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Advancing Computing as a Science & Profession

Dear Colleague,

At a timewhen computing is at the center of the growing demand for technology jobs world-
wide, ACM is continuing its work on initiatives to help computing professionals stay competitive

in the global community. ACM’s increasing involvement in activities aimed at ensuring the health of
the computing discipline and profession serve to help ACM reach its full potential as a global and

diverse society which continues to serve new and unique opportunities for its members.

As part of ACM’s overall mission to advance computing as a science and a profession, our invaluable member
benefits are designed to help you achieve success by providing you with the resources you need to advance

your career and stay at the forefront of the latest technologies.

I would also like to take this opportunity to mention ACM-W, the membership group within ACM. ACM-W’s purpose is
to elevate the issue of gender diversity within the association and the broader computing community. You can join the
ACM-W email distribution list at http://women.acm.org/joinlist.

ACMMEMBER BENEFITS:

• A subscription to ACM’s newly redesigned monthly magazine, Communications of the ACM
• Access to ACM’s Career & Job Center offering a host of exclusive career-enhancing benefits
• Free e-mentoring services provided by MentorNet®
• Full access to over 2,500 online courses in multiple languages, and 1,000 virtual labs
• Full access to 600 online books from Safari® Books Online, featuring leading publishers,
including O’Reilly (Professional Members only)

• Full access to 500 online books from Books24x7®
• Full access to the new acmqueuewebsite featuring blogs, online discussions and debates,
plus multimedia content

• The option to subscribe to the complete ACMDigital Library
• The Guide to Computing Literature, with over one million searchable bibliographic citations
• The option to connect with the best thinkers in computing by joining 34 Special Interest Groups
or hundreds of local chapters

• ACM’s 40+ journals andmagazines at special member-only rates
• TechNews, ACM’s tri-weekly email digest delivering stories on the latest IT news
• CareerNews, ACM’s bi-monthly email digest providing career-related topics
• MemberNet, ACM’s e-newsletter, covering ACM people and activities
• Email forwarding service & filtering service, providing members with a free acm.org email address
and Postini spam filtering

• And much, much more

ACM’s worldwide network of over 92,000 members range from students to seasoned professionals and includes many
of the leaders in the field. ACMmembers get access to this network and the advantages that come from their expertise
to keep you at the forefront of the technology world.

Please take a moment to consider the value of an ACMmembership for your career and your future in the dynamic
computing profession.

Sincerely,

Wendy Hall

President
Association for Computing Machinery

http://women.acm.org/joinlist
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acm’s chief operating officer letter

A Tour of ACM’s HQ
Let me admit at the outset, I’m a bit biased 
when I talk about ACM headquarters 
(HQ) and the many ways it outshines the 
command centers of other professional

ACM and its SIGs sponsor, co-sponsor, 
and cooperate with over 170 technical 
meetings annually, all of which are co-
ordinated through the Office of SIG Ser-
vices, with Donna Cappo at the helm. 
The department manages all SIGs and 
their conferences, including promo-
tion, publicity, and membership. The 
team also helps produce over 85 pro-
ceedings and 30 newsletters yearly.

The Office of Publications pro-
duces ACM’s many research journals 
and Transactions and is responsible 
for Digital Library content. Director 
Bernard Rous oversees these efforts, 
which include 39 print journals and a 
DL containing over 275,000 articles and 
1.50 million citations covered by the 
Guide to Computing Literature. 

Scott Delman, director of the Office 
of Group Publishing, shepherds DL 
sales and builds business strategies to 
make the DL a must-have subscription 
for institutions worldwide, which to-
day number over 2,800. He also serves 
as group publisher for ACM’s maga-
zine series, including our flagship 
Communications of the ACM.  

ACM’s Office of Membership, un-
der the leadership of Lillian Israel, is 
one big umbrella covering everything 
under membership and marketing 
services, including membership pro-
cessing, subscriptions, professional 
development services, and education. 
Of particular pride to me is the fact that 
with close to 100,000 members, ACM’s 
member services department, consist-
ing of four customer representatives, is 
able to provide a response to any mem-
ber query within 24 hours! 

societies. But that bias comes from 
nearly three decades of firsthand expe-
rience, having worked in almost every 
department within HQ, and having 
had a front-row seat to the dynamics 
that drive each department to create 
and provide products and services to 
meet the needs of ACM members.

The HQ staff coordinates the global 
activities of ACM’s chapters and various 
committees; acting as the liaison for all 
conferences carrying the ACM stamp; 
enhancing the Digital Library (DL); pro-
ducing almost four dozen publications; 
providing professional services and on-
line courses; and performing organiza-
tional functions. HQ also serves as the 
hub for members, news media, and the 
public on all subjects related to com-
puting and technologies.

Probably the greatest difference 
between ACM and other professional 
societies is just how much is accom-
plished by so few. With a membership 
fast approaching 100,000, ACM’s 170 
conferences, 45 periodicals, 34 Special 
Interest Groups, and 644 professional 
and student chapters are all supported 
by 72 staffers. When you consider that 
similar professional associations with 
equal or fewer members and services 
are often supported by staffs of over 
100, I hope you are as impressed, as I 
continue to be, by the devotion of the 
people working at ACM.

Here, I’d like to briefly highlight the 
departments and talented directors 
that spearhead ACM’s New York HQ.

ACM’s Special Interest Groups 
(SIGs) represent virtually every major 
discipline within computer science. 

Russell Harris, a 36-year veteran of 
HQ, heads the Office of Financial Ser-
vices. His team oversees all the Asso-
ciation’s financial matters, including 
accounting responsibilities, monthly 
and quarterly financial statements, 
and the annual ACM budget. His de-
partment cuts 10,000 checks per year, 
guides auditors through evaluations, 
handles treasury functions, and moni-
tors ACM’s investment strategies daily.

The Office of Information Systems 
maintains constant vigilance over the 
Association’s “computing machinery,” 
with responsibilities for all the infor-
mation processing needs serving staff-
ers, volunteers, and members. Wayne 
Graves leads this effort, which includes 
maintaining HQ’s digital infrastruc-
ture, as well as spearheading the DL’s 
technical direction and advances.  

Based in Washington, D.C., ACM’s 
Office of Public Policy (USACM) is 
very much a part of HQ, representing  
ACM’s interests on IT policy issues that 
impact the computing field. Cameron 
Wilson works to enlighten legislators 
about policies that foster computing 
innovations, including the critical 
need for CS and STEM education.

The unsung heroes that comprise 
the Office of Administrative Services 
support all the necessary functions 
that allow HQ to operate at the top 
of its game every single day. These 
varied services include human re-
sources, office services and mailroom 
facilities, and support policies and 
procedures, the ACM’s Awards pro-
gram, and elections. 

All of us at HQ are indebted to the 
tireless efforts of ACM’s many devoted 
volunteers worldwide who work to-
gether with us to manage ACM’s grow-
ing array of products and services. 
None of our efforts would succeed 
without their efforts. 	

Patricia Ryan is Deputy Executive Director and Chief 
Operating Officer of ACM, New York, NY.  

© 2010 ACM 0001-0782/10/0600 $10.00

DOI:10.1145/1743546.1743547	 	 Patricia Ryan
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letters to the editor

T
he “Profession of IT” View-
point “Orchestrating Coor-
dination in Pluralistic Net-
works” by Peter J. Denning 
et al. (Mar. 2010) offered 

guidance for distributed development 
teams. As a leader of one such team, 
I can vouch for the issues it raised. 
However, my coordination problems 
are compounded because email (and 
related attachments) is today’s de fac-
to medium for business and technical 
communication. The most up-to-date 
version of a document is an email at-
tachment that instantly goes out of 
date when changes are made by any 
of the team members; project docu-
ments include specifications, plans, 
status reports, assignments, and 
schedules. 

Software developers use distrib-
uted source-code control systems to 
manage changes to code. But these 
tools don’t translate well to all the 
documents handled by nondevelop-
ers, including managers, marketers, 
manufacturers, and service and sup-
port people. I’d like to know what 
workflow-management tools Denning 
et al. would recommend for such an 
environment. 

Ronnie Ward, Houston, TX 

Author’s Response: 
Workflow tools are not the issue. Many 
people simply lack a clear model of 
coordination. They think coordination is 
about exchanging messages and that 
related coordination breakdowns indicate 
poorly composed, garbled, or lost messages 
(as in email). Coordination is about making 
commitments, usually expressed as “speech 
acts,” or utterances that take action and 
make the commitments that produce the 
outcome the parties want. People learning 
the basics of coordination are well on their 
way toward successful coordination, even 
without workflow tools. 

We don’t yet know enough about effective 
practices for pluralistic coordination to be 
able to design good workflow tools for this 
environment. 

Peter J. Denning, Monterey, CA

Time to Debug 

George V. Neville-Neil’s “Kode Vi-
cious” Viewpoint “Taking Your Net-
work’s Temperature” (Feb. 2010) was 
thought-provoking, but two of its 
conclusions—“putting printf()…
throughout your code is a really annoy-
ing way to find bugs” and “limiting the 
files to one megabyte is a good start”—
were somewhat misleading. 

Timing was one reason Neville-Neil 
offered for his view that printf() can 
lead to “erroneous results.” Debugger 
and printf() both have timing loads. 
Debug timing depends on hardware 
support. A watch statement functions 
like a printf(), and a breakpoint 
consumes “infinite” time. In both sin-
gle-threaded and multithreaded envi-
ronments, a breakpoint stops thread 
activity. In all cases, debugger state-
ments perturb timing in a way that’s 
like printf(). 

We would expect such stimulus 
added to multithreaded applications 
would produce different output. Nev-
ille-Neil expressed a similar senti-
ment, saying “Networks are perhaps 
the most nondeterministic compo-
nents of any complex computing sys-
tem.” Both printf() and debuggers 
exaggerate timing differences, so the 
qualitative issue resolves to individual 
preferences, not to timing. 

Choosing between a debugger and 
a printf() statement depends on the 
development stage in which each is to 
be used. At an early stage, a debugger 
might be better when timing and mes-
saging order are less important than 
error detection. Along with functional 
integration in the program, a debug-
ger can sometimes reach a point of 
diminishing returns. Programmers 
shift their attention to finding the first 
appearance of an error and the point 
in their programs where the error was 
generated. Using a debugger tends 
to be a trial-and-error process involv-
ing large amounts of programmer 
and test-bench time to find that very 
point. A printf() statement inserted 
at program creation requires no setup 

time and little bench time, so is, in this 
sense, resource-efficient. 

The downside of using a printf() 
statement is that at program creation 
(when it is inserted) programmers an-
ticipate errors but are unaware of where 
and when they might occur; printf() 
output can be overwhelming, and the 
aggregate time to produce diagnostic 
output can impede time-critical opera-
tions. The overhead load of output and 
time is only partially correctable. 

Limiting file size to some arbitrary 
maximum leads programmers to as-
sume (incorrectly) that the search is for 
a single error and that localizing it is the 
goal. Limiting file size allows program-
mers to focus on a manageable subset 
of data for analysis but misses other 
unrelated errors. If the point of error-
generation is not within some limited 
number of files, little insight would be 
gained for finding the point an error 
was in fact generated. 

Neville-Neil saying “No matter how 
good a tool you have, it’s going to do a 
much better job at finding a bug if you 
narrow down the search.” might apply 
to “Dumped” (the “questioner” in his 
Viewpoint) but not necessarily to every-
one else. An analysis tool is meant to 
discover errors, and programmers and 
users both win if errors are found. Try-
ing to optimize tool execution time over 
error-detection is a mistake. 

Art Schwarz, Irvine, CA 

George V. Neville-Neil’s Viewpoint (Feb. 
2010) said students are rarely taught to 
use tools to analyze networking prob-
lems. For example, he mentioned Wire-
shark and tcpdump, but only in a cur-
sory way, even though these tools are 
part of many contemporary university 
courses on networking. 

Sniffers (such as Wireshark and 
Ethereal) for analyzing network pro-
tocols have been covered at Fairleigh 
Dickinson University for at least the 
past 10 years. Widely used tools for 
network analysis and vulnerability 
assessment (such as nmap, nessus, 
Snort, and ettercap) are available 
through Fedora and nUbuntu Linux 

Workflow Tools for Distributed Teams? 
DOI:10.1145/1743546.1743549	 	
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distributions. Open source tools for 
wireless systems include NetStumbler 
and AirSnort. 

Fairleigh Dickenson’s network 
labs run on virtual machines to limit 
inadvertent damage and the need for 
protection measures. We teach the 
basic network utilities available on 
Windows- and/or Posix-compliant 
systems, including ping, netstat, arp, 
tracert (traceroute), ipconfig (ifconfig 
in Linux/Unix and iwconfig in Linux 
wireless cards), and nslookup (dig in 
Linux). With the proper options, net-
stat displays IP addresses, protocols, 
and ports used by all open and listen-
ing connections, as well as by protocol 
statistics and routing tables. 

The Wireshark packet sniffer iden-
tifies control information at different 
protocol layers. A TCP capture specifi-
cation thus provides a tree of protocols, 
with fields for frame header and trailer 
(including MAC address), IP header 
(including IP address), and TCP head-
er (including port address). Students 
compare the MAC and IP addresses 
found through Wireshark with those 
found through netstat and ipconfig. 
They then change addresses and check 
results by sniffing new packets, analyz-
ing the arp packets that try to resolve 
the altered addresses. Capture filters in 
Wireshark support search through pro-
tocol and name resolution; Neville-Neil 
stressed the importance of narrowing 
one’s search but failed to mention the 
related mechanisms. Students are also 
able to make connections through (un-
encrypted) telnet and PuTTy, compar-
ing password fields. 

My favorite Wireshark assignment 
involves viewing TCP handshakes via 
statistics/flow/TCP flow, perhaps fol-
lowing an nmap SYN attack. The free 
security scanner nmap runs with Wire-
shark and watch probes initiated by the 
scan options provided. I always assign 
a Christmas-tree scan (nmap –sX) that 
sends packets with different combina-
tions of flag bits. Capturing probe pack-
ets and a receiving station’s reactions 
enables identification of flag settings 
and the receiver’s response to them. 
Operating systems react differently to il-
legal flag combinations, as students ob-
serve via their screen captures. 

Network courses and network main-
tenance are thus strongly enhanced by 
sniffers and other types of tools that yield 

information concerning network traffic 
and potential system vulnerabilities. 

Gertrude Levine, Madison, NJ 

What Jack Doesn’t Know About 
Software Maintenance 
I agree that the community doesn’t 
understand software maintenance, as 
covered in the article “You Don’t Know 
Jack about Software Maintenance” by 
Paul Stachour and David Collier-Brown 
(Nov. 2009), but much more can be 
done to improve the general under-
standing of the important challenges. 

The software-maintenance proj-
ects I’ve worked on have been difficult, 
due to the fact that maintenance work 
is so different from the kind of work 
described in the article. The commu-
nity does not fully understand that 
maintenance involves much more 
than just adding capabilities and fix-
ing bugs. For instance, maintenance 
teams on large projects spend almost 
as much time providing facility, op-
erations, product, and sustaining-en-
gineering support as they do changing 
code.1 Moreover, the work tends to be 
distributed differently. My colleagues 
and I recently found maintenance 
teams spending as much as 60% of 
their effort testing code once the re-
lated changes are implemented. 

Other misconceptions include: 
The primary job in maintenance is fa-

cilitating changes. We found that sup-
port consumes almost as much effort 
as changes and repairs; 

Maintenance is aimed at addressing 
new requirements. Because most jobs 
are small, maintenance teams focus 
on closing high-priority trouble reports 
rather than making changes; 

Funding maintenance is based on re-
quirements. Most maintenance proj-
ects are funded level-of-effort; as such, 
maintenance managers must deter-
mine what they can do with the resourc-
es they have rather than what needs to 
be done; 

Maintenance schedules are based on 
user-need dates. Maintenance sched-
ules are written in sand, so mainte-
nance leaders must determine what 
can be done within a limited time pe-
riod; 

Maintenance staff is junior. Average 
experience for maintenance personnel 
is 25 years during which they tend to 

work on outdated equipment to fix soft-
ware written in aging languages; and 

Maintenance is well tooled. We 
found the opposite. Maintenance 
tools are inferior, and development 
tools and regression test suites do not 
unfortunately support the work. 

Maintenance involves much more 
than Stachour and Collier-Brown indi-
cated. In light of the changing nature 
of the work being done every day by 
software maintenance teams, my col-
leagues and I urge Communications to 
continue to cover the topic. 

Reference 
1.	 Reifer, D. Allen, J.-A., Fersch, B., Hitchings, B., Judy, J., 

and Rosa, W. Software maintenance: Debunking the 
myths. In Proceedings of the International Society of 
Parametric Analysis / Society of Cost Estimating and 
Analysis Annual Conference and Training Workshop (San 
Diego, CA, June 8-11). ISPA/SCEA, Vienna, VA, 2010. 

Donald J. Reifer, Prescott, AZ 

Authors’ Response: 
In our slightly tongue-in-cheek description 
of software maintenance, we were 
concentrating on the “add a highway” 
side of the overall problem, rather than 
“repair the railroad bridge.” We try to 
avoid considering software maintenance 
as a separate process done by a different 
team. That’s a genuinely difficult problem, 
as Reifer points out. We’ve seen it tried 
a number of times, with generally 
disappointing results. 

A better question might be the one 
asked by Drew Sullivan, president of the 
Greater Toronto Area Linux User Group, 
at a presentation we gave on the subject: 
“Why aren’t you considering maintenance 
as continuing development?” In fact 
we were, describing the earlier Multics 
norm of continuous maintenance without 
stopping any running programs. We’re 
pleased to see the continuous process 
being independently reinvented by 
practitioners of the various agile methods. 
In addition, we’re impressed by their 
refactoring and test-directed development. 
These are genuinely worthwhile 
improvements to the continuous approach, 
and we hope the techniques we re-
described are valuable to that community. 

Paul Stachour, Bloomington, MN
	 David Collier-Brown, Toronto

Communications welcomes your opinion. To submit a 
Letter to the Editor, please limit your comments to 500 
words or less and send to letters@cacm.acm.org. 
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Examining Agility in Software  
Development Practice
Sergio de Cesare, Mark Lycett,  
Robert D. Macredie, Chaitali Patel,  
and Ray Paul

Agility is a facet of software development 
attracting increasing interest. The authors 
investigate the value of agility in practice 
and its effects on traditional plan-based 
approaches. Data collected from senior 
development/project managers in 62 
organizations is used to investigate 
perceptions related to agile development. 
Specifically, the perceptions tested relate 
to the belief in agile values and principles, 
and the value of agile principles within 
current development/organization 
practice. These perceptions are examined 
in the context of current practice in order 
to test perceptions against behavior 
and understand the valued aspects of 
agile practice implicit in development 
today. The broad outcome indicates an 
interesting marriage between agile and 
plan-based approaches. This marriage 
seeks to allow flexibility of method while 
retaining control.

Barriers to Systematic Model 
Transformation Testing
Benoit Baudry, Sudipto Ghosh,  
Franck Fleurey, Robert France,  
Yves Le Traon, and Jean-Marie Mottu

Model Driven Engineering (MDE) 
techniques support extensive use of 
models in order to manage the increasing 
complexity of software systems. 
Automatic model transformations  
play a critical role in MDE since they 
automate complex, tedious, error-prone, 
and recurrent software development 
tasks. For example, Airbus uses automatic 
code synthesis from SCADE models 
to generate the code for embedded 
controllers in the Airbus A380.  
Model transformations that automate 
critical software development tasks 
must be validated. The authors identify 
characteristics of model transformation 
approaches that contribute to the 
difficulty of systematically testing 
transformations as well as present 
promising solutions and propose 
possible ways to overcome these barriers.

Factors that Influence Software 
Piracy: A View from Germany
Alexander Nill, John Schibrowsky,  
James W. Peltier, and Irvin L. Young

Software piracy has wide-ranging negative 
economic consequences for manufacturers 
and distributors striving to compete in 
a competitive global market. Indeed, 
software piracy is jeopardizing the future 
growth and development of the IT industry, 
which in turn disproportionately impacts 
countries with the highest piracy rates. This 
article details an exploratory study that 
investigated the relationship between a 
comprehensive set of factors and software 
piracy in Germany. The authors gleaned 
some valuable security measures from the 
results of the study that can be used as a 
starting point for industry and governments 
to develop programs to deter piracy. 

The Requisite Variety  
of Skills for IT Professionals
Kevin P. Gallagher, Kate M. Kaiser,  
Judith C. Simon, Cynthia M. Beath,  
and Tim Goles

IT professionals today are beset by ongoing 
changes in technology and business 
practices. To thrive in such a dynamic 
environment requires competency in a 
broad range of skills, both technical and 
nontechnical.  The authors contend the Law 
of Requisite Variety—adapting to change 
requires a varied enough solution set to 
match the complexity of the environment—
can help explain the need for greater and 
broader skills among IT professionals. The 
article outlines a framework containing six 
skill categories critically important for the 
career development of IT professionals.

Panopticon Revisited
Jan Kietzmann and Ian Angell

Many claims have been made regarding 
the safety benefits of computer-supported 
surveillance technologies. However, like 
many technologies the advantageous door 
swings both ways. The authors compare 
how current computer and communication 
technologies are shaping today’s 
“panopticons,” pulling heavily from the 
1787 prison architectural design by social 
theorist Jeremy Bentham that allowed 
prison officials and observers to keep an 
eye on  prisoners without the imprisoned 
able to tell they are being watched.

The Social Influence Model  
of Technology Adoption
Sandra A. Vannoy and Prashant Palvia

While social computing has fast become 
an industry buzzword encompassing 
networking, human innovation, and 
communications technologies, few 
studies have investigated technology 
adoption targeting the individual at the 
level of society, community, or lifestyle 
experience. The authors address this 
gap by developing social constructs and 
providing a theoretically grounded model 
for technology adoption in the context of 
social computing.  Their model suggests 
that social computing action, cooperation, 
consensus, and authority are antecedents to 
social influence. And social influence, they 
contend, leads to technology adoption.

I, Myself and e-Myself
Cheul Rhee, G. Lawrence Sanders,  
and Natalie C. Simpson

The human ego, developed from birth, is 
central to one’s conscious self, according 
to experts. This article examines the 
concept of the virtual ego (one that 
begins with the creation of an online 
identity and functions only online) 
and the notion of an online persona 
as overarching concepts providing a 
new rationale for understanding and 
explaining online behavior. The authors 
posit that an Internet user’s virtual ego 
is distinguishable from his or her real 
ego and argue that understanding the 
differences between the two is essential 
for advancing the dynamics of Web-based 
social networks.

Beyond Connection: Situated 
Wireless Communities
Jun Sun and Marshall Scott Poole

Compared to traditional Internet-based 
virtual communities, situated wireless 
communities (SWCs) go beyond just 
connecting people together. In fact, SWCs 
enable people to share their common 
physical and/or social context with each 
other. With the availability of these cues, 
the social interaction among members 
within a community is significantly 
enhanced. The authors detail four general 
types of SWCs as well as give examples of 
the strengths and weaknesses of each.
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not in the sense we expected. There 
is no system of rules, no encoding of 
experts, no logical reasoning.  There 
is precious little understanding of in-
formation, at least not in the search 
itself. There is knowledge in the many 
voices that make up the data on the 
Web, but no synthesis of those voices.

Perhaps we should have expected 
this. Our brains, after all, are a con-
trolled storm of competing patterns 
and signals, a mishmash of evolution-
ary agglomeration that is barely func-
tional and easily fooled. From this 
chaos can come brilliance, but also 
superstition, illusion, and psychosis. 
While early studies of the brain envi-
sioned it as a disciplined and orderly 
structure, deeper investigation has 
proved otherwise.

And so it is fitting that the biggest 
progress on building an external brain 
also comes from chaos. Search engines 
pick out the gems in a democratic sea 
of competing signals, helping us find 
the brilliance that we seek. Occasion-
ally, our external brain leads us astray, 
as does our internal brain, but therein 
lies both the risk and beauty of building 
a brain on disorder.

Ed H. Chi’s “The 
DARPA Network 
Challenge and the 
Design of Social 
Participation Systems” 
http://cacm.acm.org/

blogs/blog-cacm/60832

The DARPA Network Challenge recent-
ly made quite a splash across the In-
ternet and the media. The task was to 

Greg Linden’s 
“The Rise of the 
External Brain” 
http://cacm.acm.org/blogs/
blog-cacm/54333

From the early days of 
computers, people have speculated that 
computers would be used to supple-
ment our intelligence. Extended stores 
of knowledge, memories once forgot-
ten, computational feats, and expert 
advice would all be at our fingertips.

In the last decades, most of the 
work toward this dream has been in 
the form of trying to build artificial 
intelligence. By carefully encoding ex-
pert knowledge into a refined and well-
pruned database, researchers strove to 
build a reliable assistant to help with 
tasks.  Sadly, this effort was always 
thwarted by the complexity of the sys-
tem and environment, with too many 
variables and uncertainty for any small 
team to fully anticipate.

Success now is coming from an en-
tirely unexpected source—the chaos of 

the Internet.  Google has become our 
external brain, sifting through the ex-
tended stores of knowledge offered by 
multitudes, helping us remember what 
we once found, and locating advice 
from people who have been where we 
now want to go.

For example, the other day I was 
trying to describe to someone how mi-
tochondria oddly have a separate ge-
nome, but could not recall the details. 
A search for “mitochondria” yielded 
a Wikipedia page that refreshed my 
memory. Later, I was wondering if trav-
eling by train or flying between Venice 
and Rome was a better choice; advice 
arrived immediately on a search for 
“train flying venice rome.” Recently, 
I had forgotten the background of a 
colleague, which was restored again 
with a quick search on her name. 
Hundreds of times a day, I access this 
external brain, supplementing what is 
lost or incomplete in my own.

This external brain is not pro-
grammed with knowledge, at least 

The Chaos of the 
Internet as an External 
Brain; and More   
Greg Linden writes about the Internet as a peripheral resource;  
Ed H. Chi discusses lessons learned from the DARPA Network 
Challenge; and Mark Guzdial asks if there are too many IT workers  
or too many IT jobs.
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identify the exact location of 10 red 
weather balloons around the country. 
The winning team from MIT succeeded 
in identifying the locations of the bal-
loons in less than nine hours.

There was recently a good article 
in Scientific American about the win-
ning entry and the second-place team 
from Georgia Tech. The article details 
the way in which the teams tried to: (1) 
build social incentives into the system 
to get people to participate and to rec-
ommend their friends to participate; 
(2) how they managed to fight spam 
or noisy information from people try-
ing to lead them astray. The MIT team, 
for example, required photo proofs of 
both the balloon and the official DAR-
PA certificate of the balloon at each 
location, suggesting they realized that 
noisy or bad data is a real challenge in 
social participation systems.

But what did the challenge really 
teach us?

Looking back for the last decade or 
so, we have now gotten a taste of how 
mass-scale participation in social com-
puting systems results in dramatic 
changes in the way science, govern-
ment, health care, entertainment, and 
enterprises operate.

The primary issue relating to the 
design of social participation systems 
is understanding the relationship be-
tween usability, sociability, social capi-
tal, collective intelligence, and how to 
elicit effective action through design.  

˲˲ Usability concerns the ability for all 
users to contribute, regardless of their 
accessibility requirements and com-
puting experience, and how to lower 
the interaction costs of working with 
social systems.

˲˲ Sociability refers to the skill or ten-
dency of being sociable and of interact-
ing well with others. There is a huge role 
in how the designer can facilitate and 
lubricate social interactions amongst 
users of a system.

˲˲ Social Capital refers to positions 
that people occupy in social networks, 
and their ability to utilize those posi-
tions for some goal. Designers need to 
enable people to sort themselves into 
comfortable positions in the social 
network, including leadership and fol-
lower positions.

˲˲ Collective Intelligence (or Social In-
telligence) refers to the emergence of 
intelligent behavior among groups of 

people. Designers can create mecha-
nisms, such as voting systems, folkson-
omies, and other opinion aggregators, 
to ensure the emergence of social intel-
ligence over time. (Note that the defini-
tion for “social intelligence” here dif-
fers from traditional use of the phrase 
in social psychology.)

The principal concern for design-
ers of systems is to ensure the partici-
pants both give and get something from 
the system that is beneficial to both the 
individual as well as to the group. This 
may take the form of being challenged 
in their ideas, or to contribute to the 
overall knowledge of a domain, or to 
contribute their experiences of using 
a particular product or drug.

More importantly, social participa-
tion systems should encourage users to 
take part in effective action. One main 
design principle here is that effective 
action arises from collective action. That 
is, by encouraging participants to learn 
from each other and to form consen-
sus, group goals will form, and action 
can be taken by the entire group.

The DARPA Network Challenge is 
interesting in that it was designed to 
see how we can get groups of people 
to take part in effective action. In that 
sense, the experiment was really quite 
successful. But we already have quite 
a good example of this in Wikipedia, 
in which a group of people came to-
gether to learn from each other’s per-
spective, but they share a common 
goal to create an encyclopedia of the 
state of human knowledge for broader 
distribution. Here, collective action 
resulted in effective change in the way 
people access information. 

Looking toward the next decade, the 
social computing research challenge is 
understanding how to replicate effec-
tive social actions in social participa-
tion systems, in domains such as health 
care, education, and open government. 
United, we might just solve some of the 
biggest problems in the world.

Mark Guzdial’s “Are 
There Too Many IT 
Jobs or Too Many IT 
Workers?”
http://cacm.acm.org/blogs/
blog-cacm/67389

The latest U.S. Bureau of Labor Sta-
tistics (BLS) have been updated, as of 
November 2009, to reflect the Great 

Recession. The news is terrific for us—
computing is only forecast to grow, and 
at an amazing rate. 

Via the Computing Community 
Consortium blog: “‘Computer and 
mathematical’ occupations are pro-
jected to grow by the largest per-
centage between now and 2018—by 
22.2%. In other words, ‘Computer 
and mathematical’ occupations are 
the fastest-growing occupational clus-
ter within the fastest-growing major 
occupational group.”

DARPA is so concerned about the 
lack of IT workers (and the lack of di-
versity among its workers) that it has 
launched a new research project to de-
velop more and more diverse IT workers.

DARPA has launched a “far-out re-
search” project to increase the num-
ber of students going into “CS-STEM” 
(computer science and science, tech-
nology, engineering, and mathemat-
ics) fields. Wired just covered this ef-
fort to address the “Geek shortage.” 
What makes the Wired piece so in-
teresting is the enormous and harsh 
pushback in the comments section, 
like the below: 

“I’m 43, with a degree in software en-
gineering and enjoy what I do for a living. 
But I wouldn’t encourage my 12-year-old 
son to major in CS or similar because in-
teresting, new project development jobs 
are the first to disappear in a down econ-
omy and non-cutting-edge skills are eas-
ily offshored and new hires are cheaper 
than retraining outdated workers.”

“Why get a four-year degree for a ca-
reer with a 15-year shelf life?”

Are these complaints from a vocal 
small group, or are do they represent 
a large constituency? Why is there this 
disconnect between claims of great 
need and claims of no jobs? Are old 
IT workers no longer what industry 
wants? Is BLS only counting newly cre-
ated jobs and not steady-state jobs? Is 
the IT job market constantly churning? 
Is industry not training existing people 
and instead hiring new people? It’s a 
real problem to argue for the need for 
more IT in the face of many (vocal) un-
employed IT workers.	

Greg Linden is the founder of Geeky Ventures. 
Ed H. Chi is a research manager at Palo Alto 
Research Center. Mark Guzdial is a professor at 
the Georgia Institute of Technology. 

© 2010 ACM 0001-0782/10/0600 $10.00
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The mouse’s days are numbered. Computer interfaces that remove user-system 
barriers are in the works and are intuitive enough for first-time users to throw away 
the manual. The iPhone’s multitouch interface may have ushered in a wave of eas-
ier interfaces for the mass market, but it’s just the beginning. Many new and excit-
ing replacements for the familiar point-and-click scheme are on the way.

Skinput technology (http://www.chrisharrison.net/projects/skinput/) show-
cased at CHI 2010 (http://cacm.acm.org/news/83935) “appropriates” the human 
body as an input surface, says Carnegie Mellon Ph.D. student Chris Harrison, who 
developed SkinPut with Desney Tan and Dan Morris of Microsoft Research. 

Gaze-based interfaces are being considered for data input, search, and se-
lection (http://portal.acm.org/toc.cfm?id=1743666&type=proceeding&coll=GU
IDE&dl=GUIDE&CFID=86057285&CFTOKEN=34856226), and driving vehicles 
(http://cacm.acm.org/news/88018-car-steered-with-drivers-eyes/fulltext). Voice 
controls have boarded Ford cars (http://www.fordvehicles.com/technology/
sync/) and Apple smartphones. 

Gesture interfaces is another hot area in the interface arena. MIT Media Lab 
Ph.D. candidate Pravan Mistry’s Sixth Sense (http://www.pranavmistry.com/
projects/sixthsense/) gesture interface (http://cacm.acm.org/news/23600) re-
ceived a standing ovation when it premiered at the TED conference in Febru-

ary 2009 (http://www.ted.
com/talks/pattie_maes_
demos_the_sixth_sense.
html). Using multitouch 
gestures like the iPhone, 
Sixth Sense does not require 
a dedicated screen, but like 
many advanced interfaces it 
does depend on specialized 
hardware. Microsoft’s Proj-
ect Natal gesture interface 
(http://en.wikipedia.org/wiki/
Project_Natal) will give 
gamers hands-free control 
of the Xbox 360 in time for 

the holidays season. There are dozens of related YouTube videos at http://www.
youtube.com/user/xboxprojectnatal. Its application outside gaming is not clear.

Another promising but challenging area is the brain-machine interface (http://
cacm.acm.org/news/73070-building-a-brain-machine-interface/fulltext), which 
sounds less fact than fiction, but was in fact the focus of DARPA’s Augmented Cog-
nition program (http://www.wired.com/dangerroom/2008/03/augcog-continue/). 

All these interfaces aim to give users a simple, natural way to interact with a 
system. Microsoft’s Chief Research and Strategy Officer Craig Mundie says natural 
user interfaces will appear first with gaming and entertainment systems but “will 
certainly find application…in the communications domain.” 

To read more about the interfaces of the future, check out the newly revamped 
ACM student magazine XRDS (formerly Crossroads). The print edition is available 
now; look for magazine’s new Web site coming soon.

Interact Naturally 
DOI:10.1145/1743546.1743552	 David Roman

ACM 
Member 
News
Ed Lazowska Wins  
ACM’s Distinguished 
Service Award 

Ed Lazowska,
	 the Bill &  
	 Melinda Gates  
	 Chair in  
	 Computer  
	S cience &  
	E ngineering 
and director of the eScience 
Institute at the University of 
Washington, is the 2009 
recipient of ACM’s Distinguished 
Service Award for his wide-
ranging service to the computing 
community and his long-standing 
advocacy for this community at 
the national level. 

“Forty years ago, in 1969, 
there were three landmark 
events: Woodstock, Neil 
Armstrong’s journey to the 
surface of the moon, and the 
first packet transmission on 
ARPANET,” Lazowska said in 
an email interview. “With four 
decades of hindsight, which 
had the greatest impact? Unless 
you’re big into Tang and Velcro 
(or sex and drugs), the answer 
is clear. Our future is every bit 
as bright as our past. No field 
is more important to the future 
of our nation or our world than 
computer science. We need to 
get that message out. Advances 
in computing are fundamental 
to addressing every societal 
grand challenge.

“I was recently party to a 
discussion with Anita Jones and 
Robin Murphy on ‘Type I’ and 
‘Type II’ research in CS. Type I 
focuses on the technologies—
compilers, operating systems, 
sensors.  Type II focuses on the 
problems—engineering the 
new tools of scientific discovery, 
global development, health 
IT, emergency informatics, 
entertainment technology.  
I’m a Type II person. Either  
we expand our definition of CS 
to embrace these challenges,  
or we become insignificant.

“Forty years ago, as an 
undergraduate at Brown 
University, I was seduced into 
computer science by Andy  
van Dam. The potential to 
change the world is greater 
today than it has ever been.  
We need to communicate this 
to students. This field makes 
you powerful.”

—Jack Rosenberger

Sixth Sense: Using palm for dialing a phone number.

http://www.chrisharrison.net/projects/skinput/
http://cacm.acm.org/news/83935
http://portal.acm.org/toc.cfm?id=1743666&type=proceeding&coll=GUIDE&dl=GUIDE&CFID=86057285&CFTOKEN=34856226
http://cacm.acm.org/news/88018-car-steered-with-drivers-eyes/fulltext
http://www.fordvehicles.com/technology/sync/
http://www.pranavmistry.com/projects/sixthsense/
http://www.youtube.com/user/xboxprojectnatal
http://cacm.acm.org/news/73070-building-a-brain-machine-interface/fulltext
http://www.wired.com/dangerroom/2008/03/augcog-continue/
http://portal.acm.org/toc.cfm?id=1743666&type=proceeding&coll=GUIDE&dl=GUIDE&CFID=86057285&CFTOKEN=34856226
http://www.fordvehicles.com/technology/sync/
http://www.pranavmistry.com/projects/sixthsense/
http://cacm.acm.org/news/23600
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http://en.wikipedia.org/wiki/Project_Natal
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O
nline commerce has affect-
ed traditional retailers, 
moving transactions such 
as book sales and movie 
rentals from shopping 

malls to cyberspace. But has it funda-
mentally changed consumer behavior? 

Wired Editor-in-Chief Chris Ander-
son thinks so. In his 2006 book titled 
The Long Tail and more recently on his 
Long Tail blog, Anderson argues that 
online retailers carry a much wider va-
riety of books, movies, and music than 
traditional stores, offering customers 
many more products to choose from. 
These customers, in turn, pick more 
of the niche products than the popular 
hits. While individual niche items may 
not sell much more, cumulatively they’re 
a bigger percentage of overall business. 

The book’s title comes from the 
shape of a probability distribution 
graph. Many phenomena follow the 
normal or Gaussian distribution; most 
of the values cluster tightly around the 
median, while in the tails they drop off 
exponentially to very small numbers. 
Events far from the median are ex-
ceedingly rare, but other phenomena, 
including book and movie purchases, 
follow a different course. Values in this 
distribution drop much less rapidly, 

Straightening  
Out Heavy Tails 
A better understanding of heavy-tailed probability distributions can  
improve activities from Internet commerce to the design of server farms.

Science  |  doi:10.1145/1743546.1743553	 Neil Savage
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Each vertical bar represents a decile of DVD popularity, with the DVDs in decile 10 being  
the most popular. Each bar is subdivided to demonstrate how, on average, customers who 
rented at least one DVD from within that decile distributed their rentals among all the 
deciles. Shoppers in the bottom decile, for instance, selected only 8% of their rentals from 
among its titles—and 34% from among top-decile titles. 
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Anita Elberse, associate professor 
of business administration at Harvard 
Business School, earlier looked at data 
from Quickflix, an Australian movie 
rental service similar to Netflix, and 
from Nielsen VideoScan and Nielsen 
SoundScan, which monitor video and 
music sales, respectively, and reached 
the same conclusion. “There might be 
an increasingly long tail, but that tail is 
getting thinner,” Elberse says.

Anderson disputes their conclu-
sions, saying the researchers define 
the Long Tail differently. Anderson de-
fines hits in absolute terms, the top 10 
or top 100 titles, while the academics 
look at the top 1% or 10% of products. 
“I never do percentage analysis, since 
I think it’s meaningless,” Anderson 
wrote in an email interview. “You can’t 
say ‘I choose to define Long Tail as X 
and X is wrong, therefore Chris Ander-
son is wrong.’ If you’re going to cri-
tique the theory, you’ve got to actually 
get the theory right.”

Anderson points to the same Netflix 
data used by Netessine and notes that 

the top 500 titles dropped from more 
than 70% of demand in 2000 to under 
50% in 2005. In 2005, Anderson notes, 
15% of demand came from below the 
top 3,000, about the point where brick-
and-mortar stores run out of inventory.

“In that sense, Anderson was right, 
but to me that was more or less a triv-
ial finding, because each year we have 
more and more movies available,” Ne-
tessine says. 

Influencing Consumers’ Choices
An improved understanding of where in 
the distribution consumers land could 
lead to new methods of swaying their 
choices, in the form of better-designed 
recommendation engines. Researchers 
postulate that one reason consumers 
fail to choose niche products is that they 
have no way to find them. “If nobody is 
buying these items, how do they get rec-
ommended in the first place?” asks Kartik 
Hosanagar, associate professor of opera-
tions and information management at 
the University of Pennsylvania.

Hosanagar says collaborative filter-
ing, based on user recommendations, 
can’t find undiscovered items. It can, 
however, find items that are somewhat 
popular, and bring them to the atten-
tion of customers who might have 
missed them. He found that consum-
ers appreciated recommendation en-
gines that suggest more niche items, 
perhaps because they were already 
aware of the blockbusters. 

He says retailers might boost their 
sales with improved recommendation 
engines. Using content analysis, which 

and events of roughly equal probability 
stretch far out into the tail. 

Plotted on a graph, such distribu-
tions produce a peak very near the y-
axis, a cluster near the intersection of 
the axes, and a long tail along the x-axis. 
This gives rise to the name long tail, or 
heavy tail. While a long tail is techni-
cally just one class of a heavy tail distri-
bution—other terms include fat tail, 
power law, and Pareto distribution—in 
popular usage and for practical purpos-
es there’s no notable difference. 

Because many phenomena have 
heavy tails—computer job sizes, for in-
stance, and Web page links—research-
ers want to know how the distributions 
work and their effects.

Recently, for instance, business ex-
perts have tested the Long Tail theory 
and found that its effect on Internet 
commerce may not be as straightfor-
ward as some thought. Serguei Netes-
sine, associate professor of operations 
and information management at the 
University of Pennsylvania, looked at 
data from Netflix, the movie rental 
service, containing 100 million online 
ratings of 17,770 movies, from 2000 to 
2005, by 480,000 users. Netessine used 
the ratings as a proxy for rentals in his 
study, but says he has since looked at 
actual rental data.

Netessine’s conclusion is, when 
looked at in percentage terms, the de-
mand for hits actually grew, while the 
demand for niche products dropped. 
“There is no increased demand for 
bottom products that we are seeing in 
this data,” Netessine says.

“There might be  
an increasingly long 
tail, but that tail is 
getting thinner,” says 
Anita Elberse.

Obituary

PC Pioneer Ed Roberts, 1941–2010
Henry Edward “Ed” Roberts, 
who created the first inexpensive 
personal computer in the mid-
1970s, died on April 1 at the age 
of 68. Roberts is often credited as 
being “the father of the personal 
computer.”

Roberts and a colleague 
founded Micro Telemetry 
Instrumentation Systems (MITS) 
in 1970 to sell electronics kits to 
model-rocket hobbyists. In the 
mid-1970s, MITS developed the 
Altair 8800, a programmable 
computer, which sold for a 
starting price of $397. The Altair 

8800 was featured on the January 
1975 cover of Popular Electronics, 
and MITS shipped an impressive 
5,000 units within a year. 

The Popular Electronics cover 
story caught the attention of Paul 
Allen, a Honeywell employee, and 
Bill Gates, a student at Harvard 
University. They approached 
Roberts and were soon working 
at MITS, located in Albuquerque, 
NM, where they created the Basic 
programming language for the 
Altair 8800. It was a move that 
would ultimately lead to the 
founding of Microsoft Corp. 

MITS was sold to Pertec 
Computer Corporation in 1977, 
and Roberts received $2 million. 
He retired to Georgia and 
first worked as a farmer, then 
studied medicine and became a 
physician.

Agreement about who 
invented the first personal 
computer differs, with credit 
being variously given to Roberts, 
John Blankenbaker of Kenbak 
Corporation, Xerox Palo Alto 
Research Center, Apple, and 
IBM. Roberts’ impact on 
computing, though short in 

duration, is immeasurable. 
“He was a seed of this thought 
that computers would be 
affordable,” Apple cofounder 
Steve Wozniak has said. The 
breakthrough insight for 
Roberts might have occurred 
during the late 1960s while 
working on a room-size IBM 
computer as an electrical 
engineering major at Oklahoma 
State University. As he later 
said in an interview, “I began 
thinking, What if you gave 
everyone a computer?”

—Jack Rosenberger
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Networking

Quantum 
Milestone
Researchers at Toshiba 
Research Europe, in 
Cambridge, U.K., have attained 
a major breakthrough in 
quantum encryption, with their 
recent continuous operation 
of quantum key distribution 
(QKD) with a secure bit rate 
of more than 1 megabit per 
second over 50km of fiber optic 
cable. The researchers’ feat, 
averaged over a 24-hour period, 
is 100–1,000 times higher than 
any previous QKD for a 50km 
link. The breakthrough could 
enable the widespread usage 
of one-time pad encryption, 
a method that is theoretically 
100% secure. 

First reported in Applied 
Physics Letters, the QKD 
milestone was achieved with a 
pair of innovations: a unique 
light detector for high bit rates 
and a feedback system that 
maintains a high bit rate and, 
unlike previous systems, does 
not depend on manual set-up 
or adjustments.

“Although the feasibility 
of QKD with megabits per 
second has been shown in the 
lab, these experiments lasted 
only minutes or even seconds 
at a time and required manual 
adjustments,” says Andrew 
Shields, assistant managing 
director at the Cambridge lab. 
“To the best of our knowledge 
this is the first time that 
continuous operation has 
been demonstrated at high 
bit rates. Although much 
development work remains, 
this advance could allow 
unconditionally secure 
communication with 
significant bandwidths.”

The QKD breakthrough will 
allow the real-time encryption 
of video with a one-time pad. 
Previously, researchers could 
encrypt continuous voice data, 
but not video.

Toshiba plans to install 
a QKD demonstrator at 
the National Institute 
of Information and 
Communications Technology 
in Tokyo. “The next challenge 
would be to put this level of 
technology into metropolitan 
network operation,” says 
Masahide Sasaki, coordinator 
of the Tokyo QKD network. 
“Our Japan-EU collaboration 
is going to do this within the 
next few years.”

identifies characteristics of a product—
say, the director or genre of a movie—
and suggesting it to buyers of products 
with similar characteristics, could in-
crease the diversity of recommenda-
tions. Hosanagar says researchers look-
ing at Internet commerce shouldn’t 
assume sales mechanisms and buyers’ 
behavior are unchangeable. “A lot of 
social scientists are looking at the sys-
tem as a given and trying to look at its 
impact, but what we are saying is the 
system is not a given and there are a lot 
of design factors involved,” he says.

That matches the thinking of Mi-
chael Mitzenmacher, a professor of 
computer science at Harvard, who says 
researchers need a better understand-
ing of how heavy tails come to be, so that 
they can turn that knowledge to practi-
cal use. “For a long time people didn’t 
realize power law distributions come up 
in a variety of ways, so there are a variety 
of explanations,” Mitzenmacher says. 
“If we understand the model of how 
that power law comes to be, maybe we 
can figure out how to push people’s be-
havior, or computers’ behavior, in such 
a way as to improve the system.”

For instance, file size follows a 
power law distribution. An improved 
understanding of that could lead to 
more efficiently designed and eco-
nomical file storage systems. Or if 
hyperlinks are similar to movie rent-
als—that is, if the most popular Web 
pages retain their popularity while the 
pages out in the tail remain obscure—
it might make sense to take that into 
account when designing search en-
gines. And if search engines have al-
ready changed that dynamic, it could 
be valuable to understand how.

One area where heavy tails affect 
computer systems is the demand that 
UNIX jobs place on central processing 
units (CPUs). Mor Harchol-Balter, as-
sociate department head of graduate 
education in the computer science de-
partment at Carnegie Mellon Univer-
sity, says the biggest 1% of jobs make 
up half the total load on CPUs. While 
most UNIX jobs may require a second 
or less of processing time, some will 
need several hours.

If there were low variability among 
job sizes, as people used to believe, it 
would make sense to have just a few, 
very fast servers. But because the job size 
distribution is heavy tailed, it’s more ef-

ficient to use more, slower machines. 
Designing server farms with this under-
standing, Harchol-Balter says, could cut 
electricity demand by 50%.

“In computer science, we really 
concentrate on understanding the 
distribution of the sizes of the require-
ments, and making our rules based on 
this understanding,” she notes. “We 
are having to invent whole new mathe-
matical fields to deal with these kinds 
of distributions.”

Harchol-Balter finds the origin of 
heavy tail distributions a fascinating 
question, one she sometimes asks her 
classes to speculate about. “Why are 
files at Web sites distributed accord-
ing to a Pareto distribution? Why on 
Earth? Nobody set out to make this 
kind of distribution,” she says. “Some-
how most people write short programs 
and some people write long programs 
and it fits this distribution very well.”

But the “why” isn’t her main con-
cern. “I don’t need to know why it 
happens,” Harchol-Balter says. “I just 
need to know if it’s there what I’m go-
ing to do with it.”	
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Technology  |  doi:10.1145/1743546.1743554	 Tom Geller

Beyond the Smart Grid 
Sensor networks monitor residential and institutional devices, 
motivating energy conservation.

A
s President-elect, Barack 

Obama used the term 
“smart grid” in his first 
major speech of 2009, and 
few phrases have enjoyed 

as much currency recently. The electri-
cal grid isn’t the only utility acquiring 
intelligence, however, as water and 
gas meters throughout the U.S. gain 
radio communication capabilities and 
other innovations.

But those grids (and their attendant 
smartness) stop at the residential me-
ter, so consumers never know which 
household devices are the biggest en-
ergy users. Once monitored, these de-
vices would need to communicate—to 
turn on the ceiling fan and adjust the 
air conditioner when electricity prices 
peak, for example. The final ingredient 
for such a system to be useful to con-
sumers is an easy-to-understand inter-
face for monitoring and controlling 
the devices.

The solution, like the problem, has 
three parts. First, monitor each device 
separately; second, network them to-
gether for coordination; third, pres-
ent the resulting data in an easy-to-use 
format. As it happens, this solution 
goes beyond energy conservation to 
suggest new ways of integrating home 
automation, safety, security, and en-
tertainment applications with smart 
grid data.

Your Home’s Five Senses
The first key part is the sensors them-
selves. For utility monitoring, instal-
lation has been a major barrier to 
consumer adoption. Measuring water 
flow to a specific faucet, for example, 
required removing a section of pipe. 
To give a residential consumer the 
whole picture, this process would 
have to be repeated for every faucet in 
the house.

But now work done by Shwetak Pa-
tel, an assistant professor in the de-
partment of computer science and en-
gineering at University of Washington, 

and colleagues can extrapolate electri-
cal, water, and gas use of individual de-
vices by measuring the “shock waves” 
created when consumers turn on the 
devices that use those utilities.

Patel’s HydroSense approach is 
to attach a single sensor to a spigot 
and examine differences in pressure 
created by the water-hammer phe-
nomenon when individual devices 
are turned on and off. After build-
ing a profile of devices in the house, 
he says, the single sensor can accu-
rately tell each device from the others 
within a 5% margin of error. The same 
model works for gas lines as well; for 
electricity, the single plug-in sensor 
looks for characteristic noise patterns 
produced by individual devices over 
the home’s electrical lines.

Patel points out the educational val-
ue of this information. “Often peoples’ 
mental model of [utility] consumption 
is really inaccurate,” he says. “Over 30 
years of study in environmental psy-

chology has shown that giving people 
itemized feedback can reduce over-
all energy use by 15%–20%. But adop-
tion of sensors that will give them that 
feedback drastically drops off as the 
installation burden increases. So the 
question is, How can we build a single 
sensor that gives them disaggregated 
information, but doesn’t need a profes-
sional electrician or plumber to install? 
If we can build cheap sensors that give 
consumers effective feedback, they can 
start to reduce overall consumption in 
their home.”

Even with single-point sensors 
installed, there’s still a place for in-
dividual sensors to measure environ-
mental factors. For example, a sensor 
that measures the oil level in a furnace 
could switch on electric heating when 
the oil is running out, but only during 
times of low electricity demand. Or a 
combustible-gas sensor could prevent 
an explosion, when a gas leak is detect-
ed, by preventing a gas furnace’s igni-
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HydroSense can be installed at any accessible location in a home’s water infrastructure,  
with typical installations at an exterior hose bib, a utility sink spigot, or a water heater drain 
valve. By continuously sensing water pressure at a single installation point, HydroSense  
can identify individual fixtures where water is being used and estimate their water usage. 
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hand, ZigBee largely ignores issues of 
bandwidth and quality of service, as 
would be needed for a telephony or 
video application.

