
COMMUNICATIONS
OF	THE	ACM

Association for
Computing Machinery

charles P. thacker
acm’s a.m. turing award Winner

cacm.acm.oRG 07/2010 vol.53 no.07

http://CACM.ACM.ORG

http://www.ipdps.org
http://www.ipdps.org
mailto:cfp@ipdps.org

014665x

ABCD springer.com

Easy Ways to Order for the Americas 7 Write: Springer Order Department, PO Box 2485, Secaucus, NJ 07096-2485, USA 7 Call: (toll free) 1-800-SPRINGER
7 Fax: 1-201-348-4505 7 Email: orders-ny@springer.com or for outside the Americas 7 Write: Springer Customer Service Center GmbH, Haberstrasse 7,
69126 Heidelberg, Germany 7 Call: +49 (0) 6221-345-4301 7 Fax : +49 (0) 6221-345-4229 7 Email: orders-hd-individuals@springer.com
7 Prices are subject to change without notice. All prices are net prices.

 Understanding
Cryptography
 A Textbook for
Students and

Practitioners

 C. Paar , J. Pelzl , Ruhr-Universität Bochum,
Germany

 Foreword by: B. Preneel

Uniquely designed for students of engineering
and applied computer science, and engineering
practitioners. The authors have considerable
experience teaching applied cryptography to
engineering and computer science students
and to professionals, and they make extensive
use of examples, problems, and chapter
reviews, while the book’s website offers slides,
projects and links to further resources.

 1st Edition. 2nd Printing 2010. XVIII, 372 p.
320 illus., 160 in color. Hardcover
 ISBN 978-3-642-04100-6 7 $49.95

 Handbook
of Ambient
Intelligence
and Smart
Environments
 H. Nakashima , Future
University, Hakodate,
Hokkaido, Japan;

 H. Aghajan , Stanford University, Stanford,
CA, USA; J. C. Augusto , University of Ulster at
Jordanstown, Newtownabbey, UK (Eds.)

Provides readers with comprehensive, up-to-
date coverage in this emerging field. Organizes
all major concepts, theories, methodologies,
trends and challenges into a coherent, unified
repository. Covers a wide range of applications
relevant to both ambient intelligence and
smart environments. First available reference
into this emerging area of research.

 2010. XVIII, 1294 p. 100 illus. Hardcover
 ISBN 978-0-387-93807-3 7 $229.00

Introduction to
Databases
 From Biological to
Spatio-Temporal

 P. Revesz , University of Nebraska-Lincoln,
Lincoln, NE, USA

Provides a comprehensive coverage of the field
of databases. This textbook reveals the workings
of numerous database systems, enabling readers
to develop complex database applications.
Students will gain hands-on experience by
following the exercises. The theory is comple-
mented by detailed examination of specific
applications from a broad range of areas.

 2010. XVIII, 754 p. 346 illus., 173 in color.
(Texts in Computer Science) Hardcover
 ISBN 978-1-84996-094-6 7 $119.00

Patent Law
for Computer
Scientists
 Steps to Protect
Computer-
Implemented
Inventions

 D. Closa , A. Gardiner ,
 F. Giemsa , J. Machek , European Patent Office,
Munich, Germany

 Explains patent laws in Europe, the US, and
Japan. Gives the reader a guide to a patent
examiner’s way of thinking. Shows the step-by-
step development of a patent application.
Presents more than 10 detailed case studies
from different computer science applications.
Condenses over 70 years experience of the
authors in the patent business.

 2010. XV, 194 p. Hardcover
 ISBN 978-3-642-05077-0 7 $49.95

Requirements
Engineering
 K. Pohl , Universität
Duisburg-Essen,

Germany

Most comprehensive description of require-
ments engineering (RE) foundations and
principles as well as up-to-date techniques,
such as goal-oriented RE and scenario-based
RE. Presentation of a didactically sound and
industrially validated framework to structure
the RE process and procedures. Many checklists
and guidelines to support readers in their
application of the concepts presented.

 2010. 1050 p. Hardcover
 ISBN 978-3-642-12577-5 7 $79.95

Algorithmic
Adventures
 From Knowledge to
Magic

 J. Hromkovic , ETH
Zentrum, Zürich,
Switzerland

Good explanation of
even the most basic techniques. Demonstrates
the power and magic of the underlying
principles. Fascinating read for students of all
levels and for those curious to learn about the
science and magic of algorithmics

 2009. XIII, 363 p. Hardcover
 ISBN 978-3-540-85985-7 7 $59.95

Noteworthy Titles
TEXT
BOOK

TEXT
BOOK

TEXT
BOOK

http://springer.com
mailto:orders-ny@springer.com
mailto:orders-hd-individuals@springer.com

2 communications of the acm | july 2010 | vol. 53 | no. 7

communications of the acm

Departments

5	 Editor’s Letter
Hypercriticality
By Moshe Y. Vardi

6	 Letters To The Editor
Don’t Ignore Security Offshore,
or in the Cloud

9	 In the Virtual Extension

10	 BLOG@CACM
Software Development
and Crunch Time; and More
Ruben Ortega discusses developers
and crunch time; Mark Guzdial
on the impact of open source
practices on computing education;
and Daniel Reed on the shift
from computational paucity to
computational plethora.

12	 CACM Online
In Case You Missed It
By David Roman

39	 Calendar

107	 Careers

Last Byte

112	 Q&A
From Single Core to Multicore
Charles P. Thacker discusses the
legendary Alto personal computer,
the invention of the Ethernet,
and his current research on
multicore architectures.
By Leah Hoffmann

News

13	 Sharing Computational Perspectives
Computer scientists are now
making intellectual contributions
to a wide range of other disciplines,
including evolutionary theory,
physics, and economics.
By David Lindley

16	 Censored!
Countries use Internet censorship
to dominate the political
dialogue, but also to create
favorable conditions for
government-controlled businesses.
By Samuel Greengard

19	 Mainstreaming Augmented Reality
Advancements in computer
vision, object recognition, and
related technologies are leading
to new levels of sophistication in
augmented-reality applications,
and presenting new ways for humans
to relate to the natural world.
By Kirk L. Kroeker

22	 Committed to Success
Charles P. Thacker discusses the
importance of simplicity, reusable
tools, thinking broadly, and his
practice of Tom Sawyering.
By Gary Anthes

24	 Eric Brewer: Change Agent
Eric Brewer’s latest project
involves designing and deploying
low-cost wireless infrastructure
in developing regions.
By Gregory Goth

25	 Visions of the Future
ACM joined forces with the British
Computer Society to deliver its
first academic research conference
in Europe.
By Sarah Underwood

Viewpoints

27	 Technology Strategy and Management
Outsourcing Versus Shared Services
Choosing between outsourcing
and shared services has significant
implications for long-term
corporate strategy.
By Mari Sako

30	 Computing Ethics
Work Life in the Robotic Age
Technological change results in
changes in expectations, in this case
affecting the workplace.
By Jason Borenstein

32	 Legally Speaking
Should the Google Book
Settlement Be Approved?
Considering the precedent
that could be established by
approval of the controversial
Google book settlement.
By Pamela Samuelson

35	 Broadening Participation
Cultivating Cultural Diversity
in Information Technology
Introducing CMD-IT, a new center
focused on synergistic activities
related to ethnic minorities and
people with disabilities.
By Valerie E. Taylor

37	 Viewpoint
Is Computer Science Truly Scientific?
Reflections on the (experimental)
scientific method in computer
science.
By Gonzalo Génova

40	 Distinguished Members
Advice to Members
Seeking ACM Distinction
By Marc Snir and Telle Whitney

About the Cover:
Charles P. Thacker, ACM’s
2009 A.M. Turing Award
winner, as photographed
by Richard Morgenstein
in the data center
of Microsoft’s offices
in Mountain View, CA.
For more on Morgenstein’s
work, see http://www.
morgenstein.com.

http://www.morgenstein.com
http://CACM.ACM.ORG
http://www.morgenstein.com

july 2010 | vol. 53 | no. 7 | communications of the acm 3

07/2010
vol. 53 no. 07

I
l

l
u

s
trati

o
n

 b
y

 c
e

l
ia

 j

o
h

n
s

o
n

Practice

42	 The Ideal HPC
Programming Language
Maybe it’s Fortran. Or maybe
it just doesn’t matter.
By Eugene Loh

48	 Visualizing System Latency
Heat maps are a unique and powerful
way to visualize latency data.
Explaining the results, however,
is an ongoing challenge.
By Brendan Gregg

55	 You’re Doing It Wrong
Think you’ve mastered the art of
server performance? Think again.
By Poul-Henning Kamp

 Articles’ development led by
 queue.acm.org

Review Articles

78	 Algorithmic Game Theory
A new era of theoretical computer
science addresses fundamental
problems about auctions, networks,
and human behavior.
By Tim Roughgarden

Contributed Articles

60	 Commonsense Understanding
of Concurrency: Computing Students
and Concert Tickets
Innate understanding of concurrency
helps beginners solve CS problems
with multiple processes executing at
the same time.
By Gary Lewandowski,
Dennis J. Bouvier, Tzu-Yi Chen,
Robert McCartney, Kate Sanders,
Beth Simon, and Tammy VanDeGrift

71	 Computer Graphics for All
Interactive computer graphics
would rival word-processing and
presentation programs for everyday
communications.
By Takeo Igarashi

Research Highlights

88	 Technical Perspective
A Solid Foundation for
x86 Shared Memory
By Hans-J. Boehm

89	 x86-TSO: A Rigorous and
Usable Programmer’s Model
for x86 Multiprocessors
By Peter Sewell, Susmit Sarkar,
Scott Owens, Francesco Zappa Nardelli,
and Magnus O. Myreen

98 	 Technical Perspective
Technology Scaling
Redirects Main Memories
By Mary Jane Irwin

99	 Phase Change Memory Architecture
and the Quest for Scalability
By Benjamin C. Lee, Engin Ipek,
Onur Mutlu, and Doug Burger

Virtual Extension

As with all magazines, page limitations often
prevent the publication of articles that might
otherwise be included in the print edition.
To ensure timely publication, ACM created
Communications’ Virtual Extension (VE).
	 VE articles undergo the same rigorous review
process as those in the print edition and are
accepted for publication on their merit. These
articles are now available to ACM members in
the Digital Library.

	 IT Programs in High Schools:
Lessons from the Cisco
Networking Academy Program
Alan R. Dennis, Thomas M. Duffy,
and Hasan Cakir

	 Creating the Experience
Economy in E-Commerce
Wei-Lun Chang, Soe-Tsyr Yuan,
and Carol W. Hsu

	 How Distributed Data Mining Tasks
Can Thrive as Knowledge Services
Domenico Talia and Paolo Trunifo

	 ERP: Drilling for Profit
in the Oil and Gas Industry
Jorge A. Romero, Nirup Menon,
Rajiv D. Banker, and Mark Anderson

	 Why Do People Tag?
Motivations for Photo Tagging
Oded Nov and Chen Ye

	 Using ESI Discovery Teams to
Manage Electronic Data Discovery
John C. Ruhnka and John W. Bagby

	 Application Service Providers:
Market and Adoption Decisions
Yurong Yao, Edward Watson,
and Beverly K. Kahn

Association for Computing Machinery
Advancing Computing as a Science & Profession

78

http://queue.acm.org

4 communications of the acm | july 2010 | vol. 53 | no. 7

communications of the acm
Trusted insights for computing’s leading professionals.

Communications of the ACM is the leading monthly print and online magazine for the computing and information technology fields.
Communications is recognized as the most trusted and knowledgeable source of industry information for today’s computing professional.
Communications brings its readership in-depth coverage of emerging areas of computer science, new trends in information technology,
and practical applications. Industry leaders use Communications as a platform to present and debate various technology implications,
public policies, engineering challenges, and market trends. The prestige and unmatched reputation that Communications of the ACM
enjoys today is built upon a 50-year commitment to high-quality editorial content and a steadfast dedication to advancing the arts,
sciences, and applications of information technology.

ACM, the world’s largest educational
and scientific computing society, delivers
resources that advance computing as a
science and profession. ACM provides the
computing field’s premier Digital Library
and serves its members and the computing
profession with leading-edge publications,
conferences, and career resources.

Executive Director and CEO
John White
Deputy Executive Director and COO
Patricia Ryan
Director, Office of Information Systems
Wayne Graves
Director, Office of Financial Services
Russell Harris
Director, Office of Membership
Lillian Israel
Director, Office of SIG Services
Donna Cappo
Director, Office of Publications
Bernard Rous
Director, Office of Group Publishing
Scott Delman

ACM Council
President
Wendy Hall
Vice-President
Alain Chesnais
Secretary/Treasurer
Barbara Ryder
Past President
Stuart I. Feldman
Chair, SGB Board
Alexander Wolf
Co-Chairs, Publications Board
Ronald Boisvert, Holly Rushmeier
Members-at-Large
Carlo Ghezzi;
Anthony Joseph;
Mathai Joseph;
Kelly Lyons;
Bruce Maggs;
Mary Lou Soffa;
Fei-Yue Wang
SGB Council Representatives
Joseph A. Konstan;
Robert A. Walker;
Jack Davidson

Publications Board
Co-Chairs
Ronald F. Boisvert and Holly Rushmeier
Board Members
Jack Davidson; Nikil Dutt; Carol Hutchins;
Ee-Peng Lim; Catherine McGeoch;
M. Tamer Ozsu; Vincent Shen;
Mary Lou Soffa; Ricardo Baeza-Yates

ACM U.S. Public Policy Office
Cameron Wilson, Director
1828 L Street, N.W., Suite 800
Washington, DC 20036 USA
T (202) 659-9711; F (202) 667-1066

Computer Science Teachers Association
Chris Stephenson
Executive Director
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA
T (800) 401-1799; F (541) 687-1840

Association for Computing Machinery
(ACM)
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA
T (212) 869-7440; F (212) 869-0481

STAFF

Director of Group Publishing
Scott E. Delman
publisher@cacm.acm.org

Executive Editor
Diane Crawford
Managing Editor
Thomas E. Lambert
Senior Editor
Andrew Rosenbloom
Senior Editor/News
Jack Rosenberger
Web Editor
David Roman
Editorial Assistant
Zarina Strakhan
Rights and Permissions
Deborah Cotton

Art Director
Andrij Borys
Associate Art Director
Alicia Kubista
Assistant Art Director
Mia Angelica Balaquiot
Production Manager
Lynn D’Addesio
Director of Media Sales
Jennifer Ruzicka
Marketing & Communications Manager
Brian Hebert
Public Relations Coordinator
Virgina Gold
Publications Assistant
Emily Eng

Columnists
Alok Aggarwal; Phillip G. Armour;
Martin Campbell-Kelly;
Michael Cusumano; Peter J. Denning;
Shane Greenstein; Mark Guzdial;
Peter Harsha; Leah Hoffmann;
Mari Sako; Pamela Samuelson;
Gene Spafford; Cameron Wilson

Contact Points
Copyright permission
permissions@cacm.acm.org
Calendar items
calendar@cacm.acm.org
Change of address
acmcoa@cacm.acm.org
Letters to the Editor
letters@cacm.acm.org

Web SITE
http://cacm.acm.org

Author Guidelines
http://cacm.acm.org/guidelines

Advertising

ACM Advertising Department
2 Penn Plaza, Suite 701, New York, NY
10121-0701
T (212) 869-7440
F (212) 869-0481

Director of Media Sales
Jennifer Ruzicka
jen.ruzicka@hq.acm.org

Media Kit acmmediasales@acm.org

editorial Board

Editor-in-chief
Moshe Y. Vardi
eic@cacm.acm.org

News
Co-chairs
Marc Najork and Prabhakar Raghavan
Board Members
Brian Bershad; Hsiao-Wuen Hon;
Mei Kobayashi; Rajeev Rastogi;
Jeannette Wing

Viewpoints
Co-chairs
Susanne E. Hambrusch; John Leslie King;
J Strother Moore
Board Members
P. Anandan; William Aspray;
Stefan Bechtold; Judith Bishop;
Stuart I. Feldman; Peter Freeman;
Seymour Goodman; Shane Greenstein;
Mark Guzdial; Richard Heeks;
Rachelle Hollander; Richard Ladner;
Susan Landau; Carlos Jose Pereira de Lucena;
Beng Chin Ooi; Loren Terveen

 Practice
Chair
Stephen Bourne
Board Members
Eric Allman; Charles Beeler; David J. Brown;
Bryan Cantrill; Terry Coatta; Mark Compton;
Stuart Feldman; Benjamin Fried;
Pat Hanrahan; Marshall Kirk McKusick;
George Neville-Neil; Theo Schlossnagle;
Jim Waldo

The Practice section of the CACM
Editorial Board also serves as
the Editorial Board of .

Contributed Articles
Co-chairs
Al Aho and Georg Gottlob
Board Members
Yannis Bakos; Gilles Brassard; Alan Bundy;
Peter Buneman; Ghezzi Carlo;
Andrew Chien; Anja Feldmann;
Blake Ives; James Larus; Igor Markov;
Gail C. Murphy; Shree Nayar; Lionel M. Ni;
Sriram Rajamani; Jennifer Rexford;
Marie-Christine Rousset; Avi Rubin;
Abigail Sellen; Ron Shamir; Marc Snir;
Larry Snyder; Veda Storey;
Manuela Veloso; Michael Vitale;
Wolfgang Wahlster; Andy Chi-Chih Yao;
Willy Zwaenepoel

Research Highlights
Co-chairs
David A. Patterson and Stuart J. Russell
Board Members
Martin Abadi; Stuart K. Card; Jon Crowcroft;
Shafi Goldwasser; Monika Henzinger;
Maurice Herlihy; Norm Jouppi;
Andrew B. Kahng; Gregory Morrisett;
Michael Reiter; Mendel Rosenblum;
Ronitt Rubinfeld; David Salesin;
Lawrence K. Saul; Guy Steele, Jr.;
Gerhard Weikum; Alexander L. Wolf;
Margaret H. Wright

Web
Co-chairs
Marti Hearst and James Landay
Board Members
Jason I. Hong; Jeff Johnson;
Greg Linden; Wendy E. MacKay

 

ACM Copyright Notice
Copyright © 2010 by Association for
Computing Machinery, Inc. (ACM).
Permission to make digital or hard copies
of part or all of this work for personal
or classroom use is granted without
fee provided that copies are not made
or distributed for profit or commercial
advantage and that copies bear this
notice and full citation on the first
page. Copyright for components of this
work owned by others than ACM must
be honored. Abstracting with credit is
permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to
lists, requires prior specific permission
and/or fee. Request permission to publish
from permissions@acm.org or fax
(212) 869-0481.

For other copying of articles that carry a
code at the bottom of the first or last page
or screen display, copying is permitted
provided that the per-copy fee indicated
in the code is paid through the Copyright
Clearance Center; www.copyright.com.

Subscriptions
An annual subscription cost is included
in ACM member dues of $99 ($40 of
which is allocated to a subscription to
Communications); for students, cost
is included in $42 dues ($20 of which
is allocated to a Communications
subscription). A nonmember annual
subscription is $100.

ACM Media Advertising Policy
Communications of the ACM and other
ACM Media publications accept advertising
in both print and electronic formats. All
advertising in ACM Media publications is
at the discretion of ACM and is intended
to provide financial support for the various
activities and services for ACM members.
Current Advertising Rates can be found
by visiting http://www.acm-media.org or
by contacting ACM Media Sales at
(212) 626-0654.

Single Copies
Single copies of Communications of the
ACM are available for purchase. Please
contact acmhelp@acm.org.

Communications of the ACM
(ISSN 0001-0782) is published monthly
by ACM Media, 2 Penn Plaza, Suite 701,
New York, NY 10121-0701. Periodicals
postage paid at New York, NY 10001,
and other mailing offices.

POSTMASTER
Please send address changes to
Communications of the ACM
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA

Printed in the U.S.A.

P
L

E

A
S E R E C Y

C
L

E

T
H

I

S
 M A G A Z

I
N

E

mailto:publisher@cacm.acm.org
mailto:permissions@cacm.acm.org
mailto:calendar@cacm.acm.org
mailto:acmcoa@cacm.acm.org
mailto:letters@cacm.acm.org
http://cacm.acm.org
http://cacm.acm.org/guidelines
mailto:jen.ruzicka@hq.acm.org
mailto:acmmediasales@acm.org
mailto:eic@cacm.acm.org
mailto:permissions@acm.org
http://www.copyright.com
http://www.acm-media.org
mailto:acmhelp@acm.org

july 2010 | vol. 53 | no. 7 | communications of the acm 5

editor’s letter

Hypercriticality
In the two years since we launched the
revitalized Communications of the ACM,
I have received hundreds of email messages
from readers. The feedback has been

mostly, but not universally, positive.
Many people do note places where we
can do better. Some readers point out
errors in published articles. Nothing
in life is perfect. Communications is an
ongoing project; continuous improve-
ment is the name of the game.

At the same time, I have also re-
ceived a fair number of notes with
nothing short of withering criticism.
For example, six issues into the revi-
talized Communications, I received
this comment from a leading comput-
er scientist: “Although I have looked
at every issue and at least glanced at
every article, I have not yet found one
good one.”

Do you find this statement harsh?
It surely pales in comparison to this:
“The level is unbelievably poor. It
reads sometimes like a PR article for
big companies. Donation to the ACM
seems to be the main reviewing cri-
terion. I would call the policy of ACM
scientific prostitution, and I don’t
want to pay for a prostitute.”

I believe most of us have received
at some point very harsh reviews—
though, hopefully, not that harsh—on
papers or proposals we have written.
If you are an experienced researcher,
you have undoubtedly dealt with pa-
pers and proposals being declined.
Still, the harsh tone of negative re-
views can be quite unsettling even to
experienced authors. When I talk to
colleagues about this, they just shrug,
but I think this phenomenon, which
I call “hypercriticality,” deserves our
collective attention. Other people re-
cently commented on this issue. In

the context of proposal reviewing, Ed
Lazowska coined the phrase “circling
the wagons and shooting inwards,”
and John L. King, in a recent CCC
blog, referred to such verbal assaults
as “Fratricide.” Jeff Naughton, refer-
ring to conference paper reviewing,
said in a recent invited talk that “bad
reviewing” is “sucking the air out of
our community.”

The “hypercriticality” claim is not
just based on anecdotes; we actually
have data that supports it. Proposals
submitted to the Computer and In-
formation Science and Engineering
(CISE) Directorate of the U.S. National
Science Foundation (NSF) are rated,
on the average, close to 0.4 lower (on
a 1-to-5 scale) than the average NSF
proposal. In his blog entry, King dis-
cussed the harmful effects of such
harshness.

What is the source of this harsh-
ness within our discipline? Here one
can only speculate. Let me offer two
possible explanations. My first theory
refers to the intrinsic nature of our dis-
cipline. Computing systems are noto-
riously brittle. Mistyping one variable

name can lead to a catastrophic fail-
ure. Computing embodies the princi-
ple of “For lack of a nail, the kingdom
was lost.” This makes us eternally vigi-
lant, looking for the slightest flaw. In
our eternal hunt for flaws, we often fo-
cus on the negative and lose perspec-
tive of the positive.

My second theory refers to the so-
ciology of our field. We typically pub-
lish in conferences where acceptance
rates are 1/3, 1/4, or even lower. Re-
viewers read papers with “reject” as
the default mode. They pounce on
every weakness, finding justification
for a decision that, in some sense, has
already been made. It is particularly
easy to be harsh when reviewing pro-
posals. If the proposal is not detailed
enough, then the proposer “does not
have a clear enough plan of research,”
but if the proposal is rich in detail,
then “it is clear that the proposer has
already done the work for which fund-
ing is sought.”

What is to be done? Remember, we
are the authors and we are the review-
ers. It is not “them reviewers;” it is “us
reviewers.” Hillel the Elder, a Jewish
scholar, 30 B.C.–10 A.D., said “What is
hateful to you, do not do to your fel-
low.” This is known as the Silver Rule
in moral philosophy. The Golden
Rule, which strengthens the Silver
Rule, asserts “do unto others as you
would have them do to you.” Allow me
to rephrase this as the Golden Rule of
Reviewing: “Write a review as if you are
writing it to yourself.” This does not
mean that we should not write critical
reviews! But the reviews we write must
be fair, weighing both strengths and
weaknesses; they must be construc-
tive, suggesting how the weaknesses
can be addressed; and, above all, they
must be respectful.

After all, these are the reviews that
we would like to receive!

Moshe Y. Vardi, editor-in-chief

DOI: 10.1145/1785414.1785415	 	 Moshe Y. Vardi

What is the source of
this harshness within
our discipline?

6 communications of the acm | july 2010 | vol. 53 | no. 7

letters to the editor

M
oshe Y. Vardi’s Editor’s
Letter “Globalization and
Offshoring of Software Re-
visited” and Dave Dur-
kee’s “Why Cloud Com-

puting Will Never Be Free” (both May
2010) failed to address security risks.
Vardi’s headline promised an update
on the questions raised by increased
globalization of outsourced software
development. Though I knew his main
focus was on the economic impact
of global outsourcing, I was still dis-
appointed there was no mention of
the security challenges posed by the
global supply chain for software. Such
challenges have prompted the U.S. De-
partments of Defense and Homeland
Security, the SAFECode consortium,
and numerous other organizations to
commit significant effort to combating
threats posed by software of unknown
pedigree and provenance, including
individual and state-sponsored “in-
sider threats” (such as implanted mali-
cious logic, backdoors, and exploitable
vulnerabilities), particularly when de-
veloped offshore. See the Government
Accountability Office’s Defense Acquisi-
tions: Knowledge of Software Suppliers
Needed to Manage Risks (http://www.
gao.gov/new.items/d04678.pdf) and
the Report of the Defense Science Board
Task Force on Mission Impact of Foreign
Influence on DOD Software (http://www.
acq.osd.mil/dsb/reports/ADA486949.pdf).
Though both focus on software used
by DoD, the security issues apply to any
organization that relies on outsourced
software for critical business or mis-
sion functions.

Meanwhile, in an otherwise admi-
rable assessment of the strengths and
weaknesses of the cloud computing
model of outsourced IT-as-a-service,
Durkee likewise failed to mention po-
tential consequences of cloud provid-
ers not protecting outsourced comput-
ing infrastructure against hackers and
malicious code. For example, when dis-
cussing transparency, he overlooked
the fact that no cloud provider allows
its customers to implement intrusion
detection or security monitoring ex-

tending into the management-services
layer behind virtualized cloud instanc-
es. Moreover, these customers have
learned not to expect their providers to
deliver detailed security-incident, vul-
nerability, or malware reports.

The management-service layer pro-
vides a back channel through which
the content of each cloud instance is
accessible, not only by providers, but
by any attacker able to hack into or
implant a kernel-level rootkit. Once
“in,” the attacker is positioned to ex-
ploit the back channel to manipulate
or even make full copies of all cloud
instances hosted on the compromised
platform. Even if customers manage to
get their providers to agree to service-
level agreements (SLAs) sti pulating a
high level of vigilance, reporting, and
protection below the cloud-instance
layer, the management-services layer
remains an inherent weakness that
should concern anyone looking to host
“in the cloud” the kinds of critical ap-
plications Durkee explored.

Karen Mercedes Goertzel,
	 Falls Church, VA

Author’s Response:
I strongly agree with Goertzel’s sentiment
and appreciate her raising this very
important issue. The executive summary
of the 2006 Globalization and Offshoring
Report said: “Offshoring magnifies existing
risks and creates new and often poorly
understood or addressed threats to
national security, business property and
processes, and individuals’ privacy. While it
is unlikely these risks will deter the growth
of offshoring, businesses and nations should
employ strategies to mitigate them.” The
Report’s Chapter 6, “Offshoring: Risks And
Exposures,” covered the risks at length.

Moshe Y. Vardi, Editor-in-Chief

Author’s Response:
As with performance and uptime, cloud
security is determined by the necessity of
meeting the terms of SLAs as demanded
by customers. As they mature, they will
demand even more from their providers’

SLAs by agreeing to industry-standard
audits and certifications that ensure they
get the security they need, a topic that is a
great starting point for another article.

Dave Durkee, Mountain View, CA

Up in the Air
Describing the network effects of a
cloud strategy, particularly when it
involves SaaS platform efficiency, in
his “Technology Strategy and Man-
agement” Viewpoint “Cloud Comput-
ing and SaaS as New Computing Plat-
forms” (Apr. 2010), Michael Cusumano
said that major cloud hosts, including
Amazon, Google, and Salesforce, gen-
erally rely on detailed SLAs to guar-
antee security and other parameters
for their hosted customers. However,
many such hosts, including Amazon
SimpleDB and Google Apps, agree to
SLAs involving only, perhaps, perfor-
mance degradation limits and avail-
ability of a given service. If cloud-relat-
ed SLAs fail to include more specific
parameters, the cloud infrastructure
risks closing itself to new, innovative
services due to its lack of dependable
guarantees.

Burkhard Stiller and Guilherme
	M achado, Zürich, Switzerland

Diversity Factor
Richard Tapia’s inspiring Viewpoint
“Hiring and Developing Minority Fac-
ulty at Research Universities” (Mar.
2010) said that looking for the next
Gauss or Turing is not necessarily the
key criterion in all CS faculty searches.
I have sometimes sensed confusion be-
tween the notion that research excel-
lence drives academic success (it does
and should) and what might be called
the “additive argument,” or belief that
maximizing the potential research
stature of every new hire automatically
maximizes a department’s overall ex-
cellence in research. I read Tapia’s sec-
tion on reexamining search criteria to
mean this is not always the case. I con-
cur, convinced that the effects of talent
are not simply additive.

Don’t Ignore Security Offshore, or in the Cloud
DOI:10.1145/1785414.1785417	 	

http://www.gao.gov/new.items/d04678.pdf
http://www.acq.osd.mil/dsb/reports/ADA486949.pdf
http://www.gao.gov/new.items/d04678.pdf
http://www.acq.osd.mil/dsb/reports/ADA486949.pdf

july 2010 | vol. 53 | no. 7 | communications of the acm 7

letters to the editor

cessing Task Force. This group was
chartered to develop COBOL language
extensions for processing collections
of records; the name arose because
Charles Bachman’s IDS system (which
was the main technical input to the
project) managed relationships be-
tween records using chains of pointers.
In 1967 the group renamed itself the
Data Base Task Group and in October
1969 published its first language speci-
fications for the network database
model, which became generally known
as the CODASYL Data Model.”

The Integrated Data Store (IDS) has
been in continuous productive use
since 1964, running first on GE 200
computers. In 1966, it began support-
ing a nationwide, 24/7, order-entry
system (OLTP). And in 1969, running
on the GE 600, it began supporting a
shared-access (OLTP) database, com-
plete with locks, deadlock detection,
and automatic recovery and restart.

IBM did not release its IMS/360 (In-
formation Management System) based
on the hierarchical data model until
September 1969 when future relational
databases were still just a gleam in Ted
Codd’s eye.

B.F. Goodrich received the IDS
source code from GE in 1964, renam-
ing it the Integrated Database Manage-
ment System, or IDMS, when rewritten
for the IBM 360 (1969–1971). IDMS
was acquired (1973) and marketed
worldwide by Cullinane (later Culli-
net). IDMS was acquired (1989) by CA
(formerly Computer Associates), which
still actively supports it worldwide on
more than 4,000 IBM mainframes. Brit-
ish Telecom and the Brazilian govern-
ment are the best-known IDMS users,
rated, in 2005, the second- and third-
largest OLTP systems in the world.

For more, please see the refereed
papers on IDS, IMS, IDMS, and other
DBMS products in IEEE Annals of the
History of Computing (Oct.–Dec. 2009)
special issue on “Mainframe Software:
Database Management Systems.” A fu-
ture issue is planned to cover more re-
cent RDBMS history.

Charles W. (Charlie) Bachman,
	L exington, MA, ACM Turing Award 1973

Communications welcomes your opinion. To submit a
Letter to the Editor, please limit your comments to 500
words or less and send to letters@cacm.acm.org.

© 2010 ACM 0001-0782/10/0700 $10.00

It ought to go without saying that
the goal of diversity of gender or ethnic
origin does not generally conflict with
excellence in research. For instance, in
recent years my department has inter-
viewed several women candidates who
were uniformly superior to their male
counterparts.

However, in specific faculty search-
es it may be that the potential research
stature of a certain white male candi-
date is perceived as exceeding that of a
certain female or minority candidate.
The latter may be stellar, but the for-
mer’s intellectual light shines just a bit
brighter. If the discrepancy is compa-
rable to the rather high level of uncer-
tainty inherent in measuring a candi-
date’s potential, some may invoke the
additive argument.

However, this argument seems to
rest on two questionable assumptions:
departmental excellence (however
measured) is the arithmetic sum of the
individual levels of excellence of its fac-
ulty members; and the success of an in-
dividual researcher is independent of
the surrounding environment.

Both are wrong. Excellence in re-
search (individually or across a depart-
ment) is a nonlinear function of inter-
dependent factors. For instance, in a
department that makes itself attractive
to a broader pool of graduate students
through the composition of its faculty,
all researchers benefit from the result-
ing potentially improved quality of the
department’s student body. This also
holds when attracting new colleagues,
including so-called superstars. When
female or minority candidates are at,
say, the top of the list in a particular
search, they (like everybody else) also
consider a department’s environment
when choosing which job offer to ac-
cept. Moreover, a more welcoming, col-
legial, diverse faculty often leads to bet-
ter and more frequent collaboration,
as well as to more vibrant research.

The question is not whether to com-
promise between excellence and diver-
sity but how best to foster excellence,
with diversity a part of the equation.

Carlo Tomasi, Durham, NC

Wrong Side of the Road
In his Editor’s Letter “Revisiting the
Publication Culture in Computing Re-
search” (Mar. 2010), Moshe Y. Vardi

said computer science is “the only
scientific community that considers
conference publications as the prima-
ry means of publishing our research
results,” asking, “Why are we the only
discipline driving on the conference
side of the ‘publication road?’”

As an old timer, I can say that in the
early days, there was a belief (conceit
might be a better word) that the field’s
pace of discovery was happening so
quickly that only conferences, with
subsequent prompt publication of pro-
ceedings, could communicate results
in a timely manner. As a corollary, the
traditional peer-reviewed published
literature review fell behind, as it was
relieved of temporal pressure through
the published proceedings.

These days, the pace of discovery
in the biological sciences, including
molecular biology, genomics, and
proteomics, far exceeds that of com-
puter science. Yet the gold standard
of publication in archival journals
continues. It is the ultimate irony
that computer science, along with
various disciplines in the physical sci-
ences, employs the tools developed by
computer scientists to ensure timely
dissemination of research results
through the online editions of their
publications. Science, Nature, Cell,
and other leading journals routinely
present their most important articles
in online form first. If, perhaps, com-
puter science would make greater use
of its own tools, the shoemaker’s chil-
dren would no longer go barefoot, and
published proceedings would fade
into its proper historical niche.

Stuart Zimmerman, Houston, TX

More to Celebrate in RDBMS History
Gary Anthes offered good reporting but
also some serious errors concerning
pre-RDBMS history in his news article
“Happy Birthday, RDBMS!” (May 2010),
saying “In 1969, an ad hoc consortium
called CODASYL proposed a hierarchi-
cal database model built on the con-
cepts behind IMS. CODASYL claimed
that its approach was more flexible
than IMS, but it still required program-
mers to keep track of far more details
than the relational model did.”

Please compare with the following
basic facts as reported in Wikipedia:
“In 1965 CODASYL formed a List Pro-

mailto:letters@cacm.acm.org

Priority Code: ACACM11

Online
http://www.acm.org/join

Phone
+1-800-342-6626 (US & Canada)

+1-212-626-0500 (Global)

Fax
+1-212-944-1318

membership application &
digital library order form

PROFESSIONAL MEMBERSHIP:

❏ ACM Professional Membership: $99 USD

❏ ACM Professional Membership plus the ACM Digital Library:

$198 USD ($99 dues + $99 DL)

❏ ACM Digital Library: $99 USD (must be an ACM member)

STUDENT MEMBERSHIP:

❏ ACM Student Membership: $19 USD

❏ ACM Student Membership plus the ACM Digital Library: $42 USD

❏ ACM Student Membership PLUS Print CACMMagazine: $42 USD

❏ ACM Student Membership w/Digital Library PLUS Print

CACM Magazine: $62 USD

choose one membership option:

Name

Address

City State/Province Postal code/Zip

Country E-mail address

Area code & Daytime phone Fax Member number, if applicable

 Payment must accompany application. If paying by check or
money order, make payable to ACM, Inc. in US dollars or foreign
currency at current exchange rate.

❏ Visa/MasterCard ❏ American Express ❏ Check/money order

❏ Professional Member Dues ($99 or $198) $ ______________________

❏ ACM Digital Library ($99) $ ______________________

❏ Student Member Dues ($19, $42, or $62) $ ______________________

Total Amount Due $ ______________________

Card # Expiration date

Signature

Professional membership dues include $40 toward a subscription
to Communications of the ACM. Member dues, subscriptions,
and optional contributions are tax-deductible under certain
circumstances. Please consult with your tax advisor.

payment:

RETURN COMPLETED APPLICATION TO:

All new ACM members will receive an
ACM membership card.

For more information, please visit us at www.acm.org

Association for Computing Machinery, Inc.
General Post Office
P.O. Box 30777
New York, NY 10087-0777

Questions? E-mail us at acmhelp@acm.org
Or call +1-800-342-6626 to speak to a live representative

Satisfaction Guaranteed!

Purposes of ACM
ACM is dedicated to:
1) advancing the art, science, engineering,
and application of information technology

2) fostering the open interchange of
information to serve both professionals and
the public

3) promoting the highest professional and
ethics standards

I agree with the Purposes of ACM:

Signature

ACM Code of Ethics:
http://www.acm.org/serving/ethics.html

You can join ACM in several easy ways:

Or, complete this application and return with payment via postal mail

Special rates for residents of developing countries:
http://www.acm.org/membership/L2-3/

Special rates for members of sister societies:
http://www.acm.org/membership/dues.html

Advancing Computing as a Science & Profession

Please print clearly

CACM One Page Application>5_24_10:Layout 1 5/24/10 9:53 AM Page 1

http://www.acm.org/membership/L2-3/
http://www.acm.org/membership/dues.html
http://www.acm.org/serving/ethics.html
http://www.acm.org
mailto:acmhelp@acm.org
http://www.acm.org/join

in the virtual extension

july 2010 | vol. 53 | no. 7 | communications of the acm 9

IT Programs in High Schools:
Lessons from the Cisco
Networking Academy Program
Alan R. Dennis, Thomas M. Duffy,
and Hasan Cakir

The authors studied 5,392 students
taking a course from the Cisco
Networking Academy at 764 high schools
across the U.S. to understand the factors
that influenced their achievement
and confidence. Surprisingly, school
characteristics (inner city vs. suburban,
rich vs. poor) had virtually no impact.
What mattered most was instruction
quality and an individual student‘s
ability, motivation, and, unfortunately,
gender. This style of program, with a
strong centralized curriculum, local
customization, standards-based testing,
and strong teacher support overcame the
traditional educational barriers to enable
each student to rise to his or her own level
of ability and motivation.

Creating the Experience
Economy in E-Commerce
Wei-Lun Chang, Soe-Tsyr Yuan,
and Carol W. Hsu

The potential economic value of
experience-oriented offerings has been
demonstrated in the physical marketplace.
This study suggests the widespread use
of the Internet allows the experience
economy to be extended to the virtual
marketplace. The growing practice of
online collaborative design demonstrates
the potential for providing the experience
economy via the Internet. The authors
propose expanding the existing practices
by incorporating the concept of
collaborative pricing into the design of
experience offerings, as demonstrated
in their iCare platform. The article is
intended to motivate further research
into the development of the experience
economy in e-commerce.

How Distributed Data Mining Tasks
Can Thrive as Knowledge Services
Domenico Talia and Paolo Trunifo

Through a service-oriented approach
we can support distributed business
intelligence tasks in clouds and grids.
Those services can implement all the tasks
in data mining and in knowledge discovery
processes such as data selection, data
analysis, and knowledge representation.
The authors explore architectures and
services for distributed knowledge
discovery such as the Knowledge Grid, the
Weka4WS toolkit, and mobile data mining
services. The article describes a strategy
and a model based on the use of services
for the design of distributed knowledge
discovery applications and discusses
how grid and cloud frameworks can be
developed as a collection of services and
how they can be used to support knowledge
discovery processes using the SOA model.

ERP: Drilling for Profit
in the Oil and Gas Industry
Jorge A. Romero, Nirup Menon,
Rajiv D. Banker, and Mark Anderson

The article presents research that applies
to a new approach toward understanding
ERP implementation. Rather than looking
at ordinary measures of firm performance,
the authors examine strategic performance
measures that can only be utilized if one
delves into data that is not found on the
financial statements. It is one of the first
studies to show the sources of profitability
after an ERP implementation and will
help managers understand the strategic
and managerial implications of ERP
implementation.

Why Do People Tag?
Motivations for Photo Tagging
Oded Nov and Chen Ye

Given the growing popularity of tags
as a means of sharing and organizing
large amounts of data, it is critical for
developers and managers of collaborative
content-sharing systems such as Flickr,
YouTube, and del.icio.us to understand
what motivates users to tag. The authors
examine individual-level motivations
using a newly developed scale as well as
the social presence driver and the number
of user photos. The findings suggest that
both social presence and individual-level
motivation affect users’ tagging level.

Using ESI Discovery Teams to
Manage Electronic Data Discovery
John C. Ruhnka and John W. Bagby

Many organizations face litigation threats
with associated crippling costs, staff-time
demands, and adverse financial impacts.
“Discovery,” the legal and operational
process governing the evidentiary use of
electronically stored information (ESI)—
including email messages—plays a central
role in the cost of litigation as well as in
potential outcomes. Multidiscipline ESI
“discovery teams” containing key IT, legal,
and operational players involved in this
complex process can more effectively
manage the “litigation hold” process,
and can better assess the potential costs
of alternative strategies in collection,
identification, verification, recovery, and
production of relevant electronic data
sought as evidence.

Application Service Providers:
Market and Adoption Decisions
Yurong Yao, Edward Watson,
and Beverly K. Kahn

Deciding whether, how, and with whom to
outsource an organization’s applications
is important. Key factors influence
the Application Service Provider (ASP)
decision-making process and the ultimate
organizational success. The authors
examine the current ASP market and
recommend evaluation criteria by looking
at hosting by “Pure ASPs” (small companies
who purely provide hosting services) and
“ISVs” (independent software vendors,
who develop software and host their own
applications). These ASPs provide either
vertical (within a single industry sector) or
horizontal (across industries) applications.
Several adoption cases are presented to
explain the recommendations.

In the Virtual Extension
Communications’ Virtual Extension brings more quality articles to ACM
members. These articles are now available in the ACM Digital Library.

DOI: 10.1145/1785414.1785418	 	

http://del.icio.us

10 communications of the acm | july 2010 | vol. 53 | no. 7

The Communications Web site, http://cacm.acm.org,
features more than a dozen bloggers in the BLOG@CACM
community. In each issue of Communications, we’ll publish
selected posts or excerpts.

Follow us on Twitter at http://twitter.com/blogCACM

I made the transition from developer
to manager, I was glad to have had the
experience so I could advocate for my
teams. Although I couldn’t always get
rid of crunch times, I worked to keep
their durations as short as possible.

Why do developers put up with
crunch time? I believe the reason is as
simple as “progress.” “Progress” was
the factor that was most important to
12,000 workers, according to two re-
searchers who analyzed the workers’ di-
ary entries.

As long as the workers believe they
are making headway in delivering their
product, they are getting an intrinsic re-
ward that motivates them to work more.
If you have a team making progress on a
delivery, the combined effort of the team
will self-reinforce and encourage them
all for their efforts. On Amazon Auc-
tions, I worked on implementing search
for the system and would nap while an-
other team member would deliver new
catalog content. By the time I returned,
we would integrate our code, which
would result in a complete auction
search results. The work was rewarding
despite our working through weekends
to complete the project. The progress
was beautiful and easy to see. One day
the system had mockups for search re-
sults and the next day the results would
be feeding from live data. The intrinsic
reward of making progress and working
with the team to deliver helped combat
the potential for burnout.

It is unrealistic to deliver any project
without going through some crunch
time. Although progress helps to mo-
tivate employees during those periods,

Ruben Ortega’s
“Why Do Software
Developers Tolerate
‘Crunch Time’?”
http://cacm.acm.org/blogs/
blog-cacm/70922

Given the increased risk of burnout for
an extended “crunch time,” why do de-
velopers put up with it?

For software developers, crunch
time is a period prior to a major prod-
uct milestone when team members are
asked to put in extra effort to get a prod-
uct finished by a specific delivery date.
Practically, this can be a horrific period
of 80-plus hour weeks that goes on for
months as the team scrambles to deal
with bugs, last-minute feature requests
and modifications, and milestones.
For game companies and large Inter-
net retailers in particular, the mantra
of “Christmas never slips” means that
crunch time occurs during the summer
so products can be released by the fall
and be available between Thanksgiving
and Christmas. Recently, the wives of

Rockstar Games posted an open letter
to the company’s management about
the impact of the crunch time on their
lives. The company was demanding 6–7
days a week, with 12–16 hour days. The
impact included mental, physical, and
emotional strain on the employees and
their families.

Reading the discussions on Slashdot
about Rockstar Games’ working condi-
tions highlighted that this problem is
industrywide. As a developer and man-
ager, I have worked on a number of proj-
ects at various startups that involved pe-
riods of crunch time that lasted longer
than I thought was realistic. When I was
a young engineer working on Amazon
Auctions, doing the all-nighter was a
badge of honor. Eventually, I discovered
most of the code you write during those
A. m. hours will likely be thrown away.
After a few crunch times, I learned to be
a better self-advocate, and was able to
sensibly set expectations of what com-
bination of features, quality, and test-
ing I could deliver by a given date. When

doi:10.1145/1785414.1785419	 	 	 http://cacm.acm.org/blogs/blog-cacm

Software Development
and Crunch Time;
and More
Ruben Ortega discusses developers and crunch time; Mark Guzdial
considers the impact of open source practices on computing
education; and Daniel Reed writes about the technological shift
from computational paucity to computational plethora.

http://cacm.acm.org
http://twitter.com/blogCACM
http://cacm.acm.org/blogs/blog-cacm
http://cacm.acm.org/blogs/blog-cacm/70922
http://cacm.acm.org/blogs/blog-cacm/70922

blog@cacm

july 2010 | vol. 53 | no. 7 | communications of the acm 11

ineffective project planning can lead
to an egregious amount of time where
progress alone will not be enough to
sustain the employees’ motivation. If
excessive crunch time continues to oc-
cur, the employees—the company’s
most valuable resource—should work
to either change the organization or
they will be compelled to move to a
more supportive company. The books
Peopleware and Slack: Getting Past
Burnout, Busywork and Total Efficiency
are great reminders on why we should
work hard to take care of our teams.

Mark Guzdial’s
“The Impact of Open
Source on Computing
Education”
http://cacm.acm.org/blogs/
blog-cacm/72144

We had a Georgia Tech alum, Mike
Terry (now at Waterloo) visit us a cou-
ple weeks ago. Mike’s research is on
usability practices in open source. I
got a chance to chat with Mike, and
we talked about the impacts of open
source on computing education, such
as high school students getting started
with computing by working in open
source development. Overall, though, I
came away concerned what the growth
of open source development means for
the future of computing education.

At a time when we are trying to
broaden participation in computing,
open source development is even more
closed and less diverse than commercial
software development. It is overwhelm-
ingly white, Asian, and male. Some esti-
mates suggest that less than 1% of open
source developers are female.

Many kids and parents worry that
all computer science jobs are being
offshored and that it’s not worth study-
ing computing. As more and more of
the software we use daily is created via
open source development, I wonder if
kids and parents will hear the message,
“Most software developers work for free,
or at least have to work for free for years
before they can become professional
and get paid for their work.” Of course,
that’s not true. Neither is it true that all
IT jobs are being offshored, but that’s
still what some people believe.

One of our challenges in comput-
ing education is convincing people
that computing is broad and about
more than programming. Open source

values code above all, or as Linux’s
originator Linux Torvalds said, “Talk is
cheap. Show me the code.” We’re trying
to convince students that talk is also
valuable in computing.

Finally, Mike’s talk was about how
common usability practices are rare in
open source development. Of course,
that’s a concern in itself, but it’s par-
ticularly problematic for newcomers.
When students develop toward being
professionals, they frequently engage in
a process that educators call legitimate
peripheral participation (LPP). It’s LPP
when you start out in a company picking
up trash (doing something legitimate
on the periphery), and in so doing, fig-
ure out what happens in the company.
Students can get started in software
development at a company by doing
tasks that aren’t directly about writing
software, but are about the whole enter-
prise. These legitimate peripheral tasks
serve as a stepping stone into the pro-
cess, like writing documentation or run-
ning subjects in usability testing. If you
don’t have usability testing, you don’t
have that path into the process. Break-
ing into an open source development
process is hard, and that keeps more
students out than invites them in.

I wrote on this topic in my regular
blog, and was surprised at the response.
I learned that it is not acceptable to
criticize religion, Santa Claus, or open
source development—it’s a “good” that
should just be accepted as such. I dis-
agree. Open source development does
generate enormous good, but it could
do more good if it improved its practices.
It’s hard to change open source develop-
ment, because of its distributed nature.
Open source developers should worry
about the messages they send future de-
velopers, especially if they hope to grow
and attract the development talent pool.

Daniel Reed’s
“Paucity to Plethora:
Jevons Paradox”
http://cacm.acm.org/blogs/
blog-cacm/72373

Those of us of a certain
age remember when the university
computer (note the singular) was a sci-
entific and engineering shrine, protect-
ed by computer operators and secure
doors. We acolytes extended offerings
of FORTRAN, ALGOL, or COBOL via
punched card decks, hoping for the

blessings that accrued from a syntac-
tically correct program that compiled
and executed correctly.

The commonality across all our ex-
periences was the need to husband
computer time and plan job submis-
sions carefully, particularly when one’s
job might wait in the queue for six to 10
hours before entering execution. I dis-
tinctly remember spending many eve-
nings laboriously examining my latest
printout, identifying each syntax error
and tracing the program flow to iden-
tify as many logic errors as possible be-
fore returning to the keypunch room to
create a new punched card deck.

Because computing time was scarce
and expensive, we devoted considerable
human effort to manual debugging
and optimization. Today, of course, my
wristwatch contains roughly as much
computing power as that vintage uni-
versity mainframe, and we routinely
devote inexpensive computing time to
minimize human labor. Or do we?

Yes, we routinely use WIMP inter-
faces for human-computer interaction,
cellular telephony is ubiquitous, and
embedded computers enhance every-
day objects. However, I suspect much of
computing is still socially conditioned
by its roots in computational paucity to
fully recognize the true opportunity af-
forded by computational plethora.

Many of us are wed to a stimulus-
response model of computing, where
humans provide the stimulus and com-
puters respond in preprogrammed
ways. In a world of plethora, comput-
ing could glean the work, personal, and
emotional context, anticipating infor-
mation queries and computing on be-
half rather than in response. My com-
puter could truly become my assistant.

In economics, the Jevons paradox
posits that a technological increase in
the efficiency with which a resource
can be used stimulates greater con-
sumption of the resource. So it is with
computing. I believe we are just at the
cusp of the social change made pos-
sible by our technological shift from
computational paucity to computa-
tional plethora.	

Ruben Ortega is an engineering director at Google.
Mark Guzdial is a professor at the Georgia Institute
of Technology. Daniel Reed is vice president of Technology
Strategy & Policy and the eXtreme Computing Group
at Microsoft.

© 2010 ACM 0001-0782/10/0700 $10.00

http://cacm.acm.org/blogs/blog-cacm/72144
http://cacm.acm.org/blogs/blog-cacm/72373
http://cacm.acm.org/blogs/blog-cacm/72144
http://cacm.acm.org/blogs/blog-cacm/72373

12 communications of the acm | july 2010 | vol. 53 | no. 7

cacm online

DOI:10.1145/1785414.1785420	 David Roman

In Case You Missed It

The most popular content on Communications’ site is something many readers
know nothing about. The BLOG@CACM (http://cacm.acm.org/blogs/blog-cacm)
is original online material that does not appear in the monthly magazine except
in abbreviated form (see page 10). Eleven entries from this blog were among the
site’s 100 most popular articles in the first 14 months following its makeover, and
seven landed in the top 50 (see below). That’s more articles than from any single
section of the monthly magazine.

These frontrunners show the strength and diversity of the blogs. Most were
penned by regular contributors, but a couple were filed by guest bloggers from
a major ACM conference. Communications is always looking for new bloggers:
guests as well as new experts.

The blogs generate a strong share of comments. In most of the cases cited
here, the author is an active participant in the discussions, responding to ques-
tions, refining points, and bringing an immediacy and level of engagement the
magazine cannot match.

While it is clear that many readers are finding this content, it is also clear that
many are not. A recent survey found that 40% of readers didn’t know or had no
opinion about the BLOG@CACM, and 61% said the same about the site’s blogs
overall (it also publishes a Blogroll at http://cacm.acm.org/blogs/blogroll). If you
are in the ‘don’t know’ category, here’s what you’ve missed. If you are interested
in blogging for the BLOG@CACM as a regular contributor or from a conference,
email blog@cacm.acm.org.

Title/URL Author/URL
of User
Comments

How We Teach Introductory
Computer Science is Wrong
http://cacm.acm.org/blogs/blog-cacm/45725

Mark Guzdial
http://www.cc.gatech.edu/~guzdial/

15

The End of a DBMS Era (Might Be Upon Us)
http://cacm.acm.org/blogs/blog-cacm/32212

Michael Stonebraker
http://www.csail.mit.edu/user/1547

6

The ‘NoSQL’ Discussion Has Nothing
to do With SQL
http://cacm.acm.org/blogs/blog-cacm/50678

Michael Stonebraker
http://www.csail.mit.edu/user/1547

7

Errors in Database Systems, Eventual
Consistency, and the CAP Theorem
http://cacm.acm.org/blogs/blog-cacm/83396

Michael Stonebraker
http://www.csail.mit.edu/user/1547

10

Extreme Agility at Facebook
http://cacm.acm.org/blogs/blog-cacm/51564

E. Michael Maximilien
http://www.maximilien.com/homepage/
about_me.html

4

What is a Good Recommendation Algorithm?
http://cacm.acm.org/blogs/blog-cacm/22925

Greg Linden
http://glinden.blogspot.com/

10

Clay Shirky: Doing work, or Doing Work?
http://cacm.acm.org/blogs/blog-cacm/72609

Michael Bernstein
http://people.csail.mit.edu/msbernst/

4

ACM
Member
News
Alain Chesnais Elected
ACM President

Alain Chesnais,
owner of Visual
Transitions, a
Toronto-based
consulting
company
specializing in

computer graphics and social
networks, was elected president
of ACM in the May 2010 general
election.

A longtime ACM volunteer,
Chesnais views the key challenges
facing ACM as “our becoming a
truly international organization
and attracting younger members
into the organization.” Specifically,
Chesnais wants to both strengthen
ACM’s presence in China and
India and “to do much more in
terms of expanding our online
presence to better cater to the
needs of younger researchers and
practitioners.”

The ACM General Election
results include:

President
Alain Chesnais,
Visual Transitions
(term: July 1, 2010–June 30, 2012)

Vice President
Barbara G. Ryder, Virginia Tech
(July 1, 2010–June 30, 2012)

Secretary/Treasurer
Alexander L. Wolf,
Imperial College London
(July 1, 2010–June 30, 2012)

Members at Large
Vinton G. Cerf, Google
(July 1, 2010–June 30, 2014)

Salil Vadhan, Harvard University
(July 1, 2010–June 30, 2014)

A policy passed by the ACM
Council in October 1980 calls
for publication of the number of
votes polled by each candidate.

President
Alain Chesnais 5,277
Joseph A. Konstan 3,344

Vice President
Barbara Ryder 5,743
Norman Jouppi 2,936

Secretary/Treasurer
Alexander L. Wolf 5,371
Carlo Ghezzi 3,162

Members at Large
Vinton Cerf 6,485
Salil Vadhan 4,113
Satoshi Matsuoka 3,445
Fei-Yue Wang 2,664

http://cacm.acm.org/blogs/blog-cacm
http://cacm.acm.org/blogs/blogroll
mailto:blog@cacm.acm.org
http://cacm.acm.org/blogs/blog-cacm/45725
http://www.cc.gatech.edu/~guzdial/
http://cacm.acm.org/blogs/blog-cacm/32212
http://www.csail.mit.edu/user/1547
http://cacm.acm.org/blogs/blog-cacm/50678
http://www.csail.mit.edu/user/1547
http://cacm.acm.org/blogs/blog-cacm/83396
http://www.csail.mit.edu/user/1547
http://cacm.acm.org/blogs/blog-cacm/51564
http://www.maximilien.com/homepage/about_me.html
http://www.maximilien.com/homepage/about_me.html
http://cacm.acm.org/blogs/blog-cacm/22925
http://glinden.blogspot.com/
http://cacm.acm.org/blogs/blog-cacm/72609
http://people.csail.mit.edu/msbernst/

 N
news

july 2010 | vol. 53 | no. 7 | communications of the acm 13

I
mag

e
 c

o
u

rt

e
s

y
 o

f
 D

avid

 M
.

Br

y
s

o
n

W
hy bother with sex?
Venturing forth in
search of a mate can
be dicey business, and
even if you succeed,

you can pass on only half of your genes,
which are randomly combined with
half of your mate’s, to your offspring.
For more than a century, biologists have
suggested that mixing up genes is exact-
ly what sexual reproduction contributes
to evolution, making it easier for novel
gene combinations to appear. But the
downside, also long understood by bi-
ologists, is that what gene mixing gives,
it also takes away: Sexual reproduction
can break up a winning gene combina-
tion as easily as it can create one.

Nonetheless, among plants, fungi,
and animals, sexual reproduction is far
more popular than asexual reproduc-
tion, a fact for which biologists have
no thoroughly satisfactory explana-
tion. In the December 2008 issue of
Proceedings of the National Academies
of Science, computer scientist Christos
Papadimitriou and biologist Adi Livnat
of the University of California, Berkeley
teamed with biologists Jonathan Dush-
off of McMaster University and Marcus
Feldman of Stanford University to offer

a mathematical model that sheds some
light on this puzzle. They imagined a
simple system with two genes, each
of which comes in three versions, and
with different fitnesses (that is, survival
values) assigned to the nine possible

combinations of the two genes. From
a starting population in which all gene
combinations are equally likely, the
model found that asexual reproduction,
which gives offspring the same genes as
their parents, quickly led to the domina-

Sharing Computational
Perspectives
Computer scientists are now making intellectual
contributions to a wide range of other disciplines, including
evolutionary theory, physics, and economics.

