
COMMUNICATIONS
OF THE ACMcACM.acm.org� 09/2010 VOL.53 NO.09

Computers in
Patient Care

Why has progress
been so slow?

Performance Evaluation
and Model Checking

Join Forces

Point/Counterpoint
on Future Internet

Architecture

Erlang

Degrees, Distance,
Dollars

Association for
Computing Machinery

http://CACM.ACM.ORG

3RD ACM SIGCHI
SYMPOSIUM ON

ENGINEERING
INTERACTIVE
COMPUTING
SYSTEMS

NOVEMBER 22, 2010
Submission deadline
for Long Papers and Workshops

FEBRUARY 10, 2011
Submission deadline
for Late Breaking Results,
Demos, Doctoral Consortium,
Tutorials

LOCATION
Area della Ricerca CNR
Pisa, ITALY

CONFERENCE CHAIR
Fabio Paternò, CNR-ISTI, HIIS
Laboratory

LONG PAPER CHAIRS
Kris Luyten, Hasselt University
Frank Maurer, Univ. of Calgary

Late Breaking Results CHAIRS
Prasun Dewan, UNC Chapel Hill
Carmen Santoro, CNR-ISTI, HIIS
Laboratory

For information, please contact
info@eics2011.org

EICS is sponsored by
ACM SIGCHI

More updated information at
WWW.EICS2011.ORG

Topics include but are not limited to:
 Integrating interaction design into the software development process,
 Engineering processes for interactive systems (e.g. design,

implementation, prototyping and testing),
 Dynamic generation/composition of interactive systems,
 Requirements engineering for interactive systems,
 Software architectures for interactive systems,
 Modeling interaction and interactive systems,
 Innovative Interactive Applications,
 Interactive systems specification,
 Specifying users' activities,
 Designing Usable Software.

JUNE 13-16, 2011
P ISA, I ta ly

EICS 2011

mailto:info@eics2011.org
http://WWW.EICS2011.ORG

014732x

ABCD springer.com

Easy Ways to Order for the Americas 7 Write: Springer Order Department, PO Box 2485, Secaucus, NJ 07096-2485, USA 7 Call: (toll free) 1-800-SPRINGER
7 Fax: 1-201-348-4505 7 Email: orders-ny@springer.com or for outside the Americas 7 Write: Springer Customer Service Center GmbH, Haberstrasse 7,
69126 Heidelberg, Germany 7 Call: +49 (0) 6221-345-4301 7 Fax : +49 (0) 6221-345-4229 7 Email: orders-hd-individuals@springer.com
7 Prices are subject to change without notice. All prices are net prices.

Search
Computing
Challenges and
Directions

S. Ceri, M. Brambilla,
Politecnico di Milano,
Italy (Eds.)

This clearly structured
book contains detailed papers on the subject
of search computing. It focuses on building the
answers to complex queries on the Web. The
papers, written by leading scientists, contain
the latest results in the field.

2010. X, 321 p. (Lecture Notes in Computer Science
/ Information Systems and Applications, incl.
Internet/Web, and HCI, Volume 5950) Softcover
ISBN 978-3-642-12309-2 7 $83.00

Agile Software
Development
Current Research and
Future Directions

T. Dingsøyr, T. Dybå,
N. B. Moe, SINTEF ICT,
Trondheim, Norway (Eds.)

Addresses both sources
of the agile confusion: fuzzy, multifaceted
scope and poor, unconsolidated dissemination
of research results and experiences. Based on
many years of academic research and industrial
experience. Contributions written by leading
experts in agile software development.

2010. XVII, 240 p. Hardcover
ISBN 978-3-642-12574-4 7 $89.95

OSS
Design Patterns
A Pattern Approach
to the Design of
Telecommunications
Management
Systems

C. Ashford, Ottawa,
Ontario, ON, Canada; P. Gauthier, Metasolv LLC

Offers guides to a standardization by a higher
level of architectural agreement-design
patterns. Provides an enduring architectural-
level direction that will guide developers.

2009. XVI, 152 p. 31 illus. Hardcover
ISBN 978-3-642-01395-9 7 $79.95

The Integrated
Architecture
Framework
Explained
Why, What, How

J. van‘t Wout,
M. Waage, H. Hartman,
M. Stahlecker,

A. Hofman, Capgemini Nederland B.V., Utrecht,
The Netherlands

Only full authorized guide to the Integrated
Architecture Framework. Written by its original
developers. Based on many years of experience
in enterprise architecture.

2010. 200 p. Hardcover
ISBN 978-3-642-11517-2 7 $59.95

Handbook on
Business Process
Management 1
Introduction,
Methods and
Information Systems

J. vom Brocke, Univer-
sity of Liechtenstein,

Vaduz, Principality of Liechtenstein;
M. Rosemann, Queensland University of Tech-
nology, Brisbane, QLD, Australia (Eds.)

Gives a comprehensive understanding of Busi-
ness Process Management. Covers the six main
components of Business Process Management,
i. e. strategic alignment, governance, methods,
information technology, people and culture.
Key features are the overall composition of
the content based on a well-defined maturity
model and the outstanding quality of the
contributors.

2010. 600 p. (International Handbooks on
Information Systems) Hardcover
ISBN 978-3-642-00415-5 7 $239.00

Handbook on Business Process
Management 2
Strategic Alignment, Governance,
People and Culture

2010. XVIII, 602 p. (International Handbooks on
Information Systems) Hardcover
ISBN 978-3-642-01981-4 7 $239.00

Cloud
Computing
Principles, Systems
and Applications

N. Antonopoulos,
University of Derby, UK;
L. Gillam, University of
Surrey, UK (Eds.)

Includes a Preface by Professor Mark Baker
of the University of Reading, UK. Presents
the principles, techniques, protocols and
algorithms that can be adapted from other
distributed computing paradigms to the
development of successful Clouds Elaborates
the economic schemes needed for Clouds to
become viable business models.

2010. XVI, 398 p. (Computer Communications and
Networks) Hardcover
ISBN 978-1-84996-240-7 7 $129.00

Guide to
Intelligent
Data Analysis
How to Intelligently
Make Sense of Real
Data

M. R. Berthold,
C. Borgelt, F. Höppner,

F. Klawonn,

Presents a broad-range of perspectives on data
analysis, providing readers with a comprehen-
sive account of the field. Focuses on the
practical aspects as well as presenting the
theory comprehensively. A special emphasis is
given to put on pointing out the pitfalls that
lead to wrong or insufficient analysis of results.

2010. XII, 397 p. (Texts in Computer Science,
Volume 42) Hardcover
ISBN 978-1-84882-259-7 7 approx. $89.95

http://springer.com
mailto:orders-ny@springer.com
mailto:orders-hd-individuals@springer.com

2 communications of the acm | september 2010 | vol. 53 | no. 9

communications of the acm

A
 p

r
o

j
e

c
t

 b
y

 t
h

e
 M

I
T

 S
e

n
s

e
a

b
l

e
 Ci

t

y
 La

b

 s
e

n
s

e
a

b
l

e
.mi

t

.e
d

u
/c

o
p

e
n

h
a

g
e

n
w

h
e

e
l

/
P

h
o

t
o

g
r

a
p

h
 b

y
 M

a
x

 T
o

masi

n
e

l
l

i
 w

w
w

.ma

x
t

o
masi

n

e
l

l
i

.c
o

m

Departments

5	 Editor’s Letter
Science Has Only Two Legs
By Moshe Y. Vardi

7	 Letters To The Editor
More Than One Way
to Annotate Metadata

8	 BLOG@CACM
Expanding CS Education;
Improving Software Development
Ed H. Chi writes about the social
Web’s impact on CS education.
Ruben Ortega discusses software
and test-driven development.

12	 CACM Online
More Communications
By David Roman

25	 Calendar

107	 Careers

Last Byte

110	 Puzzled
Solutions and Sources
By Peter Winkler

112	 Future Tense
Little Brother Is Watching
In a world of technology and fear,
the public gets to know what it
wants to know… and more than
it can possibly digest.
By Greg Bear

News

13	 Brains and Bytes
Computational neuroscientists
are learning that the brain is like
a computer, except when it isn’t.
By David Lindley

16	 Cycling Through Data
Sensor-equipped bicycles
are providing valuable data
to cyclists, city planners,
and computer scientists.
By Neil Savage

18	 Degrees, Distance, and Dollars
The Internet is making higher
education accessible to a whole
new class of students—but not
necessarily at a lower cost.
By Marina Krakovsky

20	 ACM China Nearing Launch
ACM’s expansion into China will
support local professionals and
increase Chinese involvement in
ACM’s international activities.
By Tom Geller

21	 Kyoto Prize and Other CS Awards
László Lovász, Vinton G. Cerf,
and other researchers are
honored for their contributions
to computer science.
By Jack Rosenberger

Viewpoints

23	 The Business of Software
Return at Risk
Calculating the likely true cost
of projects.
By Phillip G. Armour

26	 Law and Technology
Principles of the Law
of Software Contracts
An overview of a new set
of legal principles for software
contracts developed by
the American Law Institute.
By Robert A. Hillman
and Maureen A. O’Rourke

29	 The Profession of IT
Discussing Cyber Attack
Cyber attack—the other side of cyber
defense—deserves a more open
discussion than it has been getting.
By Peter J. Denning
and Dorothy E. Denning

32	 Viewpoint
Objects Never? Well, Hardly Ever!
Revisiting the Great Objects Debate.
By Mordechai Ben-Ari

36	 Point/Counterpoint
Future Internet Architecture:
Clean-Slate Versus
Evolutionary Research
Should researchers focus on
designing new network architectures
or improving the current Internet?
By Jennifer Rexford
and Constantine Dovrolis

16

http://SENSEABLE.MIT.EDU/COPENHAGENWHEEL/

september 2010 | vol. 53 | no. 9 | communications of the acm 3

09/2010
vol. 53 no. 09

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 L
e

f
t

:
p

a
u

l
 p

r
i

c
e

,
Ri

g

h
t

:
Ga

r

y
 N

e
i

l
l

Practice

42	 Computers in Patient Care:
The Promise and the Challenge
Information technology has
the potential to radically transform
health care. Why has progress
been so slow?
By Stephen V. Cantrill, M.D.

48	 Injecting Errors for Fun and Profit
Error-detection and correction
features are only as good as
our ability to test them.
By Steve Chessin

55	 Thinking Clearly About
Performance, Part 1
Improving the performance of
complex software is difficult, but
understanding some fundamental
principles can make it easier.
By Cary Millsap

 Articles’ development led by
 queue.acm.org

Contributed Articles

62	 Confronting the Myth
of Rapid Obsolescence in
Computing Research
Computing research ages more
slowly than research in other
scientific disciplines, supporting
the call for parity in funding.
By Dag I.K. Sjøberg

68	 Erlang
The same component isolation
that made it effective for large
distributed telecom systems makes
it effective for multicore CPUs
and networked applications.
By Joe Armstrong

Review Articles

76	 Performance Evaluation
and Model Checking Join Forces
A call for the perfect marriage
between classical performance
evaluation and state-of-the-art
verification techniques.
By Christel Baier,
Boudewijn R. Haverkort,
Holger Hermanns,
and Joost-Pieter Katoen

Research Highlights

88	 Technical Perspective
Programming with
Differential Privacy
By Johannes Gehrke

89	 Privacy Integrated Queries:
An Extensible Platform for
Privacy-Preserving Data Analysis
By Frank McSherry

98	 Technical Perspective
Constraint Satisfaction Problems
and Computational Complexity
By Mark Jerrum

99	 Constraint Satisfaction Problems
and Global Cardinality Constraints
Andrei A. Bulatov and Dániel Marx

Association for Computing Machinery
Advancing Computing as a Science & Profession

About the Cover:
“With all of the
computerization of so
many aspects of our daily
lives, medical informatics
has had limited impact on
day-to-day patient care,”
says Stephen V. Cantrill,
M.D. in this month’s cover
story. Dr. Cantrill examines
the many issues and
challenges impeding faster
progress in this field. Cover
image by London-based
award-winning graphic

artist Paul Price; http://www.paulprice.org.uk/

http://queue.acm.org
http://www.paulprice.org.uk/
http://CACM.ACM.ORG

4 communications of the acm | september 2010 | vol. 53 | no. 9

communications of the acm
Trusted insights for computing’s leading professionals.

Communications of the ACM is the leading monthly print and online magazine for the computing and information technology fields.
Communications is recognized as the most trusted and knowledgeable source of industry information for today’s computing professional.
Communications brings its readership in-depth coverage of emerging areas of computer science, new trends in information technology,
and practical applications. Industry leaders use Communications as a platform to present and debate various technology implications,
public policies, engineering challenges, and market trends. The prestige and unmatched reputation that Communications of the ACM
enjoys today is built upon a 50-year commitment to high-quality editorial content and a steadfast dedication to advancing the arts,
sciences, and applications of information technology.

ACM, the world’s largest educational
and scientific computing society, delivers
resources that advance computing as a
science and profession. ACM provides the
computing field’s premier Digital Library
and serves its members and the computing
profession with leading-edge publications,
conferences, and career resources.

Executive Director and CEO
John White
Deputy Executive Director and COO
Patricia Ryan
Director, Office of Information Systems
Wayne Graves
Director, Office of Financial Services
Russell Harris
Director, Office of Membership
Lillian Israel
Director, Office of SIG Services
Donna Cappo
Director, Office of Publications
Bernard Rous
Director, Office of Group Publishing
Scott Delman

ACM Council
President
Wendy Hall
Vice-President
Alain Chesnais
Secretary/Treasurer
Barbara Ryder
Past President
Stuart I. Feldman
Chair, SGB Board
Alexander Wolf
Co-Chairs, Publications Board
Ronald Boisvert and Jack Davidson
Members-at-Large
Carlo Ghezzi;
Anthony Joseph;
Mathai Joseph;
Kelly Lyons;
Bruce Maggs;
Mary Lou Soffa;
Fei-Yue Wang
SGB Council Representatives
Joseph A. Konstan;
Robert A. Walker;
Jack Davidson

Publications Board
Co-Chairs
Ronald F. Boisvert; Jack Davidson;
Board Members
Nikil Dutt; Carol Hutchins;
Joseph A. Konstan; Ee-Peng Lim;
Catherine McGeoch; M. Tamer Ozsu;
Holly Rushmeier; Vincent Shen;
Mary Lou Soffa; Ricardo Baeza-Yates

ACM U.S. Public Policy Office
Cameron Wilson, Director
1828 L Street, N.W., Suite 800
Washington, DC 20036 USA
T (202) 659-9711; F (202) 667-1066

Computer Science Teachers Association
Chris Stephenson
Executive Director
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA
T (800) 401-1799; F (541) 687-1840

Association for Computing Machinery
(ACM)
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA
T (212) 869-7440; F (212) 869-0481

STAFF

Director of Group Publishing
Scott E. Delman
publisher@cacm.acm.org

Executive Editor
Diane Crawford
Managing Editor
Thomas E. Lambert
Senior Editor
Andrew Rosenbloom
Senior Editor/News
Jack Rosenberger
Web Editor
David Roman
Editorial Assistant
Zarina Strakhan
Rights and Permissions
Deborah Cotton

Art Director
Andrij Borys
Associate Art Director
Alicia Kubista
Assistant Art Director
Mia Angelica Balaquiot
Production Manager
Lynn D’Addesio
Director of Media Sales
Jennifer Ruzicka
Marketing & Communications Manager
Brian Hebert
Public Relations Coordinator
Virgina Gold
Publications Assistant
Emily Eng

Columnists
Alok Aggarwal; Phillip G. Armour;
Martin Campbell-Kelly;
Michael Cusumano; Peter J. Denning;
Shane Greenstein; Mark Guzdial;
Peter Harsha; Leah Hoffmann;
Mari Sako; Pamela Samuelson;
Gene Spafford; Cameron Wilson

Contact Points
Copyright permission
permissions@cacm.acm.org
Calendar items
calendar@cacm.acm.org
Change of address
acmcoa@cacm.acm.org
Letters to the Editor
letters@cacm.acm.org

Web SITE
http://cacm.acm.org

Author Guidelines
http://cacm.acm.org/guidelines

Advertising

ACM Advertising Department
2 Penn Plaza, Suite 701, New York, NY
10121-0701
T (212) 869-7440
F (212) 869-0481

Director of Media Sales
Jennifer Ruzicka
jen.ruzicka@hq.acm.org

Media Kit acmmediasales@acm.org

editorial Board

Editor-in-chief
Moshe Y. Vardi
eic@cacm.acm.org

News
Co-chairs
Marc Najork and Prabhakar Raghavan
Board Members
Brian Bershad; Hsiao-Wuen Hon;
Mei Kobayashi; Rajeev Rastogi;
Jeannette Wing

Viewpoints
Co-chairs
Susanne E. Hambrusch; John Leslie King;
J Strother Moore
Board Members
P. Anandan; William Aspray;
Stefan Bechtold; Judith Bishop;
Stuart I. Feldman; Peter Freeman;
Seymour Goodman; Shane Greenstein;
Mark Guzdial; Richard Heeks;
Rachelle Hollander; Richard Ladner;
Susan Landau; Carlos Jose Pereira de Lucena;
Beng Chin Ooi; Loren Terveen

 Practice
Chair
Stephen Bourne
Board Members
Eric Allman; Charles Beeler; David J. Brown;
Bryan Cantrill; Terry Coatta; Mark Compton;
Stuart Feldman; Benjamin Fried;
Pat Hanrahan; Marshall Kirk McKusick;
George Neville-Neil; Theo Schlossnagle;
Jim Waldo

The Practice section of the CACM
Editorial Board also serves as
the Editorial Board of .

Contributed Articles
Co-chairs
Al Aho and Georg Gottlob
Board Members
Yannis Bakos; Gilles Brassard; Alan Bundy;
Peter Buneman; Ghezzi Carlo;
Andrew Chien; Anja Feldmann;
Blake Ives; James Larus; Igor Markov;
Gail C. Murphy; Shree Nayar; Lionel M. Ni;
Sriram Rajamani; Jennifer Rexford;
Marie-Christine Rousset; Avi Rubin;
Abigail Sellen; Ron Shamir; Marc Snir;
Larry Snyder; Veda Storey;
Manuela Veloso; Michael Vitale;
Wolfgang Wahlster; Andy Chi-Chih Yao;
Willy Zwaenepoel

Research Highlights
Co-chairs
David A. Patterson and Stuart J. Russell
Board Members
Martin Abadi; Stuart K. Card; Deborah Estrin;
Shafi Goldwasser; Monika Henzinger;
Maurice Herlihy; Dan Huttenlocher;
Norm Jouppi; Andrew B. Kahng;
Gregory Morrisett; Michael Reiter;
Mendel Rosenblum; Ronitt Rubinfeld;
David Salesin; Lawrence K. Saul;
Guy Steele, Jr.; Madhu Sudan;
Gerhard Weikum; Alexander L. Wolf;
Margaret H. Wright

Web
Co-chairs
James Landay and Greg Linden
Board Members
Gene Golovchinsky; Jason I. Hong;
Jeff Johnson; Wendy E. MacKay

 

ACM Copyright Notice
Copyright © 2010 by Association for
Computing Machinery, Inc. (ACM).
Permission to make digital or hard copies
of part or all of this work for personal
or classroom use is granted without
fee provided that copies are not made
or distributed for profit or commercial
advantage and that copies bear this
notice and full citation on the first
page. Copyright for components of this
work owned by others than ACM must
be honored. Abstracting with credit is
permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to
lists, requires prior specific permission
and/or fee. Request permission to publish
from permissions@acm.org or fax
(212) 869-0481.

For other copying of articles that carry a
code at the bottom of the first or last page
or screen display, copying is permitted
provided that the per-copy fee indicated
in the code is paid through the Copyright
Clearance Center; www.copyright.com.

Subscriptions
An annual subscription cost is included
in ACM member dues of $99 ($40 of
which is allocated to a subscription to
Communications); for students, cost
is included in $42 dues ($20 of which
is allocated to a Communications
subscription). A nonmember annual
subscription is $100.

ACM Media Advertising Policy
Communications of the ACM and other
ACM Media publications accept advertising
in both print and electronic formats. All
advertising in ACM Media publications is
at the discretion of ACM and is intended
to provide financial support for the various
activities and services for ACM members.
Current Advertising Rates can be found
by visiting http://www.acm-media.org or
by contacting ACM Media Sales at
(212) 626-0654.

Single Copies
Single copies of Communications of the
ACM are available for purchase. Please
contact acmhelp@acm.org.

Communications of the ACM
(ISSN 0001-0782) is published monthly
by ACM Media, 2 Penn Plaza, Suite 701,
New York, NY 10121-0701. Periodicals
postage paid at New York, NY 10001,
and other mailing offices.

POSTMASTER
Please send address changes to
Communications of the ACM
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA

Printed in the U.S.A.

P
L

E

A
S E R E C Y

C
L

E

T
H

I

S M A G A Z

I
N

E

mailto:publisher@cacm.acm.org
mailto:permissions@cacm.acm.org
mailto:calendar@cacm.acm.org
mailto:acmcoa@cacm.acm.org
mailto:letters@cacm.acm.org
http://cacm.acm.org
http://cacm.acm.org/guidelines
mailto:jen.ruzicka@hq.acm.org
mailto:acmmediasales@acm.org
mailto:eic@cacm.acm.org
mailto:permissions@acm.org
http://www.copyright.com
http://www.acm-media.org
mailto:acmhelp@acm.org

september 2010 | vol. 53 | no. 9 | communications of the acm 5

editor’s letter

Science Has Only Two Legs
Science has been growing new legs of late.
The traditional “legs” (or “pillars”) of the scientific
method were theory and experimentation.
That was then. In 2005, for example, the U.S.

Presidential Information Technology
Advisory Committee issued a report,
“Computational Science: Ensuring
America’s Competitiveness,” stating:
“Together with theory and experimen-
tation, computational science now
constitutes the ‘third pillar’ of scien-
tific inquiry, enabling researchers to
build and test models of complex phe-
nomena.” The report offered examples
such as multi-century climate shifts,
multidimensional flight stresses on
aircraft, and stellar explosions.

This “third leg” of science has be-
come a standard coin (run a Web search
on this phrase!). However, this leg
has been recently augmented by yet a
“fourth paradigm” (or “leg”) that refers
to the usage of advanced computing
capabilities to manipulate and explore
massive datasets. For example, the de-
coding of the human genome in 2001
was a triumph of large-scale data analy-
sis. Now science allegedly has four legs,
and two of them are computational!

I find myself uncomfortable with
science sprouting a new leg every few
years. In fact, I believe that science still
has only two legs—theory and experi-
mentation. The “four legs” viewpoint
seems to imply the scientific method
has changed in a fundamental way. I
contend it is not the scientific method
that has changed, but rather how it is
being carried out. Does it matter how
many legs science has? I believe it does!
It is as important as ever to explain sci-
ence to the lay public, and it becomes
more difficult to explain when it grows
a new leg every few years.

Let us consider the first leg: theory.

A scientific theory is an explanatory
framework for a body of natural phe-
nomena. A theory can be thought of as
a model of reality at a certain level of
abstraction. For a theory to be useful,
it should explain existing observations
as well as generate predictions, that
is, suggest new observations. In the
physical sciences, theories are typically
mathematical in nature, for example,
the classical theory of electromagne-
tism in the form of Maxwell’s Equa-
tions. What is often ignored is the fact
that any application of a mathematical
theory requires computation. To make
use of Maxwell’s Equations, for ex-
ample, we need to solve them in some
concrete setting, and that requires
computation—symbolic or numeric.
Thus, computation has always been an
integral part of theory in science.

What has changed is the scale of
computation. While once carried out
by hand, computation has required
over time more advanced machinery.
“Doing” theory today requires highly
sophisticated computational-science
techniques carried out on cutting-edge
high-performance computers.

The nature of the theories has also
changed. Maxwell’s Equations consti-
tute an elegantly simple model of re-
ality. There is no analogue, however,
of Maxwell’s Equations in climate sci-
ence. The theory in climate science is a
highly complex computational model.
The only way to apply the theory is via
computation. While previous scientific
theories were typically framed as math-
ematical models, today’s theories are
often framed as computational mod-

els. In system biology, for example, one
often encounters computational mod-
els such as Petri Nets and Statecharts,
which were developed originally in the
context of computer science.

Computation has also always been
an integral part of experimentation.
Experimentation typically implies
carrying out measurements, and the
analysis of these measurements has al-
ways been computational. Again, what
has changed is the scale. The Compact
Muon Solenoid experiment at CERN’s
Large Hadron Collider generates 40
terabytes of raw data per second, a vol-
ume one cannot hope to store and pro-
cess. Handling such volume requires
advanced computation; the first level
of data filtering, for example, is car-
ried out on fast, custom hardware us-
ing FPGAs. Analyzing the still-massive
amount of data that survives various
levels of filtering requires sophisticated
data-analysis techniques.

So science is still carried out as an
ongoing interplay between theory and
experimentation. The complexity of
both, however, has increased to such
a degree that they cannot be carried
out without computation. There is
no need, therefore, to attach new legs
to science. It is doing fine with two
legs. At the same time, computational
thinking (a phrase coined by Jeannette
Wing) thoroughly pervades both legs.
Computation is the universal enabler
of science, supporting both theory and
experimentation. Today the two legs of
science are thoroughly computational!

Moshe Y. Vardi, editor-in-chie f

DOI:10.1145/1810891.1810892		 Moshe Y. Vardi

Program for Mathematics & the Physical Sciences
The Simons Foundation Program for Mathematics and the Physical Sciences seeks
to extend the frontiers of basic research. The Program’s primary focus is on the theo-
retical sciences radiating from Mathematics: in particular, the fields of Mathematics,
Theoretical Computer Science and Theoretical Physics. Funding for innovative research
is available through a peer-reviewed proposal process at regular intervals.

Creation of an Institute for Theoretical Computer Science
Universities and Institutes may apply to create a new
Theoretical Computer Science Institute.
Deadline for Letters of Intent: October 27, 2010

For more information visit
http://simonsfoundation.org/

Advancing Research In Basic Science And Mathematics

• Explains how to perform derivations
and calculations with mathematical
precision
Catalog no. C8628, July 2010

351 pp., ISBN: 978-1-58488-862-8
$89.95 / £57.99 $71.96 / £46.39

“… balanced treatment of the theory, technol-
ogy, architecture, and software … I highly
recommend this timely book.”

—Jack Dongarra, University of Tennessee

Catalog no. K10600, July 2010
356 pp., Soft Cover, ISBN: 978-1-4398-1192-4

$69.95 / £42.99 $55.96 / £34.39

• Includes interactive labs and projects
using the open-source language, Ruby
Catalog no. K10640, October 2010
c. 384 pp., ISBN: 978-1-4398-1262-4

$79.95 / £49.99 $63.96 / £39.99

6 communications of the acm | september 2010 | vol. 53 | no. 9

http://simonsfoundation.org/
http://www.crcpress.com

letters to the editor

september 2010 | vol. 53 | no. 9 | communications of the acm 7

models,” not freely dancing ideas without
purpose.

There may also be slight disagreement
regarding empirical validation, the excesses
of which I criticized. It is clear that theories
about physical phenomena require empirical
validation; theories about mathematical
objects do not. Many areas in CS deal with
conceptual or information objects more
akin to mathematical objects than to their
physical counterparts. Therefore, requiring
empirical validation is out of place here.

Gonzalo Génova, Madrid, Spain

What CS Academics
Think They Teach
Poul-Henning Kamp’s article “You’re
Doing It Wrong” (July 2010) would have
been considerably more valuable and
effective if it had been written more pro-
fessionally and, more important, avoid-
ed gross exaggerations. For example,
Kamp said the computer architecture
depicted in his Figure 7 “is totally bogus
today.” Wrong. Though simplistic, it is
entirely appropriate as a first architec-
ture for beginning students, most of
whom are unable to provide precise def-
initions even for words like “input” and
“output.” Similarly, Kamp saying “It is
the only conceptual model used in com-
puter education” cannot be correct.

Alex Simonelis, Montréal

Author’s Response:
Reacting to the article, CS academics
have taken offense, protesting the claimed
educational deficiencies, while practitioners
have confirmed them. I have seen only two
reactions saying “We already learned that.”
Students evidently do not learn what CS
academics think they teach. But the proof is
in the pudding; if graduates say “That’s news
to me” when reading the article, then the CS
academics are doing it wrong.

Poul-Henning Kamp,
	S lagelse, Denmark

Communications welcomes your opinion. To submit a
Letter to the Editor, please limit your comments to 500
words or less and send to letters@cacm.acm.org.

© 2010 ACM 0001-0782/10/0900 $10.00

T
he article “Managing Scien-
tific Data” by Anastasia Aila-
maki, Verena Kantere, and
Debabrata Dash (June 2010)
explained that data generat-

ed by research projects is valuable only
when annotated with metadata describ-
ing the data’s provenance, context, and
meaning. However, a given data item
can be annotated in more ways than
one, for two reasons:

Provenance. A multidisciplinary proj-
ect can track its progress with basic
metadata indicating the provenance of
its samples and their associated data.
Each data item can also be annotated in
a more detailed way through tools par-
ticular to the technique used to gener-
ate the data item; these annotations are
themselves interpretable by people (and
software) in the relevant discipline; and

Assumptions. By definition, a re-
search field involves a basic set of con-
cepts used to understand the field but
that is not yet agreed upon. Annota-
tions beyond where and when the data
was recorded incorporate assump-
tions that may be contentious among
experts.

Data storage and metadata should
thus be decoupled. A data repository
must be capable of returning any data
item stored within it, along with a list
of places needed to find the relevant
metadata. A metadata repository must
be capable of identifying the schema
it adheres to and respond to queries
about specific data items with relevant
annotations.

Decoupling the architecture this way
eases develop of an ecosystem of reposi-
tories and annotation schemas.

Chris Morris, Warrington, U.K.

Authors’ Response:
Separate (and multiple) metadata stores are
indeed essential for a number of scientific
applications and should be available to
user scientists as an option. However,
because data queries likely need to combine
information held in separate metadata
stores, processing them requires appropriate
mechanisms for distribution, access control,

and the merging and branching of the stores.
Anastasia Ailamaki, Verena Kantere,

	 Debabrata Dash, Lausanne, Switzerland

No Straw Man in
Empirical Research
In his Viewpoint “Is Computer Science
Truly Scientific?” (July 2010), Gonzalo
Génova would have made a stronger
case if he used the words “theoretical”
or “conceptual” instead of “specula-
tive” to support his argument against
the excessively empirical orientation of
much of today’s CS research. The life
cycle of scientific ideas generally pro-
gresses from the speculative phase in
which many candidate ideas are pur-
sued, with only a few surviving to be
presented or published as theoretical
contributions, often supported by ro-
bust analytical models. Journal editors
are unlikely to summarily reject con-
tributions making it to this stage be-
cause they provide the conjectures and
hypotheses that can be tested through
rigorous empirically oriented research.

Génova also set up a straw man
when he railed against the excesses of
verificationism and empiricism. Who
would argue against the proposition
that credible scientific advances need
good empirical research experiments,
simulation, proof-of-concept prototype
construction, and surveys? Such re-
search needs models and hypotheses
that might have begun as speculative
conjectures at an earlier point in time.

Naïve empiricism has no place in CS
research. Moreover, purely speculative
research without adequate analytical
foundations is unlikely to help advance
CS (or any other) research.

Joseph G. Davis, Sydney, Australia

Author’s Response:
Davis (“credible scientific advances
need good empirical research”) and I
(“experimentation without the guide
of speculative thinking is worthless”)
fundamentally agree. When I said
“speculative thinking,” I meant “theoretical
contributions supported by robust analytical

More Than One Way to Annotate Metadata
DOI:10.1145/1810891.1810893		

mailto:letters@cacm.acm.org

8 communications of the acm | september 2010 | vol. 53 | no. 9

Follow us on Twitter at http://twitter.com/blogCACM

The Communications Web site, http://cacm.acm.org,
features more than a dozen bloggers in the BLOG@CACM
community. In each issue of Communications, we’ll publish
selected posts or excerpts.

privacy, content value.” RPI President
Shirley Ann Jackson was quoted as say-
ing, “With these new degree programs,
students and researchers here at Rens-
selaer will help to usher in a new era of
understanding and study of the Web
from its social and economic impacts
to the evolution of data.” Amen!

When I got my degrees, the univer-
sity taught compilers, complexity the-
ory, AI, algorithms, operating systems,
and databases. While these courses en-
able me to learn new techniques such
as MapReduce, large-scale analytics,
visualization, etc., I often feel my edu-
cation only equipped me to prepare for
the Web world, but not actually prepare
me for the Web world. How I wish my
undergraduate curriculum included
required studies on security and priva-
cy; large-scale data analytics; advanced
data-mining techniques; detailed
study of recommendation algorithms
and systems; as well as HCI research
methods like remote user studies, eye
tracking, and survey methods.

Am I saying that compilers and the-
ory don’t matter anymore? Of course
not. They are still excellent academic
research pursuits in their own do-
mains, but there might be other new
topics that should make it into the cur-
riculum now to better prepare students
for a new world. The construction of the
new social Web, which is ever chang-
ing, requires a different set of skills!
The world has changed, and so should
the computing science curriculum.

Reader’s comment
Sorry, but I couldn’t disagree more. This is

Ed H. Chi
“Time to Rethink
Computer Science
Education:
The (Social) Web
Changes Everything!”

http://cacm.acm.org/blogs/blog-
cacm/82365

First, on Monday last week, I read in
the news that the U.K. government an-
nounced the creation of a new Insti-
tute for Web Science. Prime Minister
Gordon Brown said 30 million pounds
will be used to create this institute to
help make “ ‘public data’ public,” and
act as a bridge between research and
business.

Then, this Monday, I read Tim
O’Reilly’s excellent article on “the State
of the Internet Operating System,” in
which he talked about how the way we
organize computing systems in the
world is completely different from how
we teach computing architectures. He
is right. When you think about how we
enable a user to type some keywords
and get back, say, pictures of a moose,
there are a lot of moving parts that all
must work together seamlessly. These

components include server farms, IP
and caching networks, parallel large-
scale data analysis, image and facial
recognition algorithms, and maybe
location-aware data services. He said
the “Internet Operating System” com-
ponents include search engines, mul-
timedia access, systems relating to
user identity and your social network,
payment systems, advertising, activ-
ity streams, and location. How many
universities can say they have experts
in all of these areas? These topics are
often only covered in computer science
departments as either advanced topic
courses or, worse, not offered at all.

What do these two pieces of news
tell us about the state of the world?
There is wide recognition that the Web
has changed the world.

“Well, duh!” you say. But there is
more.…

I read that Rensselaer Polytechnic
Institute (RPI) has created the nation’s
first undergraduate degree in Web Sci-
ence. The news release said that the
students in this interdisciplinary de-
gree program will investigate issues
on the Web relating to “security, trust,

Expanding CS
Education; Improving
Software Development
Ed H. Chi writes about the social Web’s impact on CS education.
Ruben Ortega discusses software and test-driven development.

doi:10.1145/1810891.1810895			 http://cacm.acm.org/blogs/blog-cacm

http://cacm.acm.org
http://twitter.com/blogCACM
http://cacm.acm.org/blogs/blog-cacm
http://cacm.acm.org/blogs/blog-cacm/82365
http://cacm.acm.org/blogs/blog-cacm/82365

blog@cacm

september 2010 | vol. 53 | no. 9 | communications of the acm 9

not about computer science, it’s about
how we engineer modern systems.

Computer science is about the
fundamentals of creating systems to
process information, the basic abstract
notions, logic, algebra, algorithms,
computability, and computer organization.

It’s clear we need to introduce new
topics like virtualization, cloud computing,
semantic Web, and social networks, but
that doesn’t change a bit the fundamentals
of how computers work.

I went to university in the late 1980s
and I’ve been able to cope with all the
changes in those 20 years thanks to a solid
formation in the fundamentals.

People need a future-proof education,
not a perishable one.

—Pablo Chacin

Blogger’s reply
You’re making the exact same arguments
that some mathematicians and electrical
engineers used to make about computer
science. How the fundamentals of their
areas more than covered the new research
directions. Heck, physics folks used to
argue, and some still do, that everything
derives from their field, so every other field
is redundant.

As computer scientists, we have a
choice. We can either teach our students
compiler design and floating point
implementations, or we can teach them
machine learning and large-scale data
analytics. We can either fold in this new
research direction and expand our field,
or we can say that it is an application area
and let it organically grow until it is so big
that it splits into a new department and
leaves CS behind. (In fact, I often wonder
if it is already too late for us to embrace
and extend!)

—Ed H. Chi

Ruben Ortega
“How Much Software
Testing is Enough?”
http://cacm.acm.org/
blogs/blog-cacm/81546

Investing in a large
amount of software testing can be dif-
ficult to justify, particularly for a start-
up company. For every line of produc-
tion software written, an organization
should, at minimum, invest an equiva-
lent amount of developer time and
number of lines of code to test the cre-
ated software. The extra effort means
that features can take longer to devel-

op and deliver to customers. With the
constant pressure of “Deliver Now!” it
is very easy to skimp on the amount of
testing in an effort to launch sooner.
The real difficulty is most developers
are good enough that they only do min-
imal testing to make sure their soft-
ware works as expected, deploy their
software, and move on.

Companies can actually develop
software like this for a long time.
However, as soon as the software gets
beyond a basic complexity level, the
number of bugs that creep back in via
regression or untested use cases will
result in an unstable application. At
this point the company is compelled
to either (a) stop development, and
add the regression tests they failed
to do earlier, or (b) continue a bad
pattern where a team of software tes-
ters chase regression bugs and add
test suites for the previous version of
software, while other developers cre-
ate the next set of features (and bugs)
concurrently. Both these patterns are
flawed because the time they take to
fix the issue is longer than it would
have taken had the tests been created
continuously.

Test-driven development, an Ex-
treme Programming practice, is argu-
ably one of the best ways to help en-
sure that the created software always
has a truss to test it. The basic meth-
odology is to create the test suite first,
have it fail, and then create the meth-
ods that will get it to pass successfully.
This helps to ensure that there is at
least one test case for each method
created by the developer who wrote the
software. By having the testing harness
developed concurrently with the soft-
ware you will have placed the respon-
sibility of testing on the developer who
created the feature. This means the
company saves time in overall devel-
opment because the tests are created
by people knowledgeable about what
needs to be tested, and software can
be tested continuously on every source
code commit allowing for deployment
on demand.

This leaves one critical hole in the
testing process. How good is the test
suite that the developer created? This
is the point where I put on a prag-
matic’s hat. If your organization al-
ready has the discipline to test every
method of your software, you should

probably ask the developer to just
test the “basic” behavior and allow
for extending the test suite if a new
bug emerges. The purpose of the test
harness is to make sure the software
works given the known assumptions
of the software, and having them re-
tested on every check-in and deploy-
ment helps build confidence that you
are deploying correct software. The
most dramatic bugs I have seen, with
or without a test harness, have gener-
ally happened when an unanticipated
event occurred, and testing against
the unknowable is difficult.

My favorite story about unantici-
pated bugs that would have been
helped by having a test harness in
place occurred early in my tenure at
Amazon. It was a bug I affectionately
call “Karmic Revenge.” The site was
crashing on a subset of Amazon’s
book catalog, and it happened dis-
turbingly frequently on the search re-
sults page. I was called in to identify
the bug. (For those coders in the au-
dience: I discovered that a data struc-
ture we were using was referencing an
array at location offset of [–1] which
was causing the software to crash.)
The catalog software had changed re-
cently such that the number –1 was a
flag that no data was available. Unfor-
tunately, this knowledge hadn’t prop-
agated through the search software.
The “Karmic Revenge” was the book
that displayed the problem was about
“Memory Management in C.” Addi-
tionally, for the superstitious, the date
the bug was identified, debugged, and
fixed was Friday, February 13, 1998.
Some bugs you just can’t forget.

Had a test harness been in place,
perhaps this bug would have never
made it to the production site. Or if
the bug had made it to the site, then
once found, a new test would have
been added to the test harness to pre-
vent future occurrences. However,
the structure didn’t exist either in the
code or at the organizational level.
Better patterns of development will
always reduce the likelihood of this er-
ror occurring and reoccurring.	

Ed H. Chi is a research manager at Palo Alto Research
Center. Ruben Ortega is an engineering director at
Google.

© 2010 ACM 0001-0782/10/0900 $10.00

http://cacm.acm.org/blogs/blog-cacm/81546
http://cacm.acm.org/blogs/blog-cacm/81546

http://www.acm.org/join
http://www.acm.org/membership/L2-3/
http://www.acm.org/membership/dues.html
http://www.acm.org/serving/ethics.html
http://www.acm.org
mailto:acmhelp@acm.org

12 communications of the acm | september 2010 | vol. 53 | no. 9

cacm online

Numbers give meaning to the promises on Communications Web site to deliver
timely, substantive content that complements the magazine’s peer-reviewed ma-
terial and makes Communications a valued component of ACM membership. The
following data illustrates a portion of the content available only at cacm.acm.org.a

News Coverage. News from industry, academia, ACM TechNews, the technical
and mainstream media, plus original articles helps drive the site with fresh content
every business day.

Number of monthly news articles posted exclusively on cacm.acm.org/.

197
153

202
226 238

183

143
152 156 173 178

123

188 190

144

250

200

150

100

50

0

J
u

ly

2
0

10

J
u

n
e

 2
0

10

M
ay

2

0
10

A
p

r
 2

0
10

M
ar

20

10 Fe
b

 2

0
10

J
an

 2

0
10

D
ec

 2

0
0

9

N
ov

 2

0
0

9

O
ct

2

0
0

9

S
ep

t
2

0
0

9

A
u

g

2
0

0
9

J
u

ly

 2
0

0
9

J
u

n
e

 2
0

0
9

M
ay

 2

0
0

9

Points of View. Expert contributors make the BLOG@CACM (http://cacm.acm.
org/blogs/blog-cacm) one of the most popular features of the site. Opinion arti-
cles (http://cacm.acm.org/opinion/articles) and Interviews (http://cacm.acm.org/
opinion/interviews) also inspire lively discussions.