The ZigBee specifications cover all 
seven layers of the Open Systems Inter-
connection model, in three parts. The 
bottom two—the physical and data-
link layers—are the 802.15.4 standard, 
with no changes. Layers three to six 
comprise the “ZigBee stack,” includ-
ing algorithms for organization among 
nodes, error routing, and AES-128 secu-
rity. (As a wireless technology, the secu-
rity portion is especially important to 
prevent outside tampering that could 
cause unpredictable device behavior.) 
When layers one through six are imple-
mented according to the ZigBee speci-
fication, it qualifies for ZigBee platform 
compliance certification. ZigBee-cer-
tified products also implement layer 
seven, which is a ZigBee public profile 
such as smart energy, home automa-
tion, or health care.

Acting on Data 
Once the data is collected, it needs to be 
presented in ways that are understand-
able to humans and to other devices. 
“We don’t want to overwhelm the con-
sumer with a bunch of data,” says Patel. 
“We could provide them with a ‘Top Ten 
Energy Consumers in Your Home’ list 
to give them something to work on. Or 
if we see that the compressor in their re-
frigerator is degrading in performance 
over time, we could give them targeted 
advice on blowing out the coils.”

One example of how such data is be-
ing used is found in Oberlin College’s 
campus resource monitoring system. 
The environmental studies program 

monitors electricity use in each of the 
college’s dorms, in some cases with 
multiple sensor points per dorm. Ad-
ministrators make adjustments to dis-
count nondiscretionary expenditures, 
such as a kitchen in those dorms with 
cafeterias, then take a baseline reading 
to determine typical usage. Data from 
dorms’ current energy use is displayed 
in three ways: on the Web at oberlin.
edu/dormenergy; as building dash-
board video displays throughout cam-
pus; and as color-changing orbs placed 
in several campus locations, including 
the dorms themselves.

Finally, Oberlin College runs an 
annual dorm energy competition and 
gives prizes to the dorm with the great-
est reduction from baseline use. Henry 
Bent, sustainable technology research 
fellow partly responsible for maintain-
ing the Oberlin system, is especially 
enthusiastic about the orbs. “Numbers 
and dials and graphs are fantastic, but 
you want something that you can see 
very quickly at a glance,” Bent says. “I 
just know when I’m on my way to the 
bathroom, ‘Oh, look, that orb is red, I 
should turn something off.’ ”	

Further Reading
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Reynolds, M.S., Abowd, G.D. 
At the flick of a switch: detecting and 
classifying unique electrical events on 
the residential power line. Proceedings 
of Ubicomp 2007, Innsbruck, Austria, 
September 16–19, 2007.

Patel, S.N., Reynolds, M.S., Abowd, G.D.  
Detecting human movement by differential 
air pressure sensing in HVAC system 
ductwork: an exploration in infrastructure 
mediated sensing. Proceedings of Pervasive 
2008, Sydney, Australia, May 19–22, 2008.

Petersen, J.E., Shunturov, V., Janda, K.,  
Platt, G., Weinberger, K. 
Dormitory residents reduce electricity 
consumption when exposed to real-
time visual feedback and incentives. 
International Journal of Sustainability in 
Higher Education 8, 1, 2007.

Fischer, C. 
Feedback on household electricity 
consumption: a tool for saving energy? 
Energy Efficiency 1, 1, Feb. 2008.

Wireless Sensor Networks Research Group 
http://www.sensor-networks.org.

Tom Geller is an Oberlin, Ohio-based science, technology, 
and business writer.
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tion from sparking on. Such concepts 
require a development platform that 
hosts both sensors and communica-
tions hardware.

One such platform is SquidBee and 
its successor, Waspmote. Both origi-
nated at the Spain-based company 
Libelium, which also produces three 
types of Waspmote sensor boards. One 
determines the presence of gases, such 
as carbon dioxide and methane; the 
second senses environmental changes, 
such as vibration, pressure, and mois-
ture; and the third is a prototype board 
that will host any other sensor types a 
developer might have. For applications 
that don’t require immediate commu-
nication or in situations where imme-
diate communication is impossible, 
the Waspmote board contains two gig- 
abytes of internal memory for later 
transmission.

Making Sensors Talk
Both Patel and Libelium’s devices re-
quire a way to communicate their find-
ings to the outside world. Waspmote 
uses a variety of methods, including 
USB, GPS, 802.15.4, and a range of 
radio frequencies. Patel is agnostic 
about the communication methods his 
still-in-development devices will use. 
“We’re innovating on the hardware, ag-
gregation, and signal processing,” he 
says, “but not on the network.”

One specification that both plan 
to use is ZigBee, an extension of the 
802.15.4 standard promoted by the 
nonprofit, industry-based ZigBee Al-
liance. According to ZigBee Alliance 
Chairman Bob Heile, ZigBee was de-
signed specifically “to create open, 
global standards for wireless sensor 
networks.” As such, it prioritizes power 
consumption and transmission integ-
rity so that the devices—which might 
be used in difficult-to-access areas—
can operate trouble-free for a long pe-
riod of time. “We’re achieving devices 
that go for five to 10 years on an alka-
line battery or 10 to 20 years on lithi-
um-ion,” says Heile.

The ZigBee Alliance also prioritized 
scalability well beyond the residential 
needs. Heile says the ARIA Resort & 
Casino in the new CityCenter devel-
opment in Las Vegas has more than 
90,000 ZigBee-compliant devices to 
control both common-area and guest-
room environments. On the other 

Oberlin College  
hosts an annual dorm 
energy competition, 
with prizes for  
the dorm that 
achieves the greatest 
energy reduction. 

http://www.sensor-networks.org
http://oberlin.edu/dormenergy
http://oberlin.edu/dormenergy
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Mine Your Business
Researchers are developing new techniques to gauge  
employee productivity from information flow.

Society  |  doi:10.1145/1743546.1743555	 Leah Hoffmann

W
hat’s the best  way 
to measure employee 
productivity in the 
digital age? From lines 
of code to number of 

sales, each industry has its own imper-
fect standards. Yet according to a new 
line of thought, the answer may, in fact, 
lie in your email inbox. And your chat 
log. And the comments you added to 
a shared document—in the sum, that 
is, of your electronic activity. Research-
ers at IBM and Massachusetts Institute 
of Technology, for example, analyzed 
the electronic data of 2,600 business 
consultants and compared their com-
munication patterns with their billable 
hours. The conclusion: the average 
email contact is worth $948 in annual 
revenue. Of course, it also makes a dif-
ference who your contacts are. Consul-
tants with strong ties to executives and 
project managers generated an average 
of $7,056 in additional annual revenue, 
compared with the norm.

According to Redwood City, CA-
based Cataphora, one of the companies 
at the forefront of the movement, the 
objective is to build patterns of activ-
ity—then flag and analyze exceptions.

“We’re interested in modeling 
behavior,” says Keith Schon, a se-
nior software engineer at Cataphora. 
“What do people do normally? How 
do they deviate when they’re not act-
ing normally?” Using data mining 
techniques that encompass network 
analysis, sentiment analysis, and clus-
tering, Schon and colleagues analyze 
the flow of electronic data across an 
organization. “We’re trying to figure 
out relationships,” he explains. 

Cataphora got its start in the elec-
tronic discovery field, where under-
standing what people know and how 
that knowledge spreads is critical to 
legal liability. The company thus works 
to uncover so-called “shadow net-
works” of employees who know each 
other through non-business channels 
like colleges or churches, or who share 

a native language, and could collude 
with one another. Its engineers search 
for unusual linguistic patterns, and 
set actual communication networks 
against official organization charts to 
determine when people interact with 
those to whom they have no ostensible 
work connection.

Yet Cataphora and others are also 
developing tools to analyze such pat-
terns of behavior in non-investigative 
settings in the hope of understand-
ing—and enhancing—employee pro-
ductivity. Microsoft examines internal 
communications to identify so-called 
“super connectors,” who communi-
cate frequently with other employees 
and share information and ideas. 
Eventually, researchers say, that data 
could help business leaders make 
strategic decisions about a project 
team’s composition, effectiveness, 
and future growth. Likewise, Google 
is testing an algorithm that uses em-
ployee review data, promotions, and 
pay histories to identify its workers 
who feel underused, and therefore 
are most likely to leave the company. 
Though Google is reluctant to share 
details, human resources director 
Laszlo Bock has said the idea is to get 
inside people’s heads before they even 

think about leaving—and to work 
harder to keep them engaged.

“We have access to unprecedented 
amounts of data about human activity,” 
says Sinan Aral, a professor of manage-
ment sciences at New York University’s 
Stern School of Business who studies in-
formation flow. Of course, not every ben-
efit an individual brings to a company 
can be captured electronically, “but we 
can explain a lot,” Aral says. Research-
ers hasten to add they’re not seeking 
to punish people for using Facebook at 
work or making personal phone calls. 
“The social stuff may be important, and 
we don’t count that against a person,” 
says Cataphora’s Schon. In most cases, 
in fact, personal communications are 
filtered out and ignored.

Measuring Electronic Productivity
Some measures of electronic produc-
tivity are relatively straightforward. Cat-
aphora, for example, seeks to identify 
blocks of text that are reused, such as 
a technical explanation or a document 
template, reasoning that the employees 
who produce them are making a com-
paratively greater impact on the com-
pany by doing work that others deem 
valuable. Such text blocks can be diffi-
cult to identify, for their language often 

IBM’s SmallBlue technology analyzes employees’ electronic data and creates a networked 
map of who they’re connected to and what their expertise is. 
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uals who help each other.” In a study of 
five years of data from an executive re-
cruiting firm, Aral found that employ-
ees who were more central to the firm’s 
information flow—who communicat-
ed more frequently and with a broader 
number of people—tended to be more 
productive. It makes a certain amount 
of sense. “They received more novel 
information and could make matches 
and placements more quickly,” Aral 
notes. In fact, the value of novel infor-
mation turned out to be quite high. 
Workers who encountered just 10 nov-
el words more than the average worker 
were associated with an additional $70 
in monthly revenue.

Yet Aral’s conclusions also point to 
one of the more challenging aspects of 
this type of research. If a position in the 
corporate network is associated with in-
creased productivity, is it because of the 
nature of that position or because cer-
tain kinds of people naturally gravitate 
toward it? “You always have to ques-
tion your assumptions,” admits Aral. 
New statistical techniques are needed, 
he says, to more accurately distinguish 
correlation from causation.

Large-scale data mining presents 
another challenge. IBM’s SmallBlue, 
which grew out of research at its Wat-
son Business Center, analyzes employ-
ees’ electronic data and creates a net-
worked map of who they’re connected 
to and where their expertise lies. Em-
ployees can then search for people 
with expertise on certain subjects and 
find the shortest “social path” it would 

take to connect them. SmallBlue is an 
invaluable tool for large, international 
firms, and IBM has used it to connect 
its 410,000 employees since 2007. Yet 
indexing the 20-plus million emails 
and instant messages those employees 
write is not a trivial task—not to men-
tion the 2 million blog and database 
entries and 10 million pieces of data 
that come from knowledge sharing 
and learning activities. It is the largest 
publicly known social network dataset 
in existence, and the project’s founder, 
Ching-Yung Lin, says IBM worked hard 
to design a database that would hold 
different types of data and dynamically 
index the graphs that are generated.

Proponents of electronic produc-
tivity analysis say the markers are best 
used to augment, rather than replace, 
traditional metrics and peer evalu-
ations. “It’s a sanity check,” asserts 
Schon. In the future, predicts Aral, 
who is helping IBM refine SmallBlue, 
the software could provide real-time, 
expertise-based recommendations: 
automatically suggesting connections 
while employees work on a particular 
task, for example, or helping managers 
assemble compatible project teams. 	
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evolves as they spread through a corpo-
rate network. Cataphora has developed 
a fuzzy search algorithm to detect them, 
but Schon admits the task is complex. 
Creating an algorithm that organizes 
sentences into text blocks, for example, 
often forces researchers to make inflex-
ible choices about boundaries, using 
punctuation, length limits, paragraph 
breaks, or some other scheme. That, 
in turn, could cause a program to over-
look a document whose author formats 
things differently, such as not breaking 
the text into paragraphs very frequently 
or using unconventional punctuation.

Cataphora has also developed a 
proprietary set of ontologies that cover 
human resources-related topics, mar-
keting issues, product development, 
and more to examine various subject-
specific communications. One way in 
which they are useful, Schon explains, 
is for studying the relationships be-
tween people and topics. If an executive 
is central to communications about 
product development, marketing, and 
finance, but marginal to those about 
sales, it’s likely that she or he is out of 
the loop when it comes to the newest 
sales tactics. Ontologies can also iden-
tify communications related to partic-
ular tasks, such as hiring and perfor-
mance reviews. From there, engineers 
can statistically determine what the 
“normal” procedure is, and see when 
it is and isn’t followed. Thanks to the 
training corpus Cataphora has built 
over time through its clients, these 
ontologies perform quite well. Yet to 
detect communication that is specific 
to a particular industry, location, or 
research group and whose names can 
be idiosyncratic, “we may need to ex-
amine the workflow and develop more 
specific ontologies,” says Schon. 

Further analysis helps identify how 
employees influence each other at 
work. Aral, for example, correlates his 
electronically derived network topolo-
gies with traditional accounting and 
project data, such as revenues and 
completion rates, to try to understand 
which factors enhance or diminish 
certain outcomes. “The old paradigm 
was that each employee had a set of 
characteristics, like skills or education, 
which he or she brought to a firm,” 
Aral explains. “Our perspective is that 
employees are all connected, and that 
companies build a network of individ-

Microsoft 
examines internal 
communications to 
identify so-called 
“super connectors,” 
who communicate 
frequently with  
fellow employees  
and share information 
and ideas. 
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I
t cam e  as  a surprise even to 
those who knew him well: the 
death of Arthur John Robin 
Gorell Milner, known to friends 
simply as Robin, of a heart at-

tack on March 20. Milner’s wife, Lucy, 
had died three weeks before. Yet the pi-
oneering computer scientist remained 
active, and seemingly in good health, 
until the end, maintaining close con-
nections with his colleagues and even 
co-authoring a paper with a postdoc-
toral student he supervised at the IT 
University of Copenhagen.

A man of modest background and 
quiet brilliance, Milner made ground-
breaking contributions to the fields of 
verification, programming languages, 
and concurrency. He was born in 1934 
near Plymouth, England, and won 
scholarships to Eton—where he devel-
oped an enduring love of math as well 
as a prodigious work ethic—and King’s 
College, Cambridge. It was during his 
time at Cambridge that Milner was in-
troduced to programming, though the 
subject didn’t interest him initially. “I 
regarded programming as really rather 
inelegant,” he recalled in an interview 
in 2001 with Martin Berger, a profes-
sor at the University of Sussex. “So I 
resolved that I would never go near 
a computer in my life.” Several years 
later, in 1960, Milner broke that resolu-
tion with a programming job at Ferran-
ti, a British computer company; from 
there, it wasn’t long before he moved to 
academia with positions at City Univer-
sity London, Swansea University, Stan-
ford University, and the Universities of 
Edinburgh and Cambridge.

Inspired by Dana Scott’s famous 
formulation of domain theory, Milner 
began working on an automatic theo-
rem prover, hoping to find a way to 
mechanize a logic for reasoning about 
programs. The work culminated in the 
development of Logic for Computable 

Functions (LCF), an interactive sys-
tem that helps researchers formulate 
proofs. “It was a novel idea,” says Robert 
Harper, a professor of computer science 
at Carnegie Mellon University. “The ap-
proach before then was that computers 
would search for your proof. Robin rec-
ognized that the computer is a tool to 
help you find the proof.” During that re-
search, Milner also laid the foundations 
of ML, a metalanguage whose original 
intent was to enable researchers to de-
ploy proof tactics on LCF. The innovative 
concepts it introduced, however—such 
as polymorphic type inference and type-
safe exception handling—were soon 
recognized. Ultimately, ML evolved into 
a powerful general programming lan-
guage (with Milner, Harper, and others 
working to specify and standardize it) 
and led to languages like F# and Caml.

“Robin initiated a revolution in 
what computing languages are and 
could be,” asserts Harper.

Although he was closely involved 
in ML’s development throughout the 
1980s and 1990s, Milner also began 
working on the problem of concur-
rency, looking for a mathematical 
treatment that could rival theories of 
sequential computation. The Calcu-
lus of Communicating Systems (CCS) 
was the first solution he devised: a pro-
cess calculus for a network that was 

programmed to cooperate on a single 
task. CCS was succeeded by a more 
general theory of concurrency called pi 
calculus, which incorporated dynamic 
generation, and bigraphs, a theory of 
ubiquitous computing. For his work on 
LCF, ML, and CCS, Milner received the 
ACM A.M. Turing Award in 1991.

“Robin had this ability to think 
large and translate that all the way 
down to new theorems,” says Mads 
Tofte, vice chancellor of the IT Univer-
sity of Copenhagen and a former grad-
uate student. The sentiment is echoed 
by many of Milner’s collaborators, 
who cite his unfailing ability to shift 
from a grand vision of computing to 
subtle mathematical particulars. Cou-
pled with his rigorous attention to de-
tail, the trait gave Milner’s work a firm 
grounding in practical applications. 
“He was very concerned with making 
things work,” says Gordon Plotkin, a 
former colleague at the University of 
Edinburgh.

Milner also labored on behalf of in-
stitutions and initiatives that shaped 
the future of the field. He helped es-
tablish the Laboratory for Foundations 
of Computer Science at the University 
of Edinburgh and served as the first 
chair of the University of Cambridge’s 
Computer Laboratory. In 2002, Milner 
and Tony Hoare, a senior researcher at 
Microsoft Research in Cambridge (and 
a fellow Turing Award winner), began 
working on a grand challenge initiative 
to identify research topics that would 
drive science in the 21st century. 

He was a natural leader, according to 
Tofte. “I’m not sure he was always aware 
of it,” says Tofte, “but he was so good at 
getting the best out of people, which is 
exactly what a good leader does.” 	

Leah Hoffmann is a Brooklyn, NY-based technology 
writer.
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“Robin initiated a 
revolution in what 
computing languages 
are and could be,” 
says Robert Harper.
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Robin Milner:  
The Elegant Pragmatist
Remembering a rich legacy in verification,  
languages, and concurrency.
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CS and Technology  
Leaders Honored 

lating to the diagnosis and treatment of 
behavioral disorders, as well as the as-
sessment of behavioral change within 
complex social environments. 

Edward Lazowska, the Bill & Me-
linda Gates Chair in computer sci-
ence and engineering at the Uni-
versity of Washington, received the 
Distinguished Service Award for his 
wide-ranging service to the comput-
ing community and his long-stand-
ing advocacy for this community at 
the national level. (An interview with 
Lazowska appears in the ACM Mem-
ber News column on p. 12.)

Moshe Y. Vardi, the Karen Ostrum 
George Professor in Computational En-

A
wards were recently 

announced by ACM and 
the American Associa-
tion for the Advancement 
of Science honoring lead-

ers in the fields of computer science 
and technology.

ACM Awards
VMware Workstation 1.0, which was 
developed by Stanford University pro-
fessor Mendel Rosenblum and his 
colleagues Edouard Bugnion, Scott 
Devine, Jeremy Sugerman, and Edward 
Wang, was awarded the Software Sys-
tem Award for bringing virtualization 
technology to modern computing en-
vironments, spurring a shift to virtual-
machine architectures, and allowing 
users to efficiently run multiple operat-
ing systems on their desktops.

Michael I. Jordan, a professor at 
the University of California, Berke-
ley, is the recipient of the ACM/AAAI 
Allen Newell Award for fundamen-
tal advances in statistical machine 
learning—a field that develops com-
putational methods for inference and 
decision-making based on data. 

Tim Roughgarden, an assistant pro-
fessor at Stanford University, received 
the Grace Murray Hopper Award for in-
troducing novel techniques that quan-
tify lost efficiency with the uncoordi-
nated behavior of network users who 
act in their own self-interest.  

Matthias Felleisen, a Trustee Pro-
fessor at Northeastern University, 
was awarded the Karl V. Karlstrom 
Outstanding Educator Award for his 
visionary and long-standing contribu-
tions to K–12 outreach programs.

Gregory D. Abowd, a professor at 
Georgia Institute of Technology, is the 
recipient of the Eugene L. Lawler Award 
for Humanitarian Contributions with-
in Computer Science and Informatics 
for promoting a vision of health care 
and education that incorporates the 
use of advanced information technolo-
gies to address difficult challenges re-

gineering and Director of the Ken Ken-
nedy Institute for Information Technol-
ogy at Rice University, is the recipient of 
the Outstanding Contribution to ACM 
Award for his leadership in restructuring 
ACM’s flagship publication, Communi-
cations of the ACM, into a more effective 
communications vehicle for the global 
computing discipline, and for organiz-
ing an influential, systematic analysis 
of offshoring, Globalization and Offshor-
ing of Software, which helped reinforce 
the case that computing plays a fun-
damental role in defining success in a 
competitive global economy.

Elaine Weyuker and Mathai Joseph 
were named recipients of the ACM 
Presidential Award. Weyuker, an AT&T 
Fellow at Bell Labs, was honored for her 
efforts in reshaping and enhancing the 
growth of ACM-W to become a thriving 
network that cultivates and celebrates 
women seeking careers in computing. 
Joseph, an advisor to Tata Consultancy 
Services, was honored for his commit-
ment to establishing an ACM presence 
in India. His efforts were instrumental 
in the formation of the ACM India Coun-
cil, which was launched last January. 

American Academy Fellows
Eight computing scientists and tech-
nology leaders were among the 229 
newly elected Fellows and Foreign 
Honorary Members to the American 
Association for the Advancement of Sci-
ence. They are: Randal E. Bryant, Carn-
egie Mellon University; Nancy A. Lynch, 
Massachusetts Institute of Technol-
ogy; Ray Ozzie, Microsoft; Samuel J. 
Palmisano, IBM; Burton Jordan Smith, 
Microsoft; Michael Stonebraker, Ver-
tica Systems; Madhu Sudan, Massachu-
setts Institute of Technology; Moshe Y. 
Vardi, Rice University; and Jeannette 
M. Wing, Carnegie Mellon University/
National Science Foundation.	

Jack Rosenberger is Communications’ senior editor, 
news.
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Michael I. Jordan, University of California, 
Berkeley

VMware Workstation 
1.0 is the recipient 
of ACM’s Software 
System Award.



ACM announces the ACM Europe Council:
16 leading European computer scientists from
academia and industry to spearhead expansion of
ACM's high-quality technical activities, conferences
and services in Europe.

“Our goal is to share ACM’s vast array 
of valued resources and services on
a global scale.  We want to discover
the work and welcome the talent
from all corners of the computing
arena so that we are better posi-
tioned to appreciate the key issues
and challenges within Europe’s aca-
demic, research, and professional
computing communities, and
respond accordingly,” says
Professor Dame Wendy Hall,
U. of Southampton (UK),
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Privacy and Security  
Myths and Fallacies of “Personally 
Identifiable Information” 
Developing effective privacy protection technologies is a critical challenge for  
security and privacy research as the amount and variety of data collected about  
individuals increase exponentially.

T
he d ig ital  econo my  relies 
on the collection of personal 
data on an ever-increasing 
scale. Information about our 
searches, browsing history, 

social relationships, medical history,  
and so forth is collected and shared 
with advertisers, researchers, and gov-
ernment agencies. This raises a num-
ber of interesting privacy issues. In 
today’s data protection practices, both 
in the U.S. and internationally, “person-
ally identifiable information” (PII)—or, 
as the U.S. Health Insurance Portability 
and Accountability Act (HIPAA) refers 
to it, “individually identifiable” infor-
mation—has become the lapis phi-
losophorum of privacy. Just as medieval 
alchemists were convinced a (mythical) 
philosopher’s stone can transmute lead 
into gold, today’s privacy practitioners 
believe that records containing sensi-
tive individual data can be “de-identi-
fied” by removing or modifying PII.

What is PII?
For a concept that is so pervasive in 
both legal and technological discourse 

on data privacy, PII is surprisingly dif-
ficult to define. One legal context is 
provided by breach-notification laws. 
California Senate Bill 1386 is a rep-
resentative example: its definition of 
personal information includes Social 
Security numbers, driver’s license 
numbers, financial accounts, but not, 
for example, email addresses or tele-
phone numbers. These laws were en-
acted in response to security breaches 
involving customer data that could 
enable identity theft. Therefore, they 
focus solely on the types of data that 

are commonly used for authenticating 
an individual, as opposed to those that 
violate privacy, that is, reveal some sen-
sitive information about an individual. 
This crucial distinction is often over-
looked by designers of privacy protec-
tion technologies.

The second legal context in which 
the term “personally identifiable infor-
mation” appears is privacy law. In the 
U.S., the Privacy Act of 1974 regulates 
the collection of personal information 
by government agencies. There is no 
overarching federal law regulating pri-
vate entities, but some states have their 
own laws, such as California’s Online 
Privacy Protection Act of 2003. Generic 
privacy laws in other countries include 
Canada’s Personal Information Pro-
tection and Electronic Documents Act 
(PIPEDA) and Directive 95/46/EC of 
the European Parliament, commonly 
known at the Data Protection Directive.

Privacy laws define PII in a much 
broader way. They account for the pos-
sibility of deductive disclosure and—
unlike breach-notification laws—do 
not lay down a list of informational 

doi:10.1145/1743546.1743558	 Arvind Narayanan and Vitaly Shmatikov

Any information that 
distinguishes one 
person from another 
can be used for  
re-identifying data.
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attributes that constitute PII. For ex-
ample, the Data Protection Directive 
defines personal data as: “any informa-
tion relating to an […] natural person 
[…] who can be identified, directly or 
indirectly, in particular by reference 
[…] to one or more factors specific to 
his physical, physiological, mental, 
economic, cultural, or social identity.” 

The Directive goes on to say that 
“account should be taken of all the 
means likely reasonably to be used ei-
ther by the controllera or by any other 
person to identify the said person.” 
Similarly, the HIPAA Privacy Rule de-
fines individually identifiable health 
information as information “1) That 
identifies the individual; or 2) With 
respect to which there is a reasonable 
basis to believe the information can be 
used to identify the individual.”  What 
is “reasonable”? This is left open to 
interpretation by case law. We are not 
aware of any court decisions that de-
fine identifiability in the context of 

a	 The individual or organization responsible for 
the safekeeping of personal information.

HIPAA.b The “safe harbor” provision 
of the Privacy Rule enumerates 18 spe-
cific identifiers that must be removed 
prior to data release, but the list is not 
intended to be comprehensive.

PII and Privacy Protection 
Technologies
Many companies that collect personal 
information, including social net-
works, retailers, and service providers, 
assure customers that their informa-
tion will be released only in a “non-
personally identifiable” form. The un-
derlying assumption is that “personally 
identifiable information” is a fixed set 
of attributes such as names and contact 
information. Once data records have 
been “de-identified,” they magically 
become safe to release, with no way of 
linking them back to individuals.

The natural approach to privacy pro-

b	 When the Supreme Court of Iceland struck 
down an act authorizing a centralized database 
of “non-personally identifiable” health data, its 
ruling included factors such as education, pro-
fession, and specification of a particular medi-
cal condition as part of “identifiability.”

tection is to consider both the data and 
its proposed use(s) and to ask: What 
risk does an individual face if her data 
is used in a particular way? Unfortu-
nately, existing privacy technologies 
such as k-anonymity6 focus instead on 
the data alone. Motivated by an attack 
in which hospital discharge records 
were re-identified by joiningc them via 
common demographic attributes with 
a public voter database,5 these meth-
ods aim to make joins with external da-
tasets harder by anonymizing the iden-
tifying attributes. They fundamentally 
rely on the fallacious distinction be-
tween “identifying” and “non-identify-
ing” attributes. This distinction might 
have made sense in the context of the 
original attack, but is increasingly 
meaningless as the amount and variety 
of publicly available information about 
individuals grows exponentially.

To apply k-anonymity or its variants 
such as l-diversity, the set of the so-
called quasi-identifier attributes must 
be fixed in advance and assumed to 

c	  In the sense of SQL join.
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be the same for all users. It typically 
includes ZIP code, birth date, gender, 
and/or other demographics. The rest 
of the attributes are assumed to be 
non-identifying. De-identification in-
volves modifying the quasi-identifiers 
to satisfy various syntactic properties, 
such as “every combination of quasi-
identifier values occurring in the data-
set must occur at least k times.”6 The 
trouble is that even though joining two 
datasets on common attributes can 
lead to re-identification, anonymizing 
a predefined subset of attributes is not 
sufficient to prevent it.

Re-identification without PII
Any information that distinguishes 
one person from another can be used 
for re-identifying anonymous data. 
Examples include the AOL fiasco, in 
which the content of search queries 
was used to re-identify a user; our own 
work, which demonstrated feasibility 
of large-scale re-identification using 
movie viewing histories (or, in general, 
any behavioral or transactional pro-
file2) and local structure of social net-
works;3 and re-identification based on 
location information and stylometry 
(for example, the latter was used to in-
fer the authorship of the 12 disputed 
Federalist Papers).

Re-identification algorithms are ag-
nostic to the semantics of the data ele-
ments. It turns out there is a wide spec-
trum of human characteristics that 
enable re-identification: consumption 
preferences, commercial transac-
tions, Web browsing, search histories, 
and so forth. Their two key properties 
are that (1) they are reasonably stable 
across time and contexts, and (2) the 
corresponding data attributes are suf-
ficiently numerous and fine-grained 
that no two people are similar, except 
with a small probability. 

The versatility and power of re-iden-
tification algorithms imply that terms 
such as “personally identifiable” and 
“quasi-identifier” simply have no tech-
nical meaning. While some attributes 
may be uniquely identifying on their 
own, any attribute can be identifying in 
combination with others. Consider, for 
example, the books a person has read 
or even the clothes in her wardrobe: 
while no single element is a (quasi)-
identifier, any sufficiently large subset 
uniquely identifies the individual.

Re-identification algorithms based 
on behavioral attributes must toler-
ate a certain “fuzziness” or impreci-
sion in attribute values. They are thus 
more computationally expensive and 
more difficult to implement than re-
identification based on demographic 
quasi-identifiers. This is not a signifi-
cant deterrence factor, however, be-
cause re-identification is a one-time ef-
fort and its cost can be amortized over 
thousands or even millions of individ-
uals. Further, as Paul Ohm argues, re-
identification is “accretive”: the more 
information about a person is revealed 
as a consequence of re-identification, 
the easier it is to identify that person in 
the future.4 

Lessons for Privacy Practitioners
The emergence of powerful re-identi-
fication algorithms demonstrates not 
just a flaw in a specific anonymization 
technique(s), but the fundamental 
inadequacy of the entire privacy pro-
tection paradigm based on “de-identi-
fying” the data. De-identification pro-
vides only a weak form of privacy. It may 
prevent “peeping” by insiders and keep 
honest people honest. Unfortunately, 
advances in the art and science of re-
identification, increasing economic 
incentives for potential attackers, and 
ready availability of personal informa-
tion about millions of people (for ex-
ample, in online social networks) are 
rapidly rendering it obsolete.

The PII fallacy has important impli-
cations for health-care and biomedical 
datasets. The “safe harbor” provision 
of the HIPAA Privacy Rule enumerates 
18 attributes whose removal and/or 
modification is sufficient for the data 
to be considered properly de-identi-
fied, with the implication that such 
data can be released without liability. 
This appears to contradict our argu-
ment that PII is meaningless. The “safe 
harbor” provision, however, applies 
only if the releasing entity has “no ac-
tual knowledge that the information 
remaining could be used, alone or in 
combination, to identify a subject of 
the information.” As actual experience 
has shown, any remaining attributes 
can be used for re-identification, as 
long as they differ from individual to 
individual. Therefore, PII has no mean-
ing even in the context of the HIPAA 
Privacy Rule.

Beyond De-identification
Developing effective privacy protection 
technologies is a critical challenge for 
security and privacy research. While 
much work remains to be done, some 
broad trends are becoming clear, as 
long as we avoid the temptation to find 
a silver bullet. Differential privacy is a 
major step in the right direction.1 In-
stead of the unattainable goal of “de-
identifying” the data, it formally de-
fines what it means for a computation 
to be privacy-preserving. Crucially, it 
makes no assumptions about the ex-
ternal information available to the ad-
versary. Differential privacy, however, 
does not offer a universal methodology 
for data release or collaborative, priva-
cy-preserving computation. This limi-
tation is inevitable: privacy protection 
has to be built and reasoned about on 
a case-by-case basis.

Another lesson is that an interac-
tive, query-based approach is generally 
superior from the privacy perspective 
to the “release-and-forget” approach. 
This can be a hard pill to swallow, be-
cause the former requires designing 
a programming interface for queries, 
budgeting for server resources, per-
forming regular audits, and so forth.

Finally, any system for privacy-pre-
serving computation on sensitive data 
must be accompanied by strong access 
control mechanisms and non-techno-
logical protection methods such as in-
formed consent and contracts specify-
ing acceptable uses of data.	
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Inside Risks   
Privacy By Design:  
Moving from Art to Practice
Designing privacy into systems at the beginning of the development process necessitates the effective 
translation of privacy principles, models, and mechanisms into system requirements. 

M
ost people involved with 
system development 
are well aware of the 
adage that you are bet-
ter off designing in se-

curity and privacy (and pretty much 
any other “nonfunctional” require-
ments) from the start, rather than try-
ing to add them later. Yet, if this is the 
conventional wisdom, why is the con-
ventional outcome so frequently sys-
tems with major flaws in these areas?

Part of the problem is that while 
people know how to talk about func-
tionality, they are typically a lot less flu-
ent in security and privacy. They may 
sincerely want security and privacy, but 
they seldom know how to specify what 
they seek. Specifying functionality, on 
the other hand, is a little more straight-
forward, and thus the system that pre-
viously could make only regular coffee 
in addition to doing word processing 
will now make espresso too. (Whether 
this functionality actually meets user 
needs is another matter.)

Security and Privacy
The fact that it is often not apparent 
what security and privacy should look 
like is indicative of some deeper issues. 
Security and privacy tend to be articu-
lated at a level of abstraction that often 
makes their specific manifestations 
less than obvious, to either customers 
or system developers.

This is not to say the emperor has 
no clothes; far from it. There are sub-

stantial bodies of knowledge for some 
nonfunctional areas, including secu-
rity, but figuring out how to translate 
the abstract principles, models, and 
mechanisms into comprehensive spe-
cific requirements for specific systems 
operating within specific contexts is 
seldom straightforward. That trans-
lation process is crucial to designing 
these properties into systems, but it 

also tends to be the most problematic 
activity and the activity for which the 
least guidance is provided. The sheer 
complexity of most modern systems 
compounds the problem.

Security, though, is better posi-
tioned than privacy. Privacy—or infor-
mational privacy at least—certainly has 
commonly understood and accepted 
principles in the form of Fair Informa-

Members of staff are seen demonstrating a new whole-body security scanner at Manchester 
Airport, Manchester, England, in January 2010. Airline passengers bound for the United 
States faced a hodgepodge of security measures across Europe and airports did not appear 
to be following a U.S. request for increased screening of passengers from 14 countries. 
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tion Practices. It presently doesn’t have 
much else. Models and mechanisms 
that support privacy are scarce, not gen-
erally known, and rarely understood by 
either customers or developers. 

As more things become digitized, in-
formational privacy increasingly covers 
areas for which Fair Information Prac-
tices were never envisioned. Biometrics, 
physical surveillance, genetics, and be-
havioral profiling are just a few of the 
areas that are straining Fair Informa-
tion Practices to the breaking point. 
More sophisticated models are emerg-
ing for thinking about privacy risk, as 
represented by the work of scholars 
such as Helen Nissenbaum and Daniel 
Solove. However, if not associated with 
privacy protection mechanisms and 
supported by translation guidance, the 
impact of such models is likely to be 
much less than they deserve.

A recent example is the develop-
ment and deployment of whole-body 
imaging (WBI) machines at airports 
for physical screening of passengers. 
In their original incarnation, these ma-
chines perform what has been dubbed 
a “virtual strip search” due to the body 
image that is presented. These ma-
chines are currently being deployed at 
U.S. airports in a way that is arguably 
compliant with Fair Information Prac-
tices. Yet they typically operate in a way 
that many people find offensive.

The intended purpose certainly is 
not to collect, use, disclose, and retain 
naked images of people; it is to detect 
potentially dangerous items they may 
be carrying on their persons when 
screened. Fair Information Practices 
include minimization of personal in-
formation collected, used, disclosed, 
and retained, consistent with the in-
tended purpose.

This has profound implications 
for how image data is processed, 
presented, and stored. It should 
be processed so at no point does 
there ever exist an exposed body im-
age that can be viewed or stored. It 
should be presented in a nonexposed 
form (for example, a chalk outline 
or a fully clothed person) with indi-
cators where things have been de-
tected. None of it should be retained 
beyond the immediate encounter. 
That almost none of these design 
elements were originally specified 
illustrates what too often happens 

in the absence of applicable models 
and mechanisms and their requisite 
translation, along with principles, 
into effective requirements.

In this instance, Solove’s concept 
of exposure provides the necessary 
(partial) model. Exposure is a privacy 
violation that induces feelings of vul-
nerability and distress in the individ-
ual by revealing things we customarily 
conceal. The potential harm from ex-
posure is not restricted to modesty or 
dignity. A friend is convinced that her 
pubescent daughter, who is currently 
extremely self-conscious about her 
body, would be quite literally trauma-
tized if forced to undergo WBI. If physi-
cal strip searches would raise concern, 
why not WBI? Real damage—physical 
as well as psychological—can occur in 
the context of body image neuroses.

If one recognizes from the outset 
the range of privacy risks represent-
ed by exposure, and the relevance of 
exposure for WBI, one then stands 
a chance of effectively moving from 
principles to requirements. Even 
then, though, the translation process 
is not necessarily obvious.

Supposedly, the WBI machines be-
ing used by the U.S. Transportation Se-
curity Administration are not capable 
of retaining images when in normal 
operating mode. (They have this capa-
bility when in testing mode, though, 
so significant residual risk may exist.) 
Other necessary mechanisms were 
not originally specified. Some models 
of WBI are being retrofitted to pres-
ent a nonexposed image, but the issue 
of intermediate processing remains. 
Some models developed after the ini-
tial wave apparently implement all the 
necessary control mechanisms; priva-
cy really was designed in. Why wasn’t 
it designed in from the beginning 
and across the board? The poor state 
of practice of privacy by design offers 
a partial explanation. The state of the 
art, though, is advancing.

The importance of meaningfully 
designing privacy into systems at the 
beginning of the development pro-
cess, rather than bolting it on at the 
end (or overlooking it entirely), is be-
ing increasingly recognized in some 
quarters. A number of initiatives 
and activities are using the rubric of 
privacy by design. In Canada, the On-
tario Information and Privacy Com-
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missioner’s Office has published a 
number of studies and statements on 
how privacy can be designed into spe-
cific kinds of systems. One example 
is electronic (RFID-enabled) driver’s 
licenses, for which the inclusion of 
a built-in on/off switch is advocated, 
thereby providing individuals with 
direct, immediate, and dynamic con-
trol over whether the personal infor-
mation embedded in the license can 
be remotely read or not. Such a mech-
anism would support several Fair 
Information Practices, most notably 
collecting personal information only 
with the knowledge and consent of 
the individual. This approach is clear-
ly applicable as well to other kinds of 
RFID-enabled cards and documents 
carrying personal information.

Similar efforts have been spon-
sored by the U.K. Information Com-
missioner’s Office. This work has 
taken a somewhat more systemic per-
spective, looking less at the applica-
tion of privacy by design to specific 
types of technology and more at how 
to effectively integrate privacy into the 
system development life cycle through 
measures such as privacy impact as-
sessments and ‘practical’ privacy stan-
dards. It also emphasizes the potential 
role of privacy-enhancing technolo-
gies (PETs) that can be integrated with 
or into other systems. While some of 
these are oriented toward empower-
ing individuals, others—which might 
more appropriately be labeled Enter-
prise PETs—are oriented toward sup-
porting organizational stewardship 
of personal information.

However, state of the art is state of 
the art. Supporting the translation of 
abstract principles, models, and mech-
anisms into implementable require-
ments, turning this into a repeatable 
process, and embedding that process in 
the system development life cycle is no 
small matter. Security has been at it a lot 
longer than privacy, and it is still run-
ning into problems. But at least security 
has a significant repertoire of princi-
ples, models, and mechanisms; privacy 
has not really reached this stage yet.

Conclusion
So, if privacy by design is still a ways 
off, and security by design still leaves 
something to be desired, how do we 
get there from here? There’s little 

doubt that appropriately trained en-
gineers (including security engineers) 
are key to supporting the effective 
translation of principles, models, 
and mechanisms into system require-
ments. There doesn’t yet appear to 
be such a thing as a privacy engineer; 
given the relative paucity of models 
and mechanisms, that’s not too sur-
prising. Until we build up the latter, 
we won’t have a sufficient basis for the 
former. For privacy by design to extend 
beyond a small circle of advocates and 
experts and become the state of prac-
tice, we’ll need both.

This will require recognition that 
there is a distinct and necessary tech-
nical discipline of privacy, just as 
there is a distinct and necessary tech-
nical discipline of security—even if 
neither is fully formed. If that can be 
accomplished, it will create a home 
and an incentive for the models and 
mechanisms privacy by design so bad-
ly needs.

This is not to minimize the difficul-
ty of more effectively and consistently 
translating security’s body of knowl-
edge (which is still incomplete) into 
implementable and robust require-
ments. Both security and privacy need 
to receive more explicit and directed 
attention than they often do as areas 
of research and education.

Security by design and privacy by 
design can be achieved only by de-
sign. We need a firmer grasp of the 
obvious.	

Stuart S. Shapiro (s_shapiro@acm.org) is Principal 
Information Privacy and Security Engineer at The MITRE 
Corporation, Bedford MA.

Copyright held by author. 
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M
ulti -co re chips  Are  a 
new paradigm!” “We 
are entering the age of 
parallelism!” These are 
today’s faddish rally-

ing cries for new lines of research and 
commercial development. Is this really 
the first time when computing profes-
sionals seriously engaged with parallel 
computation? Is parallelism new? Is 
parallelism a new paradigm?

Déjà Vu All Over Again
Parallel computation has always been 
a means to satisfy our never-ending 
hunger for ever-faster and ever-cheaper 
computation.4 In the 1960s and 1970s, 
parallel computation was extensively 
researched as a means to high-perfor-
mance computing. But the commer-
cial world stuck with a quest for faster 
CPUs and, assisted by Moore’s Law, 
made it to the 2000s without having 
to seriously engage with parallel com-
putation except for supercomputers. 
The parallel architecture research of 
the 1960s and 1970s solved many prob-
lems that are being encountered today. 
Our objective in this column is to recall 
the most important of these results 
and urge their resurrection.

Shared Memory Multiprocessing
The very first multiprocessor archi-
tecture was the Burroughs B5000, de-
signed beginning in 1961 by a team led 
by Robert Barton. It was followed by 
the B5500 and B6700, along with a de-
fense version, the D850. The architec-

ture survives today in the reverse polish 
notation HP calculators and in the Uni-
Sys ClearPath MCP machines.

Those machines used shared 
memory multiprocessors in which a 
crossbar switch connected groups of 
four processors and memory boxes. 
The operating system, known as Au-
tomatic Scheduling and Operating 
Program (ASOP), included many in-
novations. Its working storage was 
organized as a stack machine. All its 

code was “reentrant,” meaning that 
multiple processors could execute 
the same code simultaneously while 
computing on separate stacks. The 
instruction set, which was attuned to 
the Algol language, was very simple 
and efficient even by today’s RISC 
standards. A newly spawned pro-
cess’s stack was linked to its parent’s 
stack, giving rise to a runtime struc-
ture called “cactus stack.” The data 
memory outside of the stacks was 
laid out in segments; a segment was 
a contiguous sequence of locations 
with base and bound defined by a de-
scriptor. Segments were moved auto-
matically up and down the memory 
hierarchy, an early form of virtual 
memory not based on paging. Elliot 
Organick’s masterful descriptions of 
these machines make for refreshing 
and worthwhile reading today.9,12

The Burroughs systems were an 
important influence on research 
seeking efficient and reliable paral-
lel program structures. A group of 
researchers at Brown University and 
General Electric Research Labora-
tories produced a set of reports on a 

“contour model” of nested multitask 
computations in 1971.12 Those re-
ports give a remarkably clear picture 
of a parallel programming runtime 
environment that would suit today’s 
languages well and would resolve 
many contemporary problems con-
sidered as “research challenges.” It 
is a tragedy these ideas have disap-
peared from the curriculum.

doi:10.1145/1743546.1743560	 Peter J. Denning and Jack B. Dennis
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The Burroughs machines disap-
peared not because of any defect in 
their architecture, but because of 
IBM’s massive success in marketing 
the 360 series systems. Moreover, in a 
process reminiscent of Clayton Chris-
tensen’s Innovator’s Dilemma, the 
low-end assembler-language mini-
computers, originally designed to run 
laboratory instruments, grew up into 
the minicomputer and then micro-
computer market, untainted by any 
notions of parallel programming.

With the introduction of RISC ar-
chitectures in the early 1980s, much 
of the research for high-performance 
computers was rechanneled toward 
exploiting RISC for fast chips. It 
looked at the time that sophisticated 
compilers could make up for missing 
functions in the chips.

With two notable exceptions, most 
of the projects exploring alternatives 
to the “von Neumann architecture” ex-
pired and were not replaced with new 
projects or other initiatives. One excep-
tion was Arvind’s Monsoon Project at 
MIT,10 which demonstrated that mas-
sive parallelism is readily identified in 
the functional programming language 
Haskell, and then readily mapped to a 
shared memory multiprocessor. (Func-
tional languages generate all their val-
ues by evaluating functions without 
side effects.) 

The other project involved a group 
at the Lawrence Livermore National 
Laboratory studying scientific codes in 
the functional language Sisal, a deriva-
tive of MIT’s Val language; Sisal pro-
grams were as efficient as Fortran pro-
grams and could be readily compiled 
to massively parallel shared memory 
supercomputers.1,2,11

The current generations of super-
computers (and data warehouses) are 
based on thousands of CPU chips run-
ning in parallel. Unlike the innovative 
designs of the Burroughs systems, their 
hardware architectures conform to the 
conventional von Neumann machine. 
Their operating systems are little more 
than simple schedulers and message 
passing protocols, with complex func-
tions relegated to applications running 
on separate host machines.

The point is clear: ideas for arrang-
ing multiple processors to work togeth-
er in an integrated system have been 
with us for 50 years. What’s new?

Determinate Computation
One of the holy grails of research in 
parallel computation in the 1960s and 
1970s was called “determinacy.”7 De-
terminacy requires that a network of 
parallel tasks in shared memory always 
produces the same output for given 
input regardless of the speeds of the 
tasks. It should not be confused with 
a similar word, “deterministic,” which 
would require that the tasks be ordered 
in the same sequence every time the 
system runs.

A major result of this research was 
the “determinacy theorem.” A task is 
a basic computation that implements 
a function from its inputs to outputs. 
Two tasks are said to be in conflict if 
either of them writes into memory 
cells used by the other. In a system of 
concurrent tasks, race conditions may 
be present that make the final output 
depend on the relative speeds or or-
ders of task execution. Determinacy is 
ensured if the system is constrained 
so that every pair of conflicting tasks is 
performed in the same order in every 
run of the system. Then no data races 
are possible. Note that atomicity and 
mutual exclusion are not sufficient 
for determinacy: they ensure only that 
conflicting tasks are not concurrent, 
but not that they always executed in 
the same order.

A corollary of the determinacy theo-
rem is that the entire sequence of val-
ues written into each and every mem-
ory cell during any run of the system is 
the same for the given input. This cor-
ollary also tells us that any system of 
blocking tasks that communicates by 
messages using FIFO queues (instead 
of shared memory) is automatically 

determinate because the message 
queues always present the data items 
in the same order to the tasks receiving 
them.

Another corollary is that an imple-
mentation of a functional program-
ming language using concurrent tasks 
is determinate because the functions 
provide their data privately to their 
successors when they fire. There is no 
interference among the memory cells 
used to transmit data between func-
tions.

Determinacy is really important in 
parallel computation. It tells us we can 
unleash the full parallelism of a com-
putational method without worrying 
whether any timing errors or race con-
ditions will negatively affect the results.

Functional Programming 
and Composability
Another holy grail for parallel system 
has been modular composability. This 
would mean that any parallel program 
can be used, without change, as a com-
ponent of a larger parallel program.

Three principles are needed to en-
able parallel program composability. 
David Parnas wrote about two: infor-
mation hiding and context indepen-
dence. Information hiding means 
a task’s internal memory cannot be 
read or written by any other task. Con-
text independence means no part of 
a task can depend on values outside 
the task’s internal memory or input-
output memory. The third principle is 
argument noninterference; it says that 
a data object presented as input to two 
concurrent modules cannot be modi-
fied by either.

Functional programming languag-
es automatically satisfy these three 
principles; their modules are thus 
composable.

It is an open question how to struc-
ture composable parallel program 
modules from different frameworks 
when the modules implement non-
determinate behavior. Transaction 
systems are an extreme case. Because 
their parallel tasks may interfere in 
the records they access, they use lock-
ing protocols to guarantee mutual ex-
clusion. Transaction tasks cannot be 
ordered by a fixed order—their nonde-
terminacy is integral to their function. 
For example, an airplane seat goes to 
whichever task requested it first. The 

The parallel 
architecture research 
of the 1960s  
and 1970s solved 
many problems 
that are being 
encountered today.
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problem is to find a way to reap the 
benefits of composability for systems 
that are necessarily nondeterminate.

Virtual Memory
There are obvious advantages if the 
shared memory of a parallel multi-
processor could be a virtual memory. 
Parameters can be passed as pointers 
(virtual addresses) without copying 
(potentially large) objects. Compila-
tion and programming are greatly 
simplified because neither compilers 
nor programmers need to manage the 
placement of shared objects in the 
memory hierarchy of the system; that 
is done automatically by the virtual 
memory system.

Virtual memory is essential for 
modular composability when modules 
can share objects. Any module that 
manages the placement of a shared 
object in memory violates the infor-
mation hiding principle because other 
modules must consult it before using 
a shared object. By hiding object loca-
tions from modules, virtual memory 
enables composability of parallel pro-
gram modules.

There are two concerns about large 
virtual memory. One is that the virtual 
addresses must be large so that they 
encompass the entire address space in 
which the large computations proceed. 
The Multics system demonstrated that 
a very large virtual address space—ca-
pable of encompassing the entire file 
system—could be implemented effi-
ciently.8 Capability-based addressing5,6 
can be used to implement a very large 
address space.

The other concern about large vir-
tual memory pertains to performance. 
The locality principle assures us that 

each task accesses a limited but dy-
namically evolving working set of 
data objects.3 The working set is eas-
ily detected—it is the objects used in 
a recent backward-looking window—
and loaded into a processor’s cache. 
There is no reason to be concerned 
about performance loss due to an in-
ability to load every task’s working set 
into its cache.

What about cache consistency? A 
copy of a shared object will be present 
in each sharing task’s cache. How do 
changes made by one get transmitted 
to the other? It would seem that this 
problem is exacerbated in a highly par-
allel system because of the large num-
ber of processors and caches. 

Here again, the research that was 
conducted during the 1970s provides 
an answer. We can completely avoid 
the cache consistency problem by nev-
er writing to shared data. That can be 
accomplished by building the memory 
as a write-once memory: when a pro-
cess writes into a shared object, the 
system automatically creates a copy 
and tags it as the current version. 
These value sequences are unique in a 
determinate system. Determinate sys-
tems, therefore, give a means to com-
pletely avoid the cache consistency 
problem and successfully run a very 
large virtual memory.

Research Challenges
Functional programming languages 
(such as Haskell and Sisal) currently 
support the expression of large classes 
of application codes. They guarantee 
determinacy and support compos-
ability. Extending these languages to 
include stream data types would bring 
hazard-free expression to computa-
tions involving inter-module pipelines 
and signal processing. We badly need a 
further extension to support program-
ming in the popular object-oriented 
style while guaranteeing determinacy 
and composability.