Science | doi:10.1145/1785414.1785421	 David Lindley

In the Avida artificial life software program, bits of code act as organisms. As new
computationally beneficial genotypes evolve, their fitness rises and they sweep through
the population (hence the general height and color increase over time).

14 communications of the acm | july 2010 | vol. 53 | no. 7

news

artificial life software platform Avida, in
which bits of code act as “organisms”
able to replicate and evolve. If the mod-
el is setup so that digital organisms gain
more processing speed by being able to
add two numbers, for example, then the
ability to add appears and proliferates,
even though it was not specifically pro-
grammed in.

But if computer science is addressing
the puzzle of sex, then sex has also done
something for computer science, in the
form of genetic algorithms that address
optimization problems by evolving can-
didate solutions in a manner inspired
by genetic recombination. However,
these algorithms are not always good
at reaching the solution a computer
scientist wants. “Nature’s favorite trick
yields bad optimizers,” says Papadimi-
triou, and it is this mystery that got him

started on the research that led him to
conclude that sex promotes mixability,
not fitness. That distinction illustrates a
difference in perspective; to a computer
scientist, an algorithm has performed
its job once it has produced a solution.
To a biologist, on the other hand, a “so-
lution” is a stable configuration that
doesn’t just appear once, but survives
and prospers over many generations.
Because evolution is so complex and, by
definition, an ongoing process, “biolo-
gists have given up on having complete
solutions,” Otto says.

Solving difficult problems, of course,
is a basic aim of computer science,
whose defining characteristic is “con-
quering complexity,” says Papadimitri-
ou. The theory of computational com-
plexity, which classifies problems by
the resources needed to solve them, was
pioneered by computer scientists in the
face of general indifference from tradi-
tional mathematicians. The discovery
of depth in computation, says Papadim-
itriou, allowed computer science to give
birth to big questions, bestowing it with
an intellectual respectability that math-
ematicians now fully embrace.

Insights from computer science have
illuminated the mathematical proper-
ties of networks, broadly defined, lead-
ing to applications ranging from soci-
ology to physics. Networks can exhibit
phase transitions—changes from one
kind of macroscopic behavior to an-
other—that share deep similarities to
phase transitions in physics, such as a
liquid freezing into a solid. Belief propa-
gation, for example, is an algorithm for
performing statistical inferences that

tion of the particular gene combination
with the greatest fitness. But sexual re-
production, which switches genes from
one generation to the next, leads to a
different outcome: the gene versions
that dominate are those that give the
greatest average fitness no matter which
other gene version they are paired with.

Sex, in other words, promotes genes
that are good mixers with other genes,
and a versatile gene may be more valu-
able, from an evolutionary perspective,
than one that works very well in some
combinations but much worse in oth-
ers. Hence, the new model provides a
specific and quantitative accounting of
one useful aspect of sex.

Today, computer scientists are doing
far more than helping other scientists
run their numerical models more ef-
fectively. The theory of computation has
become such a sophisticated science in
its own right that computer scientists
are now making intellectual contribu-
tions to a wide range of other disci-
plines, including evolutionary theory,
physics, and economics.

Evolutionary Theory
Over the years, evolutionary theory has
drawn on ideas from engineering,
mathematics, and physics, so it’s hardly
surprising that computer scientists are
now also making substantial contribu-
tions. “Evolution is such a broad topic
[that] it really benefits from a range of
approaches,” says Sally P. Otto, an evo-
lutionary biologist at the University of
British Columbia. One noteworthy ex-
ample of collaboration by biologists
and computer scientists Otto cites is the

Evolutionary theory
has drawn on ideas
from engineering,
mathematics,
and physics.
Now computer
scientists are also
making substantial
contributions.

Data Management

The Digital Universe Keeps Expanding
Between 2010 and 2020, the
amount of digital information
created and replicated in the
world will grow to 35 trillion
gigabytes as the major types of
media—print, radio, TV, and
voice—make the transition from
analog to digital, according to
a new IDC report The Digital
Universe Decade—Are You Ready?

Written by John F. Gantz
and David Reinsel, the report
notes the amount of digital
information created and

replicated in the world, which
IDC calls “the Digital Universe,”
grew by 62% last year to nearly
800,00 petabytes, despite a
global recession. This year, IDC
expects the Digital Universe will
grow almost as fast to 1.2 million
petabytes. This steady growth
means the digital universe in
2020 will be 44 times as big
as it was in 2009. Meanwhile,
the number of information
containers—packets, files,
images, and so on—in 2020

will be 25 quintillion.
“Although the amount of

information in the Digital
Universe will grow by a factor of
44, and the number of containers
or files will grow by a factor of 67
from 2009 to 2020, the number
of IT professionals in the world
will grow only by a factor of 1.4,”
according to IDC.

The relevant issues that must
be considered, IDC says, include
“developing tools for research
and discovery of information as

the Digital Universe expands,
including finding ways to add
structure to unstructured data
through metadata, automatic
content tagging, and pattern
recognition”; deploying tools
for new levels of information
management and prioritized
storage; and deploying tools and
expertise for security and privacy
projection for a growing portion
of the Digital Universe in hybrid
physical/virtual environments.”

—Jack Rosenberger

news

july 2010 | vol. 53 | no. 7 | communications of the acm 15

fering ideas they can draw from, not only
in the technical matter of making mathe-
matical models work efficiently, but also
as a source of insight into the behavior
and properties of those models.

Fortnow notes that companies like
Google, Microsoft, and Yahoo! have un-
derstood the importance of economics
and computer science in developing
products and services, and have assem-
bled teams in which both types of scien-
tists work side by side. This mixing of
talents is happening at some universi-
ties, and the National Science Founda-
tion is considering a new program in
economics and computer science.

Certain ideas of computer scientists
are catching on among economists,
says Fortnow. He cites the auctioning
of sections of the radio spectrum by the
Federal Communications Commission
as the type of economic game in which
“computational issues get nasty,” be-
cause different players want different
parts of the spectrum for a variety of
exclusive purposes. Computer science
can explain how complexity manifests
itself in such a situation, and can sug-
gest mechanisms to make an auction
more orderly and useful. Thus far, how-
ever, it’s hard to make the case that
computer science has changed eco-
nomic theory in any significant ways
but, Fortnow urges, “give it time!”	

Further Reading

Otto, S.P.
The evolutionary enigma of sex, The
American Naturalist 174, S1, July 2009.

Lenski, R.E., Ofria, C., Pennock, R.T.,
and Adami, C.
The evolutionary origin of complex features,
Nature 423, 139, May 8, 2003.

Yedidia, J., Freeman, W.T., and Weiss, Y.
Understanding belief propagation and
its generalizations, Exploring Artificial
Intelligence in the New Millennium,
Lakemeyer, G., Nebel, B. (eds), Morgan
Kaufmann Publishers, San Francisco, CA,
2003.

Fortnow, L. and Gasarch, B.
Computational Complexity blog
http://blog.computationalcomplexity.org/

Kalai, E., Jackson, M.O., Lehrer, E., Palfrey, T.R.,
and Parkes, D.C. (eds.)
Games and Economic Behavior
http://www.elsevier.com/wps/locate/geb

David Lindley is a freelance science writer in Alexandria, VA.

© 2010 ACM 0001-0782/10/0700 $10.00

turns out to contain concepts closely
related to fundamental principles of
statistical thermodynamics, so that
knowledge gained by physicists has in-
fluenced how computer scientists un-
derstand some types of computation.

Economics and Game Theory
Early on, computer scientists appreci-
ated game theory and economic mod-
eling. That connection dates to at least
the 1940s and the pioneering work of
John von Neumann, but has grown
much deeper in recent decades. Econo-
mists talk of Pareto optimums, in which
no participant in a system can perform
better without making another partici-
pant worse off, and of Nash equilibria,
in which no participant can make a uni-
lateral change of strategy that will bring
an advantage, and they have proved the-
orems showing that, under certain as-
sumptions, Pareto optimums and Nash
equilibria must exist. But the existence
of such a state is no guarantee that a
realistic system can actually attain it.
For example, computer scientists have
shown that Nash equilibria are compu-
tationally intractable problems, mean-
ing not only that mathematical models
of economic markets are hard to solve,
but that the extent to which human be-
havior can move a market toward a Nash
equilibrium becomes questionable.

Moreover, Pareto optimality and
Nash equilibria do not necessarily
connote social or political desirability.
Nash equilibrium represents the best
that participants in a market can do by
pursuing a wholly selfish strategy. Pa-
padimitriou has coined the term “price
of anarchy” for the fact that Nash equi-
librium often gives participants a poorer
outcome than the best they could have
obtained through collaboration, while
work by other computer scientists not
only shows how to calculate this price,
in certain models, but also indicates
that the price may not be too high.

There are challenges, however, in
getting academic disciplines to collabo-
rate, says Lance Fortnow, a professor of
electrical engineering and computer sci-
ence at Northwestern University. “Com-
puter scientists want to impress other
computer scientists,” Fortnow says, and
economists possess the same attitude.
But cooperation between the two fields
is growing, and an increasing number of
economists see computer science as of-

Milestones

SIGSOFT
Awards
The ACM Special Interest
Group on Software Engineering
(SIGSOFT) recently presented
its highest awards to several
computer scientists whose
contributions in research,
education, and service have
shaped the development of
software engineering and
its ability to solve complex
computational problems.

Eric Gamma, Richard
Helm, Ralph Johnson, and
(posthumously) John Vlissides
received the 2010 SIGSOFT
Outstanding Research Award
for contributions to the practice
of software engineering. Their
landmark book Design Patterns
explored the capabilities and
pitfalls of object-oriented
programming and catalogued
23 specific solutions to common
design problems. Gamma
is technical director of the
Software Technology Center of
Object Technology International
in Zurich, Switzerland. Helm is a
partner and managing director
of the Boston Consulting Group
in Sydney, Australia. Johnson is
on the faculty of the University
of Illinois Urbana-Champaign
department of computer
science. Vlissides, a researcher
at IBM T.J. Watson Research
Center, passed away in 2005.

The 2010 SIGSOFT
Influential Educator Award was
presented to Leon Osterweil, a
computer science professor at
the University of Massachusetts
Amherst, for pioneering work
in graduate-level education
in software engineering. He
launched the New Software
Engineering Faculty Symposium
in 1991 at the International
Conference on Software
Engineering to encourage new
software engineering faculty
early in their careers.

Mary Lou Soffa, who chairs
the department of computer
science at the University of
Virginia, received the 2010
SIGSOFT Distinguished
Service Award for her extensive
service in the software
engineering community and her
commitment to strengthening
ties with her colleagues across
the programming languages
community. Soffa has served
on the community’s leading
editorial boards, advisory and
steering committees, and
conferences.

http://blog.computationalcomplexity.org/
http://www.elsevier.com/wps/locate/geb

16 communications of the acm | july 2010 | vol. 53 | no. 7

news

P
h

o
t

o
grap

h

 b
y

 J
o

s
h

 C
h

i
n

G
o v e r nm e nt s a tt e m p t -

i ng to strangle access to
sensitive information are
nothing new. Through-
out history, authorities

have seized printing presses, jammed
radio broadcasts, and blocked televi-
sion programming in order to control
hearts and minds. “In many countries,
censorship is a deeply entrenched
practice,” notes Andrew Lih, visiting
professor of new media at the Univer-
sity of Southern California’s Annen-
berg School for Communication and
Journalism.

However, in the age of the Internet,
the stakes are higher and the challeng-
es associated with controlling informa-
tion are greater. According to Reporters
Without Borders, a dozen countries—
including China, Iran, and Saudi Ara-
bia—are on its annual “Enemies of the
Internet” list, which is based on the
number of citizens arrested, harassed,
or threatened in the previous year for
their online activities and on how the
nations monitor the Internet and limit
access. Eleven other countries made
Reporters Without Borders’ “Under
Surveillance” list, and even nations
that trumpet freedom sometimes rely
on censorship techniques. In addition,
Reporters Without Borders states that
118 bloggers and other netizens are
currently residing in jails because of
content they have posted.

In fact, a growing number of govern-
ments use methods—including Do-
main Name System blocking, Internet
Protocol blocking, or Uniform Resource
Locator keyword filters (see “How Cen-
sorship Works” on right)—to make
popular Web sites, such as Facebook,
YouTube, and Twitter, inaccessible to
their citizens. Some also force Google
and other search engines to self-censor
their results. In most instances, the goal
is to control the political dialogue, but
authorities also use these techniques to
create favorable conditions for govern-

ment-controlled businesses and others
operating in their country.

Not surprisingly, citizens of these
countries are increasingly turning to
software tools that circumvent blocks
and filters through the use of proxy
servers or virtual private networks
(VPNs). “Governments impose blocks
and restrictions and people try and
often succeed in finding ways around
them,” observes Vadim Isakov, schol-
ar in residence at Ithaca University’s
School of Communications.

A New Era of Openness?
When the Internet achieved a tipping
point of popularity in the mid-1990s
pundits argued that it would usher in a
new era of openness. For the most part,
this prediction has proved true. How-
ever, the challenges associated with
filtering and blocking content haven’t
stopped many governments from im-
posing restrictions. China, Turkmeni-
stan, Uzbekistan, Saudi Arabia, and
Iran are among the most aggressive

censors, says Isakov.
Yet even countries such France,

Germany, Poland, Thailand, and Tur-
key have turned to censorship—some-
times forcing Google to restrict access
to sites, files, and reports. The afore-
mentioned European countries, for
example, ban materials that support
Nazi causes, and Thailand won’t allow
unflattering material—including vid-
eos—of its monarch. At the same time,
India has ordered Google to remove
content that the government flags as
“indecent, immoral, or threatening the
public order.”

Google recently brought the issue
of Internet censorship to the forefront
due to its troubled relationship with
the Chinese government. In 2006, the
search engine provider introduced a
China-based Google.cn search page
with censored results. Many observers
criticized Google for bowing to pres-
sure from the Chinese government.
By early 2009, China began blocking
Google’s YouTube site and other on-

The headquarters of Google China before the search engine company exited the country
earlier this year and started routing searches from China through its Hong Kong site.

Society | doi:10.1145/1785414.1785423	 Samuel Greengard

Censored!
Countries use Internet censorship to dominate
the political dialogue, but also to create favorable
conditions for government-controlled businesses.

news

july 2010 | vol. 53 | no. 7 | communications of the acm 17

temporary disruption,” Lih says.
Worse, the interruptions are erratic

and unpredictable. A news site such
as CNN or BBC, for example, might be
available at one moment but disappear
seconds later if a story about a sensitive
subject, such as Tibet or Tiananmen
Square, is published.

Observers say these interruptions,
particularly in China, wane with the
timing of important events attracting
foreigners, such as the Olympics or a
large international business confer-
ence. In addition, hotels, which are
typically the places where foreign visi-
tors stay or work, and Internet service
providers alter service and tweak rout-
ers in order to provide open access to
visitors. This provides a very different
experience of the country’s Internet
accessibility for foreign visitors com-
pared to that of the average citizen.

A few countries have taken far more
draconian measures. In North Korea,
for example, Internet access is almost
nonexistent, with only a few high-rank-
ing government officials and foreign
diplomats able to use it. Saudi Arabia
has blocked more than 400,000 Web
sites about religion, women’s issues,
Israel, and a slew of other topics. And
Uzbekistan blocks all content center-
ing on government corruption, criti-
cism of the authoritarian regime, eth-
nic strife, and human rights.

Yet, what sometimes appears to be
censorship is actually rooted in eco-
nomics, Lih says. “Governments block
certain services in order to give their
own companies a competitive advan-

line services. Finally, in January 2010,
Google indicated it wasn’t willing to
censor search results and was consid-
ering pulling out of China.

After a series of hacker attacks origi-
nating from China in February and
unsuccessful negotiations with the
Chinese government, Google closed
its China search site and began rerout-
ing searches from China through its
Hong Kong site. However, any searches
conducted from China come back cen-
sored. While many applauded the deci-
sion to halt censored service in China,
Google also was criticized by Chinese
officials and citizens.

In fact, no nation has received as
much public scrutiny as China and its
so-called “Great Firewall.” Only a few
fiber-optic cables—think of them as
checkpoints—manage data flowing
into the country. Nevertheless, 99% of
content flows through untouched, Lih
says. In most instances, there’s no easy
or definable way to determine exactly
what’s being blocked and what citizens
can access.

That’s because China, like many
countries, blocks sites sporadically and
in no systematic way. “For one thing,
there’s no official policy or admission
that the practice is taking place in
China. For another, there’s no docu-
mentation,” Lih says. The net effect for
those browsing the Web or attempt-
ing to connect to a blocked service is
a “Connection Reset” message that
the requested Web page or service is
unavailable. “It looks as though you’ve
encountered technical difficulties or a

Governments’ techniques for denying access to online information include:

Doman Name Service block
Name lookup fails or an Internet service provider redirects it to another site.

Internet Protocol (IP) block
This approach forbids packets to a specific host based on IP address. It usually results
in a “timed out” error message.

Uniform Resource Locator (URL) keyword block
A sensitive word or specific context contained in the destination Web page triggers
a URL block. Images and links may fail to load. This occurs frequently when using
Google and other search engines.

Web content keyword triggers block
Specific keywords result a “Connection Interrupted” error. These blocks are often
temporary and difficult to replicate. They appear to be a technical Internet problem.

How Censorship Works

Nanotechnology

Molecular
‘Robots’
Advance
A multidisciplinary team from
Columbia University, Arizona
State University, the University
of Michigan, and the California
Institute of Technology
(Caltech) have created and
programmed “robots” the size
of a single molecule that can
independently move across a
nano-scale track. First reported
in Nature, the development
marks an important
advancement in the fields of
molecular computing and
robotics, and could contribute
to the development of molecular
robots that can sense their
environment, repair individual
human cells, or assemble
nanotechnology products.

The project was led by Milan
N. Stojanovic, a faculty member
in the division of experimental
therapeutics at Columbia
University, and included Erik
Winfree, associate professor of
computer science at Caltech;
Hao Yan, professor of chemistry
and biochemistry at Arizona
State University; and Nils G.
Walter, professor of chemistry
at the University of Michigan in
Ann Arbor.

In recent years, scientists
have worked to create robots
that can reliably perform useful
tasks, but at a molecular level.
This involves reprogramming
DNA molecules to perform in
specific ways, and often involves
“researchers at the interface of
computer science, chemistry,
biology, and engineering,”
says Mitra Basu, a program
director at the National Science
Foundation, which partially
funded the project.

Now, Stojanovic’s research
team has created molecular
robotic “spiders” that can
move autonomously through
a two-dimensional landscape
and act in basic robotic
ways, demonstrating that
they are capable of starting
motion, walking, turning, and
stopping.

While the field of molecular
robotics is just emerging, it
is possible these tiny devices
may have important medical
applications. “This work one
day may lead to effective control
of chronic diseases such as
diabetes or cancer,” Basu says.

18 communications of the acm | july 2010 | vol. 53 | no. 7

news

by sending the companies an email
message and receiving a message
with a Windows- or Mac-compatible
file. In addition, individuals share ap-
plications with USB flash drives and
through peer-to-peer services.

The battle over censorship is likely
to intensify as the world becomes more
Web-centric. Despite tools for piercing
and circumventing firewalls, authori-
ties are constantly searching for new
and better ways to filter and block traf-
fic, Lih notes. “The only reason that
authorities aren’t more aggressive in
tracking down those who circumvent
restrictions is that it simply isn’t worth
the trouble,” he says. “There isn’t a
critical mass of population that’s dan-
gerous to the government.”	

Further Reading

Deibert, R.J., Palfrey, J.G., Rohozinskiand, R.,
Zittrain, J. (Eds.)
Access Denied: The Practice and Policy
of Global Internet Filtering, MIT Press,
Cambridge, MA, 2008.

Fallows, J.
“The Connection Has Been Reset,” The
Atlantic, March 2008.

Farrar, L.
Cashing in on Internet censorship, CNN.
com, February 19, 2010, http://www.cnn.
com/2010/TECH/02/18/internet.censorship.
business/index.html.

Reporters Without Borders
Enemies of the Internet, Reporters Without
Borders, March 12, 2010, http://www.rsf.
org/IMG/pdf/Internet_enemies.pdf.

Samuel Greengard is an author and journalist based in
West Linn, OR.

© 2010 ACM 0001-0782/10/0700 $10.00

tage,” he notes. As a result, numerous
YouTube and Twitter knockoffs exist
in some countries, including China,
and other countries block services
such as Skype in order to protect gov-
ernment-run telephone services and
other businesses.

Breaching Censors’ Walls
Increasingly, students, dissidents,
journalists, bloggers, human rights
advocates, and others are challenging
Internet censorship. In the digital age,
they’re fighting back with an arsenal of
tools such as proxy servers that circum-
vent filtering by masking the user and
altering the way data flows to a Web
server or by VPNs that tunnel through
to other less censorious countries.

It’s a cat-and-mouse game, to be
sure. As individuals begin download-
ing and using proxy servers, it’s com-
mon for government censors to detect
the activity and block downloads, as
well as the proxies. However, the same
applications frequently become avail-
able at alternative sites and through
peer-to-peer services. Moreover, new
proxy servers continually spring up.
But VPNs represent a different chal-
lenge, and most censoring countries
are hesitant to block them because
they’re essential for commerce and
used heavily by foreign business lead-
ers and diplomats.

Some services, like Tor, a free pro-
gram offered by the nonprofit Tor Proj-
ect, circumvent censorship by routing
communications across a distributed
network of relays located around the
world. These VPN tunnels make it pos-
sible to access blocked pages and sites,

such as Facebook or YouTube. They
also allow journalists and dissidents
to publish Web sites and other services
without revealing their location.

Another free VPN application, An-
chorFree Hotspot Shield, enables us-
ers to view otherwise censored Web
sites by converting the http protocol
to an encrypted https protocol and
providing users with a virtual iden-
tity. “Although the product was origi-
nally intended to serve as a universal
privacy and security offering, a grow-
ing number of people are looking for
a way to bypass controls and access
information freely,” says AnchorFree
CEO David Gorodyansky.

Both Tor Project and AnchorFree’s
Web sites are blocked in China. Nev-
ertheless, Gorodyansky claims that
usage in China has doubled since the
Chinese government began blocking
the site last summer. Potential users
download Tor and AnchorFree Hot-
spot Shield by visiting mirror sites or

China, like many
countries that
practice Internet
censorship,
blocks Web sites
sporadically and in
no systematic way.

Social Media

CMU Researchers Analyze Twitter Sentiments
A computer analysis of people’s
sentiments in a billion Twitter
messages during 2008 and 2009
yielded measures of consumer
confidence and presidential
job approval similar to those of
public opinion polls, according
to Carnegie Mellon University
researchers.

The findings suggest that
analyzing the text in tweets could
be an inexpensive, rapid means
of gauging public opinion on

some subjects, says Noah Smith,
assistant professor of language
technologies and machine
learning at Carnegie Mellon.
However, the tools for extracting
public opinion from the text of
social media are crude and social
media remain in their infancy,
Smith says, so the extent to which
these methods could supplement
or replace traditional public
opinion polls is unknown.

The findings were presented

in May at the Association for
the Advancement of Artificial
Intelligence’s International
Conference on Weblogs and
Social Media in Washington, D.C.

Smith and colleagues used
simple text-analysis techniques
to identify messages that
pertained to the economy or
politics and then found words
in the text that indicated if
the writer expressed positive
or negative sentiments. The

Twitter-derived consumer
sentiment measurements were
much more volatile day-to-day
than the polling data, but when
the researchers “smoothed”
the results by averaging them
over a period of days, the results
often correlated closely with
the polling data, says Brendan
O’Connor, a graduate student
in Carnegie Mellon’s Language
Technologies Institute and first
author of the study.

http://www.cnn.com/2010/TECH/02/18/internet.censorship.business/index.html
http://www.cnn.com/2010/TECH/02/18/internet.censorship.business/index.html
http://CNN.com
http://CNN.com
http://www.cnn.com/2010/TECH/02/18/internet.censorship.business/index.html
http://www.rsf.org/IMG/pdf/Internet_enemies.pdf
http://www.rsf.org/IMG/pdf/Internet_enemies.pdf

july 2010 | vol. 53 | no. 7 | communications of the acm 19

news
P

h
o

t
o

grap

h
 c

o
u

rt

e
s

y
 o

f
 B

l
air

 M
ac

I

n
t

y
r

e
 a

n
d

 St

e
v

e
n

 F
e

i
n

e
r

S
ince the emergence of the
first augmented-reality ap-
plications 20 years ago, the
field has drawn a great deal
of interest and enthusiasm,

not only from researchers working in
computer science at the cutting edge
of graphics technologies, but also from
leaders in aerospace, medicine, the
military, and a wide range of other in-
dustries and government sectors. In
augmented reality (AR), a real-world
setting or set of objects is augmented
by a computer-generated overlay. Ad-
vancements in computer vision, object
recognition, and related technologies
are increasing the level of sophistica-
tion of that overlay, and presenting en-
tirely new ways for humans to relate to
the natural world.

While a great deal of research is be-
ing conducted in this area, given the
promise of the technology to have a
major impact in industrial and con-
sumer applications, significant chal-
lenges remain, such as the accuracy
of Global Positioning System- (GPS-)

or compass-based AR applications,
the bulkiness of head-mounted dis-
plays, and other issues endemic to the
sciences and systems upon which AR
technologies rely. Still, researchers de-
veloping AR systems continue to build
increasingly compact and powerful
applications, many of which require
nothing more than a current-genera-
tion smartphone.

Examples of mobile AR applica-
tions include Layar, a “reality browser”
that retrieves point-of-interest data on
the basis of GPS, compass, and cam-
era view, and GraffitiGeo, an appli-
cation that lets users read and write
virtual Twitter-style comments on the
walls of restaurants, movie theaters,
and cafes. Both applications are avail-
able for the iPhone platform. Another
example is Goggles, a Google-created
application that allows users to search
the Web on Android phones simply by
capturing photos of landmarks or oth-

er objects. The technology also allows
users to point the phone’s camera at
local storefronts to retrieve business
information automatically with GPS
and compass data.

While the number of such mobile
applications is increasing rapidly,
AR evangelists say a killer app will be
needed to make AR technologies truly
catch on in the consumer space. Giv-
en the enormous popularity of Web-
based social networking, for example,
one killer app might come in the form
of a mobile facial-recognition applica-
tion that can automatically link the hu-
mans to their social-network profiles.
One company, The Astonishing Tribe,
has demonstrated an AR interface
concept, called Recognizr, to show the
possibilities of doing just that.

Another approach to mainstream-
ing AR is in gaming. One researcher
working in this area is Blair MacIntyre,
who directs the Augmented Environ-

Augmented-reality
applications are
increasingly compact
and powerful, and
many of them require
nothing more than
a current-generation
smartphone.

An augmented reality game called ARhrrrr! developed at Georgia Tech and the Savannah
College of Art and Design. In the game, the graphics are tightly registered to a
physical game board using an image-based feature tracker developed at Graz University.

Mainstreaming
Augmented Reality
Advancements in computer vision, object recognition, and related technologies
are leading to new levels of sophistication in augmented-reality applications
and presenting new ways for humans to relate to the natural world.

Technology | doi:10.1145/1785414.1785422	 Kirk L. Kroeker

20 communications of the acm | july 2010 | vol. 53 | no. 7

news

ments Lab at the Georgia Institute of
Technology. MacIntyre says his cur-
rent work in AR is driven mainly by
the desire to understand how to create
compelling AR experiences, interfac-
es, and tools. To that end, he and his
team build games and study them, fo-
cusing on everything from interactiv-
ity and visualization techniques to the
feel of game mechanics to the social
experiences they foster.

“I’m very driven to create tools and
platforms that will give a broad range
of people the ability to experiment
with the technology,” says MacIntyre.
“Just as we didn’t know what the Web
would be used for until people with
real problem- and design-driven goals
started trying to create applications,
the same will be true for AR.”

Tightly Registered AR Games
For now, MacIntyre is focusing on
what he calls tightly registered AR
games, in which the graphics ap-
pear to be locked onto the real world.
In the ARhrrrr! game, for example,
a handheld device’s graphics are
aligned with the physical game board
using an image tracker to determine
where the camera on the handheld
is located, relative to the board. The
system pulls video from the camera,
runs it through a vision library, and
returns an estimate about the game

board’s relative position. Using that
information, the handheld draws
graphics in the camera’s view of the
board. Those graphics remain locked
in place over a wide range of move-
ment by the player.

“We found that if the graphics are
unambiguously aligned with features
in the world, game players treat the
combined physical-virtual view as
one merged space,” he says. “As a re-
sult, they can refer to virtual content
smoothly and unambiguously, and
can collaborate or compete as they
would on a physical board game.”

MacIntyre says the biggest chal-
lenge he faces is with the limitations

of the vision-based tracking technol-
ogy that signals to the phone what
the camera’s relation is to the world.
“We are constantly struggling with
the tension between what we want
the games to do and what is tech-
nically possible to know about the
world and to track and interact with,”
he says. Because accuracy is directly
related to the quality of the inputs,
MacIntyre and his team use vision-
based tracking technology instead
of less-accurate alternatives such as
handheld-based GPS, compass, and
accelerometer sensors, which might
work for large-scale AR applications
but lack the precision needed for
tightly registered games.

Another researcher working in this
area is Steven K. Feiner, director of the
Computer Graphics and User Interfac-
es Laboratory at Columbia University.
Feiner began his work in AR by explor-
ing how the technology might be used
to assist in maintenance and repair,
and has directed projects ranging
in focus from restaurant guides and
gaming to integrating technical in-
structions directly into a task domain.
“Our overarching goal is to design user
interfaces that help people be better
at whatever they do,” Feiner says, not-
ing that his general approach in these
AR projects is to build dynamic virtual
worlds that are overlaid on and geo-

The mainstreaming
of augmented reality
now largely depends
on the ability to
manufacture and
sell the technology
profitably, says
Steven K. Feiner.

The job outlook for U.S.
college students majoring
in computer science is very
favorable, according to The
Market For Computing Careers,
a report by Joel Adams, a
professor of computer science
at Calvin College. Adam’s report
contains an analysis of data
from the U.S. Bureau of Labor
Statistics, Computing Research
Association’s Taulbee Survey,
and U.S. News & World Report.

“The U.S. Bureau of
Labor Statistics predicts that
computing will be one of
the fastest-growing U.S. job
markets in science, technology,
engineering, and mathematics
(STEM) for the foreseeable
future,” according to the report,
with “nearly three out of four

new science or engineering
jobs in the U.S. going to be
in computing.” Of these new
computing jobs, 27% will be in
software engineering, 21% in
computing networking, and 10%
in systems analysis.

The “demand for
software engineers, network
administrators, systems
analysts, and other computing-
related professionals is
exploding, but fewer and fewer
students are choosing to study
what is needed to get these
jobs,” the report says. The U.S.
Bureau of Labor Statistics,
for example, predicts, nearly
140,000 new job openings in
computing per year through
2018, with less than 50,000 CS
graduates vying for those jobs.

Meanwhile, as fewer
students enter CS, the salaries
for software engineers, network
administrators, and systems
analysts “are climbing.”
According to U.S. News & World
Report, the median salary for a
software engineer ranged from
$85,000-$92,000 in 2008, with
the best-paid 10% of software
engineers earning more than
$136,000.

“I think the most surprising
thing [in the report] is that the
U.S. Bureau of Labor Statistics is
projecting more than four times
as many new jobs in computing
than in all the traditional (non-
software) engineering areas
combined,” Adams said in
an email interview. “A second
surprise was their projection of

more than twice as many new
computing jobs per year than
there are computing graduates
at present. The third surprise
was that computing is the only
STEM discipline where the
demand for graduates outstrips
the supply.

“Calvin College is in
Michigan, which has, I believe,
the highest unemployment of
any state, but we are already
seeing the effects of this
imbalance,” says Adams. “This
past semester, we received an
average of three requests per
week from local businesses
seeking students with significant
computing skills. We don’t have
nearly enough students to meet
such demand.”

—Jack Rosenberger

Employment

U.S.’s Bright CS Job Forecast

news

july 2010 | vol. 53 | no. 7 | communications of the acm 21

directly at it. The shape of the physical
objects associated with the controls
can help the user distinguish them by
touch, as with conventional controls.

Making a Profit
With these and other AR technolo-
gies growing increasingly robust and
reliable, Feiner says the mainstream-
ing of AR technology now largely de-
pends on the ability to manufacture
and sell the technology profitably. He
says he remains convinced that fu-
ture AR technology will not be a mere
novelty; instead, he says, it will be one
of the fundamental user interface
paradigms through which humans
interact with the world. In the future
envisioned by Feiner, AR technology
will be housed not only in comfort-
able eyewear, but also in handheld
or stationary see-through displays, in
projected displays, and even some in
surfaces that are themselves displays.

Georgia Institute of Technology’s
MacIntyre shares a similar view of
the future in which humans are con-
stantly immersed in a mixed physical-
virtual world. The major challenge on
the path to a future of ubiquitous AR
technology is, of course, to develop
the complete infrastructure, from the
necessary technologies to track where
users are and what they are looking at
to the privacy and security infrastruc-

metrically registered with a user’s per-
ception of the physical world, provid-
ing information that would otherwise
be invisible.

In one example of this approach,
Feiner and his team explored how
users could more effectively control
those AR applications in which it’s
necessary to select and adjust certain
physical operating parameters, all
without using physical controls and
without diverting attention from the
task at hand. One of Feiner’s graduate
students, Steve Henderson, developed
a solution to this problem. Called “op-
portunistic controls,” the technology
locates virtual controls, such as but-
tons, sliders, knobs, and so forth, on
top of physical elements of the task
environment. For example, the AR
system might place a virtual button
on a protruding bolt or a virtual rotary
knob on a rotating cable connector.

To create an opportunistic control,
the system overlays a physical object
with a 3D widget and associates it
with a hand gesture. The depiction of
the widget is rendered in a head-worn
display, while the hand gestures are
recognized through computer-vision
algorithms performed in real time
on video captured from an overhead
camera. A separate camera captures
the video so the control can be oper-
ated even when the user is not looking

An augmented-reality application developed at Columbia University. The “opportunistic
controls” shown in this image are virtual buttons on a raised portion of an aircraft engine
housing, providing haptic feedback for a maintenance technician.

P
h

o
t

o
grap

h

 c
o

u
rt

e

s
y

 o
f

 B
l

air

 M

ac

I
n

t
y

r
e

 a
n

d
 St

e

v
e

n
 F

e
i

n
e

r

ture to ensure that users can trust the
system, and also to ensure that user
privacy and safety are not violated. “I
think the technology has a long way
to go before we can experience such
constant immersion,” says MacIntyre.
“But we will begin getting a taste of it
in the very near future.”

With the goal of nudging the re-
search community in that direction,
one of MacIntyre’s projects is a stan-
dards-based platform for mobile AR,
the aim of which is to do for AR what
the early decoupled client-server ar-
chitecture did for the Web. In contrast
to cloud computing, AR applications
currently require dedicated programs
running on client devices. MacIntyre’s
idea is to create a general-purpose AR
browser and a corresponding collec-
tion of cloud-based technologies to
allow anyone with a server to create
and deploy mobile AR apps without
requiring users to install anything.

“We need to start developing open
standards for AR applications, so a
wide variety of people, companies, and
organizations can create and deploy
these applications,” MacIntyre says.
“I believe these application environ-
ments and open standards will have
the biggest impact on the blossoming
of AR as a widely used technology.”	

Further Reading

Barfield, W., and Caudell, T. (eds.)
Fundamentals of Wearable Computers and
Augmented Reality, Lawrence Erlbaum,
Mahwah, NJ, 2001.

Bimber, O., and Raskar, R.
Spatial Augmented Reality: Merging Real
and Virtual Worlds, A.K. Peters, Natick, MA,
2005.

Feiner, S.K.
The importance of being mobile: some
social consequences of wearable
augmented reality systems, Proceedings
of the 2nd IEEE and ACM International
Workshop on Augmented Reality, 1999.

Hainich, R.R.
Augmented Reality and Beyond, Booksurge,
Charleston, SC, 2009.

Haller, M., Billinghurst, M., and Thomas, B.
Emerging Technologies of Augmented
Reality: Interfaces and Design, Idea Group
Publishing, Hershey, PA, 2006.

Based in Los Angeles, Kirk L. Kroeker is a freelance
editor and writer specializing in science and technology.

© 2010 ACM 0001-0782/10/0700 $10.00

22 communications of the acm | july 2010 | vol. 53 | no. 7

news

news

july 2010 | vol. 53 | no. 7 | communications of the acm 23

P
h

o
t

o
grap

h

 b
y

 R
ic

h

ard

 M

o
rg

e

n
s

t
e

i
n

I
n our age of hyperspecializa-
tion, it’s often said that no one
can be a Renaissance man. In-
deed, Charles P. Thacker, win-
ner of the 2009 ACM A.M. Tur-

ing Award, insists he isn’t one. But, he
notes, “I can lurk at a lot of different
levels. I have designed chips, I can de-
sign logic, I can design systems, and I
can write software up to and including
user interfaces.”

While “lurking” in these distinct
areas for four decades, Thacker has
led the design of an astonishing array
of technologies, from personal com-
puters to networking technology to
tablet PCs. (An interview with Thack-
er, “From Single Core to Multicore,”
appears on p. 112.) Today, he is best
known for his invention of the Alto, a
personal computer, at Xerox Palo Alto
Research Center (PARC) in 1970.

“The Alto was the world’s first per-
sonal computer,” says David Patterson,
a professor of computer science at the
University of California, Berkeley and
a computer hardware pioneer him-
self. “It included everything we think
of as being in a PC today: a high-qual-
ity graphical user interface, networked
computing, laser printing, and the
mouse. It, in turn, enabled the inven-
tion of software at PARC that shapes
our world today: window systems,
WYSIWYG editing, drawing and paint-
ing, email clients, graphical CAD tools,
and clients for file and print servers.

“For those who were not around
at the time, it’s hard to put into per-
spective what a breakthrough this
was and how much it shaped the
computer industry,” Patterson adds.
“The notion that you would build a
powerful computer for just one per-
son was a radical one.”

Thacker also co-designed Ethernet
local area network technology at PARC
in the 1970s and the Firefly multipro-

cessor workstation and fault-tolerant
networks at Digital Equipment Cor-
poration in the 1980s. “These things
have a common thread,” Thacker says,
“which is they are part of a distributed
system—they don’t stand in isola-
tion.” The Alto was a “nice” single-user
machine, he says, but its “real power”
was unleashed by networking.

Thacker cites several secrets for his
decades of continual success: strive for
simplicity, build a kit of reusable tools,
insist on sound specifications, think
broadly, and make sure your collabora-
tors also succeed.

Of simplicity, he says, “A lot of peo-
ple think mastering complexity is the
goal. But once you have gotten your
Master of Complexity merit badge, you
don’t have to keep winning it. Com-
plexity is the enemy of computer sci-
ence, and it behooves us, as designers,
to minimize it.”

Thacker is accomplishing exactly
that in his role as a Technical Fellow
at Microsoft Research. He’s designing
simple multicore computers, using
single field-programmable gate arrays.
The computers are used to conduct re-
search in multicore systems, and are
much faster than simulators written in
software and much cheaper than build-
ing real multicore chips, he says. Their
simplicity makes it easy for Microsoft
and university researchers to evaluate

different system designs and methods
of programming systems with multiple
processor cores.

Early in his career, Thacker built
his own computer-aided design tool,
which he has rewritten several times to
take advantage of new programming
languages. His toolkit also includes
reusable algorithms and software mod-
ules developed by himself and others.

Thacker says he wrote specifications
for the Alto before designing it, a step
that is too often ignored today. “What
software engineers frequently do is sit
down with a list of features to add to a
system,” he says. “That’s quite different
from a specification, because the fea-
tures might be relatively undefined.”

Thacker points to the phenomenal
success of IBM’s System/360 line of
mainframes and says, “The best speci-
fication ever written, in my view, was
the System/360 Principles of Operation,
which described the interface be-
tween the hardware and software.”

As for advice for young computer sci-
entists, Thacker says, “Try to be broad.
Learn more math, learn more physics.”
He modestly calls himself “a jack of all
trades and a master of some.”

Thacker has succeeded, in part, by
working with “really smart guys,” says
Gordon Bell, a Microsoft principal re-
searcher. Thacker, he says, “basically
cordons off a nice-sized, hard-but-
doable, and really-useful-to-be-solved
problem, and then he works with a
small team to carry it out.”

Thacker says it’s important in cross-
specialty projects to motivate team-
mates. “I’ve been fairly successful at
what I call Tom Sawyering,” he says.
“It’s the idea that if you want to get your
fence painted, you trade something of
value with the people with whom you
work. You have to be committed to
their success as well as your own.”	

Gary Anthes is a technology writer and editor based in
Arlington, VA.

© 2010 ACM 0001-0782/10/0700 $10.00

Committed to Success
Charles P. Thacker talks about the importance of simplicity,
reusable tools, thinking broadly, and his practice of Tom Sawyering.

Milestones | doi:10.1145/1785414.1785424	 Gary Anthes

“Complexity is
the enemy of
computer science,
and it behooves us,
as designers,
to minimize it.”

Charles Thacker with the circuit board of
his latest project—the BEE3 computer-
architecture hardware platform.

24 communications of the acm | july 2010 | vol. 53 | no. 7

news

P
h

o
t

o
grap

h

 b
y

 P
e

t
e

r
 B

u
ra

n

z
o

n

E
ric Brewer has received plen-
ty of accolades during his ca-
reer, but his latest award is
the first one that has moved
him to tears.

Brewer, a professor of computer
science at the University of Califor-
nia, Berkeley, is the recipient of the
2009 ACM-Infosys Foundation Award
in the Computing Sciences for his
contributions to the design and de-
velopment of highly scalable Inter-
net services. Brewer says his emotion
about being named the winner stems
partially from the fact that the ACM-
Infosys Foundation Award considers
accomplishments across the entire
field of computer science. He says,
with a bit of understatement, “That’s
a pretty big group.”

It might be impossible to overstate
Brewer’s influence upon making com-
puter science accessible to that “pret-
ty big group.” His research on cluster
computing in the early 1990s led to
the concept of scalable servers capa-
ble of simultaneously serving millions
of users. His pioneering work as CEO
of Inktomi in the mid- to late 1990s
greatly advanced Internet search and
improved network performance.

Brewer’s latest project, called TIER
(Technology and Infrastructure for
Emerging Regions), which focuses on
designing and deploying low-cost wire-
less infrastructure in the developing
world, may have the same disruptive
impact on traditional views of econom-
ic development policy that his earlier
work had on computing architecture.

“The traditional model of economic
development has been very top-down—
‘Take $100 million to build a dam,’ ”
Brewer notes. “That’s had mixed suc-
cess and is also very expensive. But
things that have worked bottom-up, in
particular cell phones, didn’t have any
top-down funding at all.”

Brewer is literally putting his
$150,000 ACM-Infosys Foundation
Award where his mouth is by invest-
ing it in TIER, which has projects
under way in Cambodia, Ghana, Phil-
ippines, and elsewhere. And, just
as his work on clusters in the early
1990s served as a bridge between

contemporary research that explored
clusters as supercomputers and the
nascent ubiquitous demand for net-
worked data, he hopes the TIER proj-
ect will help blend the discipline of
computer science with the economic
and social benefits, such as improved
public health, presented by low-cost
wireless networks.

“Is computer science open minded
enough to allow this kind of work to
count?” he asks. “That’s not a given,
and a lot of my talks in the last five
years have been evangelizing why this
topic should be inside the fold.”

Brewer, who made and lost a bil-
lion dollars during the dot-com bub-
ble and burst, says the experience
raised his aspirations about how he
could influence the world, and that in-
novative ideas, particularly those nur-
tured in the risk-tolerant environment
of tenured scientists, don’t have to be
backed by a large bankroll.

“When I had a billion dollars,”
Brewer says, “I was thinking about
what to do with it, and surely would
love to have it back, but when I lost
it, I did realize that money wasn’t the
only way to try to affect all the people I
wanted to affect. I think it’s harder to
do without the money, but it’s certain-
ly more replicable—it’s something
that everyone can do.”

In particular, Brewer says, the vast
possibilities offered by inexpensive
cloud computing and the bootstrap-
to-titan ethos of modern computer
science means almost limitless op-
portunities for today’s students and
scientists.

“There aren’t many ways to affect a
billion people,” he says. “I like the idea
that computer science can do it.”	

Gregory Goth is an Oakville, CT-based writer who
specializes in science and technology.

© 2010 ACM 0001-0782/10/0700 $10.00

Milestones | doi:10.1145/1785414.1785425	 Gregory Goth

Eric Brewer:
Change Agent
Eric Brewer’s latest project involves designing and deploying
low-cost wireless infrastructure in developing regions.

“There aren’t
many ways to affect
a billion people.
I like the idea that
computer science
can do it.”

Eric Brewer, winner of the 2009 ACM-Infosys
Foundation Award in the Computing Sciences.

july 2010 | vol. 53 | no. 7 | communications of the acm 25

news
P

h
o

t
o

grap

h
 b

y
 C

h
ri

s

 M
a

l
c

o
l

m

D
e le gates from Africa, Eu-
rope, and North America
gathered at the University
of Edinburgh in April to
discuss the latest research

in computer science and listen to in-
novative project proposals for the U.K.
Computing Research Committee’s
Grand Challenges program.

Professor Dame Wendy Hall, presi-
dent of ACM and professor of comput-
er science at the University of South-
ampton, opened the ACM-BCS Visions
of Computer Science 2010 conference,
alongside British Computer Society
President Elizabeth Sparrow.

Hall discussed the importance of
diversifying ACM beyond the U.S. and,
after welcoming more than 100 con-
ference delegates, handed over the
proceedings to computer scientist Mi-
chael Foreman of the School of Infor-
matics at the University of Edinburgh.
Foreman paid tribute to the recently
deceased Robin Milner, eminent com-
puter scientist, co-creator of the Grand
Challenges, and ACM A.M. Turing
Award winner, and proposed a Milner
symposium next year to celebrate the
scientist’s work.

Ross Anderson, professor of secu-
rity engineering at the University of
Cambridge, delivered the first keynote
speech, “The Dependability of Com-
plex Socio-Technical Systems.” Ander-
son described the evolutionary con-
vergence of branches of knowledge,
including philosophy, mathematics,
and economics, into computing, and
questioned how it should advance.
“We are responsible for everything,”
said Anderson, “and must deal with
the global-scale socio-technical sys-
tems that are emerging and will be the
way the world works.”

The second keynote speaker, Nicolò
Cesa-Bianchi, professor of computer
science at the University of Milan,
discussed “The Game-Theoretic Ap-
proach to Machine Learning and Ad-
aptation.” To consider whether game

theory could complement or surpass
statistics in the analysis of algorithms
that learn and adapt, Cesa-Bianchi
presented research that replaces sta-
tistics to describe an interaction be-
tween a learning agent and a changing
environment with a repeated game
between an agent and environment.
This approach, he says, is particularly
appropriate to machine learning in ar-
bitrary and adversarial environments.

The other keynote speakers were
Jon Kleinberg, professor of computer
science at Cornell University, who pre-
sented “Exploring the Structure of On-
line Social Networks: the Roles of Posi-
tive and Negative Links in Network
Interaction,” and Barbara Liskov, a
professor at the Massachusetts Insti-
tute of Technology and ACM A.M. Tur-
ing Award winner, who discussed “The
Power of Abstraction.”

Among the conference’s sessions
covering subjects from ubiquitous sys-
tems to theoretical computing and the
digital economy, one proved particu-
larly timely. As a massive cloud of ash
from Iceland’s Eyjafjallajokull volcano
shut down air traffic across Europe,
Ken Anderson, associate professor of
computer science at the University of
Colorado, outlined a vision for tech-
nology-mediated support for public
participation in mass emergencies and
disasters.

Following Visions 2010, Hall intro-
duced the Grand Challenges session.
“Things have changed,” said Hall,
“and our work has become more inter-
disciplinary, feeding into areas such
as health care, climate change, and se-
curity. We need to make evolutionary,
not revolutionary, change, but a new
list of Grand Challenges will emerge.”

Eighteen proposals for the Grand
Challenges, a program supported by
the U.K. Computing Research Com-
mittee, were added to nine existing
projects, with a decision on the pro-
posals expected over the summer. The
candidates included a project using
software engineering to achieve zero-
carbon buildings by 2019, a program
to develop information and communi-
cation technologies for a global popu-
lation of nine billion people in 2050,
and five proposals about health care
and independent living. 	

Sarah Underwood is a technology writer based in
Teddington, U.K.

© 2010 ACM 0001-0782/10/0700 $10.00

“Things have
changed, and
our work has
become more
interdisciplinary,”
notes Wendy Hall.

Visions of the Future
ACM joined forces with the British Computer Society
to deliver its first academic research conference in Europe.

Conference | doi:10.1145/1785414.1785426	 Sarah Underwood

The ACM-BSC Visions conference was held
at the University of Edinburgh Informatics
Forum.

Introducing:

XRDS delivers the tools, resources, knowledge, and connections
that computer science students need to succeed

in their academic and professional careers!

The All-New XRDS: Crossroads is the official
magazine for ACM student members featuring:

� Breaking ideas from top researchers and PhD students

� Career advice from professors, HR managers, entrepreneurs, and others

� Interviews and profiles of the biggest names in the field

� First-hand stories from interns at internationally acclaimed research labs

� Up-to-date information on the latest conferences, contests, and submission
deadlines for grants, scholarships, fellowships, and more!

XRDS.acm.org

The ACM Magazine for Students

Also available
The All-New XRDS.acm.org

XRDS.acm.org is the new online hub of XRDS
magazine where you can read the latest news
and event announcements, comment on articles,
plus share what’s happening at your ACM chapter,
and more. Get involved by visiting today!

ACM_XRDS_Ad_Final.indd 1 4/21/10 12:41:51 PM

http://XRDS.acm.org
http://XRDS.acm.org
http://XRDS.acm.org
http://www.acm.org

v
viewpoints

july 2010 | vol. 53 | no. 7 | communications of the acm 27

I
l

l
u

s
T

R
A

T
I

o
n

 b
y

 C
A

R
l

 W
I

e
n

s

Technology strategy
and Management
outsourcing Versus
shared services
Choosing between outsourcing and shared services has
signifi cant implications for long-term corporate strategy.

DOI:10.1145/1785414.1785427	 Mari	Sako	

T
wo diaMeTriCaLLY opposed

perspectives continue to
coexist in IT and other busi-
ness service functions. One
camp argues in favor of

shared services, wherein the IT orga-
nization becomes the internal service
provider to the rest of the company.
The other camp promotes outsourc-
ing: the delivery of IT services all done
under one roof but with that roof lo-
cated somewhere other than at the
company. Proponents do not agree on
which is better. This column examines
the background that led to the adop-
tion of these practices and the reasons
for this disagreement.

Most readers know about IT out-
sourcing, and many readers are aware
of H. Ross Perot, the Texan who left
IBM to found Electronic Data Systems
(EDS) in 1962. His idea was to offer
technology as a service by not merely
equipping, but also operating, custom-
er data centers. Following his success,
others joined to extend outsourcing

from IT services to a wide array of busi-
ness services in fi nance and account-
ing, human resources, procurement,
and logistics. Technology—a combi-

nation of computers, software, and
networks—underpins these support
operations.

The 1990s saw the birth of mega-

28 communications of the acm | july 2010 | vol. 53 | no. 7

viewpoints

deals, such as the seven-year $600
million human resource outsourcing
(HRO) deal between the oil giant BP
and a start-up provider, Exult.1,5 But is
it really only third-party providers that
can offer superior service at lower cost?
Is it not possible for a company to per-
form equally well in its internal shared
services by reducing duplication of
processes and facilities and by reor-
ganizing and sharing assets? I argue
that a company can achieve similarly
good performance levels in its internal
shared services operation, under cer-
tain circumstances.

Companies outsource for several
reasons. Cost saving may be the ulti-
mate reason. But the means by which
this is achieved vary, from introduc-
ing new technology, improving ser-
vice quality, transforming fixed invest-
ments into variable costs, to freeing
management time to focus on core
competencies. Outsourcing is about
the make-or-buy decision, and the term
applies to a broad range of procure-
ment activities in manufacturing (for
example, automobile companies pur-
chasing transmission components) or
services (for example, a retailer sourc-
ing TV advertising). But when applied
to business (including IT) services, two
essential features are highlighted.

Outsourcing as Corporate
Restructuring
One feature is that outsourcing of busi-
ness services combines two decisions.
One is the make-or-buy decision con-
cerning the corporate boundary; the
other is the restructuring of the inter-
nal corporate hierarchy. Corporations’
organization structure can be a source
of competitive advantage. As recounted
by the business historian Alfred Chan-

dler, modern corporations have been
restructuring constantly to align struc-
ture to strategy.3 In reality, it is easier
said than done for a global corporation
to design and implement an appropri-
ate multidimensional matrix structure
to meet the competing demands of dif-
ferent products, corporate functions,
customers, and countries.4 The cre-
ation of shared services and outsourc-
ing are both part of this search for an
appropriate organizational design, giv-
ing primacy to corporate functions over
other considerations, often accompa-
nying mergers and acquisitions (M&A).
M&A create duplicated functions pre-
viously belonging to two separate cor-
porate entities. Attempts at eliminat-
ing the waste of duplication trigger
the creation of shared services. More
likely than not, such streamlining re-
quires some central direction from the
corporate headquarters. Without such
centralized control, the intended stan-
dardization and efficiency gains may
not be realized.

The contrasting experiences at
Procter & Gamble (P&G) and Unile-
ver illustrate this point.a Under A.G.
Lafley’s leadership, P&G created an
internal global shared services unit
in 1999 as part of the ‘Organization
2005’ restructuring initiative. It gave
itself five years to pull all essential
corporate functions—finance and ac-
counting, human resources, and later
IT—away from regional and divisional
companies into a single Global Busi-
ness Services (GBS) operation. A state-
ment by the GBS head, Mike Power,
that “everyone has done something,
but no one has done everything” illus-
trates the radical nature of this con-
solidation. Central direction from P&G
headquarters in Cincinnati was essen-
tial in deploying SAP-based ERP sys-
tems throughout the company before
such reorganization took place. By the
time P&G’s shared services were out-
sourced, their operations were drasti-
cally transformed and streamlined.
This experience led Filippo Passerini,
Chief Information Officer, to remark:
“we believe that there is a sequence in

a	 See detailed comparisons in H. Gospel and
M. Sako, “The Unbundling of Corporate
Functions: The Evolution of Shared Services
and Outsourcing in Human Resource Man-
agement.” Industrial and Corporate Change,
(Mar. 2010), 1–30.

this process. You outsource only when
you are internally optimized.”

In short, centralized firms are bet-
ter placed to move quickly to efficient
shared services. Conversely, divisional
autonomy is likely to get in the way
of implementing standardized pro-
cesses. So, what if a corporate head-
quarters does not have central con-
trol? This is where outsourcing comes
in as a first port of call. Unilever, the
Anglo-Dutch firm, has lived with char-
acterization as a loose federation of
national companies with strong coun-
try managers who had little interest
in global shared services. The human
resource (HR) function did, however,
consider outsourcing at the global lev-
el, and regarded the fragmentation of
IT infrastructure as a hindrance in im-
plementing it. With such cultural and
technical barriers to creating in-house
shared services, global HR outsourc-
ing to Accenture was used as a trigger
to transform HR processes, in a “throw
it over the fence” or “lift and shift” ap-
proach, with an expectation of rapid
cost reductions through scale econo-
mies, labor arbitrage, and increasing
return on assets. Unilever could not
have transformed without outsourc-
ing, and outsourcing was an integral
concomitant of transforming the or-
ganization. Outsourcing is indeed a
corporate turnaround trigger. In such
applications of outsourcing, both the
risks and potential rewards are high.

Thus, existing corporate structure
affects the firm’s choice between out-
sourcing and shared services. More-
over, the creation of internal shared
services first before outsourcing leads
to greater retention of capabilities in-
house; by contrast, a path to outsourc-
ing, without an interim step of internal
shared services, engenders greater reli-
ance on suppliers’ capabilities. In fact,
the first path is about “selling” shared
services assets and capabilities to pro-
viders, while the second path is about
“buying in” such capabilities from pro-
viders. Some argue that in immature
markets without competent providers,
firms have no choice but to create inter-
nal shared services. There may well be a
timing effect, with pioneers opting for
the introduction of shared services and
followers opting for outsourcing. But
can shared services be an end point,
without proceeding to outsourcing?

Existing corporate
structure affects the
firm’s choice between
outsourcing and
shared services.

viewpoints

july 2010 | vol. 53 | no. 7 | communications of the acm 29

Outsourcing as Relational
Contracting: Trust and Incentive
The answer to the question of shared
services as an end point without pro-
ceeding to outsourcing depends on
the second key feature of business
service outsourcing, and that is the
nature of “relational contracting.” For
example, in an M&A deal the signing
of the contract closes the deal. By con-
trast, in outsourcing, such “closing” is
just the start of a long-term collabora-
tive relationship between two firms.
In order for such a relationship to op-
erate well, it relies on trust and incen-
tives. In fact, incentive and trust may
be structured better in outsourcing in
some cases, but in internal shared ser-
vices in other cases.

Organizational economists define
a relational contract as a contract that
is incomplete (due to difficulty of full
specification) and informal (due to
difficulty in third-party enforcement,
for example in courts).2,6 A multiyear
business service outsourcing deal is
a perfect example of a relational con-
tract. It is typically incomplete due to
two reasons. First, future contingen-
cies are difficult to specify in the face
of unknown market conditions and
new technology in several years’ time.
Second, quality of business services to
be delivered is sometimes difficult to
describe and verify. Indeed, both par-
ties may wish to retain a certain de-
gree of post-contractual flexibility. If a
contract is incomplete, then it is also
difficult for a third party to enforce it.
Parties to the contract must rely on al-
ternative enforcement mechanisms.
One of these mechanisms is to rely on
trust as a social norm to work things
out through discussion, with social
sanctions in the event of untrust-
worthy or unethical behavior.b This
works well in stable business commu-
nities, and where parties are chosen
for their “cultural fit.”

Another enforcement mechanism
is incentive alignment. Service Level
Agreements (SLAs) are employed to
secure high performance in outsourc-
ing and shared services. With stable
processes, performance is easily mea-
sured, and the bonus and penalty re-
gime gives a good incentive for provid-

b	 There is a large body of work on the topic of
trust in business relations.

ers to perform well. But the credibility
of the client firm to commit to paying
a bonus is different for external and
internal providers. Outsourcing faces
“high-powered” incentives, with the
client able to credibly threaten to ter-
minate the contract when the provider
underperforms; with an internal SLA,
it is not easy to do anything if the in-
ternal shared services center does not
perform. And what’s worse, the inter-
nal operation is often a cost center
rather than a profit center. At the same
time, whenever a provider is offering
standardized processes that could be
delivered to more than one client, SLA
acts as a powerful incentive to perform
well for a specific client offering the
bonus. By contrast, with processes
that are customized for a specific cli-
ent, SLA does not create as powerful
an incentive.

