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editor’s letter

Hypercriticality
In the two years since we launched the 
revitalized Communications of the ACM, 
I have received hundreds of email messages 
from readers. The feedback has been

mostly, but not universally, positive. 
Many people do note places where we 
can do better. Some readers point out 
errors in published articles. Nothing 
in life is perfect. Communications is an 
ongoing project; continuous improve-
ment is the name of the game.

At the same time, I have also re-
ceived a fair number of notes with 
nothing short of withering criticism. 
For example, six issues into the revi-
talized Communications, I received 
this comment from a leading comput-
er scientist: “Although I have looked 
at every issue and at least glanced at 
every article, I have not yet found one 
good one.”

Do you find this statement harsh? 
It surely pales in comparison to this: 
“The level is unbelievably poor. It 
reads sometimes like a PR article for 
big companies.  Donation to the ACM 
seems to be the main reviewing cri-
terion. I would call the policy of ACM 
scientific prostitution, and I don’t 
want to pay for a prostitute.”

I believe most of us have received 
at some point very harsh reviews— 
though, hopefully, not that harsh—on 
papers or proposals we have written. 
If you are an experienced researcher, 
you have undoubtedly dealt with pa-
pers and proposals being declined. 
Still, the harsh tone of negative re-
views can be quite unsettling even to 
experienced authors. When I talk to 
colleagues about this, they just shrug, 
but I think this phenomenon, which 
I call “hypercriticality,” deserves our 
collective attention. Other people re-
cently commented on this issue.  In 

the context of proposal reviewing, Ed 
Lazowska coined the phrase “circling 
the wagons and shooting inwards,” 
and John L. King, in a recent CCC 
blog, referred to such verbal assaults 
as “Fratricide.” Jeff Naughton, refer-
ring to conference paper reviewing, 
said in a recent invited talk that “bad 
reviewing” is “sucking the air out of 
our community.” 

The “hypercriticality” claim is not 
just based on anecdotes; we actually 
have data that supports it. Proposals 
submitted to the Computer and In-
formation Science and Engineering 
(CISE) Directorate of the U.S. National 
Science Foundation (NSF) are rated, 
on the average, close to 0.4 lower (on 
a 1-to-5 scale) than the average NSF 
proposal. In his blog entry, King dis-
cussed the harmful effects of such 
harshness.

What is the source of this harsh-
ness within our discipline? Here one 
can only speculate. Let me offer two 
possible explanations. My first theory 
refers to the intrinsic nature of our dis-
cipline. Computing systems are noto-
riously brittle. Mistyping one variable 

name can lead to a catastrophic fail-
ure. Computing embodies the princi-
ple of “For lack of a nail, the kingdom 
was lost.” This makes us eternally vigi-
lant, looking for the slightest flaw. In 
our eternal hunt for flaws, we often fo-
cus on the negative and lose perspec-
tive of the positive. 

My second theory refers to the so-
ciology of our field. We typically pub-
lish in conferences where acceptance 
rates are 1/3, 1/4, or even lower. Re-
viewers read papers with “reject” as 
the default mode. They pounce on 
every weakness, finding justification 
for a decision that, in some sense, has 
already been made. It is particularly 
easy to be harsh when reviewing pro-
posals. If the proposal is not detailed 
enough, then the proposer “does not 
have a clear enough plan of research,” 
but if the proposal is rich in detail, 
then “it is clear that the proposer has 
already done the work for which fund-
ing is sought.”

What is to be done? Remember, we 
are the authors and we are the review-
ers. It is not “them reviewers;” it is “us 
reviewers.” Hillel the Elder, a Jewish 
scholar, 30 B.C.–10 A.D., said “What is 
hateful to you, do not do to your fel-
low.” This is known as the Silver Rule 
in moral philosophy. The Golden 
Rule, which strengthens the Silver 
Rule, asserts “do unto others as you 
would have them do to you.” Allow me 
to rephrase this as the Golden Rule of 
Reviewing: “Write a review as if you are 
writing it to yourself.” This does not 
mean that we should not write critical 
reviews! But the reviews we write must 
be fair, weighing both strengths and 
weaknesses; they must be construc-
tive, suggesting how the weaknesses 
can be addressed; and, above all, they 
must be respectful.

After all, these are the reviews that 
we would like to receive!

Moshe Y. Vardi, editor-in-chief

DOI: 10.1145/1785414.1785415	 	 Moshe Y. Vardi

What is the source of 
this harshness within 
our discipline?
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letters to the editor

M
oshe Y.  Vardi’s  Editor’s 
Letter “Globalization and 
Offshoring of Software Re-
visited” and Dave Dur-
kee’s “Why Cloud Com-

puting Will Never Be Free” (both May 
2010) failed to address security risks. 
Vardi’s headline promised an update 
on the questions raised by increased 
globalization of outsourced software 
development. Though I knew his main 
focus was on the economic impact 
of global outsourcing, I was still dis-
appointed there was no mention of 
the security challenges posed by the 
global supply chain for software. Such 
challenges have prompted the U.S. De-
partments of Defense and Homeland 
Security, the SAFECode consortium, 
and numerous other organizations to 
commit significant effort to combating 
threats posed by software of unknown 
pedigree and provenance, including 
individual and state-sponsored “in-
sider threats” (such as implanted mali-
cious logic, backdoors, and exploitable 
vulnerabilities), particularly when de-
veloped offshore. See the Government 
Accountability Office’s Defense Acquisi-
tions: Knowledge of Software Suppliers 
Needed to Manage Risks (http://www.
gao.gov/new.items/d04678.pdf) and 
the Report of the Defense Science Board 
Task Force on Mission Impact of Foreign 
Influence on DOD Software (http://www.
acq.osd.mil/dsb/reports/ADA486949.pdf). 
Though both focus on software used 
by DoD, the security issues apply to any 
organization that relies on outsourced 
software for critical business or mis-
sion functions. 

Meanwhile, in an otherwise admi-
rable assessment of the strengths and 
weaknesses of the cloud computing 
model of outsourced IT-as-a-service, 
Durkee likewise failed to mention po-
tential consequences of cloud provid-
ers not protecting outsourced comput-
ing infrastructure against hackers and 
malicious code. For example, when dis-
cussing transparency, he overlooked 
the fact that no cloud provider allows 
its customers to implement intrusion 
detection or security monitoring ex-

tending into the management-services 
layer behind virtualized cloud instanc-
es. Moreover, these customers have 
learned not to expect their providers to 
deliver detailed security-incident, vul-
nerability, or malware reports. 

The management-service layer pro-
vides a back channel through which 
the content of each cloud instance is 
accessible, not only by providers, but 
by any attacker able to hack into or 
implant a kernel-level rootkit. Once 
“in,” the attacker is positioned to ex-
ploit the back channel to manipulate 
or even make full copies of all cloud 
instances hosted on the compromised 
platform. Even if customers manage to 
get their providers to agree to service-
level agreements (SLAs) sti pulating a 
high level of vigilance, reporting, and 
protection below the cloud-instance 
layer, the management-services layer 
remains an inherent weakness that 
should concern anyone looking to host 
“in the cloud” the kinds of critical ap-
plications Durkee explored. 

Karen Mercedes Goertzel, 
	 Falls Church, VA 

Author’s Response: 
I strongly agree with Goertzel’s sentiment 
and appreciate her raising this very 
important issue. The executive summary 
of the 2006 Globalization and Offshoring 
Report said: “Offshoring magnifies existing 
risks and creates new and often poorly 
understood or addressed threats to 
national security, business property and 
processes, and individuals’ privacy. While it 
is unlikely these risks will deter the growth 
of offshoring, businesses and nations should 
employ strategies to mitigate them.” The 
Report’s Chapter 6, “Offshoring: Risks And 
Exposures,” covered the risks at length. 

Moshe Y. Vardi, Editor-in-Chief 

Author’s Response: 
As with performance and uptime, cloud 
security is determined by the necessity of 
meeting the terms of SLAs as demanded 
by customers. As they mature, they will 
demand even more from their providers’ 

SLAs by agreeing to industry-standard 
audits and certifications that ensure they 
get the security they need, a topic that is a 
great starting point for another article. 

Dave Durkee, Mountain View, CA 

Up in the Air 
Describing the network effects of a 
cloud strategy, particularly when it 
involves SaaS platform efficiency, in 
his “Technology Strategy and Man-
agement” Viewpoint “Cloud Comput-
ing and SaaS as New Computing Plat-
forms” (Apr. 2010), Michael Cusumano 
said that major cloud hosts, including 
Amazon, Google, and Salesforce, gen-
erally rely on detailed SLAs to guar-
antee security and other parameters 
for their hosted customers. However, 
many such hosts, including Amazon 
SimpleDB and Google Apps, agree to 
SLAs involving only, perhaps, perfor-
mance degradation limits and avail-
ability of a given service. If cloud-relat-
ed SLAs fail to include more specific 
parameters, the cloud infrastructure 
risks closing itself to new, innovative 
services due to its lack of dependable 
guarantees. 

Burkhard Stiller and Guilherme 
	M achado, Zürich, Switzerland 

Diversity Factor 
Richard Tapia’s inspiring Viewpoint 
“Hiring and Developing Minority Fac-
ulty at Research Universities” (Mar. 
2010) said that looking for the next 
Gauss or Turing is not necessarily the 
key criterion in all CS faculty searches. 
I have sometimes sensed confusion be-
tween the notion that research excel-
lence drives academic success (it does 
and should) and what might be called 
the “additive argument,” or belief that 
maximizing the potential research 
stature of every new hire automatically 
maximizes a department’s overall ex-
cellence in research. I read Tapia’s sec-
tion on reexamining search criteria to 
mean this is not always the case. I con-
cur, convinced that the effects of talent 
are not simply additive. 

Don’t Ignore Security Offshore, or in the Cloud 
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cessing Task Force. This group was 
chartered to develop COBOL language 
extensions for processing collections 
of records; the name arose because 
Charles Bachman’s IDS system (which 
was the main technical input to the 
project) managed relationships be-
tween records using chains of pointers. 
In 1967 the group renamed itself the 
Data Base Task Group and in October 
1969 published its first language speci-
fications for the network database 
model, which became generally known 
as the CODASYL Data Model.” 

The Integrated Data Store (IDS) has 
been in continuous productive use 
since 1964, running first on GE 200 
computers. In 1966, it began support-
ing a nationwide, 24/7, order-entry 
system (OLTP). And in 1969, running 
on the GE 600, it began supporting a 
shared-access (OLTP) database, com-
plete with locks, deadlock detection, 
and automatic recovery and restart. 

IBM did not release its IMS/360 (In-
formation Management System) based 
on the hierarchical data model until 
September 1969 when future relational 
databases were still just a gleam in Ted 
Codd’s eye. 

B.F. Goodrich received the IDS 
source code from GE in 1964, renam-
ing it the Integrated Database Manage-
ment System, or IDMS, when rewritten 
for the IBM 360 (1969–1971). IDMS 
was acquired (1973) and marketed 
worldwide by Cullinane (later Culli-
net). IDMS was acquired (1989) by CA 
(formerly Computer Associates), which 
still actively supports it worldwide on 
more than 4,000 IBM mainframes. Brit-
ish Telecom and the Brazilian govern-
ment are the best-known IDMS users, 
rated, in 2005, the second- and third-
largest OLTP systems in the world. 

For more, please see the refereed 
papers on IDS, IMS, IDMS, and other 
DBMS products in IEEE Annals of the 
History of Computing (Oct.–Dec. 2009) 
special issue on “Mainframe Software: 
Database Management Systems.” A fu-
ture issue is planned to cover more re-
cent RDBMS history. 

Charles W. (Charlie) Bachman, 
	L exington, MA, ACM Turing Award 1973 

Communications welcomes your opinion. To submit a 
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It ought to go without saying that 
the goal of diversity of gender or ethnic 
origin does not generally conflict with 
excellence in research. For instance, in 
recent years my department has inter-
viewed several women candidates who 
were uniformly superior to their male 
counterparts. 

However, in specific faculty search-
es it may be that the potential research 
stature of a certain white male candi-
date is perceived as exceeding that of a 
certain female or minority candidate. 
The latter may be stellar, but the for-
mer’s intellectual light shines just a bit 
brighter. If the discrepancy is compa-
rable to the rather high level of uncer-
tainty inherent in measuring a candi-
date’s potential, some may invoke the 
additive argument. 

However, this argument seems to 
rest on two questionable assumptions: 
departmental excellence (however 
measured) is the arithmetic sum of the 
individual levels of excellence of its fac-
ulty members; and the success of an in-
dividual researcher is independent of 
the surrounding environment. 

Both are wrong. Excellence in re-
search (individually or across a depart-
ment) is a nonlinear function of inter-
dependent factors. For instance, in a 
department that makes itself attractive 
to a broader pool of graduate students 
through the composition of its faculty, 
all researchers benefit from the result-
ing potentially improved quality of the 
department’s student body. This also 
holds when attracting new colleagues, 
including so-called superstars. When 
female or minority candidates are at, 
say, the top of the list in a particular 
search, they (like everybody else) also 
consider a department’s environment 
when choosing which job offer to ac-
cept. Moreover, a more welcoming, col-
legial, diverse faculty often leads to bet-
ter and more frequent collaboration, 
as well as to more vibrant research. 

The question is not whether to com-
promise between excellence and diver-
sity but how best to foster excellence, 
with diversity a part of the equation. 

Carlo Tomasi, Durham, NC 

Wrong Side of the Road 
In his Editor’s Letter “Revisiting the 
Publication Culture in Computing Re-
search” (Mar. 2010), Moshe Y. Vardi 

said computer science is “the only 
scientific community that considers 
conference publications as the prima-
ry means of publishing our research 
results,” asking, “Why are we the only 
discipline driving on the conference 
side of the ‘publication road?’” 

As an old timer, I can say that in the 
early days, there was a belief (conceit 
might be a better word) that the field’s 
pace of discovery was happening so 
quickly that only conferences, with 
subsequent prompt publication of pro-
ceedings, could communicate results 
in a timely manner. As a corollary, the 
traditional peer-reviewed published 
literature review fell behind, as it was 
relieved of temporal pressure through 
the published proceedings. 

These days, the pace of discovery 
in the biological sciences, including 
molecular biology, genomics, and 
proteomics, far exceeds that of com-
puter science. Yet the gold standard 
of publication in archival journals 
continues. It is the ultimate irony 
that computer science, along with 
various disciplines in the physical sci-
ences, employs the tools developed by 
computer scientists to ensure timely 
dissemination of research results 
through the online editions of their 
publications. Science, Nature, Cell, 
and other leading journals routinely 
present their most important articles 
in online form first. If, perhaps, com-
puter science would make greater use 
of its own tools, the shoemaker’s chil-
dren would no longer go barefoot, and 
published proceedings would fade 
into its proper historical niche. 

Stuart Zimmerman, Houston, TX 

More to Celebrate in RDBMS History 
Gary Anthes offered good reporting but 
also some serious errors concerning 
pre-RDBMS history in his news article 
“Happy Birthday, RDBMS!” (May 2010), 
saying “In 1969, an ad hoc consortium 
called CODASYL proposed a hierarchi-
cal database model built on the con-
cepts behind IMS. CODASYL claimed 
that its approach was more flexible 
than IMS, but it still required program-
mers to keep track of far more details 
than the relational model did.” 

Please compare with the following 
basic facts as reported in Wikipedia: 
“In 1965 CODASYL formed a List Pro-
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IT Programs in High Schools: 
Lessons from the Cisco  
Networking Academy Program
Alan R. Dennis, Thomas M. Duffy,  
and Hasan Cakir

The authors studied 5,392 students 
taking a course from the Cisco 
Networking Academy at 764 high schools 
across the U.S. to understand the factors 
that influenced their achievement 
and confidence. Surprisingly, school 
characteristics (inner city vs. suburban, 
rich vs. poor) had virtually no impact. 
What mattered most was instruction 
quality and an individual student‘s 
ability, motivation, and, unfortunately, 
gender. This style of program, with a 
strong centralized curriculum, local 
customization, standards-based testing, 
and strong teacher support overcame the 
traditional educational barriers to enable 
each student to rise to his or her own level 
of ability and motivation. 

Creating the Experience  
Economy in E-Commerce
Wei-Lun Chang, Soe-Tsyr Yuan,  
and Carol W. Hsu

The potential economic value of 
experience-oriented offerings has been 
demonstrated in the physical marketplace. 
This study suggests the widespread use 
of the Internet allows the experience 
economy to be extended to the virtual 
marketplace. The growing practice of 
online collaborative design demonstrates 
the potential for providing the experience 
economy via the Internet. The authors 
propose expanding the existing practices 
by incorporating the concept of 
collaborative pricing into the design of 
experience offerings, as demonstrated 
in their iCare platform. The article is 
intended to motivate further research 
into the development of the experience 
economy in e-commerce. 

How Distributed Data Mining Tasks 
Can Thrive as Knowledge Services
Domenico Talia and Paolo Trunifo

Through a service-oriented approach 
we can support distributed business 
intelligence tasks in clouds and grids. 
Those services can implement all the tasks 
in data mining and in knowledge discovery 
processes such as data selection, data 
analysis, and knowledge representation. 
The authors explore architectures and 
services for distributed knowledge 
discovery such as the Knowledge Grid, the 
Weka4WS toolkit, and mobile data mining 
services. The article describes a strategy 
and a model based on the use of services 
for the design of distributed knowledge 
discovery applications and discusses 
how grid and cloud frameworks can be 
developed as a collection of services and 
how they can be used to support knowledge 
discovery processes using the SOA model.

ERP: Drilling for Profit  
in the Oil and Gas Industry
Jorge A. Romero, Nirup Menon,  
Rajiv D. Banker, and Mark Anderson

The article presents research that applies 
to a new approach toward understanding 
ERP implementation. Rather than looking 
at ordinary measures of firm performance, 
the authors examine strategic performance 
measures that can only be utilized if one 
delves into data that is not found on the 
financial statements. It is one of the first 
studies to show the sources of profitability 
after an ERP implementation and will 
help managers understand the strategic 
and managerial implications of ERP 
implementation.

Why Do People Tag?  
Motivations for Photo Tagging
Oded Nov and Chen Ye

Given the growing popularity of tags 
as a means of sharing and organizing 
large amounts of data, it is critical for 
developers and managers of collaborative 
content-sharing systems such as Flickr, 
YouTube, and del.icio.us to understand 
what motivates users to tag. The authors 
examine individual-level motivations 
using a newly developed scale as well as 
the social presence driver and the number 
of user photos. The findings suggest that 
both social presence and individual-level 
motivation affect users’ tagging level.

Using ESI Discovery Teams to 
Manage Electronic Data Discovery
John C. Ruhnka and John W. Bagby

Many organizations face litigation threats 
with associated crippling costs, staff-time 
demands, and adverse financial impacts. 
“Discovery,” the legal and operational 
process governing the evidentiary use of 
electronically stored information (ESI)—
including email messages—plays a central 
role in the cost of litigation as well as in 
potential outcomes. Multidiscipline ESI 
“discovery teams” containing key IT, legal, 
and operational players involved in this 
complex process can more effectively 
manage the “litigation hold” process, 
and can better assess the potential costs 
of alternative strategies in collection, 
identification, verification, recovery, and 
production of relevant electronic data 
sought as evidence.

Application Service Providers: 
Market and Adoption Decisions
Yurong Yao, Edward Watson,  
and Beverly K. Kahn

Deciding whether, how, and with whom to 
outsource an organization’s applications 
is important. Key factors influence 
the Application Service Provider (ASP) 
decision-making process and the ultimate 
organizational success. The authors 
examine the current ASP market and 
recommend evaluation criteria by looking 
at hosting by “Pure ASPs” (small companies 
who purely provide hosting services) and 
“ISVs” (independent software vendors, 
who develop software and host their own 
applications). These ASPs provide either 
vertical (within a single industry sector) or 
horizontal (across industries) applications. 
Several adoption cases are presented to 
explain the recommendations.
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I made the transition from developer 
to manager, I was glad to have had the 
experience so I could advocate for my 
teams. Although I couldn’t always get 
rid of crunch times, I worked to keep 
their durations as short as possible.

Why do developers put up with 
crunch time? I believe the reason is as 
simple as “progress.” “Progress” was 
the factor that was most important to 
12,000 workers, according to two re-
searchers who analyzed the workers’ di-
ary entries. 

As long as the workers believe they 
are making headway in delivering their 
product, they are getting an intrinsic re-
ward that motivates them to work more. 
If you have a team making progress on a 
delivery, the combined effort of the team 
will self-reinforce and encourage them 
all for their efforts. On Amazon Auc-
tions, I worked on implementing search 
for the system and would nap while an-
other team member would deliver new 
catalog content. By the time I returned, 
we would integrate our code, which 
would result in a complete auction 
search results. The work was rewarding 
despite our working through weekends 
to complete the project. The progress 
was beautiful and easy to see. One day 
the system had mockups for search re-
sults and the next day the results would 
be feeding from live data. The intrinsic 
reward of making progress and working 
with the team to deliver helped combat 
the potential for burnout. 

It is unrealistic to deliver any project 
without going through some crunch 
time. Although progress helps to mo-
tivate employees during those periods, 

Ruben Ortega’s 
“Why Do Software 
Developers Tolerate 
‘Crunch Time’?” 
http://cacm.acm.org/blogs/
blog-cacm/70922

Given the increased risk of burnout for 
an extended “crunch time,” why do de-
velopers put up with it? 

For software developers, crunch 
time is a period prior to a major prod-
uct milestone when team members are 
asked to put in extra effort to get a prod-
uct finished by a specific delivery date. 
Practically, this can be a horrific period 
of 80-plus hour weeks that goes on for 
months as the team scrambles to deal 
with bugs, last-minute feature requests 
and modifications, and milestones. 
For game companies and large Inter-
net retailers in particular, the mantra 
of “Christmas never slips” means that 
crunch time occurs during the summer 
so products can be released by the fall 
and be available between Thanksgiving 
and Christmas. Recently, the wives of 

Rockstar Games posted an open letter 
to the company’s management about 
the impact of the crunch time on their 
lives. The company was demanding 6–7 
days a week, with 12–16 hour days. The 
impact included mental, physical, and 
emotional strain on the employees and 
their families. 

Reading the discussions on Slashdot 
about Rockstar Games’ working condi-
tions highlighted that this problem is 
industrywide. As a developer and man-
ager, I have worked on a number of proj-
ects at various startups that involved pe-
riods of crunch time that lasted longer 
than I thought was realistic. When I was 
a young engineer working on Amazon 
Auctions, doing the all-nighter was a 
badge of honor. Eventually, I discovered 
most of the code you write during those 
A. m.  hours will likely be thrown away. 
After a few crunch times, I learned to be 
a better self-advocate, and was able to 
sensibly set expectations of what com-
bination of features, quality, and test-
ing I could deliver by a given date. When 
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ineffective project planning can lead 
to an egregious amount of time where 
progress alone will not be enough to 
sustain the employees’ motivation. If 
excessive crunch time continues to oc-
cur, the employees—the company’s 
most valuable resource—should work 
to either change the organization or 
they will be compelled to move to a 
more supportive company. The books 
Peopleware and Slack: Getting Past 
Burnout, Busywork and Total Efficiency 
are great reminders on why we should 
work hard to take care of our teams.

Mark Guzdial’s 
“The Impact of Open 
Source on Computing 
Education” 
http://cacm.acm.org/blogs/
blog-cacm/72144

We had a Georgia Tech alum, Mike 
Terry (now at Waterloo) visit us a cou-
ple weeks ago. Mike’s research is on 
usability practices in open source. I 
got a chance to chat with Mike, and 
we talked about the impacts of open 
source on computing education, such 
as high school students getting started 
with computing by working in open 
source development. Overall, though, I 
came away concerned what the growth 
of open source development means for 
the future of computing education.

At a time when we are trying to 
broaden participation in computing, 
open source development is even more 
closed and less diverse than commercial 
software development. It is overwhelm-
ingly white, Asian, and male. Some esti-
mates suggest that less than 1% of open 
source developers are female.

Many kids and parents worry that 
all computer science jobs are being 
offshored and that it’s not worth study-
ing computing. As more and more of 
the software we use daily is created via 
open source development, I wonder if 
kids and parents will hear the message, 
“Most software developers work for free, 
or at least have to work for free for years 
before they can become professional 
and get paid for their work.” Of course, 
that’s not true. Neither is it true that all 
IT jobs are being offshored, but that’s 
still what some people believe.

One of our challenges in comput-
ing education is convincing people 
that computing is broad and about 
more than programming. Open source 

values code above all, or as Linux’s 
originator Linux Torvalds said, “Talk is 
cheap. Show me the code.” We’re trying 
to convince students that talk is also 
valuable in computing.

Finally, Mike’s talk was about how 
common usability practices are rare in 
open source development. Of course, 
that’s a concern in itself, but it’s par-
ticularly problematic for newcomers. 
When students develop toward being 
professionals, they frequently engage in 
a process that educators call legitimate 
peripheral participation (LPP). It’s LPP 
when you start out in a company picking 
up trash (doing something legitimate 
on the periphery), and in so doing, fig-
ure out what happens in the company. 
Students can get started in software 
development at a company by doing 
tasks that aren’t directly about writing 
software, but are about the whole enter-
prise. These legitimate peripheral tasks 
serve as a stepping stone into the pro-
cess, like writing documentation or run-
ning subjects in usability testing. If you 
don’t have usability testing, you don’t 
have that path into the process. Break-
ing into an open source development 
process is hard, and that keeps more 
students out than invites them in.

I wrote on this topic in my regular 
blog, and was surprised at the response. 
I learned that it is not acceptable to 
criticize religion, Santa Claus, or open 
source development—it’s a “good” that 
should just be accepted as such. I dis-
agree. Open source development does 
generate enormous good, but it could 
do more good if it improved its practices. 
It’s hard to change open source develop-
ment, because of its distributed nature. 
Open source developers should worry 
about the messages they send future de-
velopers, especially if they hope to grow 
and attract the development talent pool.

Daniel Reed’s 
“Paucity to Plethora: 
Jevons Paradox”
http://cacm.acm.org/blogs/
blog-cacm/72373

Those of us of a certain 
age remember when the university 
computer (note the singular) was a sci-
entific and engineering shrine, protect-
ed by computer operators and secure 
doors. We acolytes extended offerings 
of FORTRAN, ALGOL, or COBOL via 
punched card decks, hoping for the 

blessings that accrued from a syntac-
tically correct program that compiled 
and executed correctly.

The commonality across all our ex-
periences was the need to husband 
computer time and plan job submis-
sions carefully, particularly when one’s 
job might wait in the queue for six to 10 
hours before entering execution. I dis-
tinctly remember spending many eve-
nings laboriously examining my latest 
printout, identifying each syntax error 
and tracing the program flow to iden-
tify as many logic errors as possible be-
fore returning to the keypunch room to 
create a new punched card deck.

Because computing time was scarce 
and expensive, we devoted considerable 
human effort to manual debugging 
and optimization. Today, of course, my 
wristwatch contains roughly as much 
computing power as that vintage uni-
versity mainframe, and we routinely 
devote inexpensive computing time to 
minimize human labor. Or do we?

Yes, we routinely use WIMP inter-
faces for human-computer interaction, 
cellular telephony is ubiquitous, and 
embedded computers enhance every-
day objects. However, I suspect much of 
computing is still socially conditioned 
by its roots in computational paucity to 
fully recognize the true opportunity af-
forded by computational plethora.

Many of us are wed to a stimulus-
response model of computing, where 
humans provide the stimulus and com-
puters respond in preprogrammed 
ways. In a world of plethora, comput-
ing could glean the work, personal, and 
emotional context, anticipating infor-
mation queries and computing on be-
half rather than in response. My com-
puter could truly become my assistant.

In economics, the Jevons paradox 
posits that a technological increase in 
the efficiency with which a resource 
can be used stimulates greater con-
sumption of the resource. So it is with 
computing. I believe we are just at the 
cusp of the social change made pos-
sible by our technological shift from 
computational paucity to computa-
tional plethora.	

Ruben Ortega is an engineering director at Google. 
Mark Guzdial is a professor at the Georgia Institute 
of Technology. Daniel Reed is vice president of Technology 
Strategy & Policy and the eXtreme Computing Group  
at Microsoft.

© 2010 ACM 0001-0782/10/0700 $10.00
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In Case You Missed It

The most popular content on Communications’ site is something many readers 
know nothing about. The BLOG@CACM (http://cacm.acm.org/blogs/blog-cacm) 
is original online material that does not appear in the monthly magazine except 
in abbreviated form (see page 10). Eleven entries from this blog were among the 
site’s 100 most popular articles in the first 14 months following its makeover, and 
seven landed in the top 50 (see below). That’s more articles than from any single 
section of the monthly magazine. 

These frontrunners show the strength and diversity of the blogs. Most were 
penned by regular contributors, but a couple were filed by guest bloggers from 
a major ACM conference. Communications is always looking for new bloggers: 
guests as well as new experts.

The blogs generate a strong share of comments. In most of the cases cited 
here, the author is an active participant in the discussions, responding to ques-
tions, refining points, and bringing an immediacy and level of engagement the 
magazine cannot match. 

While it is clear that many readers are finding this content, it is also clear that 
many are not. A recent survey found that 40% of readers didn’t know or had no 
opinion about the BLOG@CACM, and 61% said the same about the site’s blogs 
overall (it also publishes a Blogroll at http://cacm.acm.org/blogs/blogroll).  If you 
are in the ‘don’t know’ category, here’s what you’ve missed. If you are interested 
in blogging for the BLOG@CACM as a regular contributor or from a conference, 
email blog@cacm.acm.org.

Title/URL Author/URL
# of User 
Comments

How We Teach Introductory  
Computer Science is Wrong
http://cacm.acm.org/blogs/blog-cacm/45725 

Mark Guzdial
http://www.cc.gatech.edu/~guzdial/ 

15

The End of a DBMS Era (Might Be Upon Us)
http://cacm.acm.org/blogs/blog-cacm/32212 

Michael Stonebraker
http://www.csail.mit.edu/user/1547 

6

The ‘NoSQL’ Discussion Has Nothing  
to do With SQL
http://cacm.acm.org/blogs/blog-cacm/50678 

Michael Stonebraker
http://www.csail.mit.edu/user/1547 

7

Errors in Database Systems, Eventual 
Consistency, and the CAP Theorem
http://cacm.acm.org/blogs/blog-cacm/83396 

Michael Stonebraker
http://www.csail.mit.edu/user/1547 

10

Extreme Agility at Facebook
http://cacm.acm.org/blogs/blog-cacm/51564 

E. Michael Maximilien
http://www.maximilien.com/homepage/
about_me.html 

4

What is a Good Recommendation Algorithm?
http://cacm.acm.org/blogs/blog-cacm/22925 

Greg Linden
http://glinden.blogspot.com/ 

10

Clay Shirky: Doing work, or Doing Work?
http://cacm.acm.org/blogs/blog-cacm/72609 

Michael Bernstein
http://people.csail.mit.edu/msbernst/ 

4

ACM 
Member 
News
Alain Chesnais Elected 
ACM President

Alain Chesnais, 
owner of Visual 
Transitions, a 
Toronto-based 
consulting 
company 
specializing in 

computer graphics and social 
networks, was elected president 
of ACM in the May 2010 general 
election. 

A longtime ACM volunteer, 
Chesnais views the key challenges 
facing ACM as “our becoming a 
truly international organization 
and attracting younger members 
into the organization.” Specifically, 
Chesnais wants to both strengthen 
ACM’s presence in China and 
India and “to do much more in 
terms of expanding our online 
presence to better cater to the 
needs of younger researchers and 
practitioners.” 

The ACM General Election 
results include:

President
Alain Chesnais,  
Visual Transitions
(term: July 1, 2010–June 30, 2012)

Vice President
Barbara G. Ryder, Virginia Tech
(July 1, 2010–June 30, 2012)

Secretary/Treasurer
Alexander L. Wolf,  
Imperial College London
(July 1, 2010–June 30, 2012)

Members at Large
Vinton G. Cerf, Google
(July 1, 2010–June 30, 2014)

Salil Vadhan, Harvard University
(July 1, 2010–June 30, 2014)

A policy passed by the ACM 
Council in October 1980 calls 
for publication of the number of 
votes polled by each candidate. 

President
Alain Chesnais 5,277
Joseph A. Konstan 3,344

Vice President
Barbara Ryder 5,743
Norman Jouppi 2,936

Secretary/Treasurer
Alexander L. Wolf 5,371
Carlo Ghezzi 3,162

Members at Large
Vinton Cerf 6,485
Salil Vadhan 4,113
Satoshi Matsuoka 3,445
Fei-Yue Wang 2,664

http://cacm.acm.org/blogs/blog-cacm
http://cacm.acm.org/blogs/blogroll
mailto:blog@cacm.acm.org
http://cacm.acm.org/blogs/blog-cacm/45725
http://www.cc.gatech.edu/~guzdial/
http://cacm.acm.org/blogs/blog-cacm/32212
http://www.csail.mit.edu/user/1547
http://cacm.acm.org/blogs/blog-cacm/50678
http://www.csail.mit.edu/user/1547
http://cacm.acm.org/blogs/blog-cacm/83396
http://www.csail.mit.edu/user/1547
http://cacm.acm.org/blogs/blog-cacm/51564
http://www.maximilien.com/homepage/about_me.html
http://www.maximilien.com/homepage/about_me.html
http://cacm.acm.org/blogs/blog-cacm/22925
http://glinden.blogspot.com/
http://cacm.acm.org/blogs/blog-cacm/72609
http://people.csail.mit.edu/msbernst/
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W
hy  bother with  sex? 
Venturing forth in 
search of a mate can 
be dicey business, and 
even if you succeed, 

you can pass on only half of your genes, 
which are randomly combined with 
half of your mate’s, to your offspring. 
For more than a century, biologists have 
suggested that mixing up genes is exact-
ly what sexual reproduction contributes 
to evolution, making it easier for novel 
gene combinations to appear. But the 
downside, also long understood by bi-
ologists, is that what gene mixing gives, 
it also takes away: Sexual reproduction 
can break up a winning gene combina-
tion as easily as it can create one. 

Nonetheless, among plants, fungi, 
and animals, sexual reproduction is far 
more popular than asexual reproduc-
tion, a fact for which biologists have 
no thoroughly satisfactory explana-
tion. In the December 2008 issue of 
Proceedings of the National Academies 
of Science, computer scientist Christos 
Papadimitriou and biologist Adi Livnat 
of the University of California, Berkeley 
teamed with biologists Jonathan Dush-
off of McMaster University and Marcus 
Feldman of Stanford University to offer 

a mathematical model that sheds some 
light on this puzzle. They imagined a 
simple system with two genes, each 
of which comes in three versions, and 
with different fitnesses (that is, survival 
values) assigned to the nine possible 

combinations of the two genes. From 
a starting population in which all gene 
combinations are equally likely, the 
model found that asexual reproduction, 
which gives offspring the same genes as 
their parents, quickly led to the domina-

Sharing Computational 
Perspectives
Computer scientists are now making intellectual  
contributions to a wide range of other disciplines, including 
evolutionary theory, physics, and economics.

Science  |  doi:10.1145/1785414.1785421	 David Lindley

In the Avida artificial life software program, bits of code act as organisms. As new 
computationally beneficial genotypes evolve, their fitness rises and they sweep through  
the population (hence the general height and color increase over time). 



14    communications of the acm    |   july 2010  |   vol.  53  |   no.  7

news

artificial life software platform Avida, in 
which bits of code act as “organisms” 
able to replicate and evolve. If the mod-
el is setup so that digital organisms gain 
more processing speed by being able to 
add two numbers, for example, then the 
ability to add appears and proliferates, 
even though it was not specifically pro-
grammed in. 

But if computer science is addressing 
the puzzle of sex, then sex has also done 
something for computer science, in the 
form of genetic algorithms that address 
optimization problems by evolving can-
didate solutions in a manner inspired 
by genetic recombination. However, 
these algorithms are not always good 
at reaching the solution a computer 
scientist wants. “Nature’s favorite trick 
yields bad optimizers,” says Papadimi-
triou, and it is this mystery that got him 

started on the research that led him to 
conclude that sex promotes mixability, 
not fitness. That distinction illustrates a 
difference in perspective; to a computer 
scientist, an algorithm has performed 
its job once it has produced a solution. 
To a biologist, on the other hand, a “so-
lution” is a stable configuration that 
doesn’t just appear once, but survives 
and prospers over many generations. 
Because evolution is so complex and, by 
definition, an ongoing process, “biolo-
gists have given up on having complete 
solutions,” Otto says.

Solving difficult problems, of course, 
is a basic aim of computer science, 
whose defining characteristic is “con-
quering complexity,” says Papadimitri-
ou. The theory of computational com-
plexity, which classifies problems by 
the resources needed to solve them, was 
pioneered by computer scientists in the 
face of general indifference from tradi-
tional mathematicians. The discovery 
of depth in computation, says Papadim-
itriou, allowed computer science to give 
birth to big questions, bestowing it with 
an intellectual respectability that math-
ematicians now fully embrace.

Insights from computer science have 
illuminated the mathematical proper-
ties of networks, broadly defined, lead-
ing to applications ranging from soci-
ology to physics. Networks can exhibit 
phase transitions—changes from one 
kind of macroscopic behavior to an-
other—that share deep similarities to 
phase transitions in physics, such as a 
liquid freezing into a solid. Belief propa-
gation, for example, is an algorithm for 
performing statistical inferences that 

tion of the particular gene combination 
with the greatest fitness. But sexual re-
production, which switches genes from 
one generation to the next, leads to a 
different outcome: the gene versions 
that dominate are those that give the 
greatest average fitness no matter which 
other gene version they are paired with.

Sex, in other words, promotes genes 
that are good mixers with other genes, 
and a versatile gene may be more valu-
able, from an evolutionary perspective, 
than one that works very well in some 
combinations but much worse in oth-
ers. Hence, the new model provides a 
specific and quantitative accounting of 
one useful aspect of sex. 

Today, computer scientists are doing 
far more than helping other scientists 
run their numerical models more ef-
fectively. The theory of computation has 
become such a sophisticated science in 
its own right that computer scientists 
are now making intellectual contribu-
tions to a wide range of other disci-
plines, including evolutionary theory, 
physics, and economics. 

Evolutionary Theory
Over the years, evolutionary theory has 
drawn on ideas from engineering, 
mathematics, and physics, so it’s hardly 
surprising that computer scientists are 
now also making substantial contribu-
tions. “Evolution is such a broad topic 
[that] it really benefits from a range of 
approaches,” says Sally P. Otto, an evo-
lutionary biologist at the University of 
British Columbia. One noteworthy ex-
ample of collaboration by biologists 
and computer scientists Otto cites is the 

Evolutionary theory 
has drawn on ideas 
from engineering, 
mathematics, 
and physics. 
Now computer 
scientists are also 
making substantial 
contributions.

Data Management

The Digital Universe Keeps Expanding
Between 2010 and 2020, the 
amount of digital information 
created and replicated in the 
world will grow to 35 trillion 
gigabytes as the major types of 
media—print, radio, TV, and 
voice—make the transition from 
analog to digital, according to 
a new IDC report The Digital 
Universe Decade—Are You Ready?

Written by John F. Gantz 
and David Reinsel, the report 
notes the amount of digital 
information created and 

replicated in the world, which 
IDC calls “the Digital Universe,” 
grew by 62% last year to nearly 
800,00 petabytes, despite a 
global recession. This year, IDC 
expects the Digital Universe will 
grow almost as fast to 1.2 million 
petabytes. This steady growth 
means the digital universe in 
2020 will be 44 times as big 
as it was in 2009. Meanwhile, 
the number of information 
containers—packets, files, 
images, and so on—in 2020 

will be 25 quintillion. 
“Although the amount of 

information in the Digital 
Universe will grow by a factor of 
44, and the number of containers 
or files will grow by a factor of 67 
from 2009 to 2020, the number 
of IT professionals in the world 
will grow only by a factor of 1.4,” 
according to IDC.

The relevant issues that must 
be considered, IDC says, include 
“developing tools for research 
and discovery of information as 

the Digital Universe expands, 
including finding ways to add 
structure to unstructured data 
through metadata, automatic 
content tagging, and pattern 
recognition”; deploying tools 
for new levels of information 
management and prioritized 
storage; and deploying tools and 
expertise for security and privacy 
projection for a growing portion 
of the Digital Universe in hybrid 
physical/virtual environments.”

—Jack Rosenberger
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fering ideas they can draw from, not only 
in the technical matter of making mathe-
matical models work efficiently, but also 
as a source of insight into the behavior 
and properties of those models. 

Fortnow notes that companies like 
Google, Microsoft, and Yahoo! have un-
derstood the importance of economics 
and computer science in developing 
products and services, and have assem-
bled teams in which both types of scien-
tists work side by side. This mixing of 
talents is happening at some universi-
ties, and the National Science Founda-
tion is considering a new program in 
economics and computer science. 

Certain ideas of computer scientists 
are catching on among economists, 
says Fortnow. He cites the auctioning 
of sections of the radio spectrum by the 
Federal Communications Commission 
as the type of economic game in which 
“computational issues get nasty,” be-
cause different players want different 
parts of the spectrum for a variety of 
exclusive purposes. Computer science 
can explain how complexity manifests 
itself in such a situation, and can sug-
gest mechanisms to make an auction 
more orderly and useful. Thus far, how-
ever, it’s hard to make the case that 
computer science has changed eco-
nomic theory in any significant ways 
but, Fortnow urges, “give it time!”	

Further Reading

Otto, S.P.
The evolutionary enigma of sex, The 
American Naturalist 174, S1, July 2009.

Lenski, R.E., Ofria, C., Pennock, R.T.,  
and Adami, C.
The evolutionary origin of complex features, 
Nature 423, 139, May 8, 2003.

Yedidia, J., Freeman, W.T., and Weiss, Y.
Understanding belief propagation and 
its generalizations, Exploring Artificial 
Intelligence in the New Millennium, 
Lakemeyer, G., Nebel, B. (eds), Morgan 
Kaufmann Publishers, San Francisco, CA, 
2003.

Fortnow, L. and Gasarch, B.
Computational Complexity blog  
http://blog.computationalcomplexity.org/

Kalai, E., Jackson, M.O., Lehrer, E., Palfrey, T.R., 
and Parkes, D.C. (eds.) 
Games and Economic Behavior 
http://www.elsevier.com/wps/locate/geb

David Lindley is a freelance science writer in Alexandria, VA.
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turns out to contain concepts closely 
related to fundamental principles of 
statistical thermodynamics, so that 
knowledge gained by physicists has in-
fluenced how computer scientists un-
derstand some types of computation.

Economics and Game Theory
Early on, computer scientists appreci-
ated game theory and economic mod-
eling. That connection dates to at least 
the 1940s and the pioneering work of 
John von Neumann, but has grown 
much deeper in recent decades. Econo-
mists talk of Pareto optimums, in which 
no participant in a system can perform 
better without making another partici-
pant worse off, and of Nash equilibria, 
in which no participant can make a uni-
lateral change of strategy that will bring 
an advantage, and they have proved the-
orems showing that, under certain as-
sumptions, Pareto optimums and Nash 
equilibria must exist. But the existence 
of such a state is no guarantee that a 
realistic system can actually attain it. 
For example, computer scientists have 
shown that Nash equilibria are compu-
tationally intractable problems, mean-
ing not only that mathematical models 
of economic markets are hard to solve, 
but that the extent to which human be-
havior can move a market toward a Nash 
equilibrium becomes questionable.

Moreover, Pareto optimality and 
Nash equilibria do not necessarily 
connote social or political desirability. 
Nash equilibrium represents the best 
that participants in a market can do by 
pursuing a wholly selfish strategy. Pa-
padimitriou has coined the term “price 
of anarchy” for the fact that Nash equi-
librium often gives participants a poorer 
outcome than the best they could have 
obtained through collaboration, while 
work by other computer scientists not 
only shows how to calculate this price, 
in certain models, but also indicates 
that the price may not be too high.

There are challenges, however, in 
getting academic disciplines to collabo-
rate, says Lance Fortnow, a professor of 
electrical engineering and computer sci-
ence at Northwestern University. “Com-
puter scientists want to impress other 
computer scientists,” Fortnow says, and 
economists possess the same attitude. 
But cooperation between the two fields 
is growing, and an increasing number of 
economists see computer science as of-

Milestones

SIGSOFT 
Awards
The ACM Special Interest 
Group on Software Engineering 
(SIGSOFT) recently presented 
its highest awards to several 
computer scientists whose 
contributions in research, 
education, and service have 
shaped the development of 
software engineering and 
its ability to solve complex 
computational problems.  

Eric Gamma, Richard 
Helm, Ralph Johnson, and 
(posthumously) John Vlissides 
received the 2010 SIGSOFT 
Outstanding Research Award 
for contributions to the practice 
of software engineering. Their 
landmark book Design Patterns 
explored the capabilities and 
pitfalls of object-oriented 
programming and catalogued 
23 specific solutions to common 
design problems. Gamma 
is technical director of the 
Software Technology Center of 
Object Technology International 
in Zurich, Switzerland. Helm is a 
partner and managing director 
of the Boston Consulting Group 
in Sydney, Australia. Johnson is 
on the faculty of the University 
of Illinois Urbana-Champaign 
department of computer 
science. Vlissides, a researcher 
at IBM T.J. Watson Research 
Center, passed away in 2005.

The 2010 SIGSOFT 
Influential Educator Award was 
presented to Leon Osterweil, a 
computer science professor at 
the University of Massachusetts 
Amherst, for pioneering work 
in graduate-level education 
in software engineering.  He 
launched the New Software 
Engineering Faculty Symposium 
in 1991 at the International 
Conference on Software 
Engineering to encourage new 
software engineering faculty 
early in their careers.

Mary Lou Soffa, who chairs 
the department of computer 
science at the University of 
Virginia, received the 2010 
SIGSOFT Distinguished 
Service Award for her extensive 
service in the software 
engineering community and her 
commitment to strengthening 
ties with her colleagues across 
the programming languages 
community. Soffa has served 
on the community’s leading 
editorial boards, advisory and 
steering committees, and 
conferences. 

http://blog.computationalcomplexity.org/
http://www.elsevier.com/wps/locate/geb
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G
o v e r nm  e nt  s  a tt  e m p t -

i ng   to  strangle access to 
sensitive information are 
nothing new. Through-
out history, authorities 

have seized printing presses, jammed 
radio broadcasts, and blocked televi-
sion programming in order to control 
hearts and minds. “In many countries, 
censorship is a deeply entrenched 
practice,” notes Andrew Lih, visiting 
professor of new media at the Univer-
sity of Southern California’s Annen-
berg School for Communication and 
Journalism.

However, in the age of the Internet, 
the stakes are higher and the challeng-
es associated with controlling informa-
tion are greater. According to Reporters 
Without Borders, a dozen countries—
including China, Iran, and Saudi Ara-
bia—are on its annual “Enemies of the 
Internet” list, which is based on the 
number of citizens arrested, harassed, 
or threatened in the previous year for 
their online activities and on how the 
nations monitor the Internet and limit 
access. Eleven other countries made 
Reporters Without Borders’ “Under 
Surveillance” list, and even nations 
that trumpet freedom sometimes rely 
on censorship techniques. In addition, 
Reporters Without Borders states that 
118 bloggers and other netizens are 
currently residing in jails because of 
content they have posted.

In fact, a growing number of govern-
ments use methods—including Do-
main Name System blocking, Internet 
Protocol blocking, or Uniform Resource 
Locator keyword filters (see “How Cen-
sorship Works” on right)—to make 
popular Web sites, such as Facebook, 
YouTube, and Twitter, inaccessible to 
their citizens. Some also force Google 
and other search engines to self-censor 
their results. In most instances, the goal 
is to control the political dialogue, but 
authorities also use these techniques to 
create favorable conditions for govern-

ment-controlled businesses and others 
operating in their country. 

Not surprisingly, citizens of these 
countries are increasingly turning to 
software tools that circumvent blocks 
and filters through the use of proxy 
servers or virtual private networks 
(VPNs). “Governments impose blocks 
and restrictions and people try and 
often succeed in finding ways around 
them,” observes Vadim Isakov, schol-
ar in residence at Ithaca University’s 
School of Communications. 

A New Era of Openness?
When the Internet achieved a tipping 
point of popularity in the mid-1990s 
pundits argued that it would usher in a 
new era of openness. For the most part, 
this prediction has proved true. How-
ever, the challenges associated with 
filtering and blocking content haven’t 
stopped many governments from im-
posing restrictions. China, Turkmeni-
stan, Uzbekistan, Saudi Arabia, and 
Iran are among the most aggressive 

censors, says Isakov. 
Yet even countries such France, 

Germany, Poland, Thailand, and Tur-
key have turned to censorship—some-
times forcing Google to restrict access 
to sites, files, and reports. The afore-
mentioned European countries, for 
example, ban materials that support 
Nazi causes, and Thailand won’t allow 
unflattering material—including vid-
eos—of its monarch. At the same time, 
India has ordered Google to remove 
content that the government flags as 
“indecent, immoral, or threatening the 
public order.”

Google recently brought the issue 
of Internet censorship to the forefront 
due to its troubled relationship with 
the Chinese government. In 2006, the 
search engine provider introduced a 
China-based Google.cn search page 
with censored results. Many observers 
criticized Google for bowing to pres-
sure from the Chinese government. 
By early 2009, China began blocking 
Google’s YouTube site and other on-

The headquarters of Google China before the search engine company exited the country 
earlier this year and started routing searches from China through its Hong Kong site.

Society  |  doi:10.1145/1785414.1785423	 Samuel Greengard

Censored! 
Countries use Internet censorship to dominate  
the political dialogue, but also to create favorable  
conditions for government-controlled businesses.
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temporary disruption,” Lih says. 
Worse, the interruptions are erratic 

and unpredictable. A news site such 
as CNN or BBC, for example, might be 
available at one moment but disappear 
seconds later if a story about a sensitive 
subject, such as Tibet or Tiananmen 
Square, is published. 

Observers say these interruptions, 
particularly in China, wane with the 
timing of important events attracting 
foreigners, such as the Olympics or a 
large international business confer-
ence. In addition, hotels, which are 
typically the places where foreign visi-
tors stay or work, and Internet service 
providers alter service and tweak rout-
ers in order to provide open access to 
visitors. This provides a very different 
experience of the country’s Internet 
accessibility for foreign visitors com-
pared to that of the average citizen.