We have means to express nondeter-
minate computation in self-contained 
environments such as interactive 
editors, version control systems, and 
transaction systems. We sorely need 
approaches that can combine determi-
nate and nondeterminate components 
into well-structured larger modules.

The full benefits of functional pro-
gramming and composability cannot 

be fully realized unless memory man-
agement and thread scheduling are 
freely managed at runtime. In the long 
run, this will require merging compu-
tational memory and file systems into 
a single, global virtual memory.

Conclusion
We can now answer our original ques-
tions. Parallelism is not new; the re-
alization that it is essential for con-
tinued progress in high-performance 
computing is. Parallelism is not yet 
a paradigm, but may become so if 
enough people adopt it as the stan-
dard practice and standard way of 
thinking about computation.

The new era of research in parallel 
processing can benefit from the results 
of the extensive research in the 1960s 
and 1970s, avoiding rediscovery of 
ideas already documented in the litera-
ture: shared memory multiprocessing, 
determinacy, functional programming, 
and virtual memory.	
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Kode Vicious  
Plotting Away 
Tips and tricks for visualizing large data sets.

doi:10.1145/1743546.1743561	 George V. Neville-Neil

Dear KV,
I’ve been working with some code that 
generates massive data sets, and while 
I’m perfectly happy looking at the raw 
textual output to find patterns, I’m 
finding that more and more often I 
have to explain my data to people who 
are either unwilling to or incapable of 
understanding the data in a raw for-
mat. I’m now being required to gener-
ate summaries, reports, and graphs for 
these people, and, as you can imagine, 
they are the ones with control over the 
money in the company, so I also have to 
be nice to them. I know this isn’t exact-
ly a coding question, but what do you 
do when you have to take the bits you 
understand quite well and summarize 
them for people like this?

If It Ain’t Text...

Dear Text,
Since I often come across as some sort 
of hard-core, low-level, bits-and-bytes 
kind of guy, I gather that you’re as-
suming my answer will be to tell man-
agement—and from your description 
these people must be management—
to take their fancy graphs and, well, do 
something that would give them paper 
cuts in hard-to-reach places. Much as I 
like to give just that kind of advice, the 
fact is, it’s just as important to be able 
to transform large data sets from col-
umns and lines of numbers into some-
thing that is a bit more compact and 
still as descriptive. For the polite and 
well-written version of this type of ad-
vice, please see the classic work by Ed-

ward Tufte, The Visual Display of Quan-
titative Information. Now for the Kode 
Vicious Kwik Kourse on Visualization, 
please read on.

While I agree it is cool to be able to 
look at some incredibly confusing out-
put in text and be able to pick out the 
needle you’re looking for, and while 
I’m sure this impresses many of your 
coder friends, this is just not a skill 
that’s going to take you very far. I also 
find that programmers who cannot 
understand the value in a single-page 
graph of their results are the same 
kinds of programmers who should not 

be allowed to code on their own. 
One should approach any such 

problem as a science experiment, and 
scientists know how to represent their 
results in many ways, including plot-
ting them on paper. At some point in 
your career you’re going to have to fig-
ure out how to get easy-to-read results 
that you can look at and compare side 
by side. A plot of your data can, when 
done well, give you a lot of information 
and tell you a lot about what might be 
happening with your system. Note the 
all-important phrase, when done well, 
in that previous sentence. As is the case 
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with many tools, the plotting of data 
can mislead you as easily as it can lead 
you somewhere.

There are plenty of tools with which 
to plot your data, and I usually shy away 
from advocating particular tools in 
these responses, but I can say that if you 
were trying to plot a lot of data, where a 
lot is more than 32,767 elements, you 
would be wise to use something like 
gnuplot. Every time I’ve seen people try 
to use a certain vendor’s spreadsheet to 
plot data sets larger than 32,767, things 
have gone awry—I might even say that 
they were brought up “short” by that 
particular program. The advantage of 
gnuplot is that as long as you have a lot 
of memory (and memory is inexpen-
sive now), you can plot very large data 
sets. KV recently outfitted a machine 
with 24GB of RAM just to plot some im-
portant data. I’m a big believer in big 
memory for data, but not for programs, 
but let’s just stop that digression here.

Let’s now walk through the impor-
tant points to remember when plotting 
data. The first is that if you intend to 
compare several plots, your measure-
ment axis—the one on which you’re 
showing the magnitude of a value—
absolutely must remain constant or 
be easily comparable among the total 
set of graphs that you generate. A plot 
with a y-axis that goes from 0 to 10 and 
another with a y-axis from 0 to 25 may 
look the same, but their meaning is 
completely different. If the data you’re 
plotting runs from 0 to 25, then all of 
your graphs should run from, for exam-
ple, 0 to 30. Why would you waste those 
last five ticks? Because when you’re 
generating data from a large data set, 
you might have missed something, per-
haps a crazy outlier that goes to 60, but 
only on every 1,000th sample. If you set 
the limits of your axes too tightly ini-
tially, then you might never find those 
outliers, and you would have done an 
awful lot of work to convince yourself—
and whoever else sees your pretty little 
plot—that there really isn’t a problem, 
when in fact it was right under your 
nose, or more correctly, right above the 
limit of you graph.

Since you mention you are plotting 
large data sets, I’ll assume you mean 
more than 100,000 points. I have rou-
tinely plotted data that runs into the 
millions of individual points. When 
you plot the data the first time, it’s im-

portant not only to get the y-axis limits 
correct, but also to plot as much data 
as absolutely possible, given the limits 
of the system on which you’re plotting 
the data. Some problems or effects are 
not easily seen if you reduce the data too 
much. Reduce the data set by 90% (look 
at every 10th sample), and you might 
miss something subtle but important. If 
your data won’t all fit into main memory 
in one go, then break it down by chunks 
along the x-axis. If you have one million 
samples, graph them 100,000 at a time, 
print out the graphs, and tape them to-
gether. Yes, it’s kind of a quick-and-dirty 
solution but it works, trust me. 

Another problem occurs when you 
want to compare two data sets directly 
on the same plot. Perhaps you have 
data from several days and you want 
to see how Wednesday and Thursday 
compare, but you don’t have enough 
memory to plot both days at once, 
only enough for one day at a time. 
You could beg your IT department for 
more memory or, if you have a screw-
driver, “borrow” some memory from a 
coworker, but such measures are un-
necessary if you have a window. Print 
both data sets, making sure both axes 
line up, and then hold the pages up to 
the window. Oh, when I said “window,” 
I meant one that allows light from that 
bright yellow ball in the sky to enter 
your office, not one that is generated by 
your computer.

Thus far I have not mentioned the 
x-axis, but let’s remedy that now. If 
you’re plotting data that changes over 
time, then your x-axis is actually a time 
axis. The programmers who label this 
“samples,” and then do all kinds of 
internal mental transformations, are 
legion—and completely misguided. 
While you might know that your sam-
ples were taken at 1KHz and therefore 
that every 1,000 samples is one second, 
and 360,000 samples is an hour, most 
of the people who see your plots are not 
going to know this, even if you cleverly 
label your x-axis “1KHz.” If you’re plot-
ting something against time, then your 
x-axis really should be time. 

This recommendation is even more 
important when graphing long-run-
ning data—for example, a full working 
day. It turns out that computers are 
slaves to people and while many people 
have predicted that the work done by 
computers would be far more consis-

tent over a 24-hour day than work done 
by humans, all of those people have 
been, and continue to be, dead wrong. 
If you’re plotting data over a day, then it 
is highly likely that you will see changes 
when people wake up, when they go to 
work, take meals, go home, and sleep. 
It might be vitally important for you to 
notice that something happens every 
day at 4 p.m. Perhaps your systems in 
England are recording when people 
take tea, rather than an odd slowdown 
in the system. The system you’re watch-
ing might be underutilized because the 
tea trolley just arrived! If your plot has 
time, then use time as an axis.

As I wrap this up, you may have 
noticed that I did not mention color, 
fonts, font size, or anything else relat-
ed to how the graph looks on paper. I 
didn’t leave these factors out because 
I’m a total nerd who can’t match any 
of his own clothes. I can easily match 
clothes, since black goes with every-
thing. Most people I’ve seen generat-
ing graphs spend far too much time 
picking a color or a font. Take the de-
faults; just make sure the lines on the 
graph are consistently representing 
your data. Choosing a graph color or 
text font before getting the data cor-
rectly plotted is like spending hours 
twiddling your code highlighting col-
ors in your IDE instead of doing the ac-
tual work of coding. It’s a time waster. 
Now, get back to work.

KV
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Law and Technology   
Intel’s Rebates: Above  
Board or Below the Belt? 
Over several years, Intel paid billions of dollars to its customers.  
Was it to force them to boycott products developed by its rival AMD or  
so they could sell its microprocessors at lower prices? 

doi:10.1145/1743546.1743562	 François Lévêque 

O
v e r  a  f i v e - y e a r  period, 
Dell allegedly received pay-
ments from Intel averag-
ing $300 million per quar-
ter.a The Attorney General 

of the State of New York, Andrew M. 
Cuomo, accuses the Santa Clara-based 
chip firm of making these payments 
to force its OEM customer not to use 
AMD’s x86 CPUs in its computers, in 
violation of antitrust law. Intel is al-
leged to have infringed Section 2 of the 
Sherman Act, which opposes behavior 
by firms aimed at creating or preserv-
ing a monopoly other than by merit. 
In December 2009, the Federal Trade 
Commission also filed suit against In-
tel.b The FTC accuses the chip maker 
of numerous anticompetitive unfair 
practices, including various pay-
ments to its customers in the form of 
lump sums or discounts.

In Europe, the case is closed, or al-
most. The billions of dollars that In-
tel paid to Dell, HP, and several other 
firms were deemed anticompetitive 
behavior. The European Commission 
found that the payments amounted 
to a strategy to exclude AMD from the 
microprocessor market. They were 
considered akin to rebates and re-

a	 Complaint by Attorney General of the State of 
New York, Andrew M. Cuomo against Intel Cor-
poration before the United States District Court 
for the District of Delaware, November 4, 2009.

b	 Administrative complaint of the U.S. FTC 
against Intel Corporation, docket No. 9341, 
December 14, 2009.

strictions imposed on buyers, which 
are incompatible with European an-
titrust law. The Commission found 
against Intel in May 2009 and fined 
the firm almost $2 billion.c So, in-
stead of going to its customers, Intel’s 
money replenished the coffers of the 
European Union! Intel immediately 
appealed to the EU Court of First In-
stance in Luxembourg. It also signed 
a $1.25 billion settlement agreement 
with Dell to put an end to its antitrust 

c	 European Commission’s decision against In-
tel Corp., case COMP/37.990, May 13, 2009.

and patent allegations. 
Intel considers the payments it 

made to customers were, on the con-
trary, a reflection of vigorous competi-
tion and beneficial to consumers. 

Who’s right? Who’s wrong? The par-
ties offer diametrically opposed ver-
sions of the story.

Plaintiff Perspective
The story told by the plaintiff State of 
New York and by the European Com-
mission can be summed up as follows. 
Intel and AMD are practically the only 
manufacturers of x86 CPUs, the micro-

A netbook equipped with an Intel Atom processor is demonstrated at the International 
Consumer Electronics Show in Las Vegas in 2009. 
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strictions. In Europe, both are gener-
ally prohibited because they are per-
ceived to be anticompetitive because 
they tend to exclude competitors and 
reduce consumer choice.

Defendant Perspective
Intel’s version is nothing like the pre-
vious story.d Since 2000, the Santa 
Clara-based chip maker has faced ag-
gressive price competition from AMD 
and it has responded by defending 
itself fairly. AMD’s failure to succeed 
in some market segments is due to 
its own shortcomings, especially in-
sufficient production capacity, not to 
any action by Intel. Between 2002 and 
2007, the price of microprocessors 
fell by 36% on average per year and 
AMD’s market share among the main 
computer manufacturers has risen 
from 8% to 22%. These figures contra-
dict the claims that Intel has behaved 

d	 See “Why the European Commission’s Intel 
decision is Wrong,” and “Intel’s Response to 
the EC’s Provisional Non-Confidential Version 
of the Commission Decision of 13 May 2009,” 
September 21, 2009; http://www.intel.com/
pressroom/legal/news.htm

processors inside most computers. Al-
though four times the size of AMD, In-
tel was outpaced by the smaller firm in 
innovation. In particular, Intel is hav-
ing more trouble negotiating the tran-
sition from 32-bit architecture to the 
64-bit architecture that makes comput-
ers more powerful. According to New 
York Attorney General Cuomo, Intel 
has a “big competitive hole in its prod-
uct development roadmap.” In 2003, 
AMD was the first to introduce a new-
generation processor for the high-end, 

high-margin corporate server market. 
Intel feared its competitor would erode 
its profits on this segment, since busi-
ness users would be eager to purchase 
AMD-based desktops and notebooks. 

To prevent that market shift, In-
tel paid Dell and HP to purchase Intel 
microprocessors almost exclusively, 
and paid Acer and Lenovo to delay the 
launch of their AMD-based notebooks. 
In other words, Intel paid its custom-
ers to protect a segment of its market. 
Dell was by far the biggest beneficiary 
of these practices. Between February 
2002 and January 2007, Dell received 
more than $6 billion in return for 
maintaining an exclusive procurement 
agreement with Intel. Without these 
payments, Dell would have reported a 
loss in some quarters. According to the 
State of New York, the Federal Trade 
Commission, and the European Com-
mission, the money that Intel paid its 
customers was conditional on their 
boycotting AMD’s products. In techni-
cal terms, the retroactive rebates given 
to some OEM customers are loyalty 
rebates, and the restrictions imposed 
on OEMs’ sales policies are naked re-

Who’s right?  
Who’s wrong? 
The parties offer 
diametrically 
opposed versions  
of the story. 
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like a monopolist and AMD has been 
squeezed out of the market. Comput-
er manufacturers know how to play 
off their two suppliers to their advan-
tage. Intel claims that the payments to 
customers were not tied to exclusive 
or near-exclusive purchasing commit-
ments, but were volume-based dis-
counts enabled by economies of scale 
in production. Thanks to Intel’s dis-
count policy, consumers benefit from 
lower prices. The prices were always 
higher than Intel’s costs. Therefore In-
tel cannot be accused of selling below 
cost to drive out AMD.  

Whose story should we believe? 
How can we tell who’s right?

In order to decide between the 
two versions, the first thing to do is of 
course to look at the facts. This is not 
easy for an outside observer (including 
this writer) because the evidence is off 
limits. Only the public statements and 
official decisions are available. In the 
U.S. lawsuits, the State of New York’s 
complaint and the FTC’s statements 
total less than 100 pages. In the EU 
case, the material is more abundant. 
The European Commission’s decision 
against Intel runs to more than 500 
pages and cites numerous statements 
by the parties. For example, a Lenovo 
purchasing manager wrote in an email 
message dated December 11, 2006, 
“Last week Lenovo cut a lucrative deal 
with Intel. As a result of this, we will not 
be introducing AMD-based products 
in 2007 for our notebook products.” 
Thousands of figures are also report-
ed. Unfortunately, in order to respect 
business secrecy, almost all the figures 
have been deleted from the public ver-
sion of the decision. Thus, there is no 
information about the amount of the 
discounts granted to Dell. 

A factual approach is also hampered 
by the absence of formal contracts. 
What Intel requested in exchange for 
the payments to its customers is not 
mentioned in written documents. 
Most of the agreements were oral and 
sealed with a handshake. The few writ-
ten agreements raise no antitrust con-
cerns. The State of New York and the 
European Commission accuse Intel 
of having deliberately removed from 
the written documents the litigious 
clauses with respect to antitrust law. 
If the allegations were proved true, the 
antitrust agencies would be dealing 

with a situation akin to a cartel. Since 
the agreements were secret, evidence 
is scant and often only indirect. 

For want of being able to decide on 
the basis of the facts, an outside ob-
server can call theory to the rescue.

The first principle to recall is that 
antitrust law seeks to protect consum-
ers, not competitors. It does not op-
pose the elimination of less-efficient 
competitors; it prohibits behavior of 
firms that results in higher prices or 
lower-quality products. While clearly 
detrimental to AMD, did Intel’s actions 
harm consumers? 

In the case of the naked restrictions, 
the damage to consumers is not in 
doubt. Let’s take the example of Intel’s 
lump sum payments to HP, Lenovo, 
and Acer in exchange for delaying the 
launch of their AMD-based computers. 
That practice (if proven) did hurt con-
sumers: some had to wait before buy-
ing the product they preferred, while 
others, in more of a hurry, had to buy 
hardware that was not their first choice. 
Moreover, consumers who were not in-
terested in buying AMD-based desktops 
and notebooks did not gain anything. 
The money paid by Intel did not affect 
the OEMs’ marginal cost and, conse-
quently, the price of their computers. 
Intel and the firms it paid off were the 
only beneficiaries of these transactions.

The case of the rebates is a more 
complicated situation. When rebates 
are linked to volumes purchased, they 
are good for consumers. They enable 
manufacturers to pass on some of the 
savings from economies of scale in 
production and distribution. In other 
words, they bring prices down for the 
consumer. But retroactive rebates tied 

to market share targets (for example, 
the buyer receives a rebate if it cov-
ers X% of its requirements with the 
same supplier) are a different story. If 
a competitor wants to obtain a signifi-
cant share of the customer’s purchas-
es, it must compensate for the loss 
of the rebates. For example, if Intel 
offers $100,000 on the condition that 
HP fulfills 95% of its requirements 
with Intel, AMD will be forced to offer 
the same amount if it wants HP to buy 
more than 5% of its chips from AMD. 
That threshold effect can have sur-
prising effects. It would explain, for 
example, why HP refused AMD’s offer 
of a million Athlon XP processors free 
of charge. If the gift is worth less than 
the rebate forfeited by not purchasing 
95% of its requirements from Intel, it 
is rational for HP to refuse it. 

Conclusion
Economic literaturee shows this thresh-
old effect can lead to the exclusion of 
competitors that are at least as effi-
cient as the firm offering the rebates. 
And consumers lose out on two counts. 
First, there are no more competitors to 
push down the price set by the domi-
nant firm. So consumers pay higher 
prices. Second, there is no competitive 
pressure driving the firm to innovate. 
So products are manufactured at high-
er cost and their quality stagnates.

The European Commission sought 
to show that Intel’s loyalty rebates in-
deed had a foreclosure effect. Accord-
ing to the Commission, a rival with the 
same costs as Intel would have been ex-
cluded. Intel contests this conclusion 
by finding fault with the Commission’s 
calculations. But once again, the prob-
lem of access to the data and evidence 
makes it impossible to verify the valid-
ity of the different viewpoints. Theory 
without the facts is unfortunately of 
little use for vindicating either the de-
fendant Intel or the plaintiffs.  	

e	 See, for example, Nicolas Economides, ‘‘Loy-
alty/Requirement Rebates and the Antitrust 
Modernization Commission: What is the Ap-
propriate Liability Standard?, Antitrust Bulle-
tin 54, 2 (Summer 2009), 259–279.

The problem of 
access to the  
data and evidence 
makes it impossible 
to verify the validity 
of the different 
viewpoints.

François Lévêque (francois.leveque@mines-paristech.fr) 
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R
esearchers in computer 

s c i e n c e  d e p a r t m e n t s 
throughout the U.S. are 
violating federal law and 
their own organization’s 

regulations regarding human sub-
jects research—and in most cases 
they don’t even know it. The violations 
are generally minor, but the lack of 
review leaves many universities open 
to significant sanctions, up to and 
including the loss of all federal re-
search dollars. The lack of review also 
means that potentially hazardous re-
search has been performed without 
adequate review by those trained in 
human subject protection.

We argue that much computer sci-
ence research performed with the In-
ternet today involves human subject 
data and, as such, must be reviewed 
by Institutional Review Boards—in-
cluding nearly all research projects 
involving network monitoring, email, 
Facebook, other social networking 
sites and many  Web sites with user-
generated content. Failure to address 
this issue now may cause significant 
problems for computer science in the 
near future.

Prisons and Syphilis 
At issue are the National Research Act 
(NRA) of 1974a and the Common Rule,b 

a	 PL 93-348, see http://history.nih.gov/research/
downloads/PL93-348.pdf

b	 45 CFR 46, see http://www.hhs.gov/ohrp/hu-
mansubjects/guidance/45cfr46.htm

which together articulate U.S. policy 
on the Protection of Human Subjects. 
This policy was created following a 
series of highly publicized ethical 
lapses on the part of U.S. scientists 
performing federally funded re-
search. The most objectionable cases 
involved human medical experimen-
tation—specifically the Tuskegee 
Syphilis Experiment, a 40-year long 
U.S. government project that delib-
erately withheld syphilis treatment 

from poor rural black men. Another 
was the 1971 Stanford Prison Experi-
ment, funded by the U.S. Office of 
Naval Research, in which students 
playing the role of prisoners were 
brutalized by other students playing 
the roles of guards. 

The NRA requires any institution 
receiving federal funds for scientific 
research to set up an Institutional Re-
view Board (IRB) to approve any use 
of humans before the research takes 

Viewpoint  
Institutional Review Boards 
and Your Research 
A proposal for improving the review procedures for research projects that  
involve human subjects and their associated identifiable private information.

doi:10.1145/1743546.1743563	 Simson L. Garfinkel and Lorrie Faith Cranor
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place. The regulation that governs 
these boards is the Common Rule—
“Common” because the same rule was 
passed in 1991 by each of the 17 federal 
agencies that fund most scientific re-
search in the U.S. 

Computer scientists working in the 
field of Human-Computer Interaction 
(HCI) have long been familiar with 
the Common Rule: any research that 
involves recruiting volunteers, bring-
ing them into a lab and running them 
through an experiment obviously in-
volves human subjects. NSF grant ap-
plications specifically ask if human 
subjects will be involved in the research 
and require that applicants indicate the 
date IRB approval was obtained. 

But a growing amount of research 
in other areas of computer science 
also involves human subjects. This 
research doesn’t involve live human 
beings in the lab, but instead involves 
network traffic monitoring, email, on-
line surveys, digital information creat-
ed by humans, photographs of humans 
that have been posted on the Internet, 
and human behavior observed via so-
cial networking sites. 

The Common Rule creates a four-
part test that determines whether or 
not proposed activity must be reviewed 
by an IRB:

1.	 The activity must constitute sci-
entific “research,” a term that the Rule 
broadly defines as “a systematic inves-
tigation, including research develop-
ment, testing and evaluation, designed 
to develop or contribute to generaliz-
able knowledge.”c 

2.	 The research must be federally 
funded.d 

3.	 The research must involve human 
subjects, defined as “a living individual 
about whom an investigator (whether 
professional or student) conduct-
ing research obtains (1) data through 
intervention or interaction with the 
individual, or (2) identifiable private 
information.”e 

4.	 The research must not be “ex-
empt” under the regulations.f 

The exemptions are a kind of safety 
valve to prevent IRB regulations from 
becoming utterly unworkable. For 

c	  §46.102 (d)
d	  §46.103 (a)
e	  §46.102 (f)
f	  §46.101 (b)

computer scientists the relevant ex-
emptions are “research to be conduct-
ed on educational practices or with ed-
ucational tests” (§46.101(b)(1&2)); and 
research involving “existing data, doc-
uments, [and] records…” provided that 
the data set is either “publicly avail-
able” or that the subjects “cannot be 
identified, directly or through identi-
fiers linked to the subjects’’(§46.101(b)
(4)). Surveys, interviews, and observa-
tions of people in public are generally 
exempt, provided that identifiable in-
formation is not collected, and pro-
vided that the information collected, 
if disclosed, could not “place the sub-
jects at risk of criminal or civil liabil-
ity or be damaging to the subjects’ 
financial standing, employability, or 
reputation’’(§46.101(b)(2)(i&ii)).

IRBs exist to review proposed re-
search and protect the interests of 
the human subjects. People can par-
ticipate in dangerous research, but it’s 
important that people are informed, 
if possible, of the potential risks and 
benefits—both to themselves and to 
society at large. 

What this means to computer sci-
entists is that any federally funded 
research involving data generated by 
people that is “identifiable” and not 
public probably requires approval in 
advance by your organization’s IRB. 
This includes obvious data sources 
like network traffic, but it also in-
cludes not so obvious sources like 
software that collects usage statistics 
and “phones home.” 

Complicating matters is the fact that 
the Common Rule allows organiza-
tions to add additional requirements. 
Indeed, many U.S. universities require 
IRB approval for any research involving 
human subjects, regardless of funding 
source. Most universities also prohibit 
researchers from determining if their 
own research is exempt. Instead, U.S. 
universities typically require that all 
research involving human beings be 
submitted to the school’s IRB.

This means a broad swath of “ex-
empt” research involving publicly 
available information nevertheless re-
quires IRB approval. Performing social 
network analysis of Wikipedia pages 
may fall under IRB purview: Wikipedia 
tracks which users edited which pages, 
and when those edits were made. Us-
ing Flickr pages as a source of JPEGs 
for analysis may require IRB approval, 
because Flickr pages frequently have 
photos of people (identifiable informa-
tion), and because the EXIF “tags” that 
many cameras store in JPEG images 
may contain serial numbers that can 
be personally identifiable. Analysis of 
Facebook poses additional problems 
and may not even qualify as exempt: 
not only is the information person-
ally identifiable, but it is frequently not 
public. Instead, Facebook information 
is typically only available to those who 
sign up for the service and get invited 
into the specific user’s network. 

We have spoken with quite a few 
researchers who believe the IRB regu-
lations do not apply to them because 
they are working with “anonymized” 
data. Ironically, the reverse is probably 
true: IRB approval is required to be 
sure the data collection is ethical, that 
the data is adequately protected prior 
to anonymization, and that the ano-
nymization is sufficient. Most schools 
do not allow the experimenters to an-
swer these questions for themselves, 
because doing so creates an inherent 
conflict of interest. Many of these re-
searchers were in violation of their 
school’s regulations; some were in vio-
lation of federal regulations.

How to Stop Worrying 
and Love the IRB
Many IRBs are not well equipped to 
handle the fast-paced and highly tech-
nical nature of computer-related re-
search. Basic questions arise, such as, 

Much computer 
science research 
performed with  
the Internet today 
involves human 
subject data and, 
as such, must 
be reviewed by 
Institutional  
Review Boards.
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Are Internet Protocol addresses per-
sonally identifiable information? What 
is “public” and what is not? Is encrypt-
ed data secure? Can anonymized data 
be re-identified? Researchers we have 
spoken with are occasionally rebuffed 
by their IRBs—the IRBs insist that no 
humans are involved in the research—
ignoring that regulations also apply to 
“identifiable private information.” 

Another mismatch between com-
puter science research and IRBs is 
timescale. CS research progresses at a 
much faster pace than research in the 
biomedical and behavioral fields. In 
one case we are aware of, an IRB took 
more than a year to make a decision 
about a CS application. But even two 
or three months to make a decision—
typical of many IRBs—is too slow for a 
student in a computer science course 
who wants to perform a social network 
analysis as a final project. 

For example, one of our studies, 
which involved observing how mem-
bers of our university community re-
sponded to simulated phishing attacks 
over a period of several weeks, had 
to be shortened after being delayed 
two months by an understaffed IRB. 
With the delayed start date, part of 
the study would have taken place over 
winter break, when few people are on 
campus. Another study we worked on 
was delayed three months after an 
IRB asked university lawyers to review 
a protocol to determine whether it 
would violate state wiretap laws.

In another case, researchers at In-
diana University worked with their 
IRB and the school’s network secu-
rity group to send out phishing attacks 
based on data gleaned from Facebook.g 
Because of the delays associated with 
the approval process, the phishing 
messages were sent out at the end of 
the semester, just before exams, rather 
than at the beginning of the semes-
ter. Many recipients of the email com-
plained vociferously about the timing. 

Another reason computer scientists 
have problems with IRBs is the level 
of detail the typical IRB application 
requires. Computer scientists, for the 
most part, are not trained to carefully 
plan out an experiment in advance, to 

g	  T. Jagatic, N. Johnson, M. Jakobsson, and F. 
Menczer. Social phishing. Commun. ACM 50, 
10 (Oct. 2007), 94–100.

figure out which data will be collected, 
and then to collect the results in a man-
ner that protects the privacy of the data 
subjects. (Arguably, computer scien-
tists would benefit from better train-
ing on experimental design, but that 
is a different issue.) We have observed 
that many IRB applications are delayed 
because of a failure on the part of CS 
researchers to make these points clear.

Finally, many computer scientists 
are unfamiliar with the IRB process 
and how it applies to them, and may 
be reluctant to engage with their IRB 
after having heard nothing but com-
plaints from colleagues who have 
had their studies delayed by a slow 
IRB approval process. While the 
studies that CS researchers perform 
are often exempt or extremely low 
risk, it is becoming increasingly easy 
to collect human subjects data over 
the Internet that needs to be prop-
erly protected to avoid harming sub-
jects. Likewise, the growing amount 
of research involving honeypots, bot-
nets, and the behavior of anonymity 
systems would seem to require IRBs, 
since the research involves not just 
software, but humans—both crimi-
nals and victims. 

The risks to human subjects from 
computer science research are not al-
ways obvious, and the IRB can play an 
important role in helping computer sci-
entists identify these risks and insure 
that human subjects are adequately 
protected. Is there a risk that data col-
lected on computer security incidents 
could be used by employers to identify 
underperforming computer security 
administrators? Is there a risk that ano-

nymized search engine data could be 
re-identified to reveal what particular 
individuals are searching for? Can net-
work traffic data collected for research 
purposes be used to identify copyright 
violators? Can posts to LiveJournal and 
Facebook be correlated to learn the 
identities of children who are frequent-
ly left home alone by their parents? 

In order to facilitate more rapid IRB 
review, we recommend the develop-
ment of a new, streamlined IRB appli-
cation process. Experimenters would 
visit a Web site that would serve as a 
self-serve “IRB kiosk.” This site would 
ask experimenters a series of questions 
to determine whether their research 
qualifies as exempt. These questions 
would also serve to guide experiment-
ers in thinking through whether their 
research plan adequately protects hu-
man subjects. Qualifying experiment-
ers would receive preliminary approval 
from the kiosk and would be permitted 
to begin their experiments. IRB repre-
sentatives would periodically review 
these self-serve applications and grant 
final approval if everything was in order.

Such a kiosk is actually permissible 
under current regulations, provided 
that the research is exempt. A kiosk 
could even be used for research that is 
“expedited” under the Common Rule, 
since expedited research can be ap-
proved by the IRB Chair or by one or 
more “experienced reviewers.”h In the 
case of non-exempt expedited research, 
the results of the Kiosk would be re-
viewed by such a reviewer prior to per-
mission being given to the researcher. 

Institutional Review Board chairs 
from many institutions have told us 
informally that they are looking to 
computer scientists to come up with 
a workable solution to the difficulty 
of applying the Common Rule to com-
puter science. It is also quite clear that 
if we do not come up with a solution, 
they will be forced to do so.	

h	  §46.110 (b)
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T
he Co mput er History  Mu-
seum has an active program 
to gather videotaped histo-
ries from people who have 
done pioneering work in 

this first century of the information 
age. These tapes are a rich aggregation 
of stories that are preserved in the col-
lection, transcribed, and made avail-
able on the Web to researchers, stu-
dents, and anyone curious about how 
invention happens. The oral histories 
are conversations about people’s lives. 
We want to know about their upbring-
ing, their families, their education, 
and their jobs. But above all, we want 
to know how they came to the passion 
and creativity that leads to innovation.

Presented here are excerptsa from 
four interviews with Edward A. Feigen-
baum, the Kumagai Professor of Com-
puter Science, Emeritus, at Stanford 
University and a pioneering researcher 
in artificial intelligence. The interviews 
were conducted in 2007 separately by 
Donald Knuth and Nils Nilsson, both 
professors of computer science at Stan-
ford University.  —Len Shustek

What was your family background?
I was born in New Jersey in 1936 to a 
culturally Jewish family. That Jewish 
culture thinks of itself as the people of 

a	 Oral histories are not scripted, and a tran-
script of casual speech is very different from 
what one would write. I have taken the liberty 
of editing liberally and reordering freely for 
presentation. For the original transcripts, see 
http://archive.computerhistory.org/search/oh/

the book, and so there’s a tremendous 
focus on learning, and books, and 
reading. I learned to read very early.

What got you interested in 
science and engineering?
My stepfather was the only one in the 
family who had any college education. 
Once a month he would take me to the 
Hayden Planetarium of the American 
Museum of Natural History. I got really 
interested in science, mostly through 
astronomy, at about 10 years old.

My stepfather worked as an accoun-
tant and had a Monroe calculator. I 
was absolutely fascinated by these cal-

culators and learned to use them with 
great facility. That was one of my great 
skills—in contrast to other friends of 
mine whose great skills were things 
like being on the tennis team.

I was a science kid. I would read 
Scientific American every month—if 
I could get it at the library. One book 
that really sucked me into science was 
Microbe Hunters. We need more books 
like Microbe Hunters to bring a lot 
more young people into science now.

Why did you study  
electrical engineering?
I got As in everything, but I really en-

Interview 
An Interview with  
Ed Feigenbaum 
ACM Fellow and A.M. Turing Award recipient  Edward A. Feigenbaum, 
a pioneer in the field of expert systems, reflects on his career.
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he handed us an IBM 701 manual, an 
early IBM vacuum tube computer. That 
was a born-again experience! Taking 
that manual home, reading it all night 
long—by the dawn, I was hooked on 
computers. I knew what I was going 
to do: stay with Simon and do more of 
this. But Carnegie Tech did not have 
any computers at that time, so I got a 
job at IBM for the summer of 1956 in 
New York.

What did you learn at IBM?
First, plug board programming, which 
was a phenomenally interesting thing 
for a geeky kid. Second, the IBM 650, 
because by that time it became known 
that Carnegie Tech would be getting a 
650. Third, the IBM 704, which was a 
successor machine to the 701.

When I got back to Carnegie Tech 
in September 1956 and began my 
graduate work, there was Alan Perlis, a 
wonderful computer genius, and later 
the first Turing Award winner. Perlis 
was finishing up an amazing program 
called a compiler. That was “IT,” Inter-
nal Translator, and it occupied 1,998 
words of the 2,000-word IBM 650 drum.

I had known about the idea of alge-
braic languages because in the summer 
at IBM someone had come down from 
the fourth floor to talk to the graduate 
students and tell them about a new 
thing that had just hit the scene. You 
didn’t have to write “CLA” for “clear 
and add,” and you didn’t have to write 
“005” for “add.” You could write a for-
mula, and a program would translate 
that formula into machine language. 
FOR-TRAN. The guy was John Backus, 

joyed most the math and physics and 
chemistry. So why electrical engineer-
ing, as opposed to going into physics? 
Around my family, no one had ever 
heard of a thing called a physicist. In 
this middle-class to lower-middle-
class culture people were focused on 
getting a job that would make money, 
and engineers could get jobs and make 
money.

I happened to see an advertise-
ment for scholarships being offered 
by an engineering school in Pittsburgh 
called Carnegie Institute of Technol-
ogy. I got a scholarship, so that’s what 
I did. Life is an interesting set of choic-
es, and the decision to go to Carnegie 
Tech (now Carnegie-Mellon Univer-
sity) was a fantastically good decision.

Something else there got you excited.
I had a nagging feeling that there was 
something missing in my courses. 
There’s got to be more to a university 
education! In the catalog I found a re-
ally interesting listing called “Ideas 
and Social Change,” taught by a young 
new instructor, James March. The first 
thing he did was to expose us to Von 
Neumann’s and Morgenstern’s “Theo-
ry of Games and Economic Behavior.” 
Wow! This is mind-blowing! My first 
published paper was with March in so-
cial psychology, on decision-making in 
small groups.

March introduced me to a more se-
nior and famous professor, Herbert 
Simon. That led to my taking a course 
from Simon called “Mathematical 
Models in the Social Sciences.” I got to 
know Herb, and got to realize that this 
was a totally extraordinary person.

In January 1956 Herb walked into 
our seminar of six people and said 
these famous words: “Over Christmas 
Allen Newell and I invented a think-
ing machine.” Well, that just blew our 
minds. He and Newell had formulated 
the Logic Theorist on December 15th, 
1955. They put together a paper pro-
gram that got implemented in the lan-
guage called IPL-1, which was not a lan-
guage that ran on any computer. It was 
the first list processing language, but it 
ran in their heads.

That led to your first 
exposure to computers.
When we asked Herb in that class, 
“What do you mean by a machine?” 

who had come downstairs to talk to 
us. IT’s introduction actually preceded 
Fortran’s by about nine months.

What was it like to use 
a computer then?
There was no staff between you and the 
computer. You could book time on the 
computer, then you went and did your 
thing. A personal computer! I loved it. 
I loved the lights, I loved pressing the 
switches. This idea has been very im-
portant for my career—the hands on, 
experimental approach to computer 
science as opposed to the theoretical 
approach. Experiment turns out to be 
absolutely vital.

I was able to write a rather compli-
cated—for that time—simulation of 
two companies engaged in a duopolis-
tic decision-making duel about pric-
ing of tin cans in the can industry, the 
second such simulation of economic 
behavior ever written. It led to my first 
conference paper, in December 1958, 
at the American Economics Associa-
tion annual meeting.

What did you do for your dissertation?
A model called EPAM, Elementary Per-
ceiver and Memorizer, a computer sim-
ulation model of human learning and 
memory of nonsense syllables. 

I invented a data structure called a 
Discrimination Net—a memory struc-
ture that started out as nothing when 
the learner starts. List structures had 
just been invented, but no one had 
tried to grow trees. I had to, because 
I would start with two nonsense syl-
lables in the Net, and then the next 
pair would come in and they’d have to 
“grow into” the net somewhere. These 
were the first adaptively growing trees. 
Now here’s an amazing and kind of stu-
pid thing that shows what it means to 
focus your attention on x rather than 
y. We were focused on psychology. We 
were not focused on what is now called 
computer science. So we never pub-
lished anything about those adaptively 
growing trees, except as they related 
to the psychological model. But other 
people did see trees as a thing to write 
papers about in the IT literature. So I 
missed that one!

Where was your first academic job?
I had wanted to come to the West 
Coast, and the University of California 

This idea has been 
very important 
for my career—
the experimental 
approach to 
computer science 
as opposed to the 
theoretical approach.
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at Berkeley was excited about getting 
me. There I taught two things: organi-
zation theory à la March and Simon, 
and the new discipline called Artificial 
Intelligence.

There were no books on the subject 
of AI, but there were some excellent 
papers that Julian Feldman and I pho-
tocopied. We decided that we needed 
to do an edited collection, so we took 
the papers we had collected, plus a few 
more that we asked people to write, 
and put together an anthology called 
Computers and Thought that was pub-
lished in 1963.

The two sections mirrored two 
groups of researchers. There were 
people who were behaving like psy-
chologists and thinking of their work 
as computer models of cognitive pro-
cesses, using simulation as a tech-
nique. And there were other people 
who were interested in the problem of 
making smart machines, whether or 
not the processes were like what peo-
ple were doing.

How did choosing one of those 
lead you to Stanford?
The choice was: do I want to be a psy-
chologist for the rest of my life, or do I 
want to be a computer scientist? I looked 
inside myself, and I knew that I was a 
techno-geek. I loved computers, I loved 
gadgets, and I loved programming. The 
dominant thread for me was not going 
to be what humans do, it was going to be 
what can I make computers do. 

I had tenure at Berkeley, but the busi-
ness school faculty couldn’t figure out 
what to make of a guy who is publishing 
papers in computer journals, artificial 
intelligence, and psychology. That was 
the push away from Berkeley. The pull 
to Stanford was John McCarthy.

How did you decide on your 
research program?
Looking back in time, for reasons that 
are not totally clear to me, I really, real-
ly wanted smart machines. Or I should 
put the “really” in another place: I re-
ally wanted really smart machines.

I wasn’t going to get there by walk-
ing down the EPAM road, which mod-
els verbal learning, or working on puz-
zle-solving deductive tasks. I wanted 
to model the thinking processes of 
scientists. I was interested in problems 
of induction. Not problems of puzzle 

solving or theorem proving, but induc-
tive hypothesis formation and theory 
formation.

I had written some paragraphs at 
the end of the introduction to Comput-
ers and Thought about induction and 
why I thought that was the way forward 
into the future. That’s a good strate-
gic plan, but it wasn’t a tactical plan. I 
needed a “task environment”—a sand-
box in which to specifically work out 
ideas in detail.

I think it’s very important to em-
phasize, to this generation and every 
generation of AI researchers, how im-
portant experimental AI is. AI is not 
much of a theoretical discipline. It 
needs to work in specific task environ-
ments. I’m much better at discovering 
than inventing. If you’re in an experi-
mental environment, you put yourself 
in the situation where you can discover 
things about AI, and you don’t have to 
create them. 

Talk about DENDRAL.
One of the people at Stanford interest-
ed in computer-based models of mind 
was Joshua Lederberg, the 1958 Nobel 
Prize winner in genetics. When I told 
him I wanted an induction “sandbox”, 
he said, “I have just the one for you.” 
His lab was doing mass spectrometry 
of amino acids. The question was: 
how do you go from looking at a spec-
trum of an amino acid to the chemical 
structure of the amino acid? That’s 
how we started the DENDRAL Project: 
I was good at heuristic search meth-
ods, and he had an algorithm which 
was good at generating the chemical 
problem space.

We did not have a grandiose vision. 
We worked bottom up. Our chem-
ist was Carl Djerassi, inventor of the 
chemical behind the birth control 

pill, and also one of the world’s most 
respected mass spectrometrists. Carl 
and his postdocs were world-class ex-
perts in mass spectrometry. We began 
to add in their knowledge, inventing 
knowledge engineering as we were go-
ing along. These experiments amount-
ed to titrating into DENDRAL more and 
more knowledge. The more you did 
that, the smarter the program became. 
We had very good results.

The generalization was: in the 
knowledge lies the power. That was the 
big idea. In my career that is the huge, 
“Ah ha!,” and it wasn’t the way AI was 
being done previously. Sounds simple, 
but it’s probably AI’s most powerful 
generalization.

Meta-DENDRAL was the culmina-
tion of my dream of the early to mid-
1960s having to do with theory for-
mation. The conception was that you 
had a problem solver like DENDRAL 
that took some inputs and produced 
an output. In doing so, it used layers 
of knowledge to steer and prune the 
search. That knowledge got in there 
because we interviewed people. But 
how did the people get the knowledge? 
By looking at thousands of spectra. So 
we wanted a program that would look 
at thousands of spectra and infer the 
knowledge of mass spectrometry that 
DENDRAL could use to solve individual 
hypothesis formation problems. 

We did it. We were even able to 
publish new knowledge of mass spec-
trometry in the Journal of the American 
Chemical Society, giving credit only in 
a footnote that a program, Meta-DEN-
DRAL, actually did it. We were able to 
do something that had been a dream: to 
have a computer program come up with 
a new and publishable piece of science.

What then?
We needed to play in other playpens. I 
believe that AI is mostly a qualitative sci-
ence, not a quantitative science. You are 
looking for places where heuristics and 
inexact knowledge can come into play. 
The term I coined for my lab was “Heu-
ristic Programming Project” because 
heuristic programming is what we did.

For example, MYCIN was the Ph.D. 
thesis project of Ted Shortliffe, which 
turned out to be a very powerful knowl-
edge-based system for diagnosing 
blood infections and recommending 
their antibiotic therapies. Lab mem-

AI is not much of a 
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bers extracted from Mycin the core of it 
and called it E-Mycin for Essential My-
cin, or Empty Mycin. That rule-based 
software shell was widely distributed.

What is the meaning of all those 
experiments that we did from 1965 to 
1968? The Knowledge-Is-Power Hy-
pothesis, later called the Knowledge 
Principle, which was tested with doz-
ens of projects. We came to the conclu-
sion that for the “reasoning engine” of 
a problem solving program, we didn’t 
need much more than what Aristo-
tle knew. You didn’t need a big logic 
machine. You need modus ponens, 
backward and forward chaining, and 
not much else in the way of inference. 
Knowing a lot is what counts. So we 
changed the name of our laboratory to 
the “Knowledge System Lab,” where we 
did experiments in many fields.

What other AI models did you use?
AI people use a variety of underlying 
problem-solving frameworks, and 
combine a lot of knowledge about the 
domain with one of these frameworks. 
These can either be forward-chain-
ing—sometimes called generate and 
test—or they could be backward-chain-
ing, which say, for example, “here’s the 
theorem I want to prove, and here’s 
how I have to break it down into pieces 
in order to prove it.” 

I began classified research on de-
tecting quiet submarines in the ocean 
by their sound spectrum. The problem 
was that the enemy submarines were 
very quiet, and the ocean is a very noisy 
place. I tried the same hypothesis for-
mation framework that had worked 
for DENDRAL, and it didn’t even come 
close to working on this problem. 

Fortunately Carnegie Mellon 
people—Reddy, Erman, Lesser and 
Hayes-Roth—had invented another 
framework they were using for un-
derstanding speech, the Blackboard 
Framework. It did not work well for 
them, but I picked it up and adapted 
it for our project. It worked beauti-
fully. It used a great deal of knowledge 
at different “levels of abstraction.” It 
allowed flexible combination of top-
down and bottom-up reasoning from 
data to be merged at those different 
levels. In Defense Department tests, 
the program did better than people.

But that research was classified 
as “secret.” How could ideas be pub-

lished from a military classified proj-
ect? The Navy didn’t care about the 
blackboard framework; that was com-
puter science. So we published the 
ideas in a paper on a kind of hypothet-
ical: “how to find a koala in eucalyp-
tus trees,” which was a non-cassified 
problem drawn from my personal ex-
perience in an Australian forest!

Talk about being an entrepreneur 
as well as an academic.
There was a very large demand for the 
software generalization of the MY-
CIN medical diagnosis expert system 
“shell,” called EMYCIN. So a software 
company was born called Teknowledge, 
whose goal was to migrate EMYCIN 
into the commercial domain, make it 
industrial strength, sell it, and apply it. 
Teknowledge is still in existence.

Our Stanford MOLGEN project was 
the first project in which computer 
science methods were applied to what 
is now called computational molecu-
lar biology. Some MOLGEN software 
turned out to have a very broad ap-
plicability and so was the basis of the 
very first company in computational 
molecular biology, called Intellige-
netics, later Intellicorp. They had lots 
of very sophisticated applications. 
During the dot-com bust they went 
bust, but they lasted, roughly speak-
ing, 20 years. 

In the 1980s you studied the Japanese 
government’s major effort in AI.
The Japanese plan was very ambitious. 
They organized a project to essentially 
do knowledge-based AI, but in a style 
different from the style we were accus-
tomed to in this country. For one thing, 

they wanted to do it in the “I-am-not-
LISP style,” because the Japanese had 
been faulted in the past for being imi-
tators. So they chose Prolog and tried 
formal methods. And they included 
parallel computing in their initiative. 

They made a big mistake in their 
project of not paying enough atten-
tion to the application space at the 
beginning. They didn’t really know 
what applications they were aiming 
at until halfway through; they were fly-
ing blind for five years. Then they tried 
to catch up and do it all in five more 
years, and didn’t succeed. [See the 
book, The Fifth Generation,” written 
with Pamela McCorduck].

How did you come to work 
for the U.S. government?
In 1994 an amazing thing happened. 
The phone rings and it is Professor 
Sheila Widnall of the Department of 
Aeronautics and Astronautics of MIT. 
She said, “Do you know anyone who 
wants to be Chief Scientist of the Air 
Force? And by the way, if you are inter-
ested let me know.” She had been cho-
sen to be Secretary of the Air Force, and 
she was looking for her Chief Scientist. 
I thought about it briefly, told her yes, 
and stayed for three years.

My job was to be a window on sci-
ence for the Chief of Staff of the Air 
Force. I was the first person to be asked 
to be Chief Scientist who was not an 
Aero-Astro person, a weapons person, 
or from the physical sciences. There 
had not been any computer scientists 
before me.

I did two big things. One was con-
sciousness-raising in the Air Force about 
software. The one big report I wrote, at 
the end of my term, was a report called, 
It’s a Software-First World. The Air Force 
had not realized that. They probably 
still do not think that. They think it is an 
airframe-based world.

The other was on software devel-
opment. The military up to that point 
believed in, and could only imagine, 
a structured-programming top-down 
world. You set up requirements, you 
get a contractor to break down the re-
quirements into blocks, another con-
tractor breaks them down into mini-
blocks, and down at the bottom there 
are some people writing the code. It 
takes years to do. When it all comes 
back up to the top, (a) it’s not right, 

In my view the 
science that we call 
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intelligence, is the 
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computer science.
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and (b) it’s not what you want anymore. 
They just didn’t know how to contract 
for cyclical development. Well, I think 
we were able to help them figure out 
how to do that.

What happened after your “tour 
of duty” in Washington?
It was a rather unsettling experience to 
come back to Stanford. After playing a 
role on a big stage, all of a sudden you 
come back and your colleagues ask, 
“What are you going to teach next year? 
Intro to AI?” 

So at the beginning of 2000, I re-
tired. Since then I have been leading a 
wonderful life doing whatever I please. 
Now that I have a lot more time than 
I had before, I’m getting geekier and 
geekier. It feels like I’m 10 years old 
again, getting back involved with de-
tails of computing. 

The great thing about being retired 
is not that you work less hard, but that 
what you do is inner-directed. The 
world has so many things you want to 
know before you’re out of here that you 
have a lot to do.

Why is history important?
When I was younger, I was too busy for 
history and not cognizant of the impor-
tance of it. As I got older and began to 
see my own career unfolding, I began 
to realize the impact of the ideas of 
others on my ideas. I became more and 
more of a history buff. 

That convinced me to get very seri-
ous about archives, including my own. 
If you’re interested in discoveries and 
the history of ideas, and how to manu-
facture ideas by computer, you’ve got 
to treat this historical material as fun-
damental data. How did people think? 
What alternatives were being consid-
ered? Why was the movement from 
one idea to another preposterous at 
one time and then accepted?

You are a big fan of using heuristics 
not only for AI, but also for life. What 
are some of your life heuristics?

˲˲ Pay a lot of attention to empirical 
data, because in empirical data one can 
discover regularities about the world. 

˲˲ Meet a wonderful collaborator— 
for me it was Joshua Lederberg—and 
work with that collaborator on mean-
ingful problems

˲˲ It takes a while to become really, 

really good at something. Stick with it. 
Focus. Persistence, not just on prob-
lems but on a whole research track, is 
really worth it. Switching in the middle, 
flitting around from problem to prob-
lem, isn’t such a great idea.

˲˲ Life includes of a lot of stuff you 
have to do that isn’t all that much fun, 
but you just have to do it.

˲˲ You have to have a global vision 
of where you’re going and what you’re 
doing, so that life doesn’t appear to be 
just Brownian motion where you are 
being bumped around from one little 
thing to another thing. 

How far have we come in your quest 
to have computers think inductively?
Our group, the Heuristic Programming 
Project, did path-breaking work in the 
large, unexplored wilderness of all the 
great scientific theories we could pos-
sibly have. But most of that beautiful 
wilderness today remains largely un-
explored. Am I am happy with where 
we have gotten in induction research? 
Absolutely not, although I am proud of 
the few key steps we took that people 
will remember. 

Is general pattern recognition 
the answer?
I don’t believe there is a general pattern 
recognition problem. I believe that pat-
tern recognition, like most of human 
reasoning, is domain specific. Cogni-
tive acts are surrounded by knowledge 
of the domain, and that includes acts 
of inductive behavior. So I don’t really 
put much hope in “general anything” 
for AI. In that sense I have been very 
much aligned with Marvin Minsky’s 
view of a “society of mind.” I’m very 
much oriented toward a knowledge-
based model of mind. 

How should we give 
computers knowledge?
I think the only way is the way human 
culture has gotten there. We transmit 
our knowledge via cultural artifacts 
called texts. It used to be manuscripts, 
then it was printed text, now it’s elec-
tronic text. We put our young people 
through a lot of reading to absorb the 
knowledge of our culture. You don’t 
go out and experience chemistry, you 
study chemistry. 