To summarize, the following is the
implication from a perspective based
purely on incentives. Outsourcing
works best to make an external provid-
er truly accountable for performance,
whenever processes are standardized
and stable for easy SLA specification.
By contrast, an internal shared ser-
vice is a better option in cases where
processes are either customized or
being transformed. The incentive-
based argument highlights the fact
that parties must rely more on other
mechanisms such as trust if outsourc-
ing is applied to processes requiring
customization or transformation.
Thus, an optimal degree of contrac-
tual incompleteness—somewhere be-
tween a “blank check” and a “nail it all
down” level of detail—depends on the
task at hand (service delivery versus

transformation) as well as the avail-
ability of incentive alignment mecha-
nisms and trust.

Conclusion
The jury is still out on whether or not
outsourcing or shared services is ulti-
mately the best service delivery model.
I have argued in this column that, amid
all the management fads and fash-
ion, there is more than one way to do
things, and that each way has its mer-
its and demerits, with associated risks
and rewards.

Outsourcing and shared services
are both part of organization redesign
to give primacy to the efficiency of cor-
porate functions. Compared to shared
services, outsourcing is a combination
of decisions about the firm’s external
boundary and its internal structure.
Outsourcing may take place at differ-
ent stages in corporate activities, either
as an initial trigger to bring about fun-
damental restructuring in a “big bang”
mode or a next step after a period of
internal process transformation. Rela-
tional contracts, if well designed, can
service the maintenance of high-pow-
ered incentives to ensure the delivery
of high-quality service. However, the
firm may wish to retain internal shared
services without outsourcing if it an-
ticipates instituting further business
changes in structure and scope of busi-
ness services. The choice between out-
sourcing versus shared services is not
simply a matter of timing (in mature
versus immature markets). It is more
crucially a matter of long-term corpo-
rate strategy.	

References
1.	 Adler, P.S. Making the HR outsourcing decision. MIT

Sloan Management Review (2003), 53–60.
2.	B aker, G.R., Gibbons, R., and Murphy, K.J. Relational

contracts and the theory of the firm. Quarterly Journal
of Economics 117, 1 (Jan. 2002), 39–84.

3.	 Chandler, A. Strategy and Structure. MIT Press,
Cambridge, MA, 1962.

4.	 Galbraith, J.R. Designing Matrix Organizations
that Actually Work: How IBM, Procter & Gamble,
and Others Design for Success, Jossey-Bass, San
Francisco, CA, 2009.

5.	L awler III, E.E. et al. Human Resources Business
Process Outsourcing: Transforming How HR Gets Its
Work Done. Jossey-Bass, San Francisco, CA, 2004.

6.	 Macneil, I.R. Contracts: Adjustments of long-term
economic relations under classical, neoclassical, and
relational contract law. Northwestern University Law
Review, 74 (1978), 854–906.

Mari Sako (mari.sako@sbs.ox.ac.uk) is Professor of
Management Studies in Said Business School at the
University of Oxford, U.K.

Copyright held by author.

There may well
be a timing effect,
with pioneers opting
for the introduction
of shared services
and followers opting
for outsourcing.

mailto:mari.sako@sbs.ox.ac.uk

30 communications of the acm | july 2010 | vol. 53 | no. 7

V
viewpoints

P
h

o
t

o
grap

h

 b
y

 R
u

i
 V

i
e

ira

/A

P
 p

h
o

t
o

doi:10.1145/1785414.1785428	 Jason Borenstein

Computing Ethics
Work Life in
the Robotic Age
Technological change results in changes in
expectations, in this case affecting the workplace.

R
obots are being designed
to perform a broader ar-
ray of work-related tasks.
Global economic hard-
ships may be (temporarily)

causing the demand for industrial ro-
bots to decline,4 but improvements in
artificial intelligence and the drive for
efficiency will likely encourage com-
panies to develop and use increasing
amounts of robotic workers. Though
the justification for automation is
often couched in the language of lib-
eration, this oversimplifies the com-
plexities associated with technological

change. Merely because technology
is well designed from an engineering
perspective, it does not follow that
society’s problems are solved. This is
not to say that efforts to create robotic
workers must stop, but the robotics
community must be diligent in deal-
ing with emerging ethical issues. De-
sign pathways must be selected that
either mitigate or prevent the nega-
tive consequences of using robots in
the workplace. Otherwise, troubling
historical occurrences, such as the
decimation of certain segments of the
work force, might be repeated.

With each significant technologi-
cal change, visions of how improved
and efficient our lives will become are
typically offered. To some degree, the
promise that we will be “liberated”
from performing repetitive and mun-
dane tasks has held true. Most of us
do not mourn the passing of having
to wash clothes or dishes by hand.
Yet expectations in both our personal
and professional lives tend to shift
correspondingly, which in many ways
counterbalances the “liberating” fea-
tures that technology offers. Ruth
Schwartz Cowan recognized years ago
that the introduction of electronic de-
vices into the home did not free wom-
en from the burden of doing house-
hold chores. As Cowan states, “What
a strange paradox that in the face of
so many labor-saving devices, little
labor appears to have been saved!”1
In short, increasing expectations ab-
sorbed all of the extra time that was
supposed to be freed up.

Similarly, we need to seriously con-
sider how the increased use of robots
will alter workplace expectations.
For instance, if robots can help surgi-
cal procedures to be completed more
rapidly, will demands on surgeons
increase so they will have to perform
more procedures per day? Expectations
in terms of what it means to be a “good”
professional are also likely to change,
especially if a robot’s error rate is lower
than a human’s. Briefly put, we should
be wary of predictions that robots will
be our liberators considering how the

A view of a robot arm used in world’s first remote heart operation performed at Glenfield
Hospital in Leichester, U.K., on April 28, 2010.

V
viewpoints

july 2010 | vol. 53 | no. 7 | communications of the acm 31

different task when we believe (perhaps
falsely) that we can trust someone or
something else to deal with the task at
hand.b Returning to the issue of health
care, will nursing home staff be less at-
tentive if a robotic assistant is placed in
a resident’s room? The more reliable we
think automated systems are, the more
likely it is our attention will stray. What
complicates matters is that this type
of behavioral shift might not be con-
sciously detected. Hence, it would be
wise to temper the confidence that us-
ers place in robots and other automated
systems, especially when people could
be significantly harmed. This could be
accomplished in part by ensuring that
risks are transparently presented to
users. To that end, scientists and engi-
neers should reflect on their ethical re-
sponsibilities to communicate with the
public about a robot’s capabilities and
limitations, and not merely leave it to
marketers, sales departments, and oth-
ers to fill this role.

Conclusion
Ethical concerns about integrating ro-
bots into the workplace are becoming
increasingly pronounced. Again, the in-
tention here is not to stop innovation.
Rather, the hope is to inform the design
process. Ideally, the robotics commu-
nity will select design pathways that
mitigate the associated concerns and
thereby enhance the public’s lives. 	

b	 Placing too much confidence in technology, of-
ten at the expense of other sources of informa-
tion, seems to be a growing problem with GPS
in automobiles; see for example, Is your GPS
navigator a friend or foe?” The Sydney Morning
Herald, (Jan. 12, 2010); http://www.smh.com.au/
executive-style/gadgets/is-your-gps-navigator-a-
friend-or-foe-20100112-m4ei.html

References
1.	 Cowan, R.S. More Work For Mother: The Ironies Of

Household Technology From The Open Hearth To The
Microwave. Basic Books, 1983, 44.

2.	J oy, B. Why the future doesn’t need us. Wired 8, 4 (Apr.
2000).

3.	S parrow, R. and Sparrow, L. In the hands of
machines? The future of aged care. Minds and
Machines 16, 2 (May 2006), 141–161.

4.	 Tabuchi, H. In Japan, machines for work and play are
idle. The New York Times (July 12, 2009); http://www.
nytimes.com/2009/07/13/technology/13robot.html

Jason Borenstein (borenstein@gatech.edu) is the director
of Graduate Research Ethics Programs in the School of
Public Policy at Georgia Tech in Atlanta, GA.

The author would like to thank Rachelle Hollander, Keith
W. Miller, and the anonymous reviewers for their helpful
insights and guidance.

Copyright held by author.

typical workweek does not seem to be
getting shorter or less demanding in
the digital age.

The U.S. military is enjoying the
benefits of robots since they can com-
plete “dull, dirty, or dangerous” tasks,
and their labor is very useful in the ci-
vilian realm as well. Yet automation
can eliminate job opportunities and
usually causes the demographics of the
work force to be significantly altered in
a relatively short amount of time. Em-
ployers find robots to be rather entic-
ing since they do not receive benefits or
request vacation time. Through the de-
sign choices they make, scientists and
engineers play a key role in determin-
ing the kinds of employment practices
that can and will transpire.

Employment Impacts
and Implications
If categories of jobs do indeed vanish as
a result of robots, will the relevant skills
of displaced workers be transferred to
another application or will those skills
be rendered obsolete? This concern
is not unique to robots. But what may
be a new variation now is that the jobs
available to humans may be drastically
reduced as computers, the Internet,
and robots replace humans in employ-
ment sectors that used to be thought of
as immune to automation. At present, it
is fairly difficult for people to find work
that is not connected in some way to
these technologies. This development
might not be conducive to the flourish-
ing of each person’s respective talents,
and robots are likely to exacerbate this
situation. Also, the type of skills that will
be in demand if and when the robotic
age takes hold might be obvious in some
ways but not so apparent in others.a

The impact of robotic workers can
and will extend beyond the elimina-
tion of labor-intensive jobs, which
captures a key reason why the ethical
dimensions of robots seem to be draw-
ing increased attention. It is not only
possible to eliminate “dangerous” and
“boring” work but at least some jobs
requiring specialized expertise, such

a	 For example, in Wired for War, P.W. Singer
discusses how cooks might have more job se-
curity than military pilots because they can
prepare food in creative ways. In the civilian
realm, he reassures hairstylists by suggesting
their specific abilities may keep them em-
ployed; Penguin Press, NY, 2009, 130–132.

as being a surgeon, may start to dis-
appear. A decade ago, Bill Joy, the co-
founder of Sun Microsystems, famous-
ly warned against this.2 Even if we don’t
share Joy’s apprehension about the fu-
ture of robotics, we can still appreciate
the perils of trying to replace “uniquely
human” abilities such as critical think-
ing and intuition.

To illustrate this point, we can look
at the robots being created to assist with
the health care needs of elderly popula-
tions. An outgrowth of this effort is that
it could subtly or perhaps dramatically
change how nursing homes function. In
principle, robots could free up the time
of nursing home staff; for example, a ro-
botic assistant can provide medication
reminders or warnings if a resident is
in danger. Such a robotic counterpart
might enable human workers to be
more caring and productive. However,
nursing homes and other care facili-
ties will be tempted to downsize their
human staff when a robot is “hired”
instead of freeing up human staff to
give more time to residents.3 Since
many nursing home residents in the
U.S. and elsewhere already do not get
enough care and individualized atten-
tion, this is a very troubling possibility.
Theoretically, an increased emphasis
on in-home care could for example lead
to the creation of other types of jobs
but we should be skeptical about this.
Financial considerations, the drive for
efficiency, and overconfidence in tech-
nology are strong driving forces that can
push humans “out of the loop.”

On a related note, reliance on auto-
mation may exacerbate a common hu-
man tendency to shift our attention to a

Scientists and
engineers should
reflect on their ethical
responsibilities to
communicate with
the public about
a robot’s capabilities
and limitations.

http://www.smh.com.au/executive-style/gadgets/is-your-gps-navigator-afriend-or-foe-20100112-m4ei.html
http://www.smh.com.au/executive-style/gadgets/is-your-gps-navigator-afriend-or-foe-20100112-m4ei.html
http://www.nytimes.com/2009/07/13/technology/13robot.html
mailto:borenstein@gatech.edu
http://www.nytimes.com/2009/07/13/technology/13robot.html
http://www.smh.com.au/executive-style/gadgets/is-your-gps-navigator-afriend-or-foe-20100112-m4ei.html

32 communications of the acm | july 2010 | vol. 53 | no. 7

V
viewpoints

Legally Speaking
Should the Google Book
Settlement Be Approved?
Considering the precedent that could be established by
approval of the controversial Google book settlement.

doi:10.1145/1785414.1785429	 Pamela Samuelson

tion of the Google Book Search (GBS)
corpus of out-of-print books that
Google would be able to commercial-
ize if the settlement is approved.

The Authors Guild Lawsuit and
the Proposed Settlement
In the fall of 2005, the Authors Guild
and three of its members sued Google
for copyright infringement because
Google was scanning in-copyright
books from the collection of the Uni-
versity of Michigan Library. The Guild
members claimed to represent the in-
terests of a class consisting of persons
holding a U.S. copyright interest in one
or more books in Michigan’s library.
Five trade publishers brought a similar
suit one month later.

After 30 months of negotiations, the
litigants announced in October 2008 a
proposed settlement of the now-com-

T
he courtroom was packed
for the long-awaited hearing
about the proposed settle-
ment of the Authors Guild v.
Google lawsuit on February

18, 2010. Class action lawsuits cannot
in the U.S. be settled without a judi-
cial determination that the proposed
settlement is “fair, reasonable, and
adequate” to the class on whose behalf
the case was brought.

Judge Denny Chin heard five hours
of oral argument about the proposed
settlement not only from lawyers repre-
senting Google, the Authors Guild, and
the Association of American Publish-
ers (AAP) who negotiated it, but also
from the U.S. Department of Justice
(DOJ), five non-party supporters, and
21 objectors or opponents, of which I
was one. Judge Chin announced at the
outset of the hearing that he would not
rule on the matter that day.

Because the DOJ has spoken out
strongly against the settlement—along
with the governments of France and
Germany and hundreds of others from
the U.S. and abroad—the settlement
is facing an uphill battle. An appeal
seems likely; so whatever Judge Chin
decides, the case is far from over.

This column describes the genesis
of the lawsuit and reasons the pro-
posed settlement is so contentious. It
presents my argument that the settle-
ment should not be approved without
substantial modifications to address
concerns of academic authors whose
books will make up a substantial por-

bined lawsuits. The class on behalf of
which the litigants now propose to settle
consists of all owners of U.S. copyright
interests in books published in the U.K.,
Canada, and Australia and books regis-
tered with the U.S. Copyright Office.

The only issue in litigation in the
Authors Guild case is whether Google’s
scanning of in-copyright books for pur-
poses of making snippets of their con-
tents available in response to Google
Book Search (GBS) user queries is copy-
right infringement or fair use.

If the settlement resolved only that
dispute (for example, with Google of-
fering $60 per book for past scanning
in exchange for a license to make snip-
pet-displays), approval would almost
certainly be granted.

The settlement is controversial be-
cause it would give Google a license
to commercialize all out-of-print, but
still in-copyright books owned by class
members as long as Google provides
63% of the revenues from its commer-
cialization efforts to a newly created
Book Rights Registry, which would be
charged with locating rights holders
and paying them money from Google’s
commercialization of their books.

At first blush, the GBS settlement
looks like a win-win-win. The public
would get access to up to 20% of most
out-of-print books in response to user
queries and full text access in public li-
braries and higher education settings,
either through public access termi-
nals or institutional subscriptions to
a database of millions of out-of-print

What should be done
about orphan works
is a public policy
issue that should be
decided by Congress,
not private parties
or the courts.

V
viewpoints

july 2010 | vol. 53 | no. 7 | communications of the acm 33

˲˲ In the past year I have spoken to
many colleagues at UC Berkeley and
elsewhere about the proposed settle-
ment. When I asked them whether
they would be willing to allow their
out-of-print books to be made avail-
able on an open-access basis, to a per-
son, they have said yes. Academic au-
thors also tend to believe that orphan
books should be available on an open
access basis.

˲˲ Orphan books are not a trivial mat-
ter. The Financial Times has estimated
the number of U.S.-published books
likely to be orphans as between 2.8 to
five million. These books will form a
substantial part of the institutional
subscription database to which my
university and others are expecting to
subscribe.

˲˲ The Plaintiffs have characterized
open access advocacy as “a prime ex-
ample of…parochial self-interests.”
They also stated that the interests of
open access advocates “plainly are in-

imical to the class.” (As if the word “in-
imical” wasn’t strong enough by itself,
they italicized the word to emphasize
just how inimical they think open ac-
cess advocacy really is.)

These statements show that the Au-
thors Guild has not fairly represented
the interests of academic authors who
are members of the author subclass.

It also bears mentioning that aca-
demic authors would not have brought
this lawsuit against Google because we
tend to think that scanning books to
make snippets is available is fair use.
If this case goes back into litigation in-
stead of being settled, I will be writing
briefs in support of Google, not in sup-
port of the Authors Guild.

But it’s not just me and the 150
people who signed the supplemental
academic author objection letter who
endorse open access. Last August a
letter was sent to the court on behalf
of the UC Academic Council, which
represents 16,000 faculty members at

books. Copies of the books would also
be available for individual purchase.
Publishers and authors would get paid
for the new market Google created for
out-of-print books. Google would not
only make some money from its 37%
share of GBS revenues, but would also
be able to make “non-display uses” of
books for purposes such as refining its
search technologies.

The DOJ agrees that the public
would benefit from the enhanced pub-
lic access to millions of books that
would attend approval of the settle-
ment. Yet it has reluctantly concluded
that Judge Chin lacks power to approve
this settlement because it goes so far
beyond the issues actually in litigation
that it is “a bridge too far.” The GBS
settlement abuses the class action pro-
cess because the litigants took the oc-
casion of a lawsuit on one narrow issue
and used it to dramatically restructure
the market for digital books.

The DOJ would endorse a settle-
ment that required class members to
opt-in to Google’s commercialization
plans. But Google has insisted that
the settlement’s opt-out approach
(that is, Google gets to commercialize
the books unless the copyright owner
comes forward to say no) is essential
for establishing the new marketplace
it envisions.

My Objection to the GBS Settlement
I was one of the 26 non-party speakers
to whom Judge Chin granted five min-
utes to present their views. After intro-
ducing myself and noting that I had
filed two letters objecting to specific
terms of the GBS settlement, the latest
one on behalf of 150 academic authors,
I made the following points:

˲˲ Most of the books that will be regu-
lated by the settlement agreement are
out-of-print books from the collections
of major research libraries such as the
University of California, and most of
these books were written by scholars
for scholarly audiences.

˲˲ Many scholars own copyright in-
terest in their books at least for elec-
tronic versions. Many have clauses in
their contracts that allow author rever-
sion rights upon the book going out of
print. These books will be core parts of
the institutional subscription database
that will be licensed to universities
such as UC Berkeley.P

h
o

t
o

grap

h
 b

y
 M

ark

 L

e
n

n
i

h
a

n
/A

P
 p

h
o

t
o

Author Susan Davis, representing the National Writers Union, arrives for the Feb. 18, 2010
hearing in New York about the proposed settlement of the Authors Guild v. Google lawsuit.

34 communications of the acm | july 2010 | vol. 53 | no. 7

viewpoints

the University of California, expressing
concern that open access preferences
of academic authors would not be re-
spected by the Plaintiffs.

More important, though, is the
open access recommendation of the
U.S. Copyright Office in its report on or-
phan works. The Office considered and
rejected an escrow model for orphan
works akin to that in the amended set-
tlement agreement. Once the orphan
status of a work has been determined,
the Copyright Office thought the work
should be available for free use. Con-
gress has modeled its orphan works
legislation on the Office’s recommen-
dation. What should be done about or-
phan works is a public policy issue that
should be decided by Congress, not
private parties or the courts.

It is far more consistent with the
utilitarian principles of copyright law
to allow orphan books to be made avail-
able on an open access basis once we
know that they are, in fact, orphaned.
This is important to academic authors
because what the Plaintiffs want to do
is maximize revenues for the millions
of orphan books that will be in the in-
stitutional subscription database. This
is why I have asked for some meaning-
ful constraint on price hikes as part of
the settlement agreement.

There is a fundamental difference
in perspective between the Plaintiffs
and academic authors about what
books are really about. For the Plain-
tiffs, books are commodities to be ex-
ploited for maximum revenues.

Books for academics are more like a
slow form of social dialogue. The books
from the past open the conversation
that scholars pick up and carry on. The
books we write further that conversa-

tion, and set the stage for the conversa-
tion to be carried on by our successors.

The set of objections I made on be-
half of academic authors should not be
swatted down one by one, as they were
in the Plaintiff’s Objection memo, but
viewed as important component parts
of the cultural ecology of knowledge in
academic communities. This ecosys-
tem will be impaired if the ecosystem
envisioned in the settlement agree-
ment is adopted instead of the one that
has long prevailed and should prevail in
the future for academic communities.

Setting a Precedent?
While I could live with the GBS settle-
ment if it was amended as suggested
in my letters, I worry very much about
the precedent that would be set by ap-
proval of this particular settlement.

Google’s founders say the com-
pany’s goal is to organize all of the
world’s information. As we all know,
books are not the only type of work
that contains the world’s informa-
tion. I have been wondering for some
time which sector of the copyright
industry will be next to have its works
scanned by Google for inclusion in its
search database.

If this settlement agreement is ap-
proved, Google may feel free to go out
and scan other copyrighted works.
And if their rights holders object, the
pragmatic response might well be: we
could litigate about this, but I have a
good fair use defense, and it would be
expensive and ugly to litigate, so why
don’t we just reach a deal on my terms
right now? Approval of the settlement
would give Google unfair leverage in
such negotiations.

But beyond that, I think that approv-
al of this settlement would encourage
other class action lawsuits that would
then seek to justify their efforts to re-
make copyright law by saying: Congress
is too dysfunctional to address this
problem, so we must be allowed to do it
through a class action settlement. This
is just bad public policy.	

Pamela Samuelson (pam@law.berkeley.edu) is the
Richard M. Sherman Distinguished Professor of Law and
Information at the University of California, Berkeley.

A transcript of the fairness hearing, along with all
documents filed with the court, is available at http://www.
thepublicindex.org.

Copyright held by author.

If this settlement
agreement is
approved, Google
may feel free to go
out and scan other
copyrighted works.

ht
tp:
//w
ww
.ac
m
.or
g/
su
bs
cr
ibe

ACM’s
interactions
magazine explores
critical relationships
between experiences, people,
and technology, showcasing
emerging innovations and industry
leaders from around the world
across important applications of
design thinking and the broadening
field of the interaction design.
Our readers represent a growing
community of practice that
is of increasing and vital
global importance.

http://www.acm.org/subscribe
mailto:pam@law.berkeley.edu
http://www.thepublicindex.org
http://www.thepublicindex.org

july 2010 | vol. 53 | no. 7 | communications of the acm 35

V
viewpoints

Broadening Participation
Cultivating Cultural Diversity
in Information Technology
Introducing CMD-IT, a new center focused on synergistic activities
related to ethnic minorities and people with disabilities.

doi:10.1145/1785414.1785430	 Valerie E. Taylor

T
he field of information tech-
nology has had a major im-
pact on society.a A panel of
eight judges from the Whar-
ton School at the University

of Pennsylvania recently identified
20 top innovations from the past 30
years; half were tied to the field of IT
(examples include the Internet, mo-
bile phones, email, microprocessors,
office software, and Internet-based
social networking).2 Given the signifi-
cant impact of computing on society,
it is important that all cultures, es-
pecially underrepresented cultures,
are fully engaged in the field to en-
sure that everyone benefits from the
advances in computing. The lack of
cultural diversity is especially evident
with respect to the following ethnic
groups—African Americans, Hispan-
ics, and Native Americans—as well as
people with disabilities. CMD-IT was
developed to focus on ethnic minori-
ties and people with disabilities for
which the link across these different
communities is that of understand-
ing a particular culture.

The demographics of the field’s
faculty shape the demographics of
the student population.6 African
Americans comprise 1.3% of the fac-
ulty in IT, but make up 12% of the
U.S. population; Hispanics comprise
1.7% of the faculty in IT, but make

a	 The term “information technology” includes
computing, computer science, computer engi-
neering, and other specific subspecialties.

up 15%, of the U.S. population.1,7,b By
2020, ethnic minorities are projected
to constitute almost 32% of the U.S.
population.7 People with disabilities
comprise 18% of the U.S. population
aged five years and older, but the per-

b	 The data from the CRA Taulbee Survey focuses
on computer science and computer engineer-
ing, but the numbers are representative of the
broader IT field.

centage of such people in the IT field
is far lower.7 A diverse student popu-
lation requires a diverse faculty for
many reasons, including incorpora-
tion of diverse perspectives in devel-
opment of student programs and cur-
ricula that are engaging to students
from all groups.

Culture is manifested in practices
that emerge from prolonged partici-
pation within specific communities.5

Ethnicity of Current IT Faculty

%U.S. Population7

%Current IT Faculty1

12.0

15.0
1.6

69.0

3.6
0.7

0.1

Nonresident Alien

American Indian or
Alaska Native

Resident Hispanic,
any race

Multiracial,
not Hispanic

Asian

Native Hawaiian or
Pacific Islander

Black or
African-
American

0.1

White66.2

0.6

20.6

1.7

1.3

1.3

8.0

Current IT faculty data from the CRA Taulbee Report, U.S. population data from the U.S. Census Bureau.

36 communications of the acm | july 2010 | vol. 53 | no. 7

viewpoints

According to Mintzes and Wander-
se: “Our perceptions of objects and
events in the natural world are strong-
ly dependent on our store of prior
knowledge we view the world through
a pair of ‘conceptual goggles’.”3 These
goggles are heavily influenced by cul-
ture. The process for seeing the value
of diverse perspectives and diverse
cultures begins early, usually through
learning about multiple cultures in
the school system where many social
perspectives are formed. Teachers
who understand the historical origins
and present circumstances of differ-
ent social groups help students to un-
derstand these issues as well. Under-
standing must go beyond what Moll
and Gonzalez call “tangible surface
markers,” such as dance, food, lan-
guage, folklore, and ethnic heritage
festivals. Understanding takes into
account the everyday lived experienc-
es of diverse cultures represented by
students and their families.4 Teachers
should enter their students’ house-
holds and communities as “learners,”
seeking to understand the ways in
which people make sense of their ev-
eryday lives. Teachers of multiple cul-
tures should have direct experience in
the communities they discuss.

Higher education and the profes-
sional workplace have a number of or-
ganizations that serve the important
role of providing support mechanisms
and programs to increase the partici-
pation of particular cultures in science
and engineering, including IT. These
organizations include the Society for
Advancement of Chicanos and Native
Americans in Science (SACNAS), the
National Society of Black Engineering
(NSBE), the American Indian Science
and Engineering Society (AISES), and
the National Federation of the Blind
(NFB). We announce a new, comple-
mentary effort in which groups, com-
panies, and organizations focused on
underrepresented cultures in IT have
a forum to develop synergistic activi-
ties and leverage from each other—the
Center for Minorities and People with
Disabilities in IT (CMD-IT), launched
in March 2010.

CMD-IT was created by five people
experienced with enhancing diversity
within the IT field: Ron Eglash (Rens-
selaer Polytechnic Institute), Ann
Gates (University of Texas in El Paso),

Richard Ladner (University of Wash-
ington), Bryant York (Portland State
University), and the author. CMD-IT
facilitates synergistic activities among
industry, established organizations,
and local projects related to ethnic
minorities and people with disabili-
ties in IT. The organization grew out of
an NSF-sponsored meeting on Diver-
sity in IT held at Texas A&M University
in April 2008. That meeting identified
the following goal for CMD-IT: To en-
sure that underrepresented groups are
fully engaged in information technolo-
gies, and to promote innovation that
enriches, enhances, and enables these
communities such that more equitable
and sustainable contributions are pos-
sible by all communities. That goal is
made operational through the follow-
ing objectives:

˲˲ Provide a united voice, spoken
by many, that identifies the major is-
sues facing African Americans, Native
Americans, Hispanics, Pacific Island-
ers, and people with disabilities in the
IT field.

˲˲ Provide a resource for information
and statistics related to programs, or-
ganizations, and alliances focused on
African Americans, Native Americans,
Hispanics, Pacific Islanders, and peo-
ple with disabilities in the IT field.

˲˲ Provide leadership initiatives that
promote leadership among students,
faculty, and professionals from the
underrepresented groups.

˲˲ Facilitate national-scale projects
that involve collaborations between
established programs and organiza-
tions, with measurable goals focused
on engagement and enrichment.

Success with these objectives will
facilitate national awareness of cultur-
al issues pertaining to IT and promote
effective sharing of best practices and
ideas for increasing cultural diversity
in IT. The intent of the objectives is
already manifested in a project sup-
ported by the Broadening Participa-
tion in Computing (BPC) Program in
NSF’s Computer and Information Sci-
ence and Engineering (CISE) Director-
ate. This project, “Incorporating Cul-
tural Tools for Math and Computing
Concepts into Boys and Girls Clubs,”
is gaining prominence in the U.S. by
leveraging regional and national or-
ganizations for volunteers required to
scale two successful, local projects to

the national level. This project enlists
the Boys and Girls Clubs of America
to extend to national scale two local
efforts—Culturally Situated Design
Tools (CSDTs) and African American
Distributed Multiple Learning Styles
Systems City Stroll (AADMLSS-City
Stroll). These two efforts use alterna-
tive approaches to educational mate-
rial involving math and computing to
provide a better fit to different cultural
orientations and perceptions. This
national effort in the U.S. intends to
develop an institutional pipeline for
K–12 students to enter undergraduate
programs in IT, and extend new math
education tools to include computing.
The project includes an evaluation
component to help determine the cir-
cumstances under which these tools
are most useful. Early commitments
to facilitate this effort have been ob-
tained from the Hispanic Association
of Colleges and Universities (HACU),
the National Technical Association
(NTA), and the STARS Alliance.

Currently, CMD-IT is establishing
communities of practice, which con-
sists of representatives from industry,
organizations, and projects focused
on cultural diversity in IT. Furhter,
CMD-IT is developing national-scale
projects and initiatives, and establish-
ing partnerships and providing re-
sources for improved understanding
of different cultures. Readers are en-
couraged to learn more about CMD-IT
at http://www.cmd-it.org/. 	

References
1.	 CRA Taulbee Report, http://www.cra.org
2.	 Korkki, P. Internet, mobile phones named most

important inventions. New York Times, (Mar. 7, 2009).
3.	 Mintzes, J. and Wanderse, J.H. Reform and innovation

in science teaching: A human constructive view.
In J.J. Mintzes, J.H. Wandersee, and J.D. Novak,
Eds., Teaching Science for Understanding: A Human
Constructivist View, Academic Press San Diego, CA,
1997.

4.	 Moll, L.C. and Gonzalez, N. Teachers as social
scientists: Learning about culture from household
research. In P.M. Hall, Ed., Race, Ethnicity, and
Multiculturalism: Policy and Practice, Routledge,
1997.

5.	 Rogof, B. The Culture of Human Development. Oxford
University Press, New York, 2003.

6.	U mbach, P.D. The contribution of faculty of color
to undergraduate education. Research in Higher
Education 47, (2006).

7.	U .S. Census Bureau; http://www.census.gov

Valerie E. Taylor (taylor@cse.tamu.edu) is the holder of
the Royce E. Wisenbaker Professorship and Department
Head of the Department of Computer Science at Texas
A&M University.

Copyright held by author.

http://www.cra.org
http://www.census.gov
mailto:taylor@cse.tamu.edu
http://www.cmd-it.org/

july 2010 | vol. 53 | no. 7 | communications of the acm 37

V
viewpoints

W
e are sorry to inform
you that your paper has
been rejected, due to
the lack of empirical ev-
idence supporting it.” It

may well be the case that some of us, in
the course of our academic lives have
received or will receive—perhaps more
than once—a communication simi-
lar to the previous sentence. It seems
there is a widespread idea that a work
only deserves to be qualified as “sci-
entific” if it is supported by “empirical
evidence” (from the Greek empeiría,
experience). In this column I will pres-
ent some arguments (and attempt to
convince the reader) that this stance
is completely insufficient, and to re-
cover a place in our academic lives for
a kind of research that is more specula-
tive than experimental in character. Of
course, I do not intend to question the
legitimacy of experimental research,
but rather to argue that a harmony
must exist between the two. However,
this harmony seems to be particularly
menaced in current computer science
research. This is a paradoxical situa-
tion, since computer science is rooted
both in speculative sciences such as
mathematics and experimental scienc-
es such as physics.

Radical Empiricism
Indeed, it is very easy to criticize this
prevailing, radical empiricism: the
idea that “only those propositions
that are obtained through experience
are scientific, and thus acceptable as

true,” is not supported itself by any
kind of empirical evidence. Therefore,
radical empiricism must be rejected
as self-contradictory. Besides, the
history of computer science provides
us with empirical arguments against
empiricism and shows us a very dif-
ferent picture, as I will discuss later.
In other words, if radical empiricism
is preached, it is not due to empirical
or experience-based reasons, but be-
cause of other kinds of not-so-clear,
to-be-discovered motives. However,
given the extraordinarily important role
that empirical evidence has in science
(it is not without reason we speak of

the experimental-scientific method),
it would be very superficial to remain
with such facile criticism, without try-
ing to go deeper into the question.

Learning from experience—for-
mulating general rules on the basis of
particular cases—is generally known
as induction. Scientific inductivism
expressed itself during the 20th cen-
tury mainly through the philosophical
stance known as Verificationism, to
which Falsificationism was opposed
(I will try to ensure these two are the
last –isms mentioned in this column,
so that the reader can proceed without
having to make marginal notes).

Verificationism upholds an optimis-
tic thesis: induction is possible. That
is, it is possible to formulate true gen-
eral laws on the basis of particular ex-
periences. This optimism provides the
foundation for the most generalized at-
titude among scientists, which precise-
ly leads them to seek the confirmation
of their theories in experience. The big
problem of induction is to determine
whether it truly has a rational founda-
tion, since the mere fact that particular
cases are repeated does not warrant
the positing of a general law. Unless we
admit a priori that regularities cannot
be casual: there must be some kind of
rationality in the universe that is with-
in reach of the human mind. Sarcas-
tic critics of Verificationism will likely
recall the old story told by Bertrand
Russell about that “inductive turkey,”
which after months of repeated experi-
ences (most regular, indeed) came to

Viewpoint
Is Computer Science
Truly Scientific?
Reflections on the (experimental)
scientific method in computer science.

doi:10.1145/1785414.1785431	 Gonzalo Génova

P
h

o
t

o
grap

h

 fr

o
m

 I
s

t
o

ckp

h

o
t

o
.c

o
m

http://ISTOCKPHOTO.COM

38 communications of the acm | july 2010 | vol. 53 | no. 7

viewpoints

the firm conclusion that the man who
fed it every morning in the farmyard
would continue to do so until the end
of times, with all his affection…

Falsificationism, by contrast, as set
forth mainly in the writings of Karl
Popper, considers in a rather pes-
simistic way that induction is not
possible; we cannot aspire to prove
the truth of any scientific theory; sci-
entific hypotheses are no more than
mere conjectures that are provision-
ally accepted until a new experience
appears to refute them (what Popper
calls “falsification”). This stance is in-
formed by a commendable skepticism
that has helped to give it credit among
scientists, too. But the truth is that, if
taken to its ultimate consequences
(beyond the point Popper himself
would have taken it), Falsification-
ism becomes absurd: scientists do
not devote themselves to formulating
and provisionally accepting whatever
theory, and then to looking for coun-
terexamples that refute it.

On the contrary, scientists strive to
verify hypotheses as much as to refute
them, and they only accept hypotheses
that are reasonable from the start and
that have a huge explanatory power.
What this “reasonability” might be,
this “explanatory power,” or even the
“simplicity and elegance” that no
doubt have influenced great scientists
in the formulation of their hypotheses
and theories (consider Galileo, New-
ton, Einstein…), is an arduous problem
for the Philosophy of Science that can-
not be addressed here. I only wish to
point out that neither Verificationism
nor Falsificationism can give a full ac-
count of the reality of scientific activ-
ity in all its magnitude. And that both,
considered as methodological stances,
refer to something that is beyond factu-
al experience. Paying attention only to
empirical evidence is not acceptable,
especially if the consideration of cor-
rectness of reasoning is set aside, since,
at least, empirical evidence must be ad-
equately interpreted with good reasons.
Experimentation without the guide of
speculative thinking is worthless.

Truth and Relevance
We have demonstrated that empiri-
cism is insufficient. There cannot
be a complete scientific activity that
consists solely of proving theories by

means of experiments: first, theories
must be formulated and developed,
and their explanatory power must be
demonstrated, so that the investment
of human and material resources in the
experiments, which may be very costly,
can be justified; then, the experiments
that will prove or refute the theories
must be carried out. Moreover, experi-
mental verification may say something
about the truth of a theory, but it can
say nothing about its relevance, that is,
its interest to the scientific community
or society as a whole.

In this respect, we should be careful
to distinguish between experimentation
of a theory and its practical application:
the latter is particularly important in en-
gineering, but developing a practical ap-
plication does not properly constitute
an experimental verification, according
to inductive criteria, of the theory that
supports it. For example, showing with
adequate reasons that a certain design
pattern solves a recurrent programming
problem demonstrates its applicability
without the need of experiments and
statistics; the rationale of the pattern,
instead, is indispensable. The potential
utility of a theory may be enormous, and
should be fully acknowledged, but it is
not at all an inductive proof—a verifica-
tion. Conversely, having an empirical
validation is not the same as having a
practical application.

Lessons from History
Having demonstrated that empiricism
is insufficient in and of itself, can we at
least say it is necessary? That is, should
we consider it an essential part of every
scientific activity? From the scientific
point of view, is a purely speculative-
theoretical work acceptable without
empirical support? In order to answer
this question, I will formulate another
one: What do we learn from history? In

particular, and to focus on the area of
major interest for the readers of this
magazine: Who are the founders of
computer science?

Consider some fundamental
names: Turing (computation theory
and programmable automata), von
Neumann (computer architecture),
Shannon (information theory), Knuth,
Hoare, Dijkstra, and Wirth (program-
ming theory and algorithmics), Fei-
genbaum and McCarthy (artificial
intelligence), Codd (relational model
of databases), Chen (entity-relation-
ship model), Lamport (distributed
systems), Zadeh (fuzzy logic), Meyer
(object-oriented programming), Gam-
ma (design patterns), Cerf (Internet),
Berners-Lee (WWW)... Are their con-
tributions perhaps distinguished by
their experimental character? Aren’t
they mainly, or even solely, specula-
tive investigations (yet with enormous
possibilities for practical application),
whose fundamental merit has been to
light the way for the rest of the scien-
tific community, by performing, so to
speak, a work of clarification and devel-
opment of concepts? Would they have
been able to publish their work accord-
ing to the “experimentalistic” criteria
that currently prevail?

Having a look at the list of Turing
Awards1 or at the most cited computer
science papers in CiteSEER2 is very
instructive. However, given the cur-
rent standards for reviewing, many of
those papers would never have been
published. They would have come up
against journal reviewers who would
have rejected such works, considering
them too speculative or theoretical, as
has been humorously described in fic-
titious reviews.4

The attentive reader will have no-
ticed that I am inductively justifying,
from the experience of history, that
many of the best works in computer
science (the most cited ones, to accept
the present identity between “most
cited” and “best,” which is of course a
very debatable one indeed) do not have
a fundamentally experimental charac-
ter, but rather a theoretical and specu-
lative one. Nevertheless, I am afraid
the “recalcitrant empiricist” will not
let him or herself be convinced even
by this argument…because, in the end,
his or her conviction is not grounded in
empirical arguments.

Experimentation
without the guide of
speculative thinking
is worthless.

viewpoints

july 2010 | vol. 53 | no. 7 | communications of the acm 39

It may well happen that we are suf-
fering the “swinging pendulum” ef-
fect. In the past, computer science was
not so focused on experimentalism.
But recently the pendulum has swung
too far toward this side, and we should
push it the other way. Maybe periodic
swings are even helpful for science,
and we should not try to stop them
completely. After all, science tends to
be a self-correcting system, because
ultimately truth will win out, no mat-
ter how painful the process of discov-
ery might be for those of us toiling in
the trenches. As the great American
philosopher and logician Charles S.
Peirce put it, “the essence of truth lies
in its resistance to being ignored.”3

What Distinguishes the
Scientific Method?
Now then, if their experimental char-
acter is not what primarily distin-
guishes scientific works, what does?
In my view, the distinguishing feature
of the scientific method is its “public,”
“social” character. I do not mean by
this—far from it—that scientific truth
is established by consensus, but that
research results must be demonstra-
ble to others. This, after all, is the aim
of scientific publications (no matter
how much these publications, and
especially the number of publications,
serve other, less “avowable” purpos-
es). The enemy of the scientific meth-
od is not speculative reasoning, but
the appeal to some kind of Cartesian-
shaped “intuitive evidence,” enclosed
within the individual, and which is
neither communicable nor submit-
ted to the community of researchers;
the enemy is the acceptance of ideas
because they are “clear and distinct”
for me, regardless of whether or not
they are “clear and distinct” for others.

Summing up, what the scientist
looks for is to follow a way toward
knowledge that can be followed by
other researchers; the goal is to “con-
vince” the scientific community of
the validity of certain research results.
Yet there are several possible ways to
convince. Must all scientific works be
reasoned and demonstrable? Yes, of
course. Must they be empirically verifi-
able? That depends. Not all branches
of science are equal; not all kinds of re-
search are equal. If it would be absurd
to try to axiomatically demonstrate

the failure probability law of a micro-
chip as a function of its temperature; it
would be equally absurd to require an
experimental verification of the axioms
of fuzzy logic.

Conclusion
Experience and speculation must go
hand in hand in the way of science.
Some investigations will have a basi-
cally experimental character, while
others will be primarily speculative,
with a wide gradation between these
two extremes. As long as all are de-
monstrable, we should not consider
some to be more worthy of respect
than others. If the pendulum has
swung too far toward the experimen-
talistic side of computer science, we
should now push it a bit toward the
speculative field, so that the whole
picture gets corrected. Thus, I would
like to call upon researchers who
might feel inclined toward specula-
tive matters—and even more upon
those in charge of research—neither to
close the door nor give up on this kind
of scientific activity, which is so essen-
tial for the progress of knowledge.	

References
1.	 Association for Computing Machinery, Turing Awards;

http://awards.acm.org/homepage.cfm?awd=140
2.	 CiteSeerX, Most Cited Computer Science Articles;

http://citeseerx.ist.psu.edu/stats/articles
3.	 Peirce, C.S. Why study logic? In C. Hartshorne, P.

Weiss and A. W. Burks, Eds., The Collected Papers
of Charles Sanders Peirce, Volumes. 1–8, Harvard
University Press, Cambridge, MA, 1931–1958.

4.	S antini, S. We are sorry to inform you. IEEE Computer
38, 12 (Dec. 2005), 126–128; http://portal.acm.org/
citation.cfm?id=1106763

Gonzalo Génova (ggenova@inf.uc3m.es) is an associate
professor of Software Engineering at Universidad Carlos
III de Madrid.

Copyright held by author.

What the scientist
looks for is to follow
a way toward
knowledge that
can be followed by
other researchers.

Calendar
of Events
July 19–23
The 33rd International
ACM SIGIR Conference on
Research and Development in
Information Retrieval,
Geneva, Switzerland,
Sponsored: SIGIR,
Contact: Fabio Crestani,
Email: fabio.crestani@unisi.ch

July 21–23
4th International Workshop
on Parallel and Symbolic
Computation,
Grenoble, France,
Contact: Moreno Mac,
Email: moreno@csd.uwo.ca

July 24–25
The 15th International
Symposium on Web3D
Technology,
Los Angeles, CA,
Sponsored: SIGGRAPH,
Contact: Marcelo Knorich Zuffo,
Email: mkzuffo@lsi.usp.br

July 24–25
ACM Symposium on Applied
Perception in Graphics &
Visualization 2010,
Los Angeles, CA,
Sponsored: SIGGRAPH,
Contact: Diego Gutierrez,
Email: diegog@unizar.es

July 24–26
International Conference on
Queueing Theory and Network
Applications,
Beijing, China,
Contact: Wang Jinting,
Email: jtwang@btju.edu.cn

July 25–28
The 16th ACM SIGKDD
International Conference on
Knowledge Discovery and Data
Mining,
Washington DC,
Sponsored: SIGKIDD and
SIGMOD,
Contact: Balaji R.
Krishnapuram,
Email: balaji.krishnapuram@
gmail.com

July 26–28
Principles and Practice of
Declarative Programming,
Hagenberg, Austria,
Contact: Temur Kutsia,
Email: kutsia@risc.uni-linz.
ac.at

http://awards.acm.org/homepage.cfm?awd=140
http://citeseerx.ist.psu.edu/stats/articles
http://portal.acm.org/citation.cfm?id=1106763
http://portal.acm.org/citation.cfm?id=1106763
mailto:ggenova@inf.uc3m.es
mailto:fabio.crestani@unisi.ch
mailto:moreno@csd.uwo.ca
mailto:mkzuffo@lsi.usp.br
mailto:diegog@unizar.es
mailto:jtwang@btju.edu.cn
mailto:balaji.krishnapuram@gmail.com
mailto:balaji.krishnapuram@gmail.com
mailto:kutsia@risc.uni-linz.ac.at
mailto:kutsia@risc.uni-linz.ac.at

40 communications of the acm | july 2010 | vol. 53 | no. 7

V
viewpoints

mission; candidates come from many
different countries and professional
backgrounds of which the committee
members may have a limited knowl-
edge. Therefore, the committee puts
much weight on the endorsements
that support the submission. Strong
endorsements are essential for a suc-
cessful submission.

To Nominate or to Self-Nominate
It has been our experience that nomi-
nating a colleague for this distinction
succeeds more often than self-nomi-
nations. A major reason for this track
record is that nominations composed
by someone other than the candidate
are likely to have stronger endorse-
ments. The nominator should first
check that endorsers are supportive
of the nomination. Answers are likely
to be more sincere if the nominator is
not the candidate.

The choice of endorsers is crucial.
The committee tends to trust the judg-
ment of endorsers who are recog-
nized authorities in their field, such
as ACM Fellows. In fact, the Distin-
guished Member guidelines recom-
mend that two of the endorsers be
ACM Fellows. The nomination pack-
age should also include endorsers
who are intimately familiar with the
work of the candidate and can provide
firsthand testimony of its importance.
Endorsers in the first category can fo-
cus on qualitative assessment of the
candidate’s merit; endorsers in the
second category should focus on pro-
viding factual information on the can-
didate’s professional activities and
their impact.

A
CM’s Distinguished Member

Recognition Program was
initiated in 2006 to recog-
nize those members with
at least 15 years of profes-

sional experience who have made note-
worthy contributions to the computing
field. Since this program is relatively
new, and has been undergoing chang-
es, there may be many ACM members
unfamiliar with the requirements for
this grade. As co-chairs for the Distin-
guished Members committee, we have
seen many submissions fail, not be-
cause of the quality of the candidates,
but due to the lack of adequate infor-
mation regarding the submission. We
hope this column will help produce
more effective nominations.

The ACM Distinguished grade con-
sists of three categories: Educator,
Engineer, and Scientist. Each category
comes with a unique set of criteria,
therefore alleviating any confusion
or competition between grade levels.
The committee ensures that candi-
dates are assessed by experts knowl-
edgeable of the contributions in their
category. To the extent possible, can-
didates are judged by their peers: sci-
entists by scientists, engineers by en-
gineers, and educators by educators.
There is no reason for an engineer or
an educator to feel ineligible if their
CV does not include an extensive list
of publications, nor a scientist if he or
she has never managed a large proj-
ect. Indeed, we estimate approximate-
ly 10% of ACM’s membership qualifies
as Distinguished Members.

It is important to create a nomina-
tion package suitable for the category.

Of course, many people will have con-
tributed to more than one category; it
is perfectly acceptable to list all major
professional contributions and activi-
ties. However, the submission should
focus on making the case for one par-
ticular category. The clincher should
be contributions as a practitioner, or
contributions that advance practice in
the relevant category. A scientist prac-
tices science by doing research and
publishing the results; an engineer
by developing products; an educator
by teaching. Thus, a member teach-
ing engineering, but not practicing
it, might better qualify as an educator
than an engineer—unless this person
has significantly contributed to the
advancement of engineering as a dis-
cipline. A member doing research on
teaching computer science, but not
distinguished as a teacher, might bet-
ter qualify as a scientist, unless that
member has contributed significantly
to the advancement of CS education.

The committee cannot indepen-
dently assess the quality of each sub-

We estimate
approximately
10% of ACM’s
membership qualifies
as Distinguished
Members.

Distinguished Members
Advice to Members
Seeking ACM Distinction

doi:10.1145/1785414.1785432	 Marc Snir and Telle Whitney

V
viewpoints

july 2010 | vol. 53 | no. 7 | communications of the acm 41

A nomination invites scrutiny if all
endorsements come from the same
institution. As a rule we expect that
candidates will have had an impact
beyond the boundaries of their own
organization. Such candidates should
be able to find endorsers outside their
organization.

A strong endorsement will provide
a personal angle—facts known to the
endorser that will enable the commit-
tee to better judge the material in the
nomination package. Such insights
often help explain the significance of
the nominee’s contributions.

Only the Strong Survive
It is critical to note that content-free
endorsements will not prevail. On oc-
casion, the endorsements are remi-
niscent of the model recommenda-
tion letter composed by Benjamin
Franklin:

“Sir: The bearer of this, who is going
to America, presses me to give him a let-
ter of recommendation, though I know
nothing of him, not even his name ... As to
this gentleman, I must refer you to him-
self for his character and merits, with
which he is certainly better acquainted
than I can possibly be. I recommend him,
however, to those civilities which every
stranger, of whom one knows no harm,
has a right to…”

Endorsements that carry little
weight include:

˲˲ Endorsements with no text attached.
˲˲ Perfunctory endorsements that say

only something like “I know John Smith
and he satisfies, in my opinion, the cri-
teria for Distinguished Engineer.”

˲˲ Endorsements that merely repeat
text from the nomination.

What comprises a great nomina-
tion package? Depending on the con-
tributions (packages will vary), suc-
cessful nominations tend to have the
following qualities:

Educator. The committee looks for
someone whose work as an educator
has had an impact on other educa-
tors as well as students. The package
should outline the nominee’s impact
both within and outside their insti-
tution. Letters of support should in-
clude at least one person in a signifi-
cant leadership role at the nominee’s
institution, and one person who can
speak to their contributions in the
broader community.

Engineer. The ideal nominee is
someone who has led an engineer-
ing and/or product effort, and who
ultimately delivered a result (typically
a product and/or patents) that has
demonstrated impact in their area of
expertise. The package should outline
the nominee’s technical contribution.
Letters of support should include at
least one person who is well known in
their technical area, and at least one
letter from someone outside the nom-
inee’s institution or company.

Scientist. The committee seeks a
candidate who is a recognized leader
in the research field. The nomination
should include a brief description of
the field, leadership examples, and
why the nominee’s contribution is im-
portant. Letters of support should in-
clude at least one person well known
in the nominee’s research area. A let-
ter, from a person at a different insti-
tution, could address the broader im-
pact of the research.

As ACM is an international or-
ganization, the committee receives
nominations from around the world.
Unfortunately, we do not have repre-
sentatives from every country, and at
times it is difficult to assess the im-
pact of the contributions. Successful
nominations for scientists, for exam-
ple, often include endorsements that
illustrate participation and leadership
in international research communi-
ties. For engineers, we look for prod-
ucts with broad recognition beyond
country boundaries. An endorsement
from an ACM Fellow or Distinguished
Member also helps to calibrate contri-
butions across borders.

It is said that “success has many
fathers, while failure is an orphan.”
Nominations to advanced ACM mem-
bership grades reverse this adage: A
success reflects on the unique contri-
butions of the nominee; failures can
be due to a weak case, a weak nomi-
nation, weak endorsements, or faulty
judgment by committee members.
Nominators can improve their odds by
following the advice noted here, and by
carefully following the instructions on
the ACM Web site (http://plone.acm.
org/membership/distinguished). 	

Marc Snir and Telle Whitney are co-chairs of the ACM
Distinguished Members Committee.

© 2010 ACM 0001-0782/10/0700 $10.00

http://plone.acm.org/membership/distinguished
http://plone.acm.org/membership/distinguished
http://www.acm.org/trets
http://www.acm.org/subscribe

42 communications of the acm | july 2010 | vol. 53 | no. 7

practice

The DARPA High Productivity Computing Systems
(HPCS) program sought a tenfold productivity
improvement in trans-petaflop systems for high-
performance computing (HPC). This article describes
programmability studies undertaken by Sun
Microsystems in its HPCS participation. These studies
were distinct from Sun’s ongoing development of a
new HPC programming language (Fortress) and the
company’s broader HPCS productivity studies, though
there was certainly overlap with both activities.

These programmability studies began with a focus
on programming languages, but the focus quickly
shifted to other topics. Existing languages—notably
Fortran, which is arguably still the primary language
in HPC—proved remarkably adequate. Programming
challenges stem mostly from other factors.

What if programming did not mean having to learn
a language someone else devised and then wrestling
with the limitations of that language, its compilers,

and computers to implement your
task? What if it meant, in a sense,
the opposite? You could write your
program in whatever way was most
expressive for you, without regard for
language rules imposed by someone
else. Then it would be someone else’s
job to define the programming lan-
guage that would make sense of what
you wrote, write the compilers to di-
gest the program, and build the com-
puters that would efficiently run the
task you specified.

We undertook such an exercise
to get a feel for what an “ideal” pro-
gramming language for HPC applica-
tions might look like. Our approach
was to take existing HPC programs
and have someone rewrite them in
whatever way suited that individual,
not bound by the constraints of any
existing computer, compiler, or lan-
guage. Rather, he was invited to write
whatever seemed most expressive. We
might not be able to compile or run
these programs, but we could at least
see what the writer wanted.

Almost immediately, we were struck
by what we were seeing. Of course, the
rewritten code was much more com-
pact and readable than the original,
but, surprisingly, the “ideal” program-
ming language was basically Fortran.

My first job here is to convince you
that this finding is not ridiculous. I ad-
mit, the experiment was biased in that
we were starting with existing code,
mostly written in Fortran, and used
a human subject who was not only
familiar with Fortran but indeed em-
braced it. The main point, however,
is less that every programmer would
have ended up preferring Fortran and
more that the problems with the origi-
nal source code have more to do with
reasons other than the limitations of
existing programming languages. We
look at some of these reasons here.

The DARPA HPCS program also
sponsored the development of new
programming languages: Chapel from
Cray, Fortress from Sun, and X10 from
IBM. Proponents of those languages
would show early on how rewriting

doi:10.1145/1785414.1785433

 Article development led by
 queue.acm.org

Maybe it’s Fortran.
Or maybe it just doesn’t matter.

by Eugene Loh

The Ideal HPC
Programming
Language

http://queue.acm.org

july 2010 | vol. 53 | no. 7 | communications of the acm 43

I
mag

e
 c

o
u

rt

e
s

y
 o

f
 t

h
e

 Nati

o
n

a
l

 C
e

n
t

e
r

 f
o

r
 C

o
mp

u

tati

o
n

a
l

 Sci

e

n
c

e
s

,
Oak

 R
idg

e
 Nati

o

n
a

l
 La

b

o
rat

o
r

y

familiar HPC benchmarks in the new
languages could reduce source-code
volume substantially—tenfold reduc-
tions were not surprising—but rewrit-
ing these benchmarks even in Fortran
achieved similar source-code reduc-
tions and corresponding improve-
ments in expressivity.

New programming languages still
have much to offer, for example, in the
areas of expressing concurrency and
especially data distribution. It’s just
that the bloat we see in current HPC
source code stems not so much from
inadequacies in current languages as
from other factors.

What We Did
We rewrote a number of HPC bench-
marks and applications using mod-
ern Fortran in a way that took into ac-

coount the human costs of software
development: programmability and
associated characteristics such as
readability, verifiability, and main-
tainability. These are important con-
siderations; although copy-and-paste
is a fast way of writing lines of code,
it degrades readability and increases
maintenance costs.

Part of this effort included working
with the Sun HPCS productivity group
to quantify programmer productivity
in general and to study human sub-
jects in our rewriting exercises in par-
ticular. A human subject’s activities
could be observed passively with the
Hackystat telemetry tool or actively via
interviews or having the subject keep a
journal. The team included a cultural
anthropologist who guided these ob-
servations.

In this article, we focus on the out-
put of the rewriting activity, examin-
ing the rewritten HPC programs and
causes of source-code bloat. The par-
ticular HPC test codes used here are
the NPBs (NAS Parallel Benchmarks)
CG, MG, and BT; the plasma fusion
application GTC; and the 3D hydrody-
namics code sPPM.

A key metric was the number of
source lines of code (SLOC). This is
admittedly a crude and often decep-
tive metric, but it served as a conve-
nient starting point for quantifying
readability and expressivity of source
code.

Since the generated computer pro-
grams were in Fortran, they could be
compiled and run. Thus, we were able
to study their performance relative to
the original code, test automatic par-

The U.S. Department of Energy’s Jaguar supercomputer took home a trio of gold medals—for speed, sustainable memory bandwidth, and for
FFT execution—at the recent HPC Challenge competition.

44 communications of the acm | july 2010 | vol. 53 | no. 7

practice

allelization with currently available
tools, and speculate on the potential
for improvements in autoparalleliza-
tion.

Table 1 lists SLOC and perfor-
mance comparisons between original
and rewritten versions of some of the
HPC codes we studied.

Author Feedback
We saw remarkably large reductions
in source-code volume. The smallest
reduction was in GTC, which already
used relatively modern Fortran con-
structs, had relatively little MPI (Mes-
sage Passing Interface) parallelism
(distributed-memory), and had com-
putation and I/O formatting that the
human subject was uncomfortable
modifying.

We saw various indications that the
rewritten programs not only had few-
er lines of code, but also were easier
to read, verify, and modify. It was not
simply our judgment, however, that
concluded that expressivity could be
improved tremendously. In the case
of GTC, we solicited feedback on the
rewritten program from one of the ap-
plication’s maintainers. Here are se-
lected comments:

At first glance, I was impressed by
how small and compact the code had be-
come. I always thought that GTC was as
small as it could get, but I was obviously
wrong. I was also pleasantly surprised

to discover that the programming lan-
guage was still standard Fortran 90/95,
and not a totally new language.

The new code is clear, concise, and
easy to read.

The fact that all the MPI calls and
OpenMP directives have been removed
makes the physics represented in the
code easier to follow.

[The rewrite introduced elegant] code
reuse in CHARGE and PUSH.

But there was this warning:
[Expect a] performance hit unless the

compiler can perform very good inter-
procedural optimization and/or auto-
matic inlining.

