serve both professionals and
the public
3) promoting the highest professional and
ethics standards

I agree with the Purposes of ACM:

Signature

ACM Code of Ethics:
http://www.acm.org/serving/ethics.html

You can join ACM in several easy ways:

Or, complete this application and return with payment via postal mail

Special rates for residents of developing countries:
http://www.acm.org/membership/L2-3/

Special rates for members of sister societies:
http://www.acm.org/membership/dues.html

Advancing Computing as a Science & Profession

Please print clearly

http://www.acm.org/join
http://www.acm.org/membership/L2-3/
http://www.acm.org/membership/dues.html
http://www.acm.org/serving/ethics.html
http://www.acm.org
mailto:acmhelp@acm.org

2 communications of the acm | june 2010 | vol. 53 | no. 6

communications of the acm

Departments

5	 ACM’s Chief Operating Officer Letter
A Tour of ACM’s HQ
By Patricia Ryan

6	 Letters to the Editor
Workflow Tools for
Distributed Teams?

8	 In the Virtual Extension

10	 BLOG@CACM
The Chaos of the Internet
as an External Brain; and More
Greg Linden writes about the
Internet as a peripheral resource;
Ed H. Chi discusses lessons learned
from the DARPA Network Challenge;
and Mark Guzdial asks if there
are too many IT workers or too
many IT jobs.

12	 CACM Online
Interact Naturally
By David Roman

29	 Calendar

116	 Careers

Last Byte

118	 Puzzled
Solutions and Sources
By Peter Winkler

120	 Future Tense
How the Net Ensures
Our Cosmic Survival
Give adolescent wonder
an evolutionary jolt.
David Brin

News

13	 Straightening Out Heavy Tails
A better understanding of
heavy-tailed probability distributions
can improve activities from
Internet commerce to the design
of server farms.
By Neil Savage

16	 Beyond the Smart Grid
Sensor networks monitor residential
and institutional devices, motivating
energy conservation.
By Tom Geller

18	 Mine Your Business
Researchers are developing new
techniques to gauge employee
productivity from information flow.
By Leah Hoffmann

20	 Robin Milner:
The Elegant Pragmatist
Remembering a rich legacy
in verification, languages,
and concurrency.
By Leah Hoffmann

22	 CS and Technology Leaders Honored
By Jack Rosenberger

Viewpoints

24	 Privacy and Security
Myths and Fallacies of “Personally
Identifiable Information”
Developing effective privacy protection
technologies is a critical challenge.
By Arvind Narayanan
and Vitaly Shmatikov

27	 Inside Risks
Privacy By Design: Moving
from Art to Practice
Designing privacy into systems at the
beginning of the development process.
By Stuart S. Shapiro

30	 The Profession of IT
The Resurgence of Parallelism
Parallel computation is making
a comeback after a quarter
century of neglect.
By Peter J. Denning and Jack B. Dennis

33	 Kode Vicious
Plotting Away
Tips and tricks for visualizing
large data sets.
By George V. Neville-Neil

35	 Law and Technology
Intel’s Rebates: Above Board
or Below the Belt?
Over several years, Intel paid billions of
dollars to its customers. Was it to force
them to boycott products developed
by its rival AMD or so they could sell its
microprocessors at lower prices?
By François Lévêque

38	 Viewpoint
Institutional Review Boards
and Your Research
A proposal for improving the review
procedures for research projects
that involve human subjects.
By Simson L. Garfinkel
and Lorrie Faith Cranor

41	 Interview
An Interview with Ed Feigenbaum
By Len Shustek

Association for Computing Machinery
Advancing Computing as a Science & Profession

About the Cover:
“Dreams of perfection, for
a scientist, mean avenues
for exploration,” said Robin
Milner in an interview
shortly before his death
on March 20, 2010 at age
76. Photographer Roland
Eva captured Milner, a
renowned CS theorist and
recipient of the 1991 ACM
A.M. Turing Award, in one
of his favorite places—the
classroom. Josie Jammet
used that picture as

inspiration for this month’s cover. For more on Jammet,
see http://www.heartagency.com/artist/JosieJammet/

http://www.heartagency.com/artist/JosieJammet/

june 2010 | vol. 53 | no. 6 | communications of the acm 3

06/2010
vol. 53 no. 06

Practice

46	 Securing Elasticity in the Cloud
Elastic computing has great
potential, but many security
challenges remain.
By Dustin Owens

52	 Simplicity Betrayed
Emulating a video system shows
how even a simple interface can
be more complex—and capable—
than it appears.
By George Phillips

59	 A Tour Through
the Visualization Zoo
A survey of powerful visualization
techniques, from the obvious to
the obscure.
By Jeffrey Heer, Michael Bostock,
and Vadim Ogievetsky

 Articles’ development led by
 queue.acm.org

Contributed Articles

68	 Managing Scientific Data
Needed are generic, rather than
one-off, DBMS solutions automating
storage and analysis of data from
scientific collaborations.
By Anastasia Ailamaki, Verena Kantere,
and Debabrata Dash

79	 Conference Paper Selectivity
and Impact
Conference acceptance rate
signals future impact of published
conference papers.
By Jilin Chen and Joseph A. Konstan

Review Articles

84	 Efficiently Searching
for Similar Images
New algorithms provide the ability
for robust but scalable image search.
By Kristen Grauman

Research Highlights

96	 Technical Perspective
Building Confidence
in Multicore Software
By Vivek Sarkar

97	 Asserting and Checking
Determinism for
Multithreaded Programs
By Jacob Burnim and Koushik Sen

106	 Technical Perspective
Learning To Do Program Verification
By K. Rustan M. Leino

107	 seL4: Formal Verification
of an Operating-System Kernel
By Gerwin Klein, June Andronick,
Kevin Elphinstone, Gernot Heiser,
David Cock, Philip Derrin,
Dhammika Elkaduwe,
Kai Engelhardt, Rafal Kolanski,
Michael Norrish, Thomas Sewell,
Harvey Tuch, and Simon Winwood

Virtual Extension

As with all magazines, page limitations often
prevent the publication of articles that might
otherwise be included in the print edition.
To ensure timely publication, ACM created
Communications’ Virtual Extension (VE).
	 VE articles undergo the same rigorous review
process as those in the print edition and are
accepted for publication on their merit. These
articles are now available to ACM members in
the Digital Library.

	 Examining Agility in Software
Development Practice
Sergio de Cesare, Mark Lycett,
Robert D. Macredie, Chaitali Patel,
and Ray Paul

	 Barriers to Systematic
Model Transformation Testing
Benoit Baudry, Sudipto Ghosh,
Franck Fleurey, Robert France,
Yves Le Traon, and Jean-Marie Mottu

	 Factors that Influence
Software Piracy:
A View from Germany
Alexander Nill, John Schibrowsky,
James W. Peltier, and Irvin L. Young

	 The Requisite Variety
of Skills for IT Professionals
Kevin P. Gallagher, Kate M. Kaiser,
Judith C. Simon, Cynthia M. Beath,
and Tim Goles

	 Panopticon Revisited
Jan Kietzmann and Ian Angell

	 The Social Influence Model
of Technology Adoption
Sandra A. Vannoy and Prashant Palvia

	 I, Myself and e-Myself
Cheul Rhee, G. Lawrence Sanders,
and Natalie C. Simpson

	 Beyond Connection:
Situated Wireless Communities
Jun Sun and Marshall Scott Poole

I
ll

u

strati

o
n

 b
y

 g
l

u
e

k
it

http://queue.acm.org

4 communications of the acm | june 2010 | vol. 53 | no. 6

communications of the acm
Trusted insights for computing’s leading professionals.

Communications of the ACM is the leading monthly print and online magazine for the computing and information technology fields.
Communications is recognized as the most trusted and knowledgeable source of industry information for today’s computing professional.
Communications brings its readership in-depth coverage of emerging areas of computer science, new trends in information technology,
and practical applications. Industry leaders use Communications as a platform to present and debate various technology implications,
public policies, engineering challenges, and market trends. The prestige and unmatched reputation that Communications of the ACM
enjoys today is built upon a 50-year commitment to high-quality editorial content and a steadfast dedication to advancing the arts,
sciences, and applications of information technology.

ACM, the world’s largest educational
and scientific computing society, delivers
resources that advance computing as a
science and profession. ACM provides the
computing field’s premier Digital Library
and serves its members and the computing
profession with leading-edge publications,
conferences, and career resources.

Executive Director and CEO
John White
Deputy Executive Director and COO
Patricia Ryan
Director, Office of Information Systems
Wayne Graves
Director, Office of Financial Services
Russell Harris
Director, Office of Membership
Lillian Israel
Director, Office of SIG Services
Donna Cappo
Director, Office of Publications
Bernard Rous
Director, Office of Group Publishing
Scott Delman

ACM Council
President
Wendy Hall
Vice-President
Alain Chesnais
Secretary/Treasurer
Barbara Ryder
Past President
Stuart I. Feldman
Chair, SGB Board
Alexander Wolf
Co-Chairs, Publications Board
Ronald Boisvert, Holly Rushmeier
Members-at-Large
Carlo Ghezzi;
Anthony Joseph;
Mathai Joseph;
Kelly Lyons;
Bruce Maggs;
Mary Lou Soffa;
Fei-Yue Wang
SGB Council Representatives
Joseph A. Konstan;
Robert A. Walker;
Jack Davidson

Publications Board
Co-Chairs
Ronald F. Boisvert and Holly Rushmeier
Board Members
Jack Davidson; Nikil Dutt; Carol Hutchins;
Ee-Peng Lim; Catherine McGeoch;
M. Tamer Ozsu; Vincent Shen;
Mary Lou Soffa; Ricardo Baeza-Yates

ACM U.S. Public Policy Office
Cameron Wilson, Director
1828 L Street, N.W., Suite 800
Washington, DC 20036 USA
T (202) 659-9711; F (202) 667-1066

Computer Science Teachers Association
Chris Stephenson
Executive Director
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA
T (800) 401-1799; F (541) 687-1840

Association for Computing Machinery
(ACM)
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA
T (212) 869-7440; F (212) 869-0481

STAFF

Director of Group Publishing
Scott E. Delman
publisher@cacm.acm.org

Executive Editor
Diane Crawford
Managing Editor
Thomas E. Lambert
Senior Editor
Andrew Rosenbloom
Senior Editor/News
Jack Rosenberger
Web Editor
David Roman
Editorial Assistant
Zarina Strakhan
Rights and Permissions
Deborah Cotton

Art Director
Andrij Borys
Associate Art Director
Alicia Kubista
Assistant Art Director
Mia Angelica Balaquiot
Production Manager
Lynn D’Addesio
Director of Media Sales
Jennifer Ruzicka
Marketing & Communications Manager
Brian Hebert
Public Relations Coordinator
Virgina Gold
Publications Assistant
Emily Eng

Columnists
Alok Aggarwal; Phillip G. Armour;
Martin Campbell-Kelly;
Michael Cusumano; Peter J. Denning;
Shane Greenstein; Mark Guzdial;
Peter Harsha; Leah Hoffmann;
Mari Sako; Pamela Samuelson;
Gene Spafford; Cameron Wilson

Contact Points
Copyright permission
permissions@cacm.acm.org
Calendar items
calendar@cacm.acm.org
Change of address
acmcoa@cacm.acm.org
Letters to the Editor
letters@cacm.acm.org

Web SITE
http://cacm.acm.org

Author Guidelines
http://cacm.acm.org/guidelines

Advertising

ACM Advertising Department
2 Penn Plaza, Suite 701, New York, NY
10121-0701
T (212) 869-7440
F (212) 869-0481

Director of Media Sales
Jennifer Ruzicka
jen.ruzicka@hq.acm.org

Media Kit acmmediasales@acm.org

editorial Board

Editor-in-chief
Moshe Y. Vardi
eic@cacm.acm.org

News
Co-chairs
Marc Najork and Prabhakar Raghavan
Board Members
Brian Bershad; Hsiao-Wuen Hon;
Mei Kobayashi; Rajeev Rastogi;
Jeannette Wing

Viewpoints
Co-chairs
Susanne E. Hambrusch; John Leslie King;
J Strother Moore
Board Members
P. Anandan; William Aspray;
Stefan Bechtold; Judith Bishop;
Stuart I. Feldman; Peter Freeman;
Seymour Goodman; Shane Greenstein;
Mark Guzdial; Richard Heeks;
Rachelle Hollander; Richard Ladner;
Susan Landau; Carlos Jose Pereira de Lucena;
Beng Chin Ooi; Loren Terveen

 Practice
Chair
Stephen Bourne
Board Members
Eric Allman; Charles Beeler; David J. Brown;
Bryan Cantrill; Terry Coatta; Mark Compton;
Stuart Feldman; Benjamin Fried;
Pat Hanrahan; Marshall Kirk McKusick;
George Neville-Neil; Theo Schlossnagle;
Jim Waldo

The Practice section of the CACM
Editorial Board also serves as
the Editorial Board of .

Contributed Articles
Co-chairs
Al Aho and Georg Gottlob
Board Members
Yannis Bakos; Gilles Brassard; Alan Bundy;
Peter Buneman; Ghezzi Carlo;
Andrew Chien; Anja Feldmann;
Blake Ives; James Larus; Igor Markov;
Gail C. Murphy; Shree Nayar; Lionel M. Ni;
Sriram Rajamani; Jennifer Rexford;
Marie-Christine Rousset; Avi Rubin;
Abigail Sellen; Ron Shamir; Marc Snir;
Larry Snyder; Veda Storey;
Manuela Veloso; Michael Vitale;
Wolfgang Wahlster; Andy Chi-Chih Yao;
Willy Zwaenepoel

Research Highlights
Co-chairs
David A. Patterson and Stuart J. Russell
Board Members
Martin Abadi; Stuart K. Card; Deborah Estrin;
Shafi Goldwasser; Monika Henzinger;
Maurice Herlihy; Norm Jouppi;
Andrew B. Kahng; Gregory Morrisett;
Michael Reiter; Mendel Rosenblum;
Ronitt Rubinfeld; David Salesin;
Lawrence K. Saul; Guy Steele, Jr.;
Gerhard Weikum; Alexander L. Wolf;
Margaret H. Wright

Web
Co-chairs
Marti Hearst and James Landay
Board Members
Jason I. Hong; Jeff Johnson;
Greg Linden; Wendy E. MacKay

 

ACM Copyright Notice
Copyright © 2010 by Association for
Computing Machinery, Inc. (ACM).
Permission to make digital or hard copies
of part or all of this work for personal
or classroom use is granted without
fee provided that copies are not made
or distributed for profit or commercial
advantage and that copies bear this
notice and full citation on the first
page. Copyright for components of this
work owned by others than ACM must
be honored. Abstracting with credit is
permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to
lists, requires prior specific permission
and/or fee. Request permission to publish
from permissions@acm.org or fax
(212) 869-0481.

For other copying of articles that carry a
code at the bottom of the first or last page
or screen display, copying is permitted
provided that the per-copy fee indicated
in the code is paid through the Copyright
Clearance Center; www.copyright.com.

Subscriptions
An annual subscription cost is included
in ACM member dues of $99 ($40 of
which is allocated to a subscription to
Communications); for students, cost
is included in $42 dues ($20 of which
is allocated to a Communications
subscription). A nonmember annual
subscription is $100.

ACM Media Advertising Policy
Communications of the ACM and other
ACM Media publications accept advertising
in both print and electronic formats. All
advertising in ACM Media publications is
at the discretion of ACM and is intended
to provide financial support for the various
activities and services for ACM members.
Current Advertising Rates can be found
by visiting http://www.acm-media.org or
by contacting ACM Media Sales at
(212) 626-0654.

Single Copies
Single copies of Communications of the
ACM are available for purchase. Please
contact acmhelp@acm.org.

Communications of the ACM
(ISSN 0001-0782) is published monthly
by ACM Media, 2 Penn Plaza, Suite 701,
New York, NY 10121-0701. Periodicals
postage paid at New York, NY 10001,
and other mailing offices.

POSTMASTER
Please send address changes to
Communications of the ACM
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA

Printed in the U.S.A.

P
L

E

A
S E R E C Y

C
L

E

T
H

I

S
 M A G A Z

I
N

E

mailto:publisher@cacm.acm.org
mailto:permissions@cacm.acm.org
mailto:calendar@cacm.acm.org
mailto:acmcoa@cacm.acm.org
mailto:letters@cacm.acm.org
http://cacm.acm.org
http://cacm.acm.org/guidelines
mailto:jen.ruzicka@hq.acm.org
mailto:acmmediasales@acm.org
mailto:eic@cacm.acm.org
mailto:permissions@acm.org
http://www.copyright.com
http://www.acm-media.org
mailto:acmhelp@acm.org

june 2010 | vol. 53 | no. 6 | communications of the acm 5

acm’s chief operating officer letter

A Tour of ACM’s HQ
Let me admit at the outset, I’m a bit biased
when I talk about ACM headquarters
(HQ) and the many ways it outshines the
command centers of other professional

ACM and its SIGs sponsor, co-sponsor,
and cooperate with over 170 technical
meetings annually, all of which are co-
ordinated through the Office of SIG Ser-
vices, with Donna Cappo at the helm.
The department manages all SIGs and
their conferences, including promo-
tion, publicity, and membership. The
team also helps produce over 85 pro-
ceedings and 30 newsletters yearly.

The Office of Publications pro-
duces ACM’s many research journals
and Transactions and is responsible
for Digital Library content. Director
Bernard Rous oversees these efforts,
which include 39 print journals and a
DL containing over 275,000 articles and
1.50 million citations covered by the
Guide to Computing Literature.

Scott Delman, director of the Office
of Group Publishing, shepherds DL
sales and builds business strategies to
make the DL a must-have subscription
for institutions worldwide, which to-
day number over 2,800. He also serves
as group publisher for ACM’s maga-
zine series, including our flagship
Communications of the ACM.

ACM’s Office of Membership, un-
der the leadership of Lillian Israel, is
one big umbrella covering everything
under membership and marketing
services, including membership pro-
cessing, subscriptions, professional
development services, and education.
Of particular pride to me is the fact that
with close to 100,000 members, ACM’s
member services department, consist-
ing of four customer representatives, is
able to provide a response to any mem-
ber query within 24 hours!

societies. But that bias comes from
nearly three decades of firsthand expe-
rience, having worked in almost every
department within HQ, and having
had a front-row seat to the dynamics
that drive each department to create
and provide products and services to
meet the needs of ACM members.

The HQ staff coordinates the global
activities of ACM’s chapters and various
committees; acting as the liaison for all
conferences carrying the ACM stamp;
enhancing the Digital Library (DL); pro-
ducing almost four dozen publications;
providing professional services and on-
line courses; and performing organiza-
tional functions. HQ also serves as the
hub for members, news media, and the
public on all subjects related to com-
puting and technologies.

Probably the greatest difference
between ACM and other professional
societies is just how much is accom-
plished by so few. With a membership
fast approaching 100,000, ACM’s 170
conferences, 45 periodicals, 34 Special
Interest Groups, and 644 professional
and student chapters are all supported
by 72 staffers. When you consider that
similar professional associations with
equal or fewer members and services
are often supported by staffs of over
100, I hope you are as impressed, as I
continue to be, by the devotion of the
people working at ACM.

Here, I’d like to briefly highlight the
departments and talented directors
that spearhead ACM’s New York HQ.

ACM’s Special Interest Groups
(SIGs) represent virtually every major
discipline within computer science.

Russell Harris, a 36-year veteran of
HQ, heads the Office of Financial Ser-
vices. His team oversees all the Asso-
ciation’s financial matters, including
accounting responsibilities, monthly
and quarterly financial statements,
and the annual ACM budget. His de-
partment cuts 10,000 checks per year,
guides auditors through evaluations,
handles treasury functions, and moni-
tors ACM’s investment strategies daily.

The Office of Information Systems
maintains constant vigilance over the
Association’s “computing machinery,”
with responsibilities for all the infor-
mation processing needs serving staff-
ers, volunteers, and members. Wayne
Graves leads this effort, which includes
maintaining HQ’s digital infrastruc-
ture, as well as spearheading the DL’s
technical direction and advances.

Based in Washington, D.C., ACM’s
Office of Public Policy (USACM) is
very much a part of HQ, representing
ACM’s interests on IT policy issues that
impact the computing field. Cameron
Wilson works to enlighten legislators
about policies that foster computing
innovations, including the critical
need for CS and STEM education.

The unsung heroes that comprise
the Office of Administrative Services
support all the necessary functions
that allow HQ to operate at the top
of its game every single day. These
varied services include human re-
sources, office services and mailroom
facilities, and support policies and
procedures, the ACM’s Awards pro-
gram, and elections.

All of us at HQ are indebted to the
tireless efforts of ACM’s many devoted
volunteers worldwide who work to-
gether with us to manage ACM’s grow-
ing array of products and services.
None of our efforts would succeed
without their efforts. 	

Patricia Ryan is Deputy Executive Director and Chief
Operating Officer of ACM, New York, NY.

© 2010 ACM 0001-0782/10/0600 $10.00

DOI:10.1145/1743546.1743547	 	 Patricia Ryan

6 communications of the acm | june 2010 | vol. 53 | no. 6

letters to the editor

T
he “Profession of IT” View-
point “Orchestrating Coor-
dination in Pluralistic Net-
works” by Peter J. Denning
et al. (Mar. 2010) offered

guidance for distributed development
teams. As a leader of one such team,
I can vouch for the issues it raised.
However, my coordination problems
are compounded because email (and
related attachments) is today’s de fac-
to medium for business and technical
communication. The most up-to-date
version of a document is an email at-
tachment that instantly goes out of
date when changes are made by any
of the team members; project docu-
ments include specifications, plans,
status reports, assignments, and
schedules.

Software developers use distrib-
uted source-code control systems to
manage changes to code. But these
tools don’t translate well to all the
documents handled by nondevelop-
ers, including managers, marketers,
manufacturers, and service and sup-
port people. I’d like to know what
workflow-management tools Denning
et al. would recommend for such an
environment.

Ronnie Ward, Houston, TX

Author’s Response:
Workflow tools are not the issue. Many
people simply lack a clear model of
coordination. They think coordination is
about exchanging messages and that
related coordination breakdowns indicate
poorly composed, garbled, or lost messages
(as in email). Coordination is about making
commitments, usually expressed as “speech
acts,” or utterances that take action and
make the commitments that produce the
outcome the parties want. People learning
the basics of coordination are well on their
way toward successful coordination, even
without workflow tools.

We don’t yet know enough about effective
practices for pluralistic coordination to be
able to design good workflow tools for this
environment.

Peter J. Denning, Monterey, CA

Time to Debug

George V. Neville-Neil’s “Kode Vi-
cious” Viewpoint “Taking Your Net-
work’s Temperature” (Feb. 2010) was
thought-provoking, but two of its
conclusions—“putting printf()…
throughout your code is a really annoy-
ing way to find bugs” and “limiting the
files to one megabyte is a good start”—
were somewhat misleading.

Timing was one reason Neville-Neil
offered for his view that printf() can
lead to “erroneous results.” Debugger
and printf() both have timing loads.
Debug timing depends on hardware
support. A watch statement functions
like a printf(), and a breakpoint
consumes “infinite” time. In both sin-
gle-threaded and multithreaded envi-
ronments, a breakpoint stops thread
activity. In all cases, debugger state-
ments perturb timing in a way that’s
like printf().

We would expect such stimulus
added to multithreaded applications
would produce different output. Nev-
ille-Neil expressed a similar senti-
ment, saying “Networks are perhaps
the most nondeterministic compo-
nents of any complex computing sys-
tem.” Both printf() and debuggers
exaggerate timing differences, so the
qualitative issue resolves to individual
preferences, not to timing.

Choosing between a debugger and
a printf() statement depends on the
development stage in which each is to
be used. At an early stage, a debugger
might be better when timing and mes-
saging order are less important than
error detection. Along with functional
integration in the program, a debug-
ger can sometimes reach a point of
diminishing returns. Programmers
shift their attention to finding the first
appearance of an error and the point
in their programs where the error was
generated. Using a debugger tends
to be a trial-and-error process involv-
ing large amounts of programmer
and test-bench time to find that very
point. A printf() statement inserted
at program creation requires no setup

time and little bench time, so is, in this
sense, resource-efficient.

The downside of using a printf()
statement is that at program creation
(when it is inserted) programmers an-
ticipate errors but are unaware of where
and when they might occur; printf()
output can be overwhelming, and the
aggregate time to produce diagnostic
output can impede time-critical opera-
tions. The overhead load of output and
time is only partially correctable.

Limiting file size to some arbitrary
maximum leads programmers to as-
sume (incorrectly) that the search is for
a single error and that localizing it is the
goal. Limiting file size allows program-
mers to focus on a manageable subset
of data for analysis but misses other
unrelated errors. If the point of error-
generation is not within some limited
number of files, little insight would be
gained for finding the point an error
was in fact generated.

Neville-Neil saying “No matter how
good a tool you have, it’s going to do a
much better job at finding a bug if you
narrow down the search.” might apply
to “Dumped” (the “questioner” in his
Viewpoint) but not necessarily to every-
one else. An analysis tool is meant to
discover errors, and programmers and
users both win if errors are found. Try-
ing to optimize tool execution time over
error-detection is a mistake.

Art Schwarz, Irvine, CA

George V. Neville-Neil’s Viewpoint (Feb.
2010) said students are rarely taught to
use tools to analyze networking prob-
lems. For example, he mentioned Wire-
shark and tcpdump, but only in a cur-
sory way, even though these tools are
part of many contemporary university
courses on networking.

Sniffers (such as Wireshark and
Ethereal) for analyzing network pro-
tocols have been covered at Fairleigh
Dickinson University for at least the
past 10 years. Widely used tools for
network analysis and vulnerability
assessment (such as nmap, nessus,
Snort, and ettercap) are available
through Fedora and nUbuntu Linux

Workflow Tools for Distributed Teams?
DOI:10.1145/1743546.1743549	 	

june 2010 | vol. 53 | no. 6 | communications of the acm 7

letters to the editor

distributions. Open source tools for
wireless systems include NetStumbler
and AirSnort.

Fairleigh Dickenson’s network
labs run on virtual machines to limit
inadvertent damage and the need for
protection measures. We teach the
basic network utilities available on
Windows- and/or Posix-compliant
systems, including ping, netstat, arp,
tracert (traceroute), ipconfig (ifconfig
in Linux/Unix and iwconfig in Linux
wireless cards), and nslookup (dig in
Linux). With the proper options, net-
stat displays IP addresses, protocols,
and ports used by all open and listen-
ing connections, as well as by protocol
statistics and routing tables.

The Wireshark packet sniffer iden-
tifies control information at different
protocol layers. A TCP capture specifi-
cation thus provides a tree of protocols,
with fields for frame header and trailer
(including MAC address), IP header
(including IP address), and TCP head-
er (including port address). Students
compare the MAC and IP addresses
found through Wireshark with those
found through netstat and ipconfig.
They then change addresses and check
results by sniffing new packets, analyz-
ing the arp packets that try to resolve
the altered addresses. Capture filters in
Wireshark support search through pro-
tocol and name resolution; Neville-Neil
stressed the importance of narrowing
one’s search but failed to mention the
related mechanisms. Students are also
able to make connections through (un-
encrypted) telnet and PuTTy, compar-
ing password fields.

My favorite Wireshark assignment
involves viewing TCP handshakes via
statistics/flow/TCP flow, perhaps fol-
lowing an nmap SYN attack. The free
security scanner nmap runs with Wire-
shark and watch probes initiated by the
scan options provided. I always assign
a Christmas-tree scan (nmap –sX) that
sends packets with different combina-
tions of flag bits. Capturing probe pack-
ets and a receiving station’s reactions
enables identification of flag settings
and the receiver’s response to them.
Operating systems react differently to il-
legal flag combinations, as students ob-
serve via their screen captures.

Network courses and network main-
tenance are thus strongly enhanced by
sniffers and other types of tools that yield

information concerning network traffic
and potential system vulnerabilities.

Gertrude Levine, Madison, NJ

What Jack Doesn’t Know About
Software Maintenance
I agree that the community doesn’t
understand software maintenance, as
covered in the article “You Don’t Know
Jack about Software Maintenance” by
Paul Stachour and David Collier-Brown
(Nov. 2009), but much more can be
done to improve the general under-
standing of the important challenges.

The software-maintenance proj-
ects I’ve worked on have been difficult,
due to the fact that maintenance work
is so different from the kind of work
described in the article. The commu-
nity does not fully understand that
maintenance involves much more
than just adding capabilities and fix-
ing bugs. For instance, maintenance
teams on large projects spend almost
as much time providing facility, op-
erations, product, and sustaining-en-
gineering support as they do changing
code.1 Moreover, the work tends to be
distributed differently. My colleagues
and I recently found maintenance
teams spending as much as 60% of
their effort testing code once the re-
lated changes are implemented.

Other misconceptions include:
The primary job in maintenance is fa-

cilitating changes. We found that sup-
port consumes almost as much effort
as changes and repairs;

Maintenance is aimed at addressing
new requirements. Because most jobs
are small, maintenance teams focus
on closing high-priority trouble reports
rather than making changes;

Funding maintenance is based on re-
quirements. Most maintenance proj-
ects are funded level-of-effort; as such,
maintenance managers must deter-
mine what they can do with the resourc-
es they have rather than what needs to
be done;

Maintenance schedules are based on
user-need dates. Maintenance sched-
ules are written in sand, so mainte-
nance leaders must determine what
can be done within a limited time pe-
riod;

Maintenance staff is junior. Average
experience for maintenance personnel
is 25 years during which they tend to

work on outdated equipment to fix soft-
ware written in aging languages; and

Maintenance is well tooled. We
found the opposite. Maintenance
tools are inferior, and development
tools and regression test suites do not
unfortunately support the work.

Maintenance involves much more
than Stachour and Collier-Brown indi-
cated. In light of the changing nature
of the work being done every day by
software maintenance teams, my col-
leagues and I urge Communications to
continue to cover the topic.

Reference
1.	 Reifer, D. Allen, J.-A., Fersch, B., Hitchings, B., Judy, J.,

and Rosa, W. Software maintenance: Debunking the
myths. In Proceedings of the International Society of
Parametric Analysis / Society of Cost Estimating and
Analysis Annual Conference and Training Workshop (San
Diego, CA, June 8-11). ISPA/SCEA, Vienna, VA, 2010.

Donald J. Reifer, Prescott, AZ

Authors’ Response:
In our slightly tongue-in-cheek description
of software maintenance, we were
concentrating on the “add a highway”
side of the overall problem, rather than
“repair the railroad bridge.” We try to
avoid considering software maintenance
as a separate process done by a different
team. That’s a genuinely difficult problem,
as Reifer points out. We’ve seen it tried
a number of times, with generally
disappointing results.

A better question might be the one
asked by Drew Sullivan, president of the
Greater Toronto Area Linux User Group,
at a presentation we gave on the subject:
“Why aren’t you considering maintenance
as continuing development?” In fact
we were, describing the earlier Multics
norm of continuous maintenance without
stopping any running programs. We’re
pleased to see the continuous process
being independently reinvented by
practitioners of the various agile methods.
In addition, we’re impressed by their
refactoring and test-directed development.
These are genuinely worthwhile
improvements to the continuous approach,
and we hope the techniques we re-
described are valuable to that community.

Paul Stachour, Bloomington, MN
	 David Collier-Brown, Toronto

Communications welcomes your opinion. To submit a
Letter to the Editor, please limit your comments to 500
words or less and send to letters@cacm.acm.org.

© 2010 ACM 0001-0782/10/0600 $10.00

mailto:letters@cacm.acm.org

8 communications of the acm | june 2010 | vol. 53 | no. 6

in the virtual extension

Examining Agility in Software
Development Practice
Sergio de Cesare, Mark Lycett,
Robert D. Macredie, Chaitali Patel,
and Ray Paul

Agility is a facet of software development
attracting increasing interest. The authors
investigate the value of agility in practice
and its effects on traditional plan-based
approaches. Data collected from senior
development/project managers in 62
organizations is used to investigate
perceptions related to agile development.
Specifically, the perceptions tested relate
to the belief in agile values and principles,
and the value of agile principles within
current development/organization
practice. These perceptions are examined
in the context of current practice in order
to test perceptions against behavior
and understand the valued aspects of
agile practice implicit in development
today. The broad outcome indicates an
interesting marriage between agile and
plan-based approaches. This marriage
seeks to allow flexibility of method while
retaining control.

Barriers to Systematic Model
Transformation Testing
Benoit Baudry, Sudipto Ghosh,
Franck Fleurey, Robert France,
Yves Le Traon, and Jean-Marie Mottu

Model Driven Engineering (MDE)
techniques support extensive use of
models in order to manage the increasing
complexity of software systems.
Automatic model transformations
play a critical role in MDE since they
automate complex, tedious, error-prone,
and recurrent software development
tasks. For example, Airbus uses automatic
code synthesis from SCADE models
to generate the code for embedded
controllers in the Airbus A380.
Model transformations that automate
critical software development tasks
must be validated. The authors identify
characteristics of model transformation
approaches that contribute to the
difficulty of systematically testing
transformations as well as present
promising solutions and propose
possible ways to overcome these barriers.

Factors that Influence Software
Piracy: A View from Germany
Alexander Nill, John Schibrowsky,
James W. Peltier, and Irvin L. Young

Software piracy has wide-ranging negative
economic consequences for manufacturers
and distributors striving to compete in
a competitive global market. Indeed,
software piracy is jeopardizing the future
growth and development of the IT industry,
which in turn disproportionately impacts
countries with the highest piracy rates. This
article details an exploratory study that
investigated the relationship between a
comprehensive set of factors and software
piracy in Germany. The authors gleaned
some valuable security measures from the
results of the study that can be used as a
starting point for industry and governments
to develop programs to deter piracy.

The Requisite Variety
of Skills for IT Professionals
Kevin P. Gallagher, Kate M. Kaiser,
Judith C. Simon, Cynthia M. Beath,
and Tim Goles

IT professionals today are beset by ongoing
changes in technology and business
practices. To thrive in such a dynamic
environment requires competency in a
broad range of skills, both technical and
nontechnical. The authors contend the Law
of Requisite Variety—adapting to change
requires a varied enough solution set to
match the complexity of the environment—
can help explain the need for greater and
broader skills among IT professionals. The
article outlines a framework containing six
skill categories critically important for the
career development of IT professionals.

Panopticon Revisited
Jan Kietzmann and Ian Angell

Many claims have been made regarding
the safety benefits of computer-supported
surveillance technologies. However, like
many technologies the advantageous door
swings both ways. The authors compare
how current computer and communication
technologies are shaping today’s
“panopticons,” pulling heavily from the
1787 prison architectural design by social
theorist Jeremy Bentham that allowed
prison officials and observers to keep an
eye on prisoners without the imprisoned
able to tell they are being watched.

The Social Influence Model
of Technology Adoption
Sandra A. Vannoy and Prashant Palvia

While social computing has fast become
an industry buzzword encompassing
networking, human innovation, and
communications technologies, few
studies have investigated technology
adoption targeting the individual at the
level of society, community, or lifestyle
experience. The authors address this
gap by developing social constructs and
providing a theoretically grounded model
for technology adoption in the context of
social computing. Their model suggests
that social computing action, cooperation,
consensus, and authority are antecedents to
social influence. And social influence, they
contend, leads to technology adoption.

I, Myself and e-Myself
Cheul Rhee, G. Lawrence Sanders,
and Natalie C. Simpson

The human ego, developed from birth, is
central to one’s conscious self, according
to experts. This article examines the
concept of the virtual ego (one that
begins with the creation of an online
identity and functions only online)
and the notion of an online persona
as overarching concepts providing a
new rationale for understanding and
explaining online behavior. The authors
posit that an Internet user’s virtual ego
is distinguishable from his or her real
ego and argue that understanding the
differences between the two is essential
for advancing the dynamics of Web-based
social networks.

Beyond Connection: Situated
Wireless Communities
Jun Sun and Marshall Scott Poole

Compared to traditional Internet-based
virtual communities, situated wireless
communities (SWCs) go beyond just
connecting people together. In fact, SWCs
enable people to share their common
physical and/or social context with each
other. With the availability of these cues,
the social interaction among members
within a community is significantly
enhanced. The authors detail four general
types of SWCs as well as give examples of
the strengths and weaknesses of each.

In the Virtual Extension
Communications’ Virtual Extension brings more quality articles to ACM
members. These articles are now available in the ACM Digital Library.

DOI:10.1145/1743546.1743550	 	

THE ACM
A. M. TURING
AWARD

BY THE COMMUNITY...

FROM THE COMMUNITY...

FOR THE COMMUNITY...

Charles Thacker’s Alto computer embodied the key elements

of today’s PCs, and is at the root of one of the world’s most

innovative industries. Intel applauds Chuck’s clarity of insight,

focus on simplicity, and amazing track-record of designing

landmark systems that have accelerated the progress of research

and industry for decades.”

Andrew A. Chien

Vice President, Research

Director, Future Technologies Research

For more information see www.intel.com/research.

“Google is pleased to honor contributions that made possible

the style of computing that we enjoy today. We are proud to

support the Turing Award to encourage continued research in

computer science and the related technologies that depend

on its continued advancement.

Alfred Spector

Vice President, Research and

Special Initiatives, Google

For more information, see http://www.google.com/corporate/
index.html and http://research.google.com/.

ACM, INTEL, AND GOOGLE

CONGRATULATE

CHARLES P. THACKER

FOR THE PIONEERING

DESIGN AND REALIZATION

OF THE FIRST MODERN

PERSONAL COMPUTER—

THE ALTO AT XEROX PARC—

AND SEMINAL INVENTIONS

AND CONTRIBUTIONS TO

LOCAL AREA NETWORKS

(INCLUDING THE ETHERNET),

MULTIPROCESSOR

WORKSTATIONS, SNOOPING

CACHE COHERENCE

PROTOCOLS, AND TABLET

PERSONAL COMPUTERS

Financial support for the ACM A. M. Turing Award is provided by Intel Corporation and Google.

http://www.intel.com/research
http://www.google.com/corporate/index.html
http://www.google.com/corporate/index.html
http://research.google.com/

10 communications of the acm | june 2010 | vol. 53 | no. 6

The Communications Web site, http://cacm.acm.org,
features more than a dozen bloggers in the BLOG@CACM
community. In each issue of Communications, we’ll publish
selected posts or excerpts.

Follow us on Twitter at http://twitter.com/blogCACM

not in the sense we expected. There
is no system of rules, no encoding of
experts, no logical reasoning. There
is precious little understanding of in-
formation, at least not in the search
itself. There is knowledge in the many
voices that make up the data on the
Web, but no synthesis of those voices.

Perhaps we should have expected
this. Our brains, after all, are a con-
trolled storm of competing patterns
and signals, a mishmash of evolution-
ary agglomeration that is barely func-
tional and easily fooled. From this
chaos can come brilliance, but also
superstition, illusion, and psychosis.
While early studies of the brain envi-
sioned it as a disciplined and orderly
structure, deeper investigation has
proved otherwise.

And so it is fitting that the biggest
progress on building an external brain
also comes from chaos. Search engines
pick out the gems in a democratic sea
of competing signals, helping us find
the brilliance that we seek. Occasion-
ally, our external brain leads us astray,
as does our internal brain, but therein
lies both the risk and beauty of building
a brain on disorder.

Ed H. Chi’s “The
DARPA Network
Challenge and the
Design of Social
Participation Systems”
http://cacm.acm.org/

blogs/blog-cacm/60832

The DARPA Network Challenge recent-
ly made quite a splash across the In-
ternet and the media. The task was to

Greg Linden’s
“The Rise of the
External Brain”
http://cacm.acm.org/blogs/
blog-cacm/54333

From the early days of
computers, people have speculated that
computers would be used to supple-
ment our intelligence. Extended stores
of knowledge, memories once forgot-
ten, computational feats, and expert
advice would all be at our fingertips.

In the last decades, most of the
work toward this dream has been in
the form of trying to build artificial
intelligence. By carefully encoding ex-
pert knowledge into a refined and well-
pruned database, researchers strove to
build a reliable assistant to help with
tasks. Sadly, this effort was always
thwarted by the complexity of the sys-
tem and environment, with too many
variables and uncertainty for any small
team to fully anticipate.

Success now is coming from an en-
tirely unexpected source—the chaos of

the Internet. Google has become our
external brain, sifting through the ex-
tended stores of knowledge offered by
multitudes, helping us remember what
we once found, and locating advice
from people who have been where we
now want to go.

For example, the other day I was
trying to describe to someone how mi-
tochondria oddly have a separate ge-
nome, but could not recall the details.
A search for “mitochondria” yielded
a Wikipedia page that refreshed my
memory. Later, I was wondering if trav-
eling by train or flying between Venice
and Rome was a better choice; advice
arrived immediately on a search for
“train flying venice rome.” Recently,
I had forgotten the background of a
colleague, which was restored again
with a quick search on her name.
Hundreds of times a day, I access this
external brain, supplementing what is
lost or incomplete in my own.

This external brain is not pro-
grammed with knowledge, at least

The Chaos of the
Internet as an External
Brain; and More
Greg Linden writes about the Internet as a peripheral resource;
Ed H. Chi discusses lessons learned from the DARPA Network
Challenge; and Mark Guzdial asks if there are too many IT workers
or too many IT jobs.

doi:10.1145/1743546.1743551 	 	 	 http://cacm.acm.org/blogs/blog-cacm

http://cacm.acm.org
http://twitter.com/blogCACM
http://cacm.acm.org/blogs/blog-cacm
http://cacm.acm.org/blogs/blog-cacm/54333
http://cacm.acm.org/blogs/blog-cacm/60832
http://cacm.acm.org/blogs/blog-cacm/54333
http://cacm.acm.org/blogs/blog-cacm/60832

blog@cacm

june 2010 | vol. 53 | no. 6 | communications of the acm 11

identify the exact location of 10 red
weather balloons around the country.
The winning team from MIT succeeded
in identifying the locations of the bal-
loons in less than nine hours.

There was recently a good article
in Scientific American about the win-
ning entry and the second-place team
from Georgia Tech. The article details
the way in which the teams tried to: (1)
build social incentives into the system
to get people to participate and to rec-
ommend their friends to participate;
(2) how they managed to fight spam
or noisy information from people try-
ing to lead them astray. The MIT team,
for example, required photo proofs of
both the balloon and the official DAR-
PA certificate of the balloon at each
location, suggesting they realized that
noisy or bad data is a real challenge in
social participation systems.

But what did the challenge really
teach us?

Looking back for the last decade or
so, we have now gotten a taste of how
mass-scale participation in social com-
puting systems results in dramatic
changes in the way science, govern-
ment, health care, entertainment, and
enterprises operate.

The primary issue relating to the
design of social participation systems
is understanding the relationship be-
tween usability, sociability, social capi-
tal, collective intelligence, and how to
elicit effective action through design.

˲˲ Usability concerns the ability for all
users to contribute, regardless of their
accessibility requirements and com-
puting experience, and how to lower
the interaction costs of working with
social systems.

˲˲ Sociability refers to the skill or ten-
dency of being sociable and of interact-
ing well with others. There is a huge role
in how the designer can facilitate and
lubricate social interactions amongst
users of a system.

˲˲ Social Capital refers to positions
that people occupy in social networks,
and their ability to utilize those posi-
tions for some goal. Designers need to
enable people to sort themselves into
comfortable positions in the social
network, including leadership and fol-
lower positions.

˲˲ Collective Intelligence (or Social In-
telligence) refers to the emergence of
intelligent behavior among groups of

people. Designers can create mecha-
nisms, such as voting systems, folkson-
omies, and other opinion aggregators,
to ensure the emergence of social intel-
ligence over time. (Note that the defini-
tion for “social intelligence” here dif-
fers from traditional use of the phrase
in social psychology.)

The principal concern for design-
ers of systems is to ensure the partici-
pants both give and get something from
the system that is beneficial to both the
individual as well as to the group. This
may take the form of being challenged
in their ideas, or to contribute to the
overall knowledge of a domain, or to
contribute their experiences of using
a particular product or drug.

More importantly, social participa-
tion systems should encourage users to
take part in effective action. One main
design principle here is that effective
action arises from collective action. That
is, by encouraging participants to learn
from each other and to form consen-
sus, group goals will form, and action
can be taken by the entire group.

The DARPA Network Challenge is
interesting in that it was designed to
see how we can get groups of people
to take part in effective action. In that
sense, the experiment was really quite
successful. But we already have quite
a good example of this in Wikipedia,
in which a group of people came to-
gether to learn from each other’s per-
spective, but they share a common
goal to create an encyclopedia of the
state of human knowledge for broader
distribution. Here, collective action
resulted in effective change in the way
people access information.

Looking toward the next decade, the
social computing research challenge is
understanding how to replicate effec-
tive social actions in social participa-
tion systems, in domains such as health
care, education, and open government.
United, we might just solve some of the
biggest problems in the world.

Mark Guzdial’s “Are
There Too Many IT
Jobs or Too Many IT
Workers?”
http://cacm.acm.org/blogs/
blog-cacm/67389

The latest U.S. Bureau of Labor Sta-
tistics (BLS) have been updated, as of
November 2009, to reflect the Great

Recession. The news is terrific for us—
computing is only forecast to grow, and
at an amazing rate.

Via the Computing Community
Consortium blog: “‘Computer and
mathematical’ occupations are pro-
jected to grow by the largest per-
centage between now and 2018—by
22.2%. In other words, ‘Computer
and mathematical’ occupations are
the fastest-growing occupational clus-
ter within the fastest-growing major
occupational group.”

DARPA is so concerned about the
lack of IT workers (and the lack of di-
versity among its workers) that it has
launched a new research project to de-
velop more and more diverse IT workers.

DARPA has launched a “far-out re-
search” project to increase the num-
ber of students going into “CS-STEM”
(computer science and science, tech-
nology, engineering, and mathemat-
ics) fields. Wired just covered this ef-
fort to address the “Geek shortage.”
What makes the Wired piece so in-
teresting is the enormous and harsh
pushback in the comments section,
like the below:

“I’m 43, with a degree in software en-
gineering and enjoy what I do for a living.
But I wouldn’t encourage my 12-year-old
son to major in CS or similar because in-
teresting, new project development jobs
are the first to disappear in a down econ-
omy and non-cutting-edge skills are eas-
ily offshored and new hires are cheaper
than retraining outdated workers.”

“Why get a four-year degree for a ca-
reer with a 15-year shelf life?”

Are these complaints from a vocal
small group, or are do they represent
a large constituency? Why is there this
disconnect between claims of great
need and claims of no jobs? Are old
IT workers no longer what industry
wants? Is BLS only counting newly cre-
ated jobs and not steady-state jobs? Is
the IT job market constantly churning?
Is industry not training existing people
and instead hiring new people? It’s a
real problem to argue for the need for
more IT in the face of many (vocal) un-
employed IT workers.	

Greg Linden is the founder of Geeky Ventures.
Ed H. Chi is a research manager at Palo Alto
Research Center. Mark Guzdial is a professor at
the Georgia Institute of Technology.

© 2010 ACM 0001-0782/10/0600 $10.00

http://cacm.acm.org/blogs/blog-cacm/67389
http://cacm.acm.org/blogs/blog-cacm/67389

12 communications of the acm | june 2010 | vol. 53 | no. 6

cacm online

P
h

o
t

o
g

raph

 b
y

 L
y

n
n

 Barr

y

The mouse’s days are numbered. Computer interfaces that remove user-system
barriers are in the works and are intuitive enough for first-time users to throw away
the manual. The iPhone’s multitouch interface may have ushered in a wave of eas-
ier interfaces for the mass market, but it’s just the beginning. Many new and excit-
ing replacements for the familiar point-and-click scheme are on the way.

Skinput technology (http://www.chrisharrison.net/projects/skinput/) show-
cased at CHI 2010 (http://cacm.acm.org/news/83935) “appropriates” the human
body as an input surface, says Carnegie Mellon Ph.D. student Chris Harrison, who
developed SkinPut with Desney Tan and Dan Morris of Microsoft Research.

Gaze-based interfaces are being considered for data input, search, and se-
lection (http://portal.acm.org/toc.cfm?id=1743666&type=proceeding&coll=GU
IDE&dl=GUIDE&CFID=86057285&CFTOKEN=34856226), and driving vehicles
(http://cacm.acm.org/news/88018-car-steered-with-drivers-eyes/fulltext). Voice
controls have boarded Ford cars (http://www.fordvehicles.com/technology/
sync/) and Apple smartphones.

Gesture interfaces is another hot area in the interface arena. MIT Media Lab
Ph.D. candidate Pravan Mistry’s Sixth Sense (http://www.pranavmistry.com/
projects/sixthsense/) gesture interface (http://cacm.acm.org/news/23600) re-
ceived a standing ovation when it premiered at the TED conference in Febru-

ary 2009 (http://www.ted.
com/talks/pattie_maes_
demos_the_sixth_sense.
html). Using multitouch
gestures like the iPhone,
Sixth Sense does not require
a dedicated screen, but like
many advanced interfaces it
does depend on specialized
hardware. Microsoft’s Proj-
ect Natal gesture interface
(http://en.wikipedia.org/wiki/
Project_Natal) will give
gamers hands-free control
of the Xbox 360 in time for

the holidays season. There are dozens of related YouTube videos at http://www.
youtube.com/user/xboxprojectnatal. Its application outside gaming is not clear.

Another promising but challenging area is the brain-machine interface (http://
cacm.acm.org/news/73070-building-a-brain-machine-interface/fulltext), which
sounds less fact than fiction, but was in fact the focus of DARPA’s Augmented Cog-
nition program (http://www.wired.com/dangerroom/2008/03/augcog-continue/).

All these interfaces aim to give users a simple, natural way to interact with a
system. Microsoft’s Chief Research and Strategy Officer Craig Mundie says natural
user interfaces will appear first with gaming and entertainment systems but “will
certainly find application…in the communications domain.”

To read more about the interfaces of the future, check out the newly revamped
ACM student magazine XRDS (formerly Crossroads). The print edition is available
now; look for magazine’s new Web site coming soon.

Interact Naturally
DOI:10.1145/1743546.1743552	 David Roman

ACM
Member
News
Ed Lazowska Wins
ACM’s Distinguished
Service Award

Ed Lazowska,
	 the Bill &
	 Melinda Gates
	 Chair in
	 Computer
	S cience &
	E ngineering
and director of the eScience
Institute at the University of
Washington, is the 2009
recipient of ACM’s Distinguished
Service Award for his wide-
ranging service to the computing
community and his long-standing
advocacy for this community at
the national level.

“Forty years ago, in 1969,
there were three landmark
events: Woodstock, Neil
Armstrong’s journey to the
surface of the moon, and the
first packet transmission on
ARPANET,” Lazowska said in
an email interview. “With four
decades of hindsight, which
had the greatest impact? Unless
you’re big into Tang and Velcro
(or sex and drugs), the answer
is clear. Our future is every bit
as bright as our past. No field
is more important to the future
of our nation or our world than
computer science. We need to
get that message out. Advances
in computing are fundamental
to addressing every societal
grand challenge.

“I was recently party to a
discussion with Anita Jones and
Robin Murphy on ‘Type I’ and
‘Type II’ research in CS. Type I
focuses on the technologies—
compilers, operating systems,
sensors. Type II focuses on the
problems—engineering the
new tools of scientific discovery,
global development, health
IT, emergency informatics,
entertainment technology.
I’m a Type II person. Either
we expand our definition of CS
to embrace these challenges,
or we become insignificant.

“Forty years ago, as an
undergraduate at Brown
University, I was seduced into
computer science by Andy
van Dam. The potential to
change the world is greater
today than it has ever been.
We need to communicate this
to students. This field makes
you powerful.”

—Jack Rosenberger

Sixth Sense: Using palm for dialing a phone number.

http://www.chrisharrison.net/projects/skinput/
http://cacm.acm.org/news/83935
http://portal.acm.org/toc.cfm?id=1743666&type=proceeding&coll=GUIDE&dl=GUIDE&CFID=86057285&CFTOKEN=34856226
http://cacm.acm.org/news/88018-car-steered-with-drivers-eyes/fulltext
http://www.fordvehicles.com/technology/sync/
http://www.pranavmistry.com/projects/sixthsense/
http://www.youtube.com/user/xboxprojectnatal
http://cacm.acm.org/news/73070-building-a-brain-machine-interface/fulltext
http://www.wired.com/dangerroom/2008/03/augcog-continue/
http://portal.acm.org/toc.cfm?id=1743666&type=proceeding&coll=GUIDE&dl=GUIDE&CFID=86057285&CFTOKEN=34856226
http://www.fordvehicles.com/technology/sync/
http://www.pranavmistry.com/projects/sixthsense/
http://cacm.acm.org/news/23600
http://www.ted.com/talks/pattie_maes_demos_the_sixth_sense.html
http://www.ted.com/talks/pattie_maes_demos_the_sixth_sense.html
http://www.ted.com/talks/pattie_maes_demos_the_sixth_sense.html
http://www.ted.com/talks/pattie_maes_demos_the_sixth_sense.html
http://en.wikipedia.org/wiki/Project_Natal
http://en.wikipedia.org/wiki/Project_Natal
http://www.youtube.com/user/xboxprojectnatal
http://cacm.acm.org/news/73070-building-a-brain-machine-interface/fulltext

 N
news

june 2010 | vol. 53 | no. 6 | communications of the acm 13

R
epri

n

ted

 b

y
 permissi

o

n
 o

f
 H

a
r

v
a

r
d

 B
u

si

n
ess

 Re

v
iew

 F
r

o
m

 “
S

h
o

u
ld

 Y

o
u

 I
n

vest

 i
n

 the

 L

o
n

g
 T

ail

?

”
b

y
 A

n
ita

 E
l

b
erse

,

j
u

ly
–

a
u

g
u

st

 2
0

0
8

C
o

p
y

ri

g
ht

 2

0
0

8
 b

y
 the

 H
arvard

 B

u
si

n

ess

 S

ch

o
o

l
 P

u
b

lishi

n

g
 C

o
rp

o

rati

o
n

;
all

 ri

g
hts

 reserved

.

O
nline commerce has affect-
ed traditional retailers,
moving transactions such
as book sales and movie
rentals from shopping

malls to cyberspace. But has it funda-
mentally changed consumer behavior?

Wired Editor-in-Chief Chris Ander-
son thinks so. In his 2006 book titled
The Long Tail and more recently on his
Long Tail blog, Anderson argues that
online retailers carry a much wider va-
riety of books, movies, and music than
traditional stores, offering customers
many more products to choose from.
These customers, in turn, pick more
of the niche products than the popular
hits. While individual niche items may
not sell much more, cumulatively they’re
a bigger percentage of overall business.

The book’s title comes from the
shape of a probability distribution
graph. Many phenomena follow the
normal or Gaussian distribution; most
of the values cluster tightly around the
median, while in the tails they drop off
exponentially to very small numbers.
Events far from the median are ex-
ceedingly rare, but other phenomena,
including book and movie purchases,
follow a different course. Values in this
distribution drop much less rapidly,

Straightening
Out Heavy Tails
A better understanding of heavy-tailed probability distributions can
improve activities from Internet commerce to the design of server farms.

Science | doi:10.1145/1743546.1743553	 Neil Savage

10%

1 2 3 4 5 6 7 8 9 10

SOURCE: QUICKFLIX

9%

34%

35%

38%

38%

40%

42%

42%

61%

44%

47%

13%

14%

14%

14%

14%

14%

14%

13%

15%

21%

10%

10%

10%

11%
10%

10%

10%

8%

16%

9%

7% 7%
7% 7% 7%

7%

13%

6%
6%

5%

5%

5%

9%

9%

5%

5%

9%

4%

5%

9%

9%

13%
5%

10%

4%

4%

4%

8%

7%

4% 3%

6%

3% 5%

3%

2%

5% 5%

2%

8%

4%

10%

3% 3% 2%

4%
3%

2%2%

3% 3%

4%

3%
2%
2%

3%

3%

2%
2%

Each vertical bar represents a decile of DVD popularity, with the DVDs in decile 10 being
the most popular. Each bar is subdivided to demonstrate how, on average, customers who
rented at least one DVD from within that decile distributed their rentals among all the
deciles. Shoppers in the bottom decile, for instance, selected only 8% of their rentals from
among its titles—and 34% from among top-decile titles.

14 communications of the acm | june 2010 | vol. 53 | no. 6

news

Anita Elberse, associate professor
of business administration at Harvard
Business School, earlier looked at data
from Quickflix, an Australian movie
rental service similar to Netflix, and
from Nielsen VideoScan and Nielsen
SoundScan, which monitor video and
music sales, respectively, and reached
the same conclusion. “There might be
an increasingly long tail, but that tail is
getting thinner,” Elberse says.

Anderson disputes their conclu-
sions, saying the researchers define
the Long Tail differently. Anderson de-
fines hits in absolute terms, the top 10
or top 100 titles, while the academics
look at the top 1% or 10% of products.
“I never do percentage analysis, since
I think it’s meaningless,” Anderson
wrote in an email interview. “You can’t
say ‘I choose to define Long Tail as X
and X is wrong, therefore Chris Ander-
son is wrong.’ If you’re going to cri-
tique the theory, you’ve got to actually
get the theory right.”

Anderson points to the same Netflix
data used by Netessine and notes that

the top 500 titles dropped from more
than 70% of demand in 2000 to under
50% in 2005. In 2005, Anderson notes,
15% of demand came from below the
top 3,000, about the point where brick-
and-mortar stores run out of inventory.

“In that sense, Anderson was right,
but to me that was more or less a triv-
ial finding, because each year we have
more and more movies available,” Ne-
tessine says.

Influencing Consumers’ Choices
An improved understanding of where in
the distribution consumers land could
lead to new methods of swaying their
choices, in the form of better-designed
recommendation engines. Researchers
postulate that one reason consumers
fail to choose niche products is that they
have no way to find them. “If nobody is
buying these items, how do they get rec-
ommended in the first place?” asks Kartik
Hosanagar, associate professor of opera-
tions and information management at
the University of Pennsylvania.

Hosanagar says collaborative filter-
ing, based on user recommendations,
can’t find undiscovered items. It can,
however, find items that are somewhat
popular, and bring them to the atten-
tion of customers who might have
missed them. He found that consum-
ers appreciated recommendation en-
gines that suggest more niche items,
perhaps because they were already
aware of the blockbusters.

He says retailers might boost their
sales with improved recommendation
engines. Using content analysis, which

and events of roughly equal probability
stretch far out into the tail.

Plotted on a graph, such distribu-
tions produce a peak very near the y-
axis, a cluster near the intersection of
the axes, and a long tail along the x-axis.
This gives rise to the name long tail, or
heavy tail. While a long tail is techni-
cally just one class of a heavy tail distri-
bution—other terms include fat tail,
power law, and Pareto distribution—in
popular usage and for practical purpos-
es there’s no notable difference.

Because many phenomena have
heavy tails—computer job sizes, for in-
stance, and Web page links—research-
ers want to know how the distributions
work and their effects.

Recently, for instance, business ex-
perts have tested the Long Tail theory
and found that its effect on Internet
commerce may not be as straightfor-
ward as some thought. Serguei Netes-
sine, associate professor of operations
and information management at the
University of Pennsylvania, looked at
data from Netflix, the movie rental
service, containing 100 million online
ratings of 17,770 movies, from 2000 to
2005, by 480,000 users. Netessine used
the ratings as a proxy for rentals in his
study, but says he has since looked at
actual rental data.

Netessine’s conclusion is, when
looked at in percentage terms, the de-
mand for hits actually grew, while the
demand for niche products dropped.
“There is no increased demand for
bottom products that we are seeing in
this data,” Netessine says.

“There might be
an increasingly long
tail, but that tail is
getting thinner,” says
Anita Elberse.

Obituary

PC Pioneer Ed Roberts, 1941–2010
Henry Edward “Ed” Roberts,
who created the first inexpensive
personal computer in the mid-
1970s, died on April 1 at the age
of 68. Roberts is often credited as
being “the father of the personal
computer.”

Roberts and a colleague
founded Micro Telemetry
Instrumentation Systems (MITS)
in 1970 to sell electronics kits to
model-rocket hobbyists. In the
mid-1970s, MITS developed the
Altair 8800, a programmable
computer, which sold for a
starting price of $397. The Altair

8800 was featured on the January
1975 cover of Popular Electronics,
and MITS shipped an impressive
5,000 units within a year.

The Popular Electronics cover
story caught the attention of Paul
Allen, a Honeywell employee, and
Bill Gates, a student at Harvard
University. They approached
Roberts and were soon working
at MITS, located in Albuquerque,
NM, where they created the Basic
programming language for the
Altair 8800. It was a move that
would ultimately lead to the
founding of Microsoft Corp.

MITS was sold to Pertec
Computer Corporation in 1977,
and Roberts received $2 million.
He retired to Georgia and
first worked as a farmer, then
studied medicine and became a
physician.

Agreement about who
invented the first personal
computer differs, with credit
being variously given to Roberts,
John Blankenbaker of Kenbak
Corporation, Xerox Palo Alto
Research Center, Apple, and
IBM. Roberts’ impact on
computing, though short in

duration, is immeasurable.
“He was a seed of this thought
that computers would be
affordable,” Apple cofounder
Steve Wozniak has said. The
breakthrough insight for
Roberts might have occurred
during the late 1960s while
working on a room-size IBM
computer as an electrical
engineering major at Oklahoma
State University. As he later
said in an interview, “I began
thinking, What if you gave
everyone a computer?”

—Jack Rosenberger

news

june 2010 | vol. 53 | no. 6 | communications of the acm 15

Networking

Quantum
Milestone
Researchers at Toshiba
Research Europe, in
Cambridge, U.K., have attained
a major breakthrough in
quantum encryption, with their
recent continuous operation
of quantum key distribution
(QKD) with a secure bit rate
of more than 1 megabit per
second over 50km of fiber optic
cable. The researchers’ feat,
averaged over a 24-hour period,
is 100–1,000 times higher than
any previous QKD for a 50km
link. The breakthrough could
enable the widespread usage
of one-time pad encryption,
a method that is theoretically
100% secure.

First reported in Applied
Physics Letters, the QKD
milestone was achieved with a
pair of innovations: a unique
light detector for high bit rates
and a feedback system that
maintains a high bit rate and,
unlike previous systems, does
not depend on manual set-up
or adjustments.

“Although the feasibility
of QKD with megabits per
second has been shown in the
lab, these experiments lasted
only minutes or even seconds
at a time and required manual
adjustments,” says Andrew
Shields, assistant managing
director at the Cambridge lab.
“To the best of our knowledge
this is the first time that
continuous operation has
been demonstrated at high
bit rates. Although much
development work remains,
this advance could allow
unconditionally secure
communication with
significant bandwidths.”

The QKD breakthrough will
allow the real-time encryption
of video with a one-time pad.
Previously, researchers could
encrypt continuous voice data,
but not video.

Toshiba plans to install
a QKD demonstrator at
the National Institute
of Information and
Communications Technology
in Tokyo. “The next challenge
would be to put this level of
technology into metropolitan
network operation,” says
Masahide Sasaki, coordinator
of the Tokyo QKD network.
“Our Japan-EU collaboration
is going to do this within the
next few years.”

identifies characteristics of a product—
say, the director or genre of a movie—
and suggesting it to buyers of products
with similar characteristics, could in-
crease the diversity of recommenda-
tions. Hosanagar says researchers look-
ing at Internet commerce shouldn’t
assume sales mechanisms and buyers’
behavior are unchangeable. “A lot of
social scientists are looking at the sys-
tem as a given and trying to look at its
impact, but what we are saying is the
system is not a given and there are a lot
of design factors involved,” he says.

That matches the thinking of Mi-
chael Mitzenmacher, a professor of
computer science at Harvard, who says
researchers need a better understand-
ing of how heavy tails come to be, so that
they can turn that knowledge to practi-
cal use. “For a long time people didn’t
realize power law distributions come up
in a variety of ways, so there are a variety
of explanations,” Mitzenmacher says.
“If we understand the model of how
that power law comes to be, maybe we
can figure out how to push people’s be-
havior, or computers’ behavior, in such
a way as to improve the system.”