We need to have a way for computers 
to read books on chemistry and learn 

chemistry. Or read books on physics 
and learn physics. Or biology. Or what-
ever. We just don’t do that today. Our AI 
programs are handcrafted and knowl-
edge engineered. We will be forever do-
ing that unless we can find out how to 
build programs that read text, under-
stand text, and learn from text.

Reading from text in general is a 
hard problem, because it involves all of 
common sense knowledge. But read-
ing from text in structured domans 
I don’t think is as hard. It is a critical 
problem that needs to be solved. 

Why is AI important?
There are certain major mysteries that 
are magnificent open questions of the 
greatest import. Some of the things 
computer scientists study are not. If 
you’re studying the structure of data-
bases—well, sorry to say, that’s not one 
of the big magnificent questions. 

I’m talking about mysteries like 
the initiation and development of life. 
Equally mysterious is the emergence 
of intelligence. Stephen Hawking once 
asked, “Why does the universe even 
bother to exist?” You can ask the same 
question about intelligence. Why does 
intelligence even bother to exist? 

We should keep our “eye on the 
prize.” Actually, two related prizes. 
One is that when we finish our job, 
whether it is 100 years from now or 
200 years from now, we will have in-
vented the ultra-intelligent computer. 
The other is that we will have a very 
complete model of how the human 
mind works. I don’t mean the human 
brain, I mean the mind: the symbolic 
processing system.

In my view the science that we call 
AI, maybe better called computational 
intelligence, is the manifest destiny of 
computer science.

For the people who will be out there 
years from now, the question will be: 
will we have fully explicated the theory 
of thinking in your lifetime? It would 
be very interesting to see what you peo-
ple of a hundred years from now know 
about all of this.

It will indeed. Stay tuned.	

Len Shustek (shustek@computerhistory.org) is the 
chairman of the Computer History Museum.
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As somewhat of  a technology-hype curmudgeon, 
I was until very recently in the camp that believed 
cloud computing was not much more than the 
latest marketing-driven hysteria for an idea that has 
been around for years. Outsourced IT infrastructure 
services, aka Infrastructure as a Service (IaaS), has 
been around since at least the 1980s, delivered by 
the telecommunication companies and major IT 
outsourcers. Hosted applications, aka Platform as a 
Service (PaaS) and Software as a Service (SaaS), were in 
vogue in the 1990s in the form of application service 
providers (ASPs). 

Looking at cloud computing through this 
perspective had me predicting how many more 
months it would be before the industry came up with 
another “exciting” technology with which to generate 
mass confusion and buzz. However, I have recently 
been enlightened as to the true potential of cloud 
computing and have become very excited

about it, to say the least. This concept, 
which has generated the most industry 
hype in years—and which has execu-
tives clamoring for availability because 
of promises of substantial IT cost sav-
ings and innovation possibilities—has 
finally won me over. 

So, what did I discover about cloud 
computing that has made a convert 
out of someone who was so adamantly 
convinced that it was nothing more 
than the latest industry topic du jour? 
First let me explain that it was no 
small feat. It took a lot of work to sort 
through the amazing amount of confu-
sion concerning the definition of cloud 
computing, let alone find a nugget of 
real potential. Definitions abound, and 
with my curmudgeon hat still solidly 
in place I was beginning to see a lot of 
hair-splitting and “me too” definitions 
that just seemed to exacerbate the 
problem. I finally settled on the defini-
tion provided by the National Institute 
of Standards and Technology (NIST) 
because of the simplicity the frame-
work provides (see the accompanying 
sidebar). Still, it wasn’t until a good 
friend who had already discovered the 
true potential hidden in all this mad-
ness provided me with some real-world 
use cases for elasticity that the light be-
gan shining very brightly.

Elasticity, in my very humble opin-
ion, is the true golden nugget of cloud 
computing and what makes the entire 
concept extraordinarily evolutionary, if 
not revolutionary. NIST’s definition of 
elasticity (http://csrc.nist.gov/groups/
SNS/cloud-computing/) is as follows: 
“Capabilities can be rapidly and elasti-
cally provisioned, in some cases auto-
matically, to quickly scale out and rap-
idly released to quickly scale in. To the 
consumer, the capabilities available 
for provisioning often appear to be un-
limited and can be purchased in any 
quantity at any time.” When elasticity 
is combined with on-demand self-ser-
vice capabilities it could truly become 
a game-changing force for IT.

Advanced outsourced IT infrastruc-
ture and software services, once avail-
able only to organizations with large 

doi:10.1145/1743546.1743565
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Elastic computing has great potential,  
but many security challenges remain.

by Dustin Owens

Securing 
Elasticity in 
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budgets available to develop, build, 
and support ongoing use of these re-
sources, can now be provided to small 
to medium organizations. In addition, 
these resources can be added, changed, 
or removed much more rapidly, po-
tentially allowing for exponential ad-
vances in operational efficiency. These 
sorts of changes to major IT services 
environments that previously (and for 
the most part currently) took months if 
not years to plan and execute might be 
done in a matter of minutes or hours 
if elasticity holds up to its promise. In 
other words, elasticity could bring to 
the IT infrastructure what Henry Ford 
brought to the automotive industry 
with assembly lines and mass produc-
tion: affordability and substantial im-
provements on time to market.

Enlightening as this realization has 
been, it has also become clear that sev-
eral monumental security challenges 
(not to mention many monumental 
nonsecurity-related challenges, not 
least of which are full functionality 
availability and how well an organi-
zation’s environment is prepared to 
operate in a distributed model) now 
come into play and will need to be ad-
dressed in order for the elasticity ele-
ment of cloud computing to reach its 
full potential. Most of the dialogue 
I am engaged in with customers to-
day and that I see in publicized form, 
however, is simplistically centered 
on security challenges with IT out-
sourcing in general. These are chal-
lenges have existed for some time in 
the predecessor models mentioned 
earlier: who within an outsourcer is 
able to access a customer’s data, pe-
rimeter security considerations when 
outsourcing, DOS/DDOS (denial of 
service/distributed denial of service), 
resource starvation, and compliance 
challenges with where data is stored 
or backed up. These are all challenges 
that I have provided counsel on for 
many years and are nothing new or in-
surmountable. Don’t misunderstand 
me. These challenges are indeed very 
real and still need to be addressed, but 
I strongly believe most should be fairly 
well known by now and can be read-
ily met through existing procedural or 
technological solutions. 

The challenges I am more con-
cerned about are those introduced by 
adding elasticity and on-demand self-

service to form the full extent of cloud 
computing—those elements that in 
my opinion make a particular service 
something more than a just an out-
sourced service with a prettier market-
ing face.

Elasticity Security Challenges
Enabling elasticity in the cloud strong-
ly implies the use of virtualization. 
Though the inherent security chal-
lenges in virtualization are certainly 
not new, how it is likely to be used by 
cloud-computing providers to achieve 
elastic IT environments on a grand 
scale poses some interesting security 
challenges worth exploring in more 
detail. In addition, as virtualization 
technology continues to evolve and 
gain popularity, so does the discov-
ery of new vulnerabilities; witness 
the recently announced vulnerabil-
ity (http://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2009-3733) where-
by one is able to traverse from one vir-
tual machine (VM) client environment 
to other client environments being 
managed by the same hypervisor. 

These new vulnerabilities could 
have significantly greater impacts 
in the cloud-computing arena than 
within an organization’s corporate en-
vironment, especially if not dealt with 
expeditiously. Case in point: imagine 
that many customers are being man-
aged by a single hypervisor within 
a cloud provider. The vulnerability 
shared above might allow a customer 
to access the virtual instances of oth-
er customers’ applications if not ad-
dressed. Consider the impact if your 
bank or particularly sensitive federal 
government or national defense infor-
mation happen to be managed in this 
sort of environment, and the cloud 
provider does not immediately deal 
with, or even know about, a vulner-
ability of this nature.

With this bit of background, it is 
clear that providing adequate admin-
istrative separation between virtual 
customer environments will be a sig-
nificant security challenge with elas-
ticity. Cloud providers will need to be 
prepared to account for and show how 
their particular services are able to 
control vulnerabilities such as the ear-
lier example and keep similar yet-to-be 
discovered vulnerabilities from having 
devastating impacts on their custom-

Elasticity, in my 
very humble 
opinion, is the true 
golden nugget of 
cloud computing 
and what makes 
the entire concept 
extraordinarily 
evolutionary,  
if not revolutionary. 
Elasticity could 
bring to the IT 
infrastructure what 
Henry Ford brought 
to the automotive 
industry with 
assembly lines and 
mass production: 
affordability 
and substantial 
improvements on 
time to market.

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-3733
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-3733
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ers. Perhaps more importantly, critical 
infrastructure (see http://en.wikipedia.
org/wiki/Critical_infrastructure for 
definition) could be subject to insur-
mountable risk and/or loss of sensi-
tive information if providers lack the 
necessary controls. As services offered 
from the cloud continue to mature 
and expand, the threat posed is not 
limited to unauthorized information 
access but may include any cloud-
provided computing systems (such as 
virtual servers, virtual desktops, and 
so on). We hope the U.S. government 
recognizes and addresses this chal-
lenge as federal agencies move rapidly 
toward adoption of cloud-based ser-
vices (http://www.federalnewsradio.
com/?sid=1836091&nid=35), because 
the potential consequences are partic-
ularly unsettling.

Addressing this challenge may be no 
small feat. For one, in order for cloud 
providers to minimize their manage-
ment costs and obtain profitability, 
they are expected to have to use shared 
administrative management systems 
(that is, hypervisors) across multiple 
virtual customer environments. I can 
envision certain service models where 
this theory may not hold true: for ex-
ample, if each customer were given sole 
hypervisor (or hypervisor-like) manage-
ment access that connected only to that 
customer’s virtual environment, such 
as within a virtual private cloud offer-
ing. Use of a separate management sys-
tem for every customer in every service 
model is probably not realistic simply 
because of cost containment. 

In researching several cloud provid-
ers’ capabilities in this regard, I could 
not clearly see how their solutions 
could effectively address the entirety 
of the provided traversal vulnerabil-
ity example when multiple customers 
are using the same hypervisor, at least 
at the time of writing this article. Al-
though some provide detail of built-in 
software functionality within their hy-
pervisors meant to curtail one custom-
er from gaining access to another’s en-
vironment, I suspect these capabilities 
would not fully address the vulnerabil-
ity in question and are certainly worthy 
of further detailed review. 

Another interesting challenge 
with elasticity in the cloud will be in 
the ability to provide fine-grained ac-
cess and predefined security controls 

change management. In this scenario, 
the application could be extremely 
vulnerable to attack or even inadver-
tently cause a production application 
to cease operating properly. The ability 
to implement and enforce access con-
trols to a granular level, defining who 
has the authority to perform which ac-
tions within these environments, will 
be absolutely necessary.  

Having the ability to predefine se-
curity control templates may also aid 
in this sort of scenario. This means 
the organization’s IT security group 
is able to define a set of controls that 
must be applied to a given application 
depending on the type of data it will be 
processing or how the application will 
be used. For example, as the developer 
builds out the new virtual environment 
that processes credit-card informa-
tion, the self-service portal might iden-
tify the type of data to be processed 
and apply predefined security controls 
to the database, application, and Web 
front end, as well as predefined fire-
wall rule sets limiting network access 
to the various tiers. It is unlikely that 
this capability exists today, anywhere, 
and we are probably years away from 
ubiquitous availability.

Another security challenge that de-
velops out of this scenario and in the 
same vein is how to enforce proper 
configuration and change manage-
ment in this more dynamic and elastic 
model. Even where a portal is capable 
of granular-access controls that con-
trol which actions a given user is able 
to perform, it also needs to enforce 
when and under what circumstances a 
user is allowed to perform certain ac-
tions. Without this ability, untested 
code or system changes could result 
in business-impacting (or even dev-
astating) results. Even something as 
“slight” as rolling a new system into 
production without ensuring that 
proper server and application patches 
have been applied could result in sig-
nificant damage to an organization. 
Therefore, a mechanism within self-
service portals for enforcing an orga-
nization’s change policies becomes a 
worthy and necessary capability. 

These are but a few of the chal-
lenges that come to mind within a 
truly elastic PaaS and/or IaaS service 
model and not even delving into sepa-
rate challenges with SaaS. Other chal-

across the entirety of a virtual customer 
environment. The service models to 
which this might apply most directly 
are those that provide IaaS and PaaS 
functionality such as dynamic mul-
tilevel security services or multitier 
application environments. To under-
stand the challenge better, it is prob-
ably useful to provide some context for 
how these types of services are built 
and administered in today’s corporate 
infrastructure, such as with a multitier 
application. One example of a typical 
scenario is where the application de-
velopment group needs to work closely 
with the network and hopefully IT se-
curity groups to establish proper com-
munication paths among the various 
tiers, including limiting which network 
protocols are allowed to interface with 
each of the tiers. This would be done to 
ensure proper routing of information 
and to limit the attack surface available 
to hackers or malware once the system 
is put into production. 

In addition, when dealing with 
certain types of data such as finan-
cial or credit cards, certain regula-
tions and industry standards have 
a requirement for separation of du-
ties to aid in protection from certain 
scenarios—for example, an applica-
tion developer inserting code into 
software that would allow skimming 
of financial data and not having an 
audit trail available as the developer 
elected not to enable one for obvious 
reasons. Although various cloud pro-
viders do provide some detail on how 
their solutions address this concern, 
proper implementation by the user or-
ganization, as well as performing due 
diligence review of actual capabilities 
within a desired delivery model, will 
be critical to ensuring this challenge 
can be adequately addressed. 

Fast forward to the cloud scenario 
in which a developer now has access 
to a self-service portal where in a few 
mouse clicks he or she would be able 
to build out a new multitier virtual 
application environment. Without 
fine-grained access controls available 
through the self-service portal it will 
be extremely difficult to enforce sepa-
ration of duties to keep this developer 
from accessing sensitive data he or she 
shouldn’t have access to, or promoting 
new code to production without having 
gone through proper security review or 

http://en.wikipedia.org/wiki/Critical_infrastructure
http://en.wikipedia.org/wiki/Critical_infrastructure
http://www.federalnewsradio.com/?sid=1836091&nid=35
http://www.federalnewsradio.com/?sid=1836091&nid=35
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lenges include the ability to provide 
audit trails across these environments 
for regulatory compliance and digital 
forensic purposes, enforcement, and 
awareness of differing levels of zones 
among development, test, and pro-
duction environments to protect the 
integrity of services deployed in the 
higher-level environments, as well as 
controlling whom is authorized to ex-

pand or contract a service within one 
of these environments. This last chal-
lenge could pose particular financial 
issues in the elastic “pay by the drink” 
service model if, for example, users are 
able to add services at will and an or-
ganization gets a bill at the end of the 
month for excessive service additions.

Changing tack slightly, however, it 
is worth mentioning the challenges in 

providing adequate levels of security 
services within nonsecurity-related 
environments. One of these challeng-
es is with traditionally nonsecurity-
minded providers needing to supply 
service options for common security 
capabilities such as intrusion detec-
tion, firewalls, content filtering, and 
vulnerability testing. In predecessor 
service models, such as an ASP, these 

Cloud computing is still an evolving 
paradigm. Its definitions, use cases, 
underlying technologies, issues, risks, 
and benefits will be refined in a spirited 
debate by the public and private 
sectors. These definitions, attributes, 
and characteristics will evolve and 
change over time. The cloud-computing 
industry represents a large ecosystem 
of many models, vendors, and market 
niches. The following definition 
attempts to encompass all of the various 
cloud approaches.

Cloud computing is a model for 
enabling convenient, on-demand 
network access to a shared pool of 
configurable computing resources (for 
example, networks, servers, storage, 
applications, and services) that can 
be rapidly provisioned and released 
with minimal management effort 
or service-provider interaction. This 
cloud model promotes availability 
and is composed of five essential 
characteristics, three service models, 
and four deployment models.

Essential Characteristics
On-demand self-service.  A consumer 
can unilaterally provision computing 
capabilities, such as server time 
and network storage, as needed 
automatically without requiring human 
interaction with each service’s provider. 

Broad network access. Capabilities are 
available over the network and accessed 
through standard mechanisms that 
promote use by heterogeneous thin 
or thick client platforms (for example, 
mobile phones, laptops, and PDAs).

Resource pooling. The provider’s 
computing resources are pooled to serve 
multiple consumers using a multitenant 
model, with different physical and 
virtual resources dynamically assigned 
and reassigned according to consumer 
demand. There is a sense of location 
independence in that the customer 
generally has no control or knowledge 
over the exact location of the provided 
resources but may be able to specify 
location at a higher level of abstraction 
(for example, country, state, or data 

center). Examples of resources include 
storage, processing, memory, network 
bandwidth, and virtual machines.

Rapid elasticity. Capabilities can be 
rapidly and elastically provisioned, in 
some cases automatically, to quickly 
scale out and rapidly released to 
quickly scale in. To the consumer, the 
capabilities available for provisioning 
often appear to be unlimited and can be 
purchased in any quantity at any time.

Measured service. Cloud systems 
automatically control and optimize 
resource use by leveraging a metering 
capability at some level of abstraction 
appropriate to the type of service 
(for example, storage, processing, 
bandwidth, and active user accounts). 
Resource usage can be monitored, 
controlled, and reported, providing 
transparency for both the provider and 
consumer of the utilized service.

Service Models
Cloud SaaS (Software as a Service). The 
capability provided to the consumer 
is to use the provider’s applications 
running on a cloud infrastructure. 
The applications are accessible from 
various client devices through a thin 
client interface such as a Web browser 
(for example, Web-based email). The 
consumer does not manage or control 
the underlying cloud infrastructure, 
including network, servers, operating 
systems, storage, or even individual 
application capabilities, with the possible 
exception of limited user-specific 
application configuration settings.

Cloud PaaS (Platform as a Service). 
The capability provided to the 
consumer is to deploy onto the cloud 
infrastructure consumer-created 
or acquired applications created 
using programming languages and 
tools supported by the provider. The 
consumer does not manage or control 
the underlying cloud infrastructure, 
including network, servers, operating 
systems, or storage, but has control 
over the deployed applications 
and possibly application-hosting 
environment configurations.

Cloud IaaS (Infrastructure as a Service). 
The capability provided to the consumer 
is to provision processing, storage, 
networks, and other fundamental 
computing resources where the 
consumer is able to deploy and run 
arbitrary software, which can include 
operating systems and applications. The 
consumer does not manage or control 
the underlying cloud infrastructure 
but has control over operating systems, 
storage, deployed applications, and 
possibly limited control of select 
networking components (for example, 
host firewalls).

Deployment Models
Private cloud. The cloud infrastructure 
is operated solely for an organization. 
It may be managed by the organization 
or a third party and may exist on or off 
premise.

Community cloud. The cloud 
infrastructure is shared by several 
organizations and supports a specific 
community that has shared concerns 
(for example, mission, security 
requirements, policy, and compliance 
considerations). It may be managed by 
the organizations or a third party and 
may exist on or off premise.

Public cloud. The cloud infrastructure 
is made available to the general public 
or a large industry group and is owned 
by an organization selling cloud 
services.

Hybrid cloud. The cloud 
infrastructure is a composition of two 
or more clouds (private, community, or 
public) that remain unique entities but 
are bound together by standardized or 
proprietary technology that enables data 
and application portability (for example, 
cloud bursting for load balancing 
between clouds).

Note: Cloud software takes full 
advantage of the cloud paradigm by 
being service oriented with a focus on 
statelessness, low coupling, modularity, 
and semantic interoperability.

Peter Mell and Tim Grance are with the National 
Institute of Standards and Technology, Information 
Technology Laboratory, Gaithersburg, MD.

The NIST Definition of Cloud Computing
By Peter Mell and Tim Grance
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services could be offered through 
partnerships with security vendors 
and manually designed and provi-
sioned into the outsourced environ-
ment. In the new model, however, 
how providers are able to provide 
tighter integration with these services 
in order not to lose full elasticity may 
be interesting. It may require creating 
optional service hooks from a provid-
er’s self-service portal to security ser-
vice products or perhaps developing 
interesting but complex multiservice 
cloud models provided by multiple 
specialty service providers. Either way, 
this challenge is probably worthy of a 
discussion in and of itself because of 
the perceived number of additional is-
sues it brings to mind. Note that some 
vendors do offer these capabilities to-
day, particularly within virtual private 
cloud models, but of the vendors re-
searched, none is fully addressing for 
every model it offers.

Encryption capabilities for data-at-
rest may be an interesting challenge as 
well. For example, given the previous 
environment traversal example, use 
of file-based encryption within a vir-
tual environment would be essentially 
worthless in offering protection from 
remote access. If one can readily gain 
access to another’s environment, this 
would also provide access to any front-
end encryption mechanism used for 
file-based encryption within the vir-
tual environment. Disk-based encryp-
tion becomes particularly challenging 
because of the nature of virtual stor-
age and potential lack of user organi-
zational control over where data may 
be physically stored (which disk does 
one encrypt for a given customer and 
other constraints in sharing of physi-
cal disks among multiple customers). 
It will certainly be necessary to explore 
a prospective provider’s capabilities 
for encrypting data-at-rest and how 
well it addresses the shared concerns, 
especially for those organizations 
with regulatory requirements dictat-
ing the use of file- and/or disk-based 
encryption.

It should be apparent by now that 
cloud computing is fraught with a 
number of security challenges. While 
some of the concepts and scenarios 
discussed here are focused on more 
advanced service models, the intent 
is to create a bit more awareness of 

what the industry will be faced with 
in moving toward these new models 
that offer greater levels of “true” cloud 
computing. Depending on the type 
of service model being discussed and 
various use cases, exploring all of the 
challenges is all but impossible, espe-
cially not in a single discussion. In ad-
dition, some of the security challenges 
discussed appear to be recognized by 
certain cloud providers but are pri-
marily being addressed through the 
use of private cloud models (Amazon 
and OpSource are two such vendors of-
fering answers within a virtual private 
cloud offering), suggesting perhaps 
higher costs versus a public cloud of-
fering and/or limited availability in 
addressing within other cloud-deliv-
ery models. 

The promise of what an elastic 
cloud-computing model could do for 
the IT world, however, is extremely 
invigorating and certainly worth pur-
suing. It can only be hoped that orga-
nizations already taking this path or se-
riously considering doing so will take 
the time to fully appreciate the security 
challenges facing them and whether 
or not adoption at this point fits into 
their risk appetite. Certainly, keeping 
these and other security challenges in 
mind while assessing how a prospec-
tive cloud provider can address these 
concerns (and at what cost and with 
what deployment constraints) should 
be a critical business objective. 	
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Though the inherent 
security challenges 
in virtualization are 
not new, how it is 
likely to be used by 
cloud-computing 
providers to 
achieve elastic IT 
environments on a 
grand scale poses 
some interesting 
security challenges.
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An e mulator is  a program that runs programs built 
for different computer architectures from the host 
platform that supports the emulator. Approaches 
differ, but most emulators simulate the original 
hardware in some way. At a minimum the emulator 
interprets the original CPU instructions and provides 
simulated hardware-level devices for input and output. 
For example, keyboard input is taken from the host 
platform and translated into the original hardware 
format, resulting in the emulated program “seeing” 
the same sequence of keystrokes. Conversely, the 
emulator will translate the original hardware screen 
format into an equivalent form on the host machine. 

The emulator is similar to a program that 
implements the Java Virtual Machine (JVM). The 
difference is merely one of degree. JVM is designed 
to enable efficient and tractable implementations, 
whereas an emulator’s machine is defined by real 
hardware that generally imposes undesirable 
constraints on the emulator. Most significantly, the 
original hardware may be fully described only in terms 

of how existing software uses it. JVM 
tends to be forward-looking with the 
expectation that new code will be writ-
ten and run under JVM to increase 
its portability. Emulators tend to be 
backward-looking, expecting only to 
make old code more portable. 

In either case the emulator and 
JVM give the programs that run under 
them a suite of services needed to in-
teract with the host system. JVM pres-
ents those services as a series of API 
calls; the emulator presents them as 
simulated hardware. Nonetheless, the 
simulated hardware is an API—just 
not in the form most programmers 
expect.

TRS-80 Example
As an example hardware API, consider 
the TRS-80 video system, which dis-
plays text and graphics on a modified 
television set. It has 16 lines of char-
acters with 64 columns each. It sup-
ports the normal ASCII character set, 
with an additional 64 graphics charac-
ters allowing every possible combina-
tion of a 2-pixel by 3-pixel sub-block. 
Judicious use of the graphics charac-
ters provide an effective 128-pixel by 
48-pixel resolution, albeit with pix-
els the size of watermelon seeds. A 
TRS-80 program displays a character 
by writing the character value to the 
memory location associated with the 
desired position. In effect, the API has 
only one call:

	
void ChangeCharacter
 (location /* 0 – 1024 */,
 character)

Emulating such a simple graphics 
format is trivial. It can be rendered 
quite adequately on a 512-by-192 im-
age allotting each character an 8-by-
12 rectangle. Each graphics pixel is a 
4-by-4 rectangle, while the characters 
themselves occupy the upper two-
thirds, or an 8-by-8 area. While you 
could get away with any old font for 
the characters, a little more work will 
get something that looks dot-for-dot 
identical to the original. (To get the 

doi:10.1145/1743546.1743566
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same aspect ratio as the original, the 
image should be doubled in height. 
We’ll keep the numbers as is to sim-
plify exposition.)

Figure 1 shows how an emulator 
converts the hardware-level charac-
ter values into an actual image repre-
sentation. While the figure serves as 
a blueprint for the emulator, it also 
shows what a TRS-80 program must 
do in order to display something. One 
detail is missing: changes to screen 
memory are not displayed instanta-
neously. The hardware redraws the 
display every 1/60th of a second. This 
means the emulator must assemble 
the static image as described and dis-

play it every 1/60th of a second.
The resulting emulation will look 

very much like the original. The ma-
jority of programs that run under the 
emulator will appear exactly the same 
as when run on original hardware, 
but if you pay very close attention you 
will see some differences. Watch as 
the screen is cleared from all black 
to all white. In both the original and 
the emulation you get a tear, because 
filling the screen takes long enough 
that it goes over more than one video 
frame. Just before the fill starts, the 
frame will be black. The fill is partially 
done on the next frame, and the dis-
play shows white at the top and black 

at the bottom. That happens for just 
an instant; by the next frame the fill-
ing is done and the frame is filled with 
white. 

Even though this is at the edge of 
perception, the tear exhibited by the 
two is quite different. You will need a 
video camera to see it in the original, 
but the emulator can either dump 
frames for offline analysis or be told 
to step one frame at a time. Figure 2 
shows the difference between the tear 
on the original hardware and that 
seen in the emulator.

Although apparently minor, this 
difference is puzzling. The emulator 
implemented the specification exactly 
as written, and no bugs were found in 
the code. Moreover, the specification 
was obviously correct and complete. 
Except for the evidence at hand, the 
situation is impossible. Of course, 
the problem lies in the specification, 
which only appears complete. The as-
sumption that a particular character 
is either there or not is incorrect. The 
hardware does not draw a character at 
a time; it draws one line of a character 
at a time. That character has the op-
portunity to change after the drawing 
has already started. The tearing on the 
original results from a character being 
blank on the initial passes and subse-
quently filled in. Put another way, the 
character is not atomic but made up of 
12 pieces stacked on top of one anoth-
er; each piece is 8-by-1. Incidentally, 
those 8-by-1 pieces are atomic—they 
are displayed entirely or not at all. The 
graphics hardware ends up reading 
each displayed character 12 times. 

Refining the emulator to correct 
this difference is straightforward. In-
stead of waiting an entire 1/60th of a 
second before drawing the screen, it 
will be drawn a line at a time. With 192 
lines the emulation loop looks some-
thing like this: 

for (i = 0; i < 192; i++) {
emulate CPU for 86.8 micro-

seconds
draw line i of the video dis-

play
}

Now the tearing on the emulator 
is the same as the hardware. You may 
be tempted to declare the specifica-
tion and the emulator complete be-

Figure 1.  Translating TRS-80 screen memory into a displayed image.
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Figure 2.  Difference in tears between the emulation and the original hardware.
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processor and the graphics. It can 
show exactly what is being drawn and 
point out when screen memory writes 
happen at the incorrect times. In no 
time at all a demonstration program 
is written that shows a blocky line 
in a simple emulator and a diagonal 
line in a more accurate emulator (see 
Figure 3).

The Real Machine
The program is impressive as it must 
read/write to the display with micro-
second-level timing. The real excite-
ment is running the program on the 
original machine. After all, the output 
of the emulator on a PC is theoretical-
ly compelling but it is actually produc-
ing graphics that pale in comparison 
to anything else on the platform. On 
the real machine it will produce some-
thing never before seen. 

Sadly, the program utterly fails to 
work on the real machine. Most of the 
time the display is blank. It occasion-
ally flashes the ordinary block line 
for a frame, and very rarely one of the 
small pixels shows up as if by fluke.  

Once again, the accurate emulation 
is not so accurate. The original tearing 
effect proves that the fundamental ap-
proach is valid. What must be wrong 
is the timing itself. For those strong 
in software a number of experimental 
programs can tease out the discrepan-
cies. Hardware types will go straight 
to the schematic diagrams that docu-
ment the graphics hardware in detail. 
Either way, several characteristics will 
become evident: 

˲˲ Each line takes 64 microseconds, 
not 86.8. 

˲˲ There are 264 lines per frame; 192 
visible and 72 hidden. 

˲˲ A frame is 16,896 microseconds or 
59.185 frames per second, not 60. 

What’s most remarkable is how the 
emulator appeared to be very accurate 
in simulating a tear when it was, in 
fact, quite wrong. So much has been 
written about the brittleness of com-
puter systems that it is easy to forget 
how flexible and forgiving they can be 
at times. The numbers bring some re-
lief to the emulator code itself. What 
appeared to be floating-point values 
for timing are in fact just multiples of 
the system clock. Simple, integer rela-
tionships exist between the speed of 
the CPU and the graphics hardware. 

cause of the major increase in output 
fidelity. As a conscientious developer, 
however, your reaction must be ex-
actly the opposite. A rather small test 
case required a considerable change 
in the program. Now is the time to 
investigate further and look for ad-
ditional bugs. In all likelihood the 
specification needs more refinement. 
At the very least, a better test case for 
the new functionality is needed. After 
a bit of thought it becomes clear that 
displaying a one-line-high pixel (1-by-
4) would make such a test case. 

This can be done in three simple 
steps. 

1.	 Write an ordinary 4-by-4 pixel on 
screen. 

2.	 Wait until the first line has been 
drawn by the graphics hardware. 

3.	 Quickly erase the pixel. 

All that will be visible on screen is 
the 1-by-4 part of the pixel that was 
drawn before you pulled the rug out 
from under the 4-by-4 pixel. Many pix-
els can be combined to create some-
thing seemingly impossible on a stock 
TRS-80: a high-resolution diagonal 
line. 

The only thing missing is some way 
of knowing which line the hardware is 
drawing at any one point. Fortunately, 
the graphics hardware generates an 
interrupt when it draws a frame. When 
that interrupt happens you know ex-
actly where the graphics hardware is. 
A few difficulties of construction re-
main, but they come down to trivial 
matters such as putting in delays be-
tween the memory accesses to ensure 
you turn pixels on and off in step with 
each line being drawn. 

Here the emulator is a boon. Mak-
ing such a carefully timed procedure 
work on real hardware is very difficult. 
Any mistake in timing will result in 
either no display because a pixel was 
erased too quickly or a blocky line 
caused by erasing pixels too slowly. 
Not only does the debugger not care 
about time, it eschews it entirely. 
Single-stepping through the code is 
useless. To be fair, the debugger can-
not single-step the graphics hardware. 
Even if it did, the phosphor would fade 
from sight before you could see what 
was happening. 

The emulator can single-step the 

The majority of 
programs that run 
under the emulator 
will appear exactly 
the same as when 
run on original 
hardware, but 
if you pay very 
close attention 
you will see some 
differences.
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A Z-80 Cycle Waster

// Z-80 registers are akin to C global variables.

unsigned char A, H, L;

unsigned char C, Z;

int cycles;

void t(int n)

{

	 cycles += n;

}

void waitA();

/*   Cycle Cost    C code			  Z-80 code */

void wait256()

{

wHL256:

	 t(4);	 H--; Z = H != 0;	 // DEC  H

	 t(7);	 A = 127;			  // LD   A,127

	 t(17);	 waitA();			   // CALL wA

}

void waitHL()

{

wHL:

	 t(4);	 H++; Z = H == 0;	 // INC H

	 t(4);	 H--; Z = H == 0;	 // DEC H

	 t(7);	 if (!Z) {			  // JR  NZ,wHL256

	 t(5);		  wait256();

			   goto wHL;

		  }

	 t(4);	 A = L;			   // LD  A,L

	 t(0);	 waitA();

}

void waitA()

{

wA:

	 t(4);	 C = A & 1;		  // RRCA

		  A = (A << 7) | (A >> 1);

	 t(7);	 if (C) {			  // JR  C,have1

	 t(5);		  goto have1;

		  }

	 t(4);				    // NOP

have1:

	 t(4);	 C = A & 1;		  // RRCA

		  A = (A << 7) | (A >> 1);

	 t(7);	 if (!C) {			  // JR  NC,no2

	 t(5);		  goto no2;

		  }

	 t(7);	 if (!C) {			  // JR  NC,no2

	 t(5);		  goto no2;

		  }

no2:

	 t(4);	 C = A & 1;		  // RRCA

		  A = (A << 7) | (A >> 1);

	 t(7);	 if (!C) {			  // JR  NC,no4

	 t(5);		  goto no4;

		  }

	 t(5);	 if (!C) {			  // RET NC

	 t(6);		  return;

		  }

	 t(4);				    // NOP

no4:

	 t(4);	 C = A & 1;		  // RRCA

		  A = (A << 7) | (A >> 1);

	 t(7);	 if (!C) {			  // JR  NC,no8

	 t(5);		  goto no8;

		  }

	 t(13);	 /* *0 = A; */		 // LD  (0),A

no8:

	 t(7);	 A &= 15;			  // AND A,15

		  Z = A == 0;

	 t(5);	 if (Z) {			  // RET Z

	 t(6);		  return;

		  }

wait16:

	 t(4);	 A--; Z = A == 0;	 // DEC A

	 t(7);	 if (!Z) {			  // JR  NZ,wait16

	 t(5);		  goto wait16;

		  }

	 t(5);	 if (Z) {			  // RET Z

	 t(6);		  return;

		  }

}

//-----------------------

#include <stdio.h>

int main(int argc, char *argv[])

{

	 for (int hl = 0; hl < 65536; hl++)

	 {

		  H = hl / 256;

		  L = hl & 255;

		  cycles = 0;

		  waitHL();

		  if (cycles != hl + 100)

		  {

			   printf(“Blew it on %d (got 

			   %d instead of %d)\n”, hl,  

			   cycles, hl + 100);

		  }

	 }

	 return 0;

}

The Z-80 code is in the comments alongside equivalent C code. The C program is self-contained and 
runs an exhaustive test verifying that waitHL() always uses H * 256 + L + 100 cycles. Observe that the JR 
conditional branch instructions take extra time if the branch is taken. Those time differences along with 
looping are used to expand the subroutine’s running time in proportion to the requested number of cycles.
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We can restate timings from the CPU’s 
perspective: 

˲˲ Each line takes 128 cycles. 
˲˲ The hidden 72 lines go for 9,216 

cycles. 
˲˲ Each frame is 33,792 cycles (264 * 

128). 
The number of frames per second 

is still a fl oating-point number, but 
the emulator core can return to inte-
gers as you might expect for a digital 
system. 

With the new timings in place, 
the emulator exhibits the same prob-
lems as the real hardware. With a bit 
of (tedious) fi ddling with the timing, 
the program almost works on the real 
hardware. 

There’s just one problem left. Re-
member that interrupt that gave a syn-
chronization point between the CPU 
and the graphics hardware? Turns out 

it only happens every second frame. 
The program works but fl ashes be-
tween a perfect diagonal line and a 
chunky one. There’s no hardware fa-
cility to help out here, but there is an 
obvious, if distasteful, software solu-
tion. 

Once the diagonal line has been 
drawn, you know exactly when it must 
be drawn again: 33,792 cycles from 
when you started drawing it the fi rst 
time. If it takes T cycles to draw the 
line, then you just write a cycle-wast-
ing loop that runs for 33,792-T cycles 
and jump back to the line-drawing 
routine. Since that jump takes 10 cy-
cles, however, you better make that 
33,792-T-10 cycles. This seems like a 
fi ne nit to pick, but even being a single 
cycle off in the count will lose synchro-
nization. In two seconds the sync is off 
by almost an entire line. Losing sync 

has an effect similar to the vertical roll 
that affl icted old televisions. 

An ad hoc solution will work just 
fi ne. The proof-of-concept demonstra-
tion program will be complete. The 
possibilities for even more impres-
sive graphics are clear. Hand-timing 
everything, however, is tedious, slow, 
and error prone. You’re stuck with 
writing in assembly, but the timing 
effort takes you back to the days when 
code was hand-assembled. Much of 
the burden can be lifted by taking 
the instruction timing table from the 
emulator and putting it into the as-
sembler. Assemblers have always been 
able to measure the size of their out-
put, generally to fi ll in buffer sizes and 
the like. Here’s that facility in use to 
defi ne length as the number of bytes in 
a message, which will vary if the mes-
sage is changed:

message: ascii ‘Hello, 
world.’
length byte *-message

This works because the special “*” 
variable keeps track of the memory 
location into which data and code 
are assembled. To automate timing 
simply add a time() function that 
says how many cycles are used by the 
program up to that point. It can’t ac-
count for loops and branches but will 
give accurate results for straight-line 
code. At a high level the diagonal slash 
demo will be: 

start: ...some code to draw
  ...the diagonal line
waste equ  33792 - 
(time(*) - time(start)) - 10
  ...code to use up
  ...”waste” cycles
  goto start

Straightforward, but what about 
the code to waste the cycles? The as-
sembler could be extended to sup-
ply that code automatically. Instead, 
keeping with the principle of minimal 
design, the task can be left to an ordi-
nary subroutine. Writing a subroutine 
that runs for a given number of cycles 
is a different requirement from what 
you are accustomed to, but it is pos-
sible. (See the accompanying sidebar 
for one such cycle-wasting subrou-
tine.)

figure 3. a diagonal line in a simple emulator and a more accurate emulator.

correctincorrect

figure 4. the letter “a” displayed with square pixels and on the original hardware.
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As programmers we can see the 
potential of the diagonal-line dem-
onstration program. Although it has 
only one pixel per line, there is a clear 
path to more complex and compelling 
images, to say nothing of animations 
and other effects. One final bump in 
the road awaits. Every time the CPU 
accesses screen memory, it denies ac-
cess to the graphics hardware. This 
results in a blank line that is two- or 
three-characters wide. The more pix-
els you change on a per-line basis, the 
more blanked-out portions there will 
be. Once again you will find that al-
though the graphics may look fine on 
the emulator, they will be riddled with 
“holes” on the real machine because 
of the blanking side effect. 

Moreover, as you try to do more 
work per line, the exact positions of 
the blank spots will matter a great 
deal. Their exact positions will be a 
measure of emulator accuracy and 
can be used to maximize the graphics 
displayed per line. Several discoveries 
await and will be the result of a feed-
back loop of emulator refinement, test 
program development, measurement 
of the original system leading to fur-
ther emulator refinement, and so on. 
Along the way you will discover the fol-
lowing: 

˲˲ The visible portion of a line takes 
102.4 cycles; the rest of the time (25.6 
cycles) is used for setting up drawing 
the next line. 

˲˲ Blank spots do not cover the en-
tire time an instruction takes but only 
the sub-portion of the instruction that 
accesses video memory. 

˲˲ The emulator must be extended 
to report exactly when memory is ac-
cessed on a sub-instructional basis. 

˲˲ Our method of synchronization is 
crude and can be depended upon to 
be accurate only to within a few char-
acters. 

˲˲ Finer synchronization can be ac-
complished, but the emulator must 
be upgraded so programs using the 
technique can still be tested. 

˲˲ Video blanking can be put to good 
use sculpting graphics that cannot be 
constructed in other ways. 

In other words, we’re a long way 
from where we started. Instead of 
drawing an entire screen at once or 
even a line at a time, the emulator is 
down to drawing 1/12th of a character 

at a time and interweaving the CPU 
and the graphics hardware at the level 
of CPU cycles. The graphics emula-
tion has become extremely accurate. 
Not only will side effects such as a tear 
be seen, but they will be exactly the 
same as they manifest on the original 
hardware. The results are not purely 
academic, either. Test programs dem-
onstrate the fidelity of the emulator 
while still achieving the same output 
on the original hardware. The result 
is not tiny differences only of interest 
to experts but extremely visible differ-
ences in program behavior between 
precise and sloppy emulators. 

Can there be anything else? 
Having tripped over so many emu-

lator shortcomings, can the answer 
be anything but yes? In fact, there is 
a double-wide mode where the char-
acters are doubled in size for a 32-by-
16 display. Based on what we’ve seen 
up to this point, it’s not surprising 
to learn that it brings in many more 
complications than might be expect-
ed. Even leaving that morass aside, 
there’s one more obvious limitation of 
the emulator. The original display was 
a CRT. Each pixel on it looks entirely 
different from what is seen on a mod-
ern LCD flat panel. The pixels there 
are unrelentingly square, whereas 
the CRT produced soft-edged ovals of 
phosphorescence. Figure 4 compares 
two close-ups of the letter A. 

Hard-edged pixels result in an im-
age that is functionally identical to the 
original but has a completely different 
feel. The difference between the two 
is unmistakable. Observe also that 
the real pixels are neither distinct nor 
independent. Pixels in adjacent rows 
overlap. Pixels in adjacent columns 
not only overlap but also display dif-
ferently if there is a single one versus 
several in a row. The first pixel in a row 
of lit pixels is larger. All these subtle 
differences combine to create a sub-
stantially different picture. 

The problem itself is much simpler 
than the functional issues because 
there is no feedback to the rest of the 
implementation. There is no need to 
change the CPU timing or how the 
CPU interacts with the graphics sys-
tem. It is merely a matter of drawing 
each dot as an alpha-blended patch 
rather than a hard-edged off/on set-
ting of one or two pixels. What is 

troublesome is the increased effort 
required by the host CPU to pull this 
off. The work involved is many times 
greater than before. Only through the 
aid of a graphics coprocessor or mod-
erately optimized rendering code can 
the screen be drawn in this fashion 
in real time. It is difficult to believe 
that drawing a 30-year-old computer’s 
display takes up so much of a modern 
system. This is one reason why accu-
rate emulation takes so long to per-
fect. We can decide to make a better 
display, but today’s platforms may not 
have the horsepower to accomplish it. 

That realistic fuzzy pixels can over-
lap does lead to noticeable visual arti-
facts. Two pixels alternating between 
on and off sitting side by side will ap-
pear to be three pixels: two flashing 
pixels on each end and a single always-
on pixel in the middle where the two 
overlap. I’ll leave it to your imagina-
tion what useful effect this artifact 
may have. 

Conclusion 
A system’s complexity is easy to under-
estimate. Even the simple video sys-
tem of the TRS-80 has greater depth 
than anticipated. What lurks beneath 
the surface is far greater than the high-
level description. Take it as a sideways 
reinforcement of the KISS principle. 
Yet do not despair. You must also con-
sider the power of tools. Each emula-
tor improvement has led to discover-
ies that could be exploited for good 
use once the necessary support tools 
were built. Above all, however, beware 
of perfection. No system is perfect, 
and the cost of pursuing perfection 
can be much greater than mere time 
and money invested. 	
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A survey of powerful visualization techniques, 
from the obvious to the obscure.

by Jeffrey Heer, Michael Bostock, and Vadim Ogievetsky

A Tour 
Through the 
Visualization 
Zoo 

help engage more diverse audiences in 
exploration and analysis. The challenge 
is to create effective and engaging visu-
alizations that are appropriate to the 
data.

Creating a visualization requires a 
number of nuanced judgments. One 
must determine which questions to 
ask, identify the appropriate data, and 
select effective visual encodings to map 
data values to graphical features such 
as position, size, shape, and color. The 
challenge is that for any given data set 
the number of visual encodings—and 
thus the space of possible visualization 
designs—is extremely large. To guide 
this process, computer scientists, psy-

of valuable information on how we 
conduct our businesses, governments, 
and personal lives. To put the informa-
tion to good use, we must find ways to 
explore, relate, and communicate the 
data meaningfully.

The goal of visualization is to aid our 
understanding of data by leveraging the 
human visual system’s highly tuned 
ability to see patterns, spot trends, and 
identify outliers. Well-designed visual 
representations can replace cognitive 
calculations with simple perceptual in-
ferences and improve comprehension, 
memory, and decision making. By mak-
ing data more accessible and appeal-
ing, visual representations may also 

Thanks to  adva n ces  in sensing, networking, and 
data management, our society is producing digital 
information at an astonishing rate. According to 
one estimate, in 2010 alone we will generate 1,200 
exabytes—60 million times the content of the Library 
of Congress. Within this deluge of data lies a wealth 

http://queue.acm.org
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chologists, and statisticians have stud-
ied how well different encodings facili-
tate the comprehension of data types 
such as numbers, categories, and net-
works. For example, graphical percep-
tion experiments find that spatial po-
sition (as in a scatter plot or bar chart) 
leads to the most accurate decoding of 
numerical data and is generally prefer-
able to visual variables such as angle, 
one-dimensional length, two-dimen-
sional area, three-dimensional volume, 
and color saturation. Thus, it should 
be no surprise that the most common 
data graphics, including bar charts, 
line charts, and scatter plots, use posi-
tion encodings. Our understanding of 
graphical perception remains incom-
plete, however, and must appropriately 
be balanced with interaction design 
and aesthetics.

This article provides a brief tour 
through the “visualization zoo,” show-
casing techniques for visualizing and 
interacting with diverse data sets. In 
many situations, simple data graphics 
will not only suffice, they may also be 
preferable. Here we focus on a few of 
the more sophisticated and unusual 
techniques that deal with complex data 
sets. After all, you don’t go to the zoo to 
see chihuahuas and raccoons; you go 
to admire the majestic polar bear, the 
graceful zebra, and the terrifying Suma-
tran tiger. Analogously, we cover some 
of the more exotic (but practically use-
ful) forms of visual data representation, 
starting with one of the most common, 
time-series data; continuing on to sta-
tistical data and maps; and then com-
pleting the tour with hierarchies and 
networks. Along the way, bear in mind 
that all visualizations share a common 
“DNA”—a set of mappings between 
data properties and visual attributes 
such as position, size, shape, and col-
or—and that customized species of vi-
sualization might always be construct-
ed by varying these encodings.

Each visualization shown here is 
accompanied by an online interactive 
example that can be viewed at the URL 
displayed beneath it. The live examples 
were created using Protovis, an open 
source language for Web-based data 
visualization. To learn more about how 
a visualization was made (or to copy 
and paste it for your own use), see the 
online version of this article available 
on the ACM Queue site at http://queue.
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Time-Series Data: F igure 1a. Index chart of selected technology stocks, 2000–2010. 

Source: Yahoo! Finance; http://hci.stanford.edu/jheer/files/zoo/ex/time/index-chart.html
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Time-Series Data: F igure 1b. Stacked graph of unemployed U.S. workers by industry, 2000–2010.

Source: U.S. Bureau of Labor Statistics; http://hci.stanford.edu/jheer/files/zoo/ex/time/stack.html
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Time-Series Data: F igure 1c. Small multiples of unemployed U.S. workers, normalized by industry, 2000–2010.

Source: U.S. Bureau of Labor Statistics; http://hci.stanford.edu/jheer/files/zoo/ex/time/multiples.html

Time-Series Data: F igure 1d. Horizon graphs of U.S. unemployment rate, 2000–2010.

Source: U.S. Bureau of Labor Statistics;  http://hci.stanford.edu/jheer/files/zoo/ex/time/horizon.html
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http://queue.acm.org/detail.cfm?id=1780401/
http://hci.stanford.edu/jheer/files/zoo/ex/time/index-chart.html
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acm.org/detail.cfm?id=1780401/. All 
example source code is released into 
the public domain and has no restric-
tions on reuse or modification. Note, 
however, that these examples will work 
only on a modern, standards-compli-
ant browser supporting scalable vector 
graphics (SVG). Supported browsers in-
clude recent versions of Firefox, Safari, 
Chrome, and Opera. Unfortunately, In-
ternet Explorer 8 and earlier versions 
do not support SVG and so cannot be 
used to view the interactive examples.

Time-Series Data
 Sets of values changing over time—or, 
time-series data—is one of the most 
common forms of recorded data. Time-
varying phenomena are central to many 
domains such as finance (stock prices, 
exchange rates), science (temperatures, 
pollution levels, electric potentials), 
and public policy (crime rates). One of-
ten needs to compare a large number 
of time series simultaneously and can 
choose from a number of visualizations 
to do so.

Index Charts. With some forms of 
time-series data, raw values are less im-
portant than relative changes. Consider 
investors who are more interested in 
a stock’s growth rate than its specific 
price. Multiple stocks may have dra-
matically different baseline prices but 
may be meaningfully compared when 
normalized. An index chart is an inter-
active line chart that shows percentage 
changes for a collection of time-series 
data based on a selected index point. 
For example, the image in Figure 1a 
shows the percentage change of select-
ed stock prices if purchased in January 
2005: one can see the rocky rise enjoyed 
by those who invested in Amazon, Ap-
ple, or Google at that time. 

Stacked Graphs. Other forms of 
time-series data may be better seen in 
aggregate. By stacking area charts on 
top of each other, we arrive at a visual 
summation of time-series values—a 
stacked graph. This type of graph (some-
times called a stream graph) depicts 
aggregate patterns and often supports 
drill-down into a subset of individual 
series. The chart in Figure 1b shows the 
number of unemployed workers in the 
U.S. over the past decade, subdivided by 
industry. While such charts have prov-
en popular in recent years, they do have 
some notable limitations. A stacked 

graph does not support negative num-
bers and is meaningless for data that 
should not be summed (temperatures, 
for example). Moreover, stacking may 
make it difficult to accurately interpret 
trends that lie atop other curves. Inter-
active search and filtering is often used 
to compensate for this problem.

Small Multiples. In lieu of stacking, 
multiple time series can be plotted 
within the same axes, as in the index 
chart. Placing multiple series in the 
same space may produce overlapping 
curves that reduce legibility, however. 
An alternative approach is to use small 
multiples: showing each series in its 
own chart. In Figure 1c we again see 
the number of unemployed workers, 
but normalized within each industry 
category. We can now more accurately 
see both overall trends and seasonal 
patterns in each sector. While we are 
considering time-series data, note that 
small multiples can be constructed for 
just about any type of visualization: bar 
charts, pie charts, maps, among others. 
This often produces a more effective vi-
sualization than trying to coerce all the 
data into a single plot.

Horizon Graphs. What happens 
when you want to compare even more 
time series at once? The horizon graph 
is a technique for increasing the data 
density of a time-series view while pre-
serving resolution. Consider the five 
graphs shown in Figure 1d. The first 
one is a standard area chart, with posi-
tive values colored blue and negative 
values colored red. The second graph 
“mirrors” negative values into the same 
region as positive values, doubling the 
data density of the area chart. The third 
chart—a horizon graph—doubles the 
data density yet again by dividing the 
graph into bands and layering them 
to create a nested form. The result is 
a chart that preserves data resolution 
but uses only a quarter of the space. Al-
though the horizon graph takes some 
time to learn, it has been found to be 
more effective than the standard plot 
when the chart sizes get quite small.

Statistical Distributions 
Other visualizations have been de-
signed to reveal how a set of numbers 
is distributed and thus help an analyst 
better understand the statistical prop-
erties of the data. Analysts often want 
to fit their data to statistical models, ei-

ther to test hypotheses or predict future 
values, but an improper choice of mod-
el can lead to faulty predictions. Thus, 
one important use of visualizations is 
exploratory data analysis: gaining in-
sight into how data is distributed to 
inform data transformation and mod-
eling decisions. Common techniques 
include the histogram, which shows the 
prevalence of values grouped into bins, 
and the box-and-whisker plot, which can 
convey statistical features such as the 
mean, median, quartile boundaries, or 
extreme outliers. In addition, a number 
of other techniques exist for assessing 
a distribution and examining interac-
tions between multiple dimensions.