Number of opinion pieces posted each month.

  Interview    BLOG @CACM    O pinion
40

30

20

10

0

J
u

ly

2
0

10

J
u

n
e

2
0

10

M
ay

2

0
10

A
p

r
2

0
10

M
ar

2

0
10 Fe

b

2
0

10

J
an

2

0
10

D
ec

2

0
0

9

N
ov

2

0
0

9

O
ct

2

0
0

9

S
ep

t
2

0
0

9

A
u

g

2
0

0
9

J
u

ly

2
0

0
9

J
u

n
e

2
0

0
9

Professional Help. The Careers page (http://cacm.acm.org/careers) provides in-
formation and advice on employment and professional issues.

Number of career-related articles.

 C areers
12
10

8
6
4
2
0

Aug 2010 May 2010 Jan 2010 Oct 2009 July 2009 Mar 2009

a	 Some numbers for July 2010 are incomplete due to production deadlines.

More Communications

P
h

o
t

o
g

r
a

p
h

 o
f

 A
n

d
r

e
as

 M

o
s

h
o

v
o

s
 b

y
 Niki

t

as

 K
o

u
sk

o

u
sis

DOI:10.1145/1810891.1810896	 David Roman

ACM
Member
News
Andreas Moshovos
Wins ACM SIGARCH’s
Maurice Wilkes Award

The ACM
	 Special Interest
	G roup on
	C omputer
	A rchitecture
	 (SIGARCH)
	 presented the
2010 Maurice Wilkes Award to
Andreas Moshovos, an associate
professor in the computer
engineering group at the
University of Toronto, for his
contributions to the development
of memory dependence
prediction. This technique,
used by high-performance
microprocessors that execute
memory access operations,
provides many applications in
boosting memory system
performance and reducing
processor design complexity.

“Surprised, humbled, and
honored” is how Moshovos
describes his reaction to
winning the Maurice Wilkes
award. “I was fortunate to work
at the University of Wisconsin-
Madison with professor Guri
Sohi, who at the time was
working on Multiscalar, a
forward-looking architecture,”
Moshovos said in an email
interview. “Multiscalar exposed
problems that were not obvious
at the time. That enabled Scott
Breach and T.N. Vijaykumar,
my two collaborators on the
early memory dependence
prediction work, and I to see
these problems and try to find
solutions.”

Moshovos’ current research
involves design challenges
for the ever-growing gap
between processor and
memory performance. “Parallel
programming is becoming a
necessity. Much of our work
is on mechanisms to allow
future multi-core processors
to efficiently support parallel
programs. Our snoop filtering
techniques reduce energy while
making it simpler to build
small- to medium-scale multi-
cores. This work has already
influenced commercial designs.
With colleagues from IBM T. J.
Watson, we developed tagless
directories—an area- and power-
efficient solution—that targets
larger-scale systems.”

—Jack Rosenberger

http://cacm.acm.org
http://cacm.acm.org/
http://cacm.acm.org/blogs/blog-cacm
http://cacm.acm.org/opinion/articles
http://cacm.acm.org/opinion/interviews
http://cacm.acm.org/careers
http://cacm.acm.org/blogs/blog-cacm
http://cacm.acm.org/opinion/interviews

 N
news

september 2010 | vol. 53 | no. 9 | communications of the acm 13

I
ma

g

e
 c

o
u

r
t

e
s

y
 o

f
 I

B
M

er neurons. Whether a neuron fires
and thereby passes along a signal to
the thousands of connecting neurons
depends on the nature of the input
it receives. Neural firing and signal
transmission are chemical processes
and the fundamental reason they are
not completely reliable, says Hsi-Ping
Wang, a researcher at the Salk Institute
for Biological Studies, is that “biology

Brains and Bytes
Computational neuroscientists are learning that
the brain is like a computer, except when it isn’t.

Science | doi:10.1145/1810891.1810897	 David Lindley

T
he idea that the human
brain can be thought of as a
fancy computer has existed
as long as there have been
computers. In a simple way,

the analogy makes sense: A brain takes
in information and manipulates it to
produce desirable output in the form
of physical actions or, more abstractly,
plans and ideas. Within the brain in-
formation moves in the form of electri-
cal signals zipping through and among
neurons, the nerve cells that form the
elementary signal processing units of
biological systems. But the likeness be-
tween brains and electronic computers
only goes so far. Neurons, as well as the
connections between them, work in
unpredictable and probabilistic ways;
they are not simple gates, switches,
and wires. For researchers working
in computational neuroscience, the
looming puzzle is to understand how a
brain built from fundamentally unreli-
able components can so reliably per-
form tasks that digital computers have
barely begun to crack.

The brain of a human adult con-
tains approximately 100 billion neu-
rons, each of which has an average of
several thousand connections to other
neurons. As neuroscientists have long
realized, it’s the complex connectiv-
ity as much as the sheer number of

neurons that make understanding
brain function such a daunting task.
To that end, researchers study indi-
vidual neurons and small collections
of them with the aim of building an
explanation for neural activity from
the ground up. But that task is also far
from simple.

Typically, a neuron constantly re-
ceives signals from thousands of oth-

In collaboration with researchers from Stanford University, IBM scientists have developed an
algorithm that uses the Blue Gene supercomputing architecture to noninvasively measure and
map the connections between all cortical and sub-cortical locations within the human brain.

14 communications of the acm | september 2010 | vol. 53 | no. 9

news

similar to a massively parallel super-
computer, with many discrete proces-
sors exchanging information back and
forth. Information processing by the
brain crucially depends on loops and
feedbacks that operate down to the
level of individual neurons, says Larry
Abbott, co-director of the Center for
Theoretical Neuroscience at Columbia
University, and that aspect makes the
nature of the processing exceedingly
difficult to analyze. “The brain is sto-
chastic and dynamical,” Abbott says,
“but we can control it to an incredible
degree. The mystery is how.”

As an illustrative example, Jim Bed-
nar, a lecturer at the Institute for Adap-

tive and Neural Computation School of
Informatics at the University of Edin-
burgh, considers what happens when a
person catches a flying ball. It’s tempt-
ing—but wrong—to suppose the visual
area of the brain figures out the ball’s
path, then issues precise instructions
to the muscles of the arm and hand so
that they move to just the right place
to catch the ball. In reality, neural pro-
cesses are messy and stochastic all the
way from the visual cortex down to our
fingertips, with multiple and complex
signals going back and forth as we try
to make the hand and ball intersect. In
this system, Bednar says, “the smart-
ness is everywhere at once.”

It’s also important to realize the op-
eration of the brain cannot be overly
sensitive to the behavior of individual
neurons, Bednar adds, if for no other
reason than that “neurons die all the
time.” What matters, he says, must be
the collective behavior of thousands of
neurons or more, and on those scales
the vagaries of individual neural opera-
tion may be insignificant. He regards
the brain as having a type of computa-
tional workspace that simultaneously
juggles many possible solutions to a
given problem, and relies on numer-
ous feedbacks to strengthen the appro-
priate solution and diminish unwant-
ed ones—although how that process
works, he admits, no one yet knows.

Empirical Knowledge
Alexandre Pouget, associate professor
of brain and cognitive sciences and
bioengineering at Rochester University,

is messy. Molecules have to bind and
unbind, and chemical and signal ele-
ments have to mix and diffuse.”

Nature bypasses this messiness in
part by resorting to statistical methods.
For example, Wang and his colleagues
combined recordings of in vivo neural
activity, with a computer simulation of
neuron function in the visual cortex of
a cat, to show that neurons fired most
reliably when they were stimulated
by the almost simultaneous arrival of
approximately 30 input signals. With
fewer than 20 signals arriving at once,
the neuron was significantly less likely
to fire, but the simultaneous arrival
of more than 40 signals brought no
gain in the reliability of the output sig-
nal. It’s not inconceivable that nature
could make more reliable neurons,
says Wang, but “there is a cost to mak-
ing things perfectly reliable—the brain
can’t afford to expend resources for
that additional perfection when slightly
probabilistic results are good enough.”

Neuron firing is not the brain’s only
probabilistic element. Signals pass
from one neuron to another through
biomolecular junctions called synaps-
es. In a phenomenon known as plastic-
ity, the likelihood that a synapse will
transmit a spike to the next neuron can
vary depending on the rate and timing
of the signals it receives. Therefore,
synapses are not mere passive trans-
mitters but are information processors
in their own right, sending on a trans-
formed version of the received signals.

These complications cast light on
the usefulness of thinking the brain is

The current puzzle
is to understand
how a brain built
from fundamentally
unreliable
components can
reliably perform
tasks that digital
computers have
barely begun
to crack.

Obituary

Carl Adam Petri, 1926–2010
Carl Adam Petri, a German
mathematical and computer
scientist who invented Petri
nets, a modeling language
used to describe and document
concurrent processes through the
use of graph-based structures,
died on July 2 at age 83.

Petri is considered a pioneer
in advancing the fields of parallel
computing and distributed
computing. He also played a key
role in developing methods of
analysis for complex systems and
workflow management.

“In the 1960s he had already
developed ideas about modeling,
distributed systems, and
computers as a communication
medium,” notes Wolfgang Reisig,
a professor at the Computer
Science Institute, Humboldt-
University of Berlin. “The work
was remarkable because it took
decades for the computing
science mainstream to accept his
early vision.”

Born in Leipzig, Germany, Petri
documented Petri nets as part of
his dissertation, “Communication

with Automata,” in 1962. He taught
at several universities in Germany,
and served as scientific director
for a research institute at the
National Center for Mathematics
and Computing, a research lab
near Bonn.

In 1966, Petri was the
recipient of the Werner von
Siemens Ring, a prestigious
German award in technical
sciences. In 2003, he received
the Order of the Netherlands
Lion award and was honored by
the Queen of the Netherlands.

In 2007, Petri received the
Academy Gold Medal of Honor,
a lifetime achievement award
presented by the Academy of
Transdisciplinary Learning
and Advanced Studies. IEEE
presented Petri with its Computer
Pioneer Award in 2008 for
establishing Petri net theory,
“which not only was cited by
hundreds of thousands of scientific
publications but also significantly
advanced the fields of parallel and
distributed computing.”

—Samuel Greengard

news

september 2010 | vol. 53 | no. 9 | communications of the acm 15

uses empirical knowledge of neuron
function to build theoretical and com-
putational models of the brain. Noting
that neural circuitry exhibits common
features through much of the cortex,
he argues that the brain relies on one
or a handful of general computational
principles to process information. In
particular, Pouget believes the brain
represents information in the form of
probability distributions and employs
methods of statistical sampling and
inference to generate solutions from a
wide range of constantly changing sen-
sory data. If this is true, the brain does
not perform exact, deterministic calcu-
lations as a digital computer does, but
reliably gets “good enough answers in
a short time,” says Pouget.

To explore these computational is-
sues, Pouget adopts a cautious attitude
to the question of how important it is
to know in precise detail what individ-
ual neurons do. For example, the exact
timing of output spikes may vary from
one neuron to another in a given situa-
tion, but the spike rate may be far more
consistent—and may be the property
that a computational method depends
on. In their modeling, Pouget says he
and his colleagues “simplify neurons
as much as possible. We add features
when we understand their computa-
tional role; we don’t add details just for
the sake of adding them.”

The distinction between under-
standing individual neurons and
understanding the computational
capacity of large systems of neurons
is responsible for “a huge schism in
the modeling community,” Bednar
says. That schism came into the open
last year when Dharmendra Modha,
manager of cognitive computing at
IBM Almaden Research Center, and
colleagues reported a simulation on
an IBM Blue Gene supercomputer of
a cortex with a billion neurons and 10
trillion synaptic connections—a scale
that corresponds, the authors say, to
the size of a cat’s brain. This claim
drew a public rebuke from Henry
Markram, director of the Blue Brain
Project at the École Polytechnique
Fédérale de Lausanne, which is using
supercomputers to simulate neurons
in true biological detail. Markram
charged that the neurons in Modha’s
simulation were so oversimplified as
to have little value in helping to un-

derstand a real neural system. In con-
trast, the Blue Brain project exhausts
the capacity of a Blue Gene supercom-
puter in modeling just some tens of
thousands of neurons.

“Both those approaches are impor-
tant,” says Abbott, although he thinks
the task of understanding brain com-
putation is better tackled by starting
with large systems of simplified neu-
rons. But the big-picture strategy rais-
es another question: In simplifying
neurons to construct simulations of
large brains, how much can you leave
out and still obtain meaningful re-
sults? Large-scale simulations such as
the one by Modha and his colleagues
don’t, thus far, do anything close to
modeling specific brain functions. If
such projects “could model realistic
sleep, that would be a huge achieve-
ment,” says Pouget.

With today’s currently available
computing power, computational
neuroscientists must choose between
modeling large systems rather crudely
or small systems more realistically. It’s
not yet clear, Abbott says, where on
that spectrum lies the sweet spot that
would best reveal how the brain per-
forms its basic functions.	

Further Reading

Abbott, L.F.
Theoretical neuroscience rising, Neuron 60,
3, Nov. 6, 2008.

Ananthanarayanan, R., Esser, S.K., Simon, H.D.,
and Modha, D.S.
The cat is out of the bag: cortical
simulations with 109 neurons, 1013
synapses, Proc. Conf. on High Performance
Computing, Networking, Storage, and
Analysis, Portland, OR, Nov. 14–19, 2009.

Miikkulainen, R., Bednar, J.A., Choe, Y.,
and Sirosh, J.
Computational Maps in the Visual Cortex.
Springer, New York, NY, 2005.

Pouget, A., Deneuve, S., and Duhamel, J.-R.
A computational perspective on the
neural basis of multisensory spatial
representations, Nature Reviews
Neuroscience 3, Sept. 2002.

Wang, H.-P., Spencer, D., Fellous, J.-M.,
and Sejnowski, T.J.
Synchrony of thalamocortical inputs
maximizes cortical reliability, Science 328,
106, April 2, 2010.

David Lindley is a science writer and author based in
Alexandria, VA.

© 2010 ACM 0001-0782/10/0900 $10.00

Security

New
Passwords
Approach
To prevent dictionary attacks
by hackers, passwords have
become increasingly complex.
And while administrators
concoct ever-stricter criteria for
passwords that add millions
of more passwords and make
dictionary attacks increasingly
difficult, users want passwords
to be more memorable than
a long string of random, case-
sensitive characters. Now, a
pair of Microsoft researchers
and a Harvard professor have
a simple solution that’s easier
to remember, and much less
attractive to criminal hackers.

In a paper titled “Popularity
is Everything: A New Approach
to Protecting Passwords From
Statistical-Guessing Attacks,”
which was presented at the Hot
Topics in Security conference
in Washington, D.C. last
month, Microsoft researchers
Stuart Schechter and Cormac
Herley and Harvard computer
science professor Michael
Mitzenmacher have proposed
a system that allows users to
chose any password they want,
so long as it’s not popular
among other users. “Each time
a user chooses a new password,
the occurrence of that password
is counted by a probabilistic
data structure known as a count-
min sketch,” said Schechter and
Herley in a joint email message.
“We chose to use the count-
min sketch because it allows
us to identify dangerous[ly]
popular passwords, yet do so
while limiting the amount
of information that could be
leveraged by attackers if they
captured it.”

After a small number of users
choose the same password, no
new users may use that word.
This deprives attackers of
common passwords that allow
them to break into a significant
number of online accounts,
designers can keep rules simple
for password selection, and users
don’t need to study those rules.

This new approach is similar
to one adopted by Twitter,
which, following an online
password-guessing attack, now
forbids 390 of the most common
passwords, including “ABCD,”
“1234,” and “p@ssword.”

—Phil Scott

16 communications of the acm | September 2010 | vol. 53 | no. 9

news

A
 p

r
o

j
e

c
t

 b
y

 t
h

e
 M

I
T

 S
e

n
s

e
a

b
l

e
 Ci

t

y
 La

b

 s
e

n
s

e
a

b
l

e
.mi

t

.e
d

u
/c

o
p

e
n

h
a

g
e

n
w

h
e

e
l

/
P

h
o

t
o

g
r

a
p

h
 b

y
 M

a
x

 T
o

masi

n
e

l
l

i
 w

w
w

.ma

x
t

o
masi

n

e
l

l
i

.c
o

m

Technology | doi:10.1145/1810891.1810898	 Neil Savage

Cycling Through Data
Sensor-equipped bicycles are providing valuable data
to cyclists, city planners, and computer scientists.

monoxide, nitrogen oxides, tempera-
ture, humidity, and noise, taking read-
ings every two seconds.

Not all that data is displayed during
the ride—it could be too distracting.
Generally, the smartphone will alert the
rider only when she reaches a personal
best or when a friend is within a desig-
nated proximity. The phone can store
the data and let the user review it later.

The data can also be transmitted to
a city-owned server, and Xiaoji Chen,
an MIT graduate student in architec-
ture who works with the SENSEable
City Lab, has created a program that
will enable city planners to visualize the
data. A map displays the incoming data
from each rider as a series of color-cod-
ed spikes. A viewer can watch, say, the
noise level as a rider travels through the
city, with older data slowly fading from
view to keep the data current.

“If we have enough data, we can see
how this changes over weeks or months
or years,” Chen says. The data can be
cross-referenced with information
about land use at various points along

T
raditionally, the Internet

has been viewed as a collec-
tion of more or less station-
ary machines wired to a net-
work. But with the popularity

of smartphones and their embedded
sensors—a camera, a microphone,
an accelerometer to determine the
phone’s orientation, and a global posi-
tioning system (GPS) locator—the pow-
er of computing is spreading beyond
the desktop. Last year an executive from
telecom giant Ericsson predicted that
50 billion devices will be connected by
2020, leading to an “Internet of things”
in which everyday objects become part
of the network, gathering new types
of data and creating possibilities that
didn’t previously exist.

One activity where the Internet may
soon tie into non-cyberspace life is
the world of cycling. The Copenhagen
Wheel, a project of the SENSEable City
Lab, part of the Department of Urban
Studies and Planning at the Massachu-
setts Institute of Technology (MIT),
places environmental sensors on the
rear wheel of a bicycle, providing infor-
mation that could add value to the rid-
er’s experience while also giving valu-
able data to city planners. Biketastic,
a project of the Center for Embedded
Networked Sensing at the University of
California at Los Angeles, also enables
cyclists to share their experiences, using
just the smartphone’s microphone and
accelerometer to measure route condi-
tions. The idea is to help cyclists find the
safest, most efficient, and most enjoy-
able routes through the metropolis.

The Copenhagen Wheel was intro-
duced at the Copenhagen Climate Con-
ference last December, and MIT is in
talks with city officials to make it avail-
able there as part of Copenhagen’s cam-
paign to increase bicycle commuting
from about 35% to 50% of its 500,000
citizens. The Wheel, which replaces the
rear wheel of a standard coaster-brake
bicycle, contains a small motor and 16

lithium-polymer batteries, recharged
by regenerative braking. When the rider
needs a boost—because she’s climbing
a steep hill, for instance—the motor
kicks in to assist. When she brakes, the
energy is stored in the batteries.

The hub of the wheel also contains
electronics to control the motor and
measure torque, and a Bluetooth con-
nection to communicate with a smart-
phone. A cradle on the handlebars holds
the smartphone, which runs an app that
allows the rider to select one of three
modes, providing extra assistance for a
rider who wants to get to work without
much sweat, or increasing resistance to
put the rider through a workout and re-
charge the batteries. The rider can also
switch gears through the phone.

But what makes the Wheel compu-
tationally interesting is the addition
of sensors and networking, “turning a
bike from something that gets you from
A to B into a smart network object,” says
Christine Outram, an MIT research as-
sociate who leads the project. The hub
contains sensors that measure carbon

With the Copenhagen Wheel, an ordinary bicycle is transformed into a hybrid electronic
vehicle that records road conditions, traffic congestion, and pollution levels in real time.

news

september 2010 | vol. 53 | no. 9 | communications of the acm 17

the routes. “We can see how this pol-
lution level is related to weather, or to
policies promoting bicycles,” she says.

The data could help city planners
identify urban heat islands, where an
abundance of asphalt and concrete ar-
tificially raise temperatures. It could
also pinpoint areas suffering from
noise pollution or a concentration of
exhaust fumes. By measuring the speed
of bicyclists and how often they stop,
the system could alert both traffic plan-
ners and cyclists to areas of traffic con-
gestion. And measurements from the
smartphone’s accelerometer could call
attention to potholes or other potential-
ly dangerous street conditions.

Copenhagen currently has three
fixed environmental sensors in the city,
one at street level and two about three
stories high. Because there will be more
of them and they will be at street level,
sensors on the bikes will provide a lot
more point data. It will only take about
100 cyclists equipped with the Wheel to
get good coverage of a two-kilometer-
square downtown area, says Outram.

Cyclists tapping into the network can
also see historical data not only for their
own bike routes but for those used by
others. That may allow them to choose
a route that is quieter or less polluted.
It also lets them interact with their fel-
low cyclists if they choose to, meeting
en route for a break or to ride together.
“We’re trying to make some of the con-
nections through Facebook or other
social networking sites—these virtual
connections—physical,” Outram says.

Los Angeles’ Biketastic
While European metropolises like Co-
penhagen tend to have compact down-
towns conducive to bike riding, sprawl-
ing Los Angeles is very much geared
toward cars. But biking is still popular
there, and the Biketastic project aims to
make it easier for Los Angelenos to find
safe and pleasant routes, both for com-
muting and recreational rides. Univer-
sity of California at Los Angeles (UCLA)
researchers designed an application for
Android phones and conducted a two-
week pilot project last fall.

Riders launch the Biketastic applica-
tion when they mount their bikes, and
the phone uses GPS data to trace the
route and measure the cyclist’s speed.
The app asks if the phone is in a bag
or out in the open, so it knows whether

it can use the phone’s microphone to
measure noise. If the cyclist mounts the
phone on the bicycle, the phone figures
out its orientation and uses the accel-
erometer to measure road roughness.
The rider can take pictures of interest-
ing landmarks or dangers such as pot-
holes. All the data is uploaded to a Web
site, which overlays the information on
Google Maps, adds information about
elevation, and allows cyclists to include
tags and descriptions.

Rather than design new devices,
Sashank Reddy, the Ph.D. student at
UCLA who headed the Biketastic proj-
ect, wants to take advantage of sen-
sors people already carry with them.
“Our purpose is to understand how we
can use the sensors, what are the algo-
rithms to clean up the data, and what
are appropriate visualization tech-
niques,” he says.

About 450 users have registered for
the Biketastic Web site and mapped
out almost 1,400 routes. While the app
is available to Android phone users, it
probably takes a minimum number of
people in a city to be useful, Reddy says,
and he’s not focused on expanding the
project, though he wouldn’t mind see-
ing someone else commercialize prod-
ucts or services based on his work. Cy-
cling advocacy groups and city planners
have asked him about how they might
use his techniques, but nothing has
progressed beyond the pilot stage.

Ron Milam, a consultant for plan-
ners of environmentally friendly proj-
ects and a writer about biking in Los
Angeles on his BikeSage blog, partici-
pated in the pilot project and got a bet-
ter sense of the speed and distances he
was riding. He thinks Biketastic can be
particularly useful by providing people
with routes that others have discovered,

and thus make it easier for people to
shift from driving to cycling for some
of their trips. “Having this information
around could not only inspire people to
ride a bike but also give them some re-
ally concrete information on places they
may want to go,” Milam says. “The per-
ception is you can’t ride a bike or walk
in L.A., but the reality is more people are
choosing to do that here.”

Meanwhile, Outram’s team is work-
ing on making the Copenhagen Wheel
more compact, and hopes to commer-
cialize it within the year. They plan to
first sell it to cities, for use on fleets of bi-
cycles used by police or traffic enforce-
ment officers. In addition to Copenha-
gen, Los Angeles, Mexico City, Sydney,
and Wellington, New Zealand have ex-
pressed interest. Once the cities get the
system operating, individual cyclists
would be able to start buying in.

Outram sees the Wheel as just one
example of how the growing ubiquity of
computing, sensing, and communica-
tion can improve both individual lives
and society as a whole. “The broader
vision of the lab is to ask, ‘What is the
future of living with technology going to
be?’ ” she says. “In 10 to 15 years, we’ll
be able to have this ‘Internet of things.’
We want to explore possibilities about
how we live with technology in a kind of
human way.”	

Further Reading

Hirshberg
The Copenhagen wheel, http://www.
youtube.com/watch?v=Do3lxv_ekUo

Iveson, K.
Too public or too private? The politics
of privacy in the real-time city, First
International Forum on the Application
and Management of Personal Electronic
Information, Cambridge, MA, October
12–13, 2009.

Ratti, C., Pulselli, R.M., Williams, S.,
and Frenchman, D.
Mobile landscapes: using location data from
cell phones for urban analysis, Environment
and Planning B 33, 5, 2006.

Reddy, S., Shilton, K., Denisov, G., Cenizal, C.,
Estrin, D., and Srivastava, M.
Biketastic: sensing and mapping for better
biking, ACM Conference on Human Factors
in Computing Systems, Atlanta, GA, April
10–15, 2010.

Neil Savage is science and technology writer based in
Lowell, MA.

© 2010 ACM 0001-0782/10/0900 $10.00

About 450 cyclists
have registered for
the Biketastic Web
site and mapped out
almost 1,400 routes
in Los Angeles.

http://www.youtube.com/watch?v=Do3lxv_ekUo
http://www.youtube.com/watch?v=Do3lxv_ekUo

18 communications of the acm | september 2010 | vol. 53 | no. 9

news

P
h

o
t

o
g

r
a

p
h

 f
r

o
m

 I
s

t
o

c
k

p
h

o
t

o
.c

o
m

cuts in recent months are prompting
the University of California, Berkeley
and Rutgers University, among others,
to consider online instruction to help
fill budget gaps.

Even so, the biggest growth in online
schooling has been among for-profit
universities, which includes obscure
institutions and more familiar names
like Kaplan, DeVry University, and the
biggest gorilla of all, the University of
Phoenix, which currently has 455,600
students, more than half of whom
take at least some courses online. As
public community colleges turn away
tens of thousands of students each
year, they create a huge opportunity for
for-profits offering associate degrees
and higher. The online schools lure
students with Internet ads touting in-
stant enrollment and 24/7 access. And
whereas traditional universities use
tuition from large lecture classes to

P
odca sting, high- sp eed In-

t e r n e t, email, message
boards—the technology for
distance learning has made
it less and less necessary for

students to go to college the old-fash-
ioned way. Yet, the demand for higher
education continues to rise at double-
digit rates, boosting the number of stu-
dents taking one or more online cours-
es in the U.S. in the fall of 2008 to 2.4
million, up from 1.6 million in 2002,
according to the most recent survey by
the Sloan Consortium, an organization
supporting online education.

These numbers do not include the
free non-credit courses available
through iTunes U, which offers
250,000 free lectures from more than
600 schools, including Yale and Mas-
sachusetts Institute of Technology.
Yet while elite schools are reaching
the masses as a philanthropic gesture,
they tend to avoid granting more de-
grees. “Your Stanfords and Columbias
and NYUs and Boston Colleges of the
world—they have terrific incentives not
to grow,” says Guilbert C. Hentschke, a
professor at the University of Southern
California’s (USC’s) Rossier School of
Education. That’s because exclusive
schools are, by definition, highly se-
lective—and admitting more students
would dilute their brands.

A similar dynamic works in other
traditional universities, as well. A
school’s U.S. News & World Report an-
nual ranking depends in part on teach-
er salaries and per-student spending,
so going online and reducing costs can
tarnish a school’s image. If public uni-
versities graduate many students who
have taken online courses, it’s only be-
cause the schools are by far the largest
sector in American higher education,
Hentschke says. State funding has kept
most of them from going online in a
substantial way, though severe budget

cover losses from costlier or undersub-
scribed programs, for-profits can aim
precisely where the money is, focusing
on degrees in computer science (espe-
cially IT), business, health care, educa-
tion, and other marketable fields.

Most of the students who flock to
online programs are nontraditional;
their time and locale is constrained by
jobs, military service, and dependent
children. “Online education is not only
more convenient, but for some stu-
dents it’s the only option they’ve got,”
says Hentschke.

Education in computer science is
a case in point. The National Science
Foundation wants to increase the num-
ber of advanced placement CS teachers
to 10,000 by 2015, which is five times
today’s number. Current undergradu-
ates alone aren’t likely to meet that de-
mand, but by taking online classes after
work, other candidates, such as math
teachers, can branch out into teaching
CS, suggests Mark Guzdial, a professor
at George Institute of Technology and
expert in computer science education.
Similarly, if female managers in tech
firms hit the glass ceiling in part by not
finding time to learn the latest tools, as
an Anita Borg Institute study suggests,
then being able to take classes from
home should help close the gender
gap in upper management. “These two
audiences are poorly served by face-to-
face CS courses, but may be well served
by distance learning,” Guzdial says.

Online education in computer sci-
ence varies in quality, but the range of
offerings is impressive, covering every-
thing from introductory programming
and Microsoft certification to gradu-
ate-level courses in database theory,
network security, and human-comput-
er interaction.

Convenience at a Price
You might expect online courses to

Society | doi:10.1145/1810891.1810899	 Marina Krakovsky

Degrees, Distance,
and Dollars
The Internet is making higher education accessible to a whole
new class of students—but not necessarily at a lower cost.

The range of CS courses offered in online
education covers everything from
introductory programming to graduate-level
courses in database theory.

http://ISTOCKPHOTO.COM

news

september 2010 | vol. 53 | no. 9 | communications of the acm 19

also be cheaper, but that is rarely the
case. Although online students save
time, living expenses, and transporta-
tion costs, they typically pay at least
as much in tuition as they would for a
traditional education. The University
of Phoenix, for example, charges the
same for both formats, and accord-
ing to the College Board the average
sticker price at a for-profit university is
about $14,000 for the 2009–2010 aca-
demic year.

Why the high price even online?
Some education experts contend that
good instruction is always labor-inten-
sive. “I could set up an online course
and have a thousand students and
teach it myself, but what’s the qual-
ity going to be?” says Donald Heller,
who directs the Center for the Study
of Higher Education at Pennsylvania
State University. It is true that tech-
nology enables a small team to design
a course and a lower-paid army of in-
structors to deliver it, grade papers,
and interact with students, but that
is not very different from what tradi-
tional colleges have been doing for
decades, Heller argues. Diane Harley,
a University of California, Berkeley
anthropologist who directs the univer-
sity’s Higher Education in the Digital
Age research project, agrees. “It’s not
cheap to produce high-quality online
courses from soup to nuts,” she says,
quoting the oft-cited $1 million per
state-of-the-art course such as those
produced by Carnegie Mellon Univer-
sity’s Open Learning Initiative.

Nonetheless, because schools
can add students without erecting
new buildings, a school’s costs for
each additional student can be quite
small—low enough that a company
called Straighterline profitably sells
basics on algebra and English com-
position for just $99 per month, plus
$39 per course. Although it doesn’t
grant degrees, Straighterline grades
coursework and issues transcripts that
students can turn into credits at the
colleges where they are enrolled.

But this low-priced model remains
the exception in online education,
where for a host of reasons schools
have not passed their savings on to
students. In fact, sometimes an online
degree costs more than its brick-and-
mortar equivalent—a price premium
not just for convenience, but for has-

sle-free admissions, suggests Vicky
Phillips, founder and chief analyst of
GetEducated.com, a watchdog group
for online learning. “People research
schools with online MBA programs
and find out that Indiana University
has a price that’s one-third of the Uni-
versity of Phoenix’s price, and then
they find out they have to take the GRE
and GMAT and 12 prerequisite courses
[for Indiana University]. Welcome to
the age of ‘I’m not going to do it.’ ”

The ease of enrolling with little
more than a credit card may bring to
mind diploma mills and doubts about
credibility with employers, but that is
less a concern for many of the students
who seek their education online. “If I
grew up in southern rural Indiana, if I
say, ‘I have an MBA,’ I’m going to blow
people away. They don’t care where
that degree came from,” says Phillips.
And in a market where objective mea-
sures of educational quality are hard to
come by, consumers look to price as a
signal of quality.

High prices, oddly enough, also
keep students enrolled. “If it’s too
cheap, the school risks losing its ac-
creditation,” says Eric Bettinger, as-
sociate professor of economics and
education at Stanford University’s
Graduate School of Business. That’s
because low prices make it more
tempting for students to drop out, and
high drop-out rates are a red flag to
regional accrediting bodies. Some ex-
perts believe that Pell Grants, military
subsidies, and other federal student
aid, all of which for-profit schools urge
students to pursue, have also inflated
the price of online schooling.

The Future of Higher Ed
Despite their rapid growth, the for-
profits are not giving traditional uni-
versities a run for their money just
yet. Most students still prefer face-
to-face contact and a well-recognized
credential. Unlike print newspapers,
whose survival the Internet has helped
endanger, traditional colleges offer
much more than information. The
schools that are not secure have more
impetus to go online, says GetEducat-
ed.com’s Phillips, is “this vast waste-
land of private mediocre schools.” She
cites schools like Michigan’s Baker
College, which has historically catered
to the auto industry. With this local

customer base eroding, Baker needed
to extend its geographic reach to stay
in business. But, as Phillips puts it,
“the problem with the Internet is the
whole world is your marketplace—and
it’s also your competition.”

Specialization can make it easier to
compete. By offering classes online,
USC’s School of Gerontology, for ex-
ample, can attract a large number of
students even to a niche program for
managers of nursing homes. Similar-
ly, Penn State Online offers a master’s
degree in homeland security. Indeed,
whereas only about 33% of providers
of bachelor’s degree programs sur-
veyed by the Sloan Consortium said
that online education is critical to
their school’s long-term strategy,
nearly two-thirds of master’s, doc-
toral, and specialized programs said
so. All that shows the Long Tail is at
work in higher education, and, says
Hentschke, that tail will only get lon-
ger. “The model of the 18- to 22-year-
old going to a residential campus like
USC and watching football games and
that kind of stuff will be around for
along time,” he says, “but the demand
for other models is coming from lots
of other areas and demographics.”	

Further Reading

Allen, E. and Seaman, J.
Learning on Demand: Online Education in
the United States, 2009. Babson College and
The Sloan Consortium, 2009.

Bramble, W.J. and Panda, S.K.
Economics of Distance and Online Learning:
Theory, Practice, and Research. Routledge,
New York, NY, 2008.

Carey, K.
College for $99 a month, Washington
Monthly, September/October 2009.

Kumar, A.N.
The effect of using problem-solving
software tutors on the self-confidence of
female students, Proceedings of the Thirty-
Ninth Special Interest Group on Computer
Science Education, March 12–15, 2008,
Portland, OR.

Tierney, W.G. and Hentschke, G.C.
New Players, Different Game: Understanding
the Rise of For-profit Colleges and
Universities. Johns Hopkins University
Press, Baltimore, MD, 2007.

Based in the San Francisco area, Marina Krakovsky is co-
author of the forthcoming Secrets of the Moneylab: How
Behavioral Economics Can Improve Your Business.

© 2010 ACM 0001-0782/10/0900 $10.00

http://GetEducated.com
http://GetEducated.com
http://GetEducated.com

20 communications of the acm | september 2010 | vol. 53 | no. 9

news

P
h

o
t

o
g

r
a

p
h

 b
y

 Q
ia

n

 Wa

n
g

 /
 Tsi

n
g

h
u

a
 U

n
iv

e

r
si

t

y

A
lthough China-based com-

puter professionals author
numerous papers for inter-
national journals and con-
ferences each year, their

opportunities are limited by language
barriers and a lack of international con-
tacts. At the same time, few outside of
China are aware of the variety of com-
puter science developments inside the
country’s borders. Each year sees thou-
sands of papers published only in Chi-
nese by researchers who are unable to
travel to international conferences, so
their findings are all but locked off from
the international community.

ACM hopes to help change that
with the launch of ACM China, whose
20-member Council held its first meet-
ing in June. ACM China’s full launch,
which is expected later this year, will
culminate years of effort to give greater
access and exposure to Chinese com-
puter professionals.

China is the latest of three areas
outside the U.S. to start an ACM Re-
gional Council in the past year. The

ACM Europe Council launched in Oc-
tober 2009, and the ACM India Council
launched in January 2010. But ACM’s
efforts to grow the organization beyond
national borders go back 20 years. “We
started encouraging our SIGs [Special
Interest Groups] to hold conferences
outside the U.S. around 1990, when
ACM was viewed as a purely American
organization,” says ACM Executive Di-
rector and Chief Executive Officer John
White. “More recently, we’ve made
an effort to have non-U.S. computer
scientists in positions of leadership
throughout the entire organization.”

The selection of Council members
was especially critical in China, where
leadership reputation is highly valued.
ACM China was fortunate to enlist Jia-
guang Sun, computer science profes-
sor and vice president of the National
Natural Science Foundation of China,
as the Council’s chair.

“Once Dr. Sun agreed to help, things
progressed very rapidly,” recalls Vin-
cent Yun Shen, professor emeritus of
the computer science department at

the Hong Kong University of Science
and Technology. “That’s how Chinese
people do business. You have to get the
right person to lead a project—some-
one with credibility. When people
learned that Dr. Sun was involved, they
said, ‘This guy is successful, so align-
ing with him is a good thing.’ ”

But establishing ACM China among
Chinese computer professionals won’t
be easy. According to Yunhao Liu, as-
sociate professor in the department of
computer science at Hong Kong Univer-
sity of Science and Technology, many of
them “don’t know that IEEE and ACM
are different organizations.” (Chinese
membership in ACM is currently below
2,500.) Liu believes the twin keys to suc-
cess are effective promotion, and coop-
eration with the 15,000-member China
Computer Federation (CCF).

“CCF has a dominant position
among computer societies in China,”
says Liu, “while few computer scien-
tists here realize that ACM sponsors
the famous Turing Award! But CCF’s
resources are limited when compared
to ACM, which is international. ACM is
looking forward to close cooperation
with CCF and other organizations in
China.” ACM expects its selections for
ACM China’s Council to pave the way
in building a relationship with CCF, as
all but three of them are members of
the CCF board or CCF senior members.

With eminent Chinese computer
professionals leading the charge, Liu
believes the time is right for ACM to en-
ter China. “You have to get people who
have been working in China already,
and I think Dr. White made the right
decisions,” Liu says. “That’s why I have
every confidence that it will be very suc-
cessful.”	

Tom Geller is an Oberlin, OH-based science, technology,
and business writer.

© 2010 ACM 0001-0782/10/0900 $10.00

ACM China
Nearing Launch
ACM’s expansion into China will support local professionals and
increase Chinese involvement in ACM’s international activities.

Regional Councils | doi:10.1145/1810891.1810900	 Tom Geller

The ACM China Council meets with ACM COO Pat Ryan and CEO John White (first row, second
and fifth from left, respectively) and President Dame Wendy Hall (first row, fourth from left).

september 2010 | vol. 53 | no. 9 | communications of the acm 21

news
P

h
o

t
o

g
r

a
p

h
 ©

 I
n

am

o
r

i
 F

o
u

n
d

a
t

i
o

n
 2

0
1

0

T
h e I n a mo r i F ou n d a t i o n ,
ACM, and IEEE recently rec-
ognized leading computer
scientists for their research
and service.

Kyoto Prize
László Lovász, who is director of the
Mathematical Institute at Eötvös
Loránd University, has been awarded
the 26th Annual Kyoto Prize in Basic
Sciences from the Inamori Founda-
tion. Lovász is being honored for his
outstanding contributions to the ad-
vancement of both the academic and
technological possibilities of the math-
ematical sciences.

Lovász has solved several monu-
mental problems, but is perhaps best
known for the Lovász local lemma, in
which he provides a fundamental prob-
abilistic tool for the analysis of discrete
structures, and contributes to the cre-
ation of a framework for probabilisti-
cally checkable proofs. The basis algo-
rithm, commonly known as the “LLL
algorithm,” has also contributed to the
construction of important algorithms,
and has become a fundamental tool in
the theory of cryptography.

ACM Awards
Radia Perlman, an Intel Fellow, has
been awarded the highest honor from
ACM’s Special Interest Group on Data
Communications (SIGCOMM) for pio-
neering contributions to Internet rout-
ing and bridging protocols. SIGCOMM
cited Perlman for her work on span-
ning tree bridging algorithms and link
state routing algorithms, advances that
have made the Internet more scalable
and robust. To this day, both of these
algorithms are used in most Internet
switching devices.

Christos Faloutsos, a professor at
Carnegie Mellon University, received
the 2010 Innovation Award from the

Special Interest Group on Knowledge
Discovery and Data Mining (SIGKDD)
for his contributions to key discov-
eries in time series database analy-
sis, Internet topology, and Internet
auction fraud detection. Faloutsos’
cross-disciplinary works on power-law
graphs, fractal-based analysis, time
series, multimedia, and spatial index-
ing are among the most referenced in
industry and academic publications.
SIGKDD also presented the 2010 Ser-
vice Award to Osmar R. Zaïane, a pro-
fessor at the University of Alberta, for
his dedication to promoting the de-
velopment of the global KDD commu-
nity. Zaïane has been furthering data
mining through active participation
in other industry associations and
driving the development of interna-
tional communities dedicated to the
advancement of KDD.

