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editor’s letter

Science Has Only Two Legs
Science has been growing new legs of late.  
The traditional “legs” (or “pillars”) of the scientific 
method were theory and experimentation. 
That was then. In 2005, for example, the U.S. 

Presidential Information Technology 
Advisory Committee issued a report, 
“Computational Science: Ensuring 
America’s Competitiveness,” stating: 
“Together with theory and experimen-
tation, computational science now 
constitutes the ‘third pillar’ of scien-
tific inquiry, enabling researchers to 
build and test models of complex phe-
nomena.” The report offered examples 
such as multi-century climate shifts, 
multidimensional flight stresses on 
aircraft, and stellar explosions. 

This “third leg” of science has be-
come a standard coin (run a Web search 
on this phrase!). However, this leg 
has been recently augmented by yet a 
“fourth paradigm” (or “leg”) that refers 
to the usage of advanced computing 
capabilities to manipulate and explore 
massive datasets. For example, the de-
coding of the human genome in 2001 
was a triumph of large-scale data analy-
sis. Now science allegedly has four legs, 
and two of them are computational!

I find myself uncomfortable with 
science sprouting a new leg every few 
years. In fact, I believe that science still 
has only two legs—theory and experi-
mentation. The “four legs” viewpoint 
seems to imply the scientific method 
has changed in a fundamental way. I 
contend it is not the scientific method 
that has changed, but rather how it is 
being carried out. Does it matter how 
many legs science has? I believe it does! 
It is as important as ever to explain sci-
ence to the lay public, and it becomes 
more difficult to explain when it grows 
a new leg every few years.

Let us consider the first leg: theory. 

A scientific theory is an explanatory 
framework for a body of natural phe-
nomena. A theory can be thought of as 
a model of reality at a certain level of 
abstraction. For a theory to be useful, 
it should explain existing observations 
as well as generate predictions, that 
is, suggest new observations. In the 
physical sciences, theories are typically 
mathematical in nature, for example, 
the classical theory of electromagne-
tism in the form of Maxwell’s Equa-
tions. What is often ignored is the fact 
that any application of a mathematical 
theory requires computation. To make 
use of Maxwell’s Equations, for ex-
ample, we need to solve them in some 
concrete setting, and that requires 
computation—symbolic or numeric. 
Thus, computation has always been an 
integral part of theory in science.  

What has changed is the scale of 
computation. While once carried out 
by hand, computation has required 
over time more advanced machinery. 
“Doing” theory today requires highly 
sophisticated computational-science 
techniques carried out on cutting-edge 
high-performance computers.

The nature of the theories has also 
changed. Maxwell’s Equations consti-
tute an elegantly simple model of re-
ality. There is no analogue, however, 
of Maxwell’s Equations in climate sci-
ence. The theory in climate science is a 
highly complex computational model. 
The only way to apply the theory is via 
computation. While previous scientific 
theories were typically framed as math-
ematical models, today’s theories are 
often framed as computational mod-

els. In system biology, for example, one 
often encounters computational mod-
els such as Petri Nets and Statecharts, 
which were developed originally in the 
context of computer science.

Computation has also always been 
an integral part of experimentation. 
Experimentation typically implies 
carrying out measurements, and the 
analysis of these measurements has al-
ways been computational. Again, what 
has changed is the scale. The Compact 
Muon Solenoid experiment at CERN’s 
Large Hadron Collider generates 40 
terabytes of raw data per second, a vol-
ume one cannot hope to store and pro-
cess. Handling such volume requires 
advanced computation; the first level 
of data filtering, for example, is car-
ried out on fast, custom hardware us-
ing FPGAs. Analyzing the still-massive 
amount of data that survives various 
levels of filtering requires sophisticated 
data-analysis techniques.

So science is still carried out as an 
ongoing interplay between theory and 
experimentation. The complexity of 
both, however, has increased to such 
a degree that they cannot be carried 
out without computation. There is 
no need, therefore, to attach new legs 
to science. It is doing fine with two 
legs. At the same time, computational 
thinking (a phrase coined by Jeannette 
Wing) thoroughly pervades both legs. 
Computation is the universal enabler 
of science, supporting both theory and 
experimentation. Today the two legs of 
science are thoroughly computational!

Moshe Y. Vardi, editor-in-chie f

DOI:10.1145/1810891.1810892		  Moshe Y. Vardi



Program for Mathematics & the Physical Sciences
The Simons Foundation Program for Mathematics and the Physical Sciences seeks  
to extend the frontiers of basic research. The Program’s primary focus is on the theo- 
retical sciences radiating from Mathematics: in particular, the fields of Mathematics,  
Theoretical Computer Science and Theoretical Physics. Funding for innovative research  
is available through a peer-reviewed proposal process at regular intervals.

Creation of an Institute for Theoretical Computer Science
Universities and Institutes may apply to create a new  
Theoretical Computer Science Institute. 
Deadline for Letters of Intent: October 27, 2010

For more information visit 
http://simonsfoundation.org/

Advancing Research In Basic Science And Mathematics

• Explains how to perform derivations 
and calculations with mathematical 
precision  
Catalog no. C8628, July 2010

351 pp., ISBN: 978-1-58488-862-8
$89.95 / £57.99 $71.96 / £46.39

“… balanced treatment of the theory, technol-
ogy, architecture, and software … I highly 
recommend this timely book.”

—Jack Dongarra, University of Tennessee

Catalog no. K10600, July 2010
356 pp., Soft Cover, ISBN: 978-1-4398-1192-4

$69.95 / £42.99 $55.96 / £34.39

• Includes interactive labs and projects
using the open-source language, Ruby
Catalog no. K10640, October 2010
c. 384 pp., ISBN: 978-1-4398-1262-4

$79.95 / £49.99 $63.96 / £39.99

6    communications of the acm    |   september 2010  |   vol.  53  |   no.  9

http://simonsfoundation.org/
http://www.crcpress.com


letters to the editor

september 2010  |   vol.  53  |   no.  9  |   communications of the acm     7

models,” not freely dancing ideas without 
purpose. 

There may also be slight disagreement 
regarding empirical validation, the excesses 
of which I criticized. It is clear that theories 
about physical phenomena require empirical 
validation; theories about mathematical 
objects do not. Many areas in CS deal with 
conceptual or information objects more 
akin to mathematical objects than to their 
physical counterparts. Therefore, requiring 
empirical validation is out of place here. 

Gonzalo Génova, Madrid, Spain 

What CS Academics 
Think They Teach
Poul-Henning Kamp’s article “You’re 
Doing It Wrong” (July 2010) would have 
been considerably more valuable and 
effective if it had been written more pro-
fessionally and, more important, avoid-
ed gross exaggerations. For example, 
Kamp said the computer architecture 
depicted in his Figure 7 “is totally bogus 
today.” Wrong. Though simplistic, it is 
entirely appropriate as a first architec-
ture for beginning students, most of 
whom are unable to provide precise def-
initions even for words like “input” and 
“output.” Similarly, Kamp saying “It is 
the only conceptual model used in com-
puter education” cannot be correct. 

Alex Simonelis, Montréal 

Author’s Response: 
Reacting to the article, CS academics 
have taken offense, protesting the claimed 
educational deficiencies, while practitioners 
have confirmed them. I have seen only two 
reactions saying “We already learned that.” 
Students evidently do not learn what CS 
academics think they teach. But the proof is 
in the pudding; if graduates say “That’s news 
to me” when reading the article, then the CS 
academics are doing it wrong. 

Poul-Henning Kamp, 
	S lagelse, Denmark

Communications welcomes your opinion. To submit a 
Letter to the Editor, please limit your comments to 500 
words or less and send to letters@cacm.acm.org. 

© 2010 ACM 0001-0782/10/0900 $10.00

T
he article “Managing Scien-
tific Data” by Anastasia Aila-
maki, Verena Kantere, and 
Debabrata Dash (June 2010) 
explained that data generat-

ed by research projects is valuable only 
when annotated with metadata describ-
ing the data’s provenance, context, and 
meaning. However, a given data item 
can be annotated in more ways than 
one, for two reasons: 

Provenance. A multidisciplinary proj-
ect can track its progress with basic 
metadata indicating the provenance of 
its samples and their associated data. 
Each data item can also be annotated in 
a more detailed way through tools par-
ticular to the technique used to gener-
ate the data item; these annotations are 
themselves interpretable by people (and 
software) in the relevant discipline; and 

Assumptions. By definition, a re-
search field involves a basic set of con-
cepts used to understand the field but 
that is not yet agreed upon. Annota-
tions beyond where and when the data 
was recorded incorporate assump-
tions that may be contentious among 
experts. 

Data storage and metadata should 
thus be decoupled. A data repository 
must be capable of returning any data 
item stored within it, along with a list 
of places needed to find the relevant 
metadata. A metadata repository must 
be capable of identifying the schema 
it adheres to and respond to queries 
about specific data items with relevant 
annotations. 

Decoupling the architecture this way 
eases develop of an ecosystem of reposi-
tories and annotation schemas. 

Chris Morris, Warrington, U.K. 

Authors’ Response:
Separate (and multiple) metadata stores are 
indeed essential for a number of scientific 
applications and should be available to 
user scientists as an option. However, 
because data queries likely need to combine 
information held in separate metadata 
stores, processing them requires appropriate 
mechanisms for distribution, access control, 

and the merging and branching of the stores. 
Anastasia Ailamaki, Verena Kantere, 

	 Debabrata Dash, Lausanne, Switzerland 

No Straw Man in 
Empirical Research 
In his Viewpoint “Is Computer Science 
Truly Scientific?” (July 2010), Gonzalo 
Génova would have made a stronger 
case if he used the words “theoretical” 
or “conceptual” instead of “specula-
tive” to support his argument against 
the excessively empirical orientation of 
much of today’s CS research. The life 
cycle of scientific ideas generally pro-
gresses from the speculative phase in 
which many candidate ideas are pur-
sued, with only a few surviving to be 
presented or published as theoretical 
contributions, often supported by ro-
bust analytical models. Journal editors 
are unlikely to summarily reject con-
tributions making it to this stage be-
cause they provide the conjectures and 
hypotheses that can be tested through 
rigorous empirically oriented research. 

Génova also set up a straw man 
when he railed against the excesses of 
verificationism and empiricism. Who 
would argue against the proposition 
that credible scientific advances need 
good empirical research experiments, 
simulation, proof-of-concept prototype 
construction, and surveys? Such re-
search needs models and hypotheses 
that might have begun as speculative 
conjectures at an earlier point in time. 

Naïve empiricism has no place in CS 
research. Moreover, purely speculative 
research without adequate analytical 
foundations is unlikely to help advance 
CS (or any other) research.

Joseph G. Davis, Sydney, Australia 

Author’s Response:
Davis (“credible scientific advances 
need good empirical research”) and I 
(“experimentation without the guide 
of speculative thinking is worthless”) 
fundamentally agree. When I said 
“speculative thinking,” I meant “theoretical 
contributions supported by robust analytical 

More Than One Way to Annotate Metadata 
DOI:10.1145/1810891.1810893		

mailto:letters@cacm.acm.org
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The Communications Web site, http://cacm.acm.org, 
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selected posts or excerpts.

privacy, content value.” RPI President 
Shirley Ann Jackson was quoted as say-
ing, “With these new degree programs, 
students and researchers here at Rens-
selaer will help to usher in a new era of 
understanding and study of the Web 
from its social and economic impacts 
to the evolution of data.” Amen!  

When I got my degrees, the univer-
sity taught compilers, complexity the-
ory, AI, algorithms, operating systems, 
and databases. While these courses en-
able me to learn new techniques such 
as MapReduce, large-scale analytics, 
visualization, etc., I often feel my edu-
cation only equipped me to prepare for 
the Web world, but not actually prepare 
me for the Web world. How I wish my 
undergraduate curriculum included 
required studies on security and priva-
cy; large-scale data analytics; advanced 
data-mining techniques; detailed 
study of recommendation algorithms 
and systems; as well as HCI research 
methods like remote user studies, eye 
tracking, and survey methods.

Am I saying that compilers and the-
ory don’t matter anymore? Of course 
not. They are still excellent academic 
research pursuits in their own do-
mains, but there might be other new 
topics that should make it into the cur-
riculum now to better prepare students 
for a new world. The construction of the 
new social Web, which is ever chang-
ing, requires a different set of skills! 
The world has changed, and so should 
the computing science curriculum.

Reader’s comment 
Sorry, but I couldn’t disagree more. This is 

Ed H. Chi
“Time to Rethink 
Computer Science 
Education:  
The (Social) Web 
Changes Everything!”

http://cacm.acm.org/blogs/blog-
cacm/82365

First, on Monday last week, I read in 
the news that the U.K. government an-
nounced the creation of a new Insti-
tute for Web Science. Prime Minister 
Gordon Brown said 30 million pounds 
will be used to create this institute to 
help make “ ‘public data’ public,” and 
act as a bridge between research and 
business.

Then, this Monday, I read Tim 
O’Reilly’s excellent article on “the State 
of the Internet Operating System,” in 
which he talked about how the way we 
organize computing systems in the 
world is completely different from how 
we teach computing architectures. He 
is right. When you think about how we 
enable a user to type some keywords 
and get back, say, pictures of a moose, 
there are a lot of moving parts that all 
must work together seamlessly. These 

components include server farms, IP 
and caching networks, parallel large-
scale data analysis, image and facial 
recognition algorithms, and maybe 
location-aware data services. He said 
the “Internet Operating System” com-
ponents include search engines, mul-
timedia access, systems relating to 
user identity and your social network, 
payment systems, advertising, activ-
ity streams, and location. How many 
universities can say they have experts 
in all of these areas? These topics are 
often only covered in computer science 
departments as either advanced topic 
courses or, worse, not offered at all.

What do these two pieces of news 
tell us about the state of the world? 
There is wide recognition that the Web 
has changed the world.  

“Well, duh!” you say. But there is 
more.…

I read that Rensselaer Polytechnic 
Institute (RPI) has created the nation’s 
first undergraduate degree in Web Sci-
ence. The news release said that the 
students in this interdisciplinary de-
gree program will investigate issues 
on the Web relating to “security, trust, 

Expanding CS 
Education; Improving 
Software Development  
Ed H. Chi writes about the social Web’s impact on CS education. 
Ruben Ortega discusses software and test-driven development.

doi:10.1145/1810891.1810895			   http://cacm.acm.org/blogs/blog-cacm
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not about computer science, it’s about  
how we engineer modern systems.

Computer science is about the 
fundamentals of creating systems to 
process information, the basic abstract 
notions, logic, algebra, algorithms, 
computability, and computer organization.

It’s clear we need to introduce new 
topics like virtualization, cloud computing, 
semantic Web, and social networks, but 
that doesn’t change a bit the fundamentals 
of how computers work.

I went to university in the late 1980s 
and I’ve been able to cope with all the 
changes in those 20 years thanks to a solid 
formation in the fundamentals.

People need a future-proof education, 
not a perishable one.

—Pablo Chacin

Blogger’s reply
You’re making the exact same arguments 
that some mathematicians and electrical 
engineers used to make about computer 
science. How the fundamentals of their 
areas more than covered the new research 
directions. Heck, physics folks used to 
argue, and some still do, that everything 
derives from their field, so every other field 
is redundant.

As computer scientists, we have a 
choice. We can either teach our students 
compiler design and floating point 
implementations, or we can teach them 
machine learning and large-scale data 
analytics. We can either fold in this new 
research direction and expand our field,  
or we can say that it is an application area 
and let it organically grow until it is so big 
that it splits into a new department and 
leaves CS behind. (In fact, I often wonder  
if it is already too late for us to embrace  
and extend!)

—Ed H. Chi

Ruben Ortega
“How Much Software 
Testing is Enough?”
http://cacm.acm.org/
blogs/blog-cacm/81546

Investing in a large 
amount of software testing can be dif-
ficult to justify, particularly for a start-
up company. For every line of produc-
tion software written, an organization 
should, at minimum, invest an equiva-
lent amount of developer time and 
number of lines of code to test the cre-
ated software. The extra effort means 
that features can take longer to devel-

op and deliver to customers. With the 
constant pressure of “Deliver Now!” it 
is very easy to skimp on the amount of 
testing in an effort to launch sooner. 
The real difficulty is most developers 
are good enough that they only do min-
imal testing to make sure their soft-
ware works as expected, deploy their 
software, and move on.

Companies can actually develop 
software like this for a long time. 
However, as soon as the software gets 
beyond a basic complexity level, the 
number of bugs that creep back in via 
regression or untested use cases will 
result in an unstable application. At 
this point the company is compelled 
to either (a) stop development, and 
add the regression tests they failed 
to do earlier, or (b) continue a bad 
pattern where a team of software tes-
ters chase regression bugs and add 
test suites for the previous version of 
software, while other developers cre-
ate the next set of features (and bugs) 
concurrently. Both these patterns are 
flawed because the time they take to 
fix the issue is longer than it would 
have taken had the tests been created 
continuously.

Test-driven development, an Ex-
treme Programming practice, is argu-
ably one of the best ways to help en-
sure that the created software always 
has a truss to test it. The basic meth-
odology is to create the test suite first, 
have it fail, and then create the meth-
ods that will get it to pass successfully. 
This helps to ensure that there is at 
least one test case for each method 
created by the developer who wrote the 
software. By having the testing harness 
developed concurrently with the soft-
ware you will have placed the respon-
sibility of testing on the developer who 
created the feature. This means the 
company saves time in overall devel-
opment because the tests are created 
by people knowledgeable about what 
needs to be tested, and software can 
be tested continuously on every source 
code commit allowing for deployment 
on demand.

This leaves one critical hole in the 
testing process. How good is the test 
suite that the developer created? This 
is the point where I put on a prag-
matic’s hat. If your organization al-
ready has the discipline to test every 
method of your software, you should 

probably ask the developer to just 
test the “basic” behavior and allow 
for extending the test suite if a new 
bug emerges. The purpose of the test 
harness is to make sure the software 
works given the known assumptions 
of the software, and having them re-
tested on every check-in and deploy-
ment helps build confidence that you 
are deploying correct software. The 
most dramatic bugs I have seen, with 
or without a test harness, have gener-
ally happened when an unanticipated 
event occurred, and testing against 
the unknowable is difficult.

My favorite story about unantici-
pated bugs that would have been 
helped by having a test harness in 
place occurred early in my tenure at 
Amazon. It was a bug I affectionately 
call “Karmic Revenge.” The site was 
crashing on a subset of Amazon’s 
book catalog, and it happened dis-
turbingly frequently on the search re-
sults page. I was called in to identify 
the bug. (For those coders in the au-
dience: I discovered that a data struc-
ture we were using was referencing an 
array at location offset of [–1] which 
was causing the software to crash.) 
The catalog software had changed re-
cently such that the number –1 was a 
flag that no data was available. Unfor-
tunately, this knowledge hadn’t prop-
agated through the search software. 
The “Karmic Revenge” was the book 
that displayed the problem was about 
“Memory Management in C.” Addi-
tionally, for the superstitious, the date 
the bug was identified, debugged, and 
fixed was Friday, February 13, 1998. 
Some bugs you just can’t forget.

Had a test harness been in place, 
perhaps this bug would have never 
made it to the production site. Or if 
the bug had made it to the site, then 
once found, a new test would have 
been added to the test harness to pre-
vent future occurrences. However, 
the structure didn’t exist either in the 
code or at the organizational level. 
Better patterns of development will 
always reduce the likelihood of this er-
ror occurring and reoccurring.	

Ed H. Chi is a research manager at Palo Alto Research 
Center. Ruben Ortega is an engineering director at 
Google.
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cacm online

Numbers give meaning to the promises on Communications Web site to deliver 
timely, substantive content that complements the magazine’s peer-reviewed ma-
terial and makes Communications a valued component of ACM membership. The 
following data illustrates a portion of the content available only at cacm.acm.org.a 

News Coverage. News from industry, academia, ACM TechNews, the technical 
and mainstream media, plus original articles helps drive the site with fresh content 
every business day. 

Number of monthly news articles posted exclusively on cacm.acm.org/.
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Points of View. Expert contributors make the BLOG@CACM (http://cacm.acm.
org/blogs/blog-cacm) one of the most popular features of the site. Opinion arti-
cles (http://cacm.acm.org/opinion/articles) and Interviews (http://cacm.acm.org/
opinion/interviews) also inspire lively discussions. 
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Professional Help. The Careers page (http://cacm.acm.org/careers) provides in-
formation and advice on employment and professional issues.  
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ACM 
Member 
News
Andreas Moshovos  
Wins ACM SIGARCH’s  
Maurice Wilkes Award

The ACM 
	 Special Interest  
	G roup on  
	C omputer  
	A rchitecture  
	 (SIGARCH)  
	 presented the 
2010 Maurice Wilkes Award to 
Andreas Moshovos, an associate 
professor in the computer 
engineering group at the 
University of Toronto, for his 
contributions to the development 
of memory dependence 
prediction. This technique, 
used by high-performance 
microprocessors that execute 
memory access operations, 
provides many applications in 
boosting memory system 
performance and reducing 
processor design complexity.  

“Surprised, humbled, and 
honored” is how Moshovos 
describes his reaction to 
winning the Maurice Wilkes 
award. “I was fortunate to work 
at the University of Wisconsin-
Madison with professor Guri 
Sohi, who at the time was 
working on Multiscalar, a 
forward-looking architecture,” 
Moshovos said in an email 
interview. “Multiscalar exposed 
problems that were not obvious 
at the time. That enabled Scott 
Breach and T.N. Vijaykumar, 
my two collaborators on the 
early memory dependence 
prediction work, and I to see 
these problems and try to find 
solutions.”

Moshovos’ current research 
involves design challenges 
for the ever-growing gap 
between processor and 
memory performance. “Parallel 
programming is becoming a 
necessity. Much of our work 
is on mechanisms to allow 
future multi-core processors 
to efficiently support parallel 
programs. Our snoop filtering 
techniques reduce energy while 
making it simpler to build 
small- to medium-scale multi-
cores. This work has already 
influenced commercial designs. 
With colleagues from IBM T. J. 
Watson, we developed tagless 
directories—an area- and power-
efficient solution—that targets 
larger-scale systems.” 

—Jack Rosenberger 

http://cacm.acm.org
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er neurons. Whether a neuron fires 
and thereby passes along a signal to 
the thousands of connecting neurons 
depends on the nature of the input 
it receives. Neural firing and signal 
transmission are chemical processes 
and the fundamental reason they are 
not completely reliable, says Hsi-Ping 
Wang, a researcher at the Salk Institute 
for Biological Studies, is that “biology 

Brains and Bytes 
Computational neuroscientists are learning that  
the brain is like a computer, except when it isn’t. 

Science  |  doi:10.1145/1810891.1810897	 David Lindley

T
he idea that the human 
brain can be thought of as a 
fancy computer has existed 
as long as there have been 
computers. In a simple way, 

the analogy makes sense: A brain takes 
in information and manipulates it to 
produce desirable output in the form 
of physical actions or, more abstractly, 
plans and ideas. Within the brain in-
formation moves in the form of electri-
cal signals zipping through and among 
neurons, the nerve cells that form the 
elementary signal processing units of 
biological systems. But the likeness be-
tween brains and electronic computers 
only goes so far. Neurons, as well as the 
connections between them, work in 
unpredictable and probabilistic ways; 
they are not simple gates, switches, 
and wires. For researchers working 
in computational neuroscience, the 
looming puzzle is to understand how a 
brain built from fundamentally unreli-
able components can so reliably per-
form tasks that digital computers have 
barely begun to crack.

The brain of a human adult con-
tains approximately 100 billion neu-
rons, each of which has an average of 
several thousand connections to other 
neurons. As neuroscientists have long 
realized, it’s the complex connectiv-
ity as much as the sheer number of 

neurons that make understanding 
brain function such a daunting task. 
To that end, researchers study indi-
vidual neurons and small collections 
of them with the aim of building an 
explanation for neural activity from 
the ground up. But that task is also far 
from simple. 

Typically, a neuron constantly re-
ceives signals from thousands of oth-

In collaboration with researchers from Stanford University, IBM scientists have developed an 
algorithm that uses the Blue Gene supercomputing architecture to noninvasively measure and 
map the connections between all cortical and sub-cortical locations within the human brain. 
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news

similar to a massively parallel super-
computer, with many discrete proces-
sors exchanging information back and 
forth. Information processing by the 
brain crucially depends on loops and 
feedbacks that operate down to the 
level of individual neurons, says Larry 
Abbott, co-director of the Center for 
Theoretical Neuroscience at Columbia 
University, and that aspect makes the 
nature of the processing exceedingly 
difficult to analyze. “The brain is sto-
chastic and dynamical,” Abbott says, 
“but we can control it to an incredible 
degree. The mystery is how.”

As an illustrative example, Jim Bed-
nar, a lecturer at the Institute for Adap-

tive and Neural Computation School of 
Informatics at the University of Edin-
burgh, considers what happens when a 
person catches a flying ball. It’s tempt-
ing—but wrong—to suppose the visual 
area of the brain figures out the ball’s 
path, then issues precise instructions 
to the muscles of the arm and hand so 
that they move to just the right place 
to catch the ball. In reality, neural pro-
cesses are messy and stochastic all the 
way from the visual cortex down to our 
fingertips, with multiple and complex 
signals going back and forth as we try 
to make the hand and ball intersect. In 
this system, Bednar says, “the smart-
ness is everywhere at once.” 

It’s also important to realize the op-
eration of the brain cannot be overly 
sensitive to the behavior of individual 
neurons, Bednar adds, if for no other 
reason than that “neurons die all the 
time.” What matters, he says, must be 
the collective behavior of thousands of 
neurons or more, and on those scales 
the vagaries of individual neural opera-
tion may be insignificant. He regards 
the brain as having a type of computa-
tional workspace that simultaneously 
juggles many possible solutions to a 
given problem, and relies on numer-
ous feedbacks to strengthen the appro-
priate solution and diminish unwant-
ed ones—although how that process 
works, he admits, no one yet knows.

Empirical Knowledge
Alexandre Pouget, associate professor 
of brain and cognitive sciences and 
bioengineering at Rochester University, 

is messy. Molecules have to bind and 
unbind, and chemical and signal ele-
ments have to mix and diffuse.” 

Nature bypasses this messiness in 
part by resorting to statistical methods. 
For example, Wang and his colleagues 
combined recordings of in vivo neural 
activity, with a computer simulation of 
neuron function in the visual cortex of 
a cat, to show that neurons fired most 
reliably when they were stimulated 
by the almost simultaneous arrival of 
approximately 30 input signals. With 
fewer than 20 signals arriving at once, 
the neuron was significantly less likely 
to fire, but the simultaneous arrival 
of more than 40 signals brought no 
gain in the reliability of the output sig-
nal. It’s not inconceivable that nature 
could make more reliable neurons, 
says Wang, but “there is a cost to mak-
ing things perfectly reliable—the brain 
can’t afford to expend resources for 
that additional perfection when slightly 
probabilistic results are good enough.”

Neuron firing is not the brain’s only 
probabilistic element. Signals pass 
from one neuron to another through 
biomolecular junctions called synaps-
es. In a phenomenon known as plastic-
ity, the likelihood that a synapse will 
transmit a spike to the next neuron can 
vary depending on the rate and timing 
of the signals it receives. Therefore, 
synapses are not mere passive trans-
mitters but are information processors 
in their own right, sending on a trans-
formed version of the received signals. 

These complications cast light on 
the usefulness of thinking the brain is 

The current puzzle 
is to understand 
how a brain built 
from fundamentally 
unreliable 
components can 
reliably perform 
tasks that digital 
computers have 
barely begun  
to crack.

Obituary

Carl Adam Petri, 1926–2010
Carl Adam Petri, a German 
mathematical and computer 
scientist who invented Petri 
nets, a modeling language 
used to describe and document 
concurrent processes through the 
use of graph-based structures, 
died on July 2 at age 83. 

Petri is considered a pioneer 
in advancing the fields of parallel 
computing and distributed 
computing. He also played a key 
role in developing methods of 
analysis for complex systems and 
workflow management. 

“In the 1960s he had already 
developed ideas about modeling, 
distributed systems, and 
computers as a communication 
medium,” notes Wolfgang Reisig, 
a professor at the Computer 
Science Institute, Humboldt-
University of Berlin. “The work 
was remarkable because it took 
decades for the computing 
science mainstream to accept his 
early vision.”

Born in Leipzig, Germany, Petri 
documented Petri nets as part of 
his dissertation, “Communication 

with Automata,” in 1962. He taught 
at several universities in Germany, 
and served as scientific director 
for a research institute at the 
National Center for Mathematics 
and Computing, a research lab 
near Bonn.

In 1966, Petri was the 
recipient of the Werner von 
Siemens Ring, a prestigious 
German award in technical 
sciences. In 2003, he received 
the Order of the Netherlands 
Lion award and was honored by 
the Queen of the Netherlands. 

In 2007, Petri received the 
Academy Gold Medal of Honor, 
a lifetime achievement award 
presented by the Academy of 
Transdisciplinary Learning 
and Advanced Studies. IEEE 
presented Petri with its Computer 
Pioneer Award in 2008 for 
establishing Petri net theory, 
“which not only was cited by 
hundreds of thousands of scientific 
publications but also significantly 
advanced the fields of parallel and 
distributed computing.”

—Samuel Greengard
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uses empirical knowledge of neuron 
function to build theoretical and com-
putational models of the brain. Noting 
that neural circuitry exhibits common 
features through much of the cortex, 
he argues that the brain relies on one 
or a handful of general computational 
principles to process information. In 
particular, Pouget believes the brain 
represents information in the form of 
probability distributions and employs 
methods of statistical sampling and 
inference to generate solutions from a 
wide range of constantly changing sen-
sory data. If this is true, the brain does 
not perform exact, deterministic calcu-
lations as a digital computer does, but 
reliably gets “good enough answers in 
a short time,” says Pouget. 

To explore these computational is-
sues, Pouget adopts a cautious attitude 
to the question of how important it is 
to know in precise detail what individ-
ual neurons do. For example, the exact 
timing of output spikes may vary from 
one neuron to another in a given situa-
tion, but the spike rate may be far more 
consistent—and may be the property 
that a computational method depends 
on. In their modeling, Pouget says he 
and his colleagues “simplify neurons 
as much as possible. We add features 
when we understand their computa-
tional role; we don’t add details just for 
the sake of adding them.” 

The distinction between under-
standing individual neurons and 
understanding the computational 
capacity of large systems of neurons 
is responsible for “a huge schism in 
the modeling community,” Bednar 
says. That schism came into the open 
last year when Dharmendra Modha, 
manager of cognitive computing at 
IBM Almaden Research Center, and 
colleagues reported a simulation on 
an IBM Blue Gene supercomputer of 
a cortex with a billion neurons and 10 
trillion synaptic connections—a scale 
that corresponds, the authors say, to 
the size of a cat’s brain. This claim 
drew a public rebuke from Henry 
Markram, director of the Blue Brain 
Project at the École Polytechnique 
Fédérale de Lausanne, which is using 
supercomputers to simulate neurons 
in true biological detail. Markram 
charged that the neurons in Modha’s 
simulation were so oversimplified as 
to have little value in helping to un-

derstand a real neural system. In con-
trast, the Blue Brain project exhausts 
the capacity of a Blue Gene supercom-
puter in modeling just some tens of 
thousands of neurons. 

“Both those approaches are impor-
tant,” says Abbott, although he thinks 
the task of understanding brain com-
putation is better tackled by starting 
with large systems of simplified neu-
rons. But the big-picture strategy rais-
es another question: In simplifying 
neurons to construct simulations of 
large brains, how much can you leave 
out and still obtain meaningful re-
sults? Large-scale simulations such as 
the one by Modha and his colleagues 
don’t, thus far, do anything close to 
modeling specific brain functions. If 
such projects “could model realistic 
sleep, that would be a huge achieve-
ment,” says Pouget.

With today’s currently available 
computing power, computational 
neuroscientists must choose between 
modeling large systems rather crudely 
or small systems more realistically. It’s 
not yet clear, Abbott says, where on 
that spectrum lies the sweet spot that 
would best reveal how the brain per-
forms its basic functions.	
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Security

New 
Passwords 
Approach  
To prevent dictionary attacks 
by hackers, passwords have 
become increasingly complex. 
And while administrators 
concoct ever-stricter criteria for 
passwords that add millions 
of more passwords and make 
dictionary attacks increasingly 
difficult, users want passwords 
to be more memorable than 
a long string of random, case-
sensitive characters. Now, a 
pair of Microsoft researchers 
and a Harvard professor have 
a simple solution that’s easier 
to remember, and much less 
attractive to criminal hackers. 

In a paper titled “Popularity 
is Everything: A New Approach 
to Protecting Passwords From 
Statistical-Guessing Attacks,” 
which was presented at the Hot 
Topics in Security conference 
in Washington, D.C. last 
month, Microsoft researchers 
Stuart Schechter and Cormac 
Herley and Harvard computer 
science professor Michael 
Mitzenmacher have proposed 
a system that allows users to 
chose any password they want, 
so long as it’s not popular 
among other users. “Each time 
a user chooses a new password, 
the occurrence of that password 
is counted by a probabilistic 
data structure known as a count-
min sketch,” said Schechter and 
Herley in a joint email message. 
“We chose to use the count-
min sketch because it allows 
us to identify dangerous[ly]
popular passwords, yet do so 
while limiting the amount 
of information that could be 
leveraged by attackers if they 
captured it.”

After a small number of users 
choose the same password, no 
new users may use that word. 
This deprives attackers of 
common passwords that allow 
them to break into a significant 
number of online accounts, 
designers can keep rules simple 
for password selection, and users 
don’t need to study those rules. 

This new approach is similar 
to one adopted by Twitter, 
which, following an online 
password-guessing attack, now 
forbids 390 of the most common 
passwords, including “ABCD,” 
“1234,” and “p@ssword.”

—Phil Scott
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Cycling Through Data 
Sensor-equipped bicycles are providing valuable data  
to cyclists, city planners, and computer scientists.

monoxide, nitrogen oxides, tempera-
ture, humidity, and noise, taking read-
ings every two seconds. 

Not all that data is displayed during 
the ride—it could be too distracting. 
Generally, the smartphone will alert the 
rider only when she reaches a personal 
best or when a friend is within a desig-
nated proximity. The phone can store 
the data and let the user review it later.

The data can also be transmitted to 
a city-owned server, and Xiaoji Chen, 
an MIT graduate student in architec-
ture who works with the SENSEable 
City Lab, has created a program that 
will enable city planners to visualize the 
data. A map displays the incoming data 
from each rider as a series of color-cod-
ed spikes. A viewer can watch, say, the 
noise level as a rider travels through the 
city, with older data slowly fading from 
view to keep the data current. 

“If we have enough data, we can see 
how this changes over weeks or months 
or years,” Chen says. The data can be 
cross-referenced with information 
about land use at various points along 

T
raditionally, the Internet 

has been viewed as a collec-
tion of more or less station-
ary machines wired to a net-
work. But with the popularity 

of smartphones and their embedded 
sensors—a camera, a microphone, 
an accelerometer to determine the 
phone’s orientation, and a global posi-
tioning system (GPS) locator—the pow-
er of computing is spreading beyond 
the desktop. Last year an executive from 
telecom giant Ericsson predicted that 
50 billion devices will be connected by 
2020, leading to an “Internet of things” 
in which everyday objects become part 
of the network, gathering new types 
of data and creating possibilities that 
didn’t previously exist. 

One activity where the Internet may 
soon tie into non-cyberspace life is 
the world of cycling. The Copenhagen 
Wheel, a project of the SENSEable City 
Lab, part of the Department of Urban 
Studies and Planning at the Massachu-
setts Institute of Technology (MIT), 
places environmental sensors on the 
rear wheel of a bicycle, providing infor-
mation that could add value to the rid-
er’s experience while also giving valu-
able data to city planners. Biketastic, 
a project of the Center for Embedded 
Networked Sensing at the University of 
California at Los Angeles, also enables 
cyclists to share their experiences, using 
just the smartphone’s microphone and 
accelerometer to measure route condi-
tions. The idea is to help cyclists find the 
safest, most efficient, and most enjoy-
able routes through the metropolis.

The Copenhagen Wheel was intro-
duced at the Copenhagen Climate Con-
ference last December, and MIT is in 
talks with city officials to make it avail-
able there as part of Copenhagen’s cam-
paign to increase bicycle commuting 
from about 35% to 50% of its 500,000 
citizens. The Wheel, which replaces the 
rear wheel of a standard coaster-brake 
bicycle, contains a small motor and 16 

lithium-polymer batteries, recharged 
by regenerative braking. When the rider 
needs a boost—because she’s climbing 
a steep hill, for instance—the motor 
kicks in to assist. When she brakes, the 
energy is stored in the batteries. 

The hub of the wheel also contains 
electronics to control the motor and 
measure torque, and a Bluetooth con-
nection to communicate with a smart-
phone. A cradle on the handlebars holds 
the smartphone, which runs an app that 
allows the rider to select one of three 
modes, providing extra assistance for a 
rider who wants to get to work without 
much sweat, or increasing resistance to 
put the rider through a workout and re-
charge the batteries. The rider can also 
switch gears through the phone. 

But what makes the Wheel compu-
tationally interesting is the addition 
of sensors and networking, “turning a 
bike from something that gets you from 
A to B into a smart network object,” says 
Christine Outram, an MIT research as-
sociate who leads the project. The hub 
contains sensors that measure carbon 

With the Copenhagen Wheel, an ordinary bicycle is transformed into a hybrid electronic 
vehicle that records road conditions, traffic congestion, and pollution levels in real time.
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the routes. “We can see how this pol-
lution level is related to weather, or to 
policies promoting bicycles,” she says. 

The data could help city planners 
identify urban heat islands, where an 
abundance of asphalt and concrete ar-
tificially raise temperatures. It could 
also pinpoint areas suffering from 
noise pollution or a concentration of 
exhaust fumes. By measuring the speed 
of bicyclists and how often they stop, 
the system could alert both traffic plan-
ners and cyclists to areas of traffic con-
gestion. And measurements from the 
smartphone’s accelerometer could call 
attention to potholes or other potential-
ly dangerous street conditions. 

Copenhagen currently has three 
fixed environmental sensors in the city, 
one at street level and two about three 
stories high. Because there will be more 
of them and they will be at street level, 
sensors on the bikes will provide a lot 
more point data. It will only take about 
100 cyclists equipped with the Wheel to 
get good coverage of a two-kilometer-
square downtown area, says Outram. 

Cyclists tapping into the network can 
also see historical data not only for their 
own bike routes but for those used by 
others. That may allow them to choose 
a route that is quieter or less polluted. 
It also lets them interact with their fel-
low cyclists if they choose to, meeting 
en route for a break or to ride together. 
“We’re trying to make some of the con-
nections through Facebook or other 
social networking sites—these virtual 
connections—physical,” Outram says.

Los Angeles’ Biketastic 
While European metropolises like Co-
penhagen tend to have compact down-
towns conducive to bike riding, sprawl-
ing Los Angeles is very much geared 
toward cars. But biking is still popular 
there, and the Biketastic project aims to 
make it easier for Los Angelenos to find 
safe and pleasant routes, both for com-
muting and recreational rides. Univer-
sity of California at Los Angeles (UCLA) 
researchers designed an application for 
Android phones and conducted a two-
week pilot project last fall.

Riders launch the Biketastic applica-
tion when they mount their bikes, and 
the phone uses GPS data to trace the 
route and measure the cyclist’s speed. 
The app asks if the phone is in a bag 
or out in the open, so it knows whether 

it can use the phone’s microphone to 
measure noise. If the cyclist mounts the 
phone on the bicycle, the phone figures 
out its orientation and uses the accel-
erometer to measure road roughness. 
The rider can take pictures of interest-
ing landmarks or dangers such as pot-
holes. All the data is uploaded to a Web 
site, which overlays the information on 
Google Maps, adds information about 
elevation, and allows cyclists to include 
tags and descriptions.

Rather than design new devices, 
Sashank Reddy, the Ph.D. student at 
UCLA who headed the Biketastic proj-
ect, wants to take advantage of sen-
sors people already carry with them. 
“Our purpose is to understand how we 
can use the sensors, what are the algo-
rithms to clean up the data, and what 
are appropriate visualization tech-
niques,” he says.

About 450 users have registered for 
the Biketastic Web site and mapped 
out almost 1,400 routes. While the app 
is available to Android phone users, it 
probably takes a minimum number of 
people in a city to be useful, Reddy says, 
and he’s not focused on expanding the 
project, though he wouldn’t mind see-
ing someone else commercialize prod-
ucts or services based on his work. Cy-
cling advocacy groups and city planners 
have asked him about how they might 
use his techniques, but nothing has 
progressed beyond the pilot stage.

Ron Milam, a consultant for plan-
ners of environmentally friendly proj-
ects and a writer about biking in Los 
Angeles on his BikeSage blog, partici-
pated in the pilot project and got a bet-
ter sense of the speed and distances he 
was riding. He thinks Biketastic can be 
particularly useful by providing people 
with routes that others have discovered, 

and thus make it easier for people to 
shift from driving to cycling for some 
of their trips. “Having this information 
around could not only inspire people to 
ride a bike but also give them some re-
ally concrete information on places they 
may want to go,” Milam says. “The per-
ception is you can’t ride a bike or walk 
in L.A., but the reality is more people are 
choosing to do that here.”

Meanwhile, Outram’s team is work-
ing on making the Copenhagen Wheel 
more compact, and hopes to commer-
cialize it within the year. They plan to 
first sell it to cities, for use on fleets of bi-
cycles used by police or traffic enforce-
ment officers. In addition to Copenha-
gen, Los Angeles, Mexico City, Sydney, 
and Wellington, New Zealand have ex-
pressed interest. Once the cities get the 
system operating, individual cyclists 
would be able to start buying in. 

Outram sees the Wheel as just one 
example of how the growing ubiquity of 
computing, sensing, and communica-
tion can improve both individual lives 
and society as a whole. “The broader 
vision of the lab is to ask, ‘What is the 
future of living with technology going to 
be?’ ” she says. “In 10 to 15 years, we’ll 
be able to have this ‘Internet of things.’ 
We want to explore possibilities about 
how we live with technology in a kind of 
human way.”	
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About 450 cyclists 
have registered for 
the Biketastic Web 
site and mapped out 
almost 1,400 routes 
in Los Angeles.

http://www.youtube.com/watch?v=Do3lxv_ekUo
http://www.youtube.com/watch?v=Do3lxv_ekUo
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cuts in recent months are prompting 
the University of California, Berkeley 
and Rutgers University, among others, 
to consider online instruction to help 
fill budget gaps. 

Even so, the biggest growth in online 
schooling has been among for-profit 
universities, which includes obscure 
institutions and more familiar names 
like Kaplan, DeVry University, and the 
biggest gorilla of all, the University of 
Phoenix, which currently has 455,600 
students, more than half of whom  
take at least some courses online. As 
public community colleges turn away 
tens of thousands of students each 
year, they create a huge opportunity for 
for-profits offering associate degrees 
and higher. The online schools lure 
students with Internet ads touting in-
stant enrollment and 24/7 access. And 
whereas traditional universities use 
tuition from large lecture classes to 

P
odca sting,  high- sp eed In-

t e r n e t,  email, message 
boards—the technology for 
distance learning has made 
it less and less necessary for 

students to go to college the old-fash-
ioned way. Yet, the demand for higher 
education continues to rise at double-
digit rates, boosting the number of stu-
dents taking one or more online cours-
es in the U.S. in the fall of 2008 to 2.4 
million, up from 1.6 million in 2002, 
according to the most recent survey by 
the Sloan Consortium, an organization 
supporting online education. 

These numbers do not include the  
free non-credit courses available 
through iTunes U, which offers 
250,000 free lectures from more than 
600 schools, including Yale and Mas-
sachusetts Institute of Technology. 
Yet while elite schools are reaching 
the masses as a philanthropic gesture, 
they tend to avoid granting more de-
grees. “Your Stanfords and Columbias 
and NYUs and Boston Colleges of the 
world—they have terrific incentives not 
to grow,” says Guilbert C. Hentschke, a 
professor at the University of Southern 
California’s (USC’s) Rossier School of 
Education. That’s because exclusive 
schools are, by definition, highly se-
lective—and admitting more students 
would dilute their brands. 

A similar dynamic works in other 
traditional universities, as well. A 
school’s U.S. News & World Report an-
nual ranking depends in part on teach-
er salaries and per-student spending, 
so going online and reducing costs can 
tarnish a school’s image. If public uni-
versities graduate many students who 
have taken online courses, it’s only be-
cause the schools are by far the largest 
sector in American higher education, 
Hentschke says. State funding has kept 
most of them from going online in a 
substantial way, though severe budget 

cover losses from costlier or undersub-
scribed programs, for-profits can aim 
precisely where the money is, focusing 
on degrees in computer science (espe-
cially IT), business, health care, educa-
tion, and other marketable fields.

Most of the students who flock to 
online programs are nontraditional; 
their time and locale is constrained by 
jobs, military service, and dependent 
children. “Online education is not only 
more convenient, but for some stu-
dents it’s the only option they’ve got,” 
says Hentschke. 

Education in computer science is 
a case in point. The National Science 
Foundation wants to increase the num-
ber of advanced placement CS teachers 
to 10,000 by 2015, which is five times 
today’s number. Current undergradu-
ates alone aren’t likely to meet that de-
mand, but by taking online classes after 
work, other candidates, such as math 
teachers, can branch out into teaching 
CS, suggests Mark Guzdial, a professor 
at George Institute of Technology and 
expert in computer science education. 
Similarly, if female managers in tech 
firms hit the glass ceiling in part by not 
finding time to learn the latest tools, as 
an Anita Borg Institute study suggests, 
then being able to take classes from 
home should help close the gender 
gap in upper management. “These two 
audiences are poorly served by face-to-
face CS courses, but may be well served 
by distance learning,” Guzdial says. 

Online education in computer sci-
ence varies in quality, but the range of 
offerings is impressive, covering every-
thing from introductory programming 
and Microsoft certification to gradu-
ate-level courses in database theory, 
network security, and human-comput-
er interaction.

Convenience at a Price
You might expect online courses to 

Society  |  doi:10.1145/1810891.1810899	 Marina Krakovsky

Degrees, Distance,  
and Dollars 
The Internet is making higher education accessible to a whole  
new class of students—but not necessarily at a lower cost.

The range of CS courses offered in online 
education covers everything from 
introductory programming to graduate-level 
courses in database theory.
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also be cheaper, but that is rarely the 
case. Although online students save 
time, living expenses, and transporta-
tion costs, they typically pay at least 
as much in tuition as they would for a 
traditional education. The University 
of Phoenix, for example, charges the 
same for both formats, and accord-
ing to the College Board the average 
sticker price at a for-profit university is 
about $14,000 for the 2009–2010 aca-
demic year. 

Why the high price even online? 
Some education experts contend that 
good instruction is always labor-inten-
sive. “I could set up an online course 
and have a thousand students and 
teach it myself, but what’s the qual-
ity going to be?” says Donald Heller, 
who directs the Center for the Study 
of Higher Education at Pennsylvania 
State University. It is true that tech-
nology enables a small team to design 
a course and a lower-paid army of in-
structors to deliver it, grade papers, 
and interact with students, but that 
is not very different from what tradi-
tional colleges have been doing for 
decades, Heller argues. Diane Harley, 
a University of California, Berkeley 
anthropologist who directs the univer-
sity’s Higher Education in the Digital 
Age research project, agrees. “It’s not 
cheap to produce high-quality online 
courses from soup to nuts,” she says, 
quoting the oft-cited $1 million per 
state-of-the-art course such as those 
produced by Carnegie Mellon Univer-
sity’s Open Learning Initiative.

Nonetheless, because schools 
can add students without erecting 
new buildings, a school’s costs for 
each additional student can be quite 
small—low enough that a company 
called Straighterline profitably sells 
basics on algebra and English com-
position for just $99 per month, plus 
$39 per course. Although it doesn’t 
grant degrees, Straighterline grades 
coursework and issues transcripts that 
students can turn into credits at the 
colleges where they are enrolled.

But this low-priced model remains 
the exception in online education, 
where for a host of reasons schools 
have not passed their savings on to 
students. In fact, sometimes an online 
degree costs more than its brick-and-
mortar equivalent—a price premium 
not just for convenience, but for has-

sle-free admissions, suggests Vicky 
Phillips, founder and chief analyst of 
GetEducated.com, a watchdog group 
for online learning. “People research 
schools with online MBA programs 
and find out that Indiana University 
has a price that’s one-third of the Uni-
versity of Phoenix’s price, and then 
they find out they have to take the GRE 
and GMAT and 12 prerequisite courses 
[for Indiana University]. Welcome to 
the age of ‘I’m not going to do it.’ ”

The ease of enrolling with little 
more than a credit card may bring to 
mind diploma mills and doubts about 
credibility with employers, but that is 
less a concern for many of the students 
who seek their education online. “If I 
grew up in southern rural Indiana, if I 
say, ‘I have an MBA,’ I’m going to blow 
people away. They don’t care where 
that degree came from,” says Phillips. 
And in a market where objective mea-
sures of educational quality are hard to 
come by, consumers look to price as a 
signal of quality. 

High prices, oddly enough, also 
keep students enrolled. “If it’s too 
cheap, the school risks losing its ac-
creditation,” says Eric Bettinger, as-
sociate professor of economics and 
education at Stanford University’s 
Graduate School of Business. That’s 
because low prices make it more 
tempting for students to drop out, and 
high drop-out rates are a red flag to 
regional accrediting bodies. Some ex-
perts believe that Pell Grants, military 
subsidies, and other federal student 
aid, all of which for-profit schools urge 
students to pursue, have also inflated 
the price of online schooling. 