Stem-and-Leaf Plots. For assessing a 
collection of numbers, one alternative 
to the histogram is the stem-and-leaf 
plot. It typically bins numbers accord-
ing to the first significant digit, and then 
stacks the values within each bin by the 
second significant digit. This minimal-
istic representation uses the data itself 
to paint a frequency distribution, re-
placing the “information-empty” bars 
of a traditional histogram bar chart and 
allowing one to assess both the overall 
distribution and the contents of each 
bin. In Figure 2a, the stem-and-leaf plot 
shows the distribution of completion 
rates of workers completing crowd-
sourced tasks on Amazon’s Mechani-
cal Turk. Note the multiple clusters: 
one group clusters around high levels 
of completion (99%–100%); at the oth-
er extreme is a cluster of Turkers who 
complete only a few tasks (~10%) in a 
group. 

Q-Q Plots. Though the histogram 
and the stem-and-leaf plot are common 
tools for assessing a frequency distribu-
tion, the Q-Q (quantile-quantile) plot is a 
more powerful tool. The Q-Q plot com-
pares two probability distributions by 
graphing their quantiles against each 
other. If the two are similar, the plotted 
values will lie roughly along the central 
diagonal. If the two are linearly related, 
values will again lie along a line, though 
with varying slope and intercept.

Figure 2b shows the same Mechani-
cal Turk participation data compared 
with three statistical distributions. 
Note how the data forms three distinct 
components when compared with uni-
form and normal (Gaussian) distribu-
tions: this suggests that a statistical 
model with three components might 

http://queue.acm.org/detail.cfm?id=1780401/
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be more appropriate, and indeed we 
see in the final plot that a fitted mixture 
of three normal distributions provides 
a better fit. Though powerful, the Q-Q 
plot has one obvious limitation in that 
its effective use requires that viewers 
possess some statistical knowledge. 

SPLOM (Scatter Plot Matrix). Other 
visualization techniques attempt to 
represent the relationships among 
multiple variables. Multivariate data 
occurs frequently and is notoriously 
hard to represent, in part because of 
the difficulty of mentally picturing data 
in more than three dimensions. One 
technique to overcome this problem is 
to use small multiples of scatter plots 
showing a set of pairwise relations 
among variables, thus creating the SP-
LOM (scatter plot matrix). A SPLOM en-
ables visual inspection of correlations 
between any pair of variables. 

In Figure 2c a scatter plot matrix is 
used to visualize the attributes of a da-
tabase of automobiles, showing the re-
lationships among horsepower, weight, 
acceleration, and displacement. Addi-
tionally, interaction techniques such 
as brushing-and-linking—in which a 
selection of points on one graph high-
lights the same points on all the other 
graphs—can be used to explore pat-
terns within the data. 

Parallel Coordinates. As shown in 
Figure 2d, parallel coordinates (||-co-
ord) take a different approach to visu-
alizing multivariate data. Instead of 
graphing every pair of variables in two 
dimensions, we repeatedly plot the data 
on parallel axes and then connect the 
corresponding points with lines. Each 
poly-line represents a single row in the 
database, and line crossings between 
dimensions often indicate inverse cor-
relation. Reordering dimensions can 
aid pattern-finding, as can interactive 
querying to filter along one or more di-
mensions. Another advantage of paral-
lel coordinates is that they are relatively 
compact, so many variables can be 
shown simultaneously. 

Maps
Although a map may seem a natural 
way to visualize geographical data, it 
has a long and rich history of design. 
Many maps are based upon a carto-
graphic projection: a mathematical 
function that maps the 3D geometry 
of the Earth to a 2D image. Other maps 
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Statistical Distributions:  Figure 2a. Stem-and-leaf plot of Mechanical Turk participation rates.

Source: Stanford Visualization Group; http://hci.stanford.edu/jheer/files/zoo/ex/stats/stem-and-leaf.html
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Statistical Distributions:  Figure 2b. Q-Q plots of Mechanical Turk participation rates. 

Source: Stanford Visualization Group; http://hci.stanford.edu/jheer/files/zoo/ex/stats/qqplot.html

cylinders displacement weight horsepower acceleration mpg year

3 68 cubic inch 1613 lbs 46 hp 8 (0 to 60mph) 9 miles/gallon 70

8 455 cubic inch 5140 lbs 230 hp 25 (0 to 60mph) 47 miles/gallon 82

Statistical Distributions:  Figure 2d. Parallel coordinates of automobile data.

Source: GGobi; http://hci.stanford.edu/jheer/files/zoo/ex/stats/parallel.html
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Statistical Distributions:  Figure 2c. Scatter plot matrix of automobile data. 

Source: GGobi; http://hci.stanford.edu/jheer/files/zoo/ex/stats/splom.html
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knowingly distort or abstract geo-
graphic features to tell a richer story or 
highlight specific data.

Flow Maps. By placing stroked lines 
on top of a geographic map, a flow map 
can depict the movement of a quantity 
in space and (implicitly) in time. Flow 
lines typically encode a large amount of 
multivariate information: path points, 
direction, line thickness, and color can 
all be used to present dimensions of 
information to the viewer. Figure 3a is 
a modern interpretation of Charles Mi-
nard’s depiction of Napoleon’s ill-fated 
march on Moscow. Many of the greatest 
flow maps also involve subtle uses of 
distortion, as geography is bended to 
accommodate or highlight flows. 

Choropleth Maps. Data is often col-
lected and aggregated by geographi-
cal areas such as states. A standard 
approach to communicating this data 
is to use a color encoding of the geo-
graphic area, resulting in a choropleth 
map. Figure 3b uses a color encoding 
to communicate the prevalence of obe-
sity in each state in the U.S. Though 
this is a widely used visualization tech-
nique, it requires some care. One com-
mon error is to encode raw data values 
(such as population) rather than using 
normalized values to produce a densi-
ty map. Another issue is that one’s per-
ception of the shaded value can also be 
affected by the underlying area of the 
geographic region.

Graduated Symbol Maps. An alterna-
tive to the choropleth map, the gradu-
ated symbol map places symbols over an 
underlying map. This approach avoids 
confounding geographic area with data 
values and allows for more dimensions 
to be visualized (for example, symbol 
size, shape, and color). In addition to 
simple shapes such as circles, gradu-
ated symbol maps may use more com-
plicated glyphs such as pie charts. In 
Figure 3c, total circle size represents a 
state’s population, and each slice indi-
cates the proportion of people with a 
specific BMI rating. 

Cartograms. A cartogram distorts the 
shape of geographic regions so that the 
area directly encodes a data variable. 
A common example is to redraw every 
country in the world sizing it propor-
tionally to population or gross domes-
tic product. Many types of cartograms 
have been created; in Figure 3d we use 
the Dorling cartogram, which represents 
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Maps:  Figure 3a. Flow map of Napoleon’s March on Moscow, based on the work of Charles Minard.

http://hci.stanford.edu/jheer/files/zoo/ex/maps/napoleon.html
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Maps:  Figure 3b. Choropleth map of obesity in the U.S., 2008.

Source: National Center for Chronic Disease Prevention and Health Promotion; http://hci.stanford.edu/jheer/files/zoo/ex/maps/choropleth.html
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Source: National Center for Chronic Disease Prevention and Health Promotion; http://hci.stanford.edu/jheer/files/zoo/ex/maps/symbol.html
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each geographic region with a sized 
circle, placed so as to resemble the true 
geographic configuration. In this ex-
ample, circular area encodes the total 
number of obese people per state, and 
color encodes the percentage of the to-
tal population that is obese. 

Hierarchies
While some data is simply a flat collec-
tion of numbers, most can be organized 
into natural hierarchies. Consider: spa-
tial entities, such as counties, states, 
and countries; command structures 
for businesses and governments; soft-
ware packages and phylogenetic trees. 
Even for data with no apparent hierar-
chy, statistical methods (for example, 
k-means clustering) may be applied to 
organize data empirically. Special visu-
alization techniques exist to leverage 
hierarchical structure, allowing rapid 
multiscale inferences: micro-observa-
tions of individual elements and mac-
ro-observations of large groups.

Node-link diagrams. The word tree 
is used interchangeably with hierarchy, 
as the fractal branches of an oak might 
mirror the nesting of data. If we take a 
two-dimensional blueprint of a tree, we 
have a popular choice for visualizing 
hierarchies: a node-link diagram. Many 
different tree-layout algorithms have 
been designed; the Reingold-Tilford al-
gorithm, used in Figure 4a on a package 
hierarchy of software classes, produces 
a tidy result with minimal wasted space.

An alternative visualization scheme 
is the dendrogram (or cluster) algorithm, 
which places leaf nodes of the tree at the 
same level. Thus, in the diagram in Fig-
ure 4b, the classes (orange leaf nodes) 
are on the diameter of the circle, with 
the packages (blue internal nodes) in-
side. Using polar rather than Cartesian 
coordinates has a pleasing aesthetic, 
while using space more efficiently.

We would be remiss to overlook 
the indented tree, used ubiquitously 
by operating systems to represent file 
directories, among other applications 
(see Figure 4c). Although the indented 
tree requires excessive vertical space 
and does not facilitate multiscale infer-
ences, it does allow efficient interactive 
exploration of the tree to find a specific 
node. In addition, it allows rapid scan-
ning of node labels, and multivariate 
data such as file size can be displayed 
adjacent to the hierarchy.
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Hierarchies:  Figure 4a. Radial node-link diagram of the Flare package hierarchy.

http://hci.stanford.edu/jheer/files/zoo/ex/hierarchies/tree.html
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Hierarchies:  Figure 4b. Cartesian node-link diagram of the Flare package hierarchy.
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Adjacency Diagrams. The adjacency 
diagram is a space-filling variant of the 
node-link diagram; rather than draw-
ing a link between parent and child in 
the hierarchy, nodes are drawn as solid 
areas (either arcs or bars), and their 
placement relative to adjacent nodes 
reveals their position in the hierarchy. 
The icicle layout in Figure 4d is similar 
to the first node-link diagram in that 
the root node appears at the top, with 
child nodes underneath. Because the 
nodes are now space-filling, however, 
we can use a length encoding for the 
size of software classes and packages. 
This reveals an additional dimension 
that would be difficult to show in a 
node-link diagram.

The sunburst layout, shown in Fig-
ure 4e, is equivalent to the icicle lay-
out, but in polar coordinates. Both are 
implemented using a partition layout, 
which can also generate a node-link 
diagram. Similarly, the previous cluster 
layout can be used to generate a space-
filling adjacency diagram in either Car-
tesian or polar coordinates.

Enclosure Diagrams. The enclosure 
diagram is also space filling, using 
containment rather than adjacency to 
represent the hierarchy. Introduced by 
Ben Shneiderman in 1991, a treemap 
recursively subdivides area into rect-
angles. As with adjacency diagrams, 
the size of any node in the tree is 
quickly revealed. The example shown 
in Figure 4f uses padding (in blue) to 
emphasize enclosure; an alternative 
saturation encoding is sometimes 
used. Squarified treemaps use approxi-
mately square rectangles, which offer 
better readability and size estimation 
than a naive “slice-and-dice” subdivi-
sion. Fancier algorithms such as Vo-
ronoi and jigsaw treemaps also exist 
but are less common.

By packing circles instead of sub-
dividing rectangles, we can produce 
a different sort of enclosure diagram 
that has an almost organic appear-
ance. Although it does not use space 
as efficiently as a treemap, the “wast-
ed space” of the circle-packing layout, 
shown in Figure 4g, effectively reveals 
the hierarchy. At the same time, node 
sizes can be rapidly compared using 
area judgments.

Networks
In addition to organization, one aspect 
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practice

of data that we may wish to explore 
through visualization is relationship. 
For example, given a social network, 
who is friends with whom? Who are 
the central players? What cliques ex-
ist? Who, if anyone, serves as a bridge 
between disparate groups? Abstractly, 
a hierarchy is a specialized form of net-
work: each node has exactly one link 
to its parent, while the root node has 
no links. Thus node-link diagrams are 
also used to visualize networks, but the 
loss of hierarchy means a different al-
gorithm is required to position nodes.

Mathematicians use the formal 
term graph to describe a network. A 
central challenge in graph visualiza-
tion is computing an effective layout. 
Layout techniques typically seek to po-
sition closely related nodes (in terms 
of graph distance, such as the number 
of links between nodes, or other met-
rics) close in the drawing; critically, 
unrelated nodes must also be placed 
far enough apart to differentiate rela-
tionships. Some techniques may seek 
to optimize other visual features—for 
example, by minimizing the number 
of edge crossings.

Force-directed Layouts. A common 
and intuitive approach to network lay-
out is to model the graph as a physical 
system: nodes are charged particles that 
repel each other, and links are damp-
ened springs that pull related nodes 
together. A physical simulation of these 
forces then determines the node posi-
tions; approximation techniques that 
avoid computing all pairwise forces 
enable the layout of large numbers of 
nodes. In addition, interactivity allows 
the user to direct the layout and jiggle 
nodes to disambiguate links. Such a 
force-directed layout is a good starting 
point for understanding the structure 
of a general undirected graph. In Figure 
5a we use a force-directed layout to view 
the network of character co-occurrence 
in the chapters of Victor Hugo’s classic 
novel, Les Misérables. Node colors de-
pict cluster memberships computed by 
a community-detection algorithm.

Arc Diagrams. An arc diagram, 
shown in Figure 5b, uses a one-dimen-
sional layout of nodes, with circular 
arcs to represent links. Though an arc 
diagram may not convey the overall 
structure of the graph as effectively as 
a two-dimensional layout, with a good 
ordering of nodes it is easy to identify 

networks: figure 5a. force-directed layout of Les Misérables character co-occurrences.

http://hci.stanford.edu/jheer/fi les/zoo/ex/networks/force.html
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cliques and bridges. Further, as with the 
indented-tree layout, multivariate data 
can easily be displayed alongside nodes. 
The problem of sorting the nodes in a 
manner that reveals underlying cluster 
structure is formally called seriation and 
has diverse applications in visualiza-
tion, statistics, and even archaeology.

Matrix Views. Mathematicians and 
computer scientists often think of a 
graph in terms of its adjacency matrix: 
each value in row i and column j in the 
matrix corresponds to the link from 
node i to node j. Given this representa-
tion, an obvious visualization then is: 
just show the matrix! Using color or sat-
uration instead of text allows values as-
sociated with the links to be perceived 
more rapidly. 

The seriation problem applies just 
as much to the matrix view, shown in 
Figure 5c, as to the arc diagram, so 
the order of rows and columns is im-
portant: here we use the groupings 
generated by a community-detection 
algorithm to order the display. While 
path-following is more difficult in a 
matrix view than in a node-link dia-
gram, matrices have a number of com-
pensating advantages. As networks 
get large and highly connected, node-
link diagrams often devolve into giant 
hairballs of line crossings. In matrix 
views, however, line crossings are im-
possible, and with an effective sort-
ing one quickly can spot clusters and 
bridges. Allowing interactive group-
ing and reordering of the matrix facili-
tates even deeper exploration of net-
work structure.

Conclusion
We have arrived at the end of our tour 
and hope the reader has found the ex-
amples both intriguing and practical. 
Though we have visited a number of 
visual encoding and interaction tech-
niques, many more species of visualiza-
tion exist in the wild, and others await 
discovery. Emerging domains such as 
bioinformatics and text visualization 
are driving researchers and designers to 
continually formulate new and creative 
representations or find more powerful 
ways to apply the classics. In either case, 
the DNA underlying all visualizations 
remains the same: the principled map-
ping of data variables to visual features 
such as position, size, shape, and color. 

As you leave the zoo and head back 

into the wild, try deconstructing the 
various visualizations crossing your 
path. Perhaps you can design a more ef-
fective display? 	

Additional Resources

Few, S. 
Now I See It: Simple Visualization 
Techniques for Quantitative Analysis. 
Analytics Press, 2009.

Tufte, E. 
The Visual Display of Quantitative 
Information. Graphics Press, 1983.

Tufte, E.
Envisioning Information. Graphics Press, 
1990. 

Ware, C.
Visual Thinking for Design. Morgan 
Kaufmann, 2008. 

Wilkinson, L.
The Grammar of Graphics. Springer, 1999. 

Visualization Development Tools

Prefuse: Java API for information 
visualization. 

Prefuse Flare: ActionScript 3 library for data 
visualization in the Adobe Flash Player. 

Processing: Popular language and IDE for 
graphics and interaction. 

Protovis: JavaScript tool for Web-based 
visualization. 

The Visualization Toolkit: Library for 3D 
and scientific visualization. 

  Related articles 
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Wattenberg, and Fernanda Viégas
http://queue.acm.org/detail.cfm?id=1744741
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with HDF5
Matthew T. Dougherty, Michael J. Folk,  
Erez Zadok, Herbert J. Bernstein,  
Frances C. Bernstein, Kevin W. Eliceiri,  
Werner Benger, Christoph Best
http://queue.acm.org/detail.cfm?id=1628215
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All visualizations 
share a common 
“DNA”—a set of 
mappings between 
data properties and 
visual attributes 
such as position, 
size, shape, 
and color—and 
customized species 
of visualization 
might always be 
constructed by 
varying these 
encodings.
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Data-oriented scient ific processes  depend on 
fast, accurate analysis of experimental data generated 
through empirical observation and simulation. 
However, scientists are increasingly overwhelmed 
by the volume of data produced by their own 
experiments. With improving instrument precision 
and the complexity of the simulated models, data 
overload promises to only get worse. The inefficiency 
of existing database management systems (DBMSs) 
for addressing the requirements of scientists has led 
to many application-specific systems. Unlike their 
general-purpose counterparts, these systems require 
more resources, hindering reuse of knowledge. Still, 
the data-management community aspires to general-
purpose scientific data management. Here, we explore 
the most important requirements of such systems and 
the techniques being used to address them. 

Observation and simulation of phenomena are keys 
for proving scientific theories and discovering facts of

nature the human brain could other-
wise never imagine. Scientists must 
be able to manage data derived from 
observations and simulations. Con-
stant improvement of observational 
instruments and simulation tools give 
modern science effective options for 
abundant information capture, re-
flecting the rich diversity of complex 
life forms and cosmic phenomena. 
Moreover, the need for in-depth analy-
sis of huge amounts of data relent-
lessly drives demand for additional 
computational support. 

Microsoft researcher and ACM 
Turing Award laureate Jim Gray once 
said, “A fourth data-intensive sci-
ence is emerging. The goal is to have 
a world in which all of the science lit-
erature is online, all the science data 
is online, and they interoperate with 
each other.”9 Unfortunately, today’s 
commercial data-management tools 
are incapable of supporting the un-
precedented scale, rate, and complex-
ity of scientific data collection and 
processing. 

Despite its variety, scientific data 
does share some common features: 

˲˲ Scale usually dwarfing the scale of 
transactional data sets; 

˲˲ Generated through complex and 
interdependent workflows; 

˲˲ Typically multidimensional; 
˲˲ Embedded physical models; 
˲˲ Important metadata about experi-

ments and their provenance; 
˲˲ Floating-point heavy; and 
˲˲ Low update rates, with most up-

dates append-only. 

doi:10.1145/1743546.1743568

Needed are generic, rather than one-off, DBMS 
solutions automating storage and analysis of 
data from scientific collaborations. 

By Anastasia Ailamaki, Verena Kantere,  
and Debabrata Dash 

Managing 
Scientific Data 

 key insights
 � �Managing the enormous amount of 

scientific data being collected is the key 
to scientific progress. 

 � �Though technology allows for the 
extreme collection rates of scientific 
data, processing is still performed  
with stale techniques developed for 
small data sets; efficient processing  
is necessary to be able to exploit the 
value of huge scientific data collections. 

 � �Proposed solutions also promise 
to achieve efficient management for 
almost any other kind of data. 
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Persistent common requirements 
for scientific data management in-
clude: 

˲˲ Automation of data and metadata 
processing; 

˲˲ Parallel data processing; 
˲˲ Online processing; 
˲˲ Integration of multifarious data 

and metadata; and 
˲˲ Efficient manipulation of data/

metadata residing in files. 
Lack of complete solutions us-

ing commercial DBMSs has led sci-
entists in all fields to develop or 
adopt application-specific solutions, 
though some have been added on top 

of commercial DBMSs; for example, 
the Sloan Digital Sky Survey (SDSS-
1 and SDSS-2; http://www.sdss.org/) 
uses SQL Server as its backend. More-
over, the resulting software is typi-
cally tightly bound to the application 
and difficult to adapt to changes in 
the scientific landscape. Szalay and 
Blakeley9 wrote, “Scientists and scien-
tific institutions need a template and 
best practices that lead to balanced 
hardware architectures and corre-
sponding software to deal with these 
volumes of data.” 

Despite the challenges, the data-
management research community 

continues to envision a general-pur-
pose scientific data-management 
system adapting current innova-
tions: parallelism in data querying, 
sophisticated tools for data definition 
and analysis (such as clustering and 
SDSS-1), optimization of data orga-
nization, data caching, and replica-
tion techniques. Promising results 
involve automated data organization, 
provenance, annotation, online pro-
cessing of streaming data, embedded 
complex data types, support for de-
clarative data, process definition, and 
incorporation of files into DBMSs. 

Scientific databases cover a wide 

Result of seven-trillion-electronvolt collisions (March 30, 2010) in the ATLAS particle detector on the Large Hadron Collider at CERN, hunting 
for dark matter, new forces, new dimensions, the Higgs boson, and ultimately a grand theory to explain all physical phenomena.

http://www.sdss.org/
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processing also helps detect and fine-
tune the telescope’s alignment. The 
image data is then recorded onto tape 
for archival purposes. 

The tapes are physically mailed to a 
processing center at Fermilab in Bata-
via, IL, to be processed through auto-
mated software pipelines to identify 
celestial objects. Many astronomical-
processing-software pipelines process 
the data in parallel. The output of this 
processing, along with the image data, 
is stored in the local archives at Fermi-
lab. The metadata generated from the 
processing pipelines is converted to 
relational format and stored in a MS-
SQL Server database. Astronomers 
closely associated with the SDSS ac-
cess the data from the local archives 
(see Figure 1). 

The data is also published (pub-
licly) once every two years through 
virtual observatories (http://www.
sdss.org/dr7, the final release of the 
SDSS-II project) by running SQL on 
the database at the observatories or 
downloading the entire database over 
the Internet while running the queries 
locally. The SDSS project began pro-
viding public data sets in 2002 with 
three such observatories located at 
the Space Telescope Science Institute 
in the U.S., the National Astronomi-
cal Observatory of Japan, and the Max 
Planck Institute for Astrophysics in 
Germany. 

scope, with notable demand for high 
performance and data quality. Scien-
tific data ranges from medical and 
biological to community science and 
from large-scale institutional to local 
laboratories. Here, we focus on the 
big amounts of data collected or pro-
duced by instruments archived in da-
tabases and managed by DBMSs. The 
database community has expertise 
that can be applied to solve the prob-
lems in existing scientific databases. 

Observation and Simulation 
Scientific data originates through ob-
servation and/or simulation.16 Obser-
vational data is collected through de-
tectors; input is digitized, and output 
is raw observational data. Simulation 
data is produced through simulators 
that take as input the values of simula-
tion parameters. Both types of data are 

often necessary for scientific research 
on the same topic; for instance, obser-
vational data is compared with simu-
lation data produced under the same 
experimental setup. Consider three 
examples, one each for observational, 
simulation, and combined: 

Observational scientific data. The 
SDSS located at Ohio State Univer-
sity and Johns Hopkins University, is 
a long-running astronomy project. 
Since 2000, it has generated a detailed 
3D map of about 25% of the sky (as 
seen from Earth) containing millions 
of galaxies and quasars. One reason 
for its success is its use of the SQL 
Server DBMS. The SDSS uses the tele-
scope at Apache Point Observatory, 
NM, to scan the sky at regular intervals 
to collect raw data. Online processing 
is done on the data to detect the stars 
and galaxies in the region. This online 

Figure 1. Workflow of SDSS data. 
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The schema of SDSS data includes 
more than 70 tables, though most 
user queries focus on only a few of 
them, referring, as needed, to spectra 
and images. The queries aim to spot 
objects with specific characteristics, 
similarities, and correlations. Pat-
terns of query expression are also lim-
ited, featuring conjunctions of range 
and user-defined functions in both 
the predicate and the join clause. 

Simulation scientific data. Earth 
science employs simulation mod-
els to help predict the motion of the 
ground during earthquakes. Ground 
motion is modeled with an octree-
based hexahedral mesh19 produced by 
a mesh generator, using soil density 
as input (see Figure 2). A “solver” tool 
simulates the propagation of seismic 
waves through the Earth by approxi-
mating the solution to the wave equa-
tion at each mesh node. During each 
time step, the solver computes an 
estimate of each node velocity in the 
spatial directions, writing the results 
to the disk. The result is a 4D spatio-
temporal earthquake data set describ-
ing the ground’s velocity response. 
Various types of analysis can be per-
formed on the data set, employing 
both time-varying and space-varying 
queries. For example, a user might de-
scribe a feature in the ground-mesh, 
and the DBMS finds the approximate 
location of the feature in the simula-

tion data set through multidimen-
sional indexes. 

Combined simulation and observa-
tional data. The ATLAS experiment 
(http://atlas.ch/), a particle-physics 
experiment in the Large Hadron Col-
lider (http://lhc.web.cern.ch/lhc/) be-
neath the Swiss-French border near 
Geneva, is an example of scientific 
data processing that combines both 
simulated and observed data. ATLAS 
intends to search for new discoveries 
in the head-on collision of two highly 
energized proton beams. The entire 
workflow of the experiment involves 
petabytes of data and thousands of us-
ers from organizations the world over 
(see Figure 3). 

We first describe some of major AT-
LAS data types: The raw data is the di-
rect observational data of the particle 
collisions. The detector’s output rate 
is about 200Hz, and raw data, or elec-
trical signals, is generated at about 
320MB/sec, then reconstructed using 
various algorithms to produce event 
summary data (ESD). ESD has an ob-
ject-oriented representation of the 
reconstructed events (collisions), with 
content intended to make access to 
raw data unnecessary for most physics 
applications. ESD is further processed 
to create analysis object data (AOD), 
a reduced event representation suit-
able for user analysis. Data volume 
decreases gradually from raw to ESD 

to AOD. Another important data type 
is tag data, or event-level metadata, 
stored in relational databases, de-
signed to support efficient identifica-
tion and selection of events of interest 
to a given analysis. 

Due to the complexity of the ex-
periment and the project’s worldwide 
scope, participating sites are divided 
into multiple layers. The Tier-0 layer is 
a single site—CERN itself—where the 
detector is located and the raw data 
is collected. The first reconstruction 
of the observed electrical signals into 
physics events is also done at CERN, 
producing ESD, AOD, and tag data. 
Tier-1 sites are typically large national 
computing centers that receive repli-
cated data from the Tier-0 site. Tier-1 
sites are also responsible for repro-
cessing older data, as well as for stor-
ing the final results from Monte Carlo 
simulations at Tier-2 sites. Tier-2 sites 
are mostly institutes and universities 
providing computing resources for 
Monte Carlo simulations and end-
user analysis. All sites have pledged 
computing resources, though the vast 
majority is not dedicated to ATLAS or 
to high-energy physics experiments. 

The Tier-0 site is both computation- 
and storage-intensive, since it stores 
the raw data and performs the initial 
event reconstruction. It also serves 
data to the Tier-1 sites, with aggregate 
sustained transfer rates for raw, ESD, 

Figure 3. Workflow of the ATLAS experiment. 
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and AOD in excess of 1GB/sec over the 
WAN or dedicated fiber. Tier-1 sites 
are also computation- and storage-
intensive, since they store new data 
samples while permanently running 
reconstruction of older data samples 
with newer algorithms. Tier-2 sites are 
primarily CPU-intensive, since they 
generally run complex Monte Carlo 
simulations and user analyses while 
only transiently storing data, with ar-
chival copies of interesting data kept 
at Tier-1s sites. 

The ATLAS experimental workflow 
involves a combination of observed 
and simulated data, as outlined in Fig-
ure 3. The “Data Taking” component 
consumes the raw data and produces 
ESD, AOD, and tags that are replicated 
to a subset of the Tier-1s sites and, 
in the case of AOD, to all Tier-1s and 
Tier-2s, where each Tier-2 site receives 
AOD only from its parent Tier-1 site. 
The “Reprocessing” component at 
each Tier-1 site reads older data and 
produces new versions of ESD and 

AOD data, which is sent to a subset of 
other Tier-1s sites and, in the case of 
AOD, to all sites. The primary differ-
ence between the first reconstruction 
at the Tier-0 site and later reconstruc-
tions at the Tier-1 sites is due to better 
understanding of the detector’s be-
havior. Simulated data is used for this 
reconstruction. 

Simulated data, using Monte Carlo 
techniques, is required to understand 
the behavior of the detector and help 
validate physics algorithms. The AT-
LAS machine is physically very large 
and complex, at 45 meters × 25 meters 
and weighing more than 7,000 tons, 
including more than 100 million elec-
tronic channels and 3,000 kilometers 
of cable. A precise understanding of 
the machine’s behavior is required 
to fine-tune the algorithms that pro-
cess its data and reconstruct simula-
tion data from the observed electrical 
signals. This is the role of the Monte 
Carlo simulations, using large statis-
tics and enough data to compensate 

and understand the machine’s bias. 
These simulations are run at Tier-2 
sites by the “MC Simulation” compo-
nent in Figure 3, with results sent to a 
Tier-1 site. 

Finally, the “User Analysis” compo-
nent aims to answer specific physics 
questions, using a model built with 
specific analysis algorithms. This 
model is then validated and improved 
against Monte Carlo data to compen-
sate for the machine’s bias, includ-
ing background noise, and validated 
against real, observed data, eventually 
testing the user’s hypothesis. 

Beyond observational and simula-
tion data and its hybrids, researchers 
discuss special cases of “information-
intensive” data.16 Sociology, biology, 
psychology, and other sciences ap-
ply research on heterogeneous data 
derived from both observation and 
simulation under various conditions. 
For example, in biology, research is 
conducted on data collected by biolo-
gists under experimental conditions P
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Disk with silicon sensors as an endcap of the ATLAS silicon strip detector in its testbox at the Nationaal Instituut voor Subatomaire Fysica, 
Amsterdam, The Netherlands.



contributed articles

june 2010  |   vol.  53  |   no.  6  |   communications of the acm     73

intended for a variety of purposes. 
Scientists involved in combustion 
chemistry, nanoscience, and the en-
vironment must perform research on 
data related to a variety of phenomena 
concerning objects of interest rang-
ing from particles to devices and from 
living organisms to inorganic sub-
stances. Information-intensive data 
is characterized by heterogeneity, in 
both representation and the way sci-
entists use it in the same experiment. 
Management of such data emphasizes 
logical organization and description, 
as well as integration. 

Independent of the data type char-
acterizing particular scientific data, 
its management is essentially divided 
into coarse phases: workflow manage-
ment, management of metadata, data 
integration, data archiving, and data 
processing: 

Workflow management. In a simple 
scenario, a scientific experiment is 
performed according to a workflow 
that dictates the sequence of tasks 
to be executed from the beginning 
until the end of the experiment. The 
tasks coarsely define the manner and 
means for implementing the other 
phases of data management: data 
acquisition, metadata management, 
data archiving, and data processing. 
Task deployment may be serial or par-
allel and sequential or looping. Broad 
and long-lasting experiments encom-
pass sets and hierarchies of partial ex-
perimental studies performed accord-
ing to complex workflows. In general, 
many experiments could share a work-
flow, and a workflow could use results 
from many experiments. 

Scientific workflow management 
systems have been a topic for much 
research over the past two decades, 
involving modeling and enactment15 
and data preservation.12 Numerous 
related scientific products are used in 
the sciences. 

Metadata management. Raw data 
is organized in a logically meaning-
ful way and enriched with respective 
metadata to support the diagnosis of 
unexpected (independent) reinvesti-
gation or reinterpretation of results, 
ideally automatically. Metadata in-
cludes information on data acquisi-
tion (such as parameters of the de-
tectors for observational data and 
simulation for simulation data), as 

task, especially for raw observational 
data derived from experiments that 
cannot be replayed or replayed only at 
prohibitively high cost. The complete 
data set is usually archived on tape, 
with selected parts stored on disks. 
Portions of the data might also have to 
be cached temporarily during migra-
tion between tape and disk or between 
various computers. 

Beyond archiving master copies, 
data replication on multiple sites 
may be necessary to accommodate 
geographically dispersed scientists. 
All the challenges of distributing and 
replicating data management come 
into play when coordinating the move-
ment of large data volumes. Efforts 
are under way to manage these repli-
cation tasks automatically.4 

Archiving scientific data is usually 
performed by storing all past data ver-
sions, as well as the respective meta-
data (such as documentation or even 
human communication like email). 
Nevertheless, the problem of organiz-
ing archives relates to the general re-
search problem of data versioning, so 
solutions to the versioning problem 
can be adapted to archiving scientific 
data. Representative versioning solu-
tions (such as the concurrent versions 
system) compute differences between 
sequential versions and use the dif-
ferences for version reconstruction. 
Recent proposals targeting scientific 
data3 exploit the data’s hierarchical 
structure in order to summarize and 
merge versions. 

Data processing. Data is analyzed 
to extract evidence supporting scien-
tific conclusions, ultimately yielding 
research progress. Toward this end, 
the data must undergo a series of 
procedures specified by scientists in 
light of the goal of their respective ex-
periments. These procedures usually 
involve data clustering, mining, and 
lineage, leading to the inference of 
association rules and abnormalities, 
as well as to computation for feature 
identification and tracking. 

Data analysis is often tightly corre-
lated with data visualization, especial-
ly when it comes to simulation data. 
Scientists want a visual representa-
tion of the data to help them recognize 
coarse associations and abnormali-
ties. Interleaving the steps involved in 
visualization and analysis yields the 

well as administrative data about the 
experiments, data model, and mea-
surement units. Other kinds of meta-
data are extracted from raw data, pos-
sibly through ontologies. Metadata 
may also denote data relationships 
and quality. Annotating the data, all 
metadata (accumulated or extracted) 
is critical to deducing experimental 
conclusions. The metadata and work-
flows often complement one another, 
necessitating combined manage-
ment.7 

Data and process integration. Data 
and its respective metadata may be 
integrated such that they can be ma-
nipulated as a unit. Moreover, newly 
collected data may be integrated with 
historic data representing different 
versions or aspects of the same ex-
periment or belonging to different ex-
periments in the same research track. 
The quality of the data, as well as its 
semantic interpretation, is crucial for 
data integration. Data quality can be 
achieved through data cleansing; se-
mantic integration can be achieved 
through ontologies. Beyond data in-
tegration, process integration is often 
needed to simplify the overall flow of 
the experiment and unify partial re-
sults. For example, integration may be 
necessary or desirable for data mining 
algorithms that facilitate feature ex-
traction and provenance. Process in-
tegration might necessitate creation 
or customization of middleware al-
lowing for interoperation among dif-
ferent procedures and technologies. 
Automatic integration of data and 
processes is highly desirable for ease 
of use but also because querying in-
formation as a unit allows parallel and 
online processing of partial results. 
Moreover, scientists want transpar-
ent access to all data. Automatic inte-
gration assumes customizable tools 
implementing generic integration so-
lutions appropriate for scientific data. 
A notably challenging task is how to 
identify commonalities in scientific 
experiments and data in order to cre-
ate integration tools. 

Data archiving. After they’ve met 
the expected standards of data con-
tent, scientists archive the data so 
other scientists are able to access and 
use it in their own research. The data 
must first be stored using robust, reli-
able storage technology, a mandatory 
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right data regions for testing hypothe-
ses and drawing conclusions. The key 
to efficient data processing is a care-
fully designed database and is why 
automated physical database design 
is the subject of recent research (dis-
cussed in the following section). In ad-
dition, there is an imminent need for 
online data processing (discussed in 
the second following section). 

Automation 
Errors and inefficiencies due to hu-
man-handled physical database de-
sign are common in both metadata 
management and data processing. 
Much recent research has focused on 
automating procedures for these two 
phases of scientific data management. 

Metadata management. Metadata 
processing involves determining the 
data model, annotations, experimen-
tal setup, and provenance. The data 
model can be generated automatically 
by finding dependencies between dif-
ferent attributes of data.10 However, 
experimenters typically determine 
the model since this is a one-time pro-
cess, and dependencies A=πr2 are eas-
ily identified at the attribute level. 

Annotations are meta-information 
about the raw scientific data and espe-
cially important if the data is not nu-
meric. For example, annotations are 
used in biology and astronomy image 
data. Given the vast scale of scientific 
data, automatically generating these 
annotations is essential. Current au-
tomated techniques for gathering an-
notations from documents involve 
machine-learning algorithms, learn-
ing the annotations through a set of 
pre-annotated documents.14 Similar 
techniques are applied to images 
and other scientific data but must be 
scaled to terabyte or petabyte scale. 
Once annotations are built, they can 
be managed through a DBMS. 

Experimental setups are gener-
ally recorded in notebooks, both pa-
per and electronic, then converted to 
query-able digital records. The quality 
of such metadata is typically enforced 
through policies that must be as au-
tomated as possible. For example, 
when data is collected from instru-
ments, instrument parameters can be 
recorded automatically in a database. 
For manually generated data, the poli-
cies must be enforced automatically. 

For the ATLAS experiment, the pa-
rameters of the detectors, as well as 
the influence of external magnetic de-
vices and collider configurations, are 
all stored automatically as metadata. 
Some policies can be enforced auto-
matically through a knowledge base 
of logical statements; the rest can 
be verified through questionnaires. 
Many commercial tools are available 
for validating policies in the enter-
prise scenario, and the scientific com-
munity can borrow technology from 
them to automate the process (http://
www.compliancehome.com/). 

Provenance data includes experi-
mental parameters and task history 
associated with the data. Provenance 
can be maintained for each data en-
try or for each data set. Since work-
load management tracks all tasks ap-
plied to the data, it can automatically 
tag it with task information. Hence, 
automating provenance is the most 
straightforward of the metadata-pro-
cessing automation tasks. The enor-
mous volume of automatically col-
lected metadata easily complicates 
the effort to identify the relevant sub-
set of metadata to the processing task 
in hand. Some research systems are 
capable of automatically managing a 
DBMS’s provenance information.2 

Data processing. Data processing 
depends on how data is physically 
organized. Commercial DBMSs usu-
ally offer a number of options for de-
termining how to store and access it. 
Since scientific data might come in 
petabyte-scale quantities and many 
scientists work on the same data si-
multaneously, the requirements for 
efficient data organization and re-
trieval are demanding. Furthermore, 
the data might be distributed or rep-
licated in multiple geographically 
dispersed systems; hence, network 
resources play an important role in 
facilitating data access. Possibly hun-
dreds or thousands of scientists could 
simultaneously query a petabyte-scale 
database over the network, requiring 
more than 1GB/sec bandwidth. 

To speed data access, the database 
administrator might have to tune sev-
eral parameters, changing the data’s 
logical design by normalizing the 
data or its physical design. The logi-
cal design is determined by the data 
model in the metadata-processing 

Not having to read 
from the disk and 
write computation 
results back saves 
hours to days of 
scientific work, 
giving scientists 
more time to 
investigate the data.

http://www.compliancehome.com/
http://www.compliancehome.com/
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phase of a science experiment. The 
physical design determines optimal 
data organization and location, cach-
ing techniques, indexes, and other 
performance-enhancing techniques. 
All depend on the data-access pattern, 
which is dynamic, hence, it changes 
much more frequently than logical 
design; physical design automation 
is therefore critical for efficient data 
processing. 

Considering the number of param-
eters involved in the physical design 
of a scientific database, requiring the 
database administrator to specify and 
optimize the parameters for all these 
techniques is unreasonable. Data 
storage and organization must be au-
tomated. 

All DBMSs today provide tech-
niques for tuning databases. Though 
the provision of these techniques is 
a step in the right direction, existing 
tools are insufficient for four main 
reasons: 

Precision. They require the query 
workload to be static and precise; 

Relational databases. They consider 
only auxiliary structures to be built on 
relational databases and do not con-
sider other types of data organization; 

Static database. They assume a 
static database, so the statistics in the 
database are similar to the statistics at 
the time the tool is run; and 

Query optimizer. They depend on 
the query optimizer to direct their 
search algorithms, making them slow 
for large workloads. 

Recent database research has ad-
dressed these inherent DBMS limita-
tions. For example, some techniques 
do not require prespecifying the 
workload,1 and others make the cost 
model more efficient, enabling more 
thorough search in the data space.18 
However, they also fall short in several 
areas; for example, they are not robust 
enough to change database statistics 
and do not consider data organization 
other than relational data. Likewise, 
data-organization methods for dis-
tributed data and network caches are 
nascent today. Automatically utilizing 
multiple processing units tuned for 
data-intensive workloads to scale the 
computation is a promising research 
direction, and systems (such as Gray-
Wulf24) apply this technique to achieve 
scalability. 

Physical and logical design-auto-
mation tools must consider all param-
eters and suggest optimal organiza-
tion. The tools must be robust to small 
variations in data and query changes, 
dynamically suggesting changes in 
the data organization when the query 
or data changes significantly. 

Online Processing 
Most data-management techniques in 
the scientific community are offline to-
day; that is, they provide the full result 
of the computation only after process-
ing an entire data set. However, the 
ever-growing scale of scientific data 
volume necessitates that even simple 
processes, one-time data movement, 
checksum computation, and verifica-
tion of data integrity might have to run 
for days before completion. 

Simple errors can take hours to 
be noticed by scientists, and restart-
ing the process consumes even more 
time. Therefore, it is important that 
all processing of scientific data be per-
formed online. Converting the pro-
cesses from offline to online provides 
the following benefits: 

Efficiency. Many operations can be 
applied in a pipeline manner as data 
is generated or move around. The op-
erations are performed on the data 
when already in memory, which is 
much closer to the CPU than to a disk 
or tape. Not having to read from the 
disk and write computation results 
back saves hours to days of scientific 
work, giving scientists more time to 
investigate the data. 

Feedback. Giving feedback to the 
operations performed on the scientif-
ic data is important, because it allows 
scientists to plan their analysis accord-
ing to the progress of the operation. 
Modern DBMSs typically lack a prog-
ress indicator for queries, hence sci-
entists running queries or other pro-
cesses on DBMSs are typically blind to 
the completion time of their queries. 
This blindness may lead to canceling 
the query and issuing a different one 
or abandoning the DBMS altogether. 
DBMSs usually allow a query issuer 
to compute the “cost” of a query in a 
unit specific to the DBMS. This cost is 
not very useful to scientists, since it 
doesn’t correspond to actual running 
time or account for the complete set of 
resources (such as memory size, band-

width, and operation sharing) avail-
able to the DBMS for running the que-
ry. Operations, including querying/
updating data, should thus provide 
real-time feedback about the query 
progress to enable scientists to better 
plan their experiments. 

Debugging. Scientific data is typi-
cally processed on multiprocessor 
systems, as scientific applications are 
often parallelizable and computation 
can thus scale to data volume. How-
ever, it is nearly impossible to detect 
all the problems of a parallel program 
at development time. Using source 
debuggers for parallel programming 
is infeasible, since debuggers change 
the timing of the programs, thereby 
hiding many problems. Debugging be-
comes even more difficult when pro-
grams execute complex tasks (such as 
queries with user-defined functions). 

Some research DBMS prototypes 
provide feedback on query progress,13 
though they are not yet incorporated 
into commercial systems, so the bene-
fits are still not available to scientists. 
Similarly, tools that provide online 
visualization of progress for specific 
simulations are not generic enough 
for a variety of scientific experiments. 

Computational steering. Building 
complex simulations is a challenge 
even in uniprocessor systems. After 
building them, the submitters-scien-
tists often boot on suboptimal param-
eters, unaware that they’re indeed re-
lying on suboptimal parameters until 
the entire simulation is over. There-
fore, online processing, combined 
with online visualization, can simul-
taneously help debug such programs 
and parameters. The system’s opera-
tions should allow an observer to gen-
erate snapshots of the simulations or 
operations and, if possible, control 
the simulation to remove potential 
problems. Manual intervention in 
an otherwise automatic process is 
called “computational steering”; for 
example, in parallel programs, ob-
servers could decide which deadlocks 
to break or when simulations should 
change a parameter on the fly. 

Software for computational steer-
ing includes the scientific program-
ming environment SciRun (http://
www.sci.utah.edu/cibc/software/106-
scirun.html). Nevertheless, software 
must support simulations with pet-
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abytes of data and execution of com-
plex tasks. For software designers, it 
may sometimes be beneficial to model 
the simulations and data processing 
as event generators, using streaming 
and complex event-processing tech-
niques to summarize data operations 
with little overhead or controllable ac-
curacy guarantees. 

Data and Process Integration 
Large-scale experiments organized 
by scientists collect and process huge 
amounts of raw data. Even if the origi-
nal data is reorganized and filtered in 
a way that keeps only the interesting 
parts for processing, these interest-
ing parts are still big. The reorganized 
data is augmented with large volumes 
of metadata, and the augmented reor-
ganized data must be stored and ana-
lyzed. 

Scientists must collaborate with 
computer engineers to develop cus-
tom solutions supporting data stor-
age and analysis for each experiment. 
In spite of the effort involved in such 
collaborations, the experience and 
knowledge gained this way is not 
generally disseminated to the wider 
scientific community or benefit next-
generation experimental setups. 
Computer engineers must therefore 
develop generic solutions for storage 
and analysis of scientific data that can 
be extended and customized to reduce 
the computing overhead of time-con-
suming collaborations. Developing 
generic solutions is feasible, since 
many low-level commonalities are 
available for representing and analyz-
ing experimental data. 

Management of generic physical 
models. Experimental data tends to 
have common low-level features not 
only across experiments of the same 
science, but across all sciences. For 
example, reorganized raw data en-
hanced with metadata usually involves 
complex structures that fit the object-
oriented model. Scientific data repre-
sentation benefits from inheritance 
and encapsulation, two fundamental 
innovations of the object-oriented 
data model. 

Beyond its complexity in terms of 
representation, scientific data is char-
acterized by complex interdependen-
cies, leading to complex queries dur-
ing data processing and analysis. Even 

though the object-oriented model is 
suitable for the representation of sci-
entific data, it cannot efficiently opti-
mize and support complex queries. 

Nevertheless, most scientific data 
is represented by objects with strong 
commonalities with respect to their 
structural elements. DBMSs must be 
extended so they manage the common 
structural elements of scientific data 
representations as generic database 
objects, and database support for 
these objects must include efficient 
ways to store and index data. 

Experimental data derived from 
simulations is frequently represented 
as meshes ranging from structured to 
unstructured and consisting of tetra-
hedra, hexahedra, or n-facets cells. 
For example, an earthquake simula-
tion data set may be represented as 
an unstructured hexahedral mesh. A 
typical volume of earth, say, 100km 
× 100km × 30km, is represented by a 
mesh consisting of roughly one bil-
lion nodes and one billion elements 
requiring about 50GB of storage; such 
a mesh is capable of resolving seis-
mic waves up to 2Hz. Scientific data 
management would benefit greatly if 
DBMSs offered storage and indexing 
methods for meshes. Initial efforts 
toward supporting meshes in DBMSs 
were presented in research19 and com-
mercial products.8 

Multidimensional data also needs 
storage and indexing methods. Most 
scientific data is represented as mul-
tidimensional arrays, but support for 
multidimensional arrays in RDBMSs 
is poor. Computer engineers must 
produce custom solutions for manip-
ulating multidimensional data, lead-
ing to many domain-specific data for-
mats, including netCDF (http://www.
unidata.ucar.edu/software/netcdf/) 
and HDF (http://www.hdfgroup.org/) 
for climate data; FITS (http://heasarc.
gsfc.nasa.gov/docs/heasarc/fits.html) 
for astronomical data; and ROOT 
(http://root.cern.ch/drupal/) for high-
energy physics data. 

An experimental study5 showed 
that, even if using array primitives in 
RDBMSs, native file formats outper-
formed the relational implementa-
tion by a factor of 20 to as much as 80. 
Proposed scientific DBMSs6,23 provide 
multidimensional arrays as first-class 
types, aiming to bridge the gap be-

tween DBMSs and native files in the 
process. The multidimensional ar-
rays are present in multidimensional 
online analytical processing (MOLAP) 
implementations from mainstream 
DBMSs that allow fast exploratory 
analysis of the data by pre-computing 
aggregations on multiple dimensions. 
However, MOLAP needs a significant 
amount of offline processing and an 
enormous amount of disk space to 
store the pre-computed aggregations, 
making them unsuitable for the enor-
mous scale of scientific data. Attempts 
to support exploratory ad hoc OLAP 
queries on large data sets, includ-
ing wavelets, promises to enable fast, 
powerful analysis of scientific data.21 

A frequently used type of scientific 
data is time-and-space-based observa-
tions, meaning interesting data sets 
are trajectories in space and time. As 
trajectories are not inherently sup-
ported by databases, data points are 
usually stored individually and pro-
cessed for line-fitting during scientific 
analysis. Line-fitting is a resource-
consuming task and could be avoided 
if a DBMS inherently supported tra-
jectories. Inherent support for trajec-
tories is related to multidimensional 
array support, since trajectories are 
actually polylines, and each line can 
be approximated (fitted) by functions. 
Promising research results have been 
reported for managing trajectories.22 

DBMSs should inherently support 
new data types while accounting for 
the specialized use of the new types 
for representing scientific data. For 
example, the Hierarchical Triangular 
Mesh method11 subdivides spheri-
cal surfaces so objects localized on a 
sphere can be indexed and queried 
efficiently. Scientific data is usually 
persistent, meaning it is rarely (if ever) 
changed or involved in complex as-
sociations. While developing support 
mechanisms (such as indexes) for new 
data types, priority must go to search 
rather than to update efficiency. The 
persistence of scientific data allevi-
ates a major requirement, making it 
possible to develop efficient indexes 
for the new types. 

Management of generic data pro-
cessing. Scientific data processing dif-
fers from experiment to experiment 
and discipline to discipline. No mat-
ter how wide the scope of processing 
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and overall heterogeneity, processing 
frequently encompasses generic pro-
cedures. 

It is most common that scientific 
data is searched in order to find inter-
esting regions with respect to prespec-
ified characteristics, data regions, and 
abnormalities. Moreover, metadata 
processing consists of data annota-
tion, as well as feature extraction. Data 
tagged with parameter values refers to 
the condition of the experiment and is 
mined to deduce common character-
istics and behavior rules. 

Generic processes that produce 
metadata (such as those just men-
tioned) must be supported inherently 
by the DBMS for all generic physical 
models in a parameterized manner, 
thus bringing processing close to 
the data and leading to reduced data 
movement and reorganization, along 
with efficient processing execution 
in the DBMS. Each generic physical 
model must include templates sup-
porting the generic procedures for the 
model in a customizable manner. For 
example, the particles in the ATLAS 
experiment are tracked using spatio-
temporal attributes. Even though the 
data sets are enormous, only a small 
amount of space and time are popu-
lated by particles. Therefore, the data 
sets would benefit from a generic 
DBMS customizable procedure sup-
porting compression. 

Scientists would benefit even more 
if the definition and customization 
of the templates could be performed 
using a declarative language. Such a 
language would give users intuitive 
guidance as to the specification of 
the customization procedure, as well 
as to the combination and pipelining 
of multiple procedures. In this way, 
the processing burden would be lev-
eraged to the DBMS, and scientists 
would not have to function as com-
puter engineers. 

File Management 
The vast majority of scientific data 
is stored in files and manipulated 
through file systems, meaning all pro-
cessing, from search to computation, 
is performed in the content of the 
files. Sophisticated frameworks have 
been proposed to manage the files 
over a large number of disks, includ-
ing storage resource management 

technology (https://sdm.lbl.gov/srm-
wg/index.html). 

Existing persistent scientific data 
in files is huge and will not be moved 
to databases, even if they support ef-
ficient scientific experimentation. 
Moreover, the tradition in applica-
tions that manipulate scientific data 
files is long, and implementing the 
same functionality in modules that 
are plug-able on DBMSs needs further 
effort. A long tradition and the need 
for plug-able capabilities mean that 
a full-fledged querying mechanism 
for files, similar to DBMSs, is need-
ed. Such a querying mechanism can 
be constructed in either of two ways: 
enhance current DBMSs so they uni-
formly manage both structured data 
and unstructured data in files; and 
create a management layer on top of 
both the DBMS and the file system to 
enable transparent querying of struc-
tured and unstructured data. Each 
approach has advantages and disad-
vantages. 