This warning arose because there
were many transformations from
continuous (ζ,r,θ) coordinates to
discretized mesh indices. The read-
ability and maintainability of the
source code benefited greatly from
encapsulating these many transfor-
mations into a few functions, but the
performance suffered from the extra
procedure calls and loss of many spe-
cializations and optimizations of the
transformations.

Single-CPU Performance
Much of HPC is performance, includ-
ing parallelization. The code we ex-
amined showed many familiar HPC
characteristics: loop unrolling, vector-
ization, cache blocking, multithread-
ing, data distribution, and so on. One

might argue that, while it may be pos-
sible to reduce code volume dramati-
cally, the cost in overall performance
would be intolerable.

We were pleasantly surprised that
single-CPU performance degradation
wasn’t too bad in general. Indeed,
for NPB CG, most of the work is per-
formed by low-level sparse-matrix rou-
tines, and overall performance really
didn’t change at all. We expect similar
results whenever the computationally
intensive kernels—sparse-matrix rou-
tines, dense matrix multiplies, FFTs
(fast Fourier transforms) among oth-
ers—are performed in library or other
well-tuned kernels.

In other cases we saw slowdowns
but expected to recover much of the
performance with judicious, tactical
(few-line) optimizations. For example,
the rewrite of the NPB MG code saw a
2x speedup by converting stencil op-
erations from array syntax to (arguably
more readable) DO loops. In GTC, one
section of code ran four times faster
when the Fortran MODULO intrinsic
was replaced by a suitable substitute.
Such optimizations, of course, place
one on a slippery slope. Code bloat
creeps back in, and maintainability of
the code degrades. Indeed, even per-
formance can suffer. We have seen
cases where simplifying the source
code by removing “optimizations”
actually improved performance, pre-
sumably because the “optimizations”
originated on sufficiently different
hardware or targeted sufficiently dif-
ferent compilers.

Meanwhile, the battle to deliver
good performance on expressive HPC
source code must still be waged. Com-
piler optimizations must be augment-
ed with ongoing hardware improve-
ments. There is much work to be done
on latency-hiding techniques such as
prefetch, chip multithreading, and
scout threads. To some extent, this
simply moves the pressure from mem-
ory latency to memory bandwidth;
thus, some system designers tackle
other problems such as efficient use
of partial cache lines.

Parallelization
HPC parallelization often falls into
two categories: finding concurrency
and distributing data. Finding con-
currency is much simpler than dis-

Table 2. Possible pseudocode for the ADI algorithm.

INTEGER NX, NY, NZ, X, Y, Z
DIMENSION MYDATA(NX,NY,NZ)
FORALL (X = 1:NX, Y = 1:NY) CALL UPDATE(MYDATA(X,Y,:))
FORALL (X = 1:NX, Z = 1:NZ) CALL UPDATE(MYDATA(X,:,Z))
FORALL (Y = 1:NY, Z = 1:NZ) CALL UPDATE(MYDATA(:,Y,Z))

Table 1. HPC code comparisons.

Lines of Code Performance
SlowdownCode Name Before After Reduction

NPB CG 839 81 10x 1x

NPB MG 1701 150 11x 2x–6x

NPB BT 4234 594 7x 2.7x

GTC 6736 1889 3.6x 2.7x

sPPM 13606 1358 10x 2x

practice

july 2010 | vol. 53 | no. 7 | communications of the acm 45

tributing data. Our guarded optimism
regarding existing languages extends
even to parallelization if, by that, we
mean finding concurrency. If data dis-
tribution is needed to achieve high-
end performance, however, new pro-
gramming languages or constructs
seem that much more crucial.

HPC seldom uses locks. More typi-
cally, concurrency is related to data-
parallel loops—for example, time
stepping all particles or grid elements
concurrently. Meanwhile, clusters of
commodity computers have become
the price-performance winners in
HPC. Therefore, parallelization also
involves the decomposition of data
over cluster nodes. Nodes share data
in HPC typically through explicit mes-
sage passing, for example with MPI.

Consider the alternating direc-
tion implicit (ADI) method for solving
partial differential equations. Specifi-
cally, consider a 3D rectangular grid,
such as that shown in the accompany-
ing figure on the right. Physically, the
information on any grid cell propa-
gates throughout the 3D volume, ul-
timately influencing all other cells.
Computationally, we can restrict data
propagation along only the x-axis in
one phase of computation, later along
the y-axis, and finally along the z-axis.
Ultimately, the computed physics
should remain unchanged.

Such an algorithm organizes com-
putation along “pencils” of cells. For
example, in the first phase, all cells in
an X-aligned pencil can be updated
based solely on data values within this
pencil. Indeed, all X-aligned pencils
can be updated concurrently; then
all Y-aligned pencils; and finally, all
Z-aligned pencils. If there are N3 ele-
ments in the grid, then there are N2
pencils in each of the X, Y, or Z phases.
That is to say, there is considerable

concurrency. The BT and sPPM codes
both are organized like this, as are
multidimensional FFTs. The pseudo-
code might look like Table 2.

Each subroutine call can be made
concurrently with all other calls in
the same FORALL statement. There
is, however, no way of distributing the
elements of MYDATA onto multiple
processors so that each processor has
all the data it needs for all stages of
computation. If a particular proces-
sor “owns” MYDATA(X,Y,Z), then to
process an X-aligned pencil of data it
needs all MYDATA(:,Y,Z) values. Then,
to process Y-aligned pencils of data, it
needs all MYDATA(:,:,Z) values. Final-
ly, to process Z-aligned pencils of data,
it needs all MYDATA(:,:,:) values.

Therefore, while concurrency in
this example is rife, distributed-mem-
ory systems face a great challenge
both in exchanging data between pro-
cessors explicitly and in distributing
data so that such costly exchanges are
minimized.

Similar issues arise even in shared-
memory systems. It may be possible
for all processors to access all ele-
ments in place, but these accesses
must be coordinated, whether to pre-
vent race conditions or to deal with
cache coherency. Even shared-memo-
ry systems benefit from spatial locality
since processors can then deal with
complete cache lines.

If we focus on the relatively easier
problem of concurrency, we could in
the long term help keep the HPC pro-
grammer from having to parallelize
explicitly. We would benefit from im-
provements in software. Existing com-
pilers already identify some opportu-
nities for automatic parallelization.
This includes progress on autoscop-
ing—that is, automatically analyzing
source code to determine the usage

(private, shared, read-only shared,
replicated, and so on) of variables so
that a loop could be parallelized. Au-
tomatic analysis would be aided by
whole-program or interprocedural
analysis.

Runtime management of concur-
rency would also help. Loops might
be nested, or loop iterations might be
unbalanced. Loop counts and proces-
sor counts might not be known until
runtime. Static analysis alone cannot
balance computational loads or judge
the balance between fine-grained par-
allelism (for maximum concurrency)
and coarse-grained parallelism (to
amortize the costs of parallelization).

Simpler concurrency for the HPC
programmer would also benefit from
hardware improvements. Large, glob-
ally addressable memories help.
Processors run faster with cached
data, however, so coherency must
be managed. Hardware can support
concurrency with atomic operations,
transactional memory, and active
messages.

While concurrency seems relatively
simpler, managing data distribution
seems a much more difficult task. This
is one area where new programming
languages could really offer help.

For example, the NPB BT bench-
mark has a cousin, BT I/O, which adds
I/O to the test. This offers a test of
adaptive maintenance—that is, add-
ing functionality to an already written
program. The comparison was almost
a joke: setting up I/O in the original,
distributed-memory version of the
code added 144 source lines, while
the rewritten, shared-memory version
needed only one extra line!

Algorithmic Complexity
Performance and parallelization are
not the only pressures causing large

3D grid showing pencils of cells.

y

x

z

46 communications of the acm | july 2010 | vol. 53 | no. 7

practice

source code. Another issue is that
the ideas the computational scien-
tist wants to express are rather low
level. For example, the fusion code
GTC models the Lorenz force, which a
physicist could succinctly write as

F = q(E + v x B)

but which the computational physi-
cist transforms into many pages of
bewildering equations and commen-
surately large volumes of computer
code. Since charged particles travel
in very tight spirals in plasmas, the
computational physicist starts by
transforming to a “guiding-center”
formulation. Then coordinates are
transformed to align with the mag-
netic fields in a tokamak. Such trans-
formations introduce considerable
complexity, but they also improve
the numerical properties and perfor-
mance of the code by several orders
of magnitude, an advantage that can-
not be overcome just by buying more
computer equipment.

Generally, computational scien-
tists remove high-frequency compo-
nents, discretize grids, use sophis-
ticated time stepping, introduce
crucial approximations, expand
terms, transform coordinates, add
dissipative terms and upwind differ-
encing to control numerical stability,
and otherwise turn a few simple equa-
tions into pages of mind-numbing al-
gorithms that represent the essence
of what they’re trying to do compu-
tationally. To forgo that algorithmic
complexity would increase computa-
tional cost by many unaffordable or-
ders of magnitude. A computational
scientist’s bread and butter is not
simply the equations of mathematical
physics (the Lorenz force, Schröding-
er’s equation, Navier-Stokes equa-
tions, among others), but algorithmic
specifications that make computa-
tion possible within a particular set
of conditions. Fortran is rather good
at expressing computational rules.
Modern Fortran with array syntax, ge-
neric interfaces, optional arguments,
recursive subroutines, MODULEs,
array-valued functions, and other fea-
tures, is even more so. The ability to
have typeset mathematical syntax, as
with Fortress or Mathematica, would
also be nice.

Other areas that seem to have com-
plexity that would be difficult to ex-
press regardless of the programming
language include high-level algorith-
mic control flow and detailed I/O for-
matting.

Implementing Band-Aids
Source-code volume also expands as a
result of limitations—even defects—
in current software and hardware.
One example is portability. HPC pro-
grammers must account for differ-
ent vendors, MPI implementations,
threading models, compilers, For-
tran-C interoperability conventions,
default word sizes, and so on. In other
cases, code takes pains to reproduce
particular floating-point numerics (re-
gardless of whether those numerics
are right). Inconsistent library avail-
ability, whether a result of licensing
or installation and bundling issues,
also is an issue: while libraries offer all
sorts of functionality, HPC code often
has its own random-number genera-
tors, matrix multipliers, sparse-matrix
support, linear solvers, and FFTs to
ensure these capabilities will be avail-
able regardless of where the applica-
tion is run.

HPC code sometimes also imple-
ments capabilities that might be bet-
ter provided by tools. Examples in-
clude performance instrumentation,
debugging code, and checkpointing.

Source code also reflects work-
arounds to transient bugs or to limi-
tations in compilers. An example is
Fortran array syntax. We have found
many instances where array syntax
allows much higher-level program-
ming. Many programmers, however,
have avoided the elegant syntax be-
cause its implementation in many
compilers is immature. Arguably, de-
veloping new programming languag-
es would exacerbate rather than solve
such a problem.

Despite our rosy view of existing
programming languages, we admit
encountering areas where language
improvements would have been nice.
Type inference, including the infer-
ence of array extents, would allow
one to forgo tedious boilerplate dec-
larations. Better support of stencils
(computations on grids where each
element is updated based on nearby
elements) is useful for HPC.

Specification, Verification,
and Validation
We started with the software devel-
opment model in which a computer
program starts from a written speci-
fication. Then, it must be verified
(checked against the spec) and vali-
dated (checked that it fulfills its in-
tended purpose over some range of
parameters).

It is possible that the program is
written without verifiability in mind.
Here is a striking example from the
NPB BT code.

rhs(2,i,j,k) = rhs(2,i,j,k) +
dx2tx1 *
	 (u(2,i+1,j,k) -
	 2.0d0*u(2,i,j,k) +
	 u(2,i-1,j,k)) +
	 xxcon2*con43 * (up1 -
	 2.0d0*uijk + um1) -
	 tx2 * (u(2,i+1,j,k)*up1 -
	 u(2,i-1,j,k)*um1 +
	 (u(5,i+1,j,k)-
	 square(i+1,j,k)-
	 u(5,i-1,j,k)+ square(i-
	 1,j,k))*
	 c2)

This code is basically supposed
to implement the following from the
NPB1 specification.

[RHS2] = ...
 - (∂ / ∂ξ) ([u(2)]2/u(1) + φ)
 + (∂2 / ∂ξ2) (dξ(

2)u(2) +
(4/3)k3k4[u(2)/u(1)])

There is little correspondence be-
tween the source code and the speci-
fication it is supposed to implement.
This is not so much a limitation of the
programming language but of human
intention. Here is how we rewrote the
code, with the purpose of improving
readability and verifiability.

RHS2 = RHS2 - deriv(1,1,u2**2/
u1+phi)
RHS2 = RHS2 + deriv(2,1,dx2*u2
+ 4*k3*k4/3*u2/u1)

It is more likely, however, that there
isn’t even a spec to verify the code
against. When we attempted to ver-
ify GTC and asked for a specification
for the application, we received this
somewhat humorous reply: “There is
one physicist at the lab who actually

practice

july 2010 | vol. 53 | no. 7 | communications of the acm 47

went through the code line by line and
took some notes. Unfortunately, these
notes are not in electronic format, and
worse…they’re in Chinese.”

There may have been a specifica-
tion originally, but the source code
evolved over time, while the spec was
never updated. To mitigate the diver-
gence of spec and source code, we
looked at making source code, even
Fortran, as readable as possible and
interleaving source code with specifi-
cation or documentation. We tried an
implementation of the HPCS graph
analysis benchmark, SSCA #2, where
the “source code” was HTML from
which a script could extract Fortran
code to compile and execute. This ap-
proach to having a single artifact to
maintain, instead of disjointed speci-
fication and source code, is similar
to ideas found in Mathematica note-
books, Donald Knuth’s Literate Pro-
gramming, and Scientific WorkPlace.

Validation is also difficult. One
must compare results in particular pa-
rameter regimes to results that might
be known from analysis or predeces-
sor codes. Since validation is so ex-
pensive and depends so critically on
experienced scientific understanding
and intuition, over most of an HPC ap-
plication’s lifetime one simply checks
software modifications by comparing
results with an earlier version of the
code. Whereas the science is mean-
ingful to only limited precision (say,
1% or even 10%), checking numerical
results in HPC usually means check-
ing fickle floating-point arithmetic
out to the least significant digit. We
found cases, for example, where we
refrained from changing the source
code because changing ((2*pi)*k)/N
to 2*((pi*k)/N) or changing X*(1/
deltat) to X/deltat changed float-
ing-point results subtly. We do not
know if the results were more accurate
or less, only that they were slightly dif-
ferent. These differences prevented
us from making the source code more
readable or run faster.

Programmers’ Priorities
Project deadlines force software to be
written quickly. Many expedient writ-
ing styles, however, cause programs
to become longer and therefore more
difficult to read, understand, verify,
and maintain. Meanwhile, many pro-

gramming habits develop in a culture
of fast prototyping, avoiding advanced
language features since their support
is immature and focusing instead on
the last drop of performance. As pre-
sented in Donn Seeley’s ACM Queue
article, “How Not to Write Fortran in
Any Language” (December/January
2004/2005), examples of poor pro-
gramming practices abound.

Programming for verifiability is of-
ten not a priority, as the BT example
illustrated.

As another example, in sPPM we
found thousands of lines of code for
handling boundary conditions. The
rewritten code used only about a
dozen lines. There are many reasons
for this astounding reduction, but
one issue is that the original code at-
tempted to fill in “ghost cells” only
when their values would be needed.
(Ghost cells are replicas of real com-
putational cells, where such repli-
cation can simplify the handling of
boundary conditions.) In the rewrite,
we would routinely fill in all ghosts
cells. Eliminating checks on whether
such updates were needed facilitated
the programming logic immensely,
with nearly no overall performance
loss in the cases we studied. In HPC,
the mind-set is usually to program for
performance rather than programma-
bility even before establishing wheth-
er a particular section of code is per-
formance sensitive or not.

The ISO/IEC standard on software
maintenance adopted the term per-
fective maintenance. Modifying source
code simply to improve its maintain-
ability, however, often receives scant
attention when other objectives—
such as fixing defects, implementing
new features, tuning performance,
and migrating to new platforms—
clamor for attention.

The NPB BT source code takes
hundreds of lines of code to compute
the time derivative dU/dt to form the
right-hand side. This computation ap-
pears to have been implemented from
scratch twice, once in file rhs.f and
again in exact _ rhs.f. Even if this
duplication of effort was overlooked
originally, perfective maintenance
should weed out such redundancy to
benefit the generations of HPC work-
ers who have had to look at this source
code since it was first written—provid-

ed, of course, that this is important for
the software’s owners.

Where Do We Go From Here?
Repeating some of these programma-
bility studies on larger HPC programs
would be interesting. In particular,
it would be nice to move from self-
contained programs that are small
enough for one person to have writ-
ten—what DeRemor and Kron would
term “programming in the small”—
to larger pieces of software, written
by many people and where interfaces
among many parts are important
(“programming in the large”). Like
nature, source code looks different at
different scales: from fast prototyp-
ing, to self-contained applications,
to multi-decade legacy code. Further
work to relate source-code character-
istics empirically to human productiv-
ity metrics would also be interesting.

Most of all, the HPC community
on all fronts: language development,
compiler maturity, hardware inno-
vations, HPC software development
practices, and even procurements and
competitive benchmarking.

When we start with an existing
language, however, we benefit from
available compilers, systems, refer-
ence codes, experience, and program-
mers. 

 Related articles
 on queue.acm.org

How Not to Write Fortran in Any Language
Donn Seeley
http://queue.acm.org/detail.cfm?id=1039535

Languages, Levels, Libraries, and
Longevity
John R. Mashey
http://queue.acm.org/detail.cfm?id=1039532

Eugene Loh (eugene.loh@oracle.com) is a principal
software engineer at Oracle Corporation, Redwood
City, CA, where his work focuses on performance of
MPI-based HPC applications. He has also worked on
programmability, performance, and productivity studies
as part of Sun’s HPCS activities.

Copyright © 2010, Oracle and/or its affiliates.
All rights reserved.

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1039535
http://queue.acm.org/detail.cfm?id=1039532
mailto:eugene.loh@oracle.com

48 communications of the acm | july 2010 | vol. 53 | no. 7

practice

When I/O latency is presented as a visual heat map
some intriguing and beautiful patterns can emerge.
These patterns provide insight into how a system is
actually performing and what kinds of latency end-
user applications experience. Many characteristics
seen in these patterns are still not understood, but so
far their analysis is revealing systemic behaviors that
were previously unknown.

Latency is time spent waiting and has a direct
impact on performance when induced by a
synchronous component of an application request.
This makes interpretation straightforward—the
higher the latency, the worse the performance. Such
a simple interpretation is not possible for many
other statistics types that are commonly examined
for performance analysis, such as utilization, IOPS
(I/O per second), and throughput. Those statistics
are often better suited for capacity planning and

for understanding the nature of work-
loads. For identifying performance
issues, however, understanding la-
tency is essential.

For application protocols mea-
sured from the application server, la-
tency can refer to the time from when
a request was received to when the
completion was sent—for example,
the time for a Web server to respond
to HTTP GETs or a file server to re-
spond to NFS (network file system)
operations. Such a measurement is
extremely important for performance
analysis since the client and end us-
ers are usually waiting during this
time.

For resource components such as
disks, latency can refer to the time
interval between sending the I/O
request and receiving the comple-
tion interrupt. High disk latency
often translates to application per-
formance issues, but not always: file
systems may periodically flush dirty
cached data to disks; however, the
I/O is asynchronous to the applica-
tion. For example, the Oracle Solaris
ZFS file system periodically flushes
transaction groups to disks, caus-
ing a spike in average disk latency.
This does not reflect the file-system
latency experienced by ZFS consum-
ers, since the average disk latency in-
cludes asynchronous writes from the
transaction flush. (This misconcep-
tion would be alleviated somewhat if
read and write latency were observed
separately, since the transaction flush
affects write latency only.)

While it’s desirable to examine
latency, it has been historically dif-
ficult or impossible to measure di-
rectly for some components. For
example, examining application-
level latency server side may have
involved instrumenting the applica-
tion or examining network packet
captures and associating request to
response. With the introduction of
DTrace,1 however, measuring laten-
cy at arbitrary points has become
possible for production systems—
and in real time.

doi:10.1145/1785414.1785435

 Article development led by
 queue.acm.org

Heat maps are a unique and powerful way to
visualize latency data. Explaining the results,
however, is an ongoing challenge.

by Brendan Gregg

Visualizing
System
Latency

http://queue.acm.org

july 2010 | vol. 53 | no. 7 | communications of the acm 49

d
e

tai

l

 o
f

 fig

u

r
e

 7
 fr

o

m
 pag

e
 5

3

Latency Heat Maps
Given the ability to trace latency at ar-
bitrary points of interest, the problem
becomes effective visual presentation
of this data. Busy systems can be pro-
cessing hundreds of thousands of I/O
events per second, each one providing
a completion time and I/O latency. One
approach is to summarize the data as
average and maximum latencies per
second, which can be presented as line
graphs. While this would allow average
latency to be examined over time, the
actual makeup or distribution of that
latency cannot be identified beyond a
maximum, if provided.

To examine a distribution over time,
visualizations such as heat maps may
be used. The use of heat maps in sys-
tem observability tools has been infre-
quent, with some appearances to map
the access pattern of disk I/O. An exam-

ple of this is taztool (1995), which dis-
plays a heat map showing time on the
x-axis and disk I/O offset on the y-axis,
allowing random and sequential disk
I/O patterns to be identified by visual-
izing the location of disk I/O.5

To visualize the distribution of la-
tency over time, a heat map can be cre-
ated with time on the x-axis and latency
on the y-axis. The heat map is a color-
shaded matrix of pixels, where each
pixel represents a particular time and
latency range. The amount of I/O that
occurs in that time and latency range is
shown by the color shade of the pixel:
darker colors for more I/O, lighter col-
ors for less. Apart from showing the
latency distribution, the heat map also
conveys details on maximum and aver-
age latency by looking for the pixel with
the highest latency and where the dark-
est colors are grouped.

For the latency heat map to be most
effective, the time and latency ranges
represented by each pixel should be
sufficiently large to allow multiple I/O
operations to fall within them. This al-
lows darker shades to be selected and
patterns shown by different shades to
be observed. If the ranges are too small,
many of the pixels may represent only
one I/O, and much of the heat map
may appear in the same color shade; it
may also reduce the likelihood that ad-
jacent pixels are shaded, and the heat
map may look more like a scatter plot.

The range of possible color shades
from light to dark may be applied to
each heat map generated. This can be
applied linearly: the pixel with the most
I/O is assigned the darkest color, and
all other pixels are given a shade that
is scaled from the darkest I/O count.
A drawback with this approach is that

50 communications of the acm | july 2010 | vol. 53 | no. 7

practice

important details may appear washed
out. Latency deviating from the norm
is particularly important to examine,
especially occurrences of high latency.
Since these may represent only a small
fraction of the workload—perhaps less
than 1%—the color shade may be very
light and difficult to see. A false color
palette can be applied instead to high-
light these subtle details, given the
trade-off that the color shades then
cannot be used to gauge relative I/O
counts between pixels.

A particular advantage of heat-map
visualization is the ability to see out-
liers. For the latency heat map these
may be occasional I/O operations with
particularly high latency, which can
cause significant performance issues.
If the y-axis scale is automatically
picked to display all data, outliers are
easily identified as occasional pixels at
the top of the heat map. This also pres-
ents a problem: a single I/O with high
latency will rescale the y-axis, com-
pressing the bulk of the data. When
desired, outliers can be eliminated so
that the bulk of the I/O can be exam-
ined in detail. An automatic approach
can be to drop a percentage (say, 0.1%)
of the highest-latency I/O from the dis-
play, when desired.

To generate latency heat maps, data

is collected for each I/O event: the com-
pletion time and I/O latency. This data
is then grouped into the time/latency
pixels for the heat map, and the pixels
are shaded based on their I/O counts.
If the original I/O event data is pre-
served, heat maps can be regenerated
for any time and latency range, and of
different resolutions. A problem with
this is the size of the data: busy produc-
tion systems may be serving hundreds
of thousands of I/O events per second.
Collecting this continually for long
intervals, such as days or weeks, may
become prohibitive—both for the stor-
age required and the time to process
and generate the heat maps. One solu-
tion is to summarize this data to a suf-
ficiently high time and latency resolu-
tion and to save the summarized data
instead. When displaying heat maps,
these summaries are resampled to the
resolution desired.

Heat Map Explained
Latency heat maps were implemented
as part of an Oracle system-observabil-
ity tool called Analytics. The imple-
mentation allows them to be viewed in
real time and continually records data
with a one-second granularity for later
viewing. This is made possible and op-
timal by DTrace, which has the ability

to trace and summarize data in-kernel
to a sufficient resolution and to return
these summaries every second to user-
land. The user-land software then resa-
mples the summarized data to produce
the heat maps.

The heat map in Figure 1, an exam-
ple screenshot from Analytics, shows
the latency distribution of an NFS read
workload and the effect on NFS laten-
cy when using an additional layer of
flash-memory-based cache. This cache
layer was enabled at 19:31:38, which
has been centered on the x-axis in this
screenshot. Explaining this heat map
in detail will show how effective this
visualization is for understanding the
role of these system components and
their effect on delivered NFS latency.

In this screenshot, a panel is dis-
played to the left of the heat map to
show average IOPS counts. Above and
below the panel the “Range average:”
and “8494 ops per second” show the av-
erage NFS I/O per second for the visible
time range (x-axis). Within the panel
are averages for latency ranges, the first
showing an average of 2,006 NFS IOPS
between 0 and 333 µs. Each of these
latency ranges corresponds to a row of
pixels on the heat map.

For the time before 19:31:38, the
system served NFS reads from one of
two locations: a DRAM-based cache or
disk storage. If the requested I/O was
not in the DRAM cache, then it was re-
trieved from disk instead. In the heat
map, two levels of latency can be seen.
These correspond to:

˲˲ DRAM hits, shown as a dark line at
the bottom of the heat map

˲˲ Disk hits, shown as a shaded cloud
of latency from 2ms and higher

This is as expected. DRAM hits have
very low latency and are shown in the
lowest-latency pixel. This pixel repre-
sents latencies between 0 and 333 µs,
which is the resolution limit of the cur-
rently displayed heat map. Since the
recorded data has a higher resolution,
this heat map can be redrawn with dif-
ferent vertical scales to reveal finer de-
tails. By zooming to the lower latencies
the DRAM hits were found to be mostly
in the range of 0 to 21 µs.2

The latency for disk hits has a wide
distribution, from about 2ms to the top
of the displayed heat map at 10 ms. The
returned latency for disk I/O includes
rotation, seek, and bus I/O transfer

Figure 1. NFS latency when enabling SSD-based cache devices.

Figure 2. Synchronous writes to a striped pool of disks.

practice

july 2010 | vol. 53 | no. 7 | communications of the acm 51

times. As the disks were accessed with
a random I/O pattern, rotational laten-
cy alone can add up to 8.3 ms, the time
for a full rotation on these disks. This
rotational latency is presumed respon-
sible for much of the random pattern
seen in the heat map.

The heat map before 19:31:38 also
identifies a latency range where I/O is
less frequent: the lighter band seen
from 334 µs to about 2ms, between
DRAM hits and disk hits. This latency
gap has been addressed by the hybrid
storage pool4 in ZFS6 by adding a flash-
memory-based layer of cache. Flash
memory is slower than DRAM and fast-
er than disks, and was incorporated in
this NFS server in the form of SSDs (sol-
id state drives). NFS reads may then be
served from one of three locations, in
order of preference: the DRAM-based
cache, the flash-memory-based cache,
or disk storage.

Enabling the flash-memory-based
cache occurred at 19:31:38, after which
three levels of latency can be seen:

˲˲ DRAM hits, shown as a dark line at
the bottom of the heat map

˲˲ SSD hits, having a latency of less
than about 2ms

˲˲ Disk hits, which have become
lighter with the addition of the extra
cache layer, since fewer requests are
reaching disk

This heat map shows that a flash-
memory-based cache had reduced
latency for I/O that would otherwise
be served from disk. All three system
components were visualized, with
their latency ranges and the distribu-
tion of latency within that range. It
also shows that disk I/O still occurs,
although at a reduced rate. This is all
useful information provided by the
heat-map visualization. Imagine pre-
senting this data as a line graph of
average latency instead: the only infor-
mation visible would be a small reduc-
tion in average latency when the cache
was enabled (small since the average
would be dominated by the high num-
ber of DRAM hits).

Most heat maps are well understood
like this one. What follows are heat
maps we have discovered that were not
expected and that exhibit interesting
patterns that are not fully understood.

The Icy Lake
The workload and target are simple:

A single client has a single thread per-
forming sequential synchronous 8KB
writes to an NFS share. The NFS server
has 22 x 7,200RPM disks as part of a
ZFS striped pool.

Since these are synchronous writes,
the NFS request cannot complete until
the data is written onto stable storage.
No flash-memory-based log devices
were used for this test, so latency is ex-
pected to be high, as the data must be
written to the 7,200RPM disks.

You may expect the latency to be dis-
tributed randomly between 0 and 10
ms and for the heat map to appear as
white noise. The actual result is shown
in Figure 2.

Instead of a random distribution,
latency is grouped together at various
levels that rise and fall over time, pro-
ducing lines in a pattern that became
known as the icy lake. This was unex-
pected, especially considering the sim-
plicity of the workload.

This behavior could not be identi-
fied from average or maximum latency
alone—imagine compressing the y-ax-
is information into a single line graph.
This would also be challenging to iden-
tify when examining every I/O event,
such as by tracing at the disk level us-
ing the DTrace-based iosnoop tool, be-
cause of the sheer volume of the data
(thousands of lines of output).

The first step in understanding this
pattern is to check if each of the 22
disks contributed distinct lines. Figure
3 shows the disk I/O latency from a sin-
gle disk, which confirms that each disk
is contributing lines to the pattern.

The next step is to investigate why
some lines increase and some de-
crease. An increase could result from
an application requesting I/O in lock-
step with disk rotation and ZFS writing
sectors along tracks on disk, increas-
ing disk-rotation latency with each
I/O (although this doesn’t explain how
latency could increase for some disks
and decrease for others).

To simplify matters, the test was re-
peated with a single disk pool. Figure 4
shows that most of the NFS latency was
between 7.86ms and 8.20ms, which is
close to the 8.33ms rotation speed of
the 7,200RPM disk. The disk I/O off-
sets were examined (using both Analyt-
ics and iosnoop), which showed that
ZFS was writing the 8KB I/O sequen-
tially across the disk. The reason for
the smaller NFS latency may be the cli-
ent and network latency: once one I/O
completes, the disk continues to turn
while the NFS completion is sent to the
client; the client processes it, requests
the next write, and then the next write
is requested to the disk. By the time
this has happened, the disk has rotated
a little and so doesn’t require a full ro-
tation to write out the next offset. This
would explain most of the I/O shown in
the heat map; however, the reason for
the line at the top is still unknown (it
shows an average of one I/O per second
from 9.29ms to 9.64ms and is made
clearly visible by the false color palette
used by Analytics).

ZFS serves synchronous writes by
writing to ZILs (ZFS intent logs), which
are later grouped and flushed to disk

Figure 3. Single-disk latency from striped pool.

Figure 4. Synchronous write latency to single-disk pool.

52 communications of the acm | july 2010 | vol. 53 | no. 7

practice

as a TXG (transaction group). The ZIL
is expected to be written sequentially,
and so the heat map is also as expect-
ed (with the exception of the line at
the top). This will differ for a two-disk
striped pool, since ZFS will have a
ZIL on each disk and write to them in
round-robin fashion. This was tested,
and Figure 5 shows the resultant NFS
latency on a two-disk pool and the disk
I/O latency from each disk in the pool.
The reason for increasing and decreas-
ing latency can now be theorized: as
the latency on one disk increases, the
other disk continues to turn and by
the time a request is issued has a cor-
responding smaller latency. The heat
map in Figure 2 is an extension of this,
with 22 disks instead of two.

The reason for the slope in the first
place has still not been pinpointed.
The disks are writing to a steadily in-
creasing offset, which is expected to be
placed in a sequential manner along

a disk track (it’s up to the disk what it
really does with it). If the starting point
of rotation were fixed, the rotational
latency to each write would steadily in-
crease as the disk turns farther to reach
the increasing offset (until a full revolu-
tion is reached). The starting point isn’t
fixed, however; rather it is the end point
of the previous I/O, which includes the
starting offset and I/O size. Since each
offset delta and I/O size is the same, the
rotational latency to the next I/O should
also be the same. As with the single-
disk pool analysis, the slope may actu-
ally be a result of client and network la-
tency while the disks continue to rotate.
The reason the slope changes is also
unknown, as seen in Figure 5 between
20:10:00 and 20:10:45.

This workload was tested on other
storage configurations such as mirror-
ing, single-, and double-parity RAID.
Figure 6 shows this workload to a mir-
rored pool of 22 disks. Here the ZIL

is mirrored across pairs of disks, and
writes to stable storage are not consid-
ered completed until the ZIL exists on
both sides of the mirror; thus, the NFS
I/O latency is from the slowest disk in
the pair. This has given the heat map
a bias toward the higher latencies. A
similar and greater effect was seen for
single- and double-parity RAID (their
heat-map screenshots are not includ-
ed here).

To summarize what we know about
the icy lake: lines come from single
disks, and disk pairs cause increasing
and decreasing latency to occur. The
actual reason for the latency differ-
ence over time that seeds this pattern
has not been pinpointed; what causes
the rate of increase/decrease to change
(change in slope seen in Figure 5) is also
unknown; and, the higher latency line
seen in the single-disk pool (Figure 4)
is also not yet understood. Visualizing
latency in this way clearly poses more
questions than it provides answers.

The Rainbow Pterodactyl
As with the icy lake, the rainbow ptero-
dactyl is another simple workload that
has produced a surprisingly complex
pattern. This time disk I/O latency is
examined on a system with 48 disks
across two JBOD (just a bunch of disks)
enclosures. A local workload was exe-
cuted to investigate I/O bus through-
put by adding disks one by one with
sequential 128KB reads, while look-
ing for knee points in the through-
put graph. The latency was expected
to be consistent for the I/O size used
and appears as a narrow line, perhaps
with a slight increase as contention
increased on I/O subsystem buses
(which include HyperTransport, PCIe,
and SAS). When one of those buses
reaches saturation, the latency is ex-
pected to increase much more sharply.
Therefore, only two features were ex-
pected: a gradual increase with consis-
tent latency and later a sharp increase
with latency becoming less consistent
because of contention.

Figure 7 shows the throughput
graph and latency heat map from this
test. A new disk was added to the work-
load every two seconds, and a knee
point in the disk throughput plot can
be seen at 17:55. Finding this knee
point was the original intent of this ex-
periment; it was the latency heat map

Figure 5. Synchronous-write latency to a two-disk pool.

Figure 6. Synchronous writes to a mirrored pool of disks.

practice

july 2010 | vol. 53 | no. 7 | communications of the acm 53

that was eye-catching, however. We
named it the rainbow pterodactyl.

The disk I/O bytes graph (the rain-
bow) shows three features: the initial
rise, followed by a decreased slope,
and then decay. By corresponding the
disk graph with the heat map, charac-
teristics in the heat map can be seen to
occur at certain disk counts. The heat
map shows the following features.

The “beak” occurs from disk one to
disk eight. The reason for two levels
of latency is not fully understood, but
an experiment has provided a clue: if
the same data is read repeatedly to en-
sure disk-cache hits, then only one line
is seen with low latency. The two-line
pattern happens when these disks are
read sequentially, suggesting that the
second line is for disk-cache misses.
Analyzing this further is difficult with
standard tools: input to the disk and
its returned latency can be traced, but
there is no visibility into disk internals
such as the operation of the disk data
controller.

When the ninth disk is added, the
beak turns into the “head.” The disks
are attached using two SAS cables, each
x4 ports, providing eight SAS ports in
total. Accessing the ninth disk may be
causing contention on those ports in
the SAS controller and the correspond-
ing random latency pattern. When the
disks are attached using a single x4 SAS
cable, the beak-to-head transition oc-
curs at the fifth disk.

A “bulge” forms at the top of the
head between disks 9 and 12, showing
slightly increased latency. The reason
for this is not certain, though it may be
from increasing contention for the SAS
ports. Nor is the reason known for the
reduced latency that forms the “neck”
at disks 13 and 14.

Approximately between disks 15
and 20 is the “wing.” This sudden
increase in latency causes the knee
point in the disk-throughput graph.
The source for this contention is not
known, although another disk-scaling
experiment using a single x4 SAS cable
to a single JBOD produced a wingless
pterodactyl.

From about disk 20 onward, while
disks continue to be added, latency
continues to rise and becomes less
consistent. This is expected to be PCIe-
gen1 bus contention on the SAS con-
troller card.

All of these features are made visible
by the heat map, yet are completely un-
known by the individual I/O events that
form the input: they provide only com-
pletion times and I/O latency, while the
disk count is increased. The heat map
has imaged the I/O subsystem from
this data, showing components that
are suspected to be disk caches, SAS
ports, and the PCIe bus.

To summarize the rainbow ptero-
dactyl: little is known with accuracy,
and much more investigation is need-
ed. What this does show is how deep a
simple visualization can become.

Latency Levels
For the rainbow pterodactyl, I/O bus

throughput was tested by stepping a se-
quential disk-read workload. This was
repeated on a different system with a
more powerful I/O subsystem, and it
was found that sequential disk reads
from all available disks could not reach
I/O bus saturation (no knee point). To
see if a limit could be found, the work-
load was changed to read the same
128KB from each disk repeatedly, so
that each could provide more through-
put only by returning from its cache.
The result is shown in Figure 8.

A knee point was reached between
15:39 and 15:40, although it is dif-
ficult to see in the disk bytes graph.
At this point, a level of increased la-
tency appears; a little later, there is

Figure 7. Sequential disk reads, stepping disk count.

Figure 8. Repeated disk reads, stepping disk count.

54 communications of the acm | july 2010 | vol. 53 | no. 7

practice

another level (which was selected in
this screenshot). At various points it
appears as though a latency level has
been promoted to a higher level. This
was recently discovered and so far is
not clearly understood. It is provided
here as another example of unexpect-
ed details that latency heat maps have
exposed.

Shouting at JBODs
Although not as beautiful as the pre-
vious examples, the story behind the
next heat map has gained some notori-
ety and is worth including to stress that
this was a latency heat map that identi-
fied the issue.

The system included several JBODS
with dozens of disks and was per-
forming a streaming write workload.
I discovered that if I shouted into the
JBODs as loud as I could, the disks re-
turned I/O with extremely high latency.
Figure 9 shows the heat map from this
unusual test.

The heat map shows two spikes in
latency, corresponding to each of my
shouts. We videotaped this discovery
and uploaded it to YouTube, where I
describe the effect as disk vibration.3
It has since been suggested that this is
better described as shock effects, not
vibration, because of the volume of the
shouts.

The affected disk I/O shown in the
heat map has very high latency—more
than one second. If average latency
were tracked instead, a few high-laten-
cy I/O events may be drowned out on
a system performing more than 8,000
faster I/O events at the same time. The
lesson from this experience was how
well latency heat maps could identify
this perturbation.

Other Applications
The previous examples showed laten-
cy heat maps for systems deploying
the ZFS file system, accessed over NFS.
Latency heat maps are also applicable
for other local and remote file system

types (for example, UFS, HFS+, CIFS),
where characteristics can be identi-
fied and interpreted in similar ways.
For example, UFS (Unix file system) as
deployed on Solaris executes a thread
named fsflush to periodically write
dirty data to disk. This can update the
UFS cylinder group blocks that are
spaced across the disk, resulting in
high-latency I/O resulting from seek
and rotational latency. On older ver-
sions of Solaris the interval between
writing was five seconds (tune _ t _
fsflushr), so on a latency heat map
of disk I/O this may be easy to identify,
appearing as bursts of high latency
spaced five seconds apart.

The heat-map visualization can
also be applied to other metrics, apart
from latency. I/O size can be visualized
as a heat map with size (bytes) on the
y-axis, allowing any particularly large
or small I/O to be identified, either of
which is interesting for different rea-
sons. I/O location can be visualized
as a heat map (as mentioned earlier)
with offset on the y-axis, allowing ran-
dom or sequential I/O to be identified.

Utilization of components can also
be visualized as a heat map showing
the percent utilization of individual
components, instead of displaying
an average percent utilization across
all components. Utilization can be
shown on the y-axis, and the number of
components at that utilization can be
shown by the color of the heat-map pix-
el. This is particularly useful for exam-
ining disk and CPU utilization to check
how load is balanced across these com-
ponents. A tight grouping of darker col-
ors shows load is balanced evenly, and
a cloud of lighter pixels shows it isn’t.

Outliers are also interesting: a sin-
gle CPU at 100% utilization may be
shown as a light line at the top of the
heat map and is typically the result
of a software scalability issue (single
thread of execution). A single disk at
100% utilization is also interesting and
can be the result of a disk failure. This

cannot be identified using averages or
maximums alone: a maximum cannot
differentiate between a single disk at
100% utilization and multiple disks at
100% utilization, which can happen
during a normal burst of load.

All of the heat maps mentioned here
have been implemented in Analytics.
Along with the I/O-latency heat map,
the utilization heat maps are proving
to be especially useful for quickly iden-
tifying performance issues.

Conclusion
Presenting latency as a heat map is an
effective way to identify subtle charac-
teristics that may otherwise be missed,
such as when examining per-second
average or maximum latency. Though
many of the characteristics shown in
this article are not understood, now
that their existence is known we can
study them and over time identify
them properly. Some of the heat maps,
such as the rainbow pterodactyl, are
also interesting examples of how deep
and beautiful a simple visualization
can be. 	

 Related articles
 on queue.acm.org

Hard Disk Drives: The Good, the Bad
and the Ugly
Jon Elerath
http://queue.acm.org/detail.cfm?id=1317403

Hidden in Plain Sight
Bryan Cantrill
http://queue.acm.org/detail.cfm?id=1117401

Fighting Physics: A Tough Battle
Jonathan M. Smith
http://queue.acm.org/detail.cfm?id=1530063

References
1.	 Cantrill, B. 2006. Hidden in plain sight. ACM Queue 4 1

(Feb. 2006), 26–36.
2.	 Gregg, B. DRAM latency; Feb. 6, 2009; http://blogs.

sun.com/brendan/entry/dram_latency.
3.	 Gregg, B. Shouting in the datacenter; http://www.

youtube.com/watch?v=tDacjrSCeq4.
4.	L evanthal, A. Flash storage memory. Commun. ACM

51, 7 (July 2008), 47–51.
5.	 taztool; http://www.solarisinternals.com/si/tools/taz/

index.php.
6.	 ZFS; http://en.wikipedia.org/wiki/ZFS.

Brendan Gregg (brendan.gregg@oracle.com) is a
principal software engineer at Oracle, and works on
performance analysis and observability in the Fishworks
advanced development team. He is also the creator
of the DTraceToolkit and is the co-author of “Solaris
Performance and Tools.”

Copyright © 2010, Oracle and/or its affiliates.
All rights reserved.

Figure 9. High-latency I/O.

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1317403
http://queue.acm.org/detail.cfm?id=1117401
http://queue.acm.org/detail.cfm?id=1530063
http://blogs.sun.com/brendan/entry/dram_latency
http://www.youtube.com/watch?v=tDacjrsCeq4
http://www.solarisinternals.com/si/tools/taz/index.php
http://www.solarisinternals.com/si/tools/taz/index.php
http://en.wikipedia.org/wiki/ZFs
mailto:brendan.gregg@oracle.com
http://blogs.sun.com/brendan/entry/dram_latency
http://www.youtube.com/watch?v=tDacjrsCeq4

july 2010 | vol. 53 | no. 7 | communications of the acm 55

doi:10.1145/1785414.1785434

 Article development led by
 queue.acm.org

Think you’ve mastered the art of server
performance? Think again.

by Poul-Henning Kamp

Would you believe me if I claimed that an algorithm
that has been on the books as “optimal” for 46 years,
which has been analyzed in excruciating detail by
geniuses like Knuth and taught in all computer
science courses in the world, can be optimized to run
10 times faster?

A couple of years ago, I fell into some
interesting company and became the
author of an open source HTTP ac-
celerator called Varnish, basically an
HTTP cache to put in front of slow
Web servers. Today Varnish is used by
Web sites of all sorts, from Facebook,
Wikia, and Slashdot to obscure sites
you have surely never heard of.

Having spent 15 years as a lead
developer of the FreeBSD kernel, I
arrived in user land with a detailed
knowledge of what happens under the
system calls. One of the main reasons

I accepted the Varnish proposal was to
show how to write a high-performance
server program.

Because, not to mince words, the
majority of you are doing that wrong.

Not just wrong as in not perfect,
but wrong as in wasting half, or more,
of your performance.

The first user of Varnish, the large
Norwegian newspaper VG, replaced
12 machines running Squid with three
machines running Varnish. The Squid
machines were flat-out 100% busy,
while the Varnish machines had 90%

You’re
Doing It
Wrong

http://queue.acm.org

56 communications of the acm | july 2010 | vol. 53 | no. 7

practice

of their CPU available for twiddling
their digital thumbs.a

The short version of the story is that
Varnish knows it is not running on the
bare metal but under an operating sys-
tem that provides a virtual-memory-
based abstract machine. For example,
Varnish does not ignore the fact that
memory is virtual; it actively exploits
it. A 300GB backing store, memory
mapped on a machine with no more
than 16GB of RAM, is quite typical.

a	 This pun is included specifically to inspire
Stan Kelly-Bootle.

The user paid for 64 bits of address
space, and I am not afraid to use it.

One particular task inside Varnish
is expiring objects from the cache
when their virtual life-timers run out
of sand. This calls for a data structure
that can efficiently deliver the small-
est keyed object from the total set.

A quick browse of the mental cata-
log flipped up the binary-heap card,
which not only sports a O(log2(n))
transaction performance, but also has
a meta-data overhead of only a pointer
to each object—which is important if
you have over 10 million objects.

Careful rereading of Knuth con-
firmed that this was the sensible
choice, and the implementation was
trivial: “Ponto facto, Cæsar transit,”
and so on.

On a recent trip by night train to
Amsterdam, my mind wandered, and
it struck me that Knuth might be ter-
ribly misleading on the performance
of the binary heap, possibly even by an
order of magnitude. On the way home,
also on the train, I wrote a simulation
that proved my hunch right.

Before any fundamentalist CS theo-
reticians choke on their coffees: don’t
panic! The P vs. NP situation is un-
changed, and I have not found a sys-
tematic flaw in the quality of Knuth et
al.’s reasoning. The findings of CS, as
we know it, are still correct. They are
just a lot less relevant and useful than
you think—at least with respect to per-
formance.

The oldest reference to the binary
heap I have located, in a computer
context, is J.W.J. Williams’ article pub-
lished in the June 1964 issue of Com-
munications of the ACM, entitled “Algo-
rithm Number 232—Heapsort.”2,b The
trouble is, Williams was already out
of touch, and his algorithmic analysis
was outdated even before it was pub-
lished.

In an article in the April 1961 issue
of Communications, J. Fotheringham
documented how the Atlas Computer
at Manchester University separated
the concept of an address from a
memory location, which for all prac-
tical purposes marks the invention
of virtual memory (VM).1 It took quite
some time before VM took hold, but
today all general-purpose, most em-
bedded, and many specialist operat-
ing systems use VM to present a stan-
dardized virtual machine model (such
as POSIX) to the processes they herd.

Of course, it would be unjust and
unreasonable to blame Williams for
not realizing that Atlas had invali-
dated one of the tacit assumptions of
his algorithm: only hindsight makes
that observation possible. The fact is,
however, 46 years later most CS-edu-
cated professionals still ignore VM as
a matter of routine. This is an embar-

b	 How wonderful must it have been to live and
program back then, when all algorithms in the
world could be enumerated in an 8-bit byte.

Figure 1. Comparison of runtime speeds of binary heap and B-heap.

1e +00

100000

10000

1000

100

10

1

12

10

8

6

4

2

0

–8

1M records
512 per page
1ms disk

–7 –6 –5

VM pressure in megabytes

R
u

n
ti

m
e

in
 s

ec
on

d
s

–4 –3 –2 –1 0

 B inary heap (left scale)    B -heap (left scale)     speedup (right scale)

Figure 2. Close-up comparison of binary-heap and B-heap runtime speeds.

1e +00

100000

10000

1000

100

10

1

12

10

8

6

4

2

0

0 4 8 12 16 20 24 28 32 36

Kb resident

R
u

n
ti

m
e

in
 s

ec
on

d
s

40 44 48 52 56 60 64

 B inary heap (left scale)    B -heap (left scale)     speedup (right scale)

1M records
512 per page
1ms disk

practice

july 2010 | vol. 53 | no. 7 | communications of the acm 57

rassment for CS as a discipline and
profession, not to mention wasting
enormous amounts of hardware and
electricity.

Performance Simulation
Enough talk. Let me put some simu-
lated facts on the table. The plot in
Figure 1 shows the runtime of the bi-
nary heap and of my new B-heap ver-
sion for one million items on a 64-bit
machine.c (My esteemed FreeBSD col-
league Colin Percival helpfully point-
ed out the change I have made to the
binary heap is very much parallel to
the change from binary tree to B-tree,
so I have adopted his suggestion and
named my new variant a B-heap.d)

The x-axis is VM pressure, mea-
sured in the amount of address space
not resident in primary memory, be-
cause the kernel paged it out to sec-
ondary storage. The left y-axis is run-
time in seconds (log-scale), and the
right Y-axis shows the ratio of the two
runtimes: (binary heap/B-heap).

Let’s get my “order of magnitude”
claim out of the way. When we zoom
in on the left side in Figure 2, we see
there is indeed a factor 10 difference
in the time the two algorithms take
when running under almost total VM
pressure: only 8 to 10 pages of the
1,954 pages allocated are in primary
memory at the same time.

Did you just decide that my order of
magnitude claim was bogus because
it is based on only an extreme corner
case? If so, you are doing it wrong,
because this is pretty much the real-
world behavior seen.

Creating and expiring objects in
Varnish are relatively infrequent ac-
tions. Once created, objects are often
cached for weeks if not months, and
therefore the binary heap may not be
updated even once per minute; on
some sites not even once per hour.

In the meantime, we deliver giga-

c	 Page size is 4KB, each holding 512 pointers
of 64 bits. The VM system is simulated with
dirty tracking and perfect LRU page replace-
ment. Paging operations set to 1 millisecond.
Object key values are produced by random(3).
The test inserts one million objects, then alter-
nately removes and inserts objects one million
times, and finally removes the remaining one
million objects from the heap. Source code is
at http://phk.freebsd.dk/B-Heap.

d	 Does Communications still enumerate algo-
rithms, and is eight bits still enough?

bytes of objects to clients’ browsers,
and since all these objects compete
for space in the primary memory, the
VM pages containing the binheap that
are not accessed get paged out. In the
worst case of only nine pages resident,
the binary heap averages 11.5 page
transfers per operation, while the B-
heap needs only 1.14 page transfers.
If your server has solid state drives
(SSD), that is the difference between
each operation taking 11 or 1.1 milli-
seconds. If you still have rotating plat-
ters, it is the difference between 110
and 11 milliseconds.

At this point, is it wrong to think,
“If it runs only once per minute, who
cares, even if it takes a full second?”

We care because the 10 extra pages
needed once per minute loiter in RAM
for a while, doing nothing—until the
kernel pages them back out again,
at which point they get to pile on top
of the already frantic disk activity,
typically seen on a system under this
heavy VM pressure.e

e	 Please don’t take my word for it: applying
queuing theory to this situation is a very edu-
cational experience.

Figure 3. Close-up of the effect of VM pressure on binary-heap and B-heap runtime speeds.

25

20

15

10

5

0

2

1.5

1

0.5

0

–64 –48 –32

VM pressure in kilobytes

R
u

n
ti

m
e

in
 s

ec
on

d
s

–16 0 16

 B inary heap (left scale)    B -heap (left scale)     speedup (right scale)

1M records
512 per page
1ms disk

Figure 4. Comparisons of runtime speeds of binary heap and B-heap on a mechanical disk.

180

160

140

120

100

80

60

40

20

0

2

1.5

1

0.5

0

R
u

n
ti

m
e

in
 s

ec
on

d
s

 B inary heap (left scale)    B -heap (left scale)     speedup (right scale)

1M records
512 per page
10ms disk

–64 –48 –32

VM pressure in kilobytes

–16 0 16

http://phk.freebsd.dk/B-Heap

58 communications of the acm | july 2010 | vol. 53 | no. 7

practice

Next, let us zoom in on the other
end of the plot (Figure 3). If there is
no VM pressure, the B-heap algorithm
needs more comparisons than the
binary sort, and the simple parent-to-
child / child-to-parent index calcula-
tion is a tad more involved: so, instead
of a runtime of 4.55 seconds, it takes
5.92 seconds—a whopping 30% slow-
er; almost 350 nanoseconds slower
per operation.

So, yes, Knuth and all the other
CS dudes had their math figured out
right.

If, however, we move left on the

curve, then we find, at a VM pressure
of four missing pages (= 0.2%) the B-
heap catches up, because of fewer VM
page faults; and it gradually gets bet-
ter and better, until as we saw earlier,
it peaks at 10 times faster.

That was assuming you were using
an SSD, which can do a page operation
in 1 millisecond—pretty optimistic, in
particular for the writes. If we simu-
late a mechanical disk by setting the
I/O time to a still-optimistic 10 mil-
liseconds instead (Figure 4), then B-
heap is 10% faster as soon as the ker-
nel steals just a single page from our

1,954-page working set and 37% faster
when four pages are missing.

So What is a B-Heap, Anyway?
The only difference between a binary
heap and a B-heap is the formula for
finding the parent from the child, or
vice versa.

The traditional n -> {2n, 2n+1}
formula leaves us with a heap built
of virtual pages stacked one over the
next, which causes (almost) all vertical
traversals to hit a different VM page
for each step up or down in the tree,
as shown in Figure 5, with eight items
per page. (The numbers show the or-
der in which objects are allocated, not
the key values.)

The B-heap builds the tree by fill-
ing pages vertically, to match the di-
rection we traverse the heap (Figure
6). This rearrangement increases the
average number of comparison/swap
operations required to keep the tree
invariant true, but ensures that most
of those operations happen inside a
single VM page and thus reduces the
VM footprint and, consequently, VM
page faults.

Two details are worth noting:
˲˲ Once we leave a VM page through

the bottom, it is important for perfor-
mance that both child nodes live in
the same VM page, because we are go-
ing to compare them both with their
parent.

˲˲ Because of this, the tree fails to ex-
pand for one generation every time it
enters a new VM page in order to use
the first two elements in the page pro-
ductively.

In our simulated example, fail-
ure to do so would require five pages
more.

If that seems unimportant to you,
then you are doing it wrong: try shift-
ing the B-heap line 20KB to the right
in figures 2 and 3, and think about the
implications.

The parameters of my simulation
are chosen to represent what happens
in real life in Varnish, and I have not
attempted to comprehensively char-
acterize or analyze the performance of
the B-heap for all possible parameters.
Likewise, I will not rule out that there
are smarter ways to add VM-clue to a
binary heap, but I am not inclined to
buy a ticket on the Trans-Siberian Rail-
way in order to find time to work it out.

Figure 5. Binary-heap tree structure.

1

2 34

8 10 12 15

3123 2416

32 4039 47

9 11

65 7

Figure 6. B-heap tree structure.

11

12 3

4

8 16 24 32

12
40

47

13 14 15 25 31 39

10 18

9 17

65 7

Figure 7. Outdated computer model.

outputCPU

memory

input

practice

july 2010 | vol. 53 | no. 7 | communications of the acm 59

The order of magnitude of differ-
ence obviously originates with the
number of levels of heap inside each
VM page, so the ultimate speedup will
be on machines with small pointer
sizes and big page sizes. This is a
pertinent observation, as operating
system kernels start to use super-
pages to keep up with increased I/O
throughput.

So Why are You, and I,
Still Doing it Wrong?
An (in)famous debate, “Quicksort vs.
Heapsort,” centered on the fact that
the worst-case behavior of the for-
mer is terrible, whereas the latter has
worse average performance but no
such “bad spots.” Depending on your
application, that can be a very impor-
tant difference.

We lack a similar inquiry into al-
gorithm selection in the face of the
anisotropic memory access delay
caused by virtual memory, CPU cach-
es, write buffers, and other facts of
modern hardware.

Whatever book you learned pro-
gramming from, it probably had a
figure within the first five pages dia-
gramming a computer much like the
one shown in Figure 7. That is where
it all went pear shaped: that model is
totally bogus today.

Amazingly, it is the only concep-
tual model used in computer educa-
tion, despite the fact that it has next to
nothing to do with the execution envi-
ronment on a modern computer. And
just for the record: by modern, I mean
VAX 11/780 or later.

The past 30 or 40 years of hardware
and operating-systems development
seems to have only marginally im-
pinged on the agenda in CS depart-
ments’ algorithmic analysis sections,
and as far as my anecdotal evidence, it
has totally failed to register in the edu-
cation they provide.

The speed disparity between pri-
mary and secondary storage on the
Atlas Computer was on the order of
1:1,000. The Atlas drum took two mil-
liseconds to deliver a sector; instruc-
tions took approximately two micro-
seconds to execute. You lost around
1,000 instructions for each VM page
fault.

On a modern multi-issue CPU,
running at some gigahertz clock fre-

quency, the worst-case loss is almost
10 million instructions per VM page
fault. If you are running with a rotat-
ing disk, the number is more like 100
million instructions.f

What good is an O(log2(n)) al-
gorithm if those operations cause
page faults and slow disk operations?
For most relevant datasets an O(n)
or even an O(n2) algorithm, which
avoids page faults, will run circles
around it.

Performance analysis of algorithms
will always be a cornerstone achieve-
ment of computer science, and like
all of you, I really cherish the foldout
chart with the tape sorts in Volume 3
of The Art of Computer Programming.
But the results coming out of the CS
department would be so much more
interesting and useful if they applied
to real computers and not just toys
like ZX81, C64, and TRS-80.	

f	 And below the waterline there are the flushing
of pipelines, now useless and in the way, cache
content, page-table updates, lookaside buffer
invalidations, page-table loads, etc. It is not
atypical to find instructions in the “for operat-
ing system programmers” section of the CPU
data book, which take hundreds or even thou-
sands of clock cycles, before everything is said
and done.

Most CS-educated
professionals
still ignore VM as
a matter of
routine. This is an
embarrassment
for CS as
a discipline and
profession, not
to mention wasting
enormous amounts
of hardware and
electricity.