IEEE Awards
IEEE recently paid tribute to leaders in
technology at its 2010 Honors Ceremo-
ny. Among the awards recipients are:

Vinton G. Cerf, vice president and

chief Internet evangelist for Google,
HKN Eminent Members Recognition;

N.R. Narayana Murthy, chairman
and chief mentor at Infosys Technolo-
gies, Ltd., IEEE Honorary Membership;

Barry Boehm, founding Director
Emeritus of the University of Southern
California Center for Systems and Soft-
ware Engineering, Simon Ramo Medal;

John Hopcroft, IBM Professor of En-
gineering and Applied Mathematics at
Cornell University, and Jeffrey D. Ull-
man, Stanford W. Ascherman Profes-
sor of Computer Science (Emeritus)
at Stanford University, John von Neu-
mann Medal;

Ronald W. Schafer, HP Fellow in the
Multimedia Communication and Net-
working Laboratory at Hewlett-Pack-
ard Laboratories, Jack S. Kilby Signal
Processing Medal;

Whitfield Diffie, visiting scholar at
Stanford University, Martin E. Hell-
man, Professor Emeritus of Electrical
Engineering at Stanford University, and
Ralph C. Merkle, senior research fellow
at the Institute for Molecular Manufac-
turing, Richard W. Hamming Medal;

Randy Howard Katz, United Micro-
electronics Corporation Distinguished
Professor in Electrical Engineering
and Computer Science at the Univer-
sity of California, Berkeley, James H.
Mulligan, Jr., Education Medal;

Stephen Deering, retired, Internet
Award;

Larry Peterson, Robert E. Kahn Pro-
fessor of Computer Science at Princ-
eton University, Koji Kobayashi Com-
puters and Communications Award;

Toshio Fukuda, professor in the De-
partment of Micro-Nano Systems Engi-
neering at Nagoya University, Robotics
and Automation Award. 	

Jack Rosenberger is Communications’ senior editor,
news.

© 2010 ACM 0001-0782/10/0900 $10.00

Milestones | doi:10.1145/1810891.1810901	 Jack Rosenberger

Kyoto Prize and
Other CS Awards
László Lovász, Vinton G. Cerf, and other researchers
are honored for their contributions to computer science.

Kyoto Prize winner László Lovász

Introducing:

XRDS delivers the tools, resources, knowledge, and connections
that computer science students need to succeed

in their academic and professional careers!

The All-New XRDS: Crossroads is the official
magazine for ACM student members featuring:

� Breaking ideas from top researchers and PhD students

� Career advice from professors, HR managers, entrepreneurs, and others

� Interviews and profiles of the biggest names in the field

� First-hand stories from interns at internationally acclaimed research labs

� Up-to-date information on the latest conferences, contests, and submission
deadlines for grants, scholarships, fellowships, and more!

XRDS.acm.org

The ACM Magazine for Students

Also available
The All-New XRDS.acm.org

XRDS.acm.org is the new online hub of XRDS
magazine where you can read the latest news
and event announcements, comment on articles,
plus share what’s happening at your ACM chapter,
and more. Get involved by visiting today!

ACM_XRDS_Ad_Final.indd 1 4/21/10 12:41:51 PM

http://XRDS.acm.org
http://XRDS.acm.org
http://XRDS.acm.org
http://www.acm.org

V
viewpoints

september 2010 | vol. 53 | no. 9 | communications of the acm 23

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 g
l

u
e

ki

t

I
n a p r e v i ous column,a I not-
ed that many organizations
do not seem to explicitly cal-
culate the “cost of risk” on
their projects. Companies

may acknowledge risk, identify risk
items, implement risk management
programs, track risk indicators, and
adjust project management actions to
mitigate risk. But they often don’t ac-
tually compute how much of it there is
and what it will likely cost them.

Even businesses such as insur-
ance companies for whom risk quan-
tification is a core competency often
fail to assess the cost of the risk they
are taking on when they run software
projects. This apparently unconscious
failure to numerically deal with a criti-
cal item of business knowledge seems
to extend to other disciplines too. A
while ago I came across a financial ser-
vices company that was routinely per-
forming a quite incorrect calculation
of ROI on its software projects.

Straight-line ROI
Imagine a project with an expected cost
of (say) $1 million and an expected re-
turn of $1.1 million. Ignoring issues of

a	 P.G. Armour, “Mortality Play,” Commun. ACM
50, 3 (Mar. 2007), 15–18.

inflation, cost of capital, and alterna-
tive investment profits, the ROI for this
project appears to be 10%. This project
should produce a $100,000 return on
a $1 million investment. In my experi-
ence, this is the most common calcula-

tion performed by companies on most
internal development projects. More
correctly, it is the calculation done by
those companies that actually do esti-
mate their ROI; there are many compa-
nies that don’t do it at all or do a very per-

The Business of Software
Return at Risk
Calculating the likely true cost of projects.

doi:10.1145/1810891.1810902	 Phillip G. Armour

24 communications of the acm | september 2010 | vol. 53 | no. 9

viewpoints

functory job of it when they do. But that
is a topic for another day. This simple
arithmetic could be called a “straight-
line ROI.” It is simply the expected re-
turned value divided by the expected
cost. It is a simple calculation, easy to
compute and to understand. But, in
most cases, it is also wrong.

The Role of Risk
The reason why straight-line ROI is
wrong for most projects is simply that
it does not account for risk. The return
computed using the above straight-
line ROI calculation will be true only if
there is:

˲˲ 100% guarantee of cost contain-
ment at $1 million—that is, the project
has no cost risk, the project cannot/will
not run over or under in budget.

˲˲ 100% guarantee of value returned
at $1.1 million—the project has no re-
turn risk, the return is fixed and invari-
able no matter what happens to the
project.

These are the necessary conditions
for the calculation to be valid. There
are conditions where the cost risk and
value risk cancel out and the calculated
return ends up at 10%. For instance, if
a project overruns on cost but is able
to recoup more value than expected,
it may cancel out the budget overrun.
Note, this does not mean the calcula-
tion is correct, simply that the project
was “lucky”b in that the inaccuracies
happened to be equal and opposite.

The moment we introduce risk, the
straight-line ROI calculation does not
work. If we only have a 20% probability
of cost containment at $1 million, giv-
en a typical set of project conditions,
the ROI is not a positive 10%, it is more
like a negative 18% (!)

Stocks and Bonds
This is true in other disciplines. Eq-
uities typically carry more risk than
government, municipal, or corporate
bonds so we expect higher return to
compensate us for the risk. Bonds are
safer, so we are content with less in-
come because the downside is more
controlled. A less sophisticated finan-
cial consultant may show a customer
what savings might be achieved over
time based on the average returns of
the stock market. The U.S. stock mar-
ket has realized approximately 9% av-
erage annual gains over the last 100
years or so (depending on the index
used and whether returns are com-
pounded). Showing a potential inves-
tor a nice straight line of ever-increas-

b	 This is similar to the “lucky” (as opposed to
“accurate”) estimate described in P.G. Ar-
mour, “Truth and Confidence,” Crosstalk
(Apr. 2008), 27.

ing wealth is more a sales gimmick
than a realistic prediction of return
since it does not account for risk. Sim-
ilarly, calculating the likely return for
a software project without accounting
for risk is bogus.

The financial services company I
mentioned would not dream of using
a straight-line return calculation for
its investments but, like the insurance
company that did not calculate cost of
risk, it blithely performed the wrong
calculation on its internal projects.
And it wondered why it got blindsided
by failure to achieve returns on most of
its projects.

Risk-Weighting
To more correctly calculate the true
likely return we must incorporate the
cost of risk and its counterpart—what
we could call the value at risk. Re-
cently, financial markets have shown
what failure to properly account for
risk does to one’s investment, either
through not including risk in the cal-
culation or having the risk hidden in-
side complex derivatives. It is very im-
portant that we learn from this in the
business of software by performing
the right calculation.

There are six elements to comput-
ing return at risk:

˲˲ The expected cost of the project
˲˲ The likelihood of achieving that

expected cost
˲˲ The risk profile or “shape” of the

cost risk distribution
˲˲ The expected returned value of the

project
˲˲ The likelihood of achieving that

value
˲˲ The value profile or “shape” of the

value distribution

The reason why
straight-line ROI
is wrong for most
projects is simply
that it does not
account for risk.

Figure 1. Straight-line ROI.

Cost/Value  →

P
ro

ba
bi

lit
y 
→

Figure 2. Gaussian probability distribution.

Cost/Value  →

P
ro

ba
bi

lit
y 
→

Figure 3. Cost profiles.

Cost/Value  →

P
ro

ba
bi

lit
y 
→

Figure 4. Value profiles.

Cost/Value  →

P
ro

ba
bi

lit
y 
→

viewpoints

september 2010 | vol. 53 | no. 9 | communications of the acm 25

Expected Cost/Value
These are typically calculated using
traditional estimation approaches.
The cost components may be assisted
by estimation tools. The value side is
usually calculated using some internal
assessment of operational cost con-
tainment, market expansion, revenue
return, and the like. Neither of these
processes is particularly easy, but they
are quite well-defined.

Likelihood of Cost/Value
These can be computed using tech-
niques such as Monte Carlo analysis
operating on the ranges of key variables
that contribute to the cost (or value).
There are tools available that can per-
form these calculations easily.c More
sophisticated financial planners will
typically use this approach when laying
out projections for their customers.

Shape of Risk/Value
This is a complex subject, the detail of
which is beyond the scope of this col-
umn. The “shape” of risk/value is driv-
en by the expected likelihood of costs
and value over- or underrunning. The
mistake the straight-line ROI makes it
is assumes the risk profile looks like
Figure 1. This probability distribution
shows there is one and only one likeli-
hood of a result. The chart shows the
cost (or delivered value) of the project
is 100% guaranteed at the expected
value. This means the project is carry-
ing no risk. It also means the project
has no unknown factors or variables
that affect cost or value. Such projects
do not exist in the real world.

c	 For example, the The SLIM-Estimate tool,
marketed by QSM Inc., McLean, VA, can quote
explicit cost of risk.

Risk is always paid
for somewhere:
in the stock market,
in insurance
underwriting, and in
software projects.

The simplest and most common
probability distribution is the Gauss-
ian (see Figure 2). With this distribu-
tion the likelihood of over- or under-
running budget (or value) from the
midpoint “most likely” is equal. While
cost and value distributions are rarely
symmetrical in real life, this can be a
useful distribution provided the “ex-
pected” cost or value is set off-center.

Cost profiles usually look some-
thing like the curve shown in Figure 3.
The distribution shows there is much
more likelihood of the project overrun-
ning its budget than there is in under-
running. Unless the likelihood of cost
containment is very high (the project’s
expected cost is set to the right of the
midpoint on the x-axis) this project is
carrying a high cost of risk.

Value profiles (see Figure 4) are
often the reverse of the cost profiles.
In general, experience shows we are
more likely to underachieve our value
goals than we are to overachieve them.
Therefore, to better guarantee returns
we would need to have our expected
value moved to the left (we expect low-
er value delivered) of the midpoint.

Using these models, we can calcu-
late a risk-weighted return for our proj-
ects and either choose not to carry such
a high risk or to more realistically re-
source our projects based on the chal-
lenges they are likely to experience.

Real Return
The difference between straight-line
return and risk-weighted return is
simply the aggregate cost of risk as ex-
pressed in the likelihood of a project
both running over budget and under-
achieving in the value it delivers. Risk
is always paid for somewhere: in the
stock market, in insurance underwrit-
ing, and in software projects. It seems
that few companies perform this kind
of calculation, even when it is one of
their core competencies—which is
odd to say the least. In the business
of software, we can’t complain about
our performance if we resource our
projects but don’t quantify and re-
source the risk on the projects. When
that risk comes home—and it will—
our projects will fail. And they do.	

Phillip G. Armour (armour@corvusintl.com) is a senior
consultant at Corvus International Inc., Deer Park, IL.

Copyright held by author.

Calendar
of Events
September 15–17
Audio Mostly,
Pitea, Sweden,
Contact: Delsing Katarina,
Email: katarinea.delsing@tii.se

September 15–17
Principles and Practice of
Programming in Java,
Vienna, Austria,
Contact: Krall Andreas,
Email: andi@complang.
tuweien.ac.at

September 15–18
Quantitative Evaluation of
Systems,
Williamsburg, VA,
Contact: Evgenia Smirni,
Email: esmirn@cs.wm.edu

September 16–17
2010 ACM/IEEE International
Symposium on Empirical
Software Engineering and
Measurement,
Bolzano, Italy,
Contact: Giancarlo Succi,
Email: Giancarlo.succi@unibiz.it

September 16–17
HCI in Work & Learning, Life &
Leisure,
Carinthia, Austria,
Contact: Herbert Janing,
Email: aapc2010@uni-klu.ac.at

September 20–24
IEEE/ACM International
Conference on Automated
Software Engineering,
Antwerp, Belgium,
Sponsored: SIGSOFT, SIGART,
Contact: Charles Pecheur,
Email: charles.pecheur@
uclouvain.be

September 20–24
The 16th Annual International
Conference on Mobile
Computing and Networking
and the 11th ACM International
Symposium on Mobile Ad Hoc
Networking and Computing,
Chicago, IL,
Sponsored: SIGMOBILE,
Contact: Nitin H. Vaidya,
Email: nhv@uiuc.edu

September 21–22
International Symposium on
Intelligent Virtual Agents,
Philadelphia, PA,
Contact: Norman I Badler,
Email: badler@seas.upenn.edu

mailto:armour@corvusintl.com
mailto:katarinea.delsing@tii.se
mailto:andi@complang.tuweien.ac.at
mailto:esmirn@cs.wm.edu
mailto:Giancarlo.succi@unibiz.it
mailto:aapc2010@uni-klu.ac.at
mailto:charles.pecheur@uclouvain.be
mailto:charles.pecheur@uclouvain.be
mailto:nhv@uiuc.edu
mailto:badler@seas.upenn.edu
mailto:andi@complang.tuweien.ac.at

26 communications of the acm | september 2010 | vol. 53 | no. 9

V
viewpoints

I
n the United States as in many
countries, the software industry
is increasingly important. Pro-
prietary and open source soft-
ware powers items as diverse

as PCs and refrigerators, and controls
systems as vital as missile defense and
the utility grid. Many software vendors’
principle source of revenue comes from
licensing their code to businesses and/
or consumers. Others use software as
a means to drive demand for another
money-making product like services. In
any event, no one seriously questions
software’s place in the economy or its
importance to modern life. It may be
somewhat surprising then that the law
of software transactions in the U.S. has
not been uniform. In Europe, Europe-
an Union directives,a such as Council
Directive 2009/24/EC of 23 April 2009
on the legal protection of computer
programs (EU Directive) (replacing the
former directive from 1991), helpfully
set forth basic principles. In the U.S.,
courts look to the common law of con-
tract (that is, the decisions of courts) or
the Uniform Commercial Code (UCC)
(a statute enacted by each state) for the
rule of decision, and must also con-
sider other sources such as consumer
protection law and federal intellectual
property law. Contract law and consum-
er protection law can vary by state and

a	 EU directives consist of legislation that di-
rect member states to promulgate rules
to realize a particular goal. See Wikipedia,
available at http://en.wikipedia.org/wiki/Di-
rective_(European_Union)

interpretations of the UCC and federal
law can also be inconsistent. Although
this variation characterizes the U.S. ap-
proach to much of its law, software’s
unique attributes and importance to
the economy make legal uniformity
and clarity particularly important.

Against this background, the Ameri-
can Law Institute (ALI), a law-reform
organization in the U.S.,b undertook a
project to analyze the area of software
contracting and to set forth principles
that a court could adopt as the rule of
decision in a case before it. This effort
produced the Principles of the Law of
Software Contracts, a volume that we
drafted and that underwent extensive
review over a five-year period. The Prin-

b	 For information about the ALI, see, see http://
www.ali.org/index.cfm?fuseaction=about.
overview

ciples address a set of topics impor-
tant to software transactions—some
unique to the software context, others
not. We discuss briefly here just a few
of the more important or controversial
provisions and recommend that in-
terested readers refer to the complete
work for more information.

Scope
The first question the Principles faced
was how to define the transactions to
which they applied. The Principles in-
tentionally define their scope narrowly
to software as traditionally understood.
As drafters, we understood the danger
of over-inclusiveness: In particular, we
wished to avoid the trap of including
all types of digital information within
our project’s scope. As a result, digital
media and digital databases are not
part of the project.

Even with this narrow approach,
questions remained. The Free Soft-
ware Foundation, at least until the
release of Version 3.0 of the General
Public License (GPL), maintained that
open source licenses akin to the GPL
were not contracts under U.S. law,
but rather were mere copyright per-
missions. We disagreed, arguing that
under U.S. law as traditionally under-
stood, most open source licenses are
indeed contracts because they are in
the nature of an exchange between
the provider and user. The Principles
therefore apply to open source agree-
ments with exceptions and specific
provisions where necessary.

Law and Technology
Principles of the Law
of Software Contracts
An overview of a new set of legal principles for software
contracts developed by the American Law Institute.

doi:10.1145/1810891.1810903	 Robert A. Hillman and Maureen A. O’Rourke

Software’s unique
attributes and
importance to
the economy make
legal uniformity and
clarity particularly
important.

http://en.wikipedia.org/wiki/Directive_(European_Union)
http://www.ali.org/index.cfm?fuseaction=about.overview
http://en.wikipedia.org/wiki/Directive_(European_Union)
http://www.ali.org/index.cfm?fuseaction=about.overview
http://www.ali.org/index.cfm?fuseaction=about.overview

V
viewpoints

september 2010 | vol. 53 | no. 9 | communications of the acm 27

Relationship to Intellectual
Property Law, Public Policy,
and Unconscionability
In the U.S., software agreements as con-
sensual transactions implicate contract
law, which is primarily the province of
the states. Software, of course, can be
protected by federal intellectual prop-
erty rights, including copyright and pat-
ent. Questions can arise whether a state
court may enforce provisions under its
contract law that provide greater rights
or restrict limitations that federal intel-
lectual property law would grant in the
absence of the parties’ agreement.

Here, as in many areas, the Prin-

ciples take the general position that
parties are free to contract as they see
fit. The Principles, however, note that
courts must be particularly attentive
to provisions affecting federal intel-
lectual property rights in the case of
boilerplate standard forms. Especially
because of the take-it-or-leave-it nature
of such forms and the tendency of con-
sumers and others to fail to read them,
the federal interest in state non-inter-
ference with the intellectual property
system is at its height.

For example, many boilerplate
agreements include a provision against
reverse engineering. Under both the
Uniform Computer Information Trans-
actions Act (UCITA) and the EU Direc-
tive, such provisions are unenforceable
in certain circumstances.c However,
the Principles opt to direct courts to

c	 UCITA was an attempt by a private U.S. orga-
nization, the National Conference of Commis-
sioners on Uniform State Law, to promulgate
a uniform law governing “information” trans-
actions. It met with much opposition, in part
because of its perceived business orientation,
and only two states have adopted it. Generally
UCITA and the EU Directive preclude enforce-
ment of a provision against reverse engineer-
ing if necessary to obtain information for in-
teroperability purposes.

consider all facts and circumstances,
including whether the ban on reverse
engineering is in a standard form, rath-
er than adopting a blanket rule.

Many legal doctrines in the U.S. take
a similar contextual approach. Some
police contractual provisions for fair-
ness in their formation and substance
or for their effect on third parties. In
this regard, the Principles include sec-
tions on unconscionability and public
policy. Here again, the Principles do
not set forth a list of suspect or unen-
forceable terms. Instead, they take the
traditional U.S. approach of consider-
ing the context. But the Principles pro-
vide extensive comments about the na-
ture of reasonable contract-formation
processes and the fairness of substan-
tive terms to guide courts in their con-
textual approach.

Implied Warranty of No
Material Hidden Defects
The Principles clarify warranty law
that has become muddled particularly
under the UCC. For example, in the
Principles, the creation of an express
warranty and whether it is disclaimed
depend respectively on whether a rea-
sonable person could rely on the rep-

The Principles opt
to direct courts to
consider all facts
and circumstances,
rather than adopting
a blanket rule.

P
h

o
t

o
g

r
a

p
h

 b
y

 B
r

ia

n
 G

r
e

e
n

b
e

r
g

28 communications of the acm | september 2010 | vol. 53 | no. 9

viewpoints

resentation and whether a reasonable
person would be surprised by the dis-
claimer. One warranty provision, how-
ever, has been controversial. Section
3.05(b) provides that a party who trans-
fers software and receives money or a
monetary obligation in return warrants
“that the software contains no material
hidden defects of which the transferor
was aware at the time of the transfer.”

Software providers objected to this
provision as inconsistent with cur-
rent law and likely to increase litiga-
tion. They also believe the warranty
should be disclaimable. However,
the rule merely codifies U.S. contract
law’s duty to disclose and obligation
of good faith and tort law’s fraudulent
concealment principle. Further, the
material-hidden-defect rule should
not be difficult to administer. It de-
fines a material defect as one that con-
stitutes a material breach of the agree-
ment. As such, the rule draws on the
well-rehearsed material breach doc-
trine of U.S. law. Additionally, a hid-
den defect is one the provider knows
about but would not surface upon any
testing that was or should have been
performed by the user. Disclosure of
the defect occurs when a reasonable
user would understand the existence
and nature of the defect. As the Prin-
ciples point out, providers that do
not engage in concealment should
have little to fear from this rule. But
contract law should not support a
provider’s strategy to foist a product
known to be materially defective on
to a user without providing that user
with a remedy for potentially signifi-
cant losses. Providers can insulate
themselves from liability by disclos-
ing material defects in their software.

Automated Disablement
Another section that exposed conflict-
ing views governs automated disable-
ment. Automated disablement refers to
a provider’s use of electronic means to
disable or materially impair the func-
tionality of software such as by building
in a “time bomb” or accessing the us-
er’s system remotely to disable certain
software.d The Principles severely limit

d	 If a user accesses a provider’s software by con-
necting to software resident on the provider’s
system, failure of the provider to grant access
is not considered an automated disablement.

the use of automated disablement as a
remedy for breach: It is unavailable at
all in the case of a consumer transac-
tion or a standard-form transfer of gen-
erally available software. Additionally,
the term authorizing automated dis-
ablement must appear conspicuously
in the agreement, the party seeking to
employ automated disablement must
provide notice and an opportunity to
cure to the user, and the provider must
obtain a court order before disabling
the software. These obligations are not
disclaimable and damages for their
breach may not be limited.

Particularly those software provid-
ers marketing to large, knowledge-
able, well-informed commercial par-
ties objected to the restrictions placed
on automated disablement as too
onerous and an unwarranted intru-
sion on freedom of contract. They also
objected to the non-disclaimable na-
ture of the obligations and inability to
limit damages.

The commentary to the automated
disablement section recognizes both
these concerns and the historical na-
ture of the debate. Software providers
argued that automated disablement
is necessary to prevent ongoing mis-
use of the software or a continuing
breach that is causing damages to ac-
cumulate without any real possibility
the provider will ever be made whole.
Users argue that breach is highly con-
textual and a wrongful denial of use
may cripple a business and/or harm
software not even implicated in the
dispute. Moreover, allowing provid-
ers to leave a “back door” open to
permit automated disablement pos-

es real security risks. Automated dis-
ablement is so controversial that, as
recently as 2002, UCITA prohibited
its use.

We believe our approach to auto-
mated disablement presents a reason-
able balance between the conflicting
interests. Even when commercial enti-
ties negotiate contracts, one side may
overreach. Firms using software are not
monolithic—many are small firms that
cannot afford to hire lawyers to negoti-
ate complex provisions. These firms are
more akin to consumers than to large
businesses. It is better to provide pro-
tections to all firms rather than trying
to distinguish between those that are
knowledgeable and informed and those
that are not.

What’s Next?
The Principles, of course, contain many
other provisions, including standards
for enforcement of online contracts,
which we do not have space to discuss
here. Rather, we would simply empha-
size a few points:

˲˲ The Principles were the result of a
five-year drafting process that included
input from both users and providers
of software. There were many conten-
tious issues on which both constituen-
cies would never agree. In such cases,
we made difficult choices informed by
the legitimate points raised by both
sides. We are not surprised the result
sometimes makes neither side happy.

˲˲ The Principles are not the law of
the U.S. or any particular state in the
U.S. One or more of their provisions
would become law if a court in a con-
crete case chose to adopt them as its
rule of decision.

˲˲ The Principles address both top-
ics that are unique to software and
those that are not. Their applicabil-
ity is limited to their scope. To the
extent, however, that courts or com-
mentators find their approach useful
outside of the software context, we
would welcome their use by analogy
in other areas.�

Robert A. Hillman (rah16@cornell.edu) is the Edward H.
Woodruff Professor of Law at Cornell Law School, Ithaca,
NY, and was the Reporter of the Principles of the Law of
Software Contracts.

Maureen A. O’Rourke (morourke@bu.edu) is Dean,
Professor of Law, and Michaels Faculty Research Scholar
at Boston University School of Law, Boston, MA, and was
the Associate Reporter of the Principles.

Copyright held by author.

It is better to provide
protections to all
firms rather than
trying to distinguish
between those that
are knowledgeable
and informed and
those that are not.

mailto:rah16@cornell.edu
mailto:morourke@bu.edu

september 2010 | vol. 53 | no. 9 | communications of the acm 29

V
viewpoints

P
h

o
t

o
g

r
a

p
h

 b
y

 D
e

p
a

r
t

m
e

n
t

 o
f

 d
e

f
e

n
s

e
 /

 C
h

e
r

i
e

 C
u

l
l

e
n

D
efend our networks!” is
the new rallying cry in a time
of rising concerns over cyber
vulnerabilities. Malware,
Trojan horses, computer

system weaknesses, network vulner-
abilities, intrusions, data theft, identity
theft, malicious botnets, and critical in-
frastructure protection are under con-
stant discussion. Computing profes-
sionals are called on daily to help with
these problems. Cyber defense is the
topic of hundreds of conferences and
research papers every year.

By contrast, cyber attack, the flip
side of defense, has been a touchy sub-
ject. Many people feel queasy when
they hear their governments want to be
in a position to launch cyber attacks.
Most public discussions of cyber attack
tend to focus on the “bad guys” (unau-
thorized individuals with malicious
intent) who launch the attacks and the
methods they use—all for the purpose
of developing better defenses. Govern-
ments are quiet about not only their
cyber attack methods and operations,
but also the policies they follow. This
secretiveness has fueled many fears
that governments are up to things the
citizens would disapprove.

Yet there is a growing international
public discussion on cyber attack, pro-
moted in part by reports of government
activity in the area. The U.S. Depart-
ment of Defense established the U.S.
Cyber Command earlier this year to co-
ordinate the cyber defense of military
networks and to direct military cyber

attacks. Other militaries are doing the
same. Security experts Richard Clarke
and Robert Knake believe that cyber
attacks and cyber war are already un-
der way.1 Massive denial-of-service at-
tacks against government sites in Es-
tonia in 2001 and Georgia in 2008 led
to charges that Russia was engaging
in cyber warfare. China was blamed
for infiltrating and stealing sensitive
data from Google’s network and other
targets in 2009. Many believe that cy-
ber espionage by government intelli-
gence agencies is widespread.

There is an important role for com-
puter professionals in the discussions
and other activities in this area. To

point the direction, we will use a re-
cent report on cyber attack from the
National Research Council.3 The re-
port, which addresses the technical,
policy, legal, and ethical dimensions
of cyber attack, makes important dis-
tinctions that are useful to frame the
discussion. While written for the U.S.,
it discusses the issue in a way that re-
lates to many countries.

Cyber Attack and Exploitation
Cyber attack refers to deliberate
actions against data, software, or
hardware in computer systems or
networks. The actions may destroy,
disrupt, degrade, or deny access.

doi:10.1145/1810891.1810904		 Peter J. Denning and Dorothy E. Denning

The Profession of IT
Discussing
Cyber Attack
Cyber attack—the other side of cyber defense—deserves
a more open discussion than it has been getting.

Defense Secretary Robert Gates addresses the audience with Gen. Kevin Chilton, commander,
U.S. Strategic Command, and Gen. Keith Alexander, commander, U.S. Cyber Command, during
the activation ceremony of U.S. Cyber Command on Fort Meade, MD, May 21, 2010.

30 communications of the acm | september 2010 | vol. 53 | no. 9

viewpoints

Many governments’ militaries and in-
telligence agencies are actively prepar-
ing to engage in cyber attacks, perhaps
in conjunction with conventional at-
tacks or counterattacks.

Cyber exploitation is another
term in the discussions. It refers to
intelligence-gathering rather than
destructive activities. Cyber exploita-
tion usually seeks the least intrusive,
least detectable interventions into
computing systems. The purpose is
to acquire data without being seen or
getting caught. Exploitation also re-
fers to forensic recovery of data from
discarded (or captured) laptops and
storage media.

Both attack and exploitation re-
quire three things: access to a system
or network, vulnerabilities in the ac-
cessed systems, and a payload. The
access might be remote through the
Internet or close-in through physical
access. Vulnerabilities can appear in
hardware, software, hardware-software
interfaces, communication channels,
configuration tables, users, and service
providers. The payload is a program
that performs actions once a vulner-
ability has been found and exercised. A
payload might be a bot, data monitor-
ing program, virus, worm, spyware, or
Trojan horse; and it is likely to have re-
mote access to the attacker’s commu-
nication channels. The difference be-
tween attack and exploitation depends
on the actions of the payload. An attack
payload is destructive, an exploit pay-
load is nondestructive. Often the dif-
ferences are so subtle that the victim
of a cyber operation may not be able to
tell as it is happening which it is.

Cyber attack and exploitation are
tools used in the service of larger ends.
They offer a new range of capabilities

to government that can be more hu-
mane and less collaterally damaging
than their traditional “kinetic” prede-
cessors. For example, a military opera-
tion may depend on disabling an adver-
sary’s radars scattered around a city; if
a cyber attack could disable the radars,
there would be no need to bomb the in-
stallations and suffer all the collateral
damage those bombings would entail.
An intelligence operation that can steal
files remotely avoids risking the lives of
its secret agents. However, people who
would accept these ends might also
worry about the same tools being used
for other ends, such as a government
agency spying on its citizens.

The NRC report discusses the tech-
nical, policy, and social aspects of cyber
attack and exploit. It identifies compli-
cated issues that must be resolved in
such areas as the law of armed conflict,
deterrence, and the dynamics of cyber
attack. While the principles underlying
the United Nations charter on the use
of force and armed attack offer a good
starting point for an international re-
gime governing cyber attacks, they are
difficult to apply to many cyber attacks.
Traditional policies of deterrence by
threat of overwhelming response are
problematic in cyberspace because
of the extreme difficulty of accurately
identifying perpetrators. The dynamics
of cyber attack are also poorly under-
stood, including how to keep a cyber
conflict from escalating out of control
and how to terminate cyber conflict.
The report recommends that these and
other issues be discussed in an open,
public debate.

The Need for Technical Expertise
It’s tempting for us to say that these
issues look primarily legal, ethical, or
political, and that we should let law-
yers, ethicists, and politicians look af-
ter them. That reasoning is unsound.
Computing technologies open many
options and complexities that more
casual users do not appreciate. Com-
puting professional advice on the ca-
pabilities and limits of the technology
is crucial to the formulation of sound
policies, as well as the development of
tools for attack, exploit, and defense.

A significant example of this oc-
curred in 1985 when the U.S. govern-
ment undertook the Strategic Defense
Initiative (SDI), an automated missile

Computing
technologies open
many options and
complexities that
more casual users
do not appreciate.

ht
tp:
//w
ww
.ac
m
.or
g/
su
bs
cr
ibe

ACM’s
interactions
magazine explores
critical relationships
between experiences, people,
and technology, showcasing
emerging innovations and industry
leaders from around the world
across important applications of
design thinking and the broadening
field of the interaction design.
Our readers represent a growing
community of practice that
is of increasing and vital
global importance.

http://www.acm.org/subscribe

viewpoints

september 2010 | vol. 53 | no. 9 | communications of the acm 31

defense system. Many computing peo-
ple initially declined to join the debate
because they believed it was inher-
ently political and they had little to of-
fer. That changed with David Parnas’s
remarkable Communications article,
“Software aspects of strategic defense
systems,”4 which set out for the first
time the scientific framework of soft-
ware engineering. Parnas showed that
software engineering at the time was
not capable of producing reliable con-
trol systems for missile defense. After
that many computing professionals
joined the debate to add their own ex-
perience and expertise with unreliable
large, complex systems.

There are several other examples
where political and legal issues depend-
ed on an understanding of the limits of
computing technology, and computing
professionals made important contri-
butions to the debates. These included
the move toward e-voting, cryptogra-
phy policy, architecting the Internet for
strong authentication, technologies to
improve or impede anonymity, propos-
als to charge postage on email to stop
spam, and network neutrality.

Cyber attack is on par with the stra-
tegic defense issue. The complex and
subtle issues of cyber attack cannot
be adequately resolved unless experts
knowledgeable in the workings and ca-
pabilities of information technologies
participate actively in the discussions.
Some of the areas where technical ex-
pertise is essential include:

˲˲ Advancing the capabilities for rap-
id attribution—determining who insti-
gated an attack so as to enable a timely
and precise response.

˲˲ Understanding and measuring

both direct and indirect effects of cy-
ber attacks; assessing damages related
to direct and indirect effects of cyber
attacks.

˲˲ Determining whether a cyber op-
eration is an attack or exploitation—or
generally inferring intent.

˲˲ Trying to understand, through
war game simulations, how social
and technical systems in the Internet
might respond to various attacks and
provocations, how cyber attacks could
escalate out of control, and which
“games of cooperation” might best
thwart attacks.

˲˲ Understanding the relationship
between recovery time and value of an
attack—an attacker is less motivated to
take down a network if the victim can
quickly restore it to operation.

˲˲ Finding effective means of plant-
ing or discovering Trojan horses and
other forms of malware.

˲˲ Determining the effects of virtu-
alization in the cloud on the ability to
mount, detect, and thwart attacks.

˲˲ Understanding and minimizing
risks introduced by development or use
of cyber attack and exploit capabilities.

˲˲ Understanding and explaining im-
plications of new technologies—how
they might be attacked or how they
might facilitate an attack or exploit. For
example, technologies for smart grids,
smart cars, wireless home networks, or
social networking systems.

˲˲ Determining the requirements for
getting good indications and warnings
of cyber attack—is it necessary to pen-
etrate adversary networks to get this in
a timely enough manner to defend or
respond effectively?

Studying these areas contributes to
better defenses. It is not possible to
build strong defenses without acquir-
ing and maintaining a solid under-
standing of how attacks work and how
effective they might be.

What You Can Do
It is important that computing profes-
sionals bring their general knowledge
of computers and networks to the dis-
cussions of technical, policy, legal,
and social issues around cyber attack.
There are several ways to do this:

˲˲ Engaging in research in the above
areas and publishing results.

˲˲ Developing and participating in cy-
ber attack and defense exercises; mak-

ing sure that cyber exercises are true to
technology and its limits.

˲˲ Participating in groups that address
cyber attack issues, for example, the Cy-
ber Conflict Studies Association (cyber-
conflict.org), which sponsors meetings
and working groups on various topics
relating to cyber attack and defense.

˲˲ Participating in online discussion
groups such as the Cyber Security Fo-
rum Initiative’s Cyber Warfare Division
(CSFI-CWD) on LinkedIn.

˲˲ Participating in conferences such
as InfoWarCon (cyberloop.org) or the
Conference on Cyber Conflict spon-
sored by the NATO-accredited Coop-
erative Cyber Defence Centre of Excel-
lence in Estonia (www.ccdcoe.org).

˲˲ Participating in government-spon-
sored working groups that address cy-
ber attack issues.

˲˲ Separating truth from fiction about
technology in media stories—writing
articles that debunk myths.

Even though many of the meetings
and discussions on cyber conflict em-
phasize the legal and policy issues, it
is vital that computing professionals
participate so that findings and recom-
mendations are based on a sound un-
derstanding of technology. Moreover,
the networks of computing profession-
als formed in these discussions be-
come powerful resources for respond-
ing to cyber attacks.

We join with the NRC report to
strongly endorse the strategy of open-
ness in these efforts and discussions.
Openness mobilizes many brains on
difficult problems, increasing the
chances of finding good solutions.	

References
1.	C larke, R., and R. Knake. Cyber War. Ecco, 2010.
2.	D enning, D. E. Information Warfare and Security.

Addison-Wesley, 1998.
3.	N ational Research Council. Technology, Policy, Law,

and Ethics Regarding U. S. Acquisition and Use of
Cyberattack Capabilities. W.A. Owens, K.W. Dam,
and H.S. Lin, Eds., National Academic Press, 2009.
Available from MacArthur Foundation, macfound.org,
search for “cyberattack.”

4.	P arnas, D. Software aspects of strategic defense
systems. Commun. ACM 28, 12 (Dec. 1985), 1326–1335.

5.	 Vijayan, J. Over 75,000 systems compromised in
cyberattack. Computerworld (Feb 18, 2010).

Peter J. Denning (pjd@nps.edu) is Distinguished
Professor of Computer Science and Director of the
Cebrowski Institute for Innovation and Information
Superiority at the Naval Postgraduate School in Monterey,
CA and is a past president of ACM.

Dorothy E. Denning (dedennin@nps.edu) is Distinguished
Professor of Defense Analysis at the Naval Postgraduate
School in Monterey, CA, and author of Information
Warfare and Security.2

Copyright held by author.

It is not possible to
build strong defenses
without acquiring a
solid understanding
of how attacks work
and how effective
they might be.

http://macfound.org
mailto:pjd@nps.edu
mailto:dedennin@nps.edu
http://cyberconflict.org
http://cyberconflict.org
http://cyberloop.org
http://www.ccdcoe.org

32 communications of the acm | september 2010 | vol. 53 | no. 9

V
viewpoints

P
h

o
t

o
g

r
a

p
h

 b
y

 M
a

r
c

e
l

l
o

 B
o

r
t

o
l

i
n

o
 /

 is

t
o

c
k

p
h

o
t

o
.c

o
m

doi:10.1145/1810891.1810905	 Mordechai Ben-Ari

Viewpoint
Objects Never?
Well, Hardly Ever!
Revisiting the Great Objects Debate.

A
t the 2005 SIGCSE (Special
Interest Group in Comput-
er Science Education) Sym-
posium in St. Louis, MO, a
packed audience listened

to the Great Objects Debate: Should we
teach “objects first” or “objects later”?1
In the objects-first approach, novices
are taught object-oriented program-
ming (OOP) in their initial introduc-
tion to programming, as opposed to an
objects-later approach, where novices
are first introduced to procedural pro-
gramming, leaving OOP to the end of
the first semester or the end of the first
year. Kim Bruce and Michael Kölling
spoke in favor of the objects-first ap-
proach, while their opponents Stuart
Reges and Eliot Koffman argued for
teaching procedural programming
first. One of Bruce’s arguments was:
since OOP is dominant in the world
of software development, it should be
taught early. I later contacted Bruce to
ask for a warrant for the dominance of
OOP, but he could not give me one, nor
could any of several other experts to
whom I posed the same question.

I claim that the use of OOP is not
as prevalent as most people believe,
that it is not as successful as its pro-
ponents claim, and, therefore, that its
central place in the CS curriculum is
not justified.

Is OOP Dominant?
In assessing the dominance of OOP, we
have to watch out for proxies. The exten-
sive use of languages that support OOP
proves nothing, because languages are

chosen for a myriad of reasons, not nec-
essarily for their suitability for OOP, nor
for the suitability of OOP itself. Simi-
larly, the use of a CASE tool that sup-
ports OOP is another proxy; these tools
might just be convenient and effective
for expressing the software design of a
system, whether OOP is being used or
not. Furthermore, many practices asso-
ciated with OOP, such as decomposing
software into modules and separating
the interface from the implementation,
are not limited to OOP; they are simply
good software practice and have been
supported by modern programming
languages and systems for years.

The classical definition of OOP was
given by Peter Wegner9: object-
oriented = objects + classes

+ inheritance. The Java Swing GUI
library, which makes massive use of in-
heritance, is frequently mentioned as
a successful example of software that
was designed using object-orientation
and it certainly fits Wegner’s defini-
tion. Is this style of programming truly
dominant?

There is a claim that 90% of all
code is being written for embedded
systems.7 I could not locate the au-
thor’s source, but it doesn’t really mat-
ter since the claim is just as suspect
as the claim that OOP is dominant.
However, embedded system develop-
ment is surely an important field of
software, and, based upon my experi-
ence, I do not believe that OOP has a
significant contribution to make here

http://ISTOCKPHOTO.COM

V
viewpoints

september 2010 | vol. 53 | no. 9 | communications of the acm 33

because the main challenges are not
in the software design itself. The chal-
lenges arise from an “unfriendly envi-
ronment”: getting proprietary hard-
ware to work, obtaining meaningful
requirements while the system itself is
being designed, integration with non-
standard networks and busses, and,
above all, determining out how to test
and verify the software.

Consider another field where the
dominance of OOP is questionable.
The development and implementation
of new algorithms form the heart of
many applications areas like numeri-
cal simulation (for example, climate
modeling) and image processing (for
example of satellite imagery). The chal-
lenges arise from mathematical diffi-
culties and demands for performance,
and OOP has little to contribute to
meeting these challenges.

Not only is there no evidence to
back up the claims for the dominance
of OOP, but there is criticism of OOP,
some of it quite harsh.3,8 I, too, have
found OOP to be extremely disappoint-
ing and I will explain my position from
a personal perspective.

What the “Real World”
is Really Like
Suppose you ask your students to de-
sign OOP software for a car; you would
probably give a good grade for the ex-
ample shown in Figure 1. The only
problem is that the real world doesn’t
work this way. A wonderful image in a
paper by Grimm5 shows a schematic
diagram for the computer system of
the Mercedes-Benz S-class car. The
legend for the schematic diagram in-
dicates there are over 50 controllers,
600,000 lines of code, hundreds of
bus messages, thousands of signals,
and three networks. The details of
this system are proprietary, but I am
confident that no one sat down and
used OOP to “design the software,” for
example, by deriving classes as shown
in Figure 1. Almost certainly, the vari-

ous subsystems were subcontracted
to different companies who jealously
guard their software because they are
engaged in merciless competition.

The interface to the brake system
will be implemented by network pro-
tocols and bus signals, and the com-
mands to the brakes will be given as
bits and bytes (or even by a hardware
specification like “apply the brakes
when lines 1 and 5 are asserted con-
tinuously for at least 10 milliseconds”).
An abstract specification like void
ApplyBrakes() is meaningless
here. More importantly, what is likely
to be changed is the interface, contrary
to the OOP approach, which assumes
that different implementations will be
“swapped” at a single interface. Let us
imagine that at some time in the future
the brake manufacturer is asked to
supply systems to Daimler competitor
BMW. The mechanics, hydraulics, elec-
tronics, and algorithms will be reused,
but the network protocols and bus sig-
nals will certainly require significant
modification to fit the systems archi-
tecture used by BMW.