The Future of Higher Ed
Despite their rapid growth, the for-
profits are not giving traditional uni-
versities a run for their money just 
yet. Most students still prefer face-
to-face contact and a well-recognized 
credential. Unlike print newspapers, 
whose survival the Internet has helped 
endanger, traditional colleges offer 
much more than information. The 
schools that are not secure have more 
impetus to go online, says GetEducat-
ed.com’s Phillips, is “this vast waste-
land of private mediocre schools.” She 
cites schools like Michigan’s Baker 
College, which has historically catered 
to the auto industry. With this local 

customer base eroding, Baker needed 
to extend its geographic reach to stay 
in business. But, as Phillips puts it, 
“the problem with the Internet is the 
whole world is your marketplace—and 
it’s also your competition.” 

Specialization can make it easier to 
compete. By offering classes online, 
USC’s School of Gerontology, for ex-
ample, can attract a large number of 
students even to a niche program for 
managers of nursing homes. Similar-
ly, Penn State Online offers a master’s 
degree in homeland security. Indeed, 
whereas only about 33% of providers  
of bachelor’s degree programs sur-
veyed by the Sloan Consortium said 
that online education is critical to 
their school’s long-term strategy, 
nearly two-thirds of master’s, doc-
toral, and specialized programs said 
so. All that shows the Long Tail is at 
work in higher education, and, says 
Hentschke, that tail will only get lon-
ger. “The model of the 18- to 22-year-
old going to a residential campus like 
USC and watching football games and 
that kind of stuff will be around for 
along time,” he says, “but the demand 
for other models is coming from lots 
of other areas and demographics.”	

Further Reading

Allen, E. and Seaman, J. 
Learning on Demand: Online Education in 
the United States, 2009. Babson College and 
The Sloan Consortium, 2009.

Bramble, W.J. and Panda, S.K. 
Economics of Distance and Online Learning: 
Theory, Practice, and Research. Routledge, 
New York, NY, 2008.

Carey, K. 
College for $99 a month, Washington 
Monthly, September/October 2009.

Kumar, A.N. 
The effect of using problem-solving 
software tutors on the self-confidence of 
female students, Proceedings of the Thirty-
Ninth Special Interest Group on Computer 
Science Education, March 12–15, 2008, 
Portland, OR.

Tierney, W.G. and Hentschke, G.C. 
New Players, Different Game: Understanding 
the Rise of For-profit Colleges and 
Universities. Johns Hopkins University 
Press, Baltimore, MD, 2007.

Based in the San Francisco area, Marina Krakovsky is co-
author of the forthcoming Secrets of the Moneylab: How 
Behavioral Economics Can Improve Your Business.
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A
lthough China-based com-

puter professionals author 
numerous papers for inter-
national journals and con-
ferences each year, their 

opportunities are limited by language 
barriers and a lack of international con-
tacts. At the same time, few outside of 
China are aware of the variety of com-
puter science developments inside the 
country’s borders. Each year sees thou-
sands of papers published only in Chi-
nese by researchers who are unable to 
travel to international conferences, so 
their findings are all but locked off from 
the international community.

ACM hopes to help change that 
with the launch of ACM China, whose 
20-member Council held its first meet-
ing in June. ACM China’s full launch, 
which is expected later this year, will 
culminate years of effort to give greater 
access and exposure to Chinese com-
puter professionals.

China is the latest of three areas 
outside the U.S. to start an ACM Re-
gional Council in the past year. The 

ACM Europe Council launched in Oc-
tober 2009, and the ACM India Council 
launched in January 2010. But ACM’s 
efforts to grow the organization beyond 
national borders go back 20 years. “We 
started encouraging our SIGs [Special 
Interest Groups] to hold conferences 
outside the U.S. around 1990, when 
ACM was viewed as a purely American 
organization,” says ACM Executive Di-
rector and Chief Executive Officer John 
White. “More recently, we’ve made 
an effort to have non-U.S. computer 
scientists in positions of leadership 
throughout the entire organization.”

The selection of Council members 
was especially critical in China, where 
leadership reputation is highly valued. 
ACM China was fortunate to enlist Jia-
guang Sun, computer science profes-
sor and vice president of the National 
Natural Science Foundation of China, 
as the Council’s chair. 

“Once Dr. Sun agreed to help, things 
progressed very rapidly,” recalls Vin-
cent Yun Shen, professor emeritus of 
the computer science department at 

the Hong Kong University of Science 
and Technology. “That’s how Chinese 
people do business. You have to get the 
right person to lead a project—some-
one with credibility. When people 
learned that Dr. Sun was involved, they 
said, ‘This guy is successful, so align-
ing with him is a good thing.’ ”

But establishing ACM China among 
Chinese computer professionals won’t 
be easy. According to Yunhao Liu, as-
sociate professor in the department of 
computer science at Hong Kong Univer-
sity of Science and Technology, many of 
them “don’t know that IEEE and ACM 
are different organizations.” (Chinese 
membership in ACM is currently below 
2,500.) Liu believes the twin keys to suc-
cess are effective promotion, and coop-
eration with the 15,000-member China  
Computer Federation (CCF).

“CCF has a dominant position 
among computer societies in China,” 
says Liu, “while few computer scien-
tists here realize that ACM sponsors 
the famous Turing Award! But CCF’s 
resources are limited when compared 
to ACM, which is international. ACM is 
looking forward to close cooperation 
with CCF and other organizations in 
China.” ACM expects its selections for 
ACM China’s Council to pave the way  
in building a relationship with CCF, as 
all but three of them are members of 
the CCF board or CCF senior members.

With eminent Chinese computer 
professionals leading the charge, Liu 
believes the time is right for ACM to en-
ter China. “You have to get people who 
have been working in China already, 
and I think Dr. White made the right 
decisions,” Liu says. “That’s why I have 
every confidence that it will be very suc-
cessful.”	

Tom Geller is an Oberlin, OH-based science, technology, 
and business writer.

© 2010 ACM 0001-0782/10/0900 $10.00

ACM China  
Nearing Launch
ACM’s expansion into China will support local professionals and 
increase Chinese involvement in ACM’s international activities.

Regional Councils   |  doi:10.1145/1810891.1810900	 Tom Geller

The ACM China Council meets with ACM COO Pat Ryan and CEO John White (first row, second 
and fifth from left, respectively) and President Dame Wendy Hall (first row, fourth from left). 
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T
h e  I n a mo  r i  F ou  n d a t i o n , 
ACM, and IEEE recently rec-
ognized leading computer 
scientists for their research 
and service.

Kyoto Prize
László Lovász, who is director of the 
Mathematical Institute at Eötvös 
Loránd University, has been awarded 
the 26th Annual Kyoto Prize in Basic 
Sciences from the Inamori Founda-
tion. Lovász is being honored for his 
outstanding contributions to the ad-
vancement of both the academic and 
technological possibilities of the math-
ematical sciences.

Lovász has solved several monu-
mental problems, but is perhaps best 
known for the Lovász local lemma, in 
which he provides a fundamental prob-
abilistic tool for the analysis of discrete 
structures, and contributes to the cre-
ation of a framework for probabilisti-
cally checkable proofs. The basis algo-
rithm, commonly known as the “LLL 
algorithm,” has also contributed to the 
construction of important algorithms, 
and has become a fundamental tool in 
the theory of cryptography.

ACM Awards
Radia Perlman, an Intel Fellow, has 
been awarded the highest honor from 
ACM’s Special Interest Group on Data 
Communications (SIGCOMM) for pio-
neering contributions to Internet rout-
ing and bridging protocols. SIGCOMM 
cited Perlman for her work on span-
ning tree bridging algorithms and link 
state routing algorithms, advances that 
have made the Internet more scalable 
and robust. To this day, both of these 
algorithms are used in most Internet 
switching devices.

Christos Faloutsos, a professor at 
Carnegie Mellon University, received 
the 2010 Innovation Award from the 

Special Interest Group on Knowledge 
Discovery and Data Mining (SIGKDD) 
for his contributions to key discov-
eries in time series database analy-
sis, Internet topology, and Internet 
auction fraud detection. Faloutsos’ 
cross-disciplinary works on power-law 
graphs, fractal-based analysis, time 
series, multimedia, and spatial index-
ing are among the most referenced in 
industry and academic publications. 
SIGKDD also presented the 2010 Ser-
vice Award to Osmar R. Zaïane, a pro-
fessor at the University of Alberta, for 
his dedication to promoting the de-
velopment of the global KDD commu-
nity. Zaïane has been furthering data 
mining through active participation 
in other industry associations and 
driving the development of interna-
tional communities dedicated to the 
advancement of KDD.  

IEEE Awards
IEEE recently paid tribute to leaders in 
technology at its 2010 Honors Ceremo-
ny. Among the awards recipients are: 

Vinton G. Cerf, vice president and 

chief Internet evangelist for Google, 
HKN Eminent Members Recognition; 

N.R. Narayana Murthy, chairman 
and chief mentor at Infosys Technolo-
gies, Ltd., IEEE Honorary Membership;

Barry Boehm, founding Director 
Emeritus of the University of Southern 
California Center for Systems and Soft-
ware Engineering, Simon Ramo Medal;

John Hopcroft, IBM Professor of En-
gineering and Applied Mathematics at 
Cornell University, and Jeffrey D. Ull-
man, Stanford W. Ascherman Profes-
sor of Computer Science (Emeritus) 
at Stanford University, John von Neu-
mann Medal;

Ronald W. Schafer, HP Fellow in the 
Multimedia Communication and Net-
working Laboratory at Hewlett-Pack-
ard Laboratories, Jack S. Kilby Signal 
Processing Medal;

Whitfield Diffie, visiting scholar at 
Stanford University, Martin E. Hell-
man, Professor Emeritus of Electrical 
Engineering at Stanford University, and 
Ralph C. Merkle, senior research fellow 
at the Institute for Molecular Manufac-
turing, Richard W. Hamming Medal;

Randy Howard Katz, United Micro-
electronics Corporation Distinguished 
Professor in Electrical Engineering 
and Computer Science at the Univer-
sity of California, Berkeley, James H. 
Mulligan, Jr., Education Medal;

Stephen Deering, retired, Internet 
Award;

Larry Peterson, Robert E. Kahn Pro-
fessor of Computer Science at Princ-
eton University, Koji Kobayashi Com-
puters and Communications Award; 

Toshio Fukuda, professor in the De-
partment of Micro-Nano Systems Engi-
neering at Nagoya University, Robotics 
and Automation Award. 	

Jack Rosenberger is Communications’ senior editor, 
news.

© 2010 ACM 0001-0782/10/0900 $10.00
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Other CS Awards  
László Lovász, Vinton G. Cerf, and other researchers  
are honored for their contributions to computer science.

Kyoto Prize winner László Lovász
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I
n  a  p r e v i ous    column,a I not-
ed that many organizations 
do not seem to explicitly cal-
culate the “cost of risk” on 
their projects. Companies 

may acknowledge risk, identify risk 
items, implement risk management 
programs, track risk indicators, and 
adjust project management actions to 
mitigate risk. But they often don’t ac-
tually compute how much of it there is 
and what it will likely cost them.

Even businesses such as insur-
ance companies for whom risk quan-
tification is a core competency often 
fail to assess the cost of the risk they 
are taking on when they run software 
projects. This apparently unconscious 
failure to numerically deal with a criti-
cal item of business knowledge seems 
to extend to other disciplines too. A 
while ago I came across a financial ser-
vices company that was routinely per-
forming a quite incorrect calculation 
of ROI on its software projects.

Straight-line ROI
Imagine a project with an expected cost 
of (say) $1 million and an expected re-
turn of $1.1 million. Ignoring issues of 

a	 P.G. Armour, “Mortality Play,” Commun. ACM 
50, 3 (Mar. 2007), 15–18.

inflation, cost of capital, and alterna-
tive investment profits, the ROI for this 
project appears to be 10%. This project 
should produce a $100,000 return on 
a $1 million investment. In my experi-
ence, this is the most common calcula-

tion performed by companies on most 
internal development projects. More 
correctly, it is the calculation done by 
those companies that actually do esti-
mate their ROI; there are many compa-
nies that don’t do it at all or do a very per-

The Business of Software   
Return at Risk 
Calculating the likely true cost of projects. 

doi:10.1145/1810891.1810902	 Phillip G. Armour 
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functory job of it when they do. But that 
is a topic for another day. This simple 
arithmetic could be called a “straight-
line ROI.” It is simply the expected re-
turned value divided by the expected 
cost. It is a simple calculation, easy to 
compute and to understand. But, in 
most cases, it is also wrong.

The Role of Risk
The reason why straight-line ROI is 
wrong for most projects is simply that 
it does not account for risk. The return 
computed using the above straight-
line ROI calculation will be true only if 
there is:

˲˲ 100% guarantee of cost contain-
ment at $1 million—that is, the project 
has no cost risk, the project cannot/will 
not run over or under in budget.

˲˲ 100% guarantee of value returned 
at $1.1 million—the project has no re-
turn risk, the return is fixed and invari-
able no matter what happens to the 
project.

These are the necessary conditions 
for the calculation to be valid. There 
are conditions where the cost risk and 
value risk cancel out and the calculated 
return ends up at 10%. For instance, if 
a project overruns on cost but is able 
to recoup more value than expected, 
it may cancel out the budget overrun. 
Note, this does not mean the calcula-
tion is correct, simply that the project 
was “lucky”b in that the inaccuracies 
happened to be equal and opposite.

The moment we introduce risk, the 
straight-line ROI calculation does not 
work. If we only have a 20% probability 
of cost containment at $1 million, giv-
en a typical set of project conditions, 
the ROI is not a positive 10%, it is more 
like a negative 18% (!)

Stocks and Bonds
This is true in other disciplines. Eq-
uities typically carry more risk than 
government, municipal, or corporate 
bonds so we expect higher return to 
compensate us for the risk. Bonds are 
safer, so we are content with less in-
come because the downside is more 
controlled. A less sophisticated finan-
cial consultant may show a customer 
what savings might be achieved over 
time based on the average returns of 
the stock market. The U.S. stock mar-
ket has realized approximately 9% av-
erage annual gains over the last 100 
years or so (depending on the index 
used and whether returns are com-
pounded). Showing a potential inves-
tor a nice straight line of ever-increas-

b	  This is similar to the “lucky” (as opposed to 
“accurate”) estimate described in P.G. Ar-
mour, “Truth and Confidence,” Crosstalk 
(Apr. 2008), 27.

ing wealth is more a sales gimmick 
than a realistic prediction of return 
since it does not account for risk. Sim-
ilarly, calculating the likely return for 
a software project without accounting 
for risk is bogus.

The financial services company I 
mentioned would not dream of using 
a straight-line return calculation for 
its investments but, like the insurance 
company that did not calculate cost of 
risk, it blithely performed the wrong 
calculation on its internal projects. 
And it wondered why it got blindsided 
by failure to achieve returns on most of 
its projects.

Risk-Weighting
To more correctly calculate the true 
likely return we must incorporate the 
cost of risk and its counterpart—what 
we could call the value at risk. Re-
cently, financial markets have shown 
what failure to properly account for 
risk does to one’s investment, either 
through not including risk in the cal-
culation or having the risk hidden in-
side complex derivatives. It is very im-
portant that we learn from this in the 
business of software by performing 
the right calculation.

There are six elements to comput-
ing return at risk:

˲˲ The expected cost of the project
˲˲ The likelihood of achieving that 

expected cost
˲˲ The risk profile or “shape” of the 

cost risk distribution
˲˲ The expected returned value of the 

project
˲˲ The likelihood of achieving that 

value
˲˲ The value profile or “shape” of the 

value distribution

The reason why 
straight-line ROI 
is wrong for most 
projects is simply  
that it does not 
account for risk.

Figure 1. Straight-line ROI.
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Figure 3. Cost profiles. 
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Figure 4. Value profiles.
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Expected Cost/Value
These are typically calculated using 
traditional estimation approaches. 
The cost components may be assisted 
by estimation tools. The value side is 
usually calculated using some internal 
assessment of operational cost con-
tainment, market expansion, revenue 
return, and the like. Neither of these 
processes is particularly easy, but they 
are quite well-defined.

Likelihood of Cost/Value
These can be computed using tech-
niques such as Monte Carlo analysis 
operating on the ranges of key variables 
that contribute to the cost (or value). 
There are tools available that can per-
form these calculations easily.c More 
sophisticated financial planners will 
typically use this approach when laying 
out projections for their customers.

Shape of Risk/Value
This is a complex subject, the detail of 
which is beyond the scope of this col-
umn. The “shape” of risk/value is driv-
en by the expected likelihood of costs 
and value over- or underrunning. The 
mistake the straight-line ROI makes it 
is assumes the risk profile looks like 
Figure 1. This probability distribution 
shows there is one and only one likeli-
hood of a result. The chart shows the 
cost (or delivered value) of the project 
is 100% guaranteed at the expected 
value. This means the project is carry-
ing no risk. It also means the project 
has no unknown factors or variables 
that affect cost or value. Such projects 
do not exist in the real world.

c	 For example, the The SLIM-Estimate tool, 
marketed by QSM Inc., McLean, VA, can quote 
explicit cost of risk.

Risk is always paid 
for somewhere:  
in the stock market, 
in insurance 
underwriting, and in 
software projects.

The simplest and most common 
probability distribution is the Gauss-
ian (see Figure 2). With this distribu-
tion the likelihood of over- or under-
running budget (or value) from the 
midpoint “most likely” is equal. While 
cost and value distributions are rarely 
symmetrical in real life, this can be a 
useful distribution provided the “ex-
pected” cost or value is set off-center. 

Cost profiles usually look some-
thing like the curve shown in Figure 3. 
The distribution shows there is much 
more likelihood of the project overrun-
ning its budget than there is in under-
running. Unless the likelihood of cost 
containment is very high (the project’s 
expected cost is set to the right of the 
midpoint on the x-axis) this project is 
carrying a high cost of risk.

Value profiles (see Figure 4) are 
often the reverse of the cost profiles. 
In general, experience shows we are 
more likely to underachieve our value 
goals than we are to overachieve them. 
Therefore, to better guarantee returns 
we would need to have our expected 
value moved to the left (we expect low-
er value delivered) of the midpoint.

Using these models, we can calcu-
late a risk-weighted return for our proj-
ects and either choose not to carry such 
a high risk or to more realistically re-
source our projects based on the chal-
lenges they are likely to experience.

Real Return
The difference between straight-line 
return and risk-weighted return is 
simply the aggregate cost of risk as ex-
pressed in the likelihood of a project 
both running over budget and under-
achieving in the value it delivers. Risk 
is always paid for somewhere: in the 
stock market, in insurance underwrit-
ing, and in software projects. It seems 
that few companies perform this kind 
of calculation, even when it is one of 
their core competencies—which is 
odd to say the least. In the business 
of software, we can’t complain about 
our performance if we resource our 
projects but don’t quantify and re-
source the risk on the projects. When 
that risk comes home—and it will—
our projects will fail. And they do.	

Phillip G. Armour (armour@corvusintl.com) is a senior 
consultant at Corvus International Inc., Deer Park, IL. 

Copyright held by author.
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I
n the United States as in many 
countries, the software industry 
is increasingly important. Pro-
prietary and open source soft-
ware powers items as diverse 

as PCs and refrigerators, and controls 
systems as vital as missile defense and 
the utility grid. Many software vendors’ 
principle source of revenue comes from 
licensing their code to businesses and/
or consumers. Others use software as 
a means to drive demand for another 
money-making product like services. In 
any event, no one seriously questions 
software’s place in the economy or its 
importance to modern life. It may be 
somewhat surprising then that the law 
of software transactions in the U.S. has 
not been uniform. In Europe, Europe-
an Union directives,a such as Council 
Directive 2009/24/EC of 23 April 2009 
on the legal protection of computer 
programs (EU Directive) (replacing the 
former directive from 1991), helpfully 
set forth basic principles. In the U.S., 
courts look to the common law of con-
tract (that is, the decisions of courts) or 
the Uniform Commercial Code (UCC) 
(a statute enacted by each state) for the 
rule of decision, and must also con-
sider other sources such as consumer 
protection law and federal intellectual 
property law. Contract law and consum-
er protection law can vary by state and 

a	 EU directives consist of legislation that di-
rect member states to promulgate rules 
to realize a particular goal. See Wikipedia, 
available at http://en.wikipedia.org/wiki/Di-
rective_(European_Union)

interpretations of the UCC and federal 
law can also be inconsistent. Although 
this variation characterizes the U.S. ap-
proach to much of its law, software’s 
unique attributes and importance to 
the economy make legal uniformity 
and clarity particularly important. 

Against this background, the Ameri-
can Law Institute (ALI), a law-reform 
organization in the U.S.,b undertook a 
project to analyze the area of software 
contracting and to set forth principles 
that a court could adopt as the rule of 
decision in a case before it. This effort 
produced the Principles of the Law of 
Software Contracts, a volume that we 
drafted and that underwent extensive 
review over a five-year period. The Prin-

b	 For information about the ALI, see, see http://
www.ali.org/index.cfm?fuseaction=about.
overview

ciples address a set of topics impor-
tant to software transactions—some 
unique to the software context, others 
not. We discuss briefly here just a few 
of the more important or controversial 
provisions and recommend that in-
terested readers refer to the complete 
work for more information.

Scope
The first question the Principles faced 
was how to define the transactions to 
which they applied. The Principles in-
tentionally define their scope narrowly 
to software as traditionally understood. 
As drafters, we understood the danger 
of over-inclusiveness: In particular, we 
wished to avoid the trap of including 
all types of digital information within 
our project’s scope. As a result, digital 
media and digital databases are not 
part of the project. 

Even with this narrow approach, 
questions remained. The Free Soft-
ware Foundation, at least until the 
release of Version 3.0 of the General 
Public License (GPL), maintained that 
open source licenses akin to the GPL 
were not contracts under U.S. law, 
but rather were mere copyright per-
missions. We disagreed, arguing that 
under U.S. law as traditionally under-
stood, most open source licenses are 
indeed contracts because they are in 
the nature of an exchange between 
the provider and user. The Principles 
therefore apply to open source agree-
ments with exceptions and specific 
provisions where necessary. 

Law and Technology  
Principles of the Law 
of Software Contracts
An overview of a new set of legal principles for software  
contracts developed by the American Law Institute.

doi:10.1145/1810891.1810903	 Robert A. Hillman and Maureen A. O’Rourke
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Relationship to Intellectual 
Property Law, Public Policy, 
and Unconscionability
In the U.S., software agreements as con-
sensual transactions implicate contract 
law, which is primarily the province of 
the states. Software, of course, can be 
protected by federal intellectual prop-
erty rights, including copyright and pat-
ent. Questions can arise whether a state 
court may enforce provisions under its 
contract law that provide greater rights 
or restrict limitations that federal intel-
lectual property law would grant in the 
absence of the parties’ agreement.

Here, as in many areas, the Prin-

ciples take the general position that 
parties are free to contract as they see 
fit. The Principles, however, note that 
courts must be particularly attentive 
to provisions affecting federal intel-
lectual property rights in the case of 
boilerplate standard forms. Especially 
because of the take-it-or-leave-it nature 
of such forms and the tendency of con-
sumers and others to fail to read them, 
the federal interest in state non-inter-
ference with the intellectual property 
system is at its height. 

For example, many boilerplate 
agreements include a provision against 
reverse engineering. Under both the 
Uniform Computer Information Trans-
actions Act (UCITA) and the EU Direc-
tive, such provisions are unenforceable 
in certain circumstances.c However, 
the Principles opt to direct courts to 

c	 UCITA was an attempt by a private U.S. orga-
nization, the National Conference of Commis-
sioners on Uniform State Law, to promulgate 
a uniform law governing “information” trans-
actions. It met with much opposition, in part 
because of its perceived business orientation, 
and only two states have adopted it. Generally 
UCITA and the EU Directive preclude enforce-
ment of a provision against reverse engineer-
ing if necessary to obtain information for in-
teroperability purposes.

consider all facts and circumstances, 
including whether the ban on reverse 
engineering is in a standard form, rath-
er than adopting a blanket rule.

Many legal doctrines in the U.S. take 
a similar contextual approach. Some 
police contractual provisions for fair-
ness in their formation and substance 
or for their effect on third parties. In 
this regard, the Principles include sec-
tions on unconscionability and public 
policy. Here again, the Principles do 
not set forth a list of suspect or unen-
forceable terms. Instead, they take the 
traditional U.S. approach of consider-
ing the context. But the Principles pro-
vide extensive comments about the na-
ture of reasonable contract-formation 
processes and the fairness of substan-
tive terms to guide courts in their con-
textual approach.

Implied Warranty of No 
Material Hidden Defects
The Principles clarify warranty law 
that has become muddled particularly 
under the UCC. For example, in the 
Principles, the creation of an express 
warranty and whether it is disclaimed 
depend respectively on whether a rea-
sonable person could rely on the rep-

The Principles opt 
to direct courts to 
consider all facts 
and circumstances, 
rather than adopting 
a blanket rule.
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resentation and whether a reasonable 
person would be surprised by the dis-
claimer. One warranty provision, how-
ever, has been controversial. Section 
3.05(b) provides that a party who trans-
fers software and receives money or a 
monetary obligation in return warrants 
“that the software contains no material 
hidden defects of which the transferor 
was aware at the time of the transfer.” 

Software providers objected to this 
provision as inconsistent with cur-
rent law and likely to increase litiga-
tion. They also believe the warranty 
should be disclaimable. However, 
the rule merely codifies U.S. contract 
law’s duty to disclose and obligation 
of good faith and tort law’s fraudulent 
concealment principle. Further, the 
material-hidden-defect rule should 
not be difficult to administer. It de-
fines a material defect as one that con-
stitutes a material breach of the agree-
ment. As such, the rule draws on the 
well-rehearsed material breach doc-
trine of U.S. law. Additionally, a hid-
den defect is one the provider knows 
about but would not surface upon any 
testing that was or should have been 
performed by the user. Disclosure of 
the defect occurs when a reasonable 
user would understand the existence 
and nature of the defect. As the Prin-
ciples point out, providers that do 
not engage in concealment should 
have little to fear from this rule. But 
contract law should not support a 
provider’s strategy to foist a product 
known to be materially defective on 
to a user without providing that user 
with a remedy for potentially signifi-
cant losses. Providers can insulate 
themselves from liability by disclos-
ing material defects in their software. 

Automated Disablement
Another section that exposed conflict-
ing views governs automated disable-
ment. Automated disablement refers to 
a provider’s use of electronic means to 
disable or materially impair the func-
tionality of software such as by building 
in a “time bomb” or accessing the us-
er’s system remotely to disable certain 
software.d The Principles severely limit 

d	 If a user accesses a provider’s software by con-
necting to software resident on the provider’s 
system, failure of the provider to grant access 
is not considered an automated disablement.

the use of automated disablement as a 
remedy for breach: It is unavailable at 
all in the case of a consumer transac-
tion or a standard-form transfer of gen-
erally available software. Additionally, 
the term authorizing automated dis-
ablement must appear conspicuously 
in the agreement, the party seeking to 
employ automated disablement must 
provide notice and an opportunity to 
cure to the user, and the provider must 
obtain a court order before disabling 
the software. These obligations are not 
disclaimable and damages for their 
breach may not be limited.

Particularly those software provid-
ers marketing to large, knowledge-
able, well-informed commercial par-
ties objected to the restrictions placed 
on automated disablement as too 
onerous and an unwarranted intru-
sion on freedom of contract. They also 
objected to the non-disclaimable na-
ture of the obligations and inability to 
limit damages.

The commentary to the automated 
disablement section recognizes both 
these concerns and the historical na-
ture of the debate. Software providers 
argued that automated disablement 
is necessary to prevent ongoing mis-
use of the software or a continuing 
breach that is causing damages to ac-
cumulate without any real possibility 
the provider will ever be made whole. 
Users argue that breach is highly con-
textual and a wrongful denial of use 
may cripple a business and/or harm 
software not even implicated in the 
dispute. Moreover, allowing provid-
ers to leave a “back door” open to 
permit automated disablement pos-

es real security risks. Automated dis-
ablement is so controversial that, as 
recently as 2002, UCITA prohibited 
its use.

We believe our approach to auto-
mated disablement presents a reason-
able balance between the conflicting 
interests. Even when commercial enti-
ties negotiate contracts, one side may 
overreach. Firms using software are not 
monolithic—many are small firms that 
cannot afford to hire lawyers to negoti-
ate complex provisions. These firms are 
more akin to consumers than to large 
businesses. It is better to provide pro-
tections to all firms rather than trying 
to distinguish between those that are 
knowledgeable and informed and those 
that are not.

What’s Next?
The Principles, of course, contain many 
other provisions, including standards 
for enforcement of online contracts, 
which we do not have space to discuss 
here. Rather, we would simply empha-
size a few points:

˲˲ The Principles were the result of a 
five-year drafting process that included 
input from both users and providers 
of software. There were many conten-
tious issues on which both constituen-
cies would never agree. In such cases, 
we made difficult choices informed by 
the legitimate points raised by both 
sides. We are not surprised the result 
sometimes makes neither side happy.

˲˲ The Principles are not the law of 
the U.S. or any particular state in the 
U.S. One or more of their provisions 
would become law if a court in a con-
crete case chose to adopt them as its 
rule of decision.

˲˲ The Principles address both top-
ics that are unique to software and 
those that are not. Their applicabil-
ity is limited to their scope. To the 
extent, however, that courts or com-
mentators find their approach useful 
outside of the software context, we 
would welcome their use by analogy 
in other areas.�

Robert A. Hillman (rah16@cornell.edu) is the Edward H. 
Woodruff Professor of Law at Cornell Law School, Ithaca, 
NY, and was the Reporter of the Principles of the Law of 
Software Contracts. 

Maureen A. O’Rourke (morourke@bu.edu) is Dean, 
Professor of Law, and Michaels Faculty Research Scholar 
at Boston University School of Law, Boston, MA, and was 
the Associate Reporter of the Principles.
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efend our networks!”  is 
the new rallying cry in a time 
of rising concerns over cyber 
vulnerabilities. Malware, 
Trojan horses, computer 

system weaknesses, network vulner-
abilities, intrusions, data theft, identity 
theft, malicious botnets, and critical in-
frastructure protection are under con-
stant discussion. Computing profes-
sionals are called on daily to help with 
these problems. Cyber defense is the 
topic of hundreds of conferences and 
research papers every year.

By contrast, cyber attack, the flip 
side of defense, has been a touchy sub-
ject. Many people feel queasy when 
they hear their governments want to be 
in a position to launch cyber attacks. 
Most public discussions of cyber attack 
tend to focus on the “bad guys” (unau-
thorized individuals with malicious 
intent) who launch the attacks and the 
methods they use—all for the purpose 
of developing better defenses. Govern-
ments are quiet about not only their 
cyber attack methods and operations, 
but also the policies they follow. This 
secretiveness has fueled many fears 
that governments are up to things the 
citizens would disapprove.

Yet there is a growing international 
public discussion on cyber attack, pro-
moted in part by reports of government 
activity in the area. The U.S. Depart-
ment of Defense established the U.S. 
Cyber Command earlier this year to co-
ordinate the cyber defense of military 
networks and to direct military cyber 

attacks. Other militaries are doing the 
same. Security experts Richard Clarke 
and Robert Knake believe that cyber 
attacks and cyber war are already un-
der way.1 Massive denial-of-service at-
tacks against government sites in Es-
tonia in 2001 and Georgia in 2008 led 
to charges that Russia was engaging 
in cyber warfare. China was blamed 
for infiltrating and stealing sensitive 
data from Google’s network and other 
targets in 2009. Many believe that cy-
ber espionage by government intelli-
gence agencies is widespread.

There is an important role for com-
puter professionals in the discussions 
and other activities in this area. To 

point the direction, we will use a re-
cent report on cyber attack from the 
National Research Council.3 The re-
port, which addresses the technical, 
policy, legal, and ethical dimensions 
of cyber attack, makes important dis-
tinctions that are useful to frame the 
discussion. While written for the U.S., 
it discusses the issue in a way that re-
lates to many countries.

Cyber Attack and Exploitation
Cyber attack refers to deliberate 
actions against data, software, or 
hardware in computer systems or 
networks. The actions may destroy, 
disrupt, degrade, or deny access. 

doi:10.1145/1810891.1810904		  Peter J. Denning and Dorothy E. Denning

The Profession of IT 
Discussing  
Cyber Attack 
Cyber attack—the other side of cyber defense—deserves  
a more open discussion than it has been getting.

Defense Secretary Robert Gates addresses the audience with Gen. Kevin Chilton, commander, 
U.S. Strategic Command, and Gen. Keith Alexander, commander, U.S. Cyber Command, during 
the activation ceremony of U.S. Cyber Command on Fort Meade, MD, May 21, 2010.
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Many governments’ militaries and in-
telligence agencies are actively prepar-
ing to engage in cyber attacks, perhaps 
in conjunction with conventional at-
tacks or counterattacks.

Cyber exploitation is another 
term in the discussions. It refers to 
intelligence-gathering rather than 
destructive activities. Cyber exploita-
tion usually seeks the least intrusive, 
least detectable interventions into 
computing systems. The purpose is 
to acquire data without being seen or 
getting caught. Exploitation also re-
fers to forensic recovery of data from 
discarded (or captured) laptops and 
storage media.

Both attack and exploitation re-
quire three things: access to a system 
or network, vulnerabilities in the ac-
cessed systems, and a payload. The 
access might be remote through the 
Internet or close-in through physical 
access. Vulnerabilities can appear in 
hardware, software, hardware-software 
interfaces, communication channels, 
configuration tables, users, and service 
providers. The payload is a program 
that performs actions once a vulner-
ability has been found and exercised. A 
payload might be a bot, data monitor-
ing program, virus, worm, spyware, or 
Trojan horse; and it is likely to have re-
mote access to the attacker’s commu-
nication channels. The difference be-
tween attack and exploitation depends 
on the actions of the payload. An attack 
payload is destructive, an exploit pay-
load is nondestructive. Often the dif-
ferences are so subtle that the victim 
of a cyber operation may not be able to 
tell as it is happening which it is.

Cyber attack and exploitation are 
tools used in the service of larger ends. 
They offer a new range of capabilities 

to government that can be more hu-
mane and less collaterally damaging 
than their traditional “kinetic” prede-
cessors. For example, a military opera-
tion may depend on disabling an adver-
sary’s radars scattered around a city; if 
a cyber attack could disable the radars, 
there would be no need to bomb the in-
stallations and suffer all the collateral 
damage those bombings would entail. 
An intelligence operation that can steal 
files remotely avoids risking the lives of 
its secret agents. However, people who 
would accept these ends might also 
worry about the same tools being used 
for other ends, such as a government 
agency spying on its citizens.

The NRC report discusses the tech-
nical, policy, and social aspects of cyber 
attack and exploit. It identifies compli-
cated issues that must be resolved in 
such areas as the law of armed conflict, 
deterrence, and the dynamics of cyber 
attack. While the principles underlying 
the United Nations charter on the use 
of force and armed attack offer a good 
starting point for an international re-
gime governing cyber attacks, they are 
difficult to apply to many cyber attacks. 
Traditional policies of deterrence by 
threat of overwhelming response are 
problematic in cyberspace because 
of the extreme difficulty of accurately 
identifying perpetrators. The dynamics 
of cyber attack are also poorly under-
stood, including how to keep a cyber 
conflict from escalating out of control 
and how to terminate cyber conflict. 
The report recommends that these and 
other issues be discussed in an open, 
public debate.

The Need for Technical Expertise
It’s tempting for us to say that these 
issues look primarily legal, ethical, or 
political, and that we should let law-
yers, ethicists, and politicians look af-
ter them. That reasoning is unsound. 
Computing technologies open many 
options and complexities that more 
casual users do not appreciate. Com-
puting professional advice on the ca-
pabilities and limits of the technology 
is crucial to the formulation of sound 
policies, as well as the development of 
tools for attack, exploit, and defense.

A significant example of this oc-
curred in 1985 when the U.S. govern-
ment undertook the Strategic Defense 
Initiative (SDI), an automated missile 
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defense system. Many computing peo-
ple initially declined to join the debate 
because they believed it was inher-
ently political and they had little to of-
fer. That changed with David Parnas’s 
remarkable Communications article, 
“Software aspects of strategic defense 
systems,”4 which set out for the first 
time the scientific framework of soft-
ware engineering. Parnas showed that 
software engineering at the time was 
not capable of producing reliable con-
trol systems for missile defense. After 
that many computing professionals 
joined the debate to add their own ex-
perience and expertise with unreliable 
large, complex systems.

There are several other examples 
where political and legal issues depend-
ed on an understanding of the limits of 
computing technology, and computing 
professionals made important contri-
butions to the debates. These included 
the move toward e-voting, cryptogra-
phy policy, architecting the Internet for 
strong authentication, technologies to 
improve or impede anonymity, propos-
als to charge postage on email to stop 
spam, and network neutrality.

Cyber attack is on par with the stra-
tegic defense issue. The complex and 
subtle issues of cyber attack cannot 
be adequately resolved unless experts 
knowledgeable in the workings and ca-
pabilities of information technologies 
participate actively in the discussions. 
Some of the areas where technical ex-
pertise is essential include:

˲˲ Advancing the capabilities for rap-
id attribution—determining who insti-
gated an attack so as to enable a timely 
and precise response.

˲˲ Understanding and measuring 

both direct and indirect effects of cy-
ber attacks; assessing damages related 
to direct and indirect effects of cyber 
attacks.

˲˲ Determining whether a cyber op-
eration is an attack or exploitation—or 
generally inferring intent.

˲˲ Trying to understand, through 
war game simulations, how social 
and technical systems in the Internet 
might respond to various attacks and 
provocations, how cyber attacks could 
escalate out of control, and which 
“games of cooperation” might best 
thwart attacks.

˲˲ Understanding the relationship 
between recovery time and value of an 
attack—an attacker is less motivated to 
take down a network if the victim can 
quickly restore it to operation.

˲˲ Finding effective means of plant-
ing or discovering Trojan horses and 
other forms of malware.

˲˲ Determining the effects of virtu-
alization in the cloud on the ability to 
mount, detect, and thwart attacks.

˲˲ Understanding and minimizing 
risks introduced by development or use 
of cyber attack and exploit capabilities.

˲˲ Understanding and explaining im-
plications of new technologies—how 
they might be attacked or how they 
might facilitate an attack or exploit. For 
example, technologies for smart grids, 
smart cars, wireless home networks, or 
social networking systems.

˲˲ Determining the requirements for 
getting good indications and warnings 
of cyber attack—is it necessary to pen-
etrate adversary networks to get this in 
a timely enough manner to defend or 
respond effectively?

Studying these areas contributes to 
better defenses. It is not possible to 
build strong defenses without acquir-
ing and maintaining a solid under-
standing of how attacks work and how 
effective they might be.

What You Can Do
It is important that computing profes-
sionals bring their general knowledge 
of computers and networks to the dis-
cussions of technical, policy, legal, 
and social issues around cyber attack. 
There are several ways to do this:

˲˲ Engaging in research in the above 
areas and publishing results.

˲˲ Developing and participating in cy-
ber attack and defense exercises; mak-

ing sure that cyber exercises are true to 
technology and its limits.

˲˲ Participating in groups that address 
cyber attack issues, for example, the Cy-
ber Conflict Studies Association (cyber-
conflict.org), which sponsors meetings 
and working groups on various topics 
relating to cyber attack and defense.

˲˲ Participating in online discussion 
groups such as the Cyber Security Fo-
rum Initiative’s Cyber Warfare Division 
(CSFI-CWD) on LinkedIn.

˲˲ Participating in conferences such 
as InfoWarCon (cyberloop.org) or the 
Conference on Cyber Conflict spon-
sored by the NATO-accredited Coop-
erative Cyber Defence Centre of Excel-
lence in Estonia (www.ccdcoe.org).

˲˲ Participating in government-spon-
sored working groups that address cy-
ber attack issues.

˲˲ Separating truth from fiction about 
technology in media stories—writing 
articles that debunk myths.

Even though many of the meetings 
and discussions on cyber conflict em-
phasize the legal and policy issues, it 
is vital that computing professionals 
participate so that findings and recom-
mendations are based on a sound un-
derstanding of technology. Moreover, 
the networks of computing profession-
als formed in these discussions be-
come powerful resources for respond-
ing to cyber attacks.

We join with the NRC report to 
strongly endorse the strategy of open-
ness in these efforts and discussions. 
Openness mobilizes many brains on 
difficult problems, increasing the 
chances of finding good solutions.	
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Viewpoint 
Objects Never?  
Well, Hardly Ever!
Revisiting the Great Objects Debate.

A
t the 2005 SIGCSE (Special 
Interest Group in Comput-
er Science Education) Sym-
posium in St. Louis, MO, a 
packed audience listened 

to the Great Objects Debate: Should we 
teach “objects first” or “objects later”?1 
In the objects-first approach, novices 
are taught object-oriented program-
ming (OOP) in their initial introduc-
tion to programming, as opposed to an 
objects-later approach, where novices 
are first introduced to procedural pro-
gramming, leaving OOP to the end of 
the first semester or the end of the first 
year. Kim Bruce and Michael Kölling 
spoke in favor of the objects-first ap-
proach, while their opponents Stuart 
Reges and Eliot Koffman argued for 
teaching procedural programming 
first. One of Bruce’s arguments was: 
since OOP is dominant in the world 
of software development, it should be 
taught early. I later contacted Bruce to 
ask for a warrant for the dominance of 
OOP, but he could not give me one, nor 
could any of several other experts to 
whom I posed the same question.

I claim that the use of OOP is not 
as prevalent as most people believe, 
that it is not as successful as its pro-
ponents claim, and, therefore, that its 
central place in the CS curriculum is 
not justified.

Is OOP Dominant?
In assessing the dominance of OOP, we 
have to watch out for proxies. The exten-
sive use of languages that support OOP 
proves nothing, because languages are 

chosen for a myriad of reasons, not nec-
essarily for their suitability for OOP, nor 
for the suitability of OOP itself. Simi-
larly, the use of a CASE tool that sup-
ports OOP is another proxy; these tools 
might just be convenient and effective 
for expressing the software design of a 
system, whether OOP is being used or 
not. Furthermore, many practices asso-
ciated with OOP, such as decomposing 
software into modules and separating 
the interface from the implementation, 
are not limited to OOP; they are simply 
good software practice and have been 
supported by modern programming 
languages and systems for years.

The classical definition of OOP was 
given by Peter Wegner9: object-
oriented = objects + classes 

+ inheritance. The Java Swing GUI 
library, which makes massive use of in-
heritance, is frequently mentioned as 
a successful example of software that 
was designed using object-orientation 
and it certainly fits Wegner’s defini-
tion. Is this style of programming truly 
dominant?

There is a claim that 90% of all 
code is being written for embedded 
systems.7 I could not locate the au-
thor’s source, but it doesn’t really mat-
ter since the claim is just as suspect 
as the claim that OOP is dominant. 
However, embedded system develop-
ment is surely an important field of 
software, and, based upon my experi-
ence, I do not believe that OOP has a 
significant contribution to make here 

http://ISTOCKPHOTO.COM
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because the main challenges are not 
in the software design itself. The chal-
lenges arise from an “unfriendly envi-
ronment”: getting proprietary hard-
ware to work, obtaining meaningful 
requirements while the system itself is 
being designed, integration with non-
standard networks and busses, and, 
above all, determining out how to test 
and verify the software.

Consider another field where the 
dominance of OOP is questionable. 
The development and implementation 
of new algorithms form the heart of 
many applications areas like numeri-
cal simulation (for example, climate 
modeling) and image processing (for 
example of satellite imagery). The chal-
lenges arise from mathematical diffi-
culties and demands for performance, 
and OOP has little to contribute to 
meeting these challenges.

Not only is there no evidence to 
back up the claims for the dominance 
of OOP, but there is criticism of OOP, 
some of it quite harsh.3,8 I, too, have 
found OOP to be extremely disappoint-
ing and I will explain my position from 
a personal perspective.

What the “Real World” 
is Really Like
Suppose you ask your students to de-
sign OOP software for a car; you would 
probably give a good grade for the ex-
ample shown in Figure 1. The only 
problem is that the real world doesn’t 
work this way. A wonderful image in a 
paper by Grimm5 shows a schematic 
diagram for the computer system of 
the Mercedes-Benz S-class car. The 
legend for the schematic diagram in-
dicates there are over 50 controllers, 
600,000 lines of code, hundreds of 
bus messages, thousands of signals, 
and three networks. The details of 
this system are proprietary, but I am 
confident that no one sat down and 
used OOP to “design the software,” for 
example, by deriving classes as shown 
in Figure 1. Almost certainly, the vari-

ous subsystems were subcontracted 
to different companies who jealously 
guard their software because they are 
engaged in merciless competition.

The interface to the brake system 
will be implemented by network pro-
tocols and bus signals, and the com-
mands to the brakes will be given as 
bits and bytes (or even by a hardware 
specification like “apply the brakes 
when lines 1 and 5 are asserted con-
tinuously for at least 10 milliseconds”). 
An abstract specification like void  
ApplyBrakes() is meaningless 
here. More importantly, what is likely 
to be changed is the interface, contrary 
to the OOP approach, which assumes 
that different implementations will be 
“swapped” at a single interface. Let us 
imagine that at some time in the future 
the brake manufacturer is asked to 
supply systems to Daimler competitor 
BMW. The mechanics, hydraulics, elec-
tronics, and algorithms will be reused, 
but the network protocols and bus sig-
nals will certainly require significant 
modification to fit the systems archi-
tecture used by BMW.

I believe that industrial systems are 
successful because the decomposition 
is not into classes, but into subsystems. 
The Mercedes-Benz car has, on the av-
erage, 600,000/50 = 12,000 source code 
lines per controller, so each individual 

subsystem can be developed by a rela-
tively small team in a relatively short 
time. There is a need for talented sys-
tems engineers to specify and integrate 
the subsystems, but there is no over-
all grand software design where OOP 
might help.

Natural and Intuitive
In the 43 years since I first learned to 
program, I have frequently become 
excited about developments in pro-
gramming, such as pattern matching 
(which I first encountered in SNOBOL) 
and strong type checking (a revela-
tion when I first learned Pascal), and I 
found that these new constructs natu-
rally and intuitively supported solu-
tions to programming tasks. I have 
never had the same feeling about OOP, 
despite teaching it, writing textbooks 
on OOP languages, and developing 
pedagogical software in Java. During 
all this time, I found only one natural 
use of inheritance. (I developed a tool 
for learning distributed algorithms2 
and found it convenient to declare an 
abstract class containing the common 
fields and methods of the algorithms 
and then to declare derived classes for 
specific algorithms.) Isn’t it just possi-
ble that my inability to profit from OOP 
reflects a problem with OOP itself and 
not my own incompetence?

I am not the only one whose intu-
ition fails when it comes to OOP. Ha-
dar and Leron recently investigated the 
acquisition of OOP concepts by experi-
enced software developers. They found 
that: “Under the demands of abstrac-
tion, formalization, and executability, 
the formal OO paradigm has come to 
sometimes clash with the very intu-
itions that produced it.”6 Again, isn’t it 
just possible that the intuition of expe-
rienced software engineers is perfectly 
OK, and that it is OOP that is not intui-
tive and frequently even artificial?

Reuse from the Trenches 
One of the strongest claims in favor of 
OOP is that it facilitates reuse. I would 
like to see evidence to support this, be-
cause, in my experience, OOP makes 
reuse difficult, if not impossible. Here, 
I would like to describe two attempts 
at reuse where I truly felt that OOP was 
the problem and not the solution. I 
would like to emphasize that—as far 
as I can judge—these programs were 

Isn’t it just possible 
that my inability 
to profit from OOP 
reflects a problem 
with OOP itself 
and not my own 
incompetence?

Figure 1. Example OOP software for a car.

abstract class Brake {
  public abstract void applyBrakes();
}
class DiskBrake extends Brake { ... }
class DrumBrake extends Brake { ... }



34    communications of the acm    |   september 2010  |   vol.  53  |   no.  9

viewpoints

designed according to the principles 
of OOP, and the quality of the design 
and programming was excellent.

I developed the first concurrency 
simulator for teaching based upon a 
Pascal interpreter written by Niklaus 
Wirth. Several years ago, while looking 
for a modern concurrency simulator, I 
found a third-generation descendant 
of my simulator: an interpreter writ-
ten in Java, extended with a debugger 
that had a Swing-based GUI. I wished 
to modify this software to interpret 
additional byte codes and to expand 
the GUI by including an editor and a 
command to invoke the compiler.

The heart of an interpreter is a large 
switch/case-statement on the instruc-
tion codes. An often-cited advantage 
of OOP is its ability to replace these 
statements with dynamic dispatching. 
In the Java program, an abstract class 
for byte codes was defined, and from 
it, other abstract and concrete classes 
were derived for each of the byte codes. 
I simply found it more difficult (even 
with Eclipse) to browse and modify 
80 classes than I did when there were 
80 alternatives of a case-statement in 
Pascal.

This was only an annoyance; the 
real problem quickly surfaced. The 
extreme encapsulation encouraged 
by OOP caused untold complexity, 
because objects have to be passed to 
various classes via constructors. For 
example, in the original program, 
when a button is clicked to request 
the display of the history window, the 
statement performed in the event 
handler is as shown in Figure 2. Well, 
the history window is derived from an 
abstract window class, so OOP makes 
sense here, but there is one debugger, 
one debugger frame, one interpreter, 
and one window manager. Why can’t 
these subsystems be declared publicly 
(and implemented privately) without 
the baggage of allocated objects and 
constructors? My attempt to modify 
the software was continually plagued 
by the need to access one of these sub-
systems from a class that had not been 
passed the proper object. This result-
ed in cascades of modifications and 
complicated the task considerably; in 
addition, it led to a decline in coher-
ence and cohesion. As a result of this 
experience, I have ceased to automati-
cally encapsulate everything; instead, 
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I judge each case on its own merits. 
In general, I see nothing wrong with 
declaring record types and subsystem 
objects publicly, encapsulating only 
the implementation of data structures 
that are likely to change.