A few countries have taken far more 
draconian measures. In North Korea, 
for example, Internet access is almost 
nonexistent, with only a few high-rank-
ing government officials and foreign 
diplomats able to use it. Saudi Arabia 
has blocked more than 400,000 Web 
sites about religion, women’s issues, 
Israel, and a slew of other topics. And 
Uzbekistan blocks all content center-
ing on government corruption, criti-
cism of the authoritarian regime, eth-
nic strife, and human rights.

Yet, what sometimes appears to be 
censorship is actually rooted in eco-
nomics, Lih says. “Governments block 
certain services in order to give their 
own companies a competitive advan-

line services. Finally, in January 2010, 
Google indicated it wasn’t willing to 
censor search results and was consid-
ering pulling out of China. 

After a series of hacker attacks origi-
nating from China in February and 
unsuccessful negotiations with the 
Chinese government, Google closed 
its China search site and began rerout-
ing searches from China through its 
Hong Kong site. However, any searches 
conducted from China come back cen-
sored. While many applauded the deci-
sion to halt censored service in China, 
Google also was criticized by Chinese 
officials and citizens.

In fact, no nation has received as 
much public scrutiny as China and its 
so-called “Great Firewall.” Only a few 
fiber-optic cables—think of them as 
checkpoints—manage data flowing 
into the country. Nevertheless, 99% of 
content flows through untouched, Lih 
says. In most instances, there’s no easy 
or definable way to determine exactly 
what’s being blocked and what citizens 
can access. 

That’s because China, like many 
countries, blocks sites sporadically and 
in no systematic way. “For one thing, 
there’s no official policy or admission 
that the practice is taking place in 
China. For another, there’s no docu-
mentation,” Lih says. The net effect for 
those browsing the Web or attempt-
ing to connect to a blocked service is 
a “Connection Reset” message that 
the requested Web page or service is 
unavailable. “It looks as though you’ve 
encountered technical difficulties or a 

Governments’ techniques for denying access to online information include:

Doman Name Service block  
Name lookup fails or an Internet service provider redirects it to another site. 

Internet Protocol (IP) block 
This approach forbids packets to a specific host based on IP address. It usually results 
in a “timed out” error message.

Uniform Resource Locator (URL) keyword block
A sensitive word or specific context contained in the destination Web page triggers 
a URL block. Images and links may fail to load. This occurs frequently when using 
Google and other search engines.

Web content keyword triggers block
Specific keywords result a “Connection Interrupted” error. These blocks are often 
temporary and difficult to replicate. They appear to be a technical Internet problem. 

How Censorship Works

Nanotechnology

Molecular 
‘Robots’ 
Advance
A multidisciplinary team from 
Columbia University, Arizona 
State University, the University 
of Michigan, and the California 
Institute of Technology 
(Caltech) have created and 
programmed “robots” the size 
of a single molecule that can 
independently move across a 
nano-scale track. First reported 
in Nature, the development 
marks an important 
advancement in the fields of 
molecular computing and 
robotics, and could contribute 
to the development of molecular 
robots that can sense their 
environment, repair individual 
human cells, or assemble 
nanotechnology products.

The project was led by Milan 
N. Stojanovic, a faculty member 
in the division of experimental 
therapeutics at Columbia 
University, and included Erik 
Winfree, associate professor of 
computer science at Caltech; 
Hao Yan, professor of chemistry 
and biochemistry at Arizona 
State University; and Nils G. 
Walter, professor of chemistry 
at the University of Michigan in 
Ann Arbor. 

In recent years, scientists 
have worked to create robots 
that can reliably perform useful 
tasks, but at a molecular level. 
This involves reprogramming 
DNA molecules to perform in 
specific ways, and often involves 
“researchers at the interface of 
computer science, chemistry, 
biology, and engineering,” 
says Mitra Basu, a program 
director at the National Science 
Foundation, which partially 
funded the project.

Now, Stojanovic’s research 
team has created molecular 
robotic “spiders” that can 
move autonomously through 
a two-dimensional landscape 
and act in basic robotic 
ways, demonstrating that 
they are capable of starting 
motion, walking, turning, and 
stopping.

While the field of molecular 
robotics is just emerging, it 
is possible these tiny devices 
may have important medical 
applications. “This work one 
day may lead to effective control 
of chronic diseases such as 
diabetes or cancer,” Basu says.
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by sending the companies an email 
message and receiving a message 
with a Windows- or Mac-compatible 
file. In addition, individuals share ap-
plications with USB flash drives and 
through peer-to-peer services. 

The battle over censorship is likely 
to intensify as the world becomes more 
Web-centric. Despite tools for piercing 
and circumventing firewalls, authori-
ties are constantly searching for new 
and better ways to filter and block traf-
fic, Lih notes. “The only reason that 
authorities aren’t more aggressive in 
tracking down those who circumvent 
restrictions is that it simply isn’t worth 
the trouble,” he says. “There isn’t a 
critical mass of population that’s dan-
gerous to the government.”	

Further Reading

Deibert, R.J., Palfrey, J.G., Rohozinskiand, R., 
Zittrain, J. (Eds.) 
Access Denied: The Practice and Policy 
of Global Internet Filtering, MIT Press, 
Cambridge, MA, 2008.

Fallows, J.
“The Connection Has Been Reset,” The 
Atlantic, March 2008. 

Farrar, L.
Cashing in on Internet censorship, CNN.
com, February 19, 2010, http://www.cnn.
com/2010/TECH/02/18/internet.censorship.
business/index.html.

Reporters Without Borders
Enemies of the Internet, Reporters Without 
Borders, March 12, 2010, http://www.rsf.
org/IMG/pdf/Internet_enemies.pdf.

Samuel Greengard is an author and journalist based in 
West Linn, OR.
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tage,” he notes. As a result, numerous 
YouTube and Twitter knockoffs exist 
in some countries, including China, 
and other countries block services 
such as Skype in order to protect gov-
ernment-run telephone services and 
other businesses.

Breaching Censors’ Walls 
Increasingly, students, dissidents, 
journalists, bloggers, human rights 
advocates, and others are challenging 
Internet censorship. In the digital age, 
they’re fighting back with an arsenal of 
tools such as proxy servers that circum-
vent filtering by masking the user and 
altering the way data flows to a Web 
server or by VPNs that tunnel through 
to other less censorious countries. 

It’s a cat-and-mouse game, to be 
sure. As individuals begin download-
ing and using proxy servers, it’s com-
mon for government censors to detect 
the activity and block downloads, as 
well as the proxies. However, the same 
applications frequently become avail-
able at alternative sites and through 
peer-to-peer services. Moreover, new 
proxy servers continually spring up. 
But VPNs represent a different chal-
lenge, and most censoring countries 
are hesitant to block them because 
they’re essential for commerce and 
used heavily by foreign business lead-
ers and diplomats. 

Some services, like Tor, a free pro-
gram offered by the nonprofit Tor Proj-
ect, circumvent censorship by routing 
communications across a distributed 
network of relays located around the 
world. These VPN tunnels make it pos-
sible to access blocked pages and sites, 

such as Facebook or YouTube. They 
also allow journalists and dissidents 
to publish Web sites and other services 
without revealing their location.

Another free VPN application, An-
chorFree Hotspot Shield, enables us-
ers to view otherwise censored Web 
sites by converting the http protocol 
to an encrypted https protocol and 
providing users with a virtual iden-
tity. “Although the product was origi-
nally intended to serve as a universal 
privacy and security offering, a grow-
ing number of people are looking for 
a way to bypass controls and access 
information freely,” says AnchorFree 
CEO David Gorodyansky.

Both Tor Project and AnchorFree’s 
Web sites are blocked in China. Nev-
ertheless, Gorodyansky claims that 
usage in China has doubled since the 
Chinese government began blocking 
the site last summer. Potential users 
download Tor and AnchorFree Hot-
spot Shield by visiting mirror sites or 

China, like many 
countries that 
practice Internet 
censorship, 
blocks Web sites 
sporadically and in  
no systematic way. 

Social Media

CMU Researchers Analyze Twitter Sentiments
A computer analysis of people’s 
sentiments in a billion Twitter 
messages during 2008 and 2009 
yielded measures of consumer 
confidence and presidential 
job approval similar to those of 
public opinion polls, according 
to Carnegie Mellon University 
researchers.

The findings suggest that 
analyzing the text in tweets could 
be an inexpensive, rapid means 
of gauging public opinion on 

some subjects, says Noah Smith, 
assistant professor of language 
technologies and machine 
learning at Carnegie Mellon. 
However, the tools for extracting 
public opinion from the text of 
social media are crude and social 
media remain in their infancy, 
Smith says, so the extent to which 
these methods could supplement 
or replace traditional public 
opinion polls is unknown.

The findings were presented 

in May at the Association for 
the Advancement of Artificial 
Intelligence’s International 
Conference on Weblogs and 
Social Media in Washington, D.C.

Smith and colleagues used 
simple text-analysis techniques 
to identify messages that 
pertained to the economy or 
politics and then found words 
in the text that indicated if 
the writer expressed positive 
or negative sentiments. The 

Twitter-derived consumer 
sentiment measurements were 
much more volatile day-to-day 
than the polling data, but when 
the researchers “smoothed” 
the results by averaging them 
over a period of days, the results 
often correlated closely with 
the polling data, says Brendan 
O’Connor, a graduate student 
in Carnegie Mellon’s Language 
Technologies Institute and first 
author of the study. 

http://www.cnn.com/2010/TECH/02/18/internet.censorship.business/index.html
http://www.cnn.com/2010/TECH/02/18/internet.censorship.business/index.html
http://CNN.com
http://CNN.com
http://www.cnn.com/2010/TECH/02/18/internet.censorship.business/index.html
http://www.rsf.org/IMG/pdf/Internet_enemies.pdf
http://www.rsf.org/IMG/pdf/Internet_enemies.pdf
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S
ince the emergence of the 
first augmented-reality ap-
plications 20 years ago, the 
field has drawn a great deal 
of interest and enthusiasm, 

not only from researchers working in 
computer science at the cutting edge 
of graphics technologies, but also from 
leaders in aerospace, medicine, the 
military, and a wide range of other in-
dustries and government sectors. In 
augmented reality (AR), a real-world 
setting or set of objects is augmented 
by a computer-generated overlay. Ad-
vancements in computer vision, object 
recognition, and related technologies 
are increasing the level of sophistica-
tion of that overlay, and presenting en-
tirely new ways for humans to relate to 
the natural world.

While a great deal of research is be-
ing conducted in this area, given the 
promise of the technology to have a 
major impact in industrial and con-
sumer applications, significant chal-
lenges remain, such as the accuracy 
of Global Positioning System- (GPS-) 

or compass-based AR applications, 
the bulkiness of head-mounted dis-
plays, and other issues endemic to the 
sciences and systems upon which AR 
technologies rely. Still, researchers de-
veloping AR systems continue to build 
increasingly compact and powerful 
applications, many of which require 
nothing more than a current-genera-
tion smartphone.

Examples of mobile AR applica-
tions include Layar, a “reality browser” 
that retrieves point-of-interest data on 
the basis of GPS, compass, and cam-
era view, and GraffitiGeo, an appli-
cation that lets users read and write 
virtual Twitter-style comments on the 
walls of restaurants, movie theaters, 
and cafes. Both applications are avail-
able for the iPhone platform. Another 
example is Goggles, a Google-created 
application that allows users to search 
the Web on Android phones simply by 
capturing photos of landmarks or oth-

er objects. The technology also allows 
users to point the phone’s camera at 
local storefronts to retrieve business 
information automatically with GPS 
and compass data.

While the number of such mobile 
applications is increasing rapidly, 
AR evangelists say a killer app will be 
needed to make AR technologies truly 
catch on in the consumer space. Giv-
en the enormous popularity of Web-
based social networking, for example, 
one killer app might come in the form 
of a mobile facial-recognition applica-
tion that can automatically link the hu-
mans to their social-network profiles. 
One company, The Astonishing Tribe, 
has demonstrated an AR interface 
concept, called Recognizr, to show the 
possibilities of doing just that. 

Another approach to mainstream-
ing AR is in gaming. One researcher 
working in this area is Blair MacIntyre, 
who directs the Augmented Environ-

Augmented-reality 
applications are 
increasingly compact 
and powerful, and 
many of them require 
nothing more than  
a current-generation 
smartphone.

An augmented reality game called ARhrrrr! developed at Georgia Tech and the Savannah 
College of Art and Design. In the game, the graphics are tightly registered to a  
physical game board using an image-based feature tracker developed at Graz University. 

Mainstreaming  
Augmented Reality 
Advancements in computer vision, object recognition, and related technologies  
are leading to new levels of sophistication in augmented-reality applications  
and presenting new ways for humans to relate to the natural world.

Technology  |  doi:10.1145/1785414.1785422	 Kirk L. Kroeker 
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ments Lab at the Georgia Institute of 
Technology. MacIntyre says his cur-
rent work in AR is driven mainly by 
the desire to understand how to create 
compelling AR experiences, interfac-
es, and tools. To that end, he and his 
team build games and study them, fo-
cusing on everything from interactiv-
ity and visualization techniques to the 
feel of game mechanics to the social 
experiences they foster.

“I’m very driven to create tools and 
platforms that will give a broad range 
of people the ability to experiment 
with the technology,” says MacIntyre. 
“Just as we didn’t know what the Web 
would be used for until people with 
real problem- and design-driven goals 
started trying to create applications, 
the same will be true for AR.”

Tightly Registered AR Games
For now, MacIntyre is focusing on 
what he calls tightly registered AR 
games, in which the graphics ap-
pear to be locked onto the real world. 
In the ARhrrrr! game, for example, 
a handheld device’s graphics are 
aligned with the physical game board 
using an image tracker to determine 
where the camera on the handheld 
is located, relative to the board. The 
system pulls video from the camera, 
runs it through a vision library, and 
returns an estimate about the game 

board’s relative position. Using that 
information, the handheld draws 
graphics in the camera’s view of the 
board. Those graphics remain locked 
in place over a wide range of move-
ment by the player. 

“We found that if the graphics are 
unambiguously aligned with features 
in the world, game players treat the 
combined physical-virtual view as 
one merged space,” he says. “As a re-
sult, they can refer to virtual content 
smoothly and unambiguously, and 
can collaborate or compete as they 
would on a physical board game.”

MacIntyre says the biggest chal-
lenge he faces is with the limitations 

of the vision-based tracking technol-
ogy that signals to the phone what 
the camera’s relation is to the world. 
“We are constantly struggling with 
the tension between what we want 
the games to do and what is tech-
nically possible to know about the 
world and to track and interact with,” 
he says. Because accuracy is directly 
related to the quality of the inputs, 
MacIntyre and his team use vision-
based tracking technology instead 
of less-accurate alternatives such as 
handheld-based GPS, compass, and 
accelerometer sensors, which might 
work for large-scale AR applications 
but lack the precision needed for 
tightly registered games.

Another researcher working in this 
area is Steven K. Feiner, director of the 
Computer Graphics and User Interfac-
es Laboratory at Columbia University. 
Feiner began his work in AR by explor-
ing how the technology might be used 
to assist in maintenance and repair, 
and has directed projects ranging 
in focus from restaurant guides and 
gaming to integrating technical in-
structions directly into a task domain. 
“Our overarching goal is to design user 
interfaces that help people be better 
at whatever they do,” Feiner says, not-
ing that his general approach in these 
AR projects is to build dynamic virtual 
worlds that are overlaid on and geo-

The mainstreaming 
of augmented reality 
now largely depends 
on the ability to 
manufacture and 
sell the technology 
profitably, says 
Steven K. Feiner.

The job outlook for U.S. 
college students majoring 
in computer science is very 
favorable, according to The 
Market For Computing Careers, 
a report by Joel Adams, a 
professor of computer science 
at Calvin College. Adam’s report 
contains an analysis of data 
from the U.S. Bureau of Labor 
Statistics, Computing Research 
Association’s Taulbee Survey, 
and U.S. News & World Report. 

“The U.S. Bureau of 
Labor Statistics predicts that 
computing will be one of 
the fastest-growing U.S. job 
markets in science, technology, 
engineering, and mathematics 
(STEM) for the foreseeable 
future,” according to the report, 
with “nearly three out of four 

new science or engineering 
jobs in the U.S. going to be 
in computing.” Of these new 
computing jobs, 27% will be in 
software engineering, 21% in 
computing networking, and 10% 
in systems analysis.

The “demand for 
software engineers, network 
administrators, systems 
analysts, and other computing-
related professionals is 
exploding, but fewer and fewer 
students are choosing to study 
what is needed to get these 
jobs,” the report says. The U.S. 
Bureau of Labor Statistics, 
for example, predicts, nearly 
140,000 new job openings in 
computing per year through 
2018, with less than 50,000 CS 
graduates vying for those jobs.

Meanwhile, as fewer 
students enter CS, the salaries 
for software engineers, network 
administrators, and systems 
analysts “are climbing.” 
According to U.S. News & World 
Report, the median salary for a 
software engineer ranged from 
$85,000-$92,000 in 2008, with 
the best-paid 10% of software 
engineers earning more than 
$136,000.

“I think the most surprising 
thing [in the report] is that the 
U.S. Bureau of Labor Statistics is 
projecting more than four times 
as many new jobs in computing 
than in all the traditional (non-
software) engineering areas 
combined,” Adams said in 
an email interview. “A second 
surprise was their projection of 

more than twice as many new 
computing jobs per year than 
there are computing graduates 
at present. The third surprise 
was that computing is the only 
STEM discipline where the 
demand for graduates outstrips 
the supply.

“Calvin College is in 
Michigan, which has, I believe, 
the highest unemployment of 
any state, but we are already 
seeing the effects of this 
imbalance,” says Adams. “This 
past semester, we received an 
average of three requests per 
week from local businesses 
seeking students with significant 
computing skills. We don’t have 
nearly enough students to meet 
such demand.”

—Jack Rosenberger  

Employment

U.S.’s Bright CS Job Forecast 
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directly at it. The shape of the physical 
objects associated with the controls 
can help the user distinguish them by 
touch, as with conventional controls.

Making a Profit
With these and other AR technolo-
gies growing increasingly robust and 
reliable, Feiner says the mainstream-
ing of AR technology now largely de-
pends on the ability to manufacture 
and sell the technology profitably. He 
says he remains convinced that fu-
ture AR technology will not be a mere 
novelty; instead, he says, it will be one 
of the fundamental user interface 
paradigms through which humans 
interact with the world. In the future 
envisioned by Feiner, AR technology 
will be housed not only in comfort-
able eyewear, but also in handheld 
or stationary see-through displays, in 
projected displays, and even some in 
surfaces that are themselves displays.

Georgia Institute of Technology’s 
MacIntyre shares a similar view of 
the future in which humans are con-
stantly immersed in a mixed physical-
virtual world. The major challenge on 
the path to a future of ubiquitous AR 
technology is, of course, to develop 
the complete infrastructure, from the 
necessary technologies to track where 
users are and what they are looking at 
to the privacy and security infrastruc-

metrically registered with a user’s per-
ception of the physical world, provid-
ing information that would otherwise 
be invisible. 

In one example of this approach, 
Feiner and his team explored how 
users could more effectively control 
those AR applications in which it’s 
necessary to select and adjust certain 
physical operating parameters, all 
without using physical controls and 
without diverting attention from the 
task at hand. One of Feiner’s graduate 
students, Steve Henderson, developed 
a solution to this problem. Called “op-
portunistic controls,” the technology 
locates virtual controls, such as but-
tons, sliders, knobs, and so forth, on 
top of physical elements of the task 
environment. For example, the AR 
system might place a virtual button 
on a protruding bolt or a virtual rotary 
knob on a rotating cable connector. 

To create an opportunistic control, 
the system overlays a physical object 
with a 3D widget and associates it 
with a hand gesture. The depiction of 
the widget is rendered in a head-worn 
display, while the hand gestures are 
recognized through computer-vision 
algorithms performed in real time 
on video captured from an overhead 
camera. A separate camera captures 
the video so the control can be oper-
ated even when the user is not looking 

An augmented-reality application developed at Columbia University. The “opportunistic 
controls” shown in this image are virtual buttons on a raised portion of an aircraft engine 
housing, providing haptic feedback for a maintenance technician. 
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ture to ensure that users can trust the 
system, and also to ensure that user 
privacy and safety are not violated. “I 
think the technology has a long way 
to go before we can experience such 
constant immersion,” says MacIntyre. 
“But we will begin getting a taste of it 
in the very near future.”

With the goal of nudging the re-
search community in that direction, 
one of MacIntyre’s projects is a stan-
dards-based platform for mobile AR, 
the aim of which is to do for AR what 
the early decoupled client-server ar-
chitecture did for the Web. In contrast 
to cloud computing, AR applications 
currently require dedicated programs 
running on client devices. MacIntyre’s 
idea is to create a general-purpose AR 
browser and a corresponding collec-
tion of cloud-based technologies to 
allow anyone with a server to create 
and deploy mobile AR apps without 
requiring users to install anything.

“We need to start developing open 
standards for AR applications, so a 
wide variety of people, companies, and 
organizations can create and deploy 
these applications,” MacIntyre says. 
“I believe these application environ-
ments and open standards will have 
the biggest impact on the blossoming 
of AR as a widely used technology.”	

Further Reading
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I
n our age of hyperspecializa-
tion, it’s often said that no one 
can be a Renaissance man. In-
deed, Charles P. Thacker, win-
ner of the 2009 ACM A.M. Tur-

ing Award, insists he isn’t one. But, he 
notes, “I can lurk at a lot of different 
levels. I have designed chips, I can de-
sign logic, I can design systems, and I 
can write software up to and including 
user interfaces.” 

While “lurking” in these distinct 
areas for four decades, Thacker has 
led the design of an astonishing array 
of technologies, from personal com-
puters to networking technology to 
tablet PCs. (An interview with Thack-
er, “From Single Core to Multicore,” 
appears on p. 112.) Today, he is best 
known for his invention of the Alto, a 
personal computer, at Xerox Palo Alto 
Research Center (PARC) in 1970. 

“The Alto was the world’s first per-
sonal computer,” says David Patterson, 
a professor of computer science at the 
University of California, Berkeley and 
a computer hardware pioneer him-
self. “It included everything we think 
of as being in a PC today: a high-qual-
ity graphical user interface, networked 
computing, laser printing, and the 
mouse. It, in turn, enabled the inven-
tion of software at PARC that shapes 
our world today: window systems, 
WYSIWYG editing, drawing and paint-
ing, email clients, graphical CAD tools, 
and clients for file and print servers.

“For those who were not around 
at the time, it’s hard to put into per-
spective what a breakthrough this 
was and how much it shaped the 
computer industry,” Patterson adds. 
“The notion that you would build a 
powerful computer for just one per-
son was a radical one.”

Thacker also co-designed Ethernet 
local area network technology at PARC 
in the 1970s and the Firefly multipro-

cessor workstation and fault-tolerant 
networks at Digital Equipment Cor-
poration in the 1980s. “These things 
have a common thread,” Thacker says, 
“which is they are part of a distributed 
system—they don’t stand in isola-
tion.” The Alto was a “nice” single-user 
machine, he says, but its “real power” 
was unleashed by networking. 

Thacker cites several secrets for his 
decades of continual success: strive for 
simplicity, build a kit of reusable tools, 
insist on sound specifications, think 
broadly, and make sure your collabora-
tors also succeed. 

Of simplicity, he says, “A lot of peo-
ple think mastering complexity is the 
goal. But once you have gotten your 
Master of Complexity merit badge, you 
don’t have to keep winning it. Com-
plexity is the enemy of computer sci-
ence, and it behooves us, as designers, 
to minimize it.”

Thacker is accomplishing exactly 
that in his role as a Technical Fellow 
at Microsoft Research. He’s designing 
simple multicore computers, using 
single field-programmable gate arrays. 
The computers are used to conduct re-
search in multicore systems, and are 
much faster than simulators written in 
software and much cheaper than build-
ing real multicore chips, he says. Their 
simplicity makes it easy for Microsoft 
and university researchers to evaluate 

different system designs and methods 
of programming systems with multiple 
processor cores.

Early in his career, Thacker built 
his own computer-aided design tool, 
which he has rewritten several times to 
take advantage of new programming 
languages. His toolkit also includes 
reusable algorithms and software mod-
ules developed by himself and others.

Thacker says he wrote specifications 
for the Alto before designing it, a step 
that is too often ignored today. “What 
software engineers frequently do is sit 
down with a list of features to add to a 
system,” he says. “That’s quite different 
from a specification, because the fea-
tures might be relatively undefined.”

Thacker points to the phenomenal 
success of IBM’s System/360 line of 
mainframes and says, “The best speci-
fication ever written, in my view, was 
the System/360 Principles of Operation, 
which described the interface be-
tween the hardware and software.” 

As for advice for young computer sci-
entists, Thacker says, “Try to be broad. 
Learn more math, learn more physics.” 
He modestly calls himself “a jack of all 
trades and a master of some.”

Thacker has succeeded, in part, by 
working with “really smart guys,” says 
Gordon Bell, a Microsoft principal re-
searcher. Thacker, he says, “basically 
cordons off a nice-sized, hard-but-
doable, and really-useful-to-be-solved 
problem, and then he works with a 
small team to carry it out.” 

Thacker says it’s important in cross-
specialty projects to motivate team-
mates.  “I’ve been fairly successful at 
what I call Tom Sawyering,” he says. 
“It’s the idea that if you want to get your 
fence painted, you trade something of 
value with the people with whom you 
work. You have to be committed to 
their success as well as your own.”	

Gary Anthes is a technology writer and editor based in 
Arlington, VA.

© 2010 ACM 0001-0782/10/0700 $10.00

Committed to Success 
Charles P. Thacker talks about the importance of simplicity,  
reusable tools, thinking broadly, and his practice of  Tom Sawyering.

Milestones  |  doi:10.1145/1785414.1785424	 Gary Anthes

“Complexity is  
the enemy of 
computer science, 
and it behooves us,  
as designers,  
to minimize it.”

Charles Thacker with the circuit board of 
his latest project—the BEE3 computer-
architecture hardware platform.
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E
ric Brewer has received plen-
ty of accolades during his ca-
reer, but his latest award is 
the first one that has moved 
him to tears.

Brewer, a professor of computer 
science at the University of Califor-
nia, Berkeley, is the recipient of the 
2009 ACM-Infosys Foundation Award 
in the Computing Sciences for his 
contributions to the design and de-
velopment of highly scalable Inter-
net services. Brewer says his emotion 
about being named the winner stems 
partially from the fact that the ACM-
Infosys Foundation Award considers 
accomplishments across the entire 
field of computer science. He says, 
with a bit of understatement, “That’s 
a pretty big group.”

It might be impossible to overstate 
Brewer’s influence upon making com-
puter science accessible to that “pret-
ty big group.” His research on cluster 
computing in the early 1990s led to 
the concept of scalable servers capa-
ble of simultaneously serving millions 
of users. His pioneering work as CEO 
of Inktomi in the mid- to late 1990s 
greatly advanced Internet search and 
improved network performance.

Brewer’s latest project, called TIER 
(Technology and Infrastructure for 
Emerging Regions), which focuses on 
designing and deploying low-cost wire-
less infrastructure in the developing 
world, may have the same disruptive 
impact on traditional views of econom-
ic development policy that his earlier 
work had on computing architecture. 

“The traditional model of economic 
development has been very top-down—
‘Take $100 million to build a dam,’ ” 
Brewer notes. “That’s had mixed suc-
cess and is also very expensive. But 
things that have worked bottom-up, in 
particular cell phones, didn’t have any 
top-down funding at all.”

Brewer is literally putting his 
$150,000 ACM-Infosys Foundation 
Award where his mouth is by invest-
ing it in TIER, which has projects 
under way in Cambodia, Ghana, Phil-
ippines, and elsewhere. And, just 
as his work on clusters in the early 
1990s served as a bridge between 

contemporary research that explored 
clusters as supercomputers and the 
nascent ubiquitous demand for net-
worked data, he hopes the TIER proj-
ect will help blend the discipline of 
computer science with the economic 
and social benefits, such as improved 
public health, presented by low-cost 
wireless networks.

“Is computer science open minded 
enough to allow this kind of work to 
count?” he asks. “That’s not a given, 
and a lot of my talks in the last five 
years have been evangelizing why this 
topic should be inside the fold.”

Brewer, who made and lost a bil-
lion dollars during the dot-com bub-
ble and burst, says the experience 
raised his aspirations about how he 
could influence the world, and that in-
novative ideas, particularly those nur-
tured in the risk-tolerant environment 
of tenured scientists, don’t have to be 
backed by a large bankroll. 

“When I had a billion dollars,” 
Brewer says, “I was thinking about 
what to do with it, and surely would 
love to have it back, but when I lost 
it, I did realize that money wasn’t the 
only way to try to affect all the people I 
wanted to affect. I think it’s harder to 
do without the money, but it’s certain-
ly more replicable—it’s something 
that everyone can do.” 

In particular, Brewer says, the vast 
possibilities offered by inexpensive 
cloud computing and the bootstrap-
to-titan ethos of modern computer 
science means almost limitless op-
portunities for today’s students and 
scientists.

“There aren’t many ways to affect a 
billion people,” he says. “I like the idea 
that computer science can do it.”	

Gregory Goth is an Oakville, CT-based writer who 
specializes in science and technology.

© 2010 ACM 0001-0782/10/0700 $10.00
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Eric Brewer:  
Change Agent 
Eric Brewer’s latest project involves designing and deploying  
low-cost wireless infrastructure in developing regions.

“There aren’t  
many ways to affect  
a billion people.  
I like the idea that 
computer science  
can do it.”

Eric Brewer, winner of the 2009 ACM-Infosys 
Foundation Award in the Computing Sciences.
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D
e le gates from Africa,  Eu-
rope, and North America 
gathered at the University 
of Edinburgh in April to 
discuss the latest research 

in computer science and listen to in-
novative project proposals for the U.K. 
Computing Research Committee’s 
Grand Challenges program.

Professor Dame Wendy Hall, presi-
dent of ACM and professor of comput-
er science at the University of South-
ampton, opened the ACM-BCS Visions 
of Computer Science 2010 conference, 
alongside British Computer Society 
President Elizabeth Sparrow.

Hall discussed the importance of 
diversifying ACM beyond the U.S. and, 
after welcoming more than 100 con-
ference delegates, handed over the 
proceedings to computer scientist Mi-
chael Foreman of the School of Infor-
matics at the University of Edinburgh. 
Foreman paid tribute to the recently 
deceased Robin Milner, eminent com-
puter scientist, co-creator of the Grand 
Challenges, and ACM A.M. Turing 
Award winner, and proposed a Milner 
symposium next year to celebrate the 
scientist’s work.

Ross Anderson, professor of secu-
rity engineering at the University of 
Cambridge, delivered the first keynote 
speech, “The Dependability of Com-
plex Socio-Technical Systems.” Ander-
son described the evolutionary con-
vergence of branches of knowledge, 
including philosophy, mathematics, 
and economics, into computing, and 
questioned how it should advance.  
“We are responsible for everything,” 
said Anderson, “and must deal with 
the global-scale socio-technical sys-
tems that are emerging and will be the 
way the world works.” 

The second keynote speaker, Nicolò 
Cesa-Bianchi, professor of computer 
science at the University of Milan, 
discussed “The Game-Theoretic Ap-
proach to Machine Learning and Ad-
aptation.” To consider whether game 

theory could complement or surpass 
statistics in the analysis of algorithms 
that learn and adapt, Cesa-Bianchi 
presented research that replaces sta-
tistics to describe an interaction be-
tween a learning agent and a changing 
environment with a repeated game 
between an agent and environment. 
This approach, he says, is particularly 
appropriate to machine learning in ar-
bitrary and adversarial environments.

The other keynote speakers were 
Jon Kleinberg, professor of computer 
science at Cornell University, who pre-
sented “Exploring the Structure of On-
line Social Networks: the Roles of Posi-
tive and Negative Links in Network 
Interaction,” and Barbara Liskov, a 
professor at the Massachusetts Insti-
tute of Technology and ACM A.M. Tur-
ing Award winner, who discussed “The 
Power of Abstraction.”

Among the conference’s sessions 
covering subjects from ubiquitous sys-
tems to theoretical computing and the 
digital economy, one proved particu-
larly timely. As a massive cloud of ash 
from Iceland’s Eyjafjallajokull volcano 
shut down air traffic across Europe, 
Ken Anderson, associate professor of 
computer science at the University of 
Colorado, outlined a vision for tech-
nology-mediated support for public 
participation in mass emergencies and 
disasters. 

Following Visions 2010, Hall intro-
duced the Grand Challenges session. 
“Things have changed,” said Hall, 
“and our work has become more inter-
disciplinary, feeding into areas such 
as health care, climate change, and se-
curity. We need to make evolutionary, 
not revolutionary, change, but a new 
list of Grand Challenges will emerge.”

Eighteen proposals for the Grand 
Challenges, a program supported by 
the U.K. Computing Research Com-
mittee, were added to nine existing 
projects, with a decision on the pro-
posals expected over the summer. The 
candidates included a project using 
software engineering to achieve zero- 
carbon buildings by 2019, a program 
to develop information and communi-
cation technologies for a global popu-
lation of nine billion people in 2050, 
and five proposals about health care 
and independent living. 	

Sarah Underwood is a technology writer based in 
Teddington, U.K.

© 2010 ACM 0001-0782/10/0700 $10.00

“Things have 
changed, and 
our work has 
become more 
interdisciplinary,” 
notes Wendy Hall.

Visions of the Future 
ACM joined forces with the British Computer Society  
to deliver its first academic research conference in Europe.

Conference  |  doi:10.1145/1785414.1785426	 Sarah Underwood

The ACM-BSC Visions conference was held 
at the University of Edinburgh Informatics 
Forum.
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Technology strategy 
and Management
outsourcing Versus 
shared services 
Choosing between outsourcing and shared services has 
signifi cant implications for long-term corporate strategy.

DOI:10.1145/1785414.1785427	 Mari	Sako	

T
wo diaMeTriCaLLY opposed

perspectives continue to 
coexist in IT and other busi-
ness service functions. One 
camp argues in favor of 

shared services, wherein the IT orga-
nization becomes the internal service 
provider to the rest of the company. 
The other camp promotes outsourc-
ing: the delivery of IT services all done 
under one roof but with that roof lo-
cated somewhere other than at the 
company. Proponents do not agree on 
which is better. This column examines 
the background that led to the adop-
tion of these practices and the reasons 
for this disagreement. 

Most readers know about IT out-
sourcing, and many readers are aware 
of H. Ross Perot, the Texan who left 
IBM to found Electronic Data Systems 
(EDS) in 1962. His idea was to offer 
technology as a service by not merely 
equipping, but also operating, custom-
er data centers. Following his success, 
others joined to extend outsourcing 

from IT services to a wide array of busi-
ness services in fi nance and account-
ing, human resources, procurement, 
and logistics. Technology—a combi-

nation of computers, software, and 
networks—underpins these support 
operations. 

The 1990s saw the birth of mega-
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deals, such as the seven-year $600 
million human resource outsourcing 
(HRO) deal between the oil giant BP 
and a start-up provider, Exult.1,5 But is 
it really only third-party providers that 
can offer superior service at lower cost? 
Is it not possible for a company to per-
form equally well in its internal shared 
services by reducing duplication of 
processes and facilities and by reor-
ganizing and sharing assets? I argue 
that a company can achieve similarly 
good performance levels in its internal 
shared services operation, under cer-
tain circumstances.

Companies outsource for several 
reasons. Cost saving may be the ulti-
mate reason. But the means by which 
this is achieved vary, from introduc-
ing new technology, improving ser-
vice quality, transforming fixed invest-
ments into variable costs, to freeing 
management time to focus on core 
competencies. Outsourcing is about 
the make-or-buy decision, and the term 
applies to a broad range of procure-
ment activities in manufacturing (for 
example, automobile companies pur-
chasing transmission components) or 
services (for example, a retailer sourc-
ing TV advertising). But when applied 
to business (including IT) services, two 
essential features are highlighted.

Outsourcing as Corporate 
Restructuring
One feature is that outsourcing of busi-
ness services combines two decisions. 
One is the make-or-buy decision con-
cerning the corporate boundary; the 
other is the restructuring of the inter-
nal corporate hierarchy. Corporations’ 
organization structure can be a source 
of competitive advantage. As recounted 
by the business historian Alfred Chan-

dler, modern corporations have been 
restructuring constantly to align struc-
ture to strategy.3 In reality, it is easier 
said than done for a global corporation 
to design and implement an appropri-
ate multidimensional matrix structure 
to meet the competing demands of dif-
ferent products, corporate functions, 
customers, and countries.4 The cre-
ation of shared services and outsourc-
ing are both part of this search for an 
appropriate organizational design, giv-
ing primacy to corporate functions over 
other considerations, often accompa-
nying mergers and acquisitions (M&A). 
M&A create duplicated functions pre-
viously belonging to two separate cor-
porate entities. Attempts at eliminat-
ing the waste of duplication trigger 
the creation of shared services. More 
likely than not, such streamlining re-
quires some central direction from the 
corporate headquarters. Without such 
centralized control, the intended stan-
dardization and efficiency gains may 
not be realized. 

The contrasting experiences at 
Procter & Gamble (P&G) and Unile-
ver illustrate this point.a Under A.G. 
Lafley’s leadership, P&G created an 
internal global shared services unit 
in 1999 as part of the ‘Organization 
2005’ restructuring initiative. It gave 
itself five years to pull all essential 
corporate functions—finance and ac-
counting, human resources, and later 
IT—away from regional and divisional 
companies into a single Global Busi-
ness Services (GBS) operation. A state-
ment by the GBS head, Mike Power, 
that “everyone has done something, 
but no one has done everything” illus-
trates the radical nature of this con-
solidation. Central direction from P&G 
headquarters in Cincinnati was essen-
tial in deploying SAP-based ERP sys-
tems throughout the company before 
such reorganization took place. By the 
time P&G’s shared services were out-
sourced, their operations were drasti-
cally transformed and streamlined. 
This experience led Filippo Passerini, 
Chief Information Officer, to remark: 
“we believe that there is a sequence in 

a	 See detailed comparisons in H. Gospel and 
M. Sako, “The Unbundling of Corporate 
Functions: The Evolution of Shared Services 
and Outsourcing in Human Resource Man-
agement.” Industrial and Corporate Change, 
(Mar. 2010), 1–30.

this process. You outsource only when 
you are internally optimized.” 

In short, centralized firms are bet-
ter placed to move quickly to efficient 
shared services. Conversely, divisional 
autonomy is likely to get in the way 
of implementing standardized pro-
cesses. So, what if a corporate head-
quarters does not have central con-
trol? This is where outsourcing comes 
in as a first port of call. Unilever, the 
Anglo-Dutch firm, has lived with char-
acterization as a loose federation of 
national companies with strong coun-
try managers who had little interest 
in global shared services. The human 
resource (HR) function did, however, 
consider outsourcing at the global lev-
el, and regarded the fragmentation of 
IT infrastructure as a hindrance in im-
plementing it. With such cultural and 
technical barriers to creating in-house 
shared services, global HR outsourc-
ing to Accenture was used as a trigger 
to transform HR processes, in a “throw 
it over the fence” or “lift and shift” ap-
proach, with an expectation of rapid 
cost reductions through scale econo-
mies, labor arbitrage, and increasing 
return on assets. Unilever could not 
have transformed without outsourc-
ing, and outsourcing was an integral 
concomitant of transforming the or-
ganization. Outsourcing is indeed a 
corporate turnaround trigger. In such 
applications of outsourcing, both the 
risks and potential rewards are high. 

Thus, existing corporate structure 
affects the firm’s choice between out-
sourcing and shared services. More-
over, the creation of internal shared 
services first before outsourcing leads 
to greater retention of capabilities in-
house; by contrast, a path to outsourc-
ing, without an interim step of internal 
shared services, engenders greater reli-
ance on suppliers’ capabilities. In fact, 
the first path is about “selling” shared 
services assets and capabilities to pro-
viders, while the second path is about 
“buying in” such capabilities from pro-
viders. Some argue that in immature 
markets without competent providers, 
firms have no choice but to create inter-
nal shared services. There may well be a 
timing effect, with pioneers opting for 
the introduction of shared services and 
followers opting for outsourcing. But 
can shared services be an end point, 
without proceeding to outsourcing?

Existing corporate 
structure affects the 
firm’s choice between 
outsourcing and 
shared services. 
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Outsourcing as Relational 
Contracting: Trust and Incentive
The answer to the question of shared 
services as an end point without pro-
ceeding to outsourcing depends on 
the second key feature of business 
service outsourcing, and that is the 
nature of “relational contracting.” For 
example, in an M&A deal the signing 
of the contract closes the deal. By con-
trast, in outsourcing, such “closing” is 
just the start of a long-term collabora-
tive relationship between two firms. 
In order for such a relationship to op-
erate well, it relies on trust and incen-
tives. In fact, incentive and trust may 
be structured better in outsourcing in 
some cases, but in internal shared ser-
vices in other cases.

Organizational economists define 
a relational contract as a contract that 
is incomplete (due to difficulty of full 
specification) and informal (due to 
difficulty in third-party enforcement, 
for example in courts).2,6 A multiyear 
business service outsourcing deal is 
a perfect example of a relational con-
tract. It is typically incomplete due to 
two reasons. First, future contingen-
cies are difficult to specify in the face 
of unknown market conditions and 
new technology in several years’ time. 
Second, quality of business services to 
be delivered is sometimes difficult to 
describe and verify. Indeed, both par-
ties may wish to retain a certain de-
gree of post-contractual flexibility. If a 
contract is incomplete, then it is also 
difficult for a third party to enforce it. 
Parties to the contract must rely on al-
ternative enforcement mechanisms. 
One of these mechanisms is to rely on 
trust as a social norm to work things 
out through discussion, with social 
sanctions in the event of untrust-
worthy or unethical behavior.b This 
works well in stable business commu-
nities, and where parties are chosen 
for their “cultural fit.”

Another enforcement mechanism 
is incentive alignment. Service Level 
Agreements (SLAs) are employed to 
secure high performance in outsourc-
ing and shared services. With stable 
processes, performance is easily mea-
sured, and the bonus and penalty re-
gime gives a good incentive for provid-

b	  There is a large body of work on the topic of 
trust in business relations.

ers to perform well. But the credibility 
of the client firm to commit to paying 
a bonus is different for external and 
internal providers. Outsourcing faces 
“high-powered” incentives, with the 
client able to credibly threaten to ter-
minate the contract when the provider 
underperforms; with an internal SLA, 
it is not easy to do anything if the in-
ternal shared services center does not 
perform. And what’s worse, the inter-
nal operation is often a cost center 
rather than a profit center. At the same 
time, whenever a provider is offering 
standardized processes that could be 
delivered to more than one client, SLA 
acts as a powerful incentive to perform 
well for a specific client offering the 
bonus. By contrast, with processes 
that are customized for a specific cli-
ent, SLA does not create as powerful 
an incentive. 

To summarize, the following is the 
implication from a perspective based 
purely on incentives. Outsourcing 
works best to make an external provid-
er truly accountable for performance, 
whenever processes are standardized 
and stable for easy SLA specification. 
By contrast, an internal shared ser-
vice is a better option in cases where 
processes are either customized or 
being transformed. The incentive-
based argument highlights the fact 
that parties must rely more on other 
mechanisms such as trust if outsourc-
ing is applied to processes requiring 
customization or transformation. 
Thus, an optimal degree of contrac-
tual incompleteness—somewhere be-
tween a “blank check” and a “nail it all 
down” level of detail—depends on the 
task at hand (service delivery versus 

transformation) as well as the avail-
ability of incentive alignment mecha-
nisms and trust.

Conclusion
The jury is still out on whether or not 
outsourcing or shared services is ulti-
mately the best service delivery model. 
I have argued in this column that, amid 
all the management fads and fash-
ion, there is more than one way to do 
things, and that each way has its mer-
its and demerits, with associated risks 
and rewards. 

Outsourcing and shared services 
are both part of organization redesign 
to give primacy to the efficiency of cor-
porate functions. Compared to shared 
services, outsourcing is a combination 
of decisions about the firm’s external 
boundary and its internal structure. 
Outsourcing may take place at differ-
ent stages in corporate activities, either 
as an initial trigger to bring about fun-
damental restructuring in a “big bang” 
mode or a next step after a period of 
internal process transformation. Rela-
tional contracts, if well designed, can 
service the maintenance of high-pow-
ered incentives to ensure the delivery 
of high-quality service. However, the 
firm may wish to retain internal shared 
services without outsourcing if it an-
ticipates instituting further business 
changes in structure and scope of busi-
ness services. The choice between out-
sourcing versus shared services is not 
simply a matter of timing (in mature 
versus immature markets). It is more 
crucially a matter of long-term corpo-
rate strategy.	
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be a timing effect, 
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of shared services 
and followers opting 
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Computing Ethics  
Work Life in  
the Robotic Age 
Technological change results in changes in  
expectations, in this case affecting the workplace. 

R
obots are being  designed 
to perform a broader ar-
ray of work-related tasks. 
Global economic hard-
ships may be (temporarily) 

causing the demand for industrial ro-
bots to decline,4 but improvements in 
artificial intelligence and the drive for 
efficiency will likely encourage com-
panies to develop and use increasing 
amounts of robotic workers. Though 
the justification for automation is 
often couched in the language of lib-
eration, this oversimplifies the com-
plexities associated with technological 

change. Merely because technology 
is well designed from an engineering 
perspective, it does not follow that 
society’s problems are solved. This is 
not to say that efforts to create robotic 
workers must stop, but the robotics 
community must be diligent in deal-
ing with emerging ethical issues. De-
sign pathways must be selected that 
either mitigate or prevent the nega-
tive consequences of using robots in 
the workplace. Otherwise, troubling 
historical occurrences, such as the 
decimation of certain segments of the 
work force, might be repeated.

With each significant technologi-
cal change, visions of how improved 
and efficient our lives will become are 
typically offered. To some degree, the 
promise that we will be “liberated” 
from performing repetitive and mun-
dane tasks has held true. Most of us 
do not mourn the passing of having 
to wash clothes or dishes by hand. 
Yet expectations in both our personal 
and professional lives tend to shift 
correspondingly, which in many ways 
counterbalances the “liberating” fea-
tures that technology offers. Ruth 
Schwartz Cowan recognized years ago 
that the introduction of electronic de-
vices into the home did not free wom-
en from the burden of doing house-
hold chores. As Cowan states, “What 
a strange paradox that in the face of 
so many labor-saving devices, little 
labor appears to have been saved!”1 
In short, increasing expectations ab-
sorbed all of the extra time that was 
supposed to be freed up.

Similarly, we need to seriously con-
sider how the increased use of robots 
will alter workplace expectations. 
For instance, if robots can help surgi-
cal procedures to be completed more 
rapidly, will demands on surgeons 
increase so they will have to perform 
more procedures per day? Expectations 
in terms of what it means to be a “good” 
professional are also likely to change, 
especially if a robot’s error rate is lower 
than a human’s. Briefly put, we should 
be wary of predictions that robots will 
be our liberators considering how the 

A view of a robot arm used in world’s first remote heart operation performed at Glenfield 
Hospital in Leichester, U.K., on April 28, 2010. 
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different task when we believe (perhaps 
falsely) that we can trust someone or 
something else to deal with the task at 
hand.b Returning to the issue of health 
care, will nursing home staff be less at-
tentive if a robotic assistant is placed in 
a resident’s room? The more reliable we 
think automated systems are, the more 
likely it is our attention will stray. What 
complicates matters is that this type 
of behavioral shift might not be con-
sciously detected. Hence, it would be 
wise to temper the confidence that us-
ers place in robots and other automated 
systems, especially when people could 
be significantly harmed. This could be 
accomplished in part by ensuring that 
risks are transparently presented to 
users. To that end, scientists and engi-
neers should reflect on their ethical re-
sponsibilities to communicate with the 
public about a robot’s capabilities and 
limitations, and not merely leave it to 
marketers, sales departments, and oth-
ers to fill this role. 

Conclusion 
Ethical concerns about integrating ro-
bots into the workplace are becoming 
increasingly pronounced. Again, the in-
tention here is not to stop innovation. 
Rather, the hope is to inform the design 
process. Ideally, the robotics commu-
nity will select design pathways that 
mitigate the associated concerns and 
thereby enhance the public’s lives. 	

b	 Placing too much confidence in technology, of-
ten at the expense of other sources of informa-
tion, seems to be a growing problem with GPS 
in automobiles; see for example, Is your GPS 
navigator a friend or foe?” The Sydney Morning 
Herald, (Jan. 12, 2010); http://www.smh.com.au/
executive-style/gadgets/is-your-gps-navigator-a-
friend-or-foe-20100112-m4ei.html
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typical workweek does not seem to be 
getting shorter or less demanding in 
the digital age. 

The U.S. military is enjoying the 
benefits of robots since they can com-
plete “dull, dirty, or dangerous” tasks, 
and their labor is very useful in the ci-
vilian realm as well. Yet automation 
can eliminate job opportunities and 
usually causes the demographics of the 
work force to be significantly altered in 
a relatively short amount of time. Em-
ployers find robots to be rather entic-
ing since they do not receive benefits or 
request vacation time. Through the de-
sign choices they make, scientists and 
engineers play a key role in determin-
ing the kinds of employment practices 
that can and will transpire. 

Employment Impacts 
and Implications
If categories of jobs do indeed vanish as 
a result of robots, will the relevant skills 
of displaced workers be transferred to 
another application or will those skills 
be rendered obsolete? This concern 
is not unique to robots. But what may 
be a new variation now is that the jobs 
available to humans may be drastically 
reduced as computers, the Internet, 
and robots replace humans in employ-
ment sectors that used to be thought of 
as immune to automation. At present, it 
is fairly difficult for people to find work 
that is not connected in some way to 
these technologies. This development 
might not be conducive to the flourish-
ing of each person’s respective talents, 
and robots are likely to exacerbate this 
situation. Also, the type of skills that will 
be in demand if and when the robotic 
age takes hold might be obvious in some 
ways but not so apparent in others.a

The impact of robotic workers can 
and will extend beyond the elimina-
tion of labor-intensive jobs, which 
captures a key reason why the ethical 
dimensions of robots seem to be draw-
ing increased attention. It is not only 
possible to eliminate “dangerous” and 
“boring” work but at least some jobs 
requiring specialized expertise, such 

a	 For example, in Wired for War, P.W. Singer 
discusses how cooks might have more job se-
curity than military pilots because they can 
prepare food in creative ways. In the civilian 
realm, he reassures hairstylists by suggesting 
their specific abilities may keep them em-
ployed; Penguin Press, NY, 2009, 130–132.

as being a surgeon, may start to dis-
appear. A decade ago, Bill Joy, the co-
founder of Sun Microsystems, famous-
ly warned against this.2 Even if we don’t 
share Joy’s apprehension about the fu-
ture of robotics, we can still appreciate 
the perils of trying to replace “uniquely 
human” abilities such as critical think-
ing and intuition.