For instance, file size follows a
power law distribution. An improved
understanding of that could lead to
more efficiently designed and eco-
nomical file storage systems. Or if
hyperlinks are similar to movie rent-
als—that is, if the most popular Web
pages retain their popularity while the
pages out in the tail remain obscure—
it might make sense to take that into
account when designing search en-
gines. And if search engines have al-
ready changed that dynamic, it could
be valuable to understand how.

One area where heavy tails affect
computer systems is the demand that
UNIX jobs place on central processing
units (CPUs). Mor Harchol-Balter, as-
sociate department head of graduate
education in the computer science de-
partment at Carnegie Mellon Univer-
sity, says the biggest 1% of jobs make
up half the total load on CPUs. While
most UNIX jobs may require a second
or less of processing time, some will
need several hours.

If there were low variability among
job sizes, as people used to believe, it
would make sense to have just a few,
very fast servers. But because the job size
distribution is heavy tailed, it’s more ef-

ficient to use more, slower machines.
Designing server farms with this under-
standing, Harchol-Balter says, could cut
electricity demand by 50%.

“In computer science, we really
concentrate on understanding the
distribution of the sizes of the require-
ments, and making our rules based on
this understanding,” she notes. “We
are having to invent whole new mathe-
matical fields to deal with these kinds
of distributions.”

Harchol-Balter finds the origin of
heavy tail distributions a fascinating
question, one she sometimes asks her
classes to speculate about. “Why are
files at Web sites distributed accord-
ing to a Pareto distribution? Why on
Earth? Nobody set out to make this
kind of distribution,” she says. “Some-
how most people write short programs
and some people write long programs
and it fits this distribution very well.”

But the “why” isn’t her main con-
cern. “I don’t need to know why it
happens,” Harchol-Balter says. “I just
need to know if it’s there what I’m go-
ing to do with it.”	

Further Reading

Tan, T.F. and Netessine, S.
Is Tom Cruise threatened? Using Netflix
Prize data to examine the long tail of
electronic commerce. Working paper,
University of Pennsylvania, Wharton
Business School, July 2009.

Elberse, A.
Should you invest in the long tail? Harvard
Business Review, July-August 2008.

Mitzenmacher, M.
Editorial: the future of power law research.
Internet Mathematics 2, 4, 2005.

Harchol-Balter, M.
The effect of heavy-tailed job size
distributions on computer system design.
Proceedings of ASA-IMS Conference on
Applications of Heavy Tailed Distributions
in Economics, Engineering and Statistics,
Washington, DC, June 1999.

Fleder, D.M. and Hosanagar, K.
Blockbuster culture’s next rise or fall: the
impact of recommender systems on sales
diversity. Management Science 55, 5, May 2009.

Newman, M.E.J.
Power laws, Pareto distributions, and Zipf’s
law. Contemporary Physics 46, 323–351, 2005.

Neil Savage is a science and technology writer based
in Lowell, MA. Prabhakar Raghavan, Yahoo! Research,
contributed to the development of this article.

© 2010 ACM 0001-0782/10/0600 $10.00

16 communications of the acm | june 2010 | vol. 53 | no. 6

news

fi

g
u

re

 fr

o
m

 H
y

dr

o
S

e
n

se

:
I

n
frastr

u

ct

u
re

-M

ediated

 S

i
n

g
le

-P

o
i

n
t

 S
e

n
si

n

g
 o

f
 W

h
o

le

-H
o

me

 W
ater

 A

ctivit

y

J
o

n
 F

r
o

ehlich

,
E

ric

 L

ars

o

n
,

T
im

 C

amp

b

ell

,

C
o

n
o

r
 H

a
g

g
ert

y
,

J
ames

 F

o
g

art

y

,
S

hweta

k

 N
.

P
atel

Technology | doi:10.1145/1743546.1743554	 Tom Geller

Beyond the Smart Grid
Sensor networks monitor residential and institutional devices,
motivating energy conservation.

A
s President-elect, Barack

Obama used the term
“smart grid” in his first
major speech of 2009, and
few phrases have enjoyed

as much currency recently. The electri-
cal grid isn’t the only utility acquiring
intelligence, however, as water and
gas meters throughout the U.S. gain
radio communication capabilities and
other innovations.

But those grids (and their attendant
smartness) stop at the residential me-
ter, so consumers never know which
household devices are the biggest en-
ergy users. Once monitored, these de-
vices would need to communicate—to
turn on the ceiling fan and adjust the
air conditioner when electricity prices
peak, for example. The final ingredient
for such a system to be useful to con-
sumers is an easy-to-understand inter-
face for monitoring and controlling
the devices.

The solution, like the problem, has
three parts. First, monitor each device
separately; second, network them to-
gether for coordination; third, pres-
ent the resulting data in an easy-to-use
format. As it happens, this solution
goes beyond energy conservation to
suggest new ways of integrating home
automation, safety, security, and en-
tertainment applications with smart
grid data.

Your Home’s Five Senses
The first key part is the sensors them-
selves. For utility monitoring, instal-
lation has been a major barrier to
consumer adoption. Measuring water
flow to a specific faucet, for example,
required removing a section of pipe.
To give a residential consumer the
whole picture, this process would
have to be repeated for every faucet in
the house.

But now work done by Shwetak Pa-
tel, an assistant professor in the de-
partment of computer science and en-
gineering at University of Washington,

and colleagues can extrapolate electri-
cal, water, and gas use of individual de-
vices by measuring the “shock waves”
created when consumers turn on the
devices that use those utilities.

Patel’s HydroSense approach is
to attach a single sensor to a spigot
and examine differences in pressure
created by the water-hammer phe-
nomenon when individual devices
are turned on and off. After build-
ing a profile of devices in the house,
he says, the single sensor can accu-
rately tell each device from the others
within a 5% margin of error. The same
model works for gas lines as well; for
electricity, the single plug-in sensor
looks for characteristic noise patterns
produced by individual devices over
the home’s electrical lines.

Patel points out the educational val-
ue of this information. “Often peoples’
mental model of [utility] consumption
is really inaccurate,” he says. “Over 30
years of study in environmental psy-

chology has shown that giving people
itemized feedback can reduce over-
all energy use by 15%–20%. But adop-
tion of sensors that will give them that
feedback drastically drops off as the
installation burden increases. So the
question is, How can we build a single
sensor that gives them disaggregated
information, but doesn’t need a profes-
sional electrician or plumber to install?
If we can build cheap sensors that give
consumers effective feedback, they can
start to reduce overall consumption in
their home.”

Even with single-point sensors
installed, there’s still a place for in-
dividual sensors to measure environ-
mental factors. For example, a sensor
that measures the oil level in a furnace
could switch on electric heating when
the oil is running out, but only during
times of low electricity demand. Or a
combustible-gas sensor could prevent
an explosion, when a gas leak is detect-
ed, by preventing a gas furnace’s igni-

water
spigot

bathroom
sink 1toilet 1 bathtub

kitchen sink
dishwasher

bath
sink 2

toilet 2showerwashing
machine

hot water
heater

hot water heater
drain valve

pressure
regulator

backflow
preventer

water
meter

incoming cold
water from
supply line

thermal
expansion

tank

wireless
transmitter

sensor

HydroSense can be installed at any accessible location in a home’s water infrastructure,
with typical installations at an exterior hose bib, a utility sink spigot, or a water heater drain
valve. By continuously sensing water pressure at a single installation point, HydroSense
can identify individual fixtures where water is being used and estimate their water usage.

news

june 2010 | vol. 53 | no. 6 | communications of the acm 17

hand, ZigBee largely ignores issues of
bandwidth and quality of service, as
would be needed for a telephony or
video application.

The ZigBee specifications cover all
seven layers of the Open Systems Inter-
connection model, in three parts. The
bottom two—the physical and data-
link layers—are the 802.15.4 standard,
with no changes. Layers three to six
comprise the “ZigBee stack,” includ-
ing algorithms for organization among
nodes, error routing, and AES-128 secu-
rity. (As a wireless technology, the secu-
rity portion is especially important to
prevent outside tampering that could
cause unpredictable device behavior.)
When layers one through six are imple-
mented according to the ZigBee speci-
fication, it qualifies for ZigBee platform
compliance certification. ZigBee-cer-
tified products also implement layer
seven, which is a ZigBee public profile
such as smart energy, home automa-
tion, or health care.

Acting on Data
Once the data is collected, it needs to be
presented in ways that are understand-
able to humans and to other devices.
“We don’t want to overwhelm the con-
sumer with a bunch of data,” says Patel.
“We could provide them with a ‘Top Ten
Energy Consumers in Your Home’ list
to give them something to work on. Or
if we see that the compressor in their re-
frigerator is degrading in performance
over time, we could give them targeted
advice on blowing out the coils.”

One example of how such data is be-
ing used is found in Oberlin College’s
campus resource monitoring system.
The environmental studies program

monitors electricity use in each of the
college’s dorms, in some cases with
multiple sensor points per dorm. Ad-
ministrators make adjustments to dis-
count nondiscretionary expenditures,
such as a kitchen in those dorms with
cafeterias, then take a baseline reading
to determine typical usage. Data from
dorms’ current energy use is displayed
in three ways: on the Web at oberlin.
edu/dormenergy; as building dash-
board video displays throughout cam-
pus; and as color-changing orbs placed
in several campus locations, including
the dorms themselves.

Finally, Oberlin College runs an
annual dorm energy competition and
gives prizes to the dorm with the great-
est reduction from baseline use. Henry
Bent, sustainable technology research
fellow partly responsible for maintain-
ing the Oberlin system, is especially
enthusiastic about the orbs. “Numbers
and dials and graphs are fantastic, but
you want something that you can see
very quickly at a glance,” Bent says. “I
just know when I’m on my way to the
bathroom, ‘Oh, look, that orb is red, I
should turn something off.’ ”	

Further Reading

Patel, S.N., Robertson, T., Kientz, J.A.,
Reynolds, M.S., Abowd, G.D.
At the flick of a switch: detecting and
classifying unique electrical events on
the residential power line. Proceedings
of Ubicomp 2007, Innsbruck, Austria,
September 16–19, 2007.

Patel, S.N., Reynolds, M.S., Abowd, G.D.
Detecting human movement by differential
air pressure sensing in HVAC system
ductwork: an exploration in infrastructure
mediated sensing. Proceedings of Pervasive
2008, Sydney, Australia, May 19–22, 2008.

Petersen, J.E., Shunturov, V., Janda, K.,
Platt, G., Weinberger, K.
Dormitory residents reduce electricity
consumption when exposed to real-
time visual feedback and incentives.
International Journal of Sustainability in
Higher Education 8, 1, 2007.

Fischer, C.
Feedback on household electricity
consumption: a tool for saving energy?
Energy Efficiency 1, 1, Feb. 2008.

Wireless Sensor Networks Research Group
http://www.sensor-networks.org.

Tom Geller is an Oberlin, Ohio-based science, technology,
and business writer.

© 2010 ACM 0001-0782/10/0600 $10.00

tion from sparking on. Such concepts
require a development platform that
hosts both sensors and communica-
tions hardware.

One such platform is SquidBee and
its successor, Waspmote. Both origi-
nated at the Spain-based company
Libelium, which also produces three
types of Waspmote sensor boards. One
determines the presence of gases, such
as carbon dioxide and methane; the
second senses environmental changes,
such as vibration, pressure, and mois-
ture; and the third is a prototype board
that will host any other sensor types a
developer might have. For applications
that don’t require immediate commu-
nication or in situations where imme-
diate communication is impossible,
the Waspmote board contains two gig-
abytes of internal memory for later
transmission.

Making Sensors Talk
Both Patel and Libelium’s devices re-
quire a way to communicate their find-
ings to the outside world. Waspmote
uses a variety of methods, including
USB, GPS, 802.15.4, and a range of
radio frequencies. Patel is agnostic
about the communication methods his
still-in-development devices will use.
“We’re innovating on the hardware, ag-
gregation, and signal processing,” he
says, “but not on the network.”

One specification that both plan
to use is ZigBee, an extension of the
802.15.4 standard promoted by the
nonprofit, industry-based ZigBee Al-
liance. According to ZigBee Alliance
Chairman Bob Heile, ZigBee was de-
signed specifically “to create open,
global standards for wireless sensor
networks.” As such, it prioritizes power
consumption and transmission integ-
rity so that the devices—which might
be used in difficult-to-access areas—
can operate trouble-free for a long pe-
riod of time. “We’re achieving devices
that go for five to 10 years on an alka-
line battery or 10 to 20 years on lithi-
um-ion,” says Heile.

The ZigBee Alliance also prioritized
scalability well beyond the residential
needs. Heile says the ARIA Resort &
Casino in the new CityCenter devel-
opment in Las Vegas has more than
90,000 ZigBee-compliant devices to
control both common-area and guest-
room environments. On the other

Oberlin College
hosts an annual dorm
energy competition,
with prizes for
the dorm that
achieves the greatest
energy reduction.

http://www.sensor-networks.org
http://oberlin.edu/dormenergy
http://oberlin.edu/dormenergy

18 communications of the acm | june 2010 | vol. 53 | no. 6

news

vis

u

alizati

o

n
 c

o
u

rtes

y
 o

f
 I

B
M

 S
mallBl

u

e

Mine Your Business
Researchers are developing new techniques to gauge
employee productivity from information flow.

Society | doi:10.1145/1743546.1743555	 Leah Hoffmann

W
hat’s the best way
to measure employee
productivity in the
digital age? From lines
of code to number of

sales, each industry has its own imper-
fect standards. Yet according to a new
line of thought, the answer may, in fact,
lie in your email inbox. And your chat
log. And the comments you added to
a shared document—in the sum, that
is, of your electronic activity. Research-
ers at IBM and Massachusetts Institute
of Technology, for example, analyzed
the electronic data of 2,600 business
consultants and compared their com-
munication patterns with their billable
hours. The conclusion: the average
email contact is worth $948 in annual
revenue. Of course, it also makes a dif-
ference who your contacts are. Consul-
tants with strong ties to executives and
project managers generated an average
of $7,056 in additional annual revenue,
compared with the norm.

According to Redwood City, CA-
based Cataphora, one of the companies
at the forefront of the movement, the
objective is to build patterns of activ-
ity—then flag and analyze exceptions.

“We’re interested in modeling
behavior,” says Keith Schon, a se-
nior software engineer at Cataphora.
“What do people do normally? How
do they deviate when they’re not act-
ing normally?” Using data mining
techniques that encompass network
analysis, sentiment analysis, and clus-
tering, Schon and colleagues analyze
the flow of electronic data across an
organization. “We’re trying to figure
out relationships,” he explains.

Cataphora got its start in the elec-
tronic discovery field, where under-
standing what people know and how
that knowledge spreads is critical to
legal liability. The company thus works
to uncover so-called “shadow net-
works” of employees who know each
other through non-business channels
like colleges or churches, or who share

a native language, and could collude
with one another. Its engineers search
for unusual linguistic patterns, and
set actual communication networks
against official organization charts to
determine when people interact with
those to whom they have no ostensible
work connection.

Yet Cataphora and others are also
developing tools to analyze such pat-
terns of behavior in non-investigative
settings in the hope of understand-
ing—and enhancing—employee pro-
ductivity. Microsoft examines internal
communications to identify so-called
“super connectors,” who communi-
cate frequently with other employees
and share information and ideas.
Eventually, researchers say, that data
could help business leaders make
strategic decisions about a project
team’s composition, effectiveness,
and future growth. Likewise, Google
is testing an algorithm that uses em-
ployee review data, promotions, and
pay histories to identify its workers
who feel underused, and therefore
are most likely to leave the company.
Though Google is reluctant to share
details, human resources director
Laszlo Bock has said the idea is to get
inside people’s heads before they even

think about leaving—and to work
harder to keep them engaged.

“We have access to unprecedented
amounts of data about human activity,”
says Sinan Aral, a professor of manage-
ment sciences at New York University’s
Stern School of Business who studies in-
formation flow. Of course, not every ben-
efit an individual brings to a company
can be captured electronically, “but we
can explain a lot,” Aral says. Research-
ers hasten to add they’re not seeking
to punish people for using Facebook at
work or making personal phone calls.
“The social stuff may be important, and
we don’t count that against a person,”
says Cataphora’s Schon. In most cases,
in fact, personal communications are
filtered out and ignored.

Measuring Electronic Productivity
Some measures of electronic produc-
tivity are relatively straightforward. Cat-
aphora, for example, seeks to identify
blocks of text that are reused, such as
a technical explanation or a document
template, reasoning that the employees
who produce them are making a com-
paratively greater impact on the com-
pany by doing work that others deem
valuable. Such text blocks can be diffi-
cult to identify, for their language often

IBM’s SmallBlue technology analyzes employees’ electronic data and creates a networked
map of who they’re connected to and what their expertise is.

news

june 2010 | vol. 53 | no. 6 | communications of the acm 19

uals who help each other.” In a study of
five years of data from an executive re-
cruiting firm, Aral found that employ-
ees who were more central to the firm’s
information flow—who communicat-
ed more frequently and with a broader
number of people—tended to be more
productive. It makes a certain amount
of sense. “They received more novel
information and could make matches
and placements more quickly,” Aral
notes. In fact, the value of novel infor-
mation turned out to be quite high.
Workers who encountered just 10 nov-
el words more than the average worker
were associated with an additional $70
in monthly revenue.

Yet Aral’s conclusions also point to
one of the more challenging aspects of
this type of research. If a position in the
corporate network is associated with in-
creased productivity, is it because of the
nature of that position or because cer-
tain kinds of people naturally gravitate
toward it? “You always have to ques-
tion your assumptions,” admits Aral.
New statistical techniques are needed,
he says, to more accurately distinguish
correlation from causation.

Large-scale data mining presents
another challenge. IBM’s SmallBlue,
which grew out of research at its Wat-
son Business Center, analyzes employ-
ees’ electronic data and creates a net-
worked map of who they’re connected
to and where their expertise lies. Em-
ployees can then search for people
with expertise on certain subjects and
find the shortest “social path” it would

take to connect them. SmallBlue is an
invaluable tool for large, international
firms, and IBM has used it to connect
its 410,000 employees since 2007. Yet
indexing the 20-plus million emails
and instant messages those employees
write is not a trivial task—not to men-
tion the 2 million blog and database
entries and 10 million pieces of data
that come from knowledge sharing
and learning activities. It is the largest
publicly known social network dataset
in existence, and the project’s founder,
Ching-Yung Lin, says IBM worked hard
to design a database that would hold
different types of data and dynamically
index the graphs that are generated.

Proponents of electronic produc-
tivity analysis say the markers are best
used to augment, rather than replace,
traditional metrics and peer evalu-
ations. “It’s a sanity check,” asserts
Schon. In the future, predicts Aral,
who is helping IBM refine SmallBlue,
the software could provide real-time,
expertise-based recommendations:
automatically suggesting connections
while employees work on a particular
task, for example, or helping managers
assemble compatible project teams. 	

Further Reading

Aral, S., Brynjolfsson, E., and Van Alstyne, M.
Information, technology and information
worker productivity. International
Conference on Information Systems,
Milwaukee, WI, 2006.

Manning, C.D., Raghavan, P., and Schütze, H.
Introduction to Information Retrieval.
Cambridge University Press, New York,
2008.

Mikawa, S., Cunnington, S., and Gaskis, S.
Removing barriers to trust in distributed
teams: understanding cultural differences
and strengthening social ties. International
Workshop on Intercultural Collaboration,
Palo Alto, CA, 2009.

Wasserman, S. and Faust, K.
Social Network Analysis: Methods and
Applications. Cambridge University Press,
Cambridge, 1994.

Wu, L., Lin, C.-Y., Aral, S., and Brynjolfsson, E.
Value of social network: a large-scale
analysis on network structure impact to
financial revenue of information technology
consultants. Winter Information Systems
Conference, Salt Lake City, UT, 2009.

Leah Hoffmann is a Brooklyn, NY-based technology
writer.

© 2010 ACM 0001-0782/10/0600 $10.00

evolves as they spread through a corpo-
rate network. Cataphora has developed
a fuzzy search algorithm to detect them,
but Schon admits the task is complex.
Creating an algorithm that organizes
sentences into text blocks, for example,
often forces researchers to make inflex-
ible choices about boundaries, using
punctuation, length limits, paragraph
breaks, or some other scheme. That,
in turn, could cause a program to over-
look a document whose author formats
things differently, such as not breaking
the text into paragraphs very frequently
or using unconventional punctuation.

Cataphora has also developed a
proprietary set of ontologies that cover
human resources-related topics, mar-
keting issues, product development,
and more to examine various subject-
specific communications. One way in
which they are useful, Schon explains,
is for studying the relationships be-
tween people and topics. If an executive
is central to communications about
product development, marketing, and
finance, but marginal to those about
sales, it’s likely that she or he is out of
the loop when it comes to the newest
sales tactics. Ontologies can also iden-
tify communications related to partic-
ular tasks, such as hiring and perfor-
mance reviews. From there, engineers
can statistically determine what the
“normal” procedure is, and see when
it is and isn’t followed. Thanks to the
training corpus Cataphora has built
over time through its clients, these
ontologies perform quite well. Yet to
detect communication that is specific
to a particular industry, location, or
research group and whose names can
be idiosyncratic, “we may need to ex-
amine the workflow and develop more
specific ontologies,” says Schon.

Further analysis helps identify how
employees influence each other at
work. Aral, for example, correlates his
electronically derived network topolo-
gies with traditional accounting and
project data, such as revenues and
completion rates, to try to understand
which factors enhance or diminish
certain outcomes. “The old paradigm
was that each employee had a set of
characteristics, like skills or education,
which he or she brought to a firm,”
Aral explains. “Our perspective is that
employees are all connected, and that
companies build a network of individ-

Microsoft
examines internal
communications to
identify so-called
“super connectors,”
who communicate
frequently with
fellow employees
and share information
and ideas.

credit

 t
k

20 communications of the acm | june 2010 | vol. 53 | no. 6

news

news

june 2010 | vol. 53 | no. 6 | communications of the acm 21

I
t cam e as a surprise even to
those who knew him well: the
death of Arthur John Robin
Gorell Milner, known to friends
simply as Robin, of a heart at-

tack on March 20. Milner’s wife, Lucy,
had died three weeks before. Yet the pi-
oneering computer scientist remained
active, and seemingly in good health,
until the end, maintaining close con-
nections with his colleagues and even
co-authoring a paper with a postdoc-
toral student he supervised at the IT
University of Copenhagen.

A man of modest background and
quiet brilliance, Milner made ground-
breaking contributions to the fields of
verification, programming languages,
and concurrency. He was born in 1934
near Plymouth, England, and won
scholarships to Eton—where he devel-
oped an enduring love of math as well
as a prodigious work ethic—and King’s
College, Cambridge. It was during his
time at Cambridge that Milner was in-
troduced to programming, though the
subject didn’t interest him initially. “I
regarded programming as really rather
inelegant,” he recalled in an interview
in 2001 with Martin Berger, a profes-
sor at the University of Sussex. “So I
resolved that I would never go near
a computer in my life.” Several years
later, in 1960, Milner broke that resolu-
tion with a programming job at Ferran-
ti, a British computer company; from
there, it wasn’t long before he moved to
academia with positions at City Univer-
sity London, Swansea University, Stan-
ford University, and the Universities of
Edinburgh and Cambridge.

Inspired by Dana Scott’s famous
formulation of domain theory, Milner
began working on an automatic theo-
rem prover, hoping to find a way to
mechanize a logic for reasoning about
programs. The work culminated in the
development of Logic for Computable

Functions (LCF), an interactive sys-
tem that helps researchers formulate
proofs. “It was a novel idea,” says Robert
Harper, a professor of computer science
at Carnegie Mellon University. “The ap-
proach before then was that computers
would search for your proof. Robin rec-
ognized that the computer is a tool to
help you find the proof.” During that re-
search, Milner also laid the foundations
of ML, a metalanguage whose original
intent was to enable researchers to de-
ploy proof tactics on LCF. The innovative
concepts it introduced, however—such
as polymorphic type inference and type-
safe exception handling—were soon
recognized. Ultimately, ML evolved into
a powerful general programming lan-
guage (with Milner, Harper, and others
working to specify and standardize it)
and led to languages like F# and Caml.

“Robin initiated a revolution in
what computing languages are and
could be,” asserts Harper.

Although he was closely involved
in ML’s development throughout the
1980s and 1990s, Milner also began
working on the problem of concur-
rency, looking for a mathematical
treatment that could rival theories of
sequential computation. The Calcu-
lus of Communicating Systems (CCS)
was the first solution he devised: a pro-
cess calculus for a network that was

programmed to cooperate on a single
task. CCS was succeeded by a more
general theory of concurrency called pi
calculus, which incorporated dynamic
generation, and bigraphs, a theory of
ubiquitous computing. For his work on
LCF, ML, and CCS, Milner received the
ACM A.M. Turing Award in 1991.

“Robin had this ability to think
large and translate that all the way
down to new theorems,” says Mads
Tofte, vice chancellor of the IT Univer-
sity of Copenhagen and a former grad-
uate student. The sentiment is echoed
by many of Milner’s collaborators,
who cite his unfailing ability to shift
from a grand vision of computing to
subtle mathematical particulars. Cou-
pled with his rigorous attention to de-
tail, the trait gave Milner’s work a firm
grounding in practical applications.
“He was very concerned with making
things work,” says Gordon Plotkin, a
former colleague at the University of
Edinburgh.

Milner also labored on behalf of in-
stitutions and initiatives that shaped
the future of the field. He helped es-
tablish the Laboratory for Foundations
of Computer Science at the University
of Edinburgh and served as the first
chair of the University of Cambridge’s
Computer Laboratory. In 2002, Milner
and Tony Hoare, a senior researcher at
Microsoft Research in Cambridge (and
a fellow Turing Award winner), began
working on a grand challenge initiative
to identify research topics that would
drive science in the 21st century.

He was a natural leader, according to
Tofte. “I’m not sure he was always aware
of it,” says Tofte, “but he was so good at
getting the best out of people, which is
exactly what a good leader does.” 	

Leah Hoffmann is a Brooklyn, NY-based technology
writer.

© 2010 ACM 0001-0782/10/0600 $10.00

“Robin initiated a
revolution in what
computing languages
are and could be,”
says Robert Harper.

In Memoriam | doi:10.1145/1743546.1743556	 Leah Hoffmann

Robin Milner:
The Elegant Pragmatist
Remembering a rich legacy in verification,
languages, and concurrency.

P
h

o
t

o
g

raph

 b
y

 R
o

la

n
d

 E
va

22 communications of the acm | june 2010 | vol. 53 | no. 6

news

P
h

o
t

o
g

raph

 b
y

 Bar

b

ara

 R

o
sari

o

Milestones | doi:10.1145/1743546.1743557	 Jack Rosenberger

CS and Technology
Leaders Honored

lating to the diagnosis and treatment of
behavioral disorders, as well as the as-
sessment of behavioral change within
complex social environments.

Edward Lazowska, the Bill & Me-
linda Gates Chair in computer sci-
ence and engineering at the Uni-
versity of Washington, received the
Distinguished Service Award for his
wide-ranging service to the comput-
ing community and his long-stand-
ing advocacy for this community at
the national level. (An interview with
Lazowska appears in the ACM Mem-
ber News column on p. 12.)

Moshe Y. Vardi, the Karen Ostrum
George Professor in Computational En-

A
wards were recently

announced by ACM and
the American Associa-
tion for the Advancement
of Science honoring lead-

ers in the fields of computer science
and technology.

ACM Awards
VMware Workstation 1.0, which was
developed by Stanford University pro-
fessor Mendel Rosenblum and his
colleagues Edouard Bugnion, Scott
Devine, Jeremy Sugerman, and Edward
Wang, was awarded the Software Sys-
tem Award for bringing virtualization
technology to modern computing en-
vironments, spurring a shift to virtual-
machine architectures, and allowing
users to efficiently run multiple operat-
ing systems on their desktops.

Michael I. Jordan, a professor at
the University of California, Berke-
ley, is the recipient of the ACM/AAAI
Allen Newell Award for fundamen-
tal advances in statistical machine
learning—a field that develops com-
putational methods for inference and
decision-making based on data.

Tim Roughgarden, an assistant pro-
fessor at Stanford University, received
the Grace Murray Hopper Award for in-
troducing novel techniques that quan-
tify lost efficiency with the uncoordi-
nated behavior of network users who
act in their own self-interest.

Matthias Felleisen, a Trustee Pro-
fessor at Northeastern University,
was awarded the Karl V. Karlstrom
Outstanding Educator Award for his
visionary and long-standing contribu-
tions to K–12 outreach programs.

Gregory D. Abowd, a professor at
Georgia Institute of Technology, is the
recipient of the Eugene L. Lawler Award
for Humanitarian Contributions with-
in Computer Science and Informatics
for promoting a vision of health care
and education that incorporates the
use of advanced information technolo-
gies to address difficult challenges re-

gineering and Director of the Ken Ken-
nedy Institute for Information Technol-
ogy at Rice University, is the recipient of
the Outstanding Contribution to ACM
Award for his leadership in restructuring
ACM’s flagship publication, Communi-
cations of the ACM, into a more effective
communications vehicle for the global
computing discipline, and for organiz-
ing an influential, systematic analysis
of offshoring, Globalization and Offshor-
ing of Software, which helped reinforce
the case that computing plays a fun-
damental role in defining success in a
competitive global economy.

Elaine Weyuker and Mathai Joseph
were named recipients of the ACM
Presidential Award. Weyuker, an AT&T
Fellow at Bell Labs, was honored for her
efforts in reshaping and enhancing the
growth of ACM-W to become a thriving
network that cultivates and celebrates
women seeking careers in computing.
Joseph, an advisor to Tata Consultancy
Services, was honored for his commit-
ment to establishing an ACM presence
in India. His efforts were instrumental
in the formation of the ACM India Coun-
cil, which was launched last January.

American Academy Fellows
Eight computing scientists and tech-
nology leaders were among the 229
newly elected Fellows and Foreign
Honorary Members to the American
Association for the Advancement of Sci-
ence. They are: Randal E. Bryant, Carn-
egie Mellon University; Nancy A. Lynch,
Massachusetts Institute of Technol-
ogy; Ray Ozzie, Microsoft; Samuel J.
Palmisano, IBM; Burton Jordan Smith,
Microsoft; Michael Stonebraker, Ver-
tica Systems; Madhu Sudan, Massachu-
setts Institute of Technology; Moshe Y.
Vardi, Rice University; and Jeannette
M. Wing, Carnegie Mellon University/
National Science Foundation.	

Jack Rosenberger is Communications’ senior editor,
news.

© 2010 ACM 0001-0782/10/0600 $10.00

Michael I. Jordan, University of California,
Berkeley

VMware Workstation
1.0 is the recipient
of ACM’s Software
System Award.

ACM announces the ACM Europe Council:
16 leading European computer scientists from
academia and industry to spearhead expansion of
ACM's high-quality technical activities, conferences
and services in Europe.

“Our goal is to share ACM’s vast array
of valued resources and services on
a global scale. We want to discover
the work and welcome the talent
from all corners of the computing
arena so that we are better posi-
tioned to appreciate the key issues
and challenges within Europe’s aca-
demic, research, and professional
computing communities, and
respond accordingly,” says
Professor Dame Wendy Hall,
U. of Southampton (UK),
ACM President.

Supporting the European Computing
Community
ACM Europe aims to strengthen the European
computing community at large, through its
members, chapters, sponsored conferences and
symposia. Together with other scientific societies,
it helps make the public and decision makers
aware of technical, educational, and social issues
related to computing.

A European Perspective Within ACM
The ACM Europe Council brings a unique European
perspective inside ACM and helps increase visibil-
ity of ACM across Europe, through:

� Participation of Europeans throughout ACM
� Representation of European work in ACM

 Awards and Advanced Membership Grades

� Holding high-quality ACM conferences in Europe
� Expanding ACM chapters
� Strong co-operation with other European

scientific societies in computing

ACM – World’s Largest Educational
and Scientific Computing Society-
Since 50 years, ACM strengthens the computing
profession’s collective voice through strong leader-
ship, promotion of the highest standards, and
recognition of technical excellence. ACM supports
the professional growth of its members by provid-
ing opportunities for life-long learning, career
development, and professional networking.

Fabrizio Gagliardi, ACM
Europe Chair and Director of
External Research Programs,
Microsoft Research Europe says,
“By strengthening ACM’s ties in the
region and raising awareness of its
many benefits and resources with
the public and European decision-
makers, we can play an active role
in the critical technical, educational,
and social issues that surround the
computing community.”

ACM is present in Europe with 15 000 members
and 41 chapters. 23 ACM Turing Awards and other
major ACM awards have gone to individuals in
Europe. 215 Europeans received an Advanced
Membership Grade since 2004.

The ACM Europe Council represents European
computer scientists. Contact us at:
acmeurope@acm.org or http://europe.acm.org/

http://europe.acm.org

ACM Europe Council
Serving the European Computing Science Community

ACM Europe CACM Ad_March 2010_Watermark:Layout 1 3/17/10 3:06 PM Page 1

http://europe.acm.org
mailto:acmeurope@acm.org
http://europe.acm.org/

24 communications of the acm | june 2010 | vol. 53 | no. 6

V
viewpoints

Privacy and Security
Myths and Fallacies of “Personally
Identifiable Information”
Developing effective privacy protection technologies is a critical challenge for
security and privacy research as the amount and variety of data collected about
individuals increase exponentially.

T
he d ig ital econo my relies
on the collection of personal
data on an ever-increasing
scale. Information about our
searches, browsing history,

social relationships, medical history,
and so forth is collected and shared
with advertisers, researchers, and gov-
ernment agencies. This raises a num-
ber of interesting privacy issues. In
today’s data protection practices, both
in the U.S. and internationally, “person-
ally identifiable information” (PII)—or,
as the U.S. Health Insurance Portability
and Accountability Act (HIPAA) refers
to it, “individually identifiable” infor-
mation—has become the lapis phi-
losophorum of privacy. Just as medieval
alchemists were convinced a (mythical)
philosopher’s stone can transmute lead
into gold, today’s privacy practitioners
believe that records containing sensi-
tive individual data can be “de-identi-
fied” by removing or modifying PII.

What is PII?
For a concept that is so pervasive in
both legal and technological discourse

on data privacy, PII is surprisingly dif-
ficult to define. One legal context is
provided by breach-notification laws.
California Senate Bill 1386 is a rep-
resentative example: its definition of
personal information includes Social
Security numbers, driver’s license
numbers, financial accounts, but not,
for example, email addresses or tele-
phone numbers. These laws were en-
acted in response to security breaches
involving customer data that could
enable identity theft. Therefore, they
focus solely on the types of data that

are commonly used for authenticating
an individual, as opposed to those that
violate privacy, that is, reveal some sen-
sitive information about an individual.
This crucial distinction is often over-
looked by designers of privacy protec-
tion technologies.

The second legal context in which
the term “personally identifiable infor-
mation” appears is privacy law. In the
U.S., the Privacy Act of 1974 regulates
the collection of personal information
by government agencies. There is no
overarching federal law regulating pri-
vate entities, but some states have their
own laws, such as California’s Online
Privacy Protection Act of 2003. Generic
privacy laws in other countries include
Canada’s Personal Information Pro-
tection and Electronic Documents Act
(PIPEDA) and Directive 95/46/EC of
the European Parliament, commonly
known at the Data Protection Directive.

Privacy laws define PII in a much
broader way. They account for the pos-
sibility of deductive disclosure and—
unlike breach-notification laws—do
not lay down a list of informational

doi:10.1145/1743546.1743558	 Arvind Narayanan and Vitaly Shmatikov

Any information that
distinguishes one
person from another
can be used for
re-identifying data.

V
viewpoints

june 2010 | vol. 53 | no. 6 | communications of the acm 25

I
ll

u

strati

o
n

 b
y

 j
o

h
n

 herse

y

attributes that constitute PII. For ex-
ample, the Data Protection Directive
defines personal data as: “any informa-
tion relating to an […] natural person
[…] who can be identified, directly or
indirectly, in particular by reference
[…] to one or more factors specific to
his physical, physiological, mental,
economic, cultural, or social identity.”

The Directive goes on to say that
“account should be taken of all the
means likely reasonably to be used ei-
ther by the controllera or by any other
person to identify the said person.”
Similarly, the HIPAA Privacy Rule de-
fines individually identifiable health
information as information “1) That
identifies the individual; or 2) With
respect to which there is a reasonable
basis to believe the information can be
used to identify the individual.” What
is “reasonable”? This is left open to
interpretation by case law. We are not
aware of any court decisions that de-
fine identifiability in the context of

a	 The individual or organization responsible for
the safekeeping of personal information.

HIPAA.b The “safe harbor” provision
of the Privacy Rule enumerates 18 spe-
cific identifiers that must be removed
prior to data release, but the list is not
intended to be comprehensive.

PII and Privacy Protection
Technologies
Many companies that collect personal
information, including social net-
works, retailers, and service providers,
assure customers that their informa-
tion will be released only in a “non-
personally identifiable” form. The un-
derlying assumption is that “personally
identifiable information” is a fixed set
of attributes such as names and contact
information. Once data records have
been “de-identified,” they magically
become safe to release, with no way of
linking them back to individuals.

The natural approach to privacy pro-

b	 When the Supreme Court of Iceland struck
down an act authorizing a centralized database
of “non-personally identifiable” health data, its
ruling included factors such as education, pro-
fession, and specification of a particular medi-
cal condition as part of “identifiability.”

tection is to consider both the data and
its proposed use(s) and to ask: What
risk does an individual face if her data
is used in a particular way? Unfortu-
nately, existing privacy technologies
such as k-anonymity6 focus instead on
the data alone. Motivated by an attack
in which hospital discharge records
were re-identified by joiningc them via
common demographic attributes with
a public voter database,5 these meth-
ods aim to make joins with external da-
tasets harder by anonymizing the iden-
tifying attributes. They fundamentally
rely on the fallacious distinction be-
tween “identifying” and “non-identify-
ing” attributes. This distinction might
have made sense in the context of the
original attack, but is increasingly
meaningless as the amount and variety
of publicly available information about
individuals grows exponentially.

To apply k-anonymity or its variants
such as l-diversity, the set of the so-
called quasi-identifier attributes must
be fixed in advance and assumed to

c	 In the sense of SQL join.

26 communications of the acm | june 2010 | vol. 53 | no. 6

viewpoints

be the same for all users. It typically
includes ZIP code, birth date, gender,
and/or other demographics. The rest
of the attributes are assumed to be
non-identifying. De-identification in-
volves modifying the quasi-identifiers
to satisfy various syntactic properties,
such as “every combination of quasi-
identifier values occurring in the data-
set must occur at least k times.”6 The
trouble is that even though joining two
datasets on common attributes can
lead to re-identification, anonymizing
a predefined subset of attributes is not
sufficient to prevent it.

Re-identification without PII
Any information that distinguishes
one person from another can be used
for re-identifying anonymous data.
Examples include the AOL fiasco, in
which the content of search queries
was used to re-identify a user; our own
work, which demonstrated feasibility
of large-scale re-identification using
movie viewing histories (or, in general,
any behavioral or transactional pro-
file2) and local structure of social net-
works;3 and re-identification based on
location information and stylometry
(for example, the latter was used to in-
fer the authorship of the 12 disputed
Federalist Papers).

Re-identification algorithms are ag-
nostic to the semantics of the data ele-
ments. It turns out there is a wide spec-
trum of human characteristics that
enable re-identification: consumption
preferences, commercial transac-
tions, Web browsing, search histories,
and so forth. Their two key properties
are that (1) they are reasonably stable
across time and contexts, and (2) the
corresponding data attributes are suf-
ficiently numerous and fine-grained
that no two people are similar, except
with a small probability.

The versatility and power of re-iden-
tification algorithms imply that terms
such as “personally identifiable” and
“quasi-identifier” simply have no tech-
nical meaning. While some attributes
may be uniquely identifying on their
own, any attribute can be identifying in
combination with others. Consider, for
example, the books a person has read
or even the clothes in her wardrobe:
while no single element is a (quasi)-
identifier, any sufficiently large subset
uniquely identifies the individual.

Re-identification algorithms based
on behavioral attributes must toler-
ate a certain “fuzziness” or impreci-
sion in attribute values. They are thus
more computationally expensive and
more difficult to implement than re-
identification based on demographic
quasi-identifiers. This is not a signifi-
cant deterrence factor, however, be-
cause re-identification is a one-time ef-
fort and its cost can be amortized over
thousands or even millions of individ-
uals. Further, as Paul Ohm argues, re-
identification is “accretive”: the more
information about a person is revealed
as a consequence of re-identification,
the easier it is to identify that person in
the future.4

Lessons for Privacy Practitioners
The emergence of powerful re-identi-
fication algorithms demonstrates not
just a flaw in a specific anonymization
technique(s), but the fundamental
inadequacy of the entire privacy pro-
tection paradigm based on “de-identi-
fying” the data. De-identification pro-
vides only a weak form of privacy. It may
prevent “peeping” by insiders and keep
honest people honest. Unfortunately,
advances in the art and science of re-
identification, increasing economic
incentives for potential attackers, and
ready availability of personal informa-
tion about millions of people (for ex-
ample, in online social networks) are
rapidly rendering it obsolete.

The PII fallacy has important impli-
cations for health-care and biomedical
datasets. The “safe harbor” provision
of the HIPAA Privacy Rule enumerates
18 attributes whose removal and/or
modification is sufficient for the data
to be considered properly de-identi-
fied, with the implication that such
data can be released without liability.
This appears to contradict our argu-
ment that PII is meaningless. The “safe
harbor” provision, however, applies
only if the releasing entity has “no ac-
tual knowledge that the information
remaining could be used, alone or in
combination, to identify a subject of
the information.” As actual experience
has shown, any remaining attributes
can be used for re-identification, as
long as they differ from individual to
individual. Therefore, PII has no mean-
ing even in the context of the HIPAA
Privacy Rule.

Beyond De-identification
Developing effective privacy protection
technologies is a critical challenge for
security and privacy research. While
much work remains to be done, some
broad trends are becoming clear, as
long as we avoid the temptation to find
a silver bullet. Differential privacy is a
major step in the right direction.1 In-
stead of the unattainable goal of “de-
identifying” the data, it formally de-
fines what it means for a computation
to be privacy-preserving. Crucially, it
makes no assumptions about the ex-
ternal information available to the ad-
versary. Differential privacy, however,
does not offer a universal methodology
for data release or collaborative, priva-
cy-preserving computation. This limi-
tation is inevitable: privacy protection
has to be built and reasoned about on
a case-by-case basis.

Another lesson is that an interac-
tive, query-based approach is generally
superior from the privacy perspective
to the “release-and-forget” approach.
This can be a hard pill to swallow, be-
cause the former requires designing
a programming interface for queries,
budgeting for server resources, per-
forming regular audits, and so forth.

Finally, any system for privacy-pre-
serving computation on sensitive data
must be accompanied by strong access
control mechanisms and non-techno-
logical protection methods such as in-
formed consent and contracts specify-
ing acceptable uses of data.	

References
1.	 Dwork, C. A firm foundation for private data analysis.

Commun. ACM. (to appear).
2.	N arayanan, A. and Shmatikov, V. Robust de-

anonymization of large sparse datasets. In
Proceedings of the 2008 IEEE Symposium on Security
and Privacy.

3.	N arayanan, A. and Shmatikov, V. De-anonymizing
social networks. In Proceedings of the 2009 IEEE
Symposium on Security and Privacy.

4.	O hm, P. Broken promises of privacy: Responding to
the surprising failure of anonymization. 57 UCLA Law
Review 57, 2010 (to appear).

5.	 Sweeney, L. Weaving technology and policy together
to maintain confidentiality. J. of Law, Medicine, and
Ethics 25 (1997).

6.	 Sweeney, L. Achieving k-anonymity privacy protection
using generalization and suppression. International
Journal on Uncertainty, Fuzziness, and Knowledge-
Based Systems 10 (2002).

Arvind Narayanan (arvindn@cs.utexas.edu) is a
postdoctoral fellow at Stanford University. Vitaly
Shmatikov (shmat@cs.utexas.edu) is an associate
professor of computer science at the University of Texas
at Austin. Their paper on de-anonymization of large sparse
datasets2 received the 2008 PET Award for Outstanding
Research in Privacy Enhancing Technologies.

Copyright held by author.

mailto:arvindn@cs.utexas.edu
mailto:shmat@cs.utexas.edu

june 2010 | vol. 53 | no. 6 | communications of the acm 27

V
viewpoints

P
h

o
t

o
g

raph

 b
y

 J
o

n
 S

u
per

/A
P

 P
h

o
t

o

doi:10.1145/1743546.1743559	 Stuart S. Shapiro

Inside Risks
Privacy By Design:
Moving from Art to Practice
Designing privacy into systems at the beginning of the development process necessitates the effective
translation of privacy principles, models, and mechanisms into system requirements.

M
ost people involved with
system development
are well aware of the
adage that you are bet-
ter off designing in se-

curity and privacy (and pretty much
any other “nonfunctional” require-
ments) from the start, rather than try-
ing to add them later. Yet, if this is the
conventional wisdom, why is the con-
ventional outcome so frequently sys-
tems with major flaws in these areas?

Part of the problem is that while
people know how to talk about func-
tionality, they are typically a lot less flu-
ent in security and privacy. They may
sincerely want security and privacy, but
they seldom know how to specify what
they seek. Specifying functionality, on
the other hand, is a little more straight-
forward, and thus the system that pre-
viously could make only regular coffee
in addition to doing word processing
will now make espresso too. (Whether
this functionality actually meets user
needs is another matter.)

Security and Privacy
The fact that it is often not apparent
what security and privacy should look
like is indicative of some deeper issues.
Security and privacy tend to be articu-
lated at a level of abstraction that often
makes their specific manifestations
less than obvious, to either customers
or system developers.

This is not to say the emperor has
no clothes; far from it. There are sub-

stantial bodies of knowledge for some
nonfunctional areas, including secu-
rity, but figuring out how to translate
the abstract principles, models, and
mechanisms into comprehensive spe-
cific requirements for specific systems
operating within specific contexts is
seldom straightforward. That trans-
lation process is crucial to designing
these properties into systems, but it

also tends to be the most problematic
activity and the activity for which the
least guidance is provided. The sheer
complexity of most modern systems
compounds the problem.

Security, though, is better posi-
tioned than privacy. Privacy—or infor-
mational privacy at least—certainly has
commonly understood and accepted
principles in the form of Fair Informa-

Members of staff are seen demonstrating a new whole-body security scanner at Manchester
Airport, Manchester, England, in January 2010. Airline passengers bound for the United
States faced a hodgepodge of security measures across Europe and airports did not appear
to be following a U.S. request for increased screening of passengers from 14 countries.

28 communications of the acm | june 2010 | vol. 53 | no. 6

viewpoints

tion Practices. It presently doesn’t have
much else. Models and mechanisms
that support privacy are scarce, not gen-
erally known, and rarely understood by
either customers or developers.

As more things become digitized, in-
formational privacy increasingly covers
areas for which Fair Information Prac-
tices were never envisioned. Biometrics,
physical surveillance, genetics, and be-
havioral profiling are just a few of the
areas that are straining Fair Informa-
tion Practices to the breaking point.
More sophisticated models are emerg-
ing for thinking about privacy risk, as
represented by the work of scholars
such as Helen Nissenbaum and Daniel
Solove. However, if not associated with
privacy protection mechanisms and
supported by translation guidance, the
impact of such models is likely to be
much less than they deserve.

A recent example is the develop-
ment and deployment of whole-body
imaging (WBI) machines at airports
for physical screening of passengers.
In their original incarnation, these ma-
chines perform what has been dubbed
a “virtual strip search” due to the body
image that is presented. These ma-
chines are currently being deployed at
U.S. airports in a way that is arguably
compliant with Fair Information Prac-
tices. Yet they typically operate in a way
that many people find offensive.

The intended purpose certainly is
not to collect, use, disclose, and retain
naked images of people; it is to detect
potentially dangerous items they may
be carrying on their persons when
screened. Fair Information Practices
include minimization of personal in-
formation collected, used, disclosed,
and retained, consistent with the in-
tended purpose.

This has profound implications
for how image data is processed,
presented, and stored. It should
be processed so at no point does
there ever exist an exposed body im-
age that can be viewed or stored. It
should be presented in a nonexposed
form (for example, a chalk outline
or a fully clothed person) with indi-
cators where things have been de-
tected. None of it should be retained
beyond the immediate encounter.
That almost none of these design
elements were originally specified
illustrates what too often happens

in the absence of applicable models
and mechanisms and their requisite
translation, along with principles,
into effective requirements.

In this instance, Solove’s concept
of exposure provides the necessary
(partial) model. Exposure is a privacy
violation that induces feelings of vul-
nerability and distress in the individ-
ual by revealing things we customarily
conceal. The potential harm from ex-
posure is not restricted to modesty or
dignity. A friend is convinced that her
pubescent daughter, who is currently
extremely self-conscious about her
body, would be quite literally trauma-
tized if forced to undergo WBI. If physi-
cal strip searches would raise concern,
why not WBI? Real damage—physical
as well as psychological—can occur in
the context of body image neuroses.

If one recognizes from the outset
the range of privacy risks represent-
ed by exposure, and the relevance of
exposure for WBI, one then stands
a chance of effectively moving from
principles to requirements. Even
then, though, the translation process
is not necessarily obvious.

Supposedly, the WBI machines be-
ing used by the U.S. Transportation Se-
curity Administration are not capable
of retaining images when in normal
operating mode. (They have this capa-
bility when in testing mode, though,
so significant residual risk may exist.)
Other necessary mechanisms were
not originally specified. Some models
of WBI are being retrofitted to pres-
ent a nonexposed image, but the issue
of intermediate processing remains.
Some models developed after the ini-
tial wave apparently implement all the
necessary control mechanisms; priva-
cy really was designed in. Why wasn’t
it designed in from the beginning
and across the board? The poor state
of practice of privacy by design offers
a partial explanation. The state of the
art, though, is advancing.

The importance of meaningfully
designing privacy into systems at the
beginning of the development pro-
cess, rather than bolting it on at the
end (or overlooking it entirely), is be-
ing increasingly recognized in some
quarters. A number of initiatives
and activities are using the rubric of
privacy by design. In Canada, the On-
tario Information and Privacy Com-

ht
tp:
//w
ww
.ac
m
.or
g/
su
bs
cr
ibe

ACM’s
interactions
magazine explores
critical relationships
between experiences, people,
and technology, showcasing
emerging innovations and industry
leaders from around the world
across important applications of
design thinking and the broadening
field of the interaction design.
Our readers represent a growing
community of practice that
is of increasing and vital
global importance.

http://www.acm.org/subscribe

viewpoints

june 2010 | vol. 53 | no. 6 | communications of the acm 29

missioner’s Office has published a
number of studies and statements on
how privacy can be designed into spe-
cific kinds of systems. One example
is electronic (RFID-enabled) driver’s
licenses, for which the inclusion of
a built-in on/off switch is advocated,
thereby providing individuals with
direct, immediate, and dynamic con-
trol over whether the personal infor-
mation embedded in the license can
be remotely read or not. Such a mech-
anism would support several Fair
Information Practices, most notably
collecting personal information only
with the knowledge and consent of
the individual. This approach is clear-
ly applicable as well to other kinds of
RFID-enabled cards and documents
carrying personal information.

Similar efforts have been spon-
sored by the U.K. Information Com-
missioner’s Office. This work has
taken a somewhat more systemic per-
spective, looking less at the applica-
tion of privacy by design to specific
types of technology and more at how
to effectively integrate privacy into the
system development life cycle through
measures such as privacy impact as-
sessments and ‘practical’ privacy stan-
dards. It also emphasizes the potential
role of privacy-enhancing technolo-
gies (PETs) that can be integrated with
or into other systems. While some of
these are oriented toward empower-
ing individuals, others—which might
more appropriately be labeled Enter-
prise PETs—are oriented toward sup-
porting organizational stewardship
of personal information.

However, state of the art is state of
the art. Supporting the translation of
abstract principles, models, and mech-
anisms into implementable require-
ments, turning this into a repeatable
process, and embedding that process in
the system development life cycle is no
small matter. Security has been at it a lot
longer than privacy, and it is still run-
ning into problems. But at least security
has a significant repertoire of princi-
ples, models, and mechanisms; privacy
has not really reached this stage yet.

Conclusion
So, if privacy by design is still a ways
off, and security by design still leaves
something to be desired, how do we
get there from here? There’s little

doubt that appropriately trained en-
gineers (including security engineers)
are key to supporting the effective
translation of principles, models,
and mechanisms into system require-
ments. There doesn’t yet appear to
be such a thing as a privacy engineer;
given the relative paucity of models
and mechanisms, that’s not too sur-
prising. Until we build up the latter,
we won’t have a sufficient basis for the
former. For privacy by design to extend
beyond a small circle of advocates and
experts and become the state of prac-
tice, we’ll need both.

This will require recognition that
there is a distinct and necessary tech-
nical discipline of privacy, just as
there is a distinct and necessary tech-
nical discipline of security—even if
neither is fully formed. If that can be
accomplished, it will create a home
and an incentive for the models and
mechanisms privacy by design so bad-
ly needs.

This is not to minimize the difficul-
ty of more effectively and consistently
translating security’s body of knowl-
edge (which is still incomplete) into
implementable and robust require-
ments. Both security and privacy need
to receive more explicit and directed
attention than they often do as areas
of research and education.

Security by design and privacy by
design can be achieved only by de-
sign. We need a firmer grasp of the
obvious.	

Stuart S. Shapiro (s_shapiro@acm.org) is Principal
Information Privacy and Security Engineer at The MITRE
Corporation, Bedford MA.

Copyright held by author.

Security and privacy
tend to be articulated
at a level of
abstraction that often
makes their specific
manifestations
less than obvious.

Calendar
of Events
June 15
MobileCloud Workshop
(co-located with MobiSys 2010),
San Francisco, CA,
Contact: Li Erran Li,
Email: erranlli@research.bell-
labs.com

June 15–18
International Conference
on Informatics in Control,
Automation and Robotics,
Funchal, Portugal,
Contact: Joaquim Filipe,
Email: jfilipe@insticc.org

June 15–18
Computers, Freedom,
and Privacy,
San Jose, CA,
Contact: Jon Pincus,
Email: jon@achangeiscoming.net

June 15–18
Annual NASA/ESA Adaptive
Hardware and Systems
Conference,
Anaheim, CA,
Contact: Arslan Tughrul,
Email: t.arslan@ed.ac.uk

June 16–18
Conference on the Future
of the Internet 2010,
Seoul Republic of Korea,
Contact: Dongman Lee,
Email: dlee@cs.kaist.ac.kr

June 17–18
Third International Workshop
on Future Multimedia
Networking,
Krakow, Poland,
Contact: Mauthe Andreas,
Email: a.mauthe@lancaster.
ac.uk

June 19–23
ACM SIGCHI Symposium
on Engineering Interactive
Computing Systems,
Berlin, Germany,
Contact: Jean Vanderdonckt
Email: jean.vanderdonckt@
uclouvain.be

June 19–23
The 37th Annual International
Symposium on Computer
Architecture,
Saint-Malo, France,
Contact: Andre Seznec
Email: seznec@irisa.fr

mailto:s_shapiro@acm.org
mailto:erranlli@research.belllabs.com
mailto:jfilipe@insticc.org
mailto:jon@achangeiscoming.net
mailto:t.arslan@ed.ac.uk
mailto:dlee@cs.kaist.ac.kr
mailto:a.mauthe@lancaster.ac.uk
mailto:a.mauthe@lancaster.ac.uk
mailto:jean.vanderdonckt@uclouvain.be
mailto:jean.vanderdonckt@uclouvain.be
mailto:seznec@irisa.fr
mailto:erranlli@research.belllabs.com

30 communications of the acm | june 2010 | vol. 53 | no. 6

V
viewpoints

M
ulti -co re chips Are a
new paradigm!” “We
are entering the age of
parallelism!” These are
today’s faddish rally-

ing cries for new lines of research and
commercial development. Is this really
the first time when computing profes-
sionals seriously engaged with parallel
computation? Is parallelism new? Is
parallelism a new paradigm?

Déjà Vu All Over Again
Parallel computation has always been
a means to satisfy our never-ending
hunger for ever-faster and ever-cheaper
computation.4 In the 1960s and 1970s,
parallel computation was extensively
researched as a means to high-perfor-
mance computing. But the commer-
cial world stuck with a quest for faster
CPUs and, assisted by Moore’s Law,
made it to the 2000s without having
to seriously engage with parallel com-
putation except for supercomputers.
The parallel architecture research of
the 1960s and 1970s solved many prob-
lems that are being encountered today.
Our objective in this column is to recall
the most important of these results
and urge their resurrection.

Shared Memory Multiprocessing
The very first multiprocessor archi-
tecture was the Burroughs B5000, de-
signed beginning in 1961 by a team led
by Robert Barton. It was followed by
the B5500 and B6700, along with a de-
fense version, the D850. The architec-

ture survives today in the reverse polish
notation HP calculators and in the Uni-
Sys ClearPath MCP machines.

Those machines used shared
memory multiprocessors in which a
crossbar switch connected groups of
four processors and memory boxes.
The operating system, known as Au-
tomatic Scheduling and Operating
Program (ASOP), included many in-
novations. Its working storage was
organized as a stack machine. All its

code was “reentrant,” meaning that
multiple processors could execute
the same code simultaneously while
computing on separate stacks. The
instruction set, which was attuned to
the Algol language, was very simple
and efficient even by today’s RISC
standards. A newly spawned pro-
cess’s stack was linked to its parent’s
stack, giving rise to a runtime struc-
ture called “cactus stack.” The data
memory outside of the stacks was
laid out in segments; a segment was
a contiguous sequence of locations
with base and bound defined by a de-
scriptor. Segments were moved auto-
matically up and down the memory
hierarchy, an early form of virtual
memory not based on paging. Elliot
Organick’s masterful descriptions of
these machines make for refreshing
and worthwhile reading today.9,12

The Burroughs systems were an
important influence on research
seeking efficient and reliable paral-
lel program structures. A group of
researchers at Brown University and
General Electric Research Labora-
tories produced a set of reports on a

“contour model” of nested multitask
computations in 1971.12 Those re-
ports give a remarkably clear picture
of a parallel programming runtime
environment that would suit today’s
languages well and would resolve
many contemporary problems con-
sidered as “research challenges.” It
is a tragedy these ideas have disap-
peared from the curriculum.

doi:10.1145/1743546.1743560	 Peter J. Denning and Jack B. Dennis

The Profession of IT
The Resurgence
of Parallelism
Parallel computation is making a comeback after a quarter century
of neglect. Past research can be put to quick use today.

V
viewpoints

june 2010 | vol. 53 | no. 6 | communications of the acm 31

The Burroughs machines disap-
peared not because of any defect in
their architecture, but because of
IBM’s massive success in marketing
the 360 series systems. Moreover, in a
process reminiscent of Clayton Chris-
tensen’s Innovator’s Dilemma, the
low-end assembler-language mini-
computers, originally designed to run
laboratory instruments, grew up into
the minicomputer and then micro-
computer market, untainted by any
notions of parallel programming.

With the introduction of RISC ar-
chitectures in the early 1980s, much
of the research for high-performance
computers was rechanneled toward
exploiting RISC for fast chips. It
looked at the time that sophisticated
compilers could make up for missing
functions in the chips.

With two notable exceptions, most
of the projects exploring alternatives
to the “von Neumann architecture” ex-
pired and were not replaced with new
projects or other initiatives. One excep-
tion was Arvind’s Monsoon Project at
MIT,10 which demonstrated that mas-
sive parallelism is readily identified in
the functional programming language
Haskell, and then readily mapped to a
shared memory multiprocessor. (Func-
tional languages generate all their val-
ues by evaluating functions without
side effects.)

The other project involved a group
at the Lawrence Livermore National
Laboratory studying scientific codes in
the functional language Sisal, a deriva-
tive of MIT’s Val language; Sisal pro-
grams were as efficient as Fortran pro-
grams and could be readily compiled
to massively parallel shared memory
supercomputers.1,2,11

The current generations of super-
computers (and data warehouses) are
based on thousands of CPU chips run-
ning in parallel. Unlike the innovative
designs of the Burroughs systems, their
hardware architectures conform to the
conventional von Neumann machine.
Their operating systems are little more
than simple schedulers and message
passing protocols, with complex func-
tions relegated to applications running
on separate host machines.

The point is clear: ideas for arrang-
ing multiple processors to work togeth-
er in an integrated system have been
with us for 50 years. What’s new?

Determinate Computation
One of the holy grails of research in
parallel computation in the 1960s and
1970s was called “determinacy.”7 De-
terminacy requires that a network of
parallel tasks in shared memory always
produces the same output for given
input regardless of the speeds of the
tasks. It should not be confused with
a similar word, “deterministic,” which
would require that the tasks be ordered
in the same sequence every time the
system runs.

A major result of this research was
the “determinacy theorem.” A task is
a basic computation that implements
a function from its inputs to outputs.
Two tasks are said to be in conflict if
either of them writes into memory
cells used by the other. In a system of
concurrent tasks, race conditions may
be present that make the final output
depend on the relative speeds or or-
ders of task execution. Determinacy is
ensured if the system is constrained
so that every pair of conflicting tasks is
performed in the same order in every
run of the system. Then no data races
are possible. Note that atomicity and
mutual exclusion are not sufficient
for determinacy: they ensure only that
conflicting tasks are not concurrent,
but not that they always executed in
the same order.

A corollary of the determinacy theo-
rem is that the entire sequence of val-
ues written into each and every mem-
ory cell during any run of the system is
the same for the given input. This cor-
ollary also tells us that any system of
blocking tasks that communicates by
messages using FIFO queues (instead
of shared memory) is automatically

determinate because the message
queues always present the data items
in the same order to the tasks receiving
them.

Another corollary is that an imple-
mentation of a functional program-
ming language using concurrent tasks
is determinate because the functions
provide their data privately to their
successors when they fire. There is no
interference among the memory cells
used to transmit data between func-
tions.

Determinacy is really important in
parallel computation. It tells us we can
unleash the full parallelism of a com-
putational method without worrying
whether any timing errors or race con-
ditions will negatively affect the results.

Functional Programming
and Composability
Another holy grail for parallel system
has been modular composability. This
would mean that any parallel program
can be used, without change, as a com-
ponent of a larger parallel program.

Three principles are needed to en-
able parallel program composability.
David Parnas wrote about two: infor-
mation hiding and context indepen-
dence. Information hiding means
a task’s internal memory cannot be
read or written by any other task. Con-
text independence means no part of
a task can depend on values outside
the task’s internal memory or input-
output memory. The third principle is
argument noninterference; it says that
a data object presented as input to two
concurrent modules cannot be modi-
fied by either.

Functional programming languag-
es automatically satisfy these three
principles; their modules are thus
composable.

It is an open question how to struc-
ture composable parallel program
modules from different frameworks
when the modules implement non-
determinate behavior. Transaction
systems are an extreme case. Because
their parallel tasks may interfere in
the records they access, they use lock-
ing protocols to guarantee mutual ex-
clusion. Transaction tasks cannot be
ordered by a fixed order—their nonde-
terminacy is integral to their function.
For example, an airplane seat goes to
whichever task requested it first. The

The parallel
architecture research
of the 1960s
and 1970s solved
many problems
that are being
encountered today.

32 communications of the acm | june 2010 | vol. 53 | no. 6

viewpoints

problem is to find a way to reap the
benefits of composability for systems
that are necessarily nondeterminate.

Virtual Memory
There are obvious advantages if the
shared memory of a parallel multi-
processor could be a virtual memory.
Parameters can be passed as pointers
(virtual addresses) without copying
(potentially large) objects. Compila-
tion and programming are greatly
simplified because neither compilers
nor programmers need to manage the
placement of shared objects in the
memory hierarchy of the system; that
is done automatically by the virtual
memory system.