My second attempt at reusing OOP 
software involved a software tool VN 
that I developed for learning nonde-
terminism. It takes as input the XML 
description of a nondeterministic fi-
nite automaton that is generated by an 
interactive graphical tool for studying 
automata. To facilitate using VN as a 
single program, I decided to extract 
the graphics editor from the other tool. 
But OOP is about classes and Java en-
ables the use of any public declaration 
anywhere in a program just by giving 
its fully expanded name. There were 
just enough such references to induce 
a cascade of dependencies when I tried 
to extract the Java package containing 
the graphics editor.

This is precisely the issue I raised 
with the imaginary brake system. What 
I wanted to reuse was the implementa-
tion of the graphics editor even if that 
meant modifying the interface. I saw 
that I would have had to study many 
of the 400 or so classes in 40 packages, 
just to extract one package. The effort 
did not seem worthwhile, so I gave up 
the idea of reusing the package and 

included the (very large) jar file of the 
other tool in my distribution.

Paradigms
I suspect I know what your next ques-
tion is going to be: What paradigm 
do you propose instead of OOP? Ever 
heretical, I would like to question the 
whole concept of programming para-
digm. What paradigms are used to de-
sign bridges? My guess is the concept 
of paradigm does not exist there. Engi-
neering design is done by using tech-
nology to implement requirements. 
The engineer starts from data (length 
of the bridge, depth of the water, char-
acteristics of the river bed) and con-
straints (budget, schedule), and she 
has technology to use in her design: 
architecture (cables, stays, trusses) 
and materials (steel, concrete). I sim-
ply don’t see a set of alternative “para-
digms” for building bridges.

Similarly, the software engineer 
is faced with requirements and con-
straints, and is required to meet them 
with technology: computer architec-
tures, communication links, operat-
ing systems, programming languages, 
libraries, and so on. Systems are con-
structed in complex ways from these 
technologies, and the concept of pro-
gramming paradigm is of little use in 
the real world.

Hegemony
It is easy (and not incorrect) to dismiss 
what I have written as personal opinion 
and anecdotes, just as I have dismissed 
OOP as based upon personal opinion 
and anecdotes without solid evidence 
to support its claims. But the difference 
between me and the proponents of OOP 
is that I am not making any hegemonic 
claims for my opinions. I do not believe 
there is a “most successful” way of struc-
turing software nor that any method is 
“dominant.” This hegemony is particu-
larly apparent in CS education, as evi-
denced by the objects-first vs. objects-
later debate concerning teaching OOP 
to novices. No one questions whether 

OOP is at all appropriate for novices, 
and no one suggests an objects-as-an-
upper-level-elective approach or an 
objects-in-graduate-school approach. 
Perhaps the time has come to do so.

Conclusion
I will conclude with a “to-do list”:

˲˲ Proponents of OOP should pub-
lish analyses of successes and failures 
of OOP, and use these to clearly and 
explicitly characterize the domains in 
which OOP can be recommended.

˲˲ Software engineers should always 
use their judgment when choosing 
tools and techniques and not be car-
ried away by unsubstantiated claims. 
Even if you are constrained to use a 
language or tool that supports OOP, 
that in itself is not a reason to use OOP 
as a design method if you judge it is as 
not appropriate.

˲˲ Educators should ensure students 
are given a broad exposure to program-
ming languages and techniques. I 
would especially like to see the educa-
tion of novices become more diverse. 
No harm will come to them if they see 
objects very, very, late.�
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Figure 2. Example statement performed in the event handler.
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Point/Counterpoint  
Future Internet Architecture: 
Clean-Slate Versus  
Evolutionary Research 
Should researchers focus on designing new network architectures or improving the current Internet?  

doi:10.1145/1810891.1810906	 Jennifer Rexford 		  Constantine Dovrolis  

O
v e r  t h e  pa s t  several years, 
the networking research 
community has engaged 
in an ongoing conversa-
tion about how to move 

the field—and the Internet itself—for-
ward. These discussions take place in 
the context of the tremendous success 
of the Internet, begging the question 
of whether researchers should focus on 
understanding and improving today’s 
Internet or on designing new network 
architectures that are unconstrained 
by the current system. Ultimately, indi-
vidual researchers have their own styles, 
often a unique blending of both ap-
proaches. In this Point/Counterpoint, 
Jennifer Rexford and Constantine Dov-
rolis debate the pros and cons of “clean 
slate” and “evolutionary” approaches 
to networking research, reflecting on 
the larger discussion taking place in the 
networking research community.

Point: Jennifer Rexford
The Internet is an undeniable suc-
cess—a research experiment that es-
caped from the lab to become a major 
part of the global communications 
infrastructure. The seeds of the Inter-
net’s success lie in its “underspecified” 
design—a minimalist network provid-
ing a simple best-effort packet-delivery 
service coupled with programmable 
computers at the end points. These ear-
ly design decisions were so important 
because they lowered the barriers to in-

novation in new applications (created 
by anyone who wants to program these 
computers) and link technologies (that 
can be easily adopted if they support 
the basic packet-delivery model). This 
has led to innovation far beyond what 
any of the early designers of the Inter-
net could have ever imagined.

Given the Internet is so successful, 
and apparently so accommodating of 
innovation, “clean slate” networking 

research may seem strange, even su-
perfluous. Yet, nothing could be fur-
ther from the truth. In fact, clean-slate 
design is important for enabling the 
networking field to mature into a true 
discipline, and to have a future Inter-
net that is worthy of society’s trust. 
Contrary to the very premise of our de-
bate, I do not believe that evolutionary 
and clean-slate research are at odds. 
Insights from clean-slate research can 

Nodal representation of the Internet.
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research should be the greater depth 
of our understanding, not just the 
breadth of deployment.

Yet, clean-slate networking research 
cannot stop at pencil-and-paper de-
signs. In addition to new ideas, and rig-
orous theoretical models and analysis, 
we need to push our ideas further into 
real implementations and (ideally) de-
ployments. The “Eureka” moments 
that lead to real progress happen when 
we encounter surprises, when some-
thing happens that we could never 
have planned or predicted. Building, 
evaluating, and deploying real sys-
tems—on experimental facilities such 
as the proposed GENI and Federica 
platforms (in the U.S. and Europe, re-
spectively)—exposes our nascent ideas 
to the harsh light of day, and gives us 
the feedback necessary to help our 
ideas grow sharper and stronger as we 
address the unexpected setbacks and 
limitations, and embrace the practical 
constraints and design requirements 
we were unwittingly ignoring.

Building and deploying our designs 
is more than just the last step in evaluat-
ing an idea—it is part of a continuous 
cycle of research, constantly refining 
the problem, the models, and the so-
lutions until a more complete under-
standing emerges. This approach to 
networking research should sound fa-
miliar—it is exactly how the early ARPA-
net was designed and built, leading to 
the amazing advances we have seen in 
the 40 years since the first message was 
delivered over the network we would 
come to call “the Internet.” At the time, 
the notion that the ARPAnet would 
eventually overtake the established 
telecommunication networks of its day 
was inconceivable to most people. But, 
we know now how that story turned out.

Toward an Internet 
Worthy of Our Trust
The Internet is showing signs of age. 
Pervasive security problems—spam, 
denial-of-service attacks, phishing, 
and so on—are only the most visible 
symptoms. The Internet also does not 
handle mobile hosts, whether users on 
the move or virtual machines migrat-
ing from one computer to another, all 
that well. The Internet’s best-effort ser-
vice model is a poor match for many re-
al-time applications, such as IPTV and 
videoconferencing. The Internet is not 

(and should) help guide the ongoing 
evolution of the Internet, and a clean-
slate redesign may be necessary for the 
Internet’s continued evolution into a 
secure, reliable, and cost-effective in-
frastructure. Most importantly, as a re-
search community, we should plant the 
seeds that will enable future research 
experiments to “escape from the lab.”

Toward a Networking Discipline
The success of the Internet does not 
mean the field of networking is mature. 
Far from it. The Internet has grown and 
changed much faster than our own un-
derstanding of how to design, build, 
and operate large, federated networks. 
This is a common phenomenon in en-
gineering. The great medieval cathe-
drals were built long before the field 
of civil engineering was in place. As a 
result, many of these early cathedrals 
collapsed under their own weight after 
decades of construction. Even the col-
lapsed cathedrals were an invaluable 
learning experience along the long 
road toward a more rigorous approach 
to designing and building large struc-
tures. They were a step in the journey, 
not the destination itself. The way we 
design large buildings today reflects 
more than incremental improvements 
in engineering techniques, but a fun-
damentally more principled approach 
to the problem.

Whenever the Internet faces new 
challenges, from the fears of congestion 
collapse in the late 1980s to the press-
ing cybersecurity concerns of today, 
new patches are introduced to (at least 
partially) address the problems. Yet, 
we do not yet have anything approach-
ing a discipline for creating, analyzing, 
and operating network protocols, let 
alone the combinations of protocols 
and mechanisms seen in real networks. 
Networking is not yet a true scholarly 
discipline, grounded in rigorous mod-
els and tried-and-true techniques to 
guide designers and operators. Wit-
ness any networking class or textbook, 
riddled as they are with descriptions 
of existing protocols rather than a top-
down treatment of the “laws” or even 
“rules of thumb” governing the design, 
analysis, and operation of these proto-
cols. Given the critical importance of 
communication networks, we need the 
field to mature into a discipline we can 
apply confidently in practice and teach 

effectively to our students.
While studying today’s Internet is 

clearly an important part of maturing 
the field, it is not enough; we also need 
exploration that is unfettered by to-
day’s artifacts. To be clear, ignoring to-
day’s artifacts does not mean ignoring 
reality. Any new designs must still grap-
ple with practical constraints (such as 
the speed of light, or limitations on 
computation, memory, and bandwidth 
resources) and design requirements 
(for goals like efficiency, security, pri-
vacy, reliability, performance, ease of 
management, and so on). Yet, a clean-
slate design process could remain free 
of the considerable minutiae of today’s 
protocols and operational practices, 
and the challenges of incremental de-
ployment.

A clean-slate design process can 
topple the underlying assumptions 
of today’s architecture, such as ask-
ing whether we can achieve scalabil-
ity without relying on hierarchical 
addressing, route traffic directly on 
the name of a service rather than the 
address of a machine, or have notions 
of identity that cannot be spoofed. 
This clean-slate exploration can lead 
to valuable new designs that fill out 
the large design space, expanding our 
knowledge and experience. This explo-
ration can, perhaps more importantly, 
lead to new methodologies for design-
ing networks and protocols. Whether 
and how to deploy these new ideas in 
today’s Internet, while certainly a wor-
thy topic in its own right, should some-
times be secondary to the broader goal 
of deepening our understanding of 
the field. The measure of successful 

As a research 
community,  
we should plant  
the seeds that 
will enable future 
research experiments 
to “escape from  
the lab.”
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Counterpoint:  
Constantine Dovrolis

L
e t  us   f i r s t  identify the ma-
jor difference between the 
two approaches. Evolution-
ary Internet research aims to 
understand the behavior of 

the current Internet, identify existing 
or emerging problems, and resolve 
them under two major constraints: 
first, backward compatibility (interop-

erate smoothly with the legacy Inter-
net architecture), and second, incre-
mental deployment (a new protocol or 
technology should be beneficial to its 
early adopters even if it is not globally 
deployed).

On the other hand, clean-slate re-
search aims to design a new “Future 
Internet” architecture that is signifi-
cantly better (in terms of performance, 
security, resilience, and other proper-
ties) than the current Internet without 

being constrained by the current Inter-
net architecture.

Clean-Slate Research and 
Its Real-World Impact
Clean-slate Internet research is not 
something new. In fact, there is a long 
history of such efforts and we can learn 
something by analyzing whether ear-
lier clean-slate protocols and archi-
tectures have been adopted or not. To 
name few examples, consider active 

reliable enough, due to equipment fail-
ures, software bugs, and configuration 
mistakes. Managing a large network 
is too expensive—often costing more 
than the underlying equipment—and 
tremendously error prone. The Inter-
net consumes too much energy, in an 
era of serious concern about global 
warming. The Internet does not seem 
ready to handle the coming onslaught 
of countless small sensor devices that 
have the potential to revolutionize our 
world. The list goes on and on.

Many of these pressing challenges 
are deeply rooted in early design deci-
sions underlying the Internet, and may 
not be solvable without fundamental ar-
chitectural change. For example, many 
security problems relate to the Inter-
net’s weak notions of identity, and par-
ticularly the ease of spoofing everything 
from IP addresses to domain names, 
from email addresses to routing infor-
mation. Stronger notions of identity are 
not easily retrofitted on today’s archi-
tecture. Mobility is difficult to handle 
because IP addresses are hierarchical 
and tightly coupled with the scalabil-
ity of the routing protocols. Breaking 
this coupling may require a new rela-
tionship between naming, addressing, 
and routing. Network management is 
difficult because of the current “divi-
sion of labor” between the distributed 
protocols running on the network ele-
ments and the management systems 
that can only indirectly tune the many 
knobs these protocols expose. Solving 
these problems may require us to re-
visit some of the most basic principles 
underlying the Internet of today.

Clean-slate research allows us to 
explore radically new designs, to see if 

they are viable alternatives to the solu-
tion we have now. Some of these clean-
slate solutions may very well have an 
incremental path to deployment. But, 
as the American baseball legend Yogi 
Berra famously said, “You’ve got to be 
very careful if you don’t know where 
you’re going, because you might not 
get there.” Clean-slate research can 
help us determine where we should be 
going. Clean-slate design may also help 
us decide what parts of the Internet 
should not change. Perhaps, despite 
the challenges facing today’s Internet, 
we fundamentally cannot do much 
better along some dimensions (say, se-
curity) without paying too high a price 
along some other dimension. Clean-
slate research can help us understand 
those trade-offs, to guide decisions 
about whether and what to change.

Finally, perhaps wholesale change 
is both necessary and possible. De-
spite enabling innovation in applica-
tions and link technologies, the Inter-
net architecture itself is remarkably 
resistant to change. In redesigning the 
Internet, we can direct much-needed 
attention to this problem. Making the 
inside of the network more program-
mable, and allowing multiple inde-
pendent designs to coexist in parallel, 
are a promising start in this direction. 
Perhaps the future Internet could have 
the seeds for its own constant reinven-
tion lying within it. We are already see-
ing the early fruits of this kind of clean-
slate thinking, in software-defined 
networking infrastructures like Open-
Flow (http://www.openflowswitch.
org/) that are being deployed in several 
enterprise, datacenter, and backbone 
networks. Even experimental infra-

structures like GENI and Federica, de-
signed as they are to enable multiple 
simultaneous experiments with new 
network architectures, are themselves 
examples of this kind of change.

Fundamental change like this is, 
indeed, possible and it is already start-
ing to happen, due to the early clean-
slate research efforts over the past sev-
eral years. Further, more substantive 
change can happen in the years ahead. 
Given the Internet largely supplanted 
the circuit-switched telephone net-
works, is it so farfetched to think that 
something else might supplant the 
Internet, or so significantly alter the 
Internet that we no longer recognize it 
from the descriptions we see in today’s 
networking textbooks?

Conclusion
Networking is still a young field. While 
the Internet’s success is something 
we should admire and celebrate, we 
should not be content with our current 
understanding of the field or view the 
Internet architecture as set in stone. 
Perhaps a new generation of research-
ers and practitioners will turn the fu-
ture Internet into something that only 
vaguely resembles its predecessor. 
Perhaps this future network will ac-
commodate change more broadly and 
deeply than even today’s Internet has. 
A willingness to step back, and design 
from scratch, is an important part of 
the research repertoire that can enable 
these advances in the field, and of the 
Internet itself.	

Jennifer Rexford (jrex@cs.princeton.edu) is a professor in 
the computer science department at Princeton University 
in New Jersey.

Copyright held by author. 
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networks, per-flow QoS guarantees and 
admission control, the connection-
less network protocol CLNP, transport 
protocols such as XCP, or interdomain 
routing architectures such as Nimrod. 
There is also a large number of proto-
cols that are more or less backward 
compatible but not truly incrementally 
deployable, such as IPv6, interdomain 
IP multicast, RSVP, and IntServ, IPsec, 
or S-BGP. Arguably, these protocols 
have not seen large-scale deployment, 
at least so far. The “real world” adopt-
ed instead evolutionary approaches 
such as NATs, caching and content 
distribution networks, DiffServ, adap-
tive applications, and various security 
mechanisms (such as end-host secu-
rity, intrusion detection systems, and 
routing filters) that work well with the 
legacy architecture. Why does clean-
slate architectural research, or even 
protocols and designs that attempt to 
be backward compatible, often fail to 
be adopted in practice?a

In industrial economics, it is well 
known that an emerging technology 
that is subject to network externalities 
will probably not be able to replace a 
widely deployed but inferior technol-
ogy, as long as there are costs involved 
in switching from the incumbent to the 
emerging technology (see Arthur1 and 
related papers). Instead, the more rel-
evant question is whether the emerg-
ing technology offers a valuable new 
service the current technology cannot 

a	 I do not claim that the research on those ear-
lier clean-slate protocols was mediocre or that 
it did not have academic impact—I am strictly 
focusing on their deployment and real-world 
impact.

provide directly or indirectly. In other 
words, how does the additional value 
of a new technology, relative to the in-
cumbent technology, compare to the 
transition cost?

It is not enough for a clean-slate 
architecture to be “better” than the 
current Internet architecture. For the 
former to have real impact it should be 
able to replace the latter—otherwise 
it will remain an intellectual exercise. 
It is the question of real-world impact 
that differentiates clean-slate from 
evolutionary research and design. And 
at least so far, the proponents of clean-
slate research have not shown instanc-
es of such new applications or services 
that cannot be directly or indirectly 
constructed for the current Internet. 
Incidentally, the promise of a “secure 
and trustworthy Future Internet” is 
appealing but not convincing: there is 
no way to provide security guarantees 
with an open-ended threat model. Fur-
ther, it is very likely that a brand-new 
internetworking architecture will have 
more design and implementation bugs 
and security holes than the current In-
ternet architecture (which is being “de-
bugged” for more than 30 years now).

The proponents of clean-slate de-
sign emphasize they will not stay with 
“paper designs”—they will build and 
experiment with the proposed archi-
tectures in testbeds such as GENI. 
But what would that prove? Several 
previous clean-slate protocols were 
also implemented and tested 10 or 20 
years ago. The issue was not the lack 
of implementation or experimenta-
tion, but the fact that those protocols 
could not compete with incumbent 

technologies, considering the actual 
benefits they provide to users and the 
costs involved in the technological 
transition. These are issues of mostly 
economic nature that GENI or other 
testbeds cannot help us study. Further, 
these testbeds are not used by real ap-
plications and people and they do not 
operate under the economic and policy 
constraints of the real world. The early 
ARPANET succeeded because it was 
not just a testbed: it was also used as a 
production network, connecting some 
universities and research labs, while at 
the same time networking researchers 
could experiment with new protocols 
and technologies.

Another popular claim is that the 
current Internet architecture is the 
result of clean-slate thinking back 
in the 1960s or 1970s. However, we 
should not ignore that packet switch-
ing or TCP/IP were not inventions 
that “came out of nowhere”—they re-
sulted from an evolutionary process 
that started from synchronous multi-
plexing in circuit-switched networks, 
moving to asynchronous multiplex-
ing and then to datagram forwarding. 
Further, the ARPANET architecture 
was only one of several competing 
architectures (such as IBM SNA, DEC-
net, ITU X.25, Xerox Pup, SITA HLN, 
or CYCLADES), and it was through a 
long evolutionary process that the for-
mer eventually prevailed.

Is the Internet Architecture 
Really “Ossified”? 
One of the primary arguments for 
clean-slate research has been that the 
current Internet architecture is ossi-
fied, especially at the central layers of 
the protocol stack (IP and TCP), and 
that ISPs have no incentive to adopt 
any architectural innovations. This is a 
rather negative view of what happens. 
The Internet architecture maps an 
ever-increasing diversity of link-layer 
technologies to a rapidly increasing 
range of applications and services. To 
support this innovation at the lowest 
and highest layers of the architecture, 
the central protocols of the architec-
ture must evolve very slowly so that they 
form a stable background on which di-
versity and complexity can emerge.

To use a biological analogy, certain 
developmental Gene Regulatory Net-
works were established in the Early 

How does the 
additional value of 
a new technology, 
relative to the 
incumbent technology, 
compare to the 
transition cost? 

The ARPANET 
architecture 
was only one of 
several competing 
architectures and it 
was through a long 
evolutionary process 
that it prevailed.
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Several breakthroughs in networking 
research resulted from evolutionary 
research. For instance, major results 
in congestion control and active queue 
management resulted from attempts to 
understand and improve TCP, the dis-
covery of fundamental properties of the 
Internet traffic and topology, the design 
of innovative peer-to-peer communica-
tion protocols, or the development of 
end-to-end network inference as well as 
network tomography methods.

A domain of knowledge does not 
become science because it is based on 
clean optimization frameworks or be-
cause it proves deep results about toy 
models. Good science requires rele-
vance to the real world, measurements 
and experimental validation, testable 
hypotheses, and models with predic-
tive power.

Epilogue
I often wonder, what is the main rea-
son that well-respected Internet re-
searchers have decided to pursue the 
clean-slate approach? It cannot be just 
the “funding carrot,” I am sure. Here 
is one possible answer from a science 
fiction TV series. In “Battlestar Galac-
tica” (S4-E21),” Mr. Lampkin says to 
Commander Adama: “I have to say I’m 
shocked with how amenable everyone 
is to this notion of (…leaving everything 
behind and starting with nothing on 
the newly discovered planet Earth).” 
Commander Adama responds “Don’t 
underestimate the desire for a clean 
slate, Mr. Lampkin.” It may be that we 
find joy and pride in the idea that we 
can redesign the Internet from scratch, 
that we can avoid all previous mistakes 
and do it perfectly this time. If we do 
not want to sound like science fiction 
dialogue, however, it is important that 
we continue to foster the evolution of 
the current Internet, having positive 
impact on the way many millions of 
people live, work, and communicate.	
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Cambrian (about 510 million years 
ago) and they have not evolved signifi-
cantly since then. These GRNs are re-
ferred to as evolutionary kernels, and it 
is now understood that they are largely 
responsible for major aspects of all ani-
mal body plans. For instance, the heart 
of a fruit fly and the heart of a human, 
despite distinct morphologies, develop 
using the same core cardiac GRN. Evo-
lutionary kernels represent a stable ba-
sis on which diversity and complexity 
of higher-level processes can evolve.2

An Agenda for Evolutionary 
Internet Research
Instead of thinking about the Inter-
net as an artifact that we designed in 
the past and we can now redesign, we 
can start thinking of the Internet as 
an evolving ecosystem that is affected 
by, and in turn is affecting, several 
disciplines and how we study them. 
Its evolution is controlled, not only by 
technology, but also by the global econ-
omy, creative ideas by millions of indi-
viduals, and a constantly changing set 
of “environmental pressures” and con-
straints. Our mission then, as Internet 
researchers, is to first measure and un-
derstand the current state of this eco-
system, predict where it is heading and 
the problems it will soon face, and cre-
ate what could be referred to as intel-
ligent mutations: innovations that can, 
first, avoid or resolve those challenges, 
and second, innovations that can be 
adopted by the current architecture 
in a way that is backward compatible 
and incrementally deployable. This is 
a pragmatic research agenda that can 
have real impact on millions of people.

Instead of testbeds, evolutionary 
research needs various experimental 
resources that will be integrated in the 
current Internet. First, we need a dense 
infrastructure of “Internet monitors” 
of various types that will allow us to ac-
curately measure what is currently hap-
pening in this evolving ecosystem. It is 
embarrassing that (despite the tremen-
dous value of the Route Views project) 
we still do not have an accurate way to 
measure the Internet interdomain to-
pology. We also do not have an estimate 
of how much traffic flows between any 
two autonomous systems, even though 
that interdomain traffic matrix largely 
determines the economics of the global 
Internet. Plus, we have no way to know 

how the Internet population uses the 
Internet and the Web across time and 
space. As this knowledge gap increases, 
I am concerned we will soon be unable 
to track our own creation, and much 
more to influence its future.

Together with an extensive moni-
toring infrastructure, evolutionary In-
ternet research would greatly benefit if 
we could operate our own experimen-
tal ISP. This would be a real TCP/IP net-
work, running all protocols of the cur-
rent Internet architecture, present at 
many Internet Exchange Points, peer-
ing openly with other ISPs and content 
providers, and carrying traffic that be-
longs to real Internet users. One way to 
do so could be that universities use this 
experimental ISP to carry part of their 
traffic for free, with the understand-
ing that this is a research network and 
so its traffic may be subject to experi-
mental “mutations” of the Internet 
architecture. This is different than In-
ternet2 or NLR, which are production 
networks, and certainly very different 
than isolated GENI-like testbeds.

Where is the Science, After All?
The proponents of clean-slate design 
claim their approach leads to a sci-
ence of network design (sometimes re-
ferred to as “network science,” which 
is confusing because the same term 
is used in other disciplines to refer to 
the study of complex systems using 
dynamic graph models and network 
analysis techniques). It is also often 
claimed that evolutionary Internet re-
search is not a science, but a collection 
of “hacks” and incremental improve-
ments. This is a misleading position. 

We can start thinking 
of the Internet as an 
evolving ecosystem 
that is affected 
by, and in turn is 
affecting, several 
disciplines and how 
we study them.
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A 29-year-old female  from New York City comes in at 
3 a.m. to an emergency department (ED) in California, 
complaining of severe acute abdominal pain that 
woke her up. She reports that she is visiting California 
to attend a wedding and that she has suffered from 
similar abdominal pain, most recently resulting in  
an appendectomy. The emergency physician performs 
an abdominal CAT scan and sees what he believes 
to be an artifact from the appendectomy in her 
abdominal cavity. He has no information about the 
patient’s past history other than what she is able to tell 
him; he has no access to any images taken before or 

after the appendectomy, nor does he 
have any other vital information about 
the surgical operative note or follow-
up. The physician is left with nothing 
more than what he can see in front of 
him. The woman is held overnight for 
observation and released the following 
morning symptomatically improved, 
but essentially undiagnosed. 

A vital opportunity has been lost, 
and it will take several months and sev-
eral more physicians and diagnostic 
studies (and quite a bit more abdomi-
nal pain) before an exploratory lapa-
rotomy will reveal that the woman suf-
fered from a rare (but highly curable) 
condition, a Meckel’s diverticulum. 
This might well have been discovered 
that night in California had the physi-
cian had access to complete historical 
information. 

This case is recent, but the infor-
mation problem at its root seems a 
holdover from an earlier age: Why is 
it that in terms of automating medical 
information, we are still attempting to 
implement concepts that are decades 
old? With all of the computerization 
of so many aspects of our daily lives, 
medical informatics has had limited 
impact on day-to-day patient care. We 
have witnessed slow progress in us-
ing technology to gather, process, and 
disseminate patient information, to 
guide medical practitioners in their 
provision of care and to couple them to 
appropriate medical information for 
their patients’ care. 

Why has progress been so slow? 
Some of the delay certainly has been 
technologically related, but not as 
much as one might think. This article 
looks at some of these issues and the 
challenges (there are many) that remain. 

First, why bother with computers in 
health care, anyway? There are many 
potential advantages from the applica-
tion of health information technology 
(or HIT, the current buzzword). These 
include improved communication 
between a single patient’s multiple 
health-care providers, elimination of 
needless medical testing, a decrease 
in medical errors, improved qual-
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ity of care, improved patient safety, de-
creased paperwork, and improved leg-
ibility (yes, it’s still an issue). Many of 
these improvements have not yet come 
to pass and many others are nearly im-
possible to rigorously prove, but for the 
purposes of this discussion, let’s as-
sume that HIT is a good thing.

Some History
The first challenge in applying medical 
informatics to the daily practice of care 
is to decide how computerization can 
help patient care and to determine the 
necessary steps to achieve that goal. 
This challenge is best summed up by 

Lawrence L. Weed, M.D.: to develop an 
information utility that has currency of 
information and parameters of guid-
ance to assist medical personnel in 
caring for and documenting the care of 
patients.3 From the technology side, we 
need a facile interface between human 
and machine and a responsive, reliable 
system that is always available. The 
assumption is there will be adequate 
computational power and mass mem-
ory to support such a system.

The history of the computer indus-
try’s involvement in these problems 
is instructive. In the late 1960s, a ma-
jor computer vendor thought it could 

solve many hospital-based medical 
care issues in less than a year by deploy-
ing 96-button punch pads throughout 
the hospital to handle physician or-
ders and intra-hospital communica-
tion. Button-template overlays were 
to be used to support different types 
of orders. As it turned out, this was a 
most inadequate human interface: 
cumbersome, inflexible, close-ended 
with limited duplex communication, 
and so on. Not surprisingly (at least to 
the users), this was a nonstarter and 
failed. 

Most of the major hardware vendors 
of that era also had plans to provide 
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is not known to be necessarily forward-
looking in adopting new technology, 
so convincing these individuals to use 
a revolutionary technology to replace 
pen and paper was not easy. 

The mass-storage limitations were 
real. The system would support only 
144 active patients at any one time 
(which was adequate for operation on 
a single hospital ward but would pre-
clude initially supporting an entire 
hospital). There was also a limit of 32K 
individual text screens of information 
(fancy that!), and there were limits on 
how far the dumb terminals could be 
placed from the CPU. 

This demonstration system was 
able to support an entirely computer-
ized medical record (now called an 
electronic medical record, or EMR) and 
allowed physicians to use the touch-
screen and branched logic displays to 
enter a patient’s history, physical ex-
amination, problem list (those unique 
medical issues for each patient), and 
progress notes, including patient as-
sessments and orders. For many spe-
cific problems, the system would offer 
a range of recommended treatments 
(for example, the appropriate list of 
drugs for hypertension). As part of the 
physician-ordering sequence for each 
specific drug, the system would pres-
ent side effects to watch for, recom-
mended drug monitoring parameters, 
drug-drug interactions, among other 
features. (This is an obvious precursor 
to having this checking done automati-
cally). This level of guidance was pos-
sible because of the structured nature 
of the data entry; it is much more dif-
ficult when free text is entered via the 
keyboard instead.

Why didn’t this demo system catch 
on as hardware and operating systems 
improved? There were several reasons. 
At the time, computers were not well 
understood and, thus, were considered 
a bit intimidating by the general public, 
so there was a degree of user hesitation. 
Also, the level of medical documenta-
tion needed and the support of patient 
safety issues this system was based 
upon were not, unfortunately, appreci-
ated at that time. Cost also continued 
to be an issue. Although this system 
never caught on, many of the concepts 
it demonstrated are present in current-
ly evolving commercial systems.

Several other early attempts were 

automation of hospital information, 
creating their versions of a hospital 
information system (HIS). For various 
reasons, they all failed, often with a 
stunning thud. The most commonly 
cited deficiencies were a poor human 
interface, unreliable implementation, 
and cost. As is often the case when ap-
plying new technology to a discipline, 
the magnitude and complexity of the 
problem was initially grossly under-
estimated. As a result, most hardware 
vendors then limited themselves to the 
historic area for data processing: pa-
tient billing and the financial arena.

In the late 1960s and early 1970s, 
hardware limitations strained even 
demonstration systems. Limited main 
and mass memory, CPU speed, and 
communication between the CPU and 
user workstations were all factors that 
limited system usability and capac-
ity. The human-machine interface was 
also an issue. Some systems used light-
pens with some degree of success. 

At that time, I was a member of a 
small group that was implementing a 
demonstration of an electronic medi-
cal record system that used touch-sen-
sitive screens: a 24-line by 80-character 
CRT display that allowed two columns 
of 12 text selections each to be pre-
sented to the user, with a branch taken 
to a new display based upon the selec-
tion. This “branched-logic” approach 
allowed medical users to concatenate 
a series of selections to create complex 
text entries for storage into a patient’s 
medical record, as well as to order 
medications and lab tests and retrieve 
previous entries from the patient’s 
medical record.1,2 (The ability to type in 
information was supported for those 
situations where the displays did not 
contain the desired medical content.) 
The major performance goal of this 
system (and its 20 workstations) was to 
provide a new text display to any user 
within 300 milliseconds at least 80% of 
the time, which was quite advanced for 
its time. This system was designed to 
be available around the clock with no 
scheduled downtime.

This demonstration system pre-
sented several challenges. First and 
foremost was the interface between 
machine and medical providers (phy-
sicians, nurses, and so on), as well as 
patients (for entering their own medi-
cal histories). Medicine as a discipline 

made to apply computerization to 
health care. Most were mainframe-
based, driving “dumb” terminals. 
Many dealt only with the low-hanging 
fruit of patient order entry and results 
reporting, with little or no additional 
clinical data entry. Also, many systems 
did not attempt to interface with the 
information originator (for example, 
physician) but rather delegated the 
system use to a hospital ward clerk or 
nurse, thereby negating the possibil-
ity of providing medical guidance to 
the physician, such as a warning about 
the dangers of using a specific drug. 
This is a nontrivial issue that still is a 
problem with some systems today, il-
lustrating the challenge of an effective 
user interface. 

There were also some efforts to au-
tomate the status quo with no attempt 
to structure the data input. This usually 
meant having the health-care provider 
enter free text via a keyboard. Unfortu-
nately, this automation of unstructured 
data yields only (legible) unstructured 
data. This may be acceptable when 
dealing with a system of limited scope 
but does not work well with massive 
amounts of information such as a pa-
tient record. 

These computer systems were quite 
expensive to install and operate. With 
this foray into the clinical realm of 
acute medical care, the requirements 
for increased reliability of both hard-
ware and software became clear, along 
with the need for constant accessibility.

Areas of Real Technical 
Progress Over the Years
We have made significant technologi-
cal advances that solve many of these 
early shortcomings. Availability of mass 
storage is no longer a significant issue. 
Starting with a 7MB-per-freezer-size-
disk drive (which was not very reliable), 
we now have enterprise storage systems 
providing extremely large amounts of 
storage for less than $1 per gigabyte 
(and they don’t take up an entire room). 
This advance in storage has been ac-
companied by a concomitant series of 
advances in file structures, database 
design, and database maintenance util-
ities, greatly simplifying and accelerat-
ing data access and maintenance. 

The human-machine interface has 
seen some improvement with the evo-
lution of the mouse as a pointing de-
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vice and now the partial reemergence 
of the touchscreen. We have also seen 
the development of the graphical user 
interface, which has facilitated user 
multitasking. 

Overall system architectures have 
followed an interesting course: from 
a centralized single CPU and dumb 
workstations to networks with signifi-
cant processing capabilities at each 
workstation. In some situations we are 
now seeing a movement to the so-called 
thin-client architecture, again with lim-
ited power and resources at each work-
station, but a significant improvement 
in ease of system maintenance. 

Of course, all of this has been made 
possible by improvements in trans-
mission speed of data both between 
systems and within a single network. 
These advances in potential system 
responsiveness, however, have been 
attenuated by the ever-increasing com-
putational demands of the software, 
sometimes legitimately, but often 
caused by the proliferation of bloat-
ware: cumbersome, poorly designed, 
and inefficiently coded software serv-
ing as a CPU-cycle black hole. 

An additional complicating factor 
has been the migration of many pieces 
of application software to Web-based 
processes. This does provide the advan-
tage of platform semi-independence, 
but any slowness of the browser or the 
Web server is inflicted on the user, and 
in some cases, may be a dealbreaker 
in terms of user acceptance. For ex-
ample, say I use a Web-based system 
to order a series of medications on 
a patient and it takes me 10 mouse 
clicks/screen flips to order a single 
medication. If it takes one second to 
move from screen to screen, that is 10 
seconds (plus my human processing 
time). Not bad for a single order, but 
multiply that by 20 orders per patient 
over 10 sick patients in a busy emer-
gency department at 1 a.m. on a hectic 
Saturday night, and you begin to appre-
ciate the issue. There are approaches 
to minimize this negative impact, but 
these require a degree of sophistica-
tion of system design that is not always 
present. In fact, a common complaint 
of medical users is that “it’s too many 
clicks to do something simple.”

A very significant area of techno-
logical improvement has been in the 
acquisition, processing, transmission, 

and presentation (display) of graphical 
images. This capability has, over the 
past decade, given us increasingly so-
phisticated CAT scan and MRI results 
and has allowed most hospitals to dis-
continue the use of X-ray film almost 
completely, using digitally stored im-
ages instead. These picture archiving 
storage (PACS) systems have revolu-
tionized radiology and improved pa-
tient care by allowing easy distribution 
of these images to all care providers of 
a specific patient, alleviating the end-
less problem of trying to chase down 
the original physical X-ray film.

Areas of Limited Progress
If we truly want to develop an informa-
tion utility for health-care delivery in 
an acute care setting (such as an in-
tensive care unit or emergency depart-
ment), we must strive for overall sys-
tem reliability at least on the order of 
our electric power grid, ideally with no 
perceived scheduled or unscheduled 
downtime. Some health-care informa-
tion computer systems have achieved 
a high degree of reliability, but many 
have not. These lower-performing sys-
tems often had their beginnings, as 
noted earlier, in non-mission-critical 
applications such as patient billing. 
This, unfortunately, established a sys-
tem culture that is permissive of sys-
tem failure, and this culture is difficult 
to upgrade. 

The culture of system reliability be-
gins with the hardware architecture 
and progresses through the operating 
system, the application programs, and 
the supporting institutionwide infra-
structure, physical deployment, and 
extensive failure mode analysis. This 
means simple things such as support-
ing rolling data backups and system 
updates without taking the system 
down (from the user’s point of view). 
Some systems boast they have uptimes 
of 99.99%, but that means they are still 
unavailable for an hour per year.

Reliability and availability remain 
ongoing challenges. Certainly, man-
ual procedures for use during system 
unavailability are necessary, but the 
goal should be not to have to use them. 
This is an increasingly important issue 
as we attempt to develop systems that 
are more intimately involved in patient 
care (such as online patient monitor-
ing of vital signs and real-time patient 

With all of the 
computerization of 
so many aspects 
of our daily lives, 
medical informatics 
has had limited 
impact on day-to-
day patient care.
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tracking). In fact, we should not even 
attempt to support mission-critical 
operations unless we have the hard-
ware, software, and support systems in 
place that will guarantee extreme over-
all reliability. Even then it is a risk. I re-
member the promises from our “state 
of the art” enterprise RAID 5 storage 
vendor: “It will never go down.” These 
promises were used to convince me to 
move off my dual-write standby server 
configuration to the enterprise storage 
system to serve up block storage for my 
emergency department network. This 
system is critical, providing real-time 
ED patient tracking, clinical laborato-
ry result access, patient-care protocol 
information, emergency department 
log access, hospital EMR retrieval, 
metropolitan area hospital ambulance 
divert status, and physician and nurse 
order communication, among other 
functions. Unfortunately, the storage 
system that was promised to “never go 
down” had two five-hour failures over 
a two-year period, thoroughly dispel-
ling the myth of reliability promised 
by the vendor. These episodes, un-
fortunately, are not unique. Through 
careful design and adequate compo-
nent redundancy, we have been able 
to achieve high levels of reliability in 
safety-critical systems; our patients 
and health-care providers deserve no 
less reliability. 

Patient data entry in any health in-
formation system is labor intensive. 
Health-care providers (especially physi-
cians) have little tolerance for systems 
that serve as impediments to getting 
their work done, often regardless of 
what positives might accrue from us-
ing such a system. This represents a 
failure of interface and software design 
and may explain why we are seeing in-
creased use of “scribes” in institutions 
that have implemented electronic 
health records. These scribes are in-
dividuals who act as recorders for the 
health-care professionals so they do not 
have to interface directly with the com-
puter system. Obviously, this greatly di-
minishes the power of any system since 
there is no longer an interface with the 
information originator. The incorpo-
ration of dynamic medical guidance 
(advice rules based upon individual pa-
tient data such as checking a drug order 
for interactions with the patient’s other 
drugs) is of limited utility if the data is 

entered by someone other than the in-
formation originator.

It is also interesting to note that 
many institutions that had early suc-
cess with even poorly designed sys-
tems were those where the majority of 
the care was supplied by physicians in 
training. They were told to use the sys-
tem “or else” and did not have the flexi-
bility to move to another institution. To 
maximize user acceptance of any sys-
tem, we need to continue to improve 
the human-machine interface, allow-
ing for branched logic content, tem-
plated data entry, voice recognition, 
dynamic pick lists, and when absolute-
ly necessary, free text entry. Physicians 
care greatly about their patients; if an 
institution’s attempts at computeriza-
tion do not result in improved patient 
care and/or improved speed or other 
significant advantages, acceptance of 
any system will be problematic. This is-
sue has resulted in the demise of many 
hospital-based systems.

Even where successfully implement-
ed, computerized health information 
systems have sometimes had unantici-
pated side effects. One significant is-
sue is the explosion of data that may be 
stored in the patient record. This can 
quickly escalate beyond the capability 
of the human mind. The challenge re-
mains how best to present the data to a 
health-care provider in an efficient and 
comprehensive fashion.

Another potential problem with 
electronic medical records is abuse 
of privacy. With old paper medical re-
cords, control was somewhat easier: 
unless copied, they were in only one 
place at one time. This barrier is re-
moved with computerization, mandat-
ing enhanced restrictions to protect 
data. Unfortunately, we have witnessed 
several instances of inappropriate ac-
cess to an individual’s medical data. 
This is most commonly seen when a 
celebrity is hospitalized and human 
curiosity results in patient privacy vio-
lations (and often subsequent firings). 
The challenge is to limit inappropriate 
access but not make legitimate data re-
trieval burdensome or difficult. 

Ongoing Barriers in  
the Success of HIT
As we continue to strive for advances 
in health information technology, 
we must confront several barriers to 

Advancements in 
storage have been 
accompanied by 
a concomitant 
series of advances 
in file structures, 
database design, 
and database 
maintenance 
utilities, greatly 
simplifying and 
accelerating 
data access and 
maintenance. 
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its success. One significant issue is 
the “balkanization” of medical com-
puterization. Historically, there has 
been little appreciation of the need 
for an overall system. Instead we have 
a proliferation of systems that do not 
integrate well with each other. For ex-
ample, a patient who is cared for in 
my emergency department may have 
his/her data spread across nine differ-
ent systems during a single visit, with 
varying degrees of integration and 
communication among these systems: 
emergency department information 
system (EDIS), prehospital care (am-
bulance) documentation system, the 
hospital ADT (admission/discharge/
transfer) system, computerized clini-
cal laboratory system, electronic data 
management (medical records) im-
aging system, hospital pharmacy sys-
tem, vital-signs monitoring system, 
hospital radiology ordering system, 
and PACS system. Ideally, these dif-
ferent systems should be integrated 
into a seamless whole, at least from 
the user’s point of view, but each has 
a different user interface with differ-
ent rules, a different feel, and different 
expectations of the user. It really is just 
a bunch of unconnected pieces, which 
may, in certain situations, actually in-
crease the time and effort for patient 
care. In this case, the full capability of 
data integration clearly has not been 
achieved.

This leads to other concerns: Are we 
creating health-care computer systems 
that are so complex that no one has a 
complete understanding of their vul-
nerabilities, thus making them prone 
to failure? Do we have an adequate 
culture of mission-critical and fault-
tolerant design and system support to 
achieve expected levels of reliability 
in all hospitals that attempt a high de-
gree of computerization? Is there so-
phisticated failure analysis to ensure 
growth, improvement, and success in 
all of these institutions? Or will the tol-
erance for unexplained failure actually 
pose a risk to our patients? 

As mentioned, most of these com-
ponent systems have a medical content 
piece, as well as a technology piece. It 
is this creation of the medical logic and 
structured content in many of these 
systems (especially the EMR systems) 
that remains a time-consuming and 
exacting process, often requiring many 

person-years of effort for a single insti-
tution. Unfortunately, because of the 
perceived differences in practice pat-
terns among different locales, insti-
tutions, and physician groups, only a 
modicum of the work done in any one 
location is applicable to other loca-
tions. There should be efforts to stan-
dardize some of these differences to 
allow more synergy between locations 
and products.

Although grand claims are often 
made about the potential improve-
ments in the quality of care, decreases 
in cost, and so on, these are very diffi-
cult to demonstrate in a rigorous, sci-
entific fashion. Fortunately, the body 
of positive evidence is slowly increas-
ing, although there are occasional 
signs of adverse effects resulting from 
computerized patient data systems. 
For example, there is evidence that it 
may be easier to enter the wrong order 
on the wrong patient in a computer-
ized system than in an old hard-copy, 
manual system.

The Future
Although difficult to scientifically 
prove, the benefits from an EMR and 
the attendant methodologies to cre-
ate and maintain it are potentially sig-
nificant. Yet, we have not come very 
far conceptually in the past several de-
cades in realizing the potential. None-
theless, I feel the future is quite bright 
for several reasons. 

First and foremost, the federal gov-
ernment has championed these con-
cepts with promises of fiscal support 
for individual physicians and institu-
tions that implement the concepts 
in a meaningful way within a specific 
timeframe. Second, the use of comput-
ers in most aspects of our daily lives 
has become commonplace, resulting 
in increased computer literacy and 
decreasing hostility to their use in a 
medical environment. Third, with in-
creased national emphasis on patient 
safety and quality of medical-care indi-
cators, computerization of health care 
offers the best and easiest approach 
to provide the parameters of medical 
guidance and allow appropriate data 
capture to comply with these initiatives 
(which will be ongoing and increasing 
in number and complexity). 

The achievement of desired goals, 
however, will continue to provide a 

challenge to system creators and im-
plementers. They have the difficult job 
of designing, developing, and support-
ing systems that provide improved re-
liability and responsiveness and a fac-
ile human-machine interface with the 
knowledge and guidance to provide 
better health care to our citizens. 

Let us return to the 29-year-old pa-
tient with acute abdominal pain in 
the California emergency department, 
now under an improved computer-
ized health-care system. The physician 
in California has instant access to the 
operative note and medical workup for 
the appendectomy done many months 
before. This reveals that, in fact, no 
radiographs were taken prior to the 
surgery, which was done laparoscopi-
cally. This implies the finding on the 
CAT scan is not, because of the surgical 
technique, an artifact, but an abnor-
mal finding. This would lead in short 
order to surgical consultation and 
surgical repair, markedly decreasing 
the patient’s period of morbidity and 
suffering. Such improvements are the 
promise of integrating computers in 
patient care. With effort and skill, I feel 
we can meet this challenge. 	
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“That which isn’t tested is broken.”	 —Author unknown
“Well, everything breaks, don’t it, Colonel.”	  

—Monty Python’s Flying Circus

it IS  AN  unfortunate fact of life that anything with 
moving parts eventually wears out and malfunctions, 
and electronic circuitry is no exception. In this case, 
of course, the moving parts are electrons. In addition 
to the wear-out mechanisms of electromigration (the 
moving electrons gradually push the metal atoms out 
of position, causing wires to thin, thus increasing their 
resistance and eventually producing open circuits) 
and dendritic growth (the voltage difference between 
adjacent wires causes the displaced metal atoms to 
migrate toward each other, just as magnets will attract 
each other, eventually causing shorts), electronic 
circuits are also vulnerable to background radiation. 
These fast-moving charged particles knock electrons 
out of their orbits, leaving ionized trails in their wake. 

Until those electrons find their way 
back home, a conductive path exists 
where there once was none. 

If the path is between the two plates 
of a capacitor used to store a bit, the ca-
pacitor discharges, and the bit can flip 
from one to zero or from zero to one. 
Once the capacitor discharges, the dis-
placed electrons return home, and the 
part appears to have healed itself with 
no permanent damage, except perhaps 
to the customer’s data. For this reason, 
memory is usually protected with some 
level of redundancy, so flipped bits can 
be detected and perhaps corrected. Of 
course, the error-detection and correc-
tion circuitry itself must be tested, and 
that is the main topic of this article.

(If the path is between a current 
source and ground, then it cannot heal 
until power is removed. This is called 
single event latchup, which simulates a 
hard failure, at least until the power is 
turned off, such as when preparing to re-
move and replace the apparently failing 
part. The returned part, of course, will 
test out as “no trouble found,” frustrat-
ing everyone involved. Single event latch-
up is difficult for software to deal with 
and will not be discussed further here.)

In addition to the causes of errors 
mentioned here, transmission lines 
are subject to noise-induced errors, so 
transmitted signals are also often pro-
tected with redundancy.

As the density of circuits increases, 
features get smaller; as frequencies in-
crease, voltages get lower. These trends 
combine to reduce the amount of charge 
used to represent a bit, increasing the 
sensitivity of memory to background ra-
diation. For example, the original Ultra-
SPARC-I processor ran at 143MHz and 
had a 256KB e-cache (external cache). 
The cache design used simple byte par-
ity to protect the data, which was suf-
ficient as the amount of charge used 
to hold a bit was large enough that an 
ionizing particle would drain off only a 
small amount, not enough to flip a bit. 

When this design was scaled up in 
the UltraSPARC-II processor to run at 
400MHz with an 8MB e-cache, however, 
the amount of charge used to hold a bit 
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was so small that background radiation 
would easily flip bits, producing on av-
erage one flipped bit per processor per 
year. While that might not seem like a 
high rate, a customer with 12 systems of 
32 processors each would on average ex-
perience one failure a day. This is what 
led to Sun’s infamous e-cache parity cri-
sis of 1999 (more on this later; for fun, 
do a Web search on “e-cache parity”).