I believe that industrial systems are
successful because the decomposition
is not into classes, but into subsystems.
The Mercedes-Benz car has, on the av-
erage, 600,000/50 = 12,000 source code
lines per controller, so each individual

subsystem can be developed by a rela-
tively small team in a relatively short
time. There is a need for talented sys-
tems engineers to specify and integrate
the subsystems, but there is no over-
all grand software design where OOP
might help.

Natural and Intuitive
In the 43 years since I first learned to
program, I have frequently become
excited about developments in pro-
gramming, such as pattern matching
(which I first encountered in SNOBOL)
and strong type checking (a revela-
tion when I first learned Pascal), and I
found that these new constructs natu-
rally and intuitively supported solu-
tions to programming tasks. I have
never had the same feeling about OOP,
despite teaching it, writing textbooks
on OOP languages, and developing
pedagogical software in Java. During
all this time, I found only one natural
use of inheritance. (I developed a tool
for learning distributed algorithms2
and found it convenient to declare an
abstract class containing the common
fields and methods of the algorithms
and then to declare derived classes for
specific algorithms.) Isn’t it just possi-
ble that my inability to profit from OOP
reflects a problem with OOP itself and
not my own incompetence?

I am not the only one whose intu-
ition fails when it comes to OOP. Ha-
dar and Leron recently investigated the
acquisition of OOP concepts by experi-
enced software developers. They found
that: “Under the demands of abstrac-
tion, formalization, and executability,
the formal OO paradigm has come to
sometimes clash with the very intu-
itions that produced it.”6 Again, isn’t it
just possible that the intuition of expe-
rienced software engineers is perfectly
OK, and that it is OOP that is not intui-
tive and frequently even artificial?

Reuse from the Trenches
One of the strongest claims in favor of
OOP is that it facilitates reuse. I would
like to see evidence to support this, be-
cause, in my experience, OOP makes
reuse difficult, if not impossible. Here,
I would like to describe two attempts
at reuse where I truly felt that OOP was
the problem and not the solution. I
would like to emphasize that—as far
as I can judge—these programs were

Isn’t it just possible
that my inability
to profit from OOP
reflects a problem
with OOP itself
and not my own
incompetence?

Figure 1. Example OOP software for a car.

abstract class Brake {
 public abstract void applyBrakes();
}
class DiskBrake extends Brake { ... }
class DrumBrake extends Brake { ... }

34 communications of the acm | september 2010 | vol. 53 | no. 9

viewpoints

designed according to the principles
of OOP, and the quality of the design
and programming was excellent.

I developed the first concurrency
simulator for teaching based upon a
Pascal interpreter written by Niklaus
Wirth. Several years ago, while looking
for a modern concurrency simulator, I
found a third-generation descendant
of my simulator: an interpreter writ-
ten in Java, extended with a debugger
that had a Swing-based GUI. I wished
to modify this software to interpret
additional byte codes and to expand
the GUI by including an editor and a
command to invoke the compiler.

The heart of an interpreter is a large
switch/case-statement on the instruc-
tion codes. An often-cited advantage
of OOP is its ability to replace these
statements with dynamic dispatching.
In the Java program, an abstract class
for byte codes was defined, and from
it, other abstract and concrete classes
were derived for each of the byte codes.
I simply found it more difficult (even
with Eclipse) to browse and modify
80 classes than I did when there were
80 alternatives of a case-statement in
Pascal.

This was only an annoyance; the
real problem quickly surfaced. The
extreme encapsulation encouraged
by OOP caused untold complexity,
because objects have to be passed to
various classes via constructors. For
example, in the original program,
when a button is clicked to request
the display of the history window, the
statement performed in the event
handler is as shown in Figure 2. Well,
the history window is derived from an
abstract window class, so OOP makes
sense here, but there is one debugger,
one debugger frame, one interpreter,
and one window manager. Why can’t
these subsystems be declared publicly
(and implemented privately) without
the baggage of allocated objects and
constructors? My attempt to modify
the software was continually plagued
by the need to access one of these sub-
systems from a class that had not been
passed the proper object. This result-
ed in cascades of modifications and
complicated the task considerably; in
addition, it led to a decline in coher-
ence and cohesion. As a result of this
experience, I have ceased to automati-
cally encapsulate everything; instead,

Online Books
& Courses Programs!ACM’s

Helping Members Meet Today’s Career Challenges

Over 3,500 Online Courses and 1,000 Virtual Labs
from Element K!

The ACM Online Books Collection
includes full access to 600 online
books from Safari® Books Online,
featuring leading publishers includ-
ing O’Reilly. Safari puts a complete
IT and business e-reference library
right on your desktop. Available to
ACM Professional Members, Safari
will help you zero in on exactly the
information you need, right when
you need it.

All Professional and Student Mem-
bers also have full access to 500
online books from Books24x7®, in
ACM’s rotating collection of com-
plete unabridged books on the
hottest computing topics. This
virtual library puts information at
your fingertips. Search, book-
mark, or read cover-to-cover. Your
bookshelf allows for quick retrieval
and bookmarks let you easily
return to specific places in a book.

pd.acm.org
www.acm.org/join

ACM’s Online Course Collection includes over 3,500 online courses, 1,000
virtual labs, e-reference tools and offline capability. Program highlights:

The ACM E-Learning Catalog - round-the-clock access to 3,500 online courses
on a wide range of computing and business topics, in multiple languages.

Exclusive vLab® Virtual Labs - 1,000 unique vLab® exercises place users on sys-
tems using real hardware and software allowing them to gain important job-re-
lated experience.

Reference Tools - an e-Reference Library extends technical knowledge outside
of the classroom, plus online Executive Summaries and quick reference cards to
answer on-the-job questions instantly.

Offline Player - members can access assessments and self-study courses offline,
anywhere and anytime, without a live Internet connection. A downloadable
Quick Reference Guide and a 15-minute site orientation course for new users are
also available to help members get started.

The ACM Online Course Program is open to ACM Professional and Student Members.

600 Online Books
from Safari

ACM members are eligible
for a special 40% savings offer

to upgrade to a Premium
or Full Library subscription.

For more details visit:
pd.acm.org

500 Online Books
from Books24x7

Books and Couses_CACM_two_thirds_page:Layout 1 8/6/10 3:17 PM Page 1

http://pd.acm.org
http://pd.acm.org
http://www.acm.org/join

viewpoints

september 2010 | vol. 53 | no. 9 | communications of the acm 35

I judge each case on its own merits.
In general, I see nothing wrong with
declaring record types and subsystem
objects publicly, encapsulating only
the implementation of data structures
that are likely to change.

My second attempt at reusing OOP
software involved a software tool VN
that I developed for learning nonde-
terminism. It takes as input the XML
description of a nondeterministic fi-
nite automaton that is generated by an
interactive graphical tool for studying
automata. To facilitate using VN as a
single program, I decided to extract
the graphics editor from the other tool.
But OOP is about classes and Java en-
ables the use of any public declaration
anywhere in a program just by giving
its fully expanded name. There were
just enough such references to induce
a cascade of dependencies when I tried
to extract the Java package containing
the graphics editor.

This is precisely the issue I raised
with the imaginary brake system. What
I wanted to reuse was the implementa-
tion of the graphics editor even if that
meant modifying the interface. I saw
that I would have had to study many
of the 400 or so classes in 40 packages,
just to extract one package. The effort
did not seem worthwhile, so I gave up
the idea of reusing the package and

included the (very large) jar file of the
other tool in my distribution.

Paradigms
I suspect I know what your next ques-
tion is going to be: What paradigm
do you propose instead of OOP? Ever
heretical, I would like to question the
whole concept of programming para-
digm. What paradigms are used to de-
sign bridges? My guess is the concept
of paradigm does not exist there. Engi-
neering design is done by using tech-
nology to implement requirements.
The engineer starts from data (length
of the bridge, depth of the water, char-
acteristics of the river bed) and con-
straints (budget, schedule), and she
has technology to use in her design:
architecture (cables, stays, trusses)
and materials (steel, concrete). I sim-
ply don’t see a set of alternative “para-
digms” for building bridges.

Similarly, the software engineer
is faced with requirements and con-
straints, and is required to meet them
with technology: computer architec-
tures, communication links, operat-
ing systems, programming languages,
libraries, and so on. Systems are con-
structed in complex ways from these
technologies, and the concept of pro-
gramming paradigm is of little use in
the real world.

Hegemony
It is easy (and not incorrect) to dismiss
what I have written as personal opinion
and anecdotes, just as I have dismissed
OOP as based upon personal opinion
and anecdotes without solid evidence
to support its claims. But the difference
between me and the proponents of OOP
is that I am not making any hegemonic
claims for my opinions. I do not believe
there is a “most successful” way of struc-
turing software nor that any method is
“dominant.” This hegemony is particu-
larly apparent in CS education, as evi-
denced by the objects-first vs. objects-
later debate concerning teaching OOP
to novices. No one questions whether

OOP is at all appropriate for novices,
and no one suggests an objects-as-an-
upper-level-elective approach or an
objects-in-graduate-school approach.
Perhaps the time has come to do so.

Conclusion
I will conclude with a “to-do list”:

˲˲ Proponents of OOP should pub-
lish analyses of successes and failures
of OOP, and use these to clearly and
explicitly characterize the domains in
which OOP can be recommended.

˲˲ Software engineers should always
use their judgment when choosing
tools and techniques and not be car-
ried away by unsubstantiated claims.
Even if you are constrained to use a
language or tool that supports OOP,
that in itself is not a reason to use OOP
as a design method if you judge it is as
not appropriate.

˲˲ Educators should ensure students
are given a broad exposure to program-
ming languages and techniques. I
would especially like to see the educa-
tion of novices become more diverse.
No harm will come to them if they see
objects very, very, late.�

References
1.	 Astrachan, O., Bruce, K., Koffman, E., Kölling, M.,

and Reges, S. Resolved: Objects early has failed.
SIGCSE Bulletin 37, 1 (Feb. 2005), 451–452. DOI:
http://doi.acm.org/10.1145/1047124.1047359.

2.	B en-Ari, M. Distributed algorithms in Java. SIGCSE
Bulletin 29, 3 (Sept. 1997), 62–64. DOI: http://doi.
acm.org/10.1145/268809.268840.

3.	G abriel, R. Objects Have Failed: Notes for a Debate,
(2002); http://www.dreamsongs.com/Files/
ObjectsHaveFailed.pdf.

4.	G ries, D. A principled approach to teaching OOP
first. SIGCSE Bulletin 40, 1 (Feb. 2008), 31–35.
DOI: http://doi.acm.org/10.1145/1352322.1352149.

5.	G rimm, K. Software technology in an automotive
company: Major challenges. In Proceedings of
the 25th international Conference on Software
Engineering (Portland, OR, May 3–10, 2003).
International Conference on Software Engineering.
IEEE Computer Society, Washington, D.C., 498–503.

6.	H adar, I. and Leron, U. How intuitive is
object-oriented design? Commun. ACM 51,
5 (May 2008), 41–46. DOI: http://doi.acm.
org/10.1145/1342327.1342336.

7.	H artenstein, R. The digital divide of computing. In
Proceedings of the 1st Conference on Computing
Frontiers (Ischia, Italy, Apr. 14–16, 2004). CF 2004.
ACM, New York, 357–362. DOI: http://doi.acm.
org/10.1145/977091.977144.

8.	J acobs, B. Object Oriented Programming Oversold!;
http://www.geocities.com/tablizer/oopbad.htm.

9.	W egner, P. Dimensions of object-based language
design. In Conference Proceedings on Object-
Oriented Programming Systems, Languages and
Applications (Orlando, FL, Oct. 4–8, 1987). N.
Meyrowitz, Ed. OOPSLA 1987. ACM, New York, 168–
182. DOI: http://doi.acm.org/10.1145/38765.38823.

Mordechai (Moti) Ben-Ari (benari@acm.org) is an
associate professor in the Department of Science Teaching
at Weizmann Institute of Science in Rehovot, Israel, and
an ACM Distinguished Educator.

Copyright held by author.

I do not believe
there is a “most
successful” way
of structuring
software nor
that any method
is “dominant.”

Figure 2. Example statement performed in the event handler.

	 getDebugger().getDebuggerFrame().getWindowManager().
 		 showHistoryWindow(
 		 getDebugger(), getDebugger().getInterpreter());

http://doi.acm.org/10.1145/1047124.1047359
http://doi.acm.org/10.1145/268809.268840
http://www.dreamsongs.com/files/ObjectsHaveFailed.pdf
http://doi.acm.org/10.1145/1352322.1352149
http://doi.acm.org/10.1145/1342327.1342336
http://doi.acm.org/10.1145/977091.977144
http://www.geocities.com/tablizer/oopbad.htm
http://doi.acm.org/10.1145/38765.38823
mailto:benari@acm.org
http://doi.acm.org/10.1145/268809.268840
http://www.dreamsongs.com/files/ObjectsHaveFailed.pdf
http://doi.acm.org/10.1145/1342327.1342336
http://doi.acm.org/10.1145/977091.977144

36 communications of the acm | september 2010 | vol. 53 | no. 9

V
viewpoints

vis

u

a
l

iza

t

i
o

n
 b

y
 S

h
ai

 Ca

r

mi

,
S

h
l

o
m

o
 Hav

l
i

n
,

S
c

o
t

t
 K

i
r

k
p

a
t

r
i

c
k

,
Y

u
va

l

 S
h

avi

t

t
,

a
n

d
 E

r
a

n
 S

h
i

r
.

“A

 m
o

d
e

l
 o

f
 I

n
t

e
r

n
e

t
 t

o
p

o
l

o
g

y
 u

si

n
g

 k
-s

h
e

l
l

 d
e

c
o

m
p

o
si

t

i
o

n
”.

P
r

o
c

.
Na

t

l
.

A
c

a
d

.
S

c
i

.
U

S
A

 1
0

4
,

1
1

1
5

0
 (

2
0

0
7

)

Point/Counterpoint
Future Internet Architecture:
Clean-Slate Versus
Evolutionary Research
Should researchers focus on designing new network architectures or improving the current Internet?

doi:10.1145/1810891.1810906	 Jennifer Rexford 		 Constantine Dovrolis

O
v e r t h e pa s t several years,
the networking research
community has engaged
in an ongoing conversa-
tion about how to move

the field—and the Internet itself—for-
ward. These discussions take place in
the context of the tremendous success
of the Internet, begging the question
of whether researchers should focus on
understanding and improving today’s
Internet or on designing new network
architectures that are unconstrained
by the current system. Ultimately, indi-
vidual researchers have their own styles,
often a unique blending of both ap-
proaches. In this Point/Counterpoint,
Jennifer Rexford and Constantine Dov-
rolis debate the pros and cons of “clean
slate” and “evolutionary” approaches
to networking research, reflecting on
the larger discussion taking place in the
networking research community.

Point: Jennifer Rexford
The Internet is an undeniable suc-
cess—a research experiment that es-
caped from the lab to become a major
part of the global communications
infrastructure. The seeds of the Inter-
net’s success lie in its “underspecified”
design—a minimalist network provid-
ing a simple best-effort packet-delivery
service coupled with programmable
computers at the end points. These ear-
ly design decisions were so important
because they lowered the barriers to in-

novation in new applications (created
by anyone who wants to program these
computers) and link technologies (that
can be easily adopted if they support
the basic packet-delivery model). This
has led to innovation far beyond what
any of the early designers of the Inter-
net could have ever imagined.

Given the Internet is so successful,
and apparently so accommodating of
innovation, “clean slate” networking

research may seem strange, even su-
perfluous. Yet, nothing could be fur-
ther from the truth. In fact, clean-slate
design is important for enabling the
networking field to mature into a true
discipline, and to have a future Inter-
net that is worthy of society’s trust.
Contrary to the very premise of our de-
bate, I do not believe that evolutionary
and clean-slate research are at odds.
Insights from clean-slate research can

Nodal representation of the Internet.

V
viewpoints

september 2010 | vol. 53 | no. 9 | communications of the acm 37

research should be the greater depth
of our understanding, not just the
breadth of deployment.

Yet, clean-slate networking research
cannot stop at pencil-and-paper de-
signs. In addition to new ideas, and rig-
orous theoretical models and analysis,
we need to push our ideas further into
real implementations and (ideally) de-
ployments. The “Eureka” moments
that lead to real progress happen when
we encounter surprises, when some-
thing happens that we could never
have planned or predicted. Building,
evaluating, and deploying real sys-
tems—on experimental facilities such
as the proposed GENI and Federica
platforms (in the U.S. and Europe, re-
spectively)—exposes our nascent ideas
to the harsh light of day, and gives us
the feedback necessary to help our
ideas grow sharper and stronger as we
address the unexpected setbacks and
limitations, and embrace the practical
constraints and design requirements
we were unwittingly ignoring.

Building and deploying our designs
is more than just the last step in evaluat-
ing an idea—it is part of a continuous
cycle of research, constantly refining
the problem, the models, and the so-
lutions until a more complete under-
standing emerges. This approach to
networking research should sound fa-
miliar—it is exactly how the early ARPA-
net was designed and built, leading to
the amazing advances we have seen in
the 40 years since the first message was
delivered over the network we would
come to call “the Internet.” At the time,
the notion that the ARPAnet would
eventually overtake the established
telecommunication networks of its day
was inconceivable to most people. But,
we know now how that story turned out.

Toward an Internet
Worthy of Our Trust
The Internet is showing signs of age.
Pervasive security problems—spam,
denial-of-service attacks, phishing,
and so on—are only the most visible
symptoms. The Internet also does not
handle mobile hosts, whether users on
the move or virtual machines migrat-
ing from one computer to another, all
that well. The Internet’s best-effort ser-
vice model is a poor match for many re-
al-time applications, such as IPTV and
videoconferencing. The Internet is not

(and should) help guide the ongoing
evolution of the Internet, and a clean-
slate redesign may be necessary for the
Internet’s continued evolution into a
secure, reliable, and cost-effective in-
frastructure. Most importantly, as a re-
search community, we should plant the
seeds that will enable future research
experiments to “escape from the lab.”

Toward a Networking Discipline
The success of the Internet does not
mean the field of networking is mature.
Far from it. The Internet has grown and
changed much faster than our own un-
derstanding of how to design, build,
and operate large, federated networks.
This is a common phenomenon in en-
gineering. The great medieval cathe-
drals were built long before the field
of civil engineering was in place. As a
result, many of these early cathedrals
collapsed under their own weight after
decades of construction. Even the col-
lapsed cathedrals were an invaluable
learning experience along the long
road toward a more rigorous approach
to designing and building large struc-
tures. They were a step in the journey,
not the destination itself. The way we
design large buildings today reflects
more than incremental improvements
in engineering techniques, but a fun-
damentally more principled approach
to the problem.

Whenever the Internet faces new
challenges, from the fears of congestion
collapse in the late 1980s to the press-
ing cybersecurity concerns of today,
new patches are introduced to (at least
partially) address the problems. Yet,
we do not yet have anything approach-
ing a discipline for creating, analyzing,
and operating network protocols, let
alone the combinations of protocols
and mechanisms seen in real networks.
Networking is not yet a true scholarly
discipline, grounded in rigorous mod-
els and tried-and-true techniques to
guide designers and operators. Wit-
ness any networking class or textbook,
riddled as they are with descriptions
of existing protocols rather than a top-
down treatment of the “laws” or even
“rules of thumb” governing the design,
analysis, and operation of these proto-
cols. Given the critical importance of
communication networks, we need the
field to mature into a discipline we can
apply confidently in practice and teach

effectively to our students.
While studying today’s Internet is

clearly an important part of maturing
the field, it is not enough; we also need
exploration that is unfettered by to-
day’s artifacts. To be clear, ignoring to-
day’s artifacts does not mean ignoring
reality. Any new designs must still grap-
ple with practical constraints (such as
the speed of light, or limitations on
computation, memory, and bandwidth
resources) and design requirements
(for goals like efficiency, security, pri-
vacy, reliability, performance, ease of
management, and so on). Yet, a clean-
slate design process could remain free
of the considerable minutiae of today’s
protocols and operational practices,
and the challenges of incremental de-
ployment.

A clean-slate design process can
topple the underlying assumptions
of today’s architecture, such as ask-
ing whether we can achieve scalabil-
ity without relying on hierarchical
addressing, route traffic directly on
the name of a service rather than the
address of a machine, or have notions
of identity that cannot be spoofed.
This clean-slate exploration can lead
to valuable new designs that fill out
the large design space, expanding our
knowledge and experience. This explo-
ration can, perhaps more importantly,
lead to new methodologies for design-
ing networks and protocols. Whether
and how to deploy these new ideas in
today’s Internet, while certainly a wor-
thy topic in its own right, should some-
times be secondary to the broader goal
of deepening our understanding of
the field. The measure of successful

As a research
community,
we should plant
the seeds that
will enable future
research experiments
to “escape from
the lab.”

38 communications of the acm | september 2010 | vol. 53 | no. 9

viewpoints

Counterpoint:
Constantine Dovrolis

L
e t us f i r s t identify the ma-
jor difference between the
two approaches. Evolution-
ary Internet research aims to
understand the behavior of

the current Internet, identify existing
or emerging problems, and resolve
them under two major constraints:
first, backward compatibility (interop-

erate smoothly with the legacy Inter-
net architecture), and second, incre-
mental deployment (a new protocol or
technology should be beneficial to its
early adopters even if it is not globally
deployed).

On the other hand, clean-slate re-
search aims to design a new “Future
Internet” architecture that is signifi-
cantly better (in terms of performance,
security, resilience, and other proper-
ties) than the current Internet without

being constrained by the current Inter-
net architecture.

Clean-Slate Research and
Its Real-World Impact
Clean-slate Internet research is not
something new. In fact, there is a long
history of such efforts and we can learn
something by analyzing whether ear-
lier clean-slate protocols and archi-
tectures have been adopted or not. To
name few examples, consider active

reliable enough, due to equipment fail-
ures, software bugs, and configuration
mistakes. Managing a large network
is too expensive—often costing more
than the underlying equipment—and
tremendously error prone. The Inter-
net consumes too much energy, in an
era of serious concern about global
warming. The Internet does not seem
ready to handle the coming onslaught
of countless small sensor devices that
have the potential to revolutionize our
world. The list goes on and on.

Many of these pressing challenges
are deeply rooted in early design deci-
sions underlying the Internet, and may
not be solvable without fundamental ar-
chitectural change. For example, many
security problems relate to the Inter-
net’s weak notions of identity, and par-
ticularly the ease of spoofing everything
from IP addresses to domain names,
from email addresses to routing infor-
mation. Stronger notions of identity are
not easily retrofitted on today’s archi-
tecture. Mobility is difficult to handle
because IP addresses are hierarchical
and tightly coupled with the scalabil-
ity of the routing protocols. Breaking
this coupling may require a new rela-
tionship between naming, addressing,
and routing. Network management is
difficult because of the current “divi-
sion of labor” between the distributed
protocols running on the network ele-
ments and the management systems
that can only indirectly tune the many
knobs these protocols expose. Solving
these problems may require us to re-
visit some of the most basic principles
underlying the Internet of today.

Clean-slate research allows us to
explore radically new designs, to see if

they are viable alternatives to the solu-
tion we have now. Some of these clean-
slate solutions may very well have an
incremental path to deployment. But,
as the American baseball legend Yogi
Berra famously said, “You’ve got to be
very careful if you don’t know where
you’re going, because you might not
get there.” Clean-slate research can
help us determine where we should be
going. Clean-slate design may also help
us decide what parts of the Internet
should not change. Perhaps, despite
the challenges facing today’s Internet,
we fundamentally cannot do much
better along some dimensions (say, se-
curity) without paying too high a price
along some other dimension. Clean-
slate research can help us understand
those trade-offs, to guide decisions
about whether and what to change.

Finally, perhaps wholesale change
is both necessary and possible. De-
spite enabling innovation in applica-
tions and link technologies, the Inter-
net architecture itself is remarkably
resistant to change. In redesigning the
Internet, we can direct much-needed
attention to this problem. Making the
inside of the network more program-
mable, and allowing multiple inde-
pendent designs to coexist in parallel,
are a promising start in this direction.
Perhaps the future Internet could have
the seeds for its own constant reinven-
tion lying within it. We are already see-
ing the early fruits of this kind of clean-
slate thinking, in software-defined
networking infrastructures like Open-
Flow (http://www.openflowswitch.
org/) that are being deployed in several
enterprise, datacenter, and backbone
networks. Even experimental infra-

structures like GENI and Federica, de-
signed as they are to enable multiple
simultaneous experiments with new
network architectures, are themselves
examples of this kind of change.

Fundamental change like this is,
indeed, possible and it is already start-
ing to happen, due to the early clean-
slate research efforts over the past sev-
eral years. Further, more substantive
change can happen in the years ahead.
Given the Internet largely supplanted
the circuit-switched telephone net-
works, is it so farfetched to think that
something else might supplant the
Internet, or so significantly alter the
Internet that we no longer recognize it
from the descriptions we see in today’s
networking textbooks?

Conclusion
Networking is still a young field. While
the Internet’s success is something
we should admire and celebrate, we
should not be content with our current
understanding of the field or view the
Internet architecture as set in stone.
Perhaps a new generation of research-
ers and practitioners will turn the fu-
ture Internet into something that only
vaguely resembles its predecessor.
Perhaps this future network will ac-
commodate change more broadly and
deeply than even today’s Internet has.
A willingness to step back, and design
from scratch, is an important part of
the research repertoire that can enable
these advances in the field, and of the
Internet itself.	

Jennifer Rexford (jrex@cs.princeton.edu) is a professor in
the computer science department at Princeton University
in New Jersey.

Copyright held by author.

mailto:jrex@cs.princeton.edu
http://www.openflowswitch.org
http://www.openflowswitch.org

viewpoints

september 2010 | vol. 53 | no. 9 | communications of the acm 39

networks, per-flow QoS guarantees and
admission control, the connection-
less network protocol CLNP, transport
protocols such as XCP, or interdomain
routing architectures such as Nimrod.
There is also a large number of proto-
cols that are more or less backward
compatible but not truly incrementally
deployable, such as IPv6, interdomain
IP multicast, RSVP, and IntServ, IPsec,
or S-BGP. Arguably, these protocols
have not seen large-scale deployment,
at least so far. The “real world” adopt-
ed instead evolutionary approaches
such as NATs, caching and content
distribution networks, DiffServ, adap-
tive applications, and various security
mechanisms (such as end-host secu-
rity, intrusion detection systems, and
routing filters) that work well with the
legacy architecture. Why does clean-
slate architectural research, or even
protocols and designs that attempt to
be backward compatible, often fail to
be adopted in practice?a

In industrial economics, it is well
known that an emerging technology
that is subject to network externalities
will probably not be able to replace a
widely deployed but inferior technol-
ogy, as long as there are costs involved
in switching from the incumbent to the
emerging technology (see Arthur1 and
related papers). Instead, the more rel-
evant question is whether the emerg-
ing technology offers a valuable new
service the current technology cannot

a	 I do not claim that the research on those ear-
lier clean-slate protocols was mediocre or that
it did not have academic impact—I am strictly
focusing on their deployment and real-world
impact.

provide directly or indirectly. In other
words, how does the additional value
of a new technology, relative to the in-
cumbent technology, compare to the
transition cost?

It is not enough for a clean-slate
architecture to be “better” than the
current Internet architecture. For the
former to have real impact it should be
able to replace the latter—otherwise
it will remain an intellectual exercise.
It is the question of real-world impact
that differentiates clean-slate from
evolutionary research and design. And
at least so far, the proponents of clean-
slate research have not shown instanc-
es of such new applications or services
that cannot be directly or indirectly
constructed for the current Internet.
Incidentally, the promise of a “secure
and trustworthy Future Internet” is
appealing but not convincing: there is
no way to provide security guarantees
with an open-ended threat model. Fur-
ther, it is very likely that a brand-new
internetworking architecture will have
more design and implementation bugs
and security holes than the current In-
ternet architecture (which is being “de-
bugged” for more than 30 years now).

The proponents of clean-slate de-
sign emphasize they will not stay with
“paper designs”—they will build and
experiment with the proposed archi-
tectures in testbeds such as GENI.
But what would that prove? Several
previous clean-slate protocols were
also implemented and tested 10 or 20
years ago. The issue was not the lack
of implementation or experimenta-
tion, but the fact that those protocols
could not compete with incumbent

technologies, considering the actual
benefits they provide to users and the
costs involved in the technological
transition. These are issues of mostly
economic nature that GENI or other
testbeds cannot help us study. Further,
these testbeds are not used by real ap-
plications and people and they do not
operate under the economic and policy
constraints of the real world. The early
ARPANET succeeded because it was
not just a testbed: it was also used as a
production network, connecting some
universities and research labs, while at
the same time networking researchers
could experiment with new protocols
and technologies.

Another popular claim is that the
current Internet architecture is the
result of clean-slate thinking back
in the 1960s or 1970s. However, we
should not ignore that packet switch-
ing or TCP/IP were not inventions
that “came out of nowhere”—they re-
sulted from an evolutionary process
that started from synchronous multi-
plexing in circuit-switched networks,
moving to asynchronous multiplex-
ing and then to datagram forwarding.
Further, the ARPANET architecture
was only one of several competing
architectures (such as IBM SNA, DEC-
net, ITU X.25, Xerox Pup, SITA HLN,
or CYCLADES), and it was through a
long evolutionary process that the for-
mer eventually prevailed.

Is the Internet Architecture
Really “Ossified”?
One of the primary arguments for
clean-slate research has been that the
current Internet architecture is ossi-
fied, especially at the central layers of
the protocol stack (IP and TCP), and
that ISPs have no incentive to adopt
any architectural innovations. This is a
rather negative view of what happens.
The Internet architecture maps an
ever-increasing diversity of link-layer
technologies to a rapidly increasing
range of applications and services. To
support this innovation at the lowest
and highest layers of the architecture,
the central protocols of the architec-
ture must evolve very slowly so that they
form a stable background on which di-
versity and complexity can emerge.

To use a biological analogy, certain
developmental Gene Regulatory Net-
works were established in the Early

How does the
additional value of
a new technology,
relative to the
incumbent technology,
compare to the
transition cost?

The ARPANET
architecture
was only one of
several competing
architectures and it
was through a long
evolutionary process
that it prevailed.

40 communications of the acm | september 2010 | vol. 53 | no. 9

viewpoints

Several breakthroughs in networking
research resulted from evolutionary
research. For instance, major results
in congestion control and active queue
management resulted from attempts to
understand and improve TCP, the dis-
covery of fundamental properties of the
Internet traffic and topology, the design
of innovative peer-to-peer communica-
tion protocols, or the development of
end-to-end network inference as well as
network tomography methods.

A domain of knowledge does not
become science because it is based on
clean optimization frameworks or be-
cause it proves deep results about toy
models. Good science requires rele-
vance to the real world, measurements
and experimental validation, testable
hypotheses, and models with predic-
tive power.

Epilogue
I often wonder, what is the main rea-
son that well-respected Internet re-
searchers have decided to pursue the
clean-slate approach? It cannot be just
the “funding carrot,” I am sure. Here
is one possible answer from a science
fiction TV series. In “Battlestar Galac-
tica” (S4-E21),” Mr. Lampkin says to
Commander Adama: “I have to say I’m
shocked with how amenable everyone
is to this notion of (…leaving everything
behind and starting with nothing on
the newly discovered planet Earth).”
Commander Adama responds “Don’t
underestimate the desire for a clean
slate, Mr. Lampkin.” It may be that we
find joy and pride in the idea that we
can redesign the Internet from scratch,
that we can avoid all previous mistakes
and do it perfectly this time. If we do
not want to sound like science fiction
dialogue, however, it is important that
we continue to foster the evolution of
the current Internet, having positive
impact on the way many millions of
people live, work, and communicate.	

References
1.	 Arthur, W.B. Competing technologies, increasing

returns, and lock-in by historical events. The Economic
Journal 99, 394 (1989), 116–131.

2.	D ovrolis, C. and Streelman, T. Evolvable network
architectures: What can we learn from biology? ACM
SIGCOMM Computer Communications Review (CCR)
40, 2 (Apr. 2010).

Constantine Dovrolis (dovrolis@cc.gatech.edu) is an
associate professor in the College of Computing at
Georgia Tech in Atlanta, GA.

Copyright held by author.

Cambrian (about 510 million years
ago) and they have not evolved signifi-
cantly since then. These GRNs are re-
ferred to as evolutionary kernels, and it
is now understood that they are largely
responsible for major aspects of all ani-
mal body plans. For instance, the heart
of a fruit fly and the heart of a human,
despite distinct morphologies, develop
using the same core cardiac GRN. Evo-
lutionary kernels represent a stable ba-
sis on which diversity and complexity
of higher-level processes can evolve.2

An Agenda for Evolutionary
Internet Research
Instead of thinking about the Inter-
net as an artifact that we designed in
the past and we can now redesign, we
can start thinking of the Internet as
an evolving ecosystem that is affected
by, and in turn is affecting, several
disciplines and how we study them.
Its evolution is controlled, not only by
technology, but also by the global econ-
omy, creative ideas by millions of indi-
viduals, and a constantly changing set
of “environmental pressures” and con-
straints. Our mission then, as Internet
researchers, is to first measure and un-
derstand the current state of this eco-
system, predict where it is heading and
the problems it will soon face, and cre-
ate what could be referred to as intel-
ligent mutations: innovations that can,
first, avoid or resolve those challenges,
and second, innovations that can be
adopted by the current architecture
in a way that is backward compatible
and incrementally deployable. This is
a pragmatic research agenda that can
have real impact on millions of people.

Instead of testbeds, evolutionary
research needs various experimental
resources that will be integrated in the
current Internet. First, we need a dense
infrastructure of “Internet monitors”
of various types that will allow us to ac-
curately measure what is currently hap-
pening in this evolving ecosystem. It is
embarrassing that (despite the tremen-
dous value of the Route Views project)
we still do not have an accurate way to
measure the Internet interdomain to-
pology. We also do not have an estimate
of how much traffic flows between any
two autonomous systems, even though
that interdomain traffic matrix largely
determines the economics of the global
Internet. Plus, we have no way to know

how the Internet population uses the
Internet and the Web across time and
space. As this knowledge gap increases,
I am concerned we will soon be unable
to track our own creation, and much
more to influence its future.

Together with an extensive moni-
toring infrastructure, evolutionary In-
ternet research would greatly benefit if
we could operate our own experimen-
tal ISP. This would be a real TCP/IP net-
work, running all protocols of the cur-
rent Internet architecture, present at
many Internet Exchange Points, peer-
ing openly with other ISPs and content
providers, and carrying traffic that be-
longs to real Internet users. One way to
do so could be that universities use this
experimental ISP to carry part of their
traffic for free, with the understand-
ing that this is a research network and
so its traffic may be subject to experi-
mental “mutations” of the Internet
architecture. This is different than In-
ternet2 or NLR, which are production
networks, and certainly very different
than isolated GENI-like testbeds.

Where is the Science, After All?
The proponents of clean-slate design
claim their approach leads to a sci-
ence of network design (sometimes re-
ferred to as “network science,” which
is confusing because the same term
is used in other disciplines to refer to
the study of complex systems using
dynamic graph models and network
analysis techniques). It is also often
claimed that evolutionary Internet re-
search is not a science, but a collection
of “hacks” and incremental improve-
ments. This is a misleading position.

We can start thinking
of the Internet as an
evolving ecosystem
that is affected
by, and in turn is
affecting, several
disciplines and how
we study them.

mailto:dovrolis@cc.gatech.edu

Call for Nominations
The ACM Doctoral Dissertation Competition

Rules of the Competition
ACM established the Doctoral Dissertation Award
program to recognize and encourage superior research
and writing by doctoral candidates in computer science
and engineering. These awards are presented annually
at the ACM Awards Banquet.

submissions
Nominations are limited to one per university or college,
from any country, unless more than 10 Ph.D.’s are
granted in one year, in which case two may be nominated.

Deadline
Submissions must be received at ACM headquarters by
October 31, 2010 to qualify for consideration.

eligibility
Each nominated dissertation must have been accepted
by the department between October 2009 and
September 2010. Only English language versions will
be accepted. Please send a copy of the thesis in PDF
format to emily.eng@acm.org.

sponsorship
Each nomination shall be forwarded by the thesis advisor
and must include the endorsement of the department
head. A one-page summary of the signifi cance of the
dissertation written by the advisor must accompany
the transmittal.

Publication Rights
Each nomination must be accompanied by an assignment to
ACM by the author of exclusive publication rights. (Copyright
reverts to author if not selected for publication.)

Publication
Winning dissertations will be published by Springer.

selection Procedure
Dissertations will be reviewed for technical depth and
signifi cance of the research contribution, potential impact
on theory and practice, and quality of presentation.
A committee of fi ve individuals serving staggered fi ve-year
terms performs an initial screening to generate a short list,
followed by an in-depth evaluation to determine the winning
dissertation.

The selection committee will select the winning dissertation
in early 2011.

award
The Doctoral Dissertation Award is accompanied by a prize
of $20,000 and the Honorable Mention Award is accompanied
by a prize of $10,000. Financial sponsorship of the award
is provided by Google.

for submission Procedure
See http://awards.acm.org/html/dda.cfm

mailto:emily.eng@acm.org
http://awards.acm.org/html/dda.cfm

42 communications of the acm | september 2010 | vol. 53 | no. 9

practice

A 29-year-old female from New York City comes in at
3 a.m. to an emergency department (ED) in California,
complaining of severe acute abdominal pain that
woke her up. She reports that she is visiting California
to attend a wedding and that she has suffered from
similar abdominal pain, most recently resulting in
an appendectomy. The emergency physician performs
an abdominal CAT scan and sees what he believes
to be an artifact from the appendectomy in her
abdominal cavity. He has no information about the
patient’s past history other than what she is able to tell
him; he has no access to any images taken before or

after the appendectomy, nor does he
have any other vital information about
the surgical operative note or follow-
up. The physician is left with nothing
more than what he can see in front of
him. The woman is held overnight for
observation and released the following
morning symptomatically improved,
but essentially undiagnosed.

A vital opportunity has been lost,
and it will take several months and sev-
eral more physicians and diagnostic
studies (and quite a bit more abdomi-
nal pain) before an exploratory lapa-
rotomy will reveal that the woman suf-
fered from a rare (but highly curable)
condition, a Meckel’s diverticulum.
This might well have been discovered
that night in California had the physi-
cian had access to complete historical
information.

This case is recent, but the infor-
mation problem at its root seems a
holdover from an earlier age: Why is
it that in terms of automating medical
information, we are still attempting to
implement concepts that are decades
old? With all of the computerization
of so many aspects of our daily lives,
medical informatics has had limited
impact on day-to-day patient care. We
have witnessed slow progress in us-
ing technology to gather, process, and
disseminate patient information, to
guide medical practitioners in their
provision of care and to couple them to
appropriate medical information for
their patients’ care.

Why has progress been so slow?
Some of the delay certainly has been
technologically related, but not as
much as one might think. This article
looks at some of these issues and the
challenges (there are many) that remain.

First, why bother with computers in
health care, anyway? There are many
potential advantages from the applica-
tion of health information technology
(or HIT, the current buzzword). These
include improved communication
between a single patient’s multiple
health-care providers, elimination of
needless medical testing, a decrease
in medical errors, improved qual-

doi:10.1145/1810891.1810907

 Article development led by
 queue.acm.org

Information technology has the potential
to radically transform health care. Why has
progress been so slow?

by Stephen V. Cantrill, M.D.

Computers in
Patient Care:
The Promise
and the
Challenge

http://queue.acm.org

september 2010 | vol. 53 | no. 9 | communications of the acm 43

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 p
a

u
l

 p
r

i
c

e

ity of care, improved patient safety, de-
creased paperwork, and improved leg-
ibility (yes, it’s still an issue). Many of
these improvements have not yet come
to pass and many others are nearly im-
possible to rigorously prove, but for the
purposes of this discussion, let’s as-
sume that HIT is a good thing.

Some History
The first challenge in applying medical
informatics to the daily practice of care
is to decide how computerization can
help patient care and to determine the
necessary steps to achieve that goal.
This challenge is best summed up by

Lawrence L. Weed, M.D.: to develop an
information utility that has currency of
information and parameters of guid-
ance to assist medical personnel in
caring for and documenting the care of
patients.3 From the technology side, we
need a facile interface between human
and machine and a responsive, reliable
system that is always available. The
assumption is there will be adequate
computational power and mass mem-
ory to support such a system.

The history of the computer indus-
try’s involvement in these problems
is instructive. In the late 1960s, a ma-
jor computer vendor thought it could

solve many hospital-based medical
care issues in less than a year by deploy-
ing 96-button punch pads throughout
the hospital to handle physician or-
ders and intra-hospital communica-
tion. Button-template overlays were
to be used to support different types
of orders. As it turned out, this was a
most inadequate human interface:
cumbersome, inflexible, close-ended
with limited duplex communication,
and so on. Not surprisingly (at least to
the users), this was a nonstarter and
failed.

Most of the major hardware vendors
of that era also had plans to provide

44 communications of the acm | september 2010 | vol. 53 | no. 9

practice

is not known to be necessarily forward-
looking in adopting new technology,
so convincing these individuals to use
a revolutionary technology to replace
pen and paper was not easy.

The mass-storage limitations were
real. The system would support only
144 active patients at any one time
(which was adequate for operation on
a single hospital ward but would pre-
clude initially supporting an entire
hospital). There was also a limit of 32K
individual text screens of information
(fancy that!), and there were limits on
how far the dumb terminals could be
placed from the CPU.