Virtual memory is essential for
modular composability when modules
can share objects. Any module that
manages the placement of a shared
object in memory violates the infor-
mation hiding principle because other
modules must consult it before using
a shared object. By hiding object loca-
tions from modules, virtual memory
enables composability of parallel pro-
gram modules.

There are two concerns about large
virtual memory. One is that the virtual
addresses must be large so that they
encompass the entire address space in
which the large computations proceed.
The Multics system demonstrated that
a very large virtual address space—ca-
pable of encompassing the entire file
system—could be implemented effi-
ciently.8 Capability-based addressing5,6
can be used to implement a very large
address space.

The other concern about large vir-
tual memory pertains to performance.
The locality principle assures us that

each task accesses a limited but dy-
namically evolving working set of
data objects.3 The working set is eas-
ily detected—it is the objects used in
a recent backward-looking window—
and loaded into a processor’s cache.
There is no reason to be concerned
about performance loss due to an in-
ability to load every task’s working set
into its cache.

What about cache consistency? A
copy of a shared object will be present
in each sharing task’s cache. How do
changes made by one get transmitted
to the other? It would seem that this
problem is exacerbated in a highly par-
allel system because of the large num-
ber of processors and caches.

Here again, the research that was
conducted during the 1970s provides
an answer. We can completely avoid
the cache consistency problem by nev-
er writing to shared data. That can be
accomplished by building the memory
as a write-once memory: when a pro-
cess writes into a shared object, the
system automatically creates a copy
and tags it as the current version.
These value sequences are unique in a
determinate system. Determinate sys-
tems, therefore, give a means to com-
pletely avoid the cache consistency
problem and successfully run a very
large virtual memory.

Research Challenges
Functional programming languages
(such as Haskell and Sisal) currently
support the expression of large classes
of application codes. They guarantee
determinacy and support compos-
ability. Extending these languages to
include stream data types would bring
hazard-free expression to computa-
tions involving inter-module pipelines
and signal processing. We badly need a
further extension to support program-
ming in the popular object-oriented
style while guaranteeing determinacy
and composability.

We have means to express nondeter-
minate computation in self-contained
environments such as interactive
editors, version control systems, and
transaction systems. We sorely need
approaches that can combine determi-
nate and nondeterminate components
into well-structured larger modules.

The full benefits of functional pro-
gramming and composability cannot

be fully realized unless memory man-
agement and thread scheduling are
freely managed at runtime. In the long
run, this will require merging compu-
tational memory and file systems into
a single, global virtual memory.

Conclusion
We can now answer our original ques-
tions. Parallelism is not new; the re-
alization that it is essential for con-
tinued progress in high-performance
computing is. Parallelism is not yet
a paradigm, but may become so if
enough people adopt it as the stan-
dard practice and standard way of
thinking about computation.

The new era of research in parallel
processing can benefit from the results
of the extensive research in the 1960s
and 1970s, avoiding rediscovery of
ideas already documented in the litera-
ture: shared memory multiprocessing,
determinacy, functional programming,
and virtual memory.	

References
1.	 Cann, D. Retire Fortran?: A debate rekindled. Commun.

ACM 35, 8 (Aug. 1992), 81–89.
2.	 Cann, D. and Feo, J. SISAL versus FORTRAN:

A comparison using the Livermore loops. In
Proceedings of the 1990 ACM/IEEE Conference on
Supercomputing. IEEE Computer Society Press, 1990.

3.	 Denning, P. Virtual memory. ACM Computing Surveys
2, 3 (Sept. 1970), 153–189.

4.	 Denning, P. and Tichy, W. Highly parallel computation.
Science 250 (Nov. 30, 1990), 1217–1222.

5.	 Dennis, J. and Van Horn, E.C. Programming semantics
for multi-programmed computations. Commun. ACM
9, 3 (Mar. 1966), 143–155.

6.	 Fabry, R. Capability-based addressing. Commun. ACM
17, 7 (July 1974), 403–412.

7.	K arp, R.M. and Miller, R.E. Properties of a model for
parallel computations: Determinacy, termination,
queueing. SIAM Journal of Applied Mathematics 14, 6
(Nov. 1966), 1390–1411.

8.	O rganick, E.I. The Multics System: An Examination of
Its Structure. MIT Press, 1972.

9.	O rganick, E.I. Computer systems organization: The
B5700/B6700. ACM Monograph Series, 1973. LCN:
72-88334.

10.	 Papadopoulos, G.M. and Culler, D.E. Monsoon: An
explicit token-store architecture. In Proceedings
of the 17th Annual International Symposium on
Computer Architecture. (1990), 82–91.

11.	 Sarkar, V. and Cann, D. POSC—A partitioning and
optimizing SISAL compiler. In Proceedings of the 4th
International Conference on Supercomputing. IEEE
Computer Society Press, 1990.

12.	 Tou, J. and Wegner, P., Eds. Data structures in
programming languages. ACM SIGPLAN Notices 6
(Feb. 1971), 171–190. See especially papers by Wegner,
Johnston, Berry, and Organick.

Peter J. Denning (pjd@nps.edu) is the director of the
Cebrowski Institute for Innovation and Information
Superiority at the Naval Postgraduate School in Monterey,
CA, and is a past president of ACM.

Jack B. Dennis (dennis@csail.mit.edu) is Professor
Emeritus of Computer Science and Engineering at MIT
and a Principal Investigator in the Computer Science and
Artificial Intelligence Laboratory. He is an Eckert-Mauchly
Award recipient and a member of the NAE.

Copyright held by author.

Parallelism is not
new; the realization
that it is essential for
continued progress
in high-performance
computing is.

mailto:pjd@nps.edu
mailto:dennis@csail.mit.edu

june 2010 | vol. 53 | no. 6 | communications of the acm 33

V
viewpoints

 Article development led by
 queue.acm.org

Kode Vicious
Plotting Away
Tips and tricks for visualizing large data sets.

doi:10.1145/1743546.1743561	 George V. Neville-Neil

Dear KV,
I’ve been working with some code that
generates massive data sets, and while
I’m perfectly happy looking at the raw
textual output to find patterns, I’m
finding that more and more often I
have to explain my data to people who
are either unwilling to or incapable of
understanding the data in a raw for-
mat. I’m now being required to gener-
ate summaries, reports, and graphs for
these people, and, as you can imagine,
they are the ones with control over the
money in the company, so I also have to
be nice to them. I know this isn’t exact-
ly a coding question, but what do you
do when you have to take the bits you
understand quite well and summarize
them for people like this?

If It Ain’t Text...

Dear Text,
Since I often come across as some sort
of hard-core, low-level, bits-and-bytes
kind of guy, I gather that you’re as-
suming my answer will be to tell man-
agement—and from your description
these people must be management—
to take their fancy graphs and, well, do
something that would give them paper
cuts in hard-to-reach places. Much as I
like to give just that kind of advice, the
fact is, it’s just as important to be able
to transform large data sets from col-
umns and lines of numbers into some-
thing that is a bit more compact and
still as descriptive. For the polite and
well-written version of this type of ad-
vice, please see the classic work by Ed-

ward Tufte, The Visual Display of Quan-
titative Information. Now for the Kode
Vicious Kwik Kourse on Visualization,
please read on.

While I agree it is cool to be able to
look at some incredibly confusing out-
put in text and be able to pick out the
needle you’re looking for, and while
I’m sure this impresses many of your
coder friends, this is just not a skill
that’s going to take you very far. I also
find that programmers who cannot
understand the value in a single-page
graph of their results are the same
kinds of programmers who should not

be allowed to code on their own.
One should approach any such

problem as a science experiment, and
scientists know how to represent their
results in many ways, including plot-
ting them on paper. At some point in
your career you’re going to have to fig-
ure out how to get easy-to-read results
that you can look at and compare side
by side. A plot of your data can, when
done well, give you a lot of information
and tell you a lot about what might be
happening with your system. Note the
all-important phrase, when done well,
in that previous sentence. As is the case

Art in Development

P
h

o
t

o
g

raph

 b
y

 Nic

 M

c
P

hee

http://queue.acm.org

34 communications of the acm | june 2010 | vol. 53 | no. 6

viewpoints

with many tools, the plotting of data
can mislead you as easily as it can lead
you somewhere.

There are plenty of tools with which
to plot your data, and I usually shy away
from advocating particular tools in
these responses, but I can say that if you
were trying to plot a lot of data, where a
lot is more than 32,767 elements, you
would be wise to use something like
gnuplot. Every time I’ve seen people try
to use a certain vendor’s spreadsheet to
plot data sets larger than 32,767, things
have gone awry—I might even say that
they were brought up “short” by that
particular program. The advantage of
gnuplot is that as long as you have a lot
of memory (and memory is inexpen-
sive now), you can plot very large data
sets. KV recently outfitted a machine
with 24GB of RAM just to plot some im-
portant data. I’m a big believer in big
memory for data, but not for programs,
but let’s just stop that digression here.

Let’s now walk through the impor-
tant points to remember when plotting
data. The first is that if you intend to
compare several plots, your measure-
ment axis—the one on which you’re
showing the magnitude of a value—
absolutely must remain constant or
be easily comparable among the total
set of graphs that you generate. A plot
with a y-axis that goes from 0 to 10 and
another with a y-axis from 0 to 25 may
look the same, but their meaning is
completely different. If the data you’re
plotting runs from 0 to 25, then all of
your graphs should run from, for exam-
ple, 0 to 30. Why would you waste those
last five ticks? Because when you’re
generating data from a large data set,
you might have missed something, per-
haps a crazy outlier that goes to 60, but
only on every 1,000th sample. If you set
the limits of your axes too tightly ini-
tially, then you might never find those
outliers, and you would have done an
awful lot of work to convince yourself—
and whoever else sees your pretty little
plot—that there really isn’t a problem,
when in fact it was right under your
nose, or more correctly, right above the
limit of you graph.

Since you mention you are plotting
large data sets, I’ll assume you mean
more than 100,000 points. I have rou-
tinely plotted data that runs into the
millions of individual points. When
you plot the data the first time, it’s im-

portant not only to get the y-axis limits
correct, but also to plot as much data
as absolutely possible, given the limits
of the system on which you’re plotting
the data. Some problems or effects are
not easily seen if you reduce the data too
much. Reduce the data set by 90% (look
at every 10th sample), and you might
miss something subtle but important. If
your data won’t all fit into main memory
in one go, then break it down by chunks
along the x-axis. If you have one million
samples, graph them 100,000 at a time,
print out the graphs, and tape them to-
gether. Yes, it’s kind of a quick-and-dirty
solution but it works, trust me.

Another problem occurs when you
want to compare two data sets directly
on the same plot. Perhaps you have
data from several days and you want
to see how Wednesday and Thursday
compare, but you don’t have enough
memory to plot both days at once,
only enough for one day at a time.
You could beg your IT department for
more memory or, if you have a screw-
driver, “borrow” some memory from a
coworker, but such measures are un-
necessary if you have a window. Print
both data sets, making sure both axes
line up, and then hold the pages up to
the window. Oh, when I said “window,”
I meant one that allows light from that
bright yellow ball in the sky to enter
your office, not one that is generated by
your computer.

Thus far I have not mentioned the
x-axis, but let’s remedy that now. If
you’re plotting data that changes over
time, then your x-axis is actually a time
axis. The programmers who label this
“samples,” and then do all kinds of
internal mental transformations, are
legion—and completely misguided.
While you might know that your sam-
ples were taken at 1KHz and therefore
that every 1,000 samples is one second,
and 360,000 samples is an hour, most
of the people who see your plots are not
going to know this, even if you cleverly
label your x-axis “1KHz.” If you’re plot-
ting something against time, then your
x-axis really should be time.

This recommendation is even more
important when graphing long-run-
ning data—for example, a full working
day. It turns out that computers are
slaves to people and while many people
have predicted that the work done by
computers would be far more consis-

tent over a 24-hour day than work done
by humans, all of those people have
been, and continue to be, dead wrong.
If you’re plotting data over a day, then it
is highly likely that you will see changes
when people wake up, when they go to
work, take meals, go home, and sleep.
It might be vitally important for you to
notice that something happens every
day at 4 p.m. Perhaps your systems in
England are recording when people
take tea, rather than an odd slowdown
in the system. The system you’re watch-
ing might be underutilized because the
tea trolley just arrived! If your plot has
time, then use time as an axis.

As I wrap this up, you may have
noticed that I did not mention color,
fonts, font size, or anything else relat-
ed to how the graph looks on paper. I
didn’t leave these factors out because
I’m a total nerd who can’t match any
of his own clothes. I can easily match
clothes, since black goes with every-
thing. Most people I’ve seen generat-
ing graphs spend far too much time
picking a color or a font. Take the de-
faults; just make sure the lines on the
graph are consistently representing
your data. Choosing a graph color or
text font before getting the data cor-
rectly plotted is like spending hours
twiddling your code highlighting col-
ors in your IDE instead of doing the ac-
tual work of coding. It’s a time waster.
Now, get back to work.

KV

 Related articles
 on queue.acm.org

Code Spelunking Redux
George V. Neville-Neil
http://queue.acm.org/detail.cfm?id=1483108

Unifying Biological Image
Formats with HDF5
Matthew T. Dougherty, Michael J. Folk,
Erez Zadok, Herbert J. Bernstein,
Frances C. Bernstein, Kevin W. Eliceiri,
Werner Benger, Christoph Best
http://queue.acm.org/detail.cfm?id=1628215

A Conversation with Jeff Heer, Martin
Wattenberg, and Fernanda Viégas
http://queue.acm.org/detail.cfm?id=1744741

George V. Neville-Neil (kv@acm.org) is the proprietor of
Neville-Neil Consulting and a member of the ACM Queue
editorial board. He works on networking and operating
systems code for fun and profit, teaches courses on
various programming-related subjects, and encourages
your comments, quips, and code snips pertaining to his
Communications column.

Copyright held by author.

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1483108
http://queue.acm.org/detail.cfm?id=1628215
http://queue.acm.org/detail.cfm?id=1744741
mailto:kv@acm.org

june 2010 | vol. 53 | no. 6 | communications of the acm 35

P
h

o
t

o
g

raph

 b
y

 J
ae

 C

.
H

o
n

g
,

file

/A
P

 P
h

o
t

o

V
viewpoints

Law and Technology
Intel’s Rebates: Above
Board or Below the Belt?
Over several years, Intel paid billions of dollars to its customers.
Was it to force them to boycott products developed by its rival AMD or
so they could sell its microprocessors at lower prices?

doi:10.1145/1743546.1743562	 François Lévêque

O
v e r a f i v e - y e a r period,
Dell allegedly received pay-
ments from Intel averag-
ing $300 million per quar-
ter.a The Attorney General

of the State of New York, Andrew M.
Cuomo, accuses the Santa Clara-based
chip firm of making these payments
to force its OEM customer not to use
AMD’s x86 CPUs in its computers, in
violation of antitrust law. Intel is al-
leged to have infringed Section 2 of the
Sherman Act, which opposes behavior
by firms aimed at creating or preserv-
ing a monopoly other than by merit.
In December 2009, the Federal Trade
Commission also filed suit against In-
tel.b The FTC accuses the chip maker
of numerous anticompetitive unfair
practices, including various pay-
ments to its customers in the form of
lump sums or discounts.

In Europe, the case is closed, or al-
most. The billions of dollars that In-
tel paid to Dell, HP, and several other
firms were deemed anticompetitive
behavior. The European Commission
found that the payments amounted
to a strategy to exclude AMD from the
microprocessor market. They were
considered akin to rebates and re-

a	 Complaint by Attorney General of the State of
New York, Andrew M. Cuomo against Intel Cor-
poration before the United States District Court
for the District of Delaware, November 4, 2009.

b	 Administrative complaint of the U.S. FTC
against Intel Corporation, docket No. 9341,
December 14, 2009.

strictions imposed on buyers, which
are incompatible with European an-
titrust law. The Commission found
against Intel in May 2009 and fined
the firm almost $2 billion.c So, in-
stead of going to its customers, Intel’s
money replenished the coffers of the
European Union! Intel immediately
appealed to the EU Court of First In-
stance in Luxembourg. It also signed
a $1.25 billion settlement agreement
with Dell to put an end to its antitrust

c	 European Commission’s decision against In-
tel Corp., case COMP/37.990, May 13, 2009.

and patent allegations.
Intel considers the payments it

made to customers were, on the con-
trary, a reflection of vigorous competi-
tion and beneficial to consumers.

Who’s right? Who’s wrong? The par-
ties offer diametrically opposed ver-
sions of the story.

Plaintiff Perspective
The story told by the plaintiff State of
New York and by the European Com-
mission can be summed up as follows.
Intel and AMD are practically the only
manufacturers of x86 CPUs, the micro-

A netbook equipped with an Intel Atom processor is demonstrated at the International
Consumer Electronics Show in Las Vegas in 2009.

36 communications of the acm | june 2010 | vol. 53 | no. 6

viewpoints

strictions. In Europe, both are gener-
ally prohibited because they are per-
ceived to be anticompetitive because
they tend to exclude competitors and
reduce consumer choice.

Defendant Perspective
Intel’s version is nothing like the pre-
vious story.d Since 2000, the Santa
Clara-based chip maker has faced ag-
gressive price competition from AMD
and it has responded by defending
itself fairly. AMD’s failure to succeed
in some market segments is due to
its own shortcomings, especially in-
sufficient production capacity, not to
any action by Intel. Between 2002 and
2007, the price of microprocessors
fell by 36% on average per year and
AMD’s market share among the main
computer manufacturers has risen
from 8% to 22%. These figures contra-
dict the claims that Intel has behaved

d	 See “Why the European Commission’s Intel
decision is Wrong,” and “Intel’s Response to
the EC’s Provisional Non-Confidential Version
of the Commission Decision of 13 May 2009,”
September 21, 2009; http://www.intel.com/
pressroom/legal/news.htm

processors inside most computers. Al-
though four times the size of AMD, In-
tel was outpaced by the smaller firm in
innovation. In particular, Intel is hav-
ing more trouble negotiating the tran-
sition from 32-bit architecture to the
64-bit architecture that makes comput-
ers more powerful. According to New
York Attorney General Cuomo, Intel
has a “big competitive hole in its prod-
uct development roadmap.” In 2003,
AMD was the first to introduce a new-
generation processor for the high-end,

high-margin corporate server market.
Intel feared its competitor would erode
its profits on this segment, since busi-
ness users would be eager to purchase
AMD-based desktops and notebooks.

To prevent that market shift, In-
tel paid Dell and HP to purchase Intel
microprocessors almost exclusively,
and paid Acer and Lenovo to delay the
launch of their AMD-based notebooks.
In other words, Intel paid its custom-
ers to protect a segment of its market.
Dell was by far the biggest beneficiary
of these practices. Between February
2002 and January 2007, Dell received
more than $6 billion in return for
maintaining an exclusive procurement
agreement with Intel. Without these
payments, Dell would have reported a
loss in some quarters. According to the
State of New York, the Federal Trade
Commission, and the European Com-
mission, the money that Intel paid its
customers was conditional on their
boycotting AMD’s products. In techni-
cal terms, the retroactive rebates given
to some OEM customers are loyalty
rebates, and the restrictions imposed
on OEMs’ sales policies are naked re-

Who’s right?
Who’s wrong?
The parties offer
diametrically
opposed versions
of the story.

Announcing ACM’s Newly Improved
Career & Job Center!

Are you looking for your next IT job? Do you need Career Advice?

Visit ACM’s newly enhanced career resource at:
http://www.acm.org/careercenter

◆ ◆ ◆ ◆ ◆

The ACM Career & Job Center offers ACM members a host of benefits including:
➜ A highly targeted focus on job opportunities in the computing industry
➜ Access to hundreds of corporate job postings
➜ Resume posting keeping you connected to the employment market while letting you maintain full

control over your confidential information
➜ An advanced Job Alert system that notifies you of new opportunities matching your criteria
➜ Career coaching and guidance from trained experts dedicated to your success
➜ A content library of the best career articles complied from hundreds of sources, and much more!

The ACM Career & Job Center is the perfect place to
begin searching for your next employment opportunity!

Visit today at http://www.acm.org/careercenter

http://www.intel.com/pressroom/legal/news.htm
http://www.intel.com/pressroom/legal/news.htm
http://www.acm.org/careercenter
http://www.acm.org/careercenter

viewpoints

june 2010 | vol. 53 | no. 6 | communications of the acm 37

like a monopolist and AMD has been
squeezed out of the market. Comput-
er manufacturers know how to play
off their two suppliers to their advan-
tage. Intel claims that the payments to
customers were not tied to exclusive
or near-exclusive purchasing commit-
ments, but were volume-based dis-
counts enabled by economies of scale
in production. Thanks to Intel’s dis-
count policy, consumers benefit from
lower prices. The prices were always
higher than Intel’s costs. Therefore In-
tel cannot be accused of selling below
cost to drive out AMD.

Whose story should we believe?
How can we tell who’s right?

In order to decide between the
two versions, the first thing to do is of
course to look at the facts. This is not
easy for an outside observer (including
this writer) because the evidence is off
limits. Only the public statements and
official decisions are available. In the
U.S. lawsuits, the State of New York’s
complaint and the FTC’s statements
total less than 100 pages. In the EU
case, the material is more abundant.
The European Commission’s decision
against Intel runs to more than 500
pages and cites numerous statements
by the parties. For example, a Lenovo
purchasing manager wrote in an email
message dated December 11, 2006,
“Last week Lenovo cut a lucrative deal
with Intel. As a result of this, we will not
be introducing AMD-based products
in 2007 for our notebook products.”
Thousands of figures are also report-
ed. Unfortunately, in order to respect
business secrecy, almost all the figures
have been deleted from the public ver-
sion of the decision. Thus, there is no
information about the amount of the
discounts granted to Dell.

A factual approach is also hampered
by the absence of formal contracts.
What Intel requested in exchange for
the payments to its customers is not
mentioned in written documents.
Most of the agreements were oral and
sealed with a handshake. The few writ-
ten agreements raise no antitrust con-
cerns. The State of New York and the
European Commission accuse Intel
of having deliberately removed from
the written documents the litigious
clauses with respect to antitrust law.
If the allegations were proved true, the
antitrust agencies would be dealing

with a situation akin to a cartel. Since
the agreements were secret, evidence
is scant and often only indirect.

For want of being able to decide on
the basis of the facts, an outside ob-
server can call theory to the rescue.

The first principle to recall is that
antitrust law seeks to protect consum-
ers, not competitors. It does not op-
pose the elimination of less-efficient
competitors; it prohibits behavior of
firms that results in higher prices or
lower-quality products. While clearly
detrimental to AMD, did Intel’s actions
harm consumers?

In the case of the naked restrictions,
the damage to consumers is not in
doubt. Let’s take the example of Intel’s
lump sum payments to HP, Lenovo,
and Acer in exchange for delaying the
launch of their AMD-based computers.
That practice (if proven) did hurt con-
sumers: some had to wait before buy-
ing the product they preferred, while
others, in more of a hurry, had to buy
hardware that was not their first choice.
Moreover, consumers who were not in-
terested in buying AMD-based desktops
and notebooks did not gain anything.
The money paid by Intel did not affect
the OEMs’ marginal cost and, conse-
quently, the price of their computers.
Intel and the firms it paid off were the
only beneficiaries of these transactions.

The case of the rebates is a more
complicated situation. When rebates
are linked to volumes purchased, they
are good for consumers. They enable
manufacturers to pass on some of the
savings from economies of scale in
production and distribution. In other
words, they bring prices down for the
consumer. But retroactive rebates tied

to market share targets (for example,
the buyer receives a rebate if it cov-
ers X% of its requirements with the
same supplier) are a different story. If
a competitor wants to obtain a signifi-
cant share of the customer’s purchas-
es, it must compensate for the loss
of the rebates. For example, if Intel
offers $100,000 on the condition that
HP fulfills 95% of its requirements
with Intel, AMD will be forced to offer
the same amount if it wants HP to buy
more than 5% of its chips from AMD.
That threshold effect can have sur-
prising effects. It would explain, for
example, why HP refused AMD’s offer
of a million Athlon XP processors free
of charge. If the gift is worth less than
the rebate forfeited by not purchasing
95% of its requirements from Intel, it
is rational for HP to refuse it.

Conclusion
Economic literaturee shows this thresh-
old effect can lead to the exclusion of
competitors that are at least as effi-
cient as the firm offering the rebates.
And consumers lose out on two counts.
First, there are no more competitors to
push down the price set by the domi-
nant firm. So consumers pay higher
prices. Second, there is no competitive
pressure driving the firm to innovate.
So products are manufactured at high-
er cost and their quality stagnates.

The European Commission sought
to show that Intel’s loyalty rebates in-
deed had a foreclosure effect. Accord-
ing to the Commission, a rival with the
same costs as Intel would have been ex-
cluded. Intel contests this conclusion
by finding fault with the Commission’s
calculations. But once again, the prob-
lem of access to the data and evidence
makes it impossible to verify the valid-
ity of the different viewpoints. Theory
without the facts is unfortunately of
little use for vindicating either the de-
fendant Intel or the plaintiffs. 	

e	 See, for example, Nicolas Economides, ‘‘Loy-
alty/Requirement Rebates and the Antitrust
Modernization Commission: What is the Ap-
propriate Liability Standard?, Antitrust Bulle-
tin 54, 2 (Summer 2009), 259–279.

The problem of
access to the
data and evidence
makes it impossible
to verify the validity
of the different
viewpoints.

François Lévêque (francois.leveque@mines-paristech.fr)
is a professor of law and economics at Mines-ParisTech in
Paris, France.

Copyright held by author.

mailto:francois.leveque@mines-paristech.fr

38 communications of the acm | june 2010 | vol. 53 | no. 6

V
viewpoints

I
ll

u

strati

o
n

 b
y

 D
a

n
iel

 Z
al

k

u
s

R
esearchers in computer

s c i e n c e d e p a r t m e n t s
throughout the U.S. are
violating federal law and
their own organization’s

regulations regarding human sub-
jects research—and in most cases
they don’t even know it. The violations
are generally minor, but the lack of
review leaves many universities open
to significant sanctions, up to and
including the loss of all federal re-
search dollars. The lack of review also
means that potentially hazardous re-
search has been performed without
adequate review by those trained in
human subject protection.

We argue that much computer sci-
ence research performed with the In-
ternet today involves human subject
data and, as such, must be reviewed
by Institutional Review Boards—in-
cluding nearly all research projects
involving network monitoring, email,
Facebook, other social networking
sites and many Web sites with user-
generated content. Failure to address
this issue now may cause significant
problems for computer science in the
near future.

Prisons and Syphilis
At issue are the National Research Act
(NRA) of 1974a and the Common Rule,b

a	 PL 93-348, see http://history.nih.gov/research/
downloads/PL93-348.pdf

b	 45 CFR 46, see http://www.hhs.gov/ohrp/hu-
mansubjects/guidance/45cfr46.htm

which together articulate U.S. policy
on the Protection of Human Subjects.
This policy was created following a
series of highly publicized ethical
lapses on the part of U.S. scientists
performing federally funded re-
search. The most objectionable cases
involved human medical experimen-
tation—specifically the Tuskegee
Syphilis Experiment, a 40-year long
U.S. government project that delib-
erately withheld syphilis treatment

from poor rural black men. Another
was the 1971 Stanford Prison Experi-
ment, funded by the U.S. Office of
Naval Research, in which students
playing the role of prisoners were
brutalized by other students playing
the roles of guards.

The NRA requires any institution
receiving federal funds for scientific
research to set up an Institutional Re-
view Board (IRB) to approve any use
of humans before the research takes

Viewpoint
Institutional Review Boards
and Your Research
A proposal for improving the review procedures for research projects that
involve human subjects and their associated identifiable private information.

doi:10.1145/1743546.1743563	 Simson L. Garfinkel and Lorrie Faith Cranor

Art in Development

http://history.nih.gov/research/downloads/PL93-348.pdf
http://history.nih.gov/research/downloads/PL93-348.pdf
http://www.hhs.gov/ohrp/humansubjects/guidance/45cfr46.htm
http://www.hhs.gov/ohrp/humansubjects/guidance/45cfr46.htm

V
viewpoints

june 2010 | vol. 53 | no. 6 | communications of the acm 39

place. The regulation that governs
these boards is the Common Rule—
“Common” because the same rule was
passed in 1991 by each of the 17 federal
agencies that fund most scientific re-
search in the U.S.

Computer scientists working in the
field of Human-Computer Interaction
(HCI) have long been familiar with
the Common Rule: any research that
involves recruiting volunteers, bring-
ing them into a lab and running them
through an experiment obviously in-
volves human subjects. NSF grant ap-
plications specifically ask if human
subjects will be involved in the research
and require that applicants indicate the
date IRB approval was obtained.

But a growing amount of research
in other areas of computer science
also involves human subjects. This
research doesn’t involve live human
beings in the lab, but instead involves
network traffic monitoring, email, on-
line surveys, digital information creat-
ed by humans, photographs of humans
that have been posted on the Internet,
and human behavior observed via so-
cial networking sites.

The Common Rule creates a four-
part test that determines whether or
not proposed activity must be reviewed
by an IRB:

1.	 The activity must constitute sci-
entific “research,” a term that the Rule
broadly defines as “a systematic inves-
tigation, including research develop-
ment, testing and evaluation, designed
to develop or contribute to generaliz-
able knowledge.”c

2.	 The research must be federally
funded.d

3.	 The research must involve human
subjects, defined as “a living individual
about whom an investigator (whether
professional or student) conduct-
ing research obtains (1) data through
intervention or interaction with the
individual, or (2) identifiable private
information.”e

4.	 The research must not be “ex-
empt” under the regulations.f

The exemptions are a kind of safety
valve to prevent IRB regulations from
becoming utterly unworkable. For

c	 §46.102 (d)
d	 §46.103 (a)
e	 §46.102 (f)
f	 §46.101 (b)

computer scientists the relevant ex-
emptions are “research to be conduct-
ed on educational practices or with ed-
ucational tests” (§46.101(b)(1&2)); and
research involving “existing data, doc-
uments, [and] records…” provided that
the data set is either “publicly avail-
able” or that the subjects “cannot be
identified, directly or through identi-
fiers linked to the subjects’’(§46.101(b)
(4)). Surveys, interviews, and observa-
tions of people in public are generally
exempt, provided that identifiable in-
formation is not collected, and pro-
vided that the information collected,
if disclosed, could not “place the sub-
jects at risk of criminal or civil liabil-
ity or be damaging to the subjects’
financial standing, employability, or
reputation’’(§46.101(b)(2)(i&ii)).

IRBs exist to review proposed re-
search and protect the interests of
the human subjects. People can par-
ticipate in dangerous research, but it’s
important that people are informed,
if possible, of the potential risks and
benefits—both to themselves and to
society at large.

What this means to computer sci-
entists is that any federally funded
research involving data generated by
people that is “identifiable” and not
public probably requires approval in
advance by your organization’s IRB.
This includes obvious data sources
like network traffic, but it also in-
cludes not so obvious sources like
software that collects usage statistics
and “phones home.”

Complicating matters is the fact that
the Common Rule allows organiza-
tions to add additional requirements.
Indeed, many U.S. universities require
IRB approval for any research involving
human subjects, regardless of funding
source. Most universities also prohibit
researchers from determining if their
own research is exempt. Instead, U.S.
universities typically require that all
research involving human beings be
submitted to the school’s IRB.

This means a broad swath of “ex-
empt” research involving publicly
available information nevertheless re-
quires IRB approval. Performing social
network analysis of Wikipedia pages
may fall under IRB purview: Wikipedia
tracks which users edited which pages,
and when those edits were made. Us-
ing Flickr pages as a source of JPEGs
for analysis may require IRB approval,
because Flickr pages frequently have
photos of people (identifiable informa-
tion), and because the EXIF “tags” that
many cameras store in JPEG images
may contain serial numbers that can
be personally identifiable. Analysis of
Facebook poses additional problems
and may not even qualify as exempt:
not only is the information person-
ally identifiable, but it is frequently not
public. Instead, Facebook information
is typically only available to those who
sign up for the service and get invited
into the specific user’s network.

We have spoken with quite a few
researchers who believe the IRB regu-
lations do not apply to them because
they are working with “anonymized”
data. Ironically, the reverse is probably
true: IRB approval is required to be
sure the data collection is ethical, that
the data is adequately protected prior
to anonymization, and that the ano-
nymization is sufficient. Most schools
do not allow the experimenters to an-
swer these questions for themselves,
because doing so creates an inherent
conflict of interest. Many of these re-
searchers were in violation of their
school’s regulations; some were in vio-
lation of federal regulations.

How to Stop Worrying
and Love the IRB
Many IRBs are not well equipped to
handle the fast-paced and highly tech-
nical nature of computer-related re-
search. Basic questions arise, such as,

Much computer
science research
performed with
the Internet today
involves human
subject data and,
as such, must
be reviewed by
Institutional
Review Boards.

40 communications of the acm | june 2010 | vol. 53 | no. 6

viewpoints

Are Internet Protocol addresses per-
sonally identifiable information? What
is “public” and what is not? Is encrypt-
ed data secure? Can anonymized data
be re-identified? Researchers we have
spoken with are occasionally rebuffed
by their IRBs—the IRBs insist that no
humans are involved in the research—
ignoring that regulations also apply to
“identifiable private information.”

Another mismatch between com-
puter science research and IRBs is
timescale. CS research progresses at a
much faster pace than research in the
biomedical and behavioral fields. In
one case we are aware of, an IRB took
more than a year to make a decision
about a CS application. But even two
or three months to make a decision—
typical of many IRBs—is too slow for a
student in a computer science course
who wants to perform a social network
analysis as a final project.

For example, one of our studies,
which involved observing how mem-
bers of our university community re-
sponded to simulated phishing attacks
over a period of several weeks, had
to be shortened after being delayed
two months by an understaffed IRB.
With the delayed start date, part of
the study would have taken place over
winter break, when few people are on
campus. Another study we worked on
was delayed three months after an
IRB asked university lawyers to review
a protocol to determine whether it
would violate state wiretap laws.

In another case, researchers at In-
diana University worked with their
IRB and the school’s network secu-
rity group to send out phishing attacks
based on data gleaned from Facebook.g
Because of the delays associated with
the approval process, the phishing
messages were sent out at the end of
the semester, just before exams, rather
than at the beginning of the semes-
ter. Many recipients of the email com-
plained vociferously about the timing.

Another reason computer scientists
have problems with IRBs is the level
of detail the typical IRB application
requires. Computer scientists, for the
most part, are not trained to carefully
plan out an experiment in advance, to

g	 T. Jagatic, N. Johnson, M. Jakobsson, and F.
Menczer. Social phishing. Commun. ACM 50,
10 (Oct. 2007), 94–100.

figure out which data will be collected,
and then to collect the results in a man-
ner that protects the privacy of the data
subjects. (Arguably, computer scien-
tists would benefit from better train-
ing on experimental design, but that
is a different issue.) We have observed
that many IRB applications are delayed
because of a failure on the part of CS
researchers to make these points clear.

Finally, many computer scientists
are unfamiliar with the IRB process
and how it applies to them, and may
be reluctant to engage with their IRB
after having heard nothing but com-
plaints from colleagues who have
had their studies delayed by a slow
IRB approval process. While the
studies that CS researchers perform
are often exempt or extremely low
risk, it is becoming increasingly easy
to collect human subjects data over
the Internet that needs to be prop-
erly protected to avoid harming sub-
jects. Likewise, the growing amount
of research involving honeypots, bot-
nets, and the behavior of anonymity
systems would seem to require IRBs,
since the research involves not just
software, but humans—both crimi-
nals and victims.

The risks to human subjects from
computer science research are not al-
ways obvious, and the IRB can play an
important role in helping computer sci-
entists identify these risks and insure
that human subjects are adequately
protected. Is there a risk that data col-
lected on computer security incidents
could be used by employers to identify
underperforming computer security
administrators? Is there a risk that ano-

nymized search engine data could be
re-identified to reveal what particular
individuals are searching for? Can net-
work traffic data collected for research
purposes be used to identify copyright
violators? Can posts to LiveJournal and
Facebook be correlated to learn the
identities of children who are frequent-
ly left home alone by their parents?

In order to facilitate more rapid IRB
review, we recommend the develop-
ment of a new, streamlined IRB appli-
cation process. Experimenters would
visit a Web site that would serve as a
self-serve “IRB kiosk.” This site would
ask experimenters a series of questions
to determine whether their research
qualifies as exempt. These questions
would also serve to guide experiment-
ers in thinking through whether their
research plan adequately protects hu-
man subjects. Qualifying experiment-
ers would receive preliminary approval
from the kiosk and would be permitted
to begin their experiments. IRB repre-
sentatives would periodically review
these self-serve applications and grant
final approval if everything was in order.

Such a kiosk is actually permissible
under current regulations, provided
that the research is exempt. A kiosk
could even be used for research that is
“expedited” under the Common Rule,
since expedited research can be ap-
proved by the IRB Chair or by one or
more “experienced reviewers.”h In the
case of non-exempt expedited research,
the results of the Kiosk would be re-
viewed by such a reviewer prior to per-
mission being given to the researcher.

Institutional Review Board chairs
from many institutions have told us
informally that they are looking to
computer scientists to come up with
a workable solution to the difficulty
of applying the Common Rule to com-
puter science. It is also quite clear that
if we do not come up with a solution,
they will be forced to do so.	

h	 §46.110 (b)

Simson L. Garfinkel (slgarfin@nps.edu) is an associate
professor at the U.S. Naval Postgraduate School in
Monterey, CA.

Lorrie Faith Cranor (lorrie+@cs.cmu.edu) is an associate
professor of computer science and engineering and public
policy and the director of the CyLab Usable Privacy and
Security Laboratory at Carnegie Mellon University in
Pittsburgh, PA.

Copyright held by author.

It is becoming
increasingly easy
to collect human
subjects data over
the Internet that
needs to be properly
protected to avoid
harming subjects.

mailto:slgarfin@nps.edu
mailto:lorrie+@cs.cmu.edu

june 2010 | vol. 53 | no. 6 | communications of the acm 41

V
viewpoints

P
h

o
t

o
g

raph

 b
y

 H
a

n
s

 H
e

n
ri

k

 H
.

H
emi

n
g

T
he Co mput er History Mu-
seum has an active program
to gather videotaped histo-
ries from people who have
done pioneering work in

this first century of the information
age. These tapes are a rich aggregation
of stories that are preserved in the col-
lection, transcribed, and made avail-
able on the Web to researchers, stu-
dents, and anyone curious about how
invention happens. The oral histories
are conversations about people’s lives.
We want to know about their upbring-
ing, their families, their education,
and their jobs. But above all, we want
to know how they came to the passion
and creativity that leads to innovation.

Presented here are excerptsa from
four interviews with Edward A. Feigen-
baum, the Kumagai Professor of Com-
puter Science, Emeritus, at Stanford
University and a pioneering researcher
in artificial intelligence. The interviews
were conducted in 2007 separately by
Donald Knuth and Nils Nilsson, both
professors of computer science at Stan-
ford University.  —Len Shustek

What was your family background?
I was born in New Jersey in 1936 to a
culturally Jewish family. That Jewish
culture thinks of itself as the people of

a	 Oral histories are not scripted, and a tran-
script of casual speech is very different from
what one would write. I have taken the liberty
of editing liberally and reordering freely for
presentation. For the original transcripts, see
http://archive.computerhistory.org/search/oh/

the book, and so there’s a tremendous
focus on learning, and books, and
reading. I learned to read very early.

What got you interested in
science and engineering?
My stepfather was the only one in the
family who had any college education.
Once a month he would take me to the
Hayden Planetarium of the American
Museum of Natural History. I got really
interested in science, mostly through
astronomy, at about 10 years old.

My stepfather worked as an accoun-
tant and had a Monroe calculator. I
was absolutely fascinated by these cal-

culators and learned to use them with
great facility. That was one of my great
skills—in contrast to other friends of
mine whose great skills were things
like being on the tennis team.

I was a science kid. I would read
Scientific American every month—if
I could get it at the library. One book
that really sucked me into science was
Microbe Hunters. We need more books
like Microbe Hunters to bring a lot
more young people into science now.

Why did you study
electrical engineering?
I got As in everything, but I really en-

Interview
An Interview with
Ed Feigenbaum
ACM Fellow and A.M. Turing Award recipient Edward A. Feigenbaum,
a pioneer in the field of expert systems, reflects on his career.

doi:10.1145/1743546.1743564	 Len Shustek

http://archive.computerhistory.org/search/oh/

42 communications of the acm | june 2010 | vol. 53 | no. 6

viewpoints

he handed us an IBM 701 manual, an
early IBM vacuum tube computer. That
was a born-again experience! Taking
that manual home, reading it all night
long—by the dawn, I was hooked on
computers. I knew what I was going
to do: stay with Simon and do more of
this. But Carnegie Tech did not have
any computers at that time, so I got a
job at IBM for the summer of 1956 in
New York.

What did you learn at IBM?
First, plug board programming, which
was a phenomenally interesting thing
for a geeky kid. Second, the IBM 650,
because by that time it became known
that Carnegie Tech would be getting a
650. Third, the IBM 704, which was a
successor machine to the 701.

When I got back to Carnegie Tech
in September 1956 and began my
graduate work, there was Alan Perlis, a
wonderful computer genius, and later
the first Turing Award winner. Perlis
was finishing up an amazing program
called a compiler. That was “IT,” Inter-
nal Translator, and it occupied 1,998
words of the 2,000-word IBM 650 drum.

I had known about the idea of alge-
braic languages because in the summer
at IBM someone had come down from
the fourth floor to talk to the graduate
students and tell them about a new
thing that had just hit the scene. You
didn’t have to write “CLA” for “clear
and add,” and you didn’t have to write
“005” for “add.” You could write a for-
mula, and a program would translate
that formula into machine language.
FOR-TRAN. The guy was John Backus,

joyed most the math and physics and
chemistry. So why electrical engineer-
ing, as opposed to going into physics?
Around my family, no one had ever
heard of a thing called a physicist. In
this middle-class to lower-middle-
class culture people were focused on
getting a job that would make money,
and engineers could get jobs and make
money.

I happened to see an advertise-
ment for scholarships being offered
by an engineering school in Pittsburgh
called Carnegie Institute of Technol-
ogy. I got a scholarship, so that’s what
I did. Life is an interesting set of choic-
es, and the decision to go to Carnegie
Tech (now Carnegie-Mellon Univer-
sity) was a fantastically good decision.

Something else there got you excited.
I had a nagging feeling that there was
something missing in my courses.
There’s got to be more to a university
education! In the catalog I found a re-
ally interesting listing called “Ideas
and Social Change,” taught by a young
new instructor, James March. The first
thing he did was to expose us to Von
Neumann’s and Morgenstern’s “Theo-
ry of Games and Economic Behavior.”
Wow! This is mind-blowing! My first
published paper was with March in so-
cial psychology, on decision-making in
small groups.

March introduced me to a more se-
nior and famous professor, Herbert
Simon. That led to my taking a course
from Simon called “Mathematical
Models in the Social Sciences.” I got to
know Herb, and got to realize that this
was a totally extraordinary person.

In January 1956 Herb walked into
our seminar of six people and said
these famous words: “Over Christmas
Allen Newell and I invented a think-
ing machine.” Well, that just blew our
minds. He and Newell had formulated
the Logic Theorist on December 15th,
1955. They put together a paper pro-
gram that got implemented in the lan-
guage called IPL-1, which was not a lan-
guage that ran on any computer. It was
the first list processing language, but it
ran in their heads.

That led to your first
exposure to computers.
When we asked Herb in that class,
“What do you mean by a machine?”

who had come downstairs to talk to
us. IT’s introduction actually preceded
Fortran’s by about nine months.

What was it like to use
a computer then?
There was no staff between you and the
computer. You could book time on the
computer, then you went and did your
thing. A personal computer! I loved it.
I loved the lights, I loved pressing the
switches. This idea has been very im-
portant for my career—the hands on,
experimental approach to computer
science as opposed to the theoretical
approach. Experiment turns out to be
absolutely vital.

I was able to write a rather compli-
cated—for that time—simulation of
two companies engaged in a duopolis-
tic decision-making duel about pric-
ing of tin cans in the can industry, the
second such simulation of economic
behavior ever written. It led to my first
conference paper, in December 1958,
at the American Economics Associa-
tion annual meeting.

What did you do for your dissertation?
A model called EPAM, Elementary Per-
ceiver and Memorizer, a computer sim-
ulation model of human learning and
memory of nonsense syllables.

I invented a data structure called a
Discrimination Net—a memory struc-
ture that started out as nothing when
the learner starts. List structures had
just been invented, but no one had
tried to grow trees. I had to, because
I would start with two nonsense syl-
lables in the Net, and then the next
pair would come in and they’d have to
“grow into” the net somewhere. These
were the first adaptively growing trees.
Now here’s an amazing and kind of stu-
pid thing that shows what it means to
focus your attention on x rather than
y. We were focused on psychology. We
were not focused on what is now called
computer science. So we never pub-
lished anything about those adaptively
growing trees, except as they related
to the psychological model. But other
people did see trees as a thing to write
papers about in the IT literature. So I
missed that one!

Where was your first academic job?
I had wanted to come to the West
Coast, and the University of California

This idea has been
very important
for my career—
the experimental
approach to
computer science
as opposed to the
theoretical approach.

viewpoints

june 2010 | vol. 53 | no. 6 | communications of the acm 43

at Berkeley was excited about getting
me. There I taught two things: organi-
zation theory à la March and Simon,
and the new discipline called Artificial
Intelligence.

There were no books on the subject
of AI, but there were some excellent
papers that Julian Feldman and I pho-
tocopied. We decided that we needed
to do an edited collection, so we took
the papers we had collected, plus a few
more that we asked people to write,
and put together an anthology called
Computers and Thought that was pub-
lished in 1963.

The two sections mirrored two
groups of researchers. There were
people who were behaving like psy-
chologists and thinking of their work
as computer models of cognitive pro-
cesses, using simulation as a tech-
nique. And there were other people
who were interested in the problem of
making smart machines, whether or
not the processes were like what peo-
ple were doing.

How did choosing one of those
lead you to Stanford?
The choice was: do I want to be a psy-
chologist for the rest of my life, or do I
want to be a computer scientist? I looked
inside myself, and I knew that I was a
techno-geek. I loved computers, I loved
gadgets, and I loved programming. The
dominant thread for me was not going
to be what humans do, it was going to be
what can I make computers do.

I had tenure at Berkeley, but the busi-
ness school faculty couldn’t figure out
what to make of a guy who is publishing
papers in computer journals, artificial
intelligence, and psychology. That was
the push away from Berkeley. The pull
to Stanford was John McCarthy.

How did you decide on your
research program?
Looking back in time, for reasons that
are not totally clear to me, I really, real-
ly wanted smart machines. Or I should
put the “really” in another place: I re-
ally wanted really smart machines.

I wasn’t going to get there by walk-
ing down the EPAM road, which mod-
els verbal learning, or working on puz-
zle-solving deductive tasks. I wanted
to model the thinking processes of
scientists. I was interested in problems
of induction. Not problems of puzzle

solving or theorem proving, but induc-
tive hypothesis formation and theory
formation.

I had written some paragraphs at
the end of the introduction to Comput-
ers and Thought about induction and
why I thought that was the way forward
into the future. That’s a good strate-
gic plan, but it wasn’t a tactical plan. I
needed a “task environment”—a sand-
box in which to specifically work out
ideas in detail.

I think it’s very important to em-
phasize, to this generation and every
generation of AI researchers, how im-
portant experimental AI is. AI is not
much of a theoretical discipline. It
needs to work in specific task environ-
ments. I’m much better at discovering
than inventing. If you’re in an experi-
mental environment, you put yourself
in the situation where you can discover
things about AI, and you don’t have to
create them.

Talk about DENDRAL.
One of the people at Stanford interest-
ed in computer-based models of mind
was Joshua Lederberg, the 1958 Nobel
Prize winner in genetics. When I told
him I wanted an induction “sandbox”,
he said, “I have just the one for you.”
His lab was doing mass spectrometry
of amino acids. The question was:
how do you go from looking at a spec-
trum of an amino acid to the chemical
structure of the amino acid? That’s
how we started the DENDRAL Project:
I was good at heuristic search meth-
ods, and he had an algorithm which
was good at generating the chemical
problem space.

We did not have a grandiose vision.
We worked bottom up. Our chem-
ist was Carl Djerassi, inventor of the
chemical behind the birth control

pill, and also one of the world’s most
respected mass spectrometrists. Carl
and his postdocs were world-class ex-
perts in mass spectrometry. We began
to add in their knowledge, inventing
knowledge engineering as we were go-
ing along. These experiments amount-
ed to titrating into DENDRAL more and
more knowledge. The more you did
that, the smarter the program became.
We had very good results.

The generalization was: in the
knowledge lies the power. That was the
big idea. In my career that is the huge,
“Ah ha!,” and it wasn’t the way AI was
being done previously. Sounds simple,
but it’s probably AI’s most powerful
generalization.

Meta-DENDRAL was the culmina-
tion of my dream of the early to mid-
1960s having to do with theory for-
mation. The conception was that you
had a problem solver like DENDRAL
that took some inputs and produced
an output. In doing so, it used layers
of knowledge to steer and prune the
search. That knowledge got in there
because we interviewed people. But
how did the people get the knowledge?
By looking at thousands of spectra. So
we wanted a program that would look
at thousands of spectra and infer the
knowledge of mass spectrometry that
DENDRAL could use to solve individual
hypothesis formation problems.

We did it. We were even able to
publish new knowledge of mass spec-
trometry in the Journal of the American
Chemical Society, giving credit only in
a footnote that a program, Meta-DEN-
DRAL, actually did it. We were able to
do something that had been a dream: to
have a computer program come up with
a new and publishable piece of science.

What then?
We needed to play in other playpens. I
believe that AI is mostly a qualitative sci-
ence, not a quantitative science. You are
looking for places where heuristics and
inexact knowledge can come into play.
The term I coined for my lab was “Heu-
ristic Programming Project” because
heuristic programming is what we did.

For example, MYCIN was the Ph.D.
thesis project of Ted Shortliffe, which
turned out to be a very powerful knowl-
edge-based system for diagnosing
blood infections and recommending
their antibiotic therapies. Lab mem-

AI is not much of a
theoretical discipline.
It needs to work
in specific task
environments.

44 communications of the acm | june 2010 | vol. 53 | no. 6

viewpoints

bers extracted from Mycin the core of it
and called it E-Mycin for Essential My-
cin, or Empty Mycin. That rule-based
software shell was widely distributed.

What is the meaning of all those
experiments that we did from 1965 to
1968? The Knowledge-Is-Power Hy-
pothesis, later called the Knowledge
Principle, which was tested with doz-
ens of projects. We came to the conclu-
sion that for the “reasoning engine” of
a problem solving program, we didn’t
need much more than what Aristo-
tle knew. You didn’t need a big logic
machine. You need modus ponens,
backward and forward chaining, and
not much else in the way of inference.
Knowing a lot is what counts. So we
changed the name of our laboratory to
the “Knowledge System Lab,” where we
did experiments in many fields.

What other AI models did you use?
AI people use a variety of underlying
problem-solving frameworks, and
combine a lot of knowledge about the
domain with one of these frameworks.
These can either be forward-chain-
ing—sometimes called generate and
test—or they could be backward-chain-
ing, which say, for example, “here’s the
theorem I want to prove, and here’s
how I have to break it down into pieces
in order to prove it.”

I began classified research on de-
tecting quiet submarines in the ocean
by their sound spectrum. The problem
was that the enemy submarines were
very quiet, and the ocean is a very noisy
place. I tried the same hypothesis for-
mation framework that had worked
for DENDRAL, and it didn’t even come
close to working on this problem.

Fortunately Carnegie Mellon
people—Reddy, Erman, Lesser and
Hayes-Roth—had invented another
framework they were using for un-
derstanding speech, the Blackboard
Framework. It did not work well for
them, but I picked it up and adapted
it for our project. It worked beauti-
fully. It used a great deal of knowledge
at different “levels of abstraction.” It
allowed flexible combination of top-
down and bottom-up reasoning from
data to be merged at those different
levels. In Defense Department tests,
the program did better than people.

But that research was classified
as “secret.” How could ideas be pub-

lished from a military classified proj-
ect? The Navy didn’t care about the
blackboard framework; that was com-
puter science. So we published the
ideas in a paper on a kind of hypothet-
ical: “how to find a koala in eucalyp-
tus trees,” which was a non-cassified
problem drawn from my personal ex-
perience in an Australian forest!

Talk about being an entrepreneur
as well as an academic.
There was a very large demand for the
software generalization of the MY-
CIN medical diagnosis expert system
“shell,” called EMYCIN. So a software
company was born called Teknowledge,
whose goal was to migrate EMYCIN
into the commercial domain, make it
industrial strength, sell it, and apply it.
Teknowledge is still in existence.

Our Stanford MOLGEN project was
the first project in which computer
science methods were applied to what
is now called computational molecu-
lar biology. Some MOLGEN software
turned out to have a very broad ap-
plicability and so was the basis of the
very first company in computational
molecular biology, called Intellige-
netics, later Intellicorp. They had lots
of very sophisticated applications.
During the dot-com bust they went
bust, but they lasted, roughly speak-
ing, 20 years.

In the 1980s you studied the Japanese
government’s major effort in AI.
The Japanese plan was very ambitious.
They organized a project to essentially
do knowledge-based AI, but in a style
different from the style we were accus-
tomed to in this country. For one thing,

they wanted to do it in the “I-am-not-
LISP style,” because the Japanese had
been faulted in the past for being imi-
tators. So they chose Prolog and tried
formal methods. And they included
parallel computing in their initiative.

They made a big mistake in their
project of not paying enough atten-
tion to the application space at the
beginning. They didn’t really know
what applications they were aiming
at until halfway through; they were fly-
ing blind for five years. Then they tried
to catch up and do it all in five more
years, and didn’t succeed. [See the
book, The Fifth Generation,” written
with Pamela McCorduck].

How did you come to work
for the U.S. government?
In 1994 an amazing thing happened.
The phone rings and it is Professor
Sheila Widnall of the Department of
Aeronautics and Astronautics of MIT.
She said, “Do you know anyone who
wants to be Chief Scientist of the Air
Force? And by the way, if you are inter-
ested let me know.” She had been cho-
sen to be Secretary of the Air Force, and
she was looking for her Chief Scientist.
I thought about it briefly, told her yes,
and stayed for three years.

My job was to be a window on sci-
ence for the Chief of Staff of the Air
Force. I was the first person to be asked
to be Chief Scientist who was not an
Aero-Astro person, a weapons person,
or from the physical sciences. There
had not been any computer scientists
before me.

I did two big things. One was con-
sciousness-raising in the Air Force about
software. The one big report I wrote, at
the end of my term, was a report called,
It’s a Software-First World. The Air Force
had not realized that. They probably
still do not think that. They think it is an
airframe-based world.

The other was on software devel-
opment. The military up to that point
believed in, and could only imagine,
a structured-programming top-down
world. You set up requirements, you
get a contractor to break down the re-
quirements into blocks, another con-
tractor breaks them down into mini-
blocks, and down at the bottom there
are some people writing the code. It
takes years to do. When it all comes
back up to the top, (a) it’s not right,

In my view the
science that we call
AI, maybe better
called computational
intelligence, is the
manifest destiny of
computer science.

viewpoints

june 2010 | vol. 53 | no. 6 | communications of the acm 45

and (b) it’s not what you want anymore.
They just didn’t know how to contract
for cyclical development. Well, I think
we were able to help them figure out
how to do that.

What happened after your “tour
of duty” in Washington?
It was a rather unsettling experience to
come back to Stanford. After playing a
role on a big stage, all of a sudden you
come back and your colleagues ask,
“What are you going to teach next year?
Intro to AI?”

So at the beginning of 2000, I re-
tired. Since then I have been leading a
wonderful life doing whatever I please.
Now that I have a lot more time than
I had before, I’m getting geekier and
geekier. It feels like I’m 10 years old
again, getting back involved with de-
tails of computing.

The great thing about being retired
is not that you work less hard, but that
what you do is inner-directed. The
world has so many things you want to
know before you’re out of here that you
have a lot to do.

Why is history important?
When I was younger, I was too busy for
history and not cognizant of the impor-
tance of it. As I got older and began to
see my own career unfolding, I began
to realize the impact of the ideas of
others on my ideas. I became more and
more of a history buff.

That convinced me to get very seri-
ous about archives, including my own.
If you’re interested in discoveries and
the history of ideas, and how to manu-
facture ideas by computer, you’ve got
to treat this historical material as fun-
damental data. How did people think?
What alternatives were being consid-
ered? Why was the movement from
one idea to another preposterous at
one time and then accepted?

You are a big fan of using heuristics
not only for AI, but also for life. What
are some of your life heuristics?

˲˲ Pay a lot of attention to empirical
data, because in empirical data one can
discover regularities about the world.

˲˲ Meet a wonderful collaborator—
for me it was Joshua Lederberg—and
work with that collaborator on mean-
ingful problems

˲˲ It takes a while to become really,

really good at something. Stick with it.
Focus. Persistence, not just on prob-
lems but on a whole research track, is
really worth it. Switching in the middle,
flitting around from problem to prob-
lem, isn’t such a great idea.

˲˲ Life includes of a lot of stuff you
have to do that isn’t all that much fun,
but you just have to do it.

˲˲ You have to have a global vision
of where you’re going and what you’re
doing, so that life doesn’t appear to be
just Brownian motion where you are
being bumped around from one little
thing to another thing.

How far have we come in your quest
to have computers think inductively?
Our group, the Heuristic Programming
Project, did path-breaking work in the
large, unexplored wilderness of all the
great scientific theories we could pos-
sibly have. But most of that beautiful
wilderness today remains largely un-
explored. Am I am happy with where
we have gotten in induction research?
Absolutely not, although I am proud of
the few key steps we took that people
will remember.

Is general pattern recognition
the answer?
I don’t believe there is a general pattern
recognition problem. I believe that pat-
tern recognition, like most of human
reasoning, is domain specific. Cogni-
tive acts are surrounded by knowledge
of the domain, and that includes acts
of inductive behavior. So I don’t really
put much hope in “general anything”
for AI. In that sense I have been very
much aligned with Marvin Minsky’s
view of a “society of mind.” I’m very
much oriented toward a knowledge-
based model of mind.

How should we give
computers knowledge?
I think the only way is the way human
culture has gotten there. We transmit
our knowledge via cultural artifacts
called texts. It used to be manuscripts,
then it was printed text, now it’s elec-
tronic text. We put our young people
through a lot of reading to absorb the
knowledge of our culture. You don’t
go out and experience chemistry, you
study chemistry.

We need to have a way for computers
to read books on chemistry and learn

chemistry. Or read books on physics
and learn physics. Or biology. Or what-
ever. We just don’t do that today. Our AI
programs are handcrafted and knowl-
edge engineered. We will be forever do-
ing that unless we can find out how to
build programs that read text, under-
stand text, and learn from text.

Reading from text in general is a
hard problem, because it involves all of
common sense knowledge. But read-
ing from text in structured domans
I don’t think is as hard. It is a critical
problem that needs to be solved.

Why is AI important?
There are certain major mysteries that
are magnificent open questions of the
greatest import. Some of the things
computer scientists study are not. If
you’re studying the structure of data-
bases—well, sorry to say, that’s not one
of the big magnificent questions.

I’m talking about mysteries like
the initiation and development of life.
Equally mysterious is the emergence
of intelligence. Stephen Hawking once
asked, “Why does the universe even
bother to exist?” You can ask the same
question about intelligence. Why does
intelligence even bother to exist?

We should keep our “eye on the
prize.” Actually, two related prizes.
One is that when we finish our job,
whether it is 100 years from now or
200 years from now, we will have in-
vented the ultra-intelligent computer.
The other is that we will have a very
complete model of how the human
mind works. I don’t mean the human
brain, I mean the mind: the symbolic
processing system.

In my view the science that we call
AI, maybe better called computational
intelligence, is the manifest destiny of
computer science.

For the people who will be out there
years from now, the question will be:
will we have fully explicated the theory
of thinking in your lifetime? It would
be very interesting to see what you peo-
ple of a hundred years from now know
about all of this.

It will indeed. Stay tuned.	

Len Shustek (shustek@computerhistory.org) is the
chairman of the Computer History Museum.

Copyright held by author.

mailto:shustek@computerhistory.org

46 communications of the acm | june 2010 | vol. 53 | no. 6

practice

P
h

o
t

o
g

raph

 b
y

 Kate

 Kerr

As somewhat of a technology-hype curmudgeon,
I was until very recently in the camp that believed
cloud computing was not much more than the
latest marketing-driven hysteria for an idea that has
been around for years. Outsourced IT infrastructure
services, aka Infrastructure as a Service (IaaS), has
been around since at least the 1980s, delivered by
the telecommunication companies and major IT
outsourcers. Hosted applications, aka Platform as a
Service (PaaS) and Software as a Service (SaaS), were in
vogue in the 1990s in the form of application service
providers (ASPs).

Looking at cloud computing through this
perspective had me predicting how many more
months it would be before the industry came up with
another “exciting” technology with which to generate
mass confusion and buzz. However, I have recently
been enlightened as to the true potential of cloud
computing and have become very excited

about it, to say the least. This concept,
which has generated the most industry
hype in years—and which has execu-
tives clamoring for availability because
of promises of substantial IT cost sav-
ings and innovation possibilities—has
finally won me over.

So, what did I discover about cloud
computing that has made a convert
out of someone who was so adamantly
convinced that it was nothing more
than the latest industry topic du jour?
First let me explain that it was no
small feat. It took a lot of work to sort
through the amazing amount of confu-
sion concerning the definition of cloud
computing, let alone find a nugget of
real potential. Definitions abound, and
with my curmudgeon hat still solidly
in place I was beginning to see a lot of
hair-splitting and “me too” definitions
that just seemed to exacerbate the
problem. I finally settled on the defini-
tion provided by the National Institute
of Standards and Technology (NIST)
because of the simplicity the frame-
work provides (see the accompanying
sidebar). Still, it wasn’t until a good
friend who had already discovered the
true potential hidden in all this mad-
ness provided me with some real-world
use cases for elasticity that the light be-
gan shining very brightly.

Elasticity, in my very humble opin-
ion, is the true golden nugget of cloud
computing and what makes the entire
concept extraordinarily evolutionary, if
not revolutionary. NIST’s definition of
elasticity (http://csrc.nist.gov/groups/
SNS/cloud-computing/) is as follows:
“Capabilities can be rapidly and elasti-
cally provisioned, in some cases auto-
matically, to quickly scale out and rap-
idly released to quickly scale in. To the
consumer, the capabilities available
for provisioning often appear to be un-
limited and can be purchased in any
quantity at any time.” When elasticity
is combined with on-demand self-ser-
vice capabilities it could truly become
a game-changing force for IT.

Advanced outsourced IT infrastruc-
ture and software services, once avail-
able only to organizations with large

doi:10.1145/1743546.1743565

 Article development led by
 queue.acm.org

Elastic computing has great potential,
but many security challenges remain.

by Dustin Owens

Securing
Elasticity in
the Cloud

http://queue.acm.org
http://csrc.nist.gov/groups/SNS/cloud-computing/
http://csrc.nist.gov/groups/SNS/cloud-computing/

credit

 t
k

june 2010 | vol. 53 | no. 6 | communications of the acm 47

48 communications of the acm | june 2010 | vol. 53 | no. 6

practice

budgets available to develop, build,
and support ongoing use of these re-
sources, can now be provided to small
to medium organizations. In addition,
these resources can be added, changed,
or removed much more rapidly, po-
tentially allowing for exponential ad-
vances in operational efficiency. These
sorts of changes to major IT services
environments that previously (and for
the most part currently) took months if
not years to plan and execute might be
done in a matter of minutes or hours
if elasticity holds up to its promise. In
other words, elasticity could bring to
the IT infrastructure what Henry Ford
brought to the automotive industry
with assembly lines and mass produc-
tion: affordability and substantial im-
provements on time to market.