Since errors, whether transient or 
permanent, are a fact of life, the sys-
tem designers in Oracle’s Systems or-
ganization (what used to be portions 
of Sun Microsystems) have developed 
a layered approach to deal with them. 
At the lowest level is the hardware er-
ror-detection circuitry, which records 
information about the error so that 
upper-layer software can determine if 
the error is transient or permanent, or 

if the rate of transient errors indicates 
a failing part. The next layer is error 
correction, which can be performed by 
hardware, software, or a combination 
of the two. The third layer is diagnosis, 
where the Predictive Self-Healing func-
tion of the Solaris operating system de-
termines whether a faulty part is caus-
ing the error, and whether that part 
should be replaced. The final level is 
error containment, invoked by Predic-
tive Self-Healing when a hard failure 
can be fenced off so that the system can 
continue to function with minimal per-
formance degradation, avoiding a dis-
ruptive and thus expensive service call.

One always hopes that errors are rare. 
When they do occur, however, one wants 
the various layers of detection, correc-
tion, diagnosis, and containment to per-
form flawlessly. Ensuring that requires 

testing the various layers, preferably in 
an end-to-end fashion that imitates the 
behavior of real errors. Because (as one 
hopes) errors are rare (if they aren’t, you 
have other problems), waiting around 
for them to occur naturally is not an ef-
ficient testing methodology. Thus, the 
need for an error injector.

An error injector requires hardware 
support, because during normal op-
eration hardware only writes good data. 
(Without hardware support, you can 
simulate errors by feeding error reports 
to the upper layers of software, but then 
you aren’t testing the hardware error 
detectors.) Hardware designers under-
stand this, so they usually provide some 
means for injecting errors so that they 
can test their detectors. They don’t al-
ways understand the environments in 
which errors will be injected, however. 

1.	http://www.debutart.com/artist/melvin-galapon

—Monty Python’s Flying Circus
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For example, from the perspective of 
the hardware designer, testing the de-
tectors during the very controlled envi-
ronment of power-on self-test (POST) is 
sufficient, so it isn’t a big deal if inject-
ing an error has a side effect of corrupt-
ing unrelated data or destroying cache 
coherency. For the software designer, 
however, such side effects can render 
the error-injection hardware useless, or 
severely restrict the kinds of errors he 
or she can safely inject.

For example, while the hardware 
error detector does not care if a cache 
parity error is detected on a clean or 
dirty cache line, or by a user instruction 
or a kernel instruction, the software 

layers might. Thus, the error injector 
must be able to do all combinations.

Injecting E-Cache Errors 
on the UltraSPARC-II
“Handling errors is just attention to de-
tail. Injecting errors is rocket science.” 

—me.
While the hardware engineers were 
working on determining the cause 
of the e-cache parity errors and then 
working on a fix, I was asked to lead a 
project to mitigate with software the 
effect of the errors. Unfortunately, the 
UltraSPARC-II used an imprecise trap 
to report e-cache parity errors detected 

by a load instruction or an instruction 
fetch, so recovery even from an error on 
a clean cache line was not possible. We 
were able to recover from parity errors 
detected by some write-backs, and we 
definitely improved the kernel’s mes-
sages when parity errors were encoun-
tered. We prototyped confining errors 
that affected only a user program and 
not the kernel to just that program (a 
feature that had to wait for the System 
Management Facility of Solaris 10 and 
its process restarter before we could 
deploy it safely), and we introduced a 
cache scrubber that used diagnostic 
accesses to proactively look for par-
ity errors on clean cache lines in a safe 

fashion (that is, one that would not 
cause a kernel panic) and flushed them 
from the cache before they could cause 
an outage. Whenever the system went 
idle, we flushed all clean lines, and all 
error-free dirty lines, from the cache.

Testing all of this required an error 
injector. While the hardware people 
had written one, it did not meet our 
needs; for example, you could only give 
it a physical address where the error was 
to be injected and wait for system code 
to trip over it. In addition, it was neither 
modular nor easily extensible (after all, 
it had been written by hardware people; 
to be fair, of course, I would do an even 

worse job if I were asked to design an 
ASIC). Instead, we based our error in-
jector on one I had written in 1989 to 
test the memory parity error-recovery 
code I had written for Sun’s SPARCsta-
tion-1. This error injector was modular 
and table-driven, and easily extensible. 
Of course, none of the actual low-level 
error-injection code applied to the Ul-
traSPARC-II, so we hollowed it out and 
built upon the framework it provided.

The error injector consisted of two 
parts: a user-level command-line inter-
face (mtst), and a device driver (/dev/
memtest). The command-line inter-
face allowed the user to specify whether 
the parity error should be injected onto 
a clean line or a dirty line and whether 
its detection should be triggered by a 
kernel load instruction, user-level load 
instruction, kernel instruction fetch, 
user-level instruction fetch, write-back 
to memory, snoop (copy-back) by an-
other processor, or just left in a user-
specified location in the cache. (This 
last was used by another user-level pro-
gram, affectionately called the alpha-
bomber, to measure the effectiveness 
of the cache scrubber.) 

After parsing and processing its argu-
ments, mtst would then open /dev/
memtest and issue an ioctl to it. The 
parameters passed in the ioctl would 
tell the device driver whether to plant 
the error in its own space (for kernel-
triggered errors) or at an address passed 
to it by mtst (for user-triggered errors) 
or at a specific cache location (for alpha-
bombing). They would also specify if the 
device driver itself should trigger the er-
ror, and if so by a load instruction, an in-
struction fetch, a write-back to memory, 
or a copy-back to a different processor, 
and whether at trap-level zero or trap-
level one. (For obvious reasons, neither 
mtst nor /dev/memtest are included 
in Solaris releases, nor is their source 
code included in OpenSolaris.)

Assuming the action of the device 
driver did not deliberately cause a ker-
nel panic, it would return to mtst, 
which, depending upon the parameters 
with which it was invoked, would either 
trigger the error (by a load, instruction 
fetch, write-back, or snoop) or leave it in 
the cache (for alphabombing).

We later extended the error injec-
tor to produce timeouts and bus errors 
and to inject correctable and uncor-
rectable memory errors, so we eventu-

—Steve Chessin
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ally had complete test coverage of all of 
the processor error-handling code in 
Solaris, something that had been lack-
ing prior to this work. (The injection of 
correctable and uncorrectable memory 
errors is discussed later.)

The device driver used the diag-
nostic facilities of the UltraSPARC-II 
processor to inject the errors into the 
e-cache. (Similar diagnostic facilities 
were used by the cache scrubber.) Be-
fore I explain how that worked, it will 
help to understand the following:

˲˲ The UltraSPARC-II uses a 64-byte 
cache line. 

˲˲ A cache line is moved between 
memory and the e-cache in 8-byte 
chunks. 

˲˲ Each of these chunks is protected 
in memory by eight bits of ECC (error-
correcting code) that can correct any 
single-bit error and detect any double-
bit error (SEC-DED). 

˲˲ Each byte of data is protected by a 
single parity bit when in the e-cache. 

˲˲ There are two UDB (UltraSPARC 
Data Buffer) chips in parallel be-
tween the e-cache and main memory, 
and each UDB converts eight bytes of 
ECC-protected data at a time to eight 
bytes of parity-protected data (and vice 
versa). When a 64-byte cache line is 
moved from memory into the e-cache 
or vice versa, each UDB processes four 
8-byte chunks.

The interface between the processor 
and the e-cache is 16 bytes wide. The 
processor’s LSU (load/store unit) con-
tains a control register that includes a 
16-bit field called the force mask (FM). 
Each bit in the FM corresponds to one 
byte of the 16-byte interface between 
the CPU and the e-cache. When a bit is 
zero, a store of the corresponding byte 
is done with good parity. When a bit is 
one, a store of the corresponding byte 
is done with bad parity. The FM bits 
do not affect the checking of parity on 
loads from the e-cache.

Injecting a parity error into the e-
cache is fairly straightforward. The 
physical memory address of the de-
sired byte is determined, and the fol-
lowing steps performed: 	

1.	 Using its physical address, load 
the desired byte into a register; this has 
the side effect of bringing it into the e-
cache if it isn’t there already. 	

2.	 Disable interrupts. 	
3.	 Set LSU.FM to all ones. 	

4.	 Store the desired byte back to its 
physical address. (If for some reason 
the containing cache line got displaced 
from the cache after the load, then this 
will bring it back into the cache.) The 
targeted byte will be written back into 
the cache line with bad parity. 

5.	 Reset LSU.FM to zero. 	
6.	 Reenable interrupts.
Now that the desired byte is in the 

e-cache with bad parity, the latent er-
ror can be triggered via several mech-
anisms: data load in user or kernel 
mode, instruction fetch in user or ker-
nel mode, displacement flush to cause 
a write-back, access from another CPU 
to cause a copy-back, and so on.

Interrupts must be disabled for the 
duration that the LSU.FM is not zero; 
otherwise, if an interrupt occurs and 
the interrupt handler (or any code it in-
vokes) performs a store, then undesired 
parity errors will be introduced into the 
cache and triggered unpredictably.

This six-step sequence is used to in-
ject e-cache parity errors at locations 
corresponding to specific physical 
memory addresses, kernel virtual ad-
dresses, or user virtual addresses.  (Vir-
tual addresses are translated to their 
corresponding physical addresses by 
the memtest device driver.) To simu-
late bit flips caused by background 
radiation, however, we would like to 
inject an e-cache parity error at an ar-
bitrary e-cache offset, without regard 
to the physical memory address corre-
sponding to the e-cache line.

Fortunately, the LSU.FM field also 
applies to stores to the e-cache using 
diagnostic accesses. Unfortunately, 
diagnostic loads and stores work only 
with 8-byte quantities, not with single 
bytes. In order to affect just a single 
byte, we must set only the one bit in 
LSU.FM that corresponds to the byte 
we want to change. The sequence in 
this case then becomes: 	

1.	 Disable interrupts. 	
2.	 Fool the instruction prefetcher 

(see below).	
3.	 Set the desired bit in LSU.FM to 

one. 	
4.	 Load the containing eight bytes 

into a register with a diagnostic load. 
5.	 Store the containing eight bytes 

back into the e-cache with a diagnostic 
store. 

6.	 Reset LSU.FM to zero. 
7.	 Reenable interrupts.

As the density of 
circuits increases, 
features get 
smaller; as 
frequencies 
increase, voltages 
get lower.  
These trends 
combine to reduce 
the amount of 
charge used to 
represent  
a bit, increasing 
the sensitivity 
of memory to 
background 
radiation.
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The only tricky part is preventing the 
contents of the e-cache from changing 
out from under us between the load 
and the store. The worst that snoop ac-
tivity can do is change the state of a line 
from exclusive to shared, or from valid 
to invalid. As snooping cannot change 
the data itself, just the state in the tag, 
no harm is done if a snoop occurs be-
tween the load and the store.

However, there is one thing that can 
change the data in the cache between 
the load and the store. The processor 
contains an instruction prefetcher—
one that is always on and whose be-
havior is not well documented in the 
UltraSPARC I & II Users Manual. The 
prefetcher is constantly moving in-
structions from the processor’s i-cache 
(instruction cache) into the proces-
sor’s instruction buffer. If the address 
of the next instruction to be prefetched 
misses in the i-cache, instructions will 
be brought in from the e-cache; if the 
address also misses in the e-cache, 
then the containing cache line will be 
brought into the e-cache from memo-
ry, displacing what was already there. 
If this e-cache fill happens to replace 
the line containing the byte we want 
to corrupt, and if the fill happens be-
tween the diagnostic load and the diag-
nostic store, we will write eight bytes of 
stale data into the e-cache (along with 
bad parity on one of them); this could 
cause an unexpected failure later if the 
line is reexecuted as an instruction. (Al-
though we expect the byte with bad par-
ity to cause an eventual failure, we want 
the failure to be the one we intended, 
not one we didn’t intend.)

To prevent this, the prefetcher must 
be fooled into not prefetching for a 
while. Though this is possible—and in 
fact fairly easy to do—the procedure is 
not documented. The technique to use 
had to be obtained from the processor 
pipeline expert. In fact, if he hadn’t in-
formed us of this exposure, we would 
have had a hard-to-debug problem 
with the injector.

To fool the prefetcher, we statically 
position at the beginning of a cache 
line the code sequence that sets LSU.
FM, issues the load and store, resets 
LSU.FM, reenables interrupts, and re-
turns to the caller. When this routine 
is called, it disables interrupts and 
then branches just beyond the above 
sequence to a series of no-ops, enough 

locations.) Generating a single CE (cor-
rectable error) or UE (uncorrectable 
error) requires that the four 8-byte ex-
tended words passing through a given 
UDB start off as identical, so that they 
all share the same good ECC value.

Generating a CE or UE is typically 
done as follows:

1.	 Quiesce snoop activity, as snooped 
data goes through the UDBs. 	

2.	 Disable interrupts. 	
3.	 Set FCBV in the UDBs with the 

common good ECC value, and set their 
F_MODEs. 

4.	 Load the desired 8-byte chunk 
into a register; this has the side effect 
of bringing it into the e-cache if it isn’t 
there already. 

5.	 Flip one (CE) or two (UE) bits in 
the register. 	

6.	 Store the now-modified 8-byte 
chunk; it will store into the cache and put 
the cache line into the modified state. 

7.	 Displacement flush the cache line 
back to memory. The UDBs will con-
vert each eight bytes with parity into 
eight bytes with ECC, but for the ECC 
bits they will use the value in the FCBV, 
which will be good for all but the modi-
fied chunk. 

8.	 Clear F_MODE. 
9.	 Enable interrupts. 

10.	 Allow snoop activity.
(Although we could have confined 

the setting of FCBV and F_MODE to 
just the UDB handling the targeted lo-
cation, it was easier to program them 
both identically.)

Snoop activity has to be quiesced; 
otherwise, any CPU or I/O device ob-
taining data out of this CPU’s e-cache 
while the UDB’s F_MODE bit is set will 
get bad ECC. Since I/O is difficult to 
quiesce, this is done by “pausing” all 
the other CPUs (by telling them to spin 
in a tight loop), and then flushing the 
cache so that the only owned line will 
be the one that we modify.

To inject a single CE at an arbitrary 
location, the UDB design should have 
included a “trigger” or “mask” field to 
indicate on which extended word(s) the 
FCBV field would be applied. This field 
could be, for example, an 8-bit mask, 
with one bit for each 8-byte chunk. (One 
UDB would use the even bits and the 
other would use the odd bits; this ar-
rangement would make programming 
simpler.) The UDB would have to count 
the chunks going through it when the 

to fill the instruction buffer. The last 
instruction in this sequence branches 
back to the instruction that sets LSU.
FM. Thus, when we get to the load of 
the load/store pair, the cache line that 
contains these instructions is already 
in the e-cache and has either already 
displaced the original target (so we 
will be injecting an error on top of our 
e-cache-resident code) or is in a dif-
ferent cache line than our target. In 
either case, the instruction prefetcher 
“sees” that the instructions (including 
the no-ops) that follow the load/store 
pair are already in the instruction buf-
fer, so it temporarily has nothing to do. 
This prevents any lines from changing 
in the middle of the execution of the 
load/store pair. (This is the “rocket sci-
ence” part of error injection.)

Of course, what would have really 
been nice would have been a control to 
turn off the instruction prefetcher.

Injecting Memory Errors 
on the UltraSPARC-II
“‘The horror of that moment,’ the King 
went on, ‘I shall never, NEVER forget!’ 
‘You will, though,’ the Queen said, ‘if you 
don’t make a memorandum of it.’” 

—Lewis Carroll, 
Through the Looking Glass

Injecting memory errors on Ultra-
SPARC-II systems is more difficult than 
injecting e-cache errors. As previously 
described, while the e-cache uses byte 
parity, memory uses eight bits of ECC to 
protect eight bytes. Data always moves 
between memory and the CPU subsys-
tem (processor, two UDB chips, and e-
cache) in 64-byte blocks, transferred in 
four 16-byte chunks. Each UDB handles 
eight bytes at a time, converting eight 
bytes with good ECC into eight bytes 
with good parity and vice versa.

Each UDB has a control register that 
contains an 8-bit FCBV (force check 
bit vector) field and an F_MODE (force 
mode) bit. When the F_MODE bit is 
set, the UDB uses the contents of the 
FCBV field for the ECC value on all out-
going (to memory) data, instead of cal-
culating good ECC.

Since the FCBV field (when used) 
applies to all data going through the 
UDB, and since the smallest granule 
of transfer is 64 bytes, it is impossible 
to force bad ECC on just one arbitrary 
8-byte extended word. (This means we 
cannot alphabomb CEs into arbitrary 
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F_MODE bit was set and apply FCBV to 
only those extended words that had the 
corresponding “trigger” bit(s) set.

Alternatively, the design could have 
included eight sets of FCBV fields 
(four in each UDB), each with its own 
F_MODE bit, so that arbitrary mixes 
of CEs, UEs, and good data could be 
planted at any location.

Other Uses of Diagnostic Access
“I’m running a Level 1 diagnostic.” 

—Lt. Commander Geordi La Forge, in 
Star Trek: The Next Generation

As illustrated earlier, diagnostic ac-
cess to the e-cache and the memory in-
terface chips is extremely important to 

error injection. Without the ability to 
use diagnostic loads and stores during 
normal system operation, injection of 
errors would be impossible.

Diagnostic access is also used in er-
ror prevention and correction, as the 
cache scrubber uses diagnostic loads 
to determine if a latent error is present, 
and to determine when lines should be 
displaced from the cache.

Diagnostic access is also used after 
a failure occurs, to read the contents of 
the affected cache line to aid in offline 
diagnosis. For this reason, it is impor-
tant that diagnostic access provide vis-
ibility to all the bits, as they are stored 

occurs the system board can send it to 
just those processors that contain cop-
ies of the snooped cache line, and not 
interfere with the performance of the 
processors that do not contain copies. 
Diagnostic access to DTAGs interferes 
with the maintenance of cache coher-
ency, such that if an invalidate request 
came in at the same time as the diag-
nostic access, the invalidate request 
would be lost. (The request need not 
be for the particular line; all coherency 
traffic is ignored while the diagnostic 
request is being processed.)

This behavior makes it impossible 
to write a software DTAG scrubber, as 
the scrubber cannot determine if a line 
contains a latent error without risking 
the loss of system coherency.

Note that deciding whether to pre-
serve coherency on a diagnostic access 
is an example of one of the many deci-
sions a chip designer must make. Pri-
or to Sun’s e-cache parity crisis, these 
decisions were made by the hardware 
designers without consulting the soft-
ware error-handling experts. Since that 
crisis, error and diagnostic reviews of 
new chips are a required part of the 
hardware design cycle. 

These reviews are joint meetings of 
the chip designers and the software 
people responsible for error handling, 
diagnosis, and containment. They are 
held early enough in the design process 
so that any deficiencies in the treat-
ment of errors by the hardware (such as 
a failure to capture important informa-
tion) can be corrected, and suggestions 
of improvements can be incorporated.

Other Methods of Error Injection
“‘Doctor, it hurts when I do this.’

‘So don’t do that.’” 
—Henny Youngman

Hardware engineers have devel-
oped other methods for injecting er-
rors, some more usable than others. 
For example, having learned from 
our e-cache parity experience, subse-
quent processors in the UltraSPARC 
line, beginning in about 2001 with the 
UltraSPARC-III, protect the e-cache 
with true ECC. In the UltraSPARC-III 
16 bytes of data are protected by nine 
bits of ECC, and this same scheme 
is used to protect data in memory as 
well. (ECC is checked as data is moved 
from the e-cache to memory; single-
bit errors are corrected and double-bit 

in the hardware. For example, while di-
agnostic access to the e-cache does not 
return the parity bits, the parity check 
logic works and sets the PSYND (parity 
syndrome) bits in the AFSR (Asynchro-
nous Fault Status Register) as appropri-
ate. (The 16 PSYND bits correspond to 
the 16 bytes in the interface between 
the processor and the e-cache. If a byte 
contains a parity error, the correspond-
ing PSYND bit is set to one.) Thus, di-
agnostic access to the cache allows 
the parity bits to be inferred, if not ob-
served directly.

It is important to note that the use 
of diagnostic access by the error injec-
tor and the cache scrubber depends 

on their not interfering with normal 
system operation. In particular, system 
coherency must be maintained while 
the diagnostic operation is in progress.

The caches of UltraSPARC-II obey 
this requirement. Diagnostic access to 
the cache by the CPU does not interfere 
with the cache’s response to coher-
ency traffic. Snooping continues, and 
requests to invalidate cache lines are 
processed normally.

Contrast this with the Sun Enter-
prise 10000 system board DTAG (dual 
tag), which contains a copy of the tag 
information in the four processors on 
the system board. Thus, when a snoop 

—Lt. Commander Geordi La Forge, in Star Trek: The Next Generation
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errors are rewritten with a special syn-
drome. Similarly, ECC is checked as 
data is moved from memory to the e-
cache; single-bit errors are corrected, 
but double-bit errors are written into 
the e-cache as is.)

Injecting memory errors in the Ul-
traSPARC-III is similar to that in the Ul-
traSPARC-II; a control register contains 
an FM bit and a forced ECC field. When 
set that ECC value is used instead of 
calculated ECC when data moves from 
the e-cache to memory.

For injecting errors into the Ultra-
SPARC-III e-cache, the hardware en-
gineers tried to do something similar; 
another control register contains an 

FM bit and a forced ECC field, only 
the forced ECC in this register is used 
whenever data is written into the e-
cache. This would have been difficult 
to use, as stores do not write data di-
rectly into the e-cache, but into a w-
cache (write cache). The data in the 
w-cache is not merged with that in the 
e-cache until the line is displaced out 
of the w-cache, and that is difficult to 
control. Fortunately, we did not have to 
use this mechanism, as the hardware 
engineers provided something even 
better: direct access to the raw bits in 
the e-cache, both data and ECC.

This mechanism uses five staging 

advantage of error injection technol-
ogy to improve the handling, diag-
nosis, and containment of errors by 
their respective systems, as having the 
hardware and software people all in a 
single organization allows the neces-
sary continuous interaction between 
them as new hardware and software is 
developed. When hardware and soft-
ware development is divided among 
different organizations, as it is in the 
Windows, VMware, and Linux worlds 
(or, alternatively, the Intel and AMD 
worlds), exploiting error injection 
technology for product improvement 
is much more difficult. 
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registers: four to hold 32 bytes of data 
(a half-cache line consisting of two 16-
byte ECC-protected chunks) and a fifth 
register to hold the two 9-bit ECC fields 
protecting the respective chunks. 
One set of diagnostic loads and stores 
moves data between the e-cache and 
the staging registers 32 data bytes 
and 18 ECC bits at a time; another set 
moves data between a given staging 
register and an integer register. This al-
lows the error injector to flip any com-
bination of data and ECC bits.

Conclusion
“Software. Hardware. Complete.”

Since the e-cache parity crisis, error 

injection has become a core compe-
tency of what is now Oracle’s Systems 
organization. As new processors and 
their supporting ASICs are designed, 
error and diagnostic reviews make 
sure they have the appropriate abil-
ity to inject errors into their internal 
structures, and the error injector is en-
hanced to inject those errors so that we 
can test our error-handling, diagnosis, 
and containment software in an end-
to-end fashion. 

Of course, companies such as IBM 
and Oracle that control both the hard-
ware they sell and the software that 
supports it are best positioned to take 

—Henny Youngman
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problem was that I wasn’t thinking 
clearly yet about algebra. My introduc-
tion at age 15 to teacher James R. Har-
key put me on the road to solving that 
problem.

In high school Mr. Harkey taught 
us what he called an axiomatic ap-
proach to solving algebraic equa-
tions. He showed us a set of steps that 
worked every time (and he gave us 
plenty of homework to practice on). In 
addition, by executing those steps, we 
necessarily documented our thinking 
as we worked. Not only were we think-
ing clearly, using a reliable and repeat-
able sequence of steps, but we were 
also proving to anyone who read our 

Recently, I’ve been introduced to the 
world of “MySQL tuning,” and the 
situation seems very similar to what I 
saw in Oracle more than 20 years ago.

It reminds me a lot of how difficult 
beginning algebra seemed when I was 
about 13 years old. At that age, I had 
to appeal heavily to trial and error to 
get through. I can remember looking 
at an equation such as 3x + 4 = 13 and 
basically stumbling upon the answer, 
x = 3.

The trial-and-error method 
worked—albeit slowly and uncomfort-
ably—for easy equations, but it didn’t 
scale as the problems got tougher—
for example, 3x + 4 = 14. Now what? My 

W h e n  I  jo  i n e d  Oracle Corporation in 1989, 
performance—what everyone called “Oracle tuning”—
was difficult. Only a few people claimed they could 
do it very well, and those people commanded high 
consulting rates. When circumstances thrust me into 
the “Oracle tuning” arena, I was quite unprepared. 

Thinking 
Clearly About 
Performance, 
Part 1
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work that we were thinking clearly. 
Our work for Mr. Harkey is illustrated 
in Table 1.

This was Mr. Harkey’s axiomatic 
approach to algebra, geometry, trigo-
nometry, and calculus: one small, log-
ical, provable, and auditable step at a 
time. It’s the first time I ever really got 
mathematics.

Naturally, I didn’t realize it at the 
time, but of course proving was a skill 
that would be vital for my success 
in the world after school. In life I’ve 
found that, of course, knowing things 
matters, but proving those things to 
other people matters more. Without 
good proving skills, it’s difficult to be 
a good consultant, a good leader, or 
even a good employee.

My goal since the mid-1990s has 
been to create a similarly rigorous ap-
proach to Oracle performance optimi-
zation. Lately, I have been expanding 
the scope of that goal beyond Oracle 
to: “Create an axiomatic approach to 
computer software performance op-
timization.” I’ve found that not many 
people like it when I talk like that, so 
let’s say it like this: “My goal is to help 
you think clearly about how to opti-
mize the performance of your com-
puter software.”

What is Performance?
Googling the word performance re-
sults in more than a half-billion hits 
on concepts ranging from bicycle rac-
ing to the dreaded employee review 
process that many companies these 
days are learning to avoid. Most of the 
top hits relate to the subject of this 
article: the time it takes for computer 
software to perform whatever task you 
ask it to do. 

And that’s a great place to begin: 
the task, a business-oriented unit of 
work. Tasks can nest: “print invoices” 
is a task; “print one invoice”—a sub-
task—is also a task. For a computer 

user, performance usually means the 
time it takes for the system to execute 
some task. Response time is the ex-
ecution duration of a task, measured 
in time per task, such as “seconds 
per click.” For example, my Google 
search for the word performance had 
a response time of 0.24 seconds. The 
Google Web page rendered that mea-
surement right in my browser. That is 
evidence to me that Google values my 
perception of Google performance.

Some people are interested in an-
other performance measure: through-
put, the count of task executions that 
complete within a specified time in-
terval, such as “clicks per second.” 
In general, people who are respon-
sible for the performance of groups of 
people worry more about throughput 
than does the person who works in a 
solo contributor role. For example, 
an individual accountant is usually 
more concerned about whether the 
response time of a daily report will 
require that accountant to stay late 
after work. The manager of a group 
of accounts is additionally concerned 
about whether the system is capable 
of processing all the data that all of 
the accountants in that group will be 
processing.

Response Time versus Throughput
Throughput and response time have 
a generally reciprocal type of relation-
ship, but not exactly. The real relation-
ship is subtly complex.

Example 1. Imagine that you have 
measured your throughput at 1,000 
tasks per second for some benchmark. 
What, then, is your users’ average re-
sponse time? It’s tempting to say that 
the average response time is 1/1,000 = 
.001 seconds per task, but it’s not neces-
sarily so.

Imagine that the system processing 
this throughput had 1,000 parallel, in-
dependent, homogeneous service chan-

nels (that is, it’s a system with 1,000 
independent, equally competent service 
providers, each awaiting your request 
for service). In this case, it is possible 
that each request consumed exactly 1 
second.

Now, you can know that average re-
sponse time was somewhere between 
0 and 1 second per task. You cannot 
derive response time exclusively from 
a throughput measurement, however; 
you have to measure it separately (I 
carefully include the word exclusively in 
this statement, because there are math-
ematical models that can compute re-
sponse time for a given throughput, but 
the models require more input than just 
throughput).

The subtlety works in the other di-
rection, too. You can certainly flip this 
example around and prove it. A scarier 
example, however, will be more fun.

Example 2. Your client requires a 
new task that you’re programming 
to deliver a throughput of 100 tasks 
per second on a single-CPU computer. 
Imagine that the new task you’ve writ-
ten executes in just .001 seconds on the 
client’s system. Will your program yield 
the throughput the client requires?

It’s tempting to say that if you can 
run the task once in just one thousandth 
of a second, then surely you’ll be able to 
run that task at least 100 times in the 
span of a full second. And you’re right, 
if the task requests are nicely serialized, 
for example, so that your program can 
process all 100 of the client’s required 
task executions inside a loop, one after 
the other.

But what if the 100 tasks per second 
come at your system at random, from 
100 different users logged into your cli-
ent’s single-CPU computer? Then the 
gruesome realities of CPU schedulers 
and serialized resources (such as Ora-
cle latches and locks and writable ac-
cess to buffers in memory) may restrict 
your throughput to quantities much less 
than the required 100 tasks per second. 
It might work; it might not. You cannot 
derive throughput exclusively from a re-
sponse time measurement. You have to  
measure it separately.

Response time and throughput are 
not necessarily reciprocals. To know 
them both, you need to measure them 
both. Which is more important? For 
a given situation, you might answer 
legitimately in either direction. In 

Table 1. The axiomatic approach as taught by Mr. Harkey. 

3.1x + 4	 = 13	 problem statement
3.1x + 4 – 4	 = 13 – 4	 subtraction property of equality
3.1x	 = 9	 additive inverse property, simplification
3.1x ∕ 3.1	 = 9 ∕ 3.1	 division property of equality
x	 ≈ 2.903	 multiplicative inverse property, simplification
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many circumstances, the answer is 
that both are vital measurements re-
quiring management. For example, 
a system owner may have a business 
requirement not only that response 
time must be 1.0 second or less for a 
given task in 99% or more of execu-
tions but also that the system must 
support a sustained throughput of 
1,000 executions of the task within a 
10-minute interval.

Percentile Specifications
Earlier, I used the phrase “in 99% 
or more of executions” to qualify a 
response time expectation. Many 
people are more accustomed to such 
statements as “average response time 
must be r seconds or less.” The per-
centile way of stating requirements 
maps better, though, to the human 
experience.

Example 3. Imagine that your re-
sponse time tolerance is 1 second for 
some task that you execute on your com-
puter every day. Imagine further that 
the lists of numbers shown in Table 2 
represent the measured response times 
of 10 executions of that task. The aver-
age response time for each list is 1.000 
second. Which one do you think you 
would like better?

Although the two lists in Table 2 
have the same average response time, 
the lists are quite different in charac-
ter. In list A, 90% of response times were 
one second or less. In list B, only 60% of 
response times were one second or less. 
Stated in the opposite way, list B repre-
sents a set of user experiences of which 
40% were dissatisfactory, but list A 
(having the same average response time 
as list B) represents only a 10% dissatis-
faction rate.

In list A, the 90th percentile response 
time is .987 seconds; in list B, it is 1.273 
seconds. These statements about per-
centiles are more informative than 
merely saying that each list represents 
an average response time of 1.000 sec-
ond.

As GE says, “Our customers feel the 
variance, not the mean.”1 Expressing 
response-time goals as percentiles 
makes for much more compelling re-
quirement specifications that match 
with end-user expectations: for exam-
ple, the “Track Shipment” task must 
complete in less than .5 seconds in at 
least 99.9% of executions.

Problem Diagnosis
In nearly every performance problem 
I’ve been invited to repair, the stated 
problem has been about response 
time: “It used to take less than a sec-
ond to do X; now it sometimes takes 
20+.” Of course, a specific statement 
like that is often buried under veneers 
of other problems such as: “Our whole 
[adjectives deleted] system is so slow 
we can’t use it.”2

Just because something happened 
often for me doesn’t mean it will hap-
pen for you. The most important thing 
to do first is state the problem clearly, 
so you can think about it clearly.

A good way to begin is to ask, 
what is the goal state that you want 
to achieve? Find some specifics that 
you can measure to express this: for 
example, “Response time of X is more 
than 20 seconds in many cases. We’ll 
be happy when response time is one 
second or less in at least 95% of execu-
tions.” That sounds good in theory, 
but what if your user doesn’t have such 
a specific quantitative goal? This par-
ticular goal has two quantities (1 and 
95); what if your user doesn’t know 
either one of them? Worse yet, what 
if your user does have specific ideas, 
but those expectations are impossible 
to meet? How would you know what 

“possible” or “impossible” even is?
Let’s work our way through those 

questions.

The Sequence Diagram
A sequence diagram is a type of graph 
specified in UML (Unified Modeling 
Language), used to show the interac-
tions between objects in the sequen-
tial order that those interactions 
occur. The sequence diagram is an ex-
ceptionally useful tool for visualizing 
response time. Figure 1 shows a stan-
dard UML sequence diagram for a 
simple application system composed 

Table 2. The average response time for 
each of these two lists is 1.000 second.

List A List B

1 .924 .796

2 .928 .798

3 .954 .802

4 .957 .823

5 .961 .919

6 .965 .977

7 .972 1.076

8 .979 1.216

9 .987 1.273

10 1.373 1.320

Figure 1. This UML sequence diagram shows the interactions among a browser,  
an application server, and a database.

Track Shipment

prepare()

execute()

fetch()

Browser

Browser

App

App

DB

DB
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of a browser, application server, and a 
database.

Imagine now drawing the sequence 
diagram to scale, so that the distance 
between each “request” arrow coming 

in and its corresponding “response” 
arrow going out are proportional to 
the duration spent servicing the re-
quest. I have shown such a diagram 
in Figure 2.  This is a good graphical 

representation of how the compo-
nents represented in your diagram are 
spending your user’s time. You can 
“feel” the relative contribution to re-
sponse time by looking at the picture.

Sequence diagrams are just right 
for helping people conceptualize how 
their responses are consumed on a 
given system, as one tier hands con-
trol of the task to the next. Sequence 
diagrams also work well to show how 
simultaneous processing threads 
work in parallel, and they are good 
tools for analyzing performance out-
side of the information technology 
business.1 

The sequence diagram is a good 
conceptual tool for talking about per-
formance, but to think clearly about 
performance, you need something 
else. Here’s the problem. Imagine 
the task you’re supposed to fix has a 
response time of 2,468 seconds (41 
minutes, 8 seconds). In that period of 
time, running that task causes your 
application server to execute 322,968 
database calls. Figure 3 shows what 
the sequence diagram for that task 
would look like.

There are so many request and re-
sponse arrows between the applica-
tion and database tiers that you can’t 
see any of the detail. Printing the se-
quence diagram on a very long scroll 
isn’t a useful solution, because it 
would take weeks of visual inspection 
before you would be able to derive use-
ful information from the details you 
would see.

The sequence diagram is a good 
tool for conceptualizing flow of con-
trol and the corresponding flow of 
time. To think clearly about response 
time, however, you need something 
else.

The Profile
The sequence diagram does not scale 
well. To deal with tasks that have huge 
call counts, you need a convenient ag-
gregation of the sequence diagram 
so that you understand the most im-
portant patterns in how your time has 
been spent. Table 3 shows an exam-
ple of a profile, which does the trick. 
A profile is a tabular decomposition 
of response time, typically listed in 
descending order of component re-
sponse time contribution. 

Example 4. The profile in Table 3 

Figure 2. A UML sequence diagram drawn to scale, showing the response time consumed  
at each tier in the system.

Track Shipment
prepare()

execute()
fetch()

Browser

Browser

App

App

DB

DB

Figure 3. This UML sequence diagram shows 322,968 database calls executed by  
the application server. 
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is rudimentary, but it shows exactly 
where your slow task has spent your us-
er’s 2,468 seconds. With the data shown 
here, for example, you can derive the 
percentage of response time contribu-
tion for each of the function calls iden-
tified in the profile. You can also derive 
the average response time for each type 
of function call during your task.

A profile shows where your code has 
spent your time and—sometimes even 
more importantly—where it has not. 
There is tremendous value in not hav-
ing to guess about these things.

From the data shown in Table 
3, you know that 70.8% of your us-
er’s response time is consumed by 
DB:fetch() calls. Furthermore, if 
you can drill down in to the individual 
calls whose durations were aggregat-
ed to create this profile, you can know 
how many of those App:await _
db _ netIO() calls corresponded to 
DB:fetch() calls, and you can know 
how much response time each of 
those consumed. With a profile, you 
can begin to formulate the answer to 
the question, “How long should this 
task run?”… which, by now, you know 
is an important question in the first 
step (section 0) of any good problem 
diagnosis.

Amdahl’s Law
Profiling helps you think clearly about 
performance. Even if Gene Amdahl 
had not given us Amdahl’s Law back 
in 1967, you would probably have 
come up with it yourself after the first 
few profiles you looked at. 

Amdahl’s Law states: Performance 
improvement is proportional to how 
much a program uses the thing you 
improved. If the thing you’re trying 
to improve contributes only 5% to 
your task’s total response time, then 
the maximum impact you’ll be able 
to make is 5% of your total response 
time. This means that the closer to 
the top of a profile that you work (as-
suming that the profile is sorted in 
descending response-time order), the 
bigger the benefit potential for your 
overall response time.

This doesn’t mean that you always 
work a profile in top-down order, 
though, because you also need to con-
sider the cost of the remedies you’ll be 
executing.3

Example 5. Consider the profile in 

Table 4. It’s the same profile as in Table 
3, except here you can see how much 
time you think you can save by imple-
menting the best remedy for each row in 
the profile, and you can see how much 
you think each remedy will cost to im-
plement.

Which remedy action would you im-
plement first? Amdahl’s Law says that 
implementing the repair on line 1 has 
the greatest potential benefit of saving 
about 851 seconds (34.5% of 2,468 sec-
onds). If it is truly “super expensive,” 
however, then the remedy on line 2 may 
yield better a net benefit—and that is 
the constraint to which you really need 
to optimize—even though the potential 
for response time savings is only about 
305 seconds.

A tremendous value of the profile is 
that you can learn exactly how much 
improvement you should expect for 
a proposed investment. It opens the 
door to making much better deci-
sions about what remedies to imple-
ment first. Your predictions give you 

a yardstick for measuring your own 
performance as an analyst. Finally, it 
gives you a chance to showcase your 
cleverness and intimacy with your 
technology as you find more efficient 
remedies for reducing response time 
more than expected, at lower-than-
expected costs.

What remedy action you implement 
first really boils down to how much 
you trust your cost estimates. Does 
“dirt cheap” really take into account 
the risks that the proposed improve-
ment may inflict upon the system? 
For example, it may seem dirt cheap 
to change that parameter or drop that 
index, but does that change poten-
tially disrupt the good performance 
behavior of something out there that 
you’re not even thinking about right 
now? Reliable cost estimation is an-
other area in which your technologi-
cal skills pay off.

Another factor worth considering is 
the political capital that you can earn 
by creating small victories. Maybe 

Table 3. This profile shows the decomposition of a 2,468.000-second response time. 

Function Call R (sec) Calls

1 DB: fetch() 1,748.229 322,968

2 App: await _ db _ netIO() 338.470 322,968

3 DB: execute() 152.654 39,142

4 DB: prepare() 97.855 39,142

5 Other 58.147 89,422

6 App: render _ graph() 48.274 7

7 App: tabularize() 23.481 4

8 App: read() 0.890 2

Total 2,468.000

Table 4. This profile shows the potential for improvement and the corresponding cost  
(difficulty) of improvement for each line item from Table 2.

Potential improvement % and cost of investment R (sec) R (%)

1 34.5% super expensive 1,748.229 70.8%

2 12.3% dirt cheap 338.470 13.7%

3 Impossible to improve 152.654 6.2%

4 4.0% dirt cheap 97.855 4.0%

5 0.1% super expensive 58.147 2.4%

6 1.6% dirt cheap 48.274 2.0%

7 Impossible to improve 23.481 1.0%

8 0.0% dirt cheap 0.890 0.0%

Total 2,468.000
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cheap, low-risk improvements won’t 
amount to much overall response-
time improvement, but there’s value 
in establishing a track record of small 
improvements that exactly fulfill your 
predictions about how much response 
time you’ll save for the slow task. A 
track record of prediction and fulfill-
ment ultimately—especially in the 
area of software performance, where 
myth and superstition have reigned 
at many locations for decades—gives 
you the credibility you need to influ-
ence your colleagues (your peers, your 
managers, your customers…) to let 
you perform increasingly expensive 
remedies that may produce bigger 
payoffs for the business.

A word of caution, however: don’t 
get careless as you rack up successes 
and propose ever-bigger, costlier, 
riskier remedies. Credibility is fragile. 
It takes a lot of work to build it up but 
only one careless mistake to bring it 
down. 

Skew
When you work with profiles, you re-
peatedly encounter sub-problems 
such as this:

Example 6. The profile in Table 3 re-
vealed that 322,968 DB: fetch() calls 
had consumed 1,748.229 seconds of re-
sponse time. How much unwanted re-
sponse time would be eliminated if you 
could eliminate half of those calls? The 
answer is almost never, “Half of the re-
sponse time.” Consider this far simpler 
example for a moment:

Example 7. Four calls to a subroutine 
consumed four seconds. How much un-
wanted response time would be elimi-
nated if you could eliminate half of 
those calls? The answer depends upon 

the response times of the individual 
calls that we could eliminate. You might 
have assumed that each of the call dura-
tions was the average 4/4 = 1 second, but 
nowhere did the statement tell you that 
the call durations were uniform.

Imagine the following two possi-
bilities, where each list represents the 
response times of the four subroutine 
calls:

A = {1, 1, 1, 1}
B = {3.7, .1, .1, .1}

In list A, the response times are uni-
form, so no matter which half (two) of 
the calls you eliminate, you will reduce 
total response time to two seconds. In 
list B, however, it makes a tremendous 
difference which two calls are eliminat-
ed. If you eliminate the first two calls, 
then the total response time will drop 
to .2 seconds (a 95% reduction). If you 
eliminate the final two calls, then the 
total response time will drop to 3.8 sec-
onds (only a 5% reduction).

Skew is a nonuniformity in a list of 
values. The possibility of skew is what 
prohibits you from providing a precise 
answer to the question I asked at the 
beginning of this section. Let’s look 
again:

Example 8. The profile in Table 3 
revealed that 322,968 DB: fetch() 
calls had consumed 1,748.229 seconds 
of response time. How much unwanted 
response time would you eliminate by 
eliminating half of those calls? With-
out knowing anything about skew, the 
most precise answer you can provide is, 
“Somewhere between 0 and 1,748.229 
seconds.”

Imagine, however, that you had 
the additional information available 

in Table 5. Then you could formulate 
much more precise best-case and 
worst-case estimates. Specifically, if 
you had information like this, you 
would be smart to try to figure out how 
specifically to eliminate the 47,444 
calls with response times in the .01- to 
.1-second range.

Summary
In Part 1, I have tried to link togeth-
er some of the basic principles that 
I have seen people trip over in my 
travels as a software performance 
analyst. In Part 2, I will describe how 
competition for shared resources 
influences performance by cover-
ing the concepts of efficiency, load, 
queuing delay, and coherency delay. I 
will also explain how to think clearly 
about performance during the de-
sign, build, and test phases of an ap-
plication, so that you’ll be much more 
likely to create fast software that can 
become even faster throughout its 
production lifespan. 	
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in computing does not cease being 
cited any more quickly than research 
in other disciplines, indicating (con-
trary to popular belief) that research 
in computing does not become ob-
solete more quickly than research in 
other disciplines. The extent to which 
this is the case is important for several 
reasons: 

Demand for innovation. Though 
computing has made great strides, so-
ciety continues to demand more com-
plex, reliable, robust, usable hard-
ware and software systems. Advances 
in computing technology needed to 
meet it depend on long-term funding 
of fundamental research.11 However, 
it can be difficult to convince funding 
bodies to support long-term funda-
mental research programs in comput-
ing. One reason may be the already 
quick pace of development of comput-
ing applications, perhaps suggesting 
that the research is not as difficult as 
in other disciplines and that progress 
can be made with less funding than 
other disciplines. Hence, as has been 
reported in the context of U.S. Na-
tional Science Foundation research-
funding policy, when competing for 
research money, computer scientists 
argue that society has a compelling 
need for the results of their research, 
as well as CS as a basic research disci-
pline to maintain its standing within 
the scientific community.19 Compet-
ing for funding with researchers from 
other sciences in a university setting, 
CS researchers must counter the argu-
ment that research funding in com-
puting will not be prioritized because 
everything useful is already being 
done both faster and better by the IT 
industry anyway. 

Computing techno logies are  changing everyone’s 
social, political, economic, and cultural worlds.12 
Meanwhile, scientists commonly believe that research 
in computing is advancing more quickly and just as 
quickly becoming obsolete more quickly than research 
in other scientific disciplines. A notable indicator 
is how quickly it stops being cited in the literature. 
Common measures of this phenomenon are called 
“cited half-life,” “citing half-life,” and the Price  
Index (see the sidebar “Definitions and Measures of 
Obsolescence”). These measures show that research 

doi:10.1145/1810891.1810911

Computing research ages more slowly  
than research in other scientific disciplines, 
supporting the call for parity in funding. 

By Dag I.K. Sjøberg 

Confronting 
the Myth 
of Rapid 
Obsolescence 
in Computing 
Research 

 key insights
 � �With respect to aging in the research 

literature, CS is in the middle of the 
scientific disciplines. 

 � �The research challenges in computing 
are as fundamental and long-lasting  
as those in other disciplines. 

 � �Publication delay is not a major 
problem within CS. 
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Aging research. Though relevant, 
the CS literature may still be consid-
ered obsolete and thereby ignored due 
to its age. As a researcher and journal 
editor, I find that reviewers frequently 
mention “old references,” and, as a su-
pervisor, I find Ph.D. students are often 
reluctant to read older literature. 

Publication delay. Researchers in 
computing sometimes claim the rela-
tively long lag between submission 
and publication of a journal article 
renders the research outdated before 
publication, arguing for submitting 
their manuscripts to conferences rath-
er than to journals. 

Library ROI. Due to the ever-increas-
ing volume of research literature, li-
braries must make cost-effective de-
cisions, identifying the core journals 
within a discipline, canceling their 
subscriptions to less-accessed jour-

nals, and archiving less-accessed ma-
terial to save shelf space. To maximize 
return on their investment, libraries 
must collect statistics on the use of 
their materials.9 Research literature on 
computing being accessed less often 
or quickly becoming obsolete may af-
fect decisions about the archiving and 
retention of computing journals. 

Results 
Table 1 reflects CS within the various 
disciplines with respect to average ag-
gregated cited, citing half-lives, and 
Price Index. This result is in striking 
contrast to the only other work I found 
on obsolescence of the computing lit-
erature—Cunningham and Bocock3—
which found a citing half-life of four 
years (I found 7.5), concluding that 
their study supported “…a commonly 
held belief about computer science, 

that it is a rapidly changing field with 
a relatively high obsolescence rate for 
its documents. This hypothesis is con-
firmed for the field of computer oper-
ating systems and network manage-
ment…” They also reported a half-life 
of five years for the field of “Informa-
tion Systems.” The main reason for 
the discrepancy between their results 
and mine is likely that they based their 
analysis on a small sample—only two 
journals (one that no longer exists) 
and four issues of the proceedings 
of one conference, the International 
Conference on Information Systems. 
By contrast, ISI Journal Citation Report 
(JCR) provided me with values for 382 
computing journals. 

The extent to which the cited and 
citing half-life measures are equiva-
lent or complementary has been cov-
ered in the literature.17 For individual 
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Definitions and Measures of Obsolescence 
All disciplines include foundational 
research that is relevant to ongoing 
research but that does not need to be 
(and is not) cited; an example is Newton’s 
Principia Mathematica. However, it is 
generally reasonable to assume that 
researchers cite other research in their 
publications if they consider it relevant. 
Consequently, the median age of the 
references to, or in, published articles 
within a field is an indicator of how 
quickly the literature becomes obsolete. 
Inspired by the same term in nuclear 
physics, this indicator, called “half-
life,” has been used for a long time in 
bibliometric research.18 

There are basically two ways—
retrospective studies and prospective 
studies2—to weigh the obsolescence of 
an article, a journal, or the body of the 
literature of a (sub)field. In retrospective 
studies, one proceeds backward from a 
particular date. The JCR8 provides two 
retrospective half-life measures: 

Cited half-life. The cited half-life of a 
journal for a particular year is the number 
of years (counting backward from and 
including that year) accounting for 50% of 
the citations received from the sample of 
journals under consideration. Cited half-
life shows how quickly articles published 
in a given journal, taken as a set, cease to 
be cited. To illustrate, the red arrows in 
the figure here indicate articles published 
in 2007 in various journals that cite 
articles in Communications independent 
of year; assume in this example only one 
article per journal. One must then go back 
to 1998 to include 50% of the citations to 
Communications, giving a cited half-life 
of 10 years. In reality, JCR listed 8,969 
citations from articles published in 2007 
in 624 journals or other sources to articles 
published in Communications, but 63% of 
the citations were to articles published in 
1997 or earlier; that is, the cited half-life 
was greater than 10 years. (For half-lives 
>10, JCR reports only the text “>10.”) 
The definition of cited half-life can be 
modified to cover subject categories or 
research fields by considering citations to 
articles in a set of journals representing 
the category or field. This aggregate cited 
half-life is an indicator of the turnover 
rate of the body of work on a subject or in 
a field. 