To illustrate this point, we can look 
at the robots being created to assist with 
the health care needs of elderly popula-
tions. An outgrowth of this effort is that 
it could subtly or perhaps dramatically 
change how nursing homes function. In 
principle, robots could free up the time 
of nursing home staff; for example, a ro-
botic assistant can provide medication 
reminders or warnings if a resident is 
in danger. Such a robotic counterpart 
might enable human workers to be 
more caring and productive. However, 
nursing homes and other care facili-
ties will be tempted to downsize their 
human staff when a robot is “hired” 
instead of freeing up human staff to 
give more time to residents.3 Since 
many nursing home residents in the 
U.S. and elsewhere already do not get 
enough care and individualized atten-
tion, this is a very troubling possibility. 
Theoretically, an increased emphasis 
on in-home care could for example lead 
to the creation of other types of jobs 
but we should be skeptical about this. 
Financial considerations, the drive for 
efficiency, and overconfidence in tech-
nology are strong driving forces that can 
push humans “out of the loop.” 

On a related note, reliance on auto-
mation may exacerbate a common hu-
man tendency to shift our attention to a 

Scientists and 
engineers should 
reflect on their ethical 
responsibilities to 
communicate with 
the public about  
a robot’s capabilities 
and limitations.
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Legally Speaking  
Should the Google Book 
Settlement Be Approved? 
Considering the precedent that could be established by  
approval of the controversial Google book settlement.  

doi:10.1145/1785414.1785429	 Pamela Samuelson 

tion of the Google Book Search (GBS) 
corpus of out-of-print books that 
Google would be able to commercial-
ize if the settlement is approved.

The Authors Guild Lawsuit and 
the Proposed Settlement
In the fall of 2005, the Authors Guild 
and three of its members sued Google 
for copyright infringement because 
Google was scanning in-copyright 
books from the collection of the Uni-
versity of Michigan Library. The Guild 
members claimed to represent the in-
terests of a class consisting of persons 
holding a U.S. copyright interest in one 
or more books in Michigan’s library. 
Five trade publishers brought a similar 
suit one month later.

After 30 months of negotiations, the 
litigants announced in October 2008 a 
proposed settlement of the now-com-

T
he courtroom was  packed 
for the long-awaited hearing 
about the proposed settle-
ment of the Authors Guild v. 
Google lawsuit on February 

18, 2010. Class action lawsuits cannot 
in the U.S. be settled without a judi-
cial determination that the proposed 
settlement is “fair, reasonable, and 
adequate” to the class on whose behalf 
the case was brought. 

Judge Denny Chin heard five hours 
of oral argument about the proposed 
settlement not only from lawyers repre-
senting Google, the Authors Guild, and 
the Association of American Publish-
ers (AAP) who negotiated it, but also 
from the U.S. Department of Justice 
(DOJ), five non-party supporters, and 
21 objectors or opponents, of which I 
was one. Judge Chin announced at the 
outset of the hearing that he would not 
rule on the matter that day. 

Because the DOJ has spoken out 
strongly against the settlement—along 
with the governments of France and 
Germany and hundreds of others from 
the U.S. and abroad—the settlement 
is facing an uphill battle. An appeal 
seems likely; so whatever Judge Chin 
decides, the case is far from over.

This column describes the genesis 
of the lawsuit and reasons the pro-
posed settlement is so contentious. It 
presents my argument that the settle-
ment should not be approved without 
substantial modifications to address 
concerns of academic authors whose 
books will make up a substantial por-

bined lawsuits. The class on behalf of 
which the litigants now propose to settle 
consists of all owners of U.S. copyright 
interests in books published in the U.K., 
Canada, and Australia and books regis-
tered with the U.S. Copyright Office. 

The only issue in litigation in the 
Authors Guild case is whether Google’s 
scanning of in-copyright books for pur-
poses of making snippets of their con-
tents available in response to Google 
Book Search (GBS) user queries is copy-
right infringement or fair use. 

If the settlement resolved only that 
dispute (for example, with Google of-
fering $60 per book for past scanning 
in exchange for a license to make snip-
pet-displays), approval would almost 
certainly be granted. 

The settlement is controversial be-
cause it would give Google a license 
to commercialize all out-of-print, but 
still in-copyright books owned by class 
members as long as Google provides 
63% of the revenues from its commer-
cialization efforts to a newly created 
Book Rights Registry, which would be 
charged with locating rights holders 
and paying them money from Google’s 
commercialization of their books. 

At first blush, the GBS settlement 
looks like a win-win-win. The public 
would get access to up to 20% of most 
out-of-print books in response to user 
queries and full text access in public li-
braries and higher education settings, 
either through public access termi-
nals or institutional subscriptions to 
a database of millions of out-of-print 

What should be done 
about orphan works 
is a public policy 
issue that should be 
decided by Congress, 
not private parties  
or the courts.
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˲˲ In the past year I have spoken to 
many colleagues at UC Berkeley and 
elsewhere about the proposed settle-
ment. When I asked them whether 
they would be willing to allow their 
out-of-print books to be made avail-
able on an open-access basis, to a per-
son, they have said yes. Academic au-
thors also tend to believe that orphan 
books should be available on an open 
access basis.

˲˲  Orphan books are not a trivial mat-
ter. The Financial Times has estimated 
the number of U.S.-published books 
likely to be orphans as between 2.8 to 
five million. These books will form a 
substantial part of the institutional 
subscription database to which my 
university and others are expecting to 
subscribe.

˲˲ The Plaintiffs have characterized 
open access advocacy as “a prime ex-
ample of…parochial self-interests.” 
They also stated that the interests of 
open access advocates “plainly are in-

imical to the class.” (As if the word “in-
imical” wasn’t strong enough by itself, 
they italicized the word to emphasize 
just how inimical they think open ac-
cess advocacy really is.)

These statements show that the Au-
thors Guild has not fairly represented 
the interests of academic authors who 
are members of the author subclass. 

It also bears mentioning that aca-
demic authors would not have brought 
this lawsuit against Google because we 
tend to think that scanning books to 
make snippets is available is fair use. 
If this case goes back into litigation in-
stead of being settled, I will be writing 
briefs in support of Google, not in sup-
port of the Authors Guild.

But it’s not just me and the 150 
people who signed the supplemental 
academic author objection letter who 
endorse open access. Last August a 
letter was sent to the court on behalf 
of the UC Academic Council, which 
represents 16,000 faculty members at 

books. Copies of the books would also 
be available for individual purchase. 
Publishers and authors would get paid 
for the new market Google created for 
out-of-print books. Google would not 
only make some money from its 37% 
share of GBS revenues, but would also 
be able to make “non-display uses” of 
books for purposes such as refining its 
search technologies. 

The DOJ agrees that the public 
would benefit from the enhanced pub-
lic access to millions of books that 
would attend approval of the settle-
ment. Yet it has reluctantly concluded 
that Judge Chin lacks power to approve 
this settlement because it goes so far 
beyond the issues actually in litigation 
that it is “a bridge too far.” The GBS 
settlement abuses the class action pro-
cess because the litigants took the oc-
casion of a lawsuit on one narrow issue 
and used it to dramatically restructure 
the market for digital books.

The DOJ would endorse a settle-
ment that required class members to 
opt-in to Google’s commercialization 
plans. But Google has insisted that 
the settlement’s opt-out approach 
(that is, Google gets to commercialize 
the books unless the copyright owner 
comes forward to say no) is essential 
for establishing the new marketplace 
it envisions. 

My Objection to the GBS Settlement
I was one of the 26 non-party speakers 
to whom Judge Chin granted five min-
utes to present their views. After intro-
ducing myself and noting that I had 
filed two letters objecting to specific 
terms of the GBS settlement, the latest 
one on behalf of 150 academic authors, 
I made the following points:

˲˲ Most of the books that will be regu-
lated by the settlement agreement are 
out-of-print books from the collections 
of major research libraries such as the 
University of California, and most of 
these books were written by scholars 
for scholarly audiences.

˲˲ Many scholars own copyright in-
terest in their books at least for elec-
tronic versions. Many have clauses in 
their contracts that allow author rever-
sion rights upon the book going out of 
print. These books will be core parts of 
the institutional subscription database 
that will be licensed to universities 
such as UC Berkeley.P
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Author Susan Davis, representing the National Writers Union, arrives for the Feb. 18, 2010 
hearing in New York about the proposed settlement of the Authors Guild v. Google lawsuit.
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the University of California, expressing 
concern that open access preferences 
of academic authors would not be re-
spected by the Plaintiffs.

More important, though, is the 
open access recommendation of the 
U.S. Copyright Office in its report on or-
phan works. The Office considered and 
rejected an escrow model for orphan 
works akin to that in the amended set-
tlement agreement. Once the orphan 
status of a work has been determined, 
the Copyright Office thought the work 
should be available for free use. Con-
gress has modeled its orphan works 
legislation on the Office’s recommen-
dation. What should be done about or-
phan works is a public policy issue that 
should be decided by Congress, not 
private parties or the courts.

It is far more consistent with the 
utilitarian principles of copyright law 
to allow orphan books to be made avail-
able on an open access basis once we 
know that they are, in fact, orphaned. 
This is important to academic authors 
because what the Plaintiffs want to do 
is maximize revenues for the millions 
of orphan books that will be in the in-
stitutional subscription database. This 
is why I have asked for some meaning-
ful constraint on price hikes as part of 
the settlement agreement.

There is a fundamental difference 
in perspective between the Plaintiffs 
and academic authors about what 
books are really about. For the Plain-
tiffs, books are commodities to be ex-
ploited for maximum revenues. 

Books for academics are more like a 
slow form of social dialogue. The books 
from the past open the conversation 
that scholars pick up and carry on. The 
books we write further that conversa-

tion, and set the stage for the conversa-
tion to be carried on by our successors. 

The set of objections I made on be-
half of academic authors should not be 
swatted down one by one, as they were 
in the Plaintiff’s Objection memo, but 
viewed as important component parts 
of the cultural ecology of knowledge in 
academic communities. This ecosys-
tem will be impaired if the ecosystem 
envisioned in the settlement agree-
ment is adopted instead of the one that 
has long prevailed and should prevail in 
the future for academic communities.

Setting a Precedent?
While I could live with the GBS settle-
ment if it was amended as suggested 
in my letters, I worry very much about 
the precedent that would be set by ap-
proval of this particular settlement. 

Google’s founders say the com-
pany’s goal is to organize all of the 
world’s information. As we all know, 
books are not the only type of work 
that contains the world’s informa-
tion. I have been wondering for some 
time which sector of the copyright 
industry will be next to have its works 
scanned by Google for inclusion in its 
search database.

If this settlement agreement is ap-
proved, Google may feel free to go out 
and scan other copyrighted works. 
And if their rights holders object, the 
pragmatic response might well be: we 
could litigate about this, but I have a 
good fair use defense, and it would be 
expensive and ugly to litigate, so why 
don’t we just reach a deal on my terms 
right now? Approval of the settlement 
would give Google unfair leverage in 
such negotiations.

But beyond that, I think that approv-
al of this settlement would encourage 
other class action lawsuits that would 
then seek to justify their efforts to re-
make copyright law by saying: Congress 
is too dysfunctional to address this 
problem, so we must be allowed to do it 
through a class action settlement. This 
is just bad public policy.	

Pamela Samuelson (pam@law.berkeley.edu) is the 
Richard M. Sherman Distinguished Professor of Law and 
Information at the University of California, Berkeley.

A transcript of the fairness hearing, along with all 
documents filed with the court, is available at http://www.
thepublicindex.org.
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If this settlement 
agreement is 
approved, Google 
may feel free to go 
out and scan other 
copyrighted works.
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Broadening Participation 
Cultivating Cultural Diversity  
in Information Technology  
Introducing CMD-IT, a new center focused on synergistic activities  
related to ethnic minorities and people with disabilities.

doi:10.1145/1785414.1785430	 Valerie E. Taylor

T
he field of information tech-
nology has had a major im-
pact on society.a A panel of 
eight judges from the Whar-
ton School at the University 

of Pennsylvania recently identified 
20 top innovations from the past 30 
years; half were tied to the field of IT 
(examples include the Internet, mo-
bile phones, email, microprocessors, 
office software, and Internet-based 
social networking).2 Given the signifi-
cant impact of computing on society, 
it is important that all cultures, es-
pecially underrepresented cultures, 
are fully engaged in the field to en-
sure that everyone benefits from the 
advances in computing. The lack of 
cultural diversity is especially evident 
with respect to the following ethnic 
groups—African Americans, Hispan-
ics, and Native Americans—as well as 
people with disabilities. CMD-IT was 
developed to focus on ethnic minori-
ties and people with disabilities for 
which the link across these different 
communities is that of understand-
ing a particular culture. 

The demographics of the field’s 
faculty shape the demographics of 
the student population.6 African 
Americans comprise 1.3% of the fac-
ulty in IT, but make up 12% of the 
U.S. population; Hispanics comprise 
1.7% of the faculty in IT, but make 

a	 The term “information technology” includes 
computing, computer science, computer engi-
neering, and other specific subspecialties.

up 15%, of the U.S. population.1,7,b By 
2020, ethnic minorities are projected 
to constitute almost 32% of the U.S. 
population.7 People with disabilities 
comprise 18% of the U.S. population 
aged five years and older, but the per-

b	  The data from the CRA Taulbee Survey focuses 
on computer science and computer engineer-
ing, but the numbers are representative of the 
broader IT field.

centage of such people in the IT field 
is far lower.7 A diverse student popu-
lation requires a diverse faculty for 
many reasons, including incorpora-
tion of diverse perspectives in devel-
opment of student programs and cur-
ricula that are engaging to students 
from all groups. 

Culture is manifested in practices 
that emerge from prolonged partici-
pation within specific communities.5 

Ethnicity of Current IT Faculty
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According to Mintzes and Wander-
se: “Our perceptions of objects and 
events in the natural world are strong-
ly dependent on our store of prior 
knowledge we view the world through 
a pair of ‘conceptual goggles’.”3 These 
goggles are heavily influenced by cul-
ture. The process for seeing the value 
of diverse perspectives and diverse 
cultures begins early, usually through 
learning about multiple cultures in 
the school system where many social 
perspectives are formed. Teachers 
who understand the historical origins 
and present circumstances of differ-
ent social groups help students to un-
derstand these issues as well. Under-
standing must go beyond what Moll 
and Gonzalez call “tangible surface 
markers,” such as dance, food, lan-
guage, folklore, and ethnic heritage 
festivals. Understanding takes into 
account the everyday lived experienc-
es of diverse cultures represented by 
students and their families.4 Teachers 
should enter their students’ house-
holds and communities as “learners,” 
seeking to understand the ways in 
which people make sense of their ev-
eryday lives. Teachers of multiple cul-
tures should have direct experience in 
the communities they discuss. 

Higher education and the profes-
sional workplace have a number of or-
ganizations that serve the important 
role of providing support mechanisms 
and programs to increase the partici-
pation of particular cultures in science 
and engineering, including IT. These 
organizations include the Society for 
Advancement of Chicanos and Native 
Americans in Science (SACNAS), the 
National Society of Black Engineering 
(NSBE), the American Indian Science 
and Engineering Society (AISES), and 
the National Federation of the Blind 
(NFB). We announce a new, comple-
mentary effort in which groups, com-
panies, and organizations focused on 
underrepresented cultures in IT have 
a forum to develop synergistic activi-
ties and leverage from each other—the 
Center for Minorities and People with 
Disabilities in IT (CMD-IT), launched 
in March 2010.

CMD-IT was created by five people 
experienced with enhancing diversity 
within the IT field: Ron Eglash (Rens-
selaer Polytechnic Institute), Ann 
Gates (University of Texas in El Paso), 

Richard Ladner (University of Wash-
ington), Bryant York (Portland State 
University), and the author. CMD-IT 
facilitates synergistic activities among 
industry, established organizations, 
and local projects related to ethnic 
minorities and people with disabili-
ties in IT. The organization grew out of 
an NSF-sponsored meeting on Diver-
sity in IT held at Texas A&M University 
in April 2008. That meeting identified 
the following goal for CMD-IT: To en-
sure that underrepresented groups are 
fully engaged in information technolo-
gies, and to promote innovation that 
enriches, enhances, and enables these 
communities such that more equitable 
and sustainable contributions are pos-
sible by all communities. That goal is 
made operational through the follow-
ing objectives:

˲˲ Provide a united voice, spoken 
by many, that identifies the major is-
sues facing African Americans, Native 
Americans, Hispanics, Pacific Island-
ers, and people with disabilities in the 
IT field. 

˲˲ Provide a resource for information 
and statistics related to programs, or-
ganizations, and alliances focused on 
African Americans, Native Americans, 
Hispanics, Pacific Islanders, and peo-
ple with disabilities in the IT field. 

˲˲ Provide leadership initiatives that 
promote leadership among students, 
faculty, and professionals from the 
underrepresented groups. 

˲˲ Facilitate national-scale projects 
that involve collaborations between 
established programs and organiza-
tions, with measurable goals focused 
on engagement and enrichment. 

Success with these objectives will 
facilitate national awareness of cultur-
al issues pertaining to IT and promote 
effective sharing of best practices and 
ideas for increasing cultural diversity 
in IT. The intent of the objectives is 
already manifested in a project sup-
ported by the Broadening Participa-
tion in Computing (BPC) Program in 
NSF’s Computer and Information Sci-
ence and Engineering (CISE) Director-
ate. This project, “Incorporating Cul-
tural Tools for Math and Computing 
Concepts into Boys and Girls Clubs,” 
is gaining prominence in the U.S. by 
leveraging regional and national or-
ganizations for volunteers required to 
scale two successful, local projects to 

the national level. This project enlists 
the Boys and Girls Clubs of America 
to extend to national scale two local 
efforts—Culturally Situated Design 
Tools (CSDTs) and African American 
Distributed Multiple Learning Styles 
Systems City Stroll (AADMLSS-City 
Stroll). These two efforts use alterna-
tive approaches to educational mate-
rial involving math and computing to 
provide a better fit to different cultural 
orientations and perceptions. This 
national effort in the U.S. intends to 
develop an institutional pipeline for 
K–12 students to enter undergraduate 
programs in IT, and extend new math 
education tools to include computing. 
The project includes an evaluation 
component to help determine the cir-
cumstances under which these tools 
are most useful. Early commitments 
to facilitate this effort have been ob-
tained from the Hispanic Association 
of Colleges and Universities (HACU), 
the National Technical Association 
(NTA), and the STARS Alliance.

Currently, CMD-IT is establishing 
communities of practice, which con-
sists of representatives from industry, 
organizations, and projects focused 
on cultural diversity in IT. Furhter, 
CMD-IT is developing national-scale 
projects and initiatives, and establish-
ing partnerships and providing re-
sources for improved understanding 
of different cultures. Readers are en-
couraged to learn more about CMD-IT 
at http://www.cmd-it.org/. 	
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W
e  are    sorry      to inform 
you that your paper has 
been rejected, due to 
the lack of empirical ev-
idence supporting it.” It 

may well be the case that some of us, in 
the course of our academic lives have 
received or will receive—perhaps more 
than once—a communication simi-
lar to the previous sentence. It seems 
there is a widespread idea that a work 
only deserves to be qualified as “sci-
entific” if it is supported by “empirical 
evidence” (from the Greek empeiría, 
experience). In this column I will pres-
ent some arguments (and attempt to 
convince the reader) that this stance 
is completely insufficient, and to re-
cover a place in our academic lives for 
a kind of research that is more specula-
tive than experimental in character. Of 
course, I do not intend to question the 
legitimacy of experimental research, 
but rather to argue that a harmony 
must exist between the two. However, 
this harmony seems to be particularly 
menaced in current computer science 
research. This is a paradoxical situa-
tion, since computer science is rooted 
both in speculative sciences such as 
mathematics and experimental scienc-
es such as physics.

Radical Empiricism
Indeed, it is very easy to criticize this 
prevailing, radical empiricism: the 
idea that “only those propositions 
that are obtained through experience 
are scientific, and thus acceptable as 

true,” is not supported itself by any 
kind of empirical evidence. Therefore, 
radical empiricism must be rejected 
as self-contradictory. Besides, the 
history of computer science provides 
us with empirical arguments against 
empiricism and shows us a very dif-
ferent picture, as I will discuss later. 
In other words, if radical empiricism 
is preached, it is not due to empirical 
or experience-based reasons, but be-
cause of other kinds of not-so-clear, 
to-be-discovered motives. However, 
given the extraordinarily important role 
that empirical evidence has in science 
(it is not without reason we speak of 

the experimental-scientific method), 
it would be very superficial to remain 
with such facile criticism, without try-
ing to go deeper into the question.

Learning from experience—for-
mulating general rules on the basis of 
particular cases—is generally known 
as induction. Scientific inductivism 
expressed itself during the 20th cen-
tury mainly through the philosophical 
stance known as Verificationism, to 
which Falsificationism was opposed 
(I will try to ensure these two are the 
last –isms mentioned in this column, 
so that the reader can proceed without 
having to make marginal notes). 

Verificationism upholds an optimis-
tic thesis: induction is possible. That 
is, it is possible to formulate true gen-
eral laws on the basis of particular ex-
periences. This optimism provides the 
foundation for the most generalized at-
titude among scientists, which precise-
ly leads them to seek the confirmation 
of their theories in experience. The big 
problem of induction is to determine 
whether it truly has a rational founda-
tion, since the mere fact that particular 
cases are repeated does not warrant 
the positing of a general law. Unless we 
admit a priori that regularities cannot 
be casual: there must be some kind of 
rationality in the universe that is with-
in reach of the human mind. Sarcas-
tic critics of Verificationism will likely 
recall the old story told by Bertrand 
Russell about that “inductive turkey,” 
which after months of repeated experi-
ences (most regular, indeed) came to 
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the firm conclusion that the man who 
fed it every morning in the farmyard 
would continue to do so until the end 
of times, with all his affection…

Falsificationism, by contrast, as set 
forth mainly in the writings of Karl 
Popper, considers in a rather pes-
simistic way that induction is not 
possible; we cannot aspire to prove 
the truth of any scientific theory; sci-
entific hypotheses are no more than 
mere conjectures that are provision-
ally accepted until a new experience 
appears to refute them (what Popper 
calls “falsification”). This stance is in-
formed by a commendable skepticism 
that has helped to give it credit among 
scientists, too. But the truth is that, if 
taken to its ultimate consequences 
(beyond the point Popper himself 
would have taken it), Falsification-
ism becomes absurd: scientists do 
not devote themselves to formulating 
and provisionally accepting whatever 
theory, and then to looking for coun-
terexamples that refute it. 

On the contrary, scientists strive to 
verify hypotheses as much as to refute 
them, and they only accept hypotheses 
that are reasonable from the start and 
that have a huge explanatory power. 
What this “reasonability” might be, 
this “explanatory power,” or even the 
“simplicity and elegance” that no 
doubt have influenced great scientists 
in the formulation of their hypotheses 
and theories (consider Galileo, New-
ton, Einstein…), is an arduous problem 
for the Philosophy of Science that can-
not be addressed here. I only wish to 
point out that neither Verificationism 
nor Falsificationism can give a full ac-
count of the reality of scientific activ-
ity in all its magnitude. And that both, 
considered as methodological stances, 
refer to something that is beyond factu-
al experience. Paying attention only to 
empirical evidence is not acceptable, 
especially if the consideration of cor-
rectness of reasoning is set aside, since, 
at least, empirical evidence must be ad-
equately interpreted with good reasons. 
Experimentation without the guide of 
speculative thinking is worthless.

Truth and Relevance
We have demonstrated that empiri-
cism is insufficient. There cannot 
be a complete scientific activity that 
consists solely of proving theories by 

means of experiments: first, theories 
must be formulated and developed, 
and their explanatory power must be 
demonstrated, so that the investment 
of human and material resources in the 
experiments, which may be very costly, 
can be justified; then, the experiments 
that will prove or refute the theories 
must be carried out. Moreover, experi-
mental verification may say something 
about the truth of a theory, but it can 
say nothing about its relevance, that is, 
its interest to the scientific community 
or society as a whole. 

In this respect, we should be careful 
to distinguish between experimentation 
of a theory and its practical application: 
the latter is particularly important in en-
gineering, but developing a practical ap-
plication does not properly constitute 
an experimental verification, according 
to inductive criteria, of the theory that 
supports it. For example, showing with 
adequate reasons that a certain design 
pattern solves a recurrent programming 
problem demonstrates its applicability 
without the need of experiments and 
statistics; the rationale of the pattern, 
instead, is indispensable. The potential 
utility of a theory may be enormous, and 
should be fully acknowledged, but it is 
not at all an inductive proof—a verifica-
tion. Conversely, having an empirical 
validation is not the same as having a 
practical application.

Lessons from History
Having demonstrated that empiricism 
is insufficient in and of itself, can we at 
least say it is necessary? That is, should 
we consider it an essential part of every 
scientific activity? From the scientific 
point of view, is a purely speculative-
theoretical work acceptable without 
empirical support? In order to answer 
this question, I will formulate another 
one: What do we learn from history? In 

particular, and to focus on the area of 
major interest for the readers of this 
magazine: Who are the founders of 
computer science? 

Consider some fundamental 
names: Turing (computation theory 
and programmable automata), von 
Neumann (computer architecture), 
Shannon (information theory), Knuth, 
Hoare, Dijkstra, and Wirth (program-
ming theory and algorithmics), Fei-
genbaum and McCarthy (artificial 
intelligence), Codd (relational model 
of databases), Chen (entity-relation-
ship model), Lamport (distributed 
systems), Zadeh (fuzzy logic), Meyer 
(object-oriented programming), Gam-
ma (design patterns), Cerf (Internet), 
Berners-Lee (WWW)... Are their con-
tributions perhaps distinguished by 
their experimental character? Aren’t 
they mainly, or even solely, specula-
tive investigations (yet with enormous 
possibilities for practical application), 
whose fundamental merit has been to 
light the way for the rest of the scien-
tific community, by performing, so to 
speak, a work of clarification and devel-
opment of concepts? Would they have 
been able to publish their work accord-
ing to the “experimentalistic” criteria 
that currently prevail? 

Having a look at the list of Turing 
Awards1 or at the most cited computer 
science papers in CiteSEER2 is very 
instructive. However, given the cur-
rent standards for reviewing, many of 
those papers would never have been 
published. They would have come up 
against journal reviewers who would 
have rejected such works, considering 
them too speculative or theoretical, as 
has been humorously described in fic-
titious reviews.4

The attentive reader will have no-
ticed that I am inductively justifying, 
from the experience of history, that 
many of the best works in computer 
science (the most cited ones, to accept 
the present identity between “most 
cited” and “best,” which is of course a 
very debatable one indeed) do not have 
a fundamentally experimental charac-
ter, but rather a theoretical and specu-
lative one. Nevertheless, I am afraid 
the “recalcitrant empiricist” will not 
let him or herself be convinced even 
by this argument…because, in the end, 
his or her conviction is not grounded in 
empirical arguments.

Experimentation 
without the guide of 
speculative thinking 
is worthless.
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It may well happen that we are suf-
fering the “swinging pendulum” ef-
fect. In the past, computer science was 
not so focused on experimentalism. 
But recently the pendulum has swung 
too far toward this side, and we should 
push it the other way. Maybe periodic 
swings are even helpful for science, 
and we should not try to stop them 
completely. After all, science tends to 
be a self-correcting system, because 
ultimately truth will win out, no mat-
ter how painful the process of discov-
ery might be for those of us toiling in 
the trenches. As the great American 
philosopher and logician Charles S. 
Peirce put it, “the essence of truth lies 
in its resistance to being ignored.”3 

What Distinguishes the 
Scientific Method?
Now then, if their experimental char-
acter is not what primarily distin-
guishes scientific works, what does? 
In my view, the distinguishing feature 
of the scientific method is its “public,” 
“social” character. I do not mean by 
this—far from it—that scientific truth 
is established by consensus, but that 
research results must be demonstra-
ble to others. This, after all, is the aim 
of scientific publications (no matter 
how much these publications, and 
especially the number of publications, 
serve other, less “avowable” purpos-
es). The enemy of the scientific meth-
od is not speculative reasoning, but 
the appeal to some kind of Cartesian-
shaped “intuitive evidence,” enclosed 
within the individual, and which is 
neither communicable nor submit-
ted to the community of researchers; 
the enemy is the acceptance of ideas 
because they are “clear and distinct” 
for me, regardless of whether or not 
they are “clear and distinct” for others.

Summing up, what the scientist 
looks for is to follow a way toward 
knowledge that can be followed by 
other researchers; the goal is to “con-
vince” the scientific community of 
the validity of certain research results. 
Yet there are several possible ways to 
convince. Must all scientific works be 
reasoned and demonstrable? Yes, of 
course. Must they be empirically verifi-
able? That depends. Not all branches 
of science are equal; not all kinds of re-
search are equal. If it would be absurd 
to try to axiomatically demonstrate 

the failure probability law of a micro-
chip as a function of its temperature; it 
would be equally absurd to require an 
experimental verification of the axioms 
of fuzzy logic.

Conclusion
Experience and speculation must go 
hand in hand in the way of science. 
Some investigations will have a basi-
cally experimental character, while 
others will be primarily speculative, 
with a wide gradation between these 
two extremes. As long as all are de-
monstrable, we should not consider 
some to be more worthy of respect 
than others. If the pendulum has 
swung too far toward the experimen-
talistic side of computer science, we 
should now push it a bit toward the 
speculative field, so that the whole 
picture gets corrected. Thus, I would 
like to call upon researchers who 
might feel inclined toward specula-
tive matters—and even more upon 
those in charge of research—neither to 
close the door nor give up on this kind 
of scientific activity, which is so essen-
tial for the progress of knowledge.	
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mission; candidates come from many 
different countries and professional 
backgrounds of which the committee 
members may have a limited knowl-
edge. Therefore, the committee puts 
much weight on the endorsements 
that support the submission. Strong 
endorsements are essential for a suc-
cessful submission. 

To Nominate or to Self-Nominate 
It has been our experience that nomi-
nating a colleague for this distinction 
succeeds more often than self-nomi-
nations. A major reason for this track 
record is that nominations composed 
by someone other than the candidate 
are likely to have stronger endorse-
ments. The nominator should first 
check that endorsers are supportive 
of the nomination. Answers are likely 
to be more sincere if the nominator is 
not the candidate.

The choice of endorsers is crucial. 
The committee tends to trust the judg-
ment of endorsers who are recog-
nized authorities in their field, such 
as ACM Fellows. In fact, the Distin-
guished Member guidelines recom-
mend that two of the endorsers be 
ACM Fellows. The nomination pack-
age should also include endorsers 
who are intimately familiar with the 
work of the candidate and can provide 
firsthand testimony of its importance. 
Endorsers in the first category can fo-
cus on qualitative assessment of the 
candidate’s merit; endorsers in the 
second category should focus on pro-
viding factual information on the can-
didate’s professional activities and 
their impact.

A
CM’s Distinguished Member 

Recognition Program was 
initiated in 2006 to recog-
nize those members with 
at least 15 years of profes-

sional experience who have made note-
worthy contributions to the computing 
field. Since this program is relatively 
new, and has been undergoing chang-
es, there may be many ACM members 
unfamiliar with the requirements for 
this grade. As co-chairs for the Distin-
guished Members committee, we have 
seen many submissions fail, not be-
cause of the quality of the candidates, 
but due to the lack of adequate infor-
mation regarding the submission. We 
hope this column will help produce 
more effective nominations. 

The ACM Distinguished grade con-
sists of three categories: Educator, 
Engineer, and Scientist. Each category 
comes with a unique set of criteria, 
therefore alleviating any confusion 
or competition between grade levels. 
The committee ensures that candi-
dates are assessed by experts knowl-
edgeable of the contributions in their 
category. To the extent possible, can-
didates are judged by their peers: sci-
entists by scientists, engineers by en-
gineers, and educators by educators. 
There is no reason for an engineer or 
an educator to feel ineligible if their 
CV does not include an extensive list 
of publications, nor a scientist if he or 
she has never managed a large proj-
ect. Indeed, we estimate approximate-
ly 10% of ACM’s membership qualifies 
as Distinguished Members. 

It is important to create a nomina-
tion package suitable for the category.

Of course, many people will have con-
tributed to more than one category; it 
is perfectly acceptable to list all major 
professional contributions and activi-
ties. However, the submission should 
focus on making the case for one par-
ticular category. The clincher should 
be contributions as a practitioner, or 
contributions that advance practice in 
the relevant category. A scientist prac-
tices science by doing research and 
publishing the results; an engineer 
by developing products; an educator 
by teaching. Thus, a member teach-
ing engineering, but not practicing 
it, might better qualify as an educator 
than an engineer—unless this person 
has significantly contributed to the 
advancement of engineering as a dis-
cipline. A member doing research on 
teaching computer science, but not 
distinguished as a teacher, might bet-
ter qualify as a scientist, unless that 
member has contributed significantly 
to the advancement of CS education. 

The committee cannot indepen-
dently assess the quality of each sub-

We estimate 
approximately 
10% of ACM’s 
membership qualifies 
as Distinguished 
Members.

Distinguished Members  
Advice to Members  
Seeking ACM Distinction 

doi:10.1145/1785414.1785432	 Marc Snir and Telle Whitney 



V
viewpoints

july 2010  |   vol.  53  |   no.  7   |   communications of the acm     41

A nomination invites scrutiny if all 
endorsements come from the same 
institution. As a rule we expect that 
candidates will have had an impact 
beyond the boundaries of their own 
organization. Such candidates should 
be able to find endorsers outside their 
organization. 

A strong endorsement will provide 
a personal angle—facts known to the 
endorser that will enable the commit-
tee to better judge the material in the 
nomination package. Such insights 
often help explain the significance of 
the nominee’s contributions. 

Only the Strong Survive
It is critical to note that content-free 
endorsements will not prevail. On oc-
casion, the endorsements are remi-
niscent of the model recommenda-
tion letter composed by Benjamin 
Franklin: 

“Sir: The bearer of this, who is going 
to America, presses me to give him a let-
ter of recommendation, though I know 
nothing of him, not even his name ... As to 
this gentleman, I must refer you to him-
self for his character and merits, with 
which he is certainly better acquainted 
than I can possibly be. I recommend him, 
however, to those civilities which every 
stranger, of whom one knows no harm, 
has a right to…” 

Endorsements that carry little 
weight include: 

˲˲ Endorsements with no text attached. 
˲˲ Perfunctory endorsements that say 

only something like “I know John Smith 
and he satisfies, in my opinion, the cri-
teria for Distinguished Engineer.” 

˲˲ Endorsements that merely repeat 
text from the nomination. 

What comprises a great nomina-
tion package? Depending on the con-
tributions (packages will vary), suc-
cessful nominations tend to have the 
following qualities: 

Educator. The committee looks for 
someone whose work as an educator 
has had an impact on other educa-
tors as well as students. The package 
should outline the nominee’s impact 
both within and outside their insti-
tution. Letters of support should in-
clude at least one person in a signifi-
cant leadership role at the nominee’s 
institution, and one person who can 
speak to their contributions in the 
broader community. 

Engineer. The ideal nominee is 
someone who has led an engineer-
ing and/or product effort, and who 
ultimately delivered a result (typically 
a product and/or patents) that has 
demonstrated impact in their area of 
expertise. The package should outline 
the nominee’s technical contribution. 
Letters of support should include at 
least one person who is well known in 
their technical area, and at least one 
letter from someone outside the nom-
inee’s institution or company.

Scientist. The committee seeks a 
candidate who is a recognized leader 
in the research field. The nomination 
should include a brief description of 
the field, leadership examples, and 
why the nominee’s contribution is im-
portant. Letters of support should in-
clude at least one person well known  
in the nominee’s research area. A let-
ter, from a person at a different insti-
tution, could address the broader im-
pact of the research. 

As ACM is an international or-
ganization, the committee receives 
nominations from around the world. 
Unfortunately, we do not have repre-
sentatives from every country, and at 
times it is difficult to assess the im-
pact of the contributions. Successful 
nominations for scientists, for exam-
ple, often include endorsements that 
illustrate participation and leadership 
in international research communi-
ties. For engineers, we look for prod-
ucts with broad recognition beyond 
country boundaries. An endorsement 
from an ACM Fellow or Distinguished 
Member also helps to calibrate contri-
butions across borders. 

It is said that “success has many 
fathers, while failure is an orphan.” 
Nominations to advanced ACM mem-
bership grades reverse this adage: A 
success reflects on the unique contri-
butions of the nominee; failures can 
be due to a weak case, a weak nomi-
nation, weak endorsements, or faulty 
judgment by committee members. 
Nominators can improve their odds by 
following the advice noted here, and by 
carefully following the instructions on 
the ACM Web site (http://plone.acm.
org/membership/distinguished). 	

Marc Snir and Telle Whitney are co-chairs of the ACM 
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The DARPA High Productivity Computing Systems 
(HPCS) program sought a tenfold productivity 
improvement in trans-petaflop systems for high-
performance computing (HPC). This article describes 
programmability studies undertaken by Sun 
Microsystems in its HPCS participation. These studies 
were distinct from Sun’s ongoing development of a 
new HPC programming language (Fortress) and the 
company’s broader HPCS productivity studies, though 
there was certainly overlap with both activities. 

These programmability studies began with a focus 
on programming languages, but the focus quickly 
shifted to other topics. Existing languages—notably 
Fortran, which is arguably still the primary language 
in HPC—proved remarkably adequate. Programming 
challenges stem mostly from other factors.

What if programming did not mean having to learn 
a language someone else devised and then wrestling 
with the limitations of that language, its compilers, 

and computers to implement your 
task? What if it meant, in a sense, 
the opposite? You could write your 
program in whatever way was most 
expressive for you, without regard for 
language rules imposed by someone 
else. Then it would be someone else’s 
job to define the programming lan-
guage that would make sense of what 
you wrote, write the compilers to di-
gest the program, and build the com-
puters that would efficiently run the 
task you specified. 

We undertook such an exercise 
to get a feel for what an “ideal” pro-
gramming language for HPC applica-
tions might look like. Our approach 
was to take existing HPC programs 
and have someone rewrite them in 
whatever way suited that individual, 
not bound by the constraints of any 
existing computer, compiler, or lan-
guage. Rather, he was invited to write 
whatever seemed most expressive. We 
might not be able to compile or run 
these programs, but we could at least 
see what the writer wanted. 

Almost immediately, we were struck 
by what we were seeing. Of course, the 
rewritten code was much more com-
pact and readable than the original, 
but, surprisingly, the “ideal” program-
ming language was basically Fortran. 

My first job here is to convince you 
that this finding is not ridiculous. I ad-
mit, the experiment was biased in that 
we were starting with existing code, 
mostly written in Fortran, and used 
a human subject who was not only 
familiar with Fortran but indeed em-
braced it. The main point, however, 
is less that every programmer would 
have ended up preferring Fortran and 
more that the problems with the origi-
nal source code have more to do with 
reasons other than the limitations of 
existing programming languages. We 
look at some of these reasons here. 

The DARPA HPCS program also 
sponsored the development of new 
programming languages: Chapel from 
Cray, Fortress from Sun, and X10 from 
IBM. Proponents of those languages 
would show early on how rewriting 

doi:10.1145/1785414.1785433
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familiar HPC benchmarks in the new 
languages could reduce source-code 
volume substantially—tenfold reduc-
tions were not surprising—but rewrit-
ing these benchmarks even in Fortran 
achieved similar source-code reduc-
tions and corresponding improve-
ments in expressivity. 

New programming languages still 
have much to offer, for example, in the 
areas of expressing concurrency and 
especially data distribution. It’s just 
that the bloat we see in current HPC 
source code stems not so much from 
inadequacies in current languages as 
from other factors. 

What We Did 
We rewrote a number of HPC bench-
marks and applications using mod-
ern Fortran in a way that took into ac-

coount the human costs of software 
development: programmability and 
associated characteristics such as 
readability, verifiability, and main-
tainability. These are important con-
siderations; although copy-and-paste 
is a fast way of writing lines of code, 
it degrades readability and increases 
maintenance costs. 

Part of this effort included working 
with the Sun HPCS productivity group 
to quantify programmer productivity 
in general and to study human sub-
jects in our rewriting exercises in par-
ticular. A human subject’s activities 
could be observed passively with the 
Hackystat telemetry tool or actively via 
interviews or having the subject keep a 
journal. The team included a cultural 
anthropologist who guided these ob-
servations. 

In this article, we focus on the out-
put of the rewriting activity, examin-
ing the rewritten HPC programs and 
causes of source-code bloat. The par-
ticular HPC test codes used here are 
the NPBs (NAS Parallel Benchmarks) 
CG, MG, and BT; the plasma fusion 
application GTC; and the 3D hydrody-
namics code sPPM. 

A key metric was the number of 
source lines of code (SLOC). This is 
admittedly a crude and often decep-
tive metric, but it served as a conve-
nient starting point for quantifying 
readability and expressivity of source 
code. 

Since the generated computer pro-
grams were in Fortran, they could be 
compiled and run. Thus, we were able 
to study their performance relative to 
the original code, test automatic par-

The U.S. Department of Energy’s Jaguar supercomputer took home a trio of gold medals—for speed, sustainable memory bandwidth, and for 
FFT execution—at the recent HPC Challenge competition.
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allelization with currently available 
tools, and speculate on the potential 
for improvements in autoparalleliza-
tion. 

Table 1 lists SLOC and perfor-
mance comparisons between original 
and rewritten versions of some of the 
HPC codes we studied.

Author Feedback 
We saw remarkably large reductions 
in source-code volume. The smallest 
reduction was in GTC, which already 
used relatively modern Fortran con-
structs, had relatively little MPI (Mes-
sage Passing Interface) parallelism 
(distributed-memory), and had com-
putation and I/O formatting that the 
human subject was uncomfortable 
modifying. 

We saw various indications that the 
rewritten programs not only had few-
er lines of code, but also were easier 
to read, verify, and modify. It was not 
simply our judgment, however, that 
concluded that expressivity could be 
improved tremendously. In the case 
of GTC, we solicited feedback on the 
rewritten program from one of the ap-
plication’s maintainers. Here are se-
lected comments: 

At first glance, I was impressed by 
how small and compact the code had be-
come. I always thought that GTC was as 
small as it could get, but I was obviously 
wrong. I was also pleasantly surprised 

to discover that the programming lan-
guage was still standard Fortran 90/95, 
and not a totally new language. 

The new code is clear, concise, and 
easy to read. 

The fact that all the MPI calls and 
OpenMP directives have been removed 
makes the physics represented in the 
code easier to follow. 

[The rewrite introduced elegant] code 
reuse in CHARGE and PUSH.

But there was this warning: 
[Expect a] performance hit unless the 

compiler can perform very good inter-
procedural optimization and/or auto-
matic inlining.

This warning arose because there 
were many transformations from 
continuous (ζ,r,θ) coordinates to 
discretized mesh indices. The read-
ability and maintainability of the 
source code benefited greatly from 
encapsulating these many transfor-
mations into a few functions, but the 
performance suffered from the extra 
procedure calls and loss of many spe-
cializations and optimizations of the 
transformations. 

Single-CPU Performance 
Much of HPC is performance, includ-
ing parallelization. The code we ex-
amined showed many familiar HPC 
characteristics: loop unrolling, vector-
ization, cache blocking, multithread-
ing, data distribution, and so on. One 

might argue that, while it may be pos-
sible to reduce code volume dramati-
cally, the cost in overall performance 
would be intolerable. 

We were pleasantly surprised that 
single-CPU performance degradation 
wasn’t too bad in general. Indeed, 
for NPB CG, most of the work is per-
formed by low-level sparse-matrix rou-
tines, and overall performance really 
didn’t change at all. We expect similar 
results whenever the computationally 
intensive kernels—sparse-matrix rou-
tines, dense matrix multiplies, FFTs 
(fast Fourier transforms) among oth-
ers—are performed in library or other 
well-tuned kernels. 

In other cases we saw slowdowns 
but expected to recover much of the 
performance with judicious, tactical 
(few-line) optimizations. For example, 
the rewrite of the NPB MG code saw a 
2x speedup by converting stencil op-
erations from array syntax to (arguably 
more readable) DO loops. In GTC, one 
section of code ran four times faster 
when the Fortran MODULO intrinsic 
was replaced by a suitable substitute. 
Such optimizations, of course, place 
one on a slippery slope. Code bloat 
creeps back in, and maintainability of 
the code degrades. Indeed, even per-
formance can suffer. We have seen 
cases where simplifying the source 
code by removing “optimizations” 
actually improved performance, pre-
sumably because the “optimizations” 
originated on sufficiently different 
hardware or targeted sufficiently dif-
ferent compilers. 

Meanwhile, the battle to deliver 
good performance on expressive HPC 
source code must still be waged. Com-
piler optimizations must be augment-
ed with ongoing hardware improve-
ments. There is much work to be done 
on latency-hiding techniques such as 
prefetch, chip multithreading, and 
scout threads. To some extent, this 
simply moves the pressure from mem-
ory latency to memory bandwidth; 
thus, some system designers tackle 
other problems such as efficient use 
of partial cache lines.

Parallelization 
HPC parallelization often falls into 
two categories: finding concurrency 
and distributing data. Finding con-
currency is much simpler than dis-

Table 2. Possible pseudocode for the ADI algorithm.

INTEGER NX, NY, NZ, X, Y, Z
DIMENSION MYDATA(NX,NY,NZ)
FORALL ( X = 1:NX, Y = 1:NY ) CALL UPDATE(MYDATA(X,Y,:))
FORALL ( X = 1:NX, Z = 1:NZ ) CALL UPDATE(MYDATA(X,:,Z))
FORALL ( Y = 1:NY, Z = 1:NZ ) CALL UPDATE(MYDATA(:,Y,Z))

Table 1. HPC code comparisons.

Lines of Code Performance 
SlowdownCode Name Before After Reduction

NPB CG          839 81 10x 1x

NPB MG 1701 150 11x 2x–6x

NPB BT 4234 594 7x 2.7x

GTC 6736 1889 3.6x 2.7x

sPPM 13606 1358 10x 2x
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tributing data. Our guarded optimism 
regarding existing languages extends 
even to parallelization if, by that, we 
mean finding concurrency. If data dis-
tribution is needed to achieve high-
end performance, however, new pro-
gramming languages or constructs 
seem that much more crucial. 

HPC seldom uses locks. More typi-
cally, concurrency is related to data-
parallel loops—for example, time 
stepping all particles or grid elements 
concurrently. Meanwhile, clusters of 
commodity computers have become 
the price-performance winners in 
HPC. Therefore, parallelization also 
involves the decomposition of data 
over cluster nodes. Nodes share data 
in HPC typically through explicit mes-
sage passing, for example with MPI. 

Consider the alternating direc-
tion implicit (ADI) method for solving 
partial differential equations. Specifi-
cally, consider a 3D rectangular grid, 
such as that shown in the accompany-
ing figure on the right. Physically, the 
information on any grid cell propa-
gates throughout the 3D volume, ul-
timately influencing all other cells. 
Computationally, we can restrict data 
propagation along only the x-axis in 
one phase of computation, later along 
the y-axis, and finally along the z-axis. 
Ultimately, the computed physics 
should remain unchanged. 

Such an algorithm organizes com-
putation along “pencils” of cells. For 
example, in the first phase, all cells in 
an X-aligned pencil can be updated 
based solely on data values within this 
pencil. Indeed, all X-aligned pencils 
can be updated concurrently; then 
all Y-aligned pencils; and finally, all 
Z-aligned pencils. If there are N3 ele-
ments in the grid, then there are N2 
pencils in each of the X, Y, or Z phases. 
That is to say, there is considerable 

concurrency. The BT and sPPM codes 
both are organized like this, as are 
multidimensional FFTs. The pseudo-
code might look like Table 2. 

Each subroutine call can be made 
concurrently with all other calls in 
the same FORALL statement. There 
is, however, no way of distributing the 
elements of MYDATA onto multiple 
processors so that each processor has 
all the data it needs for all stages of 
computation. If a particular proces-
sor “owns” MYDATA(X,Y,Z), then to 
process an X-aligned pencil of data it 
needs all MYDATA(:,Y,Z) values. Then, 
to process Y-aligned pencils of data, it 
needs all MYDATA(:,:,Z) values. Final-
ly, to process Z-aligned pencils of data, 
it needs all MYDATA(:,:,:) values. 

Therefore, while concurrency in 
this example is rife, distributed-mem-
ory systems face a great challenge 
both in exchanging data between pro-
cessors explicitly and in distributing 
data so that such costly exchanges are 
minimized. 

Similar issues arise even in shared-
memory systems. It may be possible 
for all processors to access all ele-
ments in place, but these accesses 
must be coordinated, whether to pre-
vent race conditions or to deal with 
cache coherency. Even shared-memo-
ry systems benefit from spatial locality 
since processors can then deal with 
complete cache lines. 

If we focus on the relatively easier 
problem of concurrency, we could in 
the long term help keep the HPC pro-
grammer from having to parallelize 
explicitly. We would benefit from im-
provements in software. Existing com-
pilers already identify some opportu-
nities for automatic parallelization. 
This includes progress on autoscop-
ing—that is, automatically analyzing 
source code to determine the usage 

(private, shared, read-only shared, 
replicated, and so on) of variables so 
that a loop could be parallelized. Au-
tomatic analysis would be aided by 
whole-program or interprocedural 
analysis. 

Runtime management of concur-
rency would also help. Loops might 
be nested, or loop iterations might be 
unbalanced. Loop counts and proces-
sor counts might not be known until 
runtime. Static analysis alone cannot 
balance computational loads or judge 
the balance between fine-grained par-
allelism (for maximum concurrency) 
and coarse-grained parallelism (to 
amortize the costs of parallelization). 