Enlightening as this realization has
been, it has also become clear that sev-
eral monumental security challenges
(not to mention many monumental
nonsecurity-related challenges, not
least of which are full functionality
availability and how well an organi-
zation’s environment is prepared to
operate in a distributed model) now
come into play and will need to be ad-
dressed in order for the elasticity ele-
ment of cloud computing to reach its
full potential. Most of the dialogue
I am engaged in with customers to-
day and that I see in publicized form,
however, is simplistically centered
on security challenges with IT out-
sourcing in general. These are chal-
lenges have existed for some time in
the predecessor models mentioned
earlier: who within an outsourcer is
able to access a customer’s data, pe-
rimeter security considerations when
outsourcing, DOS/DDOS (denial of
service/distributed denial of service),
resource starvation, and compliance
challenges with where data is stored
or backed up. These are all challenges
that I have provided counsel on for
many years and are nothing new or in-
surmountable. Don’t misunderstand
me. These challenges are indeed very
real and still need to be addressed, but
I strongly believe most should be fairly
well known by now and can be read-
ily met through existing procedural or
technological solutions.

The challenges I am more con-
cerned about are those introduced by
adding elasticity and on-demand self-

service to form the full extent of cloud
computing—those elements that in
my opinion make a particular service
something more than a just an out-
sourced service with a prettier market-
ing face.

Elasticity Security Challenges
Enabling elasticity in the cloud strong-
ly implies the use of virtualization.
Though the inherent security chal-
lenges in virtualization are certainly
not new, how it is likely to be used by
cloud-computing providers to achieve
elastic IT environments on a grand
scale poses some interesting security
challenges worth exploring in more
detail. In addition, as virtualization
technology continues to evolve and
gain popularity, so does the discov-
ery of new vulnerabilities; witness
the recently announced vulnerabil-
ity (http://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2009-3733) where-
by one is able to traverse from one vir-
tual machine (VM) client environment
to other client environments being
managed by the same hypervisor.

These new vulnerabilities could
have significantly greater impacts
in the cloud-computing arena than
within an organization’s corporate en-
vironment, especially if not dealt with
expeditiously. Case in point: imagine
that many customers are being man-
aged by a single hypervisor within
a cloud provider. The vulnerability
shared above might allow a customer
to access the virtual instances of oth-
er customers’ applications if not ad-
dressed. Consider the impact if your
bank or particularly sensitive federal
government or national defense infor-
mation happen to be managed in this
sort of environment, and the cloud
provider does not immediately deal
with, or even know about, a vulner-
ability of this nature.

With this bit of background, it is
clear that providing adequate admin-
istrative separation between virtual
customer environments will be a sig-
nificant security challenge with elas-
ticity. Cloud providers will need to be
prepared to account for and show how
their particular services are able to
control vulnerabilities such as the ear-
lier example and keep similar yet-to-be
discovered vulnerabilities from having
devastating impacts on their custom-

Elasticity, in my
very humble
opinion, is the true
golden nugget of
cloud computing
and what makes
the entire concept
extraordinarily
evolutionary,
if not revolutionary.
Elasticity could
bring to the IT
infrastructure what
Henry Ford brought
to the automotive
industry with
assembly lines and
mass production:
affordability
and substantial
improvements on
time to market.

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-3733
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-3733

practice

june 2010 | vol. 53 | no. 6 | communications of the acm 49

ers. Perhaps more importantly, critical
infrastructure (see http://en.wikipedia.
org/wiki/Critical_infrastructure for
definition) could be subject to insur-
mountable risk and/or loss of sensi-
tive information if providers lack the
necessary controls. As services offered
from the cloud continue to mature
and expand, the threat posed is not
limited to unauthorized information
access but may include any cloud-
provided computing systems (such as
virtual servers, virtual desktops, and
so on). We hope the U.S. government
recognizes and addresses this chal-
lenge as federal agencies move rapidly
toward adoption of cloud-based ser-
vices (http://www.federalnewsradio.
com/?sid=1836091&nid=35), because
the potential consequences are partic-
ularly unsettling.

Addressing this challenge may be no
small feat. For one, in order for cloud
providers to minimize their manage-
ment costs and obtain profitability,
they are expected to have to use shared
administrative management systems
(that is, hypervisors) across multiple
virtual customer environments. I can
envision certain service models where
this theory may not hold true: for ex-
ample, if each customer were given sole
hypervisor (or hypervisor-like) manage-
ment access that connected only to that
customer’s virtual environment, such
as within a virtual private cloud offer-
ing. Use of a separate management sys-
tem for every customer in every service
model is probably not realistic simply
because of cost containment.

In researching several cloud provid-
ers’ capabilities in this regard, I could
not clearly see how their solutions
could effectively address the entirety
of the provided traversal vulnerabil-
ity example when multiple customers
are using the same hypervisor, at least
at the time of writing this article. Al-
though some provide detail of built-in
software functionality within their hy-
pervisors meant to curtail one custom-
er from gaining access to another’s en-
vironment, I suspect these capabilities
would not fully address the vulnerabil-
ity in question and are certainly worthy
of further detailed review.

Another interesting challenge
with elasticity in the cloud will be in
the ability to provide fine-grained ac-
cess and predefined security controls

change management. In this scenario,
the application could be extremely
vulnerable to attack or even inadver-
tently cause a production application
to cease operating properly. The ability
to implement and enforce access con-
trols to a granular level, defining who
has the authority to perform which ac-
tions within these environments, will
be absolutely necessary.

Having the ability to predefine se-
curity control templates may also aid
in this sort of scenario. This means
the organization’s IT security group
is able to define a set of controls that
must be applied to a given application
depending on the type of data it will be
processing or how the application will
be used. For example, as the developer
builds out the new virtual environment
that processes credit-card informa-
tion, the self-service portal might iden-
tify the type of data to be processed
and apply predefined security controls
to the database, application, and Web
front end, as well as predefined fire-
wall rule sets limiting network access
to the various tiers. It is unlikely that
this capability exists today, anywhere,
and we are probably years away from
ubiquitous availability.

Another security challenge that de-
velops out of this scenario and in the
same vein is how to enforce proper
configuration and change manage-
ment in this more dynamic and elastic
model. Even where a portal is capable
of granular-access controls that con-
trol which actions a given user is able
to perform, it also needs to enforce
when and under what circumstances a
user is allowed to perform certain ac-
tions. Without this ability, untested
code or system changes could result
in business-impacting (or even dev-
astating) results. Even something as
“slight” as rolling a new system into
production without ensuring that
proper server and application patches
have been applied could result in sig-
nificant damage to an organization.
Therefore, a mechanism within self-
service portals for enforcing an orga-
nization’s change policies becomes a
worthy and necessary capability.

These are but a few of the chal-
lenges that come to mind within a
truly elastic PaaS and/or IaaS service
model and not even delving into sepa-
rate challenges with SaaS. Other chal-

across the entirety of a virtual customer
environment. The service models to
which this might apply most directly
are those that provide IaaS and PaaS
functionality such as dynamic mul-
tilevel security services or multitier
application environments. To under-
stand the challenge better, it is prob-
ably useful to provide some context for
how these types of services are built
and administered in today’s corporate
infrastructure, such as with a multitier
application. One example of a typical
scenario is where the application de-
velopment group needs to work closely
with the network and hopefully IT se-
curity groups to establish proper com-
munication paths among the various
tiers, including limiting which network
protocols are allowed to interface with
each of the tiers. This would be done to
ensure proper routing of information
and to limit the attack surface available
to hackers or malware once the system
is put into production.

In addition, when dealing with
certain types of data such as finan-
cial or credit cards, certain regula-
tions and industry standards have
a requirement for separation of du-
ties to aid in protection from certain
scenarios—for example, an applica-
tion developer inserting code into
software that would allow skimming
of financial data and not having an
audit trail available as the developer
elected not to enable one for obvious
reasons. Although various cloud pro-
viders do provide some detail on how
their solutions address this concern,
proper implementation by the user or-
ganization, as well as performing due
diligence review of actual capabilities
within a desired delivery model, will
be critical to ensuring this challenge
can be adequately addressed.

Fast forward to the cloud scenario
in which a developer now has access
to a self-service portal where in a few
mouse clicks he or she would be able
to build out a new multitier virtual
application environment. Without
fine-grained access controls available
through the self-service portal it will
be extremely difficult to enforce sepa-
ration of duties to keep this developer
from accessing sensitive data he or she
shouldn’t have access to, or promoting
new code to production without having
gone through proper security review or

http://en.wikipedia.org/wiki/Critical_infrastructure
http://en.wikipedia.org/wiki/Critical_infrastructure
http://www.federalnewsradio.com/?sid=1836091&nid=35
http://www.federalnewsradio.com/?sid=1836091&nid=35

50 communications of the acm | june 2010 | vol. 53 | no. 6

practice

lenges include the ability to provide
audit trails across these environments
for regulatory compliance and digital
forensic purposes, enforcement, and
awareness of differing levels of zones
among development, test, and pro-
duction environments to protect the
integrity of services deployed in the
higher-level environments, as well as
controlling whom is authorized to ex-

pand or contract a service within one
of these environments. This last chal-
lenge could pose particular financial
issues in the elastic “pay by the drink”
service model if, for example, users are
able to add services at will and an or-
ganization gets a bill at the end of the
month for excessive service additions.

Changing tack slightly, however, it
is worth mentioning the challenges in

providing adequate levels of security
services within nonsecurity-related
environments. One of these challeng-
es is with traditionally nonsecurity-
minded providers needing to supply
service options for common security
capabilities such as intrusion detec-
tion, firewalls, content filtering, and
vulnerability testing. In predecessor
service models, such as an ASP, these

Cloud computing is still an evolving
paradigm. Its definitions, use cases,
underlying technologies, issues, risks,
and benefits will be refined in a spirited
debate by the public and private
sectors. These definitions, attributes,
and characteristics will evolve and
change over time. The cloud-computing
industry represents a large ecosystem
of many models, vendors, and market
niches. The following definition
attempts to encompass all of the various
cloud approaches.

Cloud computing is a model for
enabling convenient, on-demand
network access to a shared pool of
configurable computing resources (for
example, networks, servers, storage,
applications, and services) that can
be rapidly provisioned and released
with minimal management effort
or service-provider interaction. This
cloud model promotes availability
and is composed of five essential
characteristics, three service models,
and four deployment models.

Essential Characteristics
On-demand self-service. A consumer
can unilaterally provision computing
capabilities, such as server time
and network storage, as needed
automatically without requiring human
interaction with each service’s provider.

Broad network access. Capabilities are
available over the network and accessed
through standard mechanisms that
promote use by heterogeneous thin
or thick client platforms (for example,
mobile phones, laptops, and PDAs).

Resource pooling. The provider’s
computing resources are pooled to serve
multiple consumers using a multitenant
model, with different physical and
virtual resources dynamically assigned
and reassigned according to consumer
demand. There is a sense of location
independence in that the customer
generally has no control or knowledge
over the exact location of the provided
resources but may be able to specify
location at a higher level of abstraction
(for example, country, state, or data

center). Examples of resources include
storage, processing, memory, network
bandwidth, and virtual machines.

Rapid elasticity. Capabilities can be
rapidly and elastically provisioned, in
some cases automatically, to quickly
scale out and rapidly released to
quickly scale in. To the consumer, the
capabilities available for provisioning
often appear to be unlimited and can be
purchased in any quantity at any time.

Measured service. Cloud systems
automatically control and optimize
resource use by leveraging a metering
capability at some level of abstraction
appropriate to the type of service
(for example, storage, processing,
bandwidth, and active user accounts).
Resource usage can be monitored,
controlled, and reported, providing
transparency for both the provider and
consumer of the utilized service.

Service Models
Cloud SaaS (Software as a Service). The
capability provided to the consumer
is to use the provider’s applications
running on a cloud infrastructure.
The applications are accessible from
various client devices through a thin
client interface such as a Web browser
(for example, Web-based email). The
consumer does not manage or control
the underlying cloud infrastructure,
including network, servers, operating
systems, storage, or even individual
application capabilities, with the possible
exception of limited user-specific
application configuration settings.

Cloud PaaS (Platform as a Service).
The capability provided to the
consumer is to deploy onto the cloud
infrastructure consumer-created
or acquired applications created
using programming languages and
tools supported by the provider. The
consumer does not manage or control
the underlying cloud infrastructure,
including network, servers, operating
systems, or storage, but has control
over the deployed applications
and possibly application-hosting
environment configurations.

Cloud IaaS (Infrastructure as a Service).
The capability provided to the consumer
is to provision processing, storage,
networks, and other fundamental
computing resources where the
consumer is able to deploy and run
arbitrary software, which can include
operating systems and applications. The
consumer does not manage or control
the underlying cloud infrastructure
but has control over operating systems,
storage, deployed applications, and
possibly limited control of select
networking components (for example,
host firewalls).

Deployment Models
Private cloud. The cloud infrastructure
is operated solely for an organization.
It may be managed by the organization
or a third party and may exist on or off
premise.

Community cloud. The cloud
infrastructure is shared by several
organizations and supports a specific
community that has shared concerns
(for example, mission, security
requirements, policy, and compliance
considerations). It may be managed by
the organizations or a third party and
may exist on or off premise.

Public cloud. The cloud infrastructure
is made available to the general public
or a large industry group and is owned
by an organization selling cloud
services.

Hybrid cloud. The cloud
infrastructure is a composition of two
or more clouds (private, community, or
public) that remain unique entities but
are bound together by standardized or
proprietary technology that enables data
and application portability (for example,
cloud bursting for load balancing
between clouds).

Note: Cloud software takes full
advantage of the cloud paradigm by
being service oriented with a focus on
statelessness, low coupling, modularity,
and semantic interoperability.

Peter Mell and Tim Grance are with the National
Institute of Standards and Technology, Information
Technology Laboratory, Gaithersburg, MD.

The NIST Definition of Cloud Computing
By Peter Mell and Tim Grance

practice

june 2010 | vol. 53 | no. 6 | communications of the acm 51

services could be offered through
partnerships with security vendors
and manually designed and provi-
sioned into the outsourced environ-
ment. In the new model, however,
how providers are able to provide
tighter integration with these services
in order not to lose full elasticity may
be interesting. It may require creating
optional service hooks from a provid-
er’s self-service portal to security ser-
vice products or perhaps developing
interesting but complex multiservice
cloud models provided by multiple
specialty service providers. Either way,
this challenge is probably worthy of a
discussion in and of itself because of
the perceived number of additional is-
sues it brings to mind. Note that some
vendors do offer these capabilities to-
day, particularly within virtual private
cloud models, but of the vendors re-
searched, none is fully addressing for
every model it offers.

Encryption capabilities for data-at-
rest may be an interesting challenge as
well. For example, given the previous
environment traversal example, use
of file-based encryption within a vir-
tual environment would be essentially
worthless in offering protection from
remote access. If one can readily gain
access to another’s environment, this
would also provide access to any front-
end encryption mechanism used for
file-based encryption within the vir-
tual environment. Disk-based encryp-
tion becomes particularly challenging
because of the nature of virtual stor-
age and potential lack of user organi-
zational control over where data may
be physically stored (which disk does
one encrypt for a given customer and
other constraints in sharing of physi-
cal disks among multiple customers).
It will certainly be necessary to explore
a prospective provider’s capabilities
for encrypting data-at-rest and how
well it addresses the shared concerns,
especially for those organizations
with regulatory requirements dictat-
ing the use of file- and/or disk-based
encryption.

It should be apparent by now that
cloud computing is fraught with a
number of security challenges. While
some of the concepts and scenarios
discussed here are focused on more
advanced service models, the intent
is to create a bit more awareness of

what the industry will be faced with
in moving toward these new models
that offer greater levels of “true” cloud
computing. Depending on the type
of service model being discussed and
various use cases, exploring all of the
challenges is all but impossible, espe-
cially not in a single discussion. In ad-
dition, some of the security challenges
discussed appear to be recognized by
certain cloud providers but are pri-
marily being addressed through the
use of private cloud models (Amazon
and OpSource are two such vendors of-
fering answers within a virtual private
cloud offering), suggesting perhaps
higher costs versus a public cloud of-
fering and/or limited availability in
addressing within other cloud-deliv-
ery models.

The promise of what an elastic
cloud-computing model could do for
the IT world, however, is extremely
invigorating and certainly worth pur-
suing. It can only be hoped that orga-
nizations already taking this path or se-
riously considering doing so will take
the time to fully appreciate the security
challenges facing them and whether
or not adoption at this point fits into
their risk appetite. Certainly, keeping
these and other security challenges in
mind while assessing how a prospec-
tive cloud provider can address these
concerns (and at what cost and with
what deployment constraints) should
be a critical business objective. 	

 Related articles
 on queue.acm.org

Cybercrime 2.0: When the Cloud Turns Dark
Niels Provos, Moheeb Abu Rajab,
Panayiotis Mavrommatis
http://queue.acm.org/detail.cfm?id=1517412

Meet the Virts
Tom Killalea
http://queue.acm.org/detail.cfm?id=1348589

CTO Roundtable: Cloud Computing
Mache Creeger
http://queue.acm.org/detail.cfm?id=1536633

Dustin Owens (dustin.owens@bt.com) is a senior
principal consultant with BT Americas’ Business
Innovation Group. He provides consulting services
centered on operational risk and security management
for multinational customers, specializing in applying these
concepts to various areas of strategic business innovation.
He has more than 14 years of practical experience
in addressing information security within distributed
computing environments.

© 2010 ACM 0001-0782/10/0600 $10.00

Though the inherent
security challenges
in virtualization are
not new, how it is
likely to be used by
cloud-computing
providers to
achieve elastic IT
environments on a
grand scale poses
some interesting
security challenges.

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1517412
http://queue.acm.org/detail.cfm?id=1348589
http://queue.acm.org/detail.cfm?id=1536633
mailto:dustin.owens@bt.com

52 communications of the acm | june 2010 | vol. 53 | no. 6

practice

I
ll

u

strati

o
n

 b
y

 g
l

u
e

k
it

An e mulator is a program that runs programs built
for different computer architectures from the host
platform that supports the emulator. Approaches
differ, but most emulators simulate the original
hardware in some way. At a minimum the emulator
interprets the original CPU instructions and provides
simulated hardware-level devices for input and output.
For example, keyboard input is taken from the host
platform and translated into the original hardware
format, resulting in the emulated program “seeing”
the same sequence of keystrokes. Conversely, the
emulator will translate the original hardware screen
format into an equivalent form on the host machine.

The emulator is similar to a program that
implements the Java Virtual Machine (JVM). The
difference is merely one of degree. JVM is designed
to enable efficient and tractable implementations,
whereas an emulator’s machine is defined by real
hardware that generally imposes undesirable
constraints on the emulator. Most significantly, the
original hardware may be fully described only in terms

of how existing software uses it. JVM
tends to be forward-looking with the
expectation that new code will be writ-
ten and run under JVM to increase
its portability. Emulators tend to be
backward-looking, expecting only to
make old code more portable.

In either case the emulator and
JVM give the programs that run under
them a suite of services needed to in-
teract with the host system. JVM pres-
ents those services as a series of API
calls; the emulator presents them as
simulated hardware. Nonetheless, the
simulated hardware is an API—just
not in the form most programmers
expect.

TRS-80 Example
As an example hardware API, consider
the TRS-80 video system, which dis-
plays text and graphics on a modified
television set. It has 16 lines of char-
acters with 64 columns each. It sup-
ports the normal ASCII character set,
with an additional 64 graphics charac-
ters allowing every possible combina-
tion of a 2-pixel by 3-pixel sub-block.
Judicious use of the graphics charac-
ters provide an effective 128-pixel by
48-pixel resolution, albeit with pix-
els the size of watermelon seeds. A
TRS-80 program displays a character
by writing the character value to the
memory location associated with the
desired position. In effect, the API has
only one call:

	
void ChangeCharacter
 (location /* 0 – 1024 */,
 character)

Emulating such a simple graphics
format is trivial. It can be rendered
quite adequately on a 512-by-192 im-
age allotting each character an 8-by-
12 rectangle. Each graphics pixel is a
4-by-4 rectangle, while the characters
themselves occupy the upper two-
thirds, or an 8-by-8 area. While you
could get away with any old font for
the characters, a little more work will
get something that looks dot-for-dot
identical to the original. (To get the

doi:10.1145/1743546.1743566

 Article development led by
 queue.acm.org

Emulating a video system shows how even
a simple interface can be more complex—and
capable—than it appears.

by George Phillips

Simplicity
Betrayed

http://queue.acm.org

credit

 t
k

june 2010 | vol. 53 | no. 6 | communications of the acm 53

54 communications of the acm | june 2010 | vol. 53 | no. 6

practice

same aspect ratio as the original, the
image should be doubled in height.
We’ll keep the numbers as is to sim-
plify exposition.)

Figure 1 shows how an emulator
converts the hardware-level charac-
ter values into an actual image repre-
sentation. While the figure serves as
a blueprint for the emulator, it also
shows what a TRS-80 program must
do in order to display something. One
detail is missing: changes to screen
memory are not displayed instanta-
neously. The hardware redraws the
display every 1/60th of a second. This
means the emulator must assemble
the static image as described and dis-

play it every 1/60th of a second.
The resulting emulation will look

very much like the original. The ma-
jority of programs that run under the
emulator will appear exactly the same
as when run on original hardware,
but if you pay very close attention you
will see some differences. Watch as
the screen is cleared from all black
to all white. In both the original and
the emulation you get a tear, because
filling the screen takes long enough
that it goes over more than one video
frame. Just before the fill starts, the
frame will be black. The fill is partially
done on the next frame, and the dis-
play shows white at the top and black

at the bottom. That happens for just
an instant; by the next frame the fill-
ing is done and the frame is filled with
white.

Even though this is at the edge of
perception, the tear exhibited by the
two is quite different. You will need a
video camera to see it in the original,
but the emulator can either dump
frames for offline analysis or be told
to step one frame at a time. Figure 2
shows the difference between the tear
on the original hardware and that
seen in the emulator.

Although apparently minor, this
difference is puzzling. The emulator
implemented the specification exactly
as written, and no bugs were found in
the code. Moreover, the specification
was obviously correct and complete.
Except for the evidence at hand, the
situation is impossible. Of course,
the problem lies in the specification,
which only appears complete. The as-
sumption that a particular character
is either there or not is incorrect. The
hardware does not draw a character at
a time; it draws one line of a character
at a time. That character has the op-
portunity to change after the drawing
has already started. The tearing on the
original results from a character being
blank on the initial passes and subse-
quently filled in. Put another way, the
character is not atomic but made up of
12 pieces stacked on top of one anoth-
er; each piece is 8-by-1. Incidentally,
those 8-by-1 pieces are atomic—they
are displayed entirely or not at all. The
graphics hardware ends up reading
each displayed character 12 times.

Refining the emulator to correct
this difference is straightforward. In-
stead of waiting an entire 1/60th of a
second before drawing the screen, it
will be drawn a line at a time. With 192
lines the emulation loop looks some-
thing like this:

for (i = 0; i < 192; i++) {
emulate CPU for 86.8 micro-

seconds
draw line i of the video dis-

play
}

Now the tearing on the emulator
is the same as the hardware. You may
be tempted to declare the specifica-
tion and the emulator complete be-

Figure 1. Translating TRS-80 screen memory into a displayed image.

! " # $ % & ' () * + , - . /

10 2 3 4 5 6 7 8 9 : ; < = > ?

A@ B C D E F G H I J K L M N O

QP R S T U V W X Y Z [\] ^ _

a` b c d e f g h i j k l m n o

qp r s t u v w x y z { } ~ +=|

Hello! ...

...

 32 32 32 132 32 32 132 32 32
 136 32 72 101 108 108 111 33 136
 32 32 32 129 32 32 129 32 32

Screen Memory

Character Images

Display

Figure 2. Difference in tears between the emulation and the original hardware.

Approximate Tear Correct Tear

practice

june 2010 | vol. 53 | no. 6 | communications of the acm 55

processor and the graphics. It can
show exactly what is being drawn and
point out when screen memory writes
happen at the incorrect times. In no
time at all a demonstration program
is written that shows a blocky line
in a simple emulator and a diagonal
line in a more accurate emulator (see
Figure 3).

The Real Machine
The program is impressive as it must
read/write to the display with micro-
second-level timing. The real excite-
ment is running the program on the
original machine. After all, the output
of the emulator on a PC is theoretical-
ly compelling but it is actually produc-
ing graphics that pale in comparison
to anything else on the platform. On
the real machine it will produce some-
thing never before seen.

Sadly, the program utterly fails to
work on the real machine. Most of the
time the display is blank. It occasion-
ally flashes the ordinary block line
for a frame, and very rarely one of the
small pixels shows up as if by fluke.

Once again, the accurate emulation
is not so accurate. The original tearing
effect proves that the fundamental ap-
proach is valid. What must be wrong
is the timing itself. For those strong
in software a number of experimental
programs can tease out the discrepan-
cies. Hardware types will go straight
to the schematic diagrams that docu-
ment the graphics hardware in detail.
Either way, several characteristics will
become evident:

˲˲ Each line takes 64 microseconds,
not 86.8.

˲˲ There are 264 lines per frame; 192
visible and 72 hidden.

˲˲ A frame is 16,896 microseconds or
59.185 frames per second, not 60.

What’s most remarkable is how the
emulator appeared to be very accurate
in simulating a tear when it was, in
fact, quite wrong. So much has been
written about the brittleness of com-
puter systems that it is easy to forget
how flexible and forgiving they can be
at times. The numbers bring some re-
lief to the emulator code itself. What
appeared to be floating-point values
for timing are in fact just multiples of
the system clock. Simple, integer rela-
tionships exist between the speed of
the CPU and the graphics hardware.

cause of the major increase in output
fidelity. As a conscientious developer,
however, your reaction must be ex-
actly the opposite. A rather small test
case required a considerable change
in the program. Now is the time to
investigate further and look for ad-
ditional bugs. In all likelihood the
specification needs more refinement.
At the very least, a better test case for
the new functionality is needed. After
a bit of thought it becomes clear that
displaying a one-line-high pixel (1-by-
4) would make such a test case.

This can be done in three simple
steps.

1.	 Write an ordinary 4-by-4 pixel on
screen.

2.	 Wait until the first line has been
drawn by the graphics hardware.

3.	 Quickly erase the pixel.

All that will be visible on screen is
the 1-by-4 part of the pixel that was
drawn before you pulled the rug out
from under the 4-by-4 pixel. Many pix-
els can be combined to create some-
thing seemingly impossible on a stock
TRS-80: a high-resolution diagonal
line.

The only thing missing is some way
of knowing which line the hardware is
drawing at any one point. Fortunately,
the graphics hardware generates an
interrupt when it draws a frame. When
that interrupt happens you know ex-
actly where the graphics hardware is.
A few difficulties of construction re-
main, but they come down to trivial
matters such as putting in delays be-
tween the memory accesses to ensure
you turn pixels on and off in step with
each line being drawn.

Here the emulator is a boon. Mak-
ing such a carefully timed procedure
work on real hardware is very difficult.
Any mistake in timing will result in
either no display because a pixel was
erased too quickly or a blocky line
caused by erasing pixels too slowly.
Not only does the debugger not care
about time, it eschews it entirely.
Single-stepping through the code is
useless. To be fair, the debugger can-
not single-step the graphics hardware.
Even if it did, the phosphor would fade
from sight before you could see what
was happening.

The emulator can single-step the

The majority of
programs that run
under the emulator
will appear exactly
the same as when
run on original
hardware, but
if you pay very
close attention
you will see some
differences.

56 communications of the acm | june 2010 | vol. 53 | no. 6

practice

A Z-80 Cycle Waster

// Z-80 registers are akin to C global variables.

unsigned char A, H, L;

unsigned char C, Z;

int cycles;

void t(int n)

{

	 cycles += n;

}

void waitA();

/* Cycle Cost C code			 Z-80 code */

void wait256()

{

wHL256:

	 t(4);	 H--; Z = H != 0;	 // DEC H

	 t(7);	 A = 127;			 // LD A,127

	 t(17);	 waitA();			 // CALL wA

}

void waitHL()

{

wHL:

	 t(4);	 H++; Z = H == 0;	 // INC H

	 t(4);	 H--; Z = H == 0;	 // DEC H

	 t(7);	 if (!Z) {			 // JR NZ,wHL256

	 t(5);		 wait256();

			 goto wHL;

		 }

	 t(4);	 A = L;			 // LD A,L

	 t(0);	 waitA();

}

void waitA()

{

wA:

	 t(4);	 C = A & 1;		 // RRCA

		 A = (A << 7) | (A >> 1);

	 t(7);	 if (C) {			 // JR C,have1

	 t(5);		 goto have1;

		 }

	 t(4);				 // NOP

have1:

	 t(4);	 C = A & 1;		 // RRCA

		 A = (A << 7) | (A >> 1);

	 t(7);	 if (!C) {			 // JR NC,no2

	 t(5);		 goto no2;

		 }

	 t(7);	 if (!C) {			 // JR NC,no2

	 t(5);		 goto no2;

		 }

no2:

	 t(4);	 C = A & 1;		 // RRCA

		 A = (A << 7) | (A >> 1);

	 t(7);	 if (!C) {			 // JR NC,no4

	 t(5);		 goto no4;

		 }

	 t(5);	 if (!C) {			 // RET NC

	 t(6);		 return;

		 }

	 t(4);				 // NOP

no4:

	 t(4);	 C = A & 1;		 // RRCA

		 A = (A << 7) | (A >> 1);

	 t(7);	 if (!C) {			 // JR NC,no8

	 t(5);		 goto no8;

		 }

	 t(13);	 /* *0 = A; */		 // LD (0),A

no8:

	 t(7);	 A &= 15;			 // AND A,15

		 Z = A == 0;

	 t(5);	 if (Z) {			 // RET Z

	 t(6);		 return;

		 }

wait16:

	 t(4);	 A--; Z = A == 0;	 // DEC A

	 t(7);	 if (!Z) {			 // JR NZ,wait16

	 t(5);		 goto wait16;

		 }

	 t(5);	 if (Z) {			 // RET Z

	 t(6);		 return;

		 }

}

//-----------------------

#include <stdio.h>

int main(int argc, char *argv[])

{

	 for (int hl = 0; hl < 65536; hl++)

	 {

		 H = hl / 256;

		 L = hl & 255;

		 cycles = 0;

		 waitHL();

		 if (cycles != hl + 100)

		 {

			 printf(“Blew it on %d (got

			 %d instead of %d)\n”, hl,

			 cycles, hl + 100);

		 }

	 }

	 return 0;

}

The Z-80 code is in the comments alongside equivalent C code. The C program is self-contained and
runs an exhaustive test verifying that waitHL() always uses H * 256 + L + 100 cycles. Observe that the JR
conditional branch instructions take extra time if the branch is taken. Those time differences along with
looping are used to expand the subroutine’s running time in proportion to the requested number of cycles.

practice

june 2010 | vol. 53 | no. 6 | communications of the acm 57

We can restate timings from the CPU’s
perspective:

˲˲ Each line takes 128 cycles.
˲˲ The hidden 72 lines go for 9,216

cycles.
˲˲ Each frame is 33,792 cycles (264 *

128).
The number of frames per second

is still a fl oating-point number, but
the emulator core can return to inte-
gers as you might expect for a digital
system.

With the new timings in place,
the emulator exhibits the same prob-
lems as the real hardware. With a bit
of (tedious) fi ddling with the timing,
the program almost works on the real
hardware.

There’s just one problem left. Re-
member that interrupt that gave a syn-
chronization point between the CPU
and the graphics hardware? Turns out

it only happens every second frame.
The program works but fl ashes be-
tween a perfect diagonal line and a
chunky one. There’s no hardware fa-
cility to help out here, but there is an
obvious, if distasteful, software solu-
tion.

Once the diagonal line has been
drawn, you know exactly when it must
be drawn again: 33,792 cycles from
when you started drawing it the fi rst
time. If it takes T cycles to draw the
line, then you just write a cycle-wast-
ing loop that runs for 33,792-T cycles
and jump back to the line-drawing
routine. Since that jump takes 10 cy-
cles, however, you better make that
33,792-T-10 cycles. This seems like a
fi ne nit to pick, but even being a single
cycle off in the count will lose synchro-
nization. In two seconds the sync is off
by almost an entire line. Losing sync

has an effect similar to the vertical roll
that affl icted old televisions.

An ad hoc solution will work just
fi ne. The proof-of-concept demonstra-
tion program will be complete. The
possibilities for even more impres-
sive graphics are clear. Hand-timing
everything, however, is tedious, slow,
and error prone. You’re stuck with
writing in assembly, but the timing
effort takes you back to the days when
code was hand-assembled. Much of
the burden can be lifted by taking
the instruction timing table from the
emulator and putting it into the as-
sembler. Assemblers have always been
able to measure the size of their out-
put, generally to fi ll in buffer sizes and
the like. Here’s that facility in use to
defi ne length as the number of bytes in
a message, which will vary if the mes-
sage is changed:

message: ascii ‘Hello,
world.’
length byte *-message

This works because the special “*”
variable keeps track of the memory
location into which data and code
are assembled. To automate timing
simply add a time() function that
says how many cycles are used by the
program up to that point. It can’t ac-
count for loops and branches but will
give accurate results for straight-line
code. At a high level the diagonal slash
demo will be:

start: ...some code to draw
 ...the diagonal line
waste equ 33792 -
(time(*) - time(start)) - 10
 ...code to use up
 ...”waste” cycles
 goto start

Straightforward, but what about
the code to waste the cycles? The as-
sembler could be extended to sup-
ply that code automatically. Instead,
keeping with the principle of minimal
design, the task can be left to an ordi-
nary subroutine. Writing a subroutine
that runs for a given number of cycles
is a different requirement from what
you are accustomed to, but it is pos-
sible. (See the accompanying sidebar
for one such cycle-wasting subrou-
tine.)

figure 3. a diagonal line in a simple emulator and a more accurate emulator.

correctincorrect

figure 4. the letter “a” displayed with square pixels and on the original hardware.

58 communications of the acm | june 2010 | vol. 53 | no. 6

practice

As programmers we can see the
potential of the diagonal-line dem-
onstration program. Although it has
only one pixel per line, there is a clear
path to more complex and compelling
images, to say nothing of animations
and other effects. One final bump in
the road awaits. Every time the CPU
accesses screen memory, it denies ac-
cess to the graphics hardware. This
results in a blank line that is two- or
three-characters wide. The more pix-
els you change on a per-line basis, the
more blanked-out portions there will
be. Once again you will find that al-
though the graphics may look fine on
the emulator, they will be riddled with
“holes” on the real machine because
of the blanking side effect.

Moreover, as you try to do more
work per line, the exact positions of
the blank spots will matter a great
deal. Their exact positions will be a
measure of emulator accuracy and
can be used to maximize the graphics
displayed per line. Several discoveries
await and will be the result of a feed-
back loop of emulator refinement, test
program development, measurement
of the original system leading to fur-
ther emulator refinement, and so on.
Along the way you will discover the fol-
lowing:

˲˲ The visible portion of a line takes
102.4 cycles; the rest of the time (25.6
cycles) is used for setting up drawing
the next line.

˲˲ Blank spots do not cover the en-
tire time an instruction takes but only
the sub-portion of the instruction that
accesses video memory.

˲˲ The emulator must be extended
to report exactly when memory is ac-
cessed on a sub-instructional basis.

˲˲ Our method of synchronization is
crude and can be depended upon to
be accurate only to within a few char-
acters.

˲˲ Finer synchronization can be ac-
complished, but the emulator must
be upgraded so programs using the
technique can still be tested.

˲˲ Video blanking can be put to good
use sculpting graphics that cannot be
constructed in other ways.

In other words, we’re a long way
from where we started. Instead of
drawing an entire screen at once or
even a line at a time, the emulator is
down to drawing 1/12th of a character

at a time and interweaving the CPU
and the graphics hardware at the level
of CPU cycles. The graphics emula-
tion has become extremely accurate.
Not only will side effects such as a tear
be seen, but they will be exactly the
same as they manifest on the original
hardware. The results are not purely
academic, either. Test programs dem-
onstrate the fidelity of the emulator
while still achieving the same output
on the original hardware. The result
is not tiny differences only of interest
to experts but extremely visible differ-
ences in program behavior between
precise and sloppy emulators.

Can there be anything else?
Having tripped over so many emu-

lator shortcomings, can the answer
be anything but yes? In fact, there is
a double-wide mode where the char-
acters are doubled in size for a 32-by-
16 display. Based on what we’ve seen
up to this point, it’s not surprising
to learn that it brings in many more
complications than might be expect-
ed. Even leaving that morass aside,
there’s one more obvious limitation of
the emulator. The original display was
a CRT. Each pixel on it looks entirely
different from what is seen on a mod-
ern LCD flat panel. The pixels there
are unrelentingly square, whereas
the CRT produced soft-edged ovals of
phosphorescence. Figure 4 compares
two close-ups of the letter A.

Hard-edged pixels result in an im-
age that is functionally identical to the
original but has a completely different
feel. The difference between the two
is unmistakable. Observe also that
the real pixels are neither distinct nor
independent. Pixels in adjacent rows
overlap. Pixels in adjacent columns
not only overlap but also display dif-
ferently if there is a single one versus
several in a row. The first pixel in a row
of lit pixels is larger. All these subtle
differences combine to create a sub-
stantially different picture.

The problem itself is much simpler
than the functional issues because
there is no feedback to the rest of the
implementation. There is no need to
change the CPU timing or how the
CPU interacts with the graphics sys-
tem. It is merely a matter of drawing
each dot as an alpha-blended patch
rather than a hard-edged off/on set-
ting of one or two pixels. What is

troublesome is the increased effort
required by the host CPU to pull this
off. The work involved is many times
greater than before. Only through the
aid of a graphics coprocessor or mod-
erately optimized rendering code can
the screen be drawn in this fashion
in real time. It is difficult to believe
that drawing a 30-year-old computer’s
display takes up so much of a modern
system. This is one reason why accu-
rate emulation takes so long to per-
fect. We can decide to make a better
display, but today’s platforms may not
have the horsepower to accomplish it.

That realistic fuzzy pixels can over-
lap does lead to noticeable visual arti-
facts. Two pixels alternating between
on and off sitting side by side will ap-
pear to be three pixels: two flashing
pixels on each end and a single always-
on pixel in the middle where the two
overlap. I’ll leave it to your imagina-
tion what useful effect this artifact
may have.

Conclusion
A system’s complexity is easy to under-
estimate. Even the simple video sys-
tem of the TRS-80 has greater depth
than anticipated. What lurks beneath
the surface is far greater than the high-
level description. Take it as a sideways
reinforcement of the KISS principle.
Yet do not despair. You must also con-
sider the power of tools. Each emula-
tor improvement has led to discover-
ies that could be exploited for good
use once the necessary support tools
were built. Above all, however, beware
of perfection. No system is perfect,
and the cost of pursuing perfection
can be much greater than mere time
and money invested. 	

 Related articles
 on queue.acm.org

No Source Code? No Problem!
Peter Phillips and George Phillips
http://queue.acm.org/detail.cfm?id=945155

Enhanced Debugging with Traces
Peter Phillips
http://queue.acm.org/detail.cfm?id=1753170

George Phillips (gp2000@shaw.ca) works on video
games both emulated and otherwise. In a simpler time he
worked on the crawling side of an early Web search engine
that was chastised for selling advertisements.

© 2010 ACM 0001-0782/10/0600 $10.00

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=945155
http://queue.acm.org/detail.cfm?id=1753170
mailto:gp2000@shaw.ca

june 2010 | vol. 53 | no. 6 | communications of the acm 59

doi:10.1145/1743546.1743567

 Article development led by
 queue.acm.org

A survey of powerful visualization techniques,
from the obvious to the obscure.

by Jeffrey Heer, Michael Bostock, and Vadim Ogievetsky

A Tour
Through the
Visualization
Zoo

help engage more diverse audiences in
exploration and analysis. The challenge
is to create effective and engaging visu-
alizations that are appropriate to the
data.

Creating a visualization requires a
number of nuanced judgments. One
must determine which questions to
ask, identify the appropriate data, and
select effective visual encodings to map
data values to graphical features such
as position, size, shape, and color. The
challenge is that for any given data set
the number of visual encodings—and
thus the space of possible visualization
designs—is extremely large. To guide
this process, computer scientists, psy-

of valuable information on how we
conduct our businesses, governments,
and personal lives. To put the informa-
tion to good use, we must find ways to
explore, relate, and communicate the
data meaningfully.

The goal of visualization is to aid our
understanding of data by leveraging the
human visual system’s highly tuned
ability to see patterns, spot trends, and
identify outliers. Well-designed visual
representations can replace cognitive
calculations with simple perceptual in-
ferences and improve comprehension,
memory, and decision making. By mak-
ing data more accessible and appeal-
ing, visual representations may also

Thanks to adva n ces in sensing, networking, and
data management, our society is producing digital
information at an astonishing rate. According to
one estimate, in 2010 alone we will generate 1,200
exabytes—60 million times the content of the Library
of Congress. Within this deluge of data lies a wealth

http://queue.acm.org

60 communications of the acm | june 2010 | vol. 53 | no. 6

practice

chologists, and statisticians have stud-
ied how well different encodings facili-
tate the comprehension of data types
such as numbers, categories, and net-
works. For example, graphical percep-
tion experiments find that spatial po-
sition (as in a scatter plot or bar chart)
leads to the most accurate decoding of
numerical data and is generally prefer-
able to visual variables such as angle,
one-dimensional length, two-dimen-
sional area, three-dimensional volume,
and color saturation. Thus, it should
be no surprise that the most common
data graphics, including bar charts,
line charts, and scatter plots, use posi-
tion encodings. Our understanding of
graphical perception remains incom-
plete, however, and must appropriately
be balanced with interaction design
and aesthetics.

This article provides a brief tour
through the “visualization zoo,” show-
casing techniques for visualizing and
interacting with diverse data sets. In
many situations, simple data graphics
will not only suffice, they may also be
preferable. Here we focus on a few of
the more sophisticated and unusual
techniques that deal with complex data
sets. After all, you don’t go to the zoo to
see chihuahuas and raccoons; you go
to admire the majestic polar bear, the
graceful zebra, and the terrifying Suma-
tran tiger. Analogously, we cover some
of the more exotic (but practically use-
ful) forms of visual data representation,
starting with one of the most common,
time-series data; continuing on to sta-
tistical data and maps; and then com-
pleting the tour with hierarchies and
networks. Along the way, bear in mind
that all visualizations share a common
“DNA”—a set of mappings between
data properties and visual attributes
such as position, size, shape, and col-
or—and that customized species of vi-
sualization might always be construct-
ed by varying these encodings.

Each visualization shown here is
accompanied by an online interactive
example that can be viewed at the URL
displayed beneath it. The live examples
were created using Protovis, an open
source language for Web-based data
visualization. To learn more about how
a visualization was made (or to copy
and paste it for your own use), see the
online version of this article available
on the ACM Queue site at http://queue.

-1.0x

0.0x

1.0x

2.0x

3.0x

4.0x

5.0x

G
ai

n
 /

 L
os

s
Fa

ct
or

S&P 500
MSFT

AMZN

IBM

AAPL

GOOG

Jan 2005

Time-Series Data: F igure 1a. Index chart of selected technology stocks, 2000–2010.

Source: Yahoo! Finance; http://hci.stanford.edu/jheer/files/zoo/ex/time/index-chart.html

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Agriculture

Business services

Construction

Education and Health

Finance
Government
Information

Leisure and hospitality

Manufacturing
Mining and Extraction
Other
Self-employed
Transportation and Utilities

Wholesale and Retail Trade

Time-Series Data: F igure 1b. Stacked graph of unemployed U.S. workers by industry, 2000–2010.

Source: U.S. Bureau of Labor Statistics; http://hci.stanford.edu/jheer/files/zoo/ex/time/stack.html

Self-employed Agriculture

Other Leisure and hospitality

Education and Health Business services

Finance Information

Transportation and Utilities Wholesale and Retail Trade

Manufacturing Construction

Mining and Extraction Government

Time-Series Data: F igure 1c. Small multiples of unemployed U.S. workers, normalized by industry, 2000–2010.

Source: U.S. Bureau of Labor Statistics; http://hci.stanford.edu/jheer/files/zoo/ex/time/multiples.html

Time-Series Data: F igure 1d. Horizon graphs of U.S. unemployment rate, 2000–2010.

Source: U.S. Bureau of Labor Statistics; http://hci.stanford.edu/jheer/files/zoo/ex/time/horizon.html

http://hci.stanford.edu/jheer/files/zoo/ex/time/stack.html
http://hci.stanford.edu/jheer/files/zoo/ex/time/horizon.html
http://queue.acm.org/detail.cfm?id=1780401/
http://hci.stanford.edu/jheer/files/zoo/ex/time/index-chart.html

practice

june 2010 | vol. 53 | no. 6 | communications of the acm 61

acm.org/detail.cfm?id=1780401/. All
example source code is released into
the public domain and has no restric-
tions on reuse or modification. Note,
however, that these examples will work
only on a modern, standards-compli-
ant browser supporting scalable vector
graphics (SVG). Supported browsers in-
clude recent versions of Firefox, Safari,
Chrome, and Opera. Unfortunately, In-
ternet Explorer 8 and earlier versions
do not support SVG and so cannot be
used to view the interactive examples.

Time-Series Data
 Sets of values changing over time—or,
time-series data—is one of the most
common forms of recorded data. Time-
varying phenomena are central to many
domains such as finance (stock prices,
exchange rates), science (temperatures,
pollution levels, electric potentials),
and public policy (crime rates). One of-
ten needs to compare a large number
of time series simultaneously and can
choose from a number of visualizations
to do so.

Index Charts. With some forms of
time-series data, raw values are less im-
portant than relative changes. Consider
investors who are more interested in
a stock’s growth rate than its specific
price. Multiple stocks may have dra-
matically different baseline prices but
may be meaningfully compared when
normalized. An index chart is an inter-
active line chart that shows percentage
changes for a collection of time-series
data based on a selected index point.
For example, the image in Figure 1a
shows the percentage change of select-
ed stock prices if purchased in January
2005: one can see the rocky rise enjoyed
by those who invested in Amazon, Ap-
ple, or Google at that time.

Stacked Graphs. Other forms of
time-series data may be better seen in
aggregate. By stacking area charts on
top of each other, we arrive at a visual
summation of time-series values—a
stacked graph. This type of graph (some-
times called a stream graph) depicts
aggregate patterns and often supports
drill-down into a subset of individual
series. The chart in Figure 1b shows the
number of unemployed workers in the
U.S. over the past decade, subdivided by
industry. While such charts have prov-
en popular in recent years, they do have
some notable limitations. A stacked

graph does not support negative num-
bers and is meaningless for data that
should not be summed (temperatures,
for example). Moreover, stacking may
make it difficult to accurately interpret
trends that lie atop other curves. Inter-
active search and filtering is often used
to compensate for this problem.

Small Multiples. In lieu of stacking,
multiple time series can be plotted
within the same axes, as in the index
chart. Placing multiple series in the
same space may produce overlapping
curves that reduce legibility, however.
An alternative approach is to use small
multiples: showing each series in its
own chart. In Figure 1c we again see
the number of unemployed workers,
but normalized within each industry
category. We can now more accurately
see both overall trends and seasonal
patterns in each sector. While we are
considering time-series data, note that
small multiples can be constructed for
just about any type of visualization: bar
charts, pie charts, maps, among others.
This often produces a more effective vi-
sualization than trying to coerce all the
data into a single plot.

Horizon Graphs. What happens
when you want to compare even more
time series at once? The horizon graph
is a technique for increasing the data
density of a time-series view while pre-
serving resolution. Consider the five
graphs shown in Figure 1d. The first
one is a standard area chart, with posi-
tive values colored blue and negative
values colored red. The second graph
“mirrors” negative values into the same
region as positive values, doubling the
data density of the area chart. The third
chart—a horizon graph—doubles the
data density yet again by dividing the
graph into bands and layering them
to create a nested form. The result is
a chart that preserves data resolution
but uses only a quarter of the space. Al-
though the horizon graph takes some
time to learn, it has been found to be
more effective than the standard plot
when the chart sizes get quite small.

Statistical Distributions
Other visualizations have been de-
signed to reveal how a set of numbers
is distributed and thus help an analyst
better understand the statistical prop-
erties of the data. Analysts often want
to fit their data to statistical models, ei-

ther to test hypotheses or predict future
values, but an improper choice of mod-
el can lead to faulty predictions. Thus,
one important use of visualizations is
exploratory data analysis: gaining in-
sight into how data is distributed to
inform data transformation and mod-
eling decisions. Common techniques
include the histogram, which shows the
prevalence of values grouped into bins,
and the box-and-whisker plot, which can
convey statistical features such as the
mean, median, quartile boundaries, or
extreme outliers. In addition, a number
of other techniques exist for assessing
a distribution and examining interac-
tions between multiple dimensions.

Stem-and-Leaf Plots. For assessing a
collection of numbers, one alternative
to the histogram is the stem-and-leaf
plot. It typically bins numbers accord-
ing to the first significant digit, and then
stacks the values within each bin by the
second significant digit. This minimal-
istic representation uses the data itself
to paint a frequency distribution, re-
placing the “information-empty” bars
of a traditional histogram bar chart and
allowing one to assess both the overall
distribution and the contents of each
bin. In Figure 2a, the stem-and-leaf plot
shows the distribution of completion
rates of workers completing crowd-
sourced tasks on Amazon’s Mechani-
cal Turk. Note the multiple clusters:
one group clusters around high levels
of completion (99%–100%); at the oth-
er extreme is a cluster of Turkers who
complete only a few tasks (~10%) in a
group.

Q-Q Plots. Though the histogram
and the stem-and-leaf plot are common
tools for assessing a frequency distribu-
tion, the Q-Q (quantile-quantile) plot is a
more powerful tool. The Q-Q plot com-
pares two probability distributions by
graphing their quantiles against each
other. If the two are similar, the plotted
values will lie roughly along the central
diagonal. If the two are linearly related,
values will again lie along a line, though
with varying slope and intercept.

Figure 2b shows the same Mechani-
cal Turk participation data compared
with three statistical distributions.
Note how the data forms three distinct
components when compared with uni-
form and normal (Gaussian) distribu-
tions: this suggests that a statistical
model with three components might

http://queue.acm.org/detail.cfm?id=1780401/

62 communications of the acm | june 2010 | vol. 53 | no. 6

practice

be more appropriate, and indeed we
see in the final plot that a fitted mixture
of three normal distributions provides
a better fit. Though powerful, the Q-Q
plot has one obvious limitation in that
its effective use requires that viewers
possess some statistical knowledge.

SPLOM (Scatter Plot Matrix). Other
visualization techniques attempt to
represent the relationships among
multiple variables. Multivariate data
occurs frequently and is notoriously
hard to represent, in part because of
the difficulty of mentally picturing data
in more than three dimensions. One
technique to overcome this problem is
to use small multiples of scatter plots
showing a set of pairwise relations
among variables, thus creating the SP-
LOM (scatter plot matrix). A SPLOM en-
ables visual inspection of correlations
between any pair of variables.

In Figure 2c a scatter plot matrix is
used to visualize the attributes of a da-
tabase of automobiles, showing the re-
lationships among horsepower, weight,
acceleration, and displacement. Addi-
tionally, interaction techniques such
as brushing-and-linking—in which a
selection of points on one graph high-
lights the same points on all the other
graphs—can be used to explore pat-
terns within the data.

Parallel Coordinates. As shown in
Figure 2d, parallel coordinates (||-co-
ord) take a different approach to visu-
alizing multivariate data. Instead of
graphing every pair of variables in two
dimensions, we repeatedly plot the data
on parallel axes and then connect the
corresponding points with lines. Each
poly-line represents a single row in the
database, and line crossings between
dimensions often indicate inverse cor-
relation. Reordering dimensions can
aid pattern-finding, as can interactive
querying to filter along one or more di-
mensions. Another advantage of paral-
lel coordinates is that they are relatively
compact, so many variables can be
shown simultaneously.

Maps
Although a map may seem a natural
way to visualize geographical data, it
has a long and rich history of design.
Many maps are based upon a carto-
graphic projection: a mathematical
function that maps the 3D geometry
of the Earth to a 2D image. Other maps

0 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 6 7 8 8 8 8 8 8 9

1 0 0 0 0 1 1 1 1 2 2 3 3 3 3 4 4 4 4 5 5 6 7 7 8 9 9 9 9 9

2 0 0 1 1 1 5 7 8 9

3 0 0 1 2 3 3 3 4 6 6 8 8

4 0 0 1 1 1 1 3 3 4 5 5 5 6 7 8 9

5 0 2 3 5 6 7 7 7 9

6 1 2 6 7 8 9 9 9

7 0 0 0 1 6 7 9

8 0 0 1 2 3 4 4 4 4 4 4 4 5 6 7 7 7 9

9 1 3 3 5 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Statistical Distributions:  Figure 2a. Stem-and-leaf plot of Mechanical Turk participation rates.

Source: Stanford Visualization Group; http://hci.stanford.edu/jheer/files/zoo/ex/stats/stem-and-leaf.html

Uniform Distribution

0%

50%

100%

0% 50% 100%

Gaussian Distribution
0% 50% 100%

Fitted Mixture of 3 Gaussians
0% 50% 100%T

ur
ke

r
T

as
k

G
ro

up
 C

om
pl

et
io

n
%

Statistical Distributions:  Figure 2b. Q-Q plots of Mechanical Turk participation rates.

Source: Stanford Visualization Group; http://hci.stanford.edu/jheer/files/zoo/ex/stats/qqplot.html

cylinders displacement weight horsepower acceleration mpg year

3 68 cubic inch 1613 lbs 46 hp 8 (0 to 60mph) 9 miles/gallon 70

8 455 cubic inch 5140 lbs 230 hp 25 (0 to 60mph) 47 miles/gallon 82

Statistical Distributions:  Figure 2d. Parallel coordinates of automobile data.

Source: GGobi; http://hci.stanford.edu/jheer/files/zoo/ex/stats/parallel.html

horsepower

2000
3000

4000
5000 10 15 20

100
200

300
400

50

100

150

200

2000

3000

4000

5000

weight

2000

3000

4000

5000

10

15

20

acceleration

10

15

20

50 100
150

200

100

200

300

400

2000
3000

4000
5000

10 15 20

displacement

United States European Union Japan

Statistical Distributions:  Figure 2c. Scatter plot matrix of automobile data.

Source: GGobi; http://hci.stanford.edu/jheer/files/zoo/ex/stats/splom.html

http://hci.stanford.edu/jheer/files/zoo/ex/stats/stem-and-leaf.html
http://hci.stanford.edu/jheer/files/zoo/ex/stats/qqplot.html
http://hci.stanford.edu/jheer/files/zoo/ex/stats/splom.html
http://hci.stanford.edu/jheer/files/zoo/ex/stats/parallel.html

practice

june 2010 | vol. 53 | no. 6 | communications of the acm 63

knowingly distort or abstract geo-
graphic features to tell a richer story or
highlight specific data.

Flow Maps. By placing stroked lines
on top of a geographic map, a flow map
can depict the movement of a quantity
in space and (implicitly) in time. Flow
lines typically encode a large amount of
multivariate information: path points,
direction, line thickness, and color can
all be used to present dimensions of
information to the viewer. Figure 3a is
a modern interpretation of Charles Mi-
nard’s depiction of Napoleon’s ill-fated
march on Moscow. Many of the greatest
flow maps also involve subtle uses of
distortion, as geography is bended to
accommodate or highlight flows.

Choropleth Maps. Data is often col-
lected and aggregated by geographi-
cal areas such as states. A standard
approach to communicating this data
is to use a color encoding of the geo-
graphic area, resulting in a choropleth
map. Figure 3b uses a color encoding
to communicate the prevalence of obe-
sity in each state in the U.S. Though
this is a widely used visualization tech-
nique, it requires some care. One com-
mon error is to encode raw data values
(such as population) rather than using
normalized values to produce a densi-
ty map. Another issue is that one’s per-
ception of the shaded value can also be
affected by the underlying area of the
geographic region.

Graduated Symbol Maps. An alterna-
tive to the choropleth map, the gradu-
ated symbol map places symbols over an
underlying map. This approach avoids
confounding geographic area with data
values and allows for more dimensions
to be visualized (for example, symbol
size, shape, and color). In addition to
simple shapes such as circles, gradu-
ated symbol maps may use more com-
plicated glyphs such as pie charts. In
Figure 3c, total circle size represents a
state’s population, and each slice indi-
cates the proportion of people with a
specific BMI rating.

Cartograms. A cartogram distorts the
shape of geographic regions so that the
area directly encodes a data variable.
A common example is to redraw every
country in the world sizing it propor-
tionally to population or gross domes-
tic product. Many types of cartograms
have been created; in Figure 3d we use
the Dorling cartogram, which represents

0°
-10°
-20°
-30°

18 Oct24 Oct
09 Nov

14 Nov
24 Nov

28 Nov01 Dec
06 Dec07 Dec

Maps:  Figure 3a. Flow map of Napoleon’s March on Moscow, based on the work of Charles Minard.

http://hci.stanford.edu/jheer/files/zoo/ex/maps/napoleon.html

WY

WI

WV

WA

OR

NV CO

SD

ND
MT

ID

UT

NMAZ

CA

NE

KS

OK

TX LA

MS AL GA

AR
TN

SC

NC

FL

MN

IA

MO

IL

KY

IN

MI

OH

VA

DEMD

PA
NJ

NY

CT RI
MA

NH

ME

VT

14 - 17%

17 - 20%

20 - 23%

23 - 26%

26 - 29%

29 - 32%

32 - 35%

Maps:  Figure 3b. Choropleth map of obesity in the U.S., 2008.

Source: National Center for Chronic Disease Prevention and Health Promotion; http://hci.stanford.edu/jheer/files/zoo/ex/maps/choropleth.html

Obese

Overweight

Normal

Maps:  Figure 3c. Graduated symbol map of obesity in the U.S., 2008.

Source: National Center for Chronic Disease Prevention and Health Promotion; http://hci.stanford.edu/jheer/files/zoo/ex/maps/symbol.html

WY

WI

WV

WA

OR

NV
CO

SD

ND
MT

ID

UT

NMAZ
CA

NE

KS

OK

TX

LA

MS

AL

GA

AR
TN

SC

NC

FL

MN

IA

MO

IL

KY

IN

MI

OH

VA

DEMD

PA

NJ

NY

CT

RI

MA

NH

ME

VT

10M

1M

5M

100K14 - 17%
17 - 20%
20 - 23%
23 - 26%
26 - 29%
29 - 32%
32 - 35%

Maps:  Figure 3d. Dorling cartogram of obesity in the U.S., 2008.

Source: National Center for Chronic Disease Prevention and Health Promotion; http://hci.stanford.edu/jheer/files/zoo/ex/maps/cartogram.html

http://hci.stanford.edu/jheer/files/zoo/ex/maps/napoleon.html
http://hci.stanford.edu/jheer/files/zoo/ex/maps/choropleth.html
http://hci.stanford.edu/jheer/files/zoo/ex/maps/symbol.html
http://hci.stanford.edu/jheer/files/zoo/ex/maps/cartogram.html

64 communications of the acm | june 2010 | vol. 53 | no. 6

practice

each geographic region with a sized
circle, placed so as to resemble the true
geographic configuration. In this ex-
ample, circular area encodes the total
number of obese people per state, and
color encodes the percentage of the to-
tal population that is obese.

Hierarchies
While some data is simply a flat collec-
tion of numbers, most can be organized
into natural hierarchies. Consider: spa-
tial entities, such as counties, states,
and countries; command structures
for businesses and governments; soft-
ware packages and phylogenetic trees.
Even for data with no apparent hierar-
chy, statistical methods (for example,
k-means clustering) may be applied to
organize data empirically. Special visu-
alization techniques exist to leverage
hierarchical structure, allowing rapid
multiscale inferences: micro-observa-
tions of individual elements and mac-
ro-observations of large groups.

Node-link diagrams. The word tree
is used interchangeably with hierarchy,
as the fractal branches of an oak might
mirror the nesting of data. If we take a
two-dimensional blueprint of a tree, we
have a popular choice for visualizing
hierarchies: a node-link diagram. Many
different tree-layout algorithms have
been designed; the Reingold-Tilford al-
gorithm, used in Figure 4a on a package
hierarchy of software classes, produces
a tidy result with minimal wasted space.

An alternative visualization scheme
is the dendrogram (or cluster) algorithm,
which places leaf nodes of the tree at the
same level. Thus, in the diagram in Fig-
ure 4b, the classes (orange leaf nodes)
are on the diameter of the circle, with
the packages (blue internal nodes) in-
side. Using polar rather than Cartesian
coordinates has a pleasing aesthetic,
while using space more efficiently.