This demonstration system was
able to support an entirely computer-
ized medical record (now called an
electronic medical record, or EMR) and
allowed physicians to use the touch-
screen and branched logic displays to
enter a patient’s history, physical ex-
amination, problem list (those unique
medical issues for each patient), and
progress notes, including patient as-
sessments and orders. For many spe-
cific problems, the system would offer
a range of recommended treatments
(for example, the appropriate list of
drugs for hypertension). As part of the
physician-ordering sequence for each
specific drug, the system would pres-
ent side effects to watch for, recom-
mended drug monitoring parameters,
drug-drug interactions, among other
features. (This is an obvious precursor
to having this checking done automati-
cally). This level of guidance was pos-
sible because of the structured nature
of the data entry; it is much more dif-
ficult when free text is entered via the
keyboard instead.

Why didn’t this demo system catch
on as hardware and operating systems
improved? There were several reasons.
At the time, computers were not well
understood and, thus, were considered
a bit intimidating by the general public,
so there was a degree of user hesitation.
Also, the level of medical documenta-
tion needed and the support of patient
safety issues this system was based
upon were not, unfortunately, appreci-
ated at that time. Cost also continued
to be an issue. Although this system
never caught on, many of the concepts
it demonstrated are present in current-
ly evolving commercial systems.

Several other early attempts were

automation of hospital information,
creating their versions of a hospital
information system (HIS). For various
reasons, they all failed, often with a
stunning thud. The most commonly
cited deficiencies were a poor human
interface, unreliable implementation,
and cost. As is often the case when ap-
plying new technology to a discipline,
the magnitude and complexity of the
problem was initially grossly under-
estimated. As a result, most hardware
vendors then limited themselves to the
historic area for data processing: pa-
tient billing and the financial arena.

In the late 1960s and early 1970s,
hardware limitations strained even
demonstration systems. Limited main
and mass memory, CPU speed, and
communication between the CPU and
user workstations were all factors that
limited system usability and capac-
ity. The human-machine interface was
also an issue. Some systems used light-
pens with some degree of success.

At that time, I was a member of a
small group that was implementing a
demonstration of an electronic medi-
cal record system that used touch-sen-
sitive screens: a 24-line by 80-character
CRT display that allowed two columns
of 12 text selections each to be pre-
sented to the user, with a branch taken
to a new display based upon the selec-
tion. This “branched-logic” approach
allowed medical users to concatenate
a series of selections to create complex
text entries for storage into a patient’s
medical record, as well as to order
medications and lab tests and retrieve
previous entries from the patient’s
medical record.1,2 (The ability to type in
information was supported for those
situations where the displays did not
contain the desired medical content.)
The major performance goal of this
system (and its 20 workstations) was to
provide a new text display to any user
within 300 milliseconds at least 80% of
the time, which was quite advanced for
its time. This system was designed to
be available around the clock with no
scheduled downtime.

This demonstration system pre-
sented several challenges. First and
foremost was the interface between
machine and medical providers (phy-
sicians, nurses, and so on), as well as
patients (for entering their own medi-
cal histories). Medicine as a discipline

made to apply computerization to
health care. Most were mainframe-
based, driving “dumb” terminals.
Many dealt only with the low-hanging
fruit of patient order entry and results
reporting, with little or no additional
clinical data entry. Also, many systems
did not attempt to interface with the
information originator (for example,
physician) but rather delegated the
system use to a hospital ward clerk or
nurse, thereby negating the possibil-
ity of providing medical guidance to
the physician, such as a warning about
the dangers of using a specific drug.
This is a nontrivial issue that still is a
problem with some systems today, il-
lustrating the challenge of an effective
user interface.

There were also some efforts to au-
tomate the status quo with no attempt
to structure the data input. This usually
meant having the health-care provider
enter free text via a keyboard. Unfortu-
nately, this automation of unstructured
data yields only (legible) unstructured
data. This may be acceptable when
dealing with a system of limited scope
but does not work well with massive
amounts of information such as a pa-
tient record.

These computer systems were quite
expensive to install and operate. With
this foray into the clinical realm of
acute medical care, the requirements
for increased reliability of both hard-
ware and software became clear, along
with the need for constant accessibility.

Areas of Real Technical
Progress Over the Years
We have made significant technologi-
cal advances that solve many of these
early shortcomings. Availability of mass
storage is no longer a significant issue.
Starting with a 7MB-per-freezer-size-
disk drive (which was not very reliable),
we now have enterprise storage systems
providing extremely large amounts of
storage for less than $1 per gigabyte
(and they don’t take up an entire room).
This advance in storage has been ac-
companied by a concomitant series of
advances in file structures, database
design, and database maintenance util-
ities, greatly simplifying and accelerat-
ing data access and maintenance.

The human-machine interface has
seen some improvement with the evo-
lution of the mouse as a pointing de-

practice

september 2010 | vol. 53 | no. 9 | communications of the acm 45

vice and now the partial reemergence
of the touchscreen. We have also seen
the development of the graphical user
interface, which has facilitated user
multitasking.

Overall system architectures have
followed an interesting course: from
a centralized single CPU and dumb
workstations to networks with signifi-
cant processing capabilities at each
workstation. In some situations we are
now seeing a movement to the so-called
thin-client architecture, again with lim-
ited power and resources at each work-
station, but a significant improvement
in ease of system maintenance.

Of course, all of this has been made
possible by improvements in trans-
mission speed of data both between
systems and within a single network.
These advances in potential system
responsiveness, however, have been
attenuated by the ever-increasing com-
putational demands of the software,
sometimes legitimately, but often
caused by the proliferation of bloat-
ware: cumbersome, poorly designed,
and inefficiently coded software serv-
ing as a CPU-cycle black hole.

An additional complicating factor
has been the migration of many pieces
of application software to Web-based
processes. This does provide the advan-
tage of platform semi-independence,
but any slowness of the browser or the
Web server is inflicted on the user, and
in some cases, may be a dealbreaker
in terms of user acceptance. For ex-
ample, say I use a Web-based system
to order a series of medications on
a patient and it takes me 10 mouse
clicks/screen flips to order a single
medication. If it takes one second to
move from screen to screen, that is 10
seconds (plus my human processing
time). Not bad for a single order, but
multiply that by 20 orders per patient
over 10 sick patients in a busy emer-
gency department at 1 a.m. on a hectic
Saturday night, and you begin to appre-
ciate the issue. There are approaches
to minimize this negative impact, but
these require a degree of sophistica-
tion of system design that is not always
present. In fact, a common complaint
of medical users is that “it’s too many
clicks to do something simple.”

A very significant area of techno-
logical improvement has been in the
acquisition, processing, transmission,

and presentation (display) of graphical
images. This capability has, over the
past decade, given us increasingly so-
phisticated CAT scan and MRI results
and has allowed most hospitals to dis-
continue the use of X-ray film almost
completely, using digitally stored im-
ages instead. These picture archiving
storage (PACS) systems have revolu-
tionized radiology and improved pa-
tient care by allowing easy distribution
of these images to all care providers of
a specific patient, alleviating the end-
less problem of trying to chase down
the original physical X-ray film.

Areas of Limited Progress
If we truly want to develop an informa-
tion utility for health-care delivery in
an acute care setting (such as an in-
tensive care unit or emergency depart-
ment), we must strive for overall sys-
tem reliability at least on the order of
our electric power grid, ideally with no
perceived scheduled or unscheduled
downtime. Some health-care informa-
tion computer systems have achieved
a high degree of reliability, but many
have not. These lower-performing sys-
tems often had their beginnings, as
noted earlier, in non-mission-critical
applications such as patient billing.
This, unfortunately, established a sys-
tem culture that is permissive of sys-
tem failure, and this culture is difficult
to upgrade.

The culture of system reliability be-
gins with the hardware architecture
and progresses through the operating
system, the application programs, and
the supporting institutionwide infra-
structure, physical deployment, and
extensive failure mode analysis. This
means simple things such as support-
ing rolling data backups and system
updates without taking the system
down (from the user’s point of view).
Some systems boast they have uptimes
of 99.99%, but that means they are still
unavailable for an hour per year.

Reliability and availability remain
ongoing challenges. Certainly, man-
ual procedures for use during system
unavailability are necessary, but the
goal should be not to have to use them.
This is an increasingly important issue
as we attempt to develop systems that
are more intimately involved in patient
care (such as online patient monitor-
ing of vital signs and real-time patient

With all of the
computerization of
so many aspects
of our daily lives,
medical informatics
has had limited
impact on day-to-
day patient care.

46 communications of the acm | september 2010 | vol. 53 | no. 9

practice

tracking). In fact, we should not even
attempt to support mission-critical
operations unless we have the hard-
ware, software, and support systems in
place that will guarantee extreme over-
all reliability. Even then it is a risk. I re-
member the promises from our “state
of the art” enterprise RAID 5 storage
vendor: “It will never go down.” These
promises were used to convince me to
move off my dual-write standby server
configuration to the enterprise storage
system to serve up block storage for my
emergency department network. This
system is critical, providing real-time
ED patient tracking, clinical laborato-
ry result access, patient-care protocol
information, emergency department
log access, hospital EMR retrieval,
metropolitan area hospital ambulance
divert status, and physician and nurse
order communication, among other
functions. Unfortunately, the storage
system that was promised to “never go
down” had two five-hour failures over
a two-year period, thoroughly dispel-
ling the myth of reliability promised
by the vendor. These episodes, un-
fortunately, are not unique. Through
careful design and adequate compo-
nent redundancy, we have been able
to achieve high levels of reliability in
safety-critical systems; our patients
and health-care providers deserve no
less reliability.

Patient data entry in any health in-
formation system is labor intensive.
Health-care providers (especially physi-
cians) have little tolerance for systems
that serve as impediments to getting
their work done, often regardless of
what positives might accrue from us-
ing such a system. This represents a
failure of interface and software design
and may explain why we are seeing in-
creased use of “scribes” in institutions
that have implemented electronic
health records. These scribes are in-
dividuals who act as recorders for the
health-care professionals so they do not
have to interface directly with the com-
puter system. Obviously, this greatly di-
minishes the power of any system since
there is no longer an interface with the
information originator. The incorpo-
ration of dynamic medical guidance
(advice rules based upon individual pa-
tient data such as checking a drug order
for interactions with the patient’s other
drugs) is of limited utility if the data is

entered by someone other than the in-
formation originator.

It is also interesting to note that
many institutions that had early suc-
cess with even poorly designed sys-
tems were those where the majority of
the care was supplied by physicians in
training. They were told to use the sys-
tem “or else” and did not have the flexi-
bility to move to another institution. To
maximize user acceptance of any sys-
tem, we need to continue to improve
the human-machine interface, allow-
ing for branched logic content, tem-
plated data entry, voice recognition,
dynamic pick lists, and when absolute-
ly necessary, free text entry. Physicians
care greatly about their patients; if an
institution’s attempts at computeriza-
tion do not result in improved patient
care and/or improved speed or other
significant advantages, acceptance of
any system will be problematic. This is-
sue has resulted in the demise of many
hospital-based systems.

Even where successfully implement-
ed, computerized health information
systems have sometimes had unantici-
pated side effects. One significant is-
sue is the explosion of data that may be
stored in the patient record. This can
quickly escalate beyond the capability
of the human mind. The challenge re-
mains how best to present the data to a
health-care provider in an efficient and
comprehensive fashion.

Another potential problem with
electronic medical records is abuse
of privacy. With old paper medical re-
cords, control was somewhat easier:
unless copied, they were in only one
place at one time. This barrier is re-
moved with computerization, mandat-
ing enhanced restrictions to protect
data. Unfortunately, we have witnessed
several instances of inappropriate ac-
cess to an individual’s medical data.
This is most commonly seen when a
celebrity is hospitalized and human
curiosity results in patient privacy vio-
lations (and often subsequent firings).
The challenge is to limit inappropriate
access but not make legitimate data re-
trieval burdensome or difficult.

Ongoing Barriers in
the Success of HIT
As we continue to strive for advances
in health information technology,
we must confront several barriers to

Advancements in
storage have been
accompanied by
a concomitant
series of advances
in file structures,
database design,
and database
maintenance
utilities, greatly
simplifying and
accelerating
data access and
maintenance.

practice

september 2010 | vol. 53 | no. 9 | communications of the acm 47

its success. One significant issue is
the “balkanization” of medical com-
puterization. Historically, there has
been little appreciation of the need
for an overall system. Instead we have
a proliferation of systems that do not
integrate well with each other. For ex-
ample, a patient who is cared for in
my emergency department may have
his/her data spread across nine differ-
ent systems during a single visit, with
varying degrees of integration and
communication among these systems:
emergency department information
system (EDIS), prehospital care (am-
bulance) documentation system, the
hospital ADT (admission/discharge/
transfer) system, computerized clini-
cal laboratory system, electronic data
management (medical records) im-
aging system, hospital pharmacy sys-
tem, vital-signs monitoring system,
hospital radiology ordering system,
and PACS system. Ideally, these dif-
ferent systems should be integrated
into a seamless whole, at least from
the user’s point of view, but each has
a different user interface with differ-
ent rules, a different feel, and different
expectations of the user. It really is just
a bunch of unconnected pieces, which
may, in certain situations, actually in-
crease the time and effort for patient
care. In this case, the full capability of
data integration clearly has not been
achieved.

This leads to other concerns: Are we
creating health-care computer systems
that are so complex that no one has a
complete understanding of their vul-
nerabilities, thus making them prone
to failure? Do we have an adequate
culture of mission-critical and fault-
tolerant design and system support to
achieve expected levels of reliability
in all hospitals that attempt a high de-
gree of computerization? Is there so-
phisticated failure analysis to ensure
growth, improvement, and success in
all of these institutions? Or will the tol-
erance for unexplained failure actually
pose a risk to our patients?

As mentioned, most of these com-
ponent systems have a medical content
piece, as well as a technology piece. It
is this creation of the medical logic and
structured content in many of these
systems (especially the EMR systems)
that remains a time-consuming and
exacting process, often requiring many

person-years of effort for a single insti-
tution. Unfortunately, because of the
perceived differences in practice pat-
terns among different locales, insti-
tutions, and physician groups, only a
modicum of the work done in any one
location is applicable to other loca-
tions. There should be efforts to stan-
dardize some of these differences to
allow more synergy between locations
and products.

Although grand claims are often
made about the potential improve-
ments in the quality of care, decreases
in cost, and so on, these are very diffi-
cult to demonstrate in a rigorous, sci-
entific fashion. Fortunately, the body
of positive evidence is slowly increas-
ing, although there are occasional
signs of adverse effects resulting from
computerized patient data systems.
For example, there is evidence that it
may be easier to enter the wrong order
on the wrong patient in a computer-
ized system than in an old hard-copy,
manual system.

The Future
Although difficult to scientifically
prove, the benefits from an EMR and
the attendant methodologies to cre-
ate and maintain it are potentially sig-
nificant. Yet, we have not come very
far conceptually in the past several de-
cades in realizing the potential. None-
theless, I feel the future is quite bright
for several reasons.

First and foremost, the federal gov-
ernment has championed these con-
cepts with promises of fiscal support
for individual physicians and institu-
tions that implement the concepts
in a meaningful way within a specific
timeframe. Second, the use of comput-
ers in most aspects of our daily lives
has become commonplace, resulting
in increased computer literacy and
decreasing hostility to their use in a
medical environment. Third, with in-
creased national emphasis on patient
safety and quality of medical-care indi-
cators, computerization of health care
offers the best and easiest approach
to provide the parameters of medical
guidance and allow appropriate data
capture to comply with these initiatives
(which will be ongoing and increasing
in number and complexity).

The achievement of desired goals,
however, will continue to provide a

challenge to system creators and im-
plementers. They have the difficult job
of designing, developing, and support-
ing systems that provide improved re-
liability and responsiveness and a fac-
ile human-machine interface with the
knowledge and guidance to provide
better health care to our citizens.

Let us return to the 29-year-old pa-
tient with acute abdominal pain in
the California emergency department,
now under an improved computer-
ized health-care system. The physician
in California has instant access to the
operative note and medical workup for
the appendectomy done many months
before. This reveals that, in fact, no
radiographs were taken prior to the
surgery, which was done laparoscopi-
cally. This implies the finding on the
CAT scan is not, because of the surgical
technique, an artifact, but an abnor-
mal finding. This would lead in short
order to surgical consultation and
surgical repair, markedly decreasing
the patient’s period of morbidity and
suffering. Such improvements are the
promise of integrating computers in
patient care. With effort and skill, I feel
we can meet this challenge. 	

 Related articles
 on queue.acm.org

Better Health Care Through Technology
Mache Creeger
http://queue.acm.org/detail.cfm?id=1180186

A Requirements Primer
George W. Beeler and Dana Gardner
http://queue.acm.org/detail.cfm?id=1160447

References
1.	 Schultz, J.R. 1988. A history of the PROMIS

technology: An effective human interface. A History
of Personal Workstations, A. Goldberg, ed. ACM Press.
Addison-Wesley Publishing Co., Reading, MA.

2.	 Schultz, J.R., Cantrill, S.V., Morgan, K.G. 1971. An
initial operational problem-oriented medical record
system—for storage, manipulation and retrieval of
medical data. In Proceedings of AFIPS 38.

3.	W eed, L.L., M.D. 1972. Problem-oriented system.
Background Paper for Concept of National Library
Displays. J.W. Hurst and H.K. Walker, ed. Medcom
Press.

Stephen V. Cantrill, M.D. has been practicing emergency
medicine for more than 30 years. He recently retired
from the position of associate director of emergency
medicine at Denver Health Medical Center, a safety-
net Level I trauma center, where he developed and
supported the Emergency Medical Services Information
System (EMeSIS). He is an associate professor of
emergency medicine at the University of Colorado. He
first starting writing code related to medical informatics
in 1966 at Brown University, where he received his
A.B. in physics, and he helped develop one of the early
computerized medical record systems while working with
Dr. Lawrence L. Weed at PROMIS Laboratory.

© 2010 ACM 0001-0782/10/0900 $10.00

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1180186
http://queue.acm.org/detail.cfm?id=1160447

48 communications of the acm | september 2010 | vol. 53 | no. 9

practice

“That which isn’t tested is broken.”	 —Author unknown
“Well, everything breaks, don’t it, Colonel.”	

—Monty Python’s Flying Circus

it IS AN unfortunate fact of life that anything with
moving parts eventually wears out and malfunctions,
and electronic circuitry is no exception. In this case,
of course, the moving parts are electrons. In addition
to the wear-out mechanisms of electromigration (the
moving electrons gradually push the metal atoms out
of position, causing wires to thin, thus increasing their
resistance and eventually producing open circuits)
and dendritic growth (the voltage difference between
adjacent wires causes the displaced metal atoms to
migrate toward each other, just as magnets will attract
each other, eventually causing shorts), electronic
circuits are also vulnerable to background radiation.
These fast-moving charged particles knock electrons
out of their orbits, leaving ionized trails in their wake.

Until those electrons find their way
back home, a conductive path exists
where there once was none.

If the path is between the two plates
of a capacitor used to store a bit, the ca-
pacitor discharges, and the bit can flip
from one to zero or from zero to one.
Once the capacitor discharges, the dis-
placed electrons return home, and the
part appears to have healed itself with
no permanent damage, except perhaps
to the customer’s data. For this reason,
memory is usually protected with some
level of redundancy, so flipped bits can
be detected and perhaps corrected. Of
course, the error-detection and correc-
tion circuitry itself must be tested, and
that is the main topic of this article.

(If the path is between a current
source and ground, then it cannot heal
until power is removed. This is called
single event latchup, which simulates a
hard failure, at least until the power is
turned off, such as when preparing to re-
move and replace the apparently failing
part. The returned part, of course, will
test out as “no trouble found,” frustrat-
ing everyone involved. Single event latch-
up is difficult for software to deal with
and will not be discussed further here.)

In addition to the causes of errors
mentioned here, transmission lines
are subject to noise-induced errors, so
transmitted signals are also often pro-
tected with redundancy.

As the density of circuits increases,
features get smaller; as frequencies in-
crease, voltages get lower. These trends
combine to reduce the amount of charge
used to represent a bit, increasing the
sensitivity of memory to background ra-
diation. For example, the original Ultra-
SPARC-I processor ran at 143MHz and
had a 256KB e-cache (external cache).
The cache design used simple byte par-
ity to protect the data, which was suf-
ficient as the amount of charge used
to hold a bit was large enough that an
ionizing particle would drain off only a
small amount, not enough to flip a bit.

When this design was scaled up in
the UltraSPARC-II processor to run at
400MHz with an 8MB e-cache, however,
the amount of charge used to hold a bit

doi:10.1145/1810891.1810908

 Article development led by
 queue.acm.org

Error-detection and correction features
are only as good as our ability to test them.

by Steve Chessin

Injecting
Errors for Fun
and Profit

http://queue.acm.org

september 2010 | vol. 53 | no. 9 | communications of the acm 49

I
l

l
u

s
t

r
a

t
i

o
n

s
 b

y
 M

e
l

vi

n
 Ga

l

a
p

o
n

was so small that background radiation
would easily flip bits, producing on av-
erage one flipped bit per processor per
year. While that might not seem like a
high rate, a customer with 12 systems of
32 processors each would on average ex-
perience one failure a day. This is what
led to Sun’s infamous e-cache parity cri-
sis of 1999 (more on this later; for fun,
do a Web search on “e-cache parity”).

Since errors, whether transient or
permanent, are a fact of life, the sys-
tem designers in Oracle’s Systems or-
ganization (what used to be portions
of Sun Microsystems) have developed
a layered approach to deal with them.
At the lowest level is the hardware er-
ror-detection circuitry, which records
information about the error so that
upper-layer software can determine if
the error is transient or permanent, or

if the rate of transient errors indicates
a failing part. The next layer is error
correction, which can be performed by
hardware, software, or a combination
of the two. The third layer is diagnosis,
where the Predictive Self-Healing func-
tion of the Solaris operating system de-
termines whether a faulty part is caus-
ing the error, and whether that part
should be replaced. The final level is
error containment, invoked by Predic-
tive Self-Healing when a hard failure
can be fenced off so that the system can
continue to function with minimal per-
formance degradation, avoiding a dis-
ruptive and thus expensive service call.

One always hopes that errors are rare.
When they do occur, however, one wants
the various layers of detection, correc-
tion, diagnosis, and containment to per-
form flawlessly. Ensuring that requires

testing the various layers, preferably in
an end-to-end fashion that imitates the
behavior of real errors. Because (as one
hopes) errors are rare (if they aren’t, you
have other problems), waiting around
for them to occur naturally is not an ef-
ficient testing methodology. Thus, the
need for an error injector.

An error injector requires hardware
support, because during normal op-
eration hardware only writes good data.
(Without hardware support, you can
simulate errors by feeding error reports
to the upper layers of software, but then
you aren’t testing the hardware error
detectors.) Hardware designers under-
stand this, so they usually provide some
means for injecting errors so that they
can test their detectors. They don’t al-
ways understand the environments in
which errors will be injected, however.

1.	http://www.debutart.com/artist/melvin-galapon

—Monty Python’s Flying Circus

50 communications of the acm | september 2010 | vol. 53 | no. 9

practice

I
l

l
u

s
t

r
a

t
i

o
n

s
 b

y
 M

e
l

vi

n
 Ga

l

a
p

o
n

For example, from the perspective of
the hardware designer, testing the de-
tectors during the very controlled envi-
ronment of power-on self-test (POST) is
sufficient, so it isn’t a big deal if inject-
ing an error has a side effect of corrupt-
ing unrelated data or destroying cache
coherency. For the software designer,
however, such side effects can render
the error-injection hardware useless, or
severely restrict the kinds of errors he
or she can safely inject.

For example, while the hardware
error detector does not care if a cache
parity error is detected on a clean or
dirty cache line, or by a user instruction
or a kernel instruction, the software

layers might. Thus, the error injector
must be able to do all combinations.

Injecting E-Cache Errors
on the UltraSPARC-II
“Handling errors is just attention to de-
tail. Injecting errors is rocket science.”

—me.
While the hardware engineers were
working on determining the cause
of the e-cache parity errors and then
working on a fix, I was asked to lead a
project to mitigate with software the
effect of the errors. Unfortunately, the
UltraSPARC-II used an imprecise trap
to report e-cache parity errors detected

by a load instruction or an instruction
fetch, so recovery even from an error on
a clean cache line was not possible. We
were able to recover from parity errors
detected by some write-backs, and we
definitely improved the kernel’s mes-
sages when parity errors were encoun-
tered. We prototyped confining errors
that affected only a user program and
not the kernel to just that program (a
feature that had to wait for the System
Management Facility of Solaris 10 and
its process restarter before we could
deploy it safely), and we introduced a
cache scrubber that used diagnostic
accesses to proactively look for par-
ity errors on clean cache lines in a safe

fashion (that is, one that would not
cause a kernel panic) and flushed them
from the cache before they could cause
an outage. Whenever the system went
idle, we flushed all clean lines, and all
error-free dirty lines, from the cache.

Testing all of this required an error
injector. While the hardware people
had written one, it did not meet our
needs; for example, you could only give
it a physical address where the error was
to be injected and wait for system code
to trip over it. In addition, it was neither
modular nor easily extensible (after all,
it had been written by hardware people;
to be fair, of course, I would do an even

worse job if I were asked to design an
ASIC). Instead, we based our error in-
jector on one I had written in 1989 to
test the memory parity error-recovery
code I had written for Sun’s SPARCsta-
tion-1. This error injector was modular
and table-driven, and easily extensible.
Of course, none of the actual low-level
error-injection code applied to the Ul-
traSPARC-II, so we hollowed it out and
built upon the framework it provided.

The error injector consisted of two
parts: a user-level command-line inter-
face (mtst), and a device driver (/dev/
memtest). The command-line inter-
face allowed the user to specify whether
the parity error should be injected onto
a clean line or a dirty line and whether
its detection should be triggered by a
kernel load instruction, user-level load
instruction, kernel instruction fetch,
user-level instruction fetch, write-back
to memory, snoop (copy-back) by an-
other processor, or just left in a user-
specified location in the cache. (This
last was used by another user-level pro-
gram, affectionately called the alpha-
bomber, to measure the effectiveness
of the cache scrubber.)

After parsing and processing its argu-
ments, mtst would then open /dev/
memtest and issue an ioctl to it. The
parameters passed in the ioctl would
tell the device driver whether to plant
the error in its own space (for kernel-
triggered errors) or at an address passed
to it by mtst (for user-triggered errors)
or at a specific cache location (for alpha-
bombing). They would also specify if the
device driver itself should trigger the er-
ror, and if so by a load instruction, an in-
struction fetch, a write-back to memory,
or a copy-back to a different processor,
and whether at trap-level zero or trap-
level one. (For obvious reasons, neither
mtst nor /dev/memtest are included
in Solaris releases, nor is their source
code included in OpenSolaris.)

Assuming the action of the device
driver did not deliberately cause a ker-
nel panic, it would return to mtst,
which, depending upon the parameters
with which it was invoked, would either
trigger the error (by a load, instruction
fetch, write-back, or snoop) or leave it in
the cache (for alphabombing).

We later extended the error injec-
tor to produce timeouts and bus errors
and to inject correctable and uncor-
rectable memory errors, so we eventu-

—Steve Chessin

practice

september 2010 | vol. 53 | no. 9 | communications of the acm 51

ally had complete test coverage of all of
the processor error-handling code in
Solaris, something that had been lack-
ing prior to this work. (The injection of
correctable and uncorrectable memory
errors is discussed later.)

The device driver used the diag-
nostic facilities of the UltraSPARC-II
processor to inject the errors into the
e-cache. (Similar diagnostic facilities
were used by the cache scrubber.) Be-
fore I explain how that worked, it will
help to understand the following:

˲˲ The UltraSPARC-II uses a 64-byte
cache line.

˲˲ A cache line is moved between
memory and the e-cache in 8-byte
chunks.

˲˲ Each of these chunks is protected
in memory by eight bits of ECC (error-
correcting code) that can correct any
single-bit error and detect any double-
bit error (SEC-DED).

˲˲ Each byte of data is protected by a
single parity bit when in the e-cache.

˲˲ There are two UDB (UltraSPARC
Data Buffer) chips in parallel be-
tween the e-cache and main memory,
and each UDB converts eight bytes of
ECC-protected data at a time to eight
bytes of parity-protected data (and vice
versa). When a 64-byte cache line is
moved from memory into the e-cache
or vice versa, each UDB processes four
8-byte chunks.

The interface between the processor
and the e-cache is 16 bytes wide. The
processor’s LSU (load/store unit) con-
tains a control register that includes a
16-bit field called the force mask (FM).
Each bit in the FM corresponds to one
byte of the 16-byte interface between
the CPU and the e-cache. When a bit is
zero, a store of the corresponding byte
is done with good parity. When a bit is
one, a store of the corresponding byte
is done with bad parity. The FM bits
do not affect the checking of parity on
loads from the e-cache.

Injecting a parity error into the e-
cache is fairly straightforward. The
physical memory address of the de-
sired byte is determined, and the fol-
lowing steps performed: 	

1.	 Using its physical address, load
the desired byte into a register; this has
the side effect of bringing it into the e-
cache if it isn’t there already. 	

2.	 Disable interrupts. 	
3.	 Set LSU.FM to all ones. 	

4.	 Store the desired byte back to its
physical address. (If for some reason
the containing cache line got displaced
from the cache after the load, then this
will bring it back into the cache.) The
targeted byte will be written back into
the cache line with bad parity.

5.	 Reset LSU.FM to zero. 	
6.	 Reenable interrupts.
Now that the desired byte is in the

e-cache with bad parity, the latent er-
ror can be triggered via several mech-
anisms: data load in user or kernel
mode, instruction fetch in user or ker-
nel mode, displacement flush to cause
a write-back, access from another CPU
to cause a copy-back, and so on.

Interrupts must be disabled for the
duration that the LSU.FM is not zero;
otherwise, if an interrupt occurs and
the interrupt handler (or any code it in-
vokes) performs a store, then undesired
parity errors will be introduced into the
cache and triggered unpredictably.

This six-step sequence is used to in-
ject e-cache parity errors at locations
corresponding to specific physical
memory addresses, kernel virtual ad-
dresses, or user virtual addresses. (Vir-
tual addresses are translated to their
corresponding physical addresses by
the memtest device driver.) To simu-
late bit flips caused by background
radiation, however, we would like to
inject an e-cache parity error at an ar-
bitrary e-cache offset, without regard
to the physical memory address corre-
sponding to the e-cache line.

Fortunately, the LSU.FM field also
applies to stores to the e-cache using
diagnostic accesses. Unfortunately,
diagnostic loads and stores work only
with 8-byte quantities, not with single
bytes. In order to affect just a single
byte, we must set only the one bit in
LSU.FM that corresponds to the byte
we want to change. The sequence in
this case then becomes: 	

1.	 Disable interrupts. 	
2.	 Fool the instruction prefetcher

(see below).	
3.	 Set the desired bit in LSU.FM to

one. 	
4.	 Load the containing eight bytes

into a register with a diagnostic load.
5.	 Store the containing eight bytes

back into the e-cache with a diagnostic
store.

6.	 Reset LSU.FM to zero.
7.	 Reenable interrupts.

As the density of
circuits increases,
features get
smaller; as
frequencies
increase, voltages
get lower.
These trends
combine to reduce
the amount of
charge used to
represent
a bit, increasing
the sensitivity
of memory to
background
radiation.

52 communications of the acm | september 2010 | vol. 53 | no. 9

practice

The only tricky part is preventing the
contents of the e-cache from changing
out from under us between the load
and the store. The worst that snoop ac-
tivity can do is change the state of a line
from exclusive to shared, or from valid
to invalid. As snooping cannot change
the data itself, just the state in the tag,
no harm is done if a snoop occurs be-
tween the load and the store.

However, there is one thing that can
change the data in the cache between
the load and the store. The processor
contains an instruction prefetcher—
one that is always on and whose be-
havior is not well documented in the
UltraSPARC I & II Users Manual. The
prefetcher is constantly moving in-
structions from the processor’s i-cache
(instruction cache) into the proces-
sor’s instruction buffer. If the address
of the next instruction to be prefetched
misses in the i-cache, instructions will
be brought in from the e-cache; if the
address also misses in the e-cache,
then the containing cache line will be
brought into the e-cache from memo-
ry, displacing what was already there.
If this e-cache fill happens to replace
the line containing the byte we want
to corrupt, and if the fill happens be-
tween the diagnostic load and the diag-
nostic store, we will write eight bytes of
stale data into the e-cache (along with
bad parity on one of them); this could
cause an unexpected failure later if the
line is reexecuted as an instruction. (Al-
though we expect the byte with bad par-
ity to cause an eventual failure, we want
the failure to be the one we intended,
not one we didn’t intend.)

To prevent this, the prefetcher must
be fooled into not prefetching for a
while. Though this is possible—and in
fact fairly easy to do—the procedure is
not documented. The technique to use
had to be obtained from the processor
pipeline expert. In fact, if he hadn’t in-
formed us of this exposure, we would
have had a hard-to-debug problem
with the injector.

To fool the prefetcher, we statically
position at the beginning of a cache
line the code sequence that sets LSU.
FM, issues the load and store, resets
LSU.FM, reenables interrupts, and re-
turns to the caller. When this routine
is called, it disables interrupts and
then branches just beyond the above
sequence to a series of no-ops, enough

locations.) Generating a single CE (cor-
rectable error) or UE (uncorrectable
error) requires that the four 8-byte ex-
tended words passing through a given
UDB start off as identical, so that they
all share the same good ECC value.

Generating a CE or UE is typically
done as follows:

1.	 Quiesce snoop activity, as snooped
data goes through the UDBs. 	

2.	 Disable interrupts. 	
3.	 Set FCBV in the UDBs with the

common good ECC value, and set their
F_MODEs.

4.	 Load the desired 8-byte chunk
into a register; this has the side effect
of bringing it into the e-cache if it isn’t
there already.

5.	 Flip one (CE) or two (UE) bits in
the register. 	

6.	 Store the now-modified 8-byte
chunk; it will store into the cache and put
the cache line into the modified state.

7.	 Displacement flush the cache line
back to memory. The UDBs will con-
vert each eight bytes with parity into
eight bytes with ECC, but for the ECC
bits they will use the value in the FCBV,
which will be good for all but the modi-
fied chunk.

8.	 Clear F_MODE.
9.	 Enable interrupts.

10.	 Allow snoop activity.
(Although we could have confined

the setting of FCBV and F_MODE to
just the UDB handling the targeted lo-
cation, it was easier to program them
both identically.)

Snoop activity has to be quiesced;
otherwise, any CPU or I/O device ob-
taining data out of this CPU’s e-cache
while the UDB’s F_MODE bit is set will
get bad ECC. Since I/O is difficult to
quiesce, this is done by “pausing” all
the other CPUs (by telling them to spin
in a tight loop), and then flushing the
cache so that the only owned line will
be the one that we modify.

To inject a single CE at an arbitrary
location, the UDB design should have
included a “trigger” or “mask” field to
indicate on which extended word(s) the
FCBV field would be applied. This field
could be, for example, an 8-bit mask,
with one bit for each 8-byte chunk. (One
UDB would use the even bits and the
other would use the odd bits; this ar-
rangement would make programming
simpler.) The UDB would have to count
the chunks going through it when the

to fill the instruction buffer. The last
instruction in this sequence branches
back to the instruction that sets LSU.
FM. Thus, when we get to the load of
the load/store pair, the cache line that
contains these instructions is already
in the e-cache and has either already
displaced the original target (so we
will be injecting an error on top of our
e-cache-resident code) or is in a dif-
ferent cache line than our target. In
either case, the instruction prefetcher
“sees” that the instructions (including
the no-ops) that follow the load/store
pair are already in the instruction buf-
fer, so it temporarily has nothing to do.
This prevents any lines from changing
in the middle of the execution of the
load/store pair. (This is the “rocket sci-
ence” part of error injection.)

Of course, what would have really
been nice would have been a control to
turn off the instruction prefetcher.

Injecting Memory Errors
on the UltraSPARC-II
“‘The horror of that moment,’ the King
went on, ‘I shall never, NEVER forget!’
‘You will, though,’ the Queen said, ‘if you
don’t make a memorandum of it.’”

—Lewis Carroll,
Through the Looking Glass

Injecting memory errors on Ultra-
SPARC-II systems is more difficult than
injecting e-cache errors. As previously
described, while the e-cache uses byte
parity, memory uses eight bits of ECC to
protect eight bytes. Data always moves
between memory and the CPU subsys-
tem (processor, two UDB chips, and e-
cache) in 64-byte blocks, transferred in
four 16-byte chunks. Each UDB handles
eight bytes at a time, converting eight
bytes with good ECC into eight bytes
with good parity and vice versa.

Each UDB has a control register that
contains an 8-bit FCBV (force check
bit vector) field and an F_MODE (force
mode) bit. When the F_MODE bit is
set, the UDB uses the contents of the
FCBV field for the ECC value on all out-
going (to memory) data, instead of cal-
culating good ECC.

Since the FCBV field (when used)
applies to all data going through the
UDB, and since the smallest granule
of transfer is 64 bytes, it is impossible
to force bad ECC on just one arbitrary
8-byte extended word. (This means we
cannot alphabomb CEs into arbitrary

practice

september 2010 | vol. 53 | no. 9 | communications of the acm 53

I
l

l
u

s
t

r
a

t
i

o
n

s
 b

y
 M

e
l

vi

n
 Ga

l

a
p

o
n

F_MODE bit was set and apply FCBV to
only those extended words that had the
corresponding “trigger” bit(s) set.

Alternatively, the design could have
included eight sets of FCBV fields
(four in each UDB), each with its own
F_MODE bit, so that arbitrary mixes
of CEs, UEs, and good data could be
planted at any location.

Other Uses of Diagnostic Access
“I’m running a Level 1 diagnostic.”

—Lt. Commander Geordi La Forge, in
Star Trek: The Next Generation

As illustrated earlier, diagnostic ac-
cess to the e-cache and the memory in-
terface chips is extremely important to

error injection. Without the ability to
use diagnostic loads and stores during
normal system operation, injection of
errors would be impossible.

Diagnostic access is also used in er-
ror prevention and correction, as the
cache scrubber uses diagnostic loads
to determine if a latent error is present,
and to determine when lines should be
displaced from the cache.

Diagnostic access is also used after
a failure occurs, to read the contents of
the affected cache line to aid in offline
diagnosis. For this reason, it is impor-
tant that diagnostic access provide vis-
ibility to all the bits, as they are stored

occurs the system board can send it to
just those processors that contain cop-
ies of the snooped cache line, and not
interfere with the performance of the
processors that do not contain copies.
Diagnostic access to DTAGs interferes
with the maintenance of cache coher-
ency, such that if an invalidate request
came in at the same time as the diag-
nostic access, the invalidate request
would be lost. (The request need not
be for the particular line; all coherency
traffic is ignored while the diagnostic
request is being processed.)

This behavior makes it impossible
to write a software DTAG scrubber, as
the scrubber cannot determine if a line
contains a latent error without risking
the loss of system coherency.

Note that deciding whether to pre-
serve coherency on a diagnostic access
is an example of one of the many deci-
sions a chip designer must make. Pri-
or to Sun’s e-cache parity crisis, these
decisions were made by the hardware
designers without consulting the soft-
ware error-handling experts. Since that
crisis, error and diagnostic reviews of
new chips are a required part of the
hardware design cycle.

These reviews are joint meetings of
the chip designers and the software
people responsible for error handling,
diagnosis, and containment. They are
held early enough in the design process
so that any deficiencies in the treat-
ment of errors by the hardware (such as
a failure to capture important informa-
tion) can be corrected, and suggestions
of improvements can be incorporated.

Other Methods of Error Injection
“‘Doctor, it hurts when I do this.’

‘So don’t do that.’”
—Henny Youngman

Hardware engineers have devel-
oped other methods for injecting er-
rors, some more usable than others.
For example, having learned from
our e-cache parity experience, subse-
quent processors in the UltraSPARC
line, beginning in about 2001 with the
UltraSPARC-III, protect the e-cache
with true ECC. In the UltraSPARC-III
16 bytes of data are protected by nine
bits of ECC, and this same scheme
is used to protect data in memory as
well. (ECC is checked as data is moved
from the e-cache to memory; single-
bit errors are corrected and double-bit

in the hardware. For example, while di-
agnostic access to the e-cache does not
return the parity bits, the parity check
logic works and sets the PSYND (parity
syndrome) bits in the AFSR (Asynchro-
nous Fault Status Register) as appropri-
ate. (The 16 PSYND bits correspond to
the 16 bytes in the interface between
the processor and the e-cache. If a byte
contains a parity error, the correspond-
ing PSYND bit is set to one.) Thus, di-
agnostic access to the cache allows
the parity bits to be inferred, if not ob-
served directly.

It is important to note that the use
of diagnostic access by the error injec-
tor and the cache scrubber depends

on their not interfering with normal
system operation. In particular, system
coherency must be maintained while
the diagnostic operation is in progress.

The caches of UltraSPARC-II obey
this requirement. Diagnostic access to
the cache by the CPU does not interfere
with the cache’s response to coher-
ency traffic. Snooping continues, and
requests to invalidate cache lines are
processed normally.

Contrast this with the Sun Enter-
prise 10000 system board DTAG (dual
tag), which contains a copy of the tag
information in the four processors on
the system board. Thus, when a snoop

—Lt. Commander Geordi La Forge, in Star Trek: The Next Generation

54 communications of the acm | september 2010 | vol. 53 | no. 9

practice

I
l

l
u

s
t

r
a

t
i

o
n

s
 b

y
 M

e
l

vi

n
 Ga

l

a
p

o
n

errors are rewritten with a special syn-
drome. Similarly, ECC is checked as
data is moved from memory to the e-
cache; single-bit errors are corrected,
but double-bit errors are written into
the e-cache as is.)

Injecting memory errors in the Ul-
traSPARC-III is similar to that in the Ul-
traSPARC-II; a control register contains
an FM bit and a forced ECC field. When
set that ECC value is used instead of
calculated ECC when data moves from
the e-cache to memory.