 Related articles
 on queue.acm.org

Thread Scheduling in FreeBSD 5.2
Marshall Kirk McKusick and
George V. Neville-Neil
http://queue.acm.org/detail.cfm?id=1035622

Flash Storage Today
Adam Leventhal
http://queue.acm.org/detail.cfm?id=1413262

High Performance Web Sites
Steve Souders
http://queue.acm.org/detail.cfm?id=1466450f

References
1.	 Fotheringham, J. Dynamic storage allocation in

the Atlas Computer, including an automatic use of
a backing store. Commun. ACM 4, 19 (Apr. 1961),
435–436.

2.	 Williams, J. W. J. Algorithm 232—Heapsort. Commun.
ACM 7, 6 (June 1964), 347–348.

Poul-Henning Kamp (phk@FreeBSD.org) has
programmed computers for 26 years and is the inspiration
behind bikeshed.org. His software has been widely
adopted as “under the hood” building blocks in both open
source and commercial products. His most recent project
is the Varnish HTTP accelerator, which is used to speed up
large Web sites such as Facebook.

© 2010 ACM 0001-0782/10/0700 $10.00

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1035622
http://queue.acm.org/detail.cfm?id=1413262
http://queue.acm.org/detail.cfm?id=1466450f
mailto:phk@FreebsD.org
http://bikeshed.org

60 communications of the acm | july 2010 | vol. 53 | no. 7

contributed articles

Constructivist learning theory says learning is
grounded in and constructed from prior understanding
and belief. In order to explore the prior understanding
and belief of beginning computer science students,
the Commonsense Computing Project (http://
commonsensecomputing.cs.siue.edu) asks them to
answer CS questions on the first day of their first course.
Here, we report on the related commonsense knowledge
as demonstrated in the area of concurrency. Long
considered an advanced topic in the CS curriculum,
concurrency is rarely5,16 considered appropriate
for introductory students; on the other hand, it is
increasingly at the forefront of CS; obvious instances

involve multicore processors on the
desktop, distributed computing re-
sources for computationally and
data-intensive problems, and net-
work-based games. Whether through
implicit structures in programming
languages or explicit structures in de-
sign, university students must dem-
onstrate an understanding of the vari-
ous approaches to and implications
of concurrency.

Given the importance of the topic,
what relevant knowledge and abilities
do students without prior comput-
ing instruction (“beginners”) bring to
their first class? Do they differ from
more advanced students with no ex-
plicit teaching about concurrency?

Along with their commonsense un-
derstanding of concurrency, this arti-
cle explores the solutions they provid-
ed on the first day of an introductory
CS course to a problem devised by Yi-
fat Ben-David Kolikant of Hebrew
University of Jerusalem2 to more ad-
vanced students on the first day of a
concurrency course in an Israeli high
school. We’ve used the responses to
address two questions:

˲˲ Are beginners able to recognize
the key concurrency issue regarding
use of a shared resource? and

˲˲ How do answers given by begin-
ners compare with answers given by
more advanced students, as reported
by Ben-David Kolikant?

Of the 66 students in our 2006
study, 97%, or 64, could identify a race
condition and 71% provided a solu-
tion we considered reasonable. The

doi:10.1145/1785414.1785438

Innate understanding of concurrency helps
beginners solve CS problems with multiple
processes executing at the same time.

by Gary Lewandowski, Dennis J. Bouvier,
Tzu-Yi Chen, Robert McCartney, Kate Sanders,
Beth Simon, and Tammy VanDeGrift

Commonsense
Understanding
of Concurrency
Computing Students
and Concert Tickets

 key insights
 � �Beginner CS students demonstrate

commonsense knowledge about
important CS topics that can be
leveraged to improve instruction.

 � �Constructivist education begins with
commonsense knowledge, helps
students discover its utility, and
provides tools for more complex
approaches rooted in CS knowledge.

 � �Beginner CS students demonstrate
intuition about concurrency roughly
equivalent to experienced CS students
beginning a concurrency course. I

l
l

u
s

trati

o

n
 b

y
 G

ar

y
 n

e
i

l
l

http://commonsensecomputing.cs.siue.edu
http://commonsensecomputing.cs.siue.edu

cr

e
dit

 tk

july 2010 | vol. 53 | no. 7 | communications of the acm 61

Cinema Tickets Problem

A ticket office sells movie tickets for a certain cinema. The next client always gets the best-available
ticket. Software decides the next-best-available seat and prints the ticket.

Assumptions:
•	T he movie is screened only once;
•	T his is the only office selling tickets for the movie;
•	E ach client can buy only one ticket; and
•	 Many people are waiting to buy tickets.

The software defines several procedures:

Function
BestAvailableSeat()

Input: Hall
Return value: Best-available
seat in the Hall;
–1 if no seat is available.

Procedure
Mark AvailableSeat(Seat)

Input: Seat is the place of
an available seat in the Hall.
Output: The place of the Seat
is marked as taken.

Procedure
PrintTicket(Seat)

Input: Seat is the place of
an available seat in the Hall.
Output: A ticket for place
Seat is printed.

A client is handled through these steps:
Seat <= BestAvailableSeat()
If Seat <> –1 then
 MarkAvailableSeat(Seat)
 PrintTicketSeat(Seat)

Since waiting in line takes too long, the Hall owners added another ticket office. Both offices are to be
open at the same time and sell tickets for the same screening. Each office has its own printer for
printing the tickets it sells; ignore money issues. The system must be developed by specifying:

1.	R equired hardware (screens, printers, keyboards) and how it is to be distributed in the system;
and

2.	 Pseudocode for the system’s software (selling tickets through two offices); the above
procedures can be used, with no need to redefine them.

Yifat Ben-David Kolikant’s cinema-tickets assignment.

62 communications of the acm | july 2010 | vol. 53 | no. 7

contributed articles

people learn, starting with what they
already know and building knowledge
on that foundation, rather than re-
ceiving it passively from an instructor.
Each learner’s background, culture,
and previous knowledge define his/
her starting point. Bransford et al.4
argued that learning must engage stu-
dents’ preconceptions to be effective.

The importance of constructiv-
ism is recognized in the computing-
education community. Ben-Ari1 com-
pared it with other fields, highlighting
several differences; for example, in CS
education, students need a model of
the computer, and the computer then
provides an “effective ontological re-
ality,” or verification of whether a pro-
gram works or not.

Students’ prior understanding and

most common technique they report-
ed for avoiding race conditions was
subdividing the resources. Our study
provides a basis for a constructivist
approach to teaching concurrency, al-
lowing instructors to build on these
ideas. Moreover, the study was inde-
pendent of technological assump-
tions, making it relevant regardless
of technology or pedagogical practice
used.

Background
We have conducted a number of com-
monsense computing projects over
the past five years, all with the same
basic goal of identifying the common-
sense knowledge beginners bring to
the study of CS. Our foundation was
the constructivist theory about how

beliefs about a particular topic are
also considered preconceptions, as
explored by several researchers:

˲˲ Miller10 analyzed “natural lan-
guage” programs by students who
previously had not taken a formal
programming course, covering the
idea of writing computer programs
in natural language, and found that
a number of standard programming
concepts showed up in these natural-
language descriptions;

˲˲ Onorato and Schvaneveldt11 also
looked at natural-language descrip-
tions of a programming task, compar-
ing survey subjects drawn from a vari-
ety of student categories: naïve, with
no programming experience; begin-
ner, currently taking a first program-
ming course; and expert, with signifi-
cant programming experience. Along
with the differences between experts
and novices, they also found differ-
ences between the naïves and the be-
ginners, though both groups lacked
programming experience;

˲˲ Studying the misconceptions
of novice programmers, Bonar and
Soloway3 focused on preprogram-
ming knowledge, calling it “step-by-
step natural language programming
knowledge”; they distinguished it
from knowledge of the programming
language Pascal the students were
learning in their introductory course.
They found that many of the observed
bugs in novice-programmer-written
code could be explained by a mis-
match in students’ knowledge in
these domains; and

˲˲ Gibson and O’Kelly8 looked at a
variety of search problems (with pre-
college students) and Towers-of-Ha-
noi problems (with beginners), find-
ing both groups showed “algorithmic
understanding” of how to solve them.

In our own prior work beginning
in 2005, we sought to identify student
preconceptions that could be lever-
aged in teaching beginning comput-
ing concepts. To investigate student
preconceptions about sorting, we
asked 118 beginners to describe in
words how they would sort a list of
numbers into ascending order.14 A
majority (69%) described a coher-
ent algorithm, with many giving ver-
sions of selection or insertion sort.
However, most treated numbers as
strings, manipulating them digit by

contributed articles

july 2010 | vol. 53 | no. 7 | communications of the acm 63

digit. Many used iteration; to our sur-
prise, most iteration involved post-
test loops. In 2008,13 we described our
investigation of students’ common-
sense knowledge of debugging, giv-
ing beginners one of four questions
designed to elicit their knowledge of
debugging strategies. The questions
asked them to describe the advice
they would give people whose lights
did not turn on when they flipped
the switch; how they would locate the
moment things go wrong in the chil-
dren’s game “telephone”; how they
would find a Starbucks if they were
in a strange city where they did not
speak the language; or an experience
of their own involving troubleshoot-
ing.

In general, we found beginners
had less commonsense knowledge of
debugging than of sorting, and some
of their preexisting knowledge did not
serve them well. For example, real-
world fixes are often easy to undo, un-
like programming changes. Likewise,
the real world is nondeterministic in
ways CS1 programs generally are not;
for example, if your car doesn’t start,
should you immediately turn the key
a second time?

A substantial body of work in com-
puting and in other scientific disci-
plines, including physics and math-
ematics, involves misconceptions, or
incorrect concept understandings,
that must be replaced with correct
ones. Clancy6 provided a survey of this
work in CS, and the National Acad-
emy’s Committee on Undergraduate
Science Education7 gave a more gen-
eral overview. Smith et al.15 challenged
this view in the context of math and
science education, arguing that mis-
conceptions are limited mental mod-
els that can be built onto, ultimately
providing a correct understanding of
the concept being studied.

Most relevant to the commonsense
project discussed here is Ben-David
Kolikant’s 2001 work examining stu-
dent preconceptions about concur-
rency.2 She collected data from about
135 Israeli 12th-grade students in six
classes at three different schools. The
students previously studied comput-
ing and at the time of the study were
taking an advanced class in concur-
rent and distributed computing.

At the beginning of the course she

ing the same ticket twice”2 and “the
prevention of the interleaving of the
access to the database.”2 Ben-David
Kolikant found that students did not
identify the problem of interleaving
in their written answers. Follow-up in-
terviews indicated they assumed the
key actions were inseparable, writing,
“They assume that the two critical ac-
tions of checking and updating the
database are always executed succes-
sively.”2 As a result, they assumed the
key issue was communication, mak-
ing sure all sellers were aware of the
seats already sold. One-third of the
135 students presented centralized
solutions, and the rest presented de-
centralized solutions.

A final aspect of the students’ solu-
tions Ben-David Kolikant considered
was “reasonableness,” or solving the
problem “in a reasonable or realistic
way…according to the context of the
problem.”2 She found that students
were influenced by their real-world
experience with concurrency and net-
works. For example, C3 solutions were
workable real-world solutions but did
not ensure buyers would receive the
best seat available.

Our 2006 study modified Ben-Da-
vid Kolikant’s problem for presen-
tation to beginners, allowing us to
explore commonsense concurrency
knowledge and the difference in this
knowledge between advanced stu-
dents and beginner students.

Methodology
Here, we describe our process of data
collection and analysis:

Data collection. In the first week of
the first semester of the 2006–2007
school year, in a CS1 class, students
were randomly assigned one of two
tasks: the concurrency task explored
here completed by 66 students from
five different institutions; the other
was unrelated to the study. The par-
ticipating students were all beginners
between the ages of 18 and 20. All but
eight completed the questions online
(outside of class) by typing English an-
swers into a text box. Eight students
(all at the same institution) complet-
ed the questions on paper in a labora-
tory setting. All were given credit for
completing the assignment, though
solution quality was not evaluated for
credit. (The participant/subject iden-

gave them a critical-section prob-
lem in which multiple agents share a
common resource—two ticket offices
selling tickets for the same movie.
As shown in the figure, the question
was posed in a detailed pseudocode
format. It expects a relatively sophis-
ticated answer, including a hardware
system specification for supporting
multiple machines servicing sales re-
quests, pseudocode for the solution,
and an explanation of the answer and
how it avoids duplicate ticket sales.
Student answers were graded as part
of the course.

Ben-David Kolikant divided the
responses into two major categories:
centralized, involving a solution in
which communication and control
for the solution are centralized; and
decentralized, implicitly or explicitly
involving the sellers communicating
with one another to achieve a concur-
rent solution.

The centralized solutions involved
three subcategories: (C1) with a cen-
tral entity, essentially a master com-
puter making all decisions; (C2) in
which the solutions involved an as-
sumption either of a constant rate of
operations or of operations happen-
ing in a particular order; and (C3) in
which solutions assume the sellers
have private resources, each selling
tickets for a separate area of the the-
ater. Ben-David Kolikant described
categories C2 and C3 as solutions that
“attempted to solve a similar, but dif-
ferent problem.”2 She divided decen-
tralized solutions into (D1) in which
communication is implicit and (D2)
in which communication is explicit.

Ben-David Kolikant’s discussion
focused on three aspects that togeth-
er contribute to the solutions she
evaluated, describing them as “(a)
the algorithmic goal of the system, (b)
synchronization goals, and (c) reason-
ableness.”2

The algorithmic goal was the prob-
lem the system was intended to solve,
in this case, selling the ticket for the
best available seat. The cinema-ticket
problem was well constrained, with
student responses all sharing this
goal.

The synchronization goals of the
cinema-ticket problem were “to coor-
dinate…access to a common resource
(the database) in order to avoid sell-

Table 1. Institutional breakdown of respondents; n = number of students answering
the concurrency question.

Institution Characterization n Class Characteristics

Private, on West Coast of U.S. with
approximately 3,200 undergraduates
and a school of engineering

25 CS1 serving all engineering, with most of class electri-
cal engineering majors with prior MATLAB course

Public research, on West Coast
of U.S. with approximately
27,000 undergraduates and
a school of engineering

20 CS1 serving mostly computer science majors

Public research, on East Coast
of U.S. with approximately 21,000
undergraduates and a school
of engineering

10 CS1 serving computer science and engineering, com-
puter science, computer engineering, and electrical
engineering

Public regional, on East Coast
of U.S. with approximately 2,000
undergraduates

8 CS1 serving mostly computer science majors

Private liberal arts, on East
Coast of U.S. with approximately
1,600 undergraduates

3 CS1 serving computer science majors and minors
and math majors

Table 2. Number of concurrency
solutions and problems identified
by students; n = 66.

Accomplishment
Percent
of students

Number of solutions provided

One solution 70%

Two solutions 20%

Three or more solutions 10%

Problems identified

Sell seat more than once 97%

Other 41%

Provided reasonable solution
to concurrency problem

71%

64 communications of the acm | july 2010 | vol. 53 | no. 7

contributed articles

tifiers we cite here are renumbered
and do not reflect institutional affilia-
tion; the institutions’ characteristics,
which vary significantly, are summa-
rized in Table 1.)

The task. Students were asked to
address the following: Suppose we sell
concert tickets by phone in the follow-
ing way: When a customer calls and
asks for a number (n) of seats, the sell-
er (1) finds the n best seats available;
(2) marks those n seats as unavailable;
and (3) deals with customer-payment
options (such as credit- and debit-
card number) or sends the tickets to
the will call window for pickup. Now
suppose more than one seller is work-
ing at the same time. What problems
would we see, and how could we avoid
them?

Our goal was to determine wheth-
er the students would note the race
condition between two sellers and
suggest solutions to resolve it. There
are several differences between this
task and Ben-David Kolikant’s coun-
terpart. We modified the question
to refer to concert tickets, since our
students likely had more experience
ordering concert tickets. We also re-
moved the restriction that each cus-
tomer be able to buy only one ticket.
And finally, due to our students’ lack
of background, we phrased the ques-
tion less technically, asking for re-
sponses in English paragraphs, with-

out pseudocode or detailed hardware
and software specifications.

Analysis. After collecting the data,
we read through all 66 responses for
a general sense of their content. We
then organized categorizations for
the responses based on the categori-
zations used by Ben-David Kolikant.2

We considered all decentralized
solutions in a single category (D), as
the less-explicit question led students
to provide less-explicit descriptions of
this strategy, making it unclear if the
communication was explicit or im-
plicit. We also considered C2 and C3
answers (along with C1 and D) as “rea-
sonable” solutions, because our tick-

et-ordering problem was more open-
ended and did not ask students to
consider hardware issues that would
be necessary to make a solution work.

Several types of responses were
considered “non-reasonable.” Some
were ambiguous (AS), neither central-
ized nor decentralized. In others (BS),
the response could not reasonably be
said to solve the problem. Some re-
sponses (NS) did not offer a solution.
And some responses (NP) provided
solutions to problems that were not
our central focus, though they may
have been interesting, with some even
involving concurrency. We recorded
the problems (and the suggested solu-
tions) that were not our central focus
so we could examine them for com-
monalities across students.

Unlike Ben-David Kolikant’s par-
ticipants, the students in our study
often gave more than one possible so-
lution to a problem, and we counted
and coded each of them. After deter-
mining the proper categories, five of
us coded the data, resolving coding
conflicts through discussion.

Results
Here, we offer a sense of the student
solutions by viewing them from three
perspectives: per student, per catego-
rizations used by Ben-David Kolikant,2
and through a qualitative look, with
characteristic examples of responses
highlighting important aspects of the
responses.

Per student. We addressed three
questions: How many solutions did
the student provide? Was the problem
identified? Did the student’s solution
seem reasonable?

The 66 students in the study collec-
tively produced a total of 97 identifi-
able solutions (see Table 2). Due to the
open-ended nature of the solution we
requested, many discussed multiple
issues they saw in the problem state-
ment (not all necessarily concurrency-
related) or outlined several solutions
to the concurrency problem of trying
to sell the same seat to more than one
person at a time. The majority (70%
of the 66) of the students discussed
only a single solution, but 20% identi-
fied two solutions, and 10% identified
three or more solutions, with six solu-
tions being the most identified by any
one student.

Table 3. Solution breakdown by type: column 2: considered 97 solutions;
column 3: considered 67 reasonable (C or D) solutions.

Category Of all solutions Of reasonable solutions

Reasonable solutions (centralized and decentralized) 69% —

Centralized 38% 55%

C1 7% 10%

C2 9% 13%

C3 22% 31%

Decentralized 31% 45%

Not reasonable solutions 23% —

Bad solution 5% —

No solution 16% —

Ambiguous 1% —

Solved different problem 8% —

contributed articles

july 2010 | vol. 53 | no. 7 | communications of the acm 65

Of the 66 students, 97%, or 64,
identified our main problem of inter-
est—that it may be possible to sell a
given seat to more than one person—
good evidence that even novice com-
puting students are able to identify
this critical concurrency issue. Addi-
tionally, six students explicitly noted
the problems of interleaving access
to a database that could result in one
customer reserving but another cus-
tomer buying the tickets.

In all, 71%, or 47, of the 66 students
(73% of those identifying the main
problem) identified at least one “rea-
sonable” solution. Moreover, many
of the beginners gave more than one
type of answer. Of the 47 students
who gave a reasonable solution, 12 (or
26%) gave both centralized and decen-
tralized solutions.

Per categorization of solution. As
many students provided multiple so-
lutions, it is useful to look at the diver-
sity of responses (see Table 3) out of
the total number of solutions provid-
ed (97). We found that 69%, or 67, of
them were reasonable solutions to the
multiple-seat-selling problem; 31%,
or 30, were not reasonable solutions;
the majority of them (16) involved stu-
dents describing the problem (often
correctly) but without a solution.

Of the 67 reasonable solutions,
55%, or 37, described a centralized
solution where the selling entities
passed the responsibility of making
a seat assignment to some central
resource, and 45%, or 30, described
a method by which individual sellers
made decisions about seat assign-
ments as individual entities.

The centralized solutions were
further broken down into three cat-
egories, as defined by Ben-David Ko-
likant: (C1) with a central entity, es-
sentially a master computer making
all decisions; (C2) in which the solu-
tions involved an assumption either
of a constant rate of operations or of
operations happening in a particular
order; and (C3) in which solutions
assumed that sellers have private
resources, each selling tickets for a
separate area of the theater. Of the
reasonable solutions, 10%, or 7, were
of type C1, relying on implicit com-
munication between “dummy” sell-
ers passing the request to a master
computing resource to make assign-

ments. For example, one study par-
ticipant said, “These problems might
be avoided by having a computer sys-
tem automatically (to the second) in-
put the seat reservation for that cus-
tomer.” [ID438] (Each participant was
given an anonymous label.)

Of the 97 reasonable solutions,
13%, or 13 were of type C2, using the
same master resource but requiring
explicit ordering of communication
or steps in the process, including
lock-stepping and pipelining the pro-
cess. An example of a C2 solution: “In
order to avoid this [possibility of sell-
ing the same seat twice], we could set
up the database so only one person
could access the database at a time.
This would slow sales significantly
but is the safest setup.” [ID440]

By far the most popular central-
ized solution (31%, or 30 responses)
was also the most restrictive (C3)
and involved distributing or dividing
resources, either by portioning out
seats in the concert venue to differ-
ent sellers or serializing or otherwise
pipelining the selling process.

Qualitative results. A qualitative
analysis of the responses is a use-
ful way to examine other interesting
aspects of the 97 student solutions,
revealing the range of approaches
taken, as well as the depth of student
understanding of the computational
issues.

Algorithmic goals. Most students
(58) did not further refine the goal of
their algorithms, either explicitly or
implicitly using a goal of “best seats

available” in their responses. Some
elaborated further, explaining why
they chose a particular solution or the
focus of their algorithms.

A number of students were con-
cerned less about choosing seats
than about handling seats that are
given up. For example, one said, “If
the seats are marked unavailable as
soon as they are requested by the cus-
tomer, other sellers cannot access the
seats for their own customers at that
time. This is a bad thing [less-than-
optimal solution] because the better
seats reserved by the first customers
could potentially still be open should
the customers change their minds
about the purchase or if payment in-
formation cannot be validated. If the
seats are marked unavailable, and the
payment does not come through for
whatever reason, the seats would re-
main unavailable and be empty dur-
ing the concert.” [ID415]

Another said, “One obvious prob-
lem is two sellers giving up the same
seats at the same time.” [ID405]

Some participants changed their
algorithmic goals when they realized
they could not simply reserve and
sell as a single atomic action. For ex-
ample, one said, “In a very unlikely
situation, the sellers could mark the
seats ‘unavailable’ at the same time.
However, in a more likely situation,
one of them would mark seats as un-
available and the other would mark
and see that the seats are unavailable,
but that seller was not the one reserv-
ing them. Then there will be multiple

66 communications of the acm | july 2010 | vol. 53 | no. 7

contributed articles

tickets sent to will call for the same
seats.” [ID412]

Citing concurrency, other students
expressed concern about dealing with
group sales, with one saying, “First of
all, there could be an issue of finding
group seating. Finding n best avail-
able seats will not necessarily do, if
they have to be n best available seats
together. In such a situation, each
seat should be labeled with how many
seats are available in front, behind,
and to the left and right of it.” [ID425]

Another said, “Scalpers and other
ticket-selling agencies will buy tickets
and sell them at an increased price;
with no limit on n, the number of tick-
ets the caller is purchasing, a single
caller could buy every ticket to the
concert. This problem is easily fixed
by putting an upper limit on n of eight
to 12 tickets; large groups can call a
special hotline and speak to an opera-
tor to purchase more.” [ID430]

The notion of “best seat” attract-
ed further attention, with one par-
ticipant handling the double-selling
problem by dividing the seats among
sellers. Most algorithmic attention
was then focused on the following
problem, as the participant described
it: “First of all, there would no longer
be a first-come-first-serve basis, and
problems would arise over who actu-
ally occupies the good seats first. If
it’s only one seller, she would be able
to take one customer at a time. Two or
more sellers would make it hard to de-
cide which seller’s customer actually
received the seats first.” [ID431]

Identifying the main synchronization
problem. The degree to which study
participants were able to identify the
problem varied, with most giving a
fairly standard “Sellers could mark
the seats unavailable at the same
time.” [ID412] or “There could be
double-booking.” [ID106] Saying this
scenario is unlikely was not uncom-
mon, with some participants identi-
fying computers or technology as the
source of the problem. For example,
one said, “One computer may be op-
erating slower than another, causing
the seats one seller saw to be taken by
another seller.” [ID406]

Others might not have addressed
technology specifically but did iden-
tify the key concept of time, with one
saying, “One major issue is when, and

how long, it takes to mark a seat as un-
available.” [ID410]

A few others gave more detailed
problem descriptions that hinted at
the kind of analysis that will eventual-
ly be needed to construct a genuinely
effective solution, including recogni-
tion of the interleaving problem. For
example, one said, “The first, most
obvious problem is overlap. If all sell-
ers are working at the same time, then
the system might display to Seller A
that certain seats are open, when, in
fact, they have already been reserved
by Seller B. Thus A will have to find
different seats, which might have, in
the intervening time, been reserved
by Seller C.” [ID 417]

Identifying other problems. As noted
when we discussed algorithmic goals,
study participants identified group
sales as a particularly knotty prob-
lem, and payment and how to cancel
orders were big issues. For example,
one said, “Another problem would be
if the seats are marked unavailable
before they are sold, customers might
change their minds before payment
and possibly hinder the sale of the
seats to other customers who might
have wanted them at the same time.”
[ID420]

Another said, “If a customer can-
cels an order, how is the information
transmitted to the other seller in a
reasonable amount of time? If the
customer doesn’t pay for the tickets
at will call, what happens to them?”
[ID 422]

And another said, “At the moment
of receiving the payments for the tick-
ets, problems might come up, such as
miscommunication between the sell-
ers and charging the customer dou-
ble.” [ID419]

Participants also mentioned reli-
ability, with one saying, “The comput-
ers may malfunction, and the seller
may not be able to key in the request-
ed seats.” [ID406]

Centralized solutions. The three
variants of the centralized solutions
reflected significant distinguishing
characteristics. For example, C1 so-
lutions relied on implicit communi-
cation between sellers and a central
system making the reservation or
selection on their behalf. A common
characteristic of these implicit com-
munications, as exemplified by ID438

cited earlier, concerning automatic
customer ordering, was that they be
“fast.” Some were less specific but
still involved implicit communica-
tion. For example, one participant
said, “The program would have to
temporarily mark seats being looked
at during a transaction as unavailable
so vendors couldn’t sell seats simulta-
neously.” [ID313]

Others were more specific, im-
posing additional restrictions while
prompting doubt as to the partici-
pant’s true understanding of concur-
rency. In one case, we saw evidence
of an attempt to move the potential
point of concurrent access in an ex-
pressed solution. “The only real way
to avoid this and still have multiple
sellers is to run the booking on a
computer network with a master list
of available seats. The process would
then go something like this: A caller
requests n seats. The master list can
be ordered in such a way that it fills the
seats front to back, left to right; when
a seller requests n seats, it gives the
next n seats on the list. Cancelled seat
orders are inserted at the top of the
available list, in order of precedence.
The seller can reserve the seats, ask
if they are acceptable to the custom-
er, and, if they are, proceed with the
transaction. This would avoid double-
booking, because during the time the
seller offers the seats to the customer,
they are withheld from the list, and
the other sellers drawing from the list
would not have access to those seats.”
[ID130]

C2 solutions differed from C1 in
their use of explicit communication
with a centralized resource making
seat assignments, sometimes iden-
tified as a database. The quote from
ID440 earlier on explicit ordering is
an example of this explicit communi-
cation.

Another variant of explicit com-
munication involved a particular
ordering required to ensure a safe
process, including lockstepping and
pipelining. For example, one partici-
pant said, “These problems [multiple
bookings] might be avoided if instead
of multiple people selling tickets and
being involved in every step of the
process, the selling process was di-
vided between two employees. This
way, while the second employee was

contributed articles

july 2010 | vol. 53 | no. 7 | communications of the acm 67

Our motivation was
the constructivist
theory about
how people learn,
starting with
what they already
know and building
knowledge on
that foundation,
rather than
receiving it
passively from
an instructor.

taking care of the payment of the first
caller, the first employee could start
to deal with the next sale, then trans-
fer the call to the payment employee.”
[ID120]

Another variant does not require
a computer solution for concurrency
at all, with one participant saying,
“A possible solution to this problem
[multiple sales of the same ticket]
would involve a stagger-start ap-
proach when more than one worker is
on the phone. For example, when the
first caller calls, worker A picks up the
phone right away. The second caller
calls right after the first has called.
Worker B then waits until the phone
rings three times, then picks up and
starts the process.” [ID121]

C3 solutions (the most common)
involved distributing resources in a
way that avoids simultaneous access.
The most common resource was the
seats to be sold. Some participants
commented on potential problems
with this approach, with one saying,
“Perhaps if each vendor were respon-
sible for a section of the concert hall,
finding the best seats within their sec-
tion would solve this problem. But
this solution also means some ven-
dors will fill the ‘good’ seats in their
section faster, and certain customers
won’t get the absolute best seats they
could. Chances are good, however,
that customers wouldn’t be aware
that there are better seats available,
rationalizing that the concert filled up
quickly.” [ID303]

Other participants were more spe-
cific about the technique they would
use—assigning a seller to a particular
type of seat—to distribute resources.
One said this could simplify or un-
complicate things, pointing out a
possible benefit: “One way we could
fix this problem [of multiple sellers
of the same ticket] would be to as-
sign a section of seats to each seller.
This way no seats would be sold twice,
and it would be more organized. One
seller would be in charge of one price
and one section, making the selling
of seats faster and more efficient.”
[ID404]

Decentralized solutions. Decentral-
ized solutions are distinguished from
centralized solutions by whether sell-
ers themselves make decisions and
seat assignments are based on com-

munications with other sellers. If they
are, the solution is decentralized. A
common decentralized answer could
reference a shared resource (such as
a database or document), but sellers
make decisions individually based on
the resource, rather than on a central-
ized entity.

One participant said, “To resolve
this issue [of multiple sellers of the
same seats], there should be commu-
nication between the sellers. Ideally,
they would mark the seats as unavail-
able on the same documents, so there
could never be any doubling.” [ID101]

Other examples of nonspecific
communication among distributed
sellers included participants saying,
“drawing off of the same information
that was updated with each transac-
tion” [ID304], “inform the other sell-
ers of this by some form of communi-
cation” [ID437], and “using a program
that is constantly updated” [ID434].

Speed was a common theme in
the proposed solutions, with words
like “instantaneously” [ID425], “in-
stantly” [ID426] [ID402], “constantly”
[ID434], “continuously” [ID410], and
“real time” [ID417].

Some responses were more spe-
cific about how communication must
occur, with some realizing the prob-
lem might not be completely solved.
For example, one participant said,
“A much easier way would be to use
a computer program that networks
each seller. This way, each seller has
access to each available seat. As soon
as a booking is made, it will automati-
cally register on every seller’s screen,
and the chance of there being a dou-
ble booking will be close to impos-
sible.” [ID323]

One participant provided explicit
communication directives, saying, “I
would change the order of operations
so the two or more people booking
seats would be required to check with
each other while booking so as not
to book the same seats, in that way
adding another step and alleviating
the two problems [booking the same
seats and selling more tickets than
are available].” [ID409]

Noncomputing-oriented solutions.
Several solutions were distinguished
by their noncomputing and nontech-
nological approaches, though they
could be classified as either central-

68 communications of the acm | july 2010 | vol. 53 | no. 7

contributed articles

ized or decentralized. For example,
one participant said, “We could mark
the same seat map with different col-
ored markers for each sell.” [ID106]
This participant’s solution is decen-
tralized, since one can imagine indi-
vidual sellers, each with their own col-
ored marker, racing to mark off seats
on a large map.

Another said, “This problem [of
selling the same seat twice] could be
avoided by allowing only one vendor
at a time into the concert hall. But
this would be unreasonable if the hall
were too large or too many vendors
were working to reserve seats. Per-
haps if each vendor were responsible
for a section of the hall, finding the
best seats within their section, this
problem would be solved.” [ID303]
This response provides two solutions
that eliminate potential conflicts, the
first by enforcing exclusive access be-
tween the selection and the marking
of seats, the other by dividing the re-
source (seats). Here, we could imag-
ine sellers with cellphones dashing
around the hall, placing markers on
actual, physical seats. Note that scal-
ing issues are mentioned in the pro-
posed solution.

Common errors. The two most com-
mon errors in the student-proposed
solutions were in thinking that a
problem could be solved with a fast-
er system and in devising solutions
that simply moved concurrency to
another point in the algorithm. As
noted when we described decentral-
ized solutions, the surveyed students
suggested speed was necessary to
avoid many problems. For example,
one said, “To avoid this problem we
could have very high ‘refresh’ rates
or have a way of reserving n seats, as
the process is still going through.” [ID
423] Another said, “As soon as n seats
are marked unavailable, even before
payment processing, the seats need
to be marked unavailable. This way,
another seller cannot try to reserve a
seat that is already ‘reserved.’ …the
system (and screen) would need to be
refreshed every time a reservation is
made.” [ID 425]

Many proposed solutions moved
the point of concurrency. In one, it
was moved to a preview step, with
the participant saying, “One more
solution would be to have the com-

puter show the n seats as unavailable
as soon as any seller has them up on
their screens. With this system, only
one seller could see these seats as
available at a time. If one seller (A)
pulls up n seats for a customer, then
another seller (B) searches for the
best seats, and the seats seller A was
looking at would not be shown to sell-
er B.” [ID122]

Another retargeting of the point of
concurrency was to a graphical inter-
face, with another saying, “Creating
a visual representation of the concert
hall through a computer would allevi-
ate this problem. Sellers would mark
a certain number of seats for their cli-
ents, letting other sellers know which
seats are purchased (potentially) and
which seats are free for booking.”
[ID413]

Another realized his/her distrib-
uted, graphical interface only hid the
concurrency problem, so proposed a
novel solution that apparently used
the inherent randomness of human
interaction to deal with the problem
of multiple sellers claiming the same
seats at the same time, saying, “Sell-
ers would each have their own com-
puters, and all of them would be con-
nected, so once a seat is claimed, all
other sellers would see it. If two sell-
ers happen to click at the same time, a
separate window opens, and both will
have to try again.” [ID402]

One interpretation of this solution
is that a separate window would open
when the computer detects a conflict
and forces the sellers to back off and
retry, assuming it unlikely that the
sellers would try again at precisely
the same moment. However, this idea
leaves many concurrency issues un-
resolved, including how the conflict
is detected and whether or not other
sellers could still get in and reserve
the seat(s) targeted by the two original
sellers.

Discussion
The proposed solutions of begin-
ner students provide evidence of CS
problem-solving skills through their
ability to identify the problem and
suggest reasonable, though relatively
unsophisticated, solutions. By repli-
cating the Ben-David Kolikant study,
our study provided additional per-
spective in both analysis and results.

Of the 66 students,
64 identified our
main problem of
interest—that it
may be possible
to sell a given seat
to more than one
person—good
evidence that even
novice computing
students are able to
identify this critical
concurrency issue.

contributed articles

july 2010 | vol. 53 | no. 7 | communications of the acm 69

In addition to finding that her catego-
rizations of student-proposed solu-
tions and goals can be used to analyze
beginner responses, our study helped
compare beginners and students with
significant CS skills but no significant
experience with concurrency. This
comparison gave a sense of how much
sophistication was gained by the
more experienced students and how
much problem-solving sensibility was
already available to students on the
day they enter their first CS course.

We focused on two themes—rea-
sonableness and synchronization
goals—in the Ben-David Kolikant
study:

Reasonableness. Using student in-
terviews, Ben-David Kolikant found
that students sometimes solved a
simpler problem than the one she as-
signed, referring to these solutions as
not fulfilling the goal of being “rea-
sonable” solutions because they as-
sumed something unrealistic, given
the problem description. We saw the
same phenomenon in our student
solutions. Their wording sometimes
made it clear the proposed C2 (con-
stant rate or ordering of operations)
and C3 (division of resources) solu-
tions were “easy” or “simple.”

Some students in our study showed
their ability to reason about the qual-
ity of their solutions. For example
ID303, quoted earlier in the context
of centralized solutions, recognized
the limitations of his/her solution,
without suggesting a better one.
ID122 noted that moving the point
of concurrency in his/her solution as
superior to flawed, possibly incorrect
alternatives, saying, “The obvious so-
lution would be to fire one seller and
have just one working at a time (only
kidding). But the thing to do would be
to ‘assign’ each seller a section of the
hall where the concert is taking place.
One seller would have control of half
the seats, and the other the other half.
There would be no conflicting seats.
Or they could just switch systems to
general admission. One more solu-
tion would be to have the computer
show n seats as unavailable as soon
as any sellers pull them up on their
screens—a first-come-first-served sys-
tem.” [ID 122]

Synchronization goals. A third of
the solutions in the Ben-David Ko-

likant study were centralized. Our
study involved an even larger percent-
age of centralized solutions (55%, or
36). This was consistent with Resn-
ick,12 whose studies in the mid-1990s
found that managing a centralized
solution to a problem is easier than
managing entities in a decentralized
way. Moreover, despite the prolifera-
tion of decentralized entities, particu-
larly the Internet, in the 15 years since
Resnick’s studies, the students in our
study were still more inclined to pur-
sue a centralized solution. Ben-David
Kolikant noted that Resnick believed
increased exposure to decentralized
entities would increase the likelihood
of using decentralization, but we
found no evidence this happened. (All
participants in our study were experi-
enced Internet users.)

The larger percentage of central-
ized solutions in our study stemmed
from two factors: First, 82% of our
centralized solutions were C2 or C3
solutions; only 33% of Ben-David Ko-
likant’s centralized solutions were
C2 or C3 solutions. As Ben-David Ko-
likant brought up in her discussion of
reasonableness, students often made
simplifying assumptions, not because
they are reasonable, but because they
allow them to more easily solve the
problem posed to them. Given our
more open-ended problem descrip-
tion, it seemed more “reasonable” to
students to suggest C2 or C3 solutions
to our problem about concurrency
in concert-ticket sales. And second,
given our less well-defined problem
statement and reduced direct engage-
ment with the ticket-sales problem in
the classroom setting, our students
were not necessarily prodded to con-
sider or outline a more complex de-
centralized solution the same way
Ben-David Kolikant’s students might
have been.

Consistent with Ben-David Ko-
likant’s study, we found students
concentrated on sharing information
across sellers rather than preventing
interleaving access to the database,
with only six discussing the interleav-
ing of operations. However, it may
well be that the nature of our task
was simply not as suggestive of data-
base issues as the pseudocode in Ben-
David Kolikant’s problem statement,
particularly given the lack of comput-

ing experience by our CS1 students.
While Ben-David Kolikant was

able to show students “exaggerate the
grain of an atomic action” by assum-
ing that checking and updating the
database is atomic, we found that a
description of even this level of gran-
ularity was present in only the most
explicit and detailed of our student-
generated solutions. Many of the re-
sponses did not clarify this level of
description of granularity of interac-
tion, leaving it ambiguous as to how
well they really understood the con-
currency issue at hand.

Algorithmic goal of solution. While
Ben-David Kolikant’s study posed a
well-constrained problem with a clear
algorithmic goal, our study included
an unconstrained problem descrip-
tion, and our student participants
provided a number of goals for their
algorithms, with 97% identifying the
main goal of not letting the same seat
be sold to two different customers,
indicating a commonsense ability to
identify concurrency conflicts.

Many of our students (41%, or 27)
identified goals beyond not selling the
same seat, including group sales of a
large block of tickets, letting seats be
reserved without being paid for, iden-
tity theft, choosing seats by price rath-
er than by best available, payment-
transaction delays, and data tracking
and storage. Two of these problems—
group ticket sales and reserving with-
out selling to allow seats to be made
available again—are notable for how
they influenced approaches to achiev-
ing the main algorithmic goal. From
an instructional point of view, these
additional goals noted by students
suggest they may need help prioritiz-
ing from among the goals they find
in open-ended questions, unless the
goals are given explicitly.

Concurrency techniques. Most stu-
dents introduced techniques directly
related to concurrency, with solutions
including centralized techniques and
distributed techniques. Within them,
they introduced scaling, locks, pipe-
lining, and methods for distributing
resources. Even in proposed solu-
tions with errors, we found concepts
ripe for leverage. For example, many
of our students chose to “pass the
buck” by pushing concurrency from
buying a seat to reserving it. Others

70 communications of the acm | july 2010 | vol. 53 | no. 7

contributed articles

gave solutions that assumed a system
fast enough to eliminate race condi-
tions. Though incorrect, they provide
a starting point for understanding
atomic operations and the interleav-
ing of instructions.

Conclusion
In both their correct and incorrect
preconceptions, the 66 students in
our 2006 study apparently began their
first computing course with essen-
tially the same level of intuition as
they began their first course involv-
ing concurrency. This similarity sug-
gests students do not gain a deeper
understanding of concurrency as they
advance through the curriculum. As
we have no data indicating that tak-
ing nonconcurrency courses provides
skills that help one learn concurren-
cy-related material more quickly, it
may be there is no advantage to delay-
ing the introduction of concurrency.
Given the prevalence of concurrency
and its increasing relevance at all lev-
els and applications of CS, we suggest
it may be wise to include concurrency
earlier in the curriculum.

No matter which course intro-
duces concurrency, the problem and
student-proposed solutions in our
study suggest ways to leverage stu-
dent preconceptions. For example,
instructors could conduct an exercise
like this and choose student-generat-
ed solutions for further discussion to
explicitly address common errors. In
particular, they could:

˲˲ Emphasize the real-world nature
of the problem, pointing out related
concurrency problems;

˲˲ Demonstrate that race conditions
come up even in “fast” systems;

˲˲ Use responses that pass the buck
(appearing to solve the concurrency
problem by moving it to another op-
eration without actually solving it) to
help discuss the notion of atomic op-
erations;

˲˲ Use a centralized solution to dis-
cuss interleaving instructions and
pipelining technique; and

˲˲ Use responses that do not scale
well to discuss scaling.

Here, we’ve addressed a rich set of
student responses that represent a
starting point for asking students to
critique proposed solutions, empha-
sizing concepts we know are at the

National Academy Press, Washington, D.C., expanded
edition, 2000.

5.	B ruce, K.B. and Danyluk, A. Event-driven programming
facilitates learning standard programming concepts.
In Companion to the 19th annual ACM SIGPLAN
Conference on Object-Oriented Programming
Systems, Languages, and Applications (Vancouver, BC,
Oct. 24–28) ACM Press, New York, 2004, 96–100.

6.	 Clancy, M. Misconceptions and attitudes that interfere
with learning to program. In Computer Science
Education Research, S. Fincher and M. Petre, Eds.
Taylor and Francis Group, London, 2004, 85–100.

7.	 Committee on Undergraduate Science Education.
Science Teaching Reconsidered: A Handbook. National
Academy Press, Washington, D.C., 1997.

8.	 Gibson, J.P. and O’Kelly, J. Software engineering as
a model of understanding for learning and problem
solving. In Proceedings of the First International
Workshop on Computing Education Research (Seattle,
Oct. 1–2). ACM Press, New York, 2005, 87–97.

9.	L ewandowski, G., Bouvier, D., McCartney, R., Sanders,
K., and Simon, B. Commonsense computing (Episode
3): Concurrency and concert tickets. In Proceedings
of the Third International Workshop on Computing
Education Research (Atlanta, Sept. 15–16). ACM
Press, New York, 2007, 133–144.

10.	 Miller, L. Natural language programming: Styles,
strategies, and contrasts. IBM Systems Journal 20, 2
(June 1981), 184–215.

11.	O norato, L. and Schvaneveldt, R. Programmer/
nonprogrammer differences in specifying procedures
to people and computers. Chapter 9 in Empirical
Studies of Programmers, E. Soloway and S. Iyengar,
Eds. Ablex Publishing, Norwood, NJ, 1986, 128–137.

12.	 Resnick, M. Turtles, Termites, and Traffic Jams:
Explorations in Massively Parallel Microworlds. MIT
Press, Cambridge, MA, 1994.

13.	S imon, B., Bouvier, D., Chen, T.-Y., Lewandowski,
G., McCartney, R., and Sanders, K. Commonsense
computing (Episode 4: Debugging). Computer Science
Education 18, 2 (June 2008), 117–133.

14.	S imon, B., Chen, T.-Y., Lewandowski, G., McCartney,
R., and Sanders, K. Commonsense computing: What
students know before we teach (Episode 1: Sorting).
In Proceedings of the Second International Workshop
on Computing Education Research (Canterbury, U.K.,
Sept. 9–10). ACM Press, New York, 2006, 29–40.

15.	S mith, J., diSessa, A., and Roschelle, J. Misconceptions
reconceived: A constructivist analysis of knowledge
in transition. Journal of Learning Sciences 3, 2 (Apr.
1994), 115–163.

16.	S tein, L.A. Interactive programming: Revolutionizing
introductory computer science. ACM Computing
Surveys 28, 4es (Dec. 1996), 103.

Gary Lewandowski (lewandow@cs.xu.edu) is a professor
in and chair of the Department of Mathematics and
Computer Science at Xavier University, Cincinnati, OH.

Dennis J. Bouvier (djb@acm.org) is an associate
professor in the Department of Computer Science at
Southern Illinois University, Edwardsville, IL.

Tzu-Yi Chen (tzuyi@cs.pomona.edu) is an associate
professor in and chair of the Department of Computer
Science at Pomona College, Claremont, CA.

Robert McCartney (robert@cse.uconn.edu) is an
associate professor in the Department of Computer
Science and Engineering at the University of Connecticut,
Storrs, CT.

Kate Sanders (ksanders@ric.edu) is a professor in the
Department of Math and Computer Science at Rhode
Island College, Providence, RI.

Beth Simon (bsimon@cs.ucsd.edu) is a lecturer with
potential for security of employment in the Department
of Computer Science and Engineering at the University of
California, San Diego.

Tammy VanDeGrift (vandegri@up.edu) is an assistant
professor in the Department of Electrical Engineering and
Computer Science at the University of Portland, Portland,
OR.

© 2010 ACM 0001-0782/10/0700 $10.00

edge of their preconceptions. All such
concepts could be discussed early or
at least introduced in CS1.

Instructors can use the question
we asked—What’s the best way to or-
ganize the sale of tickets to a popular
concert?—to help identify student
preconceptions about CS. By docu-
menting beginner-student precon-
ceptions, instructors gain leverage for
using a constructivist model, build-
ing on this commonsense knowledge
through student preconceptions. Our
study did not depend on a particular
technology, pedagogy, or philosophy
and can be replicated to study how or
if students’ commonsense knowledge
is changing.

Acknowledgments
This material is based in part on
work supported by the National
Science Foundation under grants
DUE-0736343, DUE-0736700, DUE-
0736572, DUE-0736738, DUE-
0736859, and DUE-0736958. Any
opinions, findings, conclusions, or
recommendations expressed here
are those of the authors and do not
necessarily reflect the views of the
NSF. We thank the many students
who responded to the questions used
in this and our other studies; Sally
Fincher, Josh Tenenberg, and the
NSF (through grant DUE-0243242)
who provided us with workspace at
the SIGCSE conferences in 2006 and
2007; Renee McCauley, Sara Miner
More, and Suzanne Westbrook for
help with fall 2006 data collection and
others who collected data for us in
other commonsense projects; and the
anonymous reviewers for their com-
ments and suggestions. An earlier
description of the study, with expand-
ed analysis and discussion, is in the
Proceedings of the Third International
Computer Science Education Research
Workshop.9 	

References
1.	B en-Ari, M. Constructivism in computer science

education. Journal of Computers in Mathematics and
Science Teaching 20, 1 (Mar. 2001), 45–73.

2.	B en-David Kolikant, Y. Gardeners and cinema tickets:
High schools’ preconceptions of concurrency.
Computer Science Education 11, 3 (Sept. 2001),
221–245.

3.	B onar, J. and Soloway, E. Preprogramming knowledge:
A major source of misconceptions in novice
programmers. In Studying the Novice Programmer,
E. Soloway and J. Spohrer, Eds. Lawrence Erlbaum
Associates, Hillsdale, NJ, 1989, 325–354

4.	B ransford, J.D., Brown, A.L., and Cocking, R.R., Eds.
How People Learn: Brain, Mind, Experience, and School.

mailto:lewandow@cs.xu.edu
mailto:djb@acm.org
mailto:tzuyi@cs.pomona.edu
mailto:robert@cse.uconn.edu
mailto:ksanders@ric.edu
mailto:bsimon@cs.ucsd.edu
mailto:vandegri@up.edu

doi:10.1145/1785414.1785436

Interactive computer graphics would rival
word-processing and presentation programs
for everyday communications.

by Takeo Igarashi

Computer
Graphics
for All

Computer graphics is a commodity. Sophisticated
computer-generated imagery is everywhere—
feature films, TV programs, video games, even
cellphones—but most of it is created by professionals.
Few people actually create computer graphics in
their daily lives because most authoring tools are
designed for professionals or dedicated amateurs
following intensive training. This is unfortunate,
because computer graphics could be a powerful
communication tool for everyone.

 key insights
 � �Computer-graphics authoring should

be accessible to the general public.

 � �Designing these systems starts with
what is natural to humans rather than
what is natural to a computer.

 � �Most traditional research focuses on
experts’ high-end use of technology;
here, our main target is the casual use
of technology by nonprofessionals.

july 2010 | vol. 53 | no. 7 | communications of the acm 71

dia, consumers today create electronic
content to share through the Internet.
Most media are still text-based, as with
email, blogs, and Twitter, but more
and more include images, videos, ani-
mations, and other multimedia con-

Consider desktop publishing. Cen-
turies ago, only a small number of pro-
fessionals worked in the printing in-
dustry. When computer-based printing
emerged as an alternative in the late 20th
century, it, too, was initially limited to
professionals. However, the widespread
use of personal computers and easy-to-
use graphical user interfaces quickly
made high-quality printing accessible
to the general public. Today, just about
everyone uses word processors on a daily
basis to create documents that commu-
nicate ideas to friends and colleagues.
Computer graphics has not yet achieved
such mass-market appeal.

Unlike with traditional physical me-

tent. End users constructing 3D mod-
els are also supported by a number of
systems, including Google’s SketchUp
(http://sketchup.google.com/) and
modeling tools in SecondLife and Spore.
However, these systems use scaled-
down versions of traditional interfaces
and still require a certain amount of
skill. This article introduces research
efforts at the University of Tokyo and
Brown University to make computer-
graphics authoring accessible to more
casual users. To achieve this goal, the
author and his collaborators devel-
oped easy-to-use prototype systems
to create expressive computer graph-
ics more quickly than with traditional
interfaces. Examples are sketch-based
3D modeling, clothing manipulation,
animation by performance, and 2D
shape manipulation. We discuss the
user interfaces and technical aspects
of these prototype systems, as well as
the lessons learned from their devel-
opment, offering ideas for future re-
search directions.

Most of our work is highly interac-
tive and diffi cult to explain in writ-
ten words and still images; please see
demonstration videos and prototype
systems at http://www-ui.is.s.u-tokyo.
ac.jp/~takeo.

sketching 3D models
Creating a 3D model in a computer
(not necessarily on a screen) is the fi rst
step in most 3D computer-graphics
applications yet is also the most dif-
fi cult. Traditional interfaces for 3D
modeling programs trace their origins
to traditional pencil-and-paper profes-
sional drafting. Users place vertices
in 3D space by specifying x-, y-, and z-
coordinates in a three-view interface,
then create polygonal faces (individual
polygonal sides of a polyhedron) by
connecting these vertices. Alterna-
tively, users start with a simple primi-
tive (such as a sphere or cylinder) and
modify it by editing individual vertices
and edges. Many editing tools (such as
free-form deformation and Boolean
operations among solids) are avail-
able for designing complicated shapes
from simple primitives. Although they
might be appropriate for trained pro-
fessionals designing precise models,
they are generally too diffi cult for fi rst-
time users trying to quickly generate
meaningful models.

72 communications of the acm | july 2010 | vol. 53 | no. 7

contributed articles

figure 3. using teddy to teach the concept of contour lines.

figure 1. modeling session in teddy. users create 3D models using simple sketching
operations.

figure 2. screenshot of teddy and sample 3D models created through the teddy system.

http://sketchup.google.com/
http://www-ui.is.s.u-tokyo.ac.jp/~takeo
http://www-ui.is.s.u-tokyo.ac.jp/~takeo

The sketching interface is emerg-
ing as an alternative modeling meth-
od. Users draw 2D lines on the screen;
the system then generates a 3D mod-
el automatically, inferring missing
depth information. Sketching inter-
faces for 3D scenes consisting of sim-
ple primitives were first introduced in
the SKETCH system,18 allowing users
to perform complicated 3D editing
operations in a single camera view by
combining heuristics. A similar ap-
proach is used in commercial systems
(such as Google’s SketchUp). How-
ever, these systems are designed for
sketching simple shapes defined by
relatively few parameters. Designing
them requires specialized training.

Our group at the University of Tokyo
developed the Teddy system11 to address
this problem, allowing users to quickly
generate interesting 3D freeform mod-
els (such as creating a teddy bear by
drawing the silhouette of the desired
shape) (see Figure 1). The user’s strokes
are in red; the system infers and draws
everything else. The user first draws the
silhouette of the base primitive, and the
system generates the corresponding 3D
geometry. The user then draws a stroke
across the model, and the system cuts
the model at the line. The user can also
add parts to the base model by drawing
two strokes; Figure 2 shows several 3D
models created this way.

We do not expect Teddy to replace
traditional 3D modeling tools. Rather,
it will create new 3D modeling applica-
tions that are useful to nonexperts, in-
cluding children, who want to play with
3D graphics for fun. Introduced at the
SIGGRAPH conference in 1999, Teddy
is used in several current commercial
video games to permit players to create
their own characters. Using it is a use-
ful way for experts to express their ideas
quickly in early design phases. A com-
mercial 3D modeling package, Shade
(available only in Japan, http://shade.e-
frontier.co.jp/), includes an extension to
Teddy as a plug-in for generating rough
sketches. Finally, and most important,
Teddy is useful for communicating 3D
concepts face to face. In a classroom, for
example, a teacher could quickly draw a
model of bacteria, showing its cross sec-
tion to explain its internal structure. In
a hospital, a medical doctor could draw
a model of a stomach to help explain a
patient’s stomach disease.

search community has actively in-
vestigated the physical simulation of
cloth, today producing realistic cloth
simulations. However, the initial sim-
ulated-cloth configuration must be
set manually, and the user interface
for manipulating cloth is primitive. A
typical approach is to place rigid cloth
patches around the target body, com-
bining 3D translation and rotation be-
fore starting the simulation—a tedious
process. Moreover, users have difficulty
changing the way the garment is worn
once they’ve placed it on a character.
Standard systems allow users to freely
move individual vertices through direct
manipulation, but it causes a large local
distortion (stretching), making it diffi-
cult to achieve global movement.

In 2001, our group at Brown Univer-
sity developed clothing-manipulation
techniques to address these issues.10 To
put a garment on a character, users first
draw free-form marks on both the gar-
ment and the character to indicate po-
sitional correspondence (see Figure 4).

In 2003, to test the idea, we conduct-
ed a trial in a high school geography
class in Chiba, Japan. Teaching 3D con-
cepts (such as mountains and valleys),
a geography teacher would have diffi-
culty explaining them using traditional
2D media like a blackboard. Sketching
in 3D can help address this problem.
A convincing example is the teaching
of contour lines using the Teddy sys-
tem (see Figure 3) in which the teacher
first shows a 3D model of a mountain,
then draws several horizontal lines in
the side view, saying the lines indicate
equal height intervals. The teacher
then changes the viewpoint to show
the mountain and the lines from the
top. This way, students understand the
relationship between the closed lines
on the map (contour lines) and the 3D
geography, not just mountains, ridges,
and valleys.

Clothing Manipulation
3D characters must also be dressed
properly. The computer-graphics re-

contributed articles

july 2010 | vol. 53 | no. 7 | communications of the acm 73

Figure 5. Dragging the cloth onto the character: left, before dragging; center, the result of
traditional vertex dragging; right, the result of our clothing-manipulation method.

Figure 4. Users draw marks on the character and cloth; the system then places the cloth on
the character.

http://www.e-frontier.co.jp/
http://www.e-frontier.co.jp/

This technique is well suited to de-
fining expressive motion (such as to
show joy or sadness). The resulting
motion is much more alive than mo-
tion generated through traditional key-
framing because the motion directly
mirrors the operator’s natural hand
movement. However, motion dominat-
ed by physical factors (such as jumping
and running) is better supported by
physical approaches.7

We expect spatial keyframes to be a
useful intermediate representation for
3D characters. Current 3D character
representation consists of geometry,
texture, rigs, and possibly predefined
motions. Users who want to define a
new motion must specify individual
poses one at a time. Specialized tools
include Maya’s set-driven keys (http://
caad.arch.ethz.ch/info/maya/manual/
UserGuide/Animation/KeyframeMo-
Path/03_understanding_key.doc5.html)
and the Waldo input device (http://
www.character-shop.com/waldo.html),
though neither is designed for the
blending of key poses. By providing
predefined spatial keyframes (a set of
natural poses) for a character, users
can create new motion very quickly by
moving the control cursor. This can
make it much easier for inexperienced
users to make characters move at will.

2D Shape Manipulation
In the physical world, one can hold an
object (such as a teddy bear) with two
hands and freely manipulate it through
rotating, stretching, squashing, and
bending motions. Standard 2D draw-
ing programs provide poor support
for such shape manipulation, allowing
only simple editing operations (such as
scaling and rotation). Not only do these
operations require a complicated com-
bination of tools, the result for the user
simply doesn’t feel like manipulating a
physical entity.

In 2004, our group at the University
of Tokyo developed a novel manipula-
tion technique to address this prob-
lem.8 Users are thus able to select arbi-
trary points as handles on a 2D shape,
then freely manipulate the shape by
moving the handles (see Figure 7). They
can relocate the shape by setting a sin-
gle handle to rotate, stretch, and squash
the shape. Users also swing a head
or stretch an arm by setting handles
on the corresponding positions. The

The system then places the garment on
the character so the marks on the gar-
ment match the corresponding marks
on the character. The system uses a
simple relaxation process during place-
ment to prevent stretching and squash-
ing, even if the lengths of the corre-
sponding marks are different. Working
with only a few strokes, users are able
to place reasonably complicated gar-
ments on any character.

Once a garment is on a character, us-
ers can grab any point of the garment
and drag it onto its surface (see Figure
5). Unlike standard vertex dragging, in
which a single vertex is moved while
relying on subsequent simulation to
move other vertices, this dragging op-
eration moves all vertices of the cloth
mesh directly, causing global move-
ment. To achieve global movement, the
movement vector of the dragged vertex
is propagated to the complete cloth
mesh along the surface of the character.