We would be remiss to overlook
the indented tree, used ubiquitously
by operating systems to represent file
directories, among other applications
(see Figure 4c). Although the indented
tree requires excessive vertical space
and does not facilitate multiscale infer-
ences, it does allow efficient interactive
exploration of the tree to find a specific
node. In addition, it allows rapid scan-
ning of node labels, and multivariate
data such as file size can be displayed
adjacent to the hierarchy.

fl
are

analytics

cluster

A
gglom

erativeC
luster

C
om

m
unityS

tructure
H

ierarchicalC
luster

M
ergeE

dge

graph

B
etw

eennessC
entrality

LinkD
istance

M
axFlow

M
inC

ut
S

hortestP
aths

S
panningT

ree

optim
ization

A
spectR

atioB
anker

anim
ate

E
asing

FunctionS
equence

IS
chedulable

P
arallel

P
ause

S
cheduler

S
equence

T
ransition

T
ransitionE

vent
T

ransitioner
T

w
een

interpolate

A
rrayInterpolator

C
olorInterpolator

D
ateInterpolator

Interpolator
M

atrixInterpolator
N

um
berInterpolator

O
bjectInterpolator

P
ointInterpolator

R
ectangleInterpolator

data

D
ataField

D
ataS

chem
a

D
ataS

et
D

ataS
ource

D
ataT

able
D

ataU
til

converters

C
onverters

D
elim

itedT
extC

onverter
G

raphM
LC

onverter
ID

ataC
onverter

J
S

O
N

C
onverter

display

D
irtyS

prite
LineS

prite
R

ectS
prite

T
extS

prite

fl
ex

FlareV
is

physics

D
ragForce

G
ravityForce

IForce
N

B
odyForce

P
article

S
im

ulation
S

pring
S

pringForce

query

A
ggregateE

xpression
A

nd
A

rithm
etic

A
verage

B
inaryE

xpression
C

om
parison

C
om

positeE
xpression

C
ount

D
ateU

til
D

istinct
E

xpression
E

xpressionIterator
Fn If IsA
Literal
M

atch
M

axim
um

M
inim

um
N

ot
O

r
Q

uery
R

ange
S

tringU
til

S
um

V
ariable

V
ariance

Xor
m

ethods

_ add
and
average
count
distinct
div
eq fn gt gte
iff isa
lt lte
m

ax
m

in
m

od
m

ul
neq
not
or orderby
range
select
stddev
sub
sum
update
variance
w

here
xor

scale

IS
caleM

ap
LinearS

cale
LogS

cale
O

rdinalS
cale

Q
uantileS

cale
Q

uantitativeS
cale

R
ootS

cale
S

cale
S

caleT
ype

T
im

eS
cale

util

A
rrays

C
olors

D
ates

D
isplays

Filter
G

eom
etry

IE
valuable

IP
redicate

IV
alueP

roxy
M

aths
O

rientation
P

roperty
S

hapes
S

ort
S

tats
S

trings
heap

FibonacciH
eap

H
eapN

ode

m
ath

D
enseM

atrix
IM

atrix
S

parseM
atrix

palette

C
olorP

alette
P

alette
S

hapeP
alette

S
izeP

alette

vis

V
isualization

axis

A
xes

A
xis

A
xisG

ridLine
A

xisLabel
C

artesianA
xes

controls

A
nchorC

ontrol
C

lickC
ontrol

C
ontrol

C
ontrolList

D
ragC

ontrol
E

xpandC
ontrol

H
overC

ontrol
IC

ontrol
P

anZoom
C

ontrol
S

electionC
ontrol

T
ooltipC

ontrol

data

D
ata

D
ataList

D
ataS

prite
E

dgeS
prite

N
odeS

prite
S

caleB
inding

T
ree

T
reeB

uilder
render

A
rrow

T
ype

E
dgeR

enderer
IR

enderer
S

hapeR
enderer

events

D
ataE

vent
S

electionE
vent

T
ooltipE

vent
V

isualizationE
vent

legend
Legend
LegendItem
LegendR

ange

operator

IO
perator

O
perator

O
peratorList

O
peratorS

equence
O

peratorS
w

itch
S

ortO
perator

distortion
B

ifocalD
istortion

D
istortion

FisheyeD
istortion

encoder

C
olorE

ncoder
E

ncoder
P

ropertyE
ncoder

S
hapeE

ncoder
S

izeE
ncoder

filter
FisheyeT

reeFilter
G

raphD
istanceFilter

V
isibilityFilter

label
Labeler
R

adialLabeler
S

tackedA
reaLabeler

layout

A
xisLayout

B
undledE

dgeR
outer

C
ircleLayout

C
ircleP

ackingLayout
D

endrogram
Layout

ForceD
irectedLayout

IcicleT
reeLayout

IndentedT
reeLayout

Layout
N

odeLinkT
reeLayout

P
ieLayout

R
adialT

reeLayout
R

andom
Layout

S
tackedA

reaLayout
T

reeM
apLayout

Hierarchies:  Figure 4a. Radial node-link diagram of the Flare package hierarchy.

http://hci.stanford.edu/jheer/files/zoo/ex/hierarchies/tree.html

933KB
47KB
14KB
25KB

6KB
97KB
29KB
23KB

4KB
29KB

1KB
1KB
0KB

10KB
2KB
9KB
2KB
1KB

87KB
30KB

161KB
422KB

16KB
33KB

flare
analytics

cluster
graph
optimization

animate
data
display
flex
physics

DragForce
GravityForce
IForce
NBodyForce
Particle
Simulation
Spring
SpringForce

query
scale
util
vis

Visualization
axis

43KB
107KB

6KB
35KB

179KB
1KB
2KB
5KB
4KB
2KB
1KB

13KB
14KB
11KB
16KB

105KB
6KB
3KB
9KB

11KB
4KB
8KB
4KB
3KB

controls
data
events
legend
operator

IOperator
Operator
OperatorList
OperatorSequence
OperatorSwitch
SortOperator
distortion
encoder
filter
label
layout

AxisLayout
BundledEdgeRouter
CircleLayout
CirclePackingLayout
DendrogramLayout
ForceDirectedLayout
IcicleTreeLayout
IndentedTreeLayout

Hierarchies:  Figure 4c. Indented tree layout of the Flare package hierarchy.

http://hci.stanford.edu/jheer/files/zoo/ex/hierarchies/indent.html

flare

an
al

yt
ic

s

cl
us

te
r

A
gg

lo
m

er
at

iv
eC

lu
st

er
C

om
m

un
ity

S
tr

uc
tu

re
H

ie
ra

rc
hi

ca
lC

lu
st

er
M

er
ge

E
dg

e
gr

ap
h

B
et

w
ee

nn
es

sC
en

tr
al

ity
Li

nk
D

is
ta

nc
e

M
ax

Fl
ow

M
in

C
ut

S
ho

rt
es

tP
at

hs
S

pa
nn

in
gT

re
e

op
tim

iz
at

io
n

A
sp

ec
tR

at
io

B
an

ke
r

an
im

at
e

Ea
si

ng
Fu

nc
tio

nS
eq

ue
nc

e

IS
ch

ed
ul

ab
le

Pa
ra

lle
l

Pa
us

e
Sc

he
du

le
r

Se
qu

en
ce

Tr
an

si
tio

n
Tr

an
si

tio
nE

ve
nt

Tr
an

si
tio

ne
r

Tw
ee

n

inte
rp

ol
at

e

Arr
ay

In
te

rp
ol

at
or

Col
or

In
te

rp
ol

at
or

Dat
eI

nt
er

po
la

to
r

In
te

rp
ol

at
or

M
at

rix
In

te
rp

ol
at

or

Num
ber

In
te

rp
olat

or

Object
Inte

rp
olato

r

PointI
nte

rp
olato

r

RectangleInterp
olator

data

DataField

DataSchema

DataSet

DataSource

DataTable

DataUtil

converters

Converte
rs

Delim
itedTextConverter

GraphMLConverter

IDataConverter

JSONConverter

display

DirtySprite

LineSprite

RectSprite

TextSprite

flex
FlareVis

physics

DragForce
GravityForce

IForce
NBodyForce
Particle
Simulation
Spring
SpringForce

query

AggregateExpressionAnd
ArithmeticAverageBinaryExpressionComparisonCompositeExpression

CountDateUtilDistinctExpressionExpressionIterator

FnIfIsALiteralMatchMaximum
Minimum

NotOrQueryRange
StringUtil

SumVariable
Variance

Xor

m
ethods _addandaverage

count

distinct

diveqfngtgteiffisaltltem
ax

m
in

m
od

m
ul

neq
not
ororderby
range
select
stddev
sub
sum
update
variance
w

here

xo
r

sc
al

e

IS
ca

le
M

ap
Li

ne
ar

S
ca

le
Lo

gS
ca

le
O

rd
in

al
S

ca
le

Q
ua

nt
ile

S
ca

le

Q
ua

nt
ita

tiv
eS

ca
le

R
oo

tS
ca

le
S

ca
le

S
ca

le
T

yp
e

Ti
m

eS
ca

le

ut
il

A
rr

ay
s

C
ol

or
s

D
at

es

D
is

pl
ay

s
Fi

lt
er

G
eo

m
et

ry

IE
va

lu
ab

le

IP
re

di
ca

te

IV
al

ue
Pr

ox
y

M
at

hs

Orie
nt

at
io

n

Pr
op

er
ty

Sh
ap

esSor
t

Sta
ts

Stri
ng

s

hea
p

Fibon
ac

ciH
ea

p

Hea
pNode

math

Dense
Matri

x
IMatri

x

SparseMatri
x

palette

ColorP
alettePalette

ShapePalette

SizePalette

vis

Visualization

axis

AxesAxis
AxisGridLine

AxisLabel

CartesianAxes

controls

AnchorControl
ClickControlControlControlListDragControlExpandControlHoverControlIControlPanZoomControlSelectionControlTooltipControl

data

Data
DataList

DataSprite
EdgeSprite
NodeSprite

ScaleBinding
Tree

TreeBuilder
render

ArrowType

EdgeRenderer

IRenderer

ShapeRenderer events

DataEvent

SelectionEvent

TooltipEvent

VisualizationEvent
legend

Legend

LegendItem

LegendRange

operator

IOperator

Operator

OperatorList

OperatorSequence

OperatorSwitch

SortOperator

distortion

BifocalDistortion

Distortion

FisheyeDistortion

encoder

ColorEncoder
Encoder

PropertyEncoder

ShapeEncoder

SizeEncoder

filter

FisheyeTreeFilter

GraphDistanceFilter

VisibilityFilter

label

Labeler

RadialLabeler

StackedA
reaLabeler

layout

A
xisLayout

B
undledEdgeR

outer
C

ircleLayout

C
ircleP

ackingLayout
D

endrogram
Layout

ForceD
irectedLayout

IcicleT
reeLayout

IndentedT
reeLayout

Layout
N

odeLinkT
reeLayout
P

ieLayout
R

adialT
reeLayout

R
andom

Layout
S

tackedA
reaLayout

T
reeM

apLayout

Hierarchies:  Figure 4b. Cartesian node-link diagram of the Flare package hierarchy.

http://hci.stanford.edu/jheer/files/zoo/ex/hierarchies/cluster-radial.html

http://hci.stanford.edu/jheer/files/zoo/ex/hierarchies/cluster-radial.html
http://hci.stanford.edu/jheer/files/zoo/ex/hierarchies/indent.html
http://hci.stanford.edu/jheer/files/zoo/ex/hierarchies/tree.html

practice

june 2010 | vol. 53 | no. 6 | communications of the acm 65

Adjacency Diagrams. The adjacency
diagram is a space-filling variant of the
node-link diagram; rather than draw-
ing a link between parent and child in
the hierarchy, nodes are drawn as solid
areas (either arcs or bars), and their
placement relative to adjacent nodes
reveals their position in the hierarchy.
The icicle layout in Figure 4d is similar
to the first node-link diagram in that
the root node appears at the top, with
child nodes underneath. Because the
nodes are now space-filling, however,
we can use a length encoding for the
size of software classes and packages.
This reveals an additional dimension
that would be difficult to show in a
node-link diagram.

The sunburst layout, shown in Fig-
ure 4e, is equivalent to the icicle lay-
out, but in polar coordinates. Both are
implemented using a partition layout,
which can also generate a node-link
diagram. Similarly, the previous cluster
layout can be used to generate a space-
filling adjacency diagram in either Car-
tesian or polar coordinates.

Enclosure Diagrams. The enclosure
diagram is also space filling, using
containment rather than adjacency to
represent the hierarchy. Introduced by
Ben Shneiderman in 1991, a treemap
recursively subdivides area into rect-
angles. As with adjacency diagrams,
the size of any node in the tree is
quickly revealed. The example shown
in Figure 4f uses padding (in blue) to
emphasize enclosure; an alternative
saturation encoding is sometimes
used. Squarified treemaps use approxi-
mately square rectangles, which offer
better readability and size estimation
than a naive “slice-and-dice” subdivi-
sion. Fancier algorithms such as Vo-
ronoi and jigsaw treemaps also exist
but are less common.

By packing circles instead of sub-
dividing rectangles, we can produce
a different sort of enclosure diagram
that has an almost organic appear-
ance. Although it does not use space
as efficiently as a treemap, the “wast-
ed space” of the circle-packing layout,
shown in Figure 4g, effectively reveals
the hierarchy. At the same time, node
sizes can be rapidly compared using
area judgments.

Networks
In addition to organization, one aspect

flare

analytics

cluster

graph

optimization

animate

interpolate

data

converters

display

flex

physics

query

methods

scale

util heap

math

palette

vis

axis

controls data

render

events

legend

operator
distortion

encoder

filter
label

layout

Hierarchies:  Figure 4g. Nested circles layout of the Flare package hierarchy.

http://hci.stanford.edu/jheer/files/zoo/ex/hierarchies/pack.html
Source: The Flare Toolkit http://flare.prefuse.org

fl
ar

e

an
al

yt
ic

s

cl
us

te
r

gr
ap

h

an
im

at
e

E
as

in
g

T
ra

ns
iti

on

T
ra

ns
iti

on
er

in
te

rp
ol

at
e

In
te

rp
ol

at
or

da
ta

co
nv

er
te

rs
G

ra
ph

M
LC

on
ve

rt
er

di
sp

la
y

D
ir

ty
S

pr
ite

T
ex

tS
pr

ite

ph
ys

ic
s

N
B

od
yF

or
ce

S
im

ul
at

io
n

qu
er

y

Q
ue

ry

m
et

ho
ds

sc
al

e

ut
il

A
rr

ay
s

C
ol

or
s

D
at

es

D
is

pl
ay

s

G
eo

m
et

ry

M
at

hs

S
ha

pe
s

S
tr

in
gs

he
ap

Fi
bo

na
cc

iH
ea

p

m
at

h

pa
le

tt
e

vi
s

V
is

ua
liz

at
io

n

ax
is

A
xi

s

co
nt

ro
ls

T
oo

lt
ip

C
on

tr
ol

da
ta

D
at

a

D
at

aL
is

t

D
at

aS
pr

ite

N
od

eS
pr

ite

S
ca

le
B

in
di

ng

T
re

eB
ui

ld
er

re
nd

er

le
ge

nd
Le

ge
nd

Le
ge

nd
R

an
ge

op
er

at
or

di
st

or
tio

n

en
co

de
r

fil
te

r

la
be

l
La

be
le

r

la
yo

ut

C
ir

cl
eL

ay
ou

t

C
ir

cl
eP

ac
ki

ng
La

yo
ut

Fo
rc

eD
ir

ec
te

dL
ay

ou
t

N
od

eL
in

kT
re

eL
ay

ou
t

R
ad

ia
lT

re
eL

ay
ou

t

S
ta

ck
ed

A
re

aL
ay

ou
t

T
re

eM
ap

La
yo

ut

Hierarchies:  Figure 4d. Icicle tree layout of the Flare package hierarchy.

http://hci.stanford.edu/jheer/files/zoo/ex/hierarchies/icicle.html

flare

an
al

yt
ic

s
cl

us
te

r

gr
ap

h
M

ax
Fl

ow
M

in
C

ut
an

im
at

e
Ea

si
ng

Tr
an

sit
io

n
Tra

ns
iti

on
er

interpolate

Interpolator

data

converters

GraphMLConverter

display

DirtySprite

TextSprite

physics

NBodyForce

Simulation

query

Query

methods

scale

util

Arrays

Colors

Dates

Displays

G
eom

etry

M
aths

S
hapes

S
tr

in
gs

he
ap

Fi
bo

na
cc

iH
ea

p
m

at
h

pa
le

tt
e

vis

Vi
su

al
iz

at
io

n

ax
is

A
xi

s
co

ntro
ls

Selectio
nContro

l

Tooltip
Contro

l

data

Data

DataList
DataSprite

NodeSprite

ScaleBinding

TreeBuilder

render

legend

Legend

LegendRange

operator

distortion

encoder

filter

label

Labeler

layout

CircleLayout
CirclePackingLayout

ForceD
irectedLayout

Layout
N

odeLinkTreeLayout

R
adialT

reeLayout

S
tackedA

reaLayout

T
reeM

apLayout

Hierarchies:  Figure 4e. Sunburst (radial space-filling) layout of the Flare package hierarchy.

http://hci.stanford.edu/jheer/files/zoo/ex/hierarchies/sunburst.html

flare

analyticstics

cluster
omerativemunityStru

HierarchicalCluste

MergeEdge
analytgraph

weennessCen
LinkDistanc

MaxFlowMinChortestPat

SpanningTree optimizationAspectRatioBanker

animate
Easing

FunctionSequence chedul

Parallel

Pause

Scheduler

Sequence

Transition

sition

Transitioner

Tween

interpolateyInterp

lorInterpo
Inter

Interpolator

trixInterpo

berInter

ectInterp

tInter

angleInter

data

DataFie

DataSchema

DataSe

DataSource
ataTa

DataUtil

data

converters

nver

itedTextCo

aphMLConve

ataConv

SONConver display

DirtySprite

LineSprite

RectSprit

TextSprite

flexFlareVis

physics

ragFor

avityFor

Fo

NBodyForce

Particle

Simulation

Spring

SpringForc

query

egateExpr

And

Arithmetic

Average

naryExpress

Comparison

mpositeExpre

Coun

DateUtil

Distinc

Expression

pressionIter

Fn

If IsA

Literal

Match

aximnim

Not

Or

Query

Range

StringUtil

Sum

VariablVariance

Xor

methods

_

add

and
era
coun

stin

div eq

fn

gt

gteiff

isa

lt
lte

max
min

mod
mul

neq not

or
rder

range

elec

tdde
sub

sum

pda
rian

wher

xor

scale

IScaleMap

inearSca

LogScale

OrdinalScale

uantileSc

uantitativeSca

RootScal

Scale

ScaleType

TimeScale

flare

util
Arrays

Colors

Dates

Displays

Filter

Geometry

valuredi
aluePr

Maths

ientat

Property

Shapes

Sort

Stats

Strings

heapFibonacciHeap pN

math
DenseMatrix

IMatr
SparseMatri

flare

palette

ColorPalette

Palette

hapePalezePale

vis

Visualization

axis

Axes

Axis

GridisLa
CartesianAxes

vis
controls

nchorCont

ClickContr

Contro

ControlList

DragControl

ExpandContro
HoverContro

Cont

anZoomCont

SelectionControl

TooltipControl

data

Data DataList

DataSprite

dgeSpr

NodeSprite ScaleBinding

TreeTreeBuilder

render
rowT

EdgeRendere
end

peRend

events
DataEven

lectionEv

oltipEv

lizatio

legend

Legend

egendIteLegendRange

operator

Operat

Operator

OperatorList

OperatorSequenc

eratorSw

SortOperat

distortion
ifocalDistort

Distortion
sheyeDistort

encoder

lorEnco

EncoderpertyEnc

apeEnco

izeEncod

filterheyeTreeF
aphDistanceF

VisibilityFilte

label

Labeler

RadialLabelkedAreaL

operatorlayout

AxisLayout ledEdgeR

CircleLayout

CirclePackingLayo

ndrogramLa

ForceDirectedLayou

cicleTreeLay

dentedTreeLa

Layout

NodeLinkTreeLayou

PieLayout

RadialTreeLayout

om

StackedAreaLayout

TreeMapLayou

Hierarchies:  Figure 4f. Treemap layout of the Flare package hierarchy.

http://hci.stanford.edu/jheer/files/zoo/ex/hierarchies/treemap.html

http://hci.stanford.edu/jheer/files/zoo/ex/hierarchies/sunburst.html
http://hci.stanford.edu/jheer/files/zoo/ex/hierarchies/treemap.html
http://hci.stanford.edu/jheer/files/zoo/ex/hierarchies/pack.html
http://flare.prefuse.org
http://hci.stanford.edu/jheer/files/zoo/ex/hierarchies/icicle.html

66 communications of the acm | june 2010 | vol. 53 | no. 6

practice

of data that we may wish to explore
through visualization is relationship.
For example, given a social network,
who is friends with whom? Who are
the central players? What cliques ex-
ist? Who, if anyone, serves as a bridge
between disparate groups? Abstractly,
a hierarchy is a specialized form of net-
work: each node has exactly one link
to its parent, while the root node has
no links. Thus node-link diagrams are
also used to visualize networks, but the
loss of hierarchy means a different al-
gorithm is required to position nodes.

Mathematicians use the formal
term graph to describe a network. A
central challenge in graph visualiza-
tion is computing an effective layout.
Layout techniques typically seek to po-
sition closely related nodes (in terms
of graph distance, such as the number
of links between nodes, or other met-
rics) close in the drawing; critically,
unrelated nodes must also be placed
far enough apart to differentiate rela-
tionships. Some techniques may seek
to optimize other visual features—for
example, by minimizing the number
of edge crossings.

Force-directed Layouts. A common
and intuitive approach to network lay-
out is to model the graph as a physical
system: nodes are charged particles that
repel each other, and links are damp-
ened springs that pull related nodes
together. A physical simulation of these
forces then determines the node posi-
tions; approximation techniques that
avoid computing all pairwise forces
enable the layout of large numbers of
nodes. In addition, interactivity allows
the user to direct the layout and jiggle
nodes to disambiguate links. Such a
force-directed layout is a good starting
point for understanding the structure
of a general undirected graph. In Figure
5a we use a force-directed layout to view
the network of character co-occurrence
in the chapters of Victor Hugo’s classic
novel, Les Misérables. Node colors de-
pict cluster memberships computed by
a community-detection algorithm.

Arc Diagrams. An arc diagram,
shown in Figure 5b, uses a one-dimen-
sional layout of nodes, with circular
arcs to represent links. Though an arc
diagram may not convey the overall
structure of the graph as effectively as
a two-dimensional layout, with a good
ordering of nodes it is easy to identify

networks: figure 5a. force-directed layout of Les Misérables character co-occurrences.

http://hci.stanford.edu/jheer/fi les/zoo/ex/networks/force.html

M
yr

ie
l

N
ap

ol
eo

n
M

lle
. B

ap
tis

tin
e

M
m

e.
 M

ag
lo

ire
C

ou
nt

es
s

de
 L

o
G

eb
or

an
d

C
ha

m
pt

er
ci

er
C

ra
va

tte
C

ou
nt

O
ld

 M
an

La
ba

rre
Va

lje
an

M
ar

gu
er

ite
M

m
e.

 d
e

R
Is

ab
ea

u
G

er
va

is
Th

ol
om

ye
s

Li
st

ol
ie

r
Fa

m
eu

il
Bl

ac
he

vi
lle

Fa
vo

ur
ite

D
ah

lia
Ze

ph
in

e
Fa

nt
in

e
M

m
e.

 T
he

na
rd

ie
r

Th
en

ar
di

er
C

os
et

te
Ja

ve
rt

Fa
uc

he
le

ve
nt

Ba
m

at
ab

oi
s

Pe
rp

et
ue

Si
m

pl
ic

e
Sc

au
ffl

ai
re

W
om

an
 1

Ju
dg

e
C

ha
m

pm
at

hi
eu

Br
ev

et
C

he
ni

ld
ie

u
C

oc
he

pa
ille

Po
nt

m
er

cy
Bo

ul
at

ru
el

le
Ep

on
in

e
An

ze
lm

a
W

om
an

 2
M

ot
he

r
In

no
ce

nt
G

rib
ie

r
Jo

nd
re

tte
M

m
e.

 B
ur

go
n

G
av

ro
ch

e
G

ille
no

rm
an

d
M

ag
no

n
M

lle
. G

ille
no

rm
an

d
M

m
e.

 P
on

tm
er

cy
M

lle
. V

au
bo

is
Lt

. G
ille

no
rm

an
d

M
ar

iu
s

Ba
ro

ne
ss

 T
M

ab
eu

f
En

jo
lra

s
C

om
be

fe
rre

Pr
ou

va
ire

Fe
ui

lly
C

ou
rfe

yr
ac

Ba
ho

re
l

Bo
ss

ue
t

Jo
ly

G
ra

nt
ai

re
M

ot
he

r
Pl

ut
ar

ch
G

ue
ul

em
er

Ba
be

t
C

la
qu

es
ou

s
M

on
tp

ar
na

ss
e

To
us

sa
in

t
C

hi
ld

 1
C

hi
ld

 2
Br

uj
on

M
m

e.
 H

uc
he

lo
up

networks: figure 5b. arc diagram of Les Misérables character co-occurrences.

http://hci.stanford.edu/jheer/fi les/zoo/ex/networks/arc.html

Child 1

C
hi

ld
 1

Child 2

C
hi

ld
 2

Mother Plutarch

M
ot

he
r

P
lu

ta
rc

h

Gavroche

G
av

ro
ch

e

Marius

M
ar

iu
s

Mabeuf

M
ab

eu
f

Enjolras

E
nj

ol
ra

s

Combeferre

C
om

be
fe

rr
e

Prouvaire

P
ro

uv
ai

re

Feuilly

F
eu

ill
y

Courfeyrac

C
ou

rf
ey

ra
c

Bahorel

B
ah

or
el

Bossuet

B
os

su
et

Joly

Jo
ly

Grantaire

G
ra

nt
ai

re

Mme. Hucheloup

M
m

e.
 H

uc
he

lo
up

Jondrette

Jo
nd

re
tte

Mme. Burgon

M
m

e.
 B

ur
go

n

Boulatruelle

B
ou

la
tr

ue
lle

Cosette

C
os

et
te

Woman 2

W
om

an
 2

Gillenormand

G
ill

en
or

m
an

d

Magnon

M
ag

no
n

Mlle. Gillenormand

M
lle

.
G

ill
en

or
m

an
d

Mme. Pontmercy

M
m

e.
 P

on
tm

er
cy

Mlle. Vaubois

M
lle

.
V

au
bo

is

Lt. Gillenormand

Lt
.

G
ill

en
or

m
an

d

Baroness T

B
ar

on
es

s
T

Toussaint

T
ou

ss
ai

nt

Mme. Thenardier

M
m

e.
 T

he
na

rd
ie

r

Thenardier

T
he

na
rd

ie
r

Javert

Ja
ve

rt

Pontmercy

P
on

tm
er

cy

Eponine

E
po

ni
ne

Anzelma

A
nz

el
m

a

Gueulemer

G
ue

ul
em

er

Babet

B
ab

et

Claquesous

C
la

qu
es

ou
s

Montparnasse

M
on

tp
ar

na
ss

e

Brujon

B
ru

jo
n

Marguerite

M
ar

gu
er

ite

Tholomyes

T
ho

lo
m

ye
s

Listolier

Li
st

ol
ie

r

Fameuil

F
am

eu
il

Blacheville

B
la

ch
ev

ill
e

Favourite

F
av

ou
rit

e

Dahlia

D
ah

lia

Zephine

Z
ep

hi
ne

Fantine

F
an

tin
e

Perpetue

P
er

pe
tu

e

Labarre

La
ba

rr
e

Valjean

V
al

je
an

Mme. de R

M
m

e.
 d

e
 R

Isabeau

Is
ab

ea
u

Gervais

G
er

va
is

Bamatabois

B
am

at
ab

oi
s

Simplice

S
im

pl
ic

e

Scaufflaire

S
ca

uf
fla

ire

Woman 1

W
om

an
 1

Judge

Ju
dg

e

Champmathieu

C
ha

m
pm

at
hi

eu

Brevet

B
re

ve
t

Chenildieu

C
he

ni
ld

ie
u

Cochepaille

C
oc

he
pa

ill
e

Myriel

M
yr

ie
l

Napoleon

N
ap

ol
eo

n

Mlle. Baptistine

M
lle

.
B

ap
tis

tin
e

Mme. Magloire

M
m

e.
 M

ag
lo

ire

Countess de Lo

C
ou

nt
es

s
de

 L
o

Geborand

G
eb

or
an

d

Champtercier

C
ha

m
pt

er
ci

er

Cravatte

C
ra

va
tte

Count

C
ou

nt

Old Man

O
ld

 M
an

Fauchelevent

F
au

ch
el

ev
en

t

Mother Innocent

M
ot

he
r

In
no

ce
nt

Gribier

G
rib

ie
r

networks: figure 5c. matrix view of Les Misérables character co-occurrences.

http://hci.stanford.edu/jheer/fi les/zoo/ex/networks/matrix.html
Source: http://www-personal.umich.edu/~mejn/netdata

http://hci.stanford.edu/jheer/files/zoo/ex/networks/force.html
http://hci.stanford.edu/jheer/files/zoo/ex/networks/arc.html
http://hci.stanford.edu/jheer/files/zoo/ex/networks/matrix.html
http://www-personal.umich.edu/~mejn/netdata

practice

june 2010 | vol. 53 | no. 6 | communications of the acm 67

cliques and bridges. Further, as with the
indented-tree layout, multivariate data
can easily be displayed alongside nodes.
The problem of sorting the nodes in a
manner that reveals underlying cluster
structure is formally called seriation and
has diverse applications in visualiza-
tion, statistics, and even archaeology.

Matrix Views. Mathematicians and
computer scientists often think of a
graph in terms of its adjacency matrix:
each value in row i and column j in the
matrix corresponds to the link from
node i to node j. Given this representa-
tion, an obvious visualization then is:
just show the matrix! Using color or sat-
uration instead of text allows values as-
sociated with the links to be perceived
more rapidly.

The seriation problem applies just
as much to the matrix view, shown in
Figure 5c, as to the arc diagram, so
the order of rows and columns is im-
portant: here we use the groupings
generated by a community-detection
algorithm to order the display. While
path-following is more difficult in a
matrix view than in a node-link dia-
gram, matrices have a number of com-
pensating advantages. As networks
get large and highly connected, node-
link diagrams often devolve into giant
hairballs of line crossings. In matrix
views, however, line crossings are im-
possible, and with an effective sort-
ing one quickly can spot clusters and
bridges. Allowing interactive group-
ing and reordering of the matrix facili-
tates even deeper exploration of net-
work structure.

Conclusion
We have arrived at the end of our tour
and hope the reader has found the ex-
amples both intriguing and practical.
Though we have visited a number of
visual encoding and interaction tech-
niques, many more species of visualiza-
tion exist in the wild, and others await
discovery. Emerging domains such as
bioinformatics and text visualization
are driving researchers and designers to
continually formulate new and creative
representations or find more powerful
ways to apply the classics. In either case,
the DNA underlying all visualizations
remains the same: the principled map-
ping of data variables to visual features
such as position, size, shape, and color.

As you leave the zoo and head back

into the wild, try deconstructing the
various visualizations crossing your
path. Perhaps you can design a more ef-
fective display? 	

Additional Resources

Few, S.
Now I See It: Simple Visualization
Techniques for Quantitative Analysis.
Analytics Press, 2009.

Tufte, E.
The Visual Display of Quantitative
Information. Graphics Press, 1983.

Tufte, E.
Envisioning Information. Graphics Press,
1990.

Ware, C.
Visual Thinking for Design. Morgan
Kaufmann, 2008.

Wilkinson, L.
The Grammar of Graphics. Springer, 1999.

Visualization Development Tools

Prefuse: Java API for information
visualization.

Prefuse Flare: ActionScript 3 library for data
visualization in the Adobe Flash Player.

Processing: Popular language and IDE for
graphics and interaction.

Protovis: JavaScript tool for Web-based
visualization.

The Visualization Toolkit: Library for 3D
and scientific visualization.

 Related articles
 on queue.acm.org

A Conversation with Jeff Heer, Martin
Wattenberg, and Fernanda Viégas
http://queue.acm.org/detail.cfm?id=1744741

Unifying Biological Image Formats
with HDF5
Matthew T. Dougherty, Michael J. Folk,
Erez Zadok, Herbert J. Bernstein,
Frances C. Bernstein, Kevin W. Eliceiri,
Werner Benger, Christoph Best
http://queue.acm.org/detail.cfm?id=1628215

Jeffrey Heer is an assistant professor of computer
science at Stanford University, where he works on human-
computer interaction, visualization, and social computing.
He led the design of the Prefuse, Flare, and Protovis
visualization toolkits.

Michael Bostock is currently a Ph.D. student in the
Department of Computer Science at Stanford University.
Before attending Stanford, he was a staff engineer at
Google, where he developed search quality evaluation
methodologies.

Vadim Ogievetsky is a master’s student at Stanford
University specializing in human-computer interaction.
He is a core contributor to Protovis, an open-source Web-
based visualization toolkit.

© 2010 ACM 0001-0782/10/0600 $10.00

All visualizations
share a common
“DNA”—a set of
mappings between
data properties and
visual attributes
such as position,
size, shape,
and color—and
customized species
of visualization
might always be
constructed by
varying these
encodings.

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1744741
http://queue.acm.org/detail.cfm?id=1628215

68 communications of the acm | june 2010 | vol. 53 | no. 6

contributed articles

Data-oriented scient ific processes depend on
fast, accurate analysis of experimental data generated
through empirical observation and simulation.
However, scientists are increasingly overwhelmed
by the volume of data produced by their own
experiments. With improving instrument precision
and the complexity of the simulated models, data
overload promises to only get worse. The inefficiency
of existing database management systems (DBMSs)
for addressing the requirements of scientists has led
to many application-specific systems. Unlike their
general-purpose counterparts, these systems require
more resources, hindering reuse of knowledge. Still,
the data-management community aspires to general-
purpose scientific data management. Here, we explore
the most important requirements of such systems and
the techniques being used to address them.

Observation and simulation of phenomena are keys
for proving scientific theories and discovering facts of

nature the human brain could other-
wise never imagine. Scientists must
be able to manage data derived from
observations and simulations. Con-
stant improvement of observational
instruments and simulation tools give
modern science effective options for
abundant information capture, re-
flecting the rich diversity of complex
life forms and cosmic phenomena.
Moreover, the need for in-depth analy-
sis of huge amounts of data relent-
lessly drives demand for additional
computational support.

Microsoft researcher and ACM
Turing Award laureate Jim Gray once
said, “A fourth data-intensive sci-
ence is emerging. The goal is to have
a world in which all of the science lit-
erature is online, all the science data
is online, and they interoperate with
each other.”9 Unfortunately, today’s
commercial data-management tools
are incapable of supporting the un-
precedented scale, rate, and complex-
ity of scientific data collection and
processing.

Despite its variety, scientific data
does share some common features:

˲˲ Scale usually dwarfing the scale of
transactional data sets;

˲˲ Generated through complex and
interdependent workflows;

˲˲ Typically multidimensional;
˲˲ Embedded physical models;
˲˲ Important metadata about experi-

ments and their provenance;
˲˲ Floating-point heavy; and
˲˲ Low update rates, with most up-

dates append-only.

doi:10.1145/1743546.1743568

Needed are generic, rather than one-off, DBMS
solutions automating storage and analysis of
data from scientific collaborations.

By Anastasia Ailamaki, Verena Kantere,
and Debabrata Dash

Managing
Scientific Data

 key insights
 � �Managing the enormous amount of

scientific data being collected is the key
to scientific progress.

 � �Though technology allows for the
extreme collection rates of scientific
data, processing is still performed
with stale techniques developed for
small data sets; efficient processing
is necessary to be able to exploit the
value of huge scientific data collections.

 � �Proposed solutions also promise
to achieve efficient management for
almost any other kind of data.

june 2010 | vol. 53 | no. 6 | communications of the acm 69

I
ma

g

e
:

C
E

R
N

-E
X

-1
0

0
3

0
6

0
 0

2
 ©

 C
er

n

Persistent common requirements
for scientific data management in-
clude:

˲˲ Automation of data and metadata
processing;

˲˲ Parallel data processing;
˲˲ Online processing;
˲˲ Integration of multifarious data

and metadata; and
˲˲ Efficient manipulation of data/

metadata residing in files.
Lack of complete solutions us-

ing commercial DBMSs has led sci-
entists in all fields to develop or
adopt application-specific solutions,
though some have been added on top

of commercial DBMSs; for example,
the Sloan Digital Sky Survey (SDSS-
1 and SDSS-2; http://www.sdss.org/)
uses SQL Server as its backend. More-
over, the resulting software is typi-
cally tightly bound to the application
and difficult to adapt to changes in
the scientific landscape. Szalay and
Blakeley9 wrote, “Scientists and scien-
tific institutions need a template and
best practices that lead to balanced
hardware architectures and corre-
sponding software to deal with these
volumes of data.”

Despite the challenges, the data-
management research community

continues to envision a general-pur-
pose scientific data-management
system adapting current innova-
tions: parallelism in data querying,
sophisticated tools for data definition
and analysis (such as clustering and
SDSS-1), optimization of data orga-
nization, data caching, and replica-
tion techniques. Promising results
involve automated data organization,
provenance, annotation, online pro-
cessing of streaming data, embedded
complex data types, support for de-
clarative data, process definition, and
incorporation of files into DBMSs.

Scientific databases cover a wide

Result of seven-trillion-electronvolt collisions (March 30, 2010) in the ATLAS particle detector on the Large Hadron Collider at CERN, hunting
for dark matter, new forces, new dimensions, the Higgs boson, and ultimately a grand theory to explain all physical phenomena.

http://www.sdss.org/

70 communications of the acm | june 2010 | vol. 53 | no. 6

contributed articles

processing also helps detect and fine-
tune the telescope’s alignment. The
image data is then recorded onto tape
for archival purposes.

The tapes are physically mailed to a
processing center at Fermilab in Bata-
via, IL, to be processed through auto-
mated software pipelines to identify
celestial objects. Many astronomical-
processing-software pipelines process
the data in parallel. The output of this
processing, along with the image data,
is stored in the local archives at Fermi-
lab. The metadata generated from the
processing pipelines is converted to
relational format and stored in a MS-
SQL Server database. Astronomers
closely associated with the SDSS ac-
cess the data from the local archives
(see Figure 1).

The data is also published (pub-
licly) once every two years through
virtual observatories (http://www.
sdss.org/dr7, the final release of the
SDSS-II project) by running SQL on
the database at the observatories or
downloading the entire database over
the Internet while running the queries
locally. The SDSS project began pro-
viding public data sets in 2002 with
three such observatories located at
the Space Telescope Science Institute
in the U.S., the National Astronomi-
cal Observatory of Japan, and the Max
Planck Institute for Astrophysics in
Germany.

scope, with notable demand for high
performance and data quality. Scien-
tific data ranges from medical and
biological to community science and
from large-scale institutional to local
laboratories. Here, we focus on the
big amounts of data collected or pro-
duced by instruments archived in da-
tabases and managed by DBMSs. The
database community has expertise
that can be applied to solve the prob-
lems in existing scientific databases.

Observation and Simulation
Scientific data originates through ob-
servation and/or simulation.16 Obser-
vational data is collected through de-
tectors; input is digitized, and output
is raw observational data. Simulation
data is produced through simulators
that take as input the values of simula-
tion parameters. Both types of data are

often necessary for scientific research
on the same topic; for instance, obser-
vational data is compared with simu-
lation data produced under the same
experimental setup. Consider three
examples, one each for observational,
simulation, and combined:

Observational scientific data. The
SDSS located at Ohio State Univer-
sity and Johns Hopkins University, is
a long-running astronomy project.
Since 2000, it has generated a detailed
3D map of about 25% of the sky (as
seen from Earth) containing millions
of galaxies and quasars. One reason
for its success is its use of the SQL
Server DBMS. The SDSS uses the tele-
scope at Apache Point Observatory,
NM, to scan the sky at regular intervals
to collect raw data. Online processing
is done on the data to detect the stars
and galaxies in the region. This online

Figure 1. Workflow of SDSS data.

Web
Sky

Observatory
Astronomy
Pipelines

Local
Archives

Virtual
Observatories

Tape
Archive

Figure 2. Workflow of earthquake-simulation data.

Ground model

Mesh
generation

Simulation

Analysis
Visualization

Mesh

Time-varying output

u2(t) u1(t)

http://www.sdss.org/dr7
http://www.sdss.org/dr7

contributed articles

june 2010 | vol. 53 | no. 6 | communications of the acm 71

The schema of SDSS data includes
more than 70 tables, though most
user queries focus on only a few of
them, referring, as needed, to spectra
and images. The queries aim to spot
objects with specific characteristics,
similarities, and correlations. Pat-
terns of query expression are also lim-
ited, featuring conjunctions of range
and user-defined functions in both
the predicate and the join clause.

Simulation scientific data. Earth
science employs simulation mod-
els to help predict the motion of the
ground during earthquakes. Ground
motion is modeled with an octree-
based hexahedral mesh19 produced by
a mesh generator, using soil density
as input (see Figure 2). A “solver” tool
simulates the propagation of seismic
waves through the Earth by approxi-
mating the solution to the wave equa-
tion at each mesh node. During each
time step, the solver computes an
estimate of each node velocity in the
spatial directions, writing the results
to the disk. The result is a 4D spatio-
temporal earthquake data set describ-
ing the ground’s velocity response.
Various types of analysis can be per-
formed on the data set, employing
both time-varying and space-varying
queries. For example, a user might de-
scribe a feature in the ground-mesh,
and the DBMS finds the approximate
location of the feature in the simula-

tion data set through multidimen-
sional indexes.

Combined simulation and observa-
tional data. The ATLAS experiment
(http://atlas.ch/), a particle-physics
experiment in the Large Hadron Col-
lider (http://lhc.web.cern.ch/lhc/) be-
neath the Swiss-French border near
Geneva, is an example of scientific
data processing that combines both
simulated and observed data. ATLAS
intends to search for new discoveries
in the head-on collision of two highly
energized proton beams. The entire
workflow of the experiment involves
petabytes of data and thousands of us-
ers from organizations the world over
(see Figure 3).

We first describe some of major AT-
LAS data types: The raw data is the di-
rect observational data of the particle
collisions. The detector’s output rate
is about 200Hz, and raw data, or elec-
trical signals, is generated at about
320MB/sec, then reconstructed using
various algorithms to produce event
summary data (ESD). ESD has an ob-
ject-oriented representation of the
reconstructed events (collisions), with
content intended to make access to
raw data unnecessary for most physics
applications. ESD is further processed
to create analysis object data (AOD),
a reduced event representation suit-
able for user analysis. Data volume
decreases gradually from raw to ESD

to AOD. Another important data type
is tag data, or event-level metadata,
stored in relational databases, de-
signed to support efficient identifica-
tion and selection of events of interest
to a given analysis.

Due to the complexity of the ex-
periment and the project’s worldwide
scope, participating sites are divided
into multiple layers. The Tier-0 layer is
a single site—CERN itself—where the
detector is located and the raw data
is collected. The first reconstruction
of the observed electrical signals into
physics events is also done at CERN,
producing ESD, AOD, and tag data.
Tier-1 sites are typically large national
computing centers that receive repli-
cated data from the Tier-0 site. Tier-1
sites are also responsible for repro-
cessing older data, as well as for stor-
ing the final results from Monte Carlo
simulations at Tier-2 sites. Tier-2 sites
are mostly institutes and universities
providing computing resources for
Monte Carlo simulations and end-
user analysis. All sites have pledged
computing resources, though the vast
majority is not dedicated to ATLAS or
to high-energy physics experiments.

The Tier-0 site is both computation-
and storage-intensive, since it stores
the raw data and performs the initial
event reconstruction. It also serves
data to the Tier-1 sites, with aggregate
sustained transfer rates for raw, ESD,

Figure 3. Workflow of the ATLAS experiment.

Data Taking Reprocessing
MC

Simulation
Analysis

Physics Discovery!

Data Management

Raw
Raw

ESD/AOD

Improving algorithms

Output
stored

Raw/ESD/AOD
Raw/ESD/AOD

Observed data only

T0

Raw ESD AOD

T2

Both observed and simulated data

AOD

Both observed and simulated data

T1

ESD AODRaw

http://atlas.ch/
http://lhc.web.cern.ch/lhc/

72 communications of the acm | june 2010 | vol. 53 | no. 6

contributed articles

and AOD in excess of 1GB/sec over the
WAN or dedicated fiber. Tier-1 sites
are also computation- and storage-
intensive, since they store new data
samples while permanently running
reconstruction of older data samples
with newer algorithms. Tier-2 sites are
primarily CPU-intensive, since they
generally run complex Monte Carlo
simulations and user analyses while
only transiently storing data, with ar-
chival copies of interesting data kept
at Tier-1s sites.

The ATLAS experimental workflow
involves a combination of observed
and simulated data, as outlined in Fig-
ure 3. The “Data Taking” component
consumes the raw data and produces
ESD, AOD, and tags that are replicated
to a subset of the Tier-1s sites and,
in the case of AOD, to all Tier-1s and
Tier-2s, where each Tier-2 site receives
AOD only from its parent Tier-1 site.
The “Reprocessing” component at
each Tier-1 site reads older data and
produces new versions of ESD and

AOD data, which is sent to a subset of
other Tier-1s sites and, in the case of
AOD, to all sites. The primary differ-
ence between the first reconstruction
at the Tier-0 site and later reconstruc-
tions at the Tier-1 sites is due to better
understanding of the detector’s be-
havior. Simulated data is used for this
reconstruction.

Simulated data, using Monte Carlo
techniques, is required to understand
the behavior of the detector and help
validate physics algorithms. The AT-
LAS machine is physically very large
and complex, at 45 meters × 25 meters
and weighing more than 7,000 tons,
including more than 100 million elec-
tronic channels and 3,000 kilometers
of cable. A precise understanding of
the machine’s behavior is required
to fine-tune the algorithms that pro-
cess its data and reconstruct simula-
tion data from the observed electrical
signals. This is the role of the Monte
Carlo simulations, using large statis-
tics and enough data to compensate

and understand the machine’s bias.
These simulations are run at Tier-2
sites by the “MC Simulation” compo-
nent in Figure 3, with results sent to a
Tier-1 site.

Finally, the “User Analysis” compo-
nent aims to answer specific physics
questions, using a model built with
specific analysis algorithms. This
model is then validated and improved
against Monte Carlo data to compen-
sate for the machine’s bias, includ-
ing background noise, and validated
against real, observed data, eventually
testing the user’s hypothesis.

Beyond observational and simula-
tion data and its hybrids, researchers
discuss special cases of “information-
intensive” data.16 Sociology, biology,
psychology, and other sciences ap-
ply research on heterogeneous data
derived from both observation and
simulation under various conditions.
For example, in biology, research is
conducted on data collected by biolo-
gists under experimental conditions P

h
o

t
o

g
raph

 b

y
 Gi

n

ter

,

P
 /

 cer

n

 P
h

o
t

o
 #

:
i

n
det

-2
0

0
6

-0
0

2

Disk with silicon sensors as an endcap of the ATLAS silicon strip detector in its testbox at the Nationaal Instituut voor Subatomaire Fysica,
Amsterdam, The Netherlands.

contributed articles

june 2010 | vol. 53 | no. 6 | communications of the acm 73

intended for a variety of purposes.
Scientists involved in combustion
chemistry, nanoscience, and the en-
vironment must perform research on
data related to a variety of phenomena
concerning objects of interest rang-
ing from particles to devices and from
living organisms to inorganic sub-
stances. Information-intensive data
is characterized by heterogeneity, in
both representation and the way sci-
entists use it in the same experiment.
Management of such data emphasizes
logical organization and description,
as well as integration.

Independent of the data type char-
acterizing particular scientific data,
its management is essentially divided
into coarse phases: workflow manage-
ment, management of metadata, data
integration, data archiving, and data
processing:

Workflow management. In a simple
scenario, a scientific experiment is
performed according to a workflow
that dictates the sequence of tasks
to be executed from the beginning
until the end of the experiment. The
tasks coarsely define the manner and
means for implementing the other
phases of data management: data
acquisition, metadata management,
data archiving, and data processing.
Task deployment may be serial or par-
allel and sequential or looping. Broad
and long-lasting experiments encom-
pass sets and hierarchies of partial ex-
perimental studies performed accord-
ing to complex workflows. In general,
many experiments could share a work-
flow, and a workflow could use results
from many experiments.

Scientific workflow management
systems have been a topic for much
research over the past two decades,
involving modeling and enactment15
and data preservation.12 Numerous
related scientific products are used in
the sciences.

Metadata management. Raw data
is organized in a logically meaning-
ful way and enriched with respective
metadata to support the diagnosis of
unexpected (independent) reinvesti-
gation or reinterpretation of results,
ideally automatically. Metadata in-
cludes information on data acquisi-
tion (such as parameters of the de-
tectors for observational data and
simulation for simulation data), as

task, especially for raw observational
data derived from experiments that
cannot be replayed or replayed only at
prohibitively high cost. The complete
data set is usually archived on tape,
with selected parts stored on disks.
Portions of the data might also have to
be cached temporarily during migra-
tion between tape and disk or between
various computers.

Beyond archiving master copies,
data replication on multiple sites
may be necessary to accommodate
geographically dispersed scientists.
All the challenges of distributing and
replicating data management come
into play when coordinating the move-
ment of large data volumes. Efforts
are under way to manage these repli-
cation tasks automatically.4

Archiving scientific data is usually
performed by storing all past data ver-
sions, as well as the respective meta-
data (such as documentation or even
human communication like email).
Nevertheless, the problem of organiz-
ing archives relates to the general re-
search problem of data versioning, so
solutions to the versioning problem
can be adapted to archiving scientific
data. Representative versioning solu-
tions (such as the concurrent versions
system) compute differences between
sequential versions and use the dif-
ferences for version reconstruction.
Recent proposals targeting scientific
data3 exploit the data’s hierarchical
structure in order to summarize and
merge versions.

Data processing. Data is analyzed
to extract evidence supporting scien-
tific conclusions, ultimately yielding
research progress. Toward this end,
the data must undergo a series of
procedures specified by scientists in
light of the goal of their respective ex-
periments. These procedures usually
involve data clustering, mining, and
lineage, leading to the inference of
association rules and abnormalities,
as well as to computation for feature
identification and tracking.

Data analysis is often tightly corre-
lated with data visualization, especial-
ly when it comes to simulation data.
Scientists want a visual representa-
tion of the data to help them recognize
coarse associations and abnormali-
ties. Interleaving the steps involved in
visualization and analysis yields the

well as administrative data about the
experiments, data model, and mea-
surement units. Other kinds of meta-
data are extracted from raw data, pos-
sibly through ontologies. Metadata
may also denote data relationships
and quality. Annotating the data, all
metadata (accumulated or extracted)
is critical to deducing experimental
conclusions. The metadata and work-
flows often complement one another,
necessitating combined manage-
ment.7

Data and process integration. Data
and its respective metadata may be
integrated such that they can be ma-
nipulated as a unit. Moreover, newly
collected data may be integrated with
historic data representing different
versions or aspects of the same ex-
periment or belonging to different ex-
periments in the same research track.
The quality of the data, as well as its
semantic interpretation, is crucial for
data integration. Data quality can be
achieved through data cleansing; se-
mantic integration can be achieved
through ontologies. Beyond data in-
tegration, process integration is often
needed to simplify the overall flow of
the experiment and unify partial re-
sults. For example, integration may be
necessary or desirable for data mining
algorithms that facilitate feature ex-
traction and provenance. Process in-
tegration might necessitate creation
or customization of middleware al-
lowing for interoperation among dif-
ferent procedures and technologies.
Automatic integration of data and
processes is highly desirable for ease
of use but also because querying in-
formation as a unit allows parallel and
online processing of partial results.
Moreover, scientists want transpar-
ent access to all data. Automatic inte-
gration assumes customizable tools
implementing generic integration so-
lutions appropriate for scientific data.
A notably challenging task is how to
identify commonalities in scientific
experiments and data in order to cre-
ate integration tools.

Data archiving. After they’ve met
the expected standards of data con-
tent, scientists archive the data so
other scientists are able to access and
use it in their own research. The data
must first be stored using robust, reli-
able storage technology, a mandatory

74 communications of the acm | june 2010 | vol. 53 | no. 6

contributed articles

right data regions for testing hypothe-
ses and drawing conclusions. The key
to efficient data processing is a care-
fully designed database and is why
automated physical database design
is the subject of recent research (dis-
cussed in the following section). In ad-
dition, there is an imminent need for
online data processing (discussed in
the second following section).

Automation
Errors and inefficiencies due to hu-
man-handled physical database de-
sign are common in both metadata
management and data processing.
Much recent research has focused on
automating procedures for these two
phases of scientific data management.

Metadata management. Metadata
processing involves determining the
data model, annotations, experimen-
tal setup, and provenance. The data
model can be generated automatically
by finding dependencies between dif-
ferent attributes of data.10 However,
experimenters typically determine
the model since this is a one-time pro-
cess, and dependencies A=πr2 are eas-
ily identified at the attribute level.

Annotations are meta-information
about the raw scientific data and espe-
cially important if the data is not nu-
meric. For example, annotations are
used in biology and astronomy image
data. Given the vast scale of scientific
data, automatically generating these
annotations is essential. Current au-
tomated techniques for gathering an-
notations from documents involve
machine-learning algorithms, learn-
ing the annotations through a set of
pre-annotated documents.14 Similar
techniques are applied to images
and other scientific data but must be
scaled to terabyte or petabyte scale.
Once annotations are built, they can
be managed through a DBMS.

Experimental setups are gener-
ally recorded in notebooks, both pa-
per and electronic, then converted to
query-able digital records. The quality
of such metadata is typically enforced
through policies that must be as au-
tomated as possible. For example,
when data is collected from instru-
ments, instrument parameters can be
recorded automatically in a database.
For manually generated data, the poli-
cies must be enforced automatically.

For the ATLAS experiment, the pa-
rameters of the detectors, as well as
the influence of external magnetic de-
vices and collider configurations, are
all stored automatically as metadata.
Some policies can be enforced auto-
matically through a knowledge base
of logical statements; the rest can
be verified through questionnaires.
Many commercial tools are available
for validating policies in the enter-
prise scenario, and the scientific com-
munity can borrow technology from
them to automate the process (http://
www.compliancehome.com/).

Provenance data includes experi-
mental parameters and task history
associated with the data. Provenance
can be maintained for each data en-
try or for each data set. Since work-
load management tracks all tasks ap-
plied to the data, it can automatically
tag it with task information. Hence,
automating provenance is the most
straightforward of the metadata-pro-
cessing automation tasks. The enor-
mous volume of automatically col-
lected metadata easily complicates
the effort to identify the relevant sub-
set of metadata to the processing task
in hand. Some research systems are
capable of automatically managing a
DBMS’s provenance information.2

Data processing. Data processing
depends on how data is physically
organized. Commercial DBMSs usu-
ally offer a number of options for de-
termining how to store and access it.
Since scientific data might come in
petabyte-scale quantities and many
scientists work on the same data si-
multaneously, the requirements for
efficient data organization and re-
trieval are demanding. Furthermore,
the data might be distributed or rep-
licated in multiple geographically
dispersed systems; hence, network
resources play an important role in
facilitating data access. Possibly hun-
dreds or thousands of scientists could
simultaneously query a petabyte-scale
database over the network, requiring
more than 1GB/sec bandwidth.

To speed data access, the database
administrator might have to tune sev-
eral parameters, changing the data’s
logical design by normalizing the
data or its physical design. The logi-
cal design is determined by the data
model in the metadata-processing

Not having to read
from the disk and
write computation
results back saves
hours to days of
scientific work,
giving scientists
more time to
investigate the data.

http://www.compliancehome.com/
http://www.compliancehome.com/

contributed articles

june 2010 | vol. 53 | no. 6 | communications of the acm 75

phase of a science experiment. The
physical design determines optimal
data organization and location, cach-
ing techniques, indexes, and other
performance-enhancing techniques.
All depend on the data-access pattern,
which is dynamic, hence, it changes
much more frequently than logical
design; physical design automation
is therefore critical for efficient data
processing.

Considering the number of param-
eters involved in the physical design
of a scientific database, requiring the
database administrator to specify and
optimize the parameters for all these
techniques is unreasonable. Data
storage and organization must be au-
tomated.

All DBMSs today provide tech-
niques for tuning databases. Though
the provision of these techniques is
a step in the right direction, existing
tools are insufficient for four main
reasons:

Precision. They require the query
workload to be static and precise;

Relational databases. They consider
only auxiliary structures to be built on
relational databases and do not con-
sider other types of data organization;

Static database. They assume a
static database, so the statistics in the
database are similar to the statistics at
the time the tool is run; and

Query optimizer. They depend on
the query optimizer to direct their
search algorithms, making them slow
for large workloads.

Recent database research has ad-
dressed these inherent DBMS limita-
tions. For example, some techniques
do not require prespecifying the
workload,1 and others make the cost
model more efficient, enabling more
thorough search in the data space.18
However, they also fall short in several
areas; for example, they are not robust
enough to change database statistics
and do not consider data organization
other than relational data. Likewise,
data-organization methods for dis-
tributed data and network caches are
nascent today. Automatically utilizing
multiple processing units tuned for
data-intensive workloads to scale the
computation is a promising research
direction, and systems (such as Gray-
Wulf24) apply this technique to achieve
scalability.

Physical and logical design-auto-
mation tools must consider all param-
eters and suggest optimal organiza-
tion. The tools must be robust to small
variations in data and query changes,
dynamically suggesting changes in
the data organization when the query
or data changes significantly.

Online Processing
Most data-management techniques in
the scientific community are offline to-
day; that is, they provide the full result
of the computation only after process-
ing an entire data set. However, the
ever-growing scale of scientific data
volume necessitates that even simple
processes, one-time data movement,
checksum computation, and verifica-
tion of data integrity might have to run
for days before completion.

Simple errors can take hours to
be noticed by scientists, and restart-
ing the process consumes even more
time. Therefore, it is important that
all processing of scientific data be per-
formed online. Converting the pro-
cesses from offline to online provides
the following benefits:

Efficiency. Many operations can be
applied in a pipeline manner as data
is generated or move around. The op-
erations are performed on the data
when already in memory, which is
much closer to the CPU than to a disk
or tape. Not having to read from the
disk and write computation results
back saves hours to days of scientific
work, giving scientists more time to
investigate the data.

Feedback. Giving feedback to the
operations performed on the scientif-
ic data is important, because it allows
scientists to plan their analysis accord-
ing to the progress of the operation.
Modern DBMSs typically lack a prog-
ress indicator for queries, hence sci-
entists running queries or other pro-
cesses on DBMSs are typically blind to
the completion time of their queries.
This blindness may lead to canceling
the query and issuing a different one
or abandoning the DBMS altogether.
DBMSs usually allow a query issuer
to compute the “cost” of a query in a
unit specific to the DBMS. This cost is
not very useful to scientists, since it
doesn’t correspond to actual running
time or account for the complete set of
resources (such as memory size, band-

width, and operation sharing) avail-
able to the DBMS for running the que-
ry. Operations, including querying/
updating data, should thus provide
real-time feedback about the query
progress to enable scientists to better
plan their experiments.

Debugging. Scientific data is typi-
cally processed on multiprocessor
systems, as scientific applications are
often parallelizable and computation
can thus scale to data volume. How-
ever, it is nearly impossible to detect
all the problems of a parallel program
at development time. Using source
debuggers for parallel programming
is infeasible, since debuggers change
the timing of the programs, thereby
hiding many problems. Debugging be-
comes even more difficult when pro-
grams execute complex tasks (such as
queries with user-defined functions).

Some research DBMS prototypes
provide feedback on query progress,13
though they are not yet incorporated
into commercial systems, so the bene-
fits are still not available to scientists.
Similarly, tools that provide online
visualization of progress for specific
simulations are not generic enough
for a variety of scientific experiments.

Computational steering. Building
complex simulations is a challenge
even in uniprocessor systems. After
building them, the submitters-scien-
tists often boot on suboptimal param-
eters, unaware that they’re indeed re-
lying on suboptimal parameters until
the entire simulation is over. There-
fore, online processing, combined
with online visualization, can simul-
taneously help debug such programs
and parameters. The system’s opera-
tions should allow an observer to gen-
erate snapshots of the simulations or
operations and, if possible, control
the simulation to remove potential
problems. Manual intervention in
an otherwise automatic process is
called “computational steering”; for
example, in parallel programs, ob-
servers could decide which deadlocks
to break or when simulations should
change a parameter on the fly.

Software for computational steer-
ing includes the scientific program-
ming environment SciRun (http://
www.sci.utah.edu/cibc/software/106-
scirun.html). Nevertheless, software
must support simulations with pet-

http://www.sci.utah.edu/cibc/software/106-scirun.html
http://www.sci.utah.edu/cibc/software/106-scirun.html
http://www.sci.utah.edu/cibc/software/106-scirun.html

76 communications of the acm | june 2010 | vol. 53 | no. 6

contributed articles

abytes of data and execution of com-
plex tasks. For software designers, it
may sometimes be beneficial to model
the simulations and data processing
as event generators, using streaming
and complex event-processing tech-
niques to summarize data operations
with little overhead or controllable ac-
curacy guarantees.

Data and Process Integration
Large-scale experiments organized
by scientists collect and process huge
amounts of raw data. Even if the origi-
nal data is reorganized and filtered in
a way that keeps only the interesting
parts for processing, these interest-
ing parts are still big. The reorganized
data is augmented with large volumes
of metadata, and the augmented reor-
ganized data must be stored and ana-
lyzed.

Scientists must collaborate with
computer engineers to develop cus-
tom solutions supporting data stor-
age and analysis for each experiment.
In spite of the effort involved in such
collaborations, the experience and
knowledge gained this way is not
generally disseminated to the wider
scientific community or benefit next-
generation experimental setups.
Computer engineers must therefore
develop generic solutions for storage
and analysis of scientific data that can
be extended and customized to reduce
the computing overhead of time-con-
suming collaborations. Developing
generic solutions is feasible, since
many low-level commonalities are
available for representing and analyz-
ing experimental data.

Management of generic physical
models. Experimental data tends to
have common low-level features not
only across experiments of the same
science, but across all sciences. For
example, reorganized raw data en-
hanced with metadata usually involves
complex structures that fit the object-
oriented model. Scientific data repre-
sentation benefits from inheritance
and encapsulation, two fundamental
innovations of the object-oriented
data model.

Beyond its complexity in terms of
representation, scientific data is char-
acterized by complex interdependen-
cies, leading to complex queries dur-
ing data processing and analysis. Even

though the object-oriented model is
suitable for the representation of sci-
entific data, it cannot efficiently opti-
mize and support complex queries.

Nevertheless, most scientific data
is represented by objects with strong
commonalities with respect to their
structural elements. DBMSs must be
extended so they manage the common
structural elements of scientific data
representations as generic database
objects, and database support for
these objects must include efficient
ways to store and index data.

Experimental data derived from
simulations is frequently represented
as meshes ranging from structured to
unstructured and consisting of tetra-
hedra, hexahedra, or n-facets cells.
For example, an earthquake simula-
tion data set may be represented as
an unstructured hexahedral mesh. A
typical volume of earth, say, 100km
× 100km × 30km, is represented by a
mesh consisting of roughly one bil-
lion nodes and one billion elements
requiring about 50GB of storage; such
a mesh is capable of resolving seis-
mic waves up to 2Hz. Scientific data
management would benefit greatly if
DBMSs offered storage and indexing
methods for meshes. Initial efforts
toward supporting meshes in DBMSs
were presented in research19 and com-
mercial products.8

Multidimensional data also needs
storage and indexing methods. Most
scientific data is represented as mul-
tidimensional arrays, but support for
multidimensional arrays in RDBMSs
is poor. Computer engineers must
produce custom solutions for manip-
ulating multidimensional data, lead-
ing to many domain-specific data for-
mats, including netCDF (http://www.
unidata.ucar.edu/software/netcdf/)
and HDF (http://www.hdfgroup.org/)
for climate data; FITS (http://heasarc.
gsfc.nasa.gov/docs/heasarc/fits.html)
for astronomical data; and ROOT
(http://root.cern.ch/drupal/) for high-
energy physics data.

An experimental study5 showed
that, even if using array primitives in
RDBMSs, native file formats outper-
formed the relational implementa-
tion by a factor of 20 to as much as 80.
Proposed scientific DBMSs6,23 provide
multidimensional arrays as first-class
types, aiming to bridge the gap be-

tween DBMSs and native files in the
process. The multidimensional ar-
rays are present in multidimensional
online analytical processing (MOLAP)
implementations from mainstream
DBMSs that allow fast exploratory
analysis of the data by pre-computing
aggregations on multiple dimensions.
However, MOLAP needs a significant
amount of offline processing and an
enormous amount of disk space to
store the pre-computed aggregations,
making them unsuitable for the enor-
mous scale of scientific data. Attempts
to support exploratory ad hoc OLAP
queries on large data sets, includ-
ing wavelets, promises to enable fast,
powerful analysis of scientific data.21

A frequently used type of scientific
data is time-and-space-based observa-
tions, meaning interesting data sets
are trajectories in space and time. As
trajectories are not inherently sup-
ported by databases, data points are
usually stored individually and pro-
cessed for line-fitting during scientific
analysis. Line-fitting is a resource-
consuming task and could be avoided
if a DBMS inherently supported tra-
jectories. Inherent support for trajec-
tories is related to multidimensional
array support, since trajectories are
actually polylines, and each line can
be approximated (fitted) by functions.
Promising research results have been
reported for managing trajectories.22

DBMSs should inherently support
new data types while accounting for
the specialized use of the new types
for representing scientific data. For
example, the Hierarchical Triangular
Mesh method11 subdivides spheri-
cal surfaces so objects localized on a
sphere can be indexed and queried
efficiently. Scientific data is usually
persistent, meaning it is rarely (if ever)
changed or involved in complex as-
sociations. While developing support
mechanisms (such as indexes) for new
data types, priority must go to search
rather than to update efficiency. The
persistence of scientific data allevi-
ates a major requirement, making it
possible to develop efficient indexes
for the new types.

Management of generic data pro-
cessing. Scientific data processing dif-
fers from experiment to experiment
and discipline to discipline. No mat-
ter how wide the scope of processing

http://www.unidata.ucar.edu/software/netcdf/
http://www.unidata.ucar.edu/software/netcdf/
http://www.hdfgroup.org/
http://heasarc.gsfc.nasa.gov/docs/heasarc/fits.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/fits.html
http://root.cern.ch/drupal/

contributed articles

june 2010 | vol. 53 | no. 6 | communications of the acm 77

and overall heterogeneity, processing
frequently encompasses generic pro-
cedures.

It is most common that scientific
data is searched in order to find inter-
esting regions with respect to prespec-
ified characteristics, data regions, and
abnormalities. Moreover, metadata
processing consists of data annota-
tion, as well as feature extraction. Data
tagged with parameter values refers to
the condition of the experiment and is
mined to deduce common character-
istics and behavior rules.