Simpler concurrency for the HPC 
programmer would also benefit from 
hardware improvements. Large, glob-
ally addressable memories help. 
Processors run faster with cached 
data, however, so coherency must 
be managed. Hardware can support 
concurrency with atomic operations, 
transactional memory, and active 
messages. 

While concurrency seems relatively 
simpler, managing data distribution 
seems a much more difficult task. This 
is one area where new programming 
languages could really offer help. 

For example, the NPB BT bench-
mark has a cousin, BT I/O, which adds 
I/O to the test. This offers a test of 
adaptive maintenance—that is, add-
ing functionality to an already written 
program. The comparison was almost 
a joke: setting up I/O in the original, 
distributed-memory version of the 
code added 144 source lines, while 
the rewritten, shared-memory version 
needed only one extra line! 

Algorithmic Complexity
Performance and parallelization are 
not the only pressures causing large 

3D grid showing pencils of cells.

y

x

z
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source code. Another issue is that 
the ideas the computational scien-
tist wants to express are rather low 
level. For example, the fusion code 
GTC models the Lorenz force, which a 
physicist could succinctly write as 

F = q(E + v x B)

but which the computational physi-
cist transforms into many pages of 
bewildering equations and commen-
surately large volumes of computer 
code. Since charged particles travel 
in very tight spirals in plasmas, the 
computational physicist starts by 
transforming to a “guiding-center” 
formulation. Then coordinates are 
transformed to align with the mag-
netic fields in a tokamak. Such trans-
formations introduce considerable 
complexity, but they also improve 
the numerical properties and perfor-
mance of the code by several orders 
of magnitude, an advantage that can-
not be overcome just by buying more 
computer equipment. 

Generally, computational scien-
tists remove high-frequency compo-
nents, discretize grids, use sophis-
ticated time stepping, introduce 
crucial approximations, expand 
terms, transform coordinates, add 
dissipative terms and upwind differ-
encing to control numerical stability, 
and otherwise turn a few simple equa-
tions into pages of mind-numbing al-
gorithms that represent the essence 
of what they’re trying to do compu-
tationally. To forgo that algorithmic 
complexity would increase computa-
tional cost by many unaffordable or-
ders of magnitude. A computational 
scientist’s bread and butter is not 
simply the equations of mathematical 
physics (the Lorenz force, Schröding-
er’s equation, Navier-Stokes equa-
tions, among others), but algorithmic 
specifications that make computa-
tion possible within a particular set 
of conditions. Fortran is rather good 
at expressing computational rules. 
Modern Fortran with array syntax, ge-
neric interfaces, optional arguments, 
recursive subroutines, MODULEs, 
array-valued functions, and other fea-
tures, is even more so. The ability to 
have typeset mathematical syntax, as 
with Fortress or Mathematica, would 
also be nice. 

Other areas that seem to have com-
plexity that would be difficult to ex-
press regardless of the programming 
language include high-level algorith-
mic control flow and detailed I/O for-
matting. 

Implementing Band-Aids 
Source-code volume also expands as a 
result of limitations—even defects—
in current software and hardware. 
One example is portability. HPC pro-
grammers must account for differ-
ent vendors, MPI implementations, 
threading models, compilers, For-
tran-C interoperability conventions, 
default word sizes, and so on. In other 
cases, code takes pains to reproduce 
particular floating-point numerics (re-
gardless of whether those numerics 
are right). Inconsistent library avail-
ability, whether a result of licensing 
or installation and bundling issues, 
also is an issue: while libraries offer all 
sorts of functionality, HPC code often 
has its own random-number genera-
tors, matrix multipliers, sparse-matrix 
support, linear solvers, and FFTs to 
ensure these capabilities will be avail-
able regardless of where the applica-
tion is run. 

HPC code sometimes also imple-
ments capabilities that might be bet-
ter provided by tools. Examples in-
clude performance instrumentation, 
debugging code, and checkpointing. 

Source code also reflects work-
arounds to transient bugs or to limi-
tations in compilers. An example is 
Fortran array syntax. We have found 
many instances where array syntax 
allows much higher-level program-
ming. Many programmers, however, 
have avoided the elegant syntax be-
cause its implementation in many 
compilers is immature. Arguably, de-
veloping new programming languag-
es would exacerbate rather than solve 
such a problem.

Despite our rosy view of existing 
programming languages, we admit 
encountering areas where language 
improvements would have been nice. 
Type inference, including the infer-
ence of array extents, would allow 
one to forgo tedious boilerplate dec-
larations. Better support of stencils 
(computations on grids where each 
element is updated based on nearby 
elements) is useful for HPC. 

Specification, Verification, 
and Validation 
We started with the software devel-
opment model in which a computer 
program starts from a written speci-
fication. Then, it must be verified 
(checked against the spec) and vali-
dated (checked that it fulfills its in-
tended purpose over some range of 
parameters). 

It is possible that the program is 
written without verifiability in mind. 
Here is a striking example from the 
NPB BT code. 

rhs(2,i,j,k) = rhs(2,i,j,k) + 
dx2tx1 *
	 (u(2,i+1,j,k) - 
	 2.0d0*u(2,i,j,k) +
	 u(2,i-1,j,k)) +
	 xxcon2*con43 * (up1 -  
	 2.0d0*uijk + um1) -
	 tx2 * (u(2,i+1,j,k)*up1 -
	 u(2,i-1,j,k)*um1 +
	 (u(5,i+1,j,k)- 
	 square(i+1,j,k)-
	 u(5,i-1,j,k)+ square(i- 
	 1,j,k))*
	 c2)

This code is basically supposed 
to implement the following from the 
NPB1 specification. 

[RHS2] = ... 
 - ( ∂ / ∂ξ ) ( [u(2)]2/u(1) + φ ) 
 + ( ∂2 / ∂ξ2 ) ( dξ(

2)u(2) + 
(4/3)k3k4[u(2)/u(1)] ) 

There is little correspondence be-
tween the source code and the speci-
fication it is supposed to implement. 
This is not so much a limitation of the 
programming language but of human 
intention. Here is how we rewrote the 
code, with the purpose of improving 
readability and verifiability. 

RHS2 = RHS2 - deriv(1,1,u2**2/
u1+phi)
RHS2 = RHS2 + deriv(2,1,dx2*u2 
+ 4*k3*k4/3*u2/u1)

It is more likely, however, that there 
isn’t even a spec to verify the code 
against. When we attempted to ver-
ify GTC and asked for a specification 
for the application, we received this 
somewhat humorous reply: “There is 
one physicist at the lab who actually 
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went through the code line by line and 
took some notes. Unfortunately, these 
notes are not in electronic format, and 
worse…they’re in Chinese.” 

There may have been a specifica-
tion originally, but the source code 
evolved over time, while the spec was 
never updated. To mitigate the diver-
gence of spec and source code, we 
looked at making source code, even 
Fortran, as readable as possible and 
interleaving source code with specifi-
cation or documentation. We tried an 
implementation of the HPCS graph 
analysis benchmark, SSCA #2, where 
the “source code” was HTML from 
which a script could extract Fortran 
code to compile and execute. This ap-
proach to having a single artifact to 
maintain, instead of disjointed speci-
fication and source code, is similar 
to ideas found in Mathematica note-
books, Donald Knuth’s Literate Pro-
gramming, and Scientific WorkPlace. 

Validation is also difficult. One 
must compare results in particular pa-
rameter regimes to results that might 
be known from analysis or predeces-
sor codes. Since validation is so ex-
pensive and depends so critically on 
experienced scientific understanding 
and intuition, over most of an HPC ap-
plication’s lifetime one simply checks 
software modifications by comparing 
results with an earlier version of the 
code. Whereas the science is mean-
ingful to only limited precision (say, 
1% or even 10%), checking numerical 
results in HPC usually means check-
ing fickle floating-point arithmetic 
out to the least significant digit. We 
found cases, for example, where we 
refrained from changing the source 
code because changing ((2*pi)*k)/N 
to 2*((pi*k)/N) or changing X*(1/
deltat) to X/deltat changed float-
ing-point results subtly. We do not 
know if the results were more accurate 
or less, only that they were slightly dif-
ferent. These differences prevented 
us from making the source code more 
readable or run faster.

Programmers’ Priorities 
Project deadlines force software to be 
written quickly. Many expedient writ-
ing styles, however, cause programs 
to become longer and therefore more 
difficult to read, understand, verify, 
and maintain. Meanwhile, many pro-

gramming habits develop in a culture 
of fast prototyping, avoiding advanced 
language features since their support 
is immature and focusing instead on 
the last drop of performance. As pre-
sented in Donn Seeley’s ACM Queue 
article, “How Not to Write Fortran in 
Any Language” (December/January 
2004/2005), examples of poor pro-
gramming practices abound. 

Programming for verifiability is of-
ten not a priority, as the BT example 
illustrated. 

As another example, in sPPM we 
found thousands of lines of code for 
handling boundary conditions. The 
rewritten code used only about a 
dozen lines. There are many reasons 
for this astounding reduction, but 
one issue is that the original code at-
tempted to fill in “ghost cells” only 
when their values would be needed. 
(Ghost cells are replicas of real com-
putational cells, where such repli-
cation can simplify the handling of 
boundary conditions.) In the rewrite, 
we would routinely fill in all ghosts 
cells. Eliminating checks on whether 
such updates were needed facilitated 
the programming logic immensely, 
with nearly no overall performance 
loss in the cases we studied. In HPC, 
the mind-set is usually to program for 
performance rather than programma-
bility even before establishing wheth-
er a particular section of code is per-
formance sensitive or not. 

The ISO/IEC standard on software 
maintenance adopted the term per-
fective maintenance. Modifying source 
code simply to improve its maintain-
ability, however, often receives scant 
attention when other objectives—
such as fixing defects, implementing 
new features, tuning performance, 
and migrating to new platforms—
clamor for attention. 

The NPB BT source code takes 
hundreds of lines of code to compute 
the time derivative dU/dt to form the 
right-hand side. This computation ap-
pears to have been implemented from 
scratch twice, once in file rhs.f and 
again in exact _ rhs.f. Even if this 
duplication of effort was overlooked 
originally, perfective maintenance 
should weed out such redundancy to 
benefit the generations of HPC work-
ers who have had to look at this source 
code since it was first written—provid-

ed, of course, that this is important for 
the software’s owners.

Where Do We Go From Here? 
Repeating some of these programma-
bility studies on larger HPC programs 
would be interesting. In particular, 
it would be nice to move from self-
contained programs that are small 
enough for one person to have writ-
ten—what DeRemor and Kron would 
term “programming in the small”—
to larger pieces of software, written 
by many people and where interfaces 
among many parts are important 
(“programming in the large”). Like 
nature, source code looks different at 
different scales: from fast prototyp-
ing, to self-contained applications, 
to multi-decade legacy code. Further 
work to relate source-code character-
istics empirically to human productiv-
ity metrics would also be interesting. 

Most of all, the HPC community   
on all fronts: language development, 
compiler maturity, hardware inno-
vations, HPC software development 
practices, and even procurements and 
competitive benchmarking. 

When we start with an existing 
language, however, we benefit from 
available compilers, systems, refer-
ence codes, experience, and program-
mers. 
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When I/O latency is presented as a visual heat map 
some intriguing and beautiful patterns can emerge. 
These patterns provide insight into how a system is 
actually performing and what kinds of latency end-
user applications experience. Many characteristics 
seen in these patterns are still not understood, but so 
far their analysis is revealing systemic behaviors that 
were previously unknown. 

Latency is time spent waiting and has a direct 
impact on performance when induced by a 
synchronous component of an application request. 
This makes interpretation straightforward—the 
higher the latency, the worse the performance. Such 
a simple interpretation is not possible for many 
other statistics types that are commonly examined 
for performance analysis, such as utilization, IOPS 
(I/O per second), and throughput. Those statistics 
are often better suited for capacity planning and 

for understanding the nature of work-
loads. For identifying performance 
issues, however, understanding la-
tency is essential. 

For application protocols mea-
sured from the application server, la-
tency can refer to the time from when 
a request was received to when the 
completion was sent—for example, 
the time for a Web server to respond 
to HTTP GETs or a file server to re-
spond to NFS (network file system) 
operations. Such a measurement is 
extremely important for performance 
analysis since the client and end us-
ers are usually waiting during this 
time. 

For resource components such as 
disks, latency can refer to the time 
interval between sending the I/O 
request and receiving the comple-
tion interrupt. High disk latency 
often translates to application per-
formance issues, but not always: file 
systems may periodically flush dirty 
cached data to disks; however, the 
I/O is asynchronous to the applica-
tion. For example, the Oracle Solaris 
ZFS file system periodically flushes 
transaction groups to disks, caus-
ing a spike in average disk latency. 
This does not reflect the file-system 
latency experienced by ZFS consum-
ers, since the average disk latency in-
cludes asynchronous writes from the 
transaction flush. (This misconcep-
tion would be alleviated somewhat if 
read and write latency were observed 
separately, since the transaction flush 
affects write latency only.)

While it’s desirable to examine 
latency, it has been historically dif-
ficult or impossible to measure di-
rectly for some components. For 
example, examining application-
level latency server side may have 
involved instrumenting the applica-
tion or examining network packet 
captures and associating request to 
response. With the introduction of 
DTrace,1 however, measuring laten-
cy at arbitrary points has become 
possible for production systems—
and in real time.

doi:10.1145/1785414.1785435
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Heat maps are a unique and powerful way to 
visualize latency data. Explaining the results, 
however, is an ongoing challenge.
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Latency Heat Maps
Given the ability to trace latency at ar-
bitrary points of interest, the problem 
becomes effective visual presentation 
of this data. Busy systems can be pro-
cessing hundreds of thousands of I/O 
events per second, each one providing 
a completion time and I/O latency. One 
approach is to summarize the data as 
average and maximum latencies per 
second, which can be presented as line 
graphs. While this would allow average 
latency to be examined over time, the 
actual makeup or distribution of that 
latency cannot be identified beyond a 
maximum, if provided. 

To examine a distribution over time, 
visualizations such as heat maps may 
be used. The use of heat maps in sys-
tem observability tools has been infre-
quent, with some appearances to map 
the access pattern of disk I/O. An exam-

ple of this is taztool (1995), which dis-
plays a heat map showing time on the 
x-axis and disk I/O offset on the y-axis, 
allowing random and sequential disk 
I/O patterns to be identified by visual-
izing the location of disk I/O.5 

To visualize the distribution of la-
tency over time, a heat map can be cre-
ated with time on the x-axis and latency 
on the y-axis. The heat map is a color-
shaded matrix of pixels, where each 
pixel represents a particular time and 
latency range. The amount of I/O that 
occurs in that time and latency range is 
shown by the color shade of the pixel: 
darker colors for more I/O, lighter col-
ors for less. Apart from showing the 
latency distribution, the heat map also 
conveys details on maximum and aver-
age latency by looking for the pixel with 
the highest latency and where the dark-
est colors are grouped. 

For the latency heat map to be most 
effective, the time and latency ranges 
represented by each pixel should be 
sufficiently large to allow multiple I/O 
operations to fall within them. This al-
lows darker shades to be selected and 
patterns shown by different shades to 
be observed. If the ranges are too small, 
many of the pixels may represent only 
one I/O, and much of the heat map 
may appear in the same color shade; it 
may also reduce the likelihood that ad-
jacent pixels are shaded, and the heat 
map may look more like a scatter plot. 

The range of possible color shades 
from light to dark may be applied to 
each heat map generated. This can be 
applied linearly: the pixel with the most 
I/O is assigned the darkest color, and 
all other pixels are given a shade that 
is scaled from the darkest I/O count. 
A drawback with this approach is that 
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important details may appear washed 
out. Latency deviating from the norm 
is particularly important to examine, 
especially occurrences of high latency. 
Since these may represent only a small 
fraction of the workload—perhaps less 
than 1%—the color shade may be very 
light and difficult to see. A false color 
palette can be applied instead to high-
light these subtle details, given the 
trade-off that the color shades then 
cannot be used to gauge relative I/O 
counts between pixels.

A particular advantage of heat-map 
visualization is the ability to see out-
liers. For the latency heat map these 
may be occasional I/O operations with 
particularly high latency, which can 
cause significant performance issues. 
If the y-axis scale is automatically 
picked to display all data, outliers are 
easily identified as occasional pixels at 
the top of the heat map. This also pres-
ents a problem: a single I/O with high 
latency will rescale the y-axis, com-
pressing the bulk of the data. When 
desired, outliers can be eliminated so 
that the bulk of the I/O can be exam-
ined in detail. An automatic approach 
can be to drop a percentage (say, 0.1%) 
of the highest-latency I/O from the dis-
play, when desired. 

To generate latency heat maps, data 

is collected for each I/O event: the com-
pletion time and I/O latency. This data 
is then grouped into the time/latency 
pixels for the heat map, and the pixels 
are shaded based on their I/O counts. 
If the original I/O event data is pre-
served, heat maps can be regenerated 
for any time and latency range, and of 
different resolutions. A problem with 
this is the size of the data: busy produc-
tion systems may be serving hundreds 
of thousands of I/O events per second. 
Collecting this continually for long 
intervals, such as days or weeks, may 
become prohibitive—both for the stor-
age required and the time to process 
and generate the heat maps. One solu-
tion is to summarize this data to a suf-
ficiently high time and latency resolu-
tion and to save the summarized data 
instead. When displaying heat maps, 
these summaries are resampled to the 
resolution desired. 

Heat Map Explained
Latency heat maps were implemented 
as part of an Oracle system-observabil-
ity tool called Analytics. The imple-
mentation allows them to be viewed in 
real time and continually records data 
with a one-second granularity for later 
viewing. This is made possible and op-
timal by DTrace, which has the ability 

to trace and summarize data in-kernel 
to a sufficient resolution and to return 
these summaries every second to user-
land. The user-land software then resa-
mples the summarized data to produce 
the heat maps.

The heat map in Figure 1, an exam-
ple screenshot from Analytics, shows 
the latency distribution of an NFS read 
workload and the effect on NFS laten-
cy when using an additional layer of 
flash-memory-based cache. This cache 
layer was enabled at 19:31:38, which 
has been centered on the x-axis in this 
screenshot. Explaining this heat map 
in detail will show how effective this 
visualization is for understanding the 
role of these system components and 
their effect on delivered NFS latency. 

In this screenshot, a panel is dis-
played to the left of the heat map to 
show average IOPS counts. Above and 
below the panel the “Range average:” 
and “8494 ops per second” show the av-
erage NFS I/O per second for the visible 
time range (x-axis). Within the panel 
are averages for latency ranges, the first 
showing an average of 2,006 NFS IOPS 
between 0 and 333 µs. Each of these 
latency ranges corresponds to a row of 
pixels on the heat map. 

For the time before 19:31:38, the 
system served NFS reads from one of 
two locations: a DRAM-based cache or 
disk storage. If the requested I/O was 
not in the DRAM cache, then it was re-
trieved from disk instead. In the heat 
map, two levels of latency can be seen. 
These correspond to: 

˲˲ DRAM hits, shown as a dark line at 
the bottom of the heat map

˲˲ Disk hits, shown as a shaded cloud 
of latency from 2ms and higher 

This is as expected. DRAM hits have 
very low latency and are shown in the 
lowest-latency pixel. This pixel repre-
sents latencies between 0 and 333 µs, 
which is the resolution limit of the cur-
rently displayed heat map. Since the 
recorded data has a higher resolution, 
this heat map can be redrawn with dif-
ferent vertical scales to reveal finer de-
tails. By zooming to the lower latencies 
the DRAM hits were found to be mostly 
in the range of 0 to 21 µs.2 

The latency for disk hits has a wide 
distribution, from about 2ms to the top 
of the displayed heat map at 10 ms. The 
returned latency for disk I/O includes 
rotation, seek, and bus I/O transfer 

Figure 1. NFS latency when enabling SSD-based cache devices.

Figure 2. Synchronous writes to a striped pool of disks.
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times. As the disks were accessed with 
a random I/O pattern, rotational laten-
cy alone can add up to 8.3 ms, the time 
for a full rotation on these disks. This 
rotational latency is presumed respon-
sible for much of the random pattern 
seen in the heat map. 

The heat map before 19:31:38 also 
identifies a latency range where I/O is 
less frequent: the lighter band seen 
from 334 µs to about 2ms, between 
DRAM hits and disk hits. This latency 
gap has been addressed by the hybrid 
storage pool4 in ZFS6 by adding a flash-
memory-based layer of cache. Flash 
memory is slower than DRAM and fast-
er than disks, and was incorporated in 
this NFS server in the form of SSDs (sol-
id state drives). NFS reads may then be 
served from one of three locations, in 
order of preference: the DRAM-based 
cache, the flash-memory-based cache, 
or disk storage. 

Enabling the flash-memory-based 
cache occurred at 19:31:38, after which 
three levels of latency can be seen: 

˲˲ DRAM hits, shown as a dark line at 
the bottom of the heat map

˲˲ SSD hits, having a latency of less 
than about 2ms

˲˲ Disk hits, which have become 
lighter with the addition of the extra 
cache layer, since fewer requests are 
reaching disk 

This heat map shows that a flash-
memory-based cache had reduced 
latency for I/O that would otherwise 
be served from disk. All three system 
components were visualized, with 
their latency ranges and the distribu-
tion of latency within that range. It 
also shows that disk I/O still occurs, 
although at a reduced rate. This is all 
useful information provided by the 
heat-map visualization. Imagine pre-
senting this data as a line graph of 
average latency instead: the only infor-
mation visible would be a small reduc-
tion in average latency when the cache 
was enabled (small since the average 
would be dominated by the high num-
ber of DRAM hits). 

Most heat maps are well understood 
like this one. What follows are heat 
maps we have discovered that were not 
expected and that exhibit interesting 
patterns that are not fully understood. 

The Icy Lake
The workload and target are simple: 

A single client has a single thread per-
forming sequential synchronous 8KB 
writes to an NFS share. The NFS server 
has 22 x 7,200RPM disks as part of a 
ZFS striped pool. 

Since these are synchronous writes, 
the NFS request cannot complete until 
the data is written onto stable storage. 
No flash-memory-based log devices 
were used for this test, so latency is ex-
pected to be high, as the data must be 
written to the 7,200RPM disks. 

You may expect the latency to be dis-
tributed randomly between 0 and 10 
ms and for the heat map to appear as 
white noise. The actual result is shown 
in Figure 2. 

Instead of a random distribution, 
latency is grouped together at various 
levels that rise and fall over time, pro-
ducing lines in a pattern that became 
known as the icy lake. This was unex-
pected, especially considering the sim-
plicity of the workload. 

This behavior could not be identi-
fied from average or maximum latency 
alone—imagine compressing the y-ax-
is information into a single line graph. 
This would also be challenging to iden-
tify when examining every I/O event, 
such as by tracing at the disk level us-
ing the DTrace-based iosnoop tool, be-
cause of the sheer volume of the data 
(thousands of lines of output). 

The first step in understanding this 
pattern is to check if each of the 22 
disks contributed distinct lines. Figure 
3 shows the disk I/O latency from a sin-
gle disk, which confirms that each disk 
is contributing lines to the pattern. 

The next step is to investigate why 
some lines increase and some de-
crease. An increase could result from 
an application requesting I/O in lock-
step with disk rotation and ZFS writing 
sectors along tracks on disk, increas-
ing disk-rotation latency with each 
I/O (although this doesn’t explain how 
latency could increase for some disks 
and decrease for others). 

To simplify matters, the test was re-
peated with a single disk pool. Figure 4 
shows that most of the NFS latency was 
between 7.86ms and 8.20ms, which is 
close to the 8.33ms rotation speed of 
the 7,200RPM disk. The disk I/O off-
sets were examined (using both Analyt-
ics and iosnoop), which showed that 
ZFS was writing the 8KB I/O sequen-
tially across the disk. The reason for 
the smaller NFS latency may be the cli-
ent and network latency: once one I/O 
completes, the disk continues to turn 
while the NFS completion is sent to the 
client; the client processes it, requests 
the next write, and then the next write 
is requested to the disk. By the time 
this has happened, the disk has rotated 
a little and so doesn’t require a full ro-
tation to write out the next offset. This 
would explain most of the I/O shown in 
the heat map; however, the reason for 
the line at the top is still unknown (it 
shows an average of one I/O per second 
from 9.29ms to 9.64ms and is made 
clearly visible by the false color palette 
used by Analytics). 

ZFS serves synchronous writes by 
writing to ZILs (ZFS intent logs), which 
are later grouped and flushed to disk 

Figure 3. Single-disk latency from striped pool.

Figure 4. Synchronous write latency to single-disk pool.
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as a TXG (transaction group). The ZIL 
is expected to be written sequentially, 
and so the heat map is also as expect-
ed (with the exception of the line at 
the top). This will differ for a two-disk 
striped pool, since ZFS will have a 
ZIL on each disk and write to them in 
round-robin fashion. This was tested, 
and Figure 5 shows the resultant NFS 
latency on a two-disk pool and the disk 
I/O latency from each disk in the pool. 
The reason for increasing and decreas-
ing latency can now be theorized: as 
the latency on one disk increases, the 
other disk continues to turn and by 
the time a request is issued has a cor-
responding smaller latency. The heat 
map in Figure 2 is an extension of this, 
with 22 disks instead of two.

The reason for the slope in the first 
place has still not been pinpointed. 
The disks are writing to a steadily in-
creasing offset, which is expected to be 
placed in a sequential manner along 

a disk track (it’s up to the disk what it 
really does with it). If the starting point 
of rotation were fixed, the rotational 
latency to each write would steadily in-
crease as the disk turns farther to reach 
the increasing offset (until a full revolu-
tion is reached). The starting point isn’t 
fixed, however; rather it is the end point 
of the previous I/O, which includes the 
starting offset and I/O size. Since each 
offset delta and I/O size is the same, the 
rotational latency to the next I/O should 
also be the same. As with the single-
disk pool analysis, the slope may actu-
ally be a result of client and network la-
tency while the disks continue to rotate. 
The reason the slope changes is also 
unknown, as seen in Figure 5 between 
20:10:00 and 20:10:45. 

This workload was tested on other 
storage configurations such as mirror-
ing, single-, and double-parity RAID. 
Figure 6 shows this workload to a mir-
rored pool of 22 disks. Here the ZIL 

is mirrored across pairs of disks, and 
writes to stable storage are not consid-
ered completed until the ZIL exists on 
both sides of the mirror; thus, the NFS 
I/O latency is from the slowest disk in 
the pair. This has given the heat map 
a bias toward the higher latencies. A 
similar and greater effect was seen for 
single- and double-parity RAID (their 
heat-map screenshots are not includ-
ed here). 

To summarize what we know about 
the icy lake: lines come from single 
disks, and disk pairs cause increasing 
and decreasing latency to occur. The 
actual reason for the latency differ-
ence over time that seeds this pattern 
has not been pinpointed; what causes 
the rate of increase/decrease to change 
(change in slope seen in Figure 5) is also 
unknown; and, the higher latency line 
seen in the single-disk pool (Figure 4) 
is also not yet understood. Visualizing 
latency in this way clearly poses more 
questions than it provides answers.

The Rainbow Pterodactyl
As with the icy lake, the rainbow ptero-
dactyl is another simple workload that 
has produced a surprisingly complex 
pattern. This time disk I/O latency is 
examined on a system with 48 disks 
across two JBOD (just a bunch of disks) 
enclosures. A local workload was exe-
cuted to investigate I/O bus through-
put by adding disks one by one with 
sequential 128KB reads, while look-
ing for knee points in the through-
put graph. The latency was expected 
to be consistent for the I/O size used 
and appears as a narrow line, perhaps 
with a slight increase as contention 
increased on I/O subsystem buses 
(which include HyperTransport, PCIe, 
and SAS). When one of those buses 
reaches saturation, the latency is ex-
pected to increase much more sharply. 
Therefore, only two features were ex-
pected: a gradual increase with consis-
tent latency and later a sharp increase 
with latency becoming less consistent 
because of contention.

Figure 7 shows the throughput 
graph and latency heat map from this 
test. A new disk was added to the work-
load every two seconds, and a knee 
point in the disk throughput plot can 
be seen at 17:55. Finding this knee 
point was the original intent of this ex-
periment; it was the latency heat map 

Figure 5. Synchronous-write latency to a two-disk pool.

Figure 6. Synchronous writes to a mirrored pool of disks.
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that was eye-catching, however. We 
named it the rainbow pterodactyl. 

The disk I/O bytes graph (the rain-
bow) shows three features: the initial 
rise, followed by a decreased slope, 
and then decay. By corresponding the 
disk graph with the heat map, charac-
teristics in the heat map can be seen to 
occur at certain disk counts. The heat 
map shows the following features. 

The “beak” occurs from disk one to 
disk eight. The reason for two levels 
of latency is not fully understood, but 
an experiment has provided a clue: if 
the same data is read repeatedly to en-
sure disk-cache hits, then only one line 
is seen with low latency. The two-line 
pattern happens when these disks are 
read sequentially, suggesting that the 
second line is for disk-cache misses. 
Analyzing this further is difficult with 
standard tools: input to the disk and 
its returned latency can be traced, but 
there is no visibility into disk internals 
such as the operation of the disk data 
controller. 

When the ninth disk is added, the 
beak turns into the “head.” The disks 
are attached using two SAS cables, each 
x4 ports, providing eight SAS ports in 
total. Accessing the ninth disk may be 
causing contention on those ports in 
the SAS controller and the correspond-
ing random latency pattern. When the 
disks are attached using a single x4 SAS 
cable, the beak-to-head transition oc-
curs at the fifth disk. 

A “bulge” forms at the top of the 
head between disks 9 and 12, showing 
slightly increased latency. The reason 
for this is not certain, though it may be 
from increasing contention for the SAS 
ports. Nor is the reason known for the 
reduced latency that forms the “neck” 
at disks 13 and 14. 

Approximately between disks 15 
and 20 is the “wing.” This sudden 
increase in latency causes the knee 
point in the disk-throughput graph. 
The source for this contention is not 
known, although another disk-scaling 
experiment using a single x4 SAS cable 
to a single JBOD produced a wingless 
pterodactyl.  

From about disk 20 onward, while 
disks continue to be added, latency 
continues to rise and becomes less 
consistent. This is expected to be PCIe-
gen1 bus contention on the SAS con-
troller card.

All of these features are made visible 
by the heat map, yet are completely un-
known by the individual I/O events that 
form the input: they provide only com-
pletion times and I/O latency, while the 
disk count is increased. The heat map 
has imaged the I/O subsystem from 
this data, showing components that 
are suspected to be disk caches, SAS 
ports, and the PCIe bus.

To summarize the rainbow ptero-
dactyl: little is known with accuracy, 
and much more investigation is need-
ed. What this does show is how deep a 
simple visualization can become. 

Latency Levels
For the rainbow pterodactyl, I/O bus 

throughput was tested by stepping a se-
quential disk-read workload. This was 
repeated on a different system with a 
more powerful I/O subsystem, and it 
was found that sequential disk reads 
from all available disks could not reach 
I/O bus saturation (no knee point). To 
see if a limit could be found, the work-
load was changed to read the same 
128KB from each disk repeatedly, so 
that each could provide more through-
put only by returning from its cache. 
The result is shown in Figure 8. 

A knee point was reached between 
15:39 and 15:40, although it is dif-
ficult to see in the disk bytes graph. 
At this point, a level of increased la-
tency appears; a little later, there is 

Figure 7. Sequential disk reads, stepping disk count.

Figure 8. Repeated disk reads, stepping disk count.
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another level (which was selected in 
this screenshot). At various points it 
appears as though a latency level has 
been promoted to a higher level. This 
was recently discovered and so far is 
not clearly understood. It is provided 
here as another example of unexpect-
ed details that latency heat maps have 
exposed. 

Shouting at JBODs
Although not as beautiful as the pre-
vious examples, the story behind the 
next heat map has gained some notori-
ety and is worth including to stress that 
this was a latency heat map that identi-
fied the issue. 

The system included several JBODS 
with dozens of disks and was per-
forming a streaming write workload. 
I discovered that if I shouted into the 
JBODs as loud as I could, the disks re-
turned I/O with extremely high latency. 
Figure 9 shows the heat map from this 
unusual test. 

The heat map shows two spikes in 
latency, corresponding to each of my 
shouts. We videotaped this discovery 
and uploaded it to YouTube, where I 
describe the effect as disk vibration.3 
It has since been suggested that this is 
better described as shock effects, not 
vibration, because of the volume of the 
shouts. 

The affected disk I/O shown in the 
heat map has very high latency—more 
than one second. If average latency 
were tracked instead, a few high-laten-
cy I/O events may be drowned out on 
a system performing more than 8,000 
faster I/O events at the same time. The 
lesson from this experience was how 
well latency heat maps could identify 
this perturbation. 

Other Applications
The previous examples showed laten-
cy heat maps for systems deploying 
the ZFS file system, accessed over NFS. 
Latency heat maps are also applicable 
for other local and remote file system 

types (for example, UFS, HFS+, CIFS), 
where characteristics can be identi-
fied and interpreted in similar ways. 
For example, UFS (Unix file system) as 
deployed on Solaris executes a thread 
named fsflush to periodically write 
dirty data to disk. This can update the 
UFS cylinder group blocks that are 
spaced across the disk, resulting in 
high-latency I/O resulting from seek 
and rotational latency. On older ver-
sions of Solaris the interval between 
writing was five seconds (tune _ t _
fsflushr), so on a latency heat map 
of disk I/O this may be easy to identify, 
appearing as bursts of high latency 
spaced five seconds apart. 

The heat-map visualization can 
also be applied to other metrics, apart 
from latency. I/O size can be visualized 
as a heat map with size (bytes) on the 
y-axis, allowing any particularly large 
or small I/O to be identified, either of 
which is interesting for different rea-
sons. I/O location can be visualized 
as a heat map (as mentioned earlier) 
with offset on the y-axis, allowing ran-
dom or sequential I/O to be identified. 

Utilization of components can also 
be visualized as a heat map showing 
the percent utilization of individual 
components, instead of displaying 
an average percent utilization across 
all components. Utilization can be 
shown on the y-axis, and the number of 
components at that utilization can be 
shown by the color of the heat-map pix-
el. This is particularly useful for exam-
ining disk and CPU utilization to check 
how load is balanced across these com-
ponents. A tight grouping of darker col-
ors shows load is balanced evenly, and 
a cloud of lighter pixels shows it isn’t. 

Outliers are also interesting: a sin-
gle CPU at 100% utilization may be 
shown as a light line at the top of the 
heat map and is typically the result 
of a software scalability issue (single 
thread of execution). A single disk at 
100% utilization is also interesting and 
can be the result of a disk failure. This 

cannot be identified using averages or 
maximums alone: a maximum cannot 
differentiate between a single disk at 
100% utilization and multiple disks at 
100% utilization, which can happen 
during a normal burst of load. 

All of the heat maps mentioned here 
have been implemented in Analytics. 
Along with the I/O-latency heat map, 
the utilization heat maps are proving 
to be especially useful for quickly iden-
tifying performance issues. 

Conclusion
Presenting latency as a heat map is an 
effective way to identify subtle charac-
teristics that may otherwise be missed, 
such as when examining per-second 
average or maximum latency. Though 
many of the characteristics shown in 
this article are not understood, now 
that their existence is known we can 
study them and over time identify 
them properly. Some of the heat maps, 
such as the rainbow pterodactyl, are 
also interesting examples of how deep 
and beautiful a simple visualization 
can be.  	
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Think you’ve mastered the art of server 
performance? Think again.

by Poul-Henning Kamp

Would you believe me if I claimed that an algorithm 
that has been on the books as “optimal” for 46 years, 
which has been analyzed in excruciating detail by 
geniuses like Knuth and taught in all computer 
science courses in the world, can be optimized to run 
10 times faster? 

A couple of years ago, I fell into some 
interesting company and became the 
author of an open source HTTP ac-
celerator called Varnish, basically an 
HTTP cache to put in front of slow 
Web servers. Today Varnish is used by 
Web sites of all sorts, from Facebook, 
Wikia, and Slashdot to obscure sites 
you have surely never heard of. 

Having spent 15 years as a lead 
developer of the FreeBSD kernel, I 
arrived in user land with a detailed 
knowledge of what happens under the 
system calls. One of the main reasons 

I accepted the Varnish proposal was to 
show how to write a high-performance 
server program. 

Because, not to mince words, the 
majority of you are doing that wrong. 

Not just wrong as in not perfect, 
but wrong as in wasting half, or more, 
of your performance. 

The first user of Varnish, the large 
Norwegian newspaper VG, replaced 
12 machines running Squid with three 
machines running Varnish. The Squid 
machines were flat-out 100% busy, 
while the Varnish machines had 90% 

You’re 
Doing It 
Wrong

http://queue.acm.org
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of their CPU available for twiddling 
their digital thumbs.a

The short version of the story is that 
Varnish knows it is not running on the 
bare metal but under an operating sys-
tem that provides a virtual-memory-
based abstract machine. For example, 
Varnish does not ignore the fact that 
memory is virtual; it actively exploits 
it. A 300GB backing store, memory 
mapped on a machine with no more 
than 16GB of RAM, is quite typical. 

a	 This pun is included specifically to inspire 
Stan Kelly-Bootle.

The user paid for 64 bits of address 
space, and I am not afraid to use it. 

One particular task inside Varnish 
is expiring objects from the cache 
when their virtual life-timers run out 
of sand. This calls for a data structure 
that can efficiently deliver the small-
est keyed object from the total set. 

A quick browse of the mental cata-
log flipped up the binary-heap card, 
which not only sports a O(log2(n)) 
transaction performance, but also has 
a meta-data overhead of only a pointer 
to each object—which is important if 
you have over 10 million objects. 

Careful rereading of Knuth con-
firmed that this was the sensible 
choice, and the implementation was 
trivial: “Ponto facto, Cæsar transit,” 
and so on. 

On a recent trip by night train to 
Amsterdam, my mind wandered, and 
it struck me that Knuth might be ter-
ribly misleading on the performance 
of the binary heap, possibly even by an 
order of magnitude. On the way home, 
also on the train, I wrote a simulation 
that proved my hunch right. 

Before any fundamentalist CS theo-
reticians choke on their coffees: don’t 
panic! The P vs. NP situation is un-
changed, and I have not found a sys-
tematic flaw in the quality of Knuth et 
al.’s reasoning. The findings of CS, as 
we know it, are still correct. They are 
just a lot less relevant and useful than 
you think—at least with respect to per-
formance. 

The oldest reference to the binary 
heap I have located, in a computer 
context, is J.W.J. Williams’ article pub-
lished in the June 1964 issue of Com-
munications of the ACM, entitled “Algo-
rithm Number 232—Heapsort.”2,b The 
trouble is, Williams was already out 
of touch, and his algorithmic analysis 
was outdated even before it was pub-
lished. 

In an article in the April 1961 issue 
of Communications, J. Fotheringham 
documented how the Atlas Computer 
at Manchester University separated 
the concept of an address from a 
memory location, which for all prac-
tical purposes marks the invention 
of virtual memory (VM).1 It took quite 
some time before VM took hold, but 
today all general-purpose, most em-
bedded, and many specialist operat-
ing systems use VM to present a stan-
dardized virtual machine model (such 
as POSIX) to the processes they herd. 

Of course, it would be unjust and 
unreasonable to blame Williams for 
not realizing that Atlas had invali-
dated one of the tacit assumptions of 
his algorithm: only hindsight makes 
that observation possible. The fact is, 
however, 46 years later most CS-edu-
cated professionals still ignore VM as 
a matter of routine. This is an embar-

b	 How wonderful must it have been to live and 
program back then, when all algorithms in the 
world could be enumerated in an 8-bit byte.

Figure 1. Comparison of runtime speeds of binary heap and B-heap.
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Figure 2. Close-up comparison of binary-heap and B-heap runtime speeds.
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rassment for CS as a discipline and 
profession, not to mention wasting 
enormous amounts of hardware and 
electricity.

Performance Simulation 
Enough talk. Let me put some simu-
lated facts on the table. The plot in 
Figure 1 shows the runtime of the bi-
nary heap and of my new B-heap ver-
sion for one million items on a 64-bit 
machine.c (My esteemed FreeBSD col-
league Colin Percival helpfully point-
ed out the change I have made to the 
binary heap is very much parallel to 
the change from binary tree to B-tree, 
so I have adopted his suggestion and 
named my new variant a B-heap.d)

The x-axis is VM pressure, mea-
sured in the amount of address space 
not resident in primary memory, be-
cause the kernel paged it out to sec-
ondary storage. The left y-axis is run-
time in seconds (log-scale), and the 
right Y-axis shows the ratio of the two 
runtimes: (binary heap/B-heap). 

Let’s get my “order of magnitude” 
claim out of the way. When we zoom 
in on the left side in Figure 2, we see 
there is indeed a factor 10 difference 
in the time the two algorithms take 
when running under almost total VM 
pressure: only 8 to 10 pages of the 
1,954 pages allocated are in primary 
memory at the same time. 

Did you just decide that my order of 
magnitude claim was bogus because 
it is based on only an extreme corner 
case? If so, you are doing it wrong, 
because this is pretty much the real-
world behavior seen. 

Creating and expiring objects in 
Varnish are relatively infrequent ac-
tions. Once created, objects are often 
cached for weeks if not months, and 
therefore the binary heap may not be 
updated even once per minute; on 
some sites not even once per hour. 

In the meantime, we deliver giga-

c	 Page size is 4KB, each holding 512 pointers 
of 64 bits. The VM system is simulated with 
dirty tracking and perfect LRU page replace-
ment. Paging operations set to 1 millisecond. 
Object key values are produced by random(3). 
The test inserts one million objects, then alter-
nately removes and inserts objects one million 
times, and finally removes the remaining one 
million objects from the heap. Source code is 
at http://phk.freebsd.dk/B-Heap.

d	 Does Communications still enumerate algo-
rithms, and is eight bits still enough?

bytes of objects to clients’ browsers, 
and since all these objects compete 
for space in the primary memory, the 
VM pages containing the binheap that 
are not accessed get paged out. In the 
worst case of only nine pages resident, 
the binary heap averages 11.5 page 
transfers per operation, while the B-
heap needs only 1.14 page transfers. 
If your server has solid state drives 
(SSD), that is the difference between 
each operation taking 11 or 1.1 milli-
seconds. If you still have rotating plat-
ters, it is the difference between 110 
and 11 milliseconds. 

At this point, is it wrong to think, 
“If it runs only once per minute, who 
cares, even if it takes a full second?” 

We care because the 10 extra pages 
needed once per minute loiter in RAM 
for a while, doing nothing—until the 
kernel pages them back out again, 
at which point they get to pile on top 
of the already frantic disk activity, 
typically seen on a system under this 
heavy VM pressure.e 

e	 Please don’t take my word for it: applying 
queuing theory to this situation is a very edu-
cational experience.

Figure 3. Close-up of the effect of VM pressure on binary-heap and B-heap runtime speeds.
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Figure 4. Comparisons of runtime speeds of binary heap and B-heap on a mechanical disk.
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Next, let us zoom in on the other 
end of the plot (Figure 3). If there is 
no VM pressure, the B-heap algorithm 
needs more comparisons than the 
binary sort, and the simple parent-to-
child / child-to-parent index calcula-
tion is a tad more involved: so, instead 
of a runtime of 4.55 seconds, it takes 
5.92 seconds—a whopping 30% slow-
er; almost 350 nanoseconds slower 
per operation. 

So, yes, Knuth and all the other 
CS dudes had their math figured out 
right. 

If, however, we move left on the 

curve, then we find, at a VM pressure 
of four missing pages (= 0.2%) the B-
heap catches up, because of fewer VM 
page faults; and it gradually gets bet-
ter and better, until as we saw earlier, 
it peaks at 10 times faster. 

That was assuming you were using 
an SSD, which can do a page operation 
in 1 millisecond—pretty optimistic, in 
particular for the writes. If we simu-
late a mechanical disk by setting the 
I/O time to a still-optimistic 10 mil-
liseconds instead (Figure 4), then B-
heap is 10% faster as soon as the ker-
nel steals just a single page from our 

1,954-page working set and 37% faster 
when four pages are missing. 

So What is a B-Heap, Anyway? 
The only difference between a binary 
heap and a B-heap is the formula for 
finding the parent from the child, or 
vice versa. 

The traditional n -> {2n, 2n+1} 
formula leaves us with a heap built 
of virtual pages stacked one over the 
next, which causes (almost) all vertical 
traversals to hit a different VM page 
for each step up or down in the tree, 
as shown in Figure 5, with eight items 
per page. (The numbers show the or-
der in which objects are allocated, not 
the key values.) 

The B-heap builds the tree by fill-
ing pages vertically, to match the di-
rection we traverse the heap (Figure 
6). This rearrangement increases the 
average number of comparison/swap 
operations required to keep the tree 
invariant true, but ensures that most 
of those operations happen inside a 
single VM page and thus reduces the 
VM footprint and, consequently, VM 
page faults. 

Two details are worth noting: 
˲˲ Once we leave a VM page through 

the bottom, it is important for perfor-
mance that both child nodes live in 
the same VM page, because we are go-
ing to compare them both with their 
parent. 

˲˲ Because of this, the tree fails to ex-
pand for one generation every time it 
enters a new VM page in order to use 
the first two elements in the page pro-
ductively. 

In our simulated example, fail-
ure to do so would require five pages 
more. 

If that seems unimportant to you, 
then you are doing it wrong: try shift-
ing the B-heap line 20KB to the right 
in figures 2 and 3, and think about the 
implications. 

The parameters of my simulation 
are chosen to represent what happens 
in real life in Varnish, and I have not 
attempted to comprehensively char-
acterize or analyze the performance of 
the B-heap for all possible parameters. 
Likewise, I will not rule out that there 
are smarter ways to add VM-clue to a 
binary heap, but I am not inclined to 
buy a ticket on the Trans-Siberian Rail-
way in order to find time to work it out. 

Figure 5. Binary-heap tree structure.
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The order of magnitude of differ-
ence obviously originates with the 
number of levels of heap inside each 
VM page, so the ultimate speedup will 
be on machines with small pointer 
sizes and big page sizes. This is a 
pertinent observation, as operating 
system kernels start to use super-
pages to keep up with increased I/O 
throughput. 

So Why are You, and I, 
Still Doing it Wrong? 
An (in)famous debate, “Quicksort vs. 
Heapsort,” centered on the fact that 
the worst-case behavior of the for-
mer is terrible, whereas the latter has 
worse average performance but no 
such “bad spots.” Depending on your 
application, that can be a very impor-
tant difference. 

We lack a similar inquiry into al-
gorithm selection in the face of the 
anisotropic memory access delay 
caused by virtual memory, CPU cach-
es, write buffers, and other facts of 
modern hardware. 

Whatever book you learned pro-
gramming from, it probably had a 
figure within the first five pages dia-
gramming a computer much like the 
one shown in Figure 7. That is where 
it all went pear shaped: that model is 
totally bogus today. 

Amazingly, it is the only concep-
tual model used in computer educa-
tion, despite the fact that it has next to 
nothing to do with the execution envi-
ronment on a modern computer. And 
just for the record: by modern, I mean 
VAX 11/780 or later. 

The past 30 or 40 years of hardware 
and operating-systems development 
seems to have only marginally im-
pinged on the agenda in CS depart-
ments’ algorithmic analysis sections, 
and as far as my anecdotal evidence, it 
has totally failed to register in the edu-
cation they provide. 

The speed disparity between pri-
mary and secondary storage on the 
Atlas Computer was on the order of 
1:1,000. The Atlas drum took two mil-
liseconds to deliver a sector; instruc-
tions took approximately two micro-
seconds to execute. You lost around 
1,000 instructions for each VM page 
fault. 

On a modern multi-issue CPU, 
running at some gigahertz clock fre-

quency, the worst-case loss is almost 
10 million instructions per VM page 
fault. If you are running with a rotat-
ing disk, the number is more like 100 
million instructions.f 

What good is an O(log2(n)) al-
gorithm if those operations cause 
page faults and slow disk operations? 
For most relevant datasets an O(n) 
or even an O(n2) algorithm, which 
avoids page faults, will run circles 
around it. 

Performance analysis of algorithms 
will always be a cornerstone achieve-
ment of computer science, and like 
all of you, I really cherish the foldout 
chart with the tape sorts in Volume 3 
of The Art of Computer Programming. 
But the results coming out of the CS 
department would be so much more 
interesting and useful if they applied 
to real computers and not just toys 
like ZX81, C64, and TRS-80.	

f	 And below the waterline there are the flushing 
of pipelines, now useless and in the way, cache 
content, page-table updates, lookaside buffer 
invalidations, page-table loads, etc. It is not 
atypical to find instructions in the “for operat-
ing system programmers” section of the CPU 
data book, which take hundreds or even thou-
sands of clock cycles, before everything is said 
and done.

Most CS-educated 
professionals  
still ignore VM as  
a matter of 
routine. This is an 
embarrassment  
for CS as  
a discipline and 
profession, not  
to mention wasting 
enormous amounts 
of hardware and 
electricity.

  Related articles 
  on queue.acm.org

Thread Scheduling in FreeBSD 5.2
Marshall Kirk McKusick and  
George V. Neville-Neil
http://queue.acm.org/detail.cfm?id=1035622

Flash Storage Today
Adam Leventhal
http://queue.acm.org/detail.cfm?id=1413262

High Performance Web Sites 
Steve Souders
http://queue.acm.org/detail.cfm?id=1466450f

References
1.	 Fotheringham, J. Dynamic storage allocation in 

the Atlas Computer, including an automatic use of 
a backing store. Commun. ACM 4, 19 (Apr. 1961), 
435–436.

2.	 Williams, J. W. J. Algorithm 232—Heapsort. Commun. 
ACM 7, 6 (June 1964), 347–348.

Poul-Henning Kamp (phk@FreeBSD.org) has 
programmed computers for 26 years and is the inspiration 
behind bikeshed.org. His software has been widely 
adopted as “under the hood” building blocks in both open 
source and commercial products. His most recent project 
is the Varnish HTTP accelerator, which is used to speed up 
large Web sites such as Facebook.