Citing half-life. The citing half-life for 
a particular year is the median age of all 
articles cited in a given sample of articles. 
In the figure, the blue arrows indicate 
citations in 2007 Communications 
articles to five articles in various journals 
in different years. The median year of 
publication of these five articles is 2003; 
the citing half-life is five years. In reality, 
the citing half-life for Communications 
in 2007, as reported by JCR, was 5.5 
years, calculated on the basis of 1,607 
citations to articles in 155 journals or 

other sources. (JCR reported half-life 
values in decimals because it used an 
interpolation formula in the calculation.) 
The citing half-life shows how quickly a 
journal ceases citing articles from itself 
or from other sources. This definition can 
be modified to cover subject categories or 
research fields. 

Related to the measure of citing 
half-life is the Price Index, defined as 
the proportion of articles cited by a 
publication that is no more than five 
years older than the publication doing 
the citing.4 The index is an outcome 
of Derek J. de Solla Price’s work at the 
University of Malaya in Singapore, 
Cambridge University, and Yale 
University in the 1950s and 1960s on 
the growth of knowledge in science and 
the “research front of recent papers.”5 A 
large index value indicates a discipline 
characterized by quick growth and an 
active research front. 

In prospective studies, one 
investigates the history of citations that 
have been made to a particular article 
or set of articles after publication over 

a given time period, typically 10 to 15 
years.6 Half-life is defined as the time 
period over which half the citations to the 
(set of) articles were made; for example, 
if we were to calculate the prospective 
half-life of Communications for 1998 
in a 10-year window, we would have to 
determine the number of citations to the 
1998 Communications articles from 1998 
to 2007. The figure outlines how articles 
published in the journals Artificial 
Intelligence in 2002, IEEE Software in 
2003, and World Wide Web in 2007 cited 
articles in Communications in 1998 (dark 
gray arrows). If the citations were from 
one article in each of the three journals, 
the prospective half-life would be six 
years, and the median citation would be 
in IEEE Software. 

The advantage of prospective half-
lives is that researchers are able to track 
the use of individual articles. However, 
calculating prospective half-lives is 
challenging and not provided by JCR. 
Consequently, I don’t report prospective 
half-lives here but include the definition 
for the sake of completeness. 

Citation half-lives. 
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journals, the values may be quite dif-
ferent (such as the respective values 
>10 and 5.5 for Communications). Nev-
ertheless, as in Table 1, there is strong 
correlation among the three measures 
of obsolescence at the level of overall 
disciplines: rcited-citing = 0.90, rcited-Price Index 

= –0.83, rciting-Price Index = –0.89). Literature 
with a long lifetime has high cited and 
citing half-life values but low Price In-
dex, and vice versa, giving negative cor-
relations between cited/citing half-live 
and Price Index. 

Looking at the subdisciplines with-
in computing, one finds the citation 
lifespan of the literature is shortest 
within Information Systems and lon-
gest within Theory & Methods (see Ta-
ble 2). The variations among the sub-
disciplines of the various disciplines 
are generally small; on average, the 
cited half-life stddev = 0.8. The varia-
tion among the journals within a disci-
pline is much greater; on average, the 
cited half-life stddev = 2.2. For com-
puting journals, stddev = 2.0, with the 
extremes varying from cited half-life = 
1.7 and citing half-life = 3.7 to >10 for 
both half-life measures. 

Based on the assumption that every-
thing is changing quickly throughout 
society, it is easy to believe that the sci-
entific literature is becoming obsolete 
more quickly than it used to. However, 
a comprehensive study shows that the 
median citation age (citing half-life) of 
scientific publications has increased 
steadily since the 1970s.10 One likely 
reason for this increase is the availabil-
ity of online bibliographic databases 
and the Internet, making it easier to ac-
cess older references. A 2008 study re-
ported, “The Internet appears to have 
lengthened the average life of academ-
ic citations by six to eight months.”1 
Another reason may be the significant 
increase in the number of references 
per article.10 Having space for more ref-
erences allows for increasing the time 
period for included references. 

The reported study10 focused on 
medical fields, natural sciences, and 
engineering. To study the evolution of 
the aging distribution of the comput-
ing literature compared to all other 
disciplines, I investigated cited half-
lives from 2003 to 2007 (see the  side-
bar “How the Study Was Done”); JCR 
did not provide such information ear-
lier than 2003. I found the cited half-

life of computing literature increased 
from 7.1 years in 2003 to 7.4 years in 
2007 (4.7%), the fifth highest increase 
among the 22 disciplines. Geosci-
ences was tops, with an increase from 
8.2 years to 8.8 years (7.7%). The disci-
plines with the most decreasing cited 
half-life were Environment/Ecology 
and Engineering, with declines of 2.4% 
and 1.8%, respectively. The average in-
crease among all disciplines was 0.1 
year (1.9%). Hence, there seems to be a 

trend that the age of useful computing 
literature is increasing, not decreasing 
relative to other disciplines. 

The increasing interest in research 
related to environment and ecology 
may have contributed to less old work 
being cited in more recent issues of the 
related journals. Moreover, if my study 
is replicated in, say, five years, we may 
observe different trends; for example, 
the financial crisis at the time of this 
writing (2009) may contribute to more 

Table 1. Half-lives and Price Index for all scientific disciplines. 

Discipline Mean Half-Life Cited Half-Life Citing Half-Life Price Index

Years Rank Years Rank Years Rank % Rank

Immunology 5.9 1 5.8 1 6.1 1 41.9 1

Molecular Biology  
and Genetics

6.5 2 6.2 2 6.7 2 29.3 13

Space sciences 6.6 3 6.3 3 6.8 3 40.1 2

Pharmacology 6.6 3 6.3 3 6.9 4 36.2 4

Biology and Biochemistry 6.7 5 6.5 7 6.9 4 35.3 6

Microbiology 6.8 6 6.3 3 7.2 7 35.3 5

Clinical Medicine 6.8 6 6.7 8 7.0 6 36.5 3

Chemistry 7.0 8 6.4 6 7.6 9 33.7 7

Neuroscience & Behavior 7.3 9 6.9 11 7.6 9 33.3 9

Physics 7.3 9 6.8 9 7.7 11 33.6 8

Multidisciplinary 7.3 9 6.8 9 7.8 12 33.1 10

Computer Science 7.5 12 7.4 14 7.5 8 31.7 11

Engineering 7.7 13 7.2 13 8.3 13 29.7 12

Environment/Ecology 7.9 14 7.4 14 8.4 15 26.5 17

Materials Science 7.9 14 7.1 12 8.8 17 28.7 14

Agricultural Sciences 8.1 16 7.5 16 8.7 16 25.5 19

Social Sciences, General 8.2 17 8.1 17 8.3 13 27.9 15

Plant & Animal Sciences 8.8 18 8.4 18 9.2 18 26.4 18

Psychiatry/Psychology 9.1 19 9.0 20 9.2 18 25.0 20

Geosciences 9.2 20 8.8 19 9.5 21 27.1 16

Economics and Business 9.6 21 9.9 22 9.2 18 24.8 21

Mathematics 9.7 22 9.5 21 9.8 22 23.9 22

Mean 7.7 7.3 8.0 31.2

Table 2. Half-lives and Price Index for computing. 

Subdiscipline Mean Half-Life Cited Half-Life Citing Half-Life Price Index

Years Rank Years Rank Years Rank % Rank

Information Systems 6.8 1 6.7 2 6.8 1 35.1 1

Interdisciplinary Applications 7.0 2 6.2 1 7.8 4 31.1 4

Artificial Intelligence 7.6 3 7.2 3 8.0 5 28.2 6

Software Engineering 7.7 4 8.1 5 7.2 3 33.8 3

Hardware & Architecture 7.8 5 8.8 7 6.8 2 35.1 1

Cybernetics 7.9 6 7.2 3 8.5 7 26.1 7

Theory & Methods 8.3 7 8.6 6 8.0 5 29.7 5
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research being done in economics and 
business, with more recent work being 
cited, or shorter half-lives. 

Journals vs. conferences. I found an 
average of 5.9 years for the citing half-
life of the 307 conference and work-
shop proceedings available in the ACM 
Digital Library. Their citing half-lives 
are shorter than for computing jour-
nals (7.5 years). The two main explana-
tions for why conferences have shorter 
half-lives are shorter publication delay 
and fewer references per article. 

Publication delay means the cited 
references grow older due to the pub-
lication process per se; that is, the ref-
erences were younger when the article 
was submitted than when the article 
was published. A list of publication 
delays for computing journals, confer-
ences, and other venues shows a clear 
tendency for journals to have longer 
delays than conferences (http://cite-
seer.ist.psu.edu/pubdelay.html). The 
average publication delay of journals 
common to the CiteSeer list and JCR 
was 20 months. The average publica-
tion delay of the conferences com-
mon to the CiteSeer list and the ACM 
Digital Library was eight months. 
About one-third of the JCR journals 
and one-quarter of the ACM Digital 
Library conferences were included. 
It is unlikely these samples were bi-
ased with respect to publication delay. 
Hence, we can infer that the average 
difference in publication delay be-
tween computing journals and con-
ferences is approximately one year, 
even though the increasing use of 
Web-based support tools in the review 
process of many journals may have 
contributed to slightly shorter publi-
cation delays today than when the list 
was assembled in 2003. 

The 11,719 articles in the ACM con-
ferences (as of 2008) include, on aver-
age, 16.1 references, while the 36,004 
articles in the JCR computing journals 
include, on average, 27.1 (26.2 if review 
articles are excluded); that is, journals 
include 70% more references than 
conferences. Journal articles are also 
generally longer than conference ar-
ticles; thus, more space is available for 
related work. Consequently, the citing 
half-lives of journals may be higher 
than the citing half-lives of conference 
proceedings due in part to journals cit-
ing more references. 

When calculating the half-lives 
of the conference proceedings, I ex-
cluded references to URLs because 
their year of “publication” was rarely 
indicated in their citations; moreover, 
for those ULR references with the year 
indicated, it’s likely that the content 
of the actual Web site has changed, 
meaning we cannot necessarily use 
the indicated year to calculate the age 
of the content of a given Web site (un-
like printed publications). However, 
another study16 investigated how long 
URLs are accessible by inspecting the 
URLs referenced in articles in IEEE 
Computer and Communications from 
1995 to 1999, reporting, “A noteworthy 
parallel can be observed between the 
four years we calculated as the half-life 
of referenced URLs and five years given 
as the median citation age for comput-
er science.” One may reasonably ques-
tion the extent to which one is able to 
compare the accessibility of URLs with 
the inclusion of references in articles. 

Nevertheless, the claim that the half-
life in CS is five years is from four issues 
of the Proceedings of the International 
Conference on Information Systems.3 
Due to difference between journals 
and conferences, it would be more cor-
rect to compare the four-year half-life 
of URLs with the citing half-life of 7.5 
years in Table 1, as both figures result 
from analyzing journals. In this case, 
referenced articles would have a use-
ful life approximately twice as long as 
the URLs. However, given that I found 
large variations in the citing half-lives 
between journals and conferences 
with respect to printed publications, 
one may find large variations in the 
half-lives of referenced URLs as well. 
Therefore, one should analyze much 
larger samples than only two journals 
to make a general statement. 

Conclusion 
My investigation found that the ag-
ing of the computing literature is not 
atypical compared with other scientific 
research disciplines, indicating that 
the research front in computing does 
not move more quickly than its coun-
terpart in other disciplines. It is also a 
sign that computing is an established 
research discipline with long-lasting 
challenges and complex research prob-
lems taking years to solve. For exam-
ple, developing software systems that 

One should take 
care criticizing or 
ignoring literature 
just because it is 
“old”; other criteria 
must be used  
to judge quality  
and relevance. 

http://citeseer.ist.psu.edu/pubdelay.html
http://citeseer.ist.psu.edu/pubdelay.html
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are reliable, efficient, user-friendly, 
and maintainable has been, and prob-
ably always will be, a grand challenge 
in computing research. Moreover, it 
typically takes 10 to 20 years for a tech-
nology to mature from being a good 
research idea to being widely used in 
practice.14,15 This fundamental aspect 
of computing, combined with the im-
portance of software in modern soci-
ety, means there is no reason funding 
for computing research should not be 
at a level comparable to that found in 
other scientific disciplines, including 
physics and clinical medicine. 

These results have further conse-
quences. First, half of the citations 
in the computing literature are more 
than seven years old. Publications old-
er than seven years may be viewed as 
old but still considered relevant by the 
authors citing them. Therefore, one 
should take care criticizing or ignoring 
literature just because it is “old”; other 
criteria must be used to judge quality 
and relevance. 

The relatively long cited half-life of 
computing literature also indicates that 
the time lag between submitting a paper 
to a journal and it being published in 
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I used Thomson’s JCR Science Edition (6,417 journals in 172 categories) and Social 
Sciences Edition (1,865 journals 55 in categories) for 2007, with most journals in the 
(natural) sciences covered in the selection. The coverage in the social sciences was 
less comprehensive.13 To comprehensively compare the overall computing discipline 
with other scientific disciplines, I first aggregated the JCR journal categories into 22 
disciplines, per ScienceWatch (http://sciencewatch.com/about/met/fielddef/) and 
discarded eight of the 227 JCR categories because I could not fit them into the scheme 
of the aggregated disciplines. 

JCR provided citation data at the level of both journals and categories but did not 
provide half-lives for new journals or journals cited fewer than 100 times. Among 
the 382 CS journals, 8% and 2%, respectively, lacked cited and citing half-lives. In 
the calculations of the aggregated results by discipline (see Table 1), I weighted the 
categories with respect to their number of journals. 

For half-lives >10, JCR used only the value 10 in the calculation of aggregated half-
lives. In the aggregation of half-life values from the JCR categories into the disciplines, 
I used the same approximation. A half-life “>10” was reported for individual categories 
in nine of the 22 disciplines; on average, 25% of the categories had the value “>10.” Note 
that even if these nine disciplines were registered with exact values, it would not affect 
the CS position relative to the other disciplines in Table 1. 

JCR focused on journals for citation data. However, though a study7 reported 
that conference proceedings were less cited in the computing literature than 
books and journals, conferences play an important role in computing research. I 
therefore investigated the proceedings in the ACM Digital Library (from conferences 
and workshops in 2007) to make the data comparable with the data from the JCR 
2007 edition. I included all scientific papers with at least one reference where the 
publication year was given; I thus excluded 2.7% of the papers on this ground. A script 
crawled the Web sites and extracted the references of each article in 307 proceedings.  
I then analyzed the output using a regular expression to identify the year of publication, 
enabling me to calculate the citing half-life. The 0.9% of the references lacking a clear 
year of publication required manual inspection. 

How the Study Was Done

that journal should not be a major con-
cern; such work is rarely obsolete before 
publication. In any case, the delay may be 
significantly shorter in the future, as an 
increasing number of journals publish 
their articles online shortly after ac-
cepting them for publication. 

My results also indicate that com-
puting journals are not more likely to 
have their subscriptions cancelled or 
stored for a shorter time than journals 
of other scientific disciplines. There 
are significant variations, so decisions 
regarding particular journals must be 
based on more detailed information 
about the journals. 

Here, I’ve discussed obsolescence 
at a coarse level (disciplines and sub-
disciplines). It would be interesting to 
study obsolescence within categories 
of computing topics and research. For 
example, how does obsolescence vary 
between research that aims to solve 
(minor) practical problems and re-
search that aims to develop compre-
hensive theories? However, this would 
require substantial effort, given there 
is no database that easily provides rele-
vant data similar to what JCR provided 
for the study I’ve reported here. 

http://sciencewatch.com/about/met/fielddef/
http://www.isiknowledge.com/jcr
mailto:dagsj@ifi.uio.no
http://www.isiknowledge.com/jcr
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Erlang is  a  concurrent programming language 
designed for programming fault-tolerant distributed 
systems at Ericsson and has been (since 2000) freely 
available subject to an open-source license. More 
recently, we’ve seen renewed interest in Erlang, as 
the Erlang way of programming maps naturally to 
multicore computers. In it the notion of a process is 
fundamental, with processes created and managed 
by the Erlang runtime system, not by the underlying 
operating system. The individual processes, which are 
programmed in a simple dynamically typed functional 
programming language, do not share memory and 
exchange data through message passing, simplifying 
the programming of multicore computers. 

Erlang2 is used for programming fault-tolerant, 
distributed, real-time applications. What differentiates 
it from most other languages is that it’s a concurrent 
programming language; concurrency belongs to  
the language, not to the operating system. Its 
programs are collections of parallel processes 
cooperating to solve a particular problem that can  
be created quickly and have only limited memory 

overhead; programmers can create 
large numbers of Erlang processes yet 
ignore any preconceived ideas they 
might have about limiting the number 
of processes in their solutions. 

All Erlang processes are isolated 
from one another and in principle 
are “thread safe.” When Erlang ap-
plications are deployed on multicore 
computers, the individual Erlang pro-
cesses are spread over the cores, and 
programmers do not have to worry 
about the details. The isolated pro-
cesses share no data, and polymor-
phic messages can be sent between 
processes. In supporting strong iso-
lation between processes and poly-
morphism, Erlang could be viewed 
as extremely object-oriented though 
without the usual mechanisms associ-
ated with traditional OO languages. 

Erlang has no mutexes, and pro-
cesses cannot share memory.a Even 
within a process, data is immutable. 
The sequential Erlang subset that ex-
ecutes within an individual process is a 
dynamically typed functional program-
ming language with immutable state.b 
Moreover, instead of classes, methods, 
and inheritance, Erlang has modules 
that contain functions, as well as high-
er-order functions. It also includes pro-
cesses, sophisticated error handling, 
code-replacement mechanisms, and a 
large set of libraries. 

Here, I outline the key design crite-
ria behind the language, showing how 
they are reflected in the language itself, 
as well as in programming language 
technology used since 1985. 

Shared Nothing 
The Erlang story began in mid-1985 
when I was a new employee at the Er-
icsson Computer Science Lab in Stock-

a	 The shared memory is hidden from the pro-
grammer. Practically all application program-
mers never use primitives that manipulate 
shared memory; the primitives are intended 
for writing special system processes and not 
normally exposed to the programmer.

b	 This is not strictly true; processes can mutate 
local data, though such mutation is discour-
aged and rarely necessary.

Erlang

doi:10.1145/1810891.1810910

The same component isolation that made 
it effective for large distributed telecom 
systems makes it effective for multicore  
CPUs and networked applications. 

By Joe Armstrong 
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holm charged with “doing something 
about how we write software.” Erics-
son had a long tradition of building 
highly reliable fault-tolerant systems 
(telephone exchanges) specified to 
have at most four minutes of down-
time per year and system software that 
could be upgraded without stopping 
the system. 

How would we do it? The question 
was answered in the mid-1970s and 
has been the same ever since. The 
system would have to be constructed 
from physically isolated components 
communicating through well-defined 
“pure” protocols. The word “pure” has 
special significance, meaning that af-
ter a message passes there should be 
no dangling pointers or data referenc-
es to data structure residing on other 
machines. 

Fault-tolerance is achieved like 
this: If a machine crashes, the failure 
is detected by another machine in the 
network. The machine (or machines) 
detecting the failure must have suf-
ficient data to take over from the ma-
chine that crashed and continue with 
the application. Users should not no-
tice the failure. 

This technique was used by Jim 
Gray10 in the design of the fault-toler-
ant Tandem computer. The Tandem 
hardware architecture was similar to 
the software architecture used to build 
Erlang applications. Using failure de-
tection plus replication to make reli-
able systems has a long history.11 

Now assume we have a single ma-
chine, and the probability that it will 
fail during some time period is 10−3. 
If we have two identical isolated ma-
chines, then the probability they both 
will fail in the same time period is 
10−6, with three machines 10−9, and so 
on. Component isolation is the key to 
building reliable systems. Individual 
components might fail, but the prob-
ability that all components will fail at 
the same time can be made arbitrarily 
small by having a sufficiently large 
number of replicated components. 

This approach works for hardware, 
but what about for software? If 10 cop-
ies of some software run on 10 different 
isolated machines, won’t they all fail 
for the same reason if they all have the 
same software and are trying to solve 
the same problem? Of course they will, 
but in the systems we build, this is not 

a problem. Imagine a system in which 
10,000 transactions are in progress 
simultaneously, including telephone 
calls, Web sessions, database queries, 
anything. Each transaction could be 
running the same software, but each 
instance of the software will also have 
some private state. An individual pro-
cess crashing due to a software error 
is not problematic, provided all other 
processes in the system (where no er-
rors have occurred) are not affected by 
the crash. 

Building fault-tolerant software 
requires the same trick used to build 
fault-tolerant hardware. We arrange 
for one process to observe the behavior 

 key insights
 � �Message-passing systems scale easily, 

are surprisingly efficient, and can be 
made fault tolerant through replication 
over several isolated machines. 

 � �Non-defensive programming and 
Erlang’s “let it crash” style of 
programming lead to clear, compact 
code. 

 � �Upgrading systems without taking them 
out of service has been practiced in the 
telecom world for years; Erlang makes it 
relatively easy. I
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of another process. The observing pro-
cess must be able to detect failures in 
the observed process and take over in 
the event of an error. 

We also forbid dangling pointers 
and shared data structures between 
processes. The entire system is con-
structed so the observed processes and 
their observers need not even be on the 
same machine. For example, in dis-
tributed Erlang, processes can be scat-
tered over physically separated nodes 
and behave semantically as if they were 
on the same node. The only difference 
is in the pragmatics of the system; the 
latency of an operation performed on 
a local process and a process located 
on some physically separated node are 
very different. 

This property of Erlang processes 
means programs can be developed on 
a single node and deployed on a cluster 
without major changes to most of the 
software in the system. 

In light of such considerations, we 
concluded (in 1986) that in order to 
program fault-tolerant applications Er-
lang would need four key properties4,9; 

˲˲ Isolated processes; 
˲˲ Pure message passing between 

processes; 
˲˲ The ability to detect errors in re-

mote processes; and 
˲˲ A method for determining what er-

ror caused a process to crash. 
We did not want to use shared 

memories, mutexes, or semaphores, 
so our only method of process syn-
chronization was through message 
passing—viewed by most program-
mers at the time as a crazy method 
for designing systems. The principal 
objection was efficiency; copying mes-
sages between processes (instead of 
using shared memory) was considered 
horrendously inefficient. The coun-
terargument was that shared memory 
was something preventing fault-toler-
ance. I have always believed that sys-
tems should be made to work correctly 
before they are made fast. Fault-toler-
ance in the presence of both hardware 
and software errors must be addressed 
ahead of efficiency. 

Fast-forward almost 25 years from 
1986 to see that networked applica-
tions are extremely common and mul-
ticore computers are everywhere. As 
the number of cores increases so does 
the need for isolation throughout the 

want errors in external code crashing 
the Erlang runtime system. 

Erlang View of Errors 
Erlang differs from most other pro-
gramming languages in the way it 
handles errors. An Erlang system typi-
cally consists of large numbers of light-
weight processes. It is of no particular 
consequence if any one of them dies. 
The recommended way of program-
ming is to let failing processes crash 
and other processes detect the crashes 
and fix them. 

Erlang has a safe type system. Data 
structures are dynamically typed, and 
it is impossible to create corrupt data 
structures. Extensive user checking of 
data structures is unnecessary, since 
the worst that can happen is an individ-
ual process might crash if it performs 
an illegal operation. The important 
thing to note is that the crash of one 
process does not affect any other un-
linked process in the system. 

However, being type-safe does not 
solve all programmer problems; for 
example, exception handlers must 
still be written to correct type errors, 
and sets of observing processes must 
be created to correct errors caused 
when processes crash due to type er-
rors. Some of these errors could have 
been caught by static type checking, 
but adding complete static type check-
ing to Erlang would change the flavor 
of the language and make upgrading 
dynamic code and other things virtu-
ally impossible. 

In a single-threaded application 
one has only one chance to correct 
an error, so the consequence of not 
correcting an error is that an entire 
application might fail, thus single-
threaded applications and languages 
take great care to fix errors locally. 
With thousands of processes at one’s 
disposal one is less concerned about 
the failure of individual processes 
than about detection and correction 
of errors. The system is divided into 
worker processes that perform com-
putations and supervisor processes 
that check that the worker processes 
are behaving correctly. 

Erlang has an internal mechanism, 
or “link,” that provides a form of inter-
process error detection and performs 
as an error-propagation channel. If 
process A is linked to process B and 

system. Small isolated computations 
are easily allocated to a pool of cores. 
Shared memory translates to cache-
misses in multicore computers. If a 
process running on one core of a multi-
core computer wants to access data in 
the cache of a physically distant core, 
pipeline stalls will occur, and the entire 
operation will take much longer than if 
the memory had been available locally. 

Erlang today is well-placed for pro-
gramming multicore CPUs. Faced with 
a multicore CPU, most programmers 
turn legacy code into a parallel pro-
gram. Erlang programmers face an en-
tirely different problem. They already 
have a parallel program, but it might 
have some sequential bottlenecks, so 
their job is to find the bottlenecks. 

Here, I explore the language, along 
with some of the more interesting ap-
plications that have been written in it. 
Though Erlang started in the telecom 
world, it has escaped to wider pastures, 
rather like Unix and C. 

Erlang View of the World 
The Erlang view of the world is that ev-
erything is a process that lacks shared 
memory and influences one another 
only by exchanging asynchronous 
messages. This view is broadly similar 
to the actors model proposed by Gul 
Agha.1 Each process has a mailbox to 
which messages can be sent. Messages 
are retrieved from the mailbox with a 
receive statement or pattern-match-
ing construction that removes mes-
sages matching a particular pattern 
in the mailbox and can also be used to 
selectively remove messages from the 
mailbox. 

Hardware in Erlang is interfaced 
through processes. A process that con-
trols hardware has two interfaces: one 
toward the Erlang system, where it be-
haves as a regular Erlang process, the 
other toward the hardware controlled 
through a port providing an I/O chan-
nel to the outside world. All commu-
nication with the outside takes place 
through ports. 

Foreign-language software (not in 
Erlang) cannot be linked to the Erlang 
kernel but must be run in a separate 
operating system process that executes 
outside the Erlang runtime system and 
is interfaced through a port. Security is 
the reason for not linking foreign-lan-
guage code into the kernel; we do not 
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process A dies, then an error signal will 
be sent to process B, and vice versa. 

The ability to monitor a process 
provides a clue for building reliable 
systems. The idea is to try to solve the 
problem, but if the processes in the 
solution cannot do the job, the system 
tries to solve a simpler problem. “Can-
not do the job” means detecting the 
failure of a process; the system detects 
such failures and tries to solve a sim-
pler problem. 

One layer of the system usually per-
forms the application logic, and an 
error-trapping layer monitors the ap-
plication and restores it to a safe state 
if an error occurs. This application 
structure is formalized in the Erlang 
Open Telecom Platform (OTP) system 
using so-called supervision trees pro-
viding a precise description of what is 
to happen if a computation fails. OTP 
applications organize problems into 
tree-structured groups of processes, 
letting the higher nodes in the tree 
monitor and correct errors occurring 
in the tree’s lower nodes. 

Erlang Programs 
Erlang was first implemented in Pro-
log6 in 1986, and thus many of the syn-
tactic conventions used in Erlang come 
from Prolog; Erlang’s syntactic conven-
tions include: 

Variables. When variables, or 
single-assignments (written starting 
with an uppercase letter like Day and 
File), acquire a value, that value can-
not be changed; variables acquire val-
ues in successful pattern-matching 
operations; 

Atoms. Used to represent constants, 
they are similar to enumerated types in 
Java and C and written starting with a 
lower-case letter; for example, monday, 
orange, and cat are atoms; 

Tuples. Like structs in C and used 
for storing fixed numbers of items, 
tuples are written in curly brackets; 
for example, {Var, monday, 12} is 
a tuple containing a variable atom and 
an integer; and 

Lists. Used for storing variable 
numbers of items, lists are written en-
closed in square brackets; for example, 
[a,X,b,Y] is a list containing two at-
oms and two variables. 

Erlang’s syntax is designed to make 
it easy to express parallel computa-
tions. Here, I jump in the deep end 

of Erlang program development with 
a code fragment that creates a coun-
ter process. Many of the examples are 
from my 2007 book Programming in 
Erlang2 and contain all the gruesome 
details one would need to write Erlang 
code. I begin by creating a counter pro-
cess: 

Pid = spawn(fun() -> counter(0) 
end),

spawn(Fun) means “create a parallel 
process that evaluates Fun,” or an Er-
lang function. 

The function counter(N) in Fig-
ure 1 waits for one of two messages: If 
the process is sent the message tick, 
it calls counter(N+1). If it is sent 
the message {From, read} it replies 
by sending a message {self(), N} 
to the process From and then calls 
counter(N). The notation A ! B means 
send the message B to the process A, 
self() is the process identity of the 
process running the counter func-
tion and 

receive 
	Pattern1 ->
		Actions1;
	Pattern2 ->
		Actions2;
	...
end 

means wait for a message. If the next 
message matches Pattern1, then ex-
ecute the code Actions1; otherwise 
if the message matches Pattern2, 
then execute the code Actions2, and 
so on. If no pattern is matched, then 
queue the message for later and wait 
for the next message. 

To bump the counter, some process 
that knows the name of the process ex-
ecutes the code: 

Pid ! tick.

To read the counter, we evaluate:

Pid ! {self(), read},
receive
	{Pid, Result} ->
		Result
end

We send a {self(), read} message 
to the counter process, then wait for a 

The recommended 
way of 
programming is  
to let failing 
processes crash 
and other processes 
detect the crashes 
and fix them. 
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return message {Pid, Result}. Vari-
ables in Erlang are bound only once 
and thereafter can never be changed, 
so when one enters the receive state-
ment, Pid has a value; it must have a 
known value, since otherwise Pid ! .. 
would be meaningless. We must know 
the identity of a process in order to 
send it a message. 

The receive statement then waits 
for a message {Pid, Result} where 
Pid is a bound variable and Result is 
an unbound variable. This code frag-
ment means “Wait for a message that is 
a tuple with two arguments where the 
first argument matches Pid and bind 
the value of the second argument in 
the tuple to the variable Result. That 
is, the code fragment waits for a mes-
sage from the process Pid and queues 
any other messages that might arrive 
while waiting for the message. 

This code fragment occurs so often 
it’s been given a name and made into a 
library function: 

rpc(Pid, Request} ->
	Pid ! {self(), Request},
	receive
		{Pid, Response} ->
	Response
	end.

It is simply a remote procedure call. 

Erlang has no built-in mechanism for 
doing remote procedure calls, but one 
can easily program a remote proce-
dure call using the built-in primitives 
send and receive. Why are built-in 
primitives important? Because we can 
roll our own interprocess communica-
tion mechanisms. If we want to do two 
remote procedure calls in parallel, it 
could be done like this: 

Pid1 ! {self(), Request1},
Pid2 ! {self(), Request2},
receive
	{Pid1, Response1} ->
		Response1
end,
receive
	{Pid2, Response2} ->
		Response2
end,
...

This code is non-blocking since re-
ceive automatically queues any out-of 
order messages sent to the processes. 
If Pid1 replies first, then the first re-
ceive clause is triggered, and execution 
steps to the second receive state-
ment and waits for the second process 
to reply. If Pid2 replies first, then the 
message is queued; once Pid1 replies, 
the first receive statement is satis-
fied and the program steps to the sec-
ond receive statement, but the mes-
sage will have been saved and queued, 
so the second receive statement is 
triggered immediately. The net result 
is that on completion of the code frag-
ment both messages will have been 
received irrespective of the order in 
which they were sent. The time spent 
waiting is the longer of the response 
times from the two processes. 

Note, too, if the program had ex-
posed only a composite remote proce-

dure call function, such programming 
would be more difficult, since two in-
termediate processes would have been 
spawned, where each performed a re-
mote procedure call, and the results 
would then have to be combined. With 
three or more processes, coordinating 
the actions of the parallel processes 
would be difficult to program, were it 
not for the queuing mechanism built 
into the Erlang receive statement. 

Detecting errors. Recall that in or-
der to build reliable systems one must 
be able to remotely detect errors.c 
Figure 2 defines a function that can 
detect an error in a remote process 
and perform an action on detecting 
the error, and on _ exit(Pid, F) 
creates a process that monitors the 
process Pid. If the monitored pro-
cess dies with reason Why, the newly 
created process evaluates the func-
tion F(Why), and process _
flag(trap _ exit, true) turns 
the current process into a “system 
process“ that can trap exit signals. The 
statement link(Pid) sets up a “link” 
to the process Pid. A link is an error-
propagation channel, and link(Pid) 
means “if the process Pid dies, send 
me an exit signal.” An exit signal is 
an out-of-band message sent when a 
process dies. Processes normally die 
when they receive out-of-band exit sig-
nals, but because the process evaluat-
ed process _ flag(trap _ exits, 
true), it became a system process, 
and thereafter the exit signal can be 
received as a message containing a 
{‘EXIT’, Pid, Why} tuple. 

The function on _ exit is the 
workhorse needed to build fault-toler-
ant code. Using on _ exit allows one 
to build a hierarchical tree of process-
es. Some processes do the work, and 
other processes monitor the processes 
that do the work and fix things up if the 
worker processes die. 

Recall that the Erlang philosophy 
is “Let it crash”; in fact, processes that 
cannot perform the task they were 
told to do should crash immediately. 
Another process will correct the error. 
This is exactly the opposite of defen-
sive programming but leads to a clean 

c	 Local error detection is no good; the local ma-
chine might have crashed and cannot perform 
error recovery, so the error must be detected 
on a remote machine unaffected by the crash.

Figure 2. A process monitor. 

on_exit(Pid, F) ->
     spawn(fun() -> monitor(Pid, F) end).
 
monitor(Pid, F) ->
      process_flag(trap_exit, true),
      link(Pid),
      receive
         {‘EXIT’, Pid, Why} ->
             F(Why)
    end.

Figure 1. A simple counter process. 

counter(N) ->
   receive
      tick ->
          counter(N+1);
      {From, read} ->
          From ! {self(), N},
          counter(N)
  end.
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separation of interest between code 
that does the job and code that cleans 
up an error when it occurs. Erlang does 
not provide an on _ exit function, 
but it is easy to program one using the 
Erlang’s built-in primitives. 

Dynamic code upgrade. One thing 
users and developers alike want to do 
is run their systems forever. Assuming 
things change, they will also want to 
change the code in a running system, 
but how? Imagine a simple server writ-
ten as follows: 

loop(State, F) ->
	receive
		{From, Request} ->
			{Response, State1}  
			=F(Request, State),
			From ! {self(), Response},
			loop(State1, F)
	end.

This server is a simple extension to 
the counter process in Figure 1. The 
server process has state State and a 
processing function F. We could cre-
ate a process that evaluates this loop 
like this: 

F1 = fun(N, State) -> {N*N, 
State+1} end,
Pid = spawn(fun() -> loop(0, 
F1) end,

The processing function F1 returns 
the square of its first argument and 
keeps a running total of the number of 
requests to the server. 

The code in the server cannot be 
changed, but a small addition can be 
made to allow for dynamic code up-
grade by adding a {newFunction, 
F1} pattern to the receive statement: 

loop(State, F) -> 
	receive
		{newFunction, F1} ->
			loop 
			(State, F1);
		{From, Request} ->
			{Response, State1} =  
			F(Request, State),
			From ! {self(), Response},
			loop(State1,F)
	end.

Now a new processing function can be 
sent to the server without interrupting 
it; for example, we could write: 

frames, since there is nowhere to re-
turn to, and a new stack frame is not re-
quired. Having made a tail call, all local 
variables in the current context can be 
garbage-collected, allowing tail-recur-
sive loops to run indefinitely without 
consuming stack space. 

Open Telecoms Platform
OTP is a large set of libraries written 
mostly in Erlang bundled together with 
the Erlang distribution. OTP can be 
viewed as an application middleware 
package that simplifies writing large 
Erlang applications. Recall I men-
tioned language primitives that could 
be used to build simple functions that 
encapsulate errors, showing how to 
build a simple function on _ exit 
that could be used to evaluate a specif-
ic function if an error occurred in some 
other process. 

Functions like on _ exit, while 
useful and good to include in books 
on programming languages, are not 
the stuff from which large systems are 
built. If a software component in a large 
enterprise system fails, the error report 
must be kept forever and the system 
restarted. If a code upgrade fails, the 
entire system must be automatically 
rolled back to a previous state in a con-
trolled manner. 

Organizations employing large 
teams of programmers cannot let in-
dividual programmers invent their 
own error-handling mechanisms and 
ways of dynamically upgrading code. 
The OTP libraries are thus an attempt 
to formalize a large body of design 
knowledge into workable libraries that 
provide a standardized way of perform-
ing the most common tasks needed to 
build a reliable system. 

OTP is the third total rewrite of a sys-
tem of libraries in Erlang designed for 
building telecom systems.3,4 The 2010 
OTP system includes 49 subsystems, 
each a powerful tool in its own right. 
Typical subsystems are mnesia (a real-
time relational database), megaco (an 
H.248 stack), and docbuilder (a tool to 
make documentation), along with so-
phisticated analysis-test and analysis 
tools. 

Because a large number of Erlang 
programs are written in a pure func-
tional programming style, they are 
able to perform sophisticated analysis 
and transformations. For example, the 

F1 = fun(N, State) -> {N*N, 
State+1} end,
Pid = spawn(fun() -> loop(0, 
F1) end),
...
... some time later
...
F2 = fun(N, State) -> {N*N*N, 
State+1} end,
Pid ! {newFunction, F2},
... 

This new function dynamically up-
grades the code in the server. 

Adding transactions. Adding trans-
actions is easy. In a transaction, either 
state is modified if it works or there is 
no change to the state if the transac-
tion fails. To implement this, we add 
a try-catch-end block to the inner 
part of the receive statement: 

loop(State, F) ->
	receive
		{newFunction, F1} ->
			loop(State,F1);
		{From, Request} ->
			try F(Request, State) of
				{Response, State1} ->
						From ! {self(), Response},
						loop(State1, F)
			catch
			_ :Why ->
				exit(From, crash)
				loop(State, F)
			end
	end. 

The evaluation of F(Request, State) 
is wrapped in a try-catch-end 
block. If the evaluated function raises 
an error, then the process evaluates the 
statement exit(Pid, crash), which 
sends an exit signal to the process 
that caused the exception; thereafter, 
loop(State, F) is called, or recurs 
with the original value of the state. 

The sequential part of Erlang is a 
functional language that does not al-
low the mutation of state. Because 
state cannot be mutated, an Erlang 
function can always revert to a previous 
state of the computation by accessing 
the original variable that referred to 
the state. 

Finally, note the effect of tail-recur-
sion. All server loops in the example 
code finish with tail calls. Once a tail 
call is made there is no going back; 
tail calls do not create additional stack 
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dialyzer14 is a type-checking program 
that performs static analysis of Erlang 
programs, finding type errors (if there 
are any) in them. The test tool Quick-
Check8 generates random test cases 
from a specification of the formal 
properties of a program, and the tool 
Wrangler13 can be used to refactor Er-
lang programs.

Erlang Distribution 
Ever since Erlang was first released 
into the public domain in 2000, it has 
been supported by an internal prod-
uct-development group within Erics-
son. Following the release of Open 
Source Erlang (http://www.erlang.
org/), the language spread slowly for 
several years but has recently seen 
a dramatic upturn in the number of 
users and applications. This growth 
corresponds to a similar upturn 
in interest in Haskell (http://www.
haskell,org/), a strictly typed lazy poly-
morphic programming language. 

Two other languages in the same 
functional language school are 
OCaml and F#. The simultaneous in-
crease in interest in different forms 
of functional programming can be 
seen as evidence that functional 
programming has come of age and 
is transitioning from the academic 
world to industrial practice. Industri-
al projects and the formation of new 
companies using Erlang as core tech-
nology reflect the more interesting 
developments. Erlang can be down-
loaded from http://www.erlang.org/, 
including the OTP system and a large 
number of tools. 

Experience 
In OO languages, objects are used 
to structure applications. In Erlang 
applications, processes are used for 
structuring, a technique I call “con-
currency oriented programming,” or 
COP.5 The idea of building systems 
from communicating components is 
not new. Tony Hoare’s Communicat-
ing Sequential Processes12 described 
how sets of concurrent processes 
could be used to model applications, 
and programming languages like Oc-
cam15 that were based on it explored 
the idea. Erlang is conceptually similar 
to Occam, though it recasts the ideas 
of CSP in a functional framework and 
uses asynchronous message passing 

instead of the synchronous message 
passing in CSP. 

Processes in COP systems are isolat-
ed, responding only to messages and 
resulting in systems that are easy to 
understand, program, and maintain. 
Several fairly large systems written in 
Erlang enforce this idea. Several major 
product developments are based on 
Erlang, the largest being the AXD301 
an asynchronous transfer mode (ATM) 
switch developed by Ericsson. Out-
side Ericsson, Erlang is being used by 
a large number of start-ups and is the 
principle technology of several new 
companies in Stockholm. 

AXD301. The AXD301 switch9 has 
scalable capacity ranging from10Gbit/
sec to 160Gbit/sec and modular archi-
tecture and was written in distributed 
Erlang. Built by a large programming 
team, it has more than 1.6 million 
lines of Erlang code, showing that COP 
as a structuring method and Erlang 
as a programming language scale to 
large systems. One reason it scales so 
well is the architecture. At one level of 
abstraction, it can be viewed as a sys-
tem of components that communicate 
through pure message passing. The 
lack of shared state and division of 
the system into well-isolated commu-
nicating components make it easy to 
understand the system’s overall archi-
tecture and isolate problems within 
the system. 

When a message is sent into a com-
ponent, we expect a certain response, 
or message, from it. If this does not 
happen, the error lies within the com-
ponent. Opening it could reveal the 
same internal structure found on the 
outside, just a set of communicating 
components. “Opening a component” 
can be performed repeatedly until a 
misbehaving Erlang process is found. 
There is no magic. Making reliable sys-
tems from isolated components leads 
to systems that are easy to understand 
and manageable in both small- and 
large-scale projects. 

Instant messaging. One problemat-
ic area in Internet applications where 
Erlang has found notable success is 
implementing instant-messaging 
systems. An IM system looks at first 
approximation very much like a tele-
phone exchange. IM and telephone 
exchanges must both handle very large 
numbers of simultaneous transac-

Not surprising, 
the leading uses 
of Erlang outside 
telecom all involve 
communications 
and reliable  
data storage.

http://www.erlang.org/
http://www.erlang.org/
http://www.erlang.org/
http://www.haskell.org/
http://www.haskell.org/
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tions, each involving communication 
with a number of simultaneously open 
channels. The work involved in pars-
ing and processing the data on any one 
channel is small, but handling many 
thousands of simultaneous channels 
is a technical challenge. 

Erlang’s usefulness in IM is demon-
strated by three projects: 

MochiWeb (http://code.google.com/p/
mochiweb). Designed for building 
lightweight HTTP servers developed by 
MochiMedia for high-throughput, low-
latency analytics, and ad servers, this 
Erlang library helps power Facebook 
chat among more than 70 million users; 

Ejabberd (http://www.ejabberd.im). 
Written by Alexey Shchepin, this Er-
lang implementation of the XMPP 
protocol is the most widely used open 
source XMPP server; and 

RabbitMQ (http://www.rabbitmq.
com). This Erlang implementation 
of the Advanced Message Queuing 
Protocol standard provides reliable 
asynchronous message passing at In-
ternet scale. 

Schema-free databases. In tradi-
tional databases, data is stored in 
rectangular tables, where the items in 
a table are instances of simple types 
(such as integers and strings). Such 
storage is not particularly convenient 
for storing an associative array or ar-
bitrary tree-like structure. Examples 
of the former are JavaScript JSON data 
structures (called hashes in Perl and 
Ruby and maps in C++ and Java) and of 
the latter XML parse trees. These ob-
jects are difficult to store in a regular 
tabular structure. Erlang has for a long 
time had its own database, called mne-
sia, that includes table storage but al-
lows any item in a table cell to also be 
an arbitrary Erlang data structure. 

Databases implemented in Erlang 
are particularly well-suited for such 
storage, especially when they inter-
face with some form of communicat-
ing agent. Three notable databases are 
implemented in Erlang: 

CouchDB (http://incubator.apache.
org/couchdb/). Written by Damien 
Katz, “Apache CouchDB is a distrib-
uted, fault-tolerant, schema-free doc-
ument-oriented database accessible 
via a RESTful HTTP/JSON API.” It pro-
vides robust, incremental replication 
with bidirectional conflict detection 
and resolution, queryable and index-

able through a table-oriented view 
engine, with JavaScript acting as the 
default view-definition language; 

Amazon SimpleDB (http://aws.ama-
zon.com/simpledb/). This Web service 
runs queries on structured data in real 
time; and Scalaris.16 This scalable, 
transactional, distributed key-value 
store has a peer-to-peer architecture 
for supporting reliable transactions 
with ACID properties. 

CouchDB and Scalaris are open 
source projects; SimpleDB is a closed-
source commercial service. 

Sweet spot. Taking in the six proj-
ects described here reveals a pattern 
of communication with complex data 
structures being passed over the net-
work. The number of clients wanting 
simultaneous access to the system is 
potentially huge, with hundreds of 
thousands to millions of users. The 
data stores must therefore be reliable 
and the data protocols extensible. Not 
surprising, this is the Erlang “sweet 
spot” for supporting system devel-
opment. Erlang was developed for 
building high-performance telecom 
switches, with hundreds of thousands 
of users accessing the system simulta-
neously. Data structures are complex, 
and the system must be able to store 
data in a reliable manner, recovering 
from local failures and scaling clusters 
to manage varying demand. Erlang was 
designed to do all these things, with 
the intended applications domain of 
carrier-class telecoms systems. Also 
not surprising, the leading uses of Er-
lang outside telecom all involve com-
munications and reliable data stor-
age. In an abstract sense, what these 
projects do is serialize data terms into 
a transportable format (marshalling 
and unmarshalling), transport the 
data over the network, and store the 
data in some kind of persistent stor-
age medium. 

Beyond the sweet spot, several ap-
plications that have nothing to do 
with fault tolerance have also gained 
popularity; for example, Wings (http://
www.wings3d.com), a 3D graphics 
modeling program written by Björn 
Gustavsson, and Nitrogen (http://
nitrogenproject.com/), a Web-devel-
opment framework written by Rusty 
Klophaus, show that Erlang is useful 
as a general-purpose programming 
language. 
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cOnSider a MaJOr  news Web site like BBC or Cnn. 
Typically, such a site is equipped with a number of 
machines serving as front-ends to receive incoming 
requests together with some application servers 
such as database engines to handle these requests. 
When a new request arrives, to which server does the 
dispatcher have to route it? To the machine with the 
shortest queue; that is, the queue with the minimal 
number of outstanding requests? This might be the 
best decision most times, but not in cases where some 
of the requests in the shortest queue happen to require 
a very long service time, for example, because they 
involve very detailed queries. And what to do when the 

servers differ in computational capa-
bilities? And what to do when multiple 
hosts have the same queue length? 
Well, the “join-the-shortest queue” 
policy might be adequate in most cas-
es, but surely not in all. Its adequacy 
also depends on what quantity—or 
measure—one is interested in. This 
may be the mean delay of service re-
quests, the mean queue length of wait-
ing requests, rejection rates for waiting 
requests, and so on.

The effect of queue-selection poli-
cies on measures of interest or on deci-
sions on how many servers are needed 
to reduce the waiting time by a given 
percentage, are answered by perfor-
mance evaluation techniques. This 
branch of computer (system) science 
studies the perceived performance of 
systems based on an architectural sys-
tem description and a workload mod-
el. Prominent techniques to obtain the 
aforementioned measures of interest 
are mathematical analysis that is typi-
cally focused on obtaining closed-form 
expressions, numerical evaluation that 
heavily relies on methods from linear 
algebra, and (discrete-event) simu-
lation techniques that are based on 
statistical methods. The study and de-
scription of stochastic processes, most 
notably Markov chains, is pivotal for 
these techniques.

A complementary issue to perfor-
mance is correctness. The central 
question is whether a system is con-
forming to the requirements and does 
not contain any fl aws. Typically up-
dates to our news Web site are queued, 
and it is relevant to know whether such 
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A call for the perfect marriage between 
classical performance evaluation and 
state-of-the-art verifi cation techniques.
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 key insights
����Performance engineers and verification 

engineers are currently facing 
very similar modeling and analysis 
challenges.

����a joint consideration is possible, 
practical, beneficial, and is supported 
by effective tools.

����Quantitative model checkers are 
applicable to a broad spectrum of 
applications ranging from sensor 
networks to security and systems 
biology.
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buffers may overfl ow, giving rise to los-
ing—perhaps headline—news items. 
Can such situations ever occur? Is 
there a possible scenario in which the 
dispatcher and application server are 
mutually waiting for each other, thus 
effectively halting the system? If such 
situations make the CNN news site 
unreachable on a presidential Elec-
tion Day, this has far-reaching conse-
quences. And what if the content of 
Web pages unexpectedly depend on 
the ordering of seemingly unrelated 
events in the application servers? Such 
“race conditions” should, if possible, 
be avoided.

A prominent discipline in computer 
science to assure the absence of errors, 
or, complementarily, to fi nd errors 
(“bug hunting”) is formal verifi cation. 
The spectrum of key techniques in this 
fi eld ranges from runtime verifi cation, 

such as checking properties while ex-
ecuting the system, to deductive tech-
niques such as theorem proving, to 
model checking. The latter is a highly 
automated model-based technique as-
sessing whether a system model, that is, 
the possible system behavior, satisfi es a 
property describing the desirable behav-
ior. Typically, properties are expressed 
in temporal extensions of propositional 
logic, and system behavior is captured 
by Kripke structures, that is, fi nite-state 
automata with labeled states. Tradition-
ally, such models do not incorporate 
quantitative information like timing or 
likelihoods of event occurrences.