Enhancing a DBMS to manage files 
and data means that all mechanisms 
in the system should be extended for 
files. Querying on files is assumed 
to be efficient since it would benefit 
from sophisticated database struc-
tures (such as indexes, autonomic 
database organization, and database 
query planning). Moreover, querying 
structured and unstructured data is 
an opportunity for tight interaction 
among queries and query results and 
refined optimization in intermediate 
querying steps. 

Extending DBMSs to manage files is 
a challenge for the data-management 
community since it entails reconsid-
eration of many database protocols 
and a total rebuild of all database 
procedures with new enhancements 
for unstructured data. Yet it is inevi-
table that such a breakthrough in the 
functionality of DBMSs will involve 
substantial redundancy, since a big 
part of database management (such 
as transaction management) is use-
less in the manipulation of scientific 
data. Recent research efforts seeking 
to integrate scientific files into DBMSs 
include Netlobs, a netCDF cartridge 
for Oracle (http://datafedwiki.wustl.
edu/images/f/ff/Dews_poster_2006.
ppt) and Barrodale Computing Ser-
vices, Ltd., on Postgres (http://www.

DBMSs must be 
extended so  
they manage  
the common 
structural elements 
of scientific data 
representations  
as generic database 
objects, and 
database support 
for these objects 
must include 
efficient ways  
to store and  
index data. 
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and file management, but data manip-
ulation must still address the diversity 
of experimentation tasks across the 
sciences, the complexity of scientific 
data representation and processing, 
and the volume of collected data and 
metadata. Nevertheless, data-man-
agement research in all these areas 
suggests the inherent management 
problems of scientific data will indeed 
be addressed and solved. 
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Studyin g th e m etadata  of the ACM Digital Library 
(http://www.acm.org/dl), we found that papers in  
low-acceptance-rate conferences have higher impact 
than those in high-acceptance-rate conferences  
within ACM, where impact is measured by the number 
of citations received. We also found that highly 
selective conferences—those that accept 30% or less  
of submissions—are cited at a rate comparable to  
or greater than ACM Transactions and journals. 

In addition, the higher impact of selec-
tive conferences cannot be explained 
solely by a more strict filtering process; 
selectivity signals authors and/or read-
ers of the quality of a venue and thus 
invites higher-quality submissions from 
authors and/or more citations from oth-
er authors. 

Low-acceptance-rate conferences 
with selective peer-review processes 
distinguish computer science from 
other academic fields where only jour-
nal publication carries real weight. 
Focus on conferences challenges the 

Conference 
Paper 
Selectivity 
and Impact  

doi:10.1145/1743546.1743569
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impact of published conference papers. 

By Jilin Chen and Joseph A. Konstan 

 key insights
 � �Papers published in highly selective 

CS conferences are cited more often 
on average than papers published in 
Transactions and journals. 

 � �Conference selectivity serves two 
purposes: pick the best submitted 
papers and signal prospective authors 
and readers about conference quality. 

 � �Below a certain acceptance rate, 
selectivity can backfire; conferences 
rejecting 85% or more of their 
submissions risk discouraging overall 
submissions and inadvertently filtering 
out high-impact research. 

http://www.acm.org/dl
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Overall, the 
conference papers 
had an average  
two-year citation 
count of 2.15, and 
the journal papers 
had an average  
two-year citation 
count of 1.53.  

field in two ways: how to assess the 
importance of conference publica-
tion, particularly compared to journal 
publication, and how to manage con-
ferences to maximize the impact of 
the papers they publish. “Impact fac-
tor” (average citation rate) is the com-
monly used measure of the influence 
of a journal on its field. While nearly 
all computer scientists have strong 
intuition about the link between con-
ference acceptance rate and a paper’s 
impact, we are aware of no systematic 
studies examining that link or com-
paring conference and journal papers 
in terms of impact. 

This article addresses three main 
questions: How does a conference’s ac-
ceptance rate correlate with the impact 
of its papers? How much impact do 
conference papers have compared to 
journal papers? To what extent does the 
impact of a highly selective conference 
derive from filtering (the selectivity of 
the review process) vs. signaling (the 
message the conference sends to both 
authors and readers by being selective)? 
Our results offer guidance to conference 
organizers, since acceptance rate is one 
of the few parameters they can control 
to maximize the impact of their confer-
ences. In addition, our results inform 
the process of evaluating researchers, 
since we know that computer scientists 
often defend the primary publication 
of results in conferences, particularly 
when being evaluated by those out-
side the field (such as in tenure evalu-
ations).2 Finally, we hope these results 
will help guide individual researchers 
in understanding the expected impact 
of publishing their papers in the vari-
ous venues. 

Data and Methodology 
We based our study on ACM Digital Li-
brary metadata for all ACM conference 
and journal papers as of May 2007, as 
well as on selected other papers in the 
ACM Guide to Computing Literature for 
which metadata was available. Since 
there is no established metric for mea-
suring the scientific influence of pub-
lished papers, we chose to estimate 
a paper’s influence as the number of 
times it was cited in the two years fol-
lowing publication, referred to as cita-
tion count or simply as impact. We ex-
cluded from this count “self-citation” 
in subsequent papers by the authors 

of the original work. Using citations as 
a measure of scientific influence has a 
long tradition, including the journal-
impact factor.1 We chose two years as a 
compromise between measuring long-
term impact and the practical impor-
tance of measuring impact of more re-
cent work.1 Less than two years might 
be too short for the field to recognize 
the worth of a paper and cite it. More 
than two years would have excluded 
more recently published papers from 
our analysis due to insufficient time 
after publication, so would not have al-
lowed us to include the current era of 
widespread use of the Digital Library.a

For conferences, we counted only 
full papers, since they represent their 
attempt to publish high-impact work, 
rather than posters and other less-rig-
orously reviewed material that might 
also appear in conference proceedings. 
Conferences where acceptance rates 
were not available were excluded as well. 
For journals, we included only titled 
ACM Transactions and journals; only 
these categories are generally viewed as 
archival research venues of lasting value. 

Finally, since our data source was 
limited to the metadata in the ACM 
Guide, our analysis considered only 
citations from within that collection 
and ignored all citations from confer-
ences and journals outside of it; this 
was a pragmatic constraint because, in 
part, other indexing services do not com-
prehensively index conference proceed-
ings. While it means that all our num-
bers were underestimates and that the 
nature of the underestimates varied 
by field (we expected to significantly 
underestimate artificial intelligence 
and numerical-computation papers 
due to the large number of papers 
published by SIAM and AAAI outside 
our collection), such underestimates 
were not biased toward any particu-
lar acceptance rate in our data set.b 

a	 To ensure that the two-year citation count was 
reasonable, we repeated this analysis using 
four- and eight-year citation counts; the distri-
butions and graphs were similar, and the con-
clusions were unchanged.

b	 We hand-checked 50 randomly selected con-
ference papers receiving at least one citation 
in our data set, comparing citation count in 
the data set against citation count according 
to Google scholar (http://scholar.google.com/). 
When trying to predict Google scholar citation 
count from ACM citation count in a linear re-
gression, we found an adjusted R-square of 

http://scholar.google.com/
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Therefore, this limitation did not in-
validate our results. 

Our analysis included 600 confer-
ences consisting of 14,017 full papers 
and 1,508 issues of journals consist-
ing of 10,277 articles published from 
1970 to 2005. Their citation counts 
were based on our full data set con-
sisting of 4,119,899 listed references 
from 790,726 paper records, of which 
1,536,923 references were resolved 
within the data set itself and can be 
used toward citation count. Overall, 
the conference papers had an average 
two-year citation count of 2.15 and the 
journal papers an average two-year cita-
tion count of 1.53. These counts follow 
a highly skewed distribution (see Fig-
ure 1), with over 70% of papers receiv-
ing no more than two citations. Note 
that while the average two-year citation 
count for conferences was higher than 
journals, the average four-year citation 
count for articles published before 
2003 was 3.16 for conferences vs. 4.03 
for journals; that is, on average, jour-
nals come out a little ahead of confer-
ence proceedings over the longer term. 

Results 
We addressed the first question—on how 
a conference’s acceptance rate correlates 
with the impact of its papers—by cor-
relating citation count with acceptance 
rate; Figure 2 shows a scatterplot of aver-
age citation counts of ACM conferences 
(y-axis) by their acceptance rates (x-axis). 
Citation count differs substantially from 
the spectrum of acceptance rates, with 
a clear trend toward more citations for 
low acceptance rates; we observed a sta-
tistically significant correlation between 
the two values (each paper treated as 
a sample, F[1, 14015] = 970.5, p<.001c) 

0.852, showing that overall ACM citation count 
is proportional to Google scholar citation count 
with a small variation. When added as an addi-
tional parameter to the regression, acceptance 
rate had a nonsignificant coefficient, showing 
that acceptance rate does not have a significant 
effect on the difference between ACM citation 
count and Google scholar citation count. We 
also hand-checked 50 randomly selected con-
ference papers receiving no citations in our 
data set, finding no correlation between accep-
tance rate and Google scholar citation count.

c	 This F-statistic shows how well a linear rela-
tionship between acceptance rate and cita-
tion count explains the variance within cita-
tion count. The notation F[1, 14015] = 970.5, 
p<.001 signifies one degree of freedom for 
model (from using only acceptance rate to ex-

and computed both a linear regression 
line (each conference weighted by its 
size, adjusted R-square: 0.258, weighted 
residual sum-of-squares: 35311) and a 
nonlinear regression curve in the form 
of y=a+bx−c (each conference weighted 
by its size, pseudo R-square: 0.325, 
weighted residual sum-of-squares: 
32222), as shown in Figure 2. 

Figure 3 is an aggregate view of the 
data, where we grouped conferences 

plain citation counts), 14,015 degrees of free-
dom for error (from the more than 14,000 con-
ference papers in our analysis), an F-statistic 
of 970.5, and probability less than 0.001 that 
the correlation between acceptance rate and 
citation count is the result of random chance.

into bins according to acceptance 
rates and computed the average ci-
tation counts of each bin.d Citation 
counts for journal articles are shown 
as a dashed line for comparison. 
Conferences with rates less than 20% 
enjoyed an average citation count as 
high as 3.5. Less-selective conferences 
yielded fewer citations per paper, with 
the least-selective conferences (>55% 
acceptance rate) averaging less than ½ 
citation per paper. 

d	 We excluded conferences with an acceptance 
rate less than 10% and an acceptance rate 
over 60%, as there were too few conferences in 
these categories for meaningful analysis.

Figure 1. Citation count distribution within two years of publication. 
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Figure 2. Average citation count vs. acceptance rate for ACM conferences. 
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tions in the next two years as conferenc-
es accepting 35%–40% of submissions, 
a much higher low-impact percentage 
than for highly selective conferences. 

The same analyses over four- and 
eight-year periods yielded results con-
sistent with the two-year period; jour-
nal papers received significantly fewer 
citations than conferences where the 
acceptance rate was below 25%. 

Low-acceptance-rate conferences in 
computer science have a greater impact 
than the average ACM journal. The fact 
that some journal papers are expanded 
versions of already-published (and cit-
ed) conference papers is a confounding 
factor here. We do not have data that 
effectively tracks research contribu-
tions through multiple publications to 
assess the cumulative impact of ideas 
published more than once. 

Pondering why citation count corre-
lates with acceptance rate brings us to 

Figure 4 shows the percentages of 
papers within each group where cita-
tion count was above a certain threshold. 
The bottom bands (reflecting papers cit-
ed more than 10, 15, or 20 times in the fol-
lowing two years) show high-acceptance-
rate conferences have few papers with 
high impact. Also notable is the fact 
that about 75% of papers published in 
>55%-acceptance-rate conferences were 
not cited at all in the following two years. 

Addressing the second question—
on how much impact conference 
papers have compared to journal pa-
pers—in Figures 3 and 4, we found that 
overall, journals did not outperform 
conferences in terms of citation count; 
they were, in fact, similar to conferenc-
es with acceptance rates around 30%, 
far behind conferences with accep-
tance rates below 25% (T-test, T[7603] 
= 24.8, p<.001). Similarly, journals pub-
lished as many papers receiving no cita-

the third question—on the extent the 
impact of a highly selective conference 
derives from filtering vs. signaling—as 
this correlation can be attributed to 
two mechanisms: 

Filtering. A selective review process 
filters out low-quality papers from the 
submission pool, lowering the accep-
tance rate and increasing the average 
impact of published papers; and 

Signaling. A low acceptance rate sig-
nals high quality, thus attracting better 
submissions and more future citations, 
because researchers simply prefer sub-
mitting papers to reading the proceed-
ings of and citing publications from 
better conferences. While filtering is 
commonly viewed as the whole point 
of a review process and thus likely ex-
plains the correlation to some extent, 
it is unclear whether signaling is also a 
factor. As a result, to address the third 
question, we clarified the existence of 
signaling by separating its potential ef-
fect from filtering. 

We performed this separation by 
normalizing the selectivity of filtering to 
the same level for different conferences. 
For example, for a conference accepting 
90 papers at a 30% acceptance rate, the 
best potential average citation count 
the conference could have achieved 
by lowering the acceptance rate to, 
say, 10% for the same submission pool 
would be the average citation count of 
the top 30 most-cited papers of the 90 
accepted (presumably the 30 best pa-
pers of the original 300 submitted). We 
treated these 30 papers as the top 10% 
best submissions in the pool; other sub-
missions were either filtered out during 
the actual review or later received fewer 
citations. Their citation count was thus 
an upperbound estimate of what might 
be achieved through stricter filtering, 
assuming conference program com-
mittees were able to pick exactly the 
submissions that would ultimately be 
the most highly cited. Using this nor-
malization, we compared the same top 
portions of submission pools of all con-
ferences and evaluated the effect of sig-
naling without the influence of filtering. 
We normalized all ACM conferences in 
Figure 3 to a 10% acceptance rate and 
compared the citation counts of their 
top 10% best submissions; Figure 5 
(same format as Figure 3) outlines the 
results. We excluded transactions and 
journals, as we were unable to get actual 

Figure 3. Average citation count by acceptance rate within two years of publication. 
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Figure 4. Citation count distribution by acceptance rate within two years of publication. 
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acceptance-rate data, which might also 
be less meaningful, given the multi-re-
view cycle common in journals. 

Figure 5 suggests that citation count 
for the top 10% of submitted papers fol-
lows a trend similar to that of the full 
proceedings (F[1, 5165] = 149.5, p<.001), 
with generally higher count for low ac-
ceptance rates. This correlation indi-
cates that filtering alone does not fully 
explain the correlation between citation 
count and acceptance rate; other factors 
(such as signaling) play a role. 

Discussion 
Combining the results in Figures 3 
and 5 provides further insight into the 
relationship between acceptance rate 
and citation count. For conferences 
with acceptance rates over 20%, the ci-
tation numbers in the figures almost 
consistently drop as the acceptance 
rate increases, suggesting that in this 
range, a higher acceptance rate makes 
conferences lose out on citation count 
not only for the conference but for its 
best submitted papers. Either higher-
quality papers are not submitted to 
higher-acceptance-rate conferences 
as frequently or those submitted are 
not cited because readers do not ex-
plore the conferences as often as they 
explore lower-acceptance-rate confer-
ences to find them. 

The case for conferences with ac-
ceptance rates below 20% is more in-
triguing. Note that the lower impact 
of the 10%–15% group compared with 
the 15%–20% group in Figure 5 is sta-
tistically significant (T[1198] = 3.21, 
p<.002). That is, the top-cited papers 
from 15%–20%-acceptance-rate con-
ferences are cited more often than 
those from 10%–15% conferences. We 
hypothesize that an extremely selec-
tive but imperfect (as review processes 
always are) review process has filtered-
out submissions that would deliver 
impact if published. This hypothesis 
matches the common speculation, in-
cluding from former ACM President 
David Patterson, that highly selective 
conferences too often choose incre-
mental work at the expense of innova-
tive breakthrough work.3

Alternatively, extremely low accep-
tance rates might discourage submis-
sions by authors who dislike and avoid 
competition or the perception of there 
being a “lottery” among good papers for 

have goals separate from generating 
citations, and many high-acceptance-
rate conferences might do a better job 
getting feedback to early ideas, support-
ing networking among attendees, and 
bringing together different specialties. 

Given the link between acceptance 
rate and future impact, further research 
is warranted in the degree to which a 
conference’s reputation interacts over 
time with changes in its acceptance 
rate. Though a number of highly selec-
tive conferences have become more 
or less selective over time, we still lack 
enough data to clarify the effect of such 
changes. We hope that understanding 
them will yield new insight for confer-
ence organizers tuning their selectivity 
in the future. 

Acknowledgments 
This work was supported by National 
Science Foundation grant IIS-0534939. 
We thank our colleague John Riedl 
of the University of Minnesota for his 
valuable insights and suggestions. 	

References 
1.	G arfield, E. Citation analysis as a tool in journal 

evaluation. Science 178, 60 (Nov. 1972), 471–479. 
2.	N ational Research Council. Academic Careers for 

Experimental Computer Scientists and Engineers. U.S. 
National Academy of Sciences Report, Washington, D.C., 
1994; http://www.nap.edu/catalog.php?record_id=2236 

3.	 Patterson, D.A. The health of research conferences 
and the dearth of big idea papers. Commun. ACM 47, 
12 (Dec. 2004), 23–24. 

Jilin Chen (jilin@cs.umn.edu) is a doctoral student in the 
Department of Computer Science and Engineering at the 
University of Minnesota, Twin Cities. 

Joseph A. Konstan (konstan@cs.umn.edu) is 
Distinguished McKnight Professor and Distinguished 
University Teaching Professor in the Department of 
Computer Science and Engineering at the University of 
Minnesota, Twin Cities. 

© 2010 ACM 0001-0782/10/0600 $10.00

a few coveted publication slots. A third 
explanation suggests that extremely 
low acceptance rates have caused a con-
ference proceedings to be of such lim-
ited focus that other researchers stop 
checking it regularly and thus never cite 
it. We consider all three to be plausible 
explanations; intuitively, all would hurt 
the impact of lower-acceptance-rate 
conferences more than they would hurt 
higher-acceptance-rate conferences. 

Conclusion 
Our results have several implications: 
First and foremost, computing re-
searchers are right to view conferences 
as an important archival venue and use 
acceptance rate as an indicator of fu-
ture impact. Papers in highly selective 
conferences—acceptance rates of 30% 
or less—should continue to be treated 
as first-class research contributions 
with impact comparable to, or better 
than, journal papers. 

Second, we hope to bring to the at-
tention of conference organizers and 
program committees the insight that 
conference selectivity does have a sig-
naling value beyond simply separat-
ing good work from bad. Adopting the 
right selectivity level helps attract better 
submissions and more citations. Accep-
tance rates of 15%–20% seem optimal 
for generating the highest number of fu-
ture citations for both the proceedings 
as a whole and the top papers submit-
ted, though we caution that this guide-
line is based on ACM-wide data, and 
individual conferences should consider 
their goals and the norms of their sub-
disciplines in setting target acceptance 
rates. Furthermore, many conferences 

Figure 5. Average citation count vs. acceptance rate within two years of publication,  
top 10% of submissions. 
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New algorithms provide the ability for robust  
but scalable image search.

By Kristen Grauman

Image and video data are certainly 
rich with meaning, memories, or 
entertainment, and in some cases 
they can facilitate communication or 
scientific discovery. However, without 
efficient vision algorithms to automat-
ically analyze and index visual data, 
their full value will remain latent—the 
ratio of data to human attention is 
simply too large.

Most image search tools in opera-
tion today rely heavily on keyword 
meta-tags, where an image or video is 
annotated with a limited number of 
words that are either provided manu-
ally, or else are taken from whatever 
text occurs nearby in its containing 
document. While such a scheme sim-
plifies the image indexing task to one 
that well-known information retrieval 
techniques can handle, it has serious 
shortcomings. At the surface, accu-
rate manual tags are clearly too expen-
sive to obtain on a large scale, and 
keywords in proximity to an image are 
often irrelevant.

Even more problematic, however, 
is the semantic disconnect between 
words and visual content: a word is a 
human construct with a precise intent, 
whereas a natural image can convey a 
multitude of concepts within its (say) 
million pixels, and any one may be more 
or less significant depending on the 
context. For example, imagine querying 
a database for all text documents con-
taining the word “forest.” Now imagine 

I f  a  t r e e  falls in the forest and no one is there to 
hear it, does it make a sound? In the realm of content-
based image retrieval, the question is: if an image is 
captured and recorded but no one is there to annotate 
it, does it ever again make an appearance? Over the 
last decade we have witnessed an explosion in the 
number and throughput of imaging devices. At the 
same time, advances in computer hardware and 
communications have made it increasingly possible 
to capture, store, and transmit image data at a low 
cost. Billions of images and videos are hosted publicly 
on the Web; cameras embedded in mobile devices are 
commonplace. Climatologists compile large volumes 
of satellite imagery in search of long-term trends that 
might elucidate glacial activity and its impact on 
water supplies. Centralizedmedical image databases 
archive terabytes of X-ray, CAT scans, and ultrasound 
images, which may assist in new diagnoses.

Efficiently 
Searching 
for Similar 
Images

 key insights

 � �As it becomes increasingly viable to 
capture, store, and share large amounts 
of image and video data, automatic 
image analysis is crucial to managing 
visual information. 

 � �Often the most effective metrics for 
image comparisons do not mesh well 
with existing efficient search methods;  
scalable image recognition and search 
techniques, however,  aim to provide 
direct access to visual content.

 � �The capability to perform fast visual 
search is critical for many applications, 
and more generally, lays the groundwork 
for data-driven approaches in computer 
vision. P

h
o

t
o

m
o

saic





 b
y

 J
im


  

B
u

m
g

ard



n

er




june 2010  |   vol.  53  |   no.  6  |   communications of the acm     85



86    communications of the acm   |   june 2010  |   vol.  53  |   no.  6

review articles

conjuring a text query that would fi nd 
you all images  relevant to the one on the 
left in Figure 1; while you immediately 
have a visual concept, it may be diffi cult 
to pinpoint words to capture it, espe-
cially if the objects within the image 
are unfamiliar. Thus, even if we were 
to somehow record  keywords for all the 
images in the world, visual data would 
still not be suffi ciently accessible.

Content-based image search 
streamlines the process by sorting 
images directly based on their visual 
information and allowing images 
themselves to serve as queries. While 
early work in the area focused on cor-
relating  low-level cues such as color 
and texture,8,28 more recently the image 
search problem has become inter-
twined with the fundamental problem 
of recognition, in which algorithms 
must capture higher-level notions of 
visual object and scene categories.

The technical challenges are con-
siderable. Instances of the same 
object category can generate drasti-
cally different images, depending on 
confounding variables such as illu-
mination conditions, object pose, 
camera viewpoint, partial occlusions, 
and unrelated background “clutter” 
(see Figure 2). In general, the quality 
of image search relies signifi cantly on 
the chosen image representation and 
the distance metric used to compare 
examples. Meanwhile, the complexity 
of  useful image representations com-
bined with the sheer magnitude of the 
search task immediately raises the 
practical issue of scalability.

This article overviews our work 
considering how to construct robust 
measures of image similarity that can 
be deployed effi ciently, even for com-
plex feature spaces and massive image 
databases. We pose three essential 
technical questions: (1) what is an 
effective distance measure between 
images that can withstand the natu-
rally occurring variability among 
related examples? (2) when external 
cues beyond observable image content 
are available, how can that improve 
our comparisons? and (3) what kind of 
search strategy will support fast que-
ries with such image-driven metrics, 
particularly when our database is so 
large that a linear scan is infeasible? 
The following sections address each 
of these issues in turn, and highlight 

figure 2. the same object type can generate dramatically different images due to 
a variety of nuisance parameters (top), but local descriptions can offer substantial 
robustness (bottom).

occlusion

deformation

Camera view point

local feature matches

object pose

Clutter illumination

self-occlusion scale

…

figure 1. Visual data is complex and often holds valuable information. image-based 
search algorithms automatically analyze and organize visual content, with the goal 
of allowing effi cient retrieval from large image or video collections.
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some of our results to demonstrate 
the impact with real image data.

Our approach enables rapid, scal-
able search for meaningful metrics that 
were previously restricted to artificially 
modestly sized inputs or databases. 
Additionally, we show how minimal 
annotations can be exploited to learn 
how to compare images more reliably. 
Both contributions support the ulti-
mate goal of harnessing the potential 
of very large repositories and providing 
direct access to visual content.

Comparing Images with  
Local Feature Matches
Earlier work in content-based image 
retrieval focused on global represen-
tations that describe each image with 
a single vector of attributes, such as a 
color histogram, or an ordered list of 
intensity values or filter responses. 
While vector representations permit 
the  direct application of standard 
distance functions and indexing 
structures, they are known to be pro-
hibitively sensitive to realistic image 
conditions. For example, consider 
stacking the images in Figure 2 one 
on top of the other, and then check-
ing the intensity at any given pixel for 
each example—it is quite likely that 
few of them would be in agreement, 
even though each image contains a 
koala as its most prominent object.

Much recent work shows that 
decomposing an image into its compo-
nent parts (or so-called “local features”) 
grants resilience to image transforma-
tions and variations in object appear-
ance.23,30 Typically, one either takes a 
dense sample of regions at multiple 
scales, or else uses an interest opera-
tor to identify the most salient regions 
in an image. Possible salient points 
include pixels marking high contrast 
(edges), or points selected for a region’s 
repeatability at multiple scales (see 
Tuytelaars30 for a survey). Then, for 
each detected region, a feature descrip-
tor vector is formed. Descriptors may 
be lists of pixel values within a patch, or 
histograms of oriented contrast within 
the regions,23 for example. The result 
is one set of local appearance or shape 
description vectors per image, often 
numbering on the order  of 2,000 or 
more features per image.

The idea behind such representat
ions  is to detect strong similarity 

between local portions of related 
images, even when the images appear 
quite different at the global level. 
Local features are more reliable for 
several reasons:

˲˲ Isolate occlusions: An object may 
be partially occluded by another ob-
ject. A global representation will suf-
fer proportionally, but for local rep-
resentations, any parts that are still 
visible will have their descriptions re-
main intact.

˲˲ Isolate clutter and the back-
ground: Similarly, while the global 
description may be overwhelmed by 
large amounts of background or clut-
ter, small parts of an image contain-
ing an actual object of interest can 
emerge if we describe them indepen-
dently by regions. Recognition  can 
proceed without prior segmentation.

˲˲ Accommodate partial appearance 
variation: When instances of a catego-
ry can vary widely in some aspects of 
their appearance, their commonality 
may be best captured by a part-wise 
description that includes the shared 
reoccurring pieces of the object class.

˲˲ Invariant local descriptors: Re-
searchers have developed local de-
scriptors designed explicitly to  offer 
invariance to common transforma-
tions, such as illumination changes, 
rotations, translations, scaling, or all 
affine transformations.

This appealing representation—a 
set of vectors—does not fit the mold of 
many traditional distances and learn-
ing algorithms. Conventional methods 
assume vector inputs, but with local 
representations, each image produces 
a variable number of features, and 
there is no ordering among features 
in a single set. In this situation, com-
puting a correspondence or match-
ing between two images’ features can 
reveal their overall resemblance: if 
many parts in image A can be asso-
ciated with similar-looking parts in 
image B, then they are likely to display 
similar content (see Figure 2, bottom).

Current strategies for recognition 
and image matching exploit this notion 
in some form, often by building spatial 
constellations of a category’s reoc-
curring local features, summarizing 
images with a histogram of discretized 
local patches, or explicitly comput-
ing the least-cost correspondences 
(for a survey, see Pinz27 and references 

therein). However, a real practical chal-
lenge is the computational cost of eval-
uating the optimal matching, which 
is cubic in the number of features 
extracted per image. Compounding 
that cost is substantial empirical evi-
dence showing that recognition accu-
racy improves when larger and denser 
feature sets are used.

The Pyramid Match Algorithm
To address this challenge, we devel-
oped the pyramid match—a lin-
ear-time matching function over 
unordered feature sets—and showed 
how it allows local features to be 
used efficiently within the context 
of multiple image search and learn-
ing problems.12 The pyramid match 
approximates the similarity mea-
sured by the optimal partial matching 
between feature sets of variable car-
dinalities. Because the matching is 
partial, some features may be ignored 
without penalty to the overall set 
similarity. This tolerance makes the 
measure robust in situations where 
superfluous or “outlier” features may 
appear. Note that our work focuses 
on the image matching and indexing 
aspects of the problem, and is flexible 
to the representation choice, that is, 
which particular image feature detec-
tors and descriptors are used as input.

We consider a feature space V of 
d-dimensional vectors for which the 
values have a maximal range D. The 
point sets we match will come from 
the input space S, which contains 
sets of feature vectors drawn from  
V: S = {X|X = {x1, …, xm}}, where each-
feature xi Î V Í d, and m = |X|. We 
can think of each xi as a descriptor for 
one of the elliptical image regions on 
the koalas in Figure 2. Note that the 
point dimension d is fixed for all fea-
tures in V, but the value of m may vary 
across instances in S.

Given point sets X, Y Î S, with 
|X| £ |Y|, the optimal partial 
matching p* pairs each point in X 
to some unique point in Y such 
that the total distance between 
matched points is minimized: p* 

 where pi 
specifies which point  is matched 
to xi, and || . ||1 denotes the L1 
norm. For sets with m features, the 
Hungarian algorithm computes the 
optimal match in O(m3) time, which 
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Thus, for each pyramid level, we 
want to count the number of “new” 
matches—the number of feature pairs 
that were not in correspondence at 
any finer resolution level. For exam-
ple, in Figure 3, there are two points 
matched at the finest scale, two new 
matches at the medium scale, and 
one at the coarsest scale.

To calculate the match count, we use 
histogram intersection, which mea
sures the “overlap” between the mass in 
two histograms: I(P, Q) = S

r

j=1 min(Pj, Qj), 
where P and Q are histograms with r 
bins, and Pj denotes the count of the 
j-th bin. The intersection value effec-
tively counts the number of points in 
two sets that match at a given quanti-
zation level. To calculate the number 
of newly matched pairs induced at 
level i, we only need to  compute the 
difference between successive levels’ 
intersections. By using the change in 
intersection values at each level, we 
count matches without ever explicitly 
searching for similar points or  com-
puting inter-feature distances.

The pyramid match similarity score 
P

 
between two input sets Y and Z is 

then defined as the weighted sum of 
the number of new matches per level:

histogram vector over points in X. The 
bins continually increase in size from 
the finest-level histogram H0 until the 
coarsest-level histogram HL−1. For low-
dimensional feature spaces, the bound-
aries of the bins are computed simply 
with a uniform partitioning along all 
feature dimensions, with the length of 
each bin side doubling at each level. For 
high-dimensional feature spaces (for 
example, d > 15), we use hierarchical 
clustering to concentrate the bin  par-
titions where feature points tend to 
cluster for typical point sets.13 In either 
case, we maintain a sparse representa-
tion per point set that maps each point 
to its bin indices. Even though there is 
an exponential growth in the number 
of possible histogram bins relative to 
the feature dimension (for uniform 
bins) or histogram levels (for nonuni-
form bins), any given set of features can 
occupy only a small number of them. 
An image with m features results in a 
pyramid description with no more than 
mL nonzero entries to store.

Two histogram pyramids implicitly 
encode the correspondences between 
their point sets, if we consider two 
points matched once they fall into 
the same histogram bin, starting at 
the finest resolution level. The match-
ing is a hierarchical process: vectors 
not found to correspond at a fine 
resolution have the opportunity to 
be matched at coarser resolutions. 

severely limits the practicality of 
large input sizes. In contrast, the pyr-
amid match approximation requires 
only O(mL) time, where L = log D, and 
L << m. In practice, this translates to 
speedups of several orders of mag-
nitude relative to the optimal match 
for sets with thousands of features.

We use a multidimensional, multi-
resolution histogram pyramid to parti-
tion the feature space into increasingly 
larger regions. At the finest resolution 
level in the pyramid, the partitions 
(bins) are very small; at successive levels 
they continue to grow in size until a sin-
gle bin encompasses the entire feature 
space. At some level along this gradation 
in bin sizes, any two particular points 
from two given point sets will begin to 
share a bin in the pyramid, and when 
they do, they are considered matched. 
The key is that the pyramid allows us 
to  extract a matching score without 
computing distances between any of 
the points in the input sets—the size of 
the bin that two points share indicates 
the farthest distance they could be from 
one another. We show that a weighted 
intersection of two pyramids defines an 
implicit partial correspondence based 
on the smallest histogram cell where a 
matched pair of points first appears.

Let a histogram pyramid for input 
example X Î S be defined as: Ψ (X) = 
[H0(X), …, HL−1(X)], where L specifies the 
number of pyramid levels, and Hi(X) is a 

Figure 3. An example pyramid match. 
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min(H0(y),H0(z))
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min(H1(y),H1(z))
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(c) Intersections

Here, two 1-D feature sets are used to  
form two histogram pyramids. Each row 
corresponds to a pyramid level. In (a), set Y  
is on the left, and set Z is on the right; points 
are distributed along the vertical axis.  
Light lines are bin boundaries, bold dashed 
lines indicate a new pair matched at this 
level, and bold solid lines indicate a match  
already formed at a finer resolution level.  
In (b) multiresolution histograms are 
shown; (c) shows their intersections.  
The pyramid match function P uses 
these intersection counts to measure how 
many new matches occurred at each level. 
Here, Ii = I(Hi(Y), Hi(Z) ) = 2, 4, 5 across 
levels, so the number of new matches 
counted are 2, 2, 1. The weighted sum  
over these counts gives the pyramid  
match similarity. 

The figure is reprinted from Grauman and 
Darrell12 with permission, ©2005 IEEE.
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research community and today stands 
as a key point of comparison for exist-
ing methods. For all the following 
results, we use the SIFT descriptor,23 
which is insensitive to shifts and 
rotations in the image yet provides a 
distinctive summary of a local patch.

The leftmost plot of Figure 4 demon-
strates that when the pyramid match 
is used to sort the images from the 
ETH-80 in a retrieval task, its complete 
ranking of the database examples is 
highly correlated to that of the optimal 
matching. The vertical axis measures 
how well results from two variants 
of the PMK agree with the optimal 
cubic-time results, and the horizontal 
axis shows the relative impact of the 
feature dimension d. While for low-
dimensional features either a uniform 
or data-dependent partitioning of the 
feature space is adequate for good 
results, due to the curse of dimension-
ality, a data-dependent pyramid bin 

search the image collection based on 
content alone.

Figure 4 shows some illustrative 
results using two well-known publicly 
available benchmark datasets, the 
ETH-80 and Caltech-101. Both datas-
ets are used to measure image catego-
rization accuracy. The ETH collection 
is comprised of 80 object instances 
from eight different categories posi-
tioned on simple backgrounds; it is 
among the first benchmarks estab-
lished for the categorization task, and 
since several categories are visually 
rather similar (for example, horse and 
cow, apple and tomato), it is a good 
test for detailed discrimination. The 
Caltech collection, first introduced 
in 2003, contains 101 categories. It is 
challenging due to the magnitude of 
the multiclass problem it poses, and 
for many categories it offers notice-
able intraclass appearance variation. 
It has received much attention in the 

The number of new matches 
induced at level i is weighted by  
to reflect the (worst-case) similarity 
of points matched at that level. This 
weighting reflects a geometric bound 
on the maximal distance between any 
two points that share a particular bin. 
Intuitively, similarity between vectors 
at a finer resolution—where features 
are more distinct—is rewarded more 
heavily than similarity between vec-
tors at a coarser level.

We combine the scores resulting 
from multiple pyramids with randomly 
shifted bins in order to alleviate quan-
tization effects, and to enable formal 
error bounds. The approximation error 
for the pyramid match cost is bounded 
in the expectation by a factor of C . d 
log D, for a constant C.15 We have also 
proven that the pyramid match kernel 
(PMK) naturally forms a Mercer kernel, 
which essentially means that it satisfies 
the necessary technical requirements 
to permit its use as a similarity func-
tion within a number of existing ker-
nel-based machine learning methods.

Previous approximation methods 
have also considered a hierarchical 
decomposition of the feature space to 
reduce complexity1,2,5,17; the method 
by Indyk and Thaper 17 particularly 
inspired our approach. However, ear-
lier matching approximations assume 
equally sized input sets, and cannot 
compute partial matches. In addi-
tion, while previous techniques suffer 
from distortion factors that are lin-
ear in the feature dimension, we have 
shown how to alleviate this decline in 
accuracy by tuning the hierarchical 
decomposition according to the par-
ticular structure of the data.13 Finally, 
our approximation is unique in that 
it forms a valid Mercer kernel, and is 
useful in the context of various learn-
ing applications.

In short, the pyramid match gives 
us an efficient way to measure the 
similarity between two images based 
on the matching between their (poten-
tially many) local features. Now, given 
a query image such as the one on the 
left of Figure 1, we can first extract 
descriptors for its local regions using 
any standard feature extractor,23, 30 and 
then find its relevant “neighbors” in 
the collection on the right by comput-
ing and sorting their pyramid match 
scores. In this way, we are able to 

Figure 4. The image rankings produced by the linear-time pyramid match.
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(a) The image rankings produced by 
the linear-time pyramid match are 
closely aligned with those produced 
by the ubic-time optimal matching. 
This plot shows how closely rankings 
computed with our approximate 
measure correlate with the optimal 
result, for features of increasing 
dimensionality. The vertical axis 
measures the rank correlation;  
perfect ranking agreement with the 
optimal measure would yield a score 
of 1. (b) More features per image lead 
to more reliable matches, but explicit 
matching techniques scale poorly with 
the representation size. The pyramid 
match makes large feature sets easily 
affordable. (c) The four category pairs 
in the Caltech-101 database that our 
method confused most.

(c)
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in situations where we have no back-
ground knowledge; that is, where the 
system only has access to the image 
content itself. However, in many cases 
the system could also receive external 
side-information that might benefit its 
comparisons. For example, if provided 
with partially annotated image exam-
ples, or if a user wants to enforce simi-
larity between certain types of images, 
then we ought to use those constraints 
to adapt the similarity measure.

A good distance metric between 
images accurately reflects the true 
underlying relationships. It should 
report small distances for examples 
that are similar in the parameter space 
of interest (or that share a class label), 
and large distances for unrelated 
examples. Recent advances in metric 
learning make it possible to learn dis-
tance functions that are more effective 
for a given problem, provided some 
partially labeled data or constraints are 
available (see Yang32 and references 
within). By taking advantage of the 
prior information, these techniques 
offer improved accuracy. Typically, the 
strategy is to optimize any parameters 
to the metric so as to best satisfy the 
desired constraints.

Figure 5a depicts how metric learn-
ing can influence image comparisons: 
the similarity (solid line) and dis-
similarity (dotted lines) constraints 
essentially warp the feature space to 
preserve the specified relationships, 
and generalize to affect distances 
between other examples like them. In 

water lily, gerenuk and kangaroo, and 
nautilus and brain. In each row, the 
two images on the left have local fea-
tures that match quite well to the two 
on the right, as compared to images 
from any of the other 100 classes in 
the dataset. Some of these confused 
category pairs have rather subtle dis-
tinctions in appearance. However, 
the case of the gerenuk and kangaroo 
reveals a limitation of the completely 
local description, as by definition it 
fails to capture the significance of 
the global contour shapes of the two 
objects.

Overall, approaches based on the 
pyramid match consistently show 
accuracy that is competitive with (or 
better than) the state of the art while 
requiring dramatically less computa-
tion time. This complexity advantage 
frees us to consider much richer repre-
sentations than were previously prac-
tical. Methods that compute explicit 
correspondences require about one 
minute to match a novel example; in 
the time that these methods recognize 
a single object, the pyramid match can 
recognize several hundred.15 Due to its 
flexibility and efficiency, the pyramid 
match has been adapted and extended 
for use within a number of tasks, such 
as scene recognition,22 video index-
ing,6 human action recognition,24 and 
robot localization.25

Learning Image Metrics
Thus far, we have considered how to 
robustly measure image similarity 

structure is much more effective for 
high-dimensional features.

The center plot shows accuracy as 
a function of computation time when 
the eight categories of the same dataset 
are learned using local feature matches 
between images. The plot compares 
the performance of the pyramid match 
to an exact matching function that 
averages the cost between the closest 
features in one set to the other. The hor-
izontal axis measures the total training 
time, which is directly affected by the 
size of the feature sets. To vary the size 
of a typical set, we tune the saliency 
parameter controlling how many 
regions are detected per image. For 
both methods, more features lead to 
striking accuracy improvements; this 
behavior is expected since introduc-
ing more features assures better cov-
erage of all potentially relevant image 
regions. However, the linear-time pyra-
mid match offers a key advantage in 
terms of computational cost, reaching 
peak performance for significantly less 
computation time.

On the Caltech-101 benchmark, we 
have shown that classifiers employing 
the PMK with a variety of features cur-
rently yield one of the most accurate 
results in the field,20 with 74% accu-
racy on the 101-way decision problem 
when training with just 15 exemplars 
per class. Figure 4c shows example 
images from four pairs of categories 
in the Caltech-101 dataset that cause 
the most confusion for the pyramid 
match: schooner and ketch, lotus and 

Figure 5. The learned metric.
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(a) By constraining some examples to be similar (green solid line), and others to be dissimilar (red dotted lines), the learned metric refines the original distance 
function so that examples are close only when they share the relevant features. (b) Retrieval accuracy is improved by replacing two matching-based metrics (PMK 
and CORR) with their learned counterparts (ML + PMK and ML + CORR). 
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two matching-based kernels as the 
base metrics. The fi rst kernel is the 
PMK, the approximate matching mea-
sure defi ned here. The second kernel 
is defi ned in Zhang et al.,33 and uses 
exhaustive comparisons between 
features to  compute a one-to-many 
match based on both descriptor and 
positional agreement; we refer to it 
as CORR for “correspondence.” For 
this dataset of 101 object types, note 
that chance performance would yield 
an accuracy rate of only 1%. Both 
base metrics do the most they can by 
matching the local image features; 
the learned para meters adapt those 
metrics to better refl ect the side-infor-
mation specifying a handful of images 
from each class that ought to be near 
(or far) from the others.

searching image collections 
in sublinear time
Now that we have designed effective 
similarity measures, how will image 
search scale? We must be able to use 
these metrics to query a very large image 
database—potentially on the order of 
millions of examples or more. Certainly, 
a naive linear scan that compares the 
query against every database image is 

matching functions.19 Given points 
{x1, . . . , xn}, with xi Î d, a positive- 
defi nite d × d matrix A parameterizes 
the squared Mahalanobis distance:

 dA(xi , xj) = (xi - xj)
T  A(xi - xj). (1)

A generalized inner product mea-
sures the pairwise similarity associ-
ated with that distance: SA(xi xj) = xT

i Axj. 
Thus for a kernel K(xi, xj) = f(xi)

Tf(xj), 
the parameters transform the inner 
product in the implicit feature space 
as f(xi)

T Af(xj). Given a set of inter-
example distance constraints, one 
can directly learn a matrix A to yield 
a measure that is more accurate for 
a given problem. We use the effi cient 
method of Davis et al.7 because it is 
kernelizable. This method optimizes 
the parameters of A so as to minimize 
how much that matrix diverges from 
an  initial user-provided “base” param-
eterization, while satisfying con-
straints that require small distances 
between examples specifi ed as simi-
lar, and large distances between pairs 
specifi ed as dissimilar.

Figure 5b shows the signifi cant 
retrieval accuracy gains achieved 
when we learn image metrics using 

this illustrative example, even though 
we may measure high similarity 
between the greenery portions of both 
the cockatoo and koala images, the 
dissimilarity constraint serves to refo-
cus the metric on the other (distinct) 
parts of the images.

In the case of the pyramid match, 
the weights associated with matches 
at different pyramid levels can be 
treated as learnable parameters. 
While fi xing the weights according to 
the bin dia meters gives the most accu-
rate approximation of true inter-fea-
ture distances in a geometric sense, 
when we have some annotated images 
available, we can directly learn the 
weights that will best map same-class 
images close together.18

The idea is that the best match-
ing function is specifi c to the class 
of images, and is inherently defi ned 
by the variability a given class exhib-
its. For example, to distinguish one 
skyscraper from another, we might 
expect same-class examples to con-
tain some very tight local feature cor-
respondences, whereas to distinguish 
all skyscrapers from koalas, we expect 
feature matches to occur at greater 
distances even among same-class 
examples. While the same type of 
image feature may be equally relevant 
in both situations, what is unique is 
the distance at which similarity is sig-
nifi cant for that feature. Therefore, by 
learning the reward (weight) associ-
ated with each matching level in the 
pyramid, we can automatically deter-
mine how close feature matches must 
be in order to be considered signifi -
cant for a given object class.

To achieve this intuition, we 
observe that the PMK can be written as 
a weighted sum of base kernels, where 
each base kernel is the similarity com-
puted at a given bin resolution. We 
thus can compute the weights using a 
form of kernel alignment,3 where we 
fi nd the optimal combination of ker-
nel matrices that most closely mimics 
the “ideal” kernel on the training data, 
that is, the one that gives maximal 
similarity values for in-class examples 
and minimal values for out-of-class 
examples (see Jain et al.18 for details).

We have also shown how image 
retrieval can benefi t from learning the 
Mahalanobis parameterization for sev-
eral distinct base metrics, including 

figure 6. Query hashes.
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To embed the pyramid match as an 
inner product, we exploit the relation-
ship between a dot product and the 
min operator used in the PMK’s inter-
sections. Taking the minimum of two 
values is equivalent to computing the 
dot product of a unary-style encoding 
in which a value u is written as a list 
of u ones, followed by a zero padding 
large enough to allot space for the max-
imal value that will occur. So, since a 
weighted intersection value is equal to 
the intersection of weighted values, we 
can compute the embedding by stack-
ing up the histograms from a single 
pyramid, and weighting the entries 
associated with each pyramid level 
appropriately. Our embedding enables 
LSH for normalized partial match 
similarity with local features, and we 
have shown that it can achieve results 
very close to a naive linear scan when 
searching only a small fraction of an 
image database (1%–2%) (see Grauman 
and Darrell14 for more details).
Semi-supervised hashing. To provide 
suitable hash functions for learned 
Mahalanobis metrics, we propose 
altering the distribution from which 
the randomized hyperplanes are 
drawn. Rather than drawing the vec-
tor r uniformly at random, we want 
to bias the selection so that similarity 
constraints provided for the metric 
learning process are also respected 
by the hash functions. In other words, 
we still want similar examples to col-
lide, but now that similarity cannot be 
purely based on the image measure-
ments xi and xj; it must also reflect the 
constraints that yield the improved 
(learned) metric (see Figure 7a). We 
refer to this as “semi-supervised” 
hashing, since the hash functions will 
be influenced by any available partial 
annotations, much as the learned met-
rics were in the previous section.

In Jain et al.,19 we present a straight-
forward solution for the case of rela-
tively low-dimensional input vector 
spaces, and further derive a solution to 
accommodate very high-dimensional 
data for which explicit input space 
computations are infeasible. The for-
mer contribution makes fast indexing 
accessible for numerous existing metric 
learning methods, while the latter is of 
particular interest for commonly used 
image representations, such as bags-of-
words or multiresolution histograms.

functions, the query time for retrieving  
(1 + )-near neighbors is bounded by 
O(N1/(1+)) for the Hamming distance 
and a database of size N.10 One can 
therefore trade off the accuracy of the 
search with the query time required.

Note that Equation 2 is essentially 
a gateway to LSH: if one can provide a 
distribution of hash functions guar-
anteed to preserve this equality for 
the similarity function of interest, then  
approximate nearest neighbor search 
may be performed in sublinear time. 
Existing LSH functions can accommo-
date the Hamming distance, Lp norms, 
and inner products, and such func-
tions have been explored previously in 
the vision community. In the following 
we show how to enable sublinear time 
search with LSH for metrics that are 
particularly useful for image search.
Matching-sensitive hashing. Even 
though the pyramid match makes 
each individual matching scalable 
relative to the number of features per 
image, once we want to search a large 
database of images according to the 
correspondence-based distance, we 
still cannot afford a naive linear scan. 
To guarantee locality sensitivity for 
a matching, we form an embedding 
function that maps our histogram 
pyramids into a vector space in such 
a way that the inner product between 
vectors in that space exactly yields the 
PMK similarity value.14

This remapping is motivated by 
the  fact that randomized hash func-
tions exist for similarity search with 
the inner product.5 Specifically, 
Goemans and Williamson11 show that 
the probability that a hyperplane r 
drawn uniformly at random separates 
two vectors xi and xj is directly pro-
portional to the angle between them:

 
An LSH function that exploits this 
relationship is given by Charikar.5 The 
hash function hr accepts a vector x Î 
d, and outputs a bit depending on 
the sign of its product with r:

	 �
(3)

Since 
 (xT

i  xj), the probability of collision is 
high whenever the examples’ inner 
product is high.5

not feasible, even if the metric itself 
is efficient. Unfortunately, traditional 
methods for fast search cannot guar-
antee low query-time performance for 
arbitrary specialized metrics.a This sec-
tion overviews our work designing hash 
functions that enable approximate sim-
ilarity search for both types of metrics 
introduced above: a matching between 
sets, and learned Mahalanobis kernels.

The main idea of our approach is to 
construct a new family of hash func-
tions that will satisfy the locality sen-
sitivity requirement that is central to 
existing randomized algorithms5, 16 for 
approximate nearest neighbor search. 
Locality sensitive hashing (LSH) has 
been formulated in two related con-
texts—one in which the likelihood of 
collision is guaranteed relative to a 
threshold on the radius surrounding a 
query point,16 and another where col-
lision probabilities are equated with a 
similarity function score.5 We use the 
latter definition here.

A family of LSH functions F is a dis-
tribution of functions where for any 
two objects xi and xj,

	
� (2)

where sim(xi, xj) Î [0, 1] is some simi-
larity function, and h(x) is a hash 
function drawn from F that returns 
a single bit.5 Concatenating a series 
of b hash functions drawn from F 
yields b-dimensional hash keys. When 
h(xi) = h(xj), xi and xj collide in the hash 
table. Because the probability that two 
inputs collide is equal to the similarity 
between them, highly similar objects 
are indexed together in the hash table 
with high probability. On the other 
hand, if two objects are very dissimi-
lar, they are unlikely to share a hash 
key (see Figure 6). Given valid LSH 

a  Data structures based on spatial partition-
ing and recursive decomposition have been 
developed for faster search, e.g., k-d trees9 and 
metric trees.31 While their expected query time 
requirement may be logarithmic in the data-
base size, selecting useful partitions can be 
expensive and requires good heuristics; worse, 
in high-dimensional spaces all exact search 
methods are known to provide little query time 
improvement over a naive linear scan.16 The ex-
pected query time for a k-d tree contains terms 
that are exponential in the dimension of the 
features,9 making them especially unsuitable 
for the pyramid representation where the di-
mension can be on the order of millions.
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explicitly, and we must work in the 
implicit kernel space. For example, for 
features like the histogram pyramids 
above, we have d = 106. The examples 
are sparse and representable; how-
ever, the matrix A is dense and is 
not. This complicates the computa-
tion of hash functions, as they can 
no longer be computed directly as in 
Equation 4. To handle this, we derived 
an algorithm that simultaneously 
makes implicit updates to both the 
hash functions and the metric being 
learned. We show it is possible to com-
pute the value of rTG indirectly, based 
on comparisons between the points 
involved in similarity constraints and 
the new example x that we want to 
hash. See Jain et al.19 for details.

Figure 7b shows results using our 
semi-supervised hash functions. In 
the left-hand plot, we see the learned 
metric (denoted ‘ML’) significantly 
improves the base metric in the image 
retrieval task for the Caltech data. 
Additionally, we now can offer sublin-
ear time search even once the metric 
has been altered by the input similar-
ity constraints. Note how accuracy 
varies as a function of , the param-
eter controlling how many examples 
we have to search per query; the more 
examples we can afford to search, the 
stronger our guarantee of approximat-
ing an exhaustive linear scan.