© 2010 ACM 0001-0782/10/0700 $10.00

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1035622
http://queue.acm.org/detail.cfm?id=1413262
http://queue.acm.org/detail.cfm?id=1466450f
mailto:phk@FreebsD.org
http://bikeshed.org


60    communications of the acm    |   july 2010  |   vol.  53  |   no.  7

contributed articles

Constructivist learning theory says learning is 
grounded in and constructed from prior understanding 
and belief. In order to explore the prior understanding 
and belief of beginning computer science students, 
the Commonsense Computing Project (http://
commonsensecomputing.cs.siue.edu) asks them to 
answer CS questions on the first day of their first course. 
Here, we report on the related commonsense knowledge 
as demonstrated in the area of concurrency. Long 
considered an advanced topic in the CS curriculum, 
concurrency is rarely5,16 considered appropriate 
for introductory students; on the other hand, it is 
increasingly at the forefront of CS; obvious instances 

involve multicore processors on the 
desktop, distributed computing re-
sources for computationally and 
data-intensive problems, and net-
work-based games. Whether through 
implicit structures in programming 
languages or explicit structures in de-
sign, university students must dem-
onstrate an understanding of the vari-
ous approaches to and implications 
of concurrency. 

Given the importance of the topic, 
what relevant knowledge and abilities 
do students without prior comput-
ing instruction (“beginners”) bring to 
their first class? Do they differ from 
more advanced students with no ex-
plicit teaching about concurrency? 

Along with their commonsense un-
derstanding of concurrency, this arti-
cle explores the solutions they provid-
ed on the first day of an introductory 
CS course to a problem devised by Yi-
fat Ben-David Kolikant of Hebrew 
University of Jerusalem2 to more ad-
vanced students on the first day of a 
concurrency course in an Israeli high 
school. We’ve used the responses to 
address two questions: 

˲˲ Are beginners able to recognize 
the key concurrency issue regarding 
use of a shared resource? and 

˲˲ How do answers given by begin-
ners compare with answers given by 
more advanced students, as reported 
by Ben-David Kolikant? 

Of the 66 students in our 2006 
study, 97%, or 64, could identify a race 
condition and 71% provided a solu-
tion we considered reasonable. The 

doi:10.1145/1785414.1785438

Innate understanding of concurrency helps 
beginners solve CS problems with multiple 
processes executing at the same time. 

by Gary Lewandowski, Dennis J. Bouvier,  
Tzu-Yi Chen, Robert McCartney, Kate Sanders,  
Beth Simon, and Tammy VanDeGrift 

Commonsense 
Understanding 
of Concurrency
Computing Students 
and Concert Tickets

 key insights
 � �Beginner CS students demonstrate 

commonsense knowledge about 
important CS topics that can be 
leveraged to improve instruction. 

 � �Constructivist education begins with 
commonsense knowledge, helps 
students discover its utility, and 
provides tools for more complex 
approaches rooted in CS knowledge. 

 � �Beginner CS students demonstrate 
intuition about concurrency roughly 
equivalent to experienced CS students 
beginning a concurrency course. I
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Cinema Tickets Problem

A ticket office sells movie tickets for a certain cinema. The next client always gets the best-available 
ticket. Software decides the next-best-available seat and prints the ticket. 

Assumptions:
•	T he movie is screened only once; 
•	T his is the only office selling tickets for the movie; 
•	E ach client can buy only one ticket; and 
•	 Many people are waiting to buy tickets.

The software defines several procedures: 

Function 
BestAvailableSeat()

Input: Hall 
Return value: Best-available  
seat in the Hall;  
–1 if no seat is available. 

Procedure 
Mark AvailableSeat(Seat)

Input: Seat is the place of  
an available seat in the Hall.   
Output: The place of the Seat  
is marked as taken. 

Procedure 
PrintTicket(Seat)

Input: Seat is the place of  
an available seat in the Hall.  
Output: A ticket for place  
Seat is printed. 

A client is handled through these steps:
Seat <= BestAvailableSeat() 
If Seat <> –1 then
 MarkAvailableSeat(Seat)
 PrintTicketSeat(Seat)

Since waiting in line takes too long, the Hall owners added another ticket office. Both offices are to be 
open at the same time and sell tickets for the same screening. Each office has its own printer for  
printing the tickets it sells; ignore money issues. The system must be developed by specifying: 

1.	R equired hardware (screens, printers, keyboards) and how it is to be distributed in the system; 
and 

2.	 Pseudocode for the system’s software (selling tickets through two offices); the above  
procedures can be used, with no need to redefine them.

Yifat Ben-David Kolikant’s cinema-tickets assignment. 
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people learn, starting with what they 
already know and building knowledge 
on that foundation, rather than re-
ceiving it passively from an instructor. 
Each learner’s background, culture, 
and previous knowledge define his/
her starting point. Bransford et al.4 
argued that learning must engage stu-
dents’ preconceptions to be effective. 

The importance of constructiv-
ism is recognized in the computing-
education community. Ben-Ari1 com-
pared it with other fields, highlighting 
several differences; for example, in CS 
education, students need a model of 
the computer, and the computer then 
provides an “effective ontological re-
ality,” or verification of whether a pro-
gram works or not. 

Students’ prior understanding and 

most common technique they report-
ed for avoiding race conditions was 
subdividing the resources. Our study 
provides a basis for a constructivist 
approach to teaching concurrency, al-
lowing instructors to build on these 
ideas. Moreover, the study was inde-
pendent of technological assump-
tions, making it relevant regardless 
of technology or pedagogical practice 
used. 

Background 
We have conducted a number of com-
monsense computing projects over 
the past five years, all with the same 
basic goal of identifying the common-
sense knowledge beginners bring to 
the study of CS. Our foundation was 
the constructivist theory about how 

beliefs about a particular topic are 
also considered preconceptions, as 
explored by several researchers: 

˲˲ Miller10 analyzed “natural lan-
guage” programs by students who 
previously had not taken a formal 
programming course, covering the 
idea of writing computer programs 
in natural language, and found that 
a number of standard programming 
concepts showed up in these natural-
language descriptions; 

˲˲ Onorato and Schvaneveldt11 also 
looked at natural-language descrip-
tions of a programming task, compar-
ing survey subjects drawn from a vari-
ety of student categories: naïve, with 
no programming experience; begin-
ner, currently taking a first program-
ming course; and expert, with signifi-
cant programming experience. Along 
with the differences between experts 
and novices, they also found differ-
ences between the naïves and the be-
ginners, though both groups lacked 
programming experience; 

˲˲ Studying the misconceptions 
of novice programmers, Bonar and 
Soloway3 focused on preprogram-
ming knowledge, calling it “step-by-
step natural language programming 
knowledge”; they distinguished it 
from knowledge of the programming 
language Pascal the students were 
learning in their introductory course. 
They found that many of the observed 
bugs in novice-programmer-written 
code could be explained by a mis-
match in students’ knowledge in 
these domains; and 

˲˲ Gibson and O’Kelly8 looked at a 
variety of search problems (with pre-
college students) and Towers-of-Ha-
noi problems (with beginners), find-
ing both groups showed “algorithmic 
understanding” of how to solve them. 

In our own prior work beginning 
in 2005, we sought to identify student 
preconceptions that could be lever-
aged in teaching beginning comput-
ing concepts. To investigate student 
preconceptions about sorting, we 
asked 118 beginners to describe in 
words how they would sort a list of 
numbers into ascending order.14 A 
majority (69%) described a coher-
ent algorithm, with many giving ver-
sions of selection or insertion sort. 
However, most treated numbers as 
strings, manipulating them digit by 
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digit. Many used iteration; to our sur-
prise, most iteration involved post-
test loops. In 2008,13 we described our 
investigation of students’ common-
sense knowledge of debugging, giv-
ing beginners one of four questions 
designed to elicit their knowledge of 
debugging strategies. The questions 
asked them to describe the advice 
they would give people whose lights 
did not turn on when they flipped 
the switch; how they would locate the 
moment things go wrong in the chil-
dren’s game “telephone”; how they 
would find a Starbucks if they were 
in a strange city where they did not 
speak the language; or an experience 
of their own involving troubleshoot-
ing. 

In general, we found beginners 
had less commonsense knowledge of 
debugging than of sorting, and some 
of their preexisting knowledge did not 
serve them well. For example, real-
world fixes are often easy to undo, un-
like programming changes. Likewise, 
the real world is nondeterministic in 
ways CS1 programs generally are not; 
for example, if your car doesn’t start, 
should you immediately turn the key 
a second time? 

A substantial body of work in com-
puting and in other scientific disci-
plines, including physics and math-
ematics, involves misconceptions, or 
incorrect concept understandings, 
that must be replaced with correct 
ones. Clancy6 provided a survey of this 
work in CS, and the National Acad-
emy’s Committee on Undergraduate 
Science Education7 gave a more gen-
eral overview. Smith et al.15 challenged 
this view in the context of math and 
science education, arguing that mis-
conceptions are limited mental mod-
els that can be built onto, ultimately 
providing a correct understanding of 
the concept being studied. 

Most relevant to the commonsense 
project discussed here is Ben-David 
Kolikant’s 2001 work examining stu-
dent preconceptions about concur-
rency.2 She collected data from about 
135 Israeli 12th-grade students in six 
classes at three different schools. The 
students previously studied comput-
ing and at the time of the study were 
taking an advanced class in concur-
rent and distributed computing. 

At the beginning of the course she 

ing the same ticket twice”2 and “the 
prevention of the interleaving of the 
access to the database.”2 Ben-David 
Kolikant found that students did not 
identify the problem of interleaving 
in their written answers. Follow-up in-
terviews indicated they assumed the 
key actions were inseparable, writing, 
“They assume that the two critical ac-
tions of checking and updating the 
database are always executed succes-
sively.”2 As a result, they assumed the 
key issue was communication, mak-
ing sure all sellers were aware of the 
seats already sold. One-third of the 
135 students presented centralized 
solutions, and the rest presented de-
centralized solutions. 

A final aspect of the students’ solu-
tions Ben-David Kolikant considered 
was “reasonableness,” or solving the 
problem “in a reasonable or realistic 
way…according to the context of the 
problem.”2 She found that students 
were influenced by their real-world 
experience with concurrency and net-
works. For example, C3 solutions were 
workable real-world solutions but did 
not ensure buyers would receive the 
best seat available. 

Our 2006 study modified Ben-Da-
vid Kolikant’s problem for presen-
tation to beginners, allowing us to 
explore commonsense concurrency 
knowledge and the difference in this 
knowledge between advanced stu-
dents and beginner students. 

Methodology 
Here, we describe our process of data 
collection and analysis: 

Data collection. In the first week of 
the first semester of the 2006–2007 
school year, in a CS1 class, students 
were randomly assigned one of two 
tasks: the concurrency task explored 
here completed by 66 students from 
five different institutions; the other 
was unrelated to the study. The par-
ticipating students were all beginners 
between the ages of 18 and 20. All but 
eight completed the questions online 
(outside of class) by typing English an-
swers into a text box. Eight students 
(all at the same institution) complet-
ed the questions on paper in a labora-
tory setting. All were given credit for 
completing the assignment, though 
solution quality was not evaluated for 
credit. (The participant/subject iden-

gave them a critical-section prob-
lem in which multiple agents share a 
common resource—two ticket offices 
selling tickets for the same movie. 
As shown in the figure, the question 
was posed in a detailed pseudocode 
format. It expects a relatively sophis-
ticated answer, including a hardware 
system specification for supporting 
multiple machines servicing sales re-
quests, pseudocode for the solution, 
and an explanation of the answer and 
how it avoids duplicate ticket sales. 
Student answers were graded as part 
of the course. 

Ben-David Kolikant divided the 
responses into two major categories: 
centralized, involving a solution in 
which communication and control 
for the solution are centralized; and 
decentralized, implicitly or explicitly 
involving the sellers communicating 
with one another to achieve a concur-
rent solution. 

The centralized solutions involved 
three subcategories: (C1) with a cen-
tral entity, essentially a master com-
puter making all decisions; (C2) in 
which the solutions involved an as-
sumption either of a constant rate of 
operations or of operations happen-
ing in a particular order; and (C3) in 
which solutions assume the sellers 
have private resources, each selling 
tickets for a separate area of the the-
ater. Ben-David Kolikant described 
categories C2 and C3 as solutions that 
“attempted to solve a similar, but dif-
ferent problem.”2 She divided decen-
tralized solutions into (D1) in which 
communication is implicit and (D2) 
in which communication is explicit. 

Ben-David Kolikant’s discussion 
focused on three aspects that togeth-
er contribute to the solutions she 
evaluated, describing them as “(a) 
the algorithmic goal of the system, (b) 
synchronization goals, and (c) reason-
ableness.”2 

The algorithmic goal was the prob-
lem the system was intended to solve, 
in this case, selling the ticket for the 
best available seat. The cinema-ticket 
problem was well constrained, with 
student responses all sharing this 
goal. 

The synchronization goals of the 
cinema-ticket problem were “to coor-
dinate…access to a common resource 
(the database) in order to avoid sell-



Table 1. Institutional breakdown of respondents; n = number of students answering 
the concurrency question. 

Institution Characterization n Class Characteristics

Private, on West Coast of U.S. with 
approximately 3,200 undergraduates 
and a school of engineering 

25 CS1 serving all engineering, with most of class electri-
cal engineering majors with prior MATLAB course 

Public research, on West Coast  
of U.S. with approximately  
27,000 undergraduates and  
a school of engineering 

20 CS1 serving mostly computer science majors 

Public research, on East Coast  
of U.S. with approximately 21,000 
undergraduates and a school  
of engineering 

10 CS1 serving computer science and engineering, com-
puter science, computer engineering, and electrical 
engineering 

Public regional, on East Coast 
of U.S. with approximately 2,000 
undergraduates 

8 CS1 serving mostly computer science majors 

Private liberal arts, on East  
Coast of U.S. with approximately 
1,600 undergraduates 

3 CS1 serving computer science majors and minors  
and math majors 

Table 2. Number of concurrency  
solutions and problems identified  
by students; n = 66. 

Accomplishment
Percent  
of students

Number of solutions provided

One solution 70%

Two solutions 20%

Three or more solutions 10%

Problems identified

Sell seat more than once 97%

Other 41%

Provided reasonable solution 
to concurrency problem 

71%

64    communications of the acm    |   july 2010  |   vol.  53  |   no.  7

contributed articles

tifiers we cite here are renumbered 
and do not reflect institutional affilia-
tion; the institutions’ characteristics, 
which vary significantly, are summa-
rized in Table 1.) 

The task. Students were asked to 
address the following: Suppose we sell 
concert tickets by phone in the follow-
ing way: When a customer calls and 
asks for a number (n) of seats, the sell-
er (1) finds the n best seats available; 
(2) marks those n seats as unavailable; 
and (3) deals with customer-payment 
options (such as credit- and debit-
card number) or sends the tickets to 
the will call window for pickup. Now 
suppose more than one seller is work-
ing at the same time. What problems 
would we see, and how could we avoid 
them? 

Our goal was to determine wheth-
er the students would note the race 
condition between two sellers and 
suggest solutions to resolve it. There 
are several differences between this 
task and Ben-David Kolikant’s coun-
terpart. We modified the question 
to refer to concert tickets, since our 
students likely had more experience 
ordering concert tickets. We also re-
moved the restriction that each cus-
tomer be able to buy only one ticket. 
And finally, due to our students’ lack 
of background, we phrased the ques-
tion less technically, asking for re-
sponses in English paragraphs, with-

out pseudocode or detailed hardware 
and software specifications. 

Analysis. After collecting the data, 
we read through all 66 responses for 
a general sense of their content. We 
then organized categorizations for 
the responses based on the categori-
zations used by Ben-David Kolikant.2 

We considered all decentralized 
solutions in a single category (D), as 
the less-explicit question led students 
to provide less-explicit descriptions of 
this strategy, making it unclear if the 
communication was explicit or im-
plicit. We also considered C2 and C3 
answers (along with C1 and D) as “rea-
sonable” solutions, because our tick-

et-ordering problem was more open-
ended and did not ask students to 
consider hardware issues that would 
be necessary to make a solution work. 

Several types of responses were 
considered “non-reasonable.” Some 
were ambiguous (AS), neither central-
ized nor decentralized. In others (BS), 
the response could not reasonably be 
said to solve the problem. Some re-
sponses (NS) did not offer a solution. 
And some responses (NP) provided 
solutions to problems that were not 
our central focus, though they may 
have been interesting, with some even 
involving concurrency. We recorded 
the problems (and the suggested solu-
tions) that were not our central focus 
so we could examine them for com-
monalities across students. 

Unlike Ben-David Kolikant’s par-
ticipants, the students in our study 
often gave more than one possible so-
lution to a problem, and we counted 
and coded each of them. After deter-
mining the proper categories, five of 
us coded the data, resolving coding 
conflicts through discussion. 

Results 
Here, we offer a sense of the student 
solutions by viewing them from three 
perspectives: per student, per catego-
rizations used by Ben-David Kolikant,2 
and through a qualitative look, with 
characteristic examples of responses 
highlighting important aspects of the 
responses.

Per student. We addressed three 
questions: How many solutions did 
the student provide? Was the problem 
identified? Did the student’s solution 
seem reasonable? 

The 66 students in the study collec-
tively produced a total of 97 identifi-
able solutions (see Table 2). Due to the 
open-ended nature of the solution we 
requested, many discussed multiple 
issues they saw in the problem state-
ment (not all necessarily concurrency-
related) or outlined several solutions 
to the concurrency problem of trying 
to sell the same seat to more than one 
person at a time. The majority (70% 
of the 66) of the students discussed 
only a single solution, but 20% identi-
fied two solutions, and 10% identified 
three or more solutions, with six solu-
tions being the most identified by any 
one student. 



Table 3. Solution breakdown by type: column 2: considered 97 solutions;  
column 3: considered 67 reasonable (C or D) solutions. 

Category Of all solutions Of reasonable solutions

Reasonable solutions (centralized and decentralized) 69% —

Centralized 38% 55%

C1 7% 10%

C2 9% 13%

C3 22% 31%

Decentralized 31% 45%

Not reasonable solutions 23% —

Bad solution 5% —

No solution 16% —

Ambiguous 1% —

Solved different problem 8% —

contributed articles
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Of the 66 students, 97%, or 64, 
identified our main problem of inter-
est—that it may be possible to sell a 
given seat to more than one person—
good evidence that even novice com-
puting students are able to identify 
this critical concurrency issue. Addi-
tionally, six students explicitly noted 
the problems of interleaving access 
to a database that could result in one 
customer reserving but another cus-
tomer buying the tickets.

In all, 71%, or 47, of the 66 students 
(73% of those identifying the main 
problem) identified at least one “rea-
sonable” solution. Moreover, many 
of the beginners gave more than one 
type of answer. Of the 47 students 
who gave a reasonable solution, 12 (or 
26%) gave both centralized and decen-
tralized solutions. 

Per categorization of solution. As 
many students provided multiple so-
lutions, it is useful to look at the diver-
sity of responses (see Table 3) out of 
the total number of solutions provid-
ed (97). We found that 69%, or 67, of 
them were reasonable solutions to the 
multiple-seat-selling problem; 31%, 
or 30, were not reasonable solutions; 
the majority of them (16) involved stu-
dents describing the problem (often 
correctly) but without a solution. 

Of the 67 reasonable solutions, 
55%, or 37, described a centralized 
solution where the selling entities 
passed the responsibility of making 
a seat assignment to some central 
resource, and 45%, or 30, described 
a method by which individual sellers 
made decisions about seat assign-
ments as individual entities. 

The centralized solutions were 
further broken down into three cat-
egories, as defined by Ben-David Ko-
likant: (C1) with a central entity, es-
sentially a master computer making 
all decisions; (C2) in which the solu-
tions involved an assumption either 
of a constant rate of operations or of 
operations happening in a particular 
order; and (C3) in which solutions 
assumed that sellers have private 
resources, each selling tickets for a 
separate area of the theater. Of the 
reasonable solutions, 10%, or 7, were 
of type C1, relying on implicit com-
munication between “dummy” sell-
ers passing the request to a master 
computing resource to make assign-

ments. For example, one study par-
ticipant said, “These problems might 
be avoided by having a computer sys-
tem automatically (to the second) in-
put the seat reservation for that cus-
tomer.” [ID438] (Each participant was 
given an anonymous label.) 

Of the 97 reasonable solutions, 
13%, or 13 were of type C2, using the 
same master resource but requiring 
explicit ordering of communication 
or steps in the process, including 
lock-stepping and pipelining the pro-
cess. An example of a C2 solution: “In 
order to avoid this [possibility of sell-
ing the same seat twice], we could set 
up the database so only one person 
could access the database at a time. 
This would slow sales significantly 
but is the safest setup.” [ID440] 

By far the most popular central-
ized solution (31%, or 30 responses) 
was also the most restrictive (C3) 
and involved distributing or dividing 
resources, either by portioning out 
seats in the concert venue to differ-
ent sellers or serializing or otherwise 
pipelining the selling process. 

Qualitative results. A qualitative 
analysis of the responses is a use-
ful way to examine other interesting 
aspects of the 97 student solutions, 
revealing the range of approaches 
taken, as well as the depth of student 
understanding of the computational 
issues. 

Algorithmic goals. Most students 
(58) did not further refine the goal of 
their algorithms, either explicitly or 
implicitly using a goal of “best seats 

available” in their responses. Some 
elaborated further, explaining why 
they chose a particular solution or the 
focus of their algorithms. 

A number of students were con-
cerned less about choosing seats 
than about handling seats that are 
given up. For example, one said, “If 
the seats are marked unavailable as 
soon as they are requested by the cus-
tomer, other sellers cannot access the 
seats for their own customers at that 
time. This is a bad thing [less-than-
optimal solution] because the better 
seats reserved by the first customers 
could potentially still be open should 
the customers change their minds 
about the purchase or if payment in-
formation cannot be validated. If the 
seats are marked unavailable, and the 
payment does not come through for 
whatever reason, the seats would re-
main unavailable and be empty dur-
ing the concert.” [ID415] 

Another said, “One obvious prob-
lem is two sellers giving up the same 
seats at the same time.” [ID405] 

Some participants changed their 
algorithmic goals when they realized 
they could not simply reserve and 
sell as a single atomic action. For ex-
ample, one said, “In a very unlikely 
situation, the sellers could mark the 
seats ‘unavailable’ at the same time. 
However, in a more likely situation, 
one of them would mark seats as un-
available and the other would mark 
and see that the seats are unavailable, 
but that seller was not the one reserv-
ing them. Then there will be multiple 
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tickets sent to will call for the same 
seats.” [ID412] 

Citing concurrency, other students 
expressed concern about dealing with 
group sales, with one saying, “First of 
all, there could be an issue of finding 
group seating. Finding n best avail-
able seats will not necessarily do, if 
they have to be n best available seats 
together. In such a situation, each 
seat should be labeled with how many 
seats are available in front, behind, 
and to the left and right of it.” [ID425] 

Another said, “Scalpers and other 
ticket-selling agencies will buy tickets 
and sell them at an increased price; 
with no limit on n, the number of tick-
ets the caller is purchasing, a single 
caller could buy every ticket to the 
concert. This problem is easily fixed 
by putting an upper limit on n of eight 
to 12 tickets; large groups can call a 
special hotline and speak to an opera-
tor to purchase more.” [ID430] 

The notion of “best seat” attract-
ed further attention, with one par-
ticipant handling the double-selling 
problem by dividing the seats among 
sellers. Most algorithmic attention 
was then focused on the following 
problem, as the participant described 
it: “First of all, there would no longer 
be a first-come-first-serve basis, and 
problems would arise over who actu-
ally occupies the good seats first. If 
it’s only one seller, she would be able 
to take one customer at a time. Two or 
more sellers would make it hard to de-
cide which seller’s customer actually 
received the seats first.” [ID431] 

Identifying the main synchronization 
problem. The degree to which study 
participants were able to identify the 
problem varied, with most giving a 
fairly standard “Sellers could mark 
the seats unavailable at the same 
time.” [ID412] or “There could be 
double-booking.” [ID106] Saying this 
scenario is unlikely was not uncom-
mon, with some participants identi-
fying computers or technology as the 
source of the problem. For example, 
one said, “One computer may be op-
erating slower than another, causing 
the seats one seller saw to be taken by 
another seller.” [ID406] 

Others might not have addressed 
technology specifically but did iden-
tify the key concept of time, with one 
saying, “One major issue is when, and 

how long, it takes to mark a seat as un-
available.” [ID410] 

A few others gave more detailed 
problem descriptions that hinted at 
the kind of analysis that will eventual-
ly be needed to construct a genuinely 
effective solution, including recogni-
tion of the interleaving problem. For 
example, one said, “The first, most 
obvious problem is overlap. If all sell-
ers are working at the same time, then 
the system might display to Seller A 
that certain seats are open, when, in 
fact, they have already been reserved 
by Seller B. Thus A will have to find 
different seats, which might have, in 
the intervening time, been reserved 
by Seller C.” [ID 417] 

Identifying other problems. As noted 
when we discussed algorithmic goals, 
study participants identified group 
sales as a particularly knotty prob-
lem, and payment and how to cancel 
orders were big issues. For example, 
one said, “Another problem would be 
if the seats are marked unavailable 
before they are sold, customers might 
change their minds before payment 
and possibly hinder the sale of the 
seats to other customers who might 
have wanted them at the same time.” 
[ID420] 

Another said, “If a customer can-
cels an order, how is the information 
transmitted to the other seller in a 
reasonable amount of time? If the 
customer doesn’t pay for the tickets 
at will call, what happens to them?” 
[ID 422] 

And another said, “At the moment 
of receiving the payments for the tick-
ets, problems might come up, such as 
miscommunication between the sell-
ers and charging the customer dou-
ble.” [ID419] 

Participants also mentioned reli-
ability, with one saying, “The comput-
ers may malfunction, and the seller 
may not be able to key in the request-
ed seats.” [ID406] 

Centralized solutions. The three 
variants of the centralized solutions 
reflected significant distinguishing 
characteristics. For example, C1 so-
lutions relied on implicit communi-
cation between sellers and a central 
system making the reservation or 
selection on their behalf. A common 
characteristic of these implicit com-
munications, as exemplified by ID438 

cited earlier, concerning automatic 
customer ordering, was that they be 
“fast.” Some were less specific but 
still involved implicit communica-
tion. For example, one participant 
said, “The program would have to 
temporarily mark seats being looked 
at during a transaction as unavailable 
so vendors couldn’t sell seats simulta-
neously.” [ID313] 

Others were more specific, im-
posing additional restrictions while 
prompting doubt as to the partici-
pant’s true understanding of concur-
rency. In one case, we saw evidence 
of an attempt to move the potential 
point of concurrent access in an ex-
pressed solution. “The only real way 
to avoid this and still have multiple 
sellers is to run the booking on a 
computer network with a master list 
of available seats. The process would 
then go something like this: A caller 
requests n seats. The master list can 
be ordered in such a way that it fills the 
seats front to back, left to right; when 
a seller requests n seats, it gives the 
next n seats on the list. Cancelled seat 
orders are inserted at the top of the 
available list, in order of precedence. 
The seller can reserve the seats, ask 
if they are acceptable to the custom-
er, and, if they are, proceed with the 
transaction. This would avoid double-
booking, because during the time the 
seller offers the seats to the customer, 
they are withheld from the list, and 
the other sellers drawing from the list 
would not have access to those seats.” 
[ID130] 

C2 solutions differed from C1 in 
their use of explicit communication 
with a centralized resource making 
seat assignments, sometimes iden-
tified as a database. The quote from 
ID440 earlier on explicit ordering is 
an example of this explicit communi-
cation. 

Another variant of explicit com-
munication involved a particular 
ordering required to ensure a safe 
process, including lockstepping and 
pipelining. For example, one partici-
pant said, “These problems [multiple 
bookings] might be avoided if instead 
of multiple people selling tickets and 
being involved in every step of the 
process, the selling process was di-
vided between two employees. This 
way, while the second employee was 



contributed articles

july 2010  |   vol.  53  |   no.  7   |   communications of the acm     67

Our motivation was 
the constructivist 
theory about  
how people learn, 
starting with 
what they already 
know and building 
knowledge on  
that foundation, 
rather than 
receiving it 
passively from  
an instructor.

taking care of the payment of the first 
caller, the first employee could start 
to deal with the next sale, then trans-
fer the call to the payment employee.” 
[ID120] 

Another variant does not require 
a computer solution for concurrency 
at all, with one participant saying, 
“A possible solution to this problem 
[multiple sales of the same ticket] 
would involve a stagger-start ap-
proach when more than one worker is 
on the phone. For example, when the 
first caller calls, worker A picks up the 
phone right away. The second caller 
calls right after the first has called. 
Worker B then waits until the phone 
rings three times, then picks up and 
starts the process.” [ID121] 

C3 solutions (the most common) 
involved distributing resources in a 
way that avoids simultaneous access. 
The most common resource was the 
seats to be sold. Some participants 
commented on potential problems 
with this approach, with one saying, 
“Perhaps if each vendor were respon-
sible for a section of the concert hall, 
finding the best seats within their sec-
tion would solve this problem. But 
this solution also means some ven-
dors will fill the ‘good’ seats in their 
section faster, and certain customers 
won’t get the absolute best seats they 
could. Chances are good, however, 
that customers wouldn’t be aware 
that there are better seats available, 
rationalizing that the concert filled up 
quickly.” [ID303] 

Other participants were more spe-
cific about the technique they would 
use—assigning a seller to a particular 
type of seat—to distribute resources. 
One said this could simplify or un-
complicate things, pointing out a 
possible benefit: “One way we could 
fix this problem [of multiple sellers 
of the same ticket] would be to as-
sign a section of seats to each seller. 
This way no seats would be sold twice, 
and it would be more organized. One 
seller would be in charge of one price 
and one section, making the selling 
of seats faster and more efficient.” 
[ID404] 

Decentralized solutions. Decentral-
ized solutions are distinguished from 
centralized solutions by whether sell-
ers themselves make decisions and 
seat assignments are based on com-

munications with other sellers. If they 
are, the solution is decentralized. A 
common decentralized answer could 
reference a shared resource (such as 
a database or document), but sellers 
make decisions individually based on 
the resource, rather than on a central-
ized entity. 

One participant said, “To resolve 
this issue [of multiple sellers of the 
same seats], there should be commu-
nication between the sellers. Ideally, 
they would mark the seats as unavail-
able on the same documents, so there 
could never be any doubling.” [ID101] 

Other examples of nonspecific 
communication among distributed 
sellers included participants saying, 
“drawing off of the same information 
that was updated with each transac-
tion” [ID304], “inform the other sell-
ers of this by some form of communi-
cation” [ID437], and “using a program 
that is constantly updated” [ID434]. 

Speed was a common theme in 
the proposed solutions, with words 
like “instantaneously” [ID425], “in-
stantly” [ID426] [ID402], “constantly” 
[ID434], “continuously” [ID410], and 
“real time” [ID417]. 

Some responses were more spe-
cific about how communication must 
occur, with some realizing the prob-
lem might not be completely solved. 
For example, one participant said, 
“A much easier way would be to use 
a computer program that networks 
each seller. This way, each seller has 
access to each available seat. As soon 
as a booking is made, it will automati-
cally register on every seller’s screen, 
and the chance of there being a dou-
ble booking will be close to impos-
sible.” [ID323] 

One participant provided explicit 
communication directives, saying, “I 
would change the order of operations 
so the two or more people booking 
seats would be required to check with 
each other while booking so as not 
to book the same seats, in that way 
adding another step and alleviating 
the two problems [booking the same 
seats and selling more tickets than 
are available].” [ID409] 

Noncomputing-oriented solutions. 
Several solutions were distinguished 
by their noncomputing and nontech-
nological approaches, though they 
could be classified as either central-



68    communications of the acm    |   july 2010  |   vol.  53  |   no.  7

contributed articles

ized or decentralized. For example, 
one participant said, “We could mark 
the same seat map with different col-
ored markers for each sell.” [ID106] 
This participant’s solution is decen-
tralized, since one can imagine indi-
vidual sellers, each with their own col-
ored marker, racing to mark off seats 
on a large map. 

Another said, “This problem [of 
selling the same seat twice] could be 
avoided by allowing only one vendor 
at a time into the concert hall. But 
this would be unreasonable if the hall 
were too large or too many vendors 
were working to reserve seats. Per-
haps if each vendor were responsible 
for a section of the hall, finding the 
best seats within their section, this 
problem would be solved.” [ID303] 
This response provides two solutions 
that eliminate potential conflicts, the 
first by enforcing exclusive access be-
tween the selection and the marking 
of seats, the other by dividing the re-
source (seats). Here, we could imag-
ine sellers with cellphones dashing 
around the hall, placing markers on 
actual, physical seats. Note that scal-
ing issues are mentioned in the pro-
posed solution. 

Common errors. The two most com-
mon errors in the student-proposed 
solutions were in thinking that a 
problem could be solved with a fast-
er system and in devising solutions 
that simply moved concurrency to 
another point in the algorithm. As 
noted when we described decentral-
ized solutions, the surveyed students 
suggested speed was necessary to 
avoid many problems. For example, 
one said, “To avoid this problem we 
could have very high ‘refresh’ rates 
or have a way of reserving n seats, as 
the process is still going through.” [ID 
423] Another said, “As soon as n seats 
are marked unavailable, even before 
payment processing, the seats need 
to be marked unavailable. This way, 
another seller cannot try to reserve a 
seat that is already ‘reserved.’ …the 
system (and screen) would need to be 
refreshed every time a reservation is 
made.” [ID 425] 

Many proposed solutions moved 
the point of concurrency. In one, it 
was moved to a preview step, with 
the participant saying, “One more 
solution would be to have the com-

puter show the n seats as unavailable 
as soon as any seller has them up on 
their screens. With this system, only 
one seller could see these seats as 
available at a time. If one seller (A) 
pulls up n seats for a customer, then 
another seller (B) searches for the 
best seats, and the seats seller A was 
looking at would not be shown to sell-
er B.” [ID122] 

Another retargeting of the point of 
concurrency was to a graphical inter-
face, with another saying, “Creating 
a visual representation of the concert 
hall through a computer would allevi-
ate this problem. Sellers would mark 
a certain number of seats for their cli-
ents, letting other sellers know which 
seats are purchased (potentially) and 
which seats are free for booking.” 
[ID413] 

Another realized his/her distrib-
uted, graphical interface only hid the 
concurrency problem, so proposed a 
novel solution that apparently used 
the inherent randomness of human 
interaction to deal with the problem 
of multiple sellers claiming the same 
seats at the same time, saying, “Sell-
ers would each have their own com-
puters, and all of them would be con-
nected, so once a seat is claimed, all 
other sellers would see it. If two sell-
ers happen to click at the same time, a 
separate window opens, and both will 
have to try again.” [ID402] 

One interpretation of this solution 
is that a separate window would open 
when the computer detects a conflict 
and forces the sellers to back off and 
retry, assuming it unlikely that the 
sellers would try again at precisely 
the same moment. However, this idea 
leaves many concurrency issues un-
resolved, including how the conflict 
is detected and whether or not other 
sellers could still get in and reserve 
the seat(s) targeted by the two original 
sellers. 

Discussion 
The proposed solutions of begin-
ner students provide evidence of CS 
problem-solving skills through their 
ability to identify the problem and 
suggest reasonable, though relatively 
unsophisticated, solutions. By repli-
cating the Ben-David Kolikant study, 
our study provided additional per-
spective in both analysis and results. 

Of the 66 students, 
64 identified our 
main problem of 
interest—that it 
may be possible 
to sell a given seat 
to more than one 
person—good 
evidence that even 
novice computing 
students are able to 
identify this critical 
concurrency issue.
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In addition to finding that her catego-
rizations of student-proposed solu-
tions and goals can be used to analyze 
beginner responses, our study helped 
compare beginners and students with 
significant CS skills but no significant 
experience with concurrency. This 
comparison gave a sense of how much 
sophistication was gained by the 
more experienced students and how 
much problem-solving sensibility was 
already available to students on the 
day they enter their first CS course. 

We focused on two themes—rea-
sonableness and synchronization 
goals—in the Ben-David Kolikant 
study: 

Reasonableness. Using student in-
terviews, Ben-David Kolikant found 
that students sometimes solved a 
simpler problem than the one she as-
signed, referring to these solutions as 
not fulfilling the goal of being “rea-
sonable” solutions because they as-
sumed something unrealistic, given 
the problem description. We saw the 
same phenomenon in our student 
solutions. Their wording sometimes 
made it clear the proposed C2 (con-
stant rate or ordering of operations) 
and C3 (division of resources) solu-
tions were “easy” or “simple.” 

Some students in our study showed 
their ability to reason about the qual-
ity of their solutions. For example 
ID303, quoted earlier in the context 
of centralized solutions, recognized 
the limitations of his/her solution, 
without suggesting a better one. 
ID122 noted that moving the point 
of concurrency in his/her solution as 
superior to flawed, possibly incorrect 
alternatives, saying, “The obvious so-
lution would be to fire one seller and 
have just one working at a time (only 
kidding). But the thing to do would be 
to ‘assign’ each seller a section of the 
hall where the concert is taking place. 
One seller would have control of half 
the seats, and the other the other half. 
There would be no conflicting seats. 
Or they could just switch systems to 
general admission. One more solu-
tion would be to have the computer 
show n seats as unavailable as soon 
as any sellers pull them up on their 
screens—a first-come-first-served sys-
tem.” [ID 122] 

Synchronization goals. A third of 
the solutions in the Ben-David Ko-

likant study were centralized. Our 
study involved an even larger percent-
age of centralized solutions (55%, or 
36). This was consistent with Resn-
ick,12 whose studies in the mid-1990s 
found that managing a centralized 
solution to a problem is easier than 
managing entities in a decentralized 
way. Moreover, despite the prolifera-
tion of decentralized entities, particu-
larly the Internet, in the 15 years since 
Resnick’s studies, the students in our 
study were still more inclined to pur-
sue a centralized solution. Ben-David 
Kolikant noted that Resnick believed 
increased exposure to decentralized 
entities would increase the likelihood 
of using decentralization, but we 
found no evidence this happened. (All 
participants in our study were experi-
enced Internet users.) 

The larger percentage of central-
ized solutions in our study stemmed 
from two factors: First, 82% of our 
centralized solutions were C2 or C3 
solutions; only 33% of Ben-David Ko-
likant’s centralized solutions were 
C2 or C3 solutions. As Ben-David Ko-
likant brought up in her discussion of 
reasonableness, students often made 
simplifying assumptions, not because 
they are reasonable, but because they 
allow them to more easily solve the 
problem posed to them. Given our 
more open-ended problem descrip-
tion, it seemed more “reasonable” to 
students to suggest C2 or C3 solutions 
to our problem about concurrency 
in concert-ticket sales. And second, 
given our less well-defined problem 
statement and reduced direct engage-
ment with the ticket-sales problem in 
the classroom setting, our students 
were not necessarily prodded to con-
sider or outline a more complex de-
centralized solution the same way 
Ben-David Kolikant’s students might 
have been. 

Consistent with Ben-David Ko-
likant’s study, we found students 
concentrated on sharing information 
across sellers rather than preventing 
interleaving access to the database, 
with only six discussing the interleav-
ing of operations. However, it may 
well be that the nature of our task 
was simply not as suggestive of data-
base issues as the pseudocode in Ben-
David Kolikant’s problem statement, 
particularly given the lack of comput-

ing experience by our CS1 students. 
While Ben-David Kolikant was 

able to show students “exaggerate the 
grain of an atomic action” by assum-
ing that checking and updating the 
database is atomic, we found that a 
description of even this level of gran-
ularity was present in only the most 
explicit and detailed of our student-
generated solutions. Many of the re-
sponses did not clarify this level of 
description of granularity of interac-
tion, leaving it ambiguous as to how 
well they really understood the con-
currency issue at hand. 

Algorithmic goal of solution. While 
Ben-David Kolikant’s study posed a 
well-constrained problem with a clear 
algorithmic goal, our study included 
an unconstrained problem descrip-
tion, and our student participants 
provided a number of goals for their 
algorithms, with 97% identifying the 
main goal of not letting the same seat 
be sold to two different customers, 
indicating a commonsense ability to 
identify concurrency conflicts. 

Many of our students (41%, or 27) 
identified goals beyond not selling the 
same seat, including group sales of a 
large block of tickets, letting seats be 
reserved without being paid for, iden-
tity theft, choosing seats by price rath-
er than by best available, payment-
transaction delays, and data tracking 
and storage. Two of these problems—
group ticket sales and reserving with-
out selling to allow seats to be made 
available again—are notable for how 
they influenced approaches to achiev-
ing the main algorithmic goal. From 
an instructional point of view, these 
additional goals noted by students 
suggest they may need help prioritiz-
ing from among the goals they find 
in open-ended questions, unless the 
goals are given explicitly. 

Concurrency techniques. Most stu-
dents introduced techniques directly 
related to concurrency, with solutions 
including centralized techniques and 
distributed techniques. Within them, 
they introduced scaling, locks, pipe-
lining, and methods for distributing 
resources. Even in proposed solu-
tions with errors, we found concepts 
ripe for leverage. For example, many 
of our students chose to “pass the 
buck” by pushing concurrency from 
buying a seat to reserving it. Others 
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gave solutions that assumed a system 
fast enough to eliminate race condi-
tions. Though incorrect, they provide 
a starting point for understanding 
atomic operations and the interleav-
ing of instructions. 

Conclusion 
In both their correct and incorrect 
preconceptions, the 66 students in 
our 2006 study apparently began their 
first computing course with essen-
tially the same level of intuition as 
they began their first course involv-
ing concurrency. This similarity sug-
gests students do not gain a deeper 
understanding of concurrency as they 
advance through the curriculum. As 
we have no data indicating that tak-
ing nonconcurrency courses provides 
skills that help one learn concurren-
cy-related material more quickly, it 
may be there is no advantage to delay-
ing the introduction of concurrency. 
Given the prevalence of concurrency 
and its increasing relevance at all lev-
els and applications of CS, we suggest 
it may be wise to include concurrency 
earlier in the curriculum. 

No matter which course intro-
duces concurrency, the problem and 
student-proposed solutions in our 
study suggest ways to leverage stu-
dent preconceptions. For example, 
instructors could conduct an exercise 
like this and choose student-generat-
ed solutions for further discussion to 
explicitly address common errors. In 
particular, they could: 

˲˲ Emphasize the real-world nature 
of the problem, pointing out related 
concurrency problems; 

˲˲ Demonstrate that race conditions 
come up even in “fast” systems; 

˲˲ Use responses that pass the buck 
(appearing to solve the concurrency 
problem by moving it to another op-
eration without actually solving it) to 
help discuss the notion of atomic op-
erations; 

˲˲ Use a centralized solution to dis-
cuss interleaving instructions and 
pipelining technique; and 

˲˲ Use responses that do not scale 
well to discuss scaling. 

Here, we’ve addressed a rich set of 
student responses that represent a 
starting point for asking students to 
critique proposed solutions, empha-
sizing concepts we know are at the 
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edge of their preconceptions. All such 
concepts could be discussed early or 
at least introduced in CS1. 

Instructors can use the question 
we asked—What’s the best way to or-
ganize the sale of tickets to a popular 
concert?—to help identify student 
preconceptions about CS. By docu-
menting beginner-student precon-
ceptions, instructors gain leverage for 
using a constructivist model, build-
ing on this commonsense knowledge 
through student preconceptions. Our 
study did not depend on a particular 
technology, pedagogy, or philosophy 
and can be replicated to study how or 
if students’ commonsense knowledge 
is changing. 
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Interactive computer graphics would rival 
word-processing and presentation programs 
for everyday communications. 

by Takeo Igarashi 

Computer 
Graphics  
for All 

Computer graphics is a commodity. Sophisticated 
computer-generated imagery is everywhere—
feature films, TV programs, video games, even 
cellphones—but most of it is created by professionals. 
Few people actually create computer graphics in 
their daily lives because most authoring tools are 
designed for professionals or dedicated amateurs 
following intensive training. This is unfortunate, 
because computer graphics could be a powerful 
communication tool for everyone. 

 key insights
 � �Computer-graphics authoring should 

be accessible to the general public. 

 � �Designing these systems starts with 
what is natural to humans rather than 
what is natural to a computer. 

 � �Most traditional research focuses on 
experts’ high-end use of technology; 
here, our main target is the casual use  
of technology by nonprofessionals.  
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dia, consumers today create electronic 
content to share through the Internet. 
Most media are still text-based, as with 
email, blogs, and Twitter, but more 
and more include images, videos, ani-
mations, and other multimedia con-

Consider desktop publishing. Cen-
turies ago, only a small number of pro-
fessionals worked in the printing in-
dustry. When computer-based printing 
emerged as an alternative in the late 20th 
century, it, too, was initially limited to 
professionals. However, the widespread 
use of personal computers and easy-to-
use graphical user interfaces quickly 
made high-quality printing accessible 
to the general public. Today, just about 
everyone uses word processors on a daily 
basis to create documents that commu-
nicate ideas to friends and colleagues. 
Computer graphics has not yet achieved 
such mass-market appeal. 

Unlike with traditional physical me-



tent. End users constructing 3D mod-
els are also supported by a number of 
systems, including Google’s SketchUp 
(http://sketchup.google.com/) and 
modeling tools in SecondLife and Spore. 
However, these systems use scaled-
down versions of traditional interfaces 
and still require a certain amount of 
skill. This article introduces research 
efforts at the University of Tokyo and 
Brown University to make computer-
graphics authoring accessible to more 
casual users. To achieve this goal, the 
author and his collaborators devel-
oped easy-to-use prototype systems 
to create expressive computer graph-
ics more quickly than with traditional 
interfaces. Examples are sketch-based 
3D modeling, clothing manipulation, 
animation by performance, and 2D 
shape manipulation. We discuss the 
user interfaces and technical aspects 
of these prototype systems, as well as 
the lessons learned from their devel-
opment, offering ideas for future re-
search directions. 

Most of our work is highly interac-
tive and diffi cult to explain in writ-
ten words and still images; please see 
demonstration videos and prototype 
systems at http://www-ui.is.s.u-tokyo.
ac.jp/~takeo. 

sketching 3D models 
Creating a 3D model in a computer 
(not necessarily on a screen) is the fi rst 
step in most 3D computer-graphics 
applications yet is also the most dif-
fi cult. Traditional interfaces for 3D 
modeling programs trace their origins 
to traditional pencil-and-paper profes-
sional drafting. Users place vertices 
in 3D space by specifying x-, y-, and z-
coordinates in a three-view interface, 
then create polygonal faces (individual 
polygonal sides of a polyhedron) by 
connecting these vertices. Alterna-
tively, users start with a simple primi-
tive (such as a sphere or cylinder) and 
modify it by editing individual vertices 
and edges. Many editing tools (such as 
free-form deformation and Boolean 
operations among solids) are avail-
able for designing complicated shapes 
from simple primitives. Although they 
might be appropriate for trained pro-
fessionals designing precise models, 
they are generally too diffi cult for fi rst-
time users trying to quickly generate 
meaningful models. 
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figure 3. using teddy to teach the concept of contour lines. 

figure 1. modeling session in teddy. users create 3D models using simple sketching 
operations.

figure 2. screenshot of teddy and sample 3D models created through the teddy system.

http://sketchup.google.com/
http://www-ui.is.s.u-tokyo.ac.jp/~takeo
http://www-ui.is.s.u-tokyo.ac.jp/~takeo


The sketching interface is emerg-
ing as an alternative modeling meth-
od. Users draw 2D lines on the screen; 
the system then generates a 3D mod-
el automatically, inferring missing 
depth information. Sketching inter-
faces for 3D scenes consisting of sim-
ple primitives were first introduced in 
the SKETCH system,18 allowing users 
to perform complicated 3D editing 
operations in a single camera view by 
combining heuristics. A similar ap-
proach is used in commercial systems 
(such as Google’s SketchUp). How-
ever, these systems are designed for 
sketching simple shapes defined by 
relatively few parameters. Designing 
them requires specialized training. 

Our group at the University of Tokyo 
developed the Teddy system11 to address 
this problem, allowing users to quickly 
generate interesting 3D freeform mod-
els (such as creating a teddy bear by 
drawing the silhouette of the desired 
shape) (see Figure 1). The user’s strokes 
are in red; the system infers and draws 
everything else. The user first draws the 
silhouette of the base primitive, and the 
system generates the corresponding 3D 
geometry. The user then draws a stroke 
across the model, and the system cuts 
the model at the line. The user can also 
add parts to the base model by drawing 
two strokes; Figure 2 shows several 3D 
models created this way. 

We do not expect Teddy to replace 
traditional 3D modeling tools. Rather, 
it will create new 3D modeling applica-
tions that are useful to nonexperts, in-
cluding children, who want to play with 
3D graphics for fun. Introduced at the 
SIGGRAPH conference in 1999, Teddy 
is used in several current commercial 
video games to permit players to create 
their own characters. Using it is a use-
ful way for experts to express their ideas 
quickly in early design phases. A com-
mercial 3D modeling package, Shade 
(available only in Japan, http://shade.e-
frontier.co.jp/), includes an extension to 
Teddy as a plug-in for generating rough 
sketches. Finally, and most important, 
Teddy is useful for communicating 3D 
concepts face to face. In a classroom, for 
example, a teacher could quickly draw a 
model of bacteria, showing its cross sec-
tion to explain its internal structure. In 
a hospital, a medical doctor could draw 
a model of a stomach to help explain a 
patient’s stomach disease. 

search community has actively in-
vestigated the physical simulation of 
cloth, today producing realistic cloth 
simulations. However, the initial sim-
ulated-cloth configuration must be 
set manually, and the user interface 
for manipulating cloth is primitive. A 
typical approach is to place rigid cloth 
patches around the target body, com-
bining 3D translation and rotation be-
fore starting the simulation—a tedious 
process. Moreover, users have difficulty 
changing the way the garment is worn 
once they’ve placed it on a character. 
Standard systems allow users to freely 
move individual vertices through direct 
manipulation, but it causes a large local 
distortion (stretching), making it diffi-
cult to achieve global movement. 

In 2001, our group at Brown Univer-
sity developed clothing-manipulation 
techniques to address these issues.10 To 
put a garment on a character, users first 
draw free-form marks on both the gar-
ment and the character to indicate po-
sitional correspondence (see Figure 4). 