The purpose of this article is to report 
on combining performance evaluation 
with model checking. Although these 
fi elds have been developed by different 
research communities in the past, over 
the last decade we have seen an integra-

tion of these two techniques for system 
analysis. Signifi cant merits of this trend 
are a major increase of the applicability 
to real cases, and an impulse in the fur-
ther development for both fi elds.

a historic account
To appreciate the benefi ts of combin-
ing performance evaluation and model 
checking, it is worthwhile to refl ect 
on past and recent developments. We 
aim to shed light on the hidden as-
sumptions associated with these de-
velopments. For more details on per-
formance evaluation we refer to Bolch 
et al.10 and Jain,22 for details on model 
checking we refer to Baier and Katoen7

and Clarke et al.11

Single queues. Performance evalu-
ation dates back to the early 1900s, 
when Erlang developed models to di-
mension the number of required lines 

timeline log-scaled from 2010 backward.
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in analogue telephone switches, based 
on the calculation of call loss probabili-
ties. In fact, he used a queueing model, 
in which a potentially infinite supply of 
customers (callers) competes for a lim-
ited set of resources (the lines). The set 
of models and the theory that evolved 
from there is known as queueing the-
ory. It has found, through the last cen-
tury, wide applicability especially in 
telecommunications. Characteristic 
for most models is the competition for 
a single scarce resource at a time, lead-
ing to models with a single queue.

A large variety of modeling assump-
tions were made, for example, regard-
ing the number of available servers 
(lines), buffering facilities, schedul-
ing strategies, job discrimination, and 
the timing involved. The timings were 
assumed to follow some continuous-
time distribution, most often a nega-
tive exponential distribution, leading 
to (what we now call) Markovian mod-
els. These models were subsequently 
analyzed, using calculus, to obtain 
such quantities as mean number of 
customers queued, mean delay, some-
times even the delay distribution, or 
the call blocking probability (“hearing 
a busy signal”). Many of these mea-
sures are available in closed form; at 
other times, numerical recipes were 
proposed, for example, to derive such 
measures from explicit expressions in 
the Laplace domain. Important to note 
is that model construction, as well as 
solution, was (and still is) seen as a 
craft, only approachable by experts.

Networks of queues. In the late 1960s, 
computer networks, networked com-
puter systems, and time-sharing com-
puter systems came into play. These 
systems have the distinguishing feature 
that they serve a finite customer popu-
lation; however, they comprise multiple 
resources. This led to developments in 
the area of queueing networks, in which 
customers travel through a network of 
queues, are served at each queue ac-
cording to some scheduling discipline, 
and are routed to their next point of 
service, and so on, until returning to 
the party that originated the request. 
Efficient algorithms to evaluate net-
works of queues to obtain a set of “stan-
dard measures” such as mean delays, 
throughputs, and mean queue lengths, 
were developed in the 1970s.40,51 A vari-
ety of software tools emerged support-

ing these algorithms that typically have 
a polynomial complexity in the number 
of queues and customers.

Stochastic Petri nets. In early 1980s, 
new computer architectures asked 
for more expressive modeling formal-
isms. In particular, parallel comput-
ers motivated modeling notions to 
spawn customers and to recombine 
smaller tasks into larger ones (fork/
join queues). Moreover, the simultane-
ous use of multiple resources needed 
to be studied. Clearly, these concepts 
could not be expressed using queue-
ing networks. This led to the proposal 
to extend Petri nets—originally devel-
oped to model concurrency—with a 
notion of time, leading to (generalized) 
stochastic Petri nets (SPNs).2 Here, the 
tokens can either play the role of cus-
tomers or of resources. Two observa-
tions are important. First, due to the 
increase in expressivity, specialized 
algorithms, such as those available for 
queueing networks, are typically no 
longer used. Instead, the SPN models 
must be mapped to an underlying sto-
chastic process, a Markov chain that is 
solved by numerical means. Hence, the 
state space of the model must be gen-
erated explicitly, and the resulting Mar-
kov chain has to be solved numerically 
(linear equation solvers). 

The computational complexity of 
these state-based methods is polyno-
mial in the number of states, but this 
often is, in turn, (often) a high-degree 
polynom in the SPN size. Secondly, as 
a result of the new solution trajectory, 
tool support became a central issue. 
Results achieved in this area also in-
spired new numerical algorithms for 
extended queueing network models. 
With hindsight, SPNs can be consid-
ered as the first “product” of the mar-
riage between the field of performance 
evaluation and the field of formal mod-
eling. In the 1990s, this trend contin-
ued and led to probabilistic variants of 
guarded command languages and of 
process algebras, the latter focusing on 
compositionality.

Nondeterminism. All of the mod-
els mentioned here are full stochas-
tic models; that is, at no point in the 
model can some behavioral alterna-
tives be left unspecified. For instance, 
the join-the-shortest-queue strategy 
leaves it open as to how to handle the 
case of several equally short queues. 

This choice cannot be left open with 
the methods noted earlier; leaving 
such a choice is regarded as under-
specification. What typically happens 
is that these cases are dealt with prob-
abilistically, for example, by assign-
ing probabilities to the alternatives. 
That is, nondeterminism is seen as a 
problem that must be removed before 
analysis can take place. This is impor-
tant especially for modeling formal-
isms as SPNs; tools supporting the 
evaluation of these models will either 
detect and report such nondetermin-
ism through a “well-specified check” 
or will simply insert probabilities to 
resolve it. In this case, analysis is car-
ried out under a hidden assumption, 
and there is no guarantee that an ac-
tual implementation will exhibit the 
assumed behavior, nor that the per-
formance derived on the basis of this 
assumption is achieved.

Trends. The last 20 years have seen a 
variety of developments in performance 
evaluation, mostly related to specific 
application fields, such as the works on 
effective bandwidth,42 network calcu-
lus,46 self-similar traffic models,47 and 
traffic (and mobility) models43 (for com-
munication network dimensioning 
purposes). A more general concept has 
been the development of fluid models 
to avoid the state space explosion prob-
lem (for example, Horton et al.45) by 
addressing a large denumerable state 
space as a single continuous state vari-
able. Furthermore, queueing network 
models have been extended with layer-
ing principles to allow for the modeling 
of software phenomena.52 Finally, work 
on matrix geometric methods48 has led 
to efficient analysis methods for large 
classes of queueing models.

Model Checking
Proof rules. The fundamental question 
“when and why does software not work 
as expected?” has been the subject of 
intensive research since the early days 
of computer science. Software qual-
ity is typically based on peer review, 
such as manual code inspection, ex-
tensive simulation, and testing. These 
rather ad hoc validation techniques 
have severe limitations and restric-
tions. Research in the field of formal 
verification has led to complementary 
methods aimed at establishing soft-
ware correctness with a very high level 
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of confidence. The origins of a sound 
mathematical approach toward pro-
gram correctness—at a time where 
programs were described as flow dia-
grams—can be traced back to Turing 
in the late 1940s. Early attempts to 
assess the correctness of computer 
programs were based on mathemati-
cal proof rules that allow to reason in 
a purely syntax-based manner. In the 
1960s, these techniques were devel-
oped for sequential programs, where-
as about a decade later, this approach 
was generalized toward concurrent 
programs, in particular shared-vari-
able programs.

Temporal logic. These syntax-based 
approaches are based on an interpreta-
tion of programs as input/output trans-
formers and serve to prove partial cor-
rectness (such as soundness of output 
values for given inputs, provided the 
program terminates) and termination. 
Thanks to a key insight in the late 1970s 
by Pnueli, one recognized the need for 
concurrent programs to not only make 
assertions about the starting and final 
state of a program, but also about the 
states during the computation. This 
led to the introduction of temporal log-
ic in the field of formal verification.50 
Proofs, however, were still conducted 
mainly by hand along the syntax of 
programs. Proofs for programs of real-
istic size, though, were rather lengthy 
and required a good dose of human 
ingenuity. In the field of communica-
tion protocols, the first techniques ap-
peared toward automated checking of 
elementary properties.53

Model checking. In the early 1980s, 
an alternative to using proof rules was 
proposed that checks systematically 
whether a (finite) model of a program 
satisfies a given property.7,11 The pio-
neers Clarke, Emerson, and Sifakis, 
received the ACM Turing Award 2007 
for this breakthrough; it was the first 
step toward the fully automated veri-
fication of concurrent programs. How 
does model checking work? Given a 
model of the system (the possible be-
havior) and a specification of the prop-
erty to be considered (the desirable 
behavior), model checking is a tech-
nique that systematically checks the 
validity of the property in the model. 
Models are typically nondeterministic 
finite-state automata, consisting of a 
finite set of states and a set of transi-

tions that describe how the system 
evolves from one state into another. 
These automata are usually composed 
of concurrent entities and are often 
generated from a high-level descrip-
tion language such as Petri nets, pro-
cess algebras, Promela, or Statecharts. 
Properties are specified in temporal 
logic such as Computation Tree Logic 
(CTL), an extension of propositional 
logic that allows one to express prop-
erties that refer to the relative order of 
events. Statements can either be made 
about states or about paths, such as 
sequences of states that model system 
evolution.

The backbone of the CTL model 
checking procedure is a recursive de-
scent over the parse tree of the formula 
under consideration where temporal 
conditions (for example, a reachabil-
ity for an invariance condition) are 
checked using fixed point computa-
tions. The class of path properties 
expressible in CTL is restricted to lo-
cal conditions on the current states 
and its direct successors, constrained 
reachability conditions—is a goal state 
reachable by not visiting certain states 
before?—and their duals.

More complex path properties such 
as repeated reachability or progress 
properties, which, for example, can 
state that whenever a request enters 
the news Web site, it is served eventual-
ly, can be specified in Linear Temporal 
Logic (LTL). The rough idea of model 
checking LTL specifications is to trans-
form the formula at hand into an au-
tomaton (recognizing infinite words) 
and then to analyze the product of this 
automaton with the system model by 
means of graph algorithms.

The strength of model checking is 
not in providing a rigorous correctness 
proof, but rather the ability to gener-
ate diagnostic feedback in the form of 
counterexamples (such as error traces) 
in case a property is refuted. This infor-
mation is highly relevant to find flaws 
in the model and in the real system.

Taming state space explosion. The 
time and space complexity of these 
algorithms is linear in the size of the 
finite-state automaton describing the 
system. The main problem is this size 
may grow exponentially in the number 
of program and control variables, and 
in the number of components in a mul-
tithreaded or distributed system.

The strength of 
model checking 
is not in providing 
a rigorous 
correctness proof, 
but rather the 
ability to generate 
diagnostic feedback 
in the form of 
counterexamples  
in case a property  
is refuted.
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Since the birth of model checking, 
effective methods have been devel-
oped to combat this state explosion 
problem. Prominent examples of such 
techniques are: symbolic data struc-
tures,39 partial-order reduction,49 cast-
ing model checking as SAT-problems,38 
or abstraction techniques.11 Due to 
these techniques, together with unre-

mitting improvements of underlying 
algorithms and data structures and 
hardware technology improvements, 
model checking techniques that only 
worked for simple examples a decade 
ago, are now applicable to more real-
istic designs. State-of-the-art model 
checkers can handle state spaces of 
about 109 states using off-the-shelf 

technology. Using clever algorithms 
and tailored data structures, much 
larger state spaces (up to 10120 states41) 
can be handled for specific problems 
and reachability properties.

Quantitative aspects. From the early 
1990s on, various extensions of model 
checking have been developed to treat 
aspects such as time and probabilities. 
Automata have been equipped with 
clock variables to measure the elapse 
of time (resulting in timed automata), 
and it has been shown that despite 
the infinite underlying state space of 
such automata, model checking of a 
timed extension of CTL is still decid-
able.37 LTL has been interpreted over 
(discrete) probabilistic extensions of 
automata, focusing on the probability 
that an LTL formula holds, and proba-
bilistic variants of CTL have been de-
veloped, as we will elaborate in more 
detail later on. For an overview, see 
Baier and Katoen.7 The combination of 
timing aspects and probabilities start-
ed about two decades ago and is highly 
relevant for this article.

Various software tools have been 
developed that support model check-
ing. Some well-known model checking 
tools are: SPIN for LTL, NuSMV for CTL 
(and LTL), Uppaal for timed CTL, and 
PRISM for probabilistic CTL.

Let’s Join Forces
Developments in performance evalu-
ation lean toward more complex mea-
sures of interest, and focus on more 
complex system behavior. However, 
quantitative aspects such as timing 
and random phenomena are becoming 
more important in the field of model 
checking. Performance evaluation and 
model checking have thus grown in 
each other’s direction, simply because 
from either end, it was felt that the 
methods in isolation did not answer 
the questions that were at stake. Let 
us discuss the reasons for this, and the 
benefits of combining these methods.

Individual Shortcomings
Why is a performance (or a dependabil-
ity) evaluation of a system in itself not 
good enough? And why is a formal veri-
fication of a system insufficient to vali-
date its usefulness? These questions are 
best answered by taking a simple sys-
tem design example, for instance a reli-
able data transmission protocol such as 

Figure 1. A logic for quantitative properties: syntax and semantics.

Let X be a general stochastic process, i.e, an indexed family {X(t) | t ∈ T} of 
random variables taking values in the set S. The index set T denotes the time 
domain of X and is either discrete (T = N) or continuous (T = R). We suppose 
that all states have positive probability under the initial distribution μinit, i.e., 
μinit(s) = PrX(X(0) = s) > 0 for all states s. For event E, let PrX,s(E) denote the 
probability for E under the condition that s is the start state. Each state is 
labeled by a set of atomic propositions that can be viewed as state predicates.  

Logical formulas (denoted by capital greek letters Φ, Ψ) are given by the 
grammar: 
	 Φ ::= a   |   Φ ∧ Ψ   |   ¬Φ   |   Pp(Φ U IΨ)   |   Lp(Φ)

Here, a is an atomic proposition, p ∈ [0, 1],  ∈ {, , >, <} and I is a closed 
interval of T. The semantics of this logic is defined inductively as follows:
	 s |= a 	 iff 	 state s is labeled with atomic proposition a
	 s |= Φ∧Ψ 	 iff 	 s |= Φ and s |= Ψ
	 s |= ¬Φ 	 iff 	 s  Φ
	s |= Pp(Φ U I Ψ) 	 iff 	 PrX,s {∃t ∈ I (X(t) |= Ψ ∧ ∀t′ ∈ T ( t′ < t ⇒ X(t) |= Φ )} p
	 s |= Lp(Φ) 	 iff 	LR A(s, SatX(Φ)) p
where SatX(Φ) = {s ∈ S | s |= Φ} and for B ⊆ S, LRA(s,B) denotes the “long run 
average” of being in a state of B for runs starting in state s. Formally, LRA(s,B) is 
the expected value of the random variable

		  lim  1
t
 ∫

t

0 1B(X(θ)) dθ

with respect to the probability measure PrX,s. Here, 1B denotes the characteristic 
function of B, i.e., 1B(s′) = 1 if s ∈ B and 0 otherwise.

Derived operators. Let UT denote U . Usual propositional operators such as ff, 
tt, ∨ are derivable. The eventually operator ◊I with time bounds given by a 
time interval I is obtained by ◊IΦ = tt U I Φ. To specify that condition Φ holds 
continuously in the time interval I, the time-constrained always operator I can 
be defined by using the duality of “eventually” and “always”. For instance, Pp 
(IΦ) is a shorthand notation for P1−p(◊I¬Φ).

t→∞

Table 1. Availability measures and their logical specification.

long-run Lp(up)

instantaneous Pp(◊[t,t]up)

conditional instantaneous Pp(ΦU[t,t]up)

interval Pp([t,t′]up)

long-run interval Lp(Pq([t,t′]up))

conditional interval long-run Pp(ΦU[t,t′] Lq(up))
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possibility to describe properties at 
the same abstraction level as the mod-
eling of the stochastic process. Up to 
now, it has been tradition to specify 
measures of interest such as “what is 
the probability to fail within deadline 
d?” at state level, that is, in terms of the 
states and their elementary properties 
(logically speaking, atomic proposi-
tions). Sometimes reward structures 
have been added at state level to quan-
tify the use of resources such as queue 
occupancies and the like. This stands 
in sharp contrast with the description 
of the models themselves, which is 
mostly done using high-level model-
ing formalisms such as queueing net-
works, SPNs, stochastic automata net-
works, or stochastic process algebra. 
Temporal logics close this paradigm 
gap between high-level and state-
based modeling as they allow to spec-
ify properties in terms of the high-level 
models, for example, in terms of the 
token distribution among places in a 

Petri net. By the use of temporal logics, 
modeling and measure specification 
become treated at an equal footing.

An example logic with semantics 
interpretation is illustrated in Fig-
ure 1. Instances of this generic logic 
arise by considering special types of 
stochastic processes, for example, for 
an interpretation over discrete-time 
Markov chains (DTMC), T = N and 
we obtain probabilistic computation 
tree logic (PCTL).18 For continuous-
time Markov chains (CTMC), the time 
domain is T =R, and continuous sto-
chastic logic (CSL) is obtained.4,6 Fig-
ure 3 presents a small representative 
example3,9 with some typical logical 
formulae.

Expressivity and flexibility. The use of 
logics offers, in addition, a high degree 
of expressiveness. Simple performance 
and dependability metrics such as tran-
sient probabilities—what is the prob-
ability of being in a failure state at time 
t?—and long-run likelihoods (when 

TCP. Such a protocol relies on a number 
of ingredients that, when suitably com-
bined, result in the desired behavior: 
reliable, end-to-end in-order delivery of 
packets between communicating peers. 
These ingredients comprise timers, se-
quence numbers, retransmissions, and 
error-detecting codes.

A typical performance model will 
take into account the TCP timing and 
retransmission aspects, whereas the 
error correction will mostly be includ-
ed as a random phenomenon.

For the sake of simplicity, sequence 
numbers are neglected, which results 
in a model that can be analyzed using 
either a closed-form formula or some 
numerical technique that, under the 
assumption the model is function-
ally correct, gives a certain mean per-
formance, measured as throughput 
or mean packet delay. However, the 
obtained quantities do not say any-
thing about the question of whether 
the packets do arrive correctly at all, 
hence, whether the protocol is cor-
rect. Conversely, a classical functional 
model of the sketched protocol here 
will most likely result in a correctness 
statement of the form “all packets will 
eventually arrive correctly.” But this 
gives no information about perceived 
delays and throughputs. Needless to 
say, one cannot simply “add up” the 
results of both analyses, as they re-
sult from two different—and possibly 
quite unrelated—models.

The key challenge lies in developing 
an integrated model. Preferably, the 
user, such as the system architect or 
design engineer, just provides a single 
model (as engineering artifact) that 
forms the basis for both types of analy-
sis. To improve the efficiency, addition-
al property-dependent abstraction tech-
niques can be applied to abstract away 
from all details of the model that are ir-
relevant for the property to be checked. 
For example, checking whether a purely 
functional property holds for a Markov 
model requires an analysis of the un-
derlying graph structure, and one can 
ignore all stochastic information.

Benefits
Modeling and measure specification. 
An important advantage of using tem-
poral logics (or automata) to specify 
properties of interest—in fact guaran-
tees on measures of interest—is the 

Figure 2. Schema for model checking stochastic processes.

given: a stochastic process X and a logical formula Φ
task: compute PrX{X(0) |= Φ}
idea: compute the sets SatX(Ψ) = {s ∈ S | s |= Ψ} for any subformula Ψ of Φ and 
return   Σ   μinit(s)

•	SatX(a) = {s ∈ S | state s is labeled with atomic proposition a}
•	SatX(Ψ1 ∧ Ψ2) = SatX(Ψ1) ∩ SatX(Ψ2)
•	SatX(¬Ψ) = S \ SatX(Ψ)
•	computation of SatX(Pp(Ψ1 UI Ψ2)):

	 case 1: I = [0, t] for some t ∈ T, t > 0. Let Y be the stochastic process that 
	 results from X by making all states where Ψ2 holds or Ψ1 is refuted absorbing. 
	T hat is, if B = SatX(Ψ2) ∪ S \ SatX (Ψ1), then Y is given by

		
Y (t) = { X(t)	: if X(t′) ∉ B for all t′ < t

			   s	 : if X(t′) = s ∈ B for some t′ < t and X(t″) ∉ B or X(t″) = s for all t″ < t′. 

	 Apply known methods of performance evaluation to compute the probabilities  
		  ps = PrY,s {X(t) ∈ SatX(Ψ2)}
	 and return SatX(Pp(Ψ1 U I Ψ2)) = {s ∈ S | ps  p}.

	 case 2: I = [t1, t2] for some t1 > 0. Let Y be the stochastic process that arises 
	 from X by making all states refuting Ψ1 absorbing. Regard the stochastic 
	 process Z that arises from Y by shifting the time by t1 time units, i.e., Z is 
	 specified by Z(t) = Y (t + t1). We then evaluate the formula Pp(Ψ1 U [0,t2−t1] Ψ2) 
	 over Z as in case 1 and return 

		  SatX(Pp(Ψ1 U I Ψ2)) = SatZ(Pp(Ψ1 U [0,t2−t1] Ψ2)).

•	Let B = SatX(Φ) and apply known methods of performance evaluation to 
	 compute the long run average LRA(s,B) of being in a state of B for runs 
	 starting in state s. Return 

		  SatX(Lp(Φ)) = {s ∈ S | LRA(s,B)  p}.

s∈SatX(Φ)



82    communications of the acm    |   september 2010  |   vol.  53  |   no.  9

review articles

the system is observed long enough) 
can readily be expressed. Most stan-
dard performance measures are easily 
captured, see Table 1 for a selection of 
properties. More importantly, the use 
of logics offers an enormous degree 
of flexibility. Nesting formulas yields a 
simple mechanism to specify complex 
measures in a succinct manner. A prop-
erty like “the probability to reach a state 
within 25 seconds that almost surely 
stays safe for the next 10 seconds, via le-
gal states only exceeds ½" boils down to

P>1
2
 (legal U  25 P=1( 10 safe))

This immediately pinpoints another 
advantage: given the formal semantics 
of the temporal logic, the meaning of 
the above formula is precise. That is to 
say, there is no possibility that any con-
fusion might arise about its meaning. 
Unambiguous measure specifications 
are of utmost importance. Existing 
mathematical measure specifications 
are rigorous too of course, but do not 
offer the flexibility and succinctness 

of logics. Temporal logic provides a 
framework that is based on just a few 
basic operators.

Many measures, one algorithm. The 
above concerns the measure speci-
fication. The main benefit though is 
the use of model checking as a fully al-
gorithmic approach toward measure 
evaluation. Even better, it provides a 
single computational technique for 
any possible measure that can be writ-
ten. This applies from simple proper-
ties to complicated, nested, and pos-
sibly hard-to-grasp formulas. For the 
example logic this is illustrated in Fig-
ure 2. This is radically different from 
common practice in performance and 
dependability evaluation where tai-
lored and brand new algorithms are 
developed for “new” measures. One 
might argue that this will have a high 
price, that is, the computational and 
space complexity of the exploited al-
gorithms must be extremely high. No! 
On the contrary, in the worst case, the 
time complexity is linear in the size 
of the measure specification (logic 
formula), and polynomial (typically 
of order 2 or 3, at most) in the num-
ber of states of the stochastic process 
under consideration. As indicated in 
Figure 4, the verification of bounded 
reachability probabilities in DTMCs 
and CTMCs—often the most time-
consuming ones— is a matter of a few 
seconds even for millions of states: 
The space complexity is quadratic in 
the number of states in the worst case. 
In fact, as for other state-based per-
formance evaluation techniques this 
polynomial complexity is an issue of 
concern as the number of states may 
grow rapidly.

Perhaps the largest advantage of 
model checking for performance 
analysis is that all algorithmic details, 
all detailed and non-trivial numerical 
computation steps are hidden to the 
user. Without any expert knowledge 
on, say, numerical analysis techniques 
for CTMCs, measure evaluation is 
possible. Even better: the algorithmic 
analysis is measure-driven. That is to 
say, the stochastic process can be tai-
lored to the measure of interest prior to 
any computation, avoiding the consid-
eration of parts of the state space that 
are irrelevant for the property of inter-
est. In this way, computations must be 
carried out only on the fragments of 

Figure 3. A simple model checking example: The Zeroconf protocol.

The IPv4 zeroconf protocol is a simple protocol proposed by the IETF (RFC 
3927), aimed at the self-configuration of IP network interfaces in ad hoc 
networks. Such ad hoc networks must be hot-pluggable and self-configuring. 
Among others, this means that when a new appliance, hitherto called a 
newcomer, is connecting to a network, it must be configured with a unique 
IP address automatically. The zeroconf protocol solves this task using 
randomization. A newcomer intending to join an existing network randomly 
selects an IP address, U say, out of the 65024 available addresses and 
broadcasts a message (called a probe) asking “Who owns the address U?”. 
If an owner of U is present and does receive that message, it replies, to force 
the newcomer to randomly select another address. Due to message loss or 
busy hosts, messages may not arrive at some hosts. Therefore a newcomer 
is required to send a total of four probes, each followed by a listening period 
of two seconds before it may assume that a selected address is unused. 
Therefore, the newcomer can start using the selected IP address only after 
eight seconds. Notably, there is a low probability risk that a newcomer may still 
end up using an already owned IP address, for example, because all probes 
were lost. This situation, called address collision, is highly undesirable.

The protocol behavior of a newcomer is easily modeled by a DTMC depicted 
above consisting of nine states.3,9 The protocol starts in s0 where the newcomer 
randomly chooses an IP address. With probability q = m/65024 the address is 
already owned, where m is the current size of the network. State si (0 < i  4) 
is reached after issuing the i-th probe. With probability p no reply is received 
during two seconds on a sent probe (as either the probe or its reply has been 
lost). State s8 (labeled ok) indicates that eventually a unique address has been 
selected, while state s6 (labeled error) corresponds to the undesirable situation 
of an address collision.

For such a model some typical example formulae are:
•	On the long run, the protocol will have selected an address: L1(ok ∨ error).
•	The probability to end up with an address collision is at most p: Pp′ (◊error)
•	The probability to arrive at an unused address within k steps exceeds 
	 p′: Pp′ (◊[0,k]ok)

Many more measures including expected times and accumulated costs can be 
expressed using extensions of the base logic and model introduced here.

s8

s7

s0 s1 s2 s3 s4

s5

s6ok error
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the state space that are relevant to the 
property of interest. In fact, this gen-
eralizes the ideas put forward by Sand-
ers and Meyer on variable-driven state 
space generation in the late 1980s.33

Dependability evaluation. This mea-
sure-driven aspect is even more benefi-
cial in the field of system dependabil-
ity evaluation, a field tightly related to 
performance evaluation, but especially 
concerned with evaluating service con-
tinuity of computer systems. Ques-
tions like “under which system faults 
can a given service still be provided 
adequately?” are addressed, and typi-
cal measures of interest are system re-
liability and availability, as illustrated 
in Table 1. Since the beginning of the 
1980s this field has matured signifi-
cantly, due to the introduction of state-
oriented models and the invention of 
uniformization.44 This facilitated the 
efficient analysis of time-dependent 
properties such as reliability or avail-
ability evaluation, in combination with 
high-level model specification tech-
niques such as SPNs. The models that 
one could analyze now went well above 
the “standard models” based on reli-
ability block diagrams or fault-trees.

The measures of interest in this 
field often involve costs, modeling the 
usage of resources. Extensions of sto-
chastic processes with cost (or reward) 
functions give rise to a logic where in 
addition to, for example, time bounds, 
conditions about the accumulated re-
ward along an execution path can be 
imposed. Model checking still goes 
along the lines of Figure 2, but involves 
computational procedures that are 
more time-consuming.

One for free. Is that all? Not quite. An 
important problem with performance 
modeling regardless of whether one 
aims at numerical evaluation or at 
simulation, is to check the functional 
correctness of the model. For a sto-
chastic Petri net specification, place 
and transition invariants are exploited 
to check for deadlocks and liveness, 
among others.

For a Markov chain model, graph-
based algorithms are used to check 
elementary properties. The good news 
is when employing model checking we 
get this functionality for free. Using the 
same machinery for validating the mea-
sures of interest, functional properties 
can be checked. Probabilistic model 

checking provides two for the price of 
one: both performance/dependability 
analysis and checking functional prop-
erties. This forces the user to construct 
models with a high precision as any tiny 
inconsistency will be detected. Com-
pare this to simulation model construc-
tion in NS2 or OPNET!

Nondeterminism. Sometimes this 
need for precision might seem as a 
burden, but it is a vehicle to force the 
modeler to make hidden assump-
tions explicit—or to leave them out. 
For instance, we have discussed the 
nondeterminism inherent in the join-
the-shortest-queue idea, which—un-
less made concrete—implies that the 
underlying model is not a stochastic 
process. Stochastic models with non-
determinism are usually referred to 
as stochastic decision processes. In 
these models the future behavior is 
not always determined by a unique 
probability distribution, but by se-
lecting one from a set of them. Tem-
poral logics and verification technol-
ogy have been extended to this type of 
models with relative ease for CTL8 and 
LTL.14,36 In fact, they constitute the 
genuine supermodel that comprises 
both the model checking and per-
formance evaluation side as special 
cases: When transition systems are 
paired with Markov chains or Markov 
reward models, the model is known as 
Markov decision processes. Here, per-
formance model checking is still pos-

sible, but the checker now computes 
bounds on the performance, in the 
sense that however the nondetermin-
ism is concretized, the concrete per-
formance figure will stay within the 
calculated bounds. Whereas for the 
discrete time setting, efficient model 
checking algorithms have been devel-
oped, this field is still relatively open 
in the continuous-time setting.

Appealing Application Areas
Several stochastic model checking 
tools have been developed since 2005, 
of which PRISM20 is by far the most 
widely used. A number of well-known 
tools from the performance and de-
pendability evaluation area, like tools 
for SPNs and stochastic process alge-
bras, have been extended with stochas-
tic model checking features. All these 
tools automatically generate a Markov-
ian model of some sort, either using 
symbolic or sparse data structures.

With these tools, a wide variety of 
case studies have been carried out, 
amongst others, in application areas 
such as communication systems and 
protocols, embedded systems, systems 
biology, hardware design, and secu-
rity, as well as more “classical” perfor-
mance and dependability studies.

Examples of the latter category, 
for which CTMCs are a very natural 
model, include the analysis of vari-
ous classes of traditional queuing net-
works and even infinite-state variants 

Figure 4. Efficiency of computing reachability probabilities versus the state space size.
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thereof, fault-tolerant workstation 
clusters, and wireless access proto-
cols such as IEEE 802.11. Also system 
survivability, that is the ability of a sys-
tem (for example, military or aircraft) 
to recover predefined service levels 
in a timely manner after the occur-
rence of disasters, has been precisely 
captured using a logic similar to that 
introduced before, and has been veri-
fied for Google-like file systems.12 The 
evaluation of a wireless access proto-
col for ad hoc networks using model 
checking could be carried out at far 
lower cost than using discrete-event 
simulations.32

The popularity of Markovian mod-
els is rapidly growing due to their ap-
plication potential in systems biology; 
the timing and probabilistic nature 
of CTMCs naturally reflect the opera-
tions of biological mechanisms such 
as molecular reactions. In fact, various 
biological systems have been studied 
by CTMC model checking in recent 
years.26 Prominent examples include 
ribosome kinetics, signaling path-
ways, cell cycle control in Eukaryotes, 
and enzyme-catalyzed substrate con-
version. In particular, the possibility 
to compute time-bounded reachabil-
ity probabilities is of great importance 
here as traditional studies focus on 
steady-state behavior. 

Another application area for CTMC 
model checking is embedded systems 
where the timeliness of communica-
tion between sensor and actuator de-
vices, for example, within cars or be-
tween high-speed trains, is of utmost 
importance. Stochastic model check-
ing techniques allow us to address the 
timeliness and the protocols’ correct-
ness from a single model. One example 
is dynamic power management in rela-
tion to job scheduling.31

Examples for the discrete-time set-
ting include several studies of the IPv4 
Zeroconf protocol are illustrated in 
Figure 3, where next to the probability 
of eventually obtaining an unused IP 
address, extensions have been studied 
with costs, addressing issues such as 
the number of attempts needed to ob-
tain such address. Security protocols 
are another important class of sys-
tems in which discrete randomness 
is exploited, for example, by applying 
random routing to avoid information 
leakage. An interesting case is the 

Crowds protocol,34 a well-known se-
curity protocol that aims to hide the 
identity of Web-browsing stations. 
Checking Markovian models with up 
to 107 states did provide important 
information on quantifying the in-
crease of confidence of an adversary 
when observing an Internet packet of 
the same sender more than once. A 
novel case study in the field of nano-
technology applies stochastic model 
checking to quantify the reliability of 
a molecular switch with increasing 
memory array sizes.13 Other natural 
cases for discrete-time probabilistic 
models are randomized protocols—in 
which probabilities are used to break 
ties—such as consensus and broad-
cast protocols, and medium access 
mechanisms such as Zigbee.

To conclude, an interesting case 
study using DTMCs with non-deter-
minism is the analysis of the Firewire 
protocol (IEEE 1394). This protocol 
has been developed to allow “plug-
and-play” network connectivity for 
multimedia consumer electronics in 
the home environment. A key compo-
nent in IEEE 1394 is a leader election 
protocol (the “root contention proto-
col”) that exploits a coin-tossing mech-
anism to break ties. Stochastic model 
checking revealed that using a biased 
coin instead of the typically used un-
biased coin, speeds up the leader elec-
tion process. This confirmed a conjec-
ture in Stoelinga.35 This insight would 
not have been found through “classi-
cal” qualitative verification.

Current Trends and Challenges
Edmund M. Clarke, a co-recipient of the 
2007 ACM A.M. Turing Award, points 
out that probabilistic model checking 
is one of the brands of verification that 
requires further developments.41 Here, 
we note some of the current trends and 
major research challenges.

One of the major practical obstacles 
shared by model-based performance 
evaluation and model checking is the 
state space explosion problem. To 
combat the state space explosion prob-
lem, various techniques have been de-
veloped and successfully applied for 
model checking Kripke structures11 
(and the literature mentioned there).

For stochastic models the state 
space explosion problem is even more 
severe. This is rooted in the fact that 

An important 
problem with 
performance 
modeling 
regardless 
whether one aims 
at numerical 
evaluation or  
at simulation, is  
to check the 
functional 
correctness of  
the model.
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the model checking algorithms for 
stochastic models rely on a combina-
tion of model checking techniques for 
non-stochastic systems, such as graph 
algorithms, but also mathematical, of-
ten numerical methods for calculating 
probabilities, such as linear equation 
solving or linear programming.

Many of the advanced techniques 
for very large non-stochastic models 
have been adapted to treat stochastic 
systems, including variations of deci-
sion diagrams to represent large state 
spaces symbolically.30 Complementary 
techniques attempt to abstract from 
irrelevant or redundant details in the 
model and to replace the model with a 
smaller, but “equivalent” one. Some of 
them rely on the concept of lumpability 
for stochastic processes, which in the 
formal verification setting is known as 
bisimulation quotienting, and where 
states with the same probabilistic be-
havior are collapsed into a single rep-
resentative.16,27

Other advanced techniques to fight 
the state-explosion problem include 
symmetry exploitation,24 partial order 
reduction,5 or some form of abstrac-
tion28, possibly combined with au-
tomatic refinement.15,19 All these ap-
proaches take inspiration in classical 
model checking advances, which often 
get much more intricate to realize, and 
raise interesting theoretical and practi-
cal challenges. All together, they have 
advanced the field considerably in the 
ability to handle cases as the ones dis-
cussed earlier.

An important feature of model 
checkers for non-stochastic systems is 
the generation of counterexamples for 
properties that have been refuted by 
the model checker. The principal situ-
ation is more difficult in the stochastic 
setting, as for probabilistic properties, 
say the requirement that a certain un-
desired event will appear with prob-
ability at most 10-3, single error traces 
are not adequate. The generation and 
representation of counterexamples is 
therefore a topic of much increasing 
attention17,29 within the community.

To overcome the limitation to finite 
state spaces, much work has been done 
to treat infinite-state probabilistic sys-
tems, in many different flavors.1,23

Another topic of ongoing interest 
lies in combining probabilistic behav-
ior with continuous dynamics as in 

timed25 or hybrid automata, but more 
work on the tool side is needed to as-
sess the merits of these approaches 
faithfully. Theorem-proving tech-
niques for analyzing probabilistic sys-
tems21 are also a very promising direc-
tion. One of the major open technical 
problems is the treatment of models 
with nondeterminism and continuous 
distributions. Initial results are inter-
esting but typically subject to (severe) 
restrictions.

As a final item, we mention the need 
to tailor the general-purpose probabi-
listic model checking techniques to 
special application areas. This covers 
the design of special modeling lan-
guages and logics that extend or adapt 
classical modeling languages and tem-
poral logics by adding features that are 
specific for the application area.
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Govern ment agencie s world wide are 
required to release statistical informa-
tion about population, education, and 
health, crime, and economic activities. 
In the U.S., protecting this data goes 
back to the 19th century when Carrol 
Wright, the first head of the Bureau 
of Labor Statistics, which was estab-
lished in 1885, argued that protecting 
the confidentiality of the Bureau’s data 
was necessary. If enterprises feared 
that data about an enterprise collected 
by the Bureau would be shared with 
competitors, investigators, or the tax 
authorities, data quality would severely 
suffer. The field of statistical disclosure 
limitation was born.4

Fast-forward a few decades, Stanley 
Warner was faced with a similar co-
nundrum. During interviews for mar-
ket surveys, individuals would refuse 
questions of sensitive or controversial 
issue “for reasons of modesty, fear of 
being thought bigoted, or merely a re-
luctance to confide secrets to strang-
ers.”7 His answer was a technique 
where the interviewee would flip a 
biased coin without showing the out-
come to the interviewer. Depending 
on the outcome of the coin flip, the 
interviewee would (truthfully) answer 
either the original yes/no question or 
she would negate her answers. This 
method intuitively protects the inter-
viewee since her answer could always 
have been due to the coin flipping on 
the other side. 

Tore Dalenius formulated a very 
strong notion of protection a decade 
later:2 “If the release of the statistic S 
makes it possible to determine the (mi-
crodata) value more accurately than 
without access to S, a disclosure has 
taken place…”. This very strong notion 
of semantic security implies that data 
publishers should think about adver-
saries and their knowledge since the 
published data could give new infor-
mation to an adversary. 

Fast-forward a few more decades 
to the turn of the century. Statisti-

cians have developed many different 
methods for limiting disclosure when 
publishing data such as suppression, 
sampling, swapping, generalization 
(also called coarsening), synthetic 
data generation, data perturbation, 
and the publishing of marginals for 
contingency tables, just to name a 
few. These methods are applied in 
practice, but they do not provide for-
mal privacy guarantees—the methods 
do not formally state how much an 
attacker can learn, and they preserve 
confidentiality by hiding the param-
eters used.

Fast-forward to 1999. In his Innova-
tions Award Talk at the annual ACM 
SIGKDD Conference, Rakesh Agrawal 
posed the challenge of privacy-preserv-
ing data mining to the community. In 
the next year, two papers with the same 
title “Privacy Preserving Data Mining” 
(one by Agrawal and Srikant1 and the 
other by Lindell and Pinkas5) are pub-
lished, and the computer science com-
munity has entered the picture. 

Computer scientists were especially 
intrigued by formal models of data pri-
vacy—formal definitions of informa-
tion leakage and attacker models as 
they have been pioneered and used in 
cryptography and computer security. 
The strongest formal definition of dis-
closure in use today is differential pri-
vacy as pioneered by Dwork, McSherry, 
Nissim, and Smith.3 Differential pri-
vacy beautifully captures the intuitive 
notion that the published data should 
not reveal much information about an 
individual whether or not that individ-
ual’s data was in the data. 

Since its original proposal, much 
progress has been made in the devel-
opment of mechanisms that protect 
published data with differential pri-
vacy while maximizing information 
content. The national statistical offices 
have also started to pay attention; for 
example, OnTheMap, a U.S. Census 
Bureau application that provides maps 
showing where workers live and are 

employed, has now been published 
with a variant of differential privacy.6

The following paper by Frank Mc-
Sherry introduces a system called 
PINQ that integrates differential pri-
vacy into the C# LINQ framework, 
which adds database query function-
ality to C#. PINQ enables queries over 
data while elegantly hiding the com-
plexity of the underlying differentially 
privacy mechanisms. Users of PINQ 
write programs that look almost iden-
tical to standard LINQ programs, but 
PINQ ensures that all query answers 
adhere to differential privacy, and it 
composes the information leakage 
from different queries until the priva-
cy budget of the program has run out.

Differential privacy and PINQ give 
only a glimpse into a new exciting area 
at the confluence of ideas from com-
puter science, statistics, law, and so-
cial sciences. I believe we will see much 
further progress on formal privacy defi-
nitions and improved methods, and 
I hope that future data products from 
the national statistics offices will be 
published with some formal notion of 
disclosure control.

Carrol Wright would be amazed by 
the field today.	
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Privacy Integrated Queries:
An Extensible Platform for Privacy-Preserving Data Analysis
By Frank McSherry

Abstract
Privacy Integrated Queries (PINQ) is an extensible data 
analysis platform designed to provide unconditional privacy 
guarantees for the records of the underlying data sets. PINQ 
provides analysts with access to records through an SQL-
like declarative language (LINQ) amidst otherwise arbitrary 
C# code. At the same time, the design of PINQ’s analysis 
language and its careful implementation provide formal 
guarantees of differential privacy for any and all uses of the 
platform. PINQ’s guarantees require no trust placed in the 
expertise or diligence of the analysts, broadening the scope 
for design and deployment of privacy-preserving data analy-
ses, especially by privacy nonexperts.

1. INTRODUCTION
Vast quantities of individual information are currently col-
lected and analyzed by a broad spectrum of organizations. 
While these data clearly hold great potential for analysis, 
they are commonly collected under the premise of privacy. 
Careless disclosures can cause harm to the data’s subjects 
and jeopardize future access to such sensitive information.

This has led to substantial interest in data analysis 
techniques with guarantees of privacy for the underly-
ing records. Despite significant progress in the design of 
such algorithms, privacy results are subtle, numerous, and 
largely disparate. Myriad definitions, assumptions, and 
guarantees challenge even privacy experts to assess and 
adapt new techniques. Careful and diligent collaborations 
between nonexpert data analysts and data providers are all 
but impossible.

In an attempt to put much of the successful privacy 
research in the hands of privacy nonexperts, we designed 
 the Privacy Integrated Queries (PINQ) language and run-
time, in which all analyses are guaranteed to have one of 
the strongest unconditional privacy guarantees: differen-
tial privacy.5, 8 Differential privacy requires that computa-
tions be formally indistinguishable when run with and 
without any one record, almost as if each participant had 
opted out of the data set. PINQ comprises a declarative 
programming language in which all written statements 
provide differential privacy, and an execution environment 
whose implementation respects the formal requirements 
of differential privacy.

Importantly, the privacy guarantees are provided by the 
platform itself; they require no privacy sophistication on the 
part of the platform’s users. This is unlike much prior pri-
vacy research which often relies heavily on expert design and 
analysis to create analyses, and expert evaluation to vet pro-
posed approaches. In such a mode, nonexpert analysts are 
unable to express themselves clearly or convincingly, and 

nonexpert providers are unable to verify or interpret their 
privacy guarantees. Here the platform itself serves as a com-
mon basis for trust, even for analysts and providers with no 
privacy expertise.

The advantage our approach has over prior platforms lies 
in differential privacy: its robust guarantees are compatible 
with many declarative operations and permit end-to-end 
analysis of arbitrary programs containing these operations. 
Its guarantees hold in the presence of arbitrary prior knowl-
edge and for arbitrary subsequent behavior, simplifying the 
attack model and allowing realistic, incremental deploy-
ment. Its formal nature also enables unexpected new 
functionality, including grouping and joining records on 
sensitive attributes, the analysis of text and unstructured 
binary data, modular algorithm design (i.e., without whole-
program knowledge), and analyses which integrate multiple 
data sources from distinct and mutually distrustful data 
providers.

The main restriction of this approach is that analysts 
can only operate on the data from a distance: the opera-
tions are restricted to declarative transformations and 
aggregations; no source or derived records are returned to 
the analysts. This restriction is not entirely unfamiliar to 
many analysts, who are unable to personally inspect large 
volumes of data. Instead, they write computer programs to 
distill the data to manageable aggregates, on which they 
base further analyses. While the proposed platform intro-
duces a stricter boundary between analyst and data, it is 
not an entirely new one.

1.1. An overview of PINQ
We start by sketching the different aspects of PINQ that 
come together to provide a data analysis platform with dif-
ferential privacy guarantees. Each of these sections are then 
developed further in the remaining sections of the note, but 
the high level descriptions here should give a taste for the 
different facets of the project.
Mathematics of PINQ: The mathematical basis of PINQ, dif-
ferential privacy, requires any outcome of a computation 
over a set of records be almost as likely with and without any 
one of those records. Computations with this guarantee be-
have, from the point of view of each participant, as if their 
data were never used. It is currently one of the strongest of 
privacy guarantees. The simplest example of a differentially 
private computation is noisy counting: releasing of the num-
ber of records in a data set perturbed by symmetric exponen-

The original version of this paper is entitled “Privacy 
Integrated Queries” and was published in the Proceedings 
of SIGMOD 2009.
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performant LINQ providers.
We stress that PINQ represents a very modest code base; 

in its current implementation it is only 613 lines of C# code. 
The assessment logic, following the math, is uncomplicated. 
The aggregations must be carefully implemented to provide 
differential privacy, but these are most often only a matter 
of postprocessing the correct aggregate (e.g., adding noise). 
PINQ must also ensure that the submitted queries con-
form to our mathematical model for them. LINQ achieves 
substantial power by allowing general C# computations in 
predicates of Where, functions of Select, and other opera-
tions. PINQ must restrict and shepherd these computations 
to mitigate the potential for exploitation of side channels.
Applications of PINQ: Programming with PINQ is done 
through the declarative LINQ language, in an otherwise 
unconstrained C# program. The analyst is not given direct 
access to the underlying data; instead, information is ex-
tracted via PINQ’s aggregation methods. In exchange for 
this indirection, the analyst’s code is allowed to operate on 
unmasked, unaltered, live records.

With a few important exceptions, programs written with 
PINQ look almost identical to their counterparts in LINQ. 
The analysts assemble an arbitrary query from permit-
ted transformations, and specify the accuracy for aggrega-
tions. Example 1 contains a C# PINQ fragment for counting 
distinct IP addresses issuing searches for an input query 
phrase.

Example 1. Counting searches from distinct users in 
PINQ.

We will develop this example into a more complex search 
log visualization application showcasing several of PINQ’s 

advantages over other approaches: rich data types, complex 
transformations, and integration into higher level applica-
tions, among many others. The full application is under 100 
lines of code and took less than a day to write.

We have written several other examples of data analy-
ses in PINQ, including k-means clustering, perceptron 

tial (Laplace) noise. Many other simple aggregations (e.g., 
Sum, Average, Median, among others) have similarly accu-
rate randomized analogs.

To allow nonexpert analysts to produce new differen-
tially private computations, we introduce the use of trans-
formations, applied to data before differentially private 
aggregations, without weakening the differential pri-
vacy guarantees. For several relational transformations, 
a changed record in the input data set always results in 
relatively few changes in the output data set. A differen-
tially private analysis applied to transformed data masks 
changes in the transformation’s output, and consequently 
masks changes in its input as well. The composed trans-
formation and analysis will provide differential privacy, 
with a formal guarantee depending on the quantitative 
form of “relatively few,” which we must determine for each 
transformation. Such transformations can be composed 
arbitrarily, by nonexpert analysts, and combined with 
differentially private aggregations will serve as our query 
language.

Finally, any sequence of differentially private compu-
tations also provides differential privacy; the quantitative 
privacy depletions are at worst additive (and occasionally 
better), and can be tracked online. Consequently, we can 
embed the query language above into any general purpose 
programming language, allowing arbitrary use of the results 
that return from the queries, as long as we monitor and con-
strain the total privacy depletion.
Implementation of PINQ: We have implemented a proto-
type of PINQ based on C#’s Language Integrated Queries 
(LINQ), an SQL-like declarative query language extension 
to .NET languages. Data providers use PINQ to wrap arbi-
trary LINQ data sources with a specified differential priva-
cy allotment for each analyst. Analysts then write arbitrary 
C# programs, writing queries over PINQ data sources al-
most as if they were using unprotected LINQ data sources. 
PINQ’s restricted language and run-time checks ensure 
that the provider’s differential privacy requirements are 
respected, no matter how an analyst uses these protected 
data sets.

At a high level, PINQ allows the analyst to compose arbi-
trary queries over the source data, whose quantitative dif-
ferential privacy guarantees are evaluated before the query 
is executed. If the analyst has framed a query whose privacy 
cost falls within the bounds prescribed by the data provid-
ers, the query is executed and the privacy cost subtracted 
from the amount available to the analyst for the associated 
data sets. If the cost falls outside the bounds, PINQ does not 
execute the query.