This technique allows even novice
users to quickly test many different ways
of dressing virtual characters. We also
expect it to be useful for designing real
garments as well. The cloth representa-
tion and simulation are limited in the
prototype system implemented in 2001,
but the basic user interface should still
be applicable to today’s more sophisti-
cated cloth representation.

The technical contribution of this
work is the behavior of the cloth ma-
terial in response to user input. It not
only follows physical principles (such
as gravity and collision) but behaves
proactively to assist a user’s design pro-
cess; for example, the cloth automati-
cally unfolds local folds based on the
assumption that users do not want to
see accidental local folds unless they
explicitly require them. Such built-in
intelligent behavior of passive materi-
als can be useful in other domains; we

are now testing it in knot- and hairstyle-
design systems.

Performance-Driven 3D Animation
Keyframing is the most popular meth-
od for designing character animation.
The user specifies the pose of the char-
acter at each time point, and the system
interpolates the key poses at runtime.
Though many other methods (such as
motion capture and procedural anima-
tion) are available, keyframing is by far
the most popular approach due to its
simplicity and versatility. But manually
defining so many keyframes is tedious.
Moreover, novice users experience
great difficulty designing natural-look-
ing motion through discrete sets of pos-
es. The result tends to look mechanical
while lacking the rich textures seen in
the motion of living things.

A live demonstration is the sim-
plest approach to designing motion, in
which a user moves the target character
in real time and the system records the
motion, like dancing a teddy bear in
front of a video camera. However, mov-
ing a character with many joints is diffi-
cult when using a standard input device
like a mouse. Though possible to dem-
onstrate the motion of each joint one at
a time,6 synchronizing individual mo-
tions is difficult.

Our group at Brown University de-
veloped a spatial keyframing method
to address this problem.9 With it, the
user first sets a group of key poses in
the 3D or 2D space; a pose is associat-
ed with a position in a space. The user
then moves the cursor in that space,
and the system sets the character pose
by blending the key poses around the
cursor position (see Figure 6). The
user is thus able to design interesting
whole-body character motion (such
as juggling and dancing) by recording
simple cursor movements.

74 communications of the acm | july 2010 | vol. 53 | no. 7

contributed articles

Figure 6. Spatial keyframing. Users specify three key poses (left), then freely control the
character by dragging the red ball (right).

http://www.character-shop.com/waldo.html
http://www.character-shop.com/waldo.html
http://caad.arch.ethz.ch/info/maya/manual/UserGuide/Animation/KeyframeMoPath/03_understanding_key.doc5.html
http://caad.arch.ethz.ch/info/maya/manual/UserGuide/Animation/KeyframeMoPath/03_understanding_key.doc5.html
http://caad.arch.ethz.ch/info/maya/manual/UserGuide/Animation/KeyframeMoPath/03_understanding_key.doc5.html
http://caad.arch.ethz.ch/info/maya/manual/UserGuide/Animation/KeyframeMoPath/03_understanding_key.doc5.html

system with children in an educational
TV program in Japan and found that
even elementary-school students could
quickly generate reasonably interesting
animations.

Lessons Learned
Each of these projects addresses a
specific problem, with technical con-
tributions being rather independent.
However, emerging from them are
common guidelines for designing a
compelling user experience:

Natural to humans. First, start with
what is natural to a human rather than
with what is natural to a computer. The
computer represents a 3D model with
a collection of 3D points and their con-
nections; traditional computer-aided-
design systems ask users to provide
this information directly. Advanced
systems represent a model with a se-
quence of editing operations, but most
of them still require that users be aware
of points and faces. Similarly, a com-
puter represents a 2D drawing with its
position and orientation. Traditional
drawing systems ask users to directly
control these parameters; that is, tra-
ditional systems expose the underly-
ing representation to the user directly.
Though it is the most straightforward
way to implement a system, the re-
sult means difficulty for novice users.
That’s why we start by identifying the
most natural operations for a human
referring to real-world examples, then
developing an algorithm that maps

shape deforms naturally in response to
user input; for users it feels like they’re
manipulating a physical object.

Traditional computer-based meth-
ods for shape manipulation are roughly
divided into three categories:

Skeleton.13 The user embeds a skel-
etal structure inside the shape and con-
trols it to deform the shape. However,
embedding a skeleton in each shape
is tedious, and the approach does not
work for stretching and squashing;

Spatial deformation.14 The user de-
fines a spatial mapping using several
control points, then deforms the shape
according to the mapping function.
However, mapping functions do not
consider the rigidity of the shape and
result in unnatural deformation; and

Physics-based. This approach simu-
lates the deformation process of physi-
cal material.12 However, the compu-
tation is not fast or stable enough to
provide real-time feedback to a global
deformation caused by user operations.

Our method takes a completely geo-
metric approach, defining an energy
function that measures the amount
of geometric deformation, then mini-
mizes it using an optimization method.
We designed the energy to give a closed-
form solution to the problem. In it, the
system obtains the deformation by
solving two large sparse linear-matrix
equations in sequence, a very fast and
perfectly stable approach.

It is also particularly useful for cre-
ating 2D animations. Traditional ani-
mation artists assemble many slightly
different drawings to create an anima-
tion. In our shape-manipulation system
MovingSketch (http://www-ui.is.s.u-
tokyo.ac.jp/~takeo/research/rigid/mov-
ingsketch/index.html), users create
an interesting animation by drawing a
character and recording the manipula-
tion process. Using a multi-touch input
device,16 they grab a character with both
hands and manipulate it to create an
animation (see Figure 8). We tested the

contributed articles

july 2010 | vol. 53 | no. 7 | communications of the acm 75

Figure 7. As-rigid-as-possible shape manipulation. Users place handles on the drawing, then
manipulate it by moving the handles.

(a) Rest shape (b) Setting handles

(d) Stretching with two handles (e) Deformation with three handles

(c) Rotation with two handles

Figure 8. Bimanual manipulation of a drawing.

http://www-ui.is.s.u-tokyo.ac.jp/~takeo/research/rigid/movingsketch/index.html
http://www-ui.is.s.u-tokyo.ac.jp/~takeo/research/rigid/movingsketch/index.html
http://www-ui.is.s.u-tokyo.ac.jp/~takeo/research/rigid/movingsketch/index.html

tried to support, the more complicated
the interface became, and the original
advantages disappeared. We therefore
explored new application domains in-
stead of focusing on the same problem.
Finally, the tools we’ve outlined here
were generally better received by users
with no prior experience in 3D model-
ing or animation. Users who had previ-
ously worked with computer graphics
had their own preferred tools and did
not show much interest in Teddy. Those
without prior experience saw great
potential. We encourage researchers
working on similar problems to not be
intimidated by negative reactions from
existing users but to try finding new us-
ers outside the existing user communi-
ty. This will ultimately expand applica-
tion of computer graphics.

Future Directions
In addition to improving the tools dis-
cussed here, we plan to work on other
aspects of computer-graphics author-
ing in the future, including two nota-
ble problems:

Designing interactive behaviors. In-
teractivity is an important aspect of
computer-generated media. Not only do
users passively watch predefined imag-
ery, they also interact with computer im-
agery (such as by poking a character) to
observe its response. The systems we’ve
introduced here are all interactive as au-
thoring tools, but the content they pro-
duce is noninteractive; 3D models and
2D animation created this way do not
respond to user input. End-user design
of interactive behavior is an exciting but
challenging research direction.

them to computer representations. In
the case of 3D modeling, we learned
from sketching activity on real paper.
For 2D animation, we learned from
children playing with a real plush toy
using both hands.

Instant feedback. Instant feedback
is critical to real-time interaction. It
allows for graceful learning through
casual trial and error while support-
ing creative exploration through rapid
experimentation. To provide a rich and
comfortable user experience, three op-
portunities for executing computation
should be used: One is computation dur-
ing mouse dragging, a computation that
must be very fast (on the order of 0.1 sec-
onds). The second is computation right
after a mouse click or dragging; it can be
somewhat slower (about a full second).
And the third is running a computation
in the background while the user is look-
ing at a result. The sketching interface
is effective because it gives a system the
opportunity to execute a heavyweight
computation right after the completion
of a sketch (mouse release) that would
otherwise be too time-consuming during
a mouse drag. In 2D animation, the sys-
tem computes time-consuming matrix
factorization when a pin is added or re-
moved, applying fast back-substitution
during dragging. The clothing-manipu-
lation system exploits idle time to refine
the cloth configuration.

Right target task. System designers
must choose and focus on the right tar-
get task to achieve the first two goals.
Developers try to address a range of
tasks, overloading the interface with
too many functions, as in professional

systems like Maya. In theory, including
more functions could expand the range
of user options but also require inten-
sive training and reduce what casual
users are able to do in the system. Care-
fully limiting functional scope, design-
ers provide an optimized interface and
algorithm for the task in exchange for
losing some rarely used functions. Ted-
dy is designed for rotund models (such
as stuffed animals), freeing users from
having to specify depth information
each time. The clothing-manipulation
system simplifies the interface and ac-
celerates the computation by focusing
on the cloth on the surface of the body.
System designers are better off tapping
user creativity than constraining it with
many predefined functions. A simple,
well-designed interface allows users to
apply their imaginations to complete
tasks beyond the system designer’s
original assumptions, as in terrain
sketching with Teddy.

We would also like to share some
general lessons learned after the origi-
nal publication of these research re-
sults in 1999.11 First, even though a
sketching interface does lower the
threshold, 3D modeling remains dif-
ficult. The main difficulty is control of
3D rotation with a 2D input device. We
observed that many test users failed to
rotate a model to the desired orienta-
tion. It is therefore desirable to give
users rotation-free modeling methods
or a significantly easier rotation inter-
face. Second, though we tried to extend
these techniques to support more ad-
vanced modeling operations, we were
unsuccessful. The more operations we

76 communications of the acm | july 2010 | vol. 53 | no. 7

contributed articles

Figure 9. Screenshot of the Plushie system and plush toy designed with the system.

Acknowledgments
I would like to thank Satoshi Matsuo-
ka, Hidehiko Tanaka, John F. Hughes,
Tomer Moscovich, Yuki Igarashi, Ma-
neesh Agrawala, and Masahiko Inami for
their contributions and comments. 	

References
1.	B aum, D. and Zurche, R. Definitive Guide to Lego

Mindstorms. Apress, New York, 2000.
2.	B illard, A., Calinon, S., Dillmann, R., and Schaal, S.

Robot programming by demonstration. In Handbook
of Robotics, B. Siciliano and O. Khatib, Eds.. Springer,
New York, 2008, 1371–1394.

3.	 Cooper, S., Dann, W., and Pausch, R. Teaching objects
first in introductory computer science. In Proceedings
of the ACM Technical Symposium on Computer
Science Education (Reno, NV, Feb. 19–22). ACM Press,
New York, 2003, 191–195.

4.	 Cypher, A. and Smith, D.C. KidSim: End-user
programming of simulations. In Proceedings of the
ACM Conference on Computer Human Interaction
(Denver, May 7–11). ACM Press, New York, 1995,
27–34.

5.	 Cypher, A. Watch What I Do: Programming by
Demonstration. MIT Press, Cambridge, MA, 1993.

6.	 Dontcheva, M., Yngve, G., and Popović, Z. Layered
acting for character animation. In Proceedings of ACM
SIGGRAPH (San Diego, CA, July 27–31). ACM Press,
New York, 2003, 409–416.

7.	 Fang, A.C. and Pollard, N.S. Efficient synthesis of
physically valid human motion. ACM Transactions on
Graphics 22, 3 (July 2003), 417–426.

8.	 Igarashi, T., Moscovich, T., and Hughes, J.F. As-rigid-
as-possible shape manipulation. ACM Transactions on
Graphics 24, 3 (July 2005), 1134–1141.

9.	 Igarashi, T., Moscovich, T., and Hughes, J.F. Spatial
keyframing for performance-driven animation, In
Proceedings of ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (Los Angeles,
July 29–31). ACM Press, New York, 2005, 107–115.

10.	 Igarashi, T. and Hughes, J.F. Clothing manipulation. In
Proceedings of the ACM Symposium on User Interface
Software and Technology (Paris, Oct. 27–30). ACM
Press, New York, 2002, 91–100.

11.	 Igarashi, T., Matsuoka, S., and Tanaka, H. Teddy:
A sketching interface for 3D freeform design. In
Proceedings of ACM SIGGRAPH (Los Angeles, Aug.
8–13). ACM Press, New York, 1999, 409–416.

12.	J ames, D.L. and Pai, D.K. ArtDefo: Accurate real-
time deformable objects. In Proceedings of ACM
SIGGRAPH (Los Angeles, Aug. 8–13). ACM Press,
New York, 1999, 65–72.

13.	L ewis, J.P., Cordner, M., and Fong, N. Pose space
deformations: A unified approach to shape
interpolation and skeleton-driven deformation. In
Proceedings of ACM SIGGRAPH (New Orleans, July
23–28). ACM Press, New York, 2000, 165–172.

14.	 MacCracken, R. and Joy, K.I. Freeform deformations
with lattices of arbitrary topology. In Proceedings
of ACM SIGGRAPH (New Orleans, Aug. 4–9). ACM
Press, New York, 1996, 181–188.

15.	 Mori, Y. and Igarashi, T. Plushie: An interactive design
system for plush toys. ACM Transactions on Graphics
26, 3 (July 2007).

16.	 Rekimoto, J. SmartSkin: An infrastructure for freehand
manipulations on interactive surfaces. In Proceedings
of ACM Conference on Human Computer Interaction
(Minneapolis, Apr. 20–25). ACM Press, New York,
2002, 113–120.

17.	Y oung, J.E., Igarashi, T., and Sharlin, E. Puppet
Master: Designing reactive character behavior by
demonstration. In Proceedings of ACM SIGGRAPH
Symposium on Computer Animation (Dublin, July
7–9). ACM Press, New York, 2008, 183–191.

18.	 Zeleznik, R.C., Herndon, K.P., and Hughes, J.F.
SKETCH: An interface for sketching 3D scenes. In
Proceedings of ACM SIGGRAPH (New Orleans, Aug.
4–9). ACM Press, New York, 1996, 163–170.

Takeo Igarashi (takeo@acm.org) is an associate
professor in the Department of Computer Science in the
Graduate School of Information Science and Technology
at The University of Tokyo.

© 2010 ACM 0001-0782/10/0700 $10.00

Several earlier research efforts
sought to achieve end-user design of
interactive behavior. One involved
making traditional programming
(scripting) accessible to casual users
through a highly visual editing envi-
ronment.3 In the system, users write a
program using simple drag-and-drop
operations without making syntax er-
rors. Another involved using program-
ming by demonstration5 for character
animation17; in it, users demonstrate
the desired interactive behavior of a
character, with the system learning
the pattern from the demonstration.
Programming with visual replace-
ment rules is a promising approach
for defining a character’s interactive
behavior.4 The user specifies before-
and-after pairs; at runtime, the system
compares the scene configuration
with the before patterns, replacing it
with after patterns when the match is
identified.

Though these experiments pro-
duced interesting initial results,
designing the arbitrary interactive
behavior of a virtual agent is often
prohibitively difficult. We are particu-
larly interested in teaching interactive
behavior to physical agents (robots).
End-user programming for robot be-
havior has been tested in some sys-
tems1 but is still limited to basic mo-
tions. Programming by demonstration
for robots has also been reported but
is used mainly for acquiring physical-
manipulation skills.2 Techniques de-
veloped in the user-interface-research
community that should be applicable
to human–robot interaction represent
an interesting research direction.

Designing real-world objects. The
systems outlined here were all de-
signed for virtual representations; one
can produce interesting graphics on
the computer screen but cannot touch
or use them in the real world. Then
there’s development of end-user tools
for designing physical objects (such as
furniture and clothing). The idea is to
help people custom-design the things
they will use instead of having to buy
manufactured products in stores. Ob-
jects designed by users themselves
should satisfy their needs more direct-
ly and produce greater satisfaction.

Unlike professional designers, the
typical consumer generally lacks the
professional knowledge needed to de-

sign physical objects. Inexperienced
consumers could easily create a bag
that is not sturdy enough or a chair that
cannot stand up. One promising ap-
proach is to introduce physics into the
modeling process. Traditional model-
ing systems ignore physics, possibly
producing physically inappropriate re-
sults, as in, say, objects that penetrate
one another. It might be possible to
help users avoid these issues by con-
sidering physical principles within a
modeling system.

In 2006, our first such experiment
involved a design system for plush
toys.15 Users would interactively draw
a sketch on the screen, and the system
would then automatically generate a
3D plush toy model, as in the Teddy
system. In addition, the system simul-
taneously generated a 2D cloth pattern
corresponding to the 3D geometry,
allowing the user to create a physical
plush toy by cutting the cloth accord-
ing to the generated pattern (see Fig-
ure 9). Internally, the system first gen-
erated a 2D cloth pattern, then ran a
simple physical simulation to predict
the 3D shape of the resulting toy. This
way, even young children would be
able to design their own plush toys just
by sketching.

The idea of 3D modeling with physi-
cal simulation is very powerful. We
expect future modeling systems to
consider various physical constraints
in the background (such as collisions
and stability), freeing users from low-
level physical concerns and allowing
them to concentrate on more impor-
tant high-level design concerns. We
plan to test this idea in a number of tar-
get domains, including furniture and
clothing design.

Conclusion
This article introduced our efforts to
make computer-graphics authoring
accessible to the general public, mak-
ing it as much a daily communication
tool as word processing and presenta-
tion applications. What most defines
our research is its focus on end users.
This opens up new application possi-
bilities for existing technologies while
posing unique technological chal-
lenges for interface researchers and
developers. We look forward to more
computer-science researchers partici-
pating in this fertile field.

contributed articles

july 2010 | vol. 53 | no. 7 | communications of the acm 77

mailto:takeo@acm.org

78 communications of the acm | july 2010 | vol. 53 | no. 7

review articles

The widespread adoption of the Internet and the
emergence of the Web changed society’s relationship
with computers. The primary role of a computer
evolved from a stand-alone, well-understood
machine for executing software to a conduit for
global communication, content-dissemination, and
commerce. The algorithms and complexity theory
community has responded to these changes by
formulating novel problems, goals, and design and
analysis techniques relevant for modern applications.

Game theory, which has studied deeply the interaction
between competing or cooperating individuals, plays
a central role in these new developments. Research
on the interface of theoretical computer science and
game theory—an area now known as algorithmic
game theory (AGT)—has exploded over the past 10
years. The primary research themes in AGT differ
from those in classical microeconomics and game
theory in important, albeit predictable, respects.
Firstly in application areas: Internet-like networks
and nontraditional auctions motivate much of the
work in AGT. Secondly in its quantitative engineering
approach: AGT research typically models applications

via concrete optimization problems
and seeks optimal solutions, impossi-
bility results, upper and lower bounds
on feasible approximation guarantees,
and so on. Finally, AGT usually adopts
reasonable (for example, polynomial-
time) computational complexity as
a binding constraint on the feasible
behavior of system designers and par-
ticipants. These themes, which have
played only a peripheral role in tradi-
tional game theory, give AGT its distinct
character and relevance.

Here, we touch on the current domi-
nant research trends in AGT, loosely fol-
lowing the organization of the first book
in the field.30 We focus on contributions
of the algorithms and complexity theory
community; see two recent articles in
Communications18,40 and the references
therein for alternative perspectives on
computer science and game theory.

Algorithmic Mechanism Design
Algorithmic mechanism design studies
optimization problems where the un-
derlying data—such as the values of
goods and costs of performing a task—
is initially unknown to the algorithm
designer, and must be implicitly or ex-

doi:10.1145/1785414.1785439

A new era of theoretical computer science
addresses fundamental problems about
auctions, networks, and human behavior.

by Tim Roughgarden

Algorithmic
Game Theory

 key insights
 � �Many modern computer science

applications involve autonomous
decision-makers with conflicting
objectives. Current research in
algorithms and complexity theory
uses game theory as an important
tool for modeling and reasoning about
such applications.

 � �One application domain is auctions,
including the single-item auctions
of eBay and Amazon; the sponsored
search auctions of Google, Yahoo!,
and Microsoft; and the combinatorial
auctions used by governments to
sell wireless spectrum. A second
application is large networks, where
the goal is to understand how such
networks form, how network users
behave, and what kind of design and
management strategies ensure good
network performance.

 � �Recent results that determine the
computational complexity of computing
a Nash equilibrium cast doubt on the
concept’s ability to predict the outcome
of rational behavior.

july 2010 | vol. 53 | no. 7 | communications of the acm 79

I
l

l
u

s
trati

o
n

 b
y

 C
e

l
ia

 j

o
h

n
s

o
n

plicitly elicited from self-interested par-
ticipants. Auction settings are canoni-
cal examples, where the private data is
the willingness to pay of the bidders for
the goods on sale, and the optimization
problem is to allocate the goods to maxi-
mize some objective, such as revenue or
overall value to society. A “mechanism”
is a protocol that interacts with partici-
pants and determines a solution to the
underlying optimization problem.

There is a complex dependence be-
tween the way a mechanism employs
elicited data and participant behav-
ior. For example, consider the sale of a
single good in a sealed-bid auction with
several bidders. In a “first-price” auc-
tion, the selling price is the bid of the
winner (that is, the maximum bid). Bid-
ders naturally shade their bids below
their maximum willingness to pay in
first-price auctions, aspiring to achieve

the lowest-possible price subject to
winning the auction. Determining how
much to shade requires guessing about
the behavior of the other bidders. A dif-
ferent auction is the “second-price” auc-
tion, in which the selling price is only
the second-highest bid. A famous result
of Vickrey43 is that every participant of
a second-price auction may as well bid
its true value for the good: intuitively, a
second-price auction optimally shades
the bid of the winner on its behalf, to the
minimum alternative winning bid. eBay
and Amazon auctions are similar to sec-
ond-price auctions in many (but not all)
respects; see Steiglitz42 for a detailed dis-
cussion. Keyword search auctions, such
as those run by Google, Yahoo!, and
Microsoft, are more complex variants
of second-price auctions with multiple
heterogeneous goods, corresponding to
the potential ad slots on a search results

page. Lahaie et al.30 provide an overview
of theoretical work on search auctions.

While the economic literature on
mechanism design is quite mature,20
computer scientists have initiated a
number of new research directions.
We concentrate here on the empha-
sis in algorithmic mechanism design
on complexity bounds and worst-case
approximation guarantees, as first
proposed by Nisan and Ronen.29 Ad-
ditional aspects including prior-free
revenue-maximization, distributed (or
Internet-suitable) mechanism design,
and online (or real time) mechanism
design are discussed in Nisan et al.30

The technical core of this part of al-
gorithmic mechanism design is the fol-
lowing deep question:

(Q1) To what extent is “incentive-
compatible” efficient computation
fundamentally less powerful than

This piece:

From intro paragraph: ...in application areas: Internet-like networks
and non-traditional auctions motivate much of the work in AGT

Network map, Auction paddles, strategy, directionals

http://travel.nytimes.com/2008/11/28/greathomesanddestinations/28
auctions.html?fta=y

http://www.rappart.com/index.php?section=portfolio&portnum=167&
img=6133

http://www.liftconference.com/files/network1.png

anarchy - something about paths and routing, multidirectional move-
ment in a space

Overall like Celia’s ideas of:

a couple of people - figures silhouetted - who are interact-
ing with the concepts as if in the landscape or on the stage
of these concepts.

chessboards - a repeated pattern that subtly evokes the
idea of gaming and strategy

albers, delaunay-like based abstract imagery

80 communications of the acm | july 2010 | vol. 53 | no. 7

review articles

“classical” efficient computation?
To translate this question into

mathematics, reconsider the Vickrey
(second-price) auction for selling a
single good. Each bidder i has a private
willingness-to-pay vi and submits to the
auctioneer a bid bi. The auction com-
prises two algorithms: an allocation al-
gorithm, which picks a winner, namely
the highest bidder; and a payment al-
gorithm, which uses the bids to charge
payments, namely 0 for the losers and
the second-highest bid for the winner.
We argued intuitively that this auction
is truthful in the following sense: for ev-
ery bidder i and every set of bids by the
other participants, bidder i maximizes
its “net value” (its value for the good,
if received, minus its payment, if any)
by bidding its true private value: bi = vi.
Moreover, no false bid is as good as the
truthful bid for all possible bids by the

other participants. Assuming all bid-
ders bid truthfully (as they should), the
Vickrey auction solves the social welfare
maximization problem, in the sense that
the good is allocated to the participant
with the highest value for it.

More generally, an allocation algo-
rithm x is implementable if, for a judi-
ciously chosen payment algorithm p,
coupling x with p yields a truthful mech-
anism: every participant is guaranteed
to maximize its payoff by reporting its
true preferences. For a single-good auc-
tion, the “highest-bidder” allocation al-
gorithm is implementable (as we have
seen); the “second-highest bidder” al-
location algorithm is not (a straightfor-
ward exercise). Thus some but not all
algorithms are implementable.

We can mathematically phrase the
question (Q1) as follows: Are imple-
mentable algorithms less powerful than

arbitrary algorithms for solving funda-
mental optimization problems?

Understanding this question in-
volves two interrelated goals: charac-
terization theorems and approxima-
tion bounds.

(G1) Usefully characterize the im-
plementable allocation algorithms for
an optimization problem.

(G2) Prove upper and lower bounds
on the best-possible solution quality
achieved by an implementable algo-
rithm, possibly subject to additional
constraints such as polynomial run-
ning time.

The second goal quantifies the limi-
tations of implementable algorithms
via an approximation measure; the
most commonly used such measure is
the worst-case ratio, over all possible
inputs, between the objective function
value of the algorithm’s solution and
the optimal objective function value.
The first goal aims to reformulate the
unwieldy definition of implementabili-
ty into a more operational form amena-
ble to both upper and lower approxima-
tion bounds. Both goals, and especially
(G1), seem to grow more complex with
the number of independent param-
eters required to describe the private
information of a participant.

Versions of (G2) pervade mod-
ern algorithmic research: for a given
“constrained computational model,”
where the constraint can be either
computational (as for polynomial-
time approximation algorithms) or
information-theoretic (as for online al-
gorithms), quantify its limitations for
optimization and approximation. Goal
(G1) reflects the additional difficulty in
algorithmic mechanism design that
even the “computational model” (of
implementable algorithms) induced
by strategic constraints is poorly un-
derstood. For example, determining
whether or not a given algorithm is on-
line is intuitively far easier than check-
ing if one is implementable.

Single-Parameter Mechanism De-
sign. This two-step approach is vividly
illustrated by the important special
case of single-parameter problems,
where goal (G1) has been completely re-
solved. A mechanism design problem
is single-parameter if the possible out-
comes are real n-vectors ω and each par-
ticipant i has an objective function of
the form viωi for a private real number vi I

l
l

u
s

trati

o

n
 b

y
 C

e
l

ia

 j
o

h
n

s
o

n

review articles

july 2010 | vol. 53 | no. 7 | communications of the acm 81

Truthful
mechanisms
are—by design—
strategically
degenerate in
that the best
course of action
of a participant
does not depend
on the actions
taken by others.

(the “single parameter”). The numbers
ωi and vi can be thought of as the quan-
tity received and the value per-unit of
a good, respectively. A single-item auc-
tion is the special case in which each ω
is either a standard basis vector or the
all-zero vector. Keyword search auc-
tions are also single-parameter, under
the assumptions that every advertiser
cares only about the probability ωi of
a click on its sponsored link and has a
common value vi for every such click.

An algorithm for a single-parameter
problem is monotone if a greater bid
begets a greater allocation: increasing
the value of a bid (keeping the other
bids fixed) can only increase the cor-
responding value of the computed ωi.
For example, the “highest bidder” allo-
cation algorithm for a single-good auc-
tion is monotone, while the “second-
highest bidder” allocation algorithm
is not. In general, monotonicity char-
acterizes implementability for single-
parameter problems.

Myerson’s Lemma.27 An allocation
algorithm for a single-parameter mech-
anism design problem is implementable
if and only if it is monotone.

Myerson’s Lemma is a useful solu-
tion to the first goal (G1) and reduces
implementable algorithm design to
monotone algorithm design. For ex-
ample, consider the following “rank-by-
weighted bid” allocation algorithm for
a keyword search auction. Advertisers’
bids are sorted in decreasing order, pos-
sibly after scaling by advertiser-specific
relevance factors, and ad slots are popu-
lated in this order. Assuming that the
probability of a click is higher in higher
slots, every such algorithm is mono-
tone: increasing one’s bid can only in-
crease one’s position in the ordering,
which in turn leads to an only higher
probability of a click. Thus, Myerson’s
Lemma guarantees an analog of the sec-
ond-price rule that extends the alloca-
tion algorithm into a truthful auction.a

Despite our thorough understand-
ing of goal (G1), question (Q1) remains
open for single parameter problems. A

a	 Modern search engines use allocation algo-
rithms that are similar to rank-by-weighted
bid algorithms. By historical accident, they
use a slightly different pricing rule than that
advocated by Myerson’s Lemma, although
the two pricing rules lead to comparable out-
comes and revenue at equilibrium. For details,
see Lahaie et al.30

single-parameter scheduling problem
proposed by Archer and Tardos1 had
been the most natural candidate for
differentiating between the optimi-
zation power of monotone and arbi-
trary polynomial-time algorithms, but
Dhangwatnotai et al.14 recently gave a
(randomized) polynomial-time mono-
tone algorithm for the problem with
approximate guarantee as good as the
best-possible polynomial-time algo-
rithm (assuming P ≠ NP).

Multiparameter Mechanism De-
sign. Many important mechanism de-
sign problems are not single-parame-
ter. Combinatorial auctions,11 in which
each participant aims to acquire a het-
erogeneous set of goods and has un-
related values for different sets, are a
practical and basic example. Combina-
torial auctions are used in practice to
sell wireless spectrum (where the goods
are different licenses), with auction de-
signs by theoretical economists gener-
ating billions of dollars of revenue over
the past decade.11 Their complexity
stems from “complements,” meaning
goods that are more useful when pur-
chased in tandem (for example, spec-
trum licenses for small but adjacent
regions); and “substitutes,” meaning
goods that are partially redundant (for
example, two different but functionally
identical licenses for the same region).
Each bidder in a combinatorial auction
has, in principle, an exponential num-
ber of private parameters—one private
value for each subset of goods.

Multiparameter mechanism design
is complex and our current understand-
ing of goals (G1) and (G2) is primitive
for most problems of interest. There
are natural optimization problems for
which there is a provable gap between
the best-possible worst-case approxi-
mation ratio of implementable and ar-
bitrary polynomial-time deterministic
algorithms. This fact was first proved by
Lavi et al.;23 more recently, Papadimitri-
ou et al.33 showed that this gap can be as
large as a polynomial in the number of
bidders. Because of its importance and
abundance of open questions, multipa-
rameter mechanism design has been
a hotbed of activity over the past few
years. See Roughgarden35 for a survey
of the primary research threads, includ-
ing upper and lower approximation
bounds for polynomial-time welfare
maximization for combinatorial auc-

82 communications of the acm | july 2010 | vol. 53 | no. 7

review articles

posed for road traffic (see Beckmann4)
and subsequently adapted to commu-
nication networks (see Bertsekas and
Tsitsiklis5). This was the first general ap-
proximation bound on the inefficiency
of equilibria; the idea of quantifying
such inefficiency was explored previ-
ously in a scheduling model.22

Consider a directed graph with fixed
traffic rates between various origin-
destination pairs in which the traffic
chooses routes to minimize individual
cost; see also Figure 1. Here, we as-
sume that the traffic comprises a large
number of selfish users, each of negli-
gible size, such as drivers on a highway
or packets in a network. Edge costs are
congestion-dependent, with the con-
tinuous, nondecreasing function ce(x)
denoting the per-unit cost incurred by
traffic on edge e when x units of traffic
use it. In an equilibrium, each user trav-
els along a minimum-cost path from
its origin to its destination, given the
congestion caused by the traffic. These
selfish routing games are strategically
non-trivial in that the minimum-cost
path for a given user generally depends
on the paths chosen by the others.

For example, in a “Pigou-like net-
work” (Figure 1a), r units of selfish traf-
fic autonomously decide between par-
allel edges e1 and e2 that connect the
origin s to the destination t. Suppose
the second edge has some cost func-
tion c2(·), and the first edge has a con-
stant cost function c1 everywhere equal
to c2 (r). Such networks are strategically
trivial, just like the truthful mecha-
nisms noted earlier: the second edge’s
cost is never larger than that of the

tions, and work toward multiparameter
analogs of Myerson’s Lemma.

Quantifying Inefficiency
and the Price of Anarchy
The truthful mechanisms examined
earlier are—by design—strategically
degenerate in that the best course of
action of a participant (that is, truthtel-
ling) does not depend on the actions
taken by the others. When a designer
cannot specify the rules of the game
and directly dictate the allocation of
resources—or when there is no central
designer at all—dependencies between
different participants’ optimal courses
of action are generally unavoidable and
preclude exact optimization of stan-
dard objective functions. This harsh
reality motivates adopting an equilib-
rium concept—a rigorous proposal for
the possible outcomes of a game with
self-interested participants—and an
approximation measure that quantifies
the inefficiency of a game’s equilibria,
to address the following basic question:

(Q2) When, and in what senses, are
game-theoretic equilibria guaranteed
to approximately optimize natural ob-
jective functions?

Such a guarantee implies that the
benefit of imposing additional control
over the system is small, and is particu-
larly reassuring when implementing
an optimal solution is infeasible (as in
a typical Internet application).

Routing with Congestion. There are
now numerous answers to question (Q2)
in different models. We describe one by
Roughgarden and Tardos,37,39 for a mod-
el of “selfish routing” originally pro-

first, even when it is fully congested.
For this reason, all traffic uses the sec-
ond edge at equilibrium. This equilib-
rium does not generally minimize the
average cost of all users. For example,
if r = 1 and c2 (x) = x as in Figure 1a, the
average cost at equilibrium is 1, while
splitting the traffic equally between the
two edges yields a routing with average
cost 3/4. The latter traffic pattern is not
an equilibrium because of a “conges-
tion externality”: a selfish network user
routed on the first edge would switch to
the second edge, indifferent to the fact
that this switch (slightly) increases the
cost incurred by a large portion of the
population. Similarly, in the Braess’s
Paradox7 network of Figure 1b, the av-
erage cost at equilibrium is 2 (with all
traffic on the zig-zag path), while a be-
nevolent dictator could route the traf-
fic at average cost 3/2 (by splitting traf-
fic between the two two-hop paths).b

The price of anarchy (POA) of a selfish
routing network is the ratio of the aver-
age user cost at equilibrium and in an
optimal routing—4/3 in both of the net-
works in Figure 1. The closer the POA is
to 1, the lesser the consequences of self-
ish behavior. Replacing the cost func-
tion of the second edge in Figure 1a by c2
(x) = xd for large d shows that the POA can

b	 This network is called a “paradox” because re-
moving the intuitively helpful zero-cost edge—
depriving users of one of their options—recov-
ers the optimal solution as an equilibrium,
thereby decreasing the cost incurred by all us-
ers. Analogously, cutting a taut string in a net-
work of strings and springs that carries a heavy
weight can cause the weight to levitate further
off the ground!10

Figure 1. Two selfish routing networks with price of anarchy 4/3. One unit of selfish traffic travels from s to t. At equilibrium, all traffic
travels on the bottom path and the zig-zag path, respectively. In an optimal solution, traffic is split equally between the two edges and
between the two two-hop paths, respectively.

s

c(x) = 1

c(x) = x

c(x) = xc(x) = 1

c(x) = 1

c(x) = 0

c(x) = x

(a) Pigou’s Example (b) Braess’ Paradox

t s t

v

w

review articles

july 2010 | vol. 53 | no. 7 | communications of the acm 83

be arbitrarily large, even in Pigou-like

networks, and suggests that the POA is
governed by the “degree of nonlinear-
ity” of the cost function c2. A key result
formalizes and extends this intuition to
arbitrary networks: among all networks
with cost functions lying in a set C (for
example, bounded-degree polynomi-
als with nonnegative coefficients), the
largest-possible POA is achieved already
in Pigou-like networks.37 Conceptu-
ally complex topologies do not amplify the
worst-case POA. This reduction permits
the easy calculation of tight bounds on
the worst-case POA for most interesting
sets C of cost functions. For example,
the POA of every selfish routing network
with affine cost functions (of the form
ce(x) = aex + be for non-negative ae, be) is at
most 4/3, with a matching lower bound
provided by the examples in Figure 1.39
See Nisan et al.30 for a recent survey de-
tailing these and related results.

These POA bounds provide a theo-
retical justification for a common rule
of thumb used in network design and
management: overprovisioning net-
works with extra capacity ensures good
performance. Precisely, suppose every
edge e of a network has a capacity ue and
a corresponding cost function ce(x) = 1/
(ue − x); see Figure 2a. (If x ≥ ue, we in-
terpret the cost as infinite.) This is the
standard M/M/1 queueing delay func-
tion with service rate ue. We say that a
network is b-overprovisioned for b ∊ (0,
1) if, at equilibrium, at least a b fraction
of each edge’s capacity remains un-
used. The following is a tight bound on
the POA for such networks; the bound

results. The second is to prove POA-

like guarantees that apply “on aver-
age,” even when such experimentation
strategies fail to converge to an equi-
librium. Remarkably, such approxima-
tion bounds hold in interesting classes
of games, including in selfish routing
networks. See Awerbuch et al.,2 Blum
et al.,6 and Goemans et al.19 for ini-
tial formalizations of this approach.
Roughgarden36 recently proved the
general result that, under fairly weak
conditions, POA bounds for equilibria
extend automatically to the results of
repeated experimentation.

Complexity of Equilibrium
Computation
Equilibrium concepts—most famous-
ly the Nash equilibrium28—play a star-
ring role in game theory and micro-
economics. If nothing else, a notion
of equilibrium describes outcomes
that, once reached, persist under some
model of individual behavior. In engi-
neering applications we generally de-
mand a stronger interpretation of an
equilibrium, as a credible prediction
of the long-run state of the system. But
none of the standard equilibrium no-
tions or the corresponding proofs of
existence suggest how to arrive at an
equilibrium with a reasonable amount
of effort. This fact motivates the fol-
lowing questions.

(Q3) When can the participants of
a game quickly converge to an equilib-
rium? More modestly, when can a cen-
tralized algorithm quickly compute an
equilibrium?

is illustrated in Figure 2b.

Theorem (Consequence of Rough-
garden37) The POA of every b-overprovi-
sioned network is at most

1
2
 (1 +

1
Ö̀b

)

Thus even 10% extra capacity reduc-
es the worst-case price of anarchy of
selfish routing to roughly 2.

Further Aspects of Quantifying Inef-
ficiency. We have barely scratched the
surface of recent work on equilibrium
efficiency analyses. For an overview of
work on some other application do-
mains, including resource allocation,
scheduling, facility location, and net-
work design, see Nisan et al.30

An important emerging trend in
this area is to prove POA-type bounds
under increasingly weak assumptions
on the rationality of participants. Re-
call in algorithmic mechanism design,
our only assumption was that par-
ticipants will make use of a foolproof
strategy (one that dominates all oth-
ers), should one be available. Here, we
implicitly assumed that selfish par-
ticipants can reach an equilibrium of
a game without such foolproof strate-
gies, presumably through repeated
experimentation. This much stronger
assumption has been addressed in two
different ways in the recent literature.
The first is to formally justify it by posit-
ing natural experimentation strategies
and proving that they quickly reach a
(possibly approximate) equilibrium;
see Chien and Sinclair9 and the refer-
ences therein for a sampling of such

Figure 2. Modest overprovisioning guarantees near-optimal routing. (a) displays the per-unit cost c(x) = 1/(u − x) as a function of the load x
for an edge with capacity u = 2. (b) shows the worst-case price of anarchy as a function of the fraction of unused network capacity.

(a) M/M/1 delay function (b) Extra capacity vs. POA curve

50

45

40

35

40

25

20

15

10

5

0

7

6

5

4

3

2

1

0

0.5 0.101 0.21.5 0.32 0.4 0.5 0.6 0.7

84 communications of the acm | july 2010 | vol. 53 | no. 7

review articles

These questions are interesting for
two reasons. First, algorithms for equi-
librium computation can be useful
practically, for example in game-play-
ing and for multi-agent reasoning.41
Second, assuming that players can in-
vest only polynomial computation in
playing a game, resolving the complex-
ity of computing an equilibrium con-
cept has economic implications: a poly-
nomial-time algorithm is an important
step toward establishing the concept’s
credibility, while an intractability result
casts doubt on its predictive power.

There has been a frenzy of recent
work on these questions, for many dif-
ferent fundamental equilibrium con-
cepts. Perhaps the most celebrated
results in the area concern the PPAD-
completeness of computing mixed-
strategy Nash equilibria in finite
games with two or more players.8,12
To briefly convey the spirit of the area
with a minimum of technical fuss,
we instead discuss the complexity of
converging to and computing pure-
strategy Nash equilibria in a variant
of the routing games discussed ear-
lier. We then discuss the key differ-
ences between the two settings. For
work on the complexity of computing
other equilibrium concepts, such as
market, correlated, and approximate
Nash equilibria, and for a discus-
sion of equilibrium computation in
extensive-form, compact, randomly
generated, and stochastic games, see
Nisan30 and Roughgarden38 and the
references therein.

Pure Nash Equilibria in Network
Congestion Games. In the atomic vari-
ant of selfish routing, there are a finite
number k of players that each control
a non-negligible amount of traffic (say
one unit each) and choose a single route
for it. Each edge cost function ce : {1, 2,
…, k} ® R+, describing the per-player
cost along an edge as a function of its
number of users, is non-decreasing. An
outcome (P1,…,Pk)—a choice of a path
Pi for each player i—is a pure-strategy
Nash equilibrium (PNE) if each player si-
multaneously chooses a best response:
a path with minimum possible cost,
given the paths chosen by the other
players. For instance, consider Pigou’s
example (Figure 1a) with the constant
cost on the upper edge raised from 1 to
2. If there are two players (with origin s
and destination t), then there are three

PNE: one with both players on the lower
link, and two in which each link is used
by a single player. In every case, a deviat-
ing player would incur cost 2 and be no
better off than in the equilibrium.

Best-response dynamics is a simple
model of experimentation by players
over time: while the current outcome
is not a PNE, choose an arbitrary player
that is not using a best response, and
update its path to a best response. The
update of one player usually changes
the best responses of the others; for
this reason, best-response dynamics
fails to converge in many games (such
as “Rock-Paper-Scissors”). In an atomic
selfish routing network, however, every
iteration of best-response dynamics
strictly decreases the potential function

F (P1, … , Pk) = ∑
eÎE

 [ce (1) + ce (2) + · · · + ce
(xe)],

where xe denotes the number of paths
Pi that contain edge e, and is thus guar-
anteed to terminate, necessarily at a
PNE.26,34 Does convergence require poly-
nomial or exponential time? Can we
compute a PNE of such a game by other
means in polynomial time?

Assume for the moment that the
problem of computing a PNE of an
atomic selfish routing network is not
solvable in polynomial time; how
would we amass evidence for this fact?
An obvious idea is to prove that the
problem is NP-hard. Remarkably, a
short argument21,25 shows that this is
possible only if NP = coNP! Intuitively,
solving an NP-hard problem like satisfi-
ability means to either exhibit a satisfy-
ing truth assignment of the given Bool-
ean formula or to correctly determine
that none exist. Computing a PNE of an
atomic selfish routing game appears
easier because the latter situation (of
there being no PNE) can be ruled out
a priori—the “only” challenge is to ex-
hibit a solution in polynomial time.c

To motivate the definition of the ap-
propriate complexity class, recall that
problems in the class NP are character-
ized by short and efficiently verifiable
witnesses of membership, such as

c	 The complexity classes P and NP are usually de-
fined for decision problems, where the answer
sought is a simple “yes” or “no.” Here we refer
to the similar but more general search versions
of P and NP, where for a “yes” instance, the de-
liverables include a correct solution.

Equilibrium
concepts play
a starring role
in game theory.
If nothing else,
a notion of
equilibrium
describes outcomes
that, once reached,
persist under
some model of
individual behavior.

review articles

july 2010 | vol. 53 | no. 7 | communications of the acm 85

satisfying truth assignments or Ham-
iltonian cycles. There is thus a generic
“brute-force search” algorithm for NP
problems: given an input, enumer-
ate the exponentially many possible
witnesses of membership, and check
if any of them are valid. Computing
a PNE of an atomic selfish routing
game appears to be easier than an
NP-hard problem because there is a
guided search algorithm (namely, best-
response dynamics) that navigates the
set of possible witnesses and is guar-
anteed to terminate with a legitimate
one. At worst, computing a PNE might
be as hard as all problems solvable by
such a guided search procedure. This
is in fact the case, as we formalize here.

What are the minimal ingredients
that guarantee that a problem is solv-
able via guided search? The answer
is provided by the complexity class
PLS (for “polynomial local search”).21
A PLS problem is described by three
polynomial-time algorithms: one to
accept an instance and output an ini-
tial candidate solution; one to evalu-
ate the objective function value of a
candidate solution; and one that ei-
ther verifies local optimality (for some
local neighborhood) or else returns a
neighboring solution with strictly bet-
ter objective function value. To solve a
PLS problem means to compute a lo-
cal optimum, by local search or by oth-
er means. For example, computing a
PNE of an atomic selfish routing game
can be cast as a PLS problem by adopt-
ing the potential function as an objec-
tive function, and defining two out-
comes to be neighbors if all but one
player choose the same path in both.
Local minima then correspond to the
PNE of the game. A problem in PLS is
then PLS-complete if every problem in
PLS reduces to it in polynomial time,
in which case the complete problem
is solvable in polynomial time only if
every problem in PLS is.

The problem of computing a PNE
of an atomic selfish routing network is
PLS-complete.17 It is therefore polyno-
mial-time solvable if and only if P = PLS.
In the spirit of the P vs. NP question, it
is generally believed that P ≠ PLS but
researchers seem far from a resolution
in either direction. Since PLS contains
several important problems that have
resisted all attempts at a computation-
ally efficient solution, PLS-hardness is

viewed as strong evidence that a prob-
lem will not be solved in polynomial
time (at least in the near future).

Mixed-Strategy Nash Equilibria and
PPAD. A mixed strategy is a probability
distribution over the pure strategies of
a player. In a mixed-strategy Nash equi-
librium (MNE), every player simultane-
ously chooses a mixed strategy maxi-
mizing its expected payoff, given those
chosen by the others. For example, in
“Rock-Paper-Scissors,” with each play-
er receiving payoff 1 for a win, 0 for a
draw, and -1 for a loss, the only MNE
has each player randomizing uniform-
ly over its three strategies to obtain an
expected payoff of 0. Nash proved that
every game with a finite number of
players and strategies has at least one
MNE.28 Computing an MNE of a finite
game is a central equilibrium compu-
tation problem.

We focus on the two-player (“bi-
matrix”) case, where the input is two
m × n payoff matrices (one for each
player) with integer entries; with three
or more players, the problem appears
to be harder in a precise complexity-
theoretic sense.15 We emphasize that
the two payoff matrices are complete-
ly unrelated, and need not be “zero-
sum” like in Rock-Paper-Scissors.
(When the two payoff matrices sum
to a constant matrix, an MNE can be
computed in polynomial time via lin-
ear programming; see for example,
Nisan30 for details.)

There is a non-obvious “guided
search” algorithm for two-player
games called the Lemke-Howson algo-
rithm;24 see von Stengel30 for a careful
exposition. This algorithm is a path-
following algorithm in the spirit of
local search, but it is not guided by

From intro paragraph: ...AGT usually adopts reasonable (for example,
polynomial-time) computational complexity as a binding constraint on
the feasible behavior of system designers and participants.

Rock-paper-scissors, score board?, time, binding options of each
choice.

constrained computation

I
l

l
u

s
trati

o
n

 b
y

 C
e

l
ia

 j

o
h

n
s

o
n

86 communications of the acm | july 2010 | vol. 53 | no. 7

review articles

an objective or potential function and
thus does not prove that computing an
MNE of a bimatrix game is in PLS. In
conjunction with our earlier reason-
ing, however, the Lemke-Howson al-
gorithm shows that the problem is not
NP-hard unless NP = coNP.25

A complexity class that is related to
but apparently different from PLS is
PPAD, which stands for “polynomial
parity argument, directed version”.
This class was defined in Papadimi-
trou32 to capture the complexity of
computing MNE and related prob-
lems, such as computing approxi-
mate Brouwer fixed points. Its formal
definition parallels that of PLS, with a
PPAD problem consisting of the mini-
mal ingredients necessary to execute
a Lemke-Howson-like path-following
procedure (again easily phrased as
three polynomial-time algorithms). A
problem in PPAD is PPAD-complete if
every problem in PPAD reduces to it in
polynomial time; the complete prob-
lem is then polynomial-time solvable
only if all problems in PPAD are. Since
PPAD contains several well-studied
problems that are not known to be
solvable via a polynomial-time algo-
rithm, a proof of PPAD-completeness
can be interpreted as a significant in-
tractability result.

A few years ago, the problem of
computing an MNE of a bimatrix game
was shown to be PPAD-complete.8, 12
Thus, if P ≠ PPAD, there is no general-
purpose and computationally efficient
algorithm for this problem, and in par-
ticular there is no general and tractable
way for players to reach a Nash equilib-
rium in a reasonable amount of time.
This hardness result casts doubt on the
predictive power of the Nash equilib-
rium concept in arbitrary games. See
Chen8 and Daskalakis et al.12 for the
details of this tour de force result and
Daskalakis et al.13 for a high-level sur-
vey of the proof.

Future Directions
The rapid rate of progress in algorith-
mic game theory has been nourished
by deep connections with other areas
of theoretical computer science and
a consistent infusion of new moti-
vating applications. There remains
a surfeit of important open research
directions across all three of the AGT
areas surveyed here, such as develop-

ing theory for the design and analysis
of mechanisms for multi-parameter
problems, for minimizing the ineffi-
ciency of equilibria (for example, via
a mediating network protocol), and
for the computation of approximate
equilibria. See Roughgarden35 and the
concluding sections of many chapters
in Nisan30 for more details and many
concrete open problems.

A broad challenge, mentioned also
in Shoham’s recent Communications
article,40 is to develop more appropri-
ate models of agent behavior. All of the
results described in this article, even
the welfare guarantee of the simple
second-price auction, depend on some
kind of behavioral assumptions about
the participants. Such assumptions
are required to address modern appli-
cations, yet are largely foreign to the
theoretical computer science mind-
set, which is characterized by minimal
assumptions and worst-case analysis.
But a number of new types of worst-
case guarantees, coupled with novel
behavioral models, have already be-
gun to sprout in the AGT literature. For
example: mechanism implementation
in undominated strategies3 and in ex
post collusion-proof Nash equilibri-
um;31 the price of total anarchy;6,36 and
the complexity of unit-recall games.16
We expect these are only the vanguard
of what promises to be a rich and rel-
evant theory.	

This work is supported in part by NSF CAREER Award CCF-
0448664, an ONR Young Investigator Award, an AFOSR
MURI grant, and an Alfred P. Sloan Fellowship.

References
1.	 Archer, A. and Tardos, É. Truthful mechanisms for one-

parameter agents. FOCS ’01, 482–491.
2.	 Awerbuch, B., Azar, Y., Epstein, A., Mirrokni, V.S., and

Skopalik, A. Fast convergence to nearly optimal
solutions in potential games. EC ’08, 264–273.

3.	B abaioff, M., Lavi, R., and Pavlov, E. Single-value
combinatorial auctions and algorithmic implementation
in undominated strategies. JACM 56, 1 (2009).

4.	B eckmann, M.J., McGuire, C.B., and Winsten, C.B.
Studies in the Economics of Transportation. Yale
University Press, 1956.

5.	B ertsekas, D.P. and Tsitsiklis, J.N. Parallel and
Distributed Computation: Numerical Methods. Prentice-
Hall, 1989.

6.	B lum, A., Hajiaghayi, M., Ligett, K., and Roth, A. Regret
minimization and the price of total anarchy. STOC ’08,
373–382.

7.	B raess, D. Über ein Paradoxon aus der
Verkehrsplanung. Unternehmensforschung, 12 (1968),
258–268.

8.	 Chen, X., Deng, X., and Teng, S.-H. Settling the
complexity of computing two-player Nash equilibria.
JACM 56, 3 (2009).

9.	 Chien, S. and Sinclair, S. Convergence to approximate
Nash equilibria in congestion games. SODA ’07,
169–178.

10.	 Cohen, J.E. and Horowitz, P. Paradoxical behavior of
mechanical and electrical networks. Nature 352, 8
(1991), 699–701.

11.	 Cramton, P., Shoham, Y., and Steinberg, R., Eds.
Combinatorial Auctions. MIT Press, 2006.

12.	 Daskalakis, C., Goldberg, P.W., and Papadimitriou, C.H.
The complexity of computing a Nash equilibria. SIAM
Journal on Computing 39, 1 (2009), 195–259.

13.	 Daskalakis, C., Goldberg, P.W., and Papadimitriou, C.H.
The complexity of computing a Nash equilibrium.
Commun. ACM 52, 2 (Feb. 2009) 89–97.

14.	 Dhangwatnotai, P., Dobzinski, S., Dughmi, S., and
Roughgarden, T. Truthful approximation schemes for
single-parameter agents. FOCS ’08, 15–24.

15.	E tessami, K. and Yannakakis, M. On the complexity of
Nash equilibria and other fixed points. SIAM Journal
on Computing 39, 6 (2010) 2531–2597.

16.	 Fabrikant, A. and Papadimitriou, C.H. The complexity
of game dynamics: BGP oscillations, sink equlibria, and
beyond. SODA ’08, 844–853.

17.	 Fabrikant, A., Papadimitriou, C.H., and Talwar, K. The
complexity of pure Nash equilibria. STOC ’04, 604–612.

18.	 Feigenbaum, J., Parkes, D.C., and Pennock, D.M.
Computational challenges in e-commerce. Commun.
ACM 52, 1 (Jan. 2009), 70–74.

19.	 Goemans, M.X., Mirrokni, V.S., and Vetta, A. Sink
equilibria and convergence. FOCS ’05, 142–151.

20.	J ackson, M.O. A crash course in implementation theory.
Social Choice and Welfare 18, 4 (2001), 655–708.

21.	J ohnson, D.S., Papadimitriou, C.H., and Yannakakis, M.
How easy is local search? J. Computer and System
Sciences 37, 1 (1988), 79–100.

22.	 Koutsoupias, E. and Papadimitriou, C.H. Worst-case
equilibria. STACS ’99, 404–413.

23.	L avi, R., Mu’alem, A., and Nisan, N. Towards a
characterization of truthful combinatorial auctions.
FOCS ’03, 574–583.

24.	L emke, C.E. and Howson, J.T., Jr. Equilibrium points of
bimatrix games. SIAM J. 12, 2 (1964), 413–423.

25.	 Megiddo, N. and Papadimitriou, C.H. On total functions,
existence theorems and computational complexity.
Theoretical Computer Science 81, 2 (1991), 317–324.

26.	 Monderer, D. and Shapley, L.S. Potential games. Games
and Economic Behavior 14, 1 (1996), 124–143.

27.	 Myerson, R. Optimal auction design. Mathematics of
Operations Research 6, 1 (1981), 58–73.

28.	N ash, J.F., Jr. Equilibrium points in N-person games. In
Proceedings of the National Academy of Science 36, 1
(1950), 48–49.

29.	N isan, N. and Ronen, A. Algorithmic mechanism design.
Games and Economic Behavior 35, 1–2 (2001), 166–196.

30.	N isan, N., Roughgarden, T., Tardos, É., and Vazirani, V.V.,
Eds. Algorithmic Game Theory. Cambridge University
Press, 2007.

31.	N isan, N., Schapira, M., Valiant, G., and Zohar, A. Best-
reply mechanisms. Working paper, 2009.

32.	 Papadimitriou, C.H. On the complexity of the parity
argument and other inefficient proofs of existence. J.
Computer and System Sciences 48 3 (1994), 498–532.

33.	 Papadimitriou, C.H., Schapira, M., and Singer, Y. On the
hardness of being truthful. FOCS ’08, 250–259.

34.	 Rosenthal, R.W. A class of games possessing pure-
strategy Nash equilibria. International J. Game Theory
2, 1 (1973), 65–67.

35.	 Roughgarden, T. Algorithmic game theory: Some
greatest hits and future directions. TCS ’08, 21–42.

36.	 Roughgarden, T. Intrinsic robustness of the price of
anarchy. STOC ’09, 513–522.

37.	 Roughgarden, T. The price of anarchy is independent
of the network topology. J. Computer and System
Sciences 67, 2 (2003), 341–364.

38.	 Roughgarden, T. Computing equilibria: A computational
complexity perspective. Economic Theory 42, 1 (Jan.
2010), 193–236.

39.	 Roughgarden, T. and Tardos, É. How bad is selfish
routing? JACM 49, 2 (2002), 236–259.

40.	Shoham, Y. Computer science and game theory.
Commun. ACM 51, 8 (Aug. 2008), 75–79.

41.	S hoham, Y. and Leyton-Brown, K. Multiagent Systems:
Algorithmic, Game Theoretic and Logical Foundations.
Cambridge University Press, 2008.

42.	S teiglitz, K. Snipers, Shills, and Sharks: eBay and
Human Behavior. Princeton University Press, 2007.

43.	 Vickrey, W. Counterspeculation, auctions, and
competitive sealed tenders. J. Finance 16, 1 (1961),
8–37.

Tim Roughgarden (tim@cs.stanford.edu) is an assistant
professor in the computer science and management
science and engineering departments at Stanford
University, Stanford, CA. He is the recipient of ACM’s 2009
Grace Murray Hopper Award.

© 2010 ACM 0001-0782/10/0700 $10.00

mailto:tim@cs.stanford.edu

research highlights

july 2010 | vol. 53 | no. 7 | communications of the acm 87

p. 89

x86-TSO: A Rigorous and
Usable Programmer’s Model
for x86 Multiprocessors
By Peter Sewell, Susmit Sarkar, Scott Owens,
Francesco Zappa Nardelli, and Magnus O. Myreen

p. 88

Technical
Perspective
A Solid Foundation
for x86 Shared
Memory
By Hans-J. Boehm

p. 99

Phase Change Memory
Architecture and the Quest
for Scalability
By Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger

p. 98

Technical
Perspective
Technology Scaling
Redirects Main
Memories
By Mary Jane Irwin

88 communications of the acm | july 2010 | vol. 53 | no. 7

research highlights

doi:10.1145/1785414.1785442

M ult i t h r e a d e d p ro g r a m s t h at com-
municate through shared memory are
pervasive. They originally provided a
convenient way for an application to
perform, for example, a long compute
task while remaining responsive to
an interactive user. Today they are the
most obvious route to using multiple
available processor cores for a single
task, so the user can benefit from the
increased number of available cores.