For injecting errors into the Ultra-
SPARC-III e-cache, the hardware en-
gineers tried to do something similar;
another control register contains an

FM bit and a forced ECC field, only
the forced ECC in this register is used
whenever data is written into the e-
cache. This would have been difficult
to use, as stores do not write data di-
rectly into the e-cache, but into a w-
cache (write cache). The data in the
w-cache is not merged with that in the
e-cache until the line is displaced out
of the w-cache, and that is difficult to
control. Fortunately, we did not have to
use this mechanism, as the hardware
engineers provided something even
better: direct access to the raw bits in
the e-cache, both data and ECC.

This mechanism uses five staging

advantage of error injection technol-
ogy to improve the handling, diag-
nosis, and containment of errors by
their respective systems, as having the
hardware and software people all in a
single organization allows the neces-
sary continuous interaction between
them as new hardware and software is
developed. When hardware and soft-
ware development is divided among
different organizations, as it is in the
Windows, VMware, and Linux worlds
(or, alternatively, the Intel and AMD
worlds), exploiting error injection
technology for product improvement
is much more difficult.

Acknowledgments
Much of this article is based on the
work of the circa-1999 Solaris Software
Recovery Project. That project was the
result of cooperation between and
hard work by many individuals from
across Sun, including Mike Shapiro,
Huay Yong Wang, Robert Berube, Jeff
Bonwick, Michael Christensen, Mike
Corcoran, John Falkenthal, Girish Goy-
al, Carl Gutekunst, Rajesh Harekal,
Michael Hsieh, Tariq Magdon Ismail,
Steven Lau, Patricia Levinson, Gavin
Maltby, Tim Marsland, Richard Mc-
Dougall, Allan McKillop, Jerriann
Meyer, Scott Michael, Subhan Moham-
med, Kevin Normoyle, Asa Romberger,
Ashley Saulsbury, and Tarik Soydan.
Robert Berube in particular did much
of the initial coding of the UltraSPARC-
II error injector.

I also want to thank Mike Shapiro
and Jim Maurer for reviewing early
drafts. Their suggestions have im-
proved this article. Any errors that re-
main are solely my responsibility. 	

 Related articles
 on queue.acm.org

Self-Healing in Modern Operating Systems
Michael W. Shapiro
http://queue.acm.org/detail.cfm?id=1039537

A Conversation with Jeff Bonwick
and Bill Moore
http://queue.acm.org/detail.cfm?id=1317400

You Don’t Know Jack about Disks
Dave Anderson
http://queue.acm.org/detail.cfm?id=864058

Steve Chessin (steve.chessin@oracle.com) is a senior
principal software engineer in the Systems Group Quality
organization of Oracle Corporation, Menlo Park, CA.

Copyright © 2010, Oracle and/or its affiliates.
All rights reserved.

registers: four to hold 32 bytes of data
(a half-cache line consisting of two 16-
byte ECC-protected chunks) and a fifth
register to hold the two 9-bit ECC fields
protecting the respective chunks.
One set of diagnostic loads and stores
moves data between the e-cache and
the staging registers 32 data bytes
and 18 ECC bits at a time; another set
moves data between a given staging
register and an integer register. This al-
lows the error injector to flip any com-
bination of data and ECC bits.

Conclusion
“Software. Hardware. Complete.”

Since the e-cache parity crisis, error

injection has become a core compe-
tency of what is now Oracle’s Systems
organization. As new processors and
their supporting ASICs are designed,
error and diagnostic reviews make
sure they have the appropriate abil-
ity to inject errors into their internal
structures, and the error injector is en-
hanced to inject those errors so that we
can test our error-handling, diagnosis,
and containment software in an end-
to-end fashion.

Of course, companies such as IBM
and Oracle that control both the hard-
ware they sell and the software that
supports it are best positioned to take

—Henny Youngman

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1039537
http://queue.acm.org/detail.cfm?id=1317400
http://queue.acm.org/detail.cfm?id=864058
mailto:steve.chessin@oracle.com

september 2010 | vol. 53 | no. 9 | communications of the acm 55

problem was that I wasn’t thinking
clearly yet about algebra. My introduc-
tion at age 15 to teacher James R. Har-
key put me on the road to solving that
problem.

In high school Mr. Harkey taught
us what he called an axiomatic ap-
proach to solving algebraic equa-
tions. He showed us a set of steps that
worked every time (and he gave us
plenty of homework to practice on). In
addition, by executing those steps, we
necessarily documented our thinking
as we worked. Not only were we think-
ing clearly, using a reliable and repeat-
able sequence of steps, but we were
also proving to anyone who read our

Recently, I’ve been introduced to the
world of “MySQL tuning,” and the
situation seems very similar to what I
saw in Oracle more than 20 years ago.

It reminds me a lot of how difficult
beginning algebra seemed when I was
about 13 years old. At that age, I had
to appeal heavily to trial and error to
get through. I can remember looking
at an equation such as 3x + 4 = 13 and
basically stumbling upon the answer,
x = 3.

The trial-and-error method
worked—albeit slowly and uncomfort-
ably—for easy equations, but it didn’t
scale as the problems got tougher—
for example, 3x + 4 = 14. Now what? My

W h e n I jo i n e d Oracle Corporation in 1989,
performance—what everyone called “Oracle tuning”—
was difficult. Only a few people claimed they could
do it very well, and those people commanded high
consulting rates. When circumstances thrust me into
the “Oracle tuning” arena, I was quite unprepared.

Thinking
Clearly About
Performance,
Part 1

doi:10.1145/1810891.1810909

 Article development led by
 queue.acm.org

Improving the performance of complex
software is difficult, but understanding some
fundamental principles can make it easier.

by Cary Millsap

http://queue.acm.org

56 communications of the acm | september 2010 | vol. 53 | no. 9

practice

work that we were thinking clearly.
Our work for Mr. Harkey is illustrated
in Table 1.

This was Mr. Harkey’s axiomatic
approach to algebra, geometry, trigo-
nometry, and calculus: one small, log-
ical, provable, and auditable step at a
time. It’s the first time I ever really got
mathematics.

Naturally, I didn’t realize it at the
time, but of course proving was a skill
that would be vital for my success
in the world after school. In life I’ve
found that, of course, knowing things
matters, but proving those things to
other people matters more. Without
good proving skills, it’s difficult to be
a good consultant, a good leader, or
even a good employee.

My goal since the mid-1990s has
been to create a similarly rigorous ap-
proach to Oracle performance optimi-
zation. Lately, I have been expanding
the scope of that goal beyond Oracle
to: “Create an axiomatic approach to
computer software performance op-
timization.” I’ve found that not many
people like it when I talk like that, so
let’s say it like this: “My goal is to help
you think clearly about how to opti-
mize the performance of your com-
puter software.”

What is Performance?
Googling the word performance re-
sults in more than a half-billion hits
on concepts ranging from bicycle rac-
ing to the dreaded employee review
process that many companies these
days are learning to avoid. Most of the
top hits relate to the subject of this
article: the time it takes for computer
software to perform whatever task you
ask it to do.

And that’s a great place to begin:
the task, a business-oriented unit of
work. Tasks can nest: “print invoices”
is a task; “print one invoice”—a sub-
task—is also a task. For a computer

user, performance usually means the
time it takes for the system to execute
some task. Response time is the ex-
ecution duration of a task, measured
in time per task, such as “seconds
per click.” For example, my Google
search for the word performance had
a response time of 0.24 seconds. The
Google Web page rendered that mea-
surement right in my browser. That is
evidence to me that Google values my
perception of Google performance.

Some people are interested in an-
other performance measure: through-
put, the count of task executions that
complete within a specified time in-
terval, such as “clicks per second.”
In general, people who are respon-
sible for the performance of groups of
people worry more about throughput
than does the person who works in a
solo contributor role. For example,
an individual accountant is usually
more concerned about whether the
response time of a daily report will
require that accountant to stay late
after work. The manager of a group
of accounts is additionally concerned
about whether the system is capable
of processing all the data that all of
the accountants in that group will be
processing.

Response Time versus Throughput
Throughput and response time have
a generally reciprocal type of relation-
ship, but not exactly. The real relation-
ship is subtly complex.

Example 1. Imagine that you have
measured your throughput at 1,000
tasks per second for some benchmark.
What, then, is your users’ average re-
sponse time? It’s tempting to say that
the average response time is 1/1,000 =
.001 seconds per task, but it’s not neces-
sarily so.

Imagine that the system processing
this throughput had 1,000 parallel, in-
dependent, homogeneous service chan-

nels (that is, it’s a system with 1,000
independent, equally competent service
providers, each awaiting your request
for service). In this case, it is possible
that each request consumed exactly 1
second.

Now, you can know that average re-
sponse time was somewhere between
0 and 1 second per task. You cannot
derive response time exclusively from
a throughput measurement, however;
you have to measure it separately (I
carefully include the word exclusively in
this statement, because there are math-
ematical models that can compute re-
sponse time for a given throughput, but
the models require more input than just
throughput).

The subtlety works in the other di-
rection, too. You can certainly flip this
example around and prove it. A scarier
example, however, will be more fun.

Example 2. Your client requires a
new task that you’re programming
to deliver a throughput of 100 tasks
per second on a single-CPU computer.
Imagine that the new task you’ve writ-
ten executes in just .001 seconds on the
client’s system. Will your program yield
the throughput the client requires?

It’s tempting to say that if you can
run the task once in just one thousandth
of a second, then surely you’ll be able to
run that task at least 100 times in the
span of a full second. And you’re right,
if the task requests are nicely serialized,
for example, so that your program can
process all 100 of the client’s required
task executions inside a loop, one after
the other.

But what if the 100 tasks per second
come at your system at random, from
100 different users logged into your cli-
ent’s single-CPU computer? Then the
gruesome realities of CPU schedulers
and serialized resources (such as Ora-
cle latches and locks and writable ac-
cess to buffers in memory) may restrict
your throughput to quantities much less
than the required 100 tasks per second.
It might work; it might not. You cannot
derive throughput exclusively from a re-
sponse time measurement. You have to
measure it separately.

Response time and throughput are
not necessarily reciprocals. To know
them both, you need to measure them
both. Which is more important? For
a given situation, you might answer
legitimately in either direction. In

Table 1. The axiomatic approach as taught by Mr. Harkey.

3.1x + 4	 = 13	 problem statement
3.1x + 4 – 4	 = 13 – 4	 subtraction property of equality
3.1x	 = 9	 additive inverse property, simplification
3.1x ∕ 3.1	 = 9 ∕ 3.1	 division property of equality
x	 ≈ 2.903	 multiplicative inverse property, simplification

practice

september 2010 | vol. 53 | no. 9 | communications of the acm 57

many circumstances, the answer is
that both are vital measurements re-
quiring management. For example,
a system owner may have a business
requirement not only that response
time must be 1.0 second or less for a
given task in 99% or more of execu-
tions but also that the system must
support a sustained throughput of
1,000 executions of the task within a
10-minute interval.

Percentile Specifications
Earlier, I used the phrase “in 99%
or more of executions” to qualify a
response time expectation. Many
people are more accustomed to such
statements as “average response time
must be r seconds or less.” The per-
centile way of stating requirements
maps better, though, to the human
experience.

Example 3. Imagine that your re-
sponse time tolerance is 1 second for
some task that you execute on your com-
puter every day. Imagine further that
the lists of numbers shown in Table 2
represent the measured response times
of 10 executions of that task. The aver-
age response time for each list is 1.000
second. Which one do you think you
would like better?

Although the two lists in Table 2
have the same average response time,
the lists are quite different in charac-
ter. In list A, 90% of response times were
one second or less. In list B, only 60% of
response times were one second or less.
Stated in the opposite way, list B repre-
sents a set of user experiences of which
40% were dissatisfactory, but list A
(having the same average response time
as list B) represents only a 10% dissatis-
faction rate.

In list A, the 90th percentile response
time is .987 seconds; in list B, it is 1.273
seconds. These statements about per-
centiles are more informative than
merely saying that each list represents
an average response time of 1.000 sec-
ond.

As GE says, “Our customers feel the
variance, not the mean.”1 Expressing
response-time goals as percentiles
makes for much more compelling re-
quirement specifications that match
with end-user expectations: for exam-
ple, the “Track Shipment” task must
complete in less than .5 seconds in at
least 99.9% of executions.

Problem Diagnosis
In nearly every performance problem
I’ve been invited to repair, the stated
problem has been about response
time: “It used to take less than a sec-
ond to do X; now it sometimes takes
20+.” Of course, a specific statement
like that is often buried under veneers
of other problems such as: “Our whole
[adjectives deleted] system is so slow
we can’t use it.”2

Just because something happened
often for me doesn’t mean it will hap-
pen for you. The most important thing
to do first is state the problem clearly,
so you can think about it clearly.

A good way to begin is to ask,
what is the goal state that you want
to achieve? Find some specifics that
you can measure to express this: for
example, “Response time of X is more
than 20 seconds in many cases. We’ll
be happy when response time is one
second or less in at least 95% of execu-
tions.” That sounds good in theory,
but what if your user doesn’t have such
a specific quantitative goal? This par-
ticular goal has two quantities (1 and
95); what if your user doesn’t know
either one of them? Worse yet, what
if your user does have specific ideas,
but those expectations are impossible
to meet? How would you know what

“possible” or “impossible” even is?
Let’s work our way through those

questions.

The Sequence Diagram
A sequence diagram is a type of graph
specified in UML (Unified Modeling
Language), used to show the interac-
tions between objects in the sequen-
tial order that those interactions
occur. The sequence diagram is an ex-
ceptionally useful tool for visualizing
response time. Figure 1 shows a stan-
dard UML sequence diagram for a
simple application system composed

Table 2. The average response time for
each of these two lists is 1.000 second.

List A List B

1 .924 .796

2 .928 .798

3 .954 .802

4 .957 .823

5 .961 .919

6 .965 .977

7 .972 1.076

8 .979 1.216

9 .987 1.273

10 1.373 1.320

Figure 1. This UML sequence diagram shows the interactions among a browser,
an application server, and a database.

Track Shipment

prepare()

execute()

fetch()

Browser

Browser

App

App

DB

DB

58 communications of the acm | september 2010 | vol. 53 | no. 9

practice

of a browser, application server, and a
database.

Imagine now drawing the sequence
diagram to scale, so that the distance
between each “request” arrow coming

in and its corresponding “response”
arrow going out are proportional to
the duration spent servicing the re-
quest. I have shown such a diagram
in Figure 2. This is a good graphical

representation of how the compo-
nents represented in your diagram are
spending your user’s time. You can
“feel” the relative contribution to re-
sponse time by looking at the picture.

Sequence diagrams are just right
for helping people conceptualize how
their responses are consumed on a
given system, as one tier hands con-
trol of the task to the next. Sequence
diagrams also work well to show how
simultaneous processing threads
work in parallel, and they are good
tools for analyzing performance out-
side of the information technology
business.1

The sequence diagram is a good
conceptual tool for talking about per-
formance, but to think clearly about
performance, you need something
else. Here’s the problem. Imagine
the task you’re supposed to fix has a
response time of 2,468 seconds (41
minutes, 8 seconds). In that period of
time, running that task causes your
application server to execute 322,968
database calls. Figure 3 shows what
the sequence diagram for that task
would look like.

There are so many request and re-
sponse arrows between the applica-
tion and database tiers that you can’t
see any of the detail. Printing the se-
quence diagram on a very long scroll
isn’t a useful solution, because it
would take weeks of visual inspection
before you would be able to derive use-
ful information from the details you
would see.

The sequence diagram is a good
tool for conceptualizing flow of con-
trol and the corresponding flow of
time. To think clearly about response
time, however, you need something
else.

The Profile
The sequence diagram does not scale
well. To deal with tasks that have huge
call counts, you need a convenient ag-
gregation of the sequence diagram
so that you understand the most im-
portant patterns in how your time has
been spent. Table 3 shows an exam-
ple of a profile, which does the trick.
A profile is a tabular decomposition
of response time, typically listed in
descending order of component re-
sponse time contribution.

Example 4. The profile in Table 3

Figure 2. A UML sequence diagram drawn to scale, showing the response time consumed
at each tier in the system.

Track Shipment
prepare()

execute()
fetch()

Browser

Browser

App

App

DB

DB

Figure 3. This UML sequence diagram shows 322,968 database calls executed by
the application server.

Show Task prepare()execute()fetch()

Browser

Browser

App

App

DB

DB

practice

september 2010 | vol. 53 | no. 9 | communications of the acm 59

is rudimentary, but it shows exactly
where your slow task has spent your us-
er’s 2,468 seconds. With the data shown
here, for example, you can derive the
percentage of response time contribu-
tion for each of the function calls iden-
tified in the profile. You can also derive
the average response time for each type
of function call during your task.

A profile shows where your code has
spent your time and—sometimes even
more importantly—where it has not.
There is tremendous value in not hav-
ing to guess about these things.

From the data shown in Table
3, you know that 70.8% of your us-
er’s response time is consumed by
DB:fetch() calls. Furthermore, if
you can drill down in to the individual
calls whose durations were aggregat-
ed to create this profile, you can know
how many of those App:await _
db _ netIO() calls corresponded to
DB:fetch() calls, and you can know
how much response time each of
those consumed. With a profile, you
can begin to formulate the answer to
the question, “How long should this
task run?”… which, by now, you know
is an important question in the first
step (section 0) of any good problem
diagnosis.

Amdahl’s Law
Profiling helps you think clearly about
performance. Even if Gene Amdahl
had not given us Amdahl’s Law back
in 1967, you would probably have
come up with it yourself after the first
few profiles you looked at.

Amdahl’s Law states: Performance
improvement is proportional to how
much a program uses the thing you
improved. If the thing you’re trying
to improve contributes only 5% to
your task’s total response time, then
the maximum impact you’ll be able
to make is 5% of your total response
time. This means that the closer to
the top of a profile that you work (as-
suming that the profile is sorted in
descending response-time order), the
bigger the benefit potential for your
overall response time.

This doesn’t mean that you always
work a profile in top-down order,
though, because you also need to con-
sider the cost of the remedies you’ll be
executing.3

Example 5. Consider the profile in

Table 4. It’s the same profile as in Table
3, except here you can see how much
time you think you can save by imple-
menting the best remedy for each row in
the profile, and you can see how much
you think each remedy will cost to im-
plement.

Which remedy action would you im-
plement first? Amdahl’s Law says that
implementing the repair on line 1 has
the greatest potential benefit of saving
about 851 seconds (34.5% of 2,468 sec-
onds). If it is truly “super expensive,”
however, then the remedy on line 2 may
yield better a net benefit—and that is
the constraint to which you really need
to optimize—even though the potential
for response time savings is only about
305 seconds.

A tremendous value of the profile is
that you can learn exactly how much
improvement you should expect for
a proposed investment. It opens the
door to making much better deci-
sions about what remedies to imple-
ment first. Your predictions give you

a yardstick for measuring your own
performance as an analyst. Finally, it
gives you a chance to showcase your
cleverness and intimacy with your
technology as you find more efficient
remedies for reducing response time
more than expected, at lower-than-
expected costs.

What remedy action you implement
first really boils down to how much
you trust your cost estimates. Does
“dirt cheap” really take into account
the risks that the proposed improve-
ment may inflict upon the system?
For example, it may seem dirt cheap
to change that parameter or drop that
index, but does that change poten-
tially disrupt the good performance
behavior of something out there that
you’re not even thinking about right
now? Reliable cost estimation is an-
other area in which your technologi-
cal skills pay off.

Another factor worth considering is
the political capital that you can earn
by creating small victories. Maybe

Table 3. This profile shows the decomposition of a 2,468.000-second response time.

Function Call R (sec) Calls

1 DB: fetch() 1,748.229 322,968

2 App: await _ db _ netIO() 338.470 322,968

3 DB: execute() 152.654 39,142

4 DB: prepare() 97.855 39,142

5 Other 58.147 89,422

6 App: render _ graph() 48.274 7

7 App: tabularize() 23.481 4

8 App: read() 0.890 2

Total 2,468.000

Table 4. This profile shows the potential for improvement and the corresponding cost
(difficulty) of improvement for each line item from Table 2.

Potential improvement % and cost of investment R (sec) R (%)

1 34.5% super expensive 1,748.229 70.8%

2 12.3% dirt cheap 338.470 13.7%

3 Impossible to improve 152.654 6.2%

4 4.0% dirt cheap 97.855 4.0%

5 0.1% super expensive 58.147 2.4%

6 1.6% dirt cheap 48.274 2.0%

7 Impossible to improve 23.481 1.0%

8 0.0% dirt cheap 0.890 0.0%

Total 2,468.000

60 communications of the acm | september 2010 | vol. 53 | no. 9

practice

cheap, low-risk improvements won’t
amount to much overall response-
time improvement, but there’s value
in establishing a track record of small
improvements that exactly fulfill your
predictions about how much response
time you’ll save for the slow task. A
track record of prediction and fulfill-
ment ultimately—especially in the
area of software performance, where
myth and superstition have reigned
at many locations for decades—gives
you the credibility you need to influ-
ence your colleagues (your peers, your
managers, your customers…) to let
you perform increasingly expensive
remedies that may produce bigger
payoffs for the business.

A word of caution, however: don’t
get careless as you rack up successes
and propose ever-bigger, costlier,
riskier remedies. Credibility is fragile.
It takes a lot of work to build it up but
only one careless mistake to bring it
down.

Skew
When you work with profiles, you re-
peatedly encounter sub-problems
such as this:

Example 6. The profile in Table 3 re-
vealed that 322,968 DB: fetch() calls
had consumed 1,748.229 seconds of re-
sponse time. How much unwanted re-
sponse time would be eliminated if you
could eliminate half of those calls? The
answer is almost never, “Half of the re-
sponse time.” Consider this far simpler
example for a moment:

Example 7. Four calls to a subroutine
consumed four seconds. How much un-
wanted response time would be elimi-
nated if you could eliminate half of
those calls? The answer depends upon

the response times of the individual
calls that we could eliminate. You might
have assumed that each of the call dura-
tions was the average 4/4 = 1 second, but
nowhere did the statement tell you that
the call durations were uniform.

Imagine the following two possi-
bilities, where each list represents the
response times of the four subroutine
calls:

A = {1, 1, 1, 1}
B = {3.7, .1, .1, .1}

In list A, the response times are uni-
form, so no matter which half (two) of
the calls you eliminate, you will reduce
total response time to two seconds. In
list B, however, it makes a tremendous
difference which two calls are eliminat-
ed. If you eliminate the first two calls,
then the total response time will drop
to .2 seconds (a 95% reduction). If you
eliminate the final two calls, then the
total response time will drop to 3.8 sec-
onds (only a 5% reduction).

Skew is a nonuniformity in a list of
values. The possibility of skew is what
prohibits you from providing a precise
answer to the question I asked at the
beginning of this section. Let’s look
again:

Example 8. The profile in Table 3
revealed that 322,968 DB: fetch()
calls had consumed 1,748.229 seconds
of response time. How much unwanted
response time would you eliminate by
eliminating half of those calls? With-
out knowing anything about skew, the
most precise answer you can provide is,
“Somewhere between 0 and 1,748.229
seconds.”

Imagine, however, that you had
the additional information available

in Table 5. Then you could formulate
much more precise best-case and
worst-case estimates. Specifically, if
you had information like this, you
would be smart to try to figure out how
specifically to eliminate the 47,444
calls with response times in the .01- to
.1-second range.

Summary
In Part 1, I have tried to link togeth-
er some of the basic principles that
I have seen people trip over in my
travels as a software performance
analyst. In Part 2, I will describe how
competition for shared resources
influences performance by cover-
ing the concepts of efficiency, load,
queuing delay, and coherency delay. I
will also explain how to think clearly
about performance during the de-
sign, build, and test phases of an ap-
plication, so that you’ll be much more
likely to create fast software that can
become even faster throughout its
production lifespan. 	

 Related articles
 on queue.acm.org

You’re Doing It Wrong
Poul-Henning Kamp
http://queue.acm.org/detail.cfm?id=1814327

Performance Anti-Patterns
Bart Smaalders
http://queue.acm.org/detail.cfm?id=1117403

Hidden in Plain Sight
Bryan Cantrill
http://queue.acm.org/detail.cfm?id=1117401

References
1.	G eneral Electric Company. What is Six Sigma? The

roadmap to customer impact; http://www.ge.com/
sixsigma/SixSigma.pdf.

2.	 Millsap, C. My whole system is slow. Now what? 2009;
http://carymillsap.blogspot.com/2009/12/my-whole-
system-is-slow-now-what.html.

3.	 Millsap, C. On the importance of diagnosing before
resolving. 2009; http://carymillsap.blogspot.
com/2009/09/on-importance-of-diagnosing-before.
html.

4.	 Millsap, C. Performance optimization with Global
Entry. Or not? 2009; http://carymillsap.blogspot.
com/2009/11/performance-optimization-with-global.
html.

Cary Millsap is the founder and president of Method R
Corporation (http://method-r.com), a company devoted to
software performance. He is the author (with Jeff Holt) of
Optimizing Oracle Performance (O’Reilly) and a co-author
of Oracle Insights: Tales of the Oak Table (Apress). He is
the former vice president of Oracle Corporation’s System
Performance Group and is also an Oracle ACE Director
and a founding partner of the Oak Table Network, an
informal association of well-known “Oracle scientists.” He
blogs at http://carymillsap.blogspot.com, and he tweets at
http://twitter.com/CaryMillsap.

© 2010 ACM 0001-0782/10/0900 $10.00

Table 5. A skew histogram for the 322,968 calls from Table 2.

Range {min ≤ e < max} R (sec) Calls

1 	 0 0.000001 0.000 0

2 	 0.000001 0.00001 0.002 397

3 0.00001 0.0001 0.141 2,169

4 0.0001 0.001 31.654 92,557

5 0.001 0.01 389.662 180,399

6 0.01 0.1 1,325.870 47,444

7 0.1 1 0.900 2

Total 1,748.229 322,968

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1814327
http://queue.acm.org/detail.cfm?id=1117403
http://queue.acm.org/detail.cfm?id=1117401
http://www.ge.com/sixsigma/SixSigma.pdf
http://carymillsap.blogspot.com/2009/12/my-wholesystem-is-slow-now-what.html
http://carymillsap.blogspot.com/2009/12/my-wholesystem-is-slow-now-what.html
http://method-r.com
http://carymillsap.blogspot.com
http://twitter.com/caryMillsap
http://www.ge.com/sixsigma/SixSigma.pdf
http://carymillsap.blogspot.com/2009/09/on-importance-of-diagnosing-before.html
http://carymillsap.blogspot.com/2009/09/on-importance-of-diagnosing-before.html
http://carymillsap.blogspot.com/2009/09/on-importance-of-diagnosing-before.html
http://carymillsap.blogspot.com/2009/11/performance-optimization-with-global.html
http://carymillsap.blogspot.com/2009/11/performance-optimization-with-global.html
http://carymillsap.blogspot.com/2009/11/performance-optimization-with-global.html

49771 (2010) ©Seabury & Smith, Inc. 2010

Administered by:
d/b/a in CA Seabury & Smith Insurance Program Management

CA Ins. Lic. #0633005
AR Ins. Lic. #245544

Group Term Life Insurance

10- or 20-Year Group Term
Life Insurance

Group Disability Income Insurance

Group Accidental Death &
Dismemberment Insurance

Group Catastrophic Major
Medical Insurance

Group Dental Plan

Long-Term Care Plan

Major Medical Insurance

Short-Term Medical Plan

Who has time to think
about insurance?

Today, it’s likely you’re busier than ever. So, the last thing you probably have on your mind is

whether or not you are properly insured.

But in about the same time it takes to enjoy a cup of coffee, you can learn more about your

ACM-sponsored group insurance program — a special member benefit that can help provide

you financial security at economical group rates.

Take just a few minutes today to make sure you’re properly insured.

Call Marsh U.S. Consumer, a service of Seabury & Smith, Inc., at 1-800-503-9230 or visit
www.personal-plans.com/promo/acm/49771.

49771 ACM AD (2010)
Full Size: 8.125" x 10.875" Bleed: 8.375" x 11.125" Live: 7" x 9.5"
Folds to: NA Perf: N/A
Colors: 4C
Stock: NA
Postage: N/A
Misc: N/AM

A
R
S
H

49771 ACM All Plans ad.indd 1 3/8/10 9:25 AM

http://www.personal-plans.com/promo/acm/49771

62 communications of the acm | september 2010 | vol. 53 | no. 9

contributed articles

in computing does not cease being
cited any more quickly than research
in other disciplines, indicating (con-
trary to popular belief) that research
in computing does not become ob-
solete more quickly than research in
other disciplines. The extent to which
this is the case is important for several
reasons:

Demand for innovation. Though
computing has made great strides, so-
ciety continues to demand more com-
plex, reliable, robust, usable hard-
ware and software systems. Advances
in computing technology needed to
meet it depend on long-term funding
of fundamental research.11 However,
it can be difficult to convince funding
bodies to support long-term funda-
mental research programs in comput-
ing. One reason may be the already
quick pace of development of comput-
ing applications, perhaps suggesting
that the research is not as difficult as
in other disciplines and that progress
can be made with less funding than
other disciplines. Hence, as has been
reported in the context of U.S. Na-
tional Science Foundation research-
funding policy, when competing for
research money, computer scientists
argue that society has a compelling
need for the results of their research,
as well as CS as a basic research disci-
pline to maintain its standing within
the scientific community.19 Compet-
ing for funding with researchers from
other sciences in a university setting,
CS researchers must counter the argu-
ment that research funding in com-
puting will not be prioritized because
everything useful is already being
done both faster and better by the IT
industry anyway.

Computing techno logies are changing everyone’s
social, political, economic, and cultural worlds.12
Meanwhile, scientists commonly believe that research
in computing is advancing more quickly and just as
quickly becoming obsolete more quickly than research
in other scientific disciplines. A notable indicator
is how quickly it stops being cited in the literature.
Common measures of this phenomenon are called
“cited half-life,” “citing half-life,” and the Price
Index (see the sidebar “Definitions and Measures of
Obsolescence”). These measures show that research

doi:10.1145/1810891.1810911

Computing research ages more slowly
than research in other scientific disciplines,
supporting the call for parity in funding.

By Dag I.K. Sjøberg

Confronting
the Myth
of Rapid
Obsolescence
in Computing
Research

 key insights
 � �With respect to aging in the research

literature, CS is in the middle of the
scientific disciplines.

 � �The research challenges in computing
are as fundamental and long-lasting
as those in other disciplines.

 � �Publication delay is not a major
problem within CS.

september 2010 | vol. 53 | no. 9 | communications of the acm 63

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 Ga

r
y

 N
e

i
l

l

Aging research. Though relevant,
the CS literature may still be consid-
ered obsolete and thereby ignored due
to its age. As a researcher and journal
editor, I find that reviewers frequently
mention “old references,” and, as a su-
pervisor, I find Ph.D. students are often
reluctant to read older literature.

Publication delay. Researchers in
computing sometimes claim the rela-
tively long lag between submission
and publication of a journal article
renders the research outdated before
publication, arguing for submitting
their manuscripts to conferences rath-
er than to journals.

Library ROI. Due to the ever-increas-
ing volume of research literature, li-
braries must make cost-effective de-
cisions, identifying the core journals
within a discipline, canceling their
subscriptions to less-accessed jour-

nals, and archiving less-accessed ma-
terial to save shelf space. To maximize
return on their investment, libraries
must collect statistics on the use of
their materials.9 Research literature on
computing being accessed less often
or quickly becoming obsolete may af-
fect decisions about the archiving and
retention of computing journals.

Results
Table 1 reflects CS within the various
disciplines with respect to average ag-
gregated cited, citing half-lives, and
Price Index. This result is in striking
contrast to the only other work I found
on obsolescence of the computing lit-
erature—Cunningham and Bocock3—
which found a citing half-life of four
years (I found 7.5), concluding that
their study supported “…a commonly
held belief about computer science,

that it is a rapidly changing field with
a relatively high obsolescence rate for
its documents. This hypothesis is con-
firmed for the field of computer oper-
ating systems and network manage-
ment…” They also reported a half-life
of five years for the field of “Informa-
tion Systems.” The main reason for
the discrepancy between their results
and mine is likely that they based their
analysis on a small sample—only two
journals (one that no longer exists)
and four issues of the proceedings
of one conference, the International
Conference on Information Systems.
By contrast, ISI Journal Citation Report
(JCR) provided me with values for 382
computing journals.

The extent to which the cited and
citing half-life measures are equiva-
lent or complementary has been cov-
ered in the literature.17 For individual

64 communications of the acm | september 2010 | vol. 53 | no. 9

contributed articles

Definitions and Measures of Obsolescence
All disciplines include foundational
research that is relevant to ongoing
research but that does not need to be
(and is not) cited; an example is Newton’s
Principia Mathematica. However, it is
generally reasonable to assume that
researchers cite other research in their
publications if they consider it relevant.
Consequently, the median age of the
references to, or in, published articles
within a field is an indicator of how
quickly the literature becomes obsolete.
Inspired by the same term in nuclear
physics, this indicator, called “half-
life,” has been used for a long time in
bibliometric research.18

There are basically two ways—
retrospective studies and prospective
studies2—to weigh the obsolescence of
an article, a journal, or the body of the
literature of a (sub)field. In retrospective
studies, one proceeds backward from a
particular date. The JCR8 provides two
retrospective half-life measures:

Cited half-life. The cited half-life of a
journal for a particular year is the number
of years (counting backward from and
including that year) accounting for 50% of
the citations received from the sample of
journals under consideration. Cited half-
life shows how quickly articles published
in a given journal, taken as a set, cease to
be cited. To illustrate, the red arrows in
the figure here indicate articles published
in 2007 in various journals that cite
articles in Communications independent
of year; assume in this example only one
article per journal. One must then go back
to 1998 to include 50% of the citations to
Communications, giving a cited half-life
of 10 years. In reality, JCR listed 8,969
citations from articles published in 2007
in 624 journals or other sources to articles
published in Communications, but 63% of
the citations were to articles published in
1997 or earlier; that is, the cited half-life
was greater than 10 years. (For half-lives
>10, JCR reports only the text “>10.”)
The definition of cited half-life can be
modified to cover subject categories or
research fields by considering citations to
articles in a set of journals representing
the category or field. This aggregate cited
half-life is an indicator of the turnover
rate of the body of work on a subject or in
a field.

Citing half-life. The citing half-life for
a particular year is the median age of all
articles cited in a given sample of articles.
In the figure, the blue arrows indicate
citations in 2007 Communications
articles to five articles in various journals
in different years. The median year of
publication of these five articles is 2003;
the citing half-life is five years. In reality,
the citing half-life for Communications
in 2007, as reported by JCR, was 5.5
years, calculated on the basis of 1,607
citations to articles in 155 journals or

other sources. (JCR reported half-life
values in decimals because it used an
interpolation formula in the calculation.)
The citing half-life shows how quickly a
journal ceases citing articles from itself
or from other sources. This definition can
be modified to cover subject categories or
research fields.

Related to the measure of citing
half-life is the Price Index, defined as
the proportion of articles cited by a
publication that is no more than five
years older than the publication doing
the citing.4 The index is an outcome
of Derek J. de Solla Price’s work at the
University of Malaya in Singapore,
Cambridge University, and Yale
University in the 1950s and 1960s on
the growth of knowledge in science and
the “research front of recent papers.”5 A
large index value indicates a discipline
characterized by quick growth and an
active research front.

In prospective studies, one
investigates the history of citations that
have been made to a particular article
or set of articles after publication over

a given time period, typically 10 to 15
years.6 Half-life is defined as the time
period over which half the citations to the
(set of) articles were made; for example,
if we were to calculate the prospective
half-life of Communications for 1998
in a 10-year window, we would have to
determine the number of citations to the
1998 Communications articles from 1998
to 2007. The figure outlines how articles
published in the journals Artificial
Intelligence in 2002, IEEE Software in
2003, and World Wide Web in 2007 cited
articles in Communications in 1998 (dark
gray arrows). If the citations were from
one article in each of the three journals,
the prospective half-life would be six
years, and the median citation would be
in IEEE Software.

The advantage of prospective half-
lives is that researchers are able to track
the use of individual articles. However,
calculating prospective half-lives is
challenging and not provided by JCR.
Consequently, I don’t report prospective
half-lives here but include the definition
for the sake of completeness.

Citation half-lives.

1958 2006 2007...

.

.

.

1998... 20021997 ...

.

.

.

2003

CommunicationsCommunicationsCommunicationsCommunications

ACM Computing
Surveys

ACM Computing
Surveys

Artificial
Intelligence

IEEE
Software

World-Wide
Web

A  B  An article in journal A cites an article in journal B
 C ited half-life Communications

 C iting half-life Communications
 P rospective half-life Communications 1998

contributed articles

september 2010 | vol. 53 | no. 9 | communications of the acm 65

journals, the values may be quite dif-
ferent (such as the respective values
>10 and 5.5 for Communications). Nev-
ertheless, as in Table 1, there is strong
correlation among the three measures
of obsolescence at the level of overall
disciplines: rcited-citing = 0.90, rcited-Price Index

= –0.83, rciting-Price Index = –0.89). Literature
with a long lifetime has high cited and
citing half-life values but low Price In-
dex, and vice versa, giving negative cor-
relations between cited/citing half-live
and Price Index.

Looking at the subdisciplines with-
in computing, one finds the citation
lifespan of the literature is shortest
within Information Systems and lon-
gest within Theory & Methods (see Ta-
ble 2). The variations among the sub-
disciplines of the various disciplines
are generally small; on average, the
cited half-life stddev = 0.8. The varia-
tion among the journals within a disci-
pline is much greater; on average, the
cited half-life stddev = 2.2. For com-
puting journals, stddev = 2.0, with the
extremes varying from cited half-life =
1.7 and citing half-life = 3.7 to >10 for
both half-life measures.

Based on the assumption that every-
thing is changing quickly throughout
society, it is easy to believe that the sci-
entific literature is becoming obsolete
more quickly than it used to. However,
a comprehensive study shows that the
median citation age (citing half-life) of
scientific publications has increased
steadily since the 1970s.10 One likely
reason for this increase is the availabil-
ity of online bibliographic databases
and the Internet, making it easier to ac-
cess older references. A 2008 study re-
ported, “The Internet appears to have
lengthened the average life of academ-
ic citations by six to eight months.”1
Another reason may be the significant
increase in the number of references
per article.10 Having space for more ref-
erences allows for increasing the time
period for included references.

The reported study10 focused on
medical fields, natural sciences, and
engineering. To study the evolution of
the aging distribution of the comput-
ing literature compared to all other
disciplines, I investigated cited half-
lives from 2003 to 2007 (see the side-
bar “How the Study Was Done”); JCR
did not provide such information ear-
lier than 2003. I found the cited half-

life of computing literature increased
from 7.1 years in 2003 to 7.4 years in
2007 (4.7%), the fifth highest increase
among the 22 disciplines. Geosci-
ences was tops, with an increase from
8.2 years to 8.8 years (7.7%). The disci-
plines with the most decreasing cited
half-life were Environment/Ecology
and Engineering, with declines of 2.4%
and 1.8%, respectively. The average in-
crease among all disciplines was 0.1
year (1.9%). Hence, there seems to be a

trend that the age of useful computing
literature is increasing, not decreasing
relative to other disciplines.

The increasing interest in research
related to environment and ecology
may have contributed to less old work
being cited in more recent issues of the
related journals. Moreover, if my study
is replicated in, say, five years, we may
observe different trends; for example,
the financial crisis at the time of this
writing (2009) may contribute to more

Table 1. Half-lives and Price Index for all scientific disciplines.

Discipline Mean Half-Life Cited Half-Life Citing Half-Life Price Index

Years Rank Years Rank Years Rank % Rank

Immunology 5.9 1 5.8 1 6.1 1 41.9 1

Molecular Biology
and Genetics

6.5 2 6.2 2 6.7 2 29.3 13

Space sciences 6.6 3 6.3 3 6.8 3 40.1 2

Pharmacology 6.6 3 6.3 3 6.9 4 36.2 4

Biology and Biochemistry 6.7 5 6.5 7 6.9 4 35.3 6

Microbiology 6.8 6 6.3 3 7.2 7 35.3 5

Clinical Medicine 6.8 6 6.7 8 7.0 6 36.5 3

Chemistry 7.0 8 6.4 6 7.6 9 33.7 7

Neuroscience & Behavior 7.3 9 6.9 11 7.6 9 33.3 9

Physics 7.3 9 6.8 9 7.7 11 33.6 8

Multidisciplinary 7.3 9 6.8 9 7.8 12 33.1 10

Computer Science 7.5 12 7.4 14 7.5 8 31.7 11

Engineering 7.7 13 7.2 13 8.3 13 29.7 12

Environment/Ecology 7.9 14 7.4 14 8.4 15 26.5 17

Materials Science 7.9 14 7.1 12 8.8 17 28.7 14

Agricultural Sciences 8.1 16 7.5 16 8.7 16 25.5 19

Social Sciences, General 8.2 17 8.1 17 8.3 13 27.9 15

Plant & Animal Sciences 8.8 18 8.4 18 9.2 18 26.4 18

Psychiatry/Psychology 9.1 19 9.0 20 9.2 18 25.0 20

Geosciences 9.2 20 8.8 19 9.5 21 27.1 16

Economics and Business 9.6 21 9.9 22 9.2 18 24.8 21

Mathematics 9.7 22 9.5 21 9.8 22 23.9 22

Mean 7.7 7.3 8.0 31.2

Table 2. Half-lives and Price Index for computing.

Subdiscipline Mean Half-Life Cited Half-Life Citing Half-Life Price Index

Years Rank Years Rank Years Rank % Rank

Information Systems 6.8 1 6.7 2 6.8 1 35.1 1

Interdisciplinary Applications 7.0 2 6.2 1 7.8 4 31.1 4

Artificial Intelligence 7.6 3 7.2 3 8.0 5 28.2 6

Software Engineering 7.7 4 8.1 5 7.2 3 33.8 3

Hardware & Architecture 7.8 5 8.8 7 6.8 2 35.1 1

Cybernetics 7.9 6 7.2 3 8.5 7 26.1 7

Theory & Methods 8.3 7 8.6 6 8.0 5 29.7 5

66 communications of the acm | september 2010 | vol. 53 | no. 9

contributed articles

research being done in economics and
business, with more recent work being
cited, or shorter half-lives.