The right-hand plot shows results 
using another database, 300K patches 

from the PhotoTourism project.28 
Here L2 is the base metric; the recall 
rate is substantially improved once we 
learn a metric on top of it. Negligible 
accuracy is sacrificed when search-
ing with our semi-supervised hash 
functions (as seen by the closeness of 
the top two curves), yet our hashing 
strategy requires touching only 0.8% 
of the patches in the database. In our 
MATLAB implementation, we observe 
speedup factors of about 400 relative 
to a linear scan for databases contain-
ing half a million examples. Due to the 
query-time guarantees our hash func-
tions enable, that factor grows rapidly 
with the size of the database.

Most recently, we have derived 
hash functions to enable fast search 
with arbitrary kernel functions.21

Relative to traditional exact search 
data structures, the approximate hash-
ing approach is critical to performance 
when inputs are high-dimensional. 
Modifications to classic tree structures 
have also been explored to improve 
search time with high-dimensional 
image features;4,26 however, such 
approaches do not provide query-time 
guarantees, and are not applicable 
to searching with learned metrics. By 
hashing to buckets containing a collec-
tion of examples with a high probabil-
ity of being very similar to the query, we 
are able to sort out the most relevant 
list of near neighbors. This is important 
for content-based retrieval, where we 

Given the matrix A for a metric 
learned as above, such that A = GTG, we 
generate the following randomized 
hash functions hr,A:

	 	
(4)

where the vector r is chosen at ran-
dom from a d-dimensional Gaussian 
distribution with zero mean and unit 
variance.

By parameterizing the hash func-
tions by both r and G, we enforce the 
following probability of collision:

which sustains the LSH requirement 
for a learned Mahalanobis metric. 
Essentially we have shifted the ran-
dom hyperplane r according to A, and 
by factoring it by G we allow the ran-
dom hash function itself to “carry” the 
information about the learned metric. 
The denominator in the cosine term 
normalizes the kernel values.

For low-dimensional data, we 
could equivalently transform all the 
data according to A prior to hashing. 
However, the matrix  A has d2 entries, 
and thus for very high-dimensional 
input spaces it cannot be represented 

Figure 7. Semi-supervised hash functions. 

(a) A generic hash function would choose the orientation of the hyperplane r uniformly at random, causing collisions only for examples that have small angles 
between their features (xi and xj). In constrast, the distribution of our randomized semi-supervised hash functions is such that examples like those constrained to 
be similar are more likely to collide (left), while pairs like those constrained to be dissimilar are less likely to collide (right). Here the hourglass shapes denote the 
regions from which our randomized hash functions will most likely be drawn. (b) Semi-supervised hash functions encode the learned metric, and allow guaran-
teed sublinear time queries that are similar in accuracy to a naive linear scan. 
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do not expect the single nearest exem-
plar to answer the query, but rather 
that the pool of nearby content will give 
the user and/or downstream processes 
access to relevant candidates.

Conclusion
As the world’s store of digital images 
continues to grow exponentially, and 
as novel data-rich approaches to com-
puter vision begin to emerge, fast tech-
niques capable of accurately searching 
very large image collections are critical. 
The algorithms we have developed aim 
to provide robust but scalable image 
search, and results show the practical 
impact. While motivated by vision prob-
lems, these methods are fairly general, 
and may be applicable in other domains 
where rich features and massive data 
collections abound, such as computa-
tional biology or text processing.

Looking forward, an important chal-
lenge in this research area is to develop 
the representations that will scale in 
terms of their distinctiveness; once the 
space of images is even more densely 
populated, relative differences are sub-
tle. At the same time, flexibility is still a 
key to handling intra-category variation. 
While our search methods can guaran-
tee query-time performance, it is not yet 
possible to guarantee a level of discrimi-
nation power for the features chosen. In 
addition, a practical issue for evaluat-
ing algorithms in this space is the dif-
ficulty of quantifying accuracy for truly 
massive databases; the data itself is easy 
to come by, but without ground truth 
annotations, it is unclear how to rigor-
ously evaluate performance.

An interesting aspect of the image 
search problem is the subjectivity 
related to a real user’s perception of the 
quality of a retrieval. We can objectively 
quantify accuracy in terms of the cate-
gories contained in a retrieved image, 
which is helpful to systematically 
validate progress. Moreover, example-
based search often serves as one useful 
stage in a larger pipeline with further 
processing downstream. Nonetheless, 
when end users are in the loop, the per-
ception of quality may vary. On the eval-
uation side, this uncertainty could be 
addressed by collecting user apprais-
als of similarity, as is more standard in 
natural language processing. In terms 
of the algorithms themselves, however, 
one can also exploit classic feedback 

and query-refinement devices to tailor 
retrieval toward the current user. For 
example, we could construct learned 
image metrics with constraints that 
target the preferences of a given user or 
group of users.

We are currently exploring online 
extensions to our algorithms that 
allow similarity constraints to be 
processed in an incremental fash-
ion, while still allowing intermit-
tent queries. We are also pursuing 
active learning methods that allow 
the system to identify which image 
annotations seem most promising to 
request, and thereby most effectively 
use minimal manual input.
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Surprises may be fun in real life, but not 
so in software. One approach to avoid-
ing surprises in software is to establish 
its functional correctness, either by 
construction or by verification, but this 
is feasible in only a limited set of do-
mains. Instead, the predominant meth-
od in single-threaded software develop-
ment has been an iterative approach of 
design, coding, testing, and bug fixes. 
The cornerstone of this practice is de-
terminism; that is, the expectation a 
program will exhibit the same behavior 
each time it is executed with the same 
inputs. Even if a program has a bug, it is 
comforting to know the buggy behavior 
can be reproduced by others, and work-
arounds can be shared until the devel-
oper provides a fix. 

In this context, multithreaded pro-
grams prove to be more challenging to 
handle than single-threaded programs. 
For decades multithreaded programs 
were executed on single-core proces-
sors and users became accustomed 
to deterministic sets of behaviors ex-
hibited by standard thread schedul-
ers. However, the move to multicore 
hardware has completely changed this 
landscape, which is why I recommend 
you read the following paper.

Jacob Burnim and Koushik Sen 
propose an assertion framework for 
specifying regions of multithreaded 
software that are expected to behave 
deterministically, and describe a run-
time library for checking these asser-
tions that is guaranteed to be sound. 
Though the proposed runtime check-
ing is incomplete in general, prelimi-
nary evaluations suggest that this ap-
proach can be effective in identifying 
many common sources of nondeter-
minism. Runtime assertion-checking 
is used in many situations nowadays, 
including null-pointer, array-bounds 
checks, and type checks in managed 
runtimes. So, it is reasonable to view 
the checking assertions related to de-

terminism as a natural future exten-
sion to the runtime checks performed 
in modern software.

A key challenge in multicore pro-
grams is that determinism lies in the 
eye of the beholder. If two executions of 
the same program with the same input 
produce outputs that are non-identical 
but semantically equivalent, should the 
program be considered deterministic 
or not? For example, consider a pro-
gram that produces two different float-
ing-point values in two executions with 
the same input. From the viewpoint of 
a strict definition of determinism, the 
program is unquestionably nondeter-
ministic. From the viewpoint of a more 
relaxed definition in which all values 
within a certain error threshold are per-
missible as outputs, the program may 
well be considered to be deterministic. 
A similar situation arises for programs 
that produce (say) ordered linked lists 
as data structure representations of 
unordered sets. Two non-identical out-
puts may still be considered equivalent 
if they contain the same set of elements, 
albeit in different orders.

Given this range of interpretations 
for determinism, it isn’t obvious how 
assertions for determinism should be 
formulated. The approach taken in 
this paper is to extend the concepts of 
preconditions (“assume” clauses) and 

postconditions (“assert” clauses) by 
using bridge predicates. A bridge predi-
cate relates values arising from two dif-
ferent executions of the same program, 
thereby providing the foundation for 
asserting semantic determinism at any 
desired level of user-specified granu-
larity. One of the examples discussed 
is parallel matrix multiply, where the 
bridge predicate in the precondition 
assumes the input matrices from two 
executions differ entry-by-entry by no 
more than an error threshold, and the 
bridge predicate in the postcondition 
asserts that a similar property holds 
for the output matrices. Note that 
these assertions are focused on de-
terminism and not on functional cor-
rectness. For example, a functionally 
incorrect implementation of parallel 
matrix multiply that returns the identi-
ty matrix for all inputs will always pass 
determinism checking.

At this point I hope I’ve raised a 
number of questions in your mind. Can 
the determinism assertions be gener-
ated automatically? What is the rela-
tionship between checking assertions 
for determinism and detection of data 
races? Are there any assumptions made 
about the underlying system software 
and hardware, such as the memory con-
sistency model? Can the programming 
constructs advocated by transactional 
memory researchers help address this 
problem? Are there applications of de-
terminism assertions to single-thread-
ed programs? If you’re interested in any 
of these questions, you need to read the 
following paper to better understand 
the ramifications of parallel hardware 
on determinism guarantees in multi-
threaded software!	
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Asserting and Checking 
Determinism for  
Multithreaded Programs
By Jacob Burnim and Koushik Sen

Abstract
The trend towards processors with more and more parallel 
cores is increasing the need for software that can take advan-
tage of parallelism. The most widespread method for writing 
parallel software is to use explicit threads. Writing correct 
multithreaded programs, however, has proven to be quite 
challenging in practice. The key difficulty is nondetermin-
ism. The threads of a parallel application may be interleaved 
nondeterministically during execution. In a buggy program, 
nondeterministic scheduling can lead to nondeterministic 
results—where some interleavings produce the correct result 
while others do not.

We propose an assertion framework for specifying that 
regions of a parallel program behave deterministically despite 
nondeterministic thread interleaving. Our framework allows 
programmers to write assertions involving pairs of program 
states arising from different parallel schedules. We describe an 
implementation of our deterministic assertions as a library for 
Java, and evaluate the utility of our specifications on a number 
of parallel Java benchmarks. We found specifying determinis-
tic behavior to be quite simple using our assertions. Further, 
in experiments with our assertions, we were able to identify 
two races as true parallelism errors that lead to incorrect non-
deterministic behavior. These races were distinguished from a 
number of benign races in the benchmarks.

1. INTRODUCTION
The semiconductor industry has hit the power wall—
performance of general-purpose single-core microprocessors 
can no longer be increased due to power constraints. Therefore, 
to continue to increase performance, the microprocessor 
industry is instead increasing the number of processing cores 
per die. The new “Moore’s Law” is that the number of cores will 
double every generation, with individual cores going no faster.2

This new trend of increasingly parallel chips means that we 
will have to write parallel software in order to take advantage 
of future hardware advances. Unfortunately, parallel software 
is more difficult to write and debug than its sequential coun-
terpart. A key reason for this difficulty is nondeterminism—i.e., 
that in two runs of a parallel program on the exact same input, 
the parallel threads of execution can interleave differently, 
producing different output. Such nondeterministic thread 
interleaving is an essential part of harnessing the power of 
parallel chips, but it is a major departure from sequential 
programming, where we typically expect programs to behave 
identically in every execution on the same input. We share a 

widespread belief that helping programmers manage nonde-
terminism in parallel software is critical in making parallel 
programming widely accessible.

For more than 20 years, many researchers have attacked 
the problem of nondeterminism by attempting to detect or 
predict sources of nondeterminism in parallel programs. The 
most notorious of such sources is the data race. A data race 
occurs when two threads in a program concurrently access the 
same memory location and at least one of those accesses is a 
write. That is, the two threads “race” to perform their conflict-
ing memory accesses, so the order in which the two accesses 
occur can change from run to run, potentially yielding nonde-
terministic program output. Many algorithms and tools have 
been developed to detect and eliminate data races in parallel 
programs. (See Burnim and Sen5 for further discussion and 
references.) Although the work on data race detection has 
significantly helped in finding determinism bugs in parallel 
programs, it has been observed that the absence of data races 
is not sufficient to ensure determinism.1, 8, 9 Thus researchers 
have also developed techniques to find high-level races,1, 16, 21 
likely atomicity violations,9, 8, 14 and other potential sources of 
nondeterminism. Further, such sources of nondeterminism 
are not always bugs—they may not lead to nondeterministic 
program behavior or nondeterminism may be intended. In 
fact, race conditions may be useful in gaining performance 
while still ensuring high-level deterministic behavior.3

More recently, a number of ongoing research efforts aim 
to make parallel programs deterministic by construction. 
These efforts include the design of new parallel program-
ming paradigms10, 12, 13, 19 and the design of new type systems, 
annotations, and checking or enforcement mechanisms 
that could retrofit existing parallel languages.4, 15 But such 
efforts face two key challenges. First, new languages see 
slow adoption and often remain specific to limited domains. 
Second, new paradigms often include restrictions that can 
hinder general-purpose programming. For example, a new 
type system may require complex type annotations and may 
forbid reasonable programs whose determinism cannot be 
expressed in the type system.

We argue that programmers should be provided with 
a framework that will allow them to express deterministic 

The original version of this paper was published in Pro-
ceedings of the 7th Joint Meeting of the European Software 
Engineering Conference and the ACM SIGSOFT Symposium 
on the Foundations of Software Engineering, August 2009.
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behaviors of parallel programs directly and easily. Specifically, 
we should provide an assertion framework where program-
mers can directly and precisely express intended deterministic 
behavior. Further, the framework should be flexible enough 
so that deterministic behaviors can be expressed more eas-
ily than with a traditional assertion framework. For example, 
when expressing the deterministic behavior of a parallel edge 
detection algorithm for images, we should not have to rephrase 
the problem as race detection; nor should we have to write a 
state assertion that relates the output to the input, which would 
be complex and time-consuming. Rather, we should simply be 
able to say that, if the program is executed on the same input 
image, then the output image remains the same regardless of 
how the program’s parallel threads are scheduled.

In this paper, we propose such a framework for asserting 
that blocks of parallel code behave deterministically. Formally, 
our framework allows a programmer to give a specification for 
a block P of parallel code as:

deterministic assume(Pre(s0 , s ¢0) ) {
	 P
} assert(Post(s, s¢) );

This specification asserts the following: Suppose P is exe-
cuted twice with potentially different schedules, once from 
initial state s0 and once from s¢0 and yielding final states s and 
s ¢. Then, if the user-specified precondition Pre holds over s0 
and s ¢0, then s and s¢ must satisfy the user-specified postcon-
dition Post.

For example, we could specify the deterministic behavior 
of a parallel matrix multiply with:

deterministic assume(|A − A¢| < 10−9 and
	 |B − B¢| < 10−9) {

C = parallel_matrix_multiply_float(A, B);

} assert(|C − C¢| < 10−6);

Note the use of primed variables A¢,B¢, and C¢ in the above 
example. These variables represent the state of the matrices 
A,B,and C from a different execution. Thus, the predicates 
that we write inside assume and assert are different from 
state predicates written in a traditional assertion framework—
our predicates relate a pair of states from different executions. 
We call such predicates bridge predicates and assertions using 
bridge predicates bridge assertions. A key contribution of 
this paper is the introduction of these bridge predicates and 
bridge assertions.

Our deterministic assertions provide a way to specify 
the correctness of the parallelism in a program indepen-
dently of the program’s traditional functional correct-
ness. By checking whether different program schedules 
can nondeterministically lead to semantically different 
answers, we can find bugs in a program’s use of parallelism 
even when unable to directly specify or check functional 
correctness—i.e., that the program’s output is correct 
given its input. Inversely, by checking that a parallel pro-
gram behaves deterministically, we can gain confidence 

in the correctness of its use of parallelism independently 
of whatever method we use to gain confidence in the 
program’s functional correctness.

We have implemented our deterministic assertions as a 
library for the Java programming language. We evaluated 
the utility of these assertions by manually adding determin-
istic specifications to a number of parallel Java benchmarks. 
We used an existing tool to find executions exhibiting data 
and higher-level races in these benchmarks and used our 
deterministic assertions to distinguish between harmful 
and benign races. We found it to be fairly easy to specify the 
correct deterministic behavior of the benchmark programs 
using our assertions, despite being unable in most cases to 
write traditional invariants or functional correctness asser-
tions. Further, our deterministic assertions successfully 
distinguished the two races known to lead to undesired non-
determinism from the benign races in the benchmarks.

2. DETERMINISTIC SPECIFICATION
In this section, we motivate and define our proposal for 
assertions for specifying determinism.

Strictly speaking, a block of parallel code is said to be 
deterministic if, given any particular initial state, all execu-
tions of the code from the initial state produce the exact same 
final state. In our specification framework, the programmer 
can specify that they expect a block of parallel code, say P, to 
be deterministic with the following construct:

deterministic {
P

}

This assertion specifies that if s and s¢ are both program 
states resulting from executing P under different thread 
schedules from some initial state s0, then s and s¢ must be 
equal. For example, the specification:

deterministic {
C = parallel_matrix_multiply_int(A, B);

}

asserts that for the parallel implementation of matrix mul-
tiplication in function parallel_matrix_multiply_
int, any two executions from the same program state 
must reach the same program state—i.e., with identical 
entries in matrix C—no matter how the parallel threads 
are scheduled.

A key implication of knowing that a block of parallel code 
is deterministic is that we may be able to treat the block as 
sequential in other contexts. That is, although the block 
may have internal parallelism, a programmer (or perhaps 
a tool) can hopefully ignore this parallelism when consider-
ing the larger program using the code block. For example, 
perhaps a deterministic block of parallel code in a function 
can be treated as if it were a sequential implementation 
when reasoning about the correctness of code calling the 
function.
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Semantic Determinism: The above deterministic specifi-
cation is often too conservative. For example, consider a 
similar example, but where A,B,and C are floating-point 
matrices:

deterministic {

C = parallel_matrix_multiply_float(A, B);

}

Limited-precision floating-point addition and multipli-
cation are not associative due to rounding error. Thus, 
depending on the implementation, it may be unavoidable 
that the entries of matrix C will differ slightly depending on 
the thread schedule.

In order to tolerate such differences, we must relax the 
deterministic specification:

deterministic {

C = parallel_matrix_multiply_float(A, B);

} assert(|C − C¢| < 10−6);

This assertion specifies that, for any two matrices C and 
C¢ resulting from the execution of the matrix multiply from 
the same initial state, the entries of C and C¢ must differ by 
only a small quantity (i.e., 10−6).

Note that the above specification contains a predicate 
over two states—each from a different parallel execution of 
the deterministic block. We call such a predicate a bridge 
predicate, and an assertion using a bridge predicate a bridge 
assertion. Bridge assertions are different from traditional 
assertions in that they allow one to write a property over two 
program states coming from different executions whereas 
traditional assertions only allow us to write a property over 
a single program state.

Note also that such predicates need not be equivalence 
relations on pairs of states. In particular, the approximate 
equality used above is not an equivalence relation.

This relaxed notion of determinism is useful in many con-
texts. Consider the following example which adds in parallel 
two items to a synchronized set:

Set set = new SynchronizedTreeSet();
deterministic {

set.add(3); || set.add(5);

} assert(set.equals(set¢) );

If set is represented internally as a red–black tree, then a strict 
deterministic assertion would be too conservative. The struc-
ture of the resulting tree, and its layout in memory, will likely 
differ depending on which element is inserted first, and thus 
different parallel executions can yield different program states.

But we can use a bridge predicate to assert that, no mat-
ter what schedule is taken, the resulting set is semantically 

the same. That is, for objects set and set¢ computed by two 
different schedules, the equals method must return true 
because the sets must logically contain the same elements. 
We call this semantic determinism.
Preconditions for Determinism: So far we have described 
the following construct:

deterministic {
P

} assert(Post);

where Post is a predicate over two program states from dif-
ferent executions with different thread schedules. That is, 
if s and s¢ are two states resulting from any two executions 
of P from the same initial state, then Post (s, s¢) holds.

The above construct could be rewritten:

deterministic assume(s0 = s0¢) {
P

} assert(Post);

That is, if any two executions of P start from initial states 
s0 and s0¢, respectively, and if s and s¢ are the resulting final 
states, then s0 = s0¢ implies that Post (s, s¢) holds. The above 
rewritten specification suggests that we can relax the re-
quirement of s0 = s0¢ by replacing it with a bridge predicate 
Pre (s0, s0¢). For example:

deterministic assume(set.equals(set¢) ) {
set.add(3);    ||    set.add(5);

} assert(set.equals(set¢) );

The above specification states that if any two executions 
start from sets containing the same elements, then after the 
execution of the code, the resulting sets must also contain 
the same elements.
Comparison to Traditional Assertions: In summary, we pro-
pose the following construct for the specification of deter-
ministic behavior:

deterministic assume(Pre) {
P

} assert(Post);

Formally, it states that for any two program states s0 and s0¢, 
if (1) Pre (s0, s0¢) holds, (2) an execution of P from s0 termi-
nates and results in state s, and (3) an execution of P from 
s0¢ terminates and results in state s¢, then Post (s, s¢) must 
hold.

Note that the use of bridge predicates Pre and Post has 
the same flavor as pre- and postconditions used for functions 
in program verification. However, unlike traditional pre- and 
postconditions, the proposed Pre and Post predicates relate 
pairs of states from two different executions. In traditional ver-
ification, a precondition is usually written as a predicate over 
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a single program state, and a postcondition is usually written 
over two states—the states at the beginning and end of the 
function. For example:

parallel_matrix_multiply_int(A, B) {
	 assume(A.cols == B.rows);
	 ...
	 assert(C == A × B);
	 return C;
}

The key difference between a postcondition and a Post 
predicate is that a postcondition relates two states at differ-
ent times along a same execution—e.g., here relating inputs 
A and B to output C—whereas a Post predicate relates two 
program states from different executions.
Advantages of Deterministic Assertions: Our deterministic 
specifications are a middle ground between the implicit 
specification used in race detection—that programs should 
be free of data races—and the full specification of functional 
correctness. It is a great feature of data race detectors that 
typically no programmer specification is needed. However, 
manually determining which reported races are benign and 
which are bugs can be time-consuming and difficult. We 
believe our deterministic assertions, while requiring little 
effort to write, can greatly aid in distinguishing harmful 
from benign data races (or higher-level races).

One could argue that a deterministic specification frame-
work is unnecessary given that we can write the functional 
correctness of a block of code using traditional pre- and 
postconditions. For example, one could write the following 
to specify the correct behavior of a paralell matrix multiply:

C = parallel_matrix_multiply_float(A, B);

assert(|C − A × B| < 10−6);

We agree that if one can write a functional specification of 
a block of code, then there is no need to write deterministic 
specification, as functional correctness implies determinis-
tic behavior.

The advantage of our deterministic assertions is that 
they provide a way to specify the correctness of just the use 
of parallelism in a program, independent of the program’s 
full functional correctness. In many situations, writing a full 
specification of functional correctness is difficult and time-
consuming. A simple deterministic specification, however, 
enables us to use automated techniques to check for paral-
lelism bugs, such as harmful data races causing semantically 
nondeterministic behavior.

Consider a function parallel_edge_detection 
that takes an image as input and returns an image where 
detected edges have been marked. Relating the output to the 
input image with traditional pre- and postconditions would 
likely be quite challenging. However, it is simple to specify 
that the routine does not have any parallelism bugs causing 
a correct image to be returned for some thread schedules 
and an incorrect image for others:

deterministic assume(img.equals(img¢)) {
result = parallel_edge_detection(img);

} assert(result.equals(result¢));

where img.equals(img¢) returns true if the two images 
are pixel-by-pixel equal.

For this example, a programmer could gain some confi-
dence in the correctness of the routine by writing unit tests 
or manually examining the output for a handful of images. 
He or she could then use automated testing or model check-
ing to separately check that the parallel routine behaves 
deterministically on a variety of inputs, gaining confidence 
that the code is free from concurrency bugs.

We believe that it is often difficult to come up with effective 
functional correctness assertions. However, it is often quite 
easy to use bridge assertions to specify deterministic behav-
ior, enabling a programmer to check for harmful concurrency 
bugs. In Section 5, we provide several case studies to support 
this argument.

3. CHECKING DETERMINISM
There may be many potential approaches to checking or 
verifying a deterministic specification, from testing to model 
checking to automated theorem proving. In this section, we 
propose a simple, sound, and incomplete method for check-
ing deterministic specifications at run-time.

The key idea of the method is that, whenever a determin-
istic block is encountered at run-time, we can record the 
program states spre and spost at the beginning and end of the 
block. Then, given a collection of (spre, spost) pairs for a par-
ticular deterministic block in some program, we can check a 
deterministic specification by comparing pairwise the pairs 
of initial and final states for the block. That is, for a deter-
ministic block:

deterministic assume(Pre) {
P

} assert(Post);

with pre- and postbridge predicates Pre and Post, we check 
for every recorded pair of pairs (spre, spost) and (s¢pre, s¢post) that:

Pre (spre, s¢pre) Þ Post (spost, s¢post)

If this condition does not hold for some pair, then we report 
a determinism violation.

To increase the effectiveness of this checking, we must 
record pairs of initial and final states for deterministic 
blocks executed under a wide variety of possible thread 
interleavings and inputs. Thus, in practice we likely want to 
combine our deterministic assertion checking with existing 
techniques and tools for exploring parallel schedules of a 
program, such as noise making,7, 18 active random schedul-
ing,16 or model checking.20

In practice, the cost of recording and storing entire pro-
gram states could be prohibitive. However, real determinism 
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predicates often depend on just a small portion of the whole 
program state. Thus, we need only to record and store small 
projections of program states. For example, for a determin-
istic specification with pre- and postpredicate set.equals 
(set¢) we need only to save object set and its elements (pos-
sibly also the memory reachable from these objects), rather 
than the entire program memory. This storage cost sometimes 
can be further reduced by storing and comparing check-sums 
or approximate hashes.

4. DETERMINISM CHECKING LIBRARY
In this section, we describe the design and implementation of 
an assertion library for specifying and checking determinism 
of Java programs. Note that, while it might be preferable to 
introduce a new syntactic construct for specifying determin-
ism, we provide the functionality as a library to simplify the 
implementation.

4.1. Overview
Figure 1 shows the core API for our deterministic asser-
tion library. Functions open and close specify the begin-
ning and end of a deterministic block. Deterministic blocks 
may be nested, and each block may contain multiple calls 
to functions assume and assert, which are used to specify 
the pre- and postpredicates of deterministic behavior.

Each call assume(o, pre) in a deterministic block speci-
fies part of the prepredicate by giving some projection o of 
the program state and a predicate pre. That is, it specifies 
that one condition for any execution of the block to compute 
an equivalent, deterministic result is that pre.apply(o, o¢) 
return true for object o¢ from the other execution.

Similarly, a call assert(o, post) in a deterministic block 
specifies that, for any execution satisfying every assume, 
predicate post.apply(o, o¢) must return true for object o¢ 
from the other execution.

At run-time, our library records every object (i.e., state 
projection) passed to each assert and assume in each 
deterministic block, saving them to a central, persistent 
store. We require that all objects passed as state projections 
implement the Serializable interface to facilitate this 
recording. (In practice, this does not seem to be a heavy bur-
den. Most core objects in the Java standard library are seri-
alizable, including numbers, strings, arrays, lists, sets, and 
maps/hashtables.)

Then, also at run-time, a call to assert(o, post) checks 
post on o and all o¢ saved from previous, matching execu-
tions of the same deterministic block. If the postpredicate 
does not hold for any of these executions, a determinism 
violation is immediately reported. Deterministic blocks can 
contain many assert’s so that determinism bugs can be 
caught as early as possible and can be more easily localized.

For flexibility, programmers are free to write state projec-
tions and predicates using the full Java language. However, 
it is a programmer’s responsibility to ensure that these 
predicates contain no observable side effects, as there are 
no guarantees as to how many times such a predicate may 
be evaluated in any particular run.
Built-in Predicates: For programmer convenience, we pro-
vide two built-in predicates that are often sufficient for spec-
ifying pre- and postpredicates for determinism. The first, 
Equals, returns true if the given objects are equal using 
their built-in equals method—i.e., if o.equals(o¢). For 
many Java objects, this method checks semantic equality—
e.g., for integers, floating-point numbers, strings, lists, sets, 
etc. Further, for single- or multidimensional arrays (which 
do not implement such an equals method), the Equals 
predicate compares corresponding elements using their 
equals methods. Figure 2 gives an example with  assert 
and assume using this Equals predicate.

The second predicate, ApproxEquals, checks if two 
floating-point numbers, or the corresponding elements 
of two floating-point arrays, are within a given margin of 
each other. We found this predicate useful in specifying the 
deterministic behavior of numerical applications, where it 
is often unavoidable that the low-order bits may vary with 
different thread interleavings.
Real-World Floating-Point Predicates: In practice, float-
ing-point computations often have input-dependent error 
bounds. For example, we may expect any two runs of a paral-
lel algorithm for summing inputs x1, …, xn to return answers 

Figure 1. Core deterministic specification API.

public class Deterministic {

	 static void open() {...}

	 static void close() {...}

	 static void assume(Object o, Predicate p) {...}

	 static void assert(Object o, Predicate p) {...}

	 interface Predicate {
	 boolean apply(Object a, Object b);
	 }
}

Figure 2. Deterministic assertions for a Mandelbrot Set  
implementation from the Parallel Java (PJ) Library.11

main(String args[]) {
	 // Read parameters from command-line.
	 ...
	 // Pre-predicate: equal parameters.
	 Predicate equals = new Equals();
	 Deterministic.open();
	 Deterministic.assume(width, equals);
	 Deterministic.assume(height, equals);
	 ...
	 Deterministic.assume(gamma, equals);

	 // spawn threads to compute fractal
	 int matrix[][] = ...;
	 ...
	 // join threads
	 ...
	 Deterministic.assert(matrix, equals);
	 Deterministic.close();

	 // write fractal image to f ile
	 ...
}
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equal to within 2N  ∑i|xi|, where Î is the machine epsilon. 
We can assert:

sum = parallel_sum(x);
bound = 2 * x.length *  * sum_of_abs(x);
Predicate apx = new ApproxEquals(bound);
Deterministic.assert(sum, apx);

As another example, different runs of a molecular dynam-
ics simulation may be expected to produce particle positions 
equal to within something like  multiplied by the sum of 
the absolute values of all initial positions. We can similarly 
compute this value at the beginning of the computation, 
and use an ApproxEquals predicate with the appropriate 
bound to compare particle positions.

4.2. Concrete example: Mandelbrot
Figure 2 shows the deterministic assertions we added to one 
of our benchmarks, a program for rendering images of the 
Mandelbrot Set fractal from the Parallel Java (PJ) Library.11

The benchmark first reads a number of integer and 
floating-point parameters from the command-line. It then 
spawns several worker threads that each compute the hues 
for different segments of the final image and store the hues 
in shared array matrix. After waiting for all of the worker 
threads to finish, the program encodes and writes the image 
to a file given as a command-line argument.

To add determinism annotations to this program, we 
simply opened a deterministic block just before the worker 
threads are spawned and closed it just after they are joined. 
At the beginning of this block, we added an assume call for 
each of the seven fractal parameters, such as the image size 
and color palette. At the end of the block, we assert that the 
resulting array matrix should be deterministic, however 
the worker threads are interleaved.

Note that it would be quite difficult to add assertions 
for the functional correctness of this benchmark, as each 

pixel of the resulting image is a complicated function of the 
inputs (i.e., the rate at which a particular complex sequence 
diverges). Further, there do not seem to be any simple tra-
ditional invariants on the program state or outputs which 
would help identify a parallelism bug.

5. EVALUATION
In this section, we describe our efforts to validate two claims 
about our proposal for specifying and checking determinis-
tic parallel program execution:

1.	 First, deterministic specifications are easy to write. That 
is, even for programs for which it is difficult to specify tra-
ditional invariants or functional correctness, it is relatively 
easy for a programmer to add deterministic assertions.

2.	 Second, deterministic specifications are useful. When 
combined with tools for exploring multiple thread 
schedules, deterministic assertions catch real parallel-
ism bugs that lead to semantic nondeterminism. 
Further, for traditional concurrency issues such as data 
races, these assertions provide some ability to distin-
guish between benign cases and true bugs.

To evaluate these claims, we used a number of bench-
mark programs from the Java Grande Forum (JGF) bench-
mark suite,17 the Parallel Java (PJ) Library,11 and elsewhere. 
The names and sizes of these benchmarks are given in 
Table 1. We describe the benchmarks in greater detail in 
Burnim and Sen.5 Note that the benchmarks range from 
a  few hundred to a few thousand lines of code, with the 
PJ  benchmarks relying on an additional 10–20,000 lines 
of library code from the PJ Library (for threading, synchro-
nization, and other functionality).

5.1. Ease of use
We evaluate the ease of use of our deterministic specification 
by manually adding assertions to our benchmark programs. 
One deterministic block was added to each benchmark.

Benchmark

Approximate 
Lines of Code 

(App + Library)

Lines of  
Specification  
(+ Predicates) Threads

Data Races High-Level Races

Found
Determinism 

Violations Found
Determinism  

Violations

JGF sor
sparsematmult
series
crypt
moldyn
lufact
raytracer
montecarlo

300
700
800

1,100
1,300
1,500
1,900
3,600

6
7
4
5
6
9
4
4 + 34

10
10
10
10
10
10
10
10

2
0
0
0
2
1
3
1

0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
2

0
0
0
0
0
0
0
0

PJ pi
keysearch3
mandelbrot
phylogeny

150 + 15,000
200 + 15,000
250 + 15,000

4,400 + 15,000

5
6

10
8

4
4
4
4

9
3
9
4

0
0
0
0

1+
0+
0+
0+

1
0
0
0

tsp 700 4 5 6 0 2 0

Table 1. Summary of experimental evaluation of deterministic assertions. A single deterministic block specification was added to each 
benchmark. Each specification was checked on executions with races found by the CalFuzzer14, 16 tool.
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The third column of Table 1 records the number of 
lines of specification (and lines of custom predicate code) 
added to each benchmark. Overall, the specification bur-
den is quite small. Indeed, for the majority of the programs, 
an author was able to add deterministic assertions in only 
5  to 10 minutes per benchmark, despite being unfamiliar 
with the code. In particular, it was typically not difficult to 
both identify regions of code performing parallel computa-
tion and to determine from documentation, comments, or 
source code which results were intended to be determinis-
tic. Figure 2 shows the assertions added to the mandelbrot 
benchmark.

The added assertions were correct on the first attempt for 
all but two benchmarks. For phylogeny, the resulting phy-
logenetic tree was erroneously specified as deterministic, 
when, in fact, there are many correct optimal trees. The spec-
ification was modified to assert only that the optimal score 
must be deterministic. For sparsematmult, we incorrectly 
identified the variable to which the output was written. This 
error was identified during later work on automatically infer-
ring deterministic specifications.6

The two predicates provided by our assertion library were 
sufficient for all but one of the benchmarks. For the JGF 
montecarlo benchmark, the authors had to write a custom 
equals and hashCode method for two classes—34 total 
lines of code—in order to assume and assert that two sets, 
one of initial tasks and one of results, are equivalent across 
executions.
Discussion: More experience, or possibly user studies, would 
be needed to conclude decisively that our assertions are eas-
ier to use than existing techniques for specifying that parallel 
code is correctly deterministic. However, we believe our expe-
rience is quite promising. In particular, writing assertions for 
the full functional correctness of the parallel regions of these 
programs seemed to be quite difficult, perhaps requiring 
implementing a sequential version of the code and asserting 
that it produces the same result. Further, there seemed to be 
no obvious simpler, traditional assertions that would aid in 
catching nondeterministic parallelism.

Despite these difficulties, we found that specifying the 
natural deterministic behavior of the benchmarks with our 
bridge assertions required little effort.

5.2. Effectiveness
To evaluate the utility of our deterministic specifications in 
finding true parallelism bugs, we used a modified version 
of the CalFuzzer14, 16 tool to find real races in the bench-
mark programs, both data races and higher level races (such 
as  races to acquire a lock). For each such race, we ran 10 
trials using CalFuzzer to create real executions with these 
races and to randomly resolve the races (i.e., randomly pick 
a thread to “win”). We turned on run-time checking of our 
deterministic assertions for these trials, and recorded all 
found violations.

Table 1 summarizes the results of these experiments. For 
each benchmark, we indicate the number of real data races 
and higher-level races we observed. Further, we indicate 
how many of these races led to determinism violations in 
any execution.

In these experiments, the primary computational cost 
is from CalFuzzer, which typically has an overhead in the 
range of 2x–20x for these kinds of compute bound applica-
tions. We have not carefully measured the computational 
cost of our deterministic assertion library. For most bench-
marks, however, the cost of serializing and comparing a 
computation’s inputs and outputs is dwarfed by the cost of 
the computation itself—e.g., consider the cost of checking 
that two fractal images are identical versus the cost of com-
puting each fractal in the first place.
Determinism Violations: We found two cases of nondeter-
ministic behavior. First, a known data race in the raytracer 
benchmark, due the use of the wrong lock to protect a shared 
sum, can yield an incorrect final answer.

Second, the pi benchmark can yield a nondeterministic 
answer given the same random seed because of insufficient 
synchronization of a shared random number generator. 
In each Monte Carlo sample, two successive calls to java.
util.Random.nextDouble() are made. A context switch 
between these calls changes the set of samples generated. 
Similarly, nextDouble() itself makes two calls to java.
util.Random.next(), which atomically generates up to 
32 pseudorandom bits. A context switch between these two 
calls changes the generated sequence of pseudorandom 
doubles. Thus, although java.util.Random.next
Double()is thread-safe and free of data races, scheduling 
nondeterminism can still lead to a nondeterministic result. 
(This behavior is known—the PJ Library provides several 
versions of this benchmark, one of which does guarantee a 
deterministic result for any given random seed.)
Benign Races: The high number of real data races for these 
benchmarks is largely due to benign races on volatile variables 
used for synchronization—e.g., to implement a tournament 
barrier or a custom lock. Although CalFuzzer does not under-
stand these sophisticated synchronization schemes, our deter-
ministic assertions automatically provide some confidence 
that these races are benign because, over the course of many 
experimental runs, they did not lead to nondeterministic final 
results.

Note that it can be quite challenging to verify by hand that 
these races are benign. On inspecting the benchmark code 
and these data races, an author several times believed he 
had found a synchronization bug. But on deeper inspection, 
the code was found to be correct in all such cases.

The number of high-level races is low for the JGF bench-
marks because all the benchmarks except montecarlo 
exclusively use volatile variables (and thread joins) for syn-
chronization. Thus, all observable scheduling nondeter-
minism is due to data races.

The number of high-level races is low for the PJ bench-
marks because they primarily use a combination of vola-
tile variables and atomic compare-and-set operations for 
synchronization. Currently, the only kind of high-level 
race our modified CalFuzzer recognizes is a lock race. 
Thus, while we believe there are many (benign) races 
in the ordering of these compare-and-set operations, 
CalFuzzer does not report them. The one high-level race 
for pi, indicated in the table and described above, was 
confirmed by hand.
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Discussion: Although our checking of deterministic assertions 
is sound—an assertion failure always indicates that two execu-
tions with equivalent initial states can yield nonequivalent 
final states—it is incomplete. Parallelism bugs leading to non-
determinism may still exist even when testing fails to find any 
determinism violations.

However, in our experiments we successfully distin-
guished the races known to cause undesired nondetermin-
ism from the benign races in only a small number of trials. 
Thus, we believe our deterministic assertions can help catch 
harmful nondeterminism due to parallelism, as well as save 
programmer effort in determining whether real races and 
other potential parallelism bugs can lead to incorrect pro-
gram behavior.

6. DISCUSSION
In this section, we compare the concepts of atomicity and 
determinism. Further, we discuss several other possible 
uses for bridge predicates and bridge assertions.

6.1. Atomicity versus determinism
A concept complementary to determinism in parallel pro-
grams is atomicity. A block of sequential code in a multi-
threaded program is said to be atomic9 if for every possible 
interleaved execution of the program there exists an equiv-
alent execution with the same overall behavior in which 
the atomic block is executed serially (i.e., the execution of 
the atomic block is not interleaved with actions of other 
threads). Therefore, if a code block is atomic, the program-
mer can assume that the execution of the code block by a 
thread cannot be interfered with by any other thread. This 
enables programmers to reason about atomic code blocks 
sequentially. This seemingly similar concept has the follow-
ing subtle differences from determinism:

1.	 Atomicity is the property about a sequential block of 
code—i.e., the block of code for which we assert atom-
icity has a single thread of execution and does not 
spawn other threads. Note that a sequential block is by 
default deterministic if it is not interfered with by other 
threads. Determinism is a property of a parallel block 
of code. In determinism, we assume that the parallel 
block of code’s execution is not influenced by the exter-
nal world.

2.	 In atomicity, we say that the execution of a sequential 
block of code results in the same state no matter how it is 
scheduled with other external threads—i.e., atomicity 
ensures that external nondeterminism does not interfere 
with the execution of an atomic block of code. In deter-
minism, we say that the execution of a parallel block of 
code gives the same semantic state no matter how the 
threads inside the block are scheduled—i.e., determin-
ism ensures that internal nondeterminism does not result 
in different outputs.

In summary, atomicity and determinism are orthogonal con-
cepts. Atomicity reasons about a single thread under external 
nondeterminism, whereas determinism reasons about mul-
tiple threads under internal nondeterminism.

Here we focus on atomicity and determinism as pro-
gram specifications to be checked. There is much work 
on atomicity as a language mechanism, in which an 
atomic specification is instead enforced by some com-
bination of library, run-time, compiler, or hardware 
support. One  could similarly imagine enforcing deter-
ministic specifications through, e.g., compiler and run-
time mechanisms.4

6.2. Other uses of bridge predicates
We have already argued that bridge predicates simplify 
the task of directly and precisely specifying deterministic 
behavior of parallel programs. We also believe that bridge 
predicates could provide a simple but powerful tool to 
express correctness properties in many other situations. 
For example, if we have two versions of a program, P1 and 
P2, that we expect to produce the same output on the same 
input, then we can easily assert this using our framework 
as follows:

deterministic assume(Pre) {
if (nonDeterministicBoolean() ) {

	 P1
} else {

	 P2
}

} assert(Post);

where Pre requires that the inputs are the same and Post 
specifies that the outputs will be the same.

In particular, if a programmer has written both a sequential 
and parallel version of a piece of code, he or she can specify 
that the two versions are semantically equivalent with an 
assertion like:

deterministic assume(A==A¢ and B==B¢) {
	 if (nonDeterministicBoolean() ) {
	 C = par_matrix_multiply_int(A, B);
	 } else {
	 C = seq_matrix_multiply_int(A, B);
	 }
} assert(C==C¢);

where nonDeterministicBoolean() returns true or 
false nondeterministically.

Similarly, a programmer can specify that the old 
and new versions of a piece of code are semantically 
equivalent:

deterministic assume(A==A¢ and B==B¢) {
	 if (nonDeterministicBoolean() ) {
	 C = old_matrix_multiply_int(A, B);
	 } else {
	 C = new_matrix_multiply_int(A, B);
	 }
} assert(C==C¢);
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Checking this specification is a kind of regression testing. In 
particular, if the code change has introduced a regression—
i.e., a bug that causes the new code to produce a semantically 
different output then the old code for some input—then the 
above specification does not hold.

Further, we believe there is a wider class of program prop-
erties that are easy to write in bridge assertions but would be 
quite difficult to write otherwise. For example, consider the 
specification:

deterministic assume(set.size() == set¢.size()) {
	 P
} assert (set.size () == set¢.size ());

This specification requires that sequential or parallel pro-
gram block P transforms set so that its final size is some 
function of its initial size, independent of its elements. The 
specification is easy to write even in cases where the exact 
relationship between the initial and final size might be 
quite complex and difficult to write. It is not entirely clear, 
however, when such properties are important or useful to 
specify.

7. CONCLUSION
We have proposed bridge predicates and bridge assertions 
for specifying the user-intended semantic deterministic 
behavior of parallel programs. We argue that our specifica-
tions are much simpler for programmers to write than tradi-
tional specifications of functional correctness, because they 
enable programmers to compare pairs of program states 
across different executions rather than relating program 
outputs directly to program inputs. Thus, bridge predicates 
and bridge assertions can be thought of as a lightweight 
mechanism for specifying the correctness of just the paral-
lelism in a program, independently of the program’s func-
tional correctness.

We have shown experimental evidence that we can effec-
tively check our deterministic specifications. In particular, 
we can use existing techniques for testing parallel software 
to generate executions exhibiting data and higher-level 
races. Then our deterministic specifications allow us to 
distinguish from the benign races the parallel nondeter-
minism bugs that lead to unintended nondeterministic 
program behavior. Thus, we argue that it is worthwhile for 
programmers to write such lightweight deterministic speci-
fications. In fact, later work6 has suggested that, given the 
simple form of our specifications, it may often be possible 
to automatically infer likely deterministic specifications for 
parallel programs.
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When you decide to use a piece of soft-
ware, how do you know it will do what 
you need it to do or what it claims to 
do? Will it even be safe to run? Will it 
interfere with other software you al-
ready have?

As a software engineer developing 
that piece of software, what can you do 
to ensure the software will be ready in 
time and will meet your quality stan-
dards?

A long-standing dream of ideal soft-
ware development calls for the use 
of program verification as part of the 
answers to these questions. Program 
verification is the process by which one 
develops a mathematical proof that 
shows the software satisfies its func-
tional specification. This dream had 
grown roots already by the 1970s.

Since then, and especially in the last 
decade, the technology behind program 
verification has become an important 
part of software development practice. 
At Microsoft alone, a number of sym-
bolic execution techniques, including 
abstract interpretation, counterexam-
ple-guided predicate abstraction, and 
satisfiability-modulo-theories solving, 
are used routinely to enhance the test-
ing of software, in some cases even 
mathematically verifying the absence of 
certain kinds of software defects.

But what we use today pales in com-
parison to the grand dreams of the 
1970s. Why? Is it not possible to provide 
rigorous proofs of modern software? Is 
it too difficult to capture in functional 
specifications the intended behavior 
of software? Is full program verifica-
tion only for small algorithms and toy 
examples? Are hardcore programmers 
and verification experts not able to find 
common goals to work toward? Is it not 
cost-effective to insist that every detail 
of a piece of software is correct?

The following work by Gerwin Klein 
et al. is a landmark in the further de-
velopment of applying functional-cor-
rectness verification in practice. The 
authors have produced a machine-

checkable proof of correctness for the 
microkernel of an operating system. 
For a user of the operating system, 
this verification provides a number of 
significant benefits; for example, the 
assurance that no hostile application 
running under this operating system 
can subvert the integrity of the ker-
nel through a buffer-overrun attack. 
For the software engineers involved, 
the verification brings the benefit of 
a code analysis that far surpasses that 
achieved by testing alone.

The seL4 verification connects three 
descriptions of the system: an abstract 
specification of the kernel that de-
scribes what its functional behavior is, 
a high-level prototype implementation 
of the system that introduces further 
details of how the kernel performs its 
operations, and a low-level, hand-opti-
mized implementation that deals with 
the nitty-gritty of the kernel’s operation. 
A novel aspect of this project is how the 
middle layer was used as a stepping-
stone not just for the verification, but 
also for the actual design and imple-
mentation of the system itself. This has 
the great advantage that the verification 
process gets the chance to influence the 
design. As the paper reports, this led to 
a large number of changes in the top 
two layers, with the effect of boosting 
the productivity of both the design team 
and the verification team.

The authors are careful to list not only 
positive implications of the verification, 
but also the assumptions upon which 
the verification rests. This is important, 
for all verification is performed at some 
level of abstraction. For example, verify-
ing a program at the level of abstraction 
provided by a programming language 
does not say anything about hardware 
failures. Verification is not an absolute; 
what it seeks to do is offer detailed aid 
for programmers at the level of abstrac-
tion at which they are working.

A project like the seL4 verification 
is not easy to pull off. It takes a strong 
vision, as well as a significant amount 
of work, expertise, and persistence. In 
short, it is a big bet. I applaud the team 
for undertaking it, and congratulate 
them on delivering. Any doubts as to the 
technical feasibility of such a project 
should by now have been removed.

The question about cost-effective-
ness, however, remains. Some may 
argue that the end result of the verifi-
cation—a level of assurance that could 
not have been obtained using more tra-
ditional methods—has already made 
up for the effort expended. Others may 
balk at the 20 person-years to complete 
the proof or at the ratio of 200,000 lines 
of proof script to 6,000 lines of eventual 
C code. I would like to offer a different 
perspective on these numbers. First, 
they provide a benchmark against which 
to compare future work. I would expect 
that in another decade, a similar proj-
ect will take less effort and will involve 
a larger degree of automation. Second, 
the effort has resulted not just in an im-
pressive engineering achievement, but 
also in an appreciable amount of scien-
tific learning. It is through pioneering 
and repeated efforts like this one that 
we will learn how to apply full program 
verification on a more regular basis.	
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Abstract
We report on the formal, machine-checked verification of 
the seL4 microkernel from an abstract specification down to 
its C implementation. We assume correctness of compiler, 
assembly code, hardware, and boot code.

seL4 is a third-generation microkernel of L4 provenance, 
comprising 8700 lines of C and 600 lines of assembler. Its 
performance is comparable to other high-performance L4 
kernels.

We prove that the implementation always strictly follows 
our high-level abstract specification of kernel behavior. This 
encompasses traditional design and implementation safety 
properties such as that the kernel will never crash, and it will 
never perform an unsafe operation. It also implies much 
more: we can predict precisely how the kernel will behave in 
every possible situation.

1. INTRODUCTION
Almost every paper on formal verification starts with the 
observation that software complexity is increasing, that this 
leads to errors, and that this is a problem for mission and 
safety critical software. We agree, as do most.

Here, we report on the full formal verification of a criti-
cal system from a high-level model down to very low-level 
C code. We do not pretend that this solves all of the soft-
ware complexity or error problems. We do think that our 
approach will work for similar systems. The main message 
we wish to convey is that a formally verified commercial-
grade, general-purpose microkernel now exists, and that 
formal verification is possible and feasible on code sizes 
of about 10,000 lines of C. It is not cheap; we spent signifi-
cant effort on the verification, but it appears cost-effective 
and more affordable than other methods that achieve lower 
degrees of trustworthiness.

To build a truly trustworthy system, one needs to start 
at the operating system (OS) and the most critical part of 
the OS is its kernel. The kernel is defined as the software 
that executes in the privileged mode of the hardware, 
meaning that there can be no protection from faults 
occurring in the kernel, and every single bug can poten-
tially cause arbitrary damage. The kernel is a mandatory 
part of a system’s trusted computing base (TCB)—the part 
of the system that can bypass security.10 Minimizing this 
TCB is the core concept behind microkernels, an idea that 
goes back 40 years.

A microkernel, as opposed to the more traditional mono-
lithic design of contemporary mainstream OS kernels, 
is reduced to just the bare minimum of code wrapping 

hardware mechanisms and needing to run in privileged 
mode. All OS services are then implemented as normal pro-
grams, running entirely in (unprivileged) user mode, and 
therefore can potentially be excluded from the TCB. Previous 
implementations of microkernels resulted in communica-
tion overheads that made them unattractive compared to 
monolithic kernels. Modern design and implementation 
techniques have managed to reduced this overhead to very 
competitive limits.

A microkernel makes the trustworthiness problem 
more tractable. A well-designed high-performance micro-
kernel, such as the various representatives of the L4 micro-
kernel family, consists of the order of 10,000 lines of code 
(10 kloc). This radical reduction to a bare minimum comes 
with a price in complexity. It results in a high degree of 
interdependency between different parts of the kernel, as 
indicated in Figure 1. Despite this increased complexity 
in low-level code, we have demonstrated that with mod-
ern techniques and careful design, an OS microkernel is 
entirely within the realm of full formal verification.

The original version of this paper was published in 
the Proceedings of the 22nd ACM SIGOPS Symposium on 
Operating Systems Principles, Oct. 2009.