In 2003, to test the idea, we conduct-
ed a trial in a high school geography 
class in Chiba, Japan. Teaching 3D con-
cepts (such as mountains and valleys), 
a geography teacher would have diffi-
culty explaining them using traditional 
2D media like a blackboard. Sketching 
in 3D can help address this problem. 
A convincing example is the teaching 
of contour lines using the Teddy sys-
tem (see Figure 3) in which the teacher 
first shows a 3D model of a mountain, 
then draws several horizontal lines in 
the side view, saying the lines indicate 
equal height intervals. The teacher 
then changes the viewpoint to show 
the mountain and the lines from the 
top. This way, students understand the 
relationship between the closed lines 
on the map (contour lines) and the 3D 
geography, not just mountains, ridges, 
and valleys. 

Clothing Manipulation 
3D characters must also be dressed 
properly. The computer-graphics re-
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Figure 5. Dragging the cloth onto the character: left, before dragging; center, the result of 
traditional vertex dragging; right, the result of our clothing-manipulation method. 

Figure 4. Users draw marks on the character and cloth; the system then places the cloth on 
the character. 

http://www.e-frontier.co.jp/
http://www.e-frontier.co.jp/


This technique is well suited to de-
fining expressive motion (such as to 
show joy or sadness). The resulting 
motion is much more alive than mo-
tion generated through traditional key-
framing because the motion directly 
mirrors the operator’s natural hand 
movement. However, motion dominat-
ed by physical factors (such as jumping 
and running) is better supported by 
physical approaches.7 

We expect spatial keyframes to be a 
useful intermediate representation for 
3D characters. Current 3D character 
representation consists of geometry, 
texture, rigs, and possibly predefined 
motions. Users who want to define a 
new motion must specify individual 
poses one at a time. Specialized tools 
include Maya’s set-driven keys (http://
caad.arch.ethz.ch/info/maya/manual/
UserGuide/Animation/KeyframeMo-
Path/03_understanding_key.doc5.html) 
and the Waldo input device (http://
www.character-shop.com/waldo.html), 
though neither is designed for the 
blending of key poses. By providing 
predefined spatial keyframes (a set of 
natural poses) for a character, users 
can create new motion very quickly by 
moving the control cursor. This can 
make it much easier for inexperienced 
users to make characters move at will. 

2D Shape Manipulation 
In the physical world, one can hold an 
object (such as a teddy bear) with two 
hands and freely manipulate it through 
rotating, stretching, squashing, and 
bending motions. Standard 2D draw-
ing programs provide poor support 
for such shape manipulation, allowing 
only simple editing operations (such as 
scaling and rotation). Not only do these 
operations require a complicated com-
bination of tools, the result for the user 
simply doesn’t feel like manipulating a 
physical entity. 

In 2004, our group at the University 
of Tokyo developed a novel manipula-
tion technique to address this prob-
lem.8 Users are thus able to select arbi-
trary points as handles on a 2D shape, 
then freely manipulate the shape by 
moving the handles (see Figure 7). They 
can relocate the shape by setting a sin-
gle handle to rotate, stretch, and squash 
the shape. Users also swing a head 
or stretch an arm by setting handles 
on the corresponding positions. The 

The system then places the garment on 
the character so the marks on the gar-
ment match the corresponding marks 
on the character. The system uses a 
simple relaxation process during place-
ment to prevent stretching and squash-
ing, even if the lengths of the corre-
sponding marks are different. Working 
with only a few strokes, users are able 
to place reasonably complicated gar-
ments on any character. 

Once a garment is on a character, us-
ers can grab any point of the garment 
and drag it onto its surface (see Figure 
5). Unlike standard vertex dragging, in 
which a single vertex is moved while 
relying on subsequent simulation to 
move other vertices, this dragging op-
eration moves all vertices of the cloth 
mesh directly, causing global move-
ment. To achieve global movement, the 
movement vector of the dragged vertex 
is propagated to the complete cloth 
mesh along the surface of the character. 

This technique allows even novice 
users to quickly test many different ways 
of dressing virtual characters. We also 
expect it to be useful for designing real 
garments as well. The cloth representa-
tion and simulation are limited in the 
prototype system implemented in 2001, 
but the basic user interface should still 
be applicable to today’s more sophisti-
cated cloth representation. 

The technical contribution of this 
work is the behavior of the cloth ma-
terial in response to user input. It not 
only follows physical principles (such 
as gravity and collision) but behaves 
proactively to assist a user’s design pro-
cess; for example, the cloth automati-
cally unfolds local folds based on the 
assumption that users do not want to 
see accidental local folds unless they 
explicitly require them. Such built-in 
intelligent behavior of passive materi-
als can be useful in other domains; we 

are now testing it in knot- and hairstyle-
design systems. 

Performance-Driven 3D Animation 
Keyframing is the most popular meth-
od for designing character animation. 
The user specifies the pose of the char-
acter at each time point, and the system 
interpolates the key poses at runtime. 
Though many other methods (such as 
motion capture and procedural anima-
tion) are available, keyframing is by far 
the most popular approach due to its 
simplicity and versatility. But manually 
defining so many keyframes is tedious. 
Moreover, novice users experience 
great difficulty designing natural-look-
ing motion through discrete sets of pos-
es. The result tends to look mechanical 
while lacking the rich textures seen in 
the motion of living things. 

A live demonstration is the sim-
plest approach to designing motion, in 
which a user moves the target character 
in real time and the system records the 
motion, like dancing a teddy bear in 
front of a video camera. However, mov-
ing a character with many joints is diffi-
cult when using a standard input device 
like a mouse. Though possible to dem-
onstrate the motion of each joint one at 
a time,6 synchronizing individual mo-
tions is difficult. 

Our group at Brown University de-
veloped a spatial keyframing method 
to address this problem.9 With it, the 
user first sets a group of key poses in 
the 3D or 2D space; a pose is associat-
ed with a position in a space. The user 
then moves the cursor in that space, 
and the system sets the character pose 
by blending the key poses around the 
cursor position (see Figure 6). The 
user is thus able to design interesting 
whole-body character motion (such 
as juggling and dancing) by recording 
simple cursor movements. 
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Figure 6. Spatial keyframing. Users specify three key poses (left), then freely control the 
character by dragging the red ball (right). 

http://www.character-shop.com/waldo.html
http://www.character-shop.com/waldo.html
http://caad.arch.ethz.ch/info/maya/manual/UserGuide/Animation/KeyframeMoPath/03_understanding_key.doc5.html
http://caad.arch.ethz.ch/info/maya/manual/UserGuide/Animation/KeyframeMoPath/03_understanding_key.doc5.html
http://caad.arch.ethz.ch/info/maya/manual/UserGuide/Animation/KeyframeMoPath/03_understanding_key.doc5.html
http://caad.arch.ethz.ch/info/maya/manual/UserGuide/Animation/KeyframeMoPath/03_understanding_key.doc5.html


system with children in an educational 
TV program in Japan and found that 
even elementary-school students could 
quickly generate reasonably interesting 
animations. 

Lessons Learned 
Each of these projects addresses a 
specific problem, with technical con-
tributions being rather independent. 
However, emerging from them are 
common guidelines for designing a 
compelling user experience: 

Natural to humans. First, start with 
what is natural to a human rather than 
with what is natural to a computer. The 
computer represents a 3D model with 
a collection of 3D points and their con-
nections; traditional computer-aided-
design systems ask users to provide 
this information directly. Advanced 
systems represent a model with a se-
quence of editing operations, but most 
of them still require that users be aware 
of points and faces. Similarly, a com-
puter represents a 2D drawing with its 
position and orientation. Traditional 
drawing systems ask users to directly 
control these parameters; that is, tra-
ditional systems expose the underly-
ing representation to the user directly. 
Though it is the most straightforward 
way to implement a system, the re-
sult means difficulty for novice users. 
That’s why we start by identifying the 
most natural operations for a human 
referring to real-world examples, then 
developing an algorithm that maps 

shape deforms naturally in response to 
user input; for users it feels like they’re 
manipulating a physical object. 

Traditional computer-based meth-
ods for shape manipulation are roughly 
divided into three categories: 

Skeleton.13 The user embeds a skel-
etal structure inside the shape and con-
trols it to deform the shape. However, 
embedding a skeleton in each shape 
is tedious, and the approach does not 
work for stretching and squashing; 

Spatial deformation.14 The user de-
fines a spatial mapping using several 
control points, then deforms the shape 
according to the mapping function. 
However, mapping functions do not 
consider the rigidity of the shape and 
result in unnatural deformation; and 

Physics-based. This approach simu-
lates the deformation process of physi-
cal material.12 However, the compu-
tation is not fast or stable enough to 
provide real-time feedback to a global 
deformation caused by user operations. 

Our method takes a completely geo-
metric approach, defining an energy 
function that measures the amount 
of geometric deformation, then mini-
mizes it using an optimization method. 
We designed the energy to give a closed-
form solution to the problem. In it, the 
system obtains the deformation by 
solving two large sparse linear-matrix 
equations in sequence, a very fast and 
perfectly stable approach. 

It is also particularly useful for cre-
ating 2D animations. Traditional ani-
mation artists assemble many slightly 
different drawings to create an anima-
tion. In our shape-manipulation system 
MovingSketch (http://www-ui.is.s.u-
tokyo.ac.jp/~takeo/research/rigid/mov-
ingsketch/index.html), users create 
an interesting animation by drawing a 
character and recording the manipula-
tion process. Using a multi-touch input 
device,16 they grab a character with both 
hands and manipulate it to create an 
animation (see Figure 8). We tested the 
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Figure 7. As-rigid-as-possible shape manipulation. Users place handles on the drawing, then 
manipulate it by moving the handles. 

(a) Rest shape (b) Setting handles

(d) Stretching with two handles (e) Deformation with three handles

(c) Rotation with two handles

Figure 8. Bimanual manipulation of a drawing. 

http://www-ui.is.s.u-tokyo.ac.jp/~takeo/research/rigid/movingsketch/index.html
http://www-ui.is.s.u-tokyo.ac.jp/~takeo/research/rigid/movingsketch/index.html
http://www-ui.is.s.u-tokyo.ac.jp/~takeo/research/rigid/movingsketch/index.html


tried to support, the more complicated 
the interface became, and the original 
advantages disappeared. We therefore 
explored new application domains in-
stead of focusing on the same problem. 
Finally, the tools we’ve outlined here 
were generally better received by users 
with no prior experience in 3D model-
ing or animation. Users who had previ-
ously worked with computer graphics 
had their own preferred tools and did 
not show much interest in Teddy. Those 
without prior experience saw great 
potential. We encourage researchers 
working on similar problems to not be 
intimidated by negative reactions from 
existing users but to try finding new us-
ers outside the existing user communi-
ty. This will ultimately expand applica-
tion of computer graphics. 

Future Directions 
In addition to improving the tools dis-
cussed here, we plan to work on other 
aspects of computer-graphics author-
ing in the future, including two nota-
ble problems: 

Designing interactive behaviors. In-
teractivity is an important aspect of 
computer-generated media. Not only do 
users passively watch predefined imag-
ery, they also interact with computer im-
agery (such as by poking a character) to 
observe its response. The systems we’ve 
introduced here are all interactive as au-
thoring tools, but the content they pro-
duce is noninteractive; 3D models and 
2D animation created this way do not 
respond to user input. End-user design 
of interactive behavior is an exciting but 
challenging research direction. 

them to computer representations. In 
the case of 3D modeling, we learned 
from sketching activity on real paper. 
For 2D animation, we learned from 
children playing with a real plush toy 
using both hands. 

Instant feedback. Instant feedback 
is critical to real-time interaction. It 
allows for graceful learning through 
casual trial and error while support-
ing creative exploration through rapid 
experimentation. To provide a rich and 
comfortable user experience, three op-
portunities for executing computation 
should be used: One is computation dur-
ing mouse dragging, a computation that 
must be very fast (on the order of 0.1 sec-
onds). The second is computation right 
after a mouse click or dragging; it can be 
somewhat slower (about a full second). 
And the third is running a computation 
in the background while the user is look-
ing at a result. The sketching interface 
is effective because it gives a system the 
opportunity to execute a heavyweight 
computation right after the completion 
of a sketch (mouse release) that would 
otherwise be too time-consuming during 
a mouse drag. In 2D animation, the sys-
tem computes time-consuming matrix 
factorization when a pin is added or re-
moved, applying fast back-substitution 
during dragging. The clothing-manipu-
lation system exploits idle time to refine 
the cloth configuration. 

Right target task. System designers 
must choose and focus on the right tar-
get task to achieve the first two goals. 
Developers try to address a range of 
tasks, overloading the interface with 
too many functions, as in professional 

systems like Maya. In theory, including 
more functions could expand the range 
of user options but also require inten-
sive training and reduce what casual 
users are able to do in the system. Care-
fully limiting functional scope, design-
ers provide an optimized interface and 
algorithm for the task in exchange for 
losing some rarely used functions. Ted-
dy is designed for rotund models (such 
as stuffed animals), freeing users from 
having to specify depth information 
each time. The clothing-manipulation 
system simplifies the interface and ac-
celerates the computation by focusing 
on the cloth on the surface of the body. 
System designers are better off tapping 
user creativity than constraining it with 
many predefined functions. A simple, 
well-designed interface allows users to 
apply their imaginations to complete 
tasks beyond the system designer’s 
original assumptions, as in terrain 
sketching with Teddy. 

We would also like to share some 
general lessons learned after the origi-
nal publication of these research re-
sults in 1999.11 First, even though a 
sketching interface does lower the 
threshold, 3D modeling remains dif-
ficult. The main difficulty is control of 
3D rotation with a 2D input device. We 
observed that many test users failed to 
rotate a model to the desired orienta-
tion. It is therefore desirable to give 
users rotation-free modeling methods 
or a significantly easier rotation inter-
face. Second, though we tried to extend 
these techniques to support more ad-
vanced modeling operations, we were 
unsuccessful. The more operations we 
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Figure 9. Screenshot of the Plushie system and plush toy designed with the system. 
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Several earlier research efforts 
sought to achieve end-user design of 
interactive behavior. One involved 
making traditional programming 
(scripting) accessible to casual users 
through a highly visual editing envi-
ronment.3 In the system, users write a 
program using simple drag-and-drop 
operations without making syntax er-
rors. Another involved using program-
ming by demonstration5 for character 
animation17; in it, users demonstrate 
the desired interactive behavior of a 
character, with the system learning 
the pattern from the demonstration. 
Programming with visual replace-
ment rules is a promising approach 
for defining a character’s interactive 
behavior.4 The user specifies before-
and-after pairs; at runtime, the system 
compares the scene configuration 
with the before patterns, replacing it 
with after patterns when the match is 
identified. 

Though these experiments pro-
duced interesting initial results, 
designing the arbitrary interactive 
behavior of a virtual agent is often 
prohibitively difficult. We are particu-
larly interested in teaching interactive 
behavior to physical agents (robots). 
End-user programming for robot be-
havior has been tested in some sys-
tems1 but is still limited to basic mo-
tions. Programming by demonstration 
for robots has also been reported but 
is used mainly for acquiring physical-
manipulation skills.2 Techniques de-
veloped in the user-interface-research 
community that should be applicable 
to human–robot interaction represent 
an interesting research direction. 

Designing real-world objects. The 
systems outlined here were all de-
signed for virtual representations; one 
can produce interesting graphics on 
the computer screen but cannot touch 
or use them in the real world. Then 
there’s development of end-user tools 
for designing physical objects (such as 
furniture and clothing). The idea is to 
help people custom-design the things 
they will use instead of having to buy 
manufactured products in stores. Ob-
jects designed by users themselves 
should satisfy their needs more direct-
ly and produce greater satisfaction. 

Unlike professional designers, the 
typical consumer generally lacks the 
professional knowledge needed to de-

sign physical objects. Inexperienced 
consumers could easily create a bag 
that is not sturdy enough or a chair that 
cannot stand up. One promising ap-
proach is to introduce physics into the 
modeling process. Traditional model-
ing systems ignore physics, possibly 
producing physically inappropriate re-
sults, as in, say, objects that penetrate 
one another. It might be possible to 
help users avoid these issues by con-
sidering physical principles within a 
modeling system. 

In 2006, our first such experiment 
involved a design system for plush 
toys.15 Users would interactively draw 
a sketch on the screen, and the system 
would then automatically generate a 
3D plush toy model, as in the Teddy 
system. In addition, the system simul-
taneously generated a 2D cloth pattern 
corresponding to the 3D geometry, 
allowing the user to create a physical 
plush toy by cutting the cloth accord-
ing to the generated pattern (see Fig-
ure 9). Internally, the system first gen-
erated a 2D cloth pattern, then ran a 
simple physical simulation to predict 
the 3D shape of the resulting toy. This 
way, even young children would be 
able to design their own plush toys just 
by sketching. 

The idea of 3D modeling with physi-
cal simulation is very powerful. We 
expect future modeling systems to 
consider various physical constraints 
in the background (such as collisions 
and stability), freeing users from low-
level physical concerns and allowing 
them to concentrate on more impor-
tant high-level design concerns. We 
plan to test this idea in a number of tar-
get domains, including furniture and 
clothing design. 

Conclusion 
This article introduced our efforts to 
make computer-graphics authoring 
accessible to the general public, mak-
ing it as much a daily communication 
tool as word processing and presenta-
tion applications. What most defines 
our research is its focus on end users. 
This opens up new application possi-
bilities for existing technologies while 
posing unique technological chal-
lenges for interface researchers and 
developers. We look forward to more 
computer-science researchers partici-
pating in this fertile field. 
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The widespread adoption  of the Internet and the 
emergence of the Web changed society’s relationship 
with computers. The primary role of a computer 
evolved from a stand-alone, well-understood 
machine for executing software to a conduit for 
global communication, content-dissemination, and 
commerce. The algorithms and complexity theory 
community has responded to these changes by 
formulating novel problems, goals, and design and 
analysis techniques relevant for modern applications.

Game theory, which has studied deeply the interaction 
between competing or cooperating individuals, plays 
a central role in these new developments. Research 
on the interface of theoretical computer science and 
game theory—an area now known as algorithmic 
game theory (AGT)—has exploded over the past 10 
years. The primary research themes in AGT differ 
from those in classical microeconomics and game 
theory in important, albeit predictable, respects. 
Firstly in application areas: Internet-like networks 
and nontraditional auctions motivate much of the 
work in AGT. Secondly in its quantitative engineering 
approach: AGT research typically models applications 

via concrete optimization problems 
and seeks optimal solutions, impossi-
bility results, upper and lower bounds 
on feasible approximation guarantees, 
and so on. Finally, AGT usually adopts 
reasonable (for example, polynomial-
time) computational complexity as 
a binding constraint on the feasible 
behavior of system designers and par-
ticipants. These themes, which have 
played only a peripheral role in tradi-
tional game theory, give AGT its distinct 
character and relevance.

Here, we touch on the current domi-
nant research trends in AGT, loosely fol-
lowing the organization of the first book 
in the field.30 We focus on contributions 
of the algorithms and complexity theory 
community; see two recent articles in 
Communications18,40 and the references 
therein for alternative perspectives on 
computer science and game theory.

Algorithmic Mechanism Design
Algorithmic mechanism design studies 
optimization problems where the un-
derlying data—such as the values of 
goods and costs of performing a task—
is initially unknown to the algorithm 
designer, and must be implicitly or ex-

doi:10.1145/1785414.1785439

A new era of theoretical computer science 
addresses fundamental problems about 
auctions, networks, and human behavior.

by Tim Roughgarden

Algorithmic 
Game Theory

 key insights
 � �Many modern computer science 

applications involve autonomous 
decision-makers with conflicting 
objectives.  Current research in 
algorithms and complexity theory  
uses game theory as an important  
tool for modeling and reasoning about  
such applications.

 � �One application domain is auctions, 
including the single-item auctions 
of eBay and Amazon; the sponsored 
search auctions of Google, Yahoo!, 
and Microsoft; and the combinatorial 
auctions used by governments to 
sell wireless spectrum.  A second 
application is large networks, where  
the goal is to understand how such 
networks form, how network users 
behave, and what kind of design and 
management strategies ensure good 
network performance.

 � �Recent results that determine the 
computational complexity of computing 
a Nash equilibrium cast doubt on the 
concept’s ability to predict the outcome 
of rational behavior.
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plicitly elicited from self-interested par-
ticipants. Auction settings are canoni-
cal examples, where the private data is 
the willingness to pay of the bidders for 
the goods on sale, and the optimization 
problem is to allocate the goods to maxi-
mize some objective, such as revenue or 
overall value to society. A “mechanism” 
is a protocol that interacts with partici-
pants and determines a solution to the 
underlying optimization problem.

There is a complex dependence be-
tween the way a mechanism employs 
elicited data and participant behav-
ior. For example, consider the sale of a 
single good in a sealed-bid auction with 
several bidders. In a “first-price” auc-
tion, the selling price is the bid of the 
winner (that is, the maximum bid). Bid-
ders naturally shade their bids below 
their maximum willingness to pay in 
first-price auctions, aspiring to achieve 

the lowest-possible price subject to 
winning the auction. Determining how 
much to shade requires guessing about 
the behavior of the other bidders. A dif-
ferent auction is the “second-price” auc-
tion, in which the selling price is only 
the second-highest bid. A famous result 
of Vickrey43 is that every participant of 
a second-price auction may as well bid 
its true value for the good: intuitively, a 
second-price auction optimally shades 
the bid of the winner on its behalf, to the 
minimum alternative winning bid. eBay 
and Amazon auctions are similar to sec-
ond-price auctions in many (but not all) 
respects; see Steiglitz42 for a detailed dis-
cussion. Keyword search auctions, such 
as those run by Google, Yahoo!, and 
Microsoft, are more complex variants 
of second-price auctions with multiple 
heterogeneous goods, corresponding to 
the potential ad slots on a search results 

page. Lahaie et al.30 provide an overview 
of theoretical work on search auctions.

While the economic literature on 
mechanism design is quite mature,20 
computer scientists have initiated a 
number of new research directions. 
We concentrate here on the empha-
sis in algorithmic mechanism design 
on complexity bounds and worst-case 
approximation guarantees, as first 
proposed by Nisan and Ronen.29 Ad-
ditional aspects including prior-free 
revenue-maximization, distributed (or 
Internet-suitable) mechanism design, 
and online (or real time) mechanism 
design are discussed in Nisan et al.30

The technical core of this part of al-
gorithmic mechanism design is the fol-
lowing deep question:

(Q1) To what extent is “incentive-
compatible” efficient computation 
fundamentally less powerful than 

This piece:

From intro paragraph: ...in application areas: Internet-like networks 
and non-traditional auctions motivate much of the work in AGT
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“classical” efficient computation?
To translate this question into 

mathematics, reconsider the Vickrey 
(second-price) auction for selling a 
single good. Each bidder i has a private 
willingness-to-pay vi and submits to the 
auctioneer a bid bi. The auction com-
prises two algorithms: an allocation al-
gorithm, which picks a winner, namely 
the highest bidder; and a payment al-
gorithm, which uses the bids to charge 
payments, namely 0 for the losers and 
the second-highest bid for the winner. 
We argued intuitively that this auction 
is truthful in the following sense: for ev-
ery bidder i and every set of bids by the 
other participants, bidder i maximizes 
its “net value” (its value for the good, 
if received, minus its payment, if any) 
by bidding its true private value: bi = vi. 
Moreover, no false bid is as good as the 
truthful bid for all possible bids by the 

other participants. Assuming all bid-
ders bid truthfully (as they should), the 
Vickrey auction solves the social welfare 
maximization problem, in the sense that 
the good is allocated to the participant 
with the highest value for it.

More generally, an allocation algo-
rithm x is implementable if, for a judi-
ciously chosen payment algorithm p, 
coupling x with p yields a truthful mech-
anism: every participant is guaranteed 
to maximize its payoff by reporting its 
true preferences. For a single-good auc-
tion, the “highest-bidder” allocation al-
gorithm is implementable (as we have 
seen); the “second-highest bidder” al-
location algorithm is not (a straightfor-
ward exercise). Thus some but not all 
algorithms are implementable.

We can mathematically phrase the 
question (Q1) as follows: Are imple-
mentable algorithms less powerful than 

arbitrary algorithms for solving funda-
mental optimization problems?

Understanding this question in-
volves two interrelated goals: charac-
terization theorems and approxima-
tion bounds.

(G1) Usefully characterize the im-
plementable allocation algorithms for 
an optimization problem.

(G2) Prove upper and lower bounds 
on the best-possible solution quality 
achieved by an implementable algo-
rithm, possibly subject to additional 
constraints such as polynomial run-
ning time.

The second goal quantifies the limi-
tations of implementable algorithms 
via an approximation measure; the 
most commonly used such measure is 
the worst-case ratio, over all possible 
inputs, between the objective function 
value of the algorithm’s solution and 
the optimal objective function value. 
The first goal aims to reformulate the 
unwieldy definition of implementabili-
ty into a more operational form amena-
ble to both upper and lower approxima-
tion bounds. Both goals, and especially 
(G1), seem to grow more complex with 
the number of independent param-
eters required to describe the private 
information of a participant.

Versions of (G2) pervade mod-
ern algorithmic research: for a given 
“constrained computational model,” 
where the constraint can be either 
computational (as for polynomial-
time approximation algorithms) or 
information-theoretic (as for online al-
gorithms), quantify its limitations for 
optimization and approximation. Goal 
(G1) reflects the additional difficulty in 
algorithmic mechanism design that 
even the “computational model” (of 
implementable algorithms) induced 
by strategic constraints is poorly un-
derstood. For example, determining 
whether or not a given algorithm is on-
line is intuitively far easier than check-
ing if one is implementable.

Single-Parameter Mechanism De-
sign. This two-step approach is vividly 
illustrated by the important special 
case of single-parameter problems, 
where goal (G1) has been completely re-
solved. A mechanism design problem 
is single-parameter if the possible out-
comes are real n-vectors ω and each par-
ticipant i has an objective function of 
the form viωi for a private real number vi I
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Truthful 
mechanisms 
are—by design—
strategically 
degenerate in  
that the best  
course of action  
of a participant  
does not depend  
on the actions  
taken by others.

(the “single parameter”). The numbers 
ωi and vi can be thought of as the quan-
tity received and the value per-unit of 
a good, respectively. A single-item auc-
tion is the special case in which each ω 
is either a standard basis vector or the 
all-zero vector. Keyword search auc-
tions are also single-parameter, under 
the assumptions that every advertiser 
cares only about the probability ωi of 
a click on its sponsored link and has a 
common value vi for every such click.

An algorithm for a single-parameter 
problem is monotone if a greater bid 
begets a greater allocation: increasing 
the value of a bid (keeping the other 
bids fixed) can only increase the cor-
responding value of the computed ωi. 
For example, the “highest bidder” allo-
cation algorithm for a single-good auc-
tion is monotone, while the “second-
highest bidder” allocation algorithm 
is not. In general, monotonicity char-
acterizes implementability for single-
parameter problems.

Myerson’s Lemma.27 An allocation 
algorithm for a single-parameter mech-
anism design problem is implementable 
if and only if it is monotone. 

Myerson’s Lemma is a useful solu-
tion to the first goal (G1) and reduces 
implementable algorithm design to 
monotone algorithm design. For ex-
ample, consider the following “rank-by-
weighted bid” allocation algorithm for 
a keyword search auction. Advertisers’ 
bids are sorted in decreasing order, pos-
sibly after scaling by advertiser-specific 
relevance factors, and ad slots are popu-
lated in this order. Assuming that the 
probability of a click is higher in higher 
slots, every such algorithm is mono-
tone: increasing one’s bid can only in-
crease one’s position in the ordering, 
which in turn leads to an only higher 
probability of a click. Thus, Myerson’s 
Lemma guarantees an analog of the sec-
ond-price rule that extends the alloca-
tion algorithm into a truthful auction.a

Despite our thorough understand-
ing of goal (G1), question (Q1) remains 
open for single parameter problems. A 

a	 Modern search engines use allocation algo-
rithms that are similar to rank-by-weighted 
bid algorithms. By historical accident, they 
use a slightly different pricing rule than that 
advocated by Myerson’s Lemma, although 
the two pricing rules lead to comparable out-
comes and revenue at equilibrium. For details, 
see Lahaie et al.30

single-parameter scheduling problem 
proposed by Archer and Tardos1 had 
been the most natural candidate for 
differentiating between the optimi-
zation power of monotone and arbi-
trary polynomial-time algorithms, but 
Dhangwatnotai et al.14 recently gave a 
(randomized) polynomial-time mono-
tone algorithm for the problem with 
approximate guarantee as good as the 
best-possible polynomial-time algo-
rithm (assuming P ≠ NP).

Multiparameter Mechanism De-
sign. Many important mechanism de-
sign problems are not single-parame-
ter. Combinatorial auctions,11 in which 
each participant aims to acquire a het-
erogeneous set of goods and has un-
related values for different sets, are a 
practical and basic example. Combina-
torial auctions are used in practice to 
sell wireless spectrum (where the goods 
are different licenses), with auction de-
signs by theoretical economists gener-
ating billions of dollars of revenue over 
the past decade.11 Their complexity 
stems from “complements,” meaning 
goods that are more useful when pur-
chased in tandem (for example, spec-
trum licenses for small but adjacent 
regions); and “substitutes,” meaning 
goods that are partially redundant (for 
example, two different but functionally 
identical licenses for the same region). 
Each bidder in a combinatorial auction 
has, in principle, an exponential num-
ber of private parameters—one private 
value for each subset of goods.

Multiparameter mechanism design 
is complex and our current understand-
ing of goals (G1) and (G2) is primitive 
for most problems of interest. There 
are natural optimization problems for 
which there is a provable gap between 
the best-possible worst-case approxi-
mation ratio of implementable and ar-
bitrary polynomial-time deterministic 
algorithms. This fact was first proved by 
Lavi et al.;23 more recently, Papadimitri-
ou et al.33 showed that this gap can be as 
large as a polynomial in the number of 
bidders. Because of its importance and 
abundance of open questions, multipa-
rameter mechanism design has been 
a hotbed of activity over the past few 
years. See Roughgarden35 for a survey 
of the primary research threads, includ-
ing upper and lower approximation 
bounds for polynomial-time welfare 
maximization for combinatorial auc-
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posed for road traffic (see Beckmann4) 
and subsequently adapted to commu-
nication networks (see Bertsekas and 
Tsitsiklis5). This was the first general ap-
proximation bound on the inefficiency 
of equilibria; the idea of quantifying 
such inefficiency was explored previ-
ously in a scheduling model.22

Consider a directed graph with fixed 
traffic rates between various origin-
destination pairs in which the traffic 
chooses routes to minimize individual 
cost; see also Figure 1. Here, we as-
sume that the traffic comprises a large 
number of selfish users, each of negli-
gible size, such as drivers on a highway 
or packets in a network. Edge costs are 
congestion-dependent, with the con-
tinuous, nondecreasing function ce(x) 
denoting the per-unit cost incurred by 
traffic on edge e when x units of traffic 
use it. In an equilibrium, each user trav-
els along a minimum-cost path from 
its origin to its destination, given the 
congestion caused by the traffic. These 
selfish routing games are strategically 
non-trivial in that the minimum-cost 
path for a given user generally depends 
on the paths chosen by the others.

For example, in a “Pigou-like net-
work” (Figure 1a), r units of selfish traf-
fic autonomously decide between par-
allel edges e1 and e2 that connect the 
origin s to the destination t. Suppose 
the second edge has some cost func-
tion c2(·), and the first edge has a con-
stant cost function c1 everywhere equal 
to c2 (r). Such networks are strategically 
trivial, just like the truthful mecha-
nisms noted earlier: the second edge’s 
cost is never larger than that of the 

tions, and work toward multiparameter 
analogs of Myerson’s Lemma.

Quantifying Inefficiency  
and the Price of Anarchy
The truthful mechanisms examined 
earlier are—by design—strategically 
degenerate in that the best course of 
action of a participant (that is, truthtel-
ling) does not depend on the actions 
taken by the others. When a designer 
cannot specify the rules of the game 
and directly dictate the allocation of 
resources—or when there is no central 
designer at all—dependencies between 
different participants’ optimal courses 
of action are generally unavoidable and 
preclude exact optimization of stan-
dard objective functions. This harsh 
reality motivates adopting an equilib-
rium concept—a rigorous proposal for 
the possible outcomes of a game with 
self-interested participants—and an 
approximation measure that quantifies 
the inefficiency of a game’s equilibria, 
to address the following basic question:

(Q2) When, and in what senses, are 
game-theoretic equilibria guaranteed 
to approximately optimize natural ob-
jective functions?

Such a guarantee implies that the 
benefit of imposing additional control 
over the system is small, and is particu-
larly reassuring when implementing 
an optimal solution is infeasible (as in 
a typical Internet application).

Routing with Congestion. There are 
now numerous answers to question (Q2) 
in different models. We describe one by 
Roughgarden and Tardos,37,39 for a mod-
el of “selfish routing” originally pro-

first, even when it is fully congested. 
For this reason, all traffic uses the sec-
ond edge at equilibrium. This equilib-
rium does not generally minimize the 
average cost of all users. For example, 
if r = 1 and c2 (x) = x as in Figure 1a, the 
average cost at equilibrium is 1, while 
splitting the traffic equally between the 
two edges yields a routing with average 
cost 3/4. The latter traffic pattern is not 
an equilibrium because of a “conges-
tion externality”: a selfish network user 
routed on the first edge would switch to 
the second edge, indifferent to the fact 
that this switch (slightly) increases the 
cost incurred by a large portion of the 
population. Similarly, in the Braess’s 
Paradox7 network of Figure 1b, the av-
erage cost at equilibrium is 2 (with all 
traffic on the zig-zag path), while a be-
nevolent dictator could route the traf-
fic at average cost 3/2 (by splitting traf-
fic between the two two-hop paths).b

The price of anarchy (POA) of a selfish 
routing network is the ratio of the aver-
age user cost at equilibrium and in an 
optimal routing—4/3 in both of the net-
works in Figure 1. The closer the POA is 
to 1, the lesser the consequences of self-
ish behavior. Replacing the cost func-
tion of the second edge in Figure 1a by c2 
(x) = xd for large d shows that the POA can 

b	 This network is called a “paradox” because re-
moving the intuitively helpful zero-cost edge—
depriving users of one of their options—recov-
ers the optimal solution as an equilibrium, 
thereby decreasing the cost incurred by all us-
ers. Analogously, cutting a taut string in a net-
work of strings and springs that carries a heavy 
weight can cause the weight to levitate further 
off the ground!10

Figure 1. Two selfish routing networks with price of anarchy 4/3. One unit of selfish traffic travels from s to t. At equilibrium, all traffic 
travels on the bottom path and the zig-zag path, respectively. In an optimal solution, traffic is split equally between the two edges and  
between the two two-hop paths, respectively.
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be arbitrarily large, even in Pigou-like 

networks, and suggests that the POA is 
governed by the “degree of nonlinear-
ity” of the cost function c2. A key result 
formalizes and extends this intuition to 
arbitrary networks: among all networks 
with cost functions lying in a set C (for 
example, bounded-degree polynomi-
als with nonnegative coefficients), the 
largest-possible POA is achieved already 
in Pigou-like networks.37 Conceptu-
ally complex topologies do not amplify the 
worst-case POA. This reduction permits 
the easy calculation of tight bounds on 
the worst-case POA for most interesting 
sets C of cost functions. For example, 
the POA of every selfish routing network 
with affine cost functions (of the form 
ce(x) = aex + be for non-negative ae, be) is at 
most 4/3, with a matching lower bound 
provided by the examples in Figure 1.39 
See Nisan et al.30 for a recent survey de-
tailing these and related results.

These POA bounds provide a theo-
retical justification for a common rule 
of thumb used in network design and 
management: overprovisioning net-
works with extra capacity ensures good 
performance. Precisely, suppose every 
edge e of a network has a capacity ue and 
a corresponding cost function ce(x) = 1/
(ue − x); see Figure 2a. (If x ≥ ue, we in-
terpret the cost as infinite.) This is the 
standard M/M/1 queueing delay func-
tion with service rate ue. We say that a 
network is b-overprovisioned for b ∊ (0, 
1) if, at equilibrium, at least a b fraction 
of each edge’s capacity remains un-
used. The following is a tight bound on 
the POA for such networks; the bound 

results. The second is to prove POA-

like guarantees that apply “on aver-
age,” even when such experimentation 
strategies fail to converge to an equi-
librium. Remarkably, such approxima-
tion bounds hold in interesting classes 
of games, including in selfish routing 
networks. See Awerbuch et al.,2 Blum 
et al.,6 and Goemans et al.19 for ini-
tial formalizations of this approach. 
Roughgarden36 recently proved the 
general result that, under fairly weak 
conditions, POA bounds for equilibria 
extend automatically to the results of 
repeated experimentation. 

Complexity of Equilibrium 
Computation
Equilibrium concepts—most famous-
ly the Nash equilibrium28—play a star-
ring role in game theory and micro-
economics. If nothing else, a notion 
of equilibrium describes outcomes 
that, once reached, persist under some 
model of individual behavior. In engi-
neering applications we generally de-
mand a stronger interpretation of an  
equilibrium, as a credible prediction 
of the long-run state of the system. But 
none of the standard equilibrium no-
tions or the corresponding proofs of 
existence suggest how to arrive at an 
equilibrium with a reasonable amount 
of effort. This fact motivates the fol-
lowing questions.

(Q3) When can the participants of 
a game quickly converge to an equilib-
rium? More modestly, when can a cen-
tralized algorithm quickly compute an 
equilibrium? 

is illustrated in Figure 2b.

Theorem (Consequence of Rough-
garden37) The POA of every b-overprovi-
sioned network is at most

1
2
 (1 + 

1
Ö̀b

 )

Thus even 10% extra capacity reduc-
es the worst-case price of anarchy of 
selfish routing to roughly 2.

Further Aspects of Quantifying Inef-
ficiency. We have barely scratched the 
surface of recent work on equilibrium 
efficiency analyses. For an overview of 
work on some other application do-
mains, including resource allocation, 
scheduling, facility location, and net-
work design, see Nisan et al.30

An important emerging trend in 
this area is to prove POA-type bounds 
under increasingly weak assumptions 
on the rationality of participants. Re-
call in algorithmic mechanism design, 
our only assumption was that par-
ticipants will make use of a foolproof 
strategy (one that dominates all oth-
ers), should one be available. Here, we 
implicitly assumed that selfish par-
ticipants can reach an equilibrium of 
a game without such foolproof strate-
gies, presumably through repeated 
experimentation. This much stronger 
assumption has been addressed in two 
different ways in the recent literature. 
The first is to formally justify it by posit-
ing natural experimentation strategies 
and proving that they quickly reach a 
(possibly approximate) equilibrium; 
see Chien and Sinclair9 and the refer-
ences therein for a sampling of such 

Figure 2. Modest overprovisioning guarantees near-optimal routing. (a) displays the per-unit cost c(x) = 1/(u − x) as a function of the load x 
for an edge with capacity u = 2. (b) shows the worst-case price of anarchy as a function of the fraction of unused network capacity.

(a) M/M/1 delay function (b) Extra capacity vs. POA curve

50

45

40

35

40

25

20

15

10

5

0

7

6

5

4

3

2

1

0

0.5 0.101 0.21.5 0.32 0.4 0.5 0.6 0.7



84    communications of the acm    |   july 2010  |   vol.  53  |   no.  7

review articles

These questions are interesting for 
two reasons. First, algorithms for equi-
librium computation can be useful 
practically, for example in game-play-
ing and for multi-agent reasoning.41 
Second, assuming that players can in-
vest only polynomial computation in 
playing a game, resolving the complex-
ity of computing an equilibrium con-
cept has economic implications: a poly-
nomial-time algorithm is an important 
step toward establishing the concept’s 
credibility, while an intractability result 
casts doubt on its predictive power.

There has been a frenzy of recent 
work on these questions, for many dif-
ferent fundamental equilibrium con-
cepts. Perhaps the most celebrated 
results in the area concern the PPAD-
completeness of computing mixed-
strategy Nash equilibria in finite 
games with two or more players.8,12 
To briefly convey the spirit of the area 
with a minimum of technical fuss, 
we instead discuss the complexity of 
converging to and computing pure-
strategy Nash equilibria in a variant 
of the routing games discussed ear-
lier. We then discuss the key differ-
ences between the two settings. For 
work on the complexity of computing 
other equilibrium concepts, such as 
market, correlated, and approximate 
Nash equilibria, and for a discus-
sion of equilibrium computation in 
extensive-form, compact, randomly 
generated, and stochastic games, see 
Nisan30 and Roughgarden38 and the 
references therein.

Pure Nash Equilibria in Network 
Congestion Games. In the atomic vari-
ant of selfish routing, there are a finite 
number k of players that each control 
a non-negligible amount of traffic (say 
one unit each) and choose a single route 
for it. Each edge cost function ce : {1, 2, 
…, k} ® R+, describing the per-player 
cost along an edge as a function of its 
number of users, is non-decreasing. An 
outcome (P1,…,Pk)—a choice of a path 
Pi for each player i—is a pure-strategy 
Nash equilibrium (PNE) if each player si-
multaneously chooses a best response: 
a path with minimum possible cost, 
given the paths chosen by the other 
players. For instance, consider Pigou’s 
example (Figure 1a) with the constant 
cost on the upper edge raised from 1 to 
2. If there are two players (with origin s 
and destination t), then there are three 

PNE: one with both players on the lower 
link, and two in which each link is used 
by a single player. In every case, a deviat-
ing player would incur cost 2 and be no 
better off than in the equilibrium.

Best-response dynamics is a simple 
model of experimentation by players 
over time: while the current outcome 
is not a PNE, choose an arbitrary player 
that is not using a best response, and 
update its path to a best response. The 
update of one player usually changes 
the best responses of the others; for 
this reason, best-response dynamics 
fails to converge in many games (such 
as “Rock-Paper-Scissors”). In an atomic 
selfish routing network, however, every 
iteration of best-response dynamics 
strictly decreases the potential function

F ( P1, … , Pk) = ∑ 
eÎE

 [ce (1) + ce (2) + · · · + ce 
(xe)],

where xe denotes the number of paths 
Pi that contain edge e, and is thus guar-
anteed to terminate, necessarily at a 
PNE.26,34 Does convergence require poly-
nomial or exponential time? Can we 
compute a PNE of such a game by other 
means in polynomial time?

Assume for the moment that the 
problem of computing a PNE of an 
atomic selfish routing network is not 
solvable in polynomial time; how 
would we amass evidence for this fact? 
An obvious idea is to prove that the 
problem is NP-hard. Remarkably, a 
short argument21,25 shows that this is 
possible only if NP = coNP! Intuitively, 
solving an NP-hard problem like satisfi-
ability means to either exhibit a satisfy-
ing truth assignment of the given Bool-
ean formula or to correctly determine 
that none exist. Computing a PNE of an 
atomic selfish routing game appears 
easier because the latter situation (of 
there being no PNE) can be ruled out 
a priori—the “only” challenge is to ex-
hibit a solution in polynomial time.c

To motivate the definition of the ap-
propriate complexity class, recall that 
problems in the class NP are character-
ized by short and efficiently verifiable 
witnesses of membership, such as 

c	 The complexity classes P and NP are usually de-
fined for decision problems, where the answer 
sought is a simple “yes” or “no.” Here we refer 
to the similar but more general search versions 
of P and NP, where for a “yes” instance, the de-
liverables include a correct solution.

Equilibrium 
concepts play  
a starring role 
in game theory. 
If nothing else, 
a notion of 
equilibrium 
describes outcomes 
that, once reached, 
persist under  
some model of 
individual behavior.
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satisfying truth assignments or Ham-
iltonian cycles. There is thus a generic 
“brute-force search” algorithm for NP 
problems: given an input, enumer-
ate the exponentially many possible 
witnesses of membership, and check 
if any of them are valid. Computing 
a PNE of an atomic selfish routing 
game appears to be easier than an 
NP-hard problem because there is a 
guided search algorithm (namely, best-
response dynamics) that navigates the 
set of possible witnesses and is guar-
anteed to terminate with a legitimate 
one. At worst, computing a PNE might 
be as hard as all problems solvable by 
such a guided search procedure. This 
is in fact the case, as we formalize here.

What are the minimal ingredients 
that guarantee that a problem is solv-
able via guided search? The answer 
is provided by the complexity class 
PLS (for “polynomial local search”).21 
A PLS problem is described by three 
polynomial-time algorithms: one to 
accept an instance and output an ini-
tial candidate solution; one to evalu-
ate the objective function value of a 
candidate solution; and one that ei-
ther verifies local optimality (for some 
local neighborhood) or else returns a 
neighboring solution with strictly bet-
ter objective function value. To solve a 
PLS problem means to compute a lo-
cal optimum, by local search or by oth-
er means. For example, computing a 
PNE of an atomic selfish routing game 
can be cast as a PLS problem by adopt-
ing the potential function as an objec-
tive function, and defining two out-
comes to be neighbors if all but one 
player choose the same path in both. 
Local minima then correspond to the 
PNE of the game. A problem in PLS is 
then PLS-complete if every problem in 
PLS reduces to it in polynomial time, 
in which case the complete problem 
is solvable in polynomial time only if 
every problem in PLS is.

The problem of computing a PNE 
of an atomic selfish routing network is 
PLS-complete.17 It is therefore polyno-
mial-time solvable if and only if P = PLS. 
In the spirit of the P vs. NP question, it 
is generally believed that P ≠ PLS but 
researchers seem far from a resolution 
in either direction. Since PLS contains 
several important problems that have 
resisted all attempts at a computation-
ally efficient solution, PLS-hardness is 

viewed as strong evidence that a prob-
lem will not be solved in polynomial 
time (at least in the near future).

Mixed-Strategy Nash Equilibria and 
PPAD. A mixed strategy is a probability 
distribution over the pure strategies of 
a player. In a mixed-strategy Nash equi-
librium (MNE), every player simultane-
ously chooses a mixed strategy maxi-
mizing its expected payoff, given those 
chosen by the others. For example, in 
“Rock-Paper-Scissors,” with each play-
er receiving payoff 1 for a win, 0 for a 
draw, and -1 for a loss, the only MNE 
has each player randomizing uniform-
ly over its three strategies to obtain an 
expected payoff of 0. Nash proved that 
every game with a finite number of  
players and strategies has at least one 
MNE.28 Computing an MNE of a finite 
game is a central equilibrium compu-
tation problem.

We focus on the two-player (“bi-
matrix”) case, where the input is two 
m × n payoff matrices (one for each 
player) with integer entries; with three 
or more players, the problem appears 
to be harder in a precise complexity-
theoretic sense.15 We emphasize that 
the two payoff matrices are complete-
ly unrelated, and need not be “zero-
sum” like in Rock-Paper-Scissors. 
(When the two payoff matrices sum 
to a constant matrix, an MNE can be 
computed in polynomial time via lin-
ear programming; see for example, 
Nisan30 for details.)

There is a non-obvious “guided 
search” algorithm for two-player 
games called the Lemke-Howson algo-
rithm;24 see von Stengel30 for a careful 
exposition. This algorithm is a path-
following algorithm in the spirit of 
local search, but it is not guided by 

From intro paragraph: ...AGT usually adopts reasonable (for example, 
polynomial-time) computational complexity as a binding constraint on 
the feasible behavior of system designers and participants.

Rock-paper-scissors, score board?, time, binding options of each 
choice.

constrained computation
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an objective or potential function and 
thus does not prove that computing an 
MNE of a bimatrix game is in PLS. In 
conjunction with our earlier reason-
ing, however, the Lemke-Howson al-
gorithm shows that the problem is not 
NP-hard unless NP = coNP.25

A complexity class that is related to 
but apparently different from PLS is 
PPAD, which stands for “polynomial 
parity argument, directed version”. 
This class was defined in Papadimi-
trou32 to capture the complexity of 
computing MNE and related prob-
lems, such as computing approxi-
mate Brouwer fixed points. Its formal 
definition parallels that of PLS, with a 
PPAD problem consisting of the mini-
mal ingredients necessary to execute 
a Lemke-Howson-like path-following 
procedure (again easily phrased as 
three polynomial-time algorithms). A 
problem in PPAD is PPAD-complete if 
every problem in PPAD reduces to it in 
polynomial time; the complete prob-
lem is then polynomial-time solvable 
only if all problems in PPAD are. Since 
PPAD contains several well-studied 
problems that are not known to be 
solvable via a polynomial-time algo-
rithm, a proof of PPAD-completeness 
can be interpreted as a significant in-
tractability result.

A few years ago, the problem of 
computing an MNE of a bimatrix game 
was shown to be PPAD-complete.8, 12 
Thus, if P ≠ PPAD, there is no general-
purpose and computationally efficient 
algorithm for this problem, and in par-
ticular there is no general and tractable 
way for players to reach a Nash equilib-
rium in a reasonable amount of time. 
This hardness result casts doubt on the 
predictive power of the Nash equilib-
rium concept in arbitrary games. See 
Chen8 and Daskalakis et al.12 for the 
details of this tour de force result and 
Daskalakis et al.13 for a high-level sur-
vey of the proof.

Future Directions
The rapid rate of progress in algorith-
mic game theory has been nourished 
by deep connections with other areas 
of theoretical computer science and 
a consistent infusion of new moti-
vating applications. There remains 
a surfeit of important open research 
directions across all three of the AGT 
areas surveyed here, such as develop-

ing theory for the design and analysis 
of mechanisms for multi-parameter 
problems, for minimizing the ineffi-
ciency of equilibria (for example, via 
a mediating network protocol), and 
for the computation of approximate 
equilibria. See Roughgarden35 and the 
concluding sections of many chapters 
in Nisan30 for more details and many 
concrete open problems.

A broad challenge, mentioned also 
in Shoham’s recent Communications 
article,40 is to develop more appropri-
ate models of agent behavior. All of the 
results described in this article, even 
the welfare guarantee of the simple 
second-price auction, depend on some 
kind of behavioral assumptions about 
the participants. Such assumptions 
are required to address modern appli-
cations, yet are largely foreign to the 
theoretical computer science mind-
set, which is characterized by minimal 
assumptions and worst-case analysis. 
But a number of new types of worst-
case guarantees, coupled with novel 
behavioral models, have already be-
gun to sprout in the AGT literature. For 
example: mechanism implementation 
in undominated strategies3 and in ex 
post collusion-proof Nash equilibri-
um;31 the price of total anarchy;6,36 and 
the complexity of unit-recall games.16 
We expect these are only the vanguard 
of what promises to be a rich and rel-
evant theory.	