Generic processes that produce
metadata (such as those just men-
tioned) must be supported inherently
by the DBMS for all generic physical
models in a parameterized manner,
thus bringing processing close to
the data and leading to reduced data
movement and reorganization, along
with efficient processing execution
in the DBMS. Each generic physical
model must include templates sup-
porting the generic procedures for the
model in a customizable manner. For
example, the particles in the ATLAS
experiment are tracked using spatio-
temporal attributes. Even though the
data sets are enormous, only a small
amount of space and time are popu-
lated by particles. Therefore, the data
sets would benefit from a generic
DBMS customizable procedure sup-
porting compression.

Scientists would benefit even more
if the definition and customization
of the templates could be performed
using a declarative language. Such a
language would give users intuitive
guidance as to the specification of
the customization procedure, as well
as to the combination and pipelining
of multiple procedures. In this way,
the processing burden would be lev-
eraged to the DBMS, and scientists
would not have to function as com-
puter engineers.

File Management
The vast majority of scientific data
is stored in files and manipulated
through file systems, meaning all pro-
cessing, from search to computation,
is performed in the content of the
files. Sophisticated frameworks have
been proposed to manage the files
over a large number of disks, includ-
ing storage resource management

technology (https://sdm.lbl.gov/srm-
wg/index.html).

Existing persistent scientific data
in files is huge and will not be moved
to databases, even if they support ef-
ficient scientific experimentation.
Moreover, the tradition in applica-
tions that manipulate scientific data
files is long, and implementing the
same functionality in modules that
are plug-able on DBMSs needs further
effort. A long tradition and the need
for plug-able capabilities mean that
a full-fledged querying mechanism
for files, similar to DBMSs, is need-
ed. Such a querying mechanism can
be constructed in either of two ways:
enhance current DBMSs so they uni-
formly manage both structured data
and unstructured data in files; and
create a management layer on top of
both the DBMS and the file system to
enable transparent querying of struc-
tured and unstructured data. Each
approach has advantages and disad-
vantages.

Enhancing a DBMS to manage files
and data means that all mechanisms
in the system should be extended for
files. Querying on files is assumed
to be efficient since it would benefit
from sophisticated database struc-
tures (such as indexes, autonomic
database organization, and database
query planning). Moreover, querying
structured and unstructured data is
an opportunity for tight interaction
among queries and query results and
refined optimization in intermediate
querying steps.

Extending DBMSs to manage files is
a challenge for the data-management
community since it entails reconsid-
eration of many database protocols
and a total rebuild of all database
procedures with new enhancements
for unstructured data. Yet it is inevi-
table that such a breakthrough in the
functionality of DBMSs will involve
substantial redundancy, since a big
part of database management (such
as transaction management) is use-
less in the manipulation of scientific
data. Recent research efforts seeking
to integrate scientific files into DBMSs
include Netlobs, a netCDF cartridge
for Oracle (http://datafedwiki.wustl.
edu/images/f/ff/Dews_poster_2006.
ppt) and Barrodale Computing Ser-
vices, Ltd., on Postgres (http://www.

DBMSs must be
extended so
they manage
the common
structural elements
of scientific data
representations
as generic database
objects, and
database support
for these objects
must include
efficient ways
to store and
index data.

http://datafedwiki.wustl.edu/images/f/ff/Dews_poster_2006.ppt
http://datafedwiki.wustl.edu/images/f/ff/Dews_poster_2006.ppt
http://datafedwiki.wustl.edu/images/f/ff/Dews_poster_2006.ppt
http://www.barrodale.com/
https://sdm.lbl.gov/srm-wg/index.html
https://sdm.lbl.gov/srm-wg/index.html

78 communications of the acm | june 2010 | vol. 53 | no. 6

contributed articles

and file management, but data manip-
ulation must still address the diversity
of experimentation tasks across the
sciences, the complexity of scientific
data representation and processing,
and the volume of collected data and
metadata. Nevertheless, data-man-
agement research in all these areas
suggests the inherent management
problems of scientific data will indeed
be addressed and solved.

Acknowledgments
We would like to express our gratitude
to Miguel Branco of CERN for contrib-
uting the dataflow of the ATLAS ex-
periment, allowing us to demonstrate
a scientific application requiring both
observational and simulation data.
We would also like to acknowledge the
European Young Investigator Award
by the European Science Foundation
(http://www.esf.org/). 	

References
1.	B runo, N. and Chaudhuri, S. Online autoadmin:

Physical design tuning. In Proceedings of the
ACM International Conference on Management of
Data (Beijing, June 11–14). ACM Press, New York,
1067–1069.

2.	B uneman, P., Chapman, A., and Cheney, J.
Provenance management in curated databases.
In Proceedings of the ACM SIGMOD International
Conference on Management of Data (Chicago, June
27–29). ACM Press, New York, 2006, 539–550.

3.	B uneman, P., Khanna, S., Tajima, K., and Tan, W.
Archiving scientific data. In Proceedings of the ACM
SIGMOD International Conference on Management
of Data (Madison, WI, June 3–6). ACM Press, New
York, 2002, 1–12.

4.	 Chervenak, A.L., Schuler, R., Ripeanu, M., Amer, M.A.,
Bharathi, S., Foster, I., Iamnitchi, A., and Kesselman,
C. The Globus Replica Location Service: Design and
experience. IEEE Transactions on Parallel Distributed
Systems 20, 9 (Sept. 2009), 1260–1272.

5.	 Cohen, S., Hurley, P., Schulz, K.W., Barth, W.L., and
Benton, B. Scientific formats for object-relational
database systems: A study of suitability and
performance. SIGMOD Records 35, 2 (June 2006),
10–15.

6.	 Cudre-Mauroux, P., Kimura, H., Lim, K., Rogers, J.,
Simakov, R., Soroush, E., Velikhov, P., Wang, D.L.,
Balazinska, M., Becla, J., DeWitt, D., Heath, B., Maier,
D., Madden, S., Patel, J., Stonebraker, M., and Zdonik,
S. A demonstration of SciDB: A science-oriented
DBMS. Proceedings of VLDB Endowment 2, 2 (Aug.
2009), 1534–1537.

7.	 Davidson, S.B. and Freire, J. Provenance and
scientific workflows: Challenges and opportunities.
In Proceedings of the ACM SIGMOD International
Conference on Management of Data (Vancouver, B.C.,
June 9–12). ACM Press, New York, 1345–1350.

8.	G ray, J. and Thomson, D. Supporting Finite-Element
Analysis with a Relational Database Backend,
Parts i–iii. MSR-TR-2005-49, MSR-TR-2006-21, MSR-
TR-2005-151. Microsoft Research, Redmond, WA,
2005.

9.	 Hey, T., Tansley, S., and Tolle, K. The Fourth
Paradigm: Data-Intensive Scientific Discovery.
Microsoft, Redmond, WA, Oct. 2009.

10.	 Ilyas, I.F., Markl, V., Haas, P., Brown, P., and
Aboulnaga, A. CORDS: Automatic discovery of
correlations and soft functional dependencies. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data (Paris, June
13–18). ACM Press, New York, 2004, 647–658.

11.	K unszt, P.Z., Szalay, A.S., and Thakar, A.R. The
hierarchical triangular mesh. In Proceedings of the

barrodale.com/) but are not generic
enough for other file formats (such as
HDF and ROOT). Aiming for file ma-
nipulation, the Data Format Descrip-
tion Language Work Group project
(http://forge.gridforum.org/projects/
dfdl-wg) is developing an XML-based
language for describing the metadata
of files. However, these approaches
do not provide complete support for
DBMS features on the files. MapRe-
duce-based techniques for processing
data stored in files17,20 do not replicate
DBMS functionalities and are mainly
used for batch processing of files.

A management level on top of the
database and file system that man-
ages structured and unstructured
data separately but transparently
seems more feasible in the near fu-
ture. The challenge in developing this
approach is twofold. First, it is neces-
sary to construct middleware through
which users define their queries in a
declarative high-level manner, but
the middleware must include a mech-
anism that transcribes queries as in-
put for the DBMS or file system and
routes it appropriately. Second, a que-
ry mechanism dedicated to the file
system must be developed; the ben-
efit of a separate file-querying mecha-
nism is that it includes only proce-
dures targeted at querying, thereby
avoiding implications due to compli-
cated database mechanisms—insert,
delete, update—serving database
operations. However, the procedures
involved in the querying mechanism
must be designed and implemented
from scratch, an approach that pre-
cludes uniform querying of both
structured and unstructured data;
it also means limited uniform query
optimization and limited query-exe-
cution efficiency. Future grid middle-
ware promises to support such inte-
gration (http://www.ogsadai.org.uk/),
though the related research is still
only nascent.

Conclusion
Scientific data management suffers
from storage and processing limita-
tions that must be overcome for sci-
entific research to take on demand-
ing experimentation involving data
collection and processing. Future so-
lutions promise to integrate automa-
tion, online processing, integration,

MPA/ESO/MPE Workshop (Garching, Germany, July
31–Aug. 4). Springer, Berlin, 2000, 631–637.

12.	 Liu, D.T., Franklin, M.J., Abdulla, G.M., Garlick, J., and
Miller, M. Data-preservation in scientific workflow
middleware. In Proceedings of the 18th International
Conference on Scientific and Statistical Database
Management (July 3–5). IEEE Computer Society,
Washington, DC, 2006, 49–58.

13.	 Mishra, C. and Koudas, N. A lightweight online
framework for query progress indicators. In
Proceedings of the IEEE International Conference on
Data Engineering (Istanbul, Apr. 15–20). IEEE Press,
1292–1296.

14.	 Müller, A. and Sternberg, M. Structural annotation of
the human genome. In Proceedings of the German
Conference on Bioinformatics (Braunschweig,
Germany, Oct. 7–10). German Research Center for
Biotechnology, Braunschweig, 2001, 211–212.

15.	N gu, A.H., Bowers, S., Haasch, N., McPhillips, T., and
Critchlow, T. Flexible scientific workflow modeling
using frames, templates, and dynamic embedding.
In Proceedings of the 20th International Conference
on Scientific and Statistical Database Management
(Hong Kong, July 9–11). Springer-Verlag, Berlin,
Heidelberg, 2008, 566–572.

16.	O ffice of Data Management Challenge. Report
from the DOE Office of Science Data Management
Workshops, Mar.–May 2004; http://www.er.doe.gov/
ascr/ProgramDocuments/Docs/Final-report-v26.pdf

17.	O lston, C., Reed, B., Srivastava, U., Kumar, R., and
Tomkins, A. Pig Latin: A not-so-foreign language for
data processing. In Proceedings of the ACM SIGMOD
International Conference on Management of Data
(Vancouver, B.C., June 9–12). ACM Press, New York,
2008, 1099–1110.

18.	 Papadomanolakis, S., Dash, D., and Ailamaki, A.
Efficient use of the query optimizer for automated
physical design. In Proceedings of the 33rd
International Conference on Very Large Data Bases
(Vienna, Austria, Sept. 23–27). VLDB Endowment,
2007, 1093–1104.

19.	 Papadomanolakis, S., Ailamaki, A., Lopez, J.C., Tu,
T., O’Hallaron, D.R., and Heber, G. Efficient query
processing on unstructured tetrahedral meshes.
In Proceedings of the ACM SIGMOD International
Conference on Management of Data (Chicago, June
27–29). ACM Press, New York, 2006, 551–562.

20.	Pike, R., Dorward, S., Griesemer, R., and Quinlan, S.
Interpreting the data: Parallel analysis with Sawzall.
Scientific Programming 13, 4 (Oct. 2005), 277–298.

21.	 Shahabi, C., Jahangiri, M., and Banaei-Kashani, F.
ProDA: An end-to-end wavelet-based OLAP system
for massive datasets. Computer 41, 4 (Apr. 2008),
69–77.

22.	 Spaccapietra, S., Parent, C., Damiani, M.L., de
Macedo, J. A., Porto, F., and Vangenot, C. A
conceptual view on trajectories. Data Knowledge
Engineering 65, 1 (Apr. 2008), 126–146.

23.	 Stonebraker, M., Bear, C., Çetintemel, U., Cherniack,
M., Ge, T., Hachem, N., Harizopoulos, S., Lifter, J.,
Rogers, J., and Zdonik, S.B. One size fits all? Part
2: Benchmarking studies. In Proceedings of the
Conference on Innovative Data Systems Research
(Asilomar, Jan. 7–10, 2007), 173–184.

24.	 Szalay, A., Bell, G., VandenBerg, J., et al. GrayWulf:
Scalable clustered architecture for data-intensive
computing. In Proceedings of the Hawaii
International Conference on System Sciences
(Waikoloa, Jan. 5–8). IEEE Computer Society Press,
2009, 1–10.

Anastasia Ailamaki (natassa@epfl.ch) is director of
the Data-Intensive Applications and Systems Laboratory
and a professor at Ecole Polytechnique Fédérale de
Lausanne, Lausanne, Switzerland, and an adjunct
professor at Carnegie Mellon University, Pittsburgh, PA.

Verena Kantere (verena.kantere@epfl.ch) is a
postdoctoral researcher in the Data-Intensive
Applications and Systems Laboratory at Ecole
Polytechnique Fédérale de Lausanne, Lausanne,
Switzerland.

Debabrata Dash (debabrata.dash@epfl.ch) is Ph.D
student in the Data-Intensive Applications and Systems
Laboratory at Ecole Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland.

© 2010 ACM 0001-0782/10/0600 $10.00

http://www.barrodale.com/
http://forge.gridforum.org/projects/dfdl-wg
http://www.ogsadai.org.uk/
http://www.esf.org/
mailto:natassa@epfl.ch
mailto:verena.kantere@epfl.ch
mailto:debabrata.dash@epfl.ch
http://forge.gridforum.org/projects/dfdl-wg
http://www.er.doe.gov/ascr/ProgramDocuments/Docs/Final-report-v26.pdf
http://www.er.doe.gov/ascr/ProgramDocuments/Docs/Final-report-v26.pdf

june 2010 | vol. 53 | no. 6 | communications of the acm 79

Studyin g th e m etadata of the ACM Digital Library
(http://www.acm.org/dl), we found that papers in
low-acceptance-rate conferences have higher impact
than those in high-acceptance-rate conferences
within ACM, where impact is measured by the number
of citations received. We also found that highly
selective conferences—those that accept 30% or less
of submissions—are cited at a rate comparable to
or greater than ACM Transactions and journals.

In addition, the higher impact of selec-
tive conferences cannot be explained
solely by a more strict filtering process;
selectivity signals authors and/or read-
ers of the quality of a venue and thus
invites higher-quality submissions from
authors and/or more citations from oth-
er authors.

Low-acceptance-rate conferences
with selective peer-review processes
distinguish computer science from
other academic fields where only jour-
nal publication carries real weight.
Focus on conferences challenges the

Conference
Paper
Selectivity
and Impact

doi:10.1145/1743546.1743569

Conference acceptance rate signals future
impact of published conference papers.

By Jilin Chen and Joseph A. Konstan

 key insights
 � �Papers published in highly selective

CS conferences are cited more often
on average than papers published in
Transactions and journals.

 � �Conference selectivity serves two
purposes: pick the best submitted
papers and signal prospective authors
and readers about conference quality.

 � �Below a certain acceptance rate,
selectivity can backfire; conferences
rejecting 85% or more of their
submissions risk discouraging overall
submissions and inadvertently filtering
out high-impact research.

http://www.acm.org/dl

80 communications of the acm | june 2010 | vol. 53 | no. 6

Overall, the
conference papers
had an average
two-year citation
count of 2.15, and
the journal papers
had an average
two-year citation
count of 1.53.

field in two ways: how to assess the
importance of conference publica-
tion, particularly compared to journal
publication, and how to manage con-
ferences to maximize the impact of
the papers they publish. “Impact fac-
tor” (average citation rate) is the com-
monly used measure of the influence
of a journal on its field. While nearly
all computer scientists have strong
intuition about the link between con-
ference acceptance rate and a paper’s
impact, we are aware of no systematic
studies examining that link or com-
paring conference and journal papers
in terms of impact.

This article addresses three main
questions: How does a conference’s ac-
ceptance rate correlate with the impact
of its papers? How much impact do
conference papers have compared to
journal papers? To what extent does the
impact of a highly selective conference
derive from filtering (the selectivity of
the review process) vs. signaling (the
message the conference sends to both
authors and readers by being selective)?
Our results offer guidance to conference
organizers, since acceptance rate is one
of the few parameters they can control
to maximize the impact of their confer-
ences. In addition, our results inform
the process of evaluating researchers,
since we know that computer scientists
often defend the primary publication
of results in conferences, particularly
when being evaluated by those out-
side the field (such as in tenure evalu-
ations).2 Finally, we hope these results
will help guide individual researchers
in understanding the expected impact
of publishing their papers in the vari-
ous venues.

Data and Methodology
We based our study on ACM Digital Li-
brary metadata for all ACM conference
and journal papers as of May 2007, as
well as on selected other papers in the
ACM Guide to Computing Literature for
which metadata was available. Since
there is no established metric for mea-
suring the scientific influence of pub-
lished papers, we chose to estimate
a paper’s influence as the number of
times it was cited in the two years fol-
lowing publication, referred to as cita-
tion count or simply as impact. We ex-
cluded from this count “self-citation”
in subsequent papers by the authors

of the original work. Using citations as
a measure of scientific influence has a
long tradition, including the journal-
impact factor.1 We chose two years as a
compromise between measuring long-
term impact and the practical impor-
tance of measuring impact of more re-
cent work.1 Less than two years might
be too short for the field to recognize
the worth of a paper and cite it. More
than two years would have excluded
more recently published papers from
our analysis due to insufficient time
after publication, so would not have al-
lowed us to include the current era of
widespread use of the Digital Library.a

For conferences, we counted only
full papers, since they represent their
attempt to publish high-impact work,
rather than posters and other less-rig-
orously reviewed material that might
also appear in conference proceedings.
Conferences where acceptance rates
were not available were excluded as well.
For journals, we included only titled
ACM Transactions and journals; only
these categories are generally viewed as
archival research venues of lasting value.

Finally, since our data source was
limited to the metadata in the ACM
Guide, our analysis considered only
citations from within that collection
and ignored all citations from confer-
ences and journals outside of it; this
was a pragmatic constraint because, in
part, other indexing services do not com-
prehensively index conference proceed-
ings. While it means that all our num-
bers were underestimates and that the
nature of the underestimates varied
by field (we expected to significantly
underestimate artificial intelligence
and numerical-computation papers
due to the large number of papers
published by SIAM and AAAI outside
our collection), such underestimates
were not biased toward any particu-
lar acceptance rate in our data set.b

a	 To ensure that the two-year citation count was
reasonable, we repeated this analysis using
four- and eight-year citation counts; the distri-
butions and graphs were similar, and the con-
clusions were unchanged.

b	 We hand-checked 50 randomly selected con-
ference papers receiving at least one citation
in our data set, comparing citation count in
the data set against citation count according
to Google scholar (http://scholar.google.com/).
When trying to predict Google scholar citation
count from ACM citation count in a linear re-
gression, we found an adjusted R-square of

http://scholar.google.com/

contributed articles

june 2010 | vol. 53 | no. 6 | communications of the acm 81

Therefore, this limitation did not in-
validate our results.

Our analysis included 600 confer-
ences consisting of 14,017 full papers
and 1,508 issues of journals consist-
ing of 10,277 articles published from
1970 to 2005. Their citation counts
were based on our full data set con-
sisting of 4,119,899 listed references
from 790,726 paper records, of which
1,536,923 references were resolved
within the data set itself and can be
used toward citation count. Overall,
the conference papers had an average
two-year citation count of 2.15 and the
journal papers an average two-year cita-
tion count of 1.53. These counts follow
a highly skewed distribution (see Fig-
ure 1), with over 70% of papers receiv-
ing no more than two citations. Note
that while the average two-year citation
count for conferences was higher than
journals, the average four-year citation
count for articles published before
2003 was 3.16 for conferences vs. 4.03
for journals; that is, on average, jour-
nals come out a little ahead of confer-
ence proceedings over the longer term.

Results
We addressed the first question—on how
a conference’s acceptance rate correlates
with the impact of its papers—by cor-
relating citation count with acceptance
rate; Figure 2 shows a scatterplot of aver-
age citation counts of ACM conferences
(y-axis) by their acceptance rates (x-axis).
Citation count differs substantially from
the spectrum of acceptance rates, with
a clear trend toward more citations for
low acceptance rates; we observed a sta-
tistically significant correlation between
the two values (each paper treated as
a sample, F[1, 14015] = 970.5, p<.001c)

0.852, showing that overall ACM citation count
is proportional to Google scholar citation count
with a small variation. When added as an addi-
tional parameter to the regression, acceptance
rate had a nonsignificant coefficient, showing
that acceptance rate does not have a significant
effect on the difference between ACM citation
count and Google scholar citation count. We
also hand-checked 50 randomly selected con-
ference papers receiving no citations in our
data set, finding no correlation between accep-
tance rate and Google scholar citation count.

c	 This F-statistic shows how well a linear rela-
tionship between acceptance rate and cita-
tion count explains the variance within cita-
tion count. The notation F[1, 14015] = 970.5,
p<.001 signifies one degree of freedom for
model (from using only acceptance rate to ex-

and computed both a linear regression
line (each conference weighted by its
size, adjusted R-square: 0.258, weighted
residual sum-of-squares: 35311) and a
nonlinear regression curve in the form
of y=a+bx−c (each conference weighted
by its size, pseudo R-square: 0.325,
weighted residual sum-of-squares:
32222), as shown in Figure 2.

Figure 3 is an aggregate view of the
data, where we grouped conferences

plain citation counts), 14,015 degrees of free-
dom for error (from the more than 14,000 con-
ference papers in our analysis), an F-statistic
of 970.5, and probability less than 0.001 that
the correlation between acceptance rate and
citation count is the result of random chance.

into bins according to acceptance
rates and computed the average ci-
tation counts of each bin.d Citation
counts for journal articles are shown
as a dashed line for comparison.
Conferences with rates less than 20%
enjoyed an average citation count as
high as 3.5. Less-selective conferences
yielded fewer citations per paper, with
the least-selective conferences (>55%
acceptance rate) averaging less than ½
citation per paper.

d	 We excluded conferences with an acceptance
rate less than 10% and an acceptance rate
over 60%, as there were too few conferences in
these categories for meaningful analysis.

Figure 1. Citation count distribution within two years of publication.

  Conference Papers
  Journal Papers

0.6

0.5

0.4

0.3

0.2

0.1

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Citations

Fr
ac

ti
on

 o
f

P
ap

er
s

Figure 2. Average citation count vs. acceptance rate for ACM conferences.

15

10

5

0

0.2 0.4 0.6 0.8 1.0

C
it

at
io

n
 C

ou
n

t

Acceptance Rate

82 communications of the acm | june 2010 | vol. 53 | no. 6

contributed articles

tions in the next two years as conferenc-
es accepting 35%–40% of submissions,
a much higher low-impact percentage
than for highly selective conferences.

The same analyses over four- and
eight-year periods yielded results con-
sistent with the two-year period; jour-
nal papers received significantly fewer
citations than conferences where the
acceptance rate was below 25%.

Low-acceptance-rate conferences in
computer science have a greater impact
than the average ACM journal. The fact
that some journal papers are expanded
versions of already-published (and cit-
ed) conference papers is a confounding
factor here. We do not have data that
effectively tracks research contribu-
tions through multiple publications to
assess the cumulative impact of ideas
published more than once.

Pondering why citation count corre-
lates with acceptance rate brings us to

Figure 4 shows the percentages of
papers within each group where cita-
tion count was above a certain threshold.
The bottom bands (reflecting papers cit-
ed more than 10, 15, or 20 times in the fol-
lowing two years) show high-acceptance-
rate conferences have few papers with
high impact. Also notable is the fact
that about 75% of papers published in
>55%-acceptance-rate conferences were
not cited at all in the following two years.

Addressing the second question—
on how much impact conference
papers have compared to journal pa-
pers—in Figures 3 and 4, we found that
overall, journals did not outperform
conferences in terms of citation count;
they were, in fact, similar to conferenc-
es with acceptance rates around 30%,
far behind conferences with accep-
tance rates below 25% (T-test, T[7603]
= 24.8, p<.001). Similarly, journals pub-
lished as many papers receiving no cita-

the third question—on the extent the
impact of a highly selective conference
derives from filtering vs. signaling—as
this correlation can be attributed to
two mechanisms:

Filtering. A selective review process
filters out low-quality papers from the
submission pool, lowering the accep-
tance rate and increasing the average
impact of published papers; and

Signaling. A low acceptance rate sig-
nals high quality, thus attracting better
submissions and more future citations,
because researchers simply prefer sub-
mitting papers to reading the proceed-
ings of and citing publications from
better conferences. While filtering is
commonly viewed as the whole point
of a review process and thus likely ex-
plains the correlation to some extent,
it is unclear whether signaling is also a
factor. As a result, to address the third
question, we clarified the existence of
signaling by separating its potential ef-
fect from filtering.

We performed this separation by
normalizing the selectivity of filtering to
the same level for different conferences.
For example, for a conference accepting
90 papers at a 30% acceptance rate, the
best potential average citation count
the conference could have achieved
by lowering the acceptance rate to,
say, 10% for the same submission pool
would be the average citation count of
the top 30 most-cited papers of the 90
accepted (presumably the 30 best pa-
pers of the original 300 submitted). We
treated these 30 papers as the top 10%
best submissions in the pool; other sub-
missions were either filtered out during
the actual review or later received fewer
citations. Their citation count was thus
an upperbound estimate of what might
be achieved through stricter filtering,
assuming conference program com-
mittees were able to pick exactly the
submissions that would ultimately be
the most highly cited. Using this nor-
malization, we compared the same top
portions of submission pools of all con-
ferences and evaluated the effect of sig-
naling without the influence of filtering.
We normalized all ACM conferences in
Figure 3 to a 10% acceptance rate and
compared the citation counts of their
top 10% best submissions; Figure 5
(same format as Figure 3) outlines the
results. We excluded transactions and
journals, as we were unable to get actual

Figure 3. Average citation count by acceptance rate within two years of publication.

4

3.5

3

2.5

2

1.5

1

0.5

0
10%–15% 15%–20% 20%–25% 25%–30% 30%–35% 35%–40% 40%–45% 45%–50% 50%–55% 55%–60%

C
it

at
io

n
 C

ou
n

t

Acceptance Rate

  Avg. Number of Citation for Conferences
  Avg. Number of Citation for Journals

Figure 4. Citation count distribution by acceptance rate within two years of publication.

10%–15% 15%–20% 20%–25% Journal25%–30% 30%–35% 35%–40% 40%–45% 50%–55% 55%–60%45%–50%

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Fr
ac

ti
on

 o
f

P
ap

er
s

Acceptance Rate/Venue Type

	 1+
	 6+
	 11+

	 16+
	 21+

contributed articles

june 2010 | vol. 53 | no. 6 | communications of the acm 83

acceptance-rate data, which might also
be less meaningful, given the multi-re-
view cycle common in journals.

Figure 5 suggests that citation count
for the top 10% of submitted papers fol-
lows a trend similar to that of the full
proceedings (F[1, 5165] = 149.5, p<.001),
with generally higher count for low ac-
ceptance rates. This correlation indi-
cates that filtering alone does not fully
explain the correlation between citation
count and acceptance rate; other factors
(such as signaling) play a role.

Discussion
Combining the results in Figures 3
and 5 provides further insight into the
relationship between acceptance rate
and citation count. For conferences
with acceptance rates over 20%, the ci-
tation numbers in the figures almost
consistently drop as the acceptance
rate increases, suggesting that in this
range, a higher acceptance rate makes
conferences lose out on citation count
not only for the conference but for its
best submitted papers. Either higher-
quality papers are not submitted to
higher-acceptance-rate conferences
as frequently or those submitted are
not cited because readers do not ex-
plore the conferences as often as they
explore lower-acceptance-rate confer-
ences to find them.

The case for conferences with ac-
ceptance rates below 20% is more in-
triguing. Note that the lower impact
of the 10%–15% group compared with
the 15%–20% group in Figure 5 is sta-
tistically significant (T[1198] = 3.21,
p<.002). That is, the top-cited papers
from 15%–20%-acceptance-rate con-
ferences are cited more often than
those from 10%–15% conferences. We
hypothesize that an extremely selec-
tive but imperfect (as review processes
always are) review process has filtered-
out submissions that would deliver
impact if published. This hypothesis
matches the common speculation, in-
cluding from former ACM President
David Patterson, that highly selective
conferences too often choose incre-
mental work at the expense of innova-
tive breakthrough work.3

Alternatively, extremely low accep-
tance rates might discourage submis-
sions by authors who dislike and avoid
competition or the perception of there
being a “lottery” among good papers for

have goals separate from generating
citations, and many high-acceptance-
rate conferences might do a better job
getting feedback to early ideas, support-
ing networking among attendees, and
bringing together different specialties.

Given the link between acceptance
rate and future impact, further research
is warranted in the degree to which a
conference’s reputation interacts over
time with changes in its acceptance
rate. Though a number of highly selec-
tive conferences have become more
or less selective over time, we still lack
enough data to clarify the effect of such
changes. We hope that understanding
them will yield new insight for confer-
ence organizers tuning their selectivity
in the future.

Acknowledgments
This work was supported by National
Science Foundation grant IIS-0534939.
We thank our colleague John Riedl
of the University of Minnesota for his
valuable insights and suggestions. 	

References
1.	G arfield, E. Citation analysis as a tool in journal

evaluation. Science 178, 60 (Nov. 1972), 471–479.
2.	N ational Research Council. Academic Careers for

Experimental Computer Scientists and Engineers. U.S.
National Academy of Sciences Report, Washington, D.C.,
1994; http://www.nap.edu/catalog.php?record_id=2236

3.	 Patterson, D.A. The health of research conferences
and the dearth of big idea papers. Commun. ACM 47,
12 (Dec. 2004), 23–24.

Jilin Chen (jilin@cs.umn.edu) is a doctoral student in the
Department of Computer Science and Engineering at the
University of Minnesota, Twin Cities.

Joseph A. Konstan (konstan@cs.umn.edu) is
Distinguished McKnight Professor and Distinguished
University Teaching Professor in the Department of
Computer Science and Engineering at the University of
Minnesota, Twin Cities.

© 2010 ACM 0001-0782/10/0600 $10.00

a few coveted publication slots. A third
explanation suggests that extremely
low acceptance rates have caused a con-
ference proceedings to be of such lim-
ited focus that other researchers stop
checking it regularly and thus never cite
it. We consider all three to be plausible
explanations; intuitively, all would hurt
the impact of lower-acceptance-rate
conferences more than they would hurt
higher-acceptance-rate conferences.

Conclusion
Our results have several implications:
First and foremost, computing re-
searchers are right to view conferences
as an important archival venue and use
acceptance rate as an indicator of fu-
ture impact. Papers in highly selective
conferences—acceptance rates of 30%
or less—should continue to be treated
as first-class research contributions
with impact comparable to, or better
than, journal papers.

Second, we hope to bring to the at-
tention of conference organizers and
program committees the insight that
conference selectivity does have a sig-
naling value beyond simply separat-
ing good work from bad. Adopting the
right selectivity level helps attract better
submissions and more citations. Accep-
tance rates of 15%–20% seem optimal
for generating the highest number of fu-
ture citations for both the proceedings
as a whole and the top papers submit-
ted, though we caution that this guide-
line is based on ACM-wide data, and
individual conferences should consider
their goals and the norms of their sub-
disciplines in setting target acceptance
rates. Furthermore, many conferences

Figure 5. Average citation count vs. acceptance rate within two years of publication,
top 10% of submissions.

6

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1
10%–15% 15%–20% 20%–25% 25%–30% 30%–35% 35%–40% 40%–45% 45%–50% 50%–55% 55%–60%

N
u

m
b

er
 o

f
C

it
at

io
n

s
Acceptance Rate/Venue Type

  Avg. Citation for Conferences
  Avg. Citation for Journals

http://www.nap.edu/catalog.php?record_id=2236
mailto:jilin@cs.umn.edu
mailto:konstan@cs.umn.edu

84 communications of the acm | june 2010 | vol. 53 | no. 6

review articles
doi:10.1145/1743546.1743570

New algorithms provide the ability for robust
but scalable image search.

By Kristen Grauman

Image and video data are certainly
rich with meaning, memories, or
entertainment, and in some cases
they can facilitate communication or
scientific discovery. However, without
efficient vision algorithms to automat-
ically analyze and index visual data,
their full value will remain latent—the
ratio of data to human attention is
simply too large.

Most image search tools in opera-
tion today rely heavily on keyword
meta-tags, where an image or video is
annotated with a limited number of
words that are either provided manu-
ally, or else are taken from whatever
text occurs nearby in its containing
document. While such a scheme sim-
plifies the image indexing task to one
that well-known information retrieval
techniques can handle, it has serious
shortcomings. At the surface, accu-
rate manual tags are clearly too expen-
sive to obtain on a large scale, and
keywords in proximity to an image are
often irrelevant.

Even more problematic, however,
is the semantic disconnect between
words and visual content: a word is a
human construct with a precise intent,
whereas a natural image can convey a
multitude of concepts within its (say)
million pixels, and any one may be more
or less significant depending on the
context. For example, imagine querying
a database for all text documents con-
taining the word “forest.” Now imagine

I f a t r e e falls in the forest and no one is there to
hear it, does it make a sound? In the realm of content-
based image retrieval, the question is: if an image is
captured and recorded but no one is there to annotate
it, does it ever again make an appearance? Over the
last decade we have witnessed an explosion in the
number and throughput of imaging devices. At the
same time, advances in computer hardware and
communications have made it increasingly possible
to capture, store, and transmit image data at a low
cost. Billions of images and videos are hosted publicly
on the Web; cameras embedded in mobile devices are
commonplace. Climatologists compile large volumes
of satellite imagery in search of long-term trends that
might elucidate glacial activity and its impact on
water supplies. Centralizedmedical image databases
archive terabytes of X-ray, CAT scans, and ultrasound
images, which may assist in new diagnoses.

Efficiently
Searching
for Similar
Images

 key insights

 � �As it becomes increasingly viable to
capture, store, and share large amounts
of image and video data, automatic
image analysis is crucial to managing
visual information.

 � �Often the most effective metrics for
image comparisons do not mesh well
with existing efficient search methods;
scalable image recognition and search
techniques, however, aim to provide
direct access to visual content.

 � �The capability to perform fast visual
search is critical for many applications,
and more generally, lays the groundwork
for data-driven approaches in computer
vision. P

h
o

t
o

m
o

saic

 b
y

 J
im

B
u

m
g

ard

n

er

june 2010 | vol. 53 | no. 6 | communications of the acm 85

86 communications of the acm | june 2010 | vol. 53 | no. 6

review articles

conjuring a text query that would fi nd
you all images relevant to the one on the
left in Figure 1; while you immediately
have a visual concept, it may be diffi cult
to pinpoint words to capture it, espe-
cially if the objects within the image
are unfamiliar. Thus, even if we were
to somehow record keywords for all the
images in the world, visual data would
still not be suffi ciently accessible.

Content-based image search
streamlines the process by sorting
images directly based on their visual
information and allowing images
themselves to serve as queries. While
early work in the area focused on cor-
relating low-level cues such as color
and texture,8,28 more recently the image
search problem has become inter-
twined with the fundamental problem
of recognition, in which algorithms
must capture higher-level notions of
visual object and scene categories.

The technical challenges are con-
siderable. Instances of the same
object category can generate drasti-
cally different images, depending on
confounding variables such as illu-
mination conditions, object pose,
camera viewpoint, partial occlusions,
and unrelated background “clutter”
(see Figure 2). In general, the quality
of image search relies signifi cantly on
the chosen image representation and
the distance metric used to compare
examples. Meanwhile, the complexity
of useful image representations com-
bined with the sheer magnitude of the
search task immediately raises the
practical issue of scalability.

This article overviews our work
considering how to construct robust
measures of image similarity that can
be deployed effi ciently, even for com-
plex feature spaces and massive image
databases. We pose three essential
technical questions: (1) what is an
effective distance measure between
images that can withstand the natu-
rally occurring variability among
related examples? (2) when external
cues beyond observable image content
are available, how can that improve
our comparisons? and (3) what kind of
search strategy will support fast que-
ries with such image-driven metrics,
particularly when our database is so
large that a linear scan is infeasible?
The following sections address each
of these issues in turn, and highlight

figure 2. the same object type can generate dramatically different images due to
a variety of nuisance parameters (top), but local descriptions can offer substantial
robustness (bottom).

occlusion

deformation

Camera view point

local feature matches

object pose

Clutter illumination

self-occlusion scale

…

figure 1. Visual data is complex and often holds valuable information. image-based
search algorithms automatically analyze and organize visual content, with the goal
of allowing effi cient retrieval from large image or video collections.

?

review articles

june 2010 | vol. 53 | no. 6 | communications of the acm 87

some of our results to demonstrate
the impact with real image data.

Our approach enables rapid, scal-
able search for meaningful metrics that
were previously restricted to artificially
modestly sized inputs or databases.
Additionally, we show how minimal
annotations can be exploited to learn
how to compare images more reliably.
Both contributions support the ulti-
mate goal of harnessing the potential
of very large repositories and providing
direct access to visual content.

Comparing Images with
Local Feature Matches
Earlier work in content-based image
retrieval focused on global represen-
tations that describe each image with
a single vector of attributes, such as a
color histogram, or an ordered list of
intensity values or filter responses.
While vector representations permit
the direct application of standard
distance functions and indexing
structures, they are known to be pro-
hibitively sensitive to realistic image
conditions. For example, consider
stacking the images in Figure 2 one
on top of the other, and then check-
ing the intensity at any given pixel for
each example—it is quite likely that
few of them would be in agreement,
even though each image contains a
koala as its most prominent object.

Much recent work shows that
decomposing an image into its compo-
nent parts (or so-called “local features”)
grants resilience to image transforma-
tions and variations in object appear-
ance.23,30 Typically, one either takes a
dense sample of regions at multiple
scales, or else uses an interest opera-
tor to identify the most salient regions
in an image. Possible salient points
include pixels marking high contrast
(edges), or points selected for a region’s
repeatability at multiple scales (see
Tuytelaars30 for a survey). Then, for
each detected region, a feature descrip-
tor vector is formed. Descriptors may
be lists of pixel values within a patch, or
histograms of oriented contrast within
the regions,23 for example. The result
is one set of local appearance or shape
description vectors per image, often
numbering on the order of 2,000 or
more features per image.

The idea behind such representat
ions is to detect strong similarity

between local portions of related
images, even when the images appear
quite different at the global level.
Local features are more reliable for
several reasons:

˲˲ Isolate occlusions: An object may
be partially occluded by another ob-
ject. A global representation will suf-
fer proportionally, but for local rep-
resentations, any parts that are still
visible will have their descriptions re-
main intact.

˲˲ Isolate clutter and the back-
ground: Similarly, while the global
description may be overwhelmed by
large amounts of background or clut-
ter, small parts of an image contain-
ing an actual object of interest can
emerge if we describe them indepen-
dently by regions. Recognition can
proceed without prior segmentation.

˲˲ Accommodate partial appearance
variation: When instances of a catego-
ry can vary widely in some aspects of
their appearance, their commonality
may be best captured by a part-wise
description that includes the shared
reoccurring pieces of the object class.

˲˲ Invariant local descriptors: Re-
searchers have developed local de-
scriptors designed explicitly to offer
invariance to common transforma-
tions, such as illumination changes,
rotations, translations, scaling, or all
affine transformations.

This appealing representation—a
set of vectors—does not fit the mold of
many traditional distances and learn-
ing algorithms. Conventional methods
assume vector inputs, but with local
representations, each image produces
a variable number of features, and
there is no ordering among features
in a single set. In this situation, com-
puting a correspondence or match-
ing between two images’ features can
reveal their overall resemblance: if
many parts in image A can be asso-
ciated with similar-looking parts in
image B, then they are likely to display
similar content (see Figure 2, bottom).

Current strategies for recognition
and image matching exploit this notion
in some form, often by building spatial
constellations of a category’s reoc-
curring local features, summarizing
images with a histogram of discretized
local patches, or explicitly comput-
ing the least-cost correspondences
(for a survey, see Pinz27 and references

therein). However, a real practical chal-
lenge is the computational cost of eval-
uating the optimal matching, which
is cubic in the number of features
extracted per image. Compounding
that cost is substantial empirical evi-
dence showing that recognition accu-
racy improves when larger and denser
feature sets are used.

The Pyramid Match Algorithm
To address this challenge, we devel-
oped the pyramid match—a lin-
ear-time matching function over
unordered feature sets—and showed
how it allows local features to be
used efficiently within the context
of multiple image search and learn-
ing problems.12 The pyramid match
approximates the similarity mea-
sured by the optimal partial matching
between feature sets of variable car-
dinalities. Because the matching is
partial, some features may be ignored
without penalty to the overall set
similarity. This tolerance makes the
measure robust in situations where
superfluous or “outlier” features may
appear. Note that our work focuses
on the image matching and indexing
aspects of the problem, and is flexible
to the representation choice, that is,
which particular image feature detec-
tors and descriptors are used as input.

We consider a feature space V of
d-dimensional vectors for which the
values have a maximal range D. The
point sets we match will come from
the input space S, which contains
sets of feature vectors drawn from
V: S = {X|X = {x1, …, xm}}, where each-
feature xi Î V Í d, and m = |X|. We
can think of each xi as a descriptor for
one of the elliptical image regions on
the koalas in Figure 2. Note that the
point dimension d is fixed for all fea-
tures in V, but the value of m may vary
across instances in S.

Given point sets X, Y Î S, with
|X| £ |Y|, the optimal partial
matching p* pairs each point in X
to some unique point in Y such
that the total distance between
matched points is minimized: p*

 where pi
specifies which point is matched
to xi, and || . ||1 denotes the L1
norm. For sets with m features, the
Hungarian algorithm computes the
optimal match in O(m3) time, which

88 communications of the acm | june 2010 | vol. 53 | no. 6

review articles

Thus, for each pyramid level, we
want to count the number of “new”
matches—the number of feature pairs
that were not in correspondence at
any finer resolution level. For exam-
ple, in Figure 3, there are two points
matched at the finest scale, two new
matches at the medium scale, and
one at the coarsest scale.

To calculate the match count, we use
histogram intersection, which mea
sures the “overlap” between the mass in
two histograms: I(P, Q) = S

r

j=1 min(Pj, Qj),
where P and Q are histograms with r
bins, and Pj denotes the count of the
j-th bin. The intersection value effec-
tively counts the number of points in
two sets that match at a given quanti-
zation level. To calculate the number
of newly matched pairs induced at
level i, we only need to compute the
difference between successive levels’
intersections. By using the change in
intersection values at each level, we
count matches without ever explicitly
searching for similar points or com-
puting inter-feature distances.

The pyramid match similarity score
P


between two input sets Y and Z is

then defined as the weighted sum of
the number of new matches per level:

histogram vector over points in X. The
bins continually increase in size from
the finest-level histogram H0 until the
coarsest-level histogram HL−1. For low-
dimensional feature spaces, the bound-
aries of the bins are computed simply
with a uniform partitioning along all
feature dimensions, with the length of
each bin side doubling at each level. For
high-dimensional feature spaces (for
example, d > 15), we use hierarchical
clustering to concentrate the bin par-
titions where feature points tend to
cluster for typical point sets.13 In either
case, we maintain a sparse representa-
tion per point set that maps each point
to its bin indices. Even though there is
an exponential growth in the number
of possible histogram bins relative to
the feature dimension (for uniform
bins) or histogram levels (for nonuni-
form bins), any given set of features can
occupy only a small number of them.
An image with m features results in a
pyramid description with no more than
mL nonzero entries to store.

Two histogram pyramids implicitly
encode the correspondences between
their point sets, if we consider two
points matched once they fall into
the same histogram bin, starting at
the finest resolution level. The match-
ing is a hierarchical process: vectors
not found to correspond at a fine
resolution have the opportunity to
be matched at coarser resolutions.

severely limits the practicality of
large input sizes. In contrast, the pyr-
amid match approximation requires
only O(mL) time, where L = log D, and
L << m. In practice, this translates to
speedups of several orders of mag-
nitude relative to the optimal match
for sets with thousands of features.

We use a multidimensional, multi-
resolution histogram pyramid to parti-
tion the feature space into increasingly
larger regions. At the finest resolution
level in the pyramid, the partitions
(bins) are very small; at successive levels
they continue to grow in size until a sin-
gle bin encompasses the entire feature
space. At some level along this gradation
in bin sizes, any two particular points
from two given point sets will begin to
share a bin in the pyramid, and when
they do, they are considered matched.
The key is that the pyramid allows us
to extract a matching score without
computing distances between any of
the points in the input sets—the size of
the bin that two points share indicates
the farthest distance they could be from
one another. We show that a weighted
intersection of two pyramids defines an
implicit partial correspondence based
on the smallest histogram cell where a
matched pair of points first appears.

Let a histogram pyramid for input
example X Î S be defined as: Ψ (X) =
[H0(X), …, HL−1(X)], where L specifies the
number of pyramid levels, and Hi(X) is a

Figure 3. An example pyramid match.

y z

y z

y z

(a) Point sets

H0(y) H0(z)

H1(y) H1(z)

H2(y) H2(z)

(b) Histogram pyramids

min(H0(y),H0(z))

I0=2

min(H1(y),H1(z))

I1=4

I2=5

(c) Intersections

Here, two 1-D feature sets are used to
form two histogram pyramids. Each row
corresponds to a pyramid level. In (a), set Y
is on the left, and set Z is on the right; points
are distributed along the vertical axis.
Light lines are bin boundaries, bold dashed
lines indicate a new pair matched at this
level, and bold solid lines indicate a match
already formed at a finer resolution level.
In (b) multiresolution histograms are
shown; (c) shows their intersections.
The pyramid match function P uses
these intersection counts to measure how
many new matches occurred at each level.
Here, Ii = I(Hi(Y), Hi(Z) ) = 2, 4, 5 across
levels, so the number of new matches
counted are 2, 2, 1. The weighted sum
over these counts gives the pyramid
match similarity.

The figure is reprinted from Grauman and
Darrell12 with permission, ©2005 IEEE.

review articles

june 2010 | vol. 53 | no. 6 | communications of the acm 89

research community and today stands
as a key point of comparison for exist-
ing methods. For all the following
results, we use the SIFT descriptor,23
which is insensitive to shifts and
rotations in the image yet provides a
distinctive summary of a local patch.

The leftmost plot of Figure 4 demon-
strates that when the pyramid match
is used to sort the images from the
ETH-80 in a retrieval task, its complete
ranking of the database examples is
highly correlated to that of the optimal
matching. The vertical axis measures
how well results from two variants
of the PMK agree with the optimal
cubic-time results, and the horizontal
axis shows the relative impact of the
feature dimension d. While for low-
dimensional features either a uniform
or data-dependent partitioning of the
feature space is adequate for good
results, due to the curse of dimension-
ality, a data-dependent pyramid bin

search the image collection based on
content alone.

Figure 4 shows some illustrative
results using two well-known publicly
available benchmark datasets, the
ETH-80 and Caltech-101. Both datas-
ets are used to measure image catego-
rization accuracy. The ETH collection
is comprised of 80 object instances
from eight different categories posi-
tioned on simple backgrounds; it is
among the first benchmarks estab-
lished for the categorization task, and
since several categories are visually
rather similar (for example, horse and
cow, apple and tomato), it is a good
test for detailed discrimination. The
Caltech collection, first introduced
in 2003, contains 101 categories. It is
challenging due to the magnitude of
the multiclass problem it poses, and
for many categories it offers notice-
able intraclass appearance variation.
It has received much attention in the

The number of new matches
induced at level i is weighted by
to reflect the (worst-case) similarity
of points matched at that level. This
weighting reflects a geometric bound
on the maximal distance between any
two points that share a particular bin.
Intuitively, similarity between vectors
at a finer resolution—where features
are more distinct—is rewarded more
heavily than similarity between vec-
tors at a coarser level.

We combine the scores resulting
from multiple pyramids with randomly
shifted bins in order to alleviate quan-
tization effects, and to enable formal
error bounds. The approximation error
for the pyramid match cost is bounded
in the expectation by a factor of C . d
log D, for a constant C.15 We have also
proven that the pyramid match kernel
(PMK) naturally forms a Mercer kernel,
which essentially means that it satisfies
the necessary technical requirements
to permit its use as a similarity func-
tion within a number of existing ker-
nel-based machine learning methods.

Previous approximation methods
have also considered a hierarchical
decomposition of the feature space to
reduce complexity1,2,5,17; the method
by Indyk and Thaper 17 particularly
inspired our approach. However, ear-
lier matching approximations assume
equally sized input sets, and cannot
compute partial matches. In addi-
tion, while previous techniques suffer
from distortion factors that are lin-
ear in the feature dimension, we have
shown how to alleviate this decline in
accuracy by tuning the hierarchical
decomposition according to the par-
ticular structure of the data.13 Finally,
our approximation is unique in that
it forms a valid Mercer kernel, and is
useful in the context of various learn-
ing applications.

In short, the pyramid match gives
us an efficient way to measure the
similarity between two images based
on the matching between their (poten-
tially many) local features. Now, given
a query image such as the one on the
left of Figure 1, we can first extract
descriptors for its local regions using
any standard feature extractor,23, 30 and
then find its relevant “neighbors” in
the collection on the right by comput-
ing and sorting their pyramid match
scores. In this way, we are able to

Figure 4. The image rankings produced by the linear-time pyramid match.

0 20 40 60 80 100 120
0.7

0.75

0.8

0.85

0.9

0.95

1

Feature dimension (d)

Retrieval quality relative to the optimal match
Pyramid match with uniform bins
Pyramid match with data−dependent bins

(a)

0 200 400 600 800
72

74

76

78

80

82

84

86

88

90

Training time (s)

A
cc

u
ra

cy
 (

%
)

Recognition on ETH-80
Explicit match

Pyramid match

(b)

S
p

ea
rm

an
 r

an
k

co
rr

el
at

io
n

 w
it

h
 o

p
ti

m
al

 m
at

ch

(a) The image rankings produced by
the linear-time pyramid match are
closely aligned with those produced
by the ubic-time optimal matching.
This plot shows how closely rankings
computed with our approximate
measure correlate with the optimal
result, for features of increasing
dimensionality. The vertical axis
measures the rank correlation;
perfect ranking agreement with the
optimal measure would yield a score
of 1. (b) More features per image lead
to more reliable matches, but explicit
matching techniques scale poorly with
the representation size. The pyramid
match makes large feature sets easily
affordable. (c) The four category pairs
in the Caltech-101 database that our
method confused most.

(c)

90 communications of the acm | june 2010 | vol. 53 | no. 6

review articles

in situations where we have no back-
ground knowledge; that is, where the
system only has access to the image
content itself. However, in many cases
the system could also receive external
side-information that might benefit its
comparisons. For example, if provided
with partially annotated image exam-
ples, or if a user wants to enforce simi-
larity between certain types of images,
then we ought to use those constraints
to adapt the similarity measure.

A good distance metric between
images accurately reflects the true
underlying relationships. It should
report small distances for examples
that are similar in the parameter space
of interest (or that share a class label),
and large distances for unrelated
examples. Recent advances in metric
learning make it possible to learn dis-
tance functions that are more effective
for a given problem, provided some
partially labeled data or constraints are
available (see Yang32 and references
within). By taking advantage of the
prior information, these techniques
offer improved accuracy. Typically, the
strategy is to optimize any parameters
to the metric so as to best satisfy the
desired constraints.

Figure 5a depicts how metric learn-
ing can influence image comparisons:
the similarity (solid line) and dis-
similarity (dotted lines) constraints
essentially warp the feature space to
preserve the specified relationships,
and generalize to affect distances
between other examples like them. In

water lily, gerenuk and kangaroo, and
nautilus and brain. In each row, the
two images on the left have local fea-
tures that match quite well to the two
on the right, as compared to images
from any of the other 100 classes in
the dataset. Some of these confused
category pairs have rather subtle dis-
tinctions in appearance. However,
the case of the gerenuk and kangaroo
reveals a limitation of the completely
local description, as by definition it
fails to capture the significance of
the global contour shapes of the two
objects.

Overall, approaches based on the
pyramid match consistently show
accuracy that is competitive with (or
better than) the state of the art while
requiring dramatically less computa-
tion time. This complexity advantage
frees us to consider much richer repre-
sentations than were previously prac-
tical. Methods that compute explicit
correspondences require about one
minute to match a novel example; in
the time that these methods recognize
a single object, the pyramid match can
recognize several hundred.15 Due to its
flexibility and efficiency, the pyramid
match has been adapted and extended
for use within a number of tasks, such
as scene recognition,22 video index-
ing,6 human action recognition,24 and
robot localization.25

Learning Image Metrics
Thus far, we have considered how to
robustly measure image similarity

structure is much more effective for
high-dimensional features.

The center plot shows accuracy as
a function of computation time when
the eight categories of the same dataset
are learned using local feature matches
between images. The plot compares
the performance of the pyramid match
to an exact matching function that
averages the cost between the closest
features in one set to the other. The hor-
izontal axis measures the total training
time, which is directly affected by the
size of the feature sets. To vary the size
of a typical set, we tune the saliency
parameter controlling how many
regions are detected per image. For
both methods, more features lead to
striking accuracy improvements; this
behavior is expected since introduc-
ing more features assures better cov-
erage of all potentially relevant image
regions. However, the linear-time pyra-
mid match offers a key advantage in
terms of computational cost, reaching
peak performance for significantly less
computation time.

On the Caltech-101 benchmark, we
have shown that classifiers employing
the PMK with a variety of features cur-
rently yield one of the most accurate
results in the field,20 with 74% accu-
racy on the 101-way decision problem
when training with just 15 exemplars
per class. Figure 4c shows example
images from four pairs of categories
in the Caltech-101 dataset that cause
the most confusion for the pyramid
match: schooner and ketch, lotus and

Figure 5. The learned metric.

(b)

5 10 15 20 25 30
0

10

20

30

40

50

60

70

Number of constrained examples per class

M
ea

n
 a

cc
u

ra
cy

/c
la

ss
 (

%
)

Caltech 101: gains over original (nonlearned) kernels

ML+CORR
ML+PMK

CORR
PMK

(a)

Plot reprinted from Jain et al.19 with permission, ©2008 IEEE.

(a) By constraining some examples to be similar (green solid line), and others to be dissimilar (red dotted lines), the learned metric refines the original distance
function so that examples are close only when they share the relevant features. (b) Retrieval accuracy is improved by replacing two matching-based metrics (PMK
and CORR) with their learned counterparts (ML + PMK and ML + CORR).

review articles

june 2010 | vol. 53 | no. 6 | communications of the acm 91

two matching-based kernels as the
base metrics. The fi rst kernel is the
PMK, the approximate matching mea-
sure defi ned here. The second kernel
is defi ned in Zhang et al.,33 and uses
exhaustive comparisons between
features to compute a one-to-many
match based on both descriptor and
positional agreement; we refer to it
as CORR for “correspondence.” For
this dataset of 101 object types, note
that chance performance would yield
an accuracy rate of only 1%. Both
base metrics do the most they can by
matching the local image features;
the learned para meters adapt those
metrics to better refl ect the side-infor-
mation specifying a handful of images
from each class that ought to be near
(or far) from the others.

searching image collections
in sublinear time
Now that we have designed effective
similarity measures, how will image
search scale? We must be able to use
these metrics to query a very large image
database—potentially on the order of
millions of examples or more. Certainly,
a naive linear scan that compares the
query against every database image is

matching functions.19 Given points
{x1, . . . , xn}, with xi Î d, a positive-
defi nite d × d matrix A parameterizes
the squared Mahalanobis distance:

 dA(xi , xj) = (xi - xj)
T A(xi - xj). (1)

A generalized inner product mea-
sures the pairwise similarity associ-
ated with that distance: SA(xi xj) = xT

i Axj.
Thus for a kernel K(xi, xj) = f(xi)

Tf(xj),
the parameters transform the inner
product in the implicit feature space
as f(xi)

T Af(xj). Given a set of inter-
example distance constraints, one
can directly learn a matrix A to yield
a measure that is more accurate for
a given problem. We use the effi cient
method of Davis et al.7 because it is
kernelizable. This method optimizes
the parameters of A so as to minimize
how much that matrix diverges from
an initial user-provided “base” param-
eterization, while satisfying con-
straints that require small distances
between examples specifi ed as simi-
lar, and large distances between pairs
specifi ed as dissimilar.

Figure 5b shows the signifi cant
retrieval accuracy gains achieved
when we learn image metrics using

this illustrative example, even though
we may measure high similarity
between the greenery portions of both
the cockatoo and koala images, the
dissimilarity constraint serves to refo-
cus the metric on the other (distinct)
parts of the images.

In the case of the pyramid match,
the weights associated with matches
at different pyramid levels can be
treated as learnable parameters.
While fi xing the weights according to
the bin dia meters gives the most accu-
rate approximation of true inter-fea-
ture distances in a geometric sense,
when we have some annotated images
available, we can directly learn the
weights that will best map same-class
images close together.18

The idea is that the best match-
ing function is specifi c to the class
of images, and is inherently defi ned
by the variability a given class exhib-
its. For example, to distinguish one
skyscraper from another, we might
expect same-class examples to con-
tain some very tight local feature cor-
respondences, whereas to distinguish
all skyscrapers from koalas, we expect
feature matches to occur at greater
distances even among same-class
examples. While the same type of
image feature may be equally relevant
in both situations, what is unique is
the distance at which similarity is sig-
nifi cant for that feature. Therefore, by
learning the reward (weight) associ-
ated with each matching level in the
pyramid, we can automatically deter-
mine how close feature matches must
be in order to be considered signifi -
cant for a given object class.

To achieve this intuition, we
observe that the PMK can be written as
a weighted sum of base kernels, where
each base kernel is the similarity com-
puted at a given bin resolution. We
thus can compute the weights using a
form of kernel alignment,3 where we
fi nd the optimal combination of ker-
nel matrices that most closely mimics
the “ideal” kernel on the training data,
that is, the one that gives maximal
similarity values for in-class examples
and minimal values for out-of-class
examples (see Jain et al.18 for details).

We have also shown how image
retrieval can benefi t from learning the
Mahalanobis parameterization for sev-
eral distinct base metrics, including

figure 6. Query hashes.

 if hash functions guarantee a high
probability of collision for similar im-
ages under a metric of interest, one can
search a large database in sublinear
time via lsh techniques. the query
hashes directly to bins with similar
examples, and only that subset needs
to be searched. We have designed lsh
functions for matching, learned dis-
tances, and arbitrary kernel functions.

Query

hash table

h
?

…

10010

10101

10111

Database

h

……

92 communications of the acm | june 2010 | vol. 53 | no. 6

review articles

To embed the pyramid match as an
inner product, we exploit the relation-
ship between a dot product and the
min operator used in the PMK’s inter-
sections. Taking the minimum of two
values is equivalent to computing the
dot product of a unary-style encoding
in which a value u is written as a list
of u ones, followed by a zero padding
large enough to allot space for the max-
imal value that will occur. So, since a
weighted intersection value is equal to
the intersection of weighted values, we
can compute the embedding by stack-
ing up the histograms from a single
pyramid, and weighting the entries
associated with each pyramid level
appropriately. Our embedding enables
LSH for normalized partial match
similarity with local features, and we
have shown that it can achieve results
very close to a naive linear scan when
searching only a small fraction of an
image database (1%–2%) (see Grauman
and Darrell14 for more details).
Semi-supervised hashing. To provide
suitable hash functions for learned
Mahalanobis metrics, we propose
altering the distribution from which
the randomized hyperplanes are
drawn. Rather than drawing the vec-
tor r uniformly at random, we want
to bias the selection so that similarity
constraints provided for the metric
learning process are also respected
by the hash functions. In other words,
we still want similar examples to col-
lide, but now that similarity cannot be
purely based on the image measure-
ments xi and xj; it must also reflect the
constraints that yield the improved
(learned) metric (see Figure 7a). We
refer to this as “semi-supervised”
hashing, since the hash functions will
be influenced by any available partial
annotations, much as the learned met-
rics were in the previous section.

In Jain et al.,19 we present a straight-
forward solution for the case of rela-
tively low-dimensional input vector
spaces, and further derive a solution to
accommodate very high-dimensional
data for which explicit input space
computations are infeasible. The for-
mer contribution makes fast indexing
accessible for numerous existing metric
learning methods, while the latter is of
particular interest for commonly used
image representations, such as bags-of-
words or multiresolution histograms.

functions, the query time for retrieving
(1 + )-near neighbors is bounded by
O(N1/(1+)) for the Hamming distance
and a database of size N.10 One can
therefore trade off the accuracy of the
search with the query time required.

Note that Equation 2 is essentially
a gateway to LSH: if one can provide a
distribution of hash functions guar-
anteed to preserve this equality for
the similarity function of interest, then
approximate nearest neighbor search
may be performed in sublinear time.
Existing LSH functions can accommo-
date the Hamming distance, Lp norms,
and inner products, and such func-
tions have been explored previously in
the vision community. In the following
we show how to enable sublinear time
search with LSH for metrics that are
particularly useful for image search.
Matching-sensitive hashing. Even
though the pyramid match makes
each individual matching scalable
relative to the number of features per
image, once we want to search a large
database of images according to the
correspondence-based distance, we
still cannot afford a naive linear scan.
To guarantee locality sensitivity for
a matching, we form an embedding
function that maps our histogram
pyramids into a vector space in such
a way that the inner product between
vectors in that space exactly yields the
PMK similarity value.14

This remapping is motivated by
the fact that randomized hash func-
tions exist for similarity search with
the inner product.5 Specifically,
Goemans and Williamson11 show that
the probability that a hyperplane r
drawn uniformly at random separates
two vectors xi and xj is directly pro-
portional to the angle between them:

An LSH function that exploits this
relationship is given by Charikar.5 The
hash function hr accepts a vector x Î
d, and outputs a bit depending on
the sign of its product with r:

	 �
(3)

Since
 (xT

i  xj), the probability of collision is
high whenever the examples’ inner
product is high.5

not feasible, even if the metric itself
is efficient. Unfortunately, traditional
methods for fast search cannot guar-
antee low query-time performance for
arbitrary specialized metrics.a This sec-
tion overviews our work designing hash
functions that enable approximate sim-
ilarity search for both types of metrics
introduced above: a matching between
sets, and learned Mahalanobis kernels.

The main idea of our approach is to
construct a new family of hash func-
tions that will satisfy the locality sen-
sitivity requirement that is central to
existing randomized algorithms5, 16 for
approximate nearest neighbor search.
Locality sensitive hashing (LSH) has
been formulated in two related con-
texts—one in which the likelihood of
collision is guaranteed relative to a
threshold on the radius surrounding a
query point,16 and another where col-
lision probabilities are equated with a
similarity function score.5 We use the
latter definition here.

A family of LSH functions F is a dis-
tribution of functions where for any
two objects xi and xj,

	
� (2)

where sim(xi, xj) Î [0, 1] is some simi-
larity function, and h(x) is a hash
function drawn from F that returns
a single bit.5 Concatenating a series
of b hash functions drawn from F
yields b-dimensional hash keys. When
h(xi) = h(xj), xi and xj collide in the hash
table. Because the probability that two
inputs collide is equal to the similarity
between them, highly similar objects
are indexed together in the hash table
with high probability. On the other
hand, if two objects are very dissimi-
lar, they are unlikely to share a hash
key (see Figure 6). Given valid LSH

a  Data structures based on spatial partition-
ing and recursive decomposition have been
developed for faster search, e.g., k-d trees9 and
metric trees.31 While their expected query time
requirement may be logarithmic in the data-
base size, selecting useful partitions can be
expensive and requires good heuristics; worse,
in high-dimensional spaces all exact search
methods are known to provide little query time
improvement over a naive linear scan.16 The ex-
pected query time for a k-d tree contains terms
that are exponential in the dimension of the
features,9 making them especially unsuitable
for the pyramid representation where the di-
mension can be on the order of millions.

review articles

june 2010 | vol. 53 | no. 6 | communications of the acm 93

explicitly, and we must work in the
implicit kernel space. For example, for
features like the histogram pyramids
above, we have d = 106. The examples
are sparse and representable; how-
ever, the matrix A is dense and is
not. This complicates the computa-
tion of hash functions, as they can
no longer be computed directly as in
Equation 4. To handle this, we derived
an algorithm that simultaneously
makes implicit updates to both the
hash functions and the metric being
learned. We show it is possible to com-
pute the value of rTG indirectly, based
on comparisons between the points
involved in similarity constraints and
the new example x that we want to
hash. See Jain et al.19 for details.