Journals vs. conferences. I found an
average of 5.9 years for the citing half-
life of the 307 conference and work-
shop proceedings available in the ACM
Digital Library. Their citing half-lives
are shorter than for computing jour-
nals (7.5 years). The two main explana-
tions for why conferences have shorter
half-lives are shorter publication delay
and fewer references per article.

Publication delay means the cited
references grow older due to the pub-
lication process per se; that is, the ref-
erences were younger when the article
was submitted than when the article
was published. A list of publication
delays for computing journals, confer-
ences, and other venues shows a clear
tendency for journals to have longer
delays than conferences (http://cite-
seer.ist.psu.edu/pubdelay.html). The
average publication delay of journals
common to the CiteSeer list and JCR
was 20 months. The average publica-
tion delay of the conferences com-
mon to the CiteSeer list and the ACM
Digital Library was eight months.
About one-third of the JCR journals
and one-quarter of the ACM Digital
Library conferences were included.
It is unlikely these samples were bi-
ased with respect to publication delay.
Hence, we can infer that the average
difference in publication delay be-
tween computing journals and con-
ferences is approximately one year,
even though the increasing use of
Web-based support tools in the review
process of many journals may have
contributed to slightly shorter publi-
cation delays today than when the list
was assembled in 2003.

The 11,719 articles in the ACM con-
ferences (as of 2008) include, on aver-
age, 16.1 references, while the 36,004
articles in the JCR computing journals
include, on average, 27.1 (26.2 if review
articles are excluded); that is, journals
include 70% more references than
conferences. Journal articles are also
generally longer than conference ar-
ticles; thus, more space is available for
related work. Consequently, the citing
half-lives of journals may be higher
than the citing half-lives of conference
proceedings due in part to journals cit-
ing more references.

When calculating the half-lives
of the conference proceedings, I ex-
cluded references to URLs because
their year of “publication” was rarely
indicated in their citations; moreover,
for those ULR references with the year
indicated, it’s likely that the content
of the actual Web site has changed,
meaning we cannot necessarily use
the indicated year to calculate the age
of the content of a given Web site (un-
like printed publications). However,
another study16 investigated how long
URLs are accessible by inspecting the
URLs referenced in articles in IEEE
Computer and Communications from
1995 to 1999, reporting, “A noteworthy
parallel can be observed between the
four years we calculated as the half-life
of referenced URLs and five years given
as the median citation age for comput-
er science.” One may reasonably ques-
tion the extent to which one is able to
compare the accessibility of URLs with
the inclusion of references in articles.

Nevertheless, the claim that the half-
life in CS is five years is from four issues
of the Proceedings of the International
Conference on Information Systems.3
Due to difference between journals
and conferences, it would be more cor-
rect to compare the four-year half-life
of URLs with the citing half-life of 7.5
years in Table 1, as both figures result
from analyzing journals. In this case,
referenced articles would have a use-
ful life approximately twice as long as
the URLs. However, given that I found
large variations in the citing half-lives
between journals and conferences
with respect to printed publications,
one may find large variations in the
half-lives of referenced URLs as well.
Therefore, one should analyze much
larger samples than only two journals
to make a general statement.

Conclusion
My investigation found that the ag-
ing of the computing literature is not
atypical compared with other scientific
research disciplines, indicating that
the research front in computing does
not move more quickly than its coun-
terpart in other disciplines. It is also a
sign that computing is an established
research discipline with long-lasting
challenges and complex research prob-
lems taking years to solve. For exam-
ple, developing software systems that

One should take
care criticizing or
ignoring literature
just because it is
“old”; other criteria
must be used
to judge quality
and relevance.

http://citeseer.ist.psu.edu/pubdelay.html
http://citeseer.ist.psu.edu/pubdelay.html

contributed articles

september 2010 | vol. 53 | no. 9 | communications of the acm 67

are reliable, efficient, user-friendly,
and maintainable has been, and prob-
ably always will be, a grand challenge
in computing research. Moreover, it
typically takes 10 to 20 years for a tech-
nology to mature from being a good
research idea to being widely used in
practice.14,15 This fundamental aspect
of computing, combined with the im-
portance of software in modern soci-
ety, means there is no reason funding
for computing research should not be
at a level comparable to that found in
other scientific disciplines, including
physics and clinical medicine.

These results have further conse-
quences. First, half of the citations
in the computing literature are more
than seven years old. Publications old-
er than seven years may be viewed as
old but still considered relevant by the
authors citing them. Therefore, one
should take care criticizing or ignoring
literature just because it is “old”; other
criteria must be used to judge quality
and relevance.

The relatively long cited half-life of
computing literature also indicates that
the time lag between submitting a paper
to a journal and it being published in

Acknowledgments
I thank Chris Wright for help clarifying
basic concepts and stimulating com-
ments; Gilles Brassard and anonymous
referees for valuable comments; and
Alexander Ottesen, Birgitte Refsland,
and Bjørnar Snoksrud for help collect-
ing the reported data. 	

References
1.	B arnett, G.A. and Fink, E.L. Impact of the Internet

and scholar age distribution on academic
citation age. Journal of the American Society for
Information Science and Technology 59, 4 (Feb.
2008), 526–534.

2.	B urrell, Q. Stochastic modelling of the first-citation
distribution. Scientometrics 52, 1 (Sept. 2001), 3–12.

3.	C unningham. S.J. and Bocock, D. Obsolescence of
computing literature. Scientometrics 34, 2 (Oct. 1995),
255–262.

4.	D e Solla Price, D.J. Citation measures of hard
science, soft science, technology and nonscience.
In Communication Among Scientists and Engineers,
C.E. Nelson and D.K. Pollack, Eds. D.C. Heath and
Company, Lexington, MA, 1970, 3–22.

5.	D e Solla Price, D.J. Networks of scientific papers:
The pattern of bibliographic references indicates the
nature of the scientific research front. Science 149,
3683 (July 1965), 510–515.

6.	G länzel, W. Towards a model for diachronous and
synchronous citation analyses. Scientometrics 60, 3
(Dec. 2004), 511–522.

7.	G oodrum, A.A., McCain, K.W., Lawrence, S., and Giles,
C.L. Scholarly publishing in the Internet age: A citation
analysis of computer science literature. Information
Processing and Management 37, 5 (Sept. 2001),
661–675.

8.	 ISI Web of Knowledge. Journal Citation Reports on
the Web 4.2. The Thomson Corporation, 2008; http://
www.isiknowledge.com/JCR

9.	L adwig, J.P. and Sommese, A.J. Using cited half-life
to adjust download statistics. College & Research
Libraries 66, 6 (Nov. 2005), 527–542.

10.	L arivière, V., Archambault, É., and Gingras, Y. Long-
term variations in the aging of scientific literature:
From exponential growth to steady-state science
(1900–2004). Journal of the American Society for
Information Science and Technology 59, 2 (Jan. 2008),
288–296.

11.	L azowska, E.D. and Patterson, D.A. An endless frontier
postponed. Science 308, 5723 (May 2005), 757.

12.	 Misa, Y.J. Understanding ‘how computing has changed
the world.’ IEEE Annals of the History of Computing
29, 4 (Oct.–Dec. 2007), 52–63.

13.	 Moed, H.F. Citation Analysis in Research Evaluation.
Springer, Dordrecht, The Netherlands, 2005.

14.	O sterweil, L.J., Ghezzi, C., Kramer, J., and Wolf, A.L.
Determining the impact of software engineering
research on practice. IEEE Computer 41, 3 (Mar.
2008), 39–49.

15.	R edwine Jr., S.T. and Riddle, W.E. Software technology
maturation. In Proceedings of the Eighth International
Conference on Software Engineering (London, Aug.
28–30). IEEE Computer Society Press, Los Alamitos,
CA, 1985, 189–200.

16.	 Spinellis, D. The decay and failures of Web references.
Commun. ACM 46, 1 (Jan. 2003), 71–77.

17.	 Stinson, R. and Lancaster, F.W. Synchronous
versus diachronous methods in the measurement
of obsolescence by citation studies. Journal of
Information Science 13, 2 (Apr. 1987), 65–74.

18.	 Száva-Kováts, E. Unfounded attribution of the
‘half-life’ index-number of literature obsolescence to
Burton and Kebler: A literature science study. Journal
of the American Society for Information Science and
Technology 53, 13 (Nov. 2002), 1098–1105.

19.	W eingarten, F. Government funding and computing
research priorities. ACM Computing Surveys 27, 1
(Mar. 1995), 49–54.

Dag I.K. Sjøberg (dagsj@ifi.uio.no) is a professor of
software engineering in the Department of Informatics at
the University of Oslo, Norway.

© 2010 ACM 0001-0782/10/0900 $10.00

I used Thomson’s JCR Science Edition (6,417 journals in 172 categories) and Social
Sciences Edition (1,865 journals 55 in categories) for 2007, with most journals in the
(natural) sciences covered in the selection. The coverage in the social sciences was
less comprehensive.13 To comprehensively compare the overall computing discipline
with other scientific disciplines, I first aggregated the JCR journal categories into 22
disciplines, per ScienceWatch (http://sciencewatch.com/about/met/fielddef/) and
discarded eight of the 227 JCR categories because I could not fit them into the scheme
of the aggregated disciplines.

JCR provided citation data at the level of both journals and categories but did not
provide half-lives for new journals or journals cited fewer than 100 times. Among
the 382 CS journals, 8% and 2%, respectively, lacked cited and citing half-lives. In
the calculations of the aggregated results by discipline (see Table 1), I weighted the
categories with respect to their number of journals.

For half-lives >10, JCR used only the value 10 in the calculation of aggregated half-
lives. In the aggregation of half-life values from the JCR categories into the disciplines,
I used the same approximation. A half-life “>10” was reported for individual categories
in nine of the 22 disciplines; on average, 25% of the categories had the value “>10.” Note
that even if these nine disciplines were registered with exact values, it would not affect
the CS position relative to the other disciplines in Table 1.

JCR focused on journals for citation data. However, though a study7 reported
that conference proceedings were less cited in the computing literature than
books and journals, conferences play an important role in computing research. I
therefore investigated the proceedings in the ACM Digital Library (from conferences
and workshops in 2007) to make the data comparable with the data from the JCR
2007 edition. I included all scientific papers with at least one reference where the
publication year was given; I thus excluded 2.7% of the papers on this ground. A script
crawled the Web sites and extracted the references of each article in 307 proceedings.
I then analyzed the output using a regular expression to identify the year of publication,
enabling me to calculate the citing half-life. The 0.9% of the references lacking a clear
year of publication required manual inspection.

How the Study Was Done

that journal should not be a major con-
cern; such work is rarely obsolete before
publication. In any case, the delay may be
significantly shorter in the future, as an
increasing number of journals publish
their articles online shortly after ac-
cepting them for publication.

My results also indicate that com-
puting journals are not more likely to
have their subscriptions cancelled or
stored for a shorter time than journals
of other scientific disciplines. There
are significant variations, so decisions
regarding particular journals must be
based on more detailed information
about the journals.

Here, I’ve discussed obsolescence
at a coarse level (disciplines and sub-
disciplines). It would be interesting to
study obsolescence within categories
of computing topics and research. For
example, how does obsolescence vary
between research that aims to solve
(minor) practical problems and re-
search that aims to develop compre-
hensive theories? However, this would
require substantial effort, given there
is no database that easily provides rele-
vant data similar to what JCR provided
for the study I’ve reported here.

http://sciencewatch.com/about/met/fielddef/
http://www.isiknowledge.com/jcr
mailto:dagsj@ifi.uio.no
http://www.isiknowledge.com/jcr

68 communications of the acm | september 2010 | vol. 53 | no. 9

contributed articles

Erlang is a concurrent programming language
designed for programming fault-tolerant distributed
systems at Ericsson and has been (since 2000) freely
available subject to an open-source license. More
recently, we’ve seen renewed interest in Erlang, as
the Erlang way of programming maps naturally to
multicore computers. In it the notion of a process is
fundamental, with processes created and managed
by the Erlang runtime system, not by the underlying
operating system. The individual processes, which are
programmed in a simple dynamically typed functional
programming language, do not share memory and
exchange data through message passing, simplifying
the programming of multicore computers.

Erlang2 is used for programming fault-tolerant,
distributed, real-time applications. What differentiates
it from most other languages is that it’s a concurrent
programming language; concurrency belongs to
the language, not to the operating system. Its
programs are collections of parallel processes
cooperating to solve a particular problem that can
be created quickly and have only limited memory

overhead; programmers can create
large numbers of Erlang processes yet
ignore any preconceived ideas they
might have about limiting the number
of processes in their solutions.

All Erlang processes are isolated
from one another and in principle
are “thread safe.” When Erlang ap-
plications are deployed on multicore
computers, the individual Erlang pro-
cesses are spread over the cores, and
programmers do not have to worry
about the details. The isolated pro-
cesses share no data, and polymor-
phic messages can be sent between
processes. In supporting strong iso-
lation between processes and poly-
morphism, Erlang could be viewed
as extremely object-oriented though
without the usual mechanisms associ-
ated with traditional OO languages.

Erlang has no mutexes, and pro-
cesses cannot share memory.a Even
within a process, data is immutable.
The sequential Erlang subset that ex-
ecutes within an individual process is a
dynamically typed functional program-
ming language with immutable state.b
Moreover, instead of classes, methods,
and inheritance, Erlang has modules
that contain functions, as well as high-
er-order functions. It also includes pro-
cesses, sophisticated error handling,
code-replacement mechanisms, and a
large set of libraries.

Here, I outline the key design crite-
ria behind the language, showing how
they are reflected in the language itself,
as well as in programming language
technology used since 1985.

Shared Nothing
The Erlang story began in mid-1985
when I was a new employee at the Er-
icsson Computer Science Lab in Stock-

a	 The shared memory is hidden from the pro-
grammer. Practically all application program-
mers never use primitives that manipulate
shared memory; the primitives are intended
for writing special system processes and not
normally exposed to the programmer.

b	 This is not strictly true; processes can mutate
local data, though such mutation is discour-
aged and rarely necessary.

Erlang

doi:10.1145/1810891.1810910

The same component isolation that made
it effective for large distributed telecom
systems makes it effective for multicore
CPUs and networked applications.

By Joe Armstrong

september 2010 | vol. 53 | no. 9 | communications of the acm 69

holm charged with “doing something
about how we write software.” Erics-
son had a long tradition of building
highly reliable fault-tolerant systems
(telephone exchanges) specified to
have at most four minutes of down-
time per year and system software that
could be upgraded without stopping
the system.

How would we do it? The question
was answered in the mid-1970s and
has been the same ever since. The
system would have to be constructed
from physically isolated components
communicating through well-defined
“pure” protocols. The word “pure” has
special significance, meaning that af-
ter a message passes there should be
no dangling pointers or data referenc-
es to data structure residing on other
machines.

Fault-tolerance is achieved like
this: If a machine crashes, the failure
is detected by another machine in the
network. The machine (or machines)
detecting the failure must have suf-
ficient data to take over from the ma-
chine that crashed and continue with
the application. Users should not no-
tice the failure.

This technique was used by Jim
Gray10 in the design of the fault-toler-
ant Tandem computer. The Tandem
hardware architecture was similar to
the software architecture used to build
Erlang applications. Using failure de-
tection plus replication to make reli-
able systems has a long history.11

Now assume we have a single ma-
chine, and the probability that it will
fail during some time period is 10−3.
If we have two identical isolated ma-
chines, then the probability they both
will fail in the same time period is
10−6, with three machines 10−9, and so
on. Component isolation is the key to
building reliable systems. Individual
components might fail, but the prob-
ability that all components will fail at
the same time can be made arbitrarily
small by having a sufficiently large
number of replicated components.

This approach works for hardware,
but what about for software? If 10 cop-
ies of some software run on 10 different
isolated machines, won’t they all fail
for the same reason if they all have the
same software and are trying to solve
the same problem? Of course they will,
but in the systems we build, this is not

a problem. Imagine a system in which
10,000 transactions are in progress
simultaneously, including telephone
calls, Web sessions, database queries,
anything. Each transaction could be
running the same software, but each
instance of the software will also have
some private state. An individual pro-
cess crashing due to a software error
is not problematic, provided all other
processes in the system (where no er-
rors have occurred) are not affected by
the crash.

Building fault-tolerant software
requires the same trick used to build
fault-tolerant hardware. We arrange
for one process to observe the behavior

 key insights
 � �Message-passing systems scale easily,

are surprisingly efficient, and can be
made fault tolerant through replication
over several isolated machines.

 � �Non-defensive programming and
Erlang’s “let it crash” style of
programming lead to clear, compact
code.

 � �Upgrading systems without taking them
out of service has been practiced in the
telecom world for years; Erlang makes it
relatively easy. I

l
l

u
s

t
r

a
t

i
o

n
 b

y
 a

n
d

y
 g

i
l

m
o

r
e

70 communications of the acm | september 2010 | vol. 53 | no. 9

contributed articles

of another process. The observing pro-
cess must be able to detect failures in
the observed process and take over in
the event of an error.

We also forbid dangling pointers
and shared data structures between
processes. The entire system is con-
structed so the observed processes and
their observers need not even be on the
same machine. For example, in dis-
tributed Erlang, processes can be scat-
tered over physically separated nodes
and behave semantically as if they were
on the same node. The only difference
is in the pragmatics of the system; the
latency of an operation performed on
a local process and a process located
on some physically separated node are
very different.

This property of Erlang processes
means programs can be developed on
a single node and deployed on a cluster
without major changes to most of the
software in the system.

In light of such considerations, we
concluded (in 1986) that in order to
program fault-tolerant applications Er-
lang would need four key properties4,9;

˲˲ Isolated processes;
˲˲ Pure message passing between

processes;
˲˲ The ability to detect errors in re-

mote processes; and
˲˲ A method for determining what er-

ror caused a process to crash.
We did not want to use shared

memories, mutexes, or semaphores,
so our only method of process syn-
chronization was through message
passing—viewed by most program-
mers at the time as a crazy method
for designing systems. The principal
objection was efficiency; copying mes-
sages between processes (instead of
using shared memory) was considered
horrendously inefficient. The coun-
terargument was that shared memory
was something preventing fault-toler-
ance. I have always believed that sys-
tems should be made to work correctly
before they are made fast. Fault-toler-
ance in the presence of both hardware
and software errors must be addressed
ahead of efficiency.

Fast-forward almost 25 years from
1986 to see that networked applica-
tions are extremely common and mul-
ticore computers are everywhere. As
the number of cores increases so does
the need for isolation throughout the

want errors in external code crashing
the Erlang runtime system.

Erlang View of Errors
Erlang differs from most other pro-
gramming languages in the way it
handles errors. An Erlang system typi-
cally consists of large numbers of light-
weight processes. It is of no particular
consequence if any one of them dies.
The recommended way of program-
ming is to let failing processes crash
and other processes detect the crashes
and fix them.

Erlang has a safe type system. Data
structures are dynamically typed, and
it is impossible to create corrupt data
structures. Extensive user checking of
data structures is unnecessary, since
the worst that can happen is an individ-
ual process might crash if it performs
an illegal operation. The important
thing to note is that the crash of one
process does not affect any other un-
linked process in the system.

However, being type-safe does not
solve all programmer problems; for
example, exception handlers must
still be written to correct type errors,
and sets of observing processes must
be created to correct errors caused
when processes crash due to type er-
rors. Some of these errors could have
been caught by static type checking,
but adding complete static type check-
ing to Erlang would change the flavor
of the language and make upgrading
dynamic code and other things virtu-
ally impossible.

In a single-threaded application
one has only one chance to correct
an error, so the consequence of not
correcting an error is that an entire
application might fail, thus single-
threaded applications and languages
take great care to fix errors locally.
With thousands of processes at one’s
disposal one is less concerned about
the failure of individual processes
than about detection and correction
of errors. The system is divided into
worker processes that perform com-
putations and supervisor processes
that check that the worker processes
are behaving correctly.

Erlang has an internal mechanism,
or “link,” that provides a form of inter-
process error detection and performs
as an error-propagation channel. If
process A is linked to process B and

system. Small isolated computations
are easily allocated to a pool of cores.
Shared memory translates to cache-
misses in multicore computers. If a
process running on one core of a multi-
core computer wants to access data in
the cache of a physically distant core,
pipeline stalls will occur, and the entire
operation will take much longer than if
the memory had been available locally.

Erlang today is well-placed for pro-
gramming multicore CPUs. Faced with
a multicore CPU, most programmers
turn legacy code into a parallel pro-
gram. Erlang programmers face an en-
tirely different problem. They already
have a parallel program, but it might
have some sequential bottlenecks, so
their job is to find the bottlenecks.

Here, I explore the language, along
with some of the more interesting ap-
plications that have been written in it.
Though Erlang started in the telecom
world, it has escaped to wider pastures,
rather like Unix and C.

Erlang View of the World
The Erlang view of the world is that ev-
erything is a process that lacks shared
memory and influences one another
only by exchanging asynchronous
messages. This view is broadly similar
to the actors model proposed by Gul
Agha.1 Each process has a mailbox to
which messages can be sent. Messages
are retrieved from the mailbox with a
receive statement or pattern-match-
ing construction that removes mes-
sages matching a particular pattern
in the mailbox and can also be used to
selectively remove messages from the
mailbox.

Hardware in Erlang is interfaced
through processes. A process that con-
trols hardware has two interfaces: one
toward the Erlang system, where it be-
haves as a regular Erlang process, the
other toward the hardware controlled
through a port providing an I/O chan-
nel to the outside world. All commu-
nication with the outside takes place
through ports.

Foreign-language software (not in
Erlang) cannot be linked to the Erlang
kernel but must be run in a separate
operating system process that executes
outside the Erlang runtime system and
is interfaced through a port. Security is
the reason for not linking foreign-lan-
guage code into the kernel; we do not

contributed articles

september 2010 | vol. 53 | no. 9 | communications of the acm 71

process A dies, then an error signal will
be sent to process B, and vice versa.

The ability to monitor a process
provides a clue for building reliable
systems. The idea is to try to solve the
problem, but if the processes in the
solution cannot do the job, the system
tries to solve a simpler problem. “Can-
not do the job” means detecting the
failure of a process; the system detects
such failures and tries to solve a sim-
pler problem.

One layer of the system usually per-
forms the application logic, and an
error-trapping layer monitors the ap-
plication and restores it to a safe state
if an error occurs. This application
structure is formalized in the Erlang
Open Telecom Platform (OTP) system
using so-called supervision trees pro-
viding a precise description of what is
to happen if a computation fails. OTP
applications organize problems into
tree-structured groups of processes,
letting the higher nodes in the tree
monitor and correct errors occurring
in the tree’s lower nodes.

Erlang Programs
Erlang was first implemented in Pro-
log6 in 1986, and thus many of the syn-
tactic conventions used in Erlang come
from Prolog; Erlang’s syntactic conven-
tions include:

Variables. When variables, or
single-assignments (written starting
with an uppercase letter like Day and
File), acquire a value, that value can-
not be changed; variables acquire val-
ues in successful pattern-matching
operations;

Atoms. Used to represent constants,
they are similar to enumerated types in
Java and C and written starting with a
lower-case letter; for example, monday,
orange, and cat are atoms;

Tuples. Like structs in C and used
for storing fixed numbers of items,
tuples are written in curly brackets;
for example, {Var, monday, 12} is
a tuple containing a variable atom and
an integer; and

Lists. Used for storing variable
numbers of items, lists are written en-
closed in square brackets; for example,
[a,X,b,Y] is a list containing two at-
oms and two variables.

Erlang’s syntax is designed to make
it easy to express parallel computa-
tions. Here, I jump in the deep end

of Erlang program development with
a code fragment that creates a coun-
ter process. Many of the examples are
from my 2007 book Programming in
Erlang2 and contain all the gruesome
details one would need to write Erlang
code. I begin by creating a counter pro-
cess:

Pid = spawn(fun() -> counter(0)
end),

spawn(Fun) means “create a parallel
process that evaluates Fun,” or an Er-
lang function.

The function counter(N) in Fig-
ure 1 waits for one of two messages: If
the process is sent the message tick,
it calls counter(N+1). If it is sent
the message {From, read} it replies
by sending a message {self(), N}
to the process From and then calls
counter(N). The notation A ! B means
send the message B to the process A,
self() is the process identity of the
process running the counter func-
tion and

receive
	Pattern1 ->
		Actions1;
	Pattern2 ->
		Actions2;
	...
end

means wait for a message. If the next
message matches Pattern1, then ex-
ecute the code Actions1; otherwise
if the message matches Pattern2,
then execute the code Actions2, and
so on. If no pattern is matched, then
queue the message for later and wait
for the next message.

To bump the counter, some process
that knows the name of the process ex-
ecutes the code:

Pid ! tick.

To read the counter, we evaluate:

Pid ! {self(), read},
receive
	{Pid, Result} ->
		Result
end

We send a {self(), read} message
to the counter process, then wait for a

The recommended
way of
programming is
to let failing
processes crash
and other processes
detect the crashes
and fix them.

72 communications of the acm | september 2010 | vol. 53 | no. 9

contributed articles

return message {Pid, Result}. Vari-
ables in Erlang are bound only once
and thereafter can never be changed,
so when one enters the receive state-
ment, Pid has a value; it must have a
known value, since otherwise Pid ! ..
would be meaningless. We must know
the identity of a process in order to
send it a message.

The receive statement then waits
for a message {Pid, Result} where
Pid is a bound variable and Result is
an unbound variable. This code frag-
ment means “Wait for a message that is
a tuple with two arguments where the
first argument matches Pid and bind
the value of the second argument in
the tuple to the variable Result. That
is, the code fragment waits for a mes-
sage from the process Pid and queues
any other messages that might arrive
while waiting for the message.

This code fragment occurs so often
it’s been given a name and made into a
library function:

rpc(Pid, Request} ->
	Pid ! {self(), Request},
	receive
		{Pid, Response} ->
	Response
	end.

It is simply a remote procedure call.

Erlang has no built-in mechanism for
doing remote procedure calls, but one
can easily program a remote proce-
dure call using the built-in primitives
send and receive. Why are built-in
primitives important? Because we can
roll our own interprocess communica-
tion mechanisms. If we want to do two
remote procedure calls in parallel, it
could be done like this:

Pid1 ! {self(), Request1},
Pid2 ! {self(), Request2},
receive
	{Pid1, Response1} ->
		Response1
end,
receive
	{Pid2, Response2} ->
		Response2
end,
...

This code is non-blocking since re-
ceive automatically queues any out-of
order messages sent to the processes.
If Pid1 replies first, then the first re-
ceive clause is triggered, and execution
steps to the second receive state-
ment and waits for the second process
to reply. If Pid2 replies first, then the
message is queued; once Pid1 replies,
the first receive statement is satis-
fied and the program steps to the sec-
ond receive statement, but the mes-
sage will have been saved and queued,
so the second receive statement is
triggered immediately. The net result
is that on completion of the code frag-
ment both messages will have been
received irrespective of the order in
which they were sent. The time spent
waiting is the longer of the response
times from the two processes.

Note, too, if the program had ex-
posed only a composite remote proce-

dure call function, such programming
would be more difficult, since two in-
termediate processes would have been
spawned, where each performed a re-
mote procedure call, and the results
would then have to be combined. With
three or more processes, coordinating
the actions of the parallel processes
would be difficult to program, were it
not for the queuing mechanism built
into the Erlang receive statement.

Detecting errors. Recall that in or-
der to build reliable systems one must
be able to remotely detect errors.c
Figure 2 defines a function that can
detect an error in a remote process
and perform an action on detecting
the error, and on _ exit(Pid, F)
creates a process that monitors the
process Pid. If the monitored pro-
cess dies with reason Why, the newly
created process evaluates the func-
tion F(Why), and process _
flag(trap _ exit, true) turns
the current process into a “system
process“ that can trap exit signals. The
statement link(Pid) sets up a “link”
to the process Pid. A link is an error-
propagation channel, and link(Pid)
means “if the process Pid dies, send
me an exit signal.” An exit signal is
an out-of-band message sent when a
process dies. Processes normally die
when they receive out-of-band exit sig-
nals, but because the process evaluat-
ed process _ flag(trap _ exits,
true), it became a system process,
and thereafter the exit signal can be
received as a message containing a
{‘EXIT’, Pid, Why} tuple.

The function on _ exit is the
workhorse needed to build fault-toler-
ant code. Using on _ exit allows one
to build a hierarchical tree of process-
es. Some processes do the work, and
other processes monitor the processes
that do the work and fix things up if the
worker processes die.

Recall that the Erlang philosophy
is “Let it crash”; in fact, processes that
cannot perform the task they were
told to do should crash immediately.
Another process will correct the error.
This is exactly the opposite of defen-
sive programming but leads to a clean

c	 Local error detection is no good; the local ma-
chine might have crashed and cannot perform
error recovery, so the error must be detected
on a remote machine unaffected by the crash.

Figure 2. A process monitor.

on_exit(Pid, F) ->
 spawn(fun() -> monitor(Pid, F) end).

monitor(Pid, F) ->
 process_flag(trap_exit, true),
 link(Pid),
 receive
 {‘EXIT’, Pid, Why} ->
 F(Why)
 end.

Figure 1. A simple counter process.

counter(N) ->
 receive
 tick ->
 counter(N+1);
 {From, read} ->
 From ! {self(), N},
 counter(N)
 end.

contributed articles

september 2010 | vol. 53 | no. 9 | communications of the acm 73

separation of interest between code
that does the job and code that cleans
up an error when it occurs. Erlang does
not provide an on _ exit function,
but it is easy to program one using the
Erlang’s built-in primitives.

Dynamic code upgrade. One thing
users and developers alike want to do
is run their systems forever. Assuming
things change, they will also want to
change the code in a running system,
but how? Imagine a simple server writ-
ten as follows:

loop(State, F) ->
	receive
		{From, Request} ->
			{Response, State1}
			=F(Request, State),
			From ! {self(), Response},
			loop(State1, F)
	end.

This server is a simple extension to
the counter process in Figure 1. The
server process has state State and a
processing function F. We could cre-
ate a process that evaluates this loop
like this:

F1 = fun(N, State) -> {N*N,
State+1} end,
Pid = spawn(fun() -> loop(0,
F1) end,

The processing function F1 returns
the square of its first argument and
keeps a running total of the number of
requests to the server.

The code in the server cannot be
changed, but a small addition can be
made to allow for dynamic code up-
grade by adding a {newFunction,
F1} pattern to the receive statement:

loop(State, F) ->
	receive
		{newFunction, F1} ->
			loop
			(State, F1);
		{From, Request} ->
			{Response, State1} =
			F(Request, State),
			From ! {self(), Response},
			loop(State1,F)
	end.

Now a new processing function can be
sent to the server without interrupting
it; for example, we could write:

frames, since there is nowhere to re-
turn to, and a new stack frame is not re-
quired. Having made a tail call, all local
variables in the current context can be
garbage-collected, allowing tail-recur-
sive loops to run indefinitely without
consuming stack space.

Open Telecoms Platform
OTP is a large set of libraries written
mostly in Erlang bundled together with
the Erlang distribution. OTP can be
viewed as an application middleware
package that simplifies writing large
Erlang applications. Recall I men-
tioned language primitives that could
be used to build simple functions that
encapsulate errors, showing how to
build a simple function on _ exit
that could be used to evaluate a specif-
ic function if an error occurred in some
other process.

Functions like on _ exit, while
useful and good to include in books
on programming languages, are not
the stuff from which large systems are
built. If a software component in a large
enterprise system fails, the error report
must be kept forever and the system
restarted. If a code upgrade fails, the
entire system must be automatically
rolled back to a previous state in a con-
trolled manner.

Organizations employing large
teams of programmers cannot let in-
dividual programmers invent their
own error-handling mechanisms and
ways of dynamically upgrading code.
The OTP libraries are thus an attempt
to formalize a large body of design
knowledge into workable libraries that
provide a standardized way of perform-
ing the most common tasks needed to
build a reliable system.

OTP is the third total rewrite of a sys-
tem of libraries in Erlang designed for
building telecom systems.3,4 The 2010
OTP system includes 49 subsystems,
each a powerful tool in its own right.
Typical subsystems are mnesia (a real-
time relational database), megaco (an
H.248 stack), and docbuilder (a tool to
make documentation), along with so-
phisticated analysis-test and analysis
tools.

Because a large number of Erlang
programs are written in a pure func-
tional programming style, they are
able to perform sophisticated analysis
and transformations. For example, the

F1 = fun(N, State) -> {N*N,
State+1} end,
Pid = spawn(fun() -> loop(0,
F1) end),
...
... some time later
...
F2 = fun(N, State) -> {N*N*N,
State+1} end,
Pid ! {newFunction, F2},
...

This new function dynamically up-
grades the code in the server.

Adding transactions. Adding trans-
actions is easy. In a transaction, either
state is modified if it works or there is
no change to the state if the transac-
tion fails. To implement this, we add
a try-catch-end block to the inner
part of the receive statement:

loop(State, F) ->
	receive
		{newFunction, F1} ->
			loop(State,F1);
		{From, Request} ->
			try F(Request, State) of
				{Response, State1} ->
						From ! {self(), Response},
						loop(State1, F)
			catch
			_ :Why ->
				exit(From, crash)
				loop(State, F)
			end
	end.

The evaluation of F(Request, State)
is wrapped in a try-catch-end
block. If the evaluated function raises
an error, then the process evaluates the
statement exit(Pid, crash), which
sends an exit signal to the process
that caused the exception; thereafter,
loop(State, F) is called, or recurs
with the original value of the state.

The sequential part of Erlang is a
functional language that does not al-
low the mutation of state. Because
state cannot be mutated, an Erlang
function can always revert to a previous
state of the computation by accessing
the original variable that referred to
the state.

Finally, note the effect of tail-recur-
sion. All server loops in the example
code finish with tail calls. Once a tail
call is made there is no going back;
tail calls do not create additional stack

74 communications of the acm | september 2010 | vol. 53 | no. 9

contributed articles

dialyzer14 is a type-checking program
that performs static analysis of Erlang
programs, finding type errors (if there
are any) in them. The test tool Quick-
Check8 generates random test cases
from a specification of the formal
properties of a program, and the tool
Wrangler13 can be used to refactor Er-
lang programs.

Erlang Distribution
Ever since Erlang was first released
into the public domain in 2000, it has
been supported by an internal prod-
uct-development group within Erics-
son. Following the release of Open
Source Erlang (http://www.erlang.
org/), the language spread slowly for
several years but has recently seen
a dramatic upturn in the number of
users and applications. This growth
corresponds to a similar upturn
in interest in Haskell (http://www.
haskell,org/), a strictly typed lazy poly-
morphic programming language.

Two other languages in the same
functional language school are
OCaml and F#. The simultaneous in-
crease in interest in different forms
of functional programming can be
seen as evidence that functional
programming has come of age and
is transitioning from the academic
world to industrial practice. Industri-
al projects and the formation of new
companies using Erlang as core tech-
nology reflect the more interesting
developments. Erlang can be down-
loaded from http://www.erlang.org/,
including the OTP system and a large
number of tools.

Experience
In OO languages, objects are used
to structure applications. In Erlang
applications, processes are used for
structuring, a technique I call “con-
currency oriented programming,” or
COP.5 The idea of building systems
from communicating components is
not new. Tony Hoare’s Communicat-
ing Sequential Processes12 described
how sets of concurrent processes
could be used to model applications,
and programming languages like Oc-
cam15 that were based on it explored
the idea. Erlang is conceptually similar
to Occam, though it recasts the ideas
of CSP in a functional framework and
uses asynchronous message passing

instead of the synchronous message
passing in CSP.

Processes in COP systems are isolat-
ed, responding only to messages and
resulting in systems that are easy to
understand, program, and maintain.
Several fairly large systems written in
Erlang enforce this idea. Several major
product developments are based on
Erlang, the largest being the AXD301
an asynchronous transfer mode (ATM)
switch developed by Ericsson. Out-
side Ericsson, Erlang is being used by
a large number of start-ups and is the
principle technology of several new
companies in Stockholm.

AXD301. The AXD301 switch9 has
scalable capacity ranging from10Gbit/
sec to 160Gbit/sec and modular archi-
tecture and was written in distributed
Erlang. Built by a large programming
team, it has more than 1.6 million
lines of Erlang code, showing that COP
as a structuring method and Erlang
as a programming language scale to
large systems. One reason it scales so
well is the architecture. At one level of
abstraction, it can be viewed as a sys-
tem of components that communicate
through pure message passing. The
lack of shared state and division of
the system into well-isolated commu-
nicating components make it easy to
understand the system’s overall archi-
tecture and isolate problems within
the system.

When a message is sent into a com-
ponent, we expect a certain response,
or message, from it. If this does not
happen, the error lies within the com-
ponent. Opening it could reveal the
same internal structure found on the
outside, just a set of communicating
components. “Opening a component”
can be performed repeatedly until a
misbehaving Erlang process is found.
There is no magic. Making reliable sys-
tems from isolated components leads
to systems that are easy to understand
and manageable in both small- and
large-scale projects.

Instant messaging. One problemat-
ic area in Internet applications where
Erlang has found notable success is
implementing instant-messaging
systems. An IM system looks at first
approximation very much like a tele-
phone exchange. IM and telephone
exchanges must both handle very large
numbers of simultaneous transac-

Not surprising,
the leading uses
of Erlang outside
telecom all involve
communications
and reliable
data storage.

http://www.erlang.org/
http://www.erlang.org/
http://www.erlang.org/
http://www.haskell.org/
http://www.haskell.org/

contributed articles

september 2010 | vol. 53 | no. 9 | communications of the acm 75

tions, each involving communication
with a number of simultaneously open
channels. The work involved in pars-
ing and processing the data on any one
channel is small, but handling many
thousands of simultaneous channels
is a technical challenge.

Erlang’s usefulness in IM is demon-
strated by three projects:

MochiWeb (http://code.google.com/p/
mochiweb). Designed for building
lightweight HTTP servers developed by
MochiMedia for high-throughput, low-
latency analytics, and ad servers, this
Erlang library helps power Facebook
chat among more than 70 million users;

Ejabberd (http://www.ejabberd.im).
Written by Alexey Shchepin, this Er-
lang implementation of the XMPP
protocol is the most widely used open
source XMPP server; and

RabbitMQ (http://www.rabbitmq.
com). This Erlang implementation
of the Advanced Message Queuing
Protocol standard provides reliable
asynchronous message passing at In-
ternet scale.

Schema-free databases. In tradi-
tional databases, data is stored in
rectangular tables, where the items in
a table are instances of simple types
(such as integers and strings). Such
storage is not particularly convenient
for storing an associative array or ar-
bitrary tree-like structure. Examples
of the former are JavaScript JSON data
structures (called hashes in Perl and
Ruby and maps in C++ and Java) and of
the latter XML parse trees. These ob-
jects are difficult to store in a regular
tabular structure. Erlang has for a long
time had its own database, called mne-
sia, that includes table storage but al-
lows any item in a table cell to also be
an arbitrary Erlang data structure.

Databases implemented in Erlang
are particularly well-suited for such
storage, especially when they inter-
face with some form of communicat-
ing agent. Three notable databases are
implemented in Erlang:

CouchDB (http://incubator.apache.
org/couchdb/). Written by Damien
Katz, “Apache CouchDB is a distrib-
uted, fault-tolerant, schema-free doc-
ument-oriented database accessible
via a RESTful HTTP/JSON API.” It pro-
vides robust, incremental replication
with bidirectional conflict detection
and resolution, queryable and index-

able through a table-oriented view
engine, with JavaScript acting as the
default view-definition language;

Amazon SimpleDB (http://aws.ama-
zon.com/simpledb/). This Web service
runs queries on structured data in real
time; and Scalaris.16 This scalable,
transactional, distributed key-value
store has a peer-to-peer architecture
for supporting reliable transactions
with ACID properties.

CouchDB and Scalaris are open
source projects; SimpleDB is a closed-
source commercial service.

Sweet spot. Taking in the six proj-
ects described here reveals a pattern
of communication with complex data
structures being passed over the net-
work. The number of clients wanting
simultaneous access to the system is
potentially huge, with hundreds of
thousands to millions of users. The
data stores must therefore be reliable
and the data protocols extensible. Not
surprising, this is the Erlang “sweet
spot” for supporting system devel-
opment. Erlang was developed for
building high-performance telecom
switches, with hundreds of thousands
of users accessing the system simulta-
neously. Data structures are complex,
and the system must be able to store
data in a reliable manner, recovering
from local failures and scaling clusters
to manage varying demand. Erlang was
designed to do all these things, with
the intended applications domain of
carrier-class telecoms systems. Also
not surprising, the leading uses of Er-
lang outside telecom all involve com-
munications and reliable data stor-
age. In an abstract sense, what these
projects do is serialize data terms into
a transportable format (marshalling
and unmarshalling), transport the
data over the network, and store the
data in some kind of persistent stor-
age medium.

Beyond the sweet spot, several ap-
plications that have nothing to do
with fault tolerance have also gained
popularity; for example, Wings (http://
www.wings3d.com), a 3D graphics
modeling program written by Björn
Gustavsson, and Nitrogen (http://
nitrogenproject.com/), a Web-devel-
opment framework written by Rusty
Klophaus, show that Erlang is useful
as a general-purpose programming
language.

Acknowledgments
I thank Ericsson Telecom for its con-
tribution to the development of Erlang
over the years. 	

References
1.	 Agha, G. Actors: A model of concurrent computation

in distributed systems. In MIT Series in Artificial
Intelligence. MIT Press, Cambridge, MA, 1986.

2.	 Armstrong, J. Programming Erlang: Software for a
Concurrent World. The Pragmatic Bookshelf, Raleigh,
NC, 2007.

3.	 Armstrong, J. A history of Erlang. In Proceedings of
the Third ACM SIGPLAN Conference on the History
of Programming Languages (Dan Diego, CA, June
9–10). ACM Press, New York, 2007.