This work is supported in part by NSF CAREER Award CCF-
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MURI grant, and an Alfred P. Sloan Fellowship.
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M ult  i t h r e a d e d  p ro g r a m s  t h at  com-
municate through shared memory are 
pervasive. They originally provided a 
convenient way for an application to 
perform, for example, a long compute 
task while remaining responsive to 
an interactive user. Today they are the 
most obvious route to using multiple 
available processor cores for a single 
task, so the user can benefit from the 
increased number of available cores.

Unfortunately, a surprising amount 
of confusion surrounds the basic rules 
obeyed by shared memory. If a variable 
is updated by one thread, when will 
the new value become visible to anoth-
er thread? What does it mean, if any-
thing, to have two threads updating 
the same variable at the same time? 
Do all threads have to see updates in a 
consistent order?

The confusion surrounding these 
issues has resulted in many intermit-
tent software bugs, often in low-level 
libraries that affect large numbers of 
applications. On at least one occasion, 
it has resulted in a pervasively used, 
but usually incorrect, programming 
idiom. (Try searching for “double-
checked locking”).

This problem arises at different 
levels. At the programming language 
level, there must be clear rules for the 
programmer’s use of shared variables. 
Compilers and low-level libraries must 
enforce these rules by relying on cor-
responding hardware properties for 
memory-access instructions—the sub-
ject of the following paper.

Most of the early work on shared-
memory semantics focused on the 
instruction set level and trade-offs 
with hardware optimization. Roughly 
concurrently, some older program-
ming language designs, notably Ada 
83, made very credible attempts to ad-
dress the language-level issue. Unfor-
tunately none of this prevented major 
problems in the most widely used lan-
guages from escaping attention until 
very recently. The Java specification 

was drastically revised around 2005,2 
and has still not completely settled.1,3 
Similarly, the C and C++ specifications 
are being revised to finally address 
similar issues.1 As a result, hardware 
architects often could not have a clear 
picture of the programming language 
semantics they needed to support, 
making a fully satisfactory resolution 
of the hardware-level issues more dif-
ficult or impossible.

The recent work on shared vari-
ables in programming languages 
highlighted some remaining ques-
tions about hardware memory mod-
els. For example, Java’s volatile re-
quires that updates of all such fields 
must become visible in the same order 
to all other threads. Is it even possible 
to enforce that on common hardware 
at reasonable cost? What instruction 
sequences do compilers need to gen-
erate? Until 2007 or so, the answers to 
such questions remained unclear, and 
sometimes unraised, on several ma-
jor architectures. X86 is probably the 
most visible of these architectures.

Raising these issues resulted in 
extended discussions involving the 
machine architects. As a result of this 
process, Intel and AMD have released 
a sequence of specifications for x86 
shared-memory accesses. These are far 
more precise than they were at the start 
of the process, and directly address 
many interesting test cases that arose 
during the discussions. However, they 
are still not a precise mathematical de-
scription that could be used to, for ex-
ample, prove that an implementation 
of Java volatile is correct.

The x86-TSO model fills that gap, 
by providing precise mathematical 
and empirically accurate models of 
x86 shared memory as it is visible to 
user programs. These include an op-
erational model presented here in a 
very intuitive fashion. In the process of 
making the model precise and directly 
testing it against existing implementa-
tions, Sewell et al. expose new issues 

not currently addressed by the manu-
facturers’ specifications, while also 
confirming their model is compatible 
with existing implementations.

The examples here are interesting, 
not just because it may be surprising 
that there are tiny program fragments 
(often with only four instructions) for 
your desktop computer whose mean-
ing is still open to debate, but also 
because these same small examples 
are often at the core of important algo-
rithms or software. The first example 
is an abstraction of Dekker’s mutual 
exclusion algorithm first described in 
1965. The same property is important 
to many modern lock-free algorithms. 
We already mentioned the importance 
of a consistent write visibility ordering 
for Java volatiles. The upcoming C 
and C++ standards introduce an ap-
proximate analog, atomic variables, 
aspects of which also rely on the is-
sues surrounding single-variable co-
herence (examples n5 and n4b in the 
paper) being resolved exactly as sug-
gested by x86-TSO. The paper itself 
discusses the impact of these issues 
on Linux spin-lock code. 

X86-TSO describes the behavior 
of x86 memory accesses, which de-
pends on the behavior of processors 
produced by multiple vendors, and 
chipsets produced by an even larger 
number. This helped to put academic 
researchers into the best position to 
write such a specification.	
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Abstract
Exploiting the multiprocessors that have recently become 
ubiquitous requires high-performance and reliable concur-
rent systems code, for concurrent data structures, operating 
system kernels, synchronization libraries, compilers, and 
so on. However, concurrent programming, which is always 
challenging, is made much more so by two problems. First, 
real multiprocessors typically do not provide the sequen-
tially consistent memory that is assumed by most work 
on semantics and verification. Instead, they have relaxed 
memory models, varying in subtle ways between proces-
sor families, in which different hardware threads may have 
only loosely consistent views of a shared memory. Second, 
the public vendor architectures, supposedly specifying what 
programmers can rely on, are often in ambiguous informal 
prose (a particularly poor medium for loose specifications), 
leading to widespread confusion.

In this paper we focus on x86 processors. We review sev-
eral recent Intel and AMD specifications, showing that all 
contain serious ambiguities, some are arguably too weak to 
program above, and some are simply unsound with respect 
to actual hardware. We present a new x86-TSO programmer’s 
model that, to the best of our knowledge, suffers from none 
of these problems. It is mathematically precise (rigorously 
defined in HOL4) but can be presented as an intuitive abstract 
machine which should be widely accessible to working pro-
grammers. We illustrate how this can be used to reason 
about the correctness of a Linux spinlock implementation 
and describe a general theory of data-race freedom for x86-
TSO. This should put x86 multiprocessor system building on 
a more solid foundation; it should also provide a basis for 
future work on verification of such systems.

1. INTRODUCTION
Multiprocessor machines, with many processors acting on a 
shared memory, have been developed since the 1960s; they are 
now ubiquitous. Meanwhile, the difficulty of programming 
concurrent systems has motivated extensive research on 
programming language design, semantics, and verification, 
from semaphores and monitors to program logics, software 
model checking, and so forth. This work has almost always 
assumed that concurrent threads share a single sequentially 
consistent memory,21 with their reads and writes interleaved 
in some order. In fact, however, real multiprocessors use 
sophisticated techniques to achieve high performance: store 
buffers, hierarchies of local cache, speculative execution, 

etc. These optimizations are not observable by sequential 
code, but in multithreaded programs different threads may 
see subtly different views of memory; such machines exhibit 
relaxed, or weak, memory models.6, 7, 17, 19

For a simple example, consider the following assembly 
language program (SB) for modern Intel or AMD x86 mul-
tiprocessors: given two distinct memory locations x and y 
(initially holding 0), if two processors respectively write 1 to x 
and y and then read from y and x (into register EAX on proces-
sor 0 and EBX on processor 1), it is possible for both to read 
0 in the same execution. It is easy to check that this result can-
not arise from any interleaving of the reads and writes of the 
two processors; modern x86 multiprocessors do not have a 
sequentially consistent semantics.

Microarchitecturally, one can view this particular example 
as a visible consequence of store buffering: if each proces-
sor effectively has a FIFO buffer of pending memory writes 
(to avoid the need to block while a write completes), then the 
reads from y and x could occur before the writes have propa-
gated from the buffers to main memory.

Other families of multiprocessors, dating back at least 
to the IBM 370, and including ARM, Itanium, POWER, and 
SPARC, also exhibit relaxed-memory behavior. Moreover, 
there are major and subtle differences between different pro-
cessor families (arising from their different internal design 
choices): in the details of exactly what non-sequentially-con-
sistent executions they permit, and of what memory barrier 
and synchronization instructions they provide to let the pro-
grammer regain control.

For any of these processors, relaxed-memory behavior 
exacerbates the difficulties of writing concurrent software, 
as systems programmers cannot reason, at the level of 
abstraction of memory reads and writes, in terms of an intui-
tive concept of global time.

This paper is based on work that first appeared in the 
Proceedings of the 36th SIGPLAN-SIGACT Symposium on 
Principles of Programming Languages (POPL), 2009, and 
in the Proceedings of the 22nd International Conference on 
Theorem Proving in Higher-Order Logics (TPHOLs), 2009.

SB
Proc 0 Proc 1

MOV [x]¬1
MOV EAX¬[y]

MOV [y]¬1
MOV EBX¬[x]

Allowed Final State: Proc 0:EAX=0 ∧ Proc 1:EBX=0
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addressing modes, etc., can then be used to generate both 
an event-based semantics that can be integrated with mem-
ory models, and a state-based semantics for sequential pro-
grams; the latter enables us to test the semantics against 
implementations. We also build an instruction decoding 
function, directly from the vendor documentation, to support 
reasoning about concrete machine code.

The intended scope of x86-TSO is typical user code and 
most kernel code: we cover programs using coherent write-
back memory, without exceptions, misaligned or mixed-size 
accesses, “nontemporal” operations (e.g., MOVNTI), self-
modifying code, or page-table changes. Within this domain, 
and together with our earlier instruction semantics, x86-
TSO thus defines a complete semantics of programs.

Relaxed memory models play an important role also in 
the design of high-level concurrent languages such as Java or 
C++0x, where programs are subject not just to the memory 
model of the underlying processor but also to reorderings 
introduced by compiler optimizations. The Java Memory 
Model24 attempts to ensure that data-race free (DRF) pro-
grams are sequentially consistent; all programs satisfy 
memory safety/security properties; and common compiler 
optimizations are sound. Unfortunately, as shown by Ševčík 
and Aspinall,33 the last goal is not met. In the future, we hope 
that it will be possible to prove correctness of implemen
tations of language-level memory models above the models 
provided by real-world processors; ensuring that both are 
precisely and clearly specified is a first step towards that goal.

2. ARCHITECTURE SPECIFICATIONS
To describe what programmers can rely on, processor ven-
dors document architectures. These are loose specifica-
tions, claimed to cover a range of past and future processor 
implementations, which should specify processor behavior 
tightly enough to enable effective programming, but with-
out unduly constraining future processor designs. For some 
architectures, the memory-model aspects of these specifica-
tions are expressed in reasonably precise mathematics, as 
in the normative Appendix K of the SPARC v.8 specification.2 
For x86, however, the vendor architecture specifications are 
informal prose documents. Informal prose is a poor medium 
for loose specification of subtle properties, and, as we shall 
see, such documents are almost inevitably ambiguous and 
sometimes wrong. Moreover, one cannot test programs 
above such a vague specification (one can only run programs 
on particular actual processors), and one cannot use them 
as criteria for testing processor implementations. In this 
section, we review the informal-prose Intel and AMD x86 
specifications: the Intel 64 and IA-32 Architectures Software 
Developer’s Manual (SDM)5 and the AMD64 Architecture 
Programmer’s Manual (APM).3 There have been several ver-
sions of these, some differing radically; we contrast them 
with each other, and with what we have discovered of the 
behavior of actual processors. In the process we introduce 
the key discriminating examples.

2.1. Pre-IWP (before Aug. 2007)
Early revisions of the Intel SDM (e.g. rev. 22, Nov. 2006) 
gave an informal-prose model called “processor ordering,” 

Still worse, while some vendors’ architectural specifi-
cations clearly define what they guarantee, others do not, 
despite the extensive previous research on relaxed memory 
models. We focus in this paper on x86 processors. In Section 
2, we introduce the key examples and discuss several ven-
dor specifications, showing that they all leave key questions 
ambiguous, some give unusably weak guarantees, and some 
are simply wrong, prohibiting behavior that actual proces-
sors do exhibit.

For there to be any hope of building reliable multipro-
cessor software, systems programmers need to understand 
what relaxed-memory behavior they can rely on, but at 
present that understanding exists only in folklore, not in 
clear public specifications. To remedy this, we aim to pro-
duce mathematically precise (but still appropriately loose) 
programmer’s models for real-world multiprocessors, to 
inform the intuition of systems programmers, to provide 
a sound foundation for rigorous reasoning about multi-
processor programs, and to give a clear correctness crite-
rion for hardware. In Section 3, we describe a simple x86 
memory model, x86-TSO.27 In contrast to those vendor spec-
ifications, it is unambiguous, defined in rigorous mathe-
matics, but it is also accessible, presented in an operational 
abstract-machine style. To the best of our knowledge it is 
consistent with the behavior of actual processors. We con-
sider the relevant vendor litmus tests in Section 3.2 and 
describe some empirical test results in Section 3.3.

Relaxed memory behavior is particularly critical for low-
level systems code: synchronization libraries, concurrent 
data structure libraries, language runtime systems, com-
pilers for concurrent languages, and so on. To reason (even 
informally) about such code, such as the implementation of 
an OS mutual exclusion lock, one would necessarily depend 
on the details of a specific model. Higher-level application 
code, on the other hand, should normally be oblivious to 
the underlying processor memory model. The usual expec-
tation is that such code is in some sense race free, with all 
access to shared memory (except for accesses within the 
library code) protected by locks or clearly identified as syn-
chronization accesses. Most memory models are designed 
with the intention that such race-free code behaves as if it 
were executing on a sequentially consistent machine. In 
Section 4, we describe an implementation of spin locks for 
x86, from one version of the Linux kernel, and discuss infor-
mally why it is correct with respect to x86-TSO. In Section 
5, we define a precise notion of data race for x86 and dis-
cuss results showing that programs that use spin locks but 
are otherwise race-free (except for the races within the lock 
implementation) do indeed behave as if executing on a 
sequentially consistent machine.26

To support formal reasoning about programs, a memory 
model must be integrated with a semantics for machine 
instructions (a problem which has usually been neglected 
in the relaxed-memory literature). In previous work31, §3 we 
describe a semantics for core x86 instructions, with several 
innovations. We take care not to over-sequentialize the mem-
ory accesses within each instruction, parameterizing the 
instruction semantics over parallel and sequential combina-
tors. A single definition, with all the intricacies of flag-setting, 
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and following some testing, IRIW is not observable in 
practice, even without MFENCEs. It appears that some 
JVM implementations depend on this fact, and would not 
be correct if one assumed only the IWP/AMD3.14/x86-CC 
architecture.15

Second, more seriously, x86-CC and IWP are unsound with 
respect to current processors. The following example, n6, due 
to Paul Loewenstein [personal communication, Nov. 2008] 
shows a behavior that is observable (e.g., on an Intel Core 2 

duo) but that is disallowed by x86-CC and by any interpreta-
tion we can make of IWP principles P1, 2, 4 and 6.27, A.5

To see why this could be allowed by multiprocessors with 
FIFO store buffers, suppose that first the Proc 1 write of 
[y]=2 is buffered, then Proc 0 buffers its write of [x]=1, reads 
[x]=1 from its own store buffer, and reads [y]=0 from main 
memory, then Proc 1 buffers its [x]=2 write and flushes its 
buffered [y]=2 and [x]=2 writes to memory, then finally Proc 
0 flushes its [x]=1 write to memory.

The AMD3.14 manual is not expressed in terms of a 
clearly identified set of principles, and the main text (vol. 2, 
§7.2) leaves the ordering of stores to a single location uncon-
strained, though elsewhere the manual describes a micro-
architecture with store buffers and cache protocols that 
strongly implies that memory is coherent. In the absence of 
an analogue of the IWP P6, the reasoning prohibiting n6 does 
not carry over.

2.3. Intel SDM rev. 29–34 (Nov. 2008–Mar. 2010)
The most recent substantial change to the Intel memory-
model specification, at the time of writing, was in revision 
29 of the Intel SDM (revisions 29–34 are essentially identical 
except for the LFENCE text). This is in a similar informal-
prose style to previous versions, again supported by litmus 
tests, but is significantly different to IWP/x86-CC/AMD3.14. 
First, the IRIW final state above is forbidden,5, Example 8–7, vol. 3A 
and the previous coherence condition: “P6. In a multipro-
cessor system, stores to the same location have a total order” 
has been replaced by: “Any two stores are seen in a consistent 
order by processors other than those performing the stores” (we 
label this P9).

Second, the memory barrier instructions are now inclu
ded. It is stated that reads and writes cannot pass MFENCE 
instructions, together with more refined properties for 
SFENCE and LFENCE

Third, same-processor writes are now explicitly ordered: 
“Writes by a single processor are observed in the same order by 
all processors” (P10) (we regarded this as implicit in the IWP 
“P2. Stores are not reordered with other stores”).

This revision appears to deal with the unsoundness, admit-
ting the n6 behavior above, but, unfortunately, it is still prob-
lematic. The first issue is, again, how to interpret “causality” 

unsupported by any examples. It is hard to see precisely 
what this prose means, especially without additional 
knowledge or assumptions about the microarchitecture 
of particular implementations. The uncertainty about 
x86 behavior that at least some systems programmers 
had about earlier IA-32 processors can be gauged from an 
extensive discussion about the correctness of a proposed 
optimization to a Linux spinlock implementation.1 The 
discussion is largely in microarchitectural terms, not just 
in terms of the specified architecture, and seems to have 
been resolved only with input from Intel staff. We return to 
this optimization in Section 4, where we can explain why it 
is sound with respect to x86-TSO.

2.2. IWP/AMD3.14/x86-CC
In August 2007, an Intel White Paper4 (IWP) gave a somewhat 
more precise model, with 8 informal-prose principles P1–P8 
supported by 10 examples (known as litmus tests). This was 
incorporated, essentially unchanged, into later revisions of 
the Intel SDM (including rev. 26–28), and AMD gave simi-
lar, though not identical, prose and tests in rev. 3.14 of their 
manual3, vol. 2, §7.2 (AMD3.14). These are essentially causal-
consistency models,9 and they allow different processors to 
see writes to independent locations in different orders, as 
in the IRIW litmus test11 below.  a AMD3.14 allows this explic-
itly, while IWP allows it implicitly, as IRIW is not ruled out by 
the stated principles. Microarchitecturally, IRIW can arise 

from store buffers that are shared between some but not all 
processors.
However, both require that, in some sense, causality is 
respected, as in the IWP principle “P5. In a multiprocessor 
system, memory ordering obeys causality (memory ordering 
respects transitive visibility).”

We used these informal specifications as the basis for a 
formal model, x86-CC,31 for which a key issue was giving a 
reasonable interpretation to this “causality,” which is not 
defined in IWP or AMD3.14. Apart from that, the informal 
specifications were reasonably unambiguous—but they 
turned out to have two serious flaws.

First, they are arguably rather weak for programmers. In 
particular, they admit the IRIW behavior above but, under 
reasonable assumptions on the strongest x86 memory 
barrier, MFENCE, adding MFENCEs would not suffice to 
recover sequential consistency (instead, one would have to 
make liberal use of x86 LOCK’d instructions).31, §2.12 Here, 
the specifications seem to be much looser than the behavior 
of implemented processors: to the best of our knowledge, 

a  We use Intel assembly syntax throughout except that we use an arrow ← to 
indicate the direction of data flow, so MOV [x]←1 is a write of 1 to address x 
and MOV EAX←[x] is a read from address x into register EAX. Initial states 
are all 0 unless otherwise specified.

IRIW
Proc 0 Proc 1 Proc 2 Proc 3

MOV [x]¬1 MOV [y]¬1 MOV EAX¬[x]
MOV EBX¬[y]

MOV ECX¬[y] 
MOV EDX¬[x]

Forbidden Final State: Proc 2:EAX=1 ∧ Proc 2:EBX=0 
∧ Proc 3:ECX=1 ∧ Proc 3:EDX=0

n6
Proc 0 Proc 1

MOV [x]¬1
MOV EAX¬[x]
MOV EBX¬[y]

MOV [y]¬2 
MOV [x]¬2

Allowed Final State: Proc 0:EAX=1 ∧ Proc 0:EBX=0 ∧ [x]=1



92    communications of the acm   |   july 2010  |   vol.  53  |   no.  7

research highlights 

 

We emphasize that our aim is a programmer’s model, of 
the allowable behaviors of x86 processors as observed by 
assembly programs, not of the internal structure of pro-
cessor implementations, or of what could be observed on 
hardware interfaces. We present the model in an abstract-
machine style to make it accessible, but are concerned 
only with its external behavior; its buffers and locks are 
highly abstracted from the microarchitecture of processor 
implementations.

The fact that store buffering is observable, as in the SB 
and n6 examples, but IRIW is not (and IRIW is explicitly 
forbidden in the SDM revs. 29–34 and AMD3.15), together 
with additional tests that prohibit many other reorderings, 
strongly suggests that, apart from store buffering, all pro-
cessors share the same view of memory. Moreover, differ-
ent processors or hardware threads do not observably share 
store buffers. This is in sharp contrast to x86-CC, where each 
processor has a separate view order of its memory accesses 
and other processors’ writes. To the best of our knowledge, 
for the usual write-back memory, no other aspects of the 
microarchitecture (the out-of-order execution, cache hier-
archies and protocols, interconnect topology, and so on) 
are observable to the programmer, except in so far as they 
affect performance.

This is broadly similar to the SPARC Total Store Ordering 
(TSO) memory model,2, 32 which is essentially an axiomatic 
description of the behavior of store-buffer multiproces-
sors. Accordingly, we have designed a TSO-like model for 
x86, called x86-TSO.27 It is defined mathematically in two 
styles: an abstract machine with explicit store buffers and 
an axiomatic model that defines valid executions in terms 
of memory orders; they are formalized in HOL420 and are 
proved equivalent. The abstract machine conveys the 
programmer-level operational intuition behind x86-TSO; 
we describe it informally in the next subsection. The axi-
omatic model supports constraint-based reasoning about 
example programs (e.g. by our memevents tool in Section 
3.3); it is similar to that of SPARCv8,2, App. K but we also deal 
with x86 CISC instructions with multiple memory accesses 
and with x86 barriers and atomic (or LOCK’d) instructions. 
The x86 supports a range of atomic instructions: one can 
add a LOCK prefix to many read–modify–write instructions 
(ADD, INC, etc.), and the XCHG instruction is implicitly 
LOCK’d. There are three main memory barriers: MFENCE, 
SFENCE and LFENCE.

3.1. The abstract machine
Our programmer’s model of a multiprocessor x86 system 
is illustrated in Figure 1. At the top of the figure are a num-
ber of hardware threads, each corresponding to a single 
in-order stream of instruction execution. (In this program-
mer’s model there is no need to consider physical proces-
sors explicitly; it is the hardware threads that correspond to 
the Proc N columns in the tests we give.) They interact with a 
storage subsystem, drawn as the dotted box.

The state of the storage subsystem comprises a shared 
memory that maps addresses to values, a global lock to 
indicate when a particular hardware thread has exclu-
sive access to memory, and one store buffer per hardware 

as used in P5. The second issue is one of weakness: the new 
P9 says nothing about observations of two stores by those 
two processors themselves (or by one of those processors 
and one other). The following examples (which we call n5 
and n4b) illustrate potentially surprising behavior that argu-
ably violates coherence. Their final states are not allowed in 
x86-CC, are not allowed in a pure store-buffer implementa-
tion or in x86-TSO, and we have not observed them on actual 
processors. However, the principles stated in revisions 29–34 
of the Intel SDM appear, presumably unintentionally, to 
allow them. The AMD3.14 vol. 2, §7.2 text taken alone would 
allow them, but the implied coherence from elsewhere in 
the AMD manual would forbid them. These points illustrate 

once again the difficulty of writing unambiguous and correct 
loose specifications in informal prose.

2.4. AMD3.15 (Nov. 2009)
In November 2009, AMD produced a new revision, 3.15, of 
their manuals. The main difference in the memory-model 
specification is that IRIW is now explicitly forbidden.

Summarizing the key litmus-test differences, we have the 

following, where √ and × entries are explicit in the specifica-
tion text and starred entries indicate possible deductions, 
some of which may not have been intended.
There are also many non-differences: tests for which the 
behaviors coincide in all three cases. We return to these, 
and go through the other tests from the Intel and AMD 
documentation, in Section 3.2.

3. OUR x86-TSO PROGRAMMER’S MODEL
Given these problems with the informal specifications, we 
cannot produce a useful rigorous model by formalizing the 
“principles” they contain, as we attempted with x86-CC.31 
Instead, we have to build a reasonable model that is con-
sistent with the given litmus tests, with observed processor 
behavior, and with what we know of the needs of program-
mers, the vendors’ intentions, and the folklore in the area.

n5

Proc 0 Proc 1

MOV [x]¬1
MOV EAX¬[x]

MOV [x]¬2
MOV EBX¬[x]

Forbidden Final State: Proc 0:EAX=2 ∧ Proc 1:EBX=1

n4b
Proc 0 Proc 1

MOV EAX¬[x]
MOV [x]¬1

MOV ECX¬[x]
MOV [x]¬2

Forbidden Final State: Proc 0:EAX=2 ∧ Proc 1:ECX=1

IWP/x86-CC 3.14 29–34 3.15 Actual 
processors

IRIW
n6
n5/n4b

√* / √
×*/×
×*/×

√
√*
×*

×
√*
√*

×
√*
×*

Not observed
Observed

Not observed



july 2010  |   vol.  53  |   no.  7   |   communications of the acm     93

 

executing a LOCK’d instruction.

1.	 Rp[a]=u: p can read u from memory at address a if p is 
not blocked, there are no writes to a in p’s store buffer, 
and the memory does contain u at a.

2.	 Rp[a]=u: p can read u from its store buffer for address a 
if p is not blocked and has u as the newest write to a in 
its buffer.

3.	 Wp[a]=u: p can write u to its store buffer for address a at 
any time.

4.	 tp: if p is not blocked, it can silently dequeue the oldest 
write from its store buffer and place the value in mem-
ory at the given address, without coordinating with any 
hardware thread.

5.	 Fp: if p’s store buffer is empty, it can execute an MFENCE 
(note that if a hardware thread encounters an MFENCE 
instruction when its store buffer is not empty, it can 
take one or more tp steps to empty the buffer and 
proceed, and similarly in 7 below).

6.	 Lp: if the lock is not held, it can begin a LOCK’d 
instruction.

7.	 Up: if p holds the lock, and its store buffer is empty, it 
can end a LOCK’d instruction.

Technically, the formal versions of these rules27 define a 
labeled transition system (with the events as labels) for the 
storage subsystem, and we define the behavior of the whole 
system as a parallel composition of that and transition sys-
tems for each thread, synchronizing on the non-t labels as 
in CCS.25

Additionally, we tentatively impose a progress condi-
tion, that each memory write is eventually propagated from 
the relevant store buffer to the shared memory. This is not 
stated in the documentation and is hard to test. We are 
assured that it holds at least for AMD processors.

For write-back cacheable memory, and the fragment 
of the instruction set that we consider, we treat LFENCE 
and SFENCE semantically as no-ops. This follows the Intel 
and AMD documentation, both of which imply that these 
fences do not order store/load pairs which are the only 
reorderings allowed in x86-TSO. Note, though, that else-
where it is stated that the Intel SFENCE flushes the store 
buffer.5, vol.3A, §11.10

3.2. Litmus tests
For our introductory SB example from Section 1, x86-TSO 
permits the given behavior for the same reasons as set forth 
there. For each of the examples in Section 2 (IRIW, n6, and 
n5/n4b), x86-TSO permits the given final state if and only 
if it is observable in our testing of actual processors, i.e., 
for IRIW it is forbidden (in contrast to IWP and AMD3.14), 
for n6 it is allowed (in contrast to IWP), and for n5/n4b it 
is forbidden (in contrast to the Intel SDM rev. 29–34). For 
all the other relevant tests from the current Intel and AMD 
manuals the stated behavior agrees with x86-TSO. We now 
go through Examples 8–1 to 8–10 from rev. 34 of the Intel 
SDM, and the three other tests from AMD3.15, and explain 
the x86-TSO behavior in each case.

For completeness we repeat the Intel SDM short 

thread.
The behavior of the storage subsystem is described in 

more detail below, but the main points are:
˲˲ The store buffers are FIFO and a reading thread must 

read its most recent buffered write, if there is one, to that 
address; otherwise reads are satisfied from shared memory.

˲˲ An MFENCE instruction flushes the store buffer of that 
thread.

˲˲ To execute a LOCK’d instruction, a thread must first ob-
tain the global lock. At the end of the instruction, it flushes 
its store buffer and relinquishes the lock. While the lock is 
held by one thread, no other thread can read.

˲˲ A buffered write from a thread can propagate to the 
shared memory at any time except when some other thread 
holds the lock.

More precisely, the possible interactions between the 
threads and the storage subsystem are described by the 
following events:

˲˲ Wp [a]=u, for a write of value u to address a by thread p
˲˲ Rp [a]=u, for a read of u from a by thread p
˲˲ Fp, for an MFENCE memory barrier by thread p
˲˲ Lp, at the start of a LOCK’d instruction by thread p
˲˲ Up, at the end of a LOCK’d instruction by thread p
˲˲ tp, for an internal action of the storage subsystem, prop-

agating a write from p’s store buffer to the shared memory

For example, suppose a particular hardware thread p has 
come to the instruction INC [56] (which adds 1 to the value 
at address 56), and p’s store buffer contains a single write to 
56, of value 0. In one execution we might see read and write 
events, Rp[56]=0 and Wp[56]=1, followed by two tp events as 
the two writes propagate to shared memory. Another execu-
tion might start with the write of 0 propagating to shared 
memory, where it could be overwritten by another thread. 
Executions of LOCK;INC [56] would be similar but bracketed 
by Lp and Up events.

The behavior of the storage subsystem is specified by 
the following rules, where we define a hardware thread to 
be blocked if the storage subsystem lock is taken by another 
hardware thread, i.e., while another hardware thread is 

Lock

W
rite buffer

W
rite buffer

Shared memory

H/W thread H/W thread

Figure 1. x89-TSO block diagram.
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Example 8–7. Stores Are Seen in a Consistent Order by 
Other Processors. This test rules out the IRIW behavior as 
described in Section 2.2. x86-TSO forbids the given final state 
because the Proc 2 constraints imply that x was written to 
shared memory before y whereas the Proc 3 constraints imply 
that y was written to shared memory before x.

Example 8–8. Locked Instructions Have a Total 
Order. This is the same as the IRIW Example 8–7 but with 
LOCK’d instructions for the writes; x86-TSO forbids the final 
state for the same reason as above.

Example 8–9. Loads Are not Reordered with Locks.

This test indicates that locking both writes in Example 8–3 
would forbid the nonsequentially consistent result. x86-
TSO forbids the final state because LOCK’d instructions 
flush the local store buffer. If only one write were LOCK’d 
(say the write to x), the Example 8–3 final state would be 
allowed as follows: on Proc 1, buffer the write to y and exe-
cute the read x, then on Proc 0 write to x in shared memory 
then read from y.

Example 8–10. Stores Are not Reordered with Locks.
This is implied by Example 8–1, as we treat the memory writes 
of LOCK’d instructions as stores.

Test amd5.

For x86-TSO, this test has the same force as Example 8.8, but 
using MFENCE instructions to flush the buffers instead of 
LOCK’d instructions. The tenth AMD test is similar. None of 
the Intel litmus tests include fence instructions.

In x86-TSO adding MFENCE between every instruction 
would clearly suffice to regain sequential consistency (though 
obviously in practice one would insert fewer barriers), in con-
trast to IWP/x86-CC/AMD3.14.

3.3. Empirical testing
To build confidence that we have a sound model of the 
behavior of actual x86 processors we have tested the 

descriptions of these tests, e.g. “stores are not reordered 
with other stores,” but note that “not reordered with” is not 
defined there and is open to misinterpretation.27, §3.2

Example 8–1. Stores Are not Reordered with other 
Stores.

This test implies that the writes by Proc 0 are seen in order by 
Proc 1’s reads, which also execute in order. x86-TSO forbids 
the final state because Proc 0’s store buffer is FIFO, and Proc 
0 communicates with Proc 1 only through shared memory.

Example 8–2. Stores Are Not Reordered with Older 
Loads.

x86-TSO forbids the final state because reads are never 
delayed.

Example 8–3. Loads May Be Reordered with Older 
Stores. This test is just the SB example from Section 1, 
which x86-TSO permits. The third AMD test (amd3) is simi-
lar but with additional writes inserted in the middle of each 
thread, of 2 to x and y respectively.

Example 8–4. Loads Are not Reordered with Older 
Stores to the Same Location.

x86-TSO requires the specified result because reads must 
check the local store buffer.

Example 8–5. Intra-Processor Forwarding Is Allowed. 
This test is similar to Example 8–3.

Example 8–6. Stores Are Transitively Visible.

x86-TSO forbids the given final state because otherwise 
the Proc 2 constraints imply that y was written to shared 
memory before x. Hence the write to x must be in Proc 0’s 
store buffer (or the instruction has not executed), when the 
write to y is initiated. Note that this test contains the only 
mention of “transitive visibility” in the Intel SDM, leaving 
its meaning unclear.

Proc 0 Proc 1

MOV [x]←1 
MOV [y]←1

MOV EAX←[y]
MOV EBX←[x]

Forbidden Final State: Proc 1:EAX=1 ∧ Proc 1:EBX=0

Proc 0 Proc 1

MOV EAX←[x]
MOV [y]←1

MOV EBX←[y]
MOV [x]←1

Forbidden Final State: Proc 0:EAX=1 ∧ Proc 1:EBX=1

Proc 0

MOV [x]←1
MOV EAX←[x]

Required Final State: Proc 0:EAX=1

Proc 0 Proc 1 Proc 2

MOV [x]←1 MOV EAX←[x]
MOV [y]←1

MOV EBX←[y]
MOV ECX←[x]

Forbidden Final State: Proc 1:EAX=1 ∧ Proc 2:EBX=1 ∧ Proc 2:ECX=0

Proc 0 Proc 1

XCHG [x]←EAX
MOV EBX←[y]

XCHG [y]←ECX
MOV EDX←[x]

Initial state: Proc 0:EAX=1 ∧ Proc 1:ECX=1 (elsewhere 0)

Forbidden Final State: Proc 0:EBX=0 ∧ Proc 1:EDX=0

Proc 0 Proc 1

XCHG [x]←EAX 
MOV [y]←1

MOV EBX←[y]
MOV ECX←[x]

Initial state: Proc 0:EAX=1 (elsewhere 0)

Forbidden Final State: Proc 1:EBX=1 ∧ Proc 1:ECX=0

Proc 0 Proc 1

MOV [x]←1
MFENCE
MOV EAX←[y]

MOV [y]←1
MFENCE
MOV EBX←[x]

Forbidden Final State: Proc 0:EAX=0 ∧ Proc 1:EBX=0
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A spinlock is represented by a signed integer which is 1 if 
the lock is free and 0 or less if the lock is held. To acquire 
a lock, a thread atomically decrements the integer (which 
will not wrap around assuming there are fewer than 231 
hardware threads). If the lock was free, it is now held and 
the thread can proceed to the critical section. If the lock was 
held, the thread loops, waiting for it to become free. Because 
there might be multiple threads waiting for the lock, once 
it is freed, each waiting thread must again attempt to enter 
through the LOCK’d decrement. To release the lock, a thread 
simply sets its value to 1.

The optimization in question made the releasing MOV 
instruction not LOCK’d (removing a LOCK prefix and hence 
letting the releasing thread proceed without flushing its 
buffer).

For example, consider a spinlock at address x and let y 
be another shared memory address. Suppose that several 
threads want to access y, and that they use spinlocks to 
ensure mutual exclusion. Initially, no one has the lock and 
[x] = 1. The first thread t to try to acquire the lock atomically 
decrements x by 1 (using a LOCK prefix); it then jumps into 
the critical section. Because a store buffer flush is part of 
LOCK’d instructions, [x] will be 0 in shared memory after 
the decrement.

Now if another thread attempts to acquire the lock, it 
will not jump into the critical section after performing the 
atomic decrement, since x was not 1. It will thus enter the 
spin loop. In this loop, the waiting thread continually reads 
the value of x until it gets a positive result.

Returning to the original thread t, it can read and write 
y inside of its critical section while the others are spinning. 
These writes are initially placed in t’s store buffer, and some 
may be propagated to shared memory. However, it does 
not matter how many (if any) are written to main memory, 
because (by assumption) no other thread is attempting to 
read (or write) y. When t is ready to exit the critical section, it 
releases the lock by writing the value 1 to x; this write is put 
in t’s store buffer. It can now continue after the critical sec-
tion (in the text below, we assume it does not try to reacquire 
the lock).

If the releasing MOV had the LOCK prefix then all of the 
buffered writes to y would be sent to main memory, as would 
the write of 1 to x. Another thread could then acquire the 
spinlock.

However, since it does not, the other threads continue to 
spin until the write setting x to 1 is removed from t’s write 
buffer and sent to shared memory at some point in the 
future. At that point, the spinning threads will read 1 and 
restart the acquisition with atomic decrements, and another 
thread could enter its critical section. However, because t’s 
write buffer is emptied in FIFO order, any writes to y from 
within t’s critical section must have been propagated to 
shared memory (in order) before the write to x. Thus, the 
next thread to enter a critical section will not be able to see y 
in an inconsistent state.

5. DATA-RACE FREEDOM
To make a relaxed-memory architecture usable for large-
scale programming, it is highly desirable (perhaps essential) 

correspondence between them in various ways.
First, for the memory model, we have a litmus tool that 

takes a litmus test (essentially as given in this paper) and 
builds a C program with embedded assembly to run the test 
repeatedly to try to produce all possible results, taking care 
to synchronize the different threads and with some random-
ization of memory usage. We have run these on the Intel and 
AMD processors that we have access to. The results can be 
compared with the output of a memevents tool that takes 
such tests and computes the set of all possible executions 
allowed by the x86-TSO model. We use a verified witness 
checker, extracted from the HOL4 definition of the model, to 
verify that any executions found are indeed allowed.

The results correspond exactly for all the tests given here 
and others we have tried, including amd3, n1,31 n7,27 the sin-
gle-XCHG variant of Example 8–9, and an unfenced variant of 
RWC.11 In general, though, there may be tests where x86-TSO 
allows some final state that cannot be observed in practice, 
perhaps because litmus does not drive the processor into 
the correct internal state (of store buffers, cache lines, etc.) 
to exhibit it, or perhaps because the particular implementa-
tions we tested cannot exhibit it. For example, we have only 
seen amd3 on a four-processor (×2 hyperthread) machine 
and only very rarely, 4 out of 3.2e9 times. Testing, especially 
this black-box testing of a complex and time-dependent sys-
tem, is obviously subject to the usual limitations; it cannot 
conclusively prove that some outcome is not possible.

Second, for the behavior of individual instructions, we have 
an x86sem tool that generates random instances of instruc-
tions, runs them on an actual machine, and generates a HOL4 
conjecture relating the memory and register state before and 
after. These conjectures are then automatically verified, by a 
HOL4 script, for the 4600 instances that we tried.

4. A LINUX x86 SPINLOCK IMPLEMENTATION
In Section 2.1, we mentioned the uncertainty that arose in a 
discussion on a particular optimization for Linux spin-locks.1 
In this section, we present a spinlock from the Linux kernel 
(version 2.6.24.7) that incorporates the proposed optimization, 
as an example of a small but nontrivial concurrent program-
ming idiom. We show how one can reason about this code 
using the x86-TSO programmer’s model, explaining in terms 
of the model why it works and why the optimization is sound—
thus making clear what (we presume) the developer’s informal 
reasoning depended on. For accessibility we do this in prose, 
but the argument could easily be formalized as a proof.

The implementation comprises code to acquire and 
release a spinlock. It is assumed that these are properly 
bracketed around critical sections and that spinlocks are 
not mutated by any other code.

On entry the address of spinlock is in register EAX and the spinlock is 
unlocked iff its value is 1

acquire: LOCK;DEC   [EAX]                 ; LOCK’d decrement of [EAX]
         JNS            enter              ; branch if [EAX] was ≥ 1
spin:      CMP        [EAX],0             ; test [EAX]
         JLE           spin                   ; branch if [EAX] was ≤ 0
         JMP          acquire            ; try again
enter:   ; the critical section starts here

release:   MOV            [EAX]←1
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than ours is, and is idealized rather than x86-specific. Park 
and Dill28 verify programs by model checking them directly 
above TSO. Burckhardt and Musuvathi13, App. A also give opera-
tional and axiomatic definitions of a TSO model and prove 
equivalence, but only for finite executions. Their models 
treat memory reads and writes and barrier events, but lack 
instruction semantics and LOCK’d instructions with mul-
tiple events that happen atomically. Hangal et al.18 describe 
the Sun TSOtool, checking the observed behavior of pseudo-
randomly generated programs against a TSO model. Roy 
et al.29 describe an efficient algorithm for checking whether 
an execution lies within an approximation to a TSO model, 
used in Intel’s Random Instruction Test (RIT) generator. 
Loewenstein et al.22 describe a “golden memory model” for 
SPARC TSO, somewhat closer to a particular implementa-
tion microarchitecture than the abstract machine we give in 
Section 3, that they use for testing implementations. They 
argue that the additional intensional detail increases the 
effectiveness of simulation-based verification. Boudol and 
Petri12 give an operational model with hierarchical write buf-
fers (thereby permitting IRIW behaviors), and prove sequen-
tial consistency for DRF programs. Burckhardt et al.14 define 
an x86 memory model based on IWP.4 The mathematical 
form of their definitions is rather different to our axiomatic 
and abstract-machine models, using rewrite rules to reorder 
or eliminate memory accesses in sets of traces. Their model 
validates the 10 IWP tests and also some instances of IRIW 
(depending on how parallel compositions are associated), 
so it will not coincide with x86-TSO or x86-CC. Saraswat et 
al.30 also define memory models in terms of local reordering, 
and prove a DRF theorem, but focus on high-level languages.

7. CONCLUSION
We have described x86-TSO, a memory model for x86 proces-
sors that does not suffer from the ambiguities, weaknesses, 
or unsoundnesses of earlier models. Its abstract-machine 
definition should be intuitive for programmers, and its 
equivalent axiomatic definition supports the memevents 
exhaustive search and permits an easy comparison with 
related models; the similarity with SPARCv8 suggests x86-
TSO is strong enough to program above. This work high-
lights the clarity of mathematically rigorous definitions, in 
contrast to informal prose, for subtle loose specifications.

We do not speak for any x86 vendor, and it is, of course, 
entirely possible that x86-TSO is not a good description of 
some existing or future x86 implementation (we would be 
very interested to hear of any such example). Nonetheless, we 
hope that this will clarify the semantics of x86 architectures 
as they exist, for systems programmers, hardware developers, 
and those working on the verification of concurrent software.
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to identify programming idioms which ensure that one can 
reason in terms of a traditional interleaving model of con-
currency, showing that any relaxed memory execution is 
equivalent to one that is possible above a sequentially con-
sistent memory model. One common idiom with this prop-
erty is data-race freedom. Informally, a program has a data 
race if multiple threads can access the same location (where 
at least one is writing to the location) without a synchroni-
zation operation separating the accesses. Programs where 
every shared access is in a critical section are one common 
example of DRF programs.

A variety of relaxed models, both for processors and for 
programming languages, have been proved to support sequen
tially consistent semantics for DRF programs.8, 9, 10, 12, 16, 23 
Saraswat et al.30 call supporting sequentially consistent 
semantics for DRF programs the “fundamental property” 
of a relaxed memory model, and indeed memory models 
have sometimes been defined in these terms.6 However, 
for a processor architecture, we prefer to define a memory 
model that is applicable to arbitrary programs, to support 
reasoning about low-level code, and have results about well-
behaved programs as theorems above it.

The details of what constitutes a data race, or a synchro-
nization operation, vary from model to model. For x86-TSO, 
we define two events on different threads to be competing if 
they access the same address, one is a write, and the other 
is a read (for aligned x86 accesses, it is not necessary to con-
sider write/write pairs as competing). We say that a program 
is data race free if it is impossible for a competing read/write 
pair to execute back-to-back. Critically, we require this prop-
erty only of sequentially consistent executions (equivalently, 
the x86-TSO executions where store buffers are always 
flushed immediately after each write).

We have proved that x86-TSO supports interleaving 
semantics for DRF programs. However, this theorem alone 
is not often useful, because most programs do contain data 
races at this level of abstraction. For example, the read in the 
spin loop of Section 4’s spinlock races with the write in the 
release. We have, therefore, identified an extended notion 
of data race freedom that the spinlock code does satisfy, 
and we have used it to prove that, for well-synchronized pro-
grams using the spinlock, every x86-TSO execution has an 
equivalent sequentially consistent execution.26

Thus, the relaxed nature of x86-TSO is provably not a 
concern for low-level systems code that uses spinlocks to 
synchronize. Extending this result to other synchronization 
primitives, and to code compiled from high-level languages, 
is a major topic for future work.

6. RELATED WORK
There is an extensive literature on relaxed memory models, 
but most of it does not address x86. We touch here on some 
of the most closely related work.

There are several surveys of weak memory models, includ-
ing those by Adve and Gharachorloo,6 Luchango,23 and 
Higham et al.19 The latter, in particular, formalizes a range 
of models, including a TSO model, in both operational and 
axiomatic styles, and proves equivalence results. Their axi-
omatic TSO model is rather closer to the operational style 
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As predicted by Intel’s Gordon Moore in 
1965, based on his observation of the 
scaling of several generations of silicon 
technology at the time, the number of 
transistors that can be integrated on 
one die continues to double approxi-
mately every two years. Amazing to 
some, Moore’s Law has prevailed for 
45 years and is expected to continue for 
several more generations. Transistor 
feature size and die integration capac-
ity projections from the International 
Technology Roadmap for Semicon-
ductors (ITRS) roadmap is shown in 
the accompanying table here.  

These faster and more abundant 
transistors have been exploited by 
computer engineers to build proces-
sors that double in performance about 
every two years.  Up until the beginning 
of this decade, that was done through 
faster clock speeds and clever archi-
tectural enhancements. Many of these 
architectural enhancements were di-
rected at tackling the “memory wall,” 
which still plagues us today. Early in 
this decade, we ran into the “power 
wall” that dramatically slowed the in-
crease in clock speeds. Since then, we 
are still seeing performance doublea 
every two years, but now it’s through 
having more cores (running at only 
modestly faster clock rates) on one die 
since technology scaling provides all 
of those additional transistors.

Another key component on the 
motherboard affected by technology 
scaling is the main memory, tradition-
ally built out of dynamic random ac-
cess memory (DRAM) parts. DRAMs 
have been doubling in capacity every 
two to three years while their access la-
tency has improved about 7% per year.  
However, processors speeds still leave 
main memories in the dust—with  the 
processors having to wait 100 or more 
cycles to get information back from 

a	 But one only really gets double the perfor-
mance if they can figure out how to keep all of 
those cores busy. 

main memory—hence, the focus by ar-
chitects on cache memory systems that 
tackle this “memory wall.” And multi-
core parts put even more pressure on 
the DRAM, demanding more capacity, 
lower latencies, and better bandwidth. 

As pointed out in the following pa-
per by Lee, Ipek, Mutlu, and Burger, 
DRAM memory scaling is in jeopardy, 
primarily due to reliability issues. The 
storage mechanism in DRAMs, charge 
storage and maintenance in a capaci-
tor, requires inherently unscalable 
charge placement and control. Flash 
memories, which have the advantage 
of being nonvolatile, have their own 
scaling limitations. Thus, the search 
for new main memory technologies 
has begun.

The authors make a case for phase 
change memories (PCMs) that are 
nonvolatile and can scale below 
40nm.  PCMs store state by forcing a 
phase change in their storage element 
(for example, chalcogenide) to a high 
resistance state (so storing a “0”) or 
to a low resistance state (so storing a 
“1”).  Fortunately, programming cur-
rent scales linearly. However, PCMs 
do not come without their disadvan-
tages: read and, especially, write laten-
cies several times slower than DRAMs, 
write energies several times larger 
than DRAMs, and, like Flash, a limited 
lifetime directly related to the number 
of writes to a memory location.

This paper is a wonderful illustra-
tion of the way computer architects 
can work around the limitations of the 
technology with clever architectural 
enhancements—turning lemons into 
lemonade. By using an area-neutral      

memory buffer reorganization, the 
authors are able to reduce application 
execution time from 1.6X to only 1.2X 
relative to a DRAM-based system and 
memory array energy from 2.2X to 1.0X 
also relative to a DRAM-based system.  
They use multiple, narrower memory 
buffers, which reduces the number of 
expensive (in terms of both area and 
power) sense amplifiers and focus on 
application performance rather than 
the performance of an individual 
memory cell. 

The authors also describe their in-
vestigation of the trade-offs between 
buffer row widths and the number 
of rows. To tackle the PCM’s lifetime 
limitation, the authors propose us-
ing partial writes to reduce the num-
ber of writes to the PCM by tracking 
dirty data from the L1 caches to the 
memory banks. With this approach, 
they can improve PCM lifetimes from 
hundreds of hours to nearly 10 years, 
assuming present 1E+08 to 1E+12 
writes per bit for a 32nm PCM cell.

The paper concludes with some 
suggestions as to how the use of a 
nonvolatile main memory would 
change the computing landscape: in-
stantaneous system boot/hibernate, 
cheaper checkpointing, stronger safe-
ty guarantees for file system. Now, if 
only someone could figure out a way to 
dramatically improve memory to pro-
cessor bandwidth.	
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Professor and A. Robert Noll Chair in Engineering in the 
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Technical Perspective
Technology Scaling  
Redirects Main Memories 
By Mary Jane Irwin 

Projections for transistor size and die integration capacity.

Year 2004 2006 2008 2010 2012

Feature size (nm) 90 65 45 32 22

Integration Capacity (BT) 2 4 6 16 32
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Phase Change Memory 
Architecture and the Quest  
for Scalability
By Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger

Abstract
Memory scaling is in jeopardy as charge storage and sens-
ing mechanisms become less reliable for prevalent mem-
ory technologies, such as dynamic random access memory 
(DRAM). In contrast, phase change memory (PCM) relies on 
programmable resistances, as well as scalable current and 
thermal mechanisms. To deploy PCM as a DRAM alternative 
and to exploit its scalability, PCM must be architected to 
address relatively long latencies, high energy writes, and 
finite endurance.

We propose architectural enhancements that address 
these limitations and make PCM competitive with DRAM. 
A  baseline PCM system is 1.6× slower and requires 2.2× 
more energy than a DRAM system. Buffer reorganizations 
reduce this delay and energy gap to 1.2× and 1.0×, using nar-
row rows to mitigate write energy as well as multiple rows to 
improve locality and write coalescing. Partial writes mitigate 
limited memory endurance to provide more than 10 years 
of lifetime. Process scaling will further reduce PCM energy 
costs and improve endurance.