Figure 7b shows results using our
semi-supervised hash functions. In
the left-hand plot, we see the learned
metric (denoted ‘ML’) significantly
improves the base metric in the image
retrieval task for the Caltech data.
Additionally, we now can offer sublin-
ear time search even once the metric
has been altered by the input similar-
ity constraints. Note how accuracy
varies as a function of , the param-
eter controlling how many examples
we have to search per query; the more
examples we can afford to search, the
stronger our guarantee of approximat-
ing an exhaustive linear scan.

The right-hand plot shows results
using another database, 300K patches

from the PhotoTourism project.28
Here L2 is the base metric; the recall
rate is substantially improved once we
learn a metric on top of it. Negligible
accuracy is sacrificed when search-
ing with our semi-supervised hash
functions (as seen by the closeness of
the top two curves), yet our hashing
strategy requires touching only 0.8%
of the patches in the database. In our
MATLAB implementation, we observe
speedup factors of about 400 relative
to a linear scan for databases contain-
ing half a million examples. Due to the
query-time guarantees our hash func-
tions enable, that factor grows rapidly
with the size of the database.

Most recently, we have derived
hash functions to enable fast search
with arbitrary kernel functions.21

Relative to traditional exact search
data structures, the approximate hash-
ing approach is critical to performance
when inputs are high-dimensional.
Modifications to classic tree structures
have also been explored to improve
search time with high-dimensional
image features;4,26 however, such
approaches do not provide query-time
guarantees, and are not applicable
to searching with learned metrics. By
hashing to buckets containing a collec-
tion of examples with a high probabil-
ity of being very similar to the query, we
are able to sort out the most relevant
list of near neighbors. This is important
for content-based retrieval, where we

Given the matrix A for a metric
learned as above, such that A = GTG, we
generate the following randomized
hash functions hr,A:

	 	
(4)

where the vector r is chosen at ran-
dom from a d-dimensional Gaussian
distribution with zero mean and unit
variance.

By parameterizing the hash func-
tions by both r and G, we enforce the
following probability of collision:

which sustains the LSH requirement
for a learned Mahalanobis metric.
Essentially we have shifted the ran-
dom hyperplane r according to A, and
by factoring it by G we allow the ran-
dom hash function itself to “carry” the
information about the learned metric.
The denominator in the cosine term
normalizes the kernel values.

For low-dimensional data, we
could equivalently transform all the
data according to A prior to hashing.
However, the matrix  A has d2 entries,
and thus for very high-dimensional
input spaces it cannot be represented

Figure 7. Semi-supervised hash functions.

(a) A generic hash function would choose the orientation of the hyperplane r uniformly at random, causing collisions only for examples that have small angles
between their features (xi and xj). In constrast, the distribution of our randomized semi-supervised hash functions is such that examples like those constrained to
be similar are more likely to collide (left), while pairs like those constrained to be dissimilar are less likely to collide (right). Here the hourglass shapes denote the
regions from which our randomized hash functions will most likely be drawn. (b) Semi-supervised hash functions encode the learned metric, and allow guaran-
teed sublinear time queries that are similar in accuracy to a naive linear scan.

r

h(xi) = h(xj)

xj

xi

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

50

60

70

80

90

100

110

Epsilon (e)

k−
n

ea
re

st
 n

ei
g

h
b

or
s

er
ro

r
ra

te

Caltech-101: classification error with hashing

100 200 300 400 500 600 700 800 900 1000
0.6

0.65

0.7

0.75

0.8

Number of nearest neighbors (k)

R
ec

al
l

PhotoTourism: recall vs NN

ML linear scan
ML hashing

L2 linear scan
L2 hashing

ML+PMK hashing
PMK hashing

ML+PMK linear scan
PMK linear scan

(a) Semi-supervised hash functions: intuition

h(xi) ≠ h(xj)

(b) Results with semi-supervised hashing

r

xj

xi

Plots are reprinted from Jain et al.19 with permission, ©2008 IEEE.

94 communications of the acm | june 2010 | vol. 53 | no. 6

review articles

The QBIC system. IEEE Comput. 28, 9 (1995), 23–32.
	 9.	 Friedman, J., Bentley, J., Finkel, R. An algorithm for

finding best matches in logarithmic expected time.
ACM Trans. Math. Softw. 3, 3 (1977), 209–226.

10.	G ionis, A., Indyk, P., Motwani, R. Similarity search in
high dimensions via hashing. In Proceedings of the
International Conference on Very Large Data Bases
(1999).

11.	G oemans, M., Williamson, D. Improved approximation
algorithms for maximum cut and satisfiability
problems using semidefinite programming. J. Assoc.
Comput. Mach. 42, 6 (1995), 1115–1145.

12.	G rauman, K., Darrell, T. The pyramid match kernel:
discriminative classification with sets of image
features. In Proceedings of the IEEE International
Conference on Computer Vision (2005).

13.	G rauman, K., Darell, T. Approximate correspondences
in high dimensions. In Advances
in Neural Information Processing Systems (2006).

14.	G rauman, K., Darrell, T. Pyramid match hashing:
sub-linear time indexing over partial correspondences.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2007).

15.	G rauman, K., Darrell, T. The pyramid match kernel:
efficient learning with sets of features. J. Mach. Learn.
Res. 8 (2007), 725–760.

16.	 Indyk, P., Motwani, R. Approximate nearest neighbors:
towards removing the curse of dimensionality. In
Symposium on Theory of Computing (1998).

17.	 Indyk, P., Thaper, N. Fast image retrieval via
embeddings. In International Workshop on Statistical
and Computational Theories of Vision (2003).

18.	 Jain, P., Huynh, T., Grauman, K. Learning Discriminative
Matching Functions for Local Image Features.
Technical Report, UT-Austin, April 2007.

19.	 Jain, P., Kulis, B., Grauman, K. Fast image search
for learned metrics. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition (2008).

20.	K apoor, A., Grauman, K., Urtasun, R., Darrell, T.
Gaussian processes for object categorization. Int. J.
Comput. Vis. 88, 2 (2009), 169–188.

21.	K ulis, B., Grauman, K. Kernelized locality-sensitive
hashing for scalable image search. In Proceedings of
the IEEE International Conference on Computer Vision
(2009).

22.	 Lazebnik, S., Schmid, C., Ponce, J. Beyond bags of
features: Spatial pyramid matching for recognizing
natural scene categories. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (2006).

23.	 Lowe, D. Distinctive image features from scale-
invariant keypoints. Int. J. Comput. Vis. 60, 2 (2004).

24.	 Lv, F., Nevatia, R. Single view human action recognition
using key pose matching and Viterbi path searching.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2007).

25.	 Murilloa, A. et al. From omnidirectional images to
hierarchical localization. Robotics Auton. Syst. 55,
5 (May 2007), 372–382.

26.	N ister, D., Stewenius, H. Scalable recognition
with a vocabulary tree. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (2006).

27.	 Pinz, A. Object categorization. Found. Trend. Comput.
Graph. Vis. 1, 4 (2006), 255–353.

28.	 Snavely, N., Seitz, S., Szeliski, R. PhotoTourism:
Exploring photos in 3D. In SIGGRAPH (2006).

29.	 Swain, M., Ballard, D. Color indexing. Int. J. Comput.
Vis. 7, 1 (1991), 11–32.

30.	 Tuytelaars, T., Mikolajczyk, K. Local invariant feature
detectors: A survey. Found. Trend. Comput. Graph.
Vis. 3, 3 (2008), 177–280.

31.	U hlmann, J. Satisfying general proximity/similarity
queries with metric trees. Inf. Process. Lett.
40 (1991), 175–179.

32.	Y ang, L. Distance Metric Learning: A Comprehensive
Survey. Technical Report, Michigan State University,
2006.

33.	 Zhang, H., Berg, A., Maire, M., Malik, J. SVM-KNN:
discriminative nearest neighbor classification for
visual category recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (2006).

Kristen Grauman (grauman@cs.utexas.edu) is an
assistant professor in the Department of Computer
Science at the University of Texas at Austin.

© 2010 ACM 0001-0782/10/0600 $10.00

do not expect the single nearest exem-
plar to answer the query, but rather
that the pool of nearby content will give
the user and/or downstream processes
access to relevant candidates.

Conclusion
As the world’s store of digital images
continues to grow exponentially, and
as novel data-rich approaches to com-
puter vision begin to emerge, fast tech-
niques capable of accurately searching
very large image collections are critical.
The algorithms we have developed aim
to provide robust but scalable image
search, and results show the practical
impact. While motivated by vision prob-
lems, these methods are fairly general,
and may be applicable in other domains
where rich features and massive data
collections abound, such as computa-
tional biology or text processing.

Looking forward, an important chal-
lenge in this research area is to develop
the representations that will scale in
terms of their distinctiveness; once the
space of images is even more densely
populated, relative differences are sub-
tle. At the same time, flexibility is still a
key to handling intra-category variation.
While our search methods can guaran-
tee query-time performance, it is not yet
possible to guarantee a level of discrimi-
nation power for the features chosen. In
addition, a practical issue for evaluat-
ing algorithms in this space is the dif-
ficulty of quantifying accuracy for truly
massive databases; the data itself is easy
to come by, but without ground truth
annotations, it is unclear how to rigor-
ously evaluate performance.

An interesting aspect of the image
search problem is the subjectivity
related to a real user’s perception of the
quality of a retrieval. We can objectively
quantify accuracy in terms of the cate-
gories contained in a retrieved image,
which is helpful to systematically
validate progress. Moreover, example-
based search often serves as one useful
stage in a larger pipeline with further
processing downstream. Nonetheless,
when end users are in the loop, the per-
ception of quality may vary. On the eval-
uation side, this uncertainty could be
addressed by collecting user apprais-
als of similarity, as is more standard in
natural language processing. In terms
of the algorithms themselves, however,
one can also exploit classic feedback

and query-refinement devices to tailor
retrieval toward the current user. For
example, we could construct learned
image metrics with constraints that
target the preferences of a given user or
group of users.

We are currently exploring online
extensions to our algorithms that
allow similarity constraints to be
processed in an incremental fash-
ion, while still allowing intermit-
tent queries. We are also pursuing
active learning methods that allow
the system to identify which image
annotations seem most promising to
request, and thereby most effectively
use minimal manual input.

Acknowledgments
I am fortunate to have worked with
a number of terrific collaborators
throughout the various stages of
the projects overviewed in this arti-
cle—in particular, Trevor Darrell,
Prateek Jain, and Brian Kulis. This
research was supported in part by
NSF CAREER IIS-0747356, Microsoft
Research, and the Henry Luce
Foundation. I would like to thank
Kathryn McKinley and Yong Jae Lee
for feedback on previous drafts, as
well as the anonymous reviewers for
their helpful comments. Thanks to
the following Flickr users for shar-
ing their photos under the Creative
Commons license: belgian-choco-
late, c.j.b., edwinn.11, piston9, sta-
minaplus100, rick-yrhodes, Rick
Smit, Krikit, Vanessa Pike-Russell,
Will Ellis, Yvonne in Willowick Ohio,
robertpaulyoung, lin padgham,
tkcrash123, jennifrog, Zemzina,
Irene2005, and CmdrGravy.�

References
	 1.	 Agarwal, P., Varadarajan, K.R. A near-linear algorithm

for Euclidean bipartite matching. In Symposium on
Computational Geometry (2004).

	 2.	 Avis, D. A survey of heuristics for the weighted
matching problem. Networks, 13 (1983), 475–493.

	 3.	B ach, F., Lanckriet, G., Jordan, M. Multiple kernel
learning, conic duality, and the SMO algorithm. In
International Conference on Machine Learning (2004).

	 4.	B eis, J., Lowe, D. Shape indexing using approximate
nearest-neighbour search in high dimensional spaces.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (1997).

	 5.	 Charikar, M. Similarity estimation techniques from
rounding algorithms. In ACM Symposium on Theory of
Computing (2002).

	 6.	 Choi, J., Jeon, W., Lee, S.-C. Spatio-temporal pyramid
matching for sports videos. In Proceedings of the
ELACM Conference on Multimedia Information
Retrieval (2008).

	 7.	 Davis, J., Kulis, B., Jain, P., Sra, S., Dhillon, I.
Information-theoretic metric learning. In
International Conference on Machine Learning (2007).

	 8.	 Flickner, M. et al. Query by image and video content:

mailto:grauman@cs.utexas.edu

research highlights

june 2010 | vol. 53 | no. 6 | communications of the acm 95

p. 107

seL4: Formal Verification
of an Operating-System Kernel
By Gerwin Klein, June Andronick, Kevin Elphinstone,
Gernot Heiser, David Cock, Philip Derrin, Dhammika Elkaduwe,
Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell,
Harvey Tuch, and Simon Winwood

p. 106

Technical
Perspective
Learning To Do
Program Verification
By K. Rustan M. Leino

p. 97

Asserting and Checking
Determinism for
Multithreaded Programs
By Jacob Burnim and Koushik Sen

p. 96

Technical
Perspective
Building Confidence
in Multicore Software
By Vivek Sarkar

96 communications of the acm | june 2010 | vol. 53 | no. 6

Surprises may be fun in real life, but not
so in software. One approach to avoid-
ing surprises in software is to establish
its functional correctness, either by
construction or by verification, but this
is feasible in only a limited set of do-
mains. Instead, the predominant meth-
od in single-threaded software develop-
ment has been an iterative approach of
design, coding, testing, and bug fixes.
The cornerstone of this practice is de-
terminism; that is, the expectation a
program will exhibit the same behavior
each time it is executed with the same
inputs. Even if a program has a bug, it is
comforting to know the buggy behavior
can be reproduced by others, and work-
arounds can be shared until the devel-
oper provides a fix.

In this context, multithreaded pro-
grams prove to be more challenging to
handle than single-threaded programs.
For decades multithreaded programs
were executed on single-core proces-
sors and users became accustomed
to deterministic sets of behaviors ex-
hibited by standard thread schedul-
ers. However, the move to multicore
hardware has completely changed this
landscape, which is why I recommend
you read the following paper.

Jacob Burnim and Koushik Sen
propose an assertion framework for
specifying regions of multithreaded
software that are expected to behave
deterministically, and describe a run-
time library for checking these asser-
tions that is guaranteed to be sound.
Though the proposed runtime check-
ing is incomplete in general, prelimi-
nary evaluations suggest that this ap-
proach can be effective in identifying
many common sources of nondeter-
minism. Runtime assertion-checking
is used in many situations nowadays,
including null-pointer, array-bounds
checks, and type checks in managed
runtimes. So, it is reasonable to view
the checking assertions related to de-

terminism as a natural future exten-
sion to the runtime checks performed
in modern software.

A key challenge in multicore pro-
grams is that determinism lies in the
eye of the beholder. If two executions of
the same program with the same input
produce outputs that are non-identical
but semantically equivalent, should the
program be considered deterministic
or not? For example, consider a pro-
gram that produces two different float-
ing-point values in two executions with
the same input. From the viewpoint of
a strict definition of determinism, the
program is unquestionably nondeter-
ministic. From the viewpoint of a more
relaxed definition in which all values
within a certain error threshold are per-
missible as outputs, the program may
well be considered to be deterministic.
A similar situation arises for programs
that produce (say) ordered linked lists
as data structure representations of
unordered sets. Two non-identical out-
puts may still be considered equivalent
if they contain the same set of elements,
albeit in different orders.

Given this range of interpretations
for determinism, it isn’t obvious how
assertions for determinism should be
formulated. The approach taken in
this paper is to extend the concepts of
preconditions (“assume” clauses) and

postconditions (“assert” clauses) by
using bridge predicates. A bridge predi-
cate relates values arising from two dif-
ferent executions of the same program,
thereby providing the foundation for
asserting semantic determinism at any
desired level of user-specified granu-
larity. One of the examples discussed
is parallel matrix multiply, where the
bridge predicate in the precondition
assumes the input matrices from two
executions differ entry-by-entry by no
more than an error threshold, and the
bridge predicate in the postcondition
asserts that a similar property holds
for the output matrices. Note that
these assertions are focused on de-
terminism and not on functional cor-
rectness. For example, a functionally
incorrect implementation of parallel
matrix multiply that returns the identi-
ty matrix for all inputs will always pass
determinism checking.

At this point I hope I’ve raised a
number of questions in your mind. Can
the determinism assertions be gener-
ated automatically? What is the rela-
tionship between checking assertions
for determinism and detection of data
races? Are there any assumptions made
about the underlying system software
and hardware, such as the memory con-
sistency model? Can the programming
constructs advocated by transactional
memory researchers help address this
problem? Are there applications of de-
terminism assertions to single-thread-
ed programs? If you’re interested in any
of these questions, you need to read the
following paper to better understand
the ramifications of parallel hardware
on determinism guarantees in multi-
threaded software!	

Vivek Sarkar (vsarkar@rice.edu) is an ACM Fellow and
a professor of computer science and of electrical and
computer engineering at Rice University, where he holds
the E.D. Butcher Chair in Engineering.

© 2010 ACM 0001-0782/10/0600 $10.00

Technical Perspective
Building Confidence in
Multicore Software
By Vivek Sarkar

research highlights

doi:10.1145/1743546.1743571

A key challenge in
multicore programs
is that determinism
lies in the eye of
the beholder.

mailto:vsarkar@rice.edu

june 2010 | vol. 53 | no. 6 | communications of the acm 97

doi:10.1145/1743546.1743572

Asserting and Checking
Determinism for
Multithreaded Programs
By Jacob Burnim and Koushik Sen

Abstract
The trend towards processors with more and more parallel
cores is increasing the need for software that can take advan-
tage of parallelism. The most widespread method for writing
parallel software is to use explicit threads. Writing correct
multithreaded programs, however, has proven to be quite
challenging in practice. The key difficulty is nondetermin-
ism. The threads of a parallel application may be interleaved
nondeterministically during execution. In a buggy program,
nondeterministic scheduling can lead to nondeterministic
results—where some interleavings produce the correct result
while others do not.

We propose an assertion framework for specifying that
regions of a parallel program behave deterministically despite
nondeterministic thread interleaving. Our framework allows
programmers to write assertions involving pairs of program
states arising from different parallel schedules. We describe an
implementation of our deterministic assertions as a library for
Java, and evaluate the utility of our specifications on a number
of parallel Java benchmarks. We found specifying determinis-
tic behavior to be quite simple using our assertions. Further,
in experiments with our assertions, we were able to identify
two races as true parallelism errors that lead to incorrect non-
deterministic behavior. These races were distinguished from a
number of benign races in the benchmarks.

1. INTRODUCTION
The semiconductor industry has hit the power wall—
performance of general-purpose single-core microprocessors
can no longer be increased due to power constraints. Therefore,
to continue to increase performance, the microprocessor
industry is instead increasing the number of processing cores
per die. The new “Moore’s Law” is that the number of cores will
double every generation, with individual cores going no faster.2

This new trend of increasingly parallel chips means that we
will have to write parallel software in order to take advantage
of future hardware advances. Unfortunately, parallel software
is more difficult to write and debug than its sequential coun-
terpart. A key reason for this difficulty is nondeterminism—i.e.,
that in two runs of a parallel program on the exact same input,
the parallel threads of execution can interleave differently,
producing different output. Such nondeterministic thread
interleaving is an essential part of harnessing the power of
parallel chips, but it is a major departure from sequential
programming, where we typically expect programs to behave
identically in every execution on the same input. We share a

widespread belief that helping programmers manage nonde-
terminism in parallel software is critical in making parallel
programming widely accessible.

For more than 20 years, many researchers have attacked
the problem of nondeterminism by attempting to detect or
predict sources of nondeterminism in parallel programs. The
most notorious of such sources is the data race. A data race
occurs when two threads in a program concurrently access the
same memory location and at least one of those accesses is a
write. That is, the two threads “race” to perform their conflict-
ing memory accesses, so the order in which the two accesses
occur can change from run to run, potentially yielding nonde-
terministic program output. Many algorithms and tools have
been developed to detect and eliminate data races in parallel
programs. (See Burnim and Sen5 for further discussion and
references.) Although the work on data race detection has
significantly helped in finding determinism bugs in parallel
programs, it has been observed that the absence of data races
is not sufficient to ensure determinism.1, 8, 9 Thus researchers
have also developed techniques to find high-level races,1, 16, 21
likely atomicity violations,9, 8, 14 and other potential sources of
nondeterminism. Further, such sources of nondeterminism
are not always bugs—they may not lead to nondeterministic
program behavior or nondeterminism may be intended. In
fact, race conditions may be useful in gaining performance
while still ensuring high-level deterministic behavior.3

More recently, a number of ongoing research efforts aim
to make parallel programs deterministic by construction.
These efforts include the design of new parallel program-
ming paradigms10, 12, 13, 19 and the design of new type systems,
annotations, and checking or enforcement mechanisms
that could retrofit existing parallel languages.4, 15 But such
efforts face two key challenges. First, new languages see
slow adoption and often remain specific to limited domains.
Second, new paradigms often include restrictions that can
hinder general-purpose programming. For example, a new
type system may require complex type annotations and may
forbid reasonable programs whose determinism cannot be
expressed in the type system.

We argue that programmers should be provided with
a framework that will allow them to express deterministic

The original version of this paper was published in Pro-
ceedings of the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, August 2009.

98 communications of the acm | june 2010 | vol. 53 | no. 6

research highlights

behaviors of parallel programs directly and easily. Specifically,
we should provide an assertion framework where program-
mers can directly and precisely express intended deterministic
behavior. Further, the framework should be flexible enough
so that deterministic behaviors can be expressed more eas-
ily than with a traditional assertion framework. For example,
when expressing the deterministic behavior of a parallel edge
detection algorithm for images, we should not have to rephrase
the problem as race detection; nor should we have to write a
state assertion that relates the output to the input, which would
be complex and time-consuming. Rather, we should simply be
able to say that, if the program is executed on the same input
image, then the output image remains the same regardless of
how the program’s parallel threads are scheduled.

In this paper, we propose such a framework for asserting
that blocks of parallel code behave deterministically. Formally,
our framework allows a programmer to give a specification for
a block P of parallel code as:

deterministic assume(Pre(s0 , s ¢0) ) {
	 P
} assert(Post(s, s¢) );

This specification asserts the following: Suppose P is exe-
cuted twice with potentially different schedules, once from
initial state s0 and once from s¢0 and yielding final states s and
s ¢. Then, if the user-specified precondition Pre holds over s0
and s ¢0, then s and s¢ must satisfy the user-specified postcon-
dition Post.

For example, we could specify the deterministic behavior
of a parallel matrix multiply with:

deterministic assume(|A − A¢| < 10−9 and
	 |B − B¢| < 10−9) {

C = parallel_matrix_multiply_float(A, B);

} assert(|C − C¢| < 10−6);

Note the use of primed variables A¢,B¢, and C¢ in the above
example. These variables represent the state of the matrices
A,B,and C from a different execution. Thus, the predicates
that we write inside assume and assert are different from
state predicates written in a traditional assertion framework—
our predicates relate a pair of states from different executions.
We call such predicates bridge predicates and assertions using
bridge predicates bridge assertions. A key contribution of
this paper is the introduction of these bridge predicates and
bridge assertions.

Our deterministic assertions provide a way to specify
the correctness of the parallelism in a program indepen-
dently of the program’s traditional functional correct-
ness. By checking whether different program schedules
can nondeterministically lead to semantically different
answers, we can find bugs in a program’s use of parallelism
even when unable to directly specify or check functional
correctness—i.e., that the program’s output is correct
given its input. Inversely, by checking that a parallel pro-
gram behaves deterministically, we can gain confidence

in the correctness of its use of parallelism independently
of whatever method we use to gain confidence in the
program’s functional correctness.

We have implemented our deterministic assertions as a
library for the Java programming language. We evaluated
the utility of these assertions by manually adding determin-
istic specifications to a number of parallel Java benchmarks.
We used an existing tool to find executions exhibiting data
and higher-level races in these benchmarks and used our
deterministic assertions to distinguish between harmful
and benign races. We found it to be fairly easy to specify the
correct deterministic behavior of the benchmark programs
using our assertions, despite being unable in most cases to
write traditional invariants or functional correctness asser-
tions. Further, our deterministic assertions successfully
distinguished the two races known to lead to undesired non-
determinism from the benign races in the benchmarks.

2. DETERMINISTIC SPECIFICATION
In this section, we motivate and define our proposal for
assertions for specifying determinism.

Strictly speaking, a block of parallel code is said to be
deterministic if, given any particular initial state, all execu-
tions of the code from the initial state produce the exact same
final state. In our specification framework, the programmer
can specify that they expect a block of parallel code, say P, to
be deterministic with the following construct:

deterministic {
P

}

This assertion specifies that if s and s¢ are both program
states resulting from executing P under different thread
schedules from some initial state s0, then s and s¢ must be
equal. For example, the specification:

deterministic {
C = parallel_matrix_multiply_int(A, B);

}

asserts that for the parallel implementation of matrix mul-
tiplication in function parallel_matrix_multiply_
int, any two executions from the same program state
must reach the same program state—i.e., with identical
entries in matrix C—no matter how the parallel threads
are scheduled.

A key implication of knowing that a block of parallel code
is deterministic is that we may be able to treat the block as
sequential in other contexts. That is, although the block
may have internal parallelism, a programmer (or perhaps
a tool) can hopefully ignore this parallelism when consider-
ing the larger program using the code block. For example,
perhaps a deterministic block of parallel code in a function
can be treated as if it were a sequential implementation
when reasoning about the correctness of code calling the
function.

june 2010 | vol. 53 | no. 6 | communications of the acm 99

Semantic Determinism: The above deterministic specifi-
cation is often too conservative. For example, consider a
similar example, but where A,B,and C are floating-point
matrices:

deterministic {

C = parallel_matrix_multiply_float(A, B);

}

Limited-precision floating-point addition and multipli-
cation are not associative due to rounding error. Thus,
depending on the implementation, it may be unavoidable
that the entries of matrix C will differ slightly depending on
the thread schedule.

In order to tolerate such differences, we must relax the
deterministic specification:

deterministic {

C = parallel_matrix_multiply_float(A, B);

} assert(|C − C¢| < 10−6);

This assertion specifies that, for any two matrices C and
C¢ resulting from the execution of the matrix multiply from
the same initial state, the entries of C and C¢ must differ by
only a small quantity (i.e., 10−6).

Note that the above specification contains a predicate
over two states—each from a different parallel execution of
the deterministic block. We call such a predicate a bridge
predicate, and an assertion using a bridge predicate a bridge
assertion. Bridge assertions are different from traditional
assertions in that they allow one to write a property over two
program states coming from different executions whereas
traditional assertions only allow us to write a property over
a single program state.

Note also that such predicates need not be equivalence
relations on pairs of states. In particular, the approximate
equality used above is not an equivalence relation.

This relaxed notion of determinism is useful in many con-
texts. Consider the following example which adds in parallel
two items to a synchronized set:

Set set = new SynchronizedTreeSet();
deterministic {

set.add(3); || set.add(5);

} assert(set.equals(set¢) );

If set is represented internally as a red–black tree, then a strict
deterministic assertion would be too conservative. The struc-
ture of the resulting tree, and its layout in memory, will likely
differ depending on which element is inserted first, and thus
different parallel executions can yield different program states.

But we can use a bridge predicate to assert that, no mat-
ter what schedule is taken, the resulting set is semantically

the same. That is, for objects set and set¢ computed by two
different schedules, the equals method must return true
because the sets must logically contain the same elements.
We call this semantic determinism.
Preconditions for Determinism: So far we have described
the following construct:

deterministic {
P

} assert(Post);

where Post is a predicate over two program states from dif-
ferent executions with different thread schedules. That is,
if s and s¢ are two states resulting from any two executions
of P from the same initial state, then Post (s, s¢) holds.

The above construct could be rewritten:

deterministic assume(s0 = s0¢) {
P

} assert(Post);

That is, if any two executions of P start from initial states
s0 and s0¢, respectively, and if s and s¢ are the resulting final
states, then s0 = s0¢ implies that Post (s, s¢) holds. The above
rewritten specification suggests that we can relax the re-
quirement of s0 = s0¢ by replacing it with a bridge predicate
Pre (s0, s0¢). For example:

deterministic assume(set.equals(set¢) ) {
set.add(3);    ||    set.add(5);

} assert(set.equals(set¢) );

The above specification states that if any two executions
start from sets containing the same elements, then after the
execution of the code, the resulting sets must also contain
the same elements.
Comparison to Traditional Assertions: In summary, we pro-
pose the following construct for the specification of deter-
ministic behavior:

deterministic assume(Pre) {
P

} assert(Post);

Formally, it states that for any two program states s0 and s0¢,
if (1) Pre (s0, s0¢) holds, (2) an execution of P from s0 termi-
nates and results in state s, and (3) an execution of P from
s0¢ terminates and results in state s¢, then Post (s, s¢) must
hold.

Note that the use of bridge predicates Pre and Post has
the same flavor as pre- and postconditions used for functions
in program verification. However, unlike traditional pre- and
postconditions, the proposed Pre and Post predicates relate
pairs of states from two different executions. In traditional ver-
ification, a precondition is usually written as a predicate over

100 communications of the acm | june 2010 | vol. 53 | no. 6

research highlights

a single program state, and a postcondition is usually written
over two states—the states at the beginning and end of the
function. For example:

parallel_matrix_multiply_int(A, B) {
	 assume(A.cols == B.rows);
	 ...
	 assert(C == A × B);
	 return C;
}

The key difference between a postcondition and a Post
predicate is that a postcondition relates two states at differ-
ent times along a same execution—e.g., here relating inputs
A and B to output C—whereas a Post predicate relates two
program states from different executions.
Advantages of Deterministic Assertions: Our deterministic
specifications are a middle ground between the implicit
specification used in race detection—that programs should
be free of data races—and the full specification of functional
correctness. It is a great feature of data race detectors that
typically no programmer specification is needed. However,
manually determining which reported races are benign and
which are bugs can be time-consuming and difficult. We
believe our deterministic assertions, while requiring little
effort to write, can greatly aid in distinguishing harmful
from benign data races (or higher-level races).

One could argue that a deterministic specification frame-
work is unnecessary given that we can write the functional
correctness of a block of code using traditional pre- and
postconditions. For example, one could write the following
to specify the correct behavior of a paralell matrix multiply:

C = parallel_matrix_multiply_float(A, B);

assert(|C − A × B| < 10−6);

We agree that if one can write a functional specification of
a block of code, then there is no need to write deterministic
specification, as functional correctness implies determinis-
tic behavior.

The advantage of our deterministic assertions is that
they provide a way to specify the correctness of just the use
of parallelism in a program, independent of the program’s
full functional correctness. In many situations, writing a full
specification of functional correctness is difficult and time-
consuming. A simple deterministic specification, however,
enables us to use automated techniques to check for paral-
lelism bugs, such as harmful data races causing semantically
nondeterministic behavior.

Consider a function parallel_edge_detection
that takes an image as input and returns an image where
detected edges have been marked. Relating the output to the
input image with traditional pre- and postconditions would
likely be quite challenging. However, it is simple to specify
that the routine does not have any parallelism bugs causing
a correct image to be returned for some thread schedules
and an incorrect image for others:

deterministic assume(img.equals(img¢)) {
result = parallel_edge_detection(img);

} assert(result.equals(result¢));

where img.equals(img¢) returns true if the two images
are pixel-by-pixel equal.

For this example, a programmer could gain some confi-
dence in the correctness of the routine by writing unit tests
or manually examining the output for a handful of images.
He or she could then use automated testing or model check-
ing to separately check that the parallel routine behaves
deterministically on a variety of inputs, gaining confidence
that the code is free from concurrency bugs.

We believe that it is often difficult to come up with effective
functional correctness assertions. However, it is often quite
easy to use bridge assertions to specify deterministic behav-
ior, enabling a programmer to check for harmful concurrency
bugs. In Section 5, we provide several case studies to support
this argument.

3. CHECKING DETERMINISM
There may be many potential approaches to checking or
verifying a deterministic specification, from testing to model
checking to automated theorem proving. In this section, we
propose a simple, sound, and incomplete method for check-
ing deterministic specifications at run-time.

The key idea of the method is that, whenever a determin-
istic block is encountered at run-time, we can record the
program states spre and spost at the beginning and end of the
block. Then, given a collection of (spre, spost) pairs for a par-
ticular deterministic block in some program, we can check a
deterministic specification by comparing pairwise the pairs
of initial and final states for the block. That is, for a deter-
ministic block:

deterministic assume(Pre) {
P

} assert(Post);

with pre- and postbridge predicates Pre and Post, we check
for every recorded pair of pairs (spre, spost) and (s¢pre, s¢post) that:

Pre (spre, s¢pre) Þ Post (spost, s¢post)

If this condition does not hold for some pair, then we report
a determinism violation.

To increase the effectiveness of this checking, we must
record pairs of initial and final states for deterministic
blocks executed under a wide variety of possible thread
interleavings and inputs. Thus, in practice we likely want to
combine our deterministic assertion checking with existing
techniques and tools for exploring parallel schedules of a
program, such as noise making,7, 18 active random schedul-
ing,16 or model checking.20

In practice, the cost of recording and storing entire pro-
gram states could be prohibitive. However, real determinism

june 2010 | vol. 53 | no. 6 | communications of the acm 101

predicates often depend on just a small portion of the whole
program state. Thus, we need only to record and store small
projections of program states. For example, for a determin-
istic specification with pre- and postpredicate set.equals
(set¢) we need only to save object set and its elements (pos-
sibly also the memory reachable from these objects), rather
than the entire program memory. This storage cost sometimes
can be further reduced by storing and comparing check-sums
or approximate hashes.

4. DETERMINISM CHECKING LIBRARY
In this section, we describe the design and implementation of
an assertion library for specifying and checking determinism
of Java programs. Note that, while it might be preferable to
introduce a new syntactic construct for specifying determin-
ism, we provide the functionality as a library to simplify the
implementation.

4.1. Overview
Figure 1 shows the core API for our deterministic asser-
tion library. Functions open and close specify the begin-
ning and end of a deterministic block. Deterministic blocks
may be nested, and each block may contain multiple calls
to functions assume and assert, which are used to specify
the pre- and postpredicates of deterministic behavior.

Each call assume(o, pre) in a deterministic block speci-
fies part of the prepredicate by giving some projection o of
the program state and a predicate pre. That is, it specifies
that one condition for any execution of the block to compute
an equivalent, deterministic result is that pre.apply(o, o¢)
return true for object o¢ from the other execution.

Similarly, a call assert(o, post) in a deterministic block
specifies that, for any execution satisfying every assume,
predicate post.apply(o, o¢) must return true for object o¢
from the other execution.

At run-time, our library records every object (i.e., state
projection) passed to each assert and assume in each
deterministic block, saving them to a central, persistent
store. We require that all objects passed as state projections
implement the Serializable interface to facilitate this
recording. (In practice, this does not seem to be a heavy bur-
den. Most core objects in the Java standard library are seri-
alizable, including numbers, strings, arrays, lists, sets, and
maps/hashtables.)

Then, also at run-time, a call to assert(o, post) checks
post on o and all o¢ saved from previous, matching execu-
tions of the same deterministic block. If the postpredicate
does not hold for any of these executions, a determinism
violation is immediately reported. Deterministic blocks can
contain many assert’s so that determinism bugs can be
caught as early as possible and can be more easily localized.

For flexibility, programmers are free to write state projec-
tions and predicates using the full Java language. However,
it is a programmer’s responsibility to ensure that these
predicates contain no observable side effects, as there are
no guarantees as to how many times such a predicate may
be evaluated in any particular run.
Built-in Predicates: For programmer convenience, we pro-
vide two built-in predicates that are often sufficient for spec-
ifying pre- and postpredicates for determinism. The first,
Equals, returns true if the given objects are equal using
their built-in equals method—i.e., if o.equals(o¢). For
many Java objects, this method checks semantic equality—
e.g., for integers, floating-point numbers, strings, lists, sets,
etc. Further, for single- or multidimensional arrays (which
do not implement such an equals method), the Equals
predicate compares corresponding elements using their
equals methods. Figure 2 gives an example with assert
and assume using this Equals predicate.

The second predicate, ApproxEquals, checks if two
floating-point numbers, or the corresponding elements
of two floating-point arrays, are within a given margin of
each other. We found this predicate useful in specifying the
deterministic behavior of numerical applications, where it
is often unavoidable that the low-order bits may vary with
different thread interleavings.
Real-World Floating-Point Predicates: In practice, float-
ing-point computations often have input-dependent error
bounds. For example, we may expect any two runs of a paral-
lel algorithm for summing inputs x1, …, xn to return answers

Figure 1. Core deterministic specification API.

public class Deterministic {

	 static void open() {...}

	 static void close() {...}

	 static void assume(Object o, Predicate p) {...}

	 static void assert(Object o, Predicate p) {...}

	 interface Predicate {
	 boolean apply(Object a, Object b);
	 }
}

Figure 2. Deterministic assertions for a Mandelbrot Set
implementation from the Parallel Java (PJ) Library.11

main(String args[]) {
	 // Read parameters from command-line.
	 ...
	 // Pre-predicate: equal parameters.
	 Predicate equals = new Equals();
	 Deterministic.open();
	 Deterministic.assume(width, equals);
	 Deterministic.assume(height, equals);
	 ...
	 Deterministic.assume(gamma, equals);

	 // spawn threads to compute fractal
	 int matrix[][] = ...;
	 ...
	 // join threads
	 ...
	 Deterministic.assert(matrix, equals);
	 Deterministic.close();

	 // write fractal image to f ile
	 ...
}

102 communications of the acm | june 2010 | vol. 53 | no. 6

research highlights

equal to within 2N  ∑i|xi|, where Î is the machine epsilon.
We can assert:

sum = parallel_sum(x);
bound = 2 * x.length *  * sum_of_abs(x);
Predicate apx = new ApproxEquals(bound);
Deterministic.assert(sum, apx);

As another example, different runs of a molecular dynam-
ics simulation may be expected to produce particle positions
equal to within something like  multiplied by the sum of
the absolute values of all initial positions. We can similarly
compute this value at the beginning of the computation,
and use an ApproxEquals predicate with the appropriate
bound to compare particle positions.

4.2. Concrete example: Mandelbrot
Figure 2 shows the deterministic assertions we added to one
of our benchmarks, a program for rendering images of the
Mandelbrot Set fractal from the Parallel Java (PJ) Library.11

The benchmark first reads a number of integer and
floating-point parameters from the command-line. It then
spawns several worker threads that each compute the hues
for different segments of the final image and store the hues
in shared array matrix. After waiting for all of the worker
threads to finish, the program encodes and writes the image
to a file given as a command-line argument.

To add determinism annotations to this program, we
simply opened a deterministic block just before the worker
threads are spawned and closed it just after they are joined.
At the beginning of this block, we added an assume call for
each of the seven fractal parameters, such as the image size
and color palette. At the end of the block, we assert that the
resulting array matrix should be deterministic, however
the worker threads are interleaved.

Note that it would be quite difficult to add assertions
for the functional correctness of this benchmark, as each

pixel of the resulting image is a complicated function of the
inputs (i.e., the rate at which a particular complex sequence
diverges). Further, there do not seem to be any simple tra-
ditional invariants on the program state or outputs which
would help identify a parallelism bug.

5. EVALUATION
In this section, we describe our efforts to validate two claims
about our proposal for specifying and checking determinis-
tic parallel program execution:

1.	 First, deterministic specifications are easy to write. That
is, even for programs for which it is difficult to specify tra-
ditional invariants or functional correctness, it is relatively
easy for a programmer to add deterministic assertions.

2.	 Second, deterministic specifications are useful. When
combined with tools for exploring multiple thread
schedules, deterministic assertions catch real parallel-
ism bugs that lead to semantic nondeterminism.
Further, for traditional concurrency issues such as data
races, these assertions provide some ability to distin-
guish between benign cases and true bugs.

To evaluate these claims, we used a number of bench-
mark programs from the Java Grande Forum (JGF) bench-
mark suite,17 the Parallel Java (PJ) Library,11 and elsewhere.
The names and sizes of these benchmarks are given in
Table 1. We describe the benchmarks in greater detail in
Burnim and Sen.5 Note that the benchmarks range from
a few hundred to a few thousand lines of code, with the
PJ benchmarks relying on an additional 10–20,000 lines
of library code from the PJ Library (for threading, synchro-
nization, and other functionality).

5.1. Ease of use
We evaluate the ease of use of our deterministic specification
by manually adding assertions to our benchmark programs.
One deterministic block was added to each benchmark.

Benchmark

Approximate
Lines of Code

(App + Library)

Lines of
Specification
(+ Predicates) Threads

Data Races High-Level Races

Found
Determinism

Violations Found
Determinism

Violations

JGF sor
sparsematmult
series
crypt
moldyn
lufact
raytracer
montecarlo

300
700
800

1,100
1,300
1,500
1,900
3,600

6
7
4
5
6
9
4
4 + 34

10
10
10
10
10
10
10
10

2
0
0
0
2
1
3
1

0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
2

0
0
0
0
0
0
0
0

PJ pi
keysearch3
mandelbrot
phylogeny

150 + 15,000
200 + 15,000
250 + 15,000

4,400 + 15,000

5
6

10
8

4
4
4
4

9
3
9
4

0
0
0
0

1+
0+
0+
0+

1
0
0
0

tsp 700 4 5 6 0 2 0

Table 1. Summary of experimental evaluation of deterministic assertions. A single deterministic block specification was added to each
benchmark. Each specification was checked on executions with races found by the CalFuzzer14, 16 tool.

june 2010 | vol. 53 | no. 6 | communications of the acm 103

The third column of Table 1 records the number of
lines of specification (and lines of custom predicate code)
added to each benchmark. Overall, the specification bur-
den is quite small. Indeed, for the majority of the programs,
an author was able to add deterministic assertions in only
5 to 10 minutes per benchmark, despite being unfamiliar
with the code. In particular, it was typically not difficult to
both identify regions of code performing parallel computa-
tion and to determine from documentation, comments, or
source code which results were intended to be determinis-
tic. Figure 2 shows the assertions added to the mandelbrot
benchmark.

The added assertions were correct on the first attempt for
all but two benchmarks. For phylogeny, the resulting phy-
logenetic tree was erroneously specified as deterministic,
when, in fact, there are many correct optimal trees. The spec-
ification was modified to assert only that the optimal score
must be deterministic. For sparsematmult, we incorrectly
identified the variable to which the output was written. This
error was identified during later work on automatically infer-
ring deterministic specifications.6

The two predicates provided by our assertion library were
sufficient for all but one of the benchmarks. For the JGF
montecarlo benchmark, the authors had to write a custom
equals and hashCode method for two classes—34 total
lines of code—in order to assume and assert that two sets,
one of initial tasks and one of results, are equivalent across
executions.
Discussion: More experience, or possibly user studies, would
be needed to conclude decisively that our assertions are eas-
ier to use than existing techniques for specifying that parallel
code is correctly deterministic. However, we believe our expe-
rience is quite promising. In particular, writing assertions for
the full functional correctness of the parallel regions of these
programs seemed to be quite difficult, perhaps requiring
implementing a sequential version of the code and asserting
that it produces the same result. Further, there seemed to be
no obvious simpler, traditional assertions that would aid in
catching nondeterministic parallelism.

Despite these difficulties, we found that specifying the
natural deterministic behavior of the benchmarks with our
bridge assertions required little effort.

5.2. Effectiveness
To evaluate the utility of our deterministic specifications in
finding true parallelism bugs, we used a modified version
of the CalFuzzer14, 16 tool to find real races in the bench-
mark programs, both data races and higher level races (such
as races to acquire a lock). For each such race, we ran 10
trials using CalFuzzer to create real executions with these
races and to randomly resolve the races (i.e., randomly pick
a thread to “win”). We turned on run-time checking of our
deterministic assertions for these trials, and recorded all
found violations.

Table 1 summarizes the results of these experiments. For
each benchmark, we indicate the number of real data races
and higher-level races we observed. Further, we indicate
how many of these races led to determinism violations in
any execution.

In these experiments, the primary computational cost
is from CalFuzzer, which typically has an overhead in the
range of 2x–20x for these kinds of compute bound applica-
tions. We have not carefully measured the computational
cost of our deterministic assertion library. For most bench-
marks, however, the cost of serializing and comparing a
computation’s inputs and outputs is dwarfed by the cost of
the computation itself—e.g., consider the cost of checking
that two fractal images are identical versus the cost of com-
puting each fractal in the first place.
Determinism Violations: We found two cases of nondeter-
ministic behavior. First, a known data race in the raytracer
benchmark, due the use of the wrong lock to protect a shared
sum, can yield an incorrect final answer.

Second, the pi benchmark can yield a nondeterministic
answer given the same random seed because of insufficient
synchronization of a shared random number generator.
In each Monte Carlo sample, two successive calls to java.
util.Random.nextDouble() are made. A context switch
between these calls changes the set of samples generated.
Similarly, nextDouble() itself makes two calls to java.
util.Random.next(), which atomically generates up to
32 pseudorandom bits. A context switch between these two
calls changes the generated sequence of pseudorandom
doubles. Thus, although java.util.Random.next
Double()is thread-safe and free of data races, scheduling
nondeterminism can still lead to a nondeterministic result.
(This behavior is known—the PJ Library provides several
versions of this benchmark, one of which does guarantee a
deterministic result for any given random seed.)
Benign Races: The high number of real data races for these
benchmarks is largely due to benign races on volatile variables
used for synchronization—e.g., to implement a tournament
barrier or a custom lock. Although CalFuzzer does not under-
stand these sophisticated synchronization schemes, our deter-
ministic assertions automatically provide some confidence
that these races are benign because, over the course of many
experimental runs, they did not lead to nondeterministic final
results.

Note that it can be quite challenging to verify by hand that
these races are benign. On inspecting the benchmark code
and these data races, an author several times believed he
had found a synchronization bug. But on deeper inspection,
the code was found to be correct in all such cases.

The number of high-level races is low for the JGF bench-
marks because all the benchmarks except montecarlo
exclusively use volatile variables (and thread joins) for syn-
chronization. Thus, all observable scheduling nondeter-
minism is due to data races.

The number of high-level races is low for the PJ bench-
marks because they primarily use a combination of vola-
tile variables and atomic compare-and-set operations for
synchronization. Currently, the only kind of high-level
race our modified CalFuzzer recognizes is a lock race.
Thus, while we believe there are many (benign) races
in the ordering of these compare-and-set operations,
CalFuzzer does not report them. The one high-level race
for pi, indicated in the table and described above, was
confirmed by hand.

104 communications of the acm | june 2010 | vol. 53 | no. 6

research highlights

Discussion: Although our checking of deterministic assertions
is sound—an assertion failure always indicates that two execu-
tions with equivalent initial states can yield nonequivalent
final states—it is incomplete. Parallelism bugs leading to non-
determinism may still exist even when testing fails to find any
determinism violations.

However, in our experiments we successfully distin-
guished the races known to cause undesired nondetermin-
ism from the benign races in only a small number of trials.
Thus, we believe our deterministic assertions can help catch
harmful nondeterminism due to parallelism, as well as save
programmer effort in determining whether real races and
other potential parallelism bugs can lead to incorrect pro-
gram behavior.

6. DISCUSSION
In this section, we compare the concepts of atomicity and
determinism. Further, we discuss several other possible
uses for bridge predicates and bridge assertions.

6.1. Atomicity versus determinism
A concept complementary to determinism in parallel pro-
grams is atomicity. A block of sequential code in a multi-
threaded program is said to be atomic9 if for every possible
interleaved execution of the program there exists an equiv-
alent execution with the same overall behavior in which
the atomic block is executed serially (i.e., the execution of
the atomic block is not interleaved with actions of other
threads). Therefore, if a code block is atomic, the program-
mer can assume that the execution of the code block by a
thread cannot be interfered with by any other thread. This
enables programmers to reason about atomic code blocks
sequentially. This seemingly similar concept has the follow-
ing subtle differences from determinism:

1.	 Atomicity is the property about a sequential block of
code—i.e., the block of code for which we assert atom-
icity has a single thread of execution and does not
spawn other threads. Note that a sequential block is by
default deterministic if it is not interfered with by other
threads. Determinism is a property of a parallel block
of code. In determinism, we assume that the parallel
block of code’s execution is not influenced by the exter-
nal world.

2.	 In atomicity, we say that the execution of a sequential
block of code results in the same state no matter how it is
scheduled with other external threads—i.e., atomicity
ensures that external nondeterminism does not interfere
with the execution of an atomic block of code. In deter-
minism, we say that the execution of a parallel block of
code gives the same semantic state no matter how the
threads inside the block are scheduled—i.e., determin-
ism ensures that internal nondeterminism does not result
in different outputs.

In summary, atomicity and determinism are orthogonal con-
cepts. Atomicity reasons about a single thread under external
nondeterminism, whereas determinism reasons about mul-
tiple threads under internal nondeterminism.

Here we focus on atomicity and determinism as pro-
gram specifications to be checked. There is much work
on atomicity as a language mechanism, in which an
atomic specification is instead enforced by some com-
bination of library, run-time, compiler, or hardware
support. One could similarly imagine enforcing deter-
ministic specifications through, e.g., compiler and run-
time mechanisms.4

6.2. Other uses of bridge predicates
We have already argued that bridge predicates simplify
the task of directly and precisely specifying deterministic
behavior of parallel programs. We also believe that bridge
predicates could provide a simple but powerful tool to
express correctness properties in many other situations.
For example, if we have two versions of a program, P1 and
P2, that we expect to produce the same output on the same
input, then we can easily assert this using our framework
as follows:

deterministic assume(Pre) {
if (nonDeterministicBoolean() ) {

	 P1
} else {

	 P2
}

} assert(Post);

where Pre requires that the inputs are the same and Post
specifies that the outputs will be the same.

In particular, if a programmer has written both a sequential
and parallel version of a piece of code, he or she can specify
that the two versions are semantically equivalent with an
assertion like:

deterministic assume(A==A¢ and B==B¢) {
	 if (nonDeterministicBoolean() ) {
	 C = par_matrix_multiply_int(A, B);
	 } else {
	 C = seq_matrix_multiply_int(A, B);
	 }
} assert(C==C¢);

where nonDeterministicBoolean() returns true or
false nondeterministically.

Similarly, a programmer can specify that the old
and new versions of a piece of code are semantically
equivalent:

deterministic assume(A==A¢ and B==B¢) {
	 if (nonDeterministicBoolean() ) {
	 C = old_matrix_multiply_int(A, B);
	 } else {
	 C = new_matrix_multiply_int(A, B);
	 }
} assert(C==C¢);

june 2010 | vol. 53 | no. 6 | communications of the acm 105

Checking this specification is a kind of regression testing. In
particular, if the code change has introduced a regression—
i.e., a bug that causes the new code to produce a semantically
different output then the old code for some input—then the
above specification does not hold.

Further, we believe there is a wider class of program prop-
erties that are easy to write in bridge assertions but would be
quite difficult to write otherwise. For example, consider the
specification:

deterministic assume(set.size() == set¢.size()) {
	 P
} assert (set.size () == set¢.size ());

This specification requires that sequential or parallel pro-
gram block P transforms set so that its final size is some
function of its initial size, independent of its elements. The
specification is easy to write even in cases where the exact
relationship between the initial and final size might be
quite complex and difficult to write. It is not entirely clear,
however, when such properties are important or useful to
specify.

7. CONCLUSION
We have proposed bridge predicates and bridge assertions
for specifying the user-intended semantic deterministic
behavior of parallel programs. We argue that our specifica-
tions are much simpler for programmers to write than tradi-
tional specifications of functional correctness, because they
enable programmers to compare pairs of program states
across different executions rather than relating program
outputs directly to program inputs. Thus, bridge predicates
and bridge assertions can be thought of as a lightweight
mechanism for specifying the correctness of just the paral-
lelism in a program, independently of the program’s func-
tional correctness.

We have shown experimental evidence that we can effec-
tively check our deterministic specifications. In particular,
we can use existing techniques for testing parallel software
to generate executions exhibiting data and higher-level
races. Then our deterministic specifications allow us to
distinguish from the benign races the parallel nondeter-
minism bugs that lead to unintended nondeterministic
program behavior. Thus, we argue that it is worthwhile for
programmers to write such lightweight deterministic speci-
fications. In fact, later work6 has suggested that, given the
simple form of our specifications, it may often be possible
to automatically infer likely deterministic specifications for
parallel programs.

Acknowledgments
We would like to thank Nicholas Jalbert, Mayur Naik,
Chang-Seo Park, and our anonymous reviewers for their
valuable comments on previous drafts of this paper. This
work supported in part by Microsoft (Award #024263) and

	 1.	 Artho, C., Havelund, K., Biere, A.
High-level data races. Softw. Test.
Ver. Reliab. 13, 4 (2003), 207–227.

	 2.	 Asanovic, K., Bodik, R., Demmel, J.,
Keaveny, T., Keutzer, K., Kubiatowicz,
J.D., Lee, E.A., Morgan, N., Necula,
G., Patterson, D.A., Sen, K.,
Wawrzynek, J., Wessel, D., Yelick,
K.A. The Parallel Computing
Laboratory at U.C. Berkeley: A
Research Agenda Based on the
Berkeley View. Technical Report
UCB/EECS-2008–23, EECS
Department, University of California,
Berkeley, March 2008.

	 3.	B arnes, G. A method for
implementing lock-free shared-data
structures. In 5th ACM Symposium
on Parallel Algorithms and
Architectures (SPAA) (1993).

	 4.	B occhino, R.L., Jr., Adve, V.S., Dig, D.,
Adve, S.V., Heumann, S., Komuravelli,
R., Overbey, J., Simmons, P., Sung,
H., Vakilian, M. A type and effect
system for deterministic parallel
Java. In 24th ACM SIGPLAN
Conference on Object-Oriented
Programming Systems, Languages
and Applications (OOPSLA) (2009).

	 5.	B urnim, J., Sen, K. Asserting
and checking determinism for
multithreaded programs. In 7th
Joint Meeting of the European
Software Engineering Conference
and the ACM SIGSOFT Symposium
on the Foundations of Software
Engineering (ESEC/FSE) (2009).

	 6.	B urnim, J. Sen, K. DETERMIN:
Inferring likely deterministic
specifications of multithreaded
programs. In 32nd ACM/IEEE
International Conference on
Software Engineering (ICSE) (2010).

	 7.	 Edelstein, O., Farchi, E., Nir, Y.,
Ratsaby, G., Ur, S. Multithreaded
Java program test generation. IBM
Syst. J. 41, 1 (2002), 111–125.

	 8.	 Flanagan, C., Freund, S.N. Atomizer:
A dynamic atomicity checker for
multithreaded programs. In 31st
ACM SIGPLAN-SIGACT Symposium
on Principles of Programming
Languages (POPL) (2004).

	 9.	 Flanagan, C., Qadeer, S. A type and
effect system for atomicity. In ACM
SIGPLAN 2003 Conference on
Programming Language Design and
Implementation (PLDI) (2003).

	10.	 Johnston, W.M., Hanna, J.R.P.,
Millar, R.J. Advances in dataflow
programming languages. ACM
Comput. Surv. 36, 1 (2004),

1–34.
	11.	K aminsky, A. Parallel Java: a unified

API for shared memory and cluster
parallel programming in 100%
Java. In 21st IEEE International
Parallel and Distributed Processing
Symposium (IPDPS) (2007).

	12.	 Lee, E.A. The problem with threads.
Computer 39, 5 (May 2006),
33–42.

	13.	 Loidl, H., Rubio, F., Scaife, N.,
Hammond, K., Horiguchi, S., Klusik,
U., Loogen, R., Michaelson, G.,
Pena, R., Priebe, S. et al. Comparing
parallel functional languages:
Programming and performance.
High. Order Symb. Comput. 16, 3
(2003), 203–251.

	14.	 Park, C.-S., Sen, K. Randomized
active atomicity violation detection in
concurrent programs. In 16th ACM
SIGSOFT International Symposium
on Foundations of Software
Engineering (FSE) (2008).

	15.	 Sadowski, C., Freund, S., Flanagan,
C. SingleTrack: A dynamic
determinism checker for
multithreaded programs. In
18th European Symposium on
Programming (ESOP) (2009).

	16.	 Sen, K. Race directed random
testing of concurrent programs.
In ACM SIGPLAN Conference on
Programming Language Design
and Implementation (PLDI'08)
(2008).

	17.	 Smith, L.A., Bull, J.M., Obdrzálek,
J. A parallel java grande benchmark
suite. In ACM/IEEE Conference
on Supercomputing (SC) (2001).

	18.	 Stoller, S.D. Testing concurrent
Java programs using randomized
scheduling. In 2nd Workshop on
Runtime Verification (RV) (2002).

	19.	 Thies, W., Karczmarek, M.,
Amarasinghe, S. StreamIt:
A language for streaming
applications. In 11th International
Conference
on Compiler Construction (CC)
(2002).

	20.	 Visser, W., Havelund, K., Brat, G.,
Park, S., Lerda, F. Model checking
programs. Autom. Softw. Eng. 10, 2
(2003), 203–232.

	21.	 von Praun, C., Gross, T.R. Object
race detection. In 16th ACM
SIGPLAN Conference on Object-
Oriented Programming, Systems,
Languages, and Applications
(OOPSLA) (2001).

References

© 2010 ACM 0001-0782/10/0600 $10.00

Intel (Award #024894) funding and by matching funding by
U.C. Discovery (Award #DIG07–10227), by NSF Grants CNS-
0720906 and CCF-0747390, and by a DoD NDSEG Graduate
Fellowship.�

Jacob Burnim (jburnim@cs.berkeley.edu),
EECS Department, UC Berkeley, CA.

Koushik Sen (ksen@cs.berkeley.edu),
EECS Department, UC Berkeley, CA.

mailto:jburnim@cs.berkeley.edu
mailto:ksen@cs.berkeley.edu

106 communications of the acm | june 2010 | vol. 53 | no. 6

When you decide to use a piece of soft-
ware, how do you know it will do what
you need it to do or what it claims to
do? Will it even be safe to run? Will it
interfere with other software you al-
ready have?

As a software engineer developing
that piece of software, what can you do
to ensure the software will be ready in
time and will meet your quality stan-
dards?

A long-standing dream of ideal soft-
ware development calls for the use
of program verification as part of the
answers to these questions. Program
verification is the process by which one
develops a mathematical proof that
shows the software satisfies its func-
tional specification. This dream had
grown roots already by the 1970s.

Since then, and especially in the last
decade, the technology behind program
verification has become an important
part of software development practice.
At Microsoft alone, a number of sym-
bolic execution techniques, including
abstract interpretation, counterexam-
ple-guided predicate abstraction, and
satisfiability-modulo-theories solving,
are used routinely to enhance the test-
ing of software, in some cases even
mathematically verifying the absence of
certain kinds of software defects.

But what we use today pales in com-
parison to the grand dreams of the
1970s. Why? Is it not possible to provide
rigorous proofs of modern software? Is
it too difficult to capture in functional
specifications the intended behavior
of software? Is full program verifica-
tion only for small algorithms and toy
examples? Are hardcore programmers
and verification experts not able to find
common goals to work toward? Is it not
cost-effective to insist that every detail
of a piece of software is correct?

The following work by Gerwin Klein
et al. is a landmark in the further de-
velopment of applying functional-cor-
rectness verification in practice. The
authors have produced a machine-

checkable proof of correctness for the
microkernel of an operating system.
For a user of the operating system,
this verification provides a number of
significant benefits; for example, the
assurance that no hostile application
running under this operating system
can subvert the integrity of the ker-
nel through a buffer-overrun attack.
For the software engineers involved,
the verification brings the benefit of
a code analysis that far surpasses that
achieved by testing alone.

The seL4 verification connects three
descriptions of the system: an abstract
specification of the kernel that de-
scribes what its functional behavior is,
a high-level prototype implementation
of the system that introduces further
details of how the kernel performs its
operations, and a low-level, hand-opti-
mized implementation that deals with
the nitty-gritty of the kernel’s operation.
A novel aspect of this project is how the
middle layer was used as a stepping-
stone not just for the verification, but
also for the actual design and imple-
mentation of the system itself. This has
the great advantage that the verification
process gets the chance to influence the
design. As the paper reports, this led to
a large number of changes in the top
two layers, with the effect of boosting
the productivity of both the design team
and the verification team.

The authors are careful to list not only
positive implications of the verification,
but also the assumptions upon which
the verification rests. This is important,
for all verification is performed at some
level of abstraction. For example, verify-
ing a program at the level of abstraction
provided by a programming language
does not say anything about hardware
failures. Verification is not an absolute;
what it seeks to do is offer detailed aid
for programmers at the level of abstrac-
tion at which they are working.

A project like the seL4 verification
is not easy to pull off. It takes a strong
vision, as well as a significant amount
of work, expertise, and persistence. In
short, it is a big bet. I applaud the team
for undertaking it, and congratulate
them on delivering. Any doubts as to the
technical feasibility of such a project
should by now have been removed.

The question about cost-effective-
ness, however, remains. Some may
argue that the end result of the verifi-
cation—a level of assurance that could
not have been obtained using more tra-
ditional methods—has already made
up for the effort expended. Others may
balk at the 20 person-years to complete
the proof or at the ratio of 200,000 lines
of proof script to 6,000 lines of eventual
C code. I would like to offer a different
perspective on these numbers. First,
they provide a benchmark against which
to compare future work. I would expect
that in another decade, a similar proj-
ect will take less effort and will involve
a larger degree of automation. Second,
the effort has resulted not just in an im-
pressive engineering achievement, but
also in an appreciable amount of scien-
tific learning. It is through pioneering
and repeated efforts like this one that
we will learn how to apply full program
verification on a more regular basis.	

K. Rustan M. Leino (leino@microsoft.com) is a Principal
Researcher at Microsoft Research, Redmond, WA.

© 2010 ACM 0001-0782/10/0600 $10.00

Technical Perspective
Learning To Do
Program Verification
By K. Rustan M. Leino

research highlights

doi:10.1145/1743546.1743573

A project like seL4
verification is not
easy to pull off. In
short, it is a big bet.
I applaud the team
for undertaking it.

mailto:leino@microsoft.com

june 2010 | vol. 53 | no. 6 | communications of the acm 107

seL4: Formal Verification of an
Operating-System Kernel
By Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock, Philip Derrin, Dhammika Elkaduwe,
Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood

Abstract
We report on the formal, machine-checked verification of
the seL4 microkernel from an abstract specification down to
its C implementation. We assume correctness of compiler,
assembly code, hardware, and boot code.

seL4 is a third-generation microkernel of L4 provenance,
comprising 8700 lines of C and 600 lines of assembler. Its
performance is comparable to other high-performance L4
kernels.

We prove that the implementation always strictly follows
our high-level abstract specification of kernel behavior. This
encompasses traditional design and implementation safety
properties such as that the kernel will never crash, and it will
never perform an unsafe operation. It also implies much
more: we can predict precisely how the kernel will behave in
every possible situation.

1. INTRODUCTION
Almost every paper on formal verification starts with the
observation that software complexity is increasing, that this
leads to errors, and that this is a problem for mission and
safety critical software. We agree, as do most.

Here, we report on the full formal verification of a criti-
cal system from a high-level model down to very low-level
C code. We do not pretend that this solves all of the soft-
ware complexity or error problems. We do think that our
approach will work for similar systems. The main message
we wish to convey is that a formally verified commercial-
grade, general-purpose microkernel now exists, and that
formal verification is possible and feasible on code sizes
of about 10,000 lines of C. It is not cheap; we spent signifi-
cant effort on the verification, but it appears cost-effective
and more affordable than other methods that achieve lower
degrees of trustworthiness.