PINQ is designed as a thin layer in front of an exist-
ing query engine (Figure 1); it does not manage data or 
execute queries. Instead, it supplies differentially private 
implementations of common transformations and aggre-
gations, themselves written in LINQ and executed by the 
LINQ providers of the underlying data sets. This approach 
substantially simplifies our implementation, but also allows 
a large degree of flexibility in its deployment. A data source 
only needs a LINQ interface to support PINQ, and we can 
take advantage of any investment and engineering put in to 

 var data = new PINQueryable<SearchRecord>(...  ...);

 var users = from record in data
	 where record.Query == argv[0]

	 groupby record.IPAddress;

 Console.WriteLine(argv[0] + “:” + users.Count(0.1) );

?

?
?

Figure 1. PINQ provides a thin protective layer in front of existing 
data sources, presenting an interface that appears to be that of the 
raw data itself.
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classification, and contingency table measurement. These 
examples have all been relatively easy adaptations of exist-
ing approaches.2, 4

2. MATHEMATICAL FOUNDATIONS
We now develop some supporting mathematics for PINQ. 
We review the privacy definition we use, differential pri-
vacy, and develop several properties necessary to design 
a programming language supporting its guarantees. 
Specifically, we discuss the data types we can support, com-
mon differentially private aggregations, how transformations 
of the data sets impact privacy, and how privacy guarantees of 
multiple analyses compose. All of our conclusions are imme-
diate consequences of differential privacy, rather than addi-
tional assumptions or implementation details. The proofs 
are available in the full version of the paper.10

2.1. Differential privacy
Differential privacy is a relatively new privacy definition, 
building upon the work of Dwork et al.8 and publicly articu-
lated in Dwork.5 It differs from most previous definitions in 
that it does not attempt to guarantee the prevention of data 
disclosures, privacy violations, or other bad events; instead, 
it guarantees that participation in the data set is not their 
cause.

The definition of differential privacy requires that a ran-
domized computation yield nearly identical distributions 
over outcomes when executed on nearly identical input data 
sets. Treating the input data sets as multisets of records over 
an arbitrary domain and using  for symmetric difference 
(i.e., A  B is the set of records in A or B, but not both):

Definition 1. A randomized computation M provides -
differential privacy if for any two input data sets A and B, and 
any set of possible outputs S of M,

For values of x much less than one, exp(x) is approximately 
1 + x. Differential privacy relies only on the assumption that 
the data sets are comprised of records, of any data type, and 
is most meaningful when there are few records for each par-
ticipant, relative to 1/.

The definition is not difficult to motivate to nonexperts. 
A potential participant can choose between two inputs to 
the computation M: a data set containing their records (A) 
and the equivalent data set with their records removed (B). 
Their privacy concerns stem from the belief that these two 
inputs may lead to noticeably different outcomes for them. 
However, differential privacy requires that any output event 
(S) is almost as likely to occur with these records as without. 
From the point of view of any participant, computations 
which provide differential privacy behave almost as if their 
records had not been included in the analysis.

Taking a concrete example, consider the sensible con-
cern of most Web search users that their name and search 
history might appear on the front page of the New York 
Times.3 For each participant, there is some set S of outputs 
of M that would prompt the New York Times to this publica-
tion; we do not necessarily know what this set S of outputs is, 

but we need not define S for the privacy guarantees to hold. 
For all users, differential privacy ensures that the probability 
the New York Times publishes their name and search history 
is barely more than had it not been included as input to M. 
Unless the user has made the queries public in some other 
way, we imagine that this is improbable indeed.

2.2. Basic aggregations
The simplest differentially private aggregation (from Dwork 
et al.8) releases the number of records in a data set, after the 
addition of symmetric exponential (Laplace) noise, scaled 
by  (Figure 2). The Laplace distribution is chosen because 
it has the property that the probability of any outcome 
decrease by a factor of exp() with each unit step away from 
its mean. Translating its mean (shifting the true value) by 
one unit scales the probability of any output by a multiplica-
tive factor of at most exp(). Changing an input data set from 
A to B can shift the true count by at most |A  B|, and conse-
quently a multiplicative change of at most exp( × |A  B|) in 
the probability of any outcome.

Theorem 1. The mechanism M(X) = |X| + Laplace (1/) 
provides -differential privacy.

The Laplace distribution has exponential tails in both 
directions, and the probability that the error exceeds t/ in 
either direction is exponentially small in t. Consequently, 
the released counts are likely to be close to the true counts.
Other Primitive Aggregations: There are many other mecha-
nisms that provide differential privacy; papers on the sub-
ject typically contain several. To date each has privacy es-
tablished as above, by written mathematical proof based on 
intended behavior. While this is clearly an important step in 
developing such a computation, the guarantees are only as 
convincing as the proof is accessible and the implementa-
tion is correct.

Our goal is to enable the creation of as many differentially 
private computations as possible using only a few primitive 
components, whose mathematical properties and imple-
mentations can be publicly scrutinized and possibly verified. 
While we shouldn’t preclude the introduction of novel primi-
tives, they should be the exceptional, rather than default, 
approach to designing new differentially private algorithms.

2.3. Stable transformations
Rather than restrict programmers to a fixed set of aggre-
gations, we intend to supply analysts with a programming 
language they can use to describe new and unforeseen com-
putations. Most of the power of PINQ lies in arming the 

107 108 109 110 111 112 113106105104103102

Figure 2. Adding symmetric exponential noise to counts causes the 
probability of any output (or set of outputs) to increase or decrease 
by at most a multiplicative factor when the counts are translated.



92    communications of the acm   |   september 2010  |   vol.  53  |   no.  9

research highlights 

 

result in a set of pairs of records, one from each input, of 
records whose keys match. A single record in either set could 
match an unbounded number of records in the other set. 
Consequently, this important transformation has no sta-
bility bound. As we discuss later, there are restricted forms 
of Join that do have bounded stability (stability one, with 
respect to both inputs), but their semantics deviate from the 
unrestricted Join present in LINQ.

2.4. Composition
Any sequence of differentially private computations also 
provides differential privacy. Importantly, this is true even 
when subsequent computations can depend arbitrarily on 
the outcomes of the preceding computations.

Theorem 3. Let Mi each provide i-differential privacy. The 
sequence of Mi(X) provides (Si  i ) -differential privacy.

This simple theorem indicates that to track the cumu-
lative privacy implications of several analyses, we need 
not do anything more complicated than add the privacy 
depletions.

If the queries are applied to disjoint subsets of the input 
domain we can improve the bound to the worst of the pri-
vacy guarantees, rather than the sum.

Theorem 4. Let Mi each provide -differential privacy. 
Let Di be arbitrary disjoint subsets of the input domain D. The 
sequence of Mi (X Ç Di ) provides -differential privacy.

Whereas sequential composition is critical for any 
functional privacy platform, parallel composition is a very 
important part of extracting good performance from a pri-
vacy platform. Although such operations could be analyzed 
as sequential composition, the privacy guarantee would 
scale with the number of subsets analyzed, often quite 
large.

2.5. A privacy calculus
The mathematics of this section allows us to quantitatively 
bound the privacy implications of arbitrary sequences of 
rich transformations and aggregations. This simplicity 
allows us to avoid burdening the analyst with the responsi-
bility of correctly or completely describing the mathemati-
cal features of their query. Even for researchers familiar with 
the mathematics (e.g., the author), the reasoning process 
can be quite subtle and error-prone. Fortunately, it can be 
automated, the subject of Section 3.

3. IMPLEMENTING PINQ
PINQ is built atop C#’s LINQ. LINQ is a recent language 
extension to the .NET framework integrating declarative 
access to data streams (using a language very much like 
SQL) into arbitrary C# programs. Central to LINQ is the 
IQueryable<T> type, a generic sequence of records 
of type T. An IQueryable admits transformations 
such as Where, GroupBy, Union, Join, and more, 
returning new IQueryable objects over possibly new 
types. Only once an aggregation or enumeration is 

analyst with a rich set of transformations to apply to the data 
set before differentially private aggregations.

Definition 2. We say a transformation T is c-stable if for any 
two input data sets A and B,

Transformations with bounded stability propagate dif-
ferential privacy guarantees made of their outputs back to 
their inputs, scaled by their stability constant.

Theorem 2. Let M provide -differential privacy, and let T 
be an arbitrary c-stable transformation. The composite compu-
tation M ° T provides ( × c)-differential privacy.

Once stability bounds are established for a set of trans-
formations, a nonexpert analyst can combine any number 
of them as they see fit. Differential privacy bounds result 
from repeated application of Theorem 2, compounding the 
stability constants of the applied transformations with the  
value of the final aggregation.
Example Transformations: To give a sense for the types of 
stability bounds to expect, we consider a few representative 
transformations from LINQ.

The Where transformation takes an arbitrary predicate 
over records, and results in the subset of records satisfying 
the predicate. Any records in difference between A and B will 
result in at most those records in difference between their 
restrictions, resulting in a stability of one. Importantly, this 
is true independent of the supplied predicate; the predi-
cate’s logic can use arbitrarily sensitive information in the 
records and will still have stability one.

The GroupBy transformation takes a key selection func-
tion, mapping records to some key type, and results in a set 
of groups, one for each observed key, where each group con-
tains the records mapped to the associated key value. For 
every record in difference between A and B, a group in the 
output can change. A change corresponds to symmetric dif-
ference two, not one; despite the apparent similarities in the 
groups, subsequent logic (e.g., a Where) can treat the two 
groups as arbitrarily different. As with Where, the stability 
of two holds for any key selection function, including those 
based on very sensitive fields or functions thereof.

The Union transformation takes a second data set, and 
results in the set of elements in either the first or the second 
data set. A record in difference between A and B results in no 
more than one record in difference in the output, yielding 
stability one. This is also true for records in difference in the 
second data set, giving us an example of a binary transforma-
tion. A differentially private analysis of the result of a binary 
transformation reflects information about both sources. 
This is uncomplicated unless the inputs derive from com-
mon data. Even so, a single change to a data set in common 
induces a bounded change in each of the transformation’s 
inputs, and a bounded change in its output (i.e., the stability 
constants add).

The Join transformation takes a second data set, and 
key selection functions for both data sets. It intends to 
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aggregation only if the eventual response is positive.
Count is implemented as per Theorem 1, returning 

the accurate count of the underlying data plus Laplace 
noise whose magnitude is specified by the analyst, if large 
enough. Example 2 depicts the implementation of Count.

Example 2. [Abbreviated] Implementation of Count.

PINQ includes other aggregations—including Sum, 
Average, and Median among others—each of which takes 
epsilon and a function converting each record to a double. 
To provide differential privacy, the resulting values are first 

clamped to the interval [−1, +1] before they are aggregated. 
This is important to ensure that a single record has only a 
limited impact on the aggregate, allowing a relatively small 
perturbation to provide differential privacy.

The implementations of these methods and the proofs 
of their privacy guarantees are largely prior work. Sum, like 
Count, is implemented via the addition of Laplace noise 
and is discussed in Dwork et al.8 Average and Median 
are implemented using the exponential mechanism  
of McSherry and Talwar,11 and output values in the range 
[−1, +1] with probabilities

Each downweights the probability of a possible output x by 
(the exponentiation of) the fewest modifications to the input 
A needed to make x the correct answer.

The accuracy of Average is roughly 2/ divided by the 
number of records in the data set. Median results in a value 
which partitions the input records into two sets whose sizes 
differ by roughly an additive 2/; it need not be numerically 
close to the actual median.

3.2. Transformation operators
PINQ’s flexibility derives from its transformation operators, 
each of which results in a new PINQueryable wrapped 
around an updated data source. The associated PINQAgent 
is wired to forward requests on to the participating source 
data sets before accepting, scaling epsilon by the transfor-
mation’s stability constant.

Our implementations of many transformations are 
mostly a matter of constructing new PINQueryable and 
PINQAgent objects with the appropriate parameters. 
Some care is taken to restrict computations, as discussed in 
Section 3.4. Example 3 depicts the implementation of PINQ’s 
GroupBy. Most transformations require similarly simple pri-
vacy logic.

invoked is any computation performed; until this point 
the IQueryable only records the structure of the query 
and its data sources.

PINQ’s implementation centers on a PINQueryable<T> 
generic type, wrapped around an underlying 
IQueryable<T>. This type supports the same methods 
as an IQueryable, but with implementations ensuring 
that the appropriate privacy calculations are conducted 
before any execution is invoked. Each PINQueryable is 
comprised of a private member data set (an IQueryable), 
and a second new data type, a PINQAgent, responsible for 
accepting or rejecting requested increments to epsilon. 
Aggregations test the associated PINQAgent to confirm 
that the increment to epsilon is acceptable before they 
execute. Transformations result in new PINQueryable 
objects with a transformed data source and a new 
PINQAgent, containing transformation-appropriate logic 
to forward modified epsilon requests to the agents of its 
source PINQueryable data sets.

The PINQAgent interface has one method, 
Alert(epsilon), invoked before executing any differen-
tially private aggregation with the appropriate value of epsi-
lon, to confirm access. For PINQueryable objects wrapped 
around raw data sets, the PINQAgent is implemented by 
the data provider based on its privacy requirements, either 
from scratch or using one of several defaults (e.g., decre-
menting a per-analyst budget). For objects resulting from 
transformations of other PINQueryable data sets, PINQ 
constructs a PINQAgent which queries the PINQAgent 
objects of the transformation’s inputs with transformation-
appropriate scaled values of epsilon. These queries are be 
forwarded recursively, with appropriate values of epsilon, 
until all source data have been consulted. The process is 
sketched in Figure 3.

3.1. Aggregation operators
Each aggregation in PINQ takes epsilon as a param-
eter and provides -differential privacy with respect to its 
immediate data source. The privacy implications may be 
far worse for the underlying data sets from which this data 
set derives, and it is important to confirm the appropriately 
scaled amount of differentially private access. Before execu-
tion, each aggregation invokes the Alert method of their 
associated PINQAgent with this epsilon, conducting the 

Figure 3. PINQ control/data flow. An analyst initiates a request to 
a PINQ object, whose agent (A) confirms, recursively, differentially 
private access. Once approved by the providers’ agents, data  
(D) flows back through trusted code ensuring the appropriate level 
of differential privacy.

??
Policy

Policy

D

A

D

A

D

A

 double Count(double epsilon)

{

	   if (epsilon > 0.0 && myagent.Alert(epsilon))

	      return mysource.Count() + Laplace(1.0/epsilon);
	   else

	      throw new Exception(“Access is denied”);

}
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Partition in PINQ can be seen in the following two 
queries:

Q1.  How many ZIP codes contain at least 10 patients?
Q2.  For each ZIP code, how many patients live there?

For Q1, a GroupBy by ZIP, a Where on the number of 
patients, and a Count gives an approximate answer to the 
exact number of ZIP codes with at least 10 patients. For 
Q2, a Partition by ZIP, followed by a Count on each part 
returns an approximate count for each ZIP code. As the mea-
surements can be noisy, neither query necessarily provides 
a good estimate for the other. However, both are at times 
important questions, and PINQ is able to answer either 
accurately depending on how the question is posed.

The Partition operator can be followed not only by 
aggregation but by further differentially private computa-
tion on each of the parts. It enables a powerful recursive 
descent programming paradigm demonstrated in Section 4, 
and is very important in most nontrivial data analyses.

3.4. Security issues in implementation
Although the stability mathematics, composition properties, 
and definition of differential privacy provide mathematical 
guarantees, they do so only when PINQ’s behavior is in line 
with our mathematical expectations. There are many impor-
tant but subtle implementation details intended to protect 
against clever attackers who might use the implementa-
tion details of PINQ to learn information the mathematics 
would conceal. These are largely the result of user-defined 
code that may attempt to pass information out through side 
channels, either directly through disk or network channels, 
or indirectly by throwing exceptions or simply not terminat-
ing. PINQ’s purify function gives the provider the oppor-
tunity to examine incoming methods and rewrite them, 
either by restricting the computations to those comprised 
of known-safe methods, or by rewriting the methods with 
appropriate guards. There are other issues and countermea-
sures in the full paper, and likely more unrecognized issues 
to be discovered and addressed.

4. APPLICATIONS AND EVALUATION
In this section, we present data analyses written with 
PINQ. Clearly not all analysis tasks can be implemented 
in PINQ (indeed, this is the point), but we aim to convince 
the reader that the set is sufficiently large as to be broadly 
useful.

Our main example application is a data visualization 
based on Web search logs containing IP addresses and query 
text. The application demonstrates many features of PINQ 
largely absent from other privacy-preserving data analysis 
platforms. These include direct access to unmodified data, 
user-supplied record-to-record transformations, operations 
such as GroupBy and Join on “sensitive” attributes, mul-
tiple independent data sets, and unfettered integration into 
higher-level programs.

For our experiments we use the DryadLINQ15 provider. 
DryadLINQ is a research LINQ provider implemented on 
top of the Dryad9 middleware for data parallel computation, 

Example 3. [Abbreviated] Implementation of GroupBy.

PINQueryable<IGrouping<K,T>>
GroupBy<T,K>(Expression<Func<T,K>> keyFunc)
{
	 // Section 3.4 explains this, and why it is needed
	 keyFunc = Purify(keyFunc) as Expression<Func<T,K>>;

	 // new agent with appropriate ancestor and stability
	 var newagent = new PINQAgentUnary(this.agent, 2.0);

	 // new data source reflecting the operation
	 var newsource = this.source.GroupBy(keyFunc);

	 // construct and return a new source and agent pair
	 return new PINQueryable<IGrouping<K,T>>(newsource,  
		  newagent);
}

The Join transformation is our main deviation from 
LINQ. To ensure stability one with respect to each input, 
we only report pairs that are the result of unique key 
matches. To ensure these semantics, PINQ’s Join invokes 
LINQ’s GroupBy on each input, using their key selection 
functions. Groups with more than one element are dis-
carded, and the resulting singleton elements are joined 
using LINQ’s Join.

While this clearly (and intentionally) interferes with 
standard uses of Join, analysts can reproduce its standard 
behavior by first invoking GroupBy on each data set, ensur-
ing that there is at most one record per group, before invok-
ing Join. The difference is that the Join is now required 
to reduce pairs of groups, rather than pairs of records. 
Each pair of groups yields a single result, rather than the 
unbounded cartesian product of the two, constraining the 
output but enabling privacy guarantees.

3.3. The partition operator
Theorem 4 tells us that structurally disjoint queries cost 
only the maximum privacy differential, and we would like 
to expose this functionality to the analyst. To that end, we 
introduce a Partition operation, like GroupBy, but in 
which the analyst must explicitly provide a set of candidate 
keys. The analyst is rewarded with a set of PINQueryable 
objects, one for each candidate key, containing the (pos-
sibly empty) subset of records that map to the each of the 
associated keys. It is important that PINQ does not reveal 
the set of keys present in the actual data, as this would vio-
late differential privacy. For this reason, the analyst must 
specify the keys of interest, and PINQ must not correct 
them. Some subsets may be empty, and some records may 
not be reflected in any subset.

The PINQAgent objects of these new PINQueryable 
objects all reference the same source PINQAgent, of the 
source data, but following Theorem 4 will alert the agent 
only to changes in the maximum value of epsilon. The 
agents share a vector of their accumulated epsilon values 
since construction, and consult this vector with each update 
to see if the maximum has increased. If so, they forward the 
change in maximum. If the maximum has not increased, 
they accept the request.

The difference between the uses of GroupBy and 
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and associated parts, grouping the records in each by IP 
address. To further enrich the example, we then parti-
tion each of these data sets by the number of times each 
IP address has issued the query, before producing a noisy 
count (see Example 5).

Example 5. Measuring many query frequencies in PINQ.

 // prepare data with privacy budget
 var agent = new PINQAgentBudget(1.0);
 var data  = new PINQueryable<string>(rawdata, agent);

 // break out fields, but partition rather than filter
 var parts = data.Select(line => line.Split(’,’)) 
	 .Partition(args, fields => 
fields[20]);

 foreach (var query in args)
 {
	 // use the searches for query, grouped by IP address
	 var users = parts[query].GroupBy(fields => fields[0]);

	 // further partition by the frequency of searches
	 var freqs = users.Partition(new int[] { 1,2,3,4,5 },
	 group => group.Count());

	 // output the counts to the screen, or anywhere else
	 Console.WriteLine(query + “:”);
	 foreach (var count in new int[] { 1,2,3,4,5 })
	  Console.WriteLine(freqs[count].Count(0.1));
 }

Because we use Partition rather than multiple 
Where calls, the privacy cost associated with the program 
can be seen by PINQ to be only the maximum of the pri-
vacy costs of each of the loops, exactly the same cost as in 
Example 4.

Table 1 reports the measurements of a few query strings 
taken over our data set. Each reported measurement is 
the exact count plus Laplace noise with parameter 10, cor-
responding to standard deviation  For most mea-
surements this error is relatively insignificant. For some 
measurements it is significant, but nonetheless reveals that 
the original value is quite small.

4.3. Data analysis: Stage 3 of 3
We now expand out our example program from simple 

and currently scales to at least thousands of compute 
nodes. Our test data sets are of limited size, roughly 100GB, 
and do not fully exercise the scalability of the DryadLINQ 
provider. We do not report on execution times, as PINQ’s 
reasoning is an insignificant contribution, but rather the 
amount and nature of information we can extract from the 
data privately.

For clarity, we present examples written as if the data ana-
lyst is also the data provider, charged with assembling the 
source PINQueryable objects. In a real deployment, this 
assembly should be done on separate trusted infrastructure.

4.1. Data analysis: Stage 1 of 3
We start with a simple application of PINQ, approximating 
the number of distinct search users who have searched for 
an arbitrary query term. Our approach is just as it would 
have been in LINQ: we first transform the search records 
(comma-delimited strings) into tuples (string arrays) whose 
fields have known meaning, then restrict the data to records 
with the input search query, then group by the supplied 
IP address to get a proxy for distinct users, then count the 
remaining records (groups of string arrays). The program is 
reproduced in Example 4.

Example 4. Measuring query frequencies in PINQ.

 // prepare data with privacy budget
 var agent = new PINQAgentBudget(1.0);
 var data  = new PINQueryable<string>(rawdata, agent);

 // break out fields, filter by query, group by IP
 var users = data.Select(line => line.Split(’,’))
	 .Where(fields => fields[20] == args[0])
	 .GroupBy(fields => fields[0]);

 // output the count to the screen, or anywhere else
 Console.WriteLine(args[0] + “:” + users.Count(0.1));

This relatively simple example demonstrates sev-
eral important features of PINQ. The input data are text 
strings; we happen to know a priori that they are comma 
delimited, but this information plays no role in the pri-
vacy guarantees. The filtering is done against an analyst-
supplied query term, and may be frequent or infrequent, 
sensitive or insensitive. To get the set of distinct users we 
group using the logged IP address, clearly highly sensitive 
information. Despite these uncertainties about the analy-
sis, the differential privacy guarantees are immediately 
quantifiable.

4.2. Data analysis: Stage 2 of 3
Our program as written gives the count for a single query, 
and if the analyst wants additional counts they must run the 
program again. This incurs additional privacy cost, and will 
be unsuitable for extracting large numbers of query counts.

Instead, we can rewrite the previous program to use 
the Partition operator to permit an arbitrary number 
of counts at fixed privacy cost. Rather than filter records 
with Where, we use the same key selection function and 
an input set of query strings to Partition the records. 
Having done so, we iterate through each of the queries 

Table 1. Numbers of Users Searching for Various Terms, Broken Out 
by Number of Times They Searched.

Freq 1 Freq 2 Freq 3 Freq 4 Freq 5

google 356,743 108,336 45,363 25,092 14,347

yahoo 140,966 42,379 17,624 9671 5,707

baidu 300 79 29 26 9

amazon 16,798 3,376 808 378 132

ebay 100,338 26,205 9,564 4,065 2,604

cnn 25,442 7,492 2,899 1,658 919

msnbc 7,828 2,496 849 565 283
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reporting (a not uncommon task) to a richer analysis appli-
cation. Our goal is to visualize the distribution of locations 
of searches for various search queries. At a high level, we 
will transform the IP addresses into latitude–longitude 
pairs, by joining with a second proprietary data set, and 
then send the coordinates to a visualization algorithm bor-
rowed from the work of McSherry and Talwar.12 Although we 
will describe the visualization algorithm at a high level, it 
is fundamental that PINQ provides privacy guarantees even 
without the knowledge of what the algorithm plans to do 
with the data.

Starting from the prior examples, in which we have 
partitioned the data sets by query and grouped the 
results by IP address, we now demonstrate a fragment 
that will let us transform IP addresses into latitude–
longitude coordinates. We use a second data set iplat-
lon whose entries are IP addresses and corresponding 
latitude–longitude coordinates. We join these two data 
sets, using the IP addresses in each as keys, resulting 
in a lat-lon coordinate pair in place of each group of 
searches. Example 6 contains the code for this Join 
transformation.

Example 6. Transforming IP addresses to coordinates.

 // ... within the per-query loop, from before ...

 // use the searches for query, group by IP address
 var users = parts[query].GroupBy(fields => fields[0]);

 // extract IP address from each group, and match
 var coords = users.Join(iplatlon,
			             group => group.Key,
		            entry => entry.IP,
		          (group, entry) => entry.LatLon);

Recall that Join in PINQ only reports pairs that result 
from unique matches. In this program, we know that each 
IP occurs as a key at most once in users, as we have just 
performed a GroupBy with this field as the key. In the 
second data set, we assume (perhaps wrongly) that there 
is one entry per IP address. If this is not the case, or if we 
are not sure, we could also group the second data set by IP 
address and use the first lat-lon entry in each group. This is 
arguably more robust, but results in an additional factor of 
two in the privacy cost against the iplatlon data set; we 
would like to avoid this cost when we know we can safely 
do so.

Finally, our algorithm takes the list of lat-lon coor-
dinates of the IPs searching for the input search query, 
and invokes a Visualization subroutine, whose 
implementation is not specified here. An example for 
the query “cricket” can be seen in Figure 4. Readers who 
are not entirely sure how or why this routine works are in 
roughly the same situation as most data providers. We 
have no intuition as to why the computation should be 
preserve privacy, nor is any forthcoming. Nonetheless, 
as the routine is only provided access to the data through 
a PINQueryable, we are assured of differential privacy 
guarantees even without understanding the algorithm’s 
intent or implementation.

Support for such “modular design” of privacy algo-
rithms is an important enabler for research and develop-
ment, removing the need for end-to-end understanding of 
the computation. This is especially important for explor-
atory data analysis, where even the analysts themselves 
may not know the questions they will need answered 
until they start asking them. Removing the requirement 
of whole-program understanding also enables propri-
etary data analyses, in which an analyst may not want 
to divulge the analysis they intend to conduct. While 
the execution platform clearly must be instructed in the 
computations the analyst requires, the data provider 
does not need to be informed of their specifics to have 
privacy assurances.

Our second data set raises an interesting point about 
alternate applications of differential privacy. While the 
operation we perform, mapping IP addresses to latitude–
longitude pairs, is essentially just a complicated Select, 
the data set describing the mapping is proprietary. Each 
record in the data set required some investment of effort 
to produce, from which the owners presumably hope to 
extract value; they may not want to release the records in 
the clear. Using this data set through PINQ prevents the 
dissemination of individual records, preserving the value 
of the data set while still permitting its use in analyses. 
Similarly, many organizations have data retention poli-
cies requiring the deletion of data after a certain amount 
of time. Ensuring that this deletion happens when ana-
lysts are allowed to create their own copies of the data 
is effectively impossible. Again, PINQ allows analysts to 
use such data without compromising the organization’s 
obligations.

Figure 4. Example output, displaying a representative distribution of 
the latitude–longitude coordinates of users searching for “cricket.” 
The computation has differential privacy not because of properties 
of the output itself, a quite complicated artifact, but because of the 
manner in which it was produced.
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5. RELATED WORK
The analysis of sensitive data under the constraints of con-
fidentiality has been the subject of a substantial amount 
of prior research; for an introductory survey we recom-
mend the reader to Adam and Wortmann,1 but stress that 
the field is still very much evolving. For an introduction to 
differential privacy we recommend the reader to Dwork.6

While PINQ is the first platform we are aware of pro-
viding differential privacy guarantees, several other inter-
active data analysis platforms have been proposed as an 
approach to providing privacy guarantees. Such platforms 
are generally built on the principle that aggregate values 
are less sensitive that individual records, but are very aware 
that allowing an analyst to define an arbitrary aggregation 
is very dangerous. Various and varying criteria are used 
to determine which aggregates an analyst should be able 
to conduct. To the best of our knowledge, none of these 
systems have provided quantifiable end-to-end privacy 
guarantees.

Recent interest in differential privacy for interactive 
systems appears to have started with Mirkovic,13 who pro-
posed using differential privacy as a criteria for admit-
ting analyst-defined aggregations. The work defines an 
analysis language (targeted at network trace analysis) but 
does not go so far as to specify semantics that provide 
formal differential privacy guarantees. It seems possible 
that PINQ could support much of the proposed language 
without much additional work, with further trace-specific 
transformations and aggregations added as extensions to 
PINQ.

Airavat14 is a recent analogue of PINQ for Map-Reduce 
computations. The authors invest much more effort in 
hardening the system, securing the computation through 
the use of a mandatory access control operating system 
and an instrumented java virtual machine, as well as PINQ-
style differential privacy mathematics. At the same time, 
it seems that the resulting analysis language (one Map-
Reduce stage) is less expressive than LINQ. It remains to be 
seen to what degree the system level guarantees of Airavat 
can be fruitfully hybridized with the language level restric-
tion used in PINQ.

6. CONCLUSION
We have presented “Privacy Integrated Queries” (PINQ), a 
trustworthy platform for privacy-preserving data analysis. 
PINQ provides private access to arbitrarily sensitive data, 
without requiring privacy expertise of analysts or provid-
ers. The interface and behavior are very much like that 
of Language Intergrated Queries (LINQ), and the privacy 
guarantees are the unconditional guarantees of differen-
tial privacy.

PINQ presents an opportunity to establish a more formal 
and transparent basis for privacy technology and research. 
PINQ’s contribution is not only that one can write private 
programs, but that one can write only private programs. 
Algorithms built out of trusted components inherit privacy 
properties structurally, and do not require expert analysis 
and understanding to safely deploy. This expands the set 
of capable users of sensitive data, increases the portability 

of privacy-preserving algorithms across data sets and 
domains, and broadens the scope of the analysis of sensi-
tive data.

6.1. Availability
The prototype of PINQ used for the experiments in this 
paper, as well as further example programs and a brief 
tutorial, are available at http://research.microsoft.com/
PINQ.
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Consider the following very general 
setting for computational problems. 
An instance is presented as a set of 
variables taking values in a finite 
domain, together with a set of con-
straints on those variables. Each 
constraint applies to a certain tuple 
of variables and imposes a certain 
relation on the values they may take. 
The imposed relations come from an 
agreed “constraint language.” We ask 
the question: Does there exist an as-
signment to the variables that simul-
taneously satisfies all the constraints? 
So, if the domain has nine elements 
and the constraint language contains 
the binary relation “not equal to,” 
then we could express the problem of 
whether the vertices of a given graph 
can be properly colored with just nine 
colors. Or, more picturesquely, we 
could specify an arbitrary instance of 
Sudoku. (Technically, we would also 
require nine unary relations picking 
out the nine values in the domain.)

It takes only a little imagination to 
come up with a wealth of problems in 
scheduling and planning that can be 
expressed as Constraint Satisfaction 
Problems (CSPs) within an appropriate 
constraint language. It should come as 
no surprise, then, that CSPs have an im-
portant place in the fields of artificial 
intelligence and operations research. 
But why should there be such an inter-
est in CSPs within the computational 
complexity community? Well, each 
constraint language (set of allowed 
constraint relations) defines a particu-
lar class of CSPs, and, as the constraint 
language becomes richer, the compu-
tational complexity of the correspond-
ing class of CSPs becomes potentially 
greater. Classifying the computational 
complexity of the infinite array of pos-
sible constraint languages provides a 
challenging and stimulating task for 
complexity theorists, and hopefully 
one that has some practical value too.

The starting point was a result of 
Schaefer, which completely classified 
the computational complexity of CSPs 
in the case of a two-element (Boolean) 
domain. He identified certain polyno-
mial-time solvable cases, for example, 
where all constraints can be expressed 
as conjunctions of Horn clauses. But 
the remarkable part of his result is 
that all other cases are NP-complete. 
In other words, he identified a di-
chotomy within Boolean CSPs—un-
der the assumption P ≠ NP—between 
ones solvable in polynomial time, and 
ones that are NP-complete. This is 
significant, as a similar dichotomy is 
known not to exist in NP itself. There 
is no contradiction here, as not every 
problem in NP is expressible as a CSP. 
For example, it is not possible to ex-
press the Hamiltonian Cycle problem 
(a stripped-down version of the infa-
mous Traveling Salesman problem) in 
any finite constraint language.

An article by Feder and Vardi pro-
vided a major spur to work on the com-
putational complexity of CSPs. It would 
not be appropriate to describe their 
work in detail here, beyond noting they 
conjectured that a complexity dichot-
omy holds for the entire class of CSPs, 
not just ones over the Boolean domain. 
It transpires that the technical difficul-
ties encountered when attempting to 
generalize Schaefer’s dichotomy to do-
mains with more than two values are ex-
treme, and the Feder-Vardi conjecture 
remains unresolved to this day. Fortu-
nately, much progress has been made 
on related problems and special cases, 
making this a lively and dynamic area.

In the following paper, Bulatov and 
Marx deal with just such a related prob-
lem. Suppose the domain is Boolean, 
and the constraint language consists of 
the single binary relation “nand.” This 
class of CSPs contains the n-Queens 
Problem since we can use this binary 
relation to express the rule that we 

are not allowed to have a queen at this 
position and that one. Well, not quite, 
since we must also insist there are n 
queens in all on the board, to deny 
the trivial solution with no queens! 
One way to incorporate such problems 
into the CSP framework is by adding a 
global cardinality constraint that de-
termines the number of variables that 
take on each of the values in the under-
lying domain, in this instance that n of 
the variables should be set to “true.” 
This extended class of “CCSPs” is the 
subject of the paper. Again, it is possi-
ble to imagine less frivolous examples 
of CCSPs than the 8-Queens Problem. 
For example, in determining locations 
for a number of facilities, one would 
want to ensure not only that various 
proximity and capacity constraints 
are met, but that the total number of 
facilities is within budget. Note that 
a cardinality constraint may increase 
computational complexity: the single 
relation “nand” in isolation leads to 
trivial CSPs (just set every variable to 
“false”), but adding a cardinality con-
straint yields the NP-complete prob-
lem “Maximum Independent Set.”

Aside from establishing a dichot-
omy theorem for CCSPs, the authors 
provide an excellent introduction to 
the concerns and techniques of re-
searchers in the computational com-
plexity of CSPs. Intuition having been 
quickly developed in a sequence of 
examples and counterexamples, the 
reader is introduced to some of the 
tricks of the trade. A basic challenge in 
analyzing the computational complex-
ity of CSPs is the following: Although 
the constraint language may be small, 
nevertheless these explicitly given re-
lations can be combined (together 
with some extra variables) to generate 
a rich variety of derived, or “pp-defin-
able” relations. One effective way to 
gain control over the ramifications of 
pp-definable relations is to transfer 
to a dual world of so-called polymor-
phisms: operations under which the 
class of definable relations is invari-
ant. All this rich circle of ideas may be 
glimpsed in this study of CSPs with 
cardinality constraints.	
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Abstract
In a constraint satisfaction problem (CSP) the goal is to find 
an assignment of a given set of variables subject to speci-
fied constraints. A global cardinality constraint is an addi-
tional requirement that prescribes how many variables 
must be assigned a certain value. We study the complexity 
of the problem CCSP(G), the CSP with global cardinality 
constraints that allows only relations from the set G. The 
main result of this paper characterizes sets G that give rise 
to problems solvable in polynomial time, and states that the 
remaining such problems are NP-complete.

1. CONSTRAINT PROBLEMS
1.1. Constraint satisfaction problem
Among formalisms unifying and classifying various com-
binatorial problems the Constraint Satisfaction Problem (or 
CSP) is one of the most successful ones. In this problem, we 
are given a set of variables and a collection of restrictions—
constraints—on the allowed combinations of values of the 
variables; the goal is to find an assignment to the variables 
so that all constraints are satisfied. Usually constraints are 
imposed on small sets of variables; thus, the CSP formalizes 
the idea of finding a global solution bound by local restric-
tions. The Sudoku puzzle gives a popular toy example of CSP. 
We need to assign values—numbers from 1 to 9—to vari-
ables—entries of the puzzle so that the values of variables in 
a row, column, or 3 × 3 block are different. Another toy exam-
ple whose CSP encoding is less obvious is the 8-Queen prob-
lem: place eight queens on a 8 × 8 chessboard so that they 
do not hit each other.15 To represent it as a CSP we consider 
the columns {a, b, c, d, e, f, g, h} (see Figure 1) as variables 
that can be assigned values from the set of rows, and the 
assigned value shows the position of a queen in this column.

Many combinatorial problems readily fall into this 
framework. For example, in the Graph 3-Coloring prob-
lem, the vertices of a given graph are variables to receive 
one of the three colors, and assignments are constrained 
by the requirement that adjacent vertices receive different 
colors. Thus, this problem is a CSP. The list of examples 
can be extended by other combinatorial problems like 
Satisfiability, problems in scheduling, temporal and spatial 
reasoning, and many others.

CSPs have been studied from both practical and theoreti-
cal perspectives. On the practical side, the expressive power 
of the CSP allows to model a wide range of real-world prob-
lems from planning24 and scheduling,35 frequency assign-
ment problems,17 to image processing,32 to programming 
language analysis,33 to natural language understanding.1 
A number of commercial and freeware solvers exist capable 

of solving a wide range of CSPs of nearly industrial scale, 
and methods of solving constraint problems are develop-
ing rapidly.15 On the theoretical side, researchers focus on 
several directions such as the complexity of CSPs prob-
lems, efficient algorithms for CSPs, where such algorithms 
exist, and connections of CSPs with other combinatorial 
problems.3, 8, 10, 13, 18, 21, 22, 26, 31, 34

1.2. Global constraints
The ‘pure’ CSP described above is sometimes not enough 
to model practical problems, as some constraints that have 
to be satisfied are not ‘local’ in the sense that they cannot 
be viewed as applied to only a limited number of variables. 
Constraints of this type are called global. Global constraints 
are very diverse; the current Global Constraint Catalog  
(see http://www.emn.fr/x-info/sdemasse/gccat/) lists 313 
types of such constraints. In this paper we focus on global 
cardinality constraints.6, 14

Some of the global constraints such as the surjectivity of a 
solution, that is, the requirement that all variables take dis-
tinct values (cf. the Sudoku puzzle), allow simulation by local 

The original version of this paper was published in the 
Proceedings of the 24th Annual IEEE Symposium on Logic 
in Computer Science (Los Angeles, CA, Aug. 11–14, 2009), 
419–428.
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Figure 1. The 8-Queen problem.
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is often called a constraint language. Same restrictions can 
be applied to problems with cardinality constraints. We use 
CCSP(G) to denote such problem.

Problems of the form CSP(G) and CCSP(G) span a wide 
range of combinatorial problems such as ones in Figure 3, 
and many others.
Graph 3-Coloring. Let  denote the disequality rela-
tion on a 3-element set, that is, the binary relation con-
taining all pairs (a, b) of elements from the set such that 
a ¹ b:

(Observe that we write pairs, and later longer tuples of ele-
ments vertically, so members of the relation are the columns 
of the matrix.) Then the 3-Coloring problem equals CSP(G3−

Col) where .
2-Satisfiability. Recall that a literal is a propositional 
variable or its negation. A disjunction of literals (of 2 liter-
als) is called a clause (a 2-clause). A propositional formula 
that is a conjunction of clauses (2-clauses) is said to be a 
conjunctive normal form, or a CNF (2-CNF) for short. In the 
2-Satisfiability problem, given a 2-CNF, the goal is to find an 
assignment to its variables that makes the formula true. If 
the set of variables of the CNF is V then every clause defines 
a constraint on a pair of variables that forbids exactly one 
combination of values. Let G2−SAT be the following set of 4 
binary relations, each of which omits a certain pair:

Then CSP(G2−SAT) represents 2-Satisfiability and it is known 
to be polynomial-time solvable.
3-Satisfiability. Analogously to 2-SAT, let G3−SAT be the 
set consisting of eight ternary relations on {0, 1}, each of 
which omits a certain triple. Then CSP(G3−SAT) represents 
3-Satisfiability and it is NP-complete.
Independent Set. An independent set in a graph is a set of 
vertices, no two of which are connected with an edge. In the 
Independent Set problem, given a graph and a natural num-
ber k, the question is whether or not there exists an indepen-
dent set of size k. Let

that is, RIS = excludes only (1, 1), and GIS = {RIS}. Now, to 
reduce Independent Set to the CSP the vertices of a given 
graph are treated as variables and the constraint RIS is 
imposed on every pair of adjacent vertices. For any solu-
tion of such CSP the variables (vertices) assigned 1 form 
an independent set in the graph. To express the restric-
tion on the size of an independent set we can use a car-
dinality constraint that requires that exactly k variables 

constraints. Surjectivity can be enforced by requiring that 
every two variables receive distinct values. However, some-
times it is not possible. In this paper we focus on one type 
of such ‘truly’ global constraints, cardinality constraints, that 
impose restrictions on the number of variables assigned 
certain values, see Figure 2. For instance, in the 3-Coloring 
problem, a cardinality constraint may require that at least 
half of the vertices of the graph are colored red.

1.3. Complexity of constraints
As the general CSP is NP-hard, the study of its complexity 
focuses on considering restricted versions of the problem. 
There are two principal ways to restrict the CSP, both of them 
can be applied to CSPs with cardinality constraints as well.

The first approach restricts the way constraints interact. 
The interaction of constraints can be represented by the 
primal graph whose vertices are variables, and two vertices 
are connected if and only if they belong to the scope of a 
constraint. This approach was motivated by the observation 
that if the primal graph is acyclic or close to acyclic in a well-
defined sense (has bounded treewidth), then CSP becomes 
polynomial-time solvable.20 Interestingly, attempts to char-
acterize conjunctive queries to databases that can be pro-
cessed efficiently led to the same question.26 After a series 
of recent breakthrough results21, 31 the structure of polyno-
mial-time solvable CSPs of this type is largely understood.

The second approach to restrict the CSP is to limit the 
allowed types of constraints. It can be expressed formally as 
follows. Let the possible values of variables in the problem 
be taken from a set D (the domain). In this paper, we always 
assume D to be finite. Then every constraint that can be 
imposed on a set of k variables is a list of all allowed com-
binations of values these variables can take simultaneously, 
that is, a k-ary relation on D. If now we fix a set G of such rela-
tions on D and allow constraints to be chosen only from G, 
we arrive to the problem denoted CSP(G). In this context, G 

Figure 2. Formal definition of CSP and CCSP.

CSP
Let D be a (finite) set (the domain). Every instance I = (V,C) of the 
problem CSP consists of:

•  a set V of variables, and
•  a set C of constraints. Every constraint is a pair 〈s, R〉, where

— �s = (v1, … , vk) is a tuple of variables from V, not necessarily 
distinct, and

— R is a k-ary relation over D.
A solution of I = (V, C) is a mapping j : V → D such that for any 
constraint 〈s, R〉, we have j (s) ∈ R.

CCSP
A global cardinality constraint for an instance I = (V,C) is a mapping 
p: D →  such that Sa ∈D p(a) = |V|. Solution j satisfies p if |j −1(a)| = 
p(a) for every a ∈ D. The question is whether or not there is a solution 
satisfying one of the given cardinality constraints.

CSP(G) and CCSP(G) 
Let G be a set (finite or infinite) of relations on D, called a constraint 
language. The problems CSP(G) and CCSP(G) include those instances 
of CSP and CCSP, respectively, that use only relations from G.
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are assigned 1. Therefore Independent Set is equivalent to 
CCSP(GIS). The Independent Set problem is well known to 
be NP-complete.

Despite such expressive power, problems of the form 
CSP(G) probably cannot capture all combinatorial prob-
lems. As is easily seen, all CSPs belong to the class NP. Some 
of them, such as 3-Coloring or 3-SAT are NP-complete, 
while others, for example, 2-SAT, belong to the class P, 
that is, solvable in polynomial time. If P ¹ NP, there is an 
infinite hierarchy of complexity classes between P and NP 
such that problems from different classes are not reduc-
ible to each other in a natural sense.28 However, all known 
problems CSP(G) turn out to be either in P or NP-complete. 
This phenomenon is known as complexity dichotomy.18 
The dichotomy phenomenon was first discovered by 
Schaefer34 for CSPs with 2-element domain, and was 
later confirmed in many particular cases.3, 7, 9 This caused 
Feder and Vardi to pose a conjecture, called the Dichotomy 
Conjecture, that every problem CSP(G) is either solvable 
in polynomial time or is NP-complete. The Dichotomy 
Conjecture remains open till now.

Remarkably, the phenomenon of complexity 

dichotomy extends inside P, although a weaker notion of 
reduction is needed for this. To date, only four complex-
ity classes and a series of very similar classes inside P are 
known such that CSP(G) can be complete in.2, 29 In some 
cases the lack of problems CSP(G) of intermediate com-
plexity is shown.29

In this paper, we report on a dichotomy theorem for CSPs 
with cardinality constraints. The next section describes a 
dynamic programming algorithm that solves CCSPs when-
ever it can be solved efficiently. In Section 3, we outline the 
algebraic approach to the CSP and CCSP and show how 
it can be used to formulate the dichotomy theorem for 
the CCSP. Finally, in Section 4 we present the main ideas 
behind the hardness result. A longer version of the paper 
can be found in.12

2. EASY CASES OF CCSP
2.1. Boolean CCSP
To gain some intuition we start with the Boolean CSP and 
CCSP, in which values are taken from the set {0, 1}. The 
dichotomy result for Boolean CSPs34 identifies six types of 
tractable relations, that is, those which give rise to a CSP 
solvable in polynomial time. Among these relations are 
those representable by a 2-CNF, solution spaces of systems 
of linear equations over the 2-element field, and some oth-
ers. If a constraint language G is not composed from rela-
tions of one of these six types, CSP(G) is NP-complete. For 
CCSPs, a dichotomy result was proved in Creignou et al.14 
The structure of tractable CCSPs is much simpler. Let R=2

 and 
R≠2

 denote the equality and disequality relations on {0, 1}. 
Then CCSP(G) is solvable in polynomial time if and only 
if every relation from G can be expressed by a conjunction 
of R=2

 and R≠2
 clauses, and the two constant constraints 0 

and 1. Otherwise the Bipartite Independent Set or Linear 
Equations problems can be reduced to CCSP(G), and the 
problem is NP-complete.

The polynomial-time solvable cases can be handled by 
a standard application of dynamic programming. Suppose 
that the instance is given by a set of binary equality/disequal-
ity clauses (see Figure 4 for a concrete example). Consider 
the graph formed by the binary clauses. There are at most 
two possible assignments for each connected component 
of the graph: setting the value of a variable uniquely deter-
mines the values of all the other variables in the component. 
Thus the problem is to select one of the two assignments for 
each component. Trying all possibilities would be exponen-
tial in the number of components. Instead, for i = 1, 2, …, 
we compute the set Pi of all possible pairs (x, y) such that 
there is a partial solution on the first i components contain-
ing exactly x zeros and exactly y ones. It is not difficult to see 
that Pi+1 can be efficiently computed if Pi is already known.

2.2. Generalizations
We generalize the results of Creignou et al.14 for arbi-
trary finite sets and arbitrary constraint languages. As 
usual, the characterization for arbitrary finite domains 
is significantly more complex and technical than for 
the 2-element domain. As a straightforward general-
ization of the 2-element case, we can observe that the 

Bipartite Independent Set.  We say that a graph is bipartite if the ver-
tices can be partitioned into two classes X and Y such that every edge 
connects a vertex of X and a vertex of Y. In the Bipartite Independent 
Set problem, we are looking for a independent set containing exactly 
kX vertices of X and kY vertices of Y. This problem is equivalent to a 
CCSP over the domain {0X, 0Y, 1X, 1Y} where each edge is represented 
by the binary relation

and we require kX variables with value 1X and kY variables with value 
1Y in the solution. Bipartite Independent Set is known to be NP-hard. 
The variant of the problem, where we require an independent set of 
size k in a bipartite graph (without specifying the number of vertices 
in each class) is polynomial-time solvable; however, this variant can-
not be expressed as a CCSP.

Linear Equations.  In the regular Linear Equations problem the 
question is, given a system of linear equations over a finite field, 
decide whether it is consistent or not. The version of this problem 
allowing global cardinality constraints asks whether such a system 
has a solution that assigns each of the elements from the field to 
a prescribed number of variables. While Linear Equations without 
cardinality constraints is polynomial-time solvable, cardinality con-
straints make it NP-complete,5 even if the variables are over the two 
element field and every equation is of the form x + y + z = 1. This 
means that CCSP({RODD−3}) is NP-complete, where

is the ternary relation satisfied by an odd number of 1s.

Figure 3. More examples of CSPs and CCSPs.
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problem is polynomial-time solvable if every relation can 
be expressed by graphs of bijective mappings. For a map-
ping j: A ® A, the graph of j is the binary relation consist-
ing of pairs of the form (a, j (a) ), a Î A. In this case, setting 
a single value in a component uniquely determines all 
the values in the component. Therefore, if the domain 
is D, then there are at most |D| possible assignments in 
each component, and the same dynamic programming 
technique can be applied (but this time the set Pi contains 
|D|-tuples instead of pairs).