1. INTRODUCTION
Memory technology scaling drives increasing density, 
increasing capacity, and falling price-capability ratios. 
Memory scaling, a first-order technology objective, is in 
jeopardy for conventional technologies. Storage mecha-
nisms in prevalent memory technologies require inherently 
unscalable charge placement and control. In the nonvolatile 
space, Flash memories must precisely control the discrete 
charge placed on a floating gate. In volatile main memory, 
DRAM must not only place charge in a storage capacitor but 
must also mitigate subthreshold charge leakage through the 
access device. Given these challenges, solutions for scaling 
DRAM beyond 40nm are unknown.17

PCM provides a nonvolatile storage mechanism ame-
nable to process scaling. During writes, an access transis-
tor injects current into the storage material and thermally 
induces phase change, which is detected as a programmed 
resistance during reads. PCM, relying on analog current 
and thermal effects, does not require control over discrete 
electrons. As technologies scale and heating contact areas 
shrink, programming current scales linearly. This PCM scal-
ing mechanism has been demonstrated in a 32 nm device 
prototype.15 As a scalable DRAM alternative, PCM could pro-
vide a clear roadmap for increasing main memory density 
and capacity.

These scalability trends motivate a transition from charge 
memories to resistive memories. To realize this transition 
for PCM, we must overcome PCM disadvantages relative to 
DRAM. Access latencies, although tens of nanoseconds, are 
several times slower than those of DRAM. At present tech-
nology nodes, PCM writes require energy intensive current 
injection. Moreover, writes induce thermal expansion and 
contraction within the storage element, degrading injection 
contacts and limiting endurance to hundreds of millions of 
writes per cell at current processes. These limitations are 
significant, which is why PCM is currently positioned only 
as a Flash replacement; in this market, PCM properties are 
drastic improvements. For a DRAM alternative, however, we 
must architect PCM for feasibility in main memory within 
general-purpose systems.

Current prototype designs are not designed to mitigate 
PCM latencies, energy costs, and finite endurance. This 
paper rethinks PCM subsystem architecture to bring the 
technology within competitive range of DRAM. Drawn from 
a rigorous survey of PCM device and circuit prototypes pub-
lished within the last 5 years and comparing against modern 
DRAM memory subsystems, we propose:

•	 Buffer Reorganization: Narrow buffers mitigate high 
energy PCM writes. Multiple buffer rows exploit locality 
to coalesce writes, hiding their latency and reducing 
their energy. Effective PCM buffering reduces appli
cation execution time from 1.6× to 1.2× and memory 
array energy from 2.2× to 1.0×, relative to DRAM-based 
systems.

•	 Partial Writes: Partial writes track data modifications 
and write only modified cache lines or words to the 
PCM array. We expect write coalescing and partial 
writes to deliver an average memory module lifetime of 
11.2 years. PCM endurance is expected to improve by 
four orders of magnitude when scaled to 32nm.17

Collectively, these results suggest PCM is a viable DRAM 
alternative, with architectural solutions providing competi-
tive performance, comparable energy, and feasible lifetimes.

A previous version of this article appears in Proceedings of 
the 36th International Symposium on Computer Architecture 
(June 2009). Parts of this article appear in IEEE Micro Top 
Picks from the Computer Architecture Conferences of 2009 
(January/February 2010).
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and inducing crystal growth (i.e., set). Requiring longer 
current pulses, set latency determines write performance. 
Requiring higher current pulses, reset energy determines 
write power.

Prior to reading the cell, the bitline is precharged to the 
read voltage. If a selected cell is in a crystalline state, the 
bitline is discharged with current flowing through the stor-
age element and access transistor. Otherwise, the cell is in 
an amorphous state, preventing or limiting bitline current.

Cells that store multiple resistance levels might be imple-
mented by leveraging intermediate states, in which the chal-
cogenide is partially crystalline and partially amorphous.3, 13 
Smaller current slopes (i.e., slow ramp down) produce lower 
resistances and larger slopes (i.e., fast ramp down) produce 
higher resistances. Varying slopes induce partial phase 
transitions changing the size or shape of the amorphous 
material produced at the contact area, giving rise to resis-
tances between those observed from the fully amorphous 
or the fully crystalline chalcogenide. The difficulty and high 
latency of differentiating between a large number of resis-
tances may constrain such multilevel cells (MLC) to a small 
number of bits per cell.
Wear and Endurance: Writes are the primary wear mecha-
nism in PCM. When injecting current into a volume of 
phase change material, thermal expansion and contraction 
degrades the electrode-storage contact, such that program-
ming currents are no longer reliably injected into the cell. 
Since material resistivity is highly dependent on current 
injection, current variability causes resistance variability. 
This greater variability degrades the read window, the dif-
ference between programmed minimum and maximum 
resistance.

Write endurance, the number of writes performed before 
the cell cannot be programmed reliably, ranges from 1E+04 
to 1E+09. Write endurance depends on process and differs 
across manufacturers. Relative to Flash, PCM is likely to 
exhibit greater write endurance by at least two to three orders 
of magnitude; Flash cells can sustain only 1E+05 writes. The 
ITRS roadmap projects improved endurance of 1E+12 writes 
at 32nm.17 With wear reduction and leveling techniques, 
PCM write limits may not be exposed to the system during a 
memory’s lifetime.

2. PCM TECHNOLOGY
Given the still speculative state of PCM technology, research-
ers have made several different manufacturing and design 
decisions. We survey device and circuit prototypes pub-
lished within the last 5 years.10

2.1. Memory cell
As shown in Figure 1a, the PCM storage element is comprised 
of two metal electrodes separated by a resistive heater and a 
chalcogenide, the phase change material. Ge2Sb2Te5 (GST) 
is most commonly used, but other chalcogenides may offer 
higher resistivity and improve the device’s electrical charac-
teristics. Nitrogen doping increases resistivity and lowers pro-
gramming current while GS may offer faster phase changes.4, 8

As shown in Figure 1b, PCM cells are 1T/1R devices, com-
prised of the resistive storage element and an access tran-
sistor. Access is typically controlled by one of three devices: 
field-effect transistor (FET), bipolar junction transistor 
(BJT), or diode. In future, FET scaling and large voltage 
drops across the cell may adversely affect reliability for 
unselected wordlines.14 BJTs are faster and expected to scale 
more robustly without this vulnerability.3, 14 Diodes occupy 
smaller areas and potentially enable greater cell densities, 
but require higher operating voltages.11

Phase changes are induced by injecting current into the 
resistor junction and heating the chalcogenide. Current 
and voltage characteristics of the chalcogenide are identical 
regardless of its initial phase, which lowers programming 
complexity and latency.9 The amplitude and width of the 
injected current pulse determine the programmed state as 
shown in Figure 1c.

2.2. Operation
The access transistor injects current into the storage mate-
rial and thermally induces phase change, which is detected 
as a programmed resistance during reads. Logical data val-
ues are captured by the resistivity of the chalcogenide. A 
high, short current pulse increases resistivity by abruptly 
discontinuing current, quickly quenching heat generation, 
and freezing the chalcogenide into an amorphous state (i.e., 
reset). A moderate, long current pulse reduces resistivity by 
ramping down current, gradually cooling the chalcogenide, 

Figure 1. Phase change memory. (a) Storage element with heating resistor and chalcogenide between electrodes. (b) Cell structure  
with storage element and BJT access device. (c) Reset to an amorphous, high resistance state with a high, short current pulse. Set to  
a crystalline, low resistance state with moderate, long current pulse. Slope of set current ramp down determines the state in MLC.
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We evaluate a four-core chip multiprocessor using the 
SESC simulator.16 The 4-way superscalar, out-of-order cores 
operate at 4.0GHz. This datapath is supported by 32KB, 
direct-mapped instruction and 32KB, 4-way data L1 caches, 
which may be accessed in two to three cycles. A 4MB, 8-way 
L2 cache with 64B lines is shared between the four cores and 
may be accessed in 32 cycles.

Below the caches is a 400 MHz SDRAM memory subsys-
tem modeled after Micron’s DDR2-800 technical speci-
fications.12 We consider one channel, one rank, and four 
×16 chips per rank to achieve the standard 8B interface. 
Internally, each chip is organized into four banks to facili-
tate throughput as data are interleaved across banks and 
accessed in parallel. We model a burst length of eight blocks. 
The memory controller has a 64-entry transaction queue.

We consider parallel workloads from the SPLASH-2 suite 
(fft, radix, ocean), SPEC OpenMP suite (art, equake, swim), 
and NAS parallel benchmarks (cg, is, mg).1, 2, 19 Regarding 
input sets, we use 1 M points for FFT, 514×514 grid for ocean, 
and 2 M integers for radix. SPEC OpenMP workloads run 
MinneSpec-Large data set and NAS parallel benchmarks run 
with Class A problem sizes. Applications are compiled using 
gcc and Fortran compilers at the -O3 optimization level.

3.1. Baseline comparison
We consider a PCM baseline architecture, which imple-
ments DRAM-style buffering with a single 2048B-wide 
buffer. Figure 3a illustrates end-to-end application per-
formance when PCM replaces DRAM as main memory. 
Application delay increases with penalties relative to DRAM 
ranging from 1.2× (radix) to 2.2× (ocean, swim). On aver-
age, we observe a 1.6× delay penalty. The energy penalties 
are larger, ranging from 1.4× (cg) to 3.4× (ocean), due to the 
highly expensive array writes required when buffer contents 

2.3. Process scaling
PCM scaling reduces required programming current injec
ted via the electrode-storage contact. As the contact area 
decreases with feature size, thermal resistivity increases and 
the volume of phase change material that must be cooled 
into an amorphous state during a reset to completely block 
current flow decreases. These effects enable smaller access 
devices for current injection. Pirovano et al. outline PCM 
scaling rules,14 which are confirmed empirically in a sur-
vey by Lai.9 Specifically, as feature size scales linearly (1/k), 
contact area decreases quadratically (1/k2). Reduced contact 
area causes resistivity to increase linearly (k), which causes 
programming current to decrease linearly (1/k).

Operational issues arise with aggressive PCM technology 
scaling. As contact area decreases, lateral thermal coupling 
may cause programming currents for one cell to influ-
ence the states of adjacent cells. Lai’s survey of PCM finds 
these effects negligible in measurement and simulation.9 
Temperatures fall exponentially with distance from pro-
grammed cell, suggesting no appreciable impact from 
thermal coupling. Increasing resistivity from smaller con-
tact areas may reduce signal strength (i.e., smaller resistiv-
ity difference between crystalline and amorphous states). 
However, these signal strengths are well within the sense 
circuit capabilities of modern memory architectures.9

2.4. Array architecture
As shown in Figure 2, PCM cells might be hierarchically 
organized into banks, blocks, and subblocks. Despite simi-
larities to conventional memory architectures, PCM-specific 
issues must be addressed. For example, PCM reads are non-
destructive whereas DRAM reads are destructive and require 
mechanisms to replenish discharged capacitors.

Sense amplifiers detect the change in bitline state when 
a memory row is accessed. Choice of bitline sense amplifi-
ers affects array read access time. Voltage sense amplifiers 
are cross-coupled inverters which require differential dis-
charging of bitline capacitances. In contrast, current sense 
amplifiers rely on current differences to create a differential 
voltage at the amplifier’s output nodes. Current sensing is 
faster but requires larger circuits.18

In DRAM, sense amplifiers serve a dual purpose, both 
sensing and buffering data using cross-coupled invert-
ers. In contrast, we explore PCM architectures with sepa-
rate sensing and buffering; sense amplifiers drive banks of 
explicit latches. These latches provide greater flexibility in 
row buffer organization by enabling multiple buffered rows. 
However, these latches incur area overheads. Separate sens-
ing and buffering enables multiplexed sense amplifiers. 
Multiplexing also enables buffer widths narrower than the 
array width, which is defined by the total number of bitlines. 
Buffer width is a critical design parameter, determining the 
required number of expensive current sense amplifiers.

3. A DRAM ALTERNATIVE
We express PCM device and circuit characteristics within 
conventional DDR timing and energy parameters, thereby 
quantifying PCM in the context of more familiar DRAM 
parameters to facilitate a direct comparison.10

Bank

Block

Subblock

Buffer

S/A S/A S/A S/A

GBL DEC

GWL DEC

v_W/D

TO GBL

LWL DEC

LBL DEC

W/DW/DW/DW/D

Figure 2. Array architecture. A hierarchical memory organization 
includes banks, blocks, and subblocks with local, global decoding 
for row, column addresses. Sense amplifiers (S/A) and word drivers 
(W/D) are multiplexed across blocks.
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2048B to 64B, which is the line size of the lowest level cache. 
We consider buffer rows ranging from the original single 
row to a maximum of 32 rows. At present, we consider a 
fully associative buffer and full associativity likely becomes 
intractable beyond 32 rows. Buffers with multiple rows use a 
least recently used (LRU) eviction policy implemented in the 
memory controller.

3.3. Buffer design space
Buffer reorganizations impact the degree of exploited local-
ity and energy costs associated with array reads and writes. 
Figure 4 illustrates the delay and energy characteristics of 
the buffer design space for an average of memory-intensive 
benchmarks. Triangles illustrate PCM and DRAM baselines, 
which implement a single 2048B buffer. Circles illustrate 
various buffer organizations. Reorganizing a single, wide 

are evicted. On average, we observe a 2.2× energy penalty.
The end-to-end delay and energy penalties are more mod-

est than the underlying technology parameters might sug-
gest. Even memory-intensive workloads mix computation 
with memory accesses. Furthermore, the long latency, high 
energy array writes manifest themselves much less often 
in PCM than in DRAM; nondestructive PCM reads do not 
require subsequent writes whereas destructive DRAM reads 
do. Figure 3b indicates only 28% of PCM array reads first 
require an array write of a dirty buffer.

To enable PCM for use below the lowest level processor 
cache in general-purpose systems, we must close the delay 
and energy gap between PCM and DRAM. Nondestructive 
PCM reads help mitigate underlying delay and energy dis-
advantages by default. We seek to eliminate the remaining 
PCM-DRAM differences with architectural solutions. In par-
ticular, the baseline analysis considers a single 2048B-wide 
buffer per bank. Such wide buffering is inexpensive in 
DRAM, but incurs unnecessary energy costs in PCM given 
the expensive current injection required when writing buffer 
contents back into the array.

3.2. Buffer organization
We examine whether PCM subsystems can close the gap with 
DRAM application performance and memory subsystem energy. 
To be a viable DRAM alternative, buffer organizations must 
hide long PCM latencies, while minimizing PCM energy costs.

To achieve area neutrality across buffer organizations, 
we consider narrower buffers and additional buffer rows. 
The number of sense amplifiers decreases linearly with buf-
fer width, significantly reducing area as fewer of these large 
circuits are required. We utilize this area by implementing 
multiple rows with latches much smaller than the removed 
sense amplifiers. Narrow widths reduce PCM write energy 
but negatively impact spatial locality, opportunities for write 
coalescing, and application performance. However, these 
penalties may be mitigated by the additional buffer rows.

We consider buffer widths ranging from the original 

cg is mg fft rad oce art equ swi avg
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 t
o 

D
R

A
M

PCM array writes per buffer read

ArrayWrites

cg is mg fft rad oce art equ swi avg
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4

N
or

m
al

iz
ed

 t
o 

D
R

A
M

PCM performance :: 2048Bx1 buffer

Delay
EnergyMem

Figure 3. PCM as a DRAM alternative. (a) Application delay and memory energy. (b) Percentage of buffer evictions that require array writes.

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Delay (normalized to DRAM)

E
ne

rg
yM

em
 (n

or
m

al
iz

ed
 t

o 
D

R
A

M
)

PCM buffer organization

PCM buff
PCM base
DRAM base

Figure 4. Pareto analysis for PCM buffer organizations.



july 2010  |   vol.  53  |   no.  7   |   communications of the acm     103

 

PCM buffering using technology parameters at 90nm. As 
PCM technology matures, baseline PCM latencies may 
improve. Moreover, process technology scaling will drive 
linear reductions in PCM energy.

3.4. Scaling comparison
DRAM scaling faces many significant technical challenges 
as scaling attacks weaknesses in both components of the 
one transistor, one capacitor cell. Capacitor scaling is con-
strained by the DRAM storage mechanism, which requires 
maintaining charge on a capacitor. In future, process scal-
ing is constrained by challenges in manufacturing small 
capacitors that store sufficient charge for reliable sensing 
despite large parasitic capacitances on the bitline.

The scaling scenarios are also bleak for the access transis-
tor. As this transistor scales down, increasing subthreshold 
leakage will make it increasingly difficult to ensure DRAM 
retention times. Not only is less charge stored in the capaci-
tor, that charge is stored less reliably. These trends impact 
the reliability and energy efficiency of DRAM in future pro-
cess technologies. According to ITRS, “manufacturable 
solutions are not known” for DRAM beyond 40nm.17

In contrast, ITRS projects PCM scaling mechanisms will 
extend to 32 nm, after which other scaling mechanisms 
might apply.17 Such PCM scaling has already been demon-
strated with a novel device structure fabricated by Raoux.15 
Although both DRAM and PCM are expected to be viable 
at 40nm technologies, energy scaling trends strongly favor 
PCM with a 2.4× reduction in PCM energy from 80 to 40nm 
as illustrated in Figure 6a. In contrast, ITRS projects DRAM 
energy falls by only 1.5× at 40nm, which reflects the techni-
cal challenges of DRAM scaling.17

Since PCM energy scales down faster than DRAM 
energy, PCM subsystems significantly outperform DRAM 
subsystems at 40nm. Figure 6b indicates PCM subsystem 
energy is 61.3% that of DRAM averaged across workloads. 
Switching from DRAM to PCM reduces energy costs by at 

buffer into multiple, narrow buffers reduce both energy costs 
and delay. Examining the Pareto frontier, we observe Pareto 
optima shift PCM delay and energy into the neighborhood of 
the DRAM baseline. Among these Pareto optima, we observe a 
knee that minimizes both energy and delay; this organization 
uses four 512B-wide buffers to reduce PCM delay, energy dis-
advantages from 1.6×, 2.2× to more modest 1.2×, 1.0×.

The number of array reads is a measure of locality. Figure 
5a shows the number of array reads increases very slowly as 
buffer width decreases exponentially from 2048B to 64B. 
For a single buffered row (RP = 1), a 32× reduction in buffer 
width produces only a 2× increase in array reads, suggesting 
very little spatial locality within wide rows for the memory-
intensive workloads we consider. The single row is evicted too 
quickly after its first access, limiting opportunities for spatial 
reuse. However, we do observe significant temporal locality. A 
2048B-wide buffer with two rows (RP = 2) requires 0.4× the array 
reads as a 2048B-wide buffer with only a single row (RP = 1).

Writes are coalesced if multiple writes modify the buffer 
before its contents are evicted to the array. Thus the number 
of array writes per buffer write is a metric for write coalescing. 
Figure 5b illustrates increasing opportunities for coalescing 
as the number of rows increase. As the number of rows in a 
2048B-wide buffer increases from one to two and four rows, 
array writes per buffer write fall by 0.51× and 0.32×, respec-
tively; the buffers coalesce 49% and 68% of memory writes. 
Coalescing opportunities fall as buffer widths narrow beyond 
256B. Since we use 64B lines in the lowest level cache, there are 
no coalescing opportunities from spatial locality within a 64B 
row buffered for a write. Increasing the number of 64B rows 
has no impact since additional rows exploit temporal local-
ity, but any temporal locality in writes are already exploited by 
coalescing in the 64B lines of the lowest level cache.

Thus, narrow buffers mitigate high energy PCM writes 
and multiple rows exploit locality. This locality not only 
improves performance, but also reduces energy by exposing 
additional opportunities for write coalescing. We evaluate 
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line, tracking stores using fine-grained dirty bits. At the dirty 
line granularity, 64B modifications are tracked beginning at 
the lowest level cache and requires only 1b per 64B L2 line. 
At the dirty word granularity, 4B modifications are tracked 
beginning at the L1 cache with 8b per 32B L1 line and propa-
gated to the L2 cache with 16b per 64B L2 line. Overheads 
are 0.2% and 3.1% of each cache line when tracking dirty 
lines and words, respectively.

4.2. Endurance
Equation 1 estimates the write intensity observed by a 
memory module driven with access patterns observed in 
our memory-intensive workloads. Table 1 summarizes 
the model parameters. The model estimates the number 
of writes per second Ŵ for any given bit. We first estimate 
memory bus occupancy, which has a theoretical peak com-
mand bandwidth of fm · (B/2)−1. Each command requires 
B/2 bus cycles to transmit its burst length B in a DDR inter-
face, which prevents commands from issuing at mem-
ory bus speeds fm. We then scale this peak bandwidth by 
application-specific utilization. Utilization is computed by 

least 22.1% (art) and by as much as 68.7% (swim). Note this 
analysis does not account for refresh energy, which would 
further increase DRAM energy costs. Although ITRS proj-
ects constant retention time of 64ms as DRAM scales to 
40nm,17 less effective access transistor control may reduce 
retention times. If retention times fall, DRAM refresh 
energy will increase as a fraction of total energy costs.

4. MEMORY LIFETIMES
In addition to architecting PCM to offer competitive delay 
and energy characteristics relative to DRAM, we must also 
consider PCM wear mechanisms. To mitigate these effects, 
we propose partial writes, which reduce the number of 
writes to the PCM array by tracking modified data from the 
L1 cache to the memory banks. This architectural solution 
adds a modest amount of cache state to reduce the number 
of bits written. We derive an analytical model to estimate 
memory module lifetime from a combination of fundamen-
tal PCM technology parameters and measured application 
characteristics. Partial writes, combined with an effective 
buffer organization, increase memory module lifetimes to 
a degree that makes PCM in main memory feasible.

4.1. Partial writes
Partial writes track data modifications, propagating this 
information from the L1 cache down to the buffers at the 
memory banks. When a buffered row is evicted and contents 
written to the PCM array, only modified data is written. We 
consider partial writes at two granularities: lowest level cache 
line size (64B) and word size (4B).

These granularities are least invasive since modified 
words are tracked by store instructions from the micropro-
cessor pipeline. In contrast, bit-level granularity requires 
knowledge of previous data values and expensive compara-
tors. We analyze a conservative implementation of partial 
writes, which does not exploit cases where stores write the 
same data values already stored.

Partial writes are supported by adding state to each cache 
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Endurance
W 
L 
E

Writes per second per bit 
Memory module lifetime (s) 
Write endurance

Equation 1 
Equation 1 
1E + 08

Memory Module
C Logical capacity (Gb) 2

Memory Bus Bandwidth
fm

Mf

B

Memory bus frequency (MHz)
Processor frequency multiplier
Burst length (blocks)

400
10
8

Application Characteristics
Nw, Nr

T
Number of writes, reads 
Execution time (cy)

sim 
sim

Buffer Characteristics
WP, RP

Nwb, Nwa

d

Buffer width (B), rows
Buffer, array writes
Fraction of buffer written to array

512, 4
sim
sim

Table 1. Endurance model parameters.
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measuring the number of memory operations Nw + Nr and 
calculating the processor cycles spent on these operations 
(B/2) · Mf  . The processor is Mf faster than fm. The time spent 
on memory operations is divided by total execution time T.

(1)

Since only a fraction of memory bus activity reaches the 
PCM to induce wear, we scale occupancy by write intensity to 
estimate the number of write operations arriving at the row 
buffers. In the worst case, the entire buffer must be written 
to the array. However, not all buffer writes cause array writes 
due to coalescing. Nwa/Nwb measures the coalescing effective-
ness of the buffer, which filters writes to the array. Lastly, 
partial writes mean only the dirty fraction d of a buffer’s 8WP 
bits are written to the array. Assuming ideal wear-leveling, 
writes will be spread across the C bits in the module. Given 
writes per second Ŵ and characterized endurance E, a bit 
will fail in L̂  = E/Ŵ seconds.

In a baseline architecture with a single 2048B-wide buf-
fer, average module lifetime is approximately 1050 h as 
calculated by Equation 1. For our memory-intensive work-
loads, we observe 32.8% memory bus utilization. Scaling by 
application-specific write intensity, we find 6.9% of memory 
bus cycles are utilized by writes. At the memory banks, the 
single 2048B buffer provides limited opportunities for write 
coalescing, eliminating only 2.3% of writes emerging from 
the memory bus. Frequent row replacements in the single 
buffer limit opportunities for coalescing.

Figure 7 illustrates significant endurance gains from 
reorganized buffers and partial writes. 64B and 4B partial 
writes improve endurance to 1.4 and 11.2 years, respec-
tively. Buffers use partial writes so that only a fraction of the 

buffer’s bits is written to the array. As shown in Figure 7, only 
59.3% and 7.6% of the buffer must be written to the array for 
64B and 4B partial writes.

4.3. Density versus endurance
PCM cells are presently larger than DRAM cells. Measuring 
cell size in square feature sizes, which makes the discussion 
independent of process technology, PCM cells are 1.5–2.0× 
larger than DRAM cells.

In particular, 8F  2 DRAM cells provide a sufficiently wide 
pitch to enable a folded bitline architecture, which is resil-
ient against bitline noise during voltage sensing. However, 
manufacturers often choose the density of 6F  2 DRAM cells. 
The narrow pitch in 6F  2 designs preclude folded bitlines, 
increasing vulnerability to noise and requiring unconven-
tional array designs. For example, Samsung’s 6F  2 imple-
ments array blocks with 320 wordlines, which is not a power 
of two, to improve reliability.5

In contrast, PCM cells occupy between 6F  2 and 20F  2.10 Part 
of this spread is due to differences in design and fabrication 
expertise for the new technology. However, we also observe a 
correlation between cell size and access device (e.g., the 6F  2 cell 
uses the relatively small diode). We favor larger BJTs for their low 
access times. Cells with BJTs occupy between 9F  2 and 12F  2.

Given 9–12F  2 PCM cells and 6F  2 DRAM cells, two-bit 
multilevel PCM cells are necessary to be competitive with 
respect to density. Two-bit MLC provide an effective den-
sity of 4.5–6.0F  2per bit. However, MLC suffer from lower 
endurance. Process and manufacturing set the read win-
dow, which quantifies the difference between the lowest 
and highest programmed resistances in single-level cells. By 
programming the cell to intermediate resistances within the 
same read window, MLC inherently require a larger number 
of logical states that each occupy a narrower region of the 
read window. Thus, wear more quickly impacts the ability to 
differentiate these resistances.

4.4. Assumptions and qualifications
Considering only memory-intensive workloads, this analysis 
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is conservative. PCM subsystems would more likely experi-
ence a mix of compute and memory-intensive workloads. 
Expected lifetimes would be higher had we considered, for 
example, single-threaded SPEC integer workloads. However, 
such workloads are less relevant for a study of memory sub-
systems. Moreover, within memory-intensive workloads, we 
would expect to see a mix of read and write intensive applica-
tions, which may further increase lifetimes.

Scalability is projected to improve PCM endurance 
from the present 1E+08 to 1E+12 writes per bit at 32nm 
with known manufacturable solutions.17 This higher 
endurance increases lifetime by four orders of magni-
tude in our models. ITRS anticipates 1E+15 PCM writes 
at 22nm although manufacturable solutions are currently 
unknown.

5. CONCLUSION
The proposed memory architecture lays the foundation 
for exploiting PCM scalability and nonvolatility in main 
memory. Scalability implies lower main memory energy 
and greater write endurance. Furthermore, nonvolatile 
main memories will fundamentally change the landscape 
of computing. Software cognizant of this newly provided 
persistence can provide qualitatively new capabilities. For 
example, system boot/hibernate will be perceived as instan-
taneous; application checkpointing will be inexpensive7; file 
systems will provide stronger safety guarantees.6 Thus, we 
take a step toward a new memory hierarchy with deep impli-
cations across the hardware–software interface.�
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nal processing, and graph theory. Strong program-
ming experience in Java, statistical programming 
languages like R, and Open Source technologies are 
required. Experience with implementation on dis-
tributed computing platforms like MapReduce or 
Hadoop on Linux systems is highly required.

Applicants must have the relevant authoriza-
tion to work in a U.S. company.

Please indicate Code:  
OOP-RE-ACM

Email Address:  
oop_recruit@docomolabs-usa.com

Apply URL:  
http://www.docomolabs-usa.com/

Drakontas
Technical Project Leader

Manage and develop software projects involving 
web services/SOA in law enforcement and mili-
tary domain. Hands-on a must. Expert in Linux, 
XML, IP networks, mobile technologies. Help 
write research grant proposals. MS or PhD in CS. 
Apply at: http://www.drakontas.com/careers

Louisiana State University
Assistant/Associate Professor
(Computational Biology/Tenure-track position)

Department of Computer Science/Center for 
Computation and Technology: The Louisiana 
State University Department of Computer Science 

Princeton jobs site. 
Princeton University is an equal opportunity 

employer and complies with applicable EEO and 
affirmative action regulations. 

Shell
Principal Researcher, Computation and 
Modeling

CAN YOU SAY NO TO NO? If you answered yes, 
then we should talk. We’re Shell Global Solutions 
and we’re looking for individuals who find more 
ways to say “yes” instead of “no.”

As a Principal Researcher, Computation and 
Modeling, you’ll have the opportunity to seek out, 
evaluate, discover and invent cutting-edge emerg-
ing technologies on the interface of engineering, 
the physical sciences and computer science for 
the Royal Dutch Shell (RDS) business.

In short, the perfect candidate for our Princi-
pal Researcher position is the type of person who 
turns impossible into possible almost every day.

˲˲ PhD in Computer Science, Physics, Engineer-
ing, Mathematics or related discipline.

˲˲ 10 or more years of post-doctorate, hands-on, in-
depth technical and project lead experience in the 
area of simulation, computation, and modeling.

˲˲ Demonstrated professional recognition via 
peer reviews, papers, books, teaching, training 
and more.

˲˲ Legal authorization to work in the US on a full-
time basis.

With technically innovative people—and 
state-of-the-art equipment and facilities—Shell is 
a worldwide leader in the development and appli-
cation of technology. At Shell, we’re committed to 
satisfying the world’s need for energy with economi-
cally, socially and environmentally responsible so-
lutions. We’ll provide you with the resources to put 
your ideas into action, worldwide opportunities to 
advance your career, and outstanding benefits and 
rewards that support your quality of life. Join us and 
let’s make a real difference together. 

Apply URL: http://www.shell.us/careers
No phone inquiries will be accepted. Shell is 

an Equal Opportunity Employer.

Universidad de Chile
Faculty Positions in Advanced Networks and 
Future Internet Services

The Electrical and Computer Engineering Depart-
ments of the Universidad de Chile have opened 
two full-time faculty positions. Their main duties 
will be teaching and research at the Universidad 
de Chile in Santiago.

A PhD in a related field is required. Spanish is 
not required but the candidate should be willing 
to learn the language.

Details at: 
http://www.dcc.uchile.cl/networks_position

(http://csc.lsu.edu) & Center for Computation & 
Technology (CCT) (http://www.cct.lsu.edu), invite 
applications for an Assistant/Associate Professor 
(tenure-track) faculty position in Computational 
Biology, broadly defined. The CCT offers an inno-
vative and interdisciplinary research environment 
for advancing computational sciences, including a 
highly competitive computing environment with 
access to 100 TFlops of computing resources in 
conjunction with the Louisiana Optical Network 
Initiative (LONI) (http://institute.loni.org/). Suit-
able candidate may be appointed a LONI Insti-
tute Fellow. LSU is part of the national TeraGrid. 
Required Qualifications: (Both Levels) Ph.D. or 
equivalent degree; a successful track record of pro-
ductive research and extramural funding; a com-
puter scientist or computational biologist whose 
research involves areas such as: biomolecular dy-
namics and structure-based drug design, systems 
biology and interaction networks, metabolomics, 
evolutionary genomics, or metagenomics analy-
ses; experience with developing the methods, in-
frastructure and algorithms to take advantage of 
high-performance and distributed computing and 
other advances in computing. Responsibilities: es-
tablishes a vigorous, extramurally funded research 
program; contributes to undergraduate and grad-
uate teaching; contributes to a growing interde-
partmental program in computational biology at 
LSU. We encourage applications from women and 
minorities. Rank and salary will be commensu-
rate with qualifications and/or experience. An of-
fer of employment is contingent on a satisfactory 
pre-employment background check. Application 
deadline is July 15, 2010 or until a candidate is se-
lected. Apply online at: www.lsusystemcareers.lsu.
edu. Position #034189. LSU SYSTEM IS AN EQUAL 
OPPORTUNITY/EQUAL ACCESS EMPLOYER

Princeton University
Computer Science
Lecturer

Part- and full-time Lecturer positions. The De-
partment of Computer Science seeks applications 
from outstanding teachers to assist the faculty in 
teaching our introductory course sequence.

The primary requirements of the job are to 
teach recitation sections and to participate in 
overall management of the introductory sequence. 
Other responsibilities include supervising gradu-
ate student teaching assistants and developing 
and maintaining online curricular material, class-
room demonstrations, and laboratory exercises.

Candidates should have an exceptional record of 
classroom instruction and curricular innovation. An 
advanced degree in computer science is preferred.

For general application information and to 
self-identify visit: https://jobs.princeton.edu

Requisition Number: 1000207. You may ap-
ply online on the Department’s website at: http://
www.cs.princeton.edu/jobs/lecturerposition

We will not accept applications from the 

http://www.calpolyjobs.org
http://www.calpolyjobs.org
mailto:oop_recruit@docomolabs-usa.com
http://www.docomolabs-usa.com/
http://www.drakontas.com/careers
http://csc.lsu.edu
http://www.cct.lsu.edu
http://institute.loni.org/
http://www.lsusystemcareers.lsu.edu
https://jobs.princeton.edu
http://www.cs.princeton.edu/jobs/lecturerposition
http://www.shell.us/careers
http://www.dcc.uchile.cl/networks_position
http://www.cs.princeton.edu/jobs/lecturerposition
http://www.lsusystemcareers.lsu.edu
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www.lanl.gov/jobs

L o s  A l a m o s  N a t i o n a l 
L aborato r y  –  a  p remier 
national security research 
i n s t i t u t i o n  d e l i v e r i n g 
i n n ov at i ve  s c i e n ce  an d 
engineering solutions for the 
nation’s most crucial and 
complex problems – has the 
following opening available: 

R&D MANAGER 4
Our Computer, Computational and Statistical Sciences Division 
seeks an accomplished professional to provide technical leadership 
and management for the Applied Computer Science group, CCS-7. 
A signi cant growth area, CCS-7 is at the forefront of technology 
and algorithm design/development for cutting-edge computer 
architectures. Your role will be to develop and execute a diverse 
portfolio of work in support of multiple programmatic efforts, 
including nuclear weapons, various Of ce of Science, energy and 
work-for-others programs. Additionally, you'll attract, develop and 
motivate a diverse scienti c workforce to deliver on our mission 
and achieve success. 

Requires a Bachelor’s degree in Science or Engineering, 
demonstrated experience building teams and leading technical 
projects in a diverse scienti c environment, advanced expertise 
in relevant technical areas and ability to obtain a DOE Q clearance. 

For the complete job description and to 
apply online, visit www.lanl.gov/jobs and 
apply to job number 219494. 

University of North Dakota
Department of Computer Science
Assistant to Associate Professor

The Department of Computer Science at the Uni-
versity of North Dakota is recruiting for a nine-
month tenure-track position at the Assistant or 
Associate Professor level with an anticipated 
start date of January 1, 2011. Salary ranges from 
76,000 to 93,206.

The responsibilities include teaching at the 
undergraduate and graduate levels, supervising 
graduate students (MS and PhD), and developing 
and maintaining an active research program. As-
sociate Professor candidates should have a good 
publication and funding record, proven ability to 
establish an independent research program, and 
be open to participation in interdisciplinary pro-
grams of study. Industry experience and/or post-
doctoral experience will be considered an asset.

The position requires a Ph.D. in Computer 
Science or a related field. The department is seek-
ing outstanding candidates with a research focus 
in one of the following areas: (a) simulation and 
modeling or (b) high-performance computing.

Our department strives to maintain a colle-
gial and supportive atmosphere. UND hires on 
the basis of merit and is committed to employ-
ment equity. We strongly encourage candidates 
with diverse backgrounds and experiences to ap-
ply. The University of North Dakota is an AAEO 
Employer.

Applicants for the position must submit 
their curriculum vitae, a teaching statement, a 
research statement, and the names of at least 
three references. The teaching statement should 
include a record of teaching interests and experi-
ence. Screening begins immediately and contin-
ues until the position is filled. Applications may 
be sent electronically in PDF format to: Ronald 
Marsh, Ph.D., Associate Professor and Chair

www.cs.und.edu
If you have questions about the applica-

tion process, please contact Ronald Marsh at 
rmarsh@cs.und.edu

Advertising in  
Career Opportunities

How to Submit a Classified Line Ad: Send an e-mail 
to acmmediasales@acm.org. Please include text, 
and indicate the issue/or issues where the ad will 
appear, and a contact name and number.
Estimates: An insertion order will then be 
e-mailed back to you. The ad will by typeset 
according to CACM guidelines. NO PROOFS can be 
sent. Classified line ads are NOT commissionable.
Rates: $325.00 for six lines of text, 40 characters 
per line. $32.50 for each additional line after the 
first six. The MINIMUM is six lines.
Deadlines: Five weeks prior to the publication 
date of the issue (which is the first of every 
month). Latest deadlines: http://www.acm.org/
publications
Career Opportunities Online: Classified and 
recruitment display ads receive a free duplicate 
listing on our website at: http://campus.acm.org/
careercenter 

Ads are listed for a period of 30 days.
For More Information Contact: 

ACM Media Sales
at 212-626-0686 or 

acmmediasales@acm.org

mailto:rmarsh@cs.und.edu
http://www.lanl.gov/jobs
http://www.lanl.gov/jobs
mailto:acmmediasales@acm.org
http://www.acm.org/publications
http://campus.acm.org/careercenter
mailto:acmmediasales@acm.org
http://www.cs.und.edu
http://www.acm.org/publications
http://campus.acm.org/careercenter
http://www.informatik.tuwien.ac.at/DS.pdf
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The Hong Kong Polytechnic University is the largest government-funded tertiary institution in Hong Kong in terms of student numbers.  It offers programmes at Doctorate, Master’s, 
Bachelor’s degrees and Higher Diploma levels.  It has a full-time academic staff strength of around 1,400.  The total consolidated expenditure budget of the University is in excess of 
HK$4 billion per year.

DEPARTMENT OF COMPUTING 
Head of Department of Computing (Ref. 99726)
Founded in 1974, the Department of Computing of The Hong Kong Polytechnic University was amongst the first in Hong Kong to offer education in computing and information 
technology. As a provider of the most versatile education in computing, information technology and information systems, our undergraduate programmes are designed in ways that 
can incorporate new applications, meet challenges and respond to trends.
Apart from nurturing professional talents for society, the Department excels in research and innovation.  Leveraging its research strengths, we make significant contributions to the 
economy with research services that lead to technology transfer, consultancy projects and commercialisation.  Please visit the website at http://www.comp.polyu.edu.hk/ for more 
information about the Department.  The Department of Computing is a constituent of the Faculty of Engineering, information of which is available at http://www.polyu.edu.hk/feng/.
The University is now inviting applications and nominations for the post of Head of Department of Computing.  The successful candidate will be appointed as Chair Professor or 
Professor and hold a concurrent headship appointment.
The position calls for an academic leader with responsibilities of ensuring the smooth and successful operation and sustainable development of the Department.  Reporting directly to 
the Dean of Faculty, the appointee will be required to provide effective leadership in the development of long-term strategies and plans of the Department, and provide support to staff 
members in the Department for the accomplishment of strategic objectives with high quality standards.  Other responsibilities include inspiring excellence in teaching, research and 
services; fostering strong partnerships and collaborations with external organizations and strengthening the international network of the Department and the University; ensuring 
optimal deployment of human, financial and other resources in the Department; and implementing an effective mechanism to acquire donations and other forms of sponsorship to 
support the University’s pursuits and long-term development.
Applicants should have (a) outstanding academic qualifications at doctoral level in Computer Science, Information Technology, Information Systems or related disciplines, evidence of 
eminent scholarship and substantial relevant experience in a senior academic position; (b) a strong track record of achievement in teaching, research, professional services and 
leadership at a senior level; (c) demonstrated ability to build up a strong team of faculty members with different research and cultural backgrounds; (d) effective interpersonal 
communication and resources management skills, and excellent adaptability to changes and challenges; (e) good knowledge of the higher educational environment, preferably 
including Hong Kong; and (f) a global perspective, and proven ability to promote collaboration across departments and institutions.  Experience in fund-raising will be an additional advantage.
Remuneration and Conditions of Service
Terms of appointment and remuneration package are negotiable and highly competitive.  
Application
Applicants are invited to send detailed curriculum vitae with names and addresses of two referees to the Human Resources Office, 13/F, Li Ka Shing Tower, The Hong Kong 
Polytechnic University, Hung Hom, Kowloon, Hong Kong [Fax: (852) 2764 3374; E-mail: hrstaff@polyu.edu.hk], quoting position applied for and reference number.  
Recruitment will continue until the position is filled.  Initial consideration of applications will commence in September 2010.  Candidature may be obtained by nomination.  
The University reserves the right not to fill this post or to make an appointment by invitation.  General information about the University is available on the University’s World Wide Web 
Homepage http://www.polyu.edu.hk or from the Human Resources Office [Tel: (852) 2766 5040].  Details of the University’s Personal Information Collection Statement for recruitment 
can be found at http://www.polyu.edu.hk/hro/jobpics.htm.

�ACM Professional Members can enjoy the convenience of making a single payment for their
entire tenure as an ACMMember, and also be protected from future price increases by
taking advantage of ACM's Lifetime Membership option.

�ACM Lifetime Membership dues may be tax deductible under certain circumstances, so
becoming a Lifetime Member can have additional advantages if you act before the end of
2009. (Please consult with your tax advisor.)

�Lifetime Members receive a certificate of recognition suitable for framing, and enjoy all of
the benefits of ACM Professional Membership.

Learn more and apply at:
http://www.acm.org/life

Take Advantage of
ACM’s LifetimeMembership Plan!

http://www.comp.polyu.edu.hk/
http://www.polyu.edu.hk/feng/
mailto:hrstaff@polyu.edu.hk
http://www.polyu.edu.hk
http://www.polyu.edu.hk/hro/jobpics.htm
http://www.acm.org/life
http://www.polyu.edu.hk


Call	for	Nominations
The	ACM	Doctoral	Dissertation	Competition

Rules of the competition
ACM established the Doctoral Dissertation Award 
program to recognize and encourage superior research 
and writing by doctoral candidates in computer science 
and engineering. These awards are presented annually 
at the ACM Awards Banquet.

submissions
Nominations are limited to one per university or college, 
from any country, unless more than 10 Ph.D.’s are 
granted in one year, in which case two may be nominated.

Deadline
Submissions must be received at ACM headquarters by 
october 31, 2010 to qualify for consideration.

eligibility
Each nominated dissertation must have been accepted 
by the department between October 2009 and 
September 2010. Only English language versions will 
be accepted. Please send a copy of the thesis in PDF 
format to emily.eng@acm.org.

sponsorship
Each nomination shall be forwarded by the thesis advisor 
and must include the endorsement of the department 
head. A one-page summary of the signifi cance of the 
dissertation written by the advisor must accompany 
the transmittal.

Publication Rights
Each nomination must be accompanied by an assignment to 
ACM by the author of exclusive publication rights. (Copyright 
reverts to author if not selected for publication.)

Publication
Winning dissertations will be published by Springer.

selection Procedure
Dissertations will be reviewed for technical depth and 
signifi cance of the research contribution, potential impact 
on theory and practice, and quality of presentation. 
A committee of fi ve individuals serving staggered fi ve-year 
terms performs an initial screening to generate a short list, 
followed by an in-depth evaluation to determine the winning 
dissertation.

The selection committee will select the winning dissertation 
in early 2011. 

award
The Doctoral Dissertation Award is accompanied by a prize 
of $20,000 and the Honorable Mention Award is accompanied 
by a prize of $10,000. Financial sponsorship of the award 
is provided by Google.

for submission Procedure
See http://awards.acm.org/html/dda.cfm

mailto:emily.eng@acm.org
http://awards.acm.org/html/dda.cfm
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documents, 
made us think it would be a good idea 
to pursue the question of how to build 
what came to be called the paperless 
offi ce.

You’re talking about robert Taylor, 
who managed the Computer systems 
Laboratory at parC.

Taylor was not a technologist—he 
was a psychologist by training. But he 
was an extremely effective leader. The 
other thing was, he knew everyone in 
computing because he had run ARPA’s 
Information Processing Techniques 
Offi ce. So when he was hired to staff 
the lab at PARC, he knew where to go.

did you have a sense of how revolution-
ary alto was as you worked on it?

Oh, yes, we knew it was revolution-
ary. We built it with the very fi rst semi-
conductor dynamic RAM, the Intel 
1103, which was the fi rst memory you 
could buy that was less than a tenth of 
a cent a bit. As a result, we realized we 
could build a display that was quali-
tatively better than what we had at the 
time. We had character generator ter-
minals, and some of them were quite 
nice. But they were limited in various 
ways, whereas the Alto had the proper-
ty that anything you could represent on 
paper, you could put on the screen. We 
knew that was going to be a big deal. 

You were also involved in the invention 
of the ethernet.

The Ethernet grew out of the re-
alization I had of how to provide a 
network for the Alto. We had been 
studying the ALOHA network, a radio 
network that was used to connect the 
various Hawaiian Islands. The limi-
tation was that when a transmitter 
started to transmit, it could no longer 
receive anything. One night I was ly-
ing in bed thinking about the problem 
when I had this sudden realization 
that if you used a more limited media, 
say, the coaxial cables used in cable 
television, the transmitter could not 
only hear what it transmitted, it could 
also tell whether what it thought it put 
on the wire was the same as what actu-
ally got put on the wire.

so if another transmitter was interfer-
ing, it could drop back and retransmit 
later. 

That idea was refi ned by Bob Met-
calfe and Dave Boggs into what we 
knew as the Ethernet. Of course, the 
Ethernet in those days was quite dif-
ferent than it is today.

You joined Microsoft in 1997 to help 
establish the company’s research lab 
in Cambridge, england, and were lat-
er involved in the development of the 
tablet pC, a subject that’s much in the 
news of late.

The line of thinking about tab-
lets actually started at DEC [Digital 
Equipment Corporation]. We built a 
tablet called Lectrice back in the ear-
ly 1990s, primarily as an electronic 
book reader. When I returned to the 
U.S. from my two-year assignment 
in Cambridge, I was working with a 
group in Redmond that was trying 
to build an electronic book reader. 
That didn’t work out too well, but it 
evolved into the idea of building a 
tablet PC. Of course the view there 
was it would be great to have a device 
that didn’t require a keyboard.

what do you make of the persistence 
of the keyboard in spite of the alterna-
tives that now exist?

Typing is so much faster than virtu-
ally any other way of entering infor-
mation into a computer, so I don’t ex-
pect that to change. There’s only one 
thing that can be better, and that’s to 
use a different set of muscles—the 
tablet allows you to do that. You’re 
holding a stylus and writing or draw-
ing with it, and the interaction can be 
faster.

More recently, you’ve been working on 
multicore systems.

I’ve been using fi eld-programmable 
gate arrays (FPGAs) to explore multicore 
architectures. For a long time, it was 
impossible for academic researchers—
or even people working in industrial 
labs—to design their own chips. It’s 
now possible to build a nontrivial mul-
ticore computer, with something on the 
order of 15 cores, on a single FPGA on a 
board that’s available for $750. 

what does the future hold for you in 
terms of research? are you tempted to 
go back and continue working on the 
tablet pC?

If I have a good idea I might go back 
to it. But right now I’m quite happy 
with what I’m doing, and there’s a 
considerable amount of work to do in 
this area. So I think I’m set for the next 
few years. 

Leah hoffmann is a brooklyn, ny-based technology 
writer.

© 2010 ACM 0001-0782/10/0700 $10.00

“the alto had 
the property that 
anything you could 
represent on paper, 
you could put on 
the screen. We knew 
that was going to 
be a big deal.”

[CoNTiNUed FroM p.  112]

Publish yourself at
Google Code 
University
Share what you know with 
students, teachers, and 
other computer scientists 
at Google Code University.  
It’s the online exchange 
where great computing minds 
publish tutorials, lesson 
plans and test exercises — 
under Creative Commons, 
for the common good. 
You’ll help others learn 
(and look good doing it).

Learn more: 
http://code.google.com/edu/

http://code.google.com/edu/
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Charles P. Thacker, a Technical Fellow 
at Microsoft, is the winner of the 2009 
ACM A.M. Turing Award for his pioneer-
ing contributions to computer architec-
ture and networks, as well as his current 
work on multicore computing. (A profile 
of Thacker, “Committed to Success,” is 
on p. 22.) We spoke with him about the 
technological highlights of his career, 
beginning with his work at Xerox Palo 
Alto Research Center  (PARC) in 1970.

Let’s talk about the development of 
the Alto, the first computer to incorpo-
rate a bitmap display and a graphical 
user interface.

The Alto was actually the second 
machine we built at PARC—the first 
one was a time-sharing machine. We 
wanted a PDP-10 because that was the 
standard machine that the ARPA [Ad-
vanced Research Projects Agency] re-
search community used, but it would 

have been unseemly for us to buy one 
because Xerox had just bought a com-
puter company that made a compet-
ing machine.

So you decided to build one instead.
Bob Taylor had continuously told 

us, “Computers are for people. They’re 
personal devices.” That, coupled with 
the fact we were in this company that 
handled 

DOI:10.1145/1785414.1785444	 	 Leah Hoffmann

Q&A 
From Single Core  
to Multicore 
Charles P. Thacker discusses the legendary Alto personal  
computer, the invention of the Ethernet, and his current research  
on multicore architectures.

[continued on p.  111]

Microsoft Technical Fellow and 2009 ACM A.M. Turing Award winner Charles P. Thacker in front of the Charles Babbage Difference Engine 
No. 2 at the Computer History Museum, Mountain View, CA.
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It’s not just what we make.   
It’s what we make possible.
 
Advancing Technology Curriculum
Driving Software Evolution
Fostering Tomorrow’s Innovators
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