Unfortunately, a surprising amount
of confusion surrounds the basic rules
obeyed by shared memory. If a variable
is updated by one thread, when will
the new value become visible to anoth-
er thread? What does it mean, if any-
thing, to have two threads updating
the same variable at the same time?
Do all threads have to see updates in a
consistent order?

The confusion surrounding these
issues has resulted in many intermit-
tent software bugs, often in low-level
libraries that affect large numbers of
applications. On at least one occasion,
it has resulted in a pervasively used,
but usually incorrect, programming
idiom. (Try searching for “double-
checked locking”).

This problem arises at different
levels. At the programming language
level, there must be clear rules for the
programmer’s use of shared variables.
Compilers and low-level libraries must
enforce these rules by relying on cor-
responding hardware properties for
memory-access instructions—the sub-
ject of the following paper.

Most of the early work on shared-
memory semantics focused on the
instruction set level and trade-offs
with hardware optimization. Roughly
concurrently, some older program-
ming language designs, notably Ada
83, made very credible attempts to ad-
dress the language-level issue. Unfor-
tunately none of this prevented major
problems in the most widely used lan-
guages from escaping attention until
very recently. The Java specification

was drastically revised around 2005,2
and has still not completely settled.1,3
Similarly, the C and C++ specifications
are being revised to finally address
similar issues.1 As a result, hardware
architects often could not have a clear
picture of the programming language
semantics they needed to support,
making a fully satisfactory resolution
of the hardware-level issues more dif-
ficult or impossible.

The recent work on shared vari-
ables in programming languages
highlighted some remaining ques-
tions about hardware memory mod-
els. For example, Java’s volatile re-
quires that updates of all such fields
must become visible in the same order
to all other threads. Is it even possible
to enforce that on common hardware
at reasonable cost? What instruction
sequences do compilers need to gen-
erate? Until 2007 or so, the answers to
such questions remained unclear, and
sometimes unraised, on several ma-
jor architectures. X86 is probably the
most visible of these architectures.

Raising these issues resulted in
extended discussions involving the
machine architects. As a result of this
process, Intel and AMD have released
a sequence of specifications for x86
shared-memory accesses. These are far
more precise than they were at the start
of the process, and directly address
many interesting test cases that arose
during the discussions. However, they
are still not a precise mathematical de-
scription that could be used to, for ex-
ample, prove that an implementation
of Java volatile is correct.

The x86-TSO model fills that gap,
by providing precise mathematical
and empirically accurate models of
x86 shared memory as it is visible to
user programs. These include an op-
erational model presented here in a
very intuitive fashion. In the process of
making the model precise and directly
testing it against existing implementa-
tions, Sewell et al. expose new issues

not currently addressed by the manu-
facturers’ specifications, while also
confirming their model is compatible
with existing implementations.

The examples here are interesting,
not just because it may be surprising
that there are tiny program fragments
(often with only four instructions) for
your desktop computer whose mean-
ing is still open to debate, but also
because these same small examples
are often at the core of important algo-
rithms or software. The first example
is an abstraction of Dekker’s mutual
exclusion algorithm first described in
1965. The same property is important
to many modern lock-free algorithms.
We already mentioned the importance
of a consistent write visibility ordering
for Java volatiles. The upcoming C
and C++ standards introduce an ap-
proximate analog, atomic variables,
aspects of which also rely on the is-
sues surrounding single-variable co-
herence (examples n5 and n4b in the
paper) being resolved exactly as sug-
gested by x86-TSO. The paper itself
discusses the impact of these issues
on Linux spin-lock code.

X86-TSO describes the behavior
of x86 memory accesses, which de-
pends on the behavior of processors
produced by multiple vendors, and
chipsets produced by an even larger
number. This helped to put academic
researchers into the best position to
write such a specification.	

References
1.	 Adve, S. and Boehm, H.-J. Memory models: A case for

rethinking parallel languages and hardware. To appear
in Commun. ACM.

2.	 Manson, J., Pugh, W., and Adve, S. The Java memory
model. In Proceedings of the Symposium on Principles
of Programming Languages, 2005.

3.	S evcik, J. and Aspinall, D. On validity of program
transformations in the Java memory model. In
ECOOP 2008, 27–51.

Hans-J. Boehm (Hans.Boehm@hp.com) is a member of
Hewlett-Packard’s Exascale Computing Lab, Palo Alto, CA.

© 2010 ACM 0001-0782/10/0700 $10.00

Technical Perspective
A Solid Foundation for
x86 Shared Memory
By Hans-J. Boehm

mailto:Hans.Boehm@hp.com

doi:10.1145/1785414.1785443

July 2010 | vol. 53 | no. 7 | communications of the acm 89

x86-TSO: A Rigorous and
Usable Programmer’s Model
for x86 Multiprocessors
By Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen

Abstract
Exploiting the multiprocessors that have recently become
ubiquitous requires high-performance and reliable concur-
rent systems code, for concurrent data structures, operating
system kernels, synchronization libraries, compilers, and
so on. However, concurrent programming, which is always
challenging, is made much more so by two problems. First,
real multiprocessors typically do not provide the sequen-
tially consistent memory that is assumed by most work
on semantics and verification. Instead, they have relaxed
memory models, varying in subtle ways between proces-
sor families, in which different hardware threads may have
only loosely consistent views of a shared memory. Second,
the public vendor architectures, supposedly specifying what
programmers can rely on, are often in ambiguous informal
prose (a particularly poor medium for loose specifications),
leading to widespread confusion.

In this paper we focus on x86 processors. We review sev-
eral recent Intel and AMD specifications, showing that all
contain serious ambiguities, some are arguably too weak to
program above, and some are simply unsound with respect
to actual hardware. We present a new x86-TSO programmer’s
model that, to the best of our knowledge, suffers from none
of these problems. It is mathematically precise (rigorously
defined in HOL4) but can be presented as an intuitive abstract
machine which should be widely accessible to working pro-
grammers. We illustrate how this can be used to reason
about the correctness of a Linux spinlock implementation
and describe a general theory of data-race freedom for x86-
TSO. This should put x86 multiprocessor system building on
a more solid foundation; it should also provide a basis for
future work on verification of such systems.

1. INTRODUCTION
Multiprocessor machines, with many processors acting on a
shared memory, have been developed since the 1960s; they are
now ubiquitous. Meanwhile, the difficulty of programming
concurrent systems has motivated extensive research on
programming language design, semantics, and verification,
from semaphores and monitors to program logics, software
model checking, and so forth. This work has almost always
assumed that concurrent threads share a single sequentially
consistent memory,21 with their reads and writes interleaved
in some order. In fact, however, real multiprocessors use
sophisticated techniques to achieve high performance: store
buffers, hierarchies of local cache, speculative execution,

etc. These optimizations are not observable by sequential
code, but in multithreaded programs different threads may
see subtly different views of memory; such machines exhibit
relaxed, or weak, memory models.6, 7, 17, 19

For a simple example, consider the following assembly
language program (SB) for modern Intel or AMD x86 mul-
tiprocessors: given two distinct memory locations x and y
(initially holding 0), if two processors respectively write 1 to x
and y and then read from y and x (into register EAX on proces-
sor 0 and EBX on processor 1), it is possible for both to read
0 in the same execution. It is easy to check that this result can-
not arise from any interleaving of the reads and writes of the
two processors; modern x86 multiprocessors do not have a
sequentially consistent semantics.

Microarchitecturally, one can view this particular example
as a visible consequence of store buffering: if each proces-
sor effectively has a FIFO buffer of pending memory writes
(to avoid the need to block while a write completes), then the
reads from y and x could occur before the writes have propa-
gated from the buffers to main memory.

Other families of multiprocessors, dating back at least
to the IBM 370, and including ARM, Itanium, POWER, and
SPARC, also exhibit relaxed-memory behavior. Moreover,
there are major and subtle differences between different pro-
cessor families (arising from their different internal design
choices): in the details of exactly what non-sequentially-con-
sistent executions they permit, and of what memory barrier
and synchronization instructions they provide to let the pro-
grammer regain control.

For any of these processors, relaxed-memory behavior
exacerbates the difficulties of writing concurrent software,
as systems programmers cannot reason, at the level of
abstraction of memory reads and writes, in terms of an intui-
tive concept of global time.

This paper is based on work that first appeared in the
Proceedings of the 36th SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), 2009, and
in the Proceedings of the 22nd International Conference on
Theorem Proving in Higher-Order Logics (TPHOLs), 2009.

SB
Proc 0 Proc 1

MOV [x]¬1
MOV EAX¬[y]

MOV [y]¬1
MOV EBX¬[x]

Allowed Final State: Proc 0:EAX=0 ∧ Proc 1:EBX=0

90 communications of the acm | july 2010 | vol. 53 | no. 7

research highlights

addressing modes, etc., can then be used to generate both
an event-based semantics that can be integrated with mem-
ory models, and a state-based semantics for sequential pro-
grams; the latter enables us to test the semantics against
implementations. We also build an instruction decoding
function, directly from the vendor documentation, to support
reasoning about concrete machine code.

The intended scope of x86-TSO is typical user code and
most kernel code: we cover programs using coherent write-
back memory, without exceptions, misaligned or mixed-size
accesses, “nontemporal” operations (e.g., MOVNTI), self-
modifying code, or page-table changes. Within this domain,
and together with our earlier instruction semantics, x86-
TSO thus defines a complete semantics of programs.

Relaxed memory models play an important role also in
the design of high-level concurrent languages such as Java or
C++0x, where programs are subject not just to the memory
model of the underlying processor but also to reorderings
introduced by compiler optimizations. The Java Memory
Model24 attempts to ensure that data-race free (DRF) pro-
grams are sequentially consistent; all programs satisfy
memory safety/security properties; and common compiler
optimizations are sound. Unfortunately, as shown by Ševčík
and Aspinall,33 the last goal is not met. In the future, we hope
that it will be possible to prove correctness of implemen
tations of language-level memory models above the models
provided by real-world processors; ensuring that both are
precisely and clearly specified is a first step towards that goal.

2. ARCHITECTURE SPECIFICATIONS
To describe what programmers can rely on, processor ven-
dors document architectures. These are loose specifica-
tions, claimed to cover a range of past and future processor
implementations, which should specify processor behavior
tightly enough to enable effective programming, but with-
out unduly constraining future processor designs. For some
architectures, the memory-model aspects of these specifica-
tions are expressed in reasonably precise mathematics, as
in the normative Appendix K of the SPARC v.8 specification.2
For x86, however, the vendor architecture specifications are
informal prose documents. Informal prose is a poor medium
for loose specification of subtle properties, and, as we shall
see, such documents are almost inevitably ambiguous and
sometimes wrong. Moreover, one cannot test programs
above such a vague specification (one can only run programs
on particular actual processors), and one cannot use them
as criteria for testing processor implementations. In this
section, we review the informal-prose Intel and AMD x86
specifications: the Intel 64 and IA-32 Architectures Software
Developer’s Manual (SDM)5 and the AMD64 Architecture
Programmer’s Manual (APM).3 There have been several ver-
sions of these, some differing radically; we contrast them
with each other, and with what we have discovered of the
behavior of actual processors. In the process we introduce
the key discriminating examples.

2.1. Pre-IWP (before Aug. 2007)
Early revisions of the Intel SDM (e.g. rev. 22, Nov. 2006)
gave an informal-prose model called “processor ordering,”

Still worse, while some vendors’ architectural specifi-
cations clearly define what they guarantee, others do not,
despite the extensive previous research on relaxed memory
models. We focus in this paper on x86 processors. In Section
2, we introduce the key examples and discuss several ven-
dor specifications, showing that they all leave key questions
ambiguous, some give unusably weak guarantees, and some
are simply wrong, prohibiting behavior that actual proces-
sors do exhibit.

For there to be any hope of building reliable multipro-
cessor software, systems programmers need to understand
what relaxed-memory behavior they can rely on, but at
present that understanding exists only in folklore, not in
clear public specifications. To remedy this, we aim to pro-
duce mathematically precise (but still appropriately loose)
programmer’s models for real-world multiprocessors, to
inform the intuition of systems programmers, to provide
a sound foundation for rigorous reasoning about multi-
processor programs, and to give a clear correctness crite-
rion for hardware. In Section 3, we describe a simple x86
memory model, x86-TSO.27 In contrast to those vendor spec-
ifications, it is unambiguous, defined in rigorous mathe-
matics, but it is also accessible, presented in an operational
abstract-machine style. To the best of our knowledge it is
consistent with the behavior of actual processors. We con-
sider the relevant vendor litmus tests in Section 3.2 and
describe some empirical test results in Section 3.3.

Relaxed memory behavior is particularly critical for low-
level systems code: synchronization libraries, concurrent
data structure libraries, language runtime systems, com-
pilers for concurrent languages, and so on. To reason (even
informally) about such code, such as the implementation of
an OS mutual exclusion lock, one would necessarily depend
on the details of a specific model. Higher-level application
code, on the other hand, should normally be oblivious to
the underlying processor memory model. The usual expec-
tation is that such code is in some sense race free, with all
access to shared memory (except for accesses within the
library code) protected by locks or clearly identified as syn-
chronization accesses. Most memory models are designed
with the intention that such race-free code behaves as if it
were executing on a sequentially consistent machine. In
Section 4, we describe an implementation of spin locks for
x86, from one version of the Linux kernel, and discuss infor-
mally why it is correct with respect to x86-TSO. In Section
5, we define a precise notion of data race for x86 and dis-
cuss results showing that programs that use spin locks but
are otherwise race-free (except for the races within the lock
implementation) do indeed behave as if executing on a
sequentially consistent machine.26

To support formal reasoning about programs, a memory
model must be integrated with a semantics for machine
instructions (a problem which has usually been neglected
in the relaxed-memory literature). In previous work31, §3 we
describe a semantics for core x86 instructions, with several
innovations. We take care not to over-sequentialize the mem-
ory accesses within each instruction, parameterizing the
instruction semantics over parallel and sequential combina-
tors. A single definition, with all the intricacies of flag-setting,

july 2010 | vol. 53 | no. 7 | communications of the acm 91

and following some testing, IRIW is not observable in
practice, even without MFENCEs. It appears that some
JVM implementations depend on this fact, and would not
be correct if one assumed only the IWP/AMD3.14/x86-CC
architecture.15

Second, more seriously, x86-CC and IWP are unsound with
respect to current processors. The following example, n6, due
to Paul Loewenstein [personal communication, Nov. 2008]
shows a behavior that is observable (e.g., on an Intel Core 2

duo) but that is disallowed by x86-CC and by any interpreta-
tion we can make of IWP principles P1, 2, 4 and 6.27, A.5

To see why this could be allowed by multiprocessors with
FIFO store buffers, suppose that first the Proc 1 write of
[y]=2 is buffered, then Proc 0 buffers its write of [x]=1, reads
[x]=1 from its own store buffer, and reads [y]=0 from main
memory, then Proc 1 buffers its [x]=2 write and flushes its
buffered [y]=2 and [x]=2 writes to memory, then finally Proc
0 flushes its [x]=1 write to memory.

The AMD3.14 manual is not expressed in terms of a
clearly identified set of principles, and the main text (vol. 2,
§7.2) leaves the ordering of stores to a single location uncon-
strained, though elsewhere the manual describes a micro-
architecture with store buffers and cache protocols that
strongly implies that memory is coherent. In the absence of
an analogue of the IWP P6, the reasoning prohibiting n6 does
not carry over.

2.3. Intel SDM rev. 29–34 (Nov. 2008–Mar. 2010)
The most recent substantial change to the Intel memory-
model specification, at the time of writing, was in revision
29 of the Intel SDM (revisions 29–34 are essentially identical
except for the LFENCE text). This is in a similar informal-
prose style to previous versions, again supported by litmus
tests, but is significantly different to IWP/x86-CC/AMD3.14.
First, the IRIW final state above is forbidden,5, Example 8–7, vol. 3A
and the previous coherence condition: “P6. In a multipro-
cessor system, stores to the same location have a total order”
has been replaced by: “Any two stores are seen in a consistent
order by processors other than those performing the stores” (we
label this P9).

Second, the memory barrier instructions are now inclu
ded. It is stated that reads and writes cannot pass MFENCE
instructions, together with more refined properties for
SFENCE and LFENCE

Third, same-processor writes are now explicitly ordered:
“Writes by a single processor are observed in the same order by
all processors” (P10) (we regarded this as implicit in the IWP
“P2. Stores are not reordered with other stores”).

This revision appears to deal with the unsoundness, admit-
ting the n6 behavior above, but, unfortunately, it is still prob-
lematic. The first issue is, again, how to interpret “causality”

unsupported by any examples. It is hard to see precisely
what this prose means, especially without additional
knowledge or assumptions about the microarchitecture
of particular implementations. The uncertainty about
x86 behavior that at least some systems programmers
had about earlier IA-32 processors can be gauged from an
extensive discussion about the correctness of a proposed
optimization to a Linux spinlock implementation.1 The
discussion is largely in microarchitectural terms, not just
in terms of the specified architecture, and seems to have
been resolved only with input from Intel staff. We return to
this optimization in Section 4, where we can explain why it
is sound with respect to x86-TSO.

2.2. IWP/AMD3.14/x86-CC
In August 2007, an Intel White Paper4 (IWP) gave a somewhat
more precise model, with 8 informal-prose principles P1–P8
supported by 10 examples (known as litmus tests). This was
incorporated, essentially unchanged, into later revisions of
the Intel SDM (including rev. 26–28), and AMD gave simi-
lar, though not identical, prose and tests in rev. 3.14 of their
manual3, vol. 2, §7.2 (AMD3.14). These are essentially causal-
consistency models,9 and they allow different processors to
see writes to independent locations in different orders, as
in the IRIW litmus test11 below.  a AMD3.14 allows this explic-
itly, while IWP allows it implicitly, as IRIW is not ruled out by
the stated principles. Microarchitecturally, IRIW can arise

from store buffers that are shared between some but not all
processors.
However, both require that, in some sense, causality is
respected, as in the IWP principle “P5. In a multiprocessor
system, memory ordering obeys causality (memory ordering
respects transitive visibility).”

We used these informal specifications as the basis for a
formal model, x86-CC,31 for which a key issue was giving a
reasonable interpretation to this “causality,” which is not
defined in IWP or AMD3.14. Apart from that, the informal
specifications were reasonably unambiguous—but they
turned out to have two serious flaws.

First, they are arguably rather weak for programmers. In
particular, they admit the IRIW behavior above but, under
reasonable assumptions on the strongest x86 memory
barrier, MFENCE, adding MFENCEs would not suffice to
recover sequential consistency (instead, one would have to
make liberal use of x86 LOCK’d instructions).31, §2.12 Here,
the specifications seem to be much looser than the behavior
of implemented processors: to the best of our knowledge,

a  We use Intel assembly syntax throughout except that we use an arrow ← to
indicate the direction of data flow, so MOV [x]←1 is a write of 1 to address x
and MOV EAX←[x] is a read from address x into register EAX. Initial states
are all 0 unless otherwise specified.

IRIW
Proc 0 Proc 1 Proc 2 Proc 3

MOV [x]¬1 MOV [y]¬1 MOV EAX¬[x]
MOV EBX¬[y]

MOV ECX¬[y]
MOV EDX¬[x]

Forbidden Final State: Proc 2:EAX=1 ∧ Proc 2:EBX=0
∧ Proc 3:ECX=1 ∧ Proc 3:EDX=0

n6
Proc 0 Proc 1

MOV [x]¬1
MOV EAX¬[x]
MOV EBX¬[y]

MOV [y]¬2
MOV [x]¬2

Allowed Final State: Proc 0:EAX=1 ∧ Proc 0:EBX=0 ∧ [x]=1

92 communications of the acm | july 2010 | vol. 53 | no. 7

research highlights

We emphasize that our aim is a programmer’s model, of
the allowable behaviors of x86 processors as observed by
assembly programs, not of the internal structure of pro-
cessor implementations, or of what could be observed on
hardware interfaces. We present the model in an abstract-
machine style to make it accessible, but are concerned
only with its external behavior; its buffers and locks are
highly abstracted from the microarchitecture of processor
implementations.

The fact that store buffering is observable, as in the SB
and n6 examples, but IRIW is not (and IRIW is explicitly
forbidden in the SDM revs. 29–34 and AMD3.15), together
with additional tests that prohibit many other reorderings,
strongly suggests that, apart from store buffering, all pro-
cessors share the same view of memory. Moreover, differ-
ent processors or hardware threads do not observably share
store buffers. This is in sharp contrast to x86-CC, where each
processor has a separate view order of its memory accesses
and other processors’ writes. To the best of our knowledge,
for the usual write-back memory, no other aspects of the
microarchitecture (the out-of-order execution, cache hier-
archies and protocols, interconnect topology, and so on)
are observable to the programmer, except in so far as they
affect performance.

This is broadly similar to the SPARC Total Store Ordering
(TSO) memory model,2, 32 which is essentially an axiomatic
description of the behavior of store-buffer multiproces-
sors. Accordingly, we have designed a TSO-like model for
x86, called x86-TSO.27 It is defined mathematically in two
styles: an abstract machine with explicit store buffers and
an axiomatic model that defines valid executions in terms
of memory orders; they are formalized in HOL420 and are
proved equivalent. The abstract machine conveys the
programmer-level operational intuition behind x86-TSO;
we describe it informally in the next subsection. The axi-
omatic model supports constraint-based reasoning about
example programs (e.g. by our memevents tool in Section
3.3); it is similar to that of SPARCv8,2, App. K but we also deal
with x86 CISC instructions with multiple memory accesses
and with x86 barriers and atomic (or LOCK’d) instructions.
The x86 supports a range of atomic instructions: one can
add a LOCK prefix to many read–modify–write instructions
(ADD, INC, etc.), and the XCHG instruction is implicitly
LOCK’d. There are three main memory barriers: MFENCE,
SFENCE and LFENCE.

3.1. The abstract machine
Our programmer’s model of a multiprocessor x86 system
is illustrated in Figure 1. At the top of the figure are a num-
ber of hardware threads, each corresponding to a single
in-order stream of instruction execution. (In this program-
mer’s model there is no need to consider physical proces-
sors explicitly; it is the hardware threads that correspond to
the Proc N columns in the tests we give.) They interact with a
storage subsystem, drawn as the dotted box.

The state of the storage subsystem comprises a shared
memory that maps addresses to values, a global lock to
indicate when a particular hardware thread has exclu-
sive access to memory, and one store buffer per hardware

as used in P5. The second issue is one of weakness: the new
P9 says nothing about observations of two stores by those
two processors themselves (or by one of those processors
and one other). The following examples (which we call n5
and n4b) illustrate potentially surprising behavior that argu-
ably violates coherence. Their final states are not allowed in
x86-CC, are not allowed in a pure store-buffer implementa-
tion or in x86-TSO, and we have not observed them on actual
processors. However, the principles stated in revisions 29–34
of the Intel SDM appear, presumably unintentionally, to
allow them. The AMD3.14 vol. 2, §7.2 text taken alone would
allow them, but the implied coherence from elsewhere in
the AMD manual would forbid them. These points illustrate

once again the difficulty of writing unambiguous and correct
loose specifications in informal prose.

2.4. AMD3.15 (Nov. 2009)
In November 2009, AMD produced a new revision, 3.15, of
their manuals. The main difference in the memory-model
specification is that IRIW is now explicitly forbidden.

Summarizing the key litmus-test differences, we have the

following, where √ and × entries are explicit in the specifica-
tion text and starred entries indicate possible deductions,
some of which may not have been intended.
There are also many non-differences: tests for which the
behaviors coincide in all three cases. We return to these,
and go through the other tests from the Intel and AMD
documentation, in Section 3.2.

3. OUR x86-TSO PROGRAMMER’S MODEL
Given these problems with the informal specifications, we
cannot produce a useful rigorous model by formalizing the
“principles” they contain, as we attempted with x86-CC.31
Instead, we have to build a reasonable model that is con-
sistent with the given litmus tests, with observed processor
behavior, and with what we know of the needs of program-
mers, the vendors’ intentions, and the folklore in the area.

n5

Proc 0 Proc 1

MOV [x]¬1
MOV EAX¬[x]

MOV [x]¬2
MOV EBX¬[x]

Forbidden Final State: Proc 0:EAX=2 ∧ Proc 1:EBX=1

n4b
Proc 0 Proc 1

MOV EAX¬[x]
MOV [x]¬1

MOV ECX¬[x]
MOV [x]¬2

Forbidden Final State: Proc 0:EAX=2 ∧ Proc 1:ECX=1

IWP/x86-CC 3.14 29–34 3.15 Actual
processors

IRIW
n6
n5/n4b

√* / √
×*/×
×*/×

√
√*
×*

×
√*
√*

×
√*
×*

Not observed
Observed

Not observed

july 2010 | vol. 53 | no. 7 | communications of the acm 93

executing a LOCK’d instruction.

1.	 Rp[a]=u: p can read u from memory at address a if p is
not blocked, there are no writes to a in p’s store buffer,
and the memory does contain u at a.

2.	 Rp[a]=u: p can read u from its store buffer for address a
if p is not blocked and has u as the newest write to a in
its buffer.

3.	 Wp[a]=u: p can write u to its store buffer for address a at
any time.

4.	 tp: if p is not blocked, it can silently dequeue the oldest
write from its store buffer and place the value in mem-
ory at the given address, without coordinating with any
hardware thread.

5.	 Fp: if p’s store buffer is empty, it can execute an MFENCE
(note that if a hardware thread encounters an MFENCE
instruction when its store buffer is not empty, it can
take one or more tp steps to empty the buffer and
proceed, and similarly in 7 below).

6.	 Lp: if the lock is not held, it can begin a LOCK’d
instruction.

7.	 Up: if p holds the lock, and its store buffer is empty, it
can end a LOCK’d instruction.

Technically, the formal versions of these rules27 define a
labeled transition system (with the events as labels) for the
storage subsystem, and we define the behavior of the whole
system as a parallel composition of that and transition sys-
tems for each thread, synchronizing on the non-t labels as
in CCS.25

Additionally, we tentatively impose a progress condi-
tion, that each memory write is eventually propagated from
the relevant store buffer to the shared memory. This is not
stated in the documentation and is hard to test. We are
assured that it holds at least for AMD processors.

For write-back cacheable memory, and the fragment
of the instruction set that we consider, we treat LFENCE
and SFENCE semantically as no-ops. This follows the Intel
and AMD documentation, both of which imply that these
fences do not order store/load pairs which are the only
reorderings allowed in x86-TSO. Note, though, that else-
where it is stated that the Intel SFENCE flushes the store
buffer.5, vol.3A, §11.10

3.2. Litmus tests
For our introductory SB example from Section 1, x86-TSO
permits the given behavior for the same reasons as set forth
there. For each of the examples in Section 2 (IRIW, n6, and
n5/n4b), x86-TSO permits the given final state if and only
if it is observable in our testing of actual processors, i.e.,
for IRIW it is forbidden (in contrast to IWP and AMD3.14),
for n6 it is allowed (in contrast to IWP), and for n5/n4b it
is forbidden (in contrast to the Intel SDM rev. 29–34). For
all the other relevant tests from the current Intel and AMD
manuals the stated behavior agrees with x86-TSO. We now
go through Examples 8–1 to 8–10 from rev. 34 of the Intel
SDM, and the three other tests from AMD3.15, and explain
the x86-TSO behavior in each case.

For completeness we repeat the Intel SDM short

thread.
The behavior of the storage subsystem is described in

more detail below, but the main points are:
˲˲ The store buffers are FIFO and a reading thread must

read its most recent buffered write, if there is one, to that
address; otherwise reads are satisfied from shared memory.

˲˲ An MFENCE instruction flushes the store buffer of that
thread.

˲˲ To execute a LOCK’d instruction, a thread must first ob-
tain the global lock. At the end of the instruction, it flushes
its store buffer and relinquishes the lock. While the lock is
held by one thread, no other thread can read.

˲˲ A buffered write from a thread can propagate to the
shared memory at any time except when some other thread
holds the lock.

More precisely, the possible interactions between the
threads and the storage subsystem are described by the
following events:

˲˲ Wp [a]=u, for a write of value u to address a by thread p
˲˲ Rp [a]=u, for a read of u from a by thread p
˲˲ Fp, for an MFENCE memory barrier by thread p
˲˲ Lp, at the start of a LOCK’d instruction by thread p
˲˲ Up, at the end of a LOCK’d instruction by thread p
˲˲ tp, for an internal action of the storage subsystem, prop-

agating a write from p’s store buffer to the shared memory

For example, suppose a particular hardware thread p has
come to the instruction INC [56] (which adds 1 to the value
at address 56), and p’s store buffer contains a single write to
56, of value 0. In one execution we might see read and write
events, Rp[56]=0 and Wp[56]=1, followed by two tp events as
the two writes propagate to shared memory. Another execu-
tion might start with the write of 0 propagating to shared
memory, where it could be overwritten by another thread.
Executions of LOCK;INC [56] would be similar but bracketed
by Lp and Up events.

The behavior of the storage subsystem is specified by
the following rules, where we define a hardware thread to
be blocked if the storage subsystem lock is taken by another
hardware thread, i.e., while another hardware thread is

Lock

W
rite buffer

W
rite buffer

Shared memory

H/W thread H/W thread

Figure 1. x89-TSO block diagram.

94 communications of the acm | july 2010 | vol. 53 | no. 7

research highlights

Example 8–7. Stores Are Seen in a Consistent Order by
Other Processors. This test rules out the IRIW behavior as
described in Section 2.2. x86-TSO forbids the given final state
because the Proc 2 constraints imply that x was written to
shared memory before y whereas the Proc 3 constraints imply
that y was written to shared memory before x.

Example 8–8. Locked Instructions Have a Total
Order. This is the same as the IRIW Example 8–7 but with
LOCK’d instructions for the writes; x86-TSO forbids the final
state for the same reason as above.

Example 8–9. Loads Are not Reordered with Locks.

This test indicates that locking both writes in Example 8–3
would forbid the nonsequentially consistent result. x86-
TSO forbids the final state because LOCK’d instructions
flush the local store buffer. If only one write were LOCK’d
(say the write to x), the Example 8–3 final state would be
allowed as follows: on Proc 1, buffer the write to y and exe-
cute the read x, then on Proc 0 write to x in shared memory
then read from y.

Example 8–10. Stores Are not Reordered with Locks.
This is implied by Example 8–1, as we treat the memory writes
of LOCK’d instructions as stores.

Test amd5.

For x86-TSO, this test has the same force as Example 8.8, but
using MFENCE instructions to flush the buffers instead of
LOCK’d instructions. The tenth AMD test is similar. None of
the Intel litmus tests include fence instructions.

In x86-TSO adding MFENCE between every instruction
would clearly suffice to regain sequential consistency (though
obviously in practice one would insert fewer barriers), in con-
trast to IWP/x86-CC/AMD3.14.

3.3. Empirical testing
To build confidence that we have a sound model of the
behavior of actual x86 processors we have tested the

descriptions of these tests, e.g. “stores are not reordered
with other stores,” but note that “not reordered with” is not
defined there and is open to misinterpretation.27, §3.2

Example 8–1. Stores Are not Reordered with other
Stores.

This test implies that the writes by Proc 0 are seen in order by
Proc 1’s reads, which also execute in order. x86-TSO forbids
the final state because Proc 0’s store buffer is FIFO, and Proc
0 communicates with Proc 1 only through shared memory.

Example 8–2. Stores Are Not Reordered with Older
Loads.

x86-TSO forbids the final state because reads are never
delayed.

Example 8–3. Loads May Be Reordered with Older
Stores. This test is just the SB example from Section 1,
which x86-TSO permits. The third AMD test (amd3) is simi-
lar but with additional writes inserted in the middle of each
thread, of 2 to x and y respectively.

Example 8–4. Loads Are not Reordered with Older
Stores to the Same Location.

x86-TSO requires the specified result because reads must
check the local store buffer.

Example 8–5. Intra-Processor Forwarding Is Allowed.
This test is similar to Example 8–3.

Example 8–6. Stores Are Transitively Visible.

x86-TSO forbids the given final state because otherwise
the Proc 2 constraints imply that y was written to shared
memory before x. Hence the write to x must be in Proc 0’s
store buffer (or the instruction has not executed), when the
write to y is initiated. Note that this test contains the only
mention of “transitive visibility” in the Intel SDM, leaving
its meaning unclear.

Proc 0 Proc 1

MOV [x]←1
MOV [y]←1

MOV EAX←[y]
MOV EBX←[x]

Forbidden Final State: Proc 1:EAX=1 ∧ Proc 1:EBX=0

Proc 0 Proc 1

MOV EAX←[x]
MOV [y]←1

MOV EBX←[y]
MOV [x]←1

Forbidden Final State: Proc 0:EAX=1 ∧ Proc 1:EBX=1

Proc 0

MOV [x]←1
MOV EAX←[x]

Required Final State: Proc 0:EAX=1

Proc 0 Proc 1 Proc 2

MOV [x]←1 MOV EAX←[x]
MOV [y]←1

MOV EBX←[y]
MOV ECX←[x]

Forbidden Final State: Proc 1:EAX=1 ∧ Proc 2:EBX=1 ∧ Proc 2:ECX=0

Proc 0 Proc 1

XCHG [x]←EAX
MOV EBX←[y]

XCHG [y]←ECX
MOV EDX←[x]

Initial state: Proc 0:EAX=1 ∧ Proc 1:ECX=1 (elsewhere 0)

Forbidden Final State: Proc 0:EBX=0 ∧ Proc 1:EDX=0

Proc 0 Proc 1

XCHG [x]←EAX
MOV [y]←1

MOV EBX←[y]
MOV ECX←[x]

Initial state: Proc 0:EAX=1 (elsewhere 0)

Forbidden Final State: Proc 1:EBX=1 ∧ Proc 1:ECX=0

Proc 0 Proc 1

MOV [x]←1
MFENCE
MOV EAX←[y]

MOV [y]←1
MFENCE
MOV EBX←[x]

Forbidden Final State: Proc 0:EAX=0 ∧ Proc 1:EBX=0

july 2010 | vol. 53 | no. 7 | communications of the acm 95

A spinlock is represented by a signed integer which is 1 if
the lock is free and 0 or less if the lock is held. To acquire
a lock, a thread atomically decrements the integer (which
will not wrap around assuming there are fewer than 231
hardware threads). If the lock was free, it is now held and
the thread can proceed to the critical section. If the lock was
held, the thread loops, waiting for it to become free. Because
there might be multiple threads waiting for the lock, once
it is freed, each waiting thread must again attempt to enter
through the LOCK’d decrement. To release the lock, a thread
simply sets its value to 1.

The optimization in question made the releasing MOV
instruction not LOCK’d (removing a LOCK prefix and hence
letting the releasing thread proceed without flushing its
buffer).

For example, consider a spinlock at address x and let y
be another shared memory address. Suppose that several
threads want to access y, and that they use spinlocks to
ensure mutual exclusion. Initially, no one has the lock and
[x] = 1. The first thread t to try to acquire the lock atomically
decrements x by 1 (using a LOCK prefix); it then jumps into
the critical section. Because a store buffer flush is part of
LOCK’d instructions, [x] will be 0 in shared memory after
the decrement.

Now if another thread attempts to acquire the lock, it
will not jump into the critical section after performing the
atomic decrement, since x was not 1. It will thus enter the
spin loop. In this loop, the waiting thread continually reads
the value of x until it gets a positive result.

Returning to the original thread t, it can read and write
y inside of its critical section while the others are spinning.
These writes are initially placed in t’s store buffer, and some
may be propagated to shared memory. However, it does
not matter how many (if any) are written to main memory,
because (by assumption) no other thread is attempting to
read (or write) y. When t is ready to exit the critical section, it
releases the lock by writing the value 1 to x; this write is put
in t’s store buffer. It can now continue after the critical sec-
tion (in the text below, we assume it does not try to reacquire
the lock).

If the releasing MOV had the LOCK prefix then all of the
buffered writes to y would be sent to main memory, as would
the write of 1 to x. Another thread could then acquire the
spinlock.

However, since it does not, the other threads continue to
spin until the write setting x to 1 is removed from t’s write
buffer and sent to shared memory at some point in the
future. At that point, the spinning threads will read 1 and
restart the acquisition with atomic decrements, and another
thread could enter its critical section. However, because t’s
write buffer is emptied in FIFO order, any writes to y from
within t’s critical section must have been propagated to
shared memory (in order) before the write to x. Thus, the
next thread to enter a critical section will not be able to see y
in an inconsistent state.

5. DATA-RACE FREEDOM
To make a relaxed-memory architecture usable for large-
scale programming, it is highly desirable (perhaps essential)

correspondence between them in various ways.
First, for the memory model, we have a litmus tool that

takes a litmus test (essentially as given in this paper) and
builds a C program with embedded assembly to run the test
repeatedly to try to produce all possible results, taking care
to synchronize the different threads and with some random-
ization of memory usage. We have run these on the Intel and
AMD processors that we have access to. The results can be
compared with the output of a memevents tool that takes
such tests and computes the set of all possible executions
allowed by the x86-TSO model. We use a verified witness
checker, extracted from the HOL4 definition of the model, to
verify that any executions found are indeed allowed.

The results correspond exactly for all the tests given here
and others we have tried, including amd3, n1,31 n7,27 the sin-
gle-XCHG variant of Example 8–9, and an unfenced variant of
RWC.11 In general, though, there may be tests where x86-TSO
allows some final state that cannot be observed in practice,
perhaps because litmus does not drive the processor into
the correct internal state (of store buffers, cache lines, etc.)
to exhibit it, or perhaps because the particular implementa-
tions we tested cannot exhibit it. For example, we have only
seen amd3 on a four-processor (×2 hyperthread) machine
and only very rarely, 4 out of 3.2e9 times. Testing, especially
this black-box testing of a complex and time-dependent sys-
tem, is obviously subject to the usual limitations; it cannot
conclusively prove that some outcome is not possible.

Second, for the behavior of individual instructions, we have
an x86sem tool that generates random instances of instruc-
tions, runs them on an actual machine, and generates a HOL4
conjecture relating the memory and register state before and
after. These conjectures are then automatically verified, by a
HOL4 script, for the 4600 instances that we tried.

4. A LINUX x86 SPINLOCK IMPLEMENTATION
In Section 2.1, we mentioned the uncertainty that arose in a
discussion on a particular optimization for Linux spin-locks.1
In this section, we present a spinlock from the Linux kernel
(version 2.6.24.7) that incorporates the proposed optimization,
as an example of a small but nontrivial concurrent program-
ming idiom. We show how one can reason about this code
using the x86-TSO programmer’s model, explaining in terms
of the model why it works and why the optimization is sound—
thus making clear what (we presume) the developer’s informal
reasoning depended on. For accessibility we do this in prose,
but the argument could easily be formalized as a proof.

The implementation comprises code to acquire and
release a spinlock. It is assumed that these are properly
bracketed around critical sections and that spinlocks are
not mutated by any other code.

On entry the address of spinlock is in register EAX and the spinlock is
unlocked iff its value is 1

acquire: LOCK;DEC   [EAX]            ; LOCK’d decrement of [EAX]
     JNS        enter       ; branch if [EAX] was ≥ 1
spin:     CMP    [EAX],0        ; test [EAX]
     JLE      spin           ; branch if [EAX] was ≤ 0
     JMP      acquire       ; try again
enter: ; the critical section starts here

release:   MOV [EAX]←1

96 communications of the acm | july 2010 | vol. 53 | no. 7

research highlights

than ours is, and is idealized rather than x86-specific. Park
and Dill28 verify programs by model checking them directly
above TSO. Burckhardt and Musuvathi13, App. A also give opera-
tional and axiomatic definitions of a TSO model and prove
equivalence, but only for finite executions. Their models
treat memory reads and writes and barrier events, but lack
instruction semantics and LOCK’d instructions with mul-
tiple events that happen atomically. Hangal et al.18 describe
the Sun TSOtool, checking the observed behavior of pseudo-
randomly generated programs against a TSO model. Roy
et al.29 describe an efficient algorithm for checking whether
an execution lies within an approximation to a TSO model,
used in Intel’s Random Instruction Test (RIT) generator.
Loewenstein et al.22 describe a “golden memory model” for
SPARC TSO, somewhat closer to a particular implementa-
tion microarchitecture than the abstract machine we give in
Section 3, that they use for testing implementations. They
argue that the additional intensional detail increases the
effectiveness of simulation-based verification. Boudol and
Petri12 give an operational model with hierarchical write buf-
fers (thereby permitting IRIW behaviors), and prove sequen-
tial consistency for DRF programs. Burckhardt et al.14 define
an x86 memory model based on IWP.4 The mathematical
form of their definitions is rather different to our axiomatic
and abstract-machine models, using rewrite rules to reorder
or eliminate memory accesses in sets of traces. Their model
validates the 10 IWP tests and also some instances of IRIW
(depending on how parallel compositions are associated),
so it will not coincide with x86-TSO or x86-CC. Saraswat et
al.30 also define memory models in terms of local reordering,
and prove a DRF theorem, but focus on high-level languages.

7. CONCLUSION
We have described x86-TSO, a memory model for x86 proces-
sors that does not suffer from the ambiguities, weaknesses,
or unsoundnesses of earlier models. Its abstract-machine
definition should be intuitive for programmers, and its
equivalent axiomatic definition supports the memevents
exhaustive search and permits an easy comparison with
related models; the similarity with SPARCv8 suggests x86-
TSO is strong enough to program above. This work high-
lights the clarity of mathematically rigorous definitions, in
contrast to informal prose, for subtle loose specifications.

We do not speak for any x86 vendor, and it is, of course,
entirely possible that x86-TSO is not a good description of
some existing or future x86 implementation (we would be
very interested to hear of any such example). Nonetheless, we
hope that this will clarify the semantics of x86 architectures
as they exist, for systems programmers, hardware developers,
and those working on the verification of concurrent software.

Acknowledgments
We thank Luc Maranget for his work on memevents and
litmus, Tom Ridge, Thomas Braibant and Jade Alglave for
their other work on the project, and Hans Boehm, David
Christie, Dave Dice, Doug Lea, Paul Loewenstein, and Gil
Neiger for helpful remarks. We acknowledge funding from
EPSRC grants EP/F036345 and EP/H005633 and ANR grant
ANR-06-SETI-010-02.�

to identify programming idioms which ensure that one can
reason in terms of a traditional interleaving model of con-
currency, showing that any relaxed memory execution is
equivalent to one that is possible above a sequentially con-
sistent memory model. One common idiom with this prop-
erty is data-race freedom. Informally, a program has a data
race if multiple threads can access the same location (where
at least one is writing to the location) without a synchroni-
zation operation separating the accesses. Programs where
every shared access is in a critical section are one common
example of DRF programs.

A variety of relaxed models, both for processors and for
programming languages, have been proved to support sequen
tially consistent semantics for DRF programs.8, 9, 10, 12, 16, 23
Saraswat et al.30 call supporting sequentially consistent
semantics for DRF programs the “fundamental property”
of a relaxed memory model, and indeed memory models
have sometimes been defined in these terms.6 However,
for a processor architecture, we prefer to define a memory
model that is applicable to arbitrary programs, to support
reasoning about low-level code, and have results about well-
behaved programs as theorems above it.

The details of what constitutes a data race, or a synchro-
nization operation, vary from model to model. For x86-TSO,
we define two events on different threads to be competing if
they access the same address, one is a write, and the other
is a read (for aligned x86 accesses, it is not necessary to con-
sider write/write pairs as competing). We say that a program
is data race free if it is impossible for a competing read/write
pair to execute back-to-back. Critically, we require this prop-
erty only of sequentially consistent executions (equivalently,
the x86-TSO executions where store buffers are always
flushed immediately after each write).

We have proved that x86-TSO supports interleaving
semantics for DRF programs. However, this theorem alone
is not often useful, because most programs do contain data
races at this level of abstraction. For example, the read in the
spin loop of Section 4’s spinlock races with the write in the
release. We have, therefore, identified an extended notion
of data race freedom that the spinlock code does satisfy,
and we have used it to prove that, for well-synchronized pro-
grams using the spinlock, every x86-TSO execution has an
equivalent sequentially consistent execution.26

Thus, the relaxed nature of x86-TSO is provably not a
concern for low-level systems code that uses spinlocks to
synchronize. Extending this result to other synchronization
primitives, and to code compiled from high-level languages,
is a major topic for future work.

6. RELATED WORK
There is an extensive literature on relaxed memory models,
but most of it does not address x86. We touch here on some
of the most closely related work.

There are several surveys of weak memory models, includ-
ing those by Adve and Gharachorloo,6 Luchango,23 and
Higham et al.19 The latter, in particular, formalizes a range
of models, including a TSO model, in both operational and
axiomatic styles, and proves equivalence results. Their axi-
omatic TSO model is rather closer to the operational style

july 2010 | vol. 53 | no. 7 | communications of the acm 97

	 1.	L inux kernel mailing list, thread
"spin_unlock optimization (i386)",
119 messages, Nov. 20–Dec. 7, 1999,
http://www.gossamer-threads.com/
lists/engine?post=105365;list=linux.
Accessed 2009/11/18.

	 2.	 The SPARC Architecture Manual, V.
8. SPARC International, Inc., 1992.
Revision SAV080SI9308. http://www.
sparc.org/standards/V8.pdf.

	 3.	 AMD64 Architecture Programmer’s
Manual (3 vols). Advanced Micro
Devices, Sept. 2007. rev. 3.14.

	 4.	 Intel 64 architecture memory
ordering white paper, 2007. Intel
Corporation. SKU 318147-001.

	 5.	 Intel 64 and IA-32 Architectures
Software Developer’s Manual (5 vols).
Intel Corporation, Mar. 2010. rev. 34.

	 6.	 Adve, S. Gharachorloo, K. Shared
memory consistency models: A
tutorial. IEEE Comput. 29, 12 (Dec.
1996), 66–76.

	 7.	 Adve, S.V., Boehm, H.-J. Memory
models: A case for rethinking parallel
languages and hardware. C. ACM. To
appear.

	 8.	 Adve, S.V., Hill, M.D. A unified
formalization of four shared-memory
models. IEEE Trans. Parallel Distrib.
Syst. 4, 6 (1993), 613–624.

	 9.	 Ahamad, M., Neiger, G., Burns, J.,
Kohli, P., Hutto, P. Causal memory:
Definitions, implementation, and
programming. Distrib. Comput. 9, 1
(1995), 37–49.

	10.	 Aspinall, D., Ševčík J. Formalising
Java’s data race free guarantee. In
Proc. TPHOLs, LNCS 4732 (2007),
22–37.

	11.	B oehm, H.-J.. Adve, S. Foundations of
the C++ concurrency memory model.

In Proceedings of PLDI (2008).
	12.	B oudol, G., Petri, G. Relaxed memory

models: An operational approach.
In Proceedings of POPL, 2009.

	13.	B urckhardt, S., Musuvathi, M.
Effective program verification for
relaxed memory models. Technical
Report MSR-TR-2008-12, Microsoft
Research, 2008. Conference version
in Proceedings of CAV, LNCS 5123
(2008).

	14.	B urckhardt, S., Musuvathi, M., Singh,
V. Verifying compiler transformations
for concurrent programs, Jan. 2009.
Technical report MSR-TR-2008-171.

	15.	 Dice, D. Java memory model
concerns on Intel and AMD systems.
http://blogs.sun.com/dave/entry/
java_memory_model_concerns_on,
Jan. 2008.

	16.	 Friedman, R. Consistency conditions
for distributed shared memories.
Israel Institute of Technologie, 1994.

	17.	 Gharachorloo, K. Memory consistency
models for shared-memory
multiprocessors. WRL Res. Rep. 95, 9
(1995).

	18.	H angal, S., Vahia, D., Manovit, C.,
Lu, J.-Y.J., Narayanan, S. TSOtool:
A program for verifying memory
systems using the memory
consistency model. In Proceedings of
ISCA (2004), 114–123.

	19.	H igham, L., Kawash, J., Verwaal, N.
Weak memory consistency models
part I: Definitions and comparisons.
Technical Report98/612/03,
Department of Computer Science,
The University of Calgary, January,
1998. Full version of a paper in PDCS
1997.

	20.	 The HOL 4 system. http://hol.

sourceforge.net/.
	21.	L amport, L. How to make a

multiprocessor computer that
correctly executes multiprocess
programs. IEEE Trans. Comput. C-28,
9 (1979), 690–691.

	22.	L oewenstein, P.N., Chaudhry, S.,
Cypher, R., Manovit, C. Multiprocessor
memory model verification. In
Proceedings of AFM (Automated
Formal Methods) (Aug. 2006). FLoC
workshop. http://fm.csl.sri.com/
AFM06/.

	23.	L uchango, V.M. Memory consistency
models for high-performance
distributed computing. PhD thesis,
MIT, 2001.

	24.	 Manson, J., Pugh, W., Adve, S. The
Java memory model. In Proceedings
of POPL (2005).

	25.	 Milner, R. Communication and
Concurrency. Prentice Hall
International, 1989.

	26.	O wens, S. Reasoning about the
implementation of concurrency
abstractions on x86-TSO. In
Proceedings of ECOOP (2010).
To appear.

	27.	O wens, S., Sarkar, S., Sewell, P. A
better x86 memory model: x86-TSO.
In Proceedings of TPHOLs, LNCS
5674 (2009), 391–407. Full version as
Technical Report UCAM-CL-TR-745,

Univ. of Cambridge.
	28.	 Park, S., Dill, D.L. An executable

specification and verifier for relaxed
memory order. IEEE Trans. Comput.
48, 2 (1999), 227–235.

	29.	 Roy, A., Zeisset, S., Fleckenstein, C.J.,
Huang, J.C. Fast and generalized
polynomial time memory consistency
verification. In CAV (2006), 503–516.

	30.	S araswat, V., Jagadeesan, R.,
Michael, M., von Praun, C. A theory of
memory models. In Proceedings of
PPoPP (2007).

	31.	S arkar, S., Sewell, P., Zappa Nardelli,
F., Owens, S., Ridge, T., Braibant, T.,
Myreen, M., Alglave, J. The semantics
of x86-CC multiprocessor machine
code. In Proceedings of POPL 2009
(Jan. 2009).

	32.	S indhu, P.S., Frailong, J.-M., Cekleov,
M. Formal specification of memory
models. In Scalable Shared Memory
Multiprocessors, Kluwer, 1991,
25–42.

	33.	 Ševcík, J., Aspinall, D. On validity of
program transformations in the Java
memory model. In ECOOP (2008),
27–51.

References

© 2010 ACM 0001-0782/10/0700 $10.00

Peter Sewell (http://www.cl.cam.
ac.uk/~pes20), University of Cambridge.

Susmit Sarkar (http://www.cl.cam.
ac.uk/~ss726), University of Cambridge.

Scott Owens (http://www.cl.cam.
ac.uk/~so294), University of Cambridge.

Francesco Zappa Nardelli (http://www.
moscova.inria.fr/~zappa), INRIA.

Magnus O. Myreen (http://www.cl.cam.
ac.uk/~mom22), University of Cambridge.

ˇ

Announcing ACM’s Newly Improved
Career & Job Center!

Are you looking for your next IT job? Do you need Career Advice?

Visit ACM’s newly enhanced career resource at:
http://www.acm.org/careercenter

◆ ◆ ◆ ◆ ◆

The ACM Career & Job Center offers ACM members a host of benefits including:
➜ A highly targeted focus on job opportunities in the computing industry
➜ Access to hundreds of corporate job postings
➜ Resume posting keeping you connected to the employment market while letting you maintain full

control over your confidential information
➜ An advanced Job Alert system that notifies you of new opportunities matching your criteria
➜ Career coaching and guidance from trained experts dedicated to your success
➜ A content library of the best career articles complied from hundreds of sources, and much more!

The ACM Career & Job Center is the perfect place to
begin searching for your next employment opportunity!

Visit today at http://www.acm.org/careercenter

http://www.gossamer-threads.com/lists/engine?post=105365;list=linux
http://www.sparc.org/standards/V8.pdf
http://blogs.sun.com/dave/entry/java_memory_model_concerns_on
http://hol.sourceforge.net/
http://fm.csl.sri.com/AFM06/
http://www.cl.cam.ac.uk/~pes20
http://www.cl.cam.ac.uk/~pes20
http://www.cl.cam.ac.uk/~ss726
http://www.cl.cam.ac.uk/~ss726
http://www.cl.cam.ac.uk/~so294
http://www.cl.cam.ac.uk/~so294
http://www.moscova.inria.fr/~zappa
http://www.cl.cam.ac.uk/~mom22
http://www.cl.cam.ac.uk/~mom22
http://www.acm.org/careercenter
http://www.acm.org/careercenter
http://www.gossamer-threads.com/lists/engine?post=105365;list=linux
http://www.sparc.org/standards/V8.pdf
http://blogs.sun.com/dave/entry/java_memory_model_concerns_on
http://fm.csl.sri.com/AFM06/
http://www.moscova.inria.fr/~zappa
http://hol.sourceforge.net/

98 communications of the acm | july 2010 | vol. 53 | no. 7

research highlights

doi:10.1145/1785414.1785440

As predicted by Intel’s Gordon Moore in
1965, based on his observation of the
scaling of several generations of silicon
technology at the time, the number of
transistors that can be integrated on
one die continues to double approxi-
mately every two years. Amazing to
some, Moore’s Law has prevailed for
45 years and is expected to continue for
several more generations. Transistor
feature size and die integration capac-
ity projections from the International
Technology Roadmap for Semicon-
ductors (ITRS) roadmap is shown in
the accompanying table here.

These faster and more abundant
transistors have been exploited by
computer engineers to build proces-
sors that double in performance about
every two years. Up until the beginning
of this decade, that was done through
faster clock speeds and clever archi-
tectural enhancements. Many of these
architectural enhancements were di-
rected at tackling the “memory wall,”
which still plagues us today. Early in
this decade, we ran into the “power
wall” that dramatically slowed the in-
crease in clock speeds. Since then, we
are still seeing performance doublea
every two years, but now it’s through
having more cores (running at only
modestly faster clock rates) on one die
since technology scaling provides all
of those additional transistors.

Another key component on the
motherboard affected by technology
scaling is the main memory, tradition-
ally built out of dynamic random ac-
cess memory (DRAM) parts. DRAMs
have been doubling in capacity every
two to three years while their access la-
tency has improved about 7% per year.
However, processors speeds still leave
main memories in the dust—with the
processors having to wait 100 or more
cycles to get information back from

a	 But one only really gets double the perfor-
mance if they can figure out how to keep all of
those cores busy.

main memory—hence, the focus by ar-
chitects on cache memory systems that
tackle this “memory wall.” And multi-
core parts put even more pressure on
the DRAM, demanding more capacity,
lower latencies, and better bandwidth.

As pointed out in the following pa-
per by Lee, Ipek, Mutlu, and Burger,
DRAM memory scaling is in jeopardy,
primarily due to reliability issues. The
storage mechanism in DRAMs, charge
storage and maintenance in a capaci-
tor, requires inherently unscalable
charge placement and control. Flash
memories, which have the advantage
of being nonvolatile, have their own
scaling limitations. Thus, the search
for new main memory technologies
has begun.

The authors make a case for phase
change memories (PCMs) that are
nonvolatile and can scale below
40nm. PCMs store state by forcing a
phase change in their storage element
(for example, chalcogenide) to a high
resistance state (so storing a “0”) or
to a low resistance state (so storing a
“1”). Fortunately, programming cur-
rent scales linearly. However, PCMs
do not come without their disadvan-
tages: read and, especially, write laten-
cies several times slower than DRAMs,
write energies several times larger
than DRAMs, and, like Flash, a limited
lifetime directly related to the number
of writes to a memory location.

This paper is a wonderful illustra-
tion of the way computer architects
can work around the limitations of the
technology with clever architectural
enhancements—turning lemons into
lemonade. By using an area-neutral

memory buffer reorganization, the
authors are able to reduce application
execution time from 1.6X to only 1.2X
relative to a DRAM-based system and
memory array energy from 2.2X to 1.0X
also relative to a DRAM-based system.
They use multiple, narrower memory
buffers, which reduces the number of
expensive (in terms of both area and
power) sense amplifiers and focus on
application performance rather than
the performance of an individual
memory cell.

The authors also describe their in-
vestigation of the trade-offs between
buffer row widths and the number
of rows. To tackle the PCM’s lifetime
limitation, the authors propose us-
ing partial writes to reduce the num-
ber of writes to the PCM by tracking
dirty data from the L1 caches to the
memory banks. With this approach,
they can improve PCM lifetimes from
hundreds of hours to nearly 10 years,
assuming present 1E+08 to 1E+12
writes per bit for a 32nm PCM cell.

The paper concludes with some
suggestions as to how the use of a
nonvolatile main memory would
change the computing landscape: in-
stantaneous system boot/hibernate,
cheaper checkpointing, stronger safe-
ty guarantees for file system. Now, if
only someone could figure out a way to
dramatically improve memory to pro-
cessor bandwidth.	

Mary Jane Irwin (mji@cse.psu.edu) is Evan Pugh
Professor and A. Robert Noll Chair in Engineering in the
Department of Computer Science and Engineering at
Penn State University, University Park, PA.

© 2010 ACM 0001-0782/10/0700 $10.00

Technical Perspective
Technology Scaling
Redirects Main Memories
By Mary Jane Irwin

Projections for transistor size and die integration capacity.

Year 2004 2006 2008 2010 2012

Feature size (nm) 90 65 45 32 22

Integration Capacity (BT) 2 4 6 16 32

mailto:mji@cse.psu.edu

doi:10.1145/1785414.1785441

July 2010 | vol. 53 | no. 7 | communications of the acm 99

Phase Change Memory
Architecture and the Quest
for Scalability
By Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger

Abstract
Memory scaling is in jeopardy as charge storage and sens-
ing mechanisms become less reliable for prevalent mem-
ory technologies, such as dynamic random access memory
(DRAM). In contrast, phase change memory (PCM) relies on
programmable resistances, as well as scalable current and
thermal mechanisms. To deploy PCM as a DRAM alternative
and to exploit its scalability, PCM must be architected to
address relatively long latencies, high energy writes, and
finite endurance.

We propose architectural enhancements that address
these limitations and make PCM competitive with DRAM.
A baseline PCM system is 1.6× slower and requires 2.2×
more energy than a DRAM system. Buffer reorganizations
reduce this delay and energy gap to 1.2× and 1.0×, using nar-
row rows to mitigate write energy as well as multiple rows to
improve locality and write coalescing. Partial writes mitigate
limited memory endurance to provide more than 10 years
of lifetime. Process scaling will further reduce PCM energy
costs and improve endurance.