One might be tempted to guess that the class described 
in the previous paragraph is the only class where CCSP 
is polynomial-time solvable. However, it turns out that 
there are more general tractable classes. First, suppose 
that the domain is partitioned into equivalence classes, 
and the binary constraints are mappings between the sets 
of equivalence classes. This means that the values in the 
same equivalence class are completely interchangeable. 
Thus it is sufficient to keep one representative from each 
class, and then the problem can be solved by the algo-
rithm sketched in the previous paragraph. Again, one 
might believe that this construction gives all the tracta-
ble classes, but the example in Figure 5 shows that there 
are more complicated constraint languages, where CCSP 

is polynomial-time solvable, but we have to do two-level 
dynamic programming on the subcomponents of each 
component. It is not difficult to make this example more 
complicated in such a way that we have to look at sub-
subcomponents and perform multiple levels of dynamic 
programming. This suggests that it would be difficult to 
characterize the tractable relations in a simple combina-
torial way.

2.3. Algorithm for the tractable CCSP problems
In this section, we present a general algorithm for solving 
CCSP. We prove our dichotomy theorem by showing that for 
every finite constraint language G, either this algorithm solves 
CCSP(G) in polynomial time, or CCSP(G) is NP-complete. In 
this section, we cannot give a full characterization of those 
constraint languages G for which the algorithm works: we 
postpone it to Section 3.3, as it can be done most conveniently 
using the algebraic tools introduced in the next section.

The first condition that we require is that every relation 
in G is defined by its binary projections. Formally, we say 
that r-ary relation R is 2-decomposable, if there are binary 
relations Rij (1 £ i < j £ r) such that (a1, …, ar) Î R if and only if 
(ai, aj) Î Rij for every 1 £ i < j £ r. For example, the relation R 
in Figure 5 is 2-decomposable, as it is shown by the relations

On the other hand, relation RODD−3 of Figure 3 is not 2-decom-
posable: all three of the corresponding relations R12, R13, R23 
contain the pair (0, 0), but tuple (0, 0, 0) is not in R.

If a constraint is 2-decomposable, then it can be expressed 
by a set of binary constraints. Thus in the following, we can 
assume that every constraint of the CCSP instance is binary.

The algorithm finds all cardinality constraints that 
are satisfied by solutions of the instance. First, given an 
instance, we make sure that every variable v is associated 
with a domain Dv that contains all the values that are useful 
for this variable. That is, if 〈(v, w), R〉 is a constraint, then Dv 
is exactly {x | (x, y) Î R}, or in other words, Dv is exactly the 
set of values that the pairs of R contain at the position corre-
sponding to v. This is achieved by the standard propagation 
algorithm, see, e.g., Freuder19.

A binary constraint 〈(v, w), R〉 is trivial if R = Dv × Dw, allowing 
any combination of values from the domains of v and w. Let G 
be the graph formed by the nontrivial binary constraints of the 
problem. If graph G is disconnected, then arbitrary satisfying 
assignments for the connected components can be combined 
to obtain a satisfying assignment for the instance. Therefore, 
the algorithm recurses on the problems induced by con-
nected components, and then merges the solutions using the 
same dynamic programming approach as for Boolean CCSP 
(Figure 4). If G is connected, the algorithm chooses an arbi-
trary variable v and tries to substitute every possible value of 
Dv into v. This way, we get |Dv| new instances and it is clear that 
the original problem has a solution satisfying a cardinality 

Example 1. Let G = {=2, ¹2} contain the binary equality and disequality 
relations. Consider the following instance of CCSP(G) with 15 variables 
and 13 constraints:

C1 C3 C4C2

Each component has exactly two satisfying assignments: either the 
“black” variables have value 0 and the “white” variables have value 
1, or vice versa. Let set Pi contain all possible pairs (x, y) such that 
the union of the first i components have a solution with x 0’s and y 
1’s. Then

  P1 = {(2, 3), (3, 2)}
  P2 = {(3, 5), (4, 4), (5, 3)}
  P3 = {(4, 7), (5, 6), (6, 5), (7, 4)}
  P4 = {(5, 10), (6, 9), (7, 8), (8, 7), (9, 6), (10, 5)}

If component Ci has bi black and wi white vertices, then clearly a pair 
(x, y) is in Ci if and only if either (x − bi, yi − wi) Î Pi − 1 or (x − wi, yi − bi) 
Î Pi − 1. This gives us an efficient way of computing Pi if Pi − 1 has been 
computed.

Figure 4. Using dynamic programming to solve Boolean CCSP with 
binary equalities and disequalities.
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constraint if and only if one of the new instances has such a 
solution. Thus in this case, the problem can be solved by recur-
sively solving |Dv| instances and taking the union of the set of 
cardinality constraints satisfied by these instances.

There is no question that the scheme described above 
finds every cardinality constraint satisfied by the instance. 
The only issue is whether the running time is polynomial: 
branching into |Dv| directions in the case when G is con-
nected can create an exponentially large recursion tree. We 
identify a useful special case that guarantees a polynomial 
bound on the size of the recursion tree. After substituting 
a value into v, we can rerun the propagation algorithm to 
reduce the domains of the variables by throwing away those 
values that are no longer useful. The key property that we 
require is the following:

Key Property: If G is connected, then no matter what 
value we substitute, propagation strictly decreases  
the domain of every variable.

If this property is true, then the algorithm has to terminate 
after at most |D| substitutions, and therefore the height of 
the recursion tree is at most |D|, which is constant for a fixed 
constraint language. This gives us a polynomial bound on 
the size of the recursion tree.

Are there constraint languages G for which the key prop-
erty described above holds? Yes, there are, for example, if 
every binary relation is the graph of a bijective mapping and 
G is connected, then substituting any value to a variable v 
decreases the domain of every other variable to a single ele-
ment. As mentioned earlier, it is not easy to give a simple 

combinatorial characterization of those sets G for which the 
algorithm works (in the next section, we characterize them 
in a more algebraic way). We can at least give some necessary 
conditions that show what kind of generalizations of map-
pings should we deal with.

Let R be a binary relation from a set A to set B, that is, 
R Í A × B. Relation R is said to be a thick mapping if when-
ever pairs (a, c), (a, d), (b, c) belong to R, the pair (b, d) 
also belongs to R. As is easily seen, any thick mapping R 
has two associated equivalence relations a and b on A and 
B, respectively, such that R can be thought of as a mapping 
from the set of equivalence classes of a to that of b.

To give some intuition why it is a problem if a relation is not 
a thick mapping, consider the relation R = {(a, c), (a, d), (b, c)}. 
Suppose that there are only two variables v, w and there is a sin-
gle constraint 〈(v, w), R〉. In this case, the domains are Dv = {a, 
b} and Dw = {c, d}. The constraint is nontrivial, thus the graph 
G is connected. But if we assign value a to variable v, then the 
domain size of w does not decrease: b and d are both possible. 
Thus for this relation, the algorithm does not have the prop-
erty that every substitution decreases every domain, and we 
cannot guarantee a polynomial bound on the recursion tree.

Unfortunately, requiring that every relation is a thick 
mapping is not sufficient for tractability, as thick map-
pings can interact with each other in a way that makes CCSP 
hard. Therefore in order to the problem CCSP(G) for a set G 
of thick mappings to be easy, more restrictions have to be 
imposed on G. Such a condition called noncrossing requires 
that if two thick mappings induce equivalence relations a 
and b on a certain set, then for any equivalence class C of a 
and a class D of b that are not disjoint, either C Í D or D Í C. 
We need even stronger conditions: not only relations from G 
must be noncrossing thick mappings, but also certain rela-
tions derived from them. A detailed explanation is given in 
the next section.

3. ALGEBRAIC APPROACH
One of the main difficulties in studying problems CSP(G) and 
CCSP(G) is: How can one describe or characterize a constraint 
language (possibly infinite)? A combinatorial characteriza-
tion is very often impossible, so two alternative approaches 
have been widely used, one through logic and another one 
through algebra. Here we use the algebraic one.

3.1. Primitive positive definitions
In a CSP, possible combinations of values of certain variables 
can be constrained even if there is no explicit constraint 
imposed on them, see Figure 6. That is, we can use the con-
straints in G to build “gadgets” that enforce a constraint 
relation on a certain set of variables. Note that, as in Figure 
6, the constraint relation expressed by the gadget does not 
necessarily belong to G. This means that for every constraint 
language G, there is a set of implicit constraints that do not 
belong to G, but can still be expressed by instances of CSP(G).

How can we characterize all the implicit constraints of 
a constraint language G? It turns out that the implicit con-
straints that can be expressed in instances of CSP(G) admit a 
simple logic representation. Treating relations in G as predi-
cates, one can construct logic formulas from them, and use 

Example 2. We claim that CCSP({R}) is polynomial-time solvable for 
the relation

Consider the graph on the variables where two variables are connect-
ed if and only if they appear together in a constraint. As in Figure 4,  
for each component, we compute a set containing all possible cardi-
nality vectors, and then use dynamic programming. In each compo-
nent, we have to consider only two cases: either every variable is in 
{1, 2, 3, 4, 5} or every variable is in {a, b, c, d, e}. If every variable of 
component K is in {1, 2, 3, 4, 5}, then R can be expressed by the unary 
constant relation 1, and the binary relation R' = {(2, 3), (4, 5)}. The bina-
ry relations partition component K into sub-components K1, … , Kt. Since 
R' is the graph of a mapping, there are at most 2 possible assignments 
for each sub-component. Thus we can use dynamic programming to 
compute the set of all possible cardinality vectors on K that use only 
the values in {1, 2, 3, 4, 5}. If every variable of K is in {a, b, c, d, e}, then 
R can be expressed as the unary constant relation c and the binary 
relation R" = {(a, b), (d, e)}. Again, binary relation R" partitions K into 
sub-components, and we can use dynamic programming on them. Ob-
serve that the sub-components formed by R' and the sub-components 
formed by R" can be different: in the first case, u and v are adjacent if 
they appear in the second and third coordinates of a constraint, while 
in the second case, u and v are adjacent if they appear in the first and 
second coordinates of a constraint.

Figure 5. A two-level dynamic programming algorithm for CCSP.
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these formulas to express other predicates (relations). The 
type of formulas that is just right for representing implicit 
constraints is called primitive positive. Primitive positive 
(pp-) formulas include predicates from G (atomic formu-
las) and the equality, conjunctions of atomic formulas, and 
existential quantifiers. Relations (or predicates) that can be 
expressed by using pp-formulas with predicates from G are 
said to be pp-definable in G.

Jeavons et al.23 proved that pp-definitions give rise to 
reductions between CSPs: If G and D are constraint lan-
guages on the same set such that D is finite and every 
relation in D is pp-definable in G, then CSP(D) is polyno-
mial-time reducible to CSP(G) (can be improved to loga-
rithmic-space reducibility). Thus, when proving hardness 
of CSPs one can use any relations pp-definable in the given 
constraint language. Very often ‘gadgets’ used in complex-
ity proofs can be expressed as pp-definitions, so primitive 
positive definitions generalize and unify gadget reductions.

In CSPs with cardinality constraints, it is not obvious 
that adding pp-definable relations to the constraint lan-
guage does not increase hardness. The difficulty is that 
introducing gadgets (like the one in Figure 6) means 
adding auxiliary variables, and the values appearing on 
these variables can affect the cardinality constraints. 
Nevertheless, we can show that adding a new constraint 
R′ to the constraint language of a CSP with cardinality 
constraints does not change the complexity if R′ is pp-
definable without using the equality relation. Relations 
expressible in such a weaker way are called pp-definable 
without equality. In fact, relations that are pp-definable in 
a certain G with or without equality can only be different by 
certain redundant parts that are not so important for con-
straint problems. Therefore, we can essentially assume 

that G is closed under pp-definitions, and hence we can 
use the algebraic framework discussed in more detail in 
the next section.

3.2. Polymorphisms and invariants
Although pp-definitions are helpful in hardness proofs, 
they do not resolve the main difficulty of studying the com-
plexity of CSPs, as they do not help much in describing 
constraint languages. However, pp-definitions provide a 
bridge to a tool that allows to do that. Polymorphisms can be 
viewed as a sort of extended symmetries of relations. Let R 
be a relation on some set D and f a function on the same set 
that may depend on more than one variable; let f be n-ary, 
that is, depends on n variables. The function f is a polymor-
phism of R if for any choice of tuples a–1, …, –an from R the 
tuple f (–a1, … ,–an) obtained by component-wise application 
of f also belongs to R. Relation R in this case is said to be 
an invariant of f. Polymorphisms and invariants naturally 
extend to constraint languages and functions: A function is 
a polymorphism of a constraint language if it is a polymor-
phism of every relation in it, and a relation is an invariant 
of a set of functions if it is an invariant of every function in 
the set. For constraint languages G, and set of functions C, 
by Pol G we denote the set of all polymorphisms of G, and 
Inv C the set of all invariants of C, see Figure 7.

Sets of the form Pol G and Inv C have a number of inter-
esting properties, see, e.g., Denecke and Wismath.16 For 
any set C of functions Inv C is a relational clone, that is, 
constraint language D such that every relation pp-definable 
in D also belongs to D. Therefore Jeavons’ result (and this 
paper’s analogous result) can be stated in terms of polymor-
phisms: If G and D are constraint languages on the same set 
such that D is finite and every polymorphism of G is also a 
polymorphism of D, then CSP(D) is polynomial-time reduc-
ible to CSP(G). For CCSP we only have to add the require-
ment that relations in D do not contain redundancies.

For any constraint language G the set Pol G is a clone, 
that is, a set of functions that contains the identity func-
tions, and closed under compositions. Clones have been a 
subject of intensive study in algebra for decades; the results 
of those studies are readily available to be applied to con-
straint problems.

Clearly, large constraint languages have few polymor-
phisms. Thus, a number of important properties of relations 
can be inferred merely from the existence of polymorphisms 
of certain types. A ternary function h on a set D is said to be 
majority function if h(x, x, y) = h(x, y, x) = h(y, x, x) = x for any 
x, y Î D. If a constraint language has a polymorphism that 
is a majority function, then the constraint language is 
2-decomposable. A ternary operation m is called Maltsev if 
m(x, y, y) = m(y, y, x) = x for any x, y Î D. Any binary relation hav-
ing a Maltsev polymorphism is a thick mapping, see Figure 8.

For regular CSPs, complexity questions are usually 
reduced one step further, to universal algebras and their 
varieties. Most of the strong complexity results about CSPs 
are obtained this way.3, 7, 9 Moreover, research on CSP com-
plexity have revolutionized certain fields of algebra, see, e.g., 
Barto and Kozik.4 For our result, however, we do not need 
more algebra than polymorphisms.

Example 3.8 Let G be a constraint language containing a single 
binary relation R over the set D = {0, 1, 2}, where R is given by R = 
{(0, 0), (0, 1), (1, 0), (1, 2), (2, 1), (2, 2)}. Consider the instance of CSP(G) 
with the set of variables {v1, v2, v3, v4} and set of constraints {C1, C2, 
C3, C4, C5}, where C1 = 〈(v1, v2), R〉, C2 = 〈(v1, v3), R〉, C3 = 〈(v2, v3), R〉, 
C4 = 〈(v2, v4), R〉, C5 = 〈(v3, v4), R〉. There is no explicit constraint on the 
pair (v1, v4). However, by considering all solutions to the instance, it 
can be shown that the possible pairs of values which can be taken  
by this pair of variables are precisely the elements of the relation 
R' = R È{(1, 1)}. Thus this instance can be considered as a “gadget” 
implementing R' using only the relations R.

C1

C3

C2 C5

C4

v2

v4

v3

v1

The relation R' can be expressed as the following primitive positive 
(pp-) definition:

R'(x, y) = ∃z, t(R(x, z)∧R(x, t)∧R(z, t)∧R(z, y)∧R(t, y) ).

Figure 6. Implicit constraints.
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3.3. Easy cardinality constraints: The full result
We can finally explain the main result in details. A function 
f is said to be conservative if it always equal to one of its argu-
ments. For instance, a ternary function f is conservative if 
f (a, b, c) Î {a, b, c} for any a, b, c. The main result can be 
stated compactly the following way:

Main Theorem Let G be a finite constraint language. If G 
has a majority polymorphism and has a conservative Maltsev 
polymorphism, then CCSP(G) is polynomial-time solvable. 
Otherwise, the problem is NP-complete.

We can show that if a constraint language G satisfies the 
conditions above, then the problem can be solved in poly-
nomial time by the algorithm presented in Section 2.3. Let D 
be the set of binary relations pp-definable in G. Since G has 
a majority polymorphism, it is 2-decomposable; hence, every 
constraint with a relation R Î G can be replaced with a collec-
tion of binary constraints, the ‘projections’ of R, which are pp-
definable in G and thus belong to D. Therefore we only need to 
verify that the Key Property (Section 2.3) always holds. Due to 
2-decomposability, G can be replaced with D. This constraint 
language has a Maltsev polymorphism, and this makes its 
relations thick mappings. Suppose now that the graph G of a 
problem from CCSP(D) is connected. For any two variables v, 
w the set of all allowed combinations of their values is a binary 
relation, denoted Rvw and an implicit constraint. Since D con-
tains all binary relations pp-definable in D, we have Rvw Î D. 
Thus Rvw is a thick mapping from Dv to Dw. The connectedness 
of G and the fact that all relations in D are noncrossing can 
be used to show that Rvw is a nontrivial thick mapping. Let a 
and b be equivalence relations it induces on Dv and Dw, respec-
tively. If we fix a value a Î Dv then the possible values of w are 
restricted to one equivalence class of b, a proper subset of Dw. 
As this is true for all variables w, the key property follows.

The Main Theorem also leads to a more combinatorial 
characterization of tractable problems CCSP(G): Such a 
problem is tractable if and only if G is 2-decomposable, and 
the binary relations pp-definable in G are noncrossing thick 
mappings.

What remains now is to show that otherwise the problem 
is hard.

4. HARD CSPS WITH CARDINALITY CONSTRAINTS
If one of the three conditions on a constraint language 
G (a) 2-decomposability, (b) all binary pp-definable rela-
tions are thick mappings, and (c) all such binary rela-
tions are  noncrossing does not hold, we show that either 
Bipartite Independent Set or Linear Equation is reducible 
to CCSP(G), thus showing that CCSP(G) is NP-complete. 
This part is technical, but we outline the intuition behind 
the technique.

Suppose first that a binary relation R is pp-definable in G, 
but is not a thick mapping. This means that for some a, b, 
c, d pairs (a, c), (a, d), (b, c) belong to R while (b, d) does not. 
If a, b, c, d are distinct values, then R contains a fragment 
that looks like RBIS. We exploit this fact to reduce Bipartite 
Independent Set to CCSP(G) and conclude NP-hardness in 
this case. In general, it is possible that some of a, b, c, d coin-
cide. However, a case analysis shows that reduction from 
Bipartite Independent Set is possible in all cases.

If there exist two thick mappings pp-definable in G that 
are not noncrossing, then there are also two equivalence 
relations with this property; denote them a and b. Since they 
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Figure 7. Pol and Inv.

Majority implies 2-decomposability.
Let R be a ternary relation and h a majority function, which is a poly-
morphism of R. We show that any triple (a, b, c) such that each of 
(a, b), (b, c), and (a, c) is extendible to a triple from R, belongs to R. 
This means the 2-decomposability of R in this case. By the assump-
tion, there are (a, b, z), (a, y, c), (x, b, c) Î R for some x, y, z. Since h is 
a majority polymorphism of R we have

and (a, b, c) belongs to R.
Maltsev implies thick mapping.
Let R be a binary relation and m its Maltsev polymorphism. We have 
to prove that for any (a, c), (a, d), (b, c) Î R the pair (b, d) also belong to 
R. It follows from a single application of the Maltsev polymorphism:

Linear equations.
As another example of a property of relations expressible by a poly-
morphism, we consider relations that are solution spaces of systems 
of linear equations over a finite field F. Then if a relation R has such 
representation it is an invariant of the affine function f(x, y, z) = x − y + 
z, where +, − are operations of the field F. Indeed, let A ⋅ x = b be the 
system defining R, and x, y, z Î R.
Then

A ⋅ f(x, y, z) = A ⋅ (x − y + z) = A ⋅ x − A ⋅ y + A ⋅ z = b.

In fact, the converse can also be shown: if R is invariant under f then 
it is the solution space of a certain system of linear equations.

Figure 8. Examples of polymorphism.
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are not noncrossing, some a-class and some b-class overlap, 
but are not subsets of one another. Hence for some a, b, c, 
we have (a, b) is in a but not in b, and (b, c) is in b but not in 
a. If we can restrict a and b onto {a, b, c} somehow, then 
the product of binary relations a ° b given by a pp-formula 
∃ z a(x, z) ∧ b(z, y), contains (a, a), (a, c), (c, c), but does not 
contain (c, a). Again, this fact can be used to reduce Bipartite 
Independent Set to CCSP(G).

Finally, let R Î G be non-2-decomposable. For simplicity 
assume R ternary. There is a triple (a, b, c) such that (a, b, z), 
(a, y, c), (x, b, c) belong to R for some x, y, z, but (a, b, c) does 
not. We show that either a binary relation which is not a 
thick mapping can be pp-defined in G, or two thick map-
pings that are not noncrossing, or all the tuples can be cho-
sen such that a = b = c = 0, x = y = z = 1 (we assume 0 and 1 are 
elements of the domain we can use here), and R restricted to 
{0, 1} is RODD−3. Therefore a reduction of Linear Equations to 
CCSP(G) can be found.

5. CONCLUSION
We have completed the study of CSP extended with cardi-
nality constraints, and proved a dichotomy theorem charac-
terizing the complexity of the problem for every constraint 
language G over an arbitrary finite domain D. Dichotomy 
theorems over non-Boolean domains are notoriously hard to 
prove, but possibly due to the rather restrictive nature of the 
CCSP problem, we managed to obtain a complete character-
ization. One can think of several natural variants with more 
expressive power, for example, the domain is {1, 2, 3, 4},  
and we have upper bounds on the cardinalities of 1 and 2, 
while there are lower bounds on the cardinalities of 3 and 
4. Therefore, upper and/or lower bounds instead of exact 
cardinality requirements, bounds only on a subset of val-
ues, bounds on the total cardinality of a subset of values, etc. 
give lots of interesting problems to look at. However, some 
of these questions seem to be very difficult, as a dichotomy 
result would immediately imply the Feder–Vardi Dichotomy 
Conjecture (after all, we do not fully understand CSP even 
without cardinality constraints).

Another natural direction is to consider optimization 
variants (minimize/maximize the number of times certain 
values appear) and determine the approximability of the 
resulting problems. In the Boolean case, the approximabil-
ity of the MinOnes/MaxOnes problems, where the task is 
to find a satisfying assignment minimizing/maximizing 
the number of variables receiving value 1, was classified by 
Khanna et al.25 Again, not being able to solve the Feder–Vardi 
conjecture limits what immediate progress we can expect in 
the study of non-Boolean domains.

Finally, one can look at CCSP from the viewpoint of 
parameterized complexity. The basic issues of parameter-
ized complexity is whether an algorithm of running time 
f (k) ⋅ nc exists, where k is some parameter of the input (for 
example, the size of the solution we are looking for), f (k) is 
an arbitrary function depending on k, and c is a universal 
constant independent of k. For example, in Boolean CCSP, 
one can answer in time nO(k) whether there is a solution with 
exactly k variables set to 1, but it would be preferable to find 
an algorithm with running time of the form f (k) ⋅ nc, that is, 
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where the combinatorial explosion is restricted to k and the 
exponent of n is independent of k. We can ask what those 
Boolean constraint languages G are for which the problem 
of finding a solution with exactly/at most/at least k vari-
ables having 1 can be solved in such running time. These 
questions have been investigated and completely answered 
in Kratsch et al. and Marx.27, 30 Generalization of some of 
these results to arbitrary non-Boolean domains have been 
obtained very recently by the authors.11�
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requisition 102122

Central Michigan University
Department of Computer Science

The department has two tenure track positions in 
Information Technology to be filled in Fall 2011. 
One is in Applied Networking and one is in Medi-
cal or Health Informatics. For more information 
and to apply electronically: www.jobs.cmich.edu.

Furman University
Assistant Professor of Computer Science

The Department of Computer Science invites 
applications for a tenure track position at the 
Assistant Professor level to begin in the fall of 
2011. Candidates must have a Ph.D. in Computer 
Science or a closely related field. The position re-
quires teaching excellence, effective institutional 
service, and an ability to work with colleagues 
across disciplines. An ability to develop a pro-
gram of scholarly and professional activity involv-
ing undergraduates is a priority. Research special-
ty areas being sought include (but are not limited 
to) high performance computing, computational 
science, mathematical modeling, and bioin-
formatics. Of particular interest are candidates 
willing to engage in collaborative research that 
bridges the computational and medical sciences. 
The position will be initially funded by and is ex-
pected to contribute to a major multi-disciplinary 
and multi-organizational state-wide initiative 
aimed at biofabrication of tissues and organs.

Furman is a highly selective, independent, top 
40 undergraduate liberal arts institution with an 
enrollment of approximately 2600 students. The 

Air Force Institute of Technology (AFIT) 
Dayton, Ohio
Department of Electrical and Computer 
Engineering
Graduate School of Engineering and 
Management
Faculty Positions in Computer Science or 
Computer Engineering

The Department of Electrical and Computer En-
gineering is seeking applicants for tenure track 
positions in computer science or computer engi-
neering. The department is particularly interest-
ed in receiving applications from individuals with 
strong backgrounds in formal methods (with em-
phasis on cryptography), software engineering, 
bioinformatics, computer architecture/VLSI sys-
tems, and computer networks and security. The 
positions are at the assistant professor level, al-
though qualified candidates will be considered at 
all levels. Applicants must have an earned doctor-
ate in computer science or computer engineering 
or closely related field and must be U.S. citizens. 
These positions require teaching at the gradu-
ate level as well as establishing and sustaining a 
strong research program. 

AFIT is the premier institution for defense-re-
lated graduate education in science, engineering, 
advanced technology, and management for the U.S. 
Air Force and the Department of Defense (DoD). 
Full details on these positions, the department, 
and application procedures can be found at: http://
www.afit.edu/en/eng/employment_faculty.cfm

Review of applications will begin immediately 
and will continue until the positions are filled. 
The United States Air Force is an equal opportu-
nity, affirmative action employer.

Cal Poly State University
Tenure Track Position - Forbes Professor of 
Computer Engineering

COMPUTER ENGINEERING - The Computer Sci-
ence Department and Computer Engineering 
Program at Cal Poly, San Luis Obispo, invite ap-
plications for a full-time, academic year tenure-
track Computer Engineering faculty position at 
the Assistant or Associate Professor rank, begin-
ning no later than Fall 2011. The appointment 
will be designated as the “Forbes Professor of 
Computer Engineering”. Duties include teaching 
core undergraduate courses, and upper-division 
and master’s level courses in a specialty area; 
performing research in an area of computer en-
gineering; and service to the department, the uni-
versity, and the community. 

Applicants from all mainstream areas of com-
puter engineering are encouraged to apply. A doc-
torate in Computer Engineering, Computer Sci-
ence, Electrical Engineering, or a closely related 
field is required. Salary is commensurate with 
qualifications and experience. 

Candidates in the areas of: Computer Secu-

university is located in the vibrant and beautiful 
upstate region of South Carolina, offers generous 
benefits to fulltime faculty, and subscribes to a 
problem-solving, project-oriented, experience-
based approach to education that is referred to as 
Engaged Learning. The Department of Computer 
Science confers the B.S. degree with majors in 
Computer Science, Information Technology, and 
Computer Science/Mathematics. The successful 
candidate will have the opportunity to teach in 
Furman’s First Year Seminar program. Furman 
University is an equal-opportunity employer. 
Women and underrepresented minorities are 
strongly encouraged to apply. For the complete 
ad, please visit http://cs.furman.edu.

Applicants should submit a curriculum vitae, 
statement of teaching philosophy, description of re-
search interests, an official copy of most recent tran-
scripts, and have three letters of recommendation 
sent separately. Please send all materials to Dr. Kev-
in Treu, Chair, Department of Computer Science, 
Furman University, 3300 Poinsett Hwy, Greenville, 
SC 29613. Materials may also be sent in PDF format 
to kevin.treu@furman.edu. Review of applications 
will continue until the position is filled.

Harvard University 
Tenure-track Faculty Position in Biorobotics

The School of Engineering and Applied Sciences 
(SEAS) and the Wyss Institute for Biologically In-
spired Engineering at Harvard University (Wyss 
Institute) seek applicants for a tenure-track fac-
ulty position. The position will be at the level of 
assistant professor in SEAS in the field of Bioro-
botics. Potential subareas include, but are not 
limited to:

˲˲ Medical robots (e.g. prosthetics and rehabilita-
tion robotics)

˲˲ Robot locomotion (e.g. animal-inspired robotic 
systems, bio-inspired adaptive locomotion and 
control)

˲˲ Dynamics and control (e.g. machine learning 
and robotics, swarm and modular robotics, and 
human-robot interaction)

˲˲ Sensors and actuators (e.g. novel electroactive 
materials)

˲˲ MEMS/NEMS devices and robots
˲˲ New concepts for energy storage 
˲˲ Biomimetic materials for robotics 

In addition to having a faculty appointment in 
SEAS, the successful candidate will also become a 
core faculty member of the Wyss Institute, which 
is composed of engineers, scientists, clinicians 
and theoreticians from Harvard, its affiliated hos-
pitals, and other leading academic institutions in 
the Boston/Cambridge region. The Wyss Institute 
focuses on fundamental science-driven technol-
ogy development in the field of Biologically In-
spired Engineering. 

For additional information, visit the following 
Websites:

http://www.afit.edu/en/eng/employment_faculty.cfm
http://www.jobs.cmich.edu
http://cs.furman.edu
http://www.afit.edu/en/eng/employment_faculty.cfm
http://www.calpolyjobs.org
mailto:kevin.treu@furman.edu
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CArEErs

We are looking for two candidates with re-
search interest in areas of business intelligence, 
data mining technologies, social networking, 
ERP, and CRM. The successful applicant will have 
a Ph.D. in Management Information Systems or 
related fi eld and possess superior communica-
tion skills and a commitment to excellence in 
both teaching and research. Santa Clara Universi-
ty is an equal opportunity/affi rmative action em-
ployer and welcomes applications from women, 
persons of color, and members of historically un-
der-represented U.S. ethnic groups. Please email 
(preferred) a letter of application, vita,

references and teaching evaluations to Eileen 
Turner at eturner@scu.edu, or

mail your application packet to the following 
address:

Chair
OMIS Search Committee
Santa Clara University
500 El Camino Real
Santa Clara, CA 95053-0382

university of technology, sydney
Lecturer/Senior Lecturer

The Faculty of Engineering and Information 
Technology is seeking applicants for a full-time 
permanent lecturer/senior lecturer position to 
build on the existing research and teaching in the 
faculty in the fi eld of game programming & devel-
opment, animation techniques or closely related 
fi eld. For detailed information, visit http://www.
hru.uts.edu.au/jobs/

SEAS: http://www.seas.harvard.edu/ 
Wyss Institute: http://wyss.harvard.edu/ 

Candidates must have the ability to develop 
a leading research program with a focus on tech-
nology development and translation. An enthusi-
asm for teaching is essential, and responsibilities 
will include both core undergraduate engineer-
ing courses as well as graduate-level courses.

An application, assembled as a single PDF 
fi le, should include a curriculum vitae, separate 
two-page statements of research and teaching in-
terests, up to three scientifi c papers, and names 
and contact information for at least three writers 
of letters of recommendation. Applications should 
be sent to biorobotics_search@seas.harvard.edu. 
The deadline for applications is October 31, 2010.

Applications will be reviewed beginning Feb-
ruary 2010 and will be accepted until the position 
is fi lled.

Harvard University is an Equal Opportunity/
Affi rmative Action Employer.

Applications from women and minority can-
didates are strongly encouraged.

Princeton university
Computer Science, Assistant Professor
Tenure-Track Positions

The Department of Computer Science at Princ-
eton University invites applications for faculty 
positions at the Assistant Professor level. We are 
accepting applications in all areas of Computer 
Science.

Applicants must demonstrate superior re-
search and scholarship potential as well as teach-
ing ability. A PhD in Computer Science or a relat-
ed area is required.

Successful candidates are expected to pursue 
an active research program and to contribute 
signifi cantly to the teaching programs of the de-
partment. Applicants should include a resume 
contact information for at least three people who 
can comment on the applicant’s professional 
qualifi cations.

There is no deadline, but review of applica-
tions will start in December 2010; the review of 
applicants in the fi eld of theoretical computer 
science will begin as early as October 2010.

Princeton University is an equal opportunity 
employer and complies with applicable EEO and 
affi rmative action regulations You may apply on-
line at: http://www.cs.princeton.edu/jobs 

Requisition Number: 1000520

santa Clara university
Tenure Track position in Management 
Information Systems
Department of Operations and Management 
Information Systems

The Leavey School of Business invites applica-
tions for a tenure track position in Management 
Information Systems within the Department of 
Operations and Management Information Sys-
tems beginning Fall, 2011. Santa Clara University
is a private Jesuit university located in the heart of 
Silicon Valley. 

ArizonA StAte UniverSity
Engineering Faculty opening in  

Human Activity Capture and Analysis

The School of Arts, Media and Engineering 
(AME) and the School of Electrical, Computer 
and Energy Engineering (ECEE) at Arizona 
State University are seeking a jointly appointed 
faculty member. Of particular interest is the 
area of Human Activity Capture and Analysis 
with emphasis on health, education or cultural 
applications. Candidates are sought at the 
assistant, associate or full professor level. 

The School of Arts, Media and Engineering 
(AME – http://ame.asu.edu), at the Herberger 
Institute for Design and the Arts and the Ira 
Fulton Schools of Engineering, is a leading 
transdisciplinary program in media arts 
and sciences. It offers PhD, Masters and 
undergraduate degrees in new media in 
collaboration with 12 partner units spanning 
arts, design, sciences and engineering. 
Significant federal, private foundation and 
industry support along with clinical, education 
and cultural partnerships contribute to the 
development and deployment of innovative 
media systems. The School of Electrical, 
Computer and Energy Engineering leads 
academic programs with more than 50 faculty 
members, 500 undergraduates and 700 
graduate students. The school’s programs 
include extramural research funding of more 
$20M and BSE, MSE, MS and Ph.D. degree 
programs. Both Schools are strongly committed 
to interdisciplinary research and education. 
Application deadline: november 1, 2010. 
For complete position details, please visit:  
http://ame.asu.edu/about/employment.php

http://www.seas.harvard.edu/
http://wyss.harvard.edu/
http://www.cs.princeton.edu/jobs
http://www.hru.uts.edu.au/jobs/
http://ame.asu.edu
http://ame.asu.edu/about/employment.php
http://www.hru.uts.edu.au/jobs/
http://www.cse.cuhk.edu.hk
http://www.ie.cuhk.edu.hk
http://www.cuhk.edu.hk/personnel
mailto:recruit@erg.cuhk.edu.hk
mailto:recruit@cse.cuhk.edu.hk
mailto:recruit@ie.cuhk.edu.hk
mailto:eturner@scu.edu
mailto:biorobotics_search@seas.harvard.edu
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Department Head
Department of Electrical 
Engineering & Computer Science
South Dakota State University
Brookings, SD
South Dakota State University invites applications 
and nominations for the position of Department 
Head of Electrical Engineering & Computer Science. 
SDSU, the state’s land-grant and largest university, 

is a Carnegie RU/H (high research activity) institution with 12,400 
students. The university is seeking an energetic academic leader with 
strategic vision, outstanding academic credentials and successful 
administrative experience. The Department Head, who reports to the 
Dean of Engineering, holds a 12-month position and oversees all of 
the department’s administrative functions including academic, budget, 
facilities, research and outreach. In FY 2010 the department had 25 
base-funded faculty and 390 students enrolled in undergraduate and 
graduate programs in electrical engineering, computer science and 
software engineering. The department is enjoying strong growth in 
enrollments and funded research, strong ties to industry and a beautiful 
new $12 million-72,000 sq. ft. building.

The successful applicant must have an earned Ph.D. and distinguished 
record of performance consistent with appointment as a tenured full 
professor in a discipline appropriate to the department. He/she must 
also have a record of innovative and strategic leadership that would 
apply to a progressive and growing academic environment and a record 
of effective university administrative experience.

For detailed electronic application instructions, a full description of the 
position and information on the department, university and community, 
please visit http://www.sdstate.edu/eecs/. For the most complete 
consideration, applications should be received by Nov. 1, 2010. For 
questions on the electronic employment process, contact SDSU Human 
Resources at (605) 688-4128. 

South Dakota State University is an AA/EEO employer.

�ACM Professional Members can enjoy the convenience of making a single payment for their
entire tenure as an ACMMember, and also be protected from future price increases by
taking advantage of ACM's Lifetime Membership option.

�ACM Lifetime Membership dues may be tax deductible under certain circumstances, so
becoming a Lifetime Member can have additional advantages if you act before the end of
2009. (Please consult with your tax advisor.)

�Lifetime Members receive a certificate of recognition suitable for framing, and enjoy all of
the benefits of ACM Professional Membership.

Learn more and apply at:
http://www.acm.org/life

Take Advantage of
ACM’s LifetimeMembership Plan!

Advertising in Career 
Opportunities 

How to Submit a Classified Line Ad: Send an e-mail to 
acmmediasales@acm.org. Please include text, and indicate 
the issue/or issues where the ad will appear, and a contact 
name and number.

Estimates: An insertion order will then be e-mailed back to 
you. The ad will by typeset according to CACM guidelines.  
NO PROOFS can be sent. Classified line ads are NOT 
commissionable.

Rates: $325.00 for six lines of text, 40 characters per line. 
$32.50 for each additional line after the first six. The MINIMUM 
is six lines.

Deadlines: Five weeks prior to the publication date of the 
issue (which is the first of every month). Latest deadlines: 

http://www.acm.org/publications

Career Opportunities Online: Classified and recruitment 
display ads receive a free duplicate listing on our website at: 

http://campus.acm.org/careercenter 

Ads are listed for a period of 30 days.
For More Information Contact: 

ACM Media Sales
at 212-626-0686 or 

acmmediasales@acm.org

http://www.acm.org/life
mailto:acmmediasales@acm.org
http://www.acm.org/publications
http://campus.acm.org/careercenter
mailto:acmmediasales@acm.org
http://www.sdstate.edu/eecs/
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Puzzled 
Solutions and Sources 
It’s amazing how little we know about good old plane geometry. Last 
month (August 2010, p. 128) we posted a trio of brainteasers, including 
one as yet unsolved, concerning figures on a plane.  
Here, we offer solutions to two of them. 

1. Covering a Gravy Stain.  
 Solution. The object was to 

cover a gravy stain of area less than one 
square inch with a plastic sheet con-
taining a grid of side one inch in such 
a way that no intersection point of the 
grid fell on the stain. This puzzle (as 
I was reminded by Andrei Furtuna, a 
Dartmouth computer science graduate 
student) may date to the great Lithua-
nian-born mathematician Hermann 
Minkowski (1864–1909). 

It suffices to consider only grids ori-
ented North-South-East-West or, equiv-
alently, to assume the plastic sheet is 
aligned with the table. Now imagine 
cutting the tablecloth into one-inch 
squares in an aligned grid pattern, pin 
one of the stained squares to the table, 
oriented as it was originally, and stack 
(without rotating any square) all other 
stained squares neatly on top of it. 

The stain is now within one square, 
but since the area of the stain is less 
than one square inch (and can be re-
duced only through stacking), some 
squares remain stain-free. Now pick a 
stain-free point and place the plastic 
so its intersection points lie directly on 
the point. 

Since all other intersection points 
are outside the stained square, no in-
tersection point touches the stacked 
stain. But what if the tablecloth were 
sewn back together? Each stained 
square would then be translated by an 
integral number of tablecloth squares 

East or West and North or South back 
to the original position. It would then 
bear  the same relationship to the plas-
tic sheet’s grid points it did before; that 
is, it would miss them. 

2. Covering Dots on a Table.  
 Solution. We had to show that 

any 10 dots on a table can be covered 
by non-overlapping $1 coins, in a 
problem devised by Naoki Inaba and 
sent to me by his friend, Hirokazu Iwa-
sawa, both puzzle mavens in Japan. 

The key is to note that packing disks 
arranged in a honeycomb pattern cover 
more than 90% of the plane. But how do 
we know they do? A disk of radius one 
fits inside a regular hexagon made up of 
six equilateral triangles of altitude one. 
Since each such triangle has area √3/3, 
the hexagon itself has area 2√3; since 
the hexagons tile the plane in a honey-
comb pattern, the disks, each with area 
π, cover π /(2√3) ~ .9069 of the plane’s 
surface. 

It follows that if the disks are placed 
randomly on the plane, the probability 
that any particular point is covered is 
.9069. Therefore, if we randomly place 
lots of $1 coins (borrowed) on the ta-
ble in a hexagonal pattern, on average, 
9.069 of our 10 points will be covered, 
meaning at least some of the time all 
10 will be covered. (We need at most 
only 10 coins so give back the rest.) 

What does it mean that the disks 
cover 90.69% of the infinite plane? The 

easiest way to answer is to say, perhaps, 
that the percentage of any large square 
covered by the disks approaches this 
value as the square expands. What is 
“random” about the placement of the 
disks? One way to think it through is to 
fix any packing and any disk within it, 
then pick a point uniformly at random 
from the honeycomb hexagon con-
taining the disk and move the disk so 
its center is at the chosen point. 

3. Placing Coins. 
 Unsolved. The solution to Puz-

zle 2 doesn’t tell us how to place the 
coins, only that there is a way to do it. 
Is there a constructive proof? Yes, and 
we can use the solution to Puzzle 1 
(concerning the stain) to find it. I leave 
it to your imagination to follow up. 

That proof can be used to increase 
the number of dots to 11 or 12, still us-
ing only an aligned hexagonal lattice 
of coins. However, since we aren’t re-
stricted to a lattice, it seems plausible 
that quite a few dots can be covered, 
perhaps as many as 25 (see the August 
column). If you figure out a dot pattern 
with, say, 30 or fewer points you think 
can’t be covered by unit disks, please 
send to me, along with your reasoning. 

All readers are encouraged to submit prospective 
puzzles for future columns to puzzled@cacm.acm.org. 

Peter Winkler (puzzled@cacm.acm.org) is Professor of 
Mathematics and of Computer Science and Albert Bradley 
Third Century Professor in the Sciences at Dartmouth 
College, Hanover, NH.

mailto:puzzled@cacm.acm.org
mailto:puzzled@cacm.acm.org
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ties are find-
ing the costs reasonable for installing 
their own surveillance systems.

All the highways, all the roads. All 
the paths and trails. It’s just a matter 
of software and hardware and money. 
And fear. 

Similar situations will play out ev-
erywhere, in a world where perceived 
threats are far more important than 
actual danger, politically and psycho-
logically. Zero-tolerance rules for rude 
or reckless behavior will ramp up the 
pressure on society’s marginals—in-
cluding immature young people, the 
mentally ill, and petty thieves. Private 
individuals and neighborhood-watch 
groups will keep local records of indi-
viduals and pass them along to land-
lords or housing authorities, as well 
as to the police, possibly using them 
to justify the tracking of individual 
movements and behavior around the 
clock. 

There is no right of privacy in public 
thoroughfares. 

Courts may rule that private record-
ings in public places are in fact unpro-
tected by constitutional safeguards, 
particularly against self-incrimination. 
All such records could become public 
property. Individuals may find their 
personal recordings subpoenaed for 
cases in which they have minimal or no 
involvement, as part of a sweep for in-
formation around a crime scene. 

Ultimately, any unusual, reckless, or 
outright bad behavior will be captured 
by some surveillance system or other, 
resulting in further scrutiny, court 
orders, or law-enforcement investiga-
tions. The squeeze will be applied to 
any potential miscreants, even if their 
actions turn out to be relatively harm-
less. 

Pictures of individuals alleged to 
have been involved in suspicious activ-
ity will be posted on social-networking 
sites. Wives will learn where their hus-
bands go at night, and vice versa. 

Morally minded individuals will 
post streaming video taken outside 
clinics, hospitals, liquor stores, adult 
entertainment stores. 

Videos that might show bad inten-
tions—or might not—could force em-
ployers to fire those involved. This will 
likely add to the self-perceived over-
whelming burden on those members 
of society who already feel they have 

nothing left to lose. 
Anyone can own a gun. Everyone 

can track everyone else. The weak links 
could feel the pressure the most, and 
might also break first. 

That tailgater was having a very bad 
day. Now, he’s going to have a very bad 
couple of months. He could lose his 
driver’s license and his job. What he 
might do next will also be recorded in 
glorious detail. 

Everyone of us has, at one time or an-
other, done something foolish or just 
plain thoughtless. Many of us have got-
ten away with petty crimes and grown 
out of the bad behavior—without be-
ing caught. We mature. We learn. Our 
lives are not minutely observed. 

That will change. Escaping from 
the consequences of minor offenses 
functions as one kind of lubrication 
in the gears of society. No society can 
afford the cost of prosecuting every 
minor crime. Few individuals can af-
ford complete, day-in, day-out scrutiny 
in an increasingly judgmental society. 
Vengeance is everywhere. Nobody gets 
away with anything. We’re terrified 
of our neighbors, and we hate being 
afraid. 

As forgiveness and forgetfulness 
become conveniences of the past, as 
lubrication is stripped off, friction and 
stress will increase. 

Welcome to the myriad eyes of Little 
Brother. 	

Greg Bear (http://www.gregbear.com) is the author 
of more than 30 books of science fiction and fantasy, 
including Blood Music, The Forge of God, Darwin’s Radio, 
and Quantico, and has been awarded two Hugos and five 
Nebulas.

© 2010 ACM 0001-0782/10/0900 $10.00
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One of the most important devel-
opments in surveillance will be facial-
recognition software capable of com-
paring blurry videos taken from many 
different cameras and angles, as well 
as still photos. Computer enhance-
ment will soon be able to approximate 
3D scans from 2D sources. Still, even 
with improved software, fewer than 
one in 10 identification hits will be ac-
curate. Computers still find it difficult 
to work with faces. Even many humans 
aren’t very good at the art of compari-
son and identification. 

A woman walks to her neighbor-
hood market. A man follows her to the 
corner, dogging her every step. Built 
into the woman’s cellphone is an ag-
gression-warning monitor she triggers 

A w et,  busy highway at dusk. A pickup 
truck is tailgating you. Its front bumper 
pushes up to within six feet of your car. 
The driver glares, though he can easily 
pass on either side. You’re in his way. 

Your bumper camera is activated by 
a proximity sensor and snaps a high-res 
image of the truck and its license plate, 
then sends it to the highway patrol. Your 
car’s equipment is law-enforcement 
certified, the evidence is clear, and the 
driver of the pickup is issued a ticket 
based on four such incidents within a 
10-minute period. A record of aggres-
sive driving can result in hefty fines and 
even a suspended license. Some mu-
nicipalities offer the equipment for free 
to drivers in their jurisdictions. The im-
pressive revenue stream can be useful 
in communities where angry voters no 
longer want to pay taxes. 

These are often the same folks 
most interested in locking ‘em up and 
throwing away the key—until they 
themselves are snagged and fined. 

The whole city and most of the high-
way system will soon be monitored 
by millions or even billions of small, 
cheap, hi-res cameras, some embed-
ded in paint and masonry—all feeding 
into servers and computer hubs that 
constantly process imagery, looking 
for suspicious or illegal behavior. 

The computers pass along potential 
items of interest to tens of thousands 
of human contract operators employed 
at centers around the nation, where 
they compare possible “hits” to recent 
911 calls and criminal databases and 
may pass them along to FBI and Home-
land Security hubs, where they are fur-
ther analyzed and refined. 

with a finger or a word. It activates a 4K 
video camera in her spex—what look 
like glasses and may in fact contain 
prescription lenses. As the man ap-
proaches, a video is recorded—surpris-
ingly detailed, even in low light. 

The video integrates streams from 
four cameras recording wide-angled 
images all around the woman. 

The man’s features are obscured 
by a hoodie. The woman’s vest-em-
bedded health sensor confirms that 
her heart-rate is up, she’s starting to 
sweat, and the closeness and anonym-
ity of the man indicates the likelihood 
of danger. 

As the man in the hoodie comes 
within 30 feet of the woman, her com-
puter sends an emergency alert to the 
local police department. CCTV cam-
eras mounted throughout the neigh-
borhood automatically backtrack, log, 
and process images from the last hour. 
A good view of the man’s face from a 
single camera hundreds of yards away 
is compared to a database of known 
offenders. Seconds later, the woman 
is warned by a message flashed in her 
spex that the man is very possibly a 
convicted felon and sex offender. This 
automatically triggers a blaring alarm 
in the neighborhood. 

The felon flees as neighbors come 
out on their porches to see what’s up. 
Police drones the size of small birds 
flood the area, taking their own videos 
and guiding patrol cars. An arrest war-
rant is issued for the felon for parole vio-
lation. There’s no place he can go with-
out being tracked—unless he leaves 
the city completely. And even then, ru-
ral communi-

DOI:10.1145/1810891.1810918		  Greg Bear 

Future Tense 
Little Brother Is Watching 
In a world of technology and fear, the public gets to know  
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Antonio Câmara, Miguel Dias, Stacy 
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Julio Abascal, Nuno Guimarães

Tutorials Chairs:
José Creissac Campos, Paula Kotze

Student Design Competition Chairs:
Simone Diniz Junqueira Barbosa,
Luis Carriço

Organizational Overviews Chairs:
Teresa Chambel, Mary Czerwinski

Publicity Chairs:
Paula Alexandra Silva, Tiago Guerreiro

Keynote speakers co-Chairs:
John Karat, Jean Vanderdonckt

Student Volunteers co-Chairs:
Xavier Ferre, Effie Law

Publications co-Chairs:
Pedro Campos, Marco Winckler

Website Chairs:
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