Figure 1. Call graph of the seL4 microkernel. Vertices represent 
functions, and edges invocations.

doi:10.1145/1743546.1743574
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No buffer overflows: This is mainly a classic vector for code 
injection, but buffer overflows may also inject unwanted 
data and influence kernel behavior that way. We prove that 
all array accesses are within bounds and we prove that all 
pointer accesses are well typed, even if they go via casts to 
void or address arithmetic.
No NULL pointer access: NULL pointer bugs can allow local 
privilege escalation and execution of arbitrary code in ker-
nel mode.9 Absence of NULL pointer dereference is a direct 
proof obligation for us for every pointer access.
No ill-typed pointer access: Even though the kernel code 
deliberately breaks C type safety for efficiency at some 
points, in order to predict that the system behaves accord-
ing to specification, we prove that circumventing the type 
system is safe at all these points.
No memory leaks and no memory freed that is still in use. 
This is not purely a consequence of the proof itself. Much of 
the design of seL4 was focused on explicit memory manage-
ment. Users may run out of memory, but the kernel never will.
No nontermination: We have proved that all kernel calls 
terminate. This means the kernel will never suddenly freeze 
and not return from a system call. This does not mean that 
the whole system will never freeze. It is still possible to write 
bad device drivers and bad applications, but set up correctly, 
a supervisor process can always stay in control of the rest of 
the system.
No arithmetic or other exceptions: The C standard defines 
a long list of things that can go wrong and that should be 
avoided: shifting machine words by a too-large amount, 
dividing by zero, etc. We proved explicitly that none of these 
occur, including the absence of errors due to overflows in 
integer arithmetic.
No unchecked user arguments: All user input is checked and 
validated. If the kernel receives garbage or malicious argu-
ments it will respond with the specified error messages, not 
with crashes. Of course, the kernel will allow a thread to kill 
itself if that thread has sufficient capabilities. It will never 
allow anything to crash the kernel, though.

Many of these are general security traits that are good to 
have for any kind of system. We have also proved a large num-
ber of properties that are specific to seL4. We have proved 
them about the kernel design and specification. With func-
tional correctness, we know they are true about the code as 
well. Some examples are:
Aligned objects: Two simple low-level invariants of the 
kernel are: all objects are aligned to their size, and no two 
objects overlap in memory. This makes comparing memory 
regions for objects very simple and efficient.
Well-formed data structures: Lists, doubly linked, singly 
linked, with and without additional information, are a pet 
topic of formal verification. These data structures also occur 
in seL4 and we proved the usual properties: lists are not cir-
cular when they should not be, back pointers point to the 
right nodes, insertion, deletion etc., work as expected.
Algorithmic invariants: Many optimizations rely on certain 
properties being always true, so specific checks can be left 
out or can be replaced by other, more efficient checks. A sim-
ple example is that the distinguished idle thread is always 
in thread state idle and therefore can never be blocked or 

Formal verification of software refers to the application 
of mathematical proof techniques to establish proper-
ties about programs. Formal verification can cover not just 
all lines of code or all decisions in a program, but all pos-
sible behaviors for all possible inputs. For example, the very  
simple fragment of C code if (x < y)z = x/y else z = y/x 
for x, y, and z being int tested with x = 4, y = 2 and x = 8, 
y = 16, results in full code coverage: every line is executed at 
least once, and every branch of every condition is taken at 
least once. Yet, there are still two potential bugs remaining. 
Of course, any human tester will find inputs such as x = 0, 
y = −1 and x = −1, y = 0 that expose the bugs, but for bigger 
programs it is infeasible to be sure of completeness. This is 
what formal verification can achieve.

The approach we use is interactive, machine-assisted, 
and machine-checked proof. Specifically, we use the theo-
rem prover Isabelle/HOL.8 Interactive theorem proving 
requires human intervention and creativity to construct 
and guide the proof. It has the advantage that it is not 
constrained to specific properties or finite, feasible state 
spaces. We have proved the functional correctness of the 
seL4 microkernel, a secure embedded microkernel of the 
L46 family. This means, we have proved mathematically 
that the implementation of seL4 always strictly follows our 
high-level abstract specification of kernel behavior. This 
property is stronger and more precise than what automated 
techniques like model checking, static analysis, or kernel 
implementations in type-safe languages can achieve. We 
not only analyze specific aspects of the kernel, such as safe 
execution, but also provide a full specification and proof 
for the kernel’s precise behavior.

In the following, we describe what the implications of the 
proof are, how the kernel was designed for verification, what 
the verification itself entailed and what its assumptions are, 
and finally what effort it cost us.

2. IMPLICATIONS
In a sense, functional correctness is one of the strongest 
properties to prove about a system. Once we have proved 
functional correctness with respect to a model, we can use 
this model to establish further properties instead of having 
to reason directly about the code. For instance, we prove that 
every system call terminates by looking at the model instead 
of the code. However, there are some security-relevant prop-
erties, such as transmission of information via covert chan-
nels, for which the model may not be precise enough.

So our proof does not mean that seL4 is secure for all pur-
poses. We proved that seL4 is functionally correct. Secure 
would first need a formal definition and depends on the 
application. Taken seriously, security is a whole-system 
question, including the system’s human components.

Even without proving specific security properties on top, 
a functional correctness proof already has interesting impli-
cations for security. If the assumptions listed in Section 4.5 
are true, then in seL4 there will be:
No code injection attacks: If we always know precisely what 
the system does and if the spec does not explicitly allow it, 
then we can never have any foreign code executing as part 
of seL4.
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to provide a programming language for OS developers, 
while at the same time providing an artifact that can readily 
be reasoned about in the theorem proving tool: the design 
team wrote increasingly complete prototypes of the kernel 
in Haskell, exporting the system call interface via a hard-
ware simulator to user-level binary code. The formal meth-
ods team imported this prototype into the theorem prover 
and used it as an intermediate executable specification. The 
approach aims at quickly iterating through design, proto-
type implementation, and formal model until convergence.

Despite its ability to run real user code, the Haskell ker-
nel remains a prototype, as it does not satisfy our high-
performance requirement. Furthermore, Haskell requires 
a significant run-time environment (much bigger than our 
kernel), and thus violates our requirement of a small TCB. 
We therefore translated the Haskell implementation manu-
ally into high-performance C code. An automatic translation 
(without proof) would have been possible, but we would have 
lost most opportunities to micro-optimize the kernel in order 
to meet our performance targets. We do not need to trust the 
translations into C and from Haskell into Isabelle—we for-
mally verify the C code as it is seen by the compiler, gaining 
an end-to-end theorem between formal specification and the 
C semantics.

3.2. Design decisions
Global Variables and Side Effects: Use of global variables and 
functions with side effects is common in operating systems—
mirroring properties of contemporary computer hardware 
and OS abstractions. Our verification techniques can deal 
routinely with side effects, but implicit state updates and 
complex use of the same global variable for different pur-
poses make verification more difficult. This is not surprising: 
the higher the conceptual complexity, the higher the verifica-
tion effort.

The deeper reason is that global variables usually require 
stating and proving invariant properties. For example, sched-
uler queues are global data structures frequently imple-
mented as doubly linked lists. The corresponding invariant 
might state that all back links in the list point to the appropri-
ate nodes and that all elements point to thread control blocks 
and that all active threads are in one of the scheduler queues.

Invariants are expensive because they need to be proved 
not only locally for the functions that directly manipulate 
the scheduler queue, but for the whole kernel—we have 
to show that no other pointer manipulation in the kernel 
destroys the list or its properties. This proof can be easy or 
hard, depending on how modularly the global variable is 
used.

Dealing with global variables was simplified by deriving 
the kernel implementation from Haskell, where side effects 
are explicit and drawn to the design team’s attention.
Kernel Memory Management: The seL4 kernel uses a model 
of memory allocation that exports control of the in-kernel 
allocation to appropriately authorized applications. While 
this model is mostly motivated by the need for precise guar-
antees of memory consumption, it also benefits verification. 
The model pushes the policy for allocation outside the ker-
nel, which means we only need to prove that the mechanism 

otherwise waiting for I/O. This can be used to remove checks 
in the code paths that deal with the idle thread.
Correct book-keeping: The seL4 kernel has an explicit 
user-visible concept of keeping track of memory, who has 
access to it, who access was delegated to, and what needs to 
be done if a privileged process wants to revoke access from 
delegates. It is the central mechanism for reusing memory 
in seL4. The data structure that backs this concept is corre-
spondingly complex and its implications reach into almost 
all aspects of the kernel. For instance, we proved that if a 
live object exists anywhere in memory, then there exists an 
explicit capability node in this data structure that covers the 
object. And if such a capability exists, then it exists in the 
proper place in the data structure and has the right relation-
ship towards parents, siblings, and descendants within. If an 
object is live (may be mentioned in other objects anywhere 
in the system) then the object itself together with that capa-
bility must have recorded enough information to reach all 
objects that refer to it (directly or indirectly). Together with 
a whole host of further invariants, these properties allow 
the kernel code to reduce the complex, system-global test 
whether a region of memory is mentioned anywhere else in 
the system to a quick, local pointer comparison.

We have proved about 80 such invariants on the execut-
able specification such that they directly transfer to the data 
structures used in the C program.

A verification like this is not an absolute guarantee. The 
key condition in all this is if the assumptions are true. To 
attack any of these properties, this is where one would have 
to look. What the proof really does is take 7500 lines of C 
code out of the equation. It reduces possible attacks and 
the human analysis necessary to guard against them to the 
assumptions and specification. It also is the basis for any 
formal analysis of systems running on top of the kernel or 
for further high-level analysis of the kernel itself.

3. KERNEL DESIGN FOR VERIFICATION
The challenge in designing a verifiable and usable kernel 
lies in reducing complexity to make verification easier while 
maintaining high performance.

To achieve these two objectives, we designed and imple-
mented a microkernel from scratch. This kernel, called seL4, 
is a third-generation microkernel, based on L4 and influ-
enced by EROS.11 It is designed for practical deployment 
in embedded systems with high trustworthiness require-
ments. One of its innovations is completely explicit memory-
management subject to policies defined at user level, even for 
kernel memory. All authority in seL4 is mediated by capabili-
ties,2 tokens identifying objects and conveying access rights.

We first briefly present the approach we used for a kernel/
proof codesign process. Then we highlight the main design 
decisions we made to simplify the verification work.

3.1. Kernel/proof codesign process
One key idea in this project was bridging the gap between 
verifiability and performance by using an iterative approach 
to kernel design, based around an intermediate target that 
is readily accessible to both OS developers and formal meth-
ods practitioners. We used the functional language Haskell 
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stack, and a mostly atomic application programming inter-
face. This is aided by the traditional L4 model of system calls 
which are primitive and mostly short-running.

We minimize the effect of interrupts (and hence pre-
emptions) by disabling interrupts during kernel execution. 
Again, this is aided by the L4 model of short system calls.

However, not all kernel operations can be guaranteed to 
be short; object destruction especially can require almost 
arbitrary execution time, so not allowing any interrupt pro-
cessing during a system call would rule out the use of the 
kernel for real-time applications, undermining the goal of 
real-world deployability.

We ensure bounded interrupt latencies by the standard 
approach of introducing a few, carefully placed, interrupt 
points. On detection of a pending interrupt, the kernel 
explicitly returns through the function call stack to the ker-
nel/user boundary and responds to the interrupt. It then 
restarts the original operation, including reestablishing all 
the preconditions for execution. As a result, we completely 
avoid concurrent execution in the kernel.
I/O: Interrupts are used by device drivers to affect I/O. L4 
kernels traditionally implement device drivers as user-level 
programs, and seL4 is no different. Device interrupts are 
converted into messages to the user-level driver.

This approach removes a large amount of complexity 
from the kernel implementation (and the proof). The only 
exception is an in-kernel timer driver which generates timer 
ticks for scheduling, which is straightforward to deal with.

4. VERIFICATION OF seL4
This section gives an overview of the formal verification of 
seL4 in the theorem prover Isabelle/HOL.8 The property 
we are proving is functional correctness. Formally, we are 
showing refinement: A refinement proof establishes a cor-
respondence between a high-level (abstract) and a low-level 
(concrete, or refined) representation of a system.

The correspondence established by the refinement proof 
ensures that all Hoare logic properties of the abstract model 
also hold for the refined model. This means that if a security 
property is proved in Hoare logic about the abstract model 
(not all security properties can be), our refinement guarantees 
that the same property holds for the kernel source code. In this 
paper, we concentrate on the general functional correctness 
property. We have also modelled and proved the security of 
seL4’s access-control system in Isabelle/HOL on a high level.3

Figure 2 shows the specification layers used in the verifi-
cation of seL4; they are related by formal proof. In the follow-
ing sections we explain each layer in turn.

4.1. Abstract specification
The abstract level describes what the system does without 
saying how it is done. For all user-visible kernel operations, 
it describes the functional behavior that is expected from 
the system. All implementations that refine this specifica-
tion will be binary compatible.

We precisely describe argument formats, encodings and 
error reporting, so, for instance, some of the C-level size 
restrictions become visible on this level. We model finite 
machine words, memory, and typed pointers explicitly. 

works, not that the user-level policy makes sense. The mecha-
nism works if it keeps kernel code and data structures safe 
from user access, if the virtual memory (VM) subsystem is 
fully controlled by the kernel interface via capabilities, and if 
it provides the necessary functionality for user level to man-
age its own VM policies.

Obviously, moving policy into user land does not change 
the fact that memory allocation is part of the TCB. It does 
mean, however, that memory allocation can be verified sepa-
rately, and can rely on verified kernel properties.

The memory-management model gives free memory 
to the user-level manager in the form of regions tagged as 
untyped. The memory manager can split untyped regions 
and retype them into one of several kernel object types (one 
of them, frame, is for user-accessible memory); such opera-
tions create new capabilities. Object destruction converts a 
region back to untyped (and invalidates derived capabilities).

Before reusing a block of memory, all references to this 
memory must be invalidated. This involves either find-
ing all outstanding capabilities to the object, or returning 
the object to the memory pool only when the last capabil-
ity is deleted. Our kernel uses both approaches. In the first 
approach, a so-called capability derivation tree is used to 
find and invalidate all capabilities referring to a memory 
region. In the second approach, the capability derivation 
tree is used to ensure, with a check that is local in scope, that 
there are no system-wide dangling references. This is pos-
sible because all other kernel objects have further invariants 
on their own internal references that relate back to the exis-
tence of capabilities in this derivation tree.

Similar book-keeping would be necessary for a tradi-
tional malloc/free model in the kernel. The difference is that 
the complicated free case in our model is concentrated in 
one place, whereas otherwise it would be repeated numer-
ous times over the code.
Concurrency and Nondeterminism: Concurrency is the 
execution of computation in parallel (in the case of multiple 
hardware processors), or by nondeterministic interleaving 
via a concurrency abstraction like threads. Reasoning about 
concurrent programs is hard, much harder than reasoning 
about sequential programs. For the time being, we limited 
the verification to a single-processor version of seL4.

In a uniprocessor kernel, concurrency can result from 
three sources: yielding of the processor from one thread to 
another, (synchronous) exceptions and (asynchronous) inter-
rupts. Yielding can be synchronous, by an explicit handover, 
such as when blocking on a lock, or asynchronous, by pre-
emption (but in a uniprocessor kernel, the latter can only 
happen as the result of an interrupt).

We limit the effect of all three by a kernel design which 
explicitly minimizes concurrency.

Exceptions are completely avoided, by ensuring that they 
never occur. For instance, we avoid virtual-memory excep-
tions by allocating all kernel data structures in a region of 
VM which is always guaranteed to be mapped to physical 
memory. System-call arguments are either passed in regis-
ters or through preregistered physical memory frames.

The complexity of synchronous yield we avoid by using 
an event-based kernel execution model, with a single kernel 
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data structures are now explicit data types, records, and lists 
with straightforward, efficient implementations in C. For 
example the capability derivation tree of seL4, modelled as a 
tree on the abstract level, is now modelled as a doubly linked 
list with limited level information. It is manipulated explic-
itly with pointer-update operations.

Figure 4 shows part of the scheduler specification at this 
level. The additional complexity becomes apparent in the 
chooseThread function that is no longer merely a sim-
ple predicate, but rather an explicit search backed by data 
structures for priority queues. The specification fixes the 
behavior of the scheduler to a simple priority-based round-
robin algorithm. It mentions that threads have time slices 
and it clarifies when the idle thread will be scheduled. Note 
that priority queues duplicate information that is already 
available (in the form of thread states), in order to make it 
available efficiently. They make it easy to find a runnable 
thread of high priority. The optimization will require us to 
prove that the duplicated information is consistent.

We have proved that the executable specification cor-
rectly implements the abstract specification. Because of 
its extreme level of detail, this proof alone already provides 
stronger design assurance than has been shown for any 
other general-purpose OS kernel.

4.3. C implementation
The most detailed layer in our verification is the C imple-
mentation. The translation from C into Isabelle is correct-
ness-critical and we take great care to model the semantics 
of our C subset precisely and foundationally. Precisely means 
that we treat C semantics, types, and memory model as the 
C99 standard4 prescribes, for instance, with architecture-
dependent word size, padding of structs, type-unsafe casting 
of pointers, and arithmetic on addresses. As kernel program-
mers do, we make assumptions about the compiler (GCC) 
that go beyond the standard, and about the architecture 

Otherwise, the data structures used in this abstract specifi-
cation are high level—essentially sets, lists, trees, functions, 
and records. We make use of nondeterminism in order to 
leave implementation choices to lower levels: if there are 
multiple correct results for an operation, this abstract layer 
would return all of them and make clear that there is a choice. 
The implementation is free to pick any one of them.

An example of this is scheduling. No scheduling policy is 
defined at the abstract level. Instead, the scheduler is mod-
elled as a function picking any runnable thread that is active 
in the system or the idle thread. The Isabelle/HOL code for 
this is shown in Figure 3. The function all_active_tcbs 
returns the abstract set of all runnable threads in the sys-
tem. Its implementation (not shown) is an abstract logical 
predicate over the whole system. The select statement 
picks any element of the set. The OR makes a nondetermin-
istic choice between the first block and switch_to_idle_
thread. The executable specification makes this choice 
more specific.

4.2. Executable specification
The purpose of the executable specification is to fill in the 
details left open at the abstract level and to specify how the 
kernel works (as opposed to what it does). While trying to 
avoid the messy specifics of how data structures and code 
are optimized in C, we reflect the fundamental restrictions 
in size and code structure that we expect from the hardware 
and the C implementation. For instance, we take care not to 
use more than 64 bits to represent capabilities, exploiting 
known alignment of pointers. We do not specify in which 
way this limited information is laid out in C.

The executable specification is deterministic; the only 
nondeterminism left is that of the underlying machine. All 

Figure 2. The refinement layers in the verification of seL4.

High-performance C implementation
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High-performance C implementation
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Figure 3. Isabelle/HOL code for scheduler at abstract level.

schedule º do
	 threads ¬ all_active_tcbs;
	 thread ¬ select threads;
	 switch_to_thread thread
od OR switch_to_idle_thread

Figure 4. Haskell code for schedule.

schedule = do
   action <- getSchedulerAction
   case action of
    ChooseNewThread -> do
       chooseThread
       setSchedulerAction ResumeCurrentThread
       ...
chooseThread = do
  �  r <- findM chooseThread¢ (reverse [minBound .. 

maxBound])
    when (r == Nothing) $ switchToIdleThread
chooseThread¢ prio = do
      q <- getQueue prio
      liftM isJust $ findM chooseThread² q
chooseThread² thread = do
      runnable <- isRunnable thread
      if not runnable then do
               tcbSchedDequeue thread
               return False
      else do
               switchToThread thread
               return True
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be inlined and, after compilation on ARM, the result is more 
compact and faster than GCC’s native bitfields. The tool not 
only generates the C code, it also automatically generates 
Isabelle/HOL specifications and proofs of correctness.

Figure 5 shows part of the implementation of the sched-
uling functionality described in the previous sections. It is 
standard C99 code with pointers, arrays and structs. The 
thread_state functions used in Figure 5 are examples of 
generated bitfield accessors.

4.4. The proof
This section describes the main theorem we have shown 
and how its proof was constructed.

As mentioned, the main property we are interested in is 
functional correctness, which we prove by showing formal 
refinement. We have formalized this property for general 
state machines in Isabelle/HOL, and we instantiate each of 
the specifications in the previous sections into this state-
machine framework.

We have also proved the well-known reduction of refine-
ment to forward simulation, illustrated in Figure 6 where 
the solid arrows mean universal quantification and the 
dashed arrows existential: To show that a concrete state 
machine M2 refines an abstract one M1, it is sufficient to 
show that for each transition in M2 that may lead from 
an initial state s to a set of states s¢, there exists a corre-
sponding transition on the abstract side from an abstract 
state s to a set s ¢ (they are sets because the machines may 
be nondeterministic). The transitions correspond if there 
exists a relation R between the states s and s such that for 
each concrete state in s¢ there is an abstract one in s ¢ that 
makes R hold between them again. This has to be shown 
for each transition with the same overall relation R. For 
externally visible state, we require R to be equality. For 
each refinement layer in Figure 2, we have strengthened 
and varied this proof technique slightly, but the general 
idea remains the same.

We now describe the instantiation of this framework to 
the seL4 kernel. We have the following types of transition in 

used (ARMv6). These are explicit in the model, and we can 
therefore detect violations. Foundationally means that we 
do not just axiomatize the behavior of C on a high level, but 
we derive it from first principles as far as possible. For exam-
ple, in our model of C, memory is a primitive function from 
addresses to bytes without type information or restrictions. 
On top of that, we specify how types like unsigned int are 
encoded, how structures are laid out, and how implicit and 
explicit type casts behave. We managed to lift this low-level 
memory model to a high-level calculus that allows efficient, 
abstract reasoning on the type-safe fragment of the kernel. 
We generate proof obligations assuring the safety of each 
pointer access and write. They state that the pointer in ques-
tion must be non-null and of the correct alignment. They are 
typically easy to discharge. We generate similar obligations 
for all restrictions the C99 standard demands.

We treat a very large, pragmatic subset of C99 in the verifi-
cation. It is a compromise between verification convenience 
and the hoops the kernel programmers were willing to jump 
through in writing their source. The following paragraphs 
describe what is not in this subset.

We do not allow the address-of operator & on local vari-
ables, because, for better automation, we make the assump-
tion that local variables are separate from the heap. This could 
be violated if their address was available to pass on. It is the 
most far-reaching restriction we implement, because it is com-
mon in C to use local variable references for return parameters 
to avoid returning large types on the stack. We achieved com-
pliance with this requirement by avoiding reference param-
eters as much as possible, and where they were needed, used 
pointers to global variables (which are not restricted).

One feature of C that is problematic for verification 
(and programmers) is the unspecified order of evaluation 
in expressions with side effects. To deal with this feature 
soundly, we limit how side effects can occur in expressions. 
If more than one function call occurs within an expression 
or the expression otherwise accesses global state, a proof 
obligation is generated to show that these functions are side-
effect free. This proof obligation is discharged automatically.

We do not allow function calls through function pointers. 
(We do allow handing the address of a function to assembler 
code, e.g., for installing exception vector tables.) We also do 
not allow goto statements, or switch statements with fall-
through cases. We support C99 compound literals, making 
it convenient to return structs from functions, and reducing 
the need for reference parameters. We do not allow com-
pound literals to be lvalues. Some of these restrictions could 
be lifted easily, but the features were not required in seL4.

We did not use unions directly in seL4 and therefore do 
not support them in the verification (although that would be 
possible). Since the C implementation was derived from a 
functional program, all unions in seL4 are tagged, and many 
structs are packed bitfields. Like other kernel implemen-
tors, we do not trust GCC to compile and optimize bitfields 
predictably for kernel code. Instead, we wrote a small tool 
that takes a specification and generates C code with the nec-
essary shifting and masking for such bitfields. The tool helps 
us to easily map structures to page table entries or other 
hardware-defined memory layouts. The generated code can 

Figure 5. C code for part of the scheduler.

void setPriority(tcb_t *tptr, prio_t prio) {
   prio_t oldprio;
   if(thread_state_get_tcbQueued(tptr->tcbState)) {
     oldprio = tptr->tcbPriority;
     ksReadyQueues[oldprio] =
       tcbSchedDequeue(tptr, ksReadyQueues[oldprio]);
     if(isRunnable(tptr)) {
       ksReadyQueues[prio] =
         tcbSchedEnqueue(tptr, ksReadyQueues[prio]);
     }
     else {
       thread_state_ptr_set_tcbQueued(&tptr->tcbState,
                                             false);
     }
  }
  tptr->tcbPriority = prio;
}
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between entry and exit points in each specification layer for 
a running kernel.

Assuming correctness of the C compiler means that we 
assume GCC correctly translates the seL4 source code in our 
C subset according to the ISO/IEC C99 standard,4 that the 
formal model of our C subset accurately reflects this stan-
dard and that the model makes the correct architecture-
specific assumptions for the ARMv6 architecture on the 
Freescale i.MX31 platform.

The assumptions on hardware and assembly mean that 
we do not prove correctness of the register save/restore 
and the potential context switch on kernel exit. Cache con-
sistency, cache coloring, and TLB flushing requirements 
are part of the assembly implemented machine interface. 
These machine interface functions are called from C, and 
we assume they do not have any effect on the memory state 
of the C program. This is only true if they are used correctly.

The VM subsystem of seL4 is not assumed correct, but 
is treated differently from other parts of the proof. For our 
C semantics, we assume a traditional, flat view of in-kernel 
memory that is kept consistent by the kernel’s VM subsys-
tem. We make this consistency argument only informally; 
our model does not oblige us to prove it. We do however 
substantiate the model and informal argument by manually 
stated, machine-checked properties and invariants. This 
means we explicitly treat in-kernel VM in the proof, but this 
treatment is different from the high standards in the rest 
of our proof where we reason from first principles and the 
proof forces us to be complete.

This is the set of assumptions we picked. If they are too 
strong for a particular purpose, many of them can be elimi-
nated combined with other research. For instance, we have ver-
ified the executable design of the boot code in an earlier design 
version. For context switching, Ni et al.7 report verification suc-
cess, and the Verisoft project1 shows how to verify assembly 
code and hardware interaction. Leroy verified an optimizing C 
compiler5 for the PowerPC and ARM architectures.

An often-raised concern is the question What if there 
is a mistake in the proof? The proof is machine-checked by 
Isabelle/HOL. So what if there is a bug in Isabelle/HOL? The 
proof checking component of Isabelle is small and can be 
isolated from the rest of the prover. It is extremely unlikely 
that there is a bug in this part of the system that applies in a 
correctness-critical way to our proof. If there was reason for 
concern, a completely independent proof checker could be 
written in a few hundred lines of code. Provers like Isabelle/
HOL can achieve a degree of proof trustworthiness that far 
surpasses the confidence levels we rely on in engineering or 
mathematics for our daily survival.

5. EXPERIENCE AND LESSONS LEARNED
5.1. Verification effort
The project was conducted in three phases. First an ini-
tial kernel with limited functionality (no interrupts, 
single address space, and generic linear page table) was 
designed and implemented in Haskell, while the verifica-
tion team mostly worked on the verification framework 
and generic proof libraries. In a second phase, the verifica-
tion team developed the abstract spec and performed the 

our state machines: kernel transitions, user transitions, user 
events, idle transitions, and idle events. Kernel transitions are 
those that are described by each of the specification layers 
in increasing amount of detail. User transitions are specified 
as nondeterministically changing arbitrary user-accessible 
parts of the state space. User-events model kernel entry (trap 
instructions, faults, interrupts). Idle transitions model the 
behavior of the idle thread. Finally, idle events are interrupts 
occurring during idle time; other interrupts that occur dur-
ing kernel execution are modelled explicitly and separately in 
each layer of Figure 2.

The model of the machine and the model of user pro-
grams remain the same across all refinement layers; only 
the details of kernel behavior and kernel data structures 
change. The fully nondeterministic model of the user means 
that our proof includes all possible user behaviors, be they 
benign, buggy, or malicious.

Let machine MA denote the system framework instan-
tiated with the abstract specification of Section 4.1, let 
machine ME represent the framework instantiated with the 
executable specification of Section 4.2, and let machine MC 
stand for the framework instantiated with the C program 
read into the theorem prover. Then we prove the following 
two, very simple-looking theorems:

Theorem 1. ME refines MA.

Theorem 2. MC refines ME.

Therefore, because refinement is transitive, we have

Theorem 3. MC refines MA.

4.5. Assumptions
Formal verification can never be absolute; it always must 
make fundamental assumptions. The assumptions we 
make are correctness of the C compiler, the assembly code, the 
hardware, and kernel initialization. We explain each of them 
in more detail below.

The initialization code takes up about 1.2 kloc of the ker-
nel. The theorems in Section 4.4 only state correspondence 

Figure 6. Forward simulation.
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ability to change and rearrange code in discussion with 
the design team was an important factor in the verification 
team’s productivity and was essential to complete the veri-
fication on time.

The second refinement stage from executable spec to 
C uncovered 160 bugs, 16 of which were also found dur-
ing testing, early application and static analysis. The bugs 
discovered in this stage were mainly typos, misreading the 
specification, or failing to update all relevant code parts for 
specification changes. Even though their cause was often 
simple, understandable human error, their effect in many 
cases was sufficient to crash the kernel or create security 
vulnerabilities. There were no deeper, algorithmic bugs in 
the C level, because the C code was written according to a 
very precise, low-level specification.

5.2. The cost of change
One issue of verification is the cost of proof maintenance: 
how much does it cost to reverify after changes are made 
to the kernel? This obviously depends on the nature of the 
change. We are not able to precisely quantify such costs, 
but our iterative verification approach has provided us with 
some relevant experience.

The best case is a local, low-level code change, typically an 
optimization that does not affect the observable behavior. 
We made such changes repeatedly, and found that the effort 
for reverification was always low and roughly proportional to 
the size of the change.

Adding new, independent features, which do not interact 
in a complex way with existing features, usually has a mod-
erate impact. For example, adding a new system call to the 
seL4 API that atomically batches a specific, short sequence 
of existing system calls took one day to design and imple-
ment. Adjusting the proof took less than 1 person week.

Adding new, large, cross-cutting features, such as add-
ing a complex new data structure to the kernel supporting 
new API calls that interact with other parts of the kernel, is 
significantly more expensive. We experienced such a case 
when progressing from the first to the final implementa-
tion, adding interrupts, ARM page tables, and address 
spaces. This change costs several pms to design and 
implement, and resulted in 1.5–2 py to reverify. It modi-
fied about 12% of existing Haskell code, added another 
37%, and reverification cost about 32% of the time previ-
ously invested in verification. The new features required 
only minor adjustments of existing invariants, but lead to 
a considerable number of new invariants for the new code. 
These invariants had to be preserved over the whole kernel, 
not just the new features.

Unsurprisingly, fundamental changes to existing features 
are bad news. We experienced one such change when we 
added reply capabilities for efficient RPC as an API opti-
mization after the first refinement was completed. Even 
though the code size of this change was small (less than 5% 
of the total code base), it violated key invariants about the 
way capabilities were used in the system until then and the 
amount of conceptual cross-cutting was huge. It took about 
1 py or 17% of the original proof effort to reverify.

There is one class of otherwise frequent code changes 

first refinement while the development team completed 
the design, Haskell prototype and C implementation. The 
third phase consisted of extending the first refinement 
step to the full kernel and performing the second refine-
ment. The overall size of the proof, including framework, 
libraries, and generated proofs (not shown in the table) is 
200,000 lines of Isabelle script.

Table 1 gives a breakdown for the effort and size of each 
of the layers and proofs. About 30 person months (pm) 
went into the abstract specification, Haskell prototype 
and C implementation (over all project phases), including 
design, documentation, coding, and testing.

This compares well with other efforts for developing a 
new microkernel from scratch: The Karlsruhe team reports 
that, on the back of their experience from building the 
earlier Hazelnut kernel, the development of the Pistachio 
kernel costs about 6 person years (py). SLOCCount with the 
“embedded” profile estimates the total cost of seL4 at 4 py. 
Hence, there is strong evidence that the detour via Haskell 
did not increase the cost, but was in fact a significant net 
cost saver.

The cost of the proof is higher, in total about 20 py. This 
includes significant research and about 9 py invested in for-
mal language frameworks, proof tools, proof automation, 
theorem prover extensions, and libraries. The total effort for 
the seL4-specific proof was 11 py.

We expect that redoing a similar verification for a new 
kernel, using the same overall methodology, would reduce 
this figure to 6 py, for a total (kernel plus proof) of 8 py. This 
is only twice the SLOCCount estimate for a traditionally 
engineered system with no assurance.

The breakdown in Table 1 of effort between the two 
refinement stages is illuminating: almost 3:1. This is a 
reflection of the low-level nature of our Haskell prototype, 
which captures most of the properties of the final prod-
uct. This is also reflected in the proof size—the first proof 
step contained most of the deep semantic content. 80% 
of the effort in the first refinement went into establishing 
invariants, only 20% into the actual correspondence proof. 
We consider this asymmetry a significant benefit, as the 
executable spec is more convenient and efficient to reason 
about than C.

The first refinement step led to some 300 changes in the 
abstract spec and 200 in the executable spec. About 50% of 
these changes relate to bugs in the associated algorithms 
or design. Examples are missing checks on user-supplied 
input, subtle side effects in the middle of an operation 
breaking global invariants, or over-strong assumptions 
about what is true during execution. The rest of the 
changes were introduced for verification convenience. The 

Table 1. Code and proof statistics.

 Haskell/C Isabelle  Proof

 pm kloc kloc Invariants py klop

abst.
exec.
impl.

  4
24
   2

−
5.7
8.7

      4.9
13
15

~75
~80

0

8
3

110
  55
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that does not occur after the kernel has been verified: imple-
mentation bug fixes.

6. CONCLUSION
We have presented our experience in formally verifying 
seL4. We have shown that full, rigorous, formal verification 
is practically achievable for OS microkernels.

The requirements of verification force the designers to 
think of the simplest and cleanest way of achieving their 
goals. We found repeatedly that this leads to overall better 
design, for instance, in the decisions aimed at simplifying 
concurrency-related verification issues.

Our future research agenda includes verification of the 
assembly parts of the kernel, a multi-core version of the ker-
nel, as well as formal verification of overall system security 
and safety properties, including application components. 
The latter now becomes much more meaningful than previ-
ously possible: application proofs can rely on the abstract, 
formal kernel specification that seL4 is proven to implement.
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careers

Epic
Problem Solver/Technical Consultant

Epic’s Problem Solvers are responsible for our 
clients’ happiness after the systems are installed. 
They create valuable relationships by listening 
well to customer concerns and championing cli-
ents’ needs. They work with IT staff at customer 
sites to quickly resolve technical issues and per-
form necessary programming, helping to ensure 
that every customer gets the most out of an Epic 
software investment.

Candidates should have a bachelor’s degree 
or higher (all majors considered), a minimum 
3.2 cumulative GPA, and be eligible to work in 
the U.S. without sponsorship. No prior technical 
experience is necessary, but exposure to program-
ming is a plus. Relocation to Madison, Wisconsin 
is required and reimbursed.

Apply URL: http://careers.epic.com/ 
Email Address: job@epic.com

For more information, please visit the univer-
sity website www.niituniversity.in. 

Interested applicants are invited to submit 
their curriculum vitae including employment his-
tory, a statement outlining research and teaching 
interests, list of consultancies and projects un-
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in overall management of the introductory se-
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ing graduate student teaching assistants and 
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material, classroom demonstrations, and labora-
tory exercises.

Candidates should have an exceptional record 
of classroom instruction and curricular innova-
tion. An advanced degree in computer science is 
preferred.

For general application information and to 
self-identify visit: https://jobs.princeton.edu

Requisition Number: 1000207. You may ap-
ply online on the Department’s website at: http://
www.cs.princeton.edu/jobs/lecturerposition

We will not accept applications from the 
Princeton jobs site. 

Princeton University is an equal opportunity 
employer and complies with applicable EEO and 
affirmative action regulations. 

Taif University, Saudi Arabia
Assistant/Associate Professor
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commitment to excellence in teaching, research, 
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Please email CV, letter of application, tran-
scripts, statement of research and teaching inter-
ests, and 3 letters of reference addressing to 

Dean Dr. Sultan Aljahdali 
at cisdean@tu.edu.sa.

Epic
Software Developer

Our small teams of software engineers participate 
in all aspects of the development process, from 
meeting customers to system design through 
quality assurance and delivery. Their goal is to 
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flows that manage large amounts of data with 
sub-second response times and rock-solid stabil-
ity. Our continued success in these areas is shown 
by Epic software systems’ top-rated industry re-
views. New functionality and systems are being 
developed daily that extend current capabilities 
and break new ground in the industry. 

Candidates should have a bachelor’s degree 
or higher in Computer Science, Software Engi-
neering, or Math and a minimum 3.2 major GPA. 
Relocation to Madison, Wisconsin is required 
and reimbursed. Visa sponsorship is available.

Apply URL: http://careers.epic.com/
Email Address: job@epic.com
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tual environment and is committed to academic 
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versity, namely, Industry-linked, Research-driven, 
Technology-based, and Seamless define the DNA 
of the University.

NIIT University offers a competitive compen-
sation at par with the best academic institutions 
in India. In addition, NU provides a start up re-
search grant at the time of joining, travel support 
for presenting papers in International Conferenc-
es and Workshops. NU provides research incen-
tives, such as monetary award for refereed Journal 
publications. In line with the Industry-linked as a 
core principle, the university will enable faculty to 
consult with industry in India and abroad. 
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Expansion of the Research School  
“Service-Oriented Systems Engineering“ 
at Hasso-Plattner-Institute
8 Ph.D. grants available - starting October 1, 2010

Hasso-Plattner-Institute (HPI) is a privately financed institute affiliated with the 
University of Potsdam, Germany. The Institute‘s founder and benefactor Professor 
Hasso Plattner, who is also co-founder and chairman of the supervisory board of  
SAP AG, has created an opportunity for students to experience a unique education  
in IT systems engineering in a professional research environment with a strong 
practice orientation.

In 2005, HPI initiated the research school on “Service-Oriented Systems Engineering“ 
under the scientific supervision of Professors Jürgen Döllner, Holger Giese, Robert 
Hirschfeld, Christoph Meinel, Felix Naumann, Hasso Plattner, Andreas Polze, Mathias 
Weske and Patrick Baudisch.

We are expanding our research school and are currently seeking 

8 Ph.D. students  
(monthly stipends 1400-1600 Euro)

2 Postdocs (monthly stipend 1800 Euro)
Positions will be available starting October 1, 2010. 
The stipends are not subject to income tax.

The main research areas in the research school at HPI are:
Self-Adaptive Service-Oriented Systems �
Operating System Support for Service-Oriented Systems �
Architecture and Modeling of Service-Oriented Systems �
Adaptive Process Management �
Services Composition and Workflow Planning �
Security Engineering of Service-Based IT Systems �
Quantitative Analysis und Optimization of Service-Oriented Systems �
Service-Oriented Systems in 3D Computer Graphics �
Service-Oriented Geoinformatics �

Prospective candidates are invited to apply with:
Curriculum vitae and copies of degree certificates/transcripts �
A short research proposal �
Writing samples/copies of relevant scientific papers (e. g. thesis etc.) �
Letters of recommendation �

Please submit your applications by July 31, 2010 to the coordinator of the 
research school:

Prof. Dr. Andreas Polze, Hasso-Plattner-Institute, Universität Potsdam 
Postfach 90 04 60, 14440 Potsdam, Germany

Successful candidates will be notified by September 15, 2010 and are expected 
to enroll into the program on October 1, 2010.

For additional information see: http://kolleg.hpi.uni-potsdam.de

or contact the office: 
Telephone +49-331-5509-220, Telefax +49-331-5509-229 
Email: office-polze@hpi.uni-potsdam.de

http://kolleg.hpi.uni-potsdam.de
mailto:office-polze@hpi.uni-potsdam.de
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last byte

Puzzled 
Solutions and Sources 
Last month (May 2010, p. 120) we posted a trio of brainteasers, including  
one as yet unsolved, concerning variations on the Ham Sandwich Theorem. 

DOI:10.1145/1743546.1743575	 	 Peter Winkler

1. Hiking the Cascade Range. 
 Solution. Puzzle 1 asked us to 

prove that the programmers who spent 
Saturday climbing and Sunday de-
scending Mt. Baker were, at some time 
of day, at exactly the same altitude on 
both days. 

It’s easily done. For any time t, let 
f(t) be the progammers’ altitude on 
Sunday minus their altitude on Satur-
day; f(t) starts off positive in the morn-
ing and ends up negative at night, so at 
some point must be 0. 

An equivalent, and perhaps more 
intuitive, way to see this is to imagine 
that the programmers have twins who 
were instructed to climb the mountain 
on Sunday exactly as the programmers 
climbed it the day before. Then, even 
if their paths up and down were differ-
ent, there is some point at which the 
programmers and their twins must 
pass one another in altitude. 

 

2. Inscribing a Lake 
in a Square. 

 Solution. Puzzle 2 asked us to show 
that, given any closed curve in the 
plane, there is a square contain-
ing the curve, all four sides of which 
touch the curve. The idea of the proof 
is both simple and elegant. Start 
with a vertical line drawn somewhere 
west of the curve. Gradually shift the 
line eastward until it just touches 
the curve. Repeat with a second line, 
drawn east of the curve and moving 
gradually west, so we now have an-
other vertical line touching the curve 
on its east side. Now bring a horizon-
tal line down from the north until it 
touches the curve and another from 
the south, thus inscribing the curve in 
a rectangle. 

But what we want is not merely a 
rectangle but a square. Suppose the 
rectangle is taller than it is wide (as it 
would be in, say, Lake Champlain). 
Now slowly rotate the four lines togeth-
er clockwise, keeping all four outside 
but still touching the curve. After 90 de-
grees of rotation, the picture is exactly 
the same as before, only now, the pre-
viously long vertical lines of the rectan-
gle are the short horizontal sides. 

At some point in the rotation pro-
cess, the original vertical lines and hor-
izontal lines were all the same length—
and, at exactly that point, the curve was 
inscribed in a square. 

3. Curves Containing 
the Corners of a Square. 

 Solution. The third puzzle was (as 
usual) unsolved, frustrating geom-
eters for more than a century. For a 
discussion see http://www.ics.uci.
edu/~eppstein/junkyard/jordan-square.
html, including reference to an article 
by mathematician Walter Stromquist 
(“Inscribed Squares and Square-like 
Quadrilaterals in Closed Curves,” 
Mathematika 36, 2 (1989), 187–197) 
in which he proved the conjecture for 
smooth curves. See also Stan Wagon’s 
and Victor Klee’s book Old and New 
Unsolved Problems in Plane Geometry 
and Number Theory (Mathematical As-
sociation of America, 1991). 

All readers are encouraged to submit prospective 
puzzles for future columns to puzzled@cacm.acm.org. 

Peter Winkler (puzzled@cacm.acm.org) is Professor of 
Mathematics and of Computer Science and Albert Bradley 
Third Century Professor in the Sciences at Dartmouth 
College, Hanover, NH.

The Intermediate Value Theorem says that if you go continuously 
from one real number to another, you must pass through all the 
real numbers in between. You can use it to prove the Ham Sandwich 
Theorem; here’s how it can be used to solve Puzzles 1 and 2: 

mailto:puzzled@cacm.acm.org
mailto:puzzled@cacm.acm.org
http://www.ics.uci.edu/~eppstein/junkyard/jordan-square.html
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all poten-
tial competitors. Crude versions of the 
same pattern are seen among chimps, 
wolves, and many other species. The 
logic of Darwin and Malthus may be per-
vasive on other worlds, too. Could this 
help explain the daunting sky-silence? 

One important exception was by 
far the most successful Earth-based 
civilization—the Scientific Enlighten-
ment—which broke from the ancient 
feudal pattern, fostering instead what 
Robert Wright, author of Nonzero: 
The Logic of Human Destiny, called the 
“positive sum game,” encouraging 
individualism and copious self-criti-
cism. (It’s a theme typified by self-re-
proachful messages like James Cam-
eron’s movie Avatar.) What better way 
to detect, reveal, and resolve myriad 
potential pitfalls than by unleashing 
millions of diverse, highly educated, 
technologically empowered citizens to 
swarm (like T-cells) on every apparent 
failure mode, real or imagined? 

This noisy process was supercharged 
in the late 1980s when the U.S. govern-
ment did something that still seems 
historically anomalous: releasing the 
Internet it had invented from near-total 
control, simply handing it over to the 
world. Ponder, in the light of the past 
4,000 years of recorded history, the like-
lihood of such a decision. Was there 
ever anything comparable, under the 
most beneficent kings?  

I want to defend this rambunctious 
culture of freedom for all the usual 
reasons (such as “freedom is good!”), 
but I wonder. Such an experiment was 
rare here on Earth and seems unlikely 
to have been tried very often, out there 
across the cosmos. In fact (and here’s 
the point of this digression), our latest, 
tech-amplified version of the Enlight-
enment could become a fiercely effec-
tive problem-solving system helping  
us become the exception… a sapient 
race that survives. That is, if it is al-
lowed to. And if it ever matures. 

But getting the most from our po-
tential also requires better tools. In his 
book Smart Mobs (2002), social scholar 
Howard Rheingold envisioned a future 
when the savvy, liberated populace 
forms resilient, ad hoc, problem-solv-
ing networks that pounce on errors and 
dangers, adapting much quicker than 
stuffy, traditional, hierarchical institu-
tions. Recall that citizen-power was the 

only thing that worked well on 9/11. 
We’ll surely need such agility and initia-
tive in times to come. 

Still, no one has yet disproved the 
hoary adage that “The intelligence of a 
crowd is that of its dumbest member, 
divided by the number in the crowd.” 
Could any blog, social-networking 
site, or twit-mesh be described as a 
“problem-solving discourse”? Not 
unless you have very low standards 
of “discourse.” Today’s communica-
tions platforms seem obstinately, 
even proudly, primitive, encouraging 
dumb-down groupthink that Jaron 
Lanier called “digital Maoism” in his 
Future Tense essay “Confusions of the 
Hive Mind” (Sept. 2009), not the vigor-
ously new-citizenship I forecast in my 
1989 eco-thriller Earth. 

Connectivity scholar and Google 
Vice President Marissa Mayer says 
the Internet is in its “adolescence.” 
Indeed, many of the traits tech-zealot 
Clay Shirky (http://www.shirky.com/) 
adores and that Web critic Nicholas 
Carr (http://www.roughtype.com/) ab-
hors are qualities we associate with 
our own teenage years. Take the ram-
pant flightiness of scattered attention 
spans, simplistic online tribalism, 
and tsunamis of irate opinion; pic-
ture 10 million electronic Nuremberg 
rallies. These punk attributes blend 
and contrast with positive adoles-
cent qualities like unprecedented 
vividness, creativity, quickness, alert 
compassion, and spontaneity. No gen-
eration ever read or wrote so much… 
albeit, never was such a high fraction 
of the writing such drivel. 

There’s nothing wrong with self-

expression. Not everyone is required 
to engage in erudite discourse. But 
must the medium conspire to make 
discourse next to impossible, leaving 
each decade’s version of “conversa-
tion” more terse and lobotomized? 
Must the interface assume that super-
ficiality is the chief desideratum and 
self-fulfilling expectation? 

If this is an “adolescent phase,” we 
may yet see what Wikipedia co-found-
er Larry Sanger calls “sophrosyne,” or 
polemical shouting transforming into 
fair disputation and negotiation, a trick 
many teens eventually learn. 

Imagine today’s Internet augment-
ed by a shopping list of now-missing 
tools to enhance attention allocation, 
empowering users to do more in par-
allel while rediscovering the art of 
concentration. Today’s fetish for “gist-
ing,” or grabbing the summarized es-
sence of any fact or opinion, might yet 
be more useful and accurate, when 
coupled with utilities for source-repu-
tation weighting, paraphrasing, corre-
lation, data analysis, and what Howard 
Rheingold called general “crap-detec-
tion.” Collaborationware might yet 
evolve from its present stodginess, 
helping ad hoc teams self-organize, 
divide tasks, delegate expertise, and 
achieve quick wonders. Such tools 
could start by bringing online some of 
the amazing mental methods we take 
for granted in the real world (such as 
the way we sift for meaning from mul-
tiple conversations at once, as at a 
cocktail party). Many have never been 
implemented online, in any way.

Destiny, not only on Earth but 
across the Galaxy, may depend on how 
we choose to cross this danger zone. 
Success could arise less out of stodgy 
prescriptions than from those “adoles-
cent” traits that make us hunger for ad-
venture, surprise, even fun. Only… per-
haps empowered by new skills that help 
us function as thoughtful adolescents, 
more like precocious 19-year-olds than 
scatterbrained 13-year-olds. Perhaps 
even like people with grownup goals… 
and the patience to achieve them. 	

David Brin (http://www.davidbrin.com) is a scientist, 
technology speaker, and author whose stories and 
novels have won Hugo and Nebula awards. He is also the 
author of the nonfiction book The Transparent Society: 
Will Technology Make Us Choose Between Freedom and 
Privacy? (Perseus Books Group, 1989). 

© 2010 ACM 0001-0782/10/0600 $10.00

[cont in ue d  fro m  p.  120]

Success may depend 
on new skills and 
tools that empower 
our “adolescent” 
traits, the drive that 
makes us hunger for 
adventure, surprise, 
even fun. 

http://www.shirky.com/
http://www.roughtype.com/
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tied technology’s march to the question 
of why we’ve seen no signs of intelligent 
life beyond planet Earth, not even radio 
blips on a SETI screen. Does this Great 
Silence suggest every sapient race out 
there ultimately repeats the same tech-
nology-driven mistakes, driving their 
own civilizations to ruin? 

We know next to nothing about 
aliens but can impute something 
about them from the self-perpetuat-
ing instinctive drives that propel both 
human societies and nearly all ani-
mal species on Earth, spurred by the 
“zero sum,” or I-win-by-making-you-
lose, logic of reproductive success. 
Hence, 99% of human cultures that 
ever achieved farming and metals also 
wound up ruled by feudal oligarchies 
that squelched 

Future Tense 
How the Net Ensures 
Our Cosmic Survival  
Give adolescent wonder an evolutionary jolt. 

DOI:10.1145/1743546.1743576	 	 David Brin 

The Internet has changed the way 
I think, though, ironically, less than I 
expected. As both a freelance scientist 
and a science fiction author, I already 
telecommuted back in 1980, kept flex-
ible hours, digitally collaborated with 
colleagues around the world, con-
ducted digital literature searches, and 
was an early adopter of text editing. All 
these trends have since accelerated. 
Yet, compared to my colleagues’ uto-
pian visions for 2010, today’s Net and 
Web remain, a bit, well, stodgy. 

Oh, I’m grateful to live in such times. 
For one thing, without the Internet, civi-
lization would likely have fallen into the 
Specialization Trap that tech students 
pondered, pessimistically, in the 1960s. 
At the time, it seemed inevitable—as 
the weight of accumulated knowledge 
piled higher and higher—that research-
ers would have to learn more and more 
about less and less, in narrowing sub-
fields, staggering forward ever more 
slowly under the growing burden of 
human progress. Specialty boundaries 
would grow more rigid and uncross-
able. This unpleasant fate seemed un-
avoidable, back when “information” 
had a heavy, almost solid quality… 

…till the Internet Era transformed 
knowledge into something more like 
a gas—or sparkling plasma—infinite-
ly malleable, duplicable, accessible, 
mobile. At which point the old wor-
ries about death-by-overspecialization 
vanished so thoroughly that few recall 
how gloomy the prospect seemed, only 
a few decades ago. 

Today, some fear the opposite fail-
ure mode, veering from narrow-mind-

ed overspecialization to scatterbrained 
shallowmindedness. Flitting about in-
fo-space, we snatch one-sentence sum-
maries of anything that’s known by 
the vast, collective mind. Whatever the 
topic, each of us is able to preen with 
presumptuous “expertise.” This trend 
colors even modern politics; a core 
tenet of the Culture War holds that 
specialists are no more qualified than 
opinionated amateurs to judge truth. 

Worrisome trends have always 
seemed to threaten civilization. From 
Plato, Gibbon, and Spengler to Toyn-
bee, Kennedy, and Diamond, many 
have diagnosed why cultures succeed or 
fail. Theories vary, but the implications 
go far beyond the fate of mere human-
ity. In his Future Tense essay “Radical 
Evolution” (Mar. 2009), Joel Garreau 

Future Tense, one of the revolving features on this page, presents stories and  

essays from the intersection of computational science and technological speculation,  

their boundaries limited only by our ability to imagine what will and could be. 
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