To build a truly trustworthy system, one needs to start
at the operating system (OS) and the most critical part of
the OS is its kernel. The kernel is defined as the software
that executes in the privileged mode of the hardware,
meaning that there can be no protection from faults
occurring in the kernel, and every single bug can poten-
tially cause arbitrary damage. The kernel is a mandatory
part of a system’s trusted computing base (TCB)—the part
of the system that can bypass security.10 Minimizing this
TCB is the core concept behind microkernels, an idea that
goes back 40 years.

A microkernel, as opposed to the more traditional mono-
lithic design of contemporary mainstream OS kernels,
is reduced to just the bare minimum of code wrapping

hardware mechanisms and needing to run in privileged
mode. All OS services are then implemented as normal pro-
grams, running entirely in (unprivileged) user mode, and
therefore can potentially be excluded from the TCB. Previous
implementations of microkernels resulted in communica-
tion overheads that made them unattractive compared to
monolithic kernels. Modern design and implementation
techniques have managed to reduced this overhead to very
competitive limits.

A microkernel makes the trustworthiness problem
more tractable. A well-designed high-performance micro-
kernel, such as the various representatives of the L4 micro-
kernel family, consists of the order of 10,000 lines of code
(10 kloc). This radical reduction to a bare minimum comes
with a price in complexity. It results in a high degree of
interdependency between different parts of the kernel, as
indicated in Figure 1. Despite this increased complexity
in low-level code, we have demonstrated that with mod-
ern techniques and careful design, an OS microkernel is
entirely within the realm of full formal verification.

The original version of this paper was published in
the Proceedings of the 22nd ACM SIGOPS Symposium on
Operating Systems Principles, Oct. 2009.

Figure 1. Call graph of the seL4 microkernel. Vertices represent
functions, and edges invocations.

doi:10.1145/1743546.1743574

108 communications of the acm | june 2010 | vol. 53 | no. 6

research highlights

No buffer overflows: This is mainly a classic vector for code
injection, but buffer overflows may also inject unwanted
data and influence kernel behavior that way. We prove that
all array accesses are within bounds and we prove that all
pointer accesses are well typed, even if they go via casts to
void or address arithmetic.
No NULL pointer access: NULL pointer bugs can allow local
privilege escalation and execution of arbitrary code in ker-
nel mode.9 Absence of NULL pointer dereference is a direct
proof obligation for us for every pointer access.
No ill-typed pointer access: Even though the kernel code
deliberately breaks C type safety for efficiency at some
points, in order to predict that the system behaves accord-
ing to specification, we prove that circumventing the type
system is safe at all these points.
No memory leaks and no memory freed that is still in use.
This is not purely a consequence of the proof itself. Much of
the design of seL4 was focused on explicit memory manage-
ment. Users may run out of memory, but the kernel never will.
No nontermination: We have proved that all kernel calls
terminate. This means the kernel will never suddenly freeze
and not return from a system call. This does not mean that
the whole system will never freeze. It is still possible to write
bad device drivers and bad applications, but set up correctly,
a supervisor process can always stay in control of the rest of
the system.
No arithmetic or other exceptions: The C standard defines
a long list of things that can go wrong and that should be
avoided: shifting machine words by a too-large amount,
dividing by zero, etc. We proved explicitly that none of these
occur, including the absence of errors due to overflows in
integer arithmetic.
No unchecked user arguments: All user input is checked and
validated. If the kernel receives garbage or malicious argu-
ments it will respond with the specified error messages, not
with crashes. Of course, the kernel will allow a thread to kill
itself if that thread has sufficient capabilities. It will never
allow anything to crash the kernel, though.

Many of these are general security traits that are good to
have for any kind of system. We have also proved a large num-
ber of properties that are specific to seL4. We have proved
them about the kernel design and specification. With func-
tional correctness, we know they are true about the code as
well. Some examples are:
Aligned objects: Two simple low-level invariants of the
kernel are: all objects are aligned to their size, and no two
objects overlap in memory. This makes comparing memory
regions for objects very simple and efficient.
Well-formed data structures: Lists, doubly linked, singly
linked, with and without additional information, are a pet
topic of formal verification. These data structures also occur
in seL4 and we proved the usual properties: lists are not cir-
cular when they should not be, back pointers point to the
right nodes, insertion, deletion etc., work as expected.
Algorithmic invariants: Many optimizations rely on certain
properties being always true, so specific checks can be left
out or can be replaced by other, more efficient checks. A sim-
ple example is that the distinguished idle thread is always
in thread state idle and therefore can never be blocked or

Formal verification of software refers to the application
of mathematical proof techniques to establish proper-
ties about programs. Formal verification can cover not just
all lines of code or all decisions in a program, but all pos-
sible behaviors for all possible inputs. For example, the very
simple fragment of C code if (x < y)z = x/y else z = y/x
for x, y, and z being int tested with x = 4, y = 2 and x = 8,
y = 16, results in full code coverage: every line is executed at
least once, and every branch of every condition is taken at
least once. Yet, there are still two potential bugs remaining.
Of course, any human tester will find inputs such as x = 0,
y = −1 and x = −1, y = 0 that expose the bugs, but for bigger
programs it is infeasible to be sure of completeness. This is
what formal verification can achieve.

The approach we use is interactive, machine-assisted,
and machine-checked proof. Specifically, we use the theo-
rem prover Isabelle/HOL.8 Interactive theorem proving
requires human intervention and creativity to construct
and guide the proof. It has the advantage that it is not
constrained to specific properties or finite, feasible state
spaces. We have proved the functional correctness of the
seL4 microkernel, a secure embedded microkernel of the
L46 family. This means, we have proved mathematically
that the implementation of seL4 always strictly follows our
high-level abstract specification of kernel behavior. This
property is stronger and more precise than what automated
techniques like model checking, static analysis, or kernel
implementations in type-safe languages can achieve. We
not only analyze specific aspects of the kernel, such as safe
execution, but also provide a full specification and proof
for the kernel’s precise behavior.

In the following, we describe what the implications of the
proof are, how the kernel was designed for verification, what
the verification itself entailed and what its assumptions are,
and finally what effort it cost us.

2. IMPLICATIONS
In a sense, functional correctness is one of the strongest
properties to prove about a system. Once we have proved
functional correctness with respect to a model, we can use
this model to establish further properties instead of having
to reason directly about the code. For instance, we prove that
every system call terminates by looking at the model instead
of the code. However, there are some security-relevant prop-
erties, such as transmission of information via covert chan-
nels, for which the model may not be precise enough.

So our proof does not mean that seL4 is secure for all pur-
poses. We proved that seL4 is functionally correct. Secure
would first need a formal definition and depends on the
application. Taken seriously, security is a whole-system
question, including the system’s human components.

Even without proving specific security properties on top,
a functional correctness proof already has interesting impli-
cations for security. If the assumptions listed in Section 4.5
are true, then in seL4 there will be:
No code injection attacks: If we always know precisely what
the system does and if the spec does not explicitly allow it,
then we can never have any foreign code executing as part
of seL4.

june 2010 | vol. 53 | no. 6 | communications of the acm 109

to provide a programming language for OS developers,
while at the same time providing an artifact that can readily
be reasoned about in the theorem proving tool: the design
team wrote increasingly complete prototypes of the kernel
in Haskell, exporting the system call interface via a hard-
ware simulator to user-level binary code. The formal meth-
ods team imported this prototype into the theorem prover
and used it as an intermediate executable specification. The
approach aims at quickly iterating through design, proto-
type implementation, and formal model until convergence.

Despite its ability to run real user code, the Haskell ker-
nel remains a prototype, as it does not satisfy our high-
performance requirement. Furthermore, Haskell requires
a significant run-time environment (much bigger than our
kernel), and thus violates our requirement of a small TCB.
We therefore translated the Haskell implementation manu-
ally into high-performance C code. An automatic translation
(without proof) would have been possible, but we would have
lost most opportunities to micro-optimize the kernel in order
to meet our performance targets. We do not need to trust the
translations into C and from Haskell into Isabelle—we for-
mally verify the C code as it is seen by the compiler, gaining
an end-to-end theorem between formal specification and the
C semantics.

3.2. Design decisions
Global Variables and Side Effects: Use of global variables and
functions with side effects is common in operating systems—
mirroring properties of contemporary computer hardware
and OS abstractions. Our verification techniques can deal
routinely with side effects, but implicit state updates and
complex use of the same global variable for different pur-
poses make verification more difficult. This is not surprising:
the higher the conceptual complexity, the higher the verifica-
tion effort.

The deeper reason is that global variables usually require
stating and proving invariant properties. For example, sched-
uler queues are global data structures frequently imple-
mented as doubly linked lists. The corresponding invariant
might state that all back links in the list point to the appropri-
ate nodes and that all elements point to thread control blocks
and that all active threads are in one of the scheduler queues.

Invariants are expensive because they need to be proved
not only locally for the functions that directly manipulate
the scheduler queue, but for the whole kernel—we have
to show that no other pointer manipulation in the kernel
destroys the list or its properties. This proof can be easy or
hard, depending on how modularly the global variable is
used.

Dealing with global variables was simplified by deriving
the kernel implementation from Haskell, where side effects
are explicit and drawn to the design team’s attention.
Kernel Memory Management: The seL4 kernel uses a model
of memory allocation that exports control of the in-kernel
allocation to appropriately authorized applications. While
this model is mostly motivated by the need for precise guar-
antees of memory consumption, it also benefits verification.
The model pushes the policy for allocation outside the ker-
nel, which means we only need to prove that the mechanism

otherwise waiting for I/O. This can be used to remove checks
in the code paths that deal with the idle thread.
Correct book-keeping: The seL4 kernel has an explicit
user-visible concept of keeping track of memory, who has
access to it, who access was delegated to, and what needs to
be done if a privileged process wants to revoke access from
delegates. It is the central mechanism for reusing memory
in seL4. The data structure that backs this concept is corre-
spondingly complex and its implications reach into almost
all aspects of the kernel. For instance, we proved that if a
live object exists anywhere in memory, then there exists an
explicit capability node in this data structure that covers the
object. And if such a capability exists, then it exists in the
proper place in the data structure and has the right relation-
ship towards parents, siblings, and descendants within. If an
object is live (may be mentioned in other objects anywhere
in the system) then the object itself together with that capa-
bility must have recorded enough information to reach all
objects that refer to it (directly or indirectly). Together with
a whole host of further invariants, these properties allow
the kernel code to reduce the complex, system-global test
whether a region of memory is mentioned anywhere else in
the system to a quick, local pointer comparison.

We have proved about 80 such invariants on the execut-
able specification such that they directly transfer to the data
structures used in the C program.

A verification like this is not an absolute guarantee. The
key condition in all this is if the assumptions are true. To
attack any of these properties, this is where one would have
to look. What the proof really does is take 7500 lines of C
code out of the equation. It reduces possible attacks and
the human analysis necessary to guard against them to the
assumptions and specification. It also is the basis for any
formal analysis of systems running on top of the kernel or
for further high-level analysis of the kernel itself.

3. KERNEL DESIGN FOR VERIFICATION
The challenge in designing a verifiable and usable kernel
lies in reducing complexity to make verification easier while
maintaining high performance.

To achieve these two objectives, we designed and imple-
mented a microkernel from scratch. This kernel, called seL4,
is a third-generation microkernel, based on L4 and influ-
enced by EROS.11 It is designed for practical deployment
in embedded systems with high trustworthiness require-
ments. One of its innovations is completely explicit memory-
management subject to policies defined at user level, even for
kernel memory. All authority in seL4 is mediated by capabili-
ties,2 tokens identifying objects and conveying access rights.

We first briefly present the approach we used for a kernel/
proof codesign process. Then we highlight the main design
decisions we made to simplify the verification work.

3.1. Kernel/proof codesign process
One key idea in this project was bridging the gap between
verifiability and performance by using an iterative approach
to kernel design, based around an intermediate target that
is readily accessible to both OS developers and formal meth-
ods practitioners. We used the functional language Haskell

110 communications of the acm | june 2010 | vol. 53 | no. 6

research highlights

stack, and a mostly atomic application programming inter-
face. This is aided by the traditional L4 model of system calls
which are primitive and mostly short-running.

We minimize the effect of interrupts (and hence pre-
emptions) by disabling interrupts during kernel execution.
Again, this is aided by the L4 model of short system calls.

However, not all kernel operations can be guaranteed to
be short; object destruction especially can require almost
arbitrary execution time, so not allowing any interrupt pro-
cessing during a system call would rule out the use of the
kernel for real-time applications, undermining the goal of
real-world deployability.

We ensure bounded interrupt latencies by the standard
approach of introducing a few, carefully placed, interrupt
points. On detection of a pending interrupt, the kernel
explicitly returns through the function call stack to the ker-
nel/user boundary and responds to the interrupt. It then
restarts the original operation, including reestablishing all
the preconditions for execution. As a result, we completely
avoid concurrent execution in the kernel.
I/O: Interrupts are used by device drivers to affect I/O. L4
kernels traditionally implement device drivers as user-level
programs, and seL4 is no different. Device interrupts are
converted into messages to the user-level driver.

This approach removes a large amount of complexity
from the kernel implementation (and the proof). The only
exception is an in-kernel timer driver which generates timer
ticks for scheduling, which is straightforward to deal with.

4. VERIFICATION OF seL4
This section gives an overview of the formal verification of
seL4 in the theorem prover Isabelle/HOL.8 The property
we are proving is functional correctness. Formally, we are
showing refinement: A refinement proof establishes a cor-
respondence between a high-level (abstract) and a low-level
(concrete, or refined) representation of a system.

The correspondence established by the refinement proof
ensures that all Hoare logic properties of the abstract model
also hold for the refined model. This means that if a security
property is proved in Hoare logic about the abstract model
(not all security properties can be), our refinement guarantees
that the same property holds for the kernel source code. In this
paper, we concentrate on the general functional correctness
property. We have also modelled and proved the security of
seL4’s access-control system in Isabelle/HOL on a high level.3

Figure 2 shows the specification layers used in the verifi-
cation of seL4; they are related by formal proof. In the follow-
ing sections we explain each layer in turn.

4.1. Abstract specification
The abstract level describes what the system does without
saying how it is done. For all user-visible kernel operations,
it describes the functional behavior that is expected from
the system. All implementations that refine this specifica-
tion will be binary compatible.

We precisely describe argument formats, encodings and
error reporting, so, for instance, some of the C-level size
restrictions become visible on this level. We model finite
machine words, memory, and typed pointers explicitly.

works, not that the user-level policy makes sense. The mecha-
nism works if it keeps kernel code and data structures safe
from user access, if the virtual memory (VM) subsystem is
fully controlled by the kernel interface via capabilities, and if
it provides the necessary functionality for user level to man-
age its own VM policies.

Obviously, moving policy into user land does not change
the fact that memory allocation is part of the TCB. It does
mean, however, that memory allocation can be verified sepa-
rately, and can rely on verified kernel properties.

The memory-management model gives free memory
to the user-level manager in the form of regions tagged as
untyped. The memory manager can split untyped regions
and retype them into one of several kernel object types (one
of them, frame, is for user-accessible memory); such opera-
tions create new capabilities. Object destruction converts a
region back to untyped (and invalidates derived capabilities).

Before reusing a block of memory, all references to this
memory must be invalidated. This involves either find-
ing all outstanding capabilities to the object, or returning
the object to the memory pool only when the last capabil-
ity is deleted. Our kernel uses both approaches. In the first
approach, a so-called capability derivation tree is used to
find and invalidate all capabilities referring to a memory
region. In the second approach, the capability derivation
tree is used to ensure, with a check that is local in scope, that
there are no system-wide dangling references. This is pos-
sible because all other kernel objects have further invariants
on their own internal references that relate back to the exis-
tence of capabilities in this derivation tree.

Similar book-keeping would be necessary for a tradi-
tional malloc/free model in the kernel. The difference is that
the complicated free case in our model is concentrated in
one place, whereas otherwise it would be repeated numer-
ous times over the code.
Concurrency and Nondeterminism: Concurrency is the
execution of computation in parallel (in the case of multiple
hardware processors), or by nondeterministic interleaving
via a concurrency abstraction like threads. Reasoning about
concurrent programs is hard, much harder than reasoning
about sequential programs. For the time being, we limited
the verification to a single-processor version of seL4.

In a uniprocessor kernel, concurrency can result from
three sources: yielding of the processor from one thread to
another, (synchronous) exceptions and (asynchronous) inter-
rupts. Yielding can be synchronous, by an explicit handover,
such as when blocking on a lock, or asynchronous, by pre-
emption (but in a uniprocessor kernel, the latter can only
happen as the result of an interrupt).

We limit the effect of all three by a kernel design which
explicitly minimizes concurrency.

Exceptions are completely avoided, by ensuring that they
never occur. For instance, we avoid virtual-memory excep-
tions by allocating all kernel data structures in a region of
VM which is always guaranteed to be mapped to physical
memory. System-call arguments are either passed in regis-
ters or through preregistered physical memory frames.

The complexity of synchronous yield we avoid by using
an event-based kernel execution model, with a single kernel

june 2010 | vol. 53 | no. 6 | communications of the acm 111

data structures are now explicit data types, records, and lists
with straightforward, efficient implementations in C. For
example the capability derivation tree of seL4, modelled as a
tree on the abstract level, is now modelled as a doubly linked
list with limited level information. It is manipulated explic-
itly with pointer-update operations.

Figure 4 shows part of the scheduler specification at this
level. The additional complexity becomes apparent in the
chooseThread function that is no longer merely a sim-
ple predicate, but rather an explicit search backed by data
structures for priority queues. The specification fixes the
behavior of the scheduler to a simple priority-based round-
robin algorithm. It mentions that threads have time slices
and it clarifies when the idle thread will be scheduled. Note
that priority queues duplicate information that is already
available (in the form of thread states), in order to make it
available efficiently. They make it easy to find a runnable
thread of high priority. The optimization will require us to
prove that the duplicated information is consistent.

We have proved that the executable specification cor-
rectly implements the abstract specification. Because of
its extreme level of detail, this proof alone already provides
stronger design assurance than has been shown for any
other general-purpose OS kernel.

4.3. C implementation
The most detailed layer in our verification is the C imple-
mentation. The translation from C into Isabelle is correct-
ness-critical and we take great care to model the semantics
of our C subset precisely and foundationally. Precisely means
that we treat C semantics, types, and memory model as the
C99 standard4 prescribes, for instance, with architecture-
dependent word size, padding of structs, type-unsafe casting
of pointers, and arithmetic on addresses. As kernel program-
mers do, we make assumptions about the compiler (GCC)
that go beyond the standard, and about the architecture

Otherwise, the data structures used in this abstract specifi-
cation are high level—essentially sets, lists, trees, functions,
and records. We make use of nondeterminism in order to
leave implementation choices to lower levels: if there are
multiple correct results for an operation, this abstract layer
would return all of them and make clear that there is a choice.
The implementation is free to pick any one of them.

An example of this is scheduling. No scheduling policy is
defined at the abstract level. Instead, the scheduler is mod-
elled as a function picking any runnable thread that is active
in the system or the idle thread. The Isabelle/HOL code for
this is shown in Figure 3. The function all_active_tcbs
returns the abstract set of all runnable threads in the sys-
tem. Its implementation (not shown) is an abstract logical
predicate over the whole system. The select statement
picks any element of the set. The OR makes a nondetermin-
istic choice between the first block and switch_to_idle_
thread. The executable specification makes this choice
more specific.

4.2. Executable specification
The purpose of the executable specification is to fill in the
details left open at the abstract level and to specify how the
kernel works (as opposed to what it does). While trying to
avoid the messy specifics of how data structures and code
are optimized in C, we reflect the fundamental restrictions
in size and code structure that we expect from the hardware
and the C implementation. For instance, we take care not to
use more than 64 bits to represent capabilities, exploiting
known alignment of pointers. We do not specify in which
way this limited information is laid out in C.

The executable specification is deterministic; the only
nondeterminism left is that of the underlying machine. All

Figure 2. The refinement layers in the verification of seL4.

High-performance C implementation

Executable specification Haskell prototype

High-performance C implementation

Executable specification Haskell prototype
Automatic
translation

Isabelle/HOL

Refinement proof

Refinement proof

Abstract specification

Figure 3. Isabelle/HOL code for scheduler at abstract level.

schedule º do
	 threads ¬ all_active_tcbs;
	 thread ¬ select threads;
	 switch_to_thread thread
od OR switch_to_idle_thread

Figure 4. Haskell code for schedule.

schedule = do
   action <- getSchedulerAction
   case action of
   ChooseNewThread -> do
     chooseThread
     setSchedulerAction ResumeCurrentThread
     ...
chooseThread = do
  � r <- findM chooseThread¢ (reverse [minBound ..

maxBound])
   when (r == Nothing) $ switchToIdleThread
chooseThread¢ prio = do
    q <- getQueue prio
    liftM isJust $ findM chooseThread² q
chooseThread² thread = do
    runnable <- isRunnable thread
    if not runnable then do
         tcbSchedDequeue thread
         return False
    else do
         switchToThread thread
         return True

112 communications of the acm | june 2010 | vol. 53 | no. 6

research highlights

be inlined and, after compilation on ARM, the result is more
compact and faster than GCC’s native bitfields. The tool not
only generates the C code, it also automatically generates
Isabelle/HOL specifications and proofs of correctness.

Figure 5 shows part of the implementation of the sched-
uling functionality described in the previous sections. It is
standard C99 code with pointers, arrays and structs. The
thread_state functions used in Figure 5 are examples of
generated bitfield accessors.

4.4. The proof
This section describes the main theorem we have shown
and how its proof was constructed.

As mentioned, the main property we are interested in is
functional correctness, which we prove by showing formal
refinement. We have formalized this property for general
state machines in Isabelle/HOL, and we instantiate each of
the specifications in the previous sections into this state-
machine framework.

We have also proved the well-known reduction of refine-
ment to forward simulation, illustrated in Figure 6 where
the solid arrows mean universal quantification and the
dashed arrows existential: To show that a concrete state
machine M2 refines an abstract one M1, it is sufficient to
show that for each transition in M2 that may lead from
an initial state s to a set of states s¢, there exists a corre-
sponding transition on the abstract side from an abstract
state s to a set s ¢ (they are sets because the machines may
be nondeterministic). The transitions correspond if there
exists a relation R between the states s and s such that for
each concrete state in s¢ there is an abstract one in s ¢ that
makes R hold between them again. This has to be shown
for each transition with the same overall relation R. For
externally visible state, we require R to be equality. For
each refinement layer in Figure 2, we have strengthened
and varied this proof technique slightly, but the general
idea remains the same.

We now describe the instantiation of this framework to
the seL4 kernel. We have the following types of transition in

used (ARMv6). These are explicit in the model, and we can
therefore detect violations. Foundationally means that we
do not just axiomatize the behavior of C on a high level, but
we derive it from first principles as far as possible. For exam-
ple, in our model of C, memory is a primitive function from
addresses to bytes without type information or restrictions.
On top of that, we specify how types like unsigned int are
encoded, how structures are laid out, and how implicit and
explicit type casts behave. We managed to lift this low-level
memory model to a high-level calculus that allows efficient,
abstract reasoning on the type-safe fragment of the kernel.
We generate proof obligations assuring the safety of each
pointer access and write. They state that the pointer in ques-
tion must be non-null and of the correct alignment. They are
typically easy to discharge. We generate similar obligations
for all restrictions the C99 standard demands.

We treat a very large, pragmatic subset of C99 in the verifi-
cation. It is a compromise between verification convenience
and the hoops the kernel programmers were willing to jump
through in writing their source. The following paragraphs
describe what is not in this subset.

We do not allow the address-of operator & on local vari-
ables, because, for better automation, we make the assump-
tion that local variables are separate from the heap. This could
be violated if their address was available to pass on. It is the
most far-reaching restriction we implement, because it is com-
mon in C to use local variable references for return parameters
to avoid returning large types on the stack. We achieved com-
pliance with this requirement by avoiding reference param-
eters as much as possible, and where they were needed, used
pointers to global variables (which are not restricted).

One feature of C that is problematic for verification
(and programmers) is the unspecified order of evaluation
in expressions with side effects. To deal with this feature
soundly, we limit how side effects can occur in expressions.
If more than one function call occurs within an expression
or the expression otherwise accesses global state, a proof
obligation is generated to show that these functions are side-
effect free. This proof obligation is discharged automatically.

We do not allow function calls through function pointers.
(We do allow handing the address of a function to assembler
code, e.g., for installing exception vector tables.) We also do
not allow goto statements, or switch statements with fall-
through cases. We support C99 compound literals, making
it convenient to return structs from functions, and reducing
the need for reference parameters. We do not allow com-
pound literals to be lvalues. Some of these restrictions could
be lifted easily, but the features were not required in seL4.

We did not use unions directly in seL4 and therefore do
not support them in the verification (although that would be
possible). Since the C implementation was derived from a
functional program, all unions in seL4 are tagged, and many
structs are packed bitfields. Like other kernel implemen-
tors, we do not trust GCC to compile and optimize bitfields
predictably for kernel code. Instead, we wrote a small tool
that takes a specification and generates C code with the nec-
essary shifting and masking for such bitfields. The tool helps
us to easily map structures to page table entries or other
hardware-defined memory layouts. The generated code can

Figure 5. C code for part of the scheduler.

void setPriority(tcb_t *tptr, prio_t prio) {
   prio_t oldprio;
   if(thread_state_get_tcbQueued(tptr->tcbState)) {
    oldprio = tptr->tcbPriority;
    ksReadyQueues[oldprio] =
     tcbSchedDequeue(tptr, ksReadyQueues[oldprio]);
    if(isRunnable(tptr)) {
     ksReadyQueues[prio] =
      tcbSchedEnqueue(tptr, ksReadyQueues[prio]);
    }
    else {
     thread_state_ptr_set_tcbQueued(&tptr->tcbState,
                         false);
    }
  }
  tptr->tcbPriority = prio;
}

june 2010 | vol. 53 | no. 6 | communications of the acm 113

between entry and exit points in each specification layer for
a running kernel.

Assuming correctness of the C compiler means that we
assume GCC correctly translates the seL4 source code in our
C subset according to the ISO/IEC C99 standard,4 that the
formal model of our C subset accurately reflects this stan-
dard and that the model makes the correct architecture-
specific assumptions for the ARMv6 architecture on the
Freescale i.MX31 platform.

The assumptions on hardware and assembly mean that
we do not prove correctness of the register save/restore
and the potential context switch on kernel exit. Cache con-
sistency, cache coloring, and TLB flushing requirements
are part of the assembly implemented machine interface.
These machine interface functions are called from C, and
we assume they do not have any effect on the memory state
of the C program. This is only true if they are used correctly.

The VM subsystem of seL4 is not assumed correct, but
is treated differently from other parts of the proof. For our
C semantics, we assume a traditional, flat view of in-kernel
memory that is kept consistent by the kernel’s VM subsys-
tem. We make this consistency argument only informally;
our model does not oblige us to prove it. We do however
substantiate the model and informal argument by manually
stated, machine-checked properties and invariants. This
means we explicitly treat in-kernel VM in the proof, but this
treatment is different from the high standards in the rest
of our proof where we reason from first principles and the
proof forces us to be complete.

This is the set of assumptions we picked. If they are too
strong for a particular purpose, many of them can be elimi-
nated combined with other research. For instance, we have ver-
ified the executable design of the boot code in an earlier design
version. For context switching, Ni et al.7 report verification suc-
cess, and the Verisoft project1 shows how to verify assembly
code and hardware interaction. Leroy verified an optimizing C
compiler5 for the PowerPC and ARM architectures.

An often-raised concern is the question What if there
is a mistake in the proof? The proof is machine-checked by
Isabelle/HOL. So what if there is a bug in Isabelle/HOL? The
proof checking component of Isabelle is small and can be
isolated from the rest of the prover. It is extremely unlikely
that there is a bug in this part of the system that applies in a
correctness-critical way to our proof. If there was reason for
concern, a completely independent proof checker could be
written in a few hundred lines of code. Provers like Isabelle/
HOL can achieve a degree of proof trustworthiness that far
surpasses the confidence levels we rely on in engineering or
mathematics for our daily survival.

5. EXPERIENCE AND LESSONS LEARNED
5.1. Verification effort
The project was conducted in three phases. First an ini-
tial kernel with limited functionality (no interrupts,
single address space, and generic linear page table) was
designed and implemented in Haskell, while the verifica-
tion team mostly worked on the verification framework
and generic proof libraries. In a second phase, the verifica-
tion team developed the abstract spec and performed the

our state machines: kernel transitions, user transitions, user
events, idle transitions, and idle events. Kernel transitions are
those that are described by each of the specification layers
in increasing amount of detail. User transitions are specified
as nondeterministically changing arbitrary user-accessible
parts of the state space. User-events model kernel entry (trap
instructions, faults, interrupts). Idle transitions model the
behavior of the idle thread. Finally, idle events are interrupts
occurring during idle time; other interrupts that occur dur-
ing kernel execution are modelled explicitly and separately in
each layer of Figure 2.

The model of the machine and the model of user pro-
grams remain the same across all refinement layers; only
the details of kernel behavior and kernel data structures
change. The fully nondeterministic model of the user means
that our proof includes all possible user behaviors, be they
benign, buggy, or malicious.

Let machine MA denote the system framework instan-
tiated with the abstract specification of Section 4.1, let
machine ME represent the framework instantiated with the
executable specification of Section 4.2, and let machine MC
stand for the framework instantiated with the C program
read into the theorem prover. Then we prove the following
two, very simple-looking theorems:

Theorem 1. ME refines MA.

Theorem 2. MC refines ME.

Therefore, because refinement is transitive, we have

Theorem 3. MC refines MA.

4.5. Assumptions
Formal verification can never be absolute; it always must
make fundamental assumptions. The assumptions we
make are correctness of the C compiler, the assembly code, the
hardware, and kernel initialization. We explain each of them
in more detail below.

The initialization code takes up about 1.2 kloc of the ker-
nel. The theorems in Section 4.4 only state correspondence

Figure 6. Forward simulation.

Abstract operation
s s �

Concrete operation
s s�

S
ta

te
 r

el
at

io
n

S
ta

te
 r

el
at

io
n

M1

M2

114 communications of the acm | june 2010 | vol. 53 | no. 6

research highlights

ability to change and rearrange code in discussion with
the design team was an important factor in the verification
team’s productivity and was essential to complete the veri-
fication on time.

The second refinement stage from executable spec to
C uncovered 160 bugs, 16 of which were also found dur-
ing testing, early application and static analysis. The bugs
discovered in this stage were mainly typos, misreading the
specification, or failing to update all relevant code parts for
specification changes. Even though their cause was often
simple, understandable human error, their effect in many
cases was sufficient to crash the kernel or create security
vulnerabilities. There were no deeper, algorithmic bugs in
the C level, because the C code was written according to a
very precise, low-level specification.

5.2. The cost of change
One issue of verification is the cost of proof maintenance:
how much does it cost to reverify after changes are made
to the kernel? This obviously depends on the nature of the
change. We are not able to precisely quantify such costs,
but our iterative verification approach has provided us with
some relevant experience.

The best case is a local, low-level code change, typically an
optimization that does not affect the observable behavior.
We made such changes repeatedly, and found that the effort
for reverification was always low and roughly proportional to
the size of the change.

Adding new, independent features, which do not interact
in a complex way with existing features, usually has a mod-
erate impact. For example, adding a new system call to the
seL4 API that atomically batches a specific, short sequence
of existing system calls took one day to design and imple-
ment. Adjusting the proof took less than 1 person week.

Adding new, large, cross-cutting features, such as add-
ing a complex new data structure to the kernel supporting
new API calls that interact with other parts of the kernel, is
significantly more expensive. We experienced such a case
when progressing from the first to the final implementa-
tion, adding interrupts, ARM page tables, and address
spaces. This change costs several pms to design and
implement, and resulted in 1.5–2 py to reverify. It modi-
fied about 12% of existing Haskell code, added another
37%, and reverification cost about 32% of the time previ-
ously invested in verification. The new features required
only minor adjustments of existing invariants, but lead to
a considerable number of new invariants for the new code.
These invariants had to be preserved over the whole kernel,
not just the new features.

Unsurprisingly, fundamental changes to existing features
are bad news. We experienced one such change when we
added reply capabilities for efficient RPC as an API opti-
mization after the first refinement was completed. Even
though the code size of this change was small (less than 5%
of the total code base), it violated key invariants about the
way capabilities were used in the system until then and the
amount of conceptual cross-cutting was huge. It took about
1 py or 17% of the original proof effort to reverify.

There is one class of otherwise frequent code changes

first refinement while the development team completed
the design, Haskell prototype and C implementation. The
third phase consisted of extending the first refinement
step to the full kernel and performing the second refine-
ment. The overall size of the proof, including framework,
libraries, and generated proofs (not shown in the table) is
200,000 lines of Isabelle script.

Table 1 gives a breakdown for the effort and size of each
of the layers and proofs. About 30 person months (pm)
went into the abstract specification, Haskell prototype
and C implementation (over all project phases), including
design, documentation, coding, and testing.

This compares well with other efforts for developing a
new microkernel from scratch: The Karlsruhe team reports
that, on the back of their experience from building the
earlier Hazelnut kernel, the development of the Pistachio
kernel costs about 6 person years (py). SLOCCount with the
“embedded” profile estimates the total cost of seL4 at 4 py.
Hence, there is strong evidence that the detour via Haskell
did not increase the cost, but was in fact a significant net
cost saver.

The cost of the proof is higher, in total about 20 py. This
includes significant research and about 9 py invested in for-
mal language frameworks, proof tools, proof automation,
theorem prover extensions, and libraries. The total effort for
the seL4-specific proof was 11 py.

We expect that redoing a similar verification for a new
kernel, using the same overall methodology, would reduce
this figure to 6 py, for a total (kernel plus proof) of 8 py. This
is only twice the SLOCCount estimate for a traditionally
engineered system with no assurance.

The breakdown in Table 1 of effort between the two
refinement stages is illuminating: almost 3:1. This is a
reflection of the low-level nature of our Haskell prototype,
which captures most of the properties of the final prod-
uct. This is also reflected in the proof size—the first proof
step contained most of the deep semantic content. 80%
of the effort in the first refinement went into establishing
invariants, only 20% into the actual correspondence proof.
We consider this asymmetry a significant benefit, as the
executable spec is more convenient and efficient to reason
about than C.

The first refinement step led to some 300 changes in the
abstract spec and 200 in the executable spec. About 50% of
these changes relate to bugs in the associated algorithms
or design. Examples are missing checks on user-supplied
input, subtle side effects in the middle of an operation
breaking global invariants, or over-strong assumptions
about what is true during execution. The rest of the
changes were introduced for verification convenience. The

Table 1. Code and proof statistics.

 Haskell/C Isabelle Proof

 pm kloc kloc Invariants py klop

abst.
exec.
impl.

 4
24
 2

−
5.7
8.7

  4.9
13
15

~75
~80

0

8
3

110
 55

june 2010 | vol. 53 | no. 6 | communications of the acm 115

References
	 1.	 Alkassar, E., Schirmer, N., Starostin,

A. Formal pervasive verification
of a paging mechanism. TACAS.
C.R. Ramakrishnan and J. Rehof,
eds. Volume 4963 of LNCS (2008).
Springer, 109–123.

	 2.	 Dennis, J.B., Van Horn, E.C.
Programming semantics for
multiprogrammed computations.
CACM 9 (1966), 143–155.

	 3.	 Elkaduwe, D., Klein, G., Elphinstone, K.
Verified protection model of the seL4
microkernel. VSTTE 2008—Verified
Software: Theories, Tools & Experiments.
J. Woodcock and N. Shankar eds.
Volume 5295 of LNCS (Toronto, Canada,
Oct 2008), Springer, 99–114.

	 4	 ISO/IEC. Programming languages—C.
Technical Report 9899:TC2, ISO/IEC
JTC1/SC22/WG14, May 2005.

	 5.	 Leroy, X. Formal certification of a compiler
back-end, or: Programming a compiler
with a proof assistant. 33rd POPL. J.G.

Morrisett and S.L.P. Jones, eds. (New
York, NY, USA, 2006), ACM, 42–54.

	 6.	 Liedtke, J. Towards real microkernels.
CACM 39, 9 (Sept 1996), 70–77.

	 7.	N i, Z., Yu, D., Shao. Z. Using XCAP to
certify realistic system code: Machine
context management. 20th TPHOLs,
volume 4732 of LNCS (Kaiserslautern,
Germany, Sept 2007), Springer, 189–206.

	 8.	N ipkow, T., Paulson, L., Wenzel, M.
Isabelle/HOL—A Proof Assistant for
Higher-Order Logic. Volume 2283 of
LNCS (2002), Springer.

	 9.	O rmandy, T., Tinnes, J. Linux null pointer
dereference due to incorrect proto_ops
initializations. http://www.cr0.org/misc/
CVE-2009–2692.txt, 2009.

	10.	 Saltzer, J.H., Schroeder, M.D. The
protection of information in computer
systems. Proc. IEEE 63 (1975), 1278–1308.

	11.	 Shapiro, J.S., Smith, J.M., Farber, D.J.
EROS: A fast capability system. 17th
SOSP (Charleston, SC, USA, Dec
1999), 170–185.

that does not occur after the kernel has been verified: imple-
mentation bug fixes.

6. CONCLUSION
We have presented our experience in formally verifying
seL4. We have shown that full, rigorous, formal verification
is practically achievable for OS microkernels.

The requirements of verification force the designers to
think of the simplest and cleanest way of achieving their
goals. We found repeatedly that this leads to overall better
design, for instance, in the decisions aimed at simplifying
concurrency-related verification issues.

Our future research agenda includes verification of the
assembly parts of the kernel, a multi-core version of the ker-
nel, as well as formal verification of overall system security
and safety properties, including application components.
The latter now becomes much more meaningful than previ-
ously possible: application proofs can rely on the abstract,
formal kernel specification that seL4 is proven to implement.

Acknowledgments
We would like to acknowledge the contribution of the former
team members on this verification project: Timothy Bourke,
Jeremy Dawson, Jia Meng, Catherine Menon, and David Tsai.

NICTA is funded by the Australian Government
as represented by the Department of Broadband,
Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of
Excellence program.�

Gerwin Klein National ICT Australia
(NICTA), University of South Wales
(UNSW), Sydney.

June Andronick NICTA, UNSW.

Kevin Elphinstone NICTA, UNSW.

Gernot Heiser NICTA, UNSW, Open
Kernel Labs.

Dhammika Elkaduwe NICTA, UNSW,
now at University of Peradeniya,
Sri Lanka.

Kai Engelhardt NICTA, UNSW.

Rafal Kolanksi NICTA, UNSW.

Harvey Tuch NICTA, UNSW, now at
VMWare.

Simon Winwood NICTA, UNSW.

David Cock NICTA.

Philip Derrin NICTA, now at Open Kernel
Labs.

Michael Norrish NICTA, Australian
National University, Canberra.

Thomas Sewell NICTA.

© 2010 ACM 0001-0782/10/0600 $10.00

New Edition of a Bestseller!

Algorithms and Theory of
Computation Handbook,
Second Edition—
Two Volume Set
Praise for the Previous Edition

“… excellent survey of the state of the
art … highly recommended for anyone
interested in algorithms, data struc-
tures and the theory of computation …
an indispensable book of reference … .”
—R. Kemp, Zentralblatt MATH, Vol. 926

Catalog no. C8180
January 2010, 1938 pp.
ISBN: 978-1-58488-818-5
$179.95 / £114.00
$143.96 / £91.20

Flexible, Reliable Software
Using Patterns and
Agile Development
“… brings together a careful selection
of topics that are relevant, indeed
crucial, for developing good quality
software … leads the reader through
an experience of active learning.”

—Michael Kölling, Bestselling
Author and originator of the BlueJ

and Greenfoot environments
Catalog no. C3622
May 2010, 527 pp.
ISBN: 978-1-4200-9362-9
$69.95 / £44.99
$55.96 / £35.99

Handbook of
Chemoinformatics
Algorithms
Providing an overview of the most
common chemoinformatics algo-
rithms, this book explains how to
effectively apply algorithms and
graph theory for solving chemical
problems.
Catalog no. C2922
April 2010, 454 pp.
ISBN: 978-1-4200-8292-0
$99.95 / £63.99
$79.96 / £51.19

Have you
Considered All

the Possibilities?

Save 20%

on these

New & Noteworthy
Resources

from
Chapman & Hall/CRC Press

Save 20% on your online
order by entering promo
code 736DM at checkout

Discount expires July 31, 2010

www.crcpress.com

CHAPMAN & HALL BOOKS

http://www.crcpress.com
http://www.cr0.org/misc/CVE-2009-2692.txt
http://www.cr0.org/misc/CVE-2009-2692.txt

116 communications of the acm | june 2010 | vol. 53 | no. 6

careers

Epic
Problem Solver/Technical Consultant

Epic’s Problem Solvers are responsible for our
clients’ happiness after the systems are installed.
They create valuable relationships by listening
well to customer concerns and championing cli-
ents’ needs. They work with IT staff at customer
sites to quickly resolve technical issues and per-
form necessary programming, helping to ensure
that every customer gets the most out of an Epic
software investment.

Candidates should have a bachelor’s degree
or higher (all majors considered), a minimum
3.2 cumulative GPA, and be eligible to work in
the U.S. without sponsorship. No prior technical
experience is necessary, but exposure to program-
ming is a plus. Relocation to Madison, Wisconsin
is required and reimbursed.

Apply URL: http://careers.epic.com/
Email Address: job@epic.com

For more information, please visit the univer-
sity website www.niituniversity.in.

Interested applicants are invited to submit
their curriculum vitae including employment his-
tory, a statement outlining research and teaching
interests, list of consultancies and projects un-
dertaken and names of at least three referees.

Applications may be sent electronically in
PDF format to:
careers@niituniversity.in
or the President, Dr Rajeev Shorey,
rajeev.shorey@niituniversity.in
Phone : +91-9251083130

Princeton University
Computer Science
Lecturer

Part- and full-time Lecturer positions. The De-
partment of Computer Science seeks applications
from outstanding teachers to assist the faculty in
teaching our introductory course sequence.

The primary requirements of the job are
to teach recitation sections and to participate
in overall management of the introductory se-
quence. Other responsibilities include supervis-
ing graduate student teaching assistants and
developing and maintaining online curricular
material, classroom demonstrations, and labora-
tory exercises.

Candidates should have an exceptional record
of classroom instruction and curricular innova-
tion. An advanced degree in computer science is
preferred.

For general application information and to
self-identify visit: https://jobs.princeton.edu

Requisition Number: 1000207. You may ap-
ply online on the Department’s website at: http://
www.cs.princeton.edu/jobs/lecturerposition

We will not accept applications from the
Princeton jobs site.

Princeton University is an equal opportunity
employer and complies with applicable EEO and
affirmative action regulations.

Taif University, Saudi Arabia
Assistant/Associate Professor

The College of Computers & Information Systems
at TAIF University in Saudi Arabia invites applica-
tions for faculty positions for fall 2010 or spring
2011. Candidates should have Ph.D. in Computer
Science/Computer Engineering/Information Sys-
tems, or a closely related discipline, and a strong
commitment to excellence in teaching, research,
and service.

Please email CV, letter of application, tran-
scripts, statement of research and teaching inter-
ests, and 3 letters of reference addressing to

Dean Dr. Sultan Aljahdali
at cisdean@tu.edu.sa.

Epic
Software Developer

Our small teams of software engineers participate
in all aspects of the development process, from
meeting customers to system design through
quality assurance and delivery. Their goal is to
create easy-to-use systems with optimal work-
flows that manage large amounts of data with
sub-second response times and rock-solid stabil-
ity. Our continued success in these areas is shown
by Epic software systems’ top-rated industry re-
views. New functionality and systems are being
developed daily that extend current capabilities
and break new ground in the industry.

Candidates should have a bachelor’s degree
or higher in Computer Science, Software Engi-
neering, or Math and a minimum 3.2 major GPA.
Relocation to Madison, Wisconsin is required
and reimbursed. Visa sponsorship is available.

Apply URL: http://careers.epic.com/
Email Address: job@epic.com

NIIT University, INDIA
Computer Science & Engg and Information &
Communication Technology
Faculty Positions in Computer Science &
Engg and Information and Communication
Technology

NIIT University (NU) invites applications at Assis-
tant Professor, Associate Professor and Professor
levels.

Candidates must have earned (or expect
shortly) a Ph.D for Assistant Professor, Ph.D with
6 years of experience for Associate Professor, Ph.D
with 10 years of experience for Professor in the
above disciplines. Candidates must have a good
publication record; proven ability to establish
an independent research program; demonstrate
flair for innovation; be open to participate in de-
veloping new interdisciplinary programs of study;
have the commitment to excel both in research
and teaching and establish linkage with industry.
Industry experience and/or post-doctoral experi-
ence will be considered an asset.

NIIT University is located about 120 Kms from
New Delhi. The University provides an intellec-
tual environment and is committed to academic
excellence. The four core principles of NIIT Uni-
versity, namely, Industry-linked, Research-driven,
Technology-based, and Seamless define the DNA
of the University.

NIIT University offers a competitive compen-
sation at par with the best academic institutions
in India. In addition, NU provides a start up re-
search grant at the time of joining, travel support
for presenting papers in International Conferenc-
es and Workshops. NU provides research incen-
tives, such as monetary award for refereed Journal
publications. In line with the Industry-linked as a
core principle, the university will enable faculty to
consult with industry in India and abroad.

Advertising in Career
Opportunities

How to Submit a Classified Line Ad: Send
an e-mail to acmmediasales@acm.org.
Please include text, and indicate the issue/
or issues where the ad will appear, and a
contact name and number.

Estimates: An insertion order will then be
e-mailed back to you. The ad will by
typeset according to CACM guidelines.
NO PROOFS can be sent. Classified line ads
are NOT commissionable.

Rates: $325.00 for six lines of text, 40
characters per line. $32.50 for each
additional line after the first six. The
MINIMUM is six lines.

Deadlines: Five weeks prior to the
publication date of the issue (which is the
first of every month). Latest deadlines:

http://www.acm.org/publications

Career Opportunities Online: Classified
and recruitment display ads receive a free
duplicate listing on our website at:

http://campus.acm.org/careercenter

Ads are listed for a period of 30 days.

For More Information Contact:
ACM Media Sales

at 212-626-0686 or
acmmediasales@acm.org

http://careers.epic.com/
mailto:job@epic.com
mailto:acmmediasales@acm.org
http://www.acm.org/publications
http://campus.acm.org/careercenter
mailto:acmmediasales@acm.org
http://careers.epic.com/
mailto:job@epic.com
http://www.niituniversity.in
mailto:careers@niituniversity.in
mailto:rajeev.shorey@niituniversity.in
https://jobs.princeton.edu
http://www.cs.princeton.edu/jobs/lecturerposition
mailto:cisdean@tu.edu.sa
http://www.cs.princeton.edu/jobs/lecturerposition

june 2010 | vol. 53 | no. 6 | communications of the acm 117

Expansion of the Research School
“Service-Oriented Systems Engineering“
at Hasso-Plattner-Institute
8 Ph.D. grants available - starting October 1, 2010

Hasso-Plattner-Institute (HPI) is a privately financed institute affiliated with the
University of Potsdam, Germany. The Institute‘s founder and benefactor Professor
Hasso Plattner, who is also co-founder and chairman of the supervisory board of
SAP AG, has created an opportunity for students to experience a unique education
in IT systems engineering in a professional research environment with a strong
practice orientation.

In 2005, HPI initiated the research school on “Service-Oriented Systems Engineering“
under the scientific supervision of Professors Jürgen Döllner, Holger Giese, Robert
Hirschfeld, Christoph Meinel, Felix Naumann, Hasso Plattner, Andreas Polze, Mathias
Weske and Patrick Baudisch.

We are expanding our research school and are currently seeking

8 Ph.D. students
(monthly stipends 1400-1600 Euro)

2 Postdocs (monthly stipend 1800 Euro)
Positions will be available starting October 1, 2010.
The stipends are not subject to income tax.

The main research areas in the research school at HPI are:
Self-Adaptive Service-Oriented Systems �
Operating System Support for Service-Oriented Systems �
Architecture and Modeling of Service-Oriented Systems �
Adaptive Process Management �
Services Composition and Workflow Planning �
Security Engineering of Service-Based IT Systems �
Quantitative Analysis und Optimization of Service-Oriented Systems �
Service-Oriented Systems in 3D Computer Graphics �
Service-Oriented Geoinformatics �

Prospective candidates are invited to apply with:
Curriculum vitae and copies of degree certificates/transcripts �
A short research proposal �
Writing samples/copies of relevant scientific papers (e. g. thesis etc.) �
Letters of recommendation �

Please submit your applications by July 31, 2010 to the coordinator of the
research school:

Prof. Dr. Andreas Polze, Hasso-Plattner-Institute, Universität Potsdam
Postfach 90 04 60, 14440 Potsdam, Germany

Successful candidates will be notified by September 15, 2010 and are expected
to enroll into the program on October 1, 2010.

For additional information see: http://kolleg.hpi.uni-potsdam.de

or contact the office:
Telephone +49-331-5509-220, Telefax +49-331-5509-229
Email: office-polze@hpi.uni-potsdam.de

http://kolleg.hpi.uni-potsdam.de
mailto:office-polze@hpi.uni-potsdam.de
http://www.acm.org/trets
http://www.acm.org/subscribe

118 communications of the acm | june 2010 | vol. 53 | no. 6

last byte

Puzzled
Solutions and Sources
Last month (May 2010, p. 120) we posted a trio of brainteasers, including
one as yet unsolved, concerning variations on the Ham Sandwich Theorem.

DOI:10.1145/1743546.1743575	 	 Peter Winkler

1. Hiking the Cascade Range.
 Solution. Puzzle 1 asked us to

prove that the programmers who spent
Saturday climbing and Sunday de-
scending Mt. Baker were, at some time
of day, at exactly the same altitude on
both days.

It’s easily done. For any time t, let
f(t) be the progammers’ altitude on
Sunday minus their altitude on Satur-
day; f(t) starts off positive in the morn-
ing and ends up negative at night, so at
some point must be 0.

An equivalent, and perhaps more
intuitive, way to see this is to imagine
that the programmers have twins who
were instructed to climb the mountain
on Sunday exactly as the programmers
climbed it the day before. Then, even
if their paths up and down were differ-
ent, there is some point at which the
programmers and their twins must
pass one another in altitude.

2. Inscribing a Lake
in a Square.

 Solution. Puzzle 2 asked us to show
that, given any closed curve in the
plane, there is a square contain-
ing the curve, all four sides of which
touch the curve. The idea of the proof
is both simple and elegant. Start
with a vertical line drawn somewhere
west of the curve. Gradually shift the
line eastward until it just touches
the curve. Repeat with a second line,
drawn east of the curve and moving
gradually west, so we now have an-
other vertical line touching the curve
on its east side. Now bring a horizon-
tal line down from the north until it
touches the curve and another from
the south, thus inscribing the curve in
a rectangle.

But what we want is not merely a
rectangle but a square. Suppose the
rectangle is taller than it is wide (as it
would be in, say, Lake Champlain).
Now slowly rotate the four lines togeth-
er clockwise, keeping all four outside
but still touching the curve. After 90 de-
grees of rotation, the picture is exactly
the same as before, only now, the pre-
viously long vertical lines of the rectan-
gle are the short horizontal sides.

At some point in the rotation pro-
cess, the original vertical lines and hor-
izontal lines were all the same length—
and, at exactly that point, the curve was
inscribed in a square.

3. Curves Containing
the Corners of a Square.

 Solution. The third puzzle was (as
usual) unsolved, frustrating geom-
eters for more than a century. For a
discussion see http://www.ics.uci.
edu/~eppstein/junkyard/jordan-square.
html, including reference to an article
by mathematician Walter Stromquist
(“Inscribed Squares and Square-like
Quadrilaterals in Closed Curves,”
Mathematika 36, 2 (1989), 187–197)
in which he proved the conjecture for
smooth curves. See also Stan Wagon’s
and Victor Klee’s book Old and New
Unsolved Problems in Plane Geometry
and Number Theory (Mathematical As-
sociation of America, 1991).

All readers are encouraged to submit prospective
puzzles for future columns to puzzled@cacm.acm.org.

Peter Winkler (puzzled@cacm.acm.org) is Professor of
Mathematics and of Computer Science and Albert Bradley
Third Century Professor in the Sciences at Dartmouth
College, Hanover, NH.

The Intermediate Value Theorem says that if you go continuously
from one real number to another, you must pass through all the
real numbers in between. You can use it to prove the Ham Sandwich
Theorem; here’s how it can be used to solve Puzzles 1 and 2:

mailto:puzzled@cacm.acm.org
mailto:puzzled@cacm.acm.org
http://www.ics.uci.edu/~eppstein/junkyard/jordan-square.html
http://www.ics.uci.edu/~eppstein/junkyard/jordan-square.html
http://www.ics.uci.edu/~eppstein/junkyard/jordan-square.html

june 2010 | vol. 53 | no. 6 | communications of the acm 119

last byte

all poten-
tial competitors. Crude versions of the
same pattern are seen among chimps,
wolves, and many other species. The
logic of Darwin and Malthus may be per-
vasive on other worlds, too. Could this
help explain the daunting sky-silence?

One important exception was by
far the most successful Earth-based
civilization—the Scientific Enlighten-
ment—which broke from the ancient
feudal pattern, fostering instead what
Robert Wright, author of Nonzero:
The Logic of Human Destiny, called the
“positive sum game,” encouraging
individualism and copious self-criti-
cism. (It’s a theme typified by self-re-
proachful messages like James Cam-
eron’s movie Avatar.) What better way
to detect, reveal, and resolve myriad
potential pitfalls than by unleashing
millions of diverse, highly educated,
technologically empowered citizens to
swarm (like T-cells) on every apparent
failure mode, real or imagined?

This noisy process was supercharged
in the late 1980s when the U.S. govern-
ment did something that still seems
historically anomalous: releasing the
Internet it had invented from near-total
control, simply handing it over to the
world. Ponder, in the light of the past
4,000 years of recorded history, the like-
lihood of such a decision. Was there
ever anything comparable, under the
most beneficent kings?

I want to defend this rambunctious
culture of freedom for all the usual
reasons (such as “freedom is good!”),
but I wonder. Such an experiment was
rare here on Earth and seems unlikely
to have been tried very often, out there
across the cosmos. In fact (and here’s
the point of this digression), our latest,
tech-amplified version of the Enlight-
enment could become a fiercely effec-
tive problem-solving system helping
us become the exception… a sapient
race that survives. That is, if it is al-
lowed to. And if it ever matures.

But getting the most from our po-
tential also requires better tools. In his
book Smart Mobs (2002), social scholar
Howard Rheingold envisioned a future
when the savvy, liberated populace
forms resilient, ad hoc, problem-solv-
ing networks that pounce on errors and
dangers, adapting much quicker than
stuffy, traditional, hierarchical institu-
tions. Recall that citizen-power was the

only thing that worked well on 9/11.
We’ll surely need such agility and initia-
tive in times to come.

Still, no one has yet disproved the
hoary adage that “The intelligence of a
crowd is that of its dumbest member,
divided by the number in the crowd.”
Could any blog, social-networking
site, or twit-mesh be described as a
“problem-solving discourse”? Not
unless you have very low standards
of “discourse.” Today’s communica-
tions platforms seem obstinately,
even proudly, primitive, encouraging
dumb-down groupthink that Jaron
Lanier called “digital Maoism” in his
Future Tense essay “Confusions of the
Hive Mind” (Sept. 2009), not the vigor-
ously new-citizenship I forecast in my
1989 eco-thriller Earth.

Connectivity scholar and Google
Vice President Marissa Mayer says
the Internet is in its “adolescence.”
Indeed, many of the traits tech-zealot
Clay Shirky (http://www.shirky.com/)
adores and that Web critic Nicholas
Carr (http://www.roughtype.com/) ab-
hors are qualities we associate with
our own teenage years. Take the ram-
pant flightiness of scattered attention
spans, simplistic online tribalism,
and tsunamis of irate opinion; pic-
ture 10 million electronic Nuremberg
rallies. These punk attributes blend
and contrast with positive adoles-
cent qualities like unprecedented
vividness, creativity, quickness, alert
compassion, and spontaneity. No gen-
eration ever read or wrote so much…
albeit, never was such a high fraction
of the writing such drivel.

There’s nothing wrong with self-

expression. Not everyone is required
to engage in erudite discourse. But
must the medium conspire to make
discourse next to impossible, leaving
each decade’s version of “conversa-
tion” more terse and lobotomized?
Must the interface assume that super-
ficiality is the chief desideratum and
self-fulfilling expectation?

If this is an “adolescent phase,” we
may yet see what Wikipedia co-found-
er Larry Sanger calls “sophrosyne,” or
polemical shouting transforming into
fair disputation and negotiation, a trick
many teens eventually learn.

Imagine today’s Internet augment-
ed by a shopping list of now-missing
tools to enhance attention allocation,
empowering users to do more in par-
allel while rediscovering the art of
concentration. Today’s fetish for “gist-
ing,” or grabbing the summarized es-
sence of any fact or opinion, might yet
be more useful and accurate, when
coupled with utilities for source-repu-
tation weighting, paraphrasing, corre-
lation, data analysis, and what Howard
Rheingold called general “crap-detec-
tion.” Collaborationware might yet
evolve from its present stodginess,
helping ad hoc teams self-organize,
divide tasks, delegate expertise, and
achieve quick wonders. Such tools
could start by bringing online some of
the amazing mental methods we take
for granted in the real world (such as
the way we sift for meaning from mul-
tiple conversations at once, as at a
cocktail party). Many have never been
implemented online, in any way.

Destiny, not only on Earth but
across the Galaxy, may depend on how
we choose to cross this danger zone.
Success could arise less out of stodgy
prescriptions than from those “adoles-
cent” traits that make us hunger for ad-
venture, surprise, even fun. Only… per-
haps empowered by new skills that help
us function as thoughtful adolescents,
more like precocious 19-year-olds than
scatterbrained 13-year-olds. Perhaps
even like people with grownup goals…
and the patience to achieve them. 	

David Brin (http://www.davidbrin.com) is a scientist,
technology speaker, and author whose stories and
novels have won Hugo and Nebula awards. He is also the
author of the nonfiction book The Transparent Society:
Will Technology Make Us Choose Between Freedom and
Privacy? (Perseus Books Group, 1989).

© 2010 ACM 0001-0782/10/0600 $10.00

[cont in ue d fro m p. 120]

Success may depend
on new skills and
tools that empower
our “adolescent”
traits, the drive that
makes us hunger for
adventure, surprise,
even fun.

http://www.shirky.com/
http://www.roughtype.com/
http://www.davidbrin.com

last byte

120 communications of the acm | june 2010 | vol. 53 | no. 6

I
ll

u

strati

o
n

 b
y

 D
awid

 M

ichalcz

y

k

tied technology’s march to the question
of why we’ve seen no signs of intelligent
life beyond planet Earth, not even radio
blips on a SETI screen. Does this Great
Silence suggest every sapient race out
there ultimately repeats the same tech-
nology-driven mistakes, driving their
own civilizations to ruin?

We know next to nothing about
aliens but can impute something
about them from the self-perpetuat-
ing instinctive drives that propel both
human societies and nearly all ani-
mal species on Earth, spurred by the
“zero sum,” or I-win-by-making-you-
lose, logic of reproductive success.
Hence, 99% of human cultures that
ever achieved farming and metals also
wound up ruled by feudal oligarchies
that squelched

Future Tense
How the Net Ensures
Our Cosmic Survival
Give adolescent wonder an evolutionary jolt.

DOI:10.1145/1743546.1743576	 	 David Brin

The Internet has changed the way
I think, though, ironically, less than I
expected. As both a freelance scientist
and a science fiction author, I already
telecommuted back in 1980, kept flex-
ible hours, digitally collaborated with
colleagues around the world, con-
ducted digital literature searches, and
was an early adopter of text editing. All
these trends have since accelerated.
Yet, compared to my colleagues’ uto-
pian visions for 2010, today’s Net and
Web remain, a bit, well, stodgy.

Oh, I’m grateful to live in such times.
For one thing, without the Internet, civi-
lization would likely have fallen into the
Specialization Trap that tech students
pondered, pessimistically, in the 1960s.
At the time, it seemed inevitable—as
the weight of accumulated knowledge
piled higher and higher—that research-
ers would have to learn more and more
about less and less, in narrowing sub-
fields, staggering forward ever more
slowly under the growing burden of
human progress. Specialty boundaries
would grow more rigid and uncross-
able. This unpleasant fate seemed un-
avoidable, back when “information”
had a heavy, almost solid quality…

…till the Internet Era transformed
knowledge into something more like
a gas—or sparkling plasma—infinite-
ly malleable, duplicable, accessible,
mobile. At which point the old wor-
ries about death-by-overspecialization
vanished so thoroughly that few recall
how gloomy the prospect seemed, only
a few decades ago.

Today, some fear the opposite fail-
ure mode, veering from narrow-mind-

ed overspecialization to scatterbrained
shallowmindedness. Flitting about in-
fo-space, we snatch one-sentence sum-
maries of anything that’s known by
the vast, collective mind. Whatever the
topic, each of us is able to preen with
presumptuous “expertise.” This trend
colors even modern politics; a core
tenet of the Culture War holds that
specialists are no more qualified than
opinionated amateurs to judge truth.

Worrisome trends have always
seemed to threaten civilization. From
Plato, Gibbon, and Spengler to Toyn-
bee, Kennedy, and Diamond, many
have diagnosed why cultures succeed or
fail. Theories vary, but the implications
go far beyond the fate of mere human-
ity. In his Future Tense essay “Radical
Evolution” (Mar. 2009), Joel Garreau

Future Tense, one of the revolving features on this page, presents stories and

essays from the intersection of computational science and technological speculation,

their boundaries limited only by our ability to imagine what will and could be.

[continued on p. 119]

http://www.reviews.com
http://Reviews.com
http://Reviews.com

http://www.flickr.com/photos/pedronet/2790877585/
http://www.cscw2011.org
http://www.facebook.com/cscw2011
http://www.twitter.com/cscw2011

	Table of Contents
	Departments
	ACM’s Chief Operating Officer Letter
	A Tour of ACM’s HQ

	Letters to the Editor
	Workflow Tools for Distributed Teams?

	In the Virtual Extension
	BLOG@CACM
	The Chaos of the Internet as an External Brain; and More

	CACM Online
	Interact Naturally

	Calendar
	Careers

	Last Byte
	Puzzled
	Solutions and Sources

	Future Tense
	How the Net Ensures Our Cosmic Survival

	News
	Straightening Out Heavy Tails
	Beyond the Smart Grid
	Mine Your Business
	Robin Milner: The Elegant Pragmatist
	CS and Technology Leaders Honored

	Viewpoints
	Privacy and Security
	Myths and Fallacies of “Personally Identifiable Information”

	Inside Risks
	Privacy By Design: Moving from Art to Practice

	The Profession of IT
	The Resurgence of Parallelism

	Kode Vicious
	Plotting Away

	Law and Technology
	Intel’s Rebates: Above Board or Below the Belt?

	Viewpoint
	Institutional Review Boards and Your Research

	Interview
	An Interview with Ed Feigenbaum

	Practice
	Securing Elasticity in the Cloud
	Simplicity Betrayed
	A Tour Through the Visualization Zoo

	Contributed Articles
	Managing Scientific Data
	Conference Paper Selectivity and Impact

	Review Articles
	Efficiently Searching for Similar Images

	Research Highlights
	Technical Perspective
	Building Confidence in Multicore Software

	Asserting and Checking Determinism for Multithreaded Programs
	Technical Perspective
	Learning To Do Program Verification

	seL4: Formal Verification of an Operating-System Kernel