1. INTRODUCTION
Memory technology scaling drives increasing density,
increasing capacity, and falling price-capability ratios.
Memory scaling, a first-order technology objective, is in
jeopardy for conventional technologies. Storage mecha-
nisms in prevalent memory technologies require inherently
unscalable charge placement and control. In the nonvolatile
space, Flash memories must precisely control the discrete
charge placed on a floating gate. In volatile main memory,
DRAM must not only place charge in a storage capacitor but
must also mitigate subthreshold charge leakage through the
access device. Given these challenges, solutions for scaling
DRAM beyond 40nm are unknown.17

PCM provides a nonvolatile storage mechanism ame-
nable to process scaling. During writes, an access transis-
tor injects current into the storage material and thermally
induces phase change, which is detected as a programmed
resistance during reads. PCM, relying on analog current
and thermal effects, does not require control over discrete
electrons. As technologies scale and heating contact areas
shrink, programming current scales linearly. This PCM scal-
ing mechanism has been demonstrated in a 32 nm device
prototype.15 As a scalable DRAM alternative, PCM could pro-
vide a clear roadmap for increasing main memory density
and capacity.

These scalability trends motivate a transition from charge
memories to resistive memories. To realize this transition
for PCM, we must overcome PCM disadvantages relative to
DRAM. Access latencies, although tens of nanoseconds, are
several times slower than those of DRAM. At present tech-
nology nodes, PCM writes require energy intensive current
injection. Moreover, writes induce thermal expansion and
contraction within the storage element, degrading injection
contacts and limiting endurance to hundreds of millions of
writes per cell at current processes. These limitations are
significant, which is why PCM is currently positioned only
as a Flash replacement; in this market, PCM properties are
drastic improvements. For a DRAM alternative, however, we
must architect PCM for feasibility in main memory within
general-purpose systems.

Current prototype designs are not designed to mitigate
PCM latencies, energy costs, and finite endurance. This
paper rethinks PCM subsystem architecture to bring the
technology within competitive range of DRAM. Drawn from
a rigorous survey of PCM device and circuit prototypes pub-
lished within the last 5 years and comparing against modern
DRAM memory subsystems, we propose:

•	 Buffer Reorganization: Narrow buffers mitigate high
energy PCM writes. Multiple buffer rows exploit locality
to coalesce writes, hiding their latency and reducing
their energy. Effective PCM buffering reduces appli
cation execution time from 1.6× to 1.2× and memory
array energy from 2.2× to 1.0×, relative to DRAM-based
systems.

•	 Partial Writes: Partial writes track data modifications
and write only modified cache lines or words to the
PCM array. We expect write coalescing and partial
writes to deliver an average memory module lifetime of
11.2 years. PCM endurance is expected to improve by
four orders of magnitude when scaled to 32nm.17

Collectively, these results suggest PCM is a viable DRAM
alternative, with architectural solutions providing competi-
tive performance, comparable energy, and feasible lifetimes.

A previous version of this article appears in Proceedings of
the 36th International Symposium on Computer Architecture
(June 2009). Parts of this article appear in IEEE Micro Top
Picks from the Computer Architecture Conferences of 2009
(January/February 2010).

100 communications of the acm | july 2010 | vol. 53 | no. 7

research highlights

and inducing crystal growth (i.e., set). Requiring longer
current pulses, set latency determines write performance.
Requiring higher current pulses, reset energy determines
write power.

Prior to reading the cell, the bitline is precharged to the
read voltage. If a selected cell is in a crystalline state, the
bitline is discharged with current flowing through the stor-
age element and access transistor. Otherwise, the cell is in
an amorphous state, preventing or limiting bitline current.

Cells that store multiple resistance levels might be imple-
mented by leveraging intermediate states, in which the chal-
cogenide is partially crystalline and partially amorphous.3, 13
Smaller current slopes (i.e., slow ramp down) produce lower
resistances and larger slopes (i.e., fast ramp down) produce
higher resistances. Varying slopes induce partial phase
transitions changing the size or shape of the amorphous
material produced at the contact area, giving rise to resis-
tances between those observed from the fully amorphous
or the fully crystalline chalcogenide. The difficulty and high
latency of differentiating between a large number of resis-
tances may constrain such multilevel cells (MLC) to a small
number of bits per cell.
Wear and Endurance: Writes are the primary wear mecha-
nism in PCM. When injecting current into a volume of
phase change material, thermal expansion and contraction
degrades the electrode-storage contact, such that program-
ming currents are no longer reliably injected into the cell.
Since material resistivity is highly dependent on current
injection, current variability causes resistance variability.
This greater variability degrades the read window, the dif-
ference between programmed minimum and maximum
resistance.

Write endurance, the number of writes performed before
the cell cannot be programmed reliably, ranges from 1E+04
to 1E+09. Write endurance depends on process and differs
across manufacturers. Relative to Flash, PCM is likely to
exhibit greater write endurance by at least two to three orders
of magnitude; Flash cells can sustain only 1E+05 writes. The
ITRS roadmap projects improved endurance of 1E+12 writes
at 32nm.17 With wear reduction and leveling techniques,
PCM write limits may not be exposed to the system during a
memory’s lifetime.

2. PCM TECHNOLOGY
Given the still speculative state of PCM technology, research-
ers have made several different manufacturing and design
decisions. We survey device and circuit prototypes pub-
lished within the last 5 years.10

2.1. Memory cell
As shown in Figure 1a, the PCM storage element is comprised
of two metal electrodes separated by a resistive heater and a
chalcogenide, the phase change material. Ge2Sb2Te5 (GST)
is most commonly used, but other chalcogenides may offer
higher resistivity and improve the device’s electrical charac-
teristics. Nitrogen doping increases resistivity and lowers pro-
gramming current while GS may offer faster phase changes.4, 8

As shown in Figure 1b, PCM cells are 1T/1R devices, com-
prised of the resistive storage element and an access tran-
sistor. Access is typically controlled by one of three devices:
field-effect transistor (FET), bipolar junction transistor
(BJT), or diode. In future, FET scaling and large voltage
drops across the cell may adversely affect reliability for
unselected wordlines.14 BJTs are faster and expected to scale
more robustly without this vulnerability.3, 14 Diodes occupy
smaller areas and potentially enable greater cell densities,
but require higher operating voltages.11

Phase changes are induced by injecting current into the
resistor junction and heating the chalcogenide. Current
and voltage characteristics of the chalcogenide are identical
regardless of its initial phase, which lowers programming
complexity and latency.9 The amplitude and width of the
injected current pulse determine the programmed state as
shown in Figure 1c.

2.2. Operation
The access transistor injects current into the storage mate-
rial and thermally induces phase change, which is detected
as a programmed resistance during reads. Logical data val-
ues are captured by the resistivity of the chalcogenide. A
high, short current pulse increases resistivity by abruptly
discontinuing current, quickly quenching heat generation,
and freezing the chalcogenide into an amorphous state (i.e.,
reset). A moderate, long current pulse reduces resistivity by
ramping down current, gradually cooling the chalcogenide,

Figure 1. Phase change memory. (a) Storage element with heating resistor and chalcogenide between electrodes. (b) Cell structure
with storage element and BJT access device. (c) Reset to an amorphous, high resistance state with a high, short current pulse. Set to
a crystalline, low resistance state with moderate, long current pulse. Slope of set current ramp down determines the state in MLC.

Metal (bitline)

Bitline

Chalcogenide

Heater

Metal (access)

(a) (b) (c)

Wordline

Access dev

Storage

RESET SET

ISET

tSET,MLC tSET,SLC

t

IRESET

tRESET

I

july 2010 | vol. 53 | no. 7 | communications of the acm 101

We evaluate a four-core chip multiprocessor using the
SESC simulator.16 The 4-way superscalar, out-of-order cores
operate at 4.0GHz. This datapath is supported by 32KB,
direct-mapped instruction and 32KB, 4-way data L1 caches,
which may be accessed in two to three cycles. A 4MB, 8-way
L2 cache with 64B lines is shared between the four cores and
may be accessed in 32 cycles.

Below the caches is a 400 MHz SDRAM memory subsys-
tem modeled after Micron’s DDR2-800 technical speci-
fications.12 We consider one channel, one rank, and four
×16 chips per rank to achieve the standard 8B interface.
Internally, each chip is organized into four banks to facili-
tate throughput as data are interleaved across banks and
accessed in parallel. We model a burst length of eight blocks.
The memory controller has a 64-entry transaction queue.

We consider parallel workloads from the SPLASH-2 suite
(fft, radix, ocean), SPEC OpenMP suite (art, equake, swim),
and NAS parallel benchmarks (cg, is, mg).1, 2, 19 Regarding
input sets, we use 1 M points for FFT, 514×514 grid for ocean,
and 2 M integers for radix. SPEC OpenMP workloads run
MinneSpec-Large data set and NAS parallel benchmarks run
with Class A problem sizes. Applications are compiled using
gcc and Fortran compilers at the -O3 optimization level.

3.1. Baseline comparison
We consider a PCM baseline architecture, which imple-
ments DRAM-style buffering with a single 2048B-wide
buffer. Figure 3a illustrates end-to-end application per-
formance when PCM replaces DRAM as main memory.
Application delay increases with penalties relative to DRAM
ranging from 1.2× (radix) to 2.2× (ocean, swim). On aver-
age, we observe a 1.6× delay penalty. The energy penalties
are larger, ranging from 1.4× (cg) to 3.4× (ocean), due to the
highly expensive array writes required when buffer contents

2.3. Process scaling
PCM scaling reduces required programming current injec
ted via the electrode-storage contact. As the contact area
decreases with feature size, thermal resistivity increases and
the volume of phase change material that must be cooled
into an amorphous state during a reset to completely block
current flow decreases. These effects enable smaller access
devices for current injection. Pirovano et al. outline PCM
scaling rules,14 which are confirmed empirically in a sur-
vey by Lai.9 Specifically, as feature size scales linearly (1/k),
contact area decreases quadratically (1/k2). Reduced contact
area causes resistivity to increase linearly (k), which causes
programming current to decrease linearly (1/k).

Operational issues arise with aggressive PCM technology
scaling. As contact area decreases, lateral thermal coupling
may cause programming currents for one cell to influ-
ence the states of adjacent cells. Lai’s survey of PCM finds
these effects negligible in measurement and simulation.9
Temperatures fall exponentially with distance from pro-
grammed cell, suggesting no appreciable impact from
thermal coupling. Increasing resistivity from smaller con-
tact areas may reduce signal strength (i.e., smaller resistiv-
ity difference between crystalline and amorphous states).
However, these signal strengths are well within the sense
circuit capabilities of modern memory architectures.9

2.4. Array architecture
As shown in Figure 2, PCM cells might be hierarchically
organized into banks, blocks, and subblocks. Despite simi-
larities to conventional memory architectures, PCM-specific
issues must be addressed. For example, PCM reads are non-
destructive whereas DRAM reads are destructive and require
mechanisms to replenish discharged capacitors.

Sense amplifiers detect the change in bitline state when
a memory row is accessed. Choice of bitline sense amplifi-
ers affects array read access time. Voltage sense amplifiers
are cross-coupled inverters which require differential dis-
charging of bitline capacitances. In contrast, current sense
amplifiers rely on current differences to create a differential
voltage at the amplifier’s output nodes. Current sensing is
faster but requires larger circuits.18

In DRAM, sense amplifiers serve a dual purpose, both
sensing and buffering data using cross-coupled invert-
ers. In contrast, we explore PCM architectures with sepa-
rate sensing and buffering; sense amplifiers drive banks of
explicit latches. These latches provide greater flexibility in
row buffer organization by enabling multiple buffered rows.
However, these latches incur area overheads. Separate sens-
ing and buffering enables multiplexed sense amplifiers.
Multiplexing also enables buffer widths narrower than the
array width, which is defined by the total number of bitlines.
Buffer width is a critical design parameter, determining the
required number of expensive current sense amplifiers.

3. A DRAM ALTERNATIVE
We express PCM device and circuit characteristics within
conventional DDR timing and energy parameters, thereby
quantifying PCM in the context of more familiar DRAM
parameters to facilitate a direct comparison.10

Bank

Block

Subblock

Buffer

S/A S/A S/A S/A

GBL DEC

GWL DEC

v_W/D

TO GBL

LWL DEC

LBL DEC

W/DW/DW/DW/D

Figure 2. Array architecture. A hierarchical memory organization
includes banks, blocks, and subblocks with local, global decoding
for row, column addresses. Sense amplifiers (S/A) and word drivers
(W/D) are multiplexed across blocks.

102 communications of the acm | july 2010 | vol. 53 | no. 7

research highlights

2048B to 64B, which is the line size of the lowest level cache.
We consider buffer rows ranging from the original single
row to a maximum of 32 rows. At present, we consider a
fully associative buffer and full associativity likely becomes
intractable beyond 32 rows. Buffers with multiple rows use a
least recently used (LRU) eviction policy implemented in the
memory controller.

3.3. Buffer design space
Buffer reorganizations impact the degree of exploited local-
ity and energy costs associated with array reads and writes.
Figure 4 illustrates the delay and energy characteristics of
the buffer design space for an average of memory-intensive
benchmarks. Triangles illustrate PCM and DRAM baselines,
which implement a single 2048B buffer. Circles illustrate
various buffer organizations. Reorganizing a single, wide

are evicted. On average, we observe a 2.2× energy penalty.
The end-to-end delay and energy penalties are more mod-

est than the underlying technology parameters might sug-
gest. Even memory-intensive workloads mix computation
with memory accesses. Furthermore, the long latency, high
energy array writes manifest themselves much less often
in PCM than in DRAM; nondestructive PCM reads do not
require subsequent writes whereas destructive DRAM reads
do. Figure 3b indicates only 28% of PCM array reads first
require an array write of a dirty buffer.

To enable PCM for use below the lowest level processor
cache in general-purpose systems, we must close the delay
and energy gap between PCM and DRAM. Nondestructive
PCM reads help mitigate underlying delay and energy dis-
advantages by default. We seek to eliminate the remaining
PCM-DRAM differences with architectural solutions. In par-
ticular, the baseline analysis considers a single 2048B-wide
buffer per bank. Such wide buffering is inexpensive in
DRAM, but incurs unnecessary energy costs in PCM given
the expensive current injection required when writing buffer
contents back into the array.

3.2. Buffer organization
We examine whether PCM subsystems can close the gap with
DRAM application performance and memory subsystem energy.
To be a viable DRAM alternative, buffer organizations must
hide long PCM latencies, while minimizing PCM energy costs.

To achieve area neutrality across buffer organizations,
we consider narrower buffers and additional buffer rows.
The number of sense amplifiers decreases linearly with buf-
fer width, significantly reducing area as fewer of these large
circuits are required. We utilize this area by implementing
multiple rows with latches much smaller than the removed
sense amplifiers. Narrow widths reduce PCM write energy
but negatively impact spatial locality, opportunities for write
coalescing, and application performance. However, these
penalties may be mitigated by the additional buffer rows.

We consider buffer widths ranging from the original

cg is mg fft rad oce art equ swi avg
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 t
o

D
R

A
M

PCM array writes per buffer read

ArrayWrites

cg is mg fft rad oce art equ swi avg
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4

N
or

m
al

iz
ed

 t
o

D
R

A
M

PCM performance :: 2048Bx1 buffer

Delay
EnergyMem

Figure 3. PCM as a DRAM alternative. (a) Application delay and memory energy. (b) Percentage of buffer evictions that require array writes.

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Delay (normalized to DRAM)

E
ne

rg
yM

em
 (n

or
m

al
iz

ed
 t

o
D

R
A

M
)

PCM buffer organization

PCM buff
PCM base
DRAM base

Figure 4. Pareto analysis for PCM buffer organizations.

july 2010 | vol. 53 | no. 7 | communications of the acm 103

PCM buffering using technology parameters at 90nm. As
PCM technology matures, baseline PCM latencies may
improve. Moreover, process technology scaling will drive
linear reductions in PCM energy.

3.4. Scaling comparison
DRAM scaling faces many significant technical challenges
as scaling attacks weaknesses in both components of the
one transistor, one capacitor cell. Capacitor scaling is con-
strained by the DRAM storage mechanism, which requires
maintaining charge on a capacitor. In future, process scal-
ing is constrained by challenges in manufacturing small
capacitors that store sufficient charge for reliable sensing
despite large parasitic capacitances on the bitline.

The scaling scenarios are also bleak for the access transis-
tor. As this transistor scales down, increasing subthreshold
leakage will make it increasingly difficult to ensure DRAM
retention times. Not only is less charge stored in the capaci-
tor, that charge is stored less reliably. These trends impact
the reliability and energy efficiency of DRAM in future pro-
cess technologies. According to ITRS, “manufacturable
solutions are not known” for DRAM beyond 40nm.17

In contrast, ITRS projects PCM scaling mechanisms will
extend to 32 nm, after which other scaling mechanisms
might apply.17 Such PCM scaling has already been demon-
strated with a novel device structure fabricated by Raoux.15
Although both DRAM and PCM are expected to be viable
at 40nm technologies, energy scaling trends strongly favor
PCM with a 2.4× reduction in PCM energy from 80 to 40nm
as illustrated in Figure 6a. In contrast, ITRS projects DRAM
energy falls by only 1.5× at 40nm, which reflects the techni-
cal challenges of DRAM scaling.17

Since PCM energy scales down faster than DRAM
energy, PCM subsystems significantly outperform DRAM
subsystems at 40nm. Figure 6b indicates PCM subsystem
energy is 61.3% that of DRAM averaged across workloads.
Switching from DRAM to PCM reduces energy costs by at

buffer into multiple, narrow buffers reduce both energy costs
and delay. Examining the Pareto frontier, we observe Pareto
optima shift PCM delay and energy into the neighborhood of
the DRAM baseline. Among these Pareto optima, we observe a
knee that minimizes both energy and delay; this organization
uses four 512B-wide buffers to reduce PCM delay, energy dis-
advantages from 1.6×, 2.2× to more modest 1.2×, 1.0×.

The number of array reads is a measure of locality. Figure
5a shows the number of array reads increases very slowly as
buffer width decreases exponentially from 2048B to 64B.
For a single buffered row (RP = 1), a 32× reduction in buffer
width produces only a 2× increase in array reads, suggesting
very little spatial locality within wide rows for the memory-
intensive workloads we consider. The single row is evicted too
quickly after its first access, limiting opportunities for spatial
reuse. However, we do observe significant temporal locality. A
2048B-wide buffer with two rows (RP = 2) requires 0.4× the array
reads as a 2048B-wide buffer with only a single row (RP = 1).

Writes are coalesced if multiple writes modify the buffer
before its contents are evicted to the array. Thus the number
of array writes per buffer write is a metric for write coalescing.
Figure 5b illustrates increasing opportunities for coalescing
as the number of rows increase. As the number of rows in a
2048B-wide buffer increases from one to two and four rows,
array writes per buffer write fall by 0.51× and 0.32×, respec-
tively; the buffers coalesce 49% and 68% of memory writes.
Coalescing opportunities fall as buffer widths narrow beyond
256B. Since we use 64B lines in the lowest level cache, there are
no coalescing opportunities from spatial locality within a 64B
row buffered for a write. Increasing the number of 64B rows
has no impact since additional rows exploit temporal local-
ity, but any temporal locality in writes are already exploited by
coalescing in the 64B lines of the lowest level cache.

Thus, narrow buffers mitigate high energy PCM writes
and multiple rows exploit locality. This locality not only
improves performance, but also reduces energy by exposing
additional opportunities for write coalescing. We evaluate

2048102451225612864
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

PCM buffer analysis
WriteCoalescing :: avg

Row buffer width (B)

W
ri

te
C

oa
le

sc
in

g
(n

or
m

al
iz

ed
 t

o
P

C
M

 2
04

8B
x1

)

Rp = 1

Rp = 4

Rp = 2

2048102451225612864
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

PCM buffer analysis
ArrayReads :: avg

Row buffer width (B)

A
rr

ay
R

ea
ds

 (
no

rm
al

iz
ed

 t
o

P
C

M
 2

04
8B

x1
) Rp = 1

Rp = 4

Rp = 2

Figure 5. Memory subsystem trends from PCM buffer organizations. (a) Array reads increase sublinearly with buffer width. (b) Array write
coalescing opportunities increase with buffer rows.

104 communications of the acm | july 2010 | vol. 53 | no. 7

research highlights

line, tracking stores using fine-grained dirty bits. At the dirty
line granularity, 64B modifications are tracked beginning at
the lowest level cache and requires only 1b per 64B L2 line.
At the dirty word granularity, 4B modifications are tracked
beginning at the L1 cache with 8b per 32B L1 line and propa-
gated to the L2 cache with 16b per 64B L2 line. Overheads
are 0.2% and 3.1% of each cache line when tracking dirty
lines and words, respectively.

4.2. Endurance
Equation 1 estimates the write intensity observed by a
memory module driven with access patterns observed in
our memory-intensive workloads. Table 1 summarizes
the model parameters. The model estimates the number
of writes per second Ŵ for any given bit. We first estimate
memory bus occupancy, which has a theoretical peak com-
mand bandwidth of fm · (B/2)−1. Each command requires
B/2 bus cycles to transmit its burst length B in a DDR inter-
face, which prevents commands from issuing at mem-
ory bus speeds fm. We then scale this peak bandwidth by
application-specific utilization. Utilization is computed by

least 22.1% (art) and by as much as 68.7% (swim). Note this
analysis does not account for refresh energy, which would
further increase DRAM energy costs. Although ITRS proj-
ects constant retention time of 64ms as DRAM scales to
40nm,17 less effective access transistor control may reduce
retention times. If retention times fall, DRAM refresh
energy will increase as a fraction of total energy costs.

4. MEMORY LIFETIMES
In addition to architecting PCM to offer competitive delay
and energy characteristics relative to DRAM, we must also
consider PCM wear mechanisms. To mitigate these effects,
we propose partial writes, which reduce the number of
writes to the PCM array by tracking modified data from the
L1 cache to the memory banks. This architectural solution
adds a modest amount of cache state to reduce the number
of bits written. We derive an analytical model to estimate
memory module lifetime from a combination of fundamen-
tal PCM technology parameters and measured application
characteristics. Partial writes, combined with an effective
buffer organization, increase memory module lifetimes to
a degree that makes PCM in main memory feasible.

4.1. Partial writes
Partial writes track data modifications, propagating this
information from the L1 cache down to the buffers at the
memory banks. When a buffered row is evicted and contents
written to the PCM array, only modified data is written. We
consider partial writes at two granularities: lowest level cache
line size (64B) and word size (4B).

These granularities are least invasive since modified
words are tracked by store instructions from the micropro-
cessor pipeline. In contrast, bit-level granularity requires
knowledge of previous data values and expensive compara-
tors. We analyze a conservative implementation of partial
writes, which does not exploit cases where stores write the
same data values already stored.

Partial writes are supported by adding state to each cache

cg is mg fft rad oce art equ swi avg
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N
or

m
al

iz
ed

 t
o

D
R

A
M

PCM energy at 40nm :: 512Bx4 buffer

EnergyMem

(b)

25

20

15

En
er

gy
 (p

J)

10

(a)

5

0
100 90 80 70 60 50

Process technology (nm)

PCM energy scaling : : RESET

Empirical (Lai)
Analytical (Pirovano)

40 30 20 10 0

Figure 6. PCM Scalability. (a) Reset energy scaling from a survey of empirical prototypes by Lai and an analytical analysis by Pirovano et al.
(b) Memory energy projections for 40 nm.

ˆ
ˆ

Endurance
W
L
E

Writes per second per bit
Memory module lifetime (s)
Write endurance

Equation 1
Equation 1
1E + 08

Memory Module
C Logical capacity (Gb) 2

Memory Bus Bandwidth
fm

Mf

B

Memory bus frequency (MHz)
Processor frequency multiplier
Burst length (blocks)

400
10
8

Application Characteristics
Nw, Nr

T
Number of writes, reads
Execution time (cy)

sim
sim

Buffer Characteristics
WP, RP

Nwb, Nwa

d

Buffer width (B), rows
Buffer, array writes
Fraction of buffer written to array

512, 4
sim
sim

Table 1. Endurance model parameters.

july 2010 | vol. 53 | no. 7 | communications of the acm 105

measuring the number of memory operations Nw + Nr and
calculating the processor cycles spent on these operations
(B/2) · Mf  . The processor is Mf faster than fm. The time spent
on memory operations is divided by total execution time T.

(1)

Since only a fraction of memory bus activity reaches the
PCM to induce wear, we scale occupancy by write intensity to
estimate the number of write operations arriving at the row
buffers. In the worst case, the entire buffer must be written
to the array. However, not all buffer writes cause array writes
due to coalescing. Nwa/Nwb measures the coalescing effective-
ness of the buffer, which filters writes to the array. Lastly,
partial writes mean only the dirty fraction d of a buffer’s 8WP
bits are written to the array. Assuming ideal wear-leveling,
writes will be spread across the C bits in the module. Given
writes per second Ŵ and characterized endurance E, a bit
will fail in L̂ = E/Ŵ seconds.

In a baseline architecture with a single 2048B-wide buf-
fer, average module lifetime is approximately 1050 h as
calculated by Equation 1. For our memory-intensive work-
loads, we observe 32.8% memory bus utilization. Scaling by
application-specific write intensity, we find 6.9% of memory
bus cycles are utilized by writes. At the memory banks, the
single 2048B buffer provides limited opportunities for write
coalescing, eliminating only 2.3% of writes emerging from
the memory bus. Frequent row replacements in the single
buffer limit opportunities for coalescing.

Figure 7 illustrates significant endurance gains from
reorganized buffers and partial writes. 64B and 4B partial
writes improve endurance to 1.4 and 11.2 years, respec-
tively. Buffers use partial writes so that only a fraction of the

buffer’s bits is written to the array. As shown in Figure 7, only
59.3% and 7.6% of the buffer must be written to the array for
64B and 4B partial writes.

4.3. Density versus endurance
PCM cells are presently larger than DRAM cells. Measuring
cell size in square feature sizes, which makes the discussion
independent of process technology, PCM cells are 1.5–2.0×
larger than DRAM cells.

In particular, 8F  2 DRAM cells provide a sufficiently wide
pitch to enable a folded bitline architecture, which is resil-
ient against bitline noise during voltage sensing. However,
manufacturers often choose the density of 6F  2 DRAM cells.
The narrow pitch in 6F  2 designs preclude folded bitlines,
increasing vulnerability to noise and requiring unconven-
tional array designs. For example, Samsung’s 6F  2 imple-
ments array blocks with 320 wordlines, which is not a power
of two, to improve reliability.5

In contrast, PCM cells occupy between 6F  2 and 20F  2.10 Part
of this spread is due to differences in design and fabrication
expertise for the new technology. However, we also observe a
correlation between cell size and access device (e.g., the 6F  2 cell
uses the relatively small diode). We favor larger BJTs for their low
access times. Cells with BJTs occupy between 9F  2 and 12F  2.

Given 9–12F  2 PCM cells and 6F  2 DRAM cells, two-bit
multilevel PCM cells are necessary to be competitive with
respect to density. Two-bit MLC provide an effective den-
sity of 4.5–6.0F  2per bit. However, MLC suffer from lower
endurance. Process and manufacturing set the read win-
dow, which quantifies the difference between the lowest
and highest programmed resistances in single-level cells. By
programming the cell to intermediate resistances within the
same read window, MLC inherently require a larger number
of logical states that each occupy a narrower region of the
read window. Thus, wear more quickly impacts the ability to
differentiate these resistances.

4.4. Assumptions and qualifications
Considering only memory-intensive workloads, this analysis

cg is mg fft rad oce art equ swi avg
0

0.2

0.4

0.6

0.8

1

Fr
ac

ti
on

 o
f

bu
ff

er
 w

id
th

 (
51

2B
)

PCM endurance :: 512Bx4 buffer

PartialLine (64B)
PartialWord (4B)

(b)
cg is mg fft rad oce art equ swi avg

0

5

10

15

20

25

30

35

Ye
ar

s

PCM endurance :: 512Bx4 buffer

PartialLine (64B)
PartialWord (4B)

(a)

Figure 7. PCM Endurance. (a) PCM memory module lifetimes. (b) Fraction of buffer modified (d).

106 communications of the acm | july 2010 | vol. 53 | no. 7

research highlights

is conservative. PCM subsystems would more likely experi-
ence a mix of compute and memory-intensive workloads.
Expected lifetimes would be higher had we considered, for
example, single-threaded SPEC integer workloads. However,
such workloads are less relevant for a study of memory sub-
systems. Moreover, within memory-intensive workloads, we
would expect to see a mix of read and write intensive applica-
tions, which may further increase lifetimes.

Scalability is projected to improve PCM endurance
from the present 1E+08 to 1E+12 writes per bit at 32nm
with known manufacturable solutions.17 This higher
endurance increases lifetime by four orders of magni-
tude in our models. ITRS anticipates 1E+15 PCM writes
at 22nm although manufacturable solutions are currently
unknown.

5. CONCLUSION
The proposed memory architecture lays the foundation
for exploiting PCM scalability and nonvolatility in main
memory. Scalability implies lower main memory energy
and greater write endurance. Furthermore, nonvolatile
main memories will fundamentally change the landscape
of computing. Software cognizant of this newly provided
persistence can provide qualitatively new capabilities. For
example, system boot/hibernate will be perceived as instan-
taneous; application checkpointing will be inexpensive7; file
systems will provide stronger safety guarantees.6 Thus, we
take a step toward a new memory hierarchy with deep impli-
cations across the hardware–software interface.�

	 1.	 Aslot, V., Eigenmann, R. Quantitative
performance analysis of the SPEC
OMPM2001 benchmarks. Sci. Program.
11, 2 (2003).

	 2.	B ailey, D. et al. NAS parallel benchmarks.
In Technical Report RNR-94-007, NASA
Ames Research Center, March 1994.

	 3.	B edeschi, F. et al. A multi-level-cell
bipolar-selected phase-change
memory. In International Solid-State
Circuits Conference, 2008.

	 4.	 Chen, Y. et al. Ultra-thin phase-change
bridge memory device using GeSb. In
International Electron Devices Meet-
ing, 2006.

	 5.	 Choi, Y. Under the hood: DRAM architec-
tures: 8F2 vs. 6F2. EE Times, February 2008.

	 6.	 Condit, J. et al. Better I/O through
byte-addressable, persistent memory.
In Symposium on Operating System
Principles, Oct 2009.

	 7.	 Dong, X. et al. Leveraging 3D PCRAM
technologies to reduce checkpoint
overhead in future exascale systems.
In Conference on Supercomputing,
Nov 2009.

	 8.	H orii, H. et al. A novel cell technology
using N-doped GeSbTe films for phase
change RAM. In Symposium on VLSI
Technology, 2003.

	 9.	L ai, S. Current status of the phase change
memory and its future. In International
Electron Devices Meeting, 2003.

	10.	L ee, B., Ipek, E., Mutlu, O., Burger, D.
Architecting phase change memory

as a scalable DRAM alternative. In
International Symposium on Computer
Architecture, June 2009.

	11.	L ee, K.-J. et al. A 90 nm 1.8 V 512 Mb
diode-switch PRAM with 266 MB/s read
throughput. J. Solid State Circuit. 43, 1
(Jan 2008).

	12.	 Micron. 512 Mb DDR2 SDRAM compo-
nent data sheet: MT47H128M4B6-25.
In www.micron.com, Mar 2006.

	13.	N irschl, T. et al. Write strategies for 2
and 4-bit multi-level phase-change
memory. In International Electron
Devices Meeting, 2008.

	14.	 Pirovano, A. et al. Scaling analysis of
phase-change memory technology. In
International Electron Devices Meet-
ing, 2003.

	15.	 Raoux, S. et al. Phase-change random
access memory: A scalable technology.
IBM J. Res. Dev. 52, 4/5 (Jul/Sept 2008).

	16.	 Renau, J. et al. SESC simulator. In
http://sesc.sourceforge.net, 2005.

	17.	S emiconductor Industry Associa-
tion. Process integration, devices &
structures. International Technology
Roadmap for Semiconductors, 2007.

	18.	S inha, M. et al. High-performance and
low-voltage sense-amplifier techniques
for sub-90 nm sram. In International
Systems-on-Chip Conference, 2003.

	19.	 Woo, S. et al. The SPLASH-2 programs:
Characterization and methodological con-
siderations. In International Symposium
on Computer Architecture, June 1995.

© 2010 ACM 0001-0782/10/0700 $10.00

Benjamin C. Lee (bcclee@stanford.edu),
Stanford University.

Engin Ipek (ipek@cs.rochester.edu),
University of Rochester.

Onur Mutlu (onur@cmu.edu), Carnegie
Mellon University.

Doug Burger (dburger@microsoft.com),
Microsoft Research.

References

You’ve come a long way.
Share what you’ve learned.

ACM has partnered with MentorNet, the award-winning nonprofit e-mentoring network in engineering,
science and mathematics. MentorNet’s award-winningOne-on-OneMentoring Programs pair ACM
student members with mentors from industry, government, higher education, and other sectors.

• Communicate by email about career goals, course work, and many other topics.
• Spend just 20minutes a week - and make a huge difference in a student’s life.
• Take part in a lively online community of professionals and students all over the world.

Make a difference to a student in your field.
Sign up today at: www.mentornet.net

Find out more at: www.acm.org/mentornet
MentorNet’s sponsors include 3M Foundation, ACM, Alcoa Foundation, Agilent Technologies, Amylin Pharmaceuticals, Bechtel Group Foundation, Cisco
Systems, Hewlett-Packard Company, IBM Corporation, Intel Foundation, Lockheed Martin Space Systems, National Science Foundation, Naval Research
Laboratory, NVIDIA, Sandia National Laboratories, Schlumberger, S.D. Bechtel, Jr. Foundation, Texas Instruments, and The Henry Luce Foundation.

mailto:bcclee@stanford.edu
mailto:ipek@cs.rochester.edu
http://www.micron.com
http://sesc.sourceforge.net
mailto:onur@cmu.edu
mailto:dburger@microsoft.com
http://www.mentornet.net
http://www.acm.org/mentornet

july 2010 | vol. 53 | no. 7 | communications of the acm 107

careers

Cal Poly State University
Lecturer

COMPUTER SCIENCE - Part -time lecturer posi-
tions are available in the Computer Science De-
partment at Cal Poly, San Luis Obispo, CA during
the 2010-2011 academic year. Post-Baccalaureate
degree in computer science, mathematics, en-
gineering, or related area required. Candidates
must have demonstrated teaching ability as well
as evidence of ongoing professional development
and competence. To apply, please visit www.cal-
polyjobs.org, complete a required online faculty
application, and apply to requisition #102089.
Review Begin Date: June 1, 2010. EEO

DOCOMO Communications
Laboratories USA, Inc.
Research Engineer

We currently look for 5-10 years experience research-
er/engineer to work in distributed computing, data
analysis, and optimization. The candidate must
have a strong implementation skill for Java Devel-
oper Apache Hadoop -Computer Storage System.
We expect the candidate must be self motivated and
have experience of system design and algorithm
during the work. Strong background in the follow-
ing areas is also required: statistical algorithm, sig-
nal processing, and graph theory. Strong program-
ming experience in Java, statistical programming
languages like R, and Open Source technologies are
required. Experience with implementation on dis-
tributed computing platforms like MapReduce or
Hadoop on Linux systems is highly required.

Applicants must have the relevant authoriza-
tion to work in a U.S. company.

Please indicate Code:
OOP-RE-ACM

Email Address:
oop_recruit@docomolabs-usa.com

Apply URL:
http://www.docomolabs-usa.com/

Drakontas
Technical Project Leader

Manage and develop software projects involving
web services/SOA in law enforcement and mili-
tary domain. Hands-on a must. Expert in Linux,
XML, IP networks, mobile technologies. Help
write research grant proposals. MS or PhD in CS.
Apply at: http://www.drakontas.com/careers

Louisiana State University
Assistant/Associate Professor
(Computational Biology/Tenure-track position)

Department of Computer Science/Center for
Computation and Technology: The Louisiana
State University Department of Computer Science

Princeton jobs site.
Princeton University is an equal opportunity

employer and complies with applicable EEO and
affirmative action regulations.

Shell
Principal Researcher, Computation and
Modeling

CAN YOU SAY NO TO NO? If you answered yes,
then we should talk. We’re Shell Global Solutions
and we’re looking for individuals who find more
ways to say “yes” instead of “no.”

As a Principal Researcher, Computation and
Modeling, you’ll have the opportunity to seek out,
evaluate, discover and invent cutting-edge emerg-
ing technologies on the interface of engineering,
the physical sciences and computer science for
the Royal Dutch Shell (RDS) business.

In short, the perfect candidate for our Princi-
pal Researcher position is the type of person who
turns impossible into possible almost every day.

˲˲ PhD in Computer Science, Physics, Engineer-
ing, Mathematics or related discipline.

˲˲ 10 or more years of post-doctorate, hands-on, in-
depth technical and project lead experience in the
area of simulation, computation, and modeling.

˲˲ Demonstrated professional recognition via
peer reviews, papers, books, teaching, training
and more.

˲˲ Legal authorization to work in the US on a full-
time basis.

With technically innovative people—and
state-of-the-art equipment and facilities—Shell is
a worldwide leader in the development and appli-
cation of technology. At Shell, we’re committed to
satisfying the world’s need for energy with economi-
cally, socially and environmentally responsible so-
lutions. We’ll provide you with the resources to put
your ideas into action, worldwide opportunities to
advance your career, and outstanding benefits and
rewards that support your quality of life. Join us and
let’s make a real difference together.

Apply URL: http://www.shell.us/careers
No phone inquiries will be accepted. Shell is

an Equal Opportunity Employer.

Universidad de Chile
Faculty Positions in Advanced Networks and
Future Internet Services

The Electrical and Computer Engineering Depart-
ments of the Universidad de Chile have opened
two full-time faculty positions. Their main duties
will be teaching and research at the Universidad
de Chile in Santiago.

A PhD in a related field is required. Spanish is
not required but the candidate should be willing
to learn the language.

Details at:
http://www.dcc.uchile.cl/networks_position

(http://csc.lsu.edu) & Center for Computation &
Technology (CCT) (http://www.cct.lsu.edu), invite
applications for an Assistant/Associate Professor
(tenure-track) faculty position in Computational
Biology, broadly defined. The CCT offers an inno-
vative and interdisciplinary research environment
for advancing computational sciences, including a
highly competitive computing environment with
access to 100 TFlops of computing resources in
conjunction with the Louisiana Optical Network
Initiative (LONI) (http://institute.loni.org/). Suit-
able candidate may be appointed a LONI Insti-
tute Fellow. LSU is part of the national TeraGrid.
Required Qualifications: (Both Levels) Ph.D. or
equivalent degree; a successful track record of pro-
ductive research and extramural funding; a com-
puter scientist or computational biologist whose
research involves areas such as: biomolecular dy-
namics and structure-based drug design, systems
biology and interaction networks, metabolomics,
evolutionary genomics, or metagenomics analy-
ses; experience with developing the methods, in-
frastructure and algorithms to take advantage of
high-performance and distributed computing and
other advances in computing. Responsibilities: es-
tablishes a vigorous, extramurally funded research
program; contributes to undergraduate and grad-
uate teaching; contributes to a growing interde-
partmental program in computational biology at
LSU. We encourage applications from women and
minorities. Rank and salary will be commensu-
rate with qualifications and/or experience. An of-
fer of employment is contingent on a satisfactory
pre-employment background check. Application
deadline is July 15, 2010 or until a candidate is se-
lected. Apply online at: www.lsusystemcareers.lsu.
edu. Position #034189. LSU SYSTEM IS AN EQUAL
OPPORTUNITY/EQUAL ACCESS EMPLOYER

Princeton University
Computer Science
Lecturer

Part- and full-time Lecturer positions. The De-
partment of Computer Science seeks applications
from outstanding teachers to assist the faculty in
teaching our introductory course sequence.

The primary requirements of the job are to
teach recitation sections and to participate in
overall management of the introductory sequence.
Other responsibilities include supervising gradu-
ate student teaching assistants and developing
and maintaining online curricular material, class-
room demonstrations, and laboratory exercises.

Candidates should have an exceptional record of
classroom instruction and curricular innovation. An
advanced degree in computer science is preferred.

For general application information and to
self-identify visit: https://jobs.princeton.edu

Requisition Number: 1000207. You may ap-
ply online on the Department’s website at: http://
www.cs.princeton.edu/jobs/lecturerposition

We will not accept applications from the

http://www.calpolyjobs.org
http://www.calpolyjobs.org
mailto:oop_recruit@docomolabs-usa.com
http://www.docomolabs-usa.com/
http://www.drakontas.com/careers
http://csc.lsu.edu
http://www.cct.lsu.edu
http://institute.loni.org/
http://www.lsusystemcareers.lsu.edu
https://jobs.princeton.edu
http://www.cs.princeton.edu/jobs/lecturerposition
http://www.shell.us/careers
http://www.dcc.uchile.cl/networks_position
http://www.cs.princeton.edu/jobs/lecturerposition
http://www.lsusystemcareers.lsu.edu

108 communications of the acm | july 2010 | vol. 53 | no. 7

careers

© 2010 NAS
(Media: delete copyright notice)

ACM Media
3.4375 x 4.75
B&W

www.lanl.gov/jobs

L o s A l a m o s N a t i o n a l
L aborato r y – a p remier
national security research
i n s t i t u t i o n d e l i v e r i n g
i n n ov at i ve s c i e n ce an d
engineering solutions for the
nation’s most crucial and
complex problems – has the
following opening available:

R&D MANAGER 4
Our Computer, Computational and Statistical Sciences Division
seeks an accomplished professional to provide technical leadership
and management for the Applied Computer Science group, CCS-7.
A signi cant growth area, CCS-7 is at the forefront of technology
and algorithm design/development for cutting-edge computer
architectures. Your role will be to develop and execute a diverse
portfolio of work in support of multiple programmatic efforts,
including nuclear weapons, various Of ce of Science, energy and
work-for-others programs. Additionally, you'll attract, develop and
motivate a diverse scienti c workforce to deliver on our mission
and achieve success.

Requires a Bachelor’s degree in Science or Engineering,
demonstrated experience building teams and leading technical
projects in a diverse scienti c environment, advanced expertise
in relevant technical areas and ability to obtain a DOE Q clearance.

For the complete job description and to
apply online, visit www.lanl.gov/jobs and
apply to job number 219494.

University of North Dakota
Department of Computer Science
Assistant to Associate Professor

The Department of Computer Science at the Uni-
versity of North Dakota is recruiting for a nine-
month tenure-track position at the Assistant or
Associate Professor level with an anticipated
start date of January 1, 2011. Salary ranges from
76,000 to 93,206.

The responsibilities include teaching at the
undergraduate and graduate levels, supervising
graduate students (MS and PhD), and developing
and maintaining an active research program. As-
sociate Professor candidates should have a good
publication and funding record, proven ability to
establish an independent research program, and
be open to participation in interdisciplinary pro-
grams of study. Industry experience and/or post-
doctoral experience will be considered an asset.

The position requires a Ph.D. in Computer
Science or a related field. The department is seek-
ing outstanding candidates with a research focus
in one of the following areas: (a) simulation and
modeling or (b) high-performance computing.

Our department strives to maintain a colle-
gial and supportive atmosphere. UND hires on
the basis of merit and is committed to employ-
ment equity. We strongly encourage candidates
with diverse backgrounds and experiences to ap-
ply. The University of North Dakota is an AAEO
Employer.

Applicants for the position must submit
their curriculum vitae, a teaching statement, a
research statement, and the names of at least
three references. The teaching statement should
include a record of teaching interests and experi-
ence. Screening begins immediately and contin-
ues until the position is filled. Applications may
be sent electronically in PDF format to: Ronald
Marsh, Ph.D., Associate Professor and Chair

www.cs.und.edu
If you have questions about the applica-

tion process, please contact Ronald Marsh at
rmarsh@cs.und.edu

Advertising in
Career Opportunities

How to Submit a Classified Line Ad: Send an e-mail
to acmmediasales@acm.org. Please include text,
and indicate the issue/or issues where the ad will
appear, and a contact name and number.
Estimates: An insertion order will then be
e-mailed back to you. The ad will by typeset
according to CACM guidelines. NO PROOFS can be
sent. Classified line ads are NOT commissionable.
Rates: $325.00 for six lines of text, 40 characters
per line. $32.50 for each additional line after the
first six. The MINIMUM is six lines.
Deadlines: Five weeks prior to the publication
date of the issue (which is the first of every
month). Latest deadlines: http://www.acm.org/
publications
Career Opportunities Online: Classified and
recruitment display ads receive a free duplicate
listing on our website at: http://campus.acm.org/
careercenter

Ads are listed for a period of 30 days.
For More Information Contact:

ACM Media Sales
at 212-626-0686 or

acmmediasales@acm.org

mailto:rmarsh@cs.und.edu
http://www.lanl.gov/jobs
http://www.lanl.gov/jobs
mailto:acmmediasales@acm.org
http://www.acm.org/publications
http://campus.acm.org/careercenter
mailto:acmmediasales@acm.org
http://www.cs.und.edu
http://www.acm.org/publications
http://campus.acm.org/careercenter
http://www.informatik.tuwien.ac.at/DS.pdf

july 2010 | vol. 53 | no. 7 | communications of the acm 109

The Hong Kong Polytechnic University is the largest government-funded tertiary institution in Hong Kong in terms of student numbers. It offers programmes at Doctorate, Master’s,
Bachelor’s degrees and Higher Diploma levels. It has a full-time academic staff strength of around 1,400. The total consolidated expenditure budget of the University is in excess of
HK$4 billion per year.

DEPARTMENT OF COMPUTING
Head of Department of Computing (Ref. 99726)
Founded in 1974, the Department of Computing of The Hong Kong Polytechnic University was amongst the first in Hong Kong to offer education in computing and information
technology. As a provider of the most versatile education in computing, information technology and information systems, our undergraduate programmes are designed in ways that
can incorporate new applications, meet challenges and respond to trends.
Apart from nurturing professional talents for society, the Department excels in research and innovation. Leveraging its research strengths, we make significant contributions to the
economy with research services that lead to technology transfer, consultancy projects and commercialisation. Please visit the website at http://www.comp.polyu.edu.hk/ for more
information about the Department. The Department of Computing is a constituent of the Faculty of Engineering, information of which is available at http://www.polyu.edu.hk/feng/.
The University is now inviting applications and nominations for the post of Head of Department of Computing. The successful candidate will be appointed as Chair Professor or
Professor and hold a concurrent headship appointment.
The position calls for an academic leader with responsibilities of ensuring the smooth and successful operation and sustainable development of the Department. Reporting directly to
the Dean of Faculty, the appointee will be required to provide effective leadership in the development of long-term strategies and plans of the Department, and provide support to staff
members in the Department for the accomplishment of strategic objectives with high quality standards. Other responsibilities include inspiring excellence in teaching, research and
services; fostering strong partnerships and collaborations with external organizations and strengthening the international network of the Department and the University; ensuring
optimal deployment of human, financial and other resources in the Department; and implementing an effective mechanism to acquire donations and other forms of sponsorship to
support the University’s pursuits and long-term development.
Applicants should have (a) outstanding academic qualifications at doctoral level in Computer Science, Information Technology, Information Systems or related disciplines, evidence of
eminent scholarship and substantial relevant experience in a senior academic position; (b) a strong track record of achievement in teaching, research, professional services and
leadership at a senior level; (c) demonstrated ability to build up a strong team of faculty members with different research and cultural backgrounds; (d) effective interpersonal
communication and resources management skills, and excellent adaptability to changes and challenges; (e) good knowledge of the higher educational environment, preferably
including Hong Kong; and (f) a global perspective, and proven ability to promote collaboration across departments and institutions. Experience in fund-raising will be an additional advantage.
Remuneration and Conditions of Service
Terms of appointment and remuneration package are negotiable and highly competitive.
Application
Applicants are invited to send detailed curriculum vitae with names and addresses of two referees to the Human Resources Office, 13/F, Li Ka Shing Tower, The Hong Kong
Polytechnic University, Hung Hom, Kowloon, Hong Kong [Fax: (852) 2764 3374; E-mail: hrstaff@polyu.edu.hk], quoting position applied for and reference number.
Recruitment will continue until the position is filled. Initial consideration of applications will commence in September 2010. Candidature may be obtained by nomination.
The University reserves the right not to fill this post or to make an appointment by invitation. General information about the University is available on the University’s World Wide Web
Homepage http://www.polyu.edu.hk or from the Human Resources Office [Tel: (852) 2766 5040]. Details of the University’s Personal Information Collection Statement for recruitment
can be found at http://www.polyu.edu.hk/hro/jobpics.htm.

�ACM Professional Members can enjoy the convenience of making a single payment for their
entire tenure as an ACMMember, and also be protected from future price increases by
taking advantage of ACM's Lifetime Membership option.

�ACM Lifetime Membership dues may be tax deductible under certain circumstances, so
becoming a Lifetime Member can have additional advantages if you act before the end of
2009. (Please consult with your tax advisor.)

�Lifetime Members receive a certificate of recognition suitable for framing, and enjoy all of
the benefits of ACM Professional Membership.

Learn more and apply at:
http://www.acm.org/life

Take Advantage of
ACM’s LifetimeMembership Plan!

http://www.comp.polyu.edu.hk/
http://www.polyu.edu.hk/feng/
mailto:hrstaff@polyu.edu.hk
http://www.polyu.edu.hk
http://www.polyu.edu.hk/hro/jobpics.htm
http://www.acm.org/life
http://www.polyu.edu.hk

Call	for	Nominations
The	ACM	Doctoral	Dissertation	Competition

Rules of the competition
ACM established the Doctoral Dissertation Award
program to recognize and encourage superior research
and writing by doctoral candidates in computer science
and engineering. These awards are presented annually
at the ACM Awards Banquet.

submissions
Nominations are limited to one per university or college,
from any country, unless more than 10 Ph.D.’s are
granted in one year, in which case two may be nominated.

Deadline
Submissions must be received at ACM headquarters by
october 31, 2010 to qualify for consideration.

eligibility
Each nominated dissertation must have been accepted
by the department between October 2009 and
September 2010. Only English language versions will
be accepted. Please send a copy of the thesis in PDF
format to emily.eng@acm.org.

sponsorship
Each nomination shall be forwarded by the thesis advisor
and must include the endorsement of the department
head. A one-page summary of the signifi cance of the
dissertation written by the advisor must accompany
the transmittal.

Publication Rights
Each nomination must be accompanied by an assignment to
ACM by the author of exclusive publication rights. (Copyright
reverts to author if not selected for publication.)

Publication
Winning dissertations will be published by Springer.

selection Procedure
Dissertations will be reviewed for technical depth and
signifi cance of the research contribution, potential impact
on theory and practice, and quality of presentation.
A committee of fi ve individuals serving staggered fi ve-year
terms performs an initial screening to generate a short list,
followed by an in-depth evaluation to determine the winning
dissertation.

The selection committee will select the winning dissertation
in early 2011.

award
The Doctoral Dissertation Award is accompanied by a prize
of $20,000 and the Honorable Mention Award is accompanied
by a prize of $10,000. Financial sponsorship of the award
is provided by Google.

for submission Procedure
See http://awards.acm.org/html/dda.cfm

mailto:emily.eng@acm.org
http://awards.acm.org/html/dda.cfm

july 2010 | vol. 53 | no. 7 | communications of the acm 111

last byte

documents,
made us think it would be a good idea
to pursue the question of how to build
what came to be called the paperless
offi ce.

You’re talking about robert Taylor,
who managed the Computer systems
Laboratory at parC.

Taylor was not a technologist—he
was a psychologist by training. But he
was an extremely effective leader. The
other thing was, he knew everyone in
computing because he had run ARPA’s
Information Processing Techniques
Offi ce. So when he was hired to staff
the lab at PARC, he knew where to go.

did you have a sense of how revolution-
ary alto was as you worked on it?

Oh, yes, we knew it was revolution-
ary. We built it with the very fi rst semi-
conductor dynamic RAM, the Intel
1103, which was the fi rst memory you
could buy that was less than a tenth of
a cent a bit. As a result, we realized we
could build a display that was quali-
tatively better than what we had at the
time. We had character generator ter-
minals, and some of them were quite
nice. But they were limited in various
ways, whereas the Alto had the proper-
ty that anything you could represent on
paper, you could put on the screen. We
knew that was going to be a big deal.

You were also involved in the invention
of the ethernet.

The Ethernet grew out of the re-
alization I had of how to provide a
network for the Alto. We had been
studying the ALOHA network, a radio
network that was used to connect the
various Hawaiian Islands. The limi-
tation was that when a transmitter
started to transmit, it could no longer
receive anything. One night I was ly-
ing in bed thinking about the problem
when I had this sudden realization
that if you used a more limited media,
say, the coaxial cables used in cable
television, the transmitter could not
only hear what it transmitted, it could
also tell whether what it thought it put
on the wire was the same as what actu-
ally got put on the wire.

so if another transmitter was interfer-
ing, it could drop back and retransmit
later.

That idea was refi ned by Bob Met-
calfe and Dave Boggs into what we
knew as the Ethernet. Of course, the
Ethernet in those days was quite dif-
ferent than it is today.

You joined Microsoft in 1997 to help
establish the company’s research lab
in Cambridge, england, and were lat-
er involved in the development of the
tablet pC, a subject that’s much in the
news of late.

The line of thinking about tab-
lets actually started at DEC [Digital
Equipment Corporation]. We built a
tablet called Lectrice back in the ear-
ly 1990s, primarily as an electronic
book reader. When I returned to the
U.S. from my two-year assignment
in Cambridge, I was working with a
group in Redmond that was trying
to build an electronic book reader.
That didn’t work out too well, but it
evolved into the idea of building a
tablet PC. Of course the view there
was it would be great to have a device
that didn’t require a keyboard.

what do you make of the persistence
of the keyboard in spite of the alterna-
tives that now exist?

Typing is so much faster than virtu-
ally any other way of entering infor-
mation into a computer, so I don’t ex-
pect that to change. There’s only one
thing that can be better, and that’s to
use a different set of muscles—the
tablet allows you to do that. You’re
holding a stylus and writing or draw-
ing with it, and the interaction can be
faster.

More recently, you’ve been working on
multicore systems.

I’ve been using fi eld-programmable
gate arrays (FPGAs) to explore multicore
architectures. For a long time, it was
impossible for academic researchers—
or even people working in industrial
labs—to design their own chips. It’s
now possible to build a nontrivial mul-
ticore computer, with something on the
order of 15 cores, on a single FPGA on a
board that’s available for $750.

what does the future hold for you in
terms of research? are you tempted to
go back and continue working on the
tablet pC?

If I have a good idea I might go back
to it. But right now I’m quite happy
with what I’m doing, and there’s a
considerable amount of work to do in
this area. So I think I’m set for the next
few years.

Leah hoffmann is a brooklyn, ny-based technology
writer.

© 2010 ACM 0001-0782/10/0700 $10.00

“the alto had
the property that
anything you could
represent on paper,
you could put on
the screen. We knew
that was going to
be a big deal.”

[CoNTiNUed FroM p. 112]

Publish yourself at
Google Code
University
Share what you know with
students, teachers, and
other computer scientists
at Google Code University.
It’s the online exchange
where great computing minds
publish tutorials, lesson
plans and test exercises —
under Creative Commons,
for the common good.
You’ll help others learn
(and look good doing it).

Learn more:
http://code.google.com/edu/

http://code.google.com/edu/

112 communications of the acm | july 2010 | vol. 53 | no. 7

last byte

P
HO

T

O
G

R
A

P
H

 BY

 R
I

C
H

A
R

D
 M

O
R

G
ENS

T
E

I
N

Charles P. Thacker, a Technical Fellow
at Microsoft, is the winner of the 2009
ACM A.M. Turing Award for his pioneer-
ing contributions to computer architec-
ture and networks, as well as his current
work on multicore computing. (A profile
of Thacker, “Committed to Success,” is
on p. 22.) We spoke with him about the
technological highlights of his career,
beginning with his work at Xerox Palo
Alto Research Center (PARC) in 1970.

Let’s talk about the development of
the Alto, the first computer to incorpo-
rate a bitmap display and a graphical
user interface.

The Alto was actually the second
machine we built at PARC—the first
one was a time-sharing machine. We
wanted a PDP-10 because that was the
standard machine that the ARPA [Ad-
vanced Research Projects Agency] re-
search community used, but it would

have been unseemly for us to buy one
because Xerox had just bought a com-
puter company that made a compet-
ing machine.

So you decided to build one instead.
Bob Taylor had continuously told

us, “Computers are for people. They’re
personal devices.” That, coupled with
the fact we were in this company that
handled

DOI:10.1145/1785414.1785444	 	 Leah Hoffmann

Q&A
From Single Core
to Multicore
Charles P. Thacker discusses the legendary Alto personal
computer, the invention of the Ethernet, and his current research
on multicore architectures.

[continued on p. 111]

Microsoft Technical Fellow and 2009 ACM A.M. Turing Award winner Charles P. Thacker in front of the Charles Babbage Difference Engine
No. 2 at the Computer History Museum, Mountain View, CA.

http://www.reviews.com
http://Reviews.com
http://Reviews.com

It’s not just what we make.
It’s what we make possible.

Advancing Technology Curriculum
Driving Software Evolution
Fostering Tomorrow’s Innovators

Learn more at: www.intel.com/thinkparallel

Copyright © 2009 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.
 *Other names and brands may be claimed as the property of others.

Think Parallel.....

http://www.intel.com/thinkparallel

	Table of Contents
	Departments
	Editor’s Letter
	Hypercriticality

	Letters To The Editor
	Don’t Ignore Security Offshore, or in the Cloud

	In the Virtual Extension
	BLOG@CACM
	Software Development and Crunch Time; and More

	CACM Online
	In Case You Missed It

	Calendar
	Careers

	Last Byte
	Q&A
	From Single Core to Multicore

	News
	Sharing Computational Perspectives
	Censored!
	Mainstreaming Augmented Reality
	Committed to Success
	Eric Brewer: Change Agent
	Visions of the Future

	Viewpoints
	Technology Strategy and Management
	Outsourcing Versus Shared Services

	Computing Ethics
	Work Life in the Robotic Age

	Legally Speaking
	Should the Google Book Settlement Be Approved?

	Broadening Participation
	Cultivating Cultural Diversity in Information Technology

	Viewpoint
	Is Computer Science Truly Scientific?

	Distinguished Members
	Advice to Members Seeking ACM Distinction

	Practice
	The Ideal HPC Programming Language
	Visualizing System Latency
	You’re Doing It Wrong

	Review Articles
	Algorithmic Game Theory

	Contributed Articles
	Commonsense Understanding of Concurrency: Computing Students and Concert Tickets
	Computer Graphics for All

	Research Highlights
	Technical Perspective
	A Solid Foundation for x86 Shared Memory
	Technology Scaling Redirects Main Memories

	x86-TSO: A Rigorous and Usable Programmer’s Model for x86 Multiprocessors
	Phase Change Memory Architecture and the Quest for Scalability