4.	 Armstrong, J. Making Reliable Distributed Systems in
the Presence of Errors. Ph.D. Thesis, Royal Institute
of Technology, Stockholm, 2003.

5.	 Armstrong, J. Concurrency-oriented programming
in Erlang. Invited Talk at the Lightweight Languages
Workshop (Cambridge MA, Nov. 9, 2002).

6.	 Armstrong, J.L., Virding, S.R., and Williams, M.C.
Use of Prolog for developing a new programming
language. In Proceedings of the First Conference on
the Practical Application of Prolog (London, Apr. 1–3).
Association for Logic Programming, 1992.

7.	B lau, S. and Rooth, J. Axd 301: A new-generation
ATM switching system. Ericsson Review 1 (1998).

8.	C laessen, K. and Hughes, J. Quickcheck: A
lightweight tool for random testing of Haskell
programs. In Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional
Programming. ACM Press, New York, 2000, 268–279.

9.	D äcker, B. Concurrent Functional Programming for
Telecommunications: A Case Study of Technology
Introduction. Licentiate Thesis. Royal Institute of
Technology. Stockholm, 2000.

10.	G ray, J. Why Do Computers Stop and What Can Be
Done About It? Tech. Rep. 85.7. Tandem Computers,
Inc., 1985.

11.	G uerraoui, R. and Schiper, A. Fault tolerance by
replication in distributed systems. In Proceedings of
the Conference on Reliable Software Technologies.
Springer Verlag, 1996, 38–57.

12.	H oare, C.A.R. Communicating Sequential Processes.
Prentice Hall, Upper Saddle River, NJ, 1985.

13.	L i, H., Thompson, S., Orosz, G., and Toth, M.
Refactoring with Wrangler: Data and process
refactorings and integration with Eclipse. In
Proceedings of the Seventh ACM SIGPLAN Erlang
Workshop (Victoria, BC, Sept. 27). ACM Press, New
York, 2008, 61–72.

14.	L indahl, T. and Sagonas, K. Detecting software
defects in telecom applications through lightweight
static analysis: A war story. In Proceedings of the
Second Asian Symposium (Taipei, Taiwan, Nov. 4–6).
Springer, 2004, 91–106.

15.	 Occam Programming Manual. Prentice Hall, Upper
Saddle River, NJ, 1984.

16.	 Schütt, T. Schintke, F., and Reinefeld, A. Scalaris:
Reliable transactional p2p key/value store. In
Proceedings of the Seventh ACM SIGPLAN Workshop
on Erlang (Victoria, BC, Sept. 27). ACM Press, New
York, 2008, 41–48.

17.	W iger, U., Ask, G., and Boortz, K. World-class product
certification using Erlang. In Proceedings of the 2002
ACM SIGPLAN Workshop on Erlang (Pittsburgh, PA).
ACM Press, New York, 2002, 24–33.

18.	W iger, U. Fourfold increase in productivity and
quality: Industrial-strength functional programming
in telecom-class products. In Proceedings of the
Workshop on Formal Design of Safety Critical
Embedded Systems (Münich, Mar. 21–23, 2001).

Joe Armstrong (joe.armstrong@ericsson.com) is an
expert in software architectures and programming
languages in Business Unit Networks at Ericsson,
Stockholm, Sweden.

© 2010 ACM 0001-0782/10/0900 $10.00

http://code.google.com/p/mochiweb
http://www.ejabberd.im
mailto:joe.armstrong@ericsson.com
http://aws.amazon.com/simpledb/
http://aws.amazon.com/simpledb/
http://code.google.com/p/mochiweb
http://www.rabbitmq.com
http://www.rabbitmq.com
http://incubator.apache.org/couchdb/
http://incubator.apache.org/couchdb/
http://nitrogenproject.com/
http://nitrogenproject.com/
http://www.wings3d.com
http://www.wings3d.com

76 CommuniCations of the aCm | sEPtEMbEr 2010 | vol. 53 | no. 9

review�articles

cOnSider a MaJOr news Web site like BBC or Cnn.
Typically, such a site is equipped with a number of
machines serving as front-ends to receive incoming
requests together with some application servers
such as database engines to handle these requests.
When a new request arrives, to which server does the
dispatcher have to route it? To the machine with the
shortest queue; that is, the queue with the minimal
number of outstanding requests? This might be the
best decision most times, but not in cases where some
of the requests in the shortest queue happen to require
a very long service time, for example, because they
involve very detailed queries. And what to do when the

servers differ in computational capa-
bilities? And what to do when multiple
hosts have the same queue length?
Well, the “join-the-shortest queue”
policy might be adequate in most cas-
es, but surely not in all. Its adequacy
also depends on what quantity—or
measure—one is interested in. This
may be the mean delay of service re-
quests, the mean queue length of wait-
ing requests, rejection rates for waiting
requests, and so on.

The effect of queue-selection poli-
cies on measures of interest or on deci-
sions on how many servers are needed
to reduce the waiting time by a given
percentage, are answered by perfor-
mance evaluation techniques. This
branch of computer (system) science
studies the perceived performance of
systems based on an architectural sys-
tem description and a workload mod-
el. Prominent techniques to obtain the
aforementioned measures of interest
are mathematical analysis that is typi-
cally focused on obtaining closed-form
expressions, numerical evaluation that
heavily relies on methods from linear
algebra, and (discrete-event) simu-
lation techniques that are based on
statistical methods. The study and de-
scription of stochastic processes, most
notably Markov chains, is pivotal for
these techniques.

A complementary issue to perfor-
mance is correctness. The central
question is whether a system is con-
forming to the requirements and does
not contain any fl aws. Typically up-
dates to our news Web site are queued,
and it is relevant to know whether such

Doi:10.1145/1810891.1810912

A call for the perfect marriage between
classical performance evaluation and
state-of-the-art verifi cation techniques.

BY ChRisteL BaieR, BouDeWiJn R. haVeRKoRt,
hoLGeR heRmanns, anD Joost-PieteR Katoen

Performance
evaluation
and model
Checking
Join forces

 key insights
����Performance engineers and verification

engineers are currently facing
very similar modeling and analysis
challenges.

����a joint consideration is possible,
practical, beneficial, and is supported
by effective tools.

����Quantitative model checkers are
applicable to a broad spectrum of
applications ranging from sensor
networks to security and systems
biology.

sEPtEMbEr 2010 | vol. 53 | no. 9 | CommuniCations of the aCm 77

buffers may overfl ow, giving rise to los-
ing—perhaps headline—news items.
Can such situations ever occur? Is
there a possible scenario in which the
dispatcher and application server are
mutually waiting for each other, thus
effectively halting the system? If such
situations make the CNN news site
unreachable on a presidential Elec-
tion Day, this has far-reaching conse-
quences. And what if the content of
Web pages unexpectedly depend on
the ordering of seemingly unrelated
events in the application servers? Such
“race conditions” should, if possible,
be avoided.

A prominent discipline in computer
science to assure the absence of errors,
or, complementarily, to fi nd errors
(“bug hunting”) is formal verifi cation.
The spectrum of key techniques in this
fi eld ranges from runtime verifi cation,

such as checking properties while ex-
ecuting the system, to deductive tech-
niques such as theorem proving, to
model checking. The latter is a highly
automated model-based technique as-
sessing whether a system model, that is,
the possible system behavior, satisfi es a
property describing the desirable behav-
ior. Typically, properties are expressed
in temporal extensions of propositional
logic, and system behavior is captured
by Kripke structures, that is, fi nite-state
automata with labeled states. Tradition-
ally, such models do not incorporate
quantitative information like timing or
likelihoods of event occurrences.

The purpose of this article is to report
on combining performance evaluation
with model checking. Although these
fi elds have been developed by different
research communities in the past, over
the last decade we have seen an integra-

tion of these two techniques for system
analysis. Signifi cant merits of this trend
are a major increase of the applicability
to real cases, and an impulse in the fur-
ther development for both fi elds.

a historic account
To appreciate the benefi ts of combin-
ing performance evaluation and model
checking, it is worthwhile to refl ect
on past and recent developments. We
aim to shed light on the hidden as-
sumptions associated with these de-
velopments. For more details on per-
formance evaluation we refer to Bolch
et al.10 and Jain,22 for details on model
checking we refer to Baier and Katoen7

and Clarke et al.11

Single queues. Performance evalu-
ation dates back to the early 1900s,
when Erlang developed models to di-
mension the number of required lines

timeline log-scaled from 2010 backward.

78 communications of the acm | september 2010 | vol. 53 | no. 9

review articles

in analogue telephone switches, based
on the calculation of call loss probabili-
ties. In fact, he used a queueing model,
in which a potentially infinite supply of
customers (callers) competes for a lim-
ited set of resources (the lines). The set
of models and the theory that evolved
from there is known as queueing the-
ory. It has found, through the last cen-
tury, wide applicability especially in
telecommunications. Characteristic
for most models is the competition for
a single scarce resource at a time, lead-
ing to models with a single queue.

A large variety of modeling assump-
tions were made, for example, regard-
ing the number of available servers
(lines), buffering facilities, schedul-
ing strategies, job discrimination, and
the timing involved. The timings were
assumed to follow some continuous-
time distribution, most often a nega-
tive exponential distribution, leading
to (what we now call) Markovian mod-
els. These models were subsequently
analyzed, using calculus, to obtain
such quantities as mean number of
customers queued, mean delay, some-
times even the delay distribution, or
the call blocking probability (“hearing
a busy signal”). Many of these mea-
sures are available in closed form; at
other times, numerical recipes were
proposed, for example, to derive such
measures from explicit expressions in
the Laplace domain. Important to note
is that model construction, as well as
solution, was (and still is) seen as a
craft, only approachable by experts.

Networks of queues. In the late 1960s,
computer networks, networked com-
puter systems, and time-sharing com-
puter systems came into play. These
systems have the distinguishing feature
that they serve a finite customer popu-
lation; however, they comprise multiple
resources. This led to developments in
the area of queueing networks, in which
customers travel through a network of
queues, are served at each queue ac-
cording to some scheduling discipline,
and are routed to their next point of
service, and so on, until returning to
the party that originated the request.
Efficient algorithms to evaluate net-
works of queues to obtain a set of “stan-
dard measures” such as mean delays,
throughputs, and mean queue lengths,
were developed in the 1970s.40,51 A vari-
ety of software tools emerged support-

ing these algorithms that typically have
a polynomial complexity in the number
of queues and customers.

Stochastic Petri nets. In early 1980s,
new computer architectures asked
for more expressive modeling formal-
isms. In particular, parallel comput-
ers motivated modeling notions to
spawn customers and to recombine
smaller tasks into larger ones (fork/
join queues). Moreover, the simultane-
ous use of multiple resources needed
to be studied. Clearly, these concepts
could not be expressed using queue-
ing networks. This led to the proposal
to extend Petri nets—originally devel-
oped to model concurrency—with a
notion of time, leading to (generalized)
stochastic Petri nets (SPNs).2 Here, the
tokens can either play the role of cus-
tomers or of resources. Two observa-
tions are important. First, due to the
increase in expressivity, specialized
algorithms, such as those available for
queueing networks, are typically no
longer used. Instead, the SPN models
must be mapped to an underlying sto-
chastic process, a Markov chain that is
solved by numerical means. Hence, the
state space of the model must be gen-
erated explicitly, and the resulting Mar-
kov chain has to be solved numerically
(linear equation solvers).

The computational complexity of
these state-based methods is polyno-
mial in the number of states, but this
often is, in turn, (often) a high-degree
polynom in the SPN size. Secondly, as
a result of the new solution trajectory,
tool support became a central issue.
Results achieved in this area also in-
spired new numerical algorithms for
extended queueing network models.
With hindsight, SPNs can be consid-
ered as the first “product” of the mar-
riage between the field of performance
evaluation and the field of formal mod-
eling. In the 1990s, this trend contin-
ued and led to probabilistic variants of
guarded command languages and of
process algebras, the latter focusing on
compositionality.

Nondeterminism. All of the mod-
els mentioned here are full stochas-
tic models; that is, at no point in the
model can some behavioral alterna-
tives be left unspecified. For instance,
the join-the-shortest-queue strategy
leaves it open as to how to handle the
case of several equally short queues.

This choice cannot be left open with
the methods noted earlier; leaving
such a choice is regarded as under-
specification. What typically happens
is that these cases are dealt with prob-
abilistically, for example, by assign-
ing probabilities to the alternatives.
That is, nondeterminism is seen as a
problem that must be removed before
analysis can take place. This is impor-
tant especially for modeling formal-
isms as SPNs; tools supporting the
evaluation of these models will either
detect and report such nondetermin-
ism through a “well-specified check”
or will simply insert probabilities to
resolve it. In this case, analysis is car-
ried out under a hidden assumption,
and there is no guarantee that an ac-
tual implementation will exhibit the
assumed behavior, nor that the per-
formance derived on the basis of this
assumption is achieved.

Trends. The last 20 years have seen a
variety of developments in performance
evaluation, mostly related to specific
application fields, such as the works on
effective bandwidth,42 network calcu-
lus,46 self-similar traffic models,47 and
traffic (and mobility) models43 (for com-
munication network dimensioning
purposes). A more general concept has
been the development of fluid models
to avoid the state space explosion prob-
lem (for example, Horton et al.45) by
addressing a large denumerable state
space as a single continuous state vari-
able. Furthermore, queueing network
models have been extended with layer-
ing principles to allow for the modeling
of software phenomena.52 Finally, work
on matrix geometric methods48 has led
to efficient analysis methods for large
classes of queueing models.

Model Checking
Proof rules. The fundamental question
“when and why does software not work
as expected?” has been the subject of
intensive research since the early days
of computer science. Software qual-
ity is typically based on peer review,
such as manual code inspection, ex-
tensive simulation, and testing. These
rather ad hoc validation techniques
have severe limitations and restric-
tions. Research in the field of formal
verification has led to complementary
methods aimed at establishing soft-
ware correctness with a very high level

review articles

september 2010 | vol. 53 | no. 9 | communications of the acm 79

of confidence. The origins of a sound
mathematical approach toward pro-
gram correctness—at a time where
programs were described as flow dia-
grams—can be traced back to Turing
in the late 1940s. Early attempts to
assess the correctness of computer
programs were based on mathemati-
cal proof rules that allow to reason in
a purely syntax-based manner. In the
1960s, these techniques were devel-
oped for sequential programs, where-
as about a decade later, this approach
was generalized toward concurrent
programs, in particular shared-vari-
able programs.

Temporal logic. These syntax-based
approaches are based on an interpreta-
tion of programs as input/output trans-
formers and serve to prove partial cor-
rectness (such as soundness of output
values for given inputs, provided the
program terminates) and termination.
Thanks to a key insight in the late 1970s
by Pnueli, one recognized the need for
concurrent programs to not only make
assertions about the starting and final
state of a program, but also about the
states during the computation. This
led to the introduction of temporal log-
ic in the field of formal verification.50
Proofs, however, were still conducted
mainly by hand along the syntax of
programs. Proofs for programs of real-
istic size, though, were rather lengthy
and required a good dose of human
ingenuity. In the field of communica-
tion protocols, the first techniques ap-
peared toward automated checking of
elementary properties.53

Model checking. In the early 1980s,
an alternative to using proof rules was
proposed that checks systematically
whether a (finite) model of a program
satisfies a given property.7,11 The pio-
neers Clarke, Emerson, and Sifakis,
received the ACM Turing Award 2007
for this breakthrough; it was the first
step toward the fully automated veri-
fication of concurrent programs. How
does model checking work? Given a
model of the system (the possible be-
havior) and a specification of the prop-
erty to be considered (the desirable
behavior), model checking is a tech-
nique that systematically checks the
validity of the property in the model.
Models are typically nondeterministic
finite-state automata, consisting of a
finite set of states and a set of transi-

tions that describe how the system
evolves from one state into another.
These automata are usually composed
of concurrent entities and are often
generated from a high-level descrip-
tion language such as Petri nets, pro-
cess algebras, Promela, or Statecharts.
Properties are specified in temporal
logic such as Computation Tree Logic
(CTL), an extension of propositional
logic that allows one to express prop-
erties that refer to the relative order of
events. Statements can either be made
about states or about paths, such as
sequences of states that model system
evolution.

The backbone of the CTL model
checking procedure is a recursive de-
scent over the parse tree of the formula
under consideration where temporal
conditions (for example, a reachabil-
ity for an invariance condition) are
checked using fixed point computa-
tions. The class of path properties
expressible in CTL is restricted to lo-
cal conditions on the current states
and its direct successors, constrained
reachability conditions—is a goal state
reachable by not visiting certain states
before?—and their duals.

More complex path properties such
as repeated reachability or progress
properties, which, for example, can
state that whenever a request enters
the news Web site, it is served eventual-
ly, can be specified in Linear Temporal
Logic (LTL). The rough idea of model
checking LTL specifications is to trans-
form the formula at hand into an au-
tomaton (recognizing infinite words)
and then to analyze the product of this
automaton with the system model by
means of graph algorithms.

The strength of model checking is
not in providing a rigorous correctness
proof, but rather the ability to gener-
ate diagnostic feedback in the form of
counterexamples (such as error traces)
in case a property is refuted. This infor-
mation is highly relevant to find flaws
in the model and in the real system.

Taming state space explosion. The
time and space complexity of these
algorithms is linear in the size of the
finite-state automaton describing the
system. The main problem is this size
may grow exponentially in the number
of program and control variables, and
in the number of components in a mul-
tithreaded or distributed system.

The strength of
model checking
is not in providing
a rigorous
correctness proof,
but rather the
ability to generate
diagnostic feedback
in the form of
counterexamples
in case a property
is refuted.

80 communications of the acm | september 2010 | vol. 53 | no. 9

review articles

Since the birth of model checking,
effective methods have been devel-
oped to combat this state explosion
problem. Prominent examples of such
techniques are: symbolic data struc-
tures,39 partial-order reduction,49 cast-
ing model checking as SAT-problems,38
or abstraction techniques.11 Due to
these techniques, together with unre-

mitting improvements of underlying
algorithms and data structures and
hardware technology improvements,
model checking techniques that only
worked for simple examples a decade
ago, are now applicable to more real-
istic designs. State-of-the-art model
checkers can handle state spaces of
about 109 states using off-the-shelf

technology. Using clever algorithms
and tailored data structures, much
larger state spaces (up to 10120 states41)
can be handled for specific problems
and reachability properties.

Quantitative aspects. From the early
1990s on, various extensions of model
checking have been developed to treat
aspects such as time and probabilities.
Automata have been equipped with
clock variables to measure the elapse
of time (resulting in timed automata),
and it has been shown that despite
the infinite underlying state space of
such automata, model checking of a
timed extension of CTL is still decid-
able.37 LTL has been interpreted over
(discrete) probabilistic extensions of
automata, focusing on the probability
that an LTL formula holds, and proba-
bilistic variants of CTL have been de-
veloped, as we will elaborate in more
detail later on. For an overview, see
Baier and Katoen.7 The combination of
timing aspects and probabilities start-
ed about two decades ago and is highly
relevant for this article.

Various software tools have been
developed that support model check-
ing. Some well-known model checking
tools are: SPIN for LTL, NuSMV for CTL
(and LTL), Uppaal for timed CTL, and
PRISM for probabilistic CTL.

Let’s Join Forces
Developments in performance evalu-
ation lean toward more complex mea-
sures of interest, and focus on more
complex system behavior. However,
quantitative aspects such as timing
and random phenomena are becoming
more important in the field of model
checking. Performance evaluation and
model checking have thus grown in
each other’s direction, simply because
from either end, it was felt that the
methods in isolation did not answer
the questions that were at stake. Let
us discuss the reasons for this, and the
benefits of combining these methods.

Individual Shortcomings
Why is a performance (or a dependabil-
ity) evaluation of a system in itself not
good enough? And why is a formal veri-
fication of a system insufficient to vali-
date its usefulness? These questions are
best answered by taking a simple sys-
tem design example, for instance a reli-
able data transmission protocol such as

Figure 1. A logic for quantitative properties: syntax and semantics.

Let X be a general stochastic process, i.e, an indexed family {X(t) | t ∈ T} of
random variables taking values in the set S. The index set T denotes the time
domain of X and is either discrete (T = N) or continuous (T = R). We suppose
that all states have positive probability under the initial distribution μinit, i.e.,
μinit(s) = PrX(X(0) = s) > 0 for all states s. For event E, let PrX,s(E) denote the
probability for E under the condition that s is the start state. Each state is
labeled by a set of atomic propositions that can be viewed as state predicates.

Logical formulas (denoted by capital greek letters Φ, Ψ) are given by the
grammar:
	 Φ ::= a | Φ ∧ Ψ | ¬Φ | Pp(Φ U IΨ) | Lp(Φ)

Here, a is an atomic proposition, p ∈ [0, 1],  ∈ {, , >, <} and I is a closed
interval of T. The semantics of this logic is defined inductively as follows:
	 s |= a 	 iff 	 state s is labeled with atomic proposition a
	 s |= Φ∧Ψ 	 iff 	 s |= Φ and s |= Ψ
	 s |= ¬Φ 	 iff 	 s  Φ
	s |= Pp(Φ U I Ψ) 	 iff 	 PrX,s {∃t ∈ I (X(t) |= Ψ ∧ ∀t′ ∈ T (t′ < t ⇒ X(t) |= Φ)} p
	 s |= Lp(Φ) 	 iff 	LR A(s, SatX(Φ)) p
where SatX(Φ) = {s ∈ S | s |= Φ} and for B ⊆ S, LRA(s,B) denotes the “long run
average” of being in a state of B for runs starting in state s. Formally, LRA(s,B) is
the expected value of the random variable

		 lim 1
t
 ∫

t

0 1B(X(θ)) dθ

with respect to the probability measure PrX,s. Here, 1B denotes the characteristic
function of B, i.e., 1B(s′) = 1 if s ∈ B and 0 otherwise.

Derived operators. Let UT denote U . Usual propositional operators such as ff,
tt, ∨ are derivable. The eventually operator ◊I with time bounds given by a
time interval I is obtained by ◊IΦ = tt U I Φ. To specify that condition Φ holds
continuously in the time interval I, the time-constrained always operator I can
be defined by using the duality of “eventually” and “always”. For instance, Pp
(IΦ) is a shorthand notation for P1−p(◊I¬Φ).

t→∞

Table 1. Availability measures and their logical specification.

long-run Lp(up)

instantaneous Pp(◊[t,t]up)

conditional instantaneous Pp(ΦU[t,t]up)

interval Pp([t,t′]up)

long-run interval Lp(Pq([t,t′]up))

conditional interval long-run Pp(ΦU[t,t′] Lq(up))

review articles

september 2010 | vol. 53 | no. 9 | communications of the acm 81

possibility to describe properties at
the same abstraction level as the mod-
eling of the stochastic process. Up to
now, it has been tradition to specify
measures of interest such as “what is
the probability to fail within deadline
d?” at state level, that is, in terms of the
states and their elementary properties
(logically speaking, atomic proposi-
tions). Sometimes reward structures
have been added at state level to quan-
tify the use of resources such as queue
occupancies and the like. This stands
in sharp contrast with the description
of the models themselves, which is
mostly done using high-level model-
ing formalisms such as queueing net-
works, SPNs, stochastic automata net-
works, or stochastic process algebra.
Temporal logics close this paradigm
gap between high-level and state-
based modeling as they allow to spec-
ify properties in terms of the high-level
models, for example, in terms of the
token distribution among places in a

Petri net. By the use of temporal logics,
modeling and measure specification
become treated at an equal footing.

An example logic with semantics
interpretation is illustrated in Fig-
ure 1. Instances of this generic logic
arise by considering special types of
stochastic processes, for example, for
an interpretation over discrete-time
Markov chains (DTMC), T = N and
we obtain probabilistic computation
tree logic (PCTL).18 For continuous-
time Markov chains (CTMC), the time
domain is T =R, and continuous sto-
chastic logic (CSL) is obtained.4,6 Fig-
ure 3 presents a small representative
example3,9 with some typical logical
formulae.

Expressivity and flexibility. The use of
logics offers, in addition, a high degree
of expressiveness. Simple performance
and dependability metrics such as tran-
sient probabilities—what is the prob-
ability of being in a failure state at time
t?—and long-run likelihoods (when

TCP. Such a protocol relies on a number
of ingredients that, when suitably com-
bined, result in the desired behavior:
reliable, end-to-end in-order delivery of
packets between communicating peers.
These ingredients comprise timers, se-
quence numbers, retransmissions, and
error-detecting codes.

A typical performance model will
take into account the TCP timing and
retransmission aspects, whereas the
error correction will mostly be includ-
ed as a random phenomenon.

For the sake of simplicity, sequence
numbers are neglected, which results
in a model that can be analyzed using
either a closed-form formula or some
numerical technique that, under the
assumption the model is function-
ally correct, gives a certain mean per-
formance, measured as throughput
or mean packet delay. However, the
obtained quantities do not say any-
thing about the question of whether
the packets do arrive correctly at all,
hence, whether the protocol is cor-
rect. Conversely, a classical functional
model of the sketched protocol here
will most likely result in a correctness
statement of the form “all packets will
eventually arrive correctly.” But this
gives no information about perceived
delays and throughputs. Needless to
say, one cannot simply “add up” the
results of both analyses, as they re-
sult from two different—and possibly
quite unrelated—models.

The key challenge lies in developing
an integrated model. Preferably, the
user, such as the system architect or
design engineer, just provides a single
model (as engineering artifact) that
forms the basis for both types of analy-
sis. To improve the efficiency, addition-
al property-dependent abstraction tech-
niques can be applied to abstract away
from all details of the model that are ir-
relevant for the property to be checked.
For example, checking whether a purely
functional property holds for a Markov
model requires an analysis of the un-
derlying graph structure, and one can
ignore all stochastic information.

Benefits
Modeling and measure specification.
An important advantage of using tem-
poral logics (or automata) to specify
properties of interest—in fact guaran-
tees on measures of interest—is the

Figure 2. Schema for model checking stochastic processes.

given: a stochastic process X and a logical formula Φ
task: compute PrX{X(0) |= Φ}
idea: compute the sets SatX(Ψ) = {s ∈ S | s |= Ψ} for any subformula Ψ of Φ and
return   Σ   μinit(s)

•	SatX(a) = {s ∈ S | state s is labeled with atomic proposition a}
•	SatX(Ψ1 ∧ Ψ2) = SatX(Ψ1) ∩ SatX(Ψ2)
•	SatX(¬Ψ) = S \ SatX(Ψ)
•	computation of SatX(Pp(Ψ1 UI Ψ2)):

	 case 1: I = [0, t] for some t ∈ T, t > 0. Let Y be the stochastic process that
	 results from X by making all states where Ψ2 holds or Ψ1 is refuted absorbing.
	T hat is, if B = SatX(Ψ2) ∪ S \ SatX (Ψ1), then Y is given by

		
Y (t) = { X(t)	: if X(t′) ∉ B for all t′ < t

			 s	 : if X(t′) = s ∈ B for some t′ < t and X(t″) ∉ B or X(t″) = s for all t″ < t′.

	 Apply known methods of performance evaluation to compute the probabilities
		 ps = PrY,s {X(t) ∈ SatX(Ψ2)}
	 and return SatX(Pp(Ψ1 U I Ψ2)) = {s ∈ S | ps  p}.

	 case 2: I = [t1, t2] for some t1 > 0. Let Y be the stochastic process that arises
	 from X by making all states refuting Ψ1 absorbing. Regard the stochastic
	 process Z that arises from Y by shifting the time by t1 time units, i.e., Z is
	 specified by Z(t) = Y (t + t1). We then evaluate the formula Pp(Ψ1 U [0,t2−t1] Ψ2)
	 over Z as in case 1 and return

		 SatX(Pp(Ψ1 U I Ψ2)) = SatZ(Pp(Ψ1 U [0,t2−t1] Ψ2)).

•	Let B = SatX(Φ) and apply known methods of performance evaluation to
	 compute the long run average LRA(s,B) of being in a state of B for runs
	 starting in state s. Return

		 SatX(Lp(Φ)) = {s ∈ S | LRA(s,B)  p}.

s∈SatX(Φ)

82 communications of the acm | september 2010 | vol. 53 | no. 9

review articles

the system is observed long enough)
can readily be expressed. Most stan-
dard performance measures are easily
captured, see Table 1 for a selection of
properties. More importantly, the use
of logics offers an enormous degree
of flexibility. Nesting formulas yields a
simple mechanism to specify complex
measures in a succinct manner. A prop-
erty like “the probability to reach a state
within 25 seconds that almost surely
stays safe for the next 10 seconds, via le-
gal states only exceeds ½" boils down to

P>1
2
 (legal U  25 P=1( 10 safe))

This immediately pinpoints another
advantage: given the formal semantics
of the temporal logic, the meaning of
the above formula is precise. That is to
say, there is no possibility that any con-
fusion might arise about its meaning.
Unambiguous measure specifications
are of utmost importance. Existing
mathematical measure specifications
are rigorous too of course, but do not
offer the flexibility and succinctness

of logics. Temporal logic provides a
framework that is based on just a few
basic operators.

Many measures, one algorithm. The
above concerns the measure speci-
fication. The main benefit though is
the use of model checking as a fully al-
gorithmic approach toward measure
evaluation. Even better, it provides a
single computational technique for
any possible measure that can be writ-
ten. This applies from simple proper-
ties to complicated, nested, and pos-
sibly hard-to-grasp formulas. For the
example logic this is illustrated in Fig-
ure 2. This is radically different from
common practice in performance and
dependability evaluation where tai-
lored and brand new algorithms are
developed for “new” measures. One
might argue that this will have a high
price, that is, the computational and
space complexity of the exploited al-
gorithms must be extremely high. No!
On the contrary, in the worst case, the
time complexity is linear in the size
of the measure specification (logic
formula), and polynomial (typically
of order 2 or 3, at most) in the num-
ber of states of the stochastic process
under consideration. As indicated in
Figure 4, the verification of bounded
reachability probabilities in DTMCs
and CTMCs—often the most time-
consuming ones— is a matter of a few
seconds even for millions of states:
The space complexity is quadratic in
the number of states in the worst case.
In fact, as for other state-based per-
formance evaluation techniques this
polynomial complexity is an issue of
concern as the number of states may
grow rapidly.

Perhaps the largest advantage of
model checking for performance
analysis is that all algorithmic details,
all detailed and non-trivial numerical
computation steps are hidden to the
user. Without any expert knowledge
on, say, numerical analysis techniques
for CTMCs, measure evaluation is
possible. Even better: the algorithmic
analysis is measure-driven. That is to
say, the stochastic process can be tai-
lored to the measure of interest prior to
any computation, avoiding the consid-
eration of parts of the state space that
are irrelevant for the property of inter-
est. In this way, computations must be
carried out only on the fragments of

Figure 3. A simple model checking example: The Zeroconf protocol.

The IPv4 zeroconf protocol is a simple protocol proposed by the IETF (RFC
3927), aimed at the self-configuration of IP network interfaces in ad hoc
networks. Such ad hoc networks must be hot-pluggable and self-configuring.
Among others, this means that when a new appliance, hitherto called a
newcomer, is connecting to a network, it must be configured with a unique
IP address automatically. The zeroconf protocol solves this task using
randomization. A newcomer intending to join an existing network randomly
selects an IP address, U say, out of the 65024 available addresses and
broadcasts a message (called a probe) asking “Who owns the address U?”.
If an owner of U is present and does receive that message, it replies, to force
the newcomer to randomly select another address. Due to message loss or
busy hosts, messages may not arrive at some hosts. Therefore a newcomer
is required to send a total of four probes, each followed by a listening period
of two seconds before it may assume that a selected address is unused.
Therefore, the newcomer can start using the selected IP address only after
eight seconds. Notably, there is a low probability risk that a newcomer may still
end up using an already owned IP address, for example, because all probes
were lost. This situation, called address collision, is highly undesirable.

The protocol behavior of a newcomer is easily modeled by a DTMC depicted
above consisting of nine states.3,9 The protocol starts in s0 where the newcomer
randomly chooses an IP address. With probability q = m/65024 the address is
already owned, where m is the current size of the network. State si (0 < i  4)
is reached after issuing the i-th probe. With probability p no reply is received
during two seconds on a sent probe (as either the probe or its reply has been
lost). State s8 (labeled ok) indicates that eventually a unique address has been
selected, while state s6 (labeled error) corresponds to the undesirable situation
of an address collision.

For such a model some typical example formulae are:
•	On the long run, the protocol will have selected an address: L1(ok ∨ error).
•	The probability to end up with an address collision is at most p: Pp′ (◊error)
•	The probability to arrive at an unused address within k steps exceeds
	 p′: Pp′ (◊[0,k]ok)

Many more measures including expected times and accumulated costs can be
expressed using extensions of the base logic and model introduced here.

s8

s7

s0 s1 s2 s3 s4

s5

s6ok error

1

q

p

1

1 – q
1 – p

1 – p

1 – p

1 – p

ppp
start

review articles

september 2010 | vol. 53 | no. 9 | communications of the acm 83

the state space that are relevant to the
property of interest. In fact, this gen-
eralizes the ideas put forward by Sand-
ers and Meyer on variable-driven state
space generation in the late 1980s.33

Dependability evaluation. This mea-
sure-driven aspect is even more benefi-
cial in the field of system dependabil-
ity evaluation, a field tightly related to
performance evaluation, but especially
concerned with evaluating service con-
tinuity of computer systems. Ques-
tions like “under which system faults
can a given service still be provided
adequately?” are addressed, and typi-
cal measures of interest are system re-
liability and availability, as illustrated
in Table 1. Since the beginning of the
1980s this field has matured signifi-
cantly, due to the introduction of state-
oriented models and the invention of
uniformization.44 This facilitated the
efficient analysis of time-dependent
properties such as reliability or avail-
ability evaluation, in combination with
high-level model specification tech-
niques such as SPNs. The models that
one could analyze now went well above
the “standard models” based on reli-
ability block diagrams or fault-trees.

The measures of interest in this
field often involve costs, modeling the
usage of resources. Extensions of sto-
chastic processes with cost (or reward)
functions give rise to a logic where in
addition to, for example, time bounds,
conditions about the accumulated re-
ward along an execution path can be
imposed. Model checking still goes
along the lines of Figure 2, but involves
computational procedures that are
more time-consuming.

One for free. Is that all? Not quite. An
important problem with performance
modeling regardless of whether one
aims at numerical evaluation or at
simulation, is to check the functional
correctness of the model. For a sto-
chastic Petri net specification, place
and transition invariants are exploited
to check for deadlocks and liveness,
among others.

For a Markov chain model, graph-
based algorithms are used to check
elementary properties. The good news
is when employing model checking we
get this functionality for free. Using the
same machinery for validating the mea-
sures of interest, functional properties
can be checked. Probabilistic model

checking provides two for the price of
one: both performance/dependability
analysis and checking functional prop-
erties. This forces the user to construct
models with a high precision as any tiny
inconsistency will be detected. Com-
pare this to simulation model construc-
tion in NS2 or OPNET!

Nondeterminism. Sometimes this
need for precision might seem as a
burden, but it is a vehicle to force the
modeler to make hidden assump-
tions explicit—or to leave them out.
For instance, we have discussed the
nondeterminism inherent in the join-
the-shortest-queue idea, which—un-
less made concrete—implies that the
underlying model is not a stochastic
process. Stochastic models with non-
determinism are usually referred to
as stochastic decision processes. In
these models the future behavior is
not always determined by a unique
probability distribution, but by se-
lecting one from a set of them. Tem-
poral logics and verification technol-
ogy have been extended to this type of
models with relative ease for CTL8 and
LTL.14,36 In fact, they constitute the
genuine supermodel that comprises
both the model checking and per-
formance evaluation side as special
cases: When transition systems are
paired with Markov chains or Markov
reward models, the model is known as
Markov decision processes. Here, per-
formance model checking is still pos-

sible, but the checker now computes
bounds on the performance, in the
sense that however the nondetermin-
ism is concretized, the concrete per-
formance figure will stay within the
calculated bounds. Whereas for the
discrete time setting, efficient model
checking algorithms have been devel-
oped, this field is still relatively open
in the continuous-time setting.

Appealing Application Areas
Several stochastic model checking
tools have been developed since 2005,
of which PRISM20 is by far the most
widely used. A number of well-known
tools from the performance and de-
pendability evaluation area, like tools
for SPNs and stochastic process alge-
bras, have been extended with stochas-
tic model checking features. All these
tools automatically generate a Markov-
ian model of some sort, either using
symbolic or sparse data structures.

With these tools, a wide variety of
case studies have been carried out,
amongst others, in application areas
such as communication systems and
protocols, embedded systems, systems
biology, hardware design, and secu-
rity, as well as more “classical” perfor-
mance and dependability studies.

Examples of the latter category,
for which CTMCs are a very natural
model, include the analysis of vari-
ous classes of traditional queuing net-
works and even infinite-state variants

Figure 4. Efficiency of computing reachability probabilities versus the state space size.

104

103

102

101

0

V
er

ifi
ca

ti
on

 T
im

e
(i

n
 m

s)

State Space Size

5 • 105 1 • 106 1.5 • 106 2 • 106 2.5 • 106

 W orkstation cluster (CTMC)
 T andem queue (CTMC)

 C rowds protocol (DTMC)
 R andomized mutex (DTMC)

84 communications of the acm | september 2010 | vol. 53 | no. 9

review articles

thereof, fault-tolerant workstation
clusters, and wireless access proto-
cols such as IEEE 802.11. Also system
survivability, that is the ability of a sys-
tem (for example, military or aircraft)
to recover predefined service levels
in a timely manner after the occur-
rence of disasters, has been precisely
captured using a logic similar to that
introduced before, and has been veri-
fied for Google-like file systems.12 The
evaluation of a wireless access proto-
col for ad hoc networks using model
checking could be carried out at far
lower cost than using discrete-event
simulations.32

The popularity of Markovian mod-
els is rapidly growing due to their ap-
plication potential in systems biology;
the timing and probabilistic nature
of CTMCs naturally reflect the opera-
tions of biological mechanisms such
as molecular reactions. In fact, various
biological systems have been studied
by CTMC model checking in recent
years.26 Prominent examples include
ribosome kinetics, signaling path-
ways, cell cycle control in Eukaryotes,
and enzyme-catalyzed substrate con-
version. In particular, the possibility
to compute time-bounded reachabil-
ity probabilities is of great importance
here as traditional studies focus on
steady-state behavior.

Another application area for CTMC
model checking is embedded systems
where the timeliness of communica-
tion between sensor and actuator de-
vices, for example, within cars or be-
tween high-speed trains, is of utmost
importance. Stochastic model check-
ing techniques allow us to address the
timeliness and the protocols’ correct-
ness from a single model. One example
is dynamic power management in rela-
tion to job scheduling.31

Examples for the discrete-time set-
ting include several studies of the IPv4
Zeroconf protocol are illustrated in
Figure 3, where next to the probability
of eventually obtaining an unused IP
address, extensions have been studied
with costs, addressing issues such as
the number of attempts needed to ob-
tain such address. Security protocols
are another important class of sys-
tems in which discrete randomness
is exploited, for example, by applying
random routing to avoid information
leakage. An interesting case is the

Crowds protocol,34 a well-known se-
curity protocol that aims to hide the
identity of Web-browsing stations.
Checking Markovian models with up
to 107 states did provide important
information on quantifying the in-
crease of confidence of an adversary
when observing an Internet packet of
the same sender more than once. A
novel case study in the field of nano-
technology applies stochastic model
checking to quantify the reliability of
a molecular switch with increasing
memory array sizes.13 Other natural
cases for discrete-time probabilistic
models are randomized protocols—in
which probabilities are used to break
ties—such as consensus and broad-
cast protocols, and medium access
mechanisms such as Zigbee.

To conclude, an interesting case
study using DTMCs with non-deter-
minism is the analysis of the Firewire
protocol (IEEE 1394). This protocol
has been developed to allow “plug-
and-play” network connectivity for
multimedia consumer electronics in
the home environment. A key compo-
nent in IEEE 1394 is a leader election
protocol (the “root contention proto-
col”) that exploits a coin-tossing mech-
anism to break ties. Stochastic model
checking revealed that using a biased
coin instead of the typically used un-
biased coin, speeds up the leader elec-
tion process. This confirmed a conjec-
ture in Stoelinga.35 This insight would
not have been found through “classi-
cal” qualitative verification.

Current Trends and Challenges
Edmund M. Clarke, a co-recipient of the
2007 ACM A.M. Turing Award, points
out that probabilistic model checking
is one of the brands of verification that
requires further developments.41 Here,
we note some of the current trends and
major research challenges.

One of the major practical obstacles
shared by model-based performance
evaluation and model checking is the
state space explosion problem. To
combat the state space explosion prob-
lem, various techniques have been de-
veloped and successfully applied for
model checking Kripke structures11
(and the literature mentioned there).

For stochastic models the state
space explosion problem is even more
severe. This is rooted in the fact that

An important
problem with
performance
modeling
regardless
whether one aims
at numerical
evaluation or
at simulation, is
to check the
functional
correctness of
the model.

review articles

september 2010 | vol. 53 | no. 9 | communications of the acm 85

the model checking algorithms for
stochastic models rely on a combina-
tion of model checking techniques for
non-stochastic systems, such as graph
algorithms, but also mathematical, of-
ten numerical methods for calculating
probabilities, such as linear equation
solving or linear programming.

Many of the advanced techniques
for very large non-stochastic models
have been adapted to treat stochastic
systems, including variations of deci-
sion diagrams to represent large state
spaces symbolically.30 Complementary
techniques attempt to abstract from
irrelevant or redundant details in the
model and to replace the model with a
smaller, but “equivalent” one. Some of
them rely on the concept of lumpability
for stochastic processes, which in the
formal verification setting is known as
bisimulation quotienting, and where
states with the same probabilistic be-
havior are collapsed into a single rep-
resentative.16,27

Other advanced techniques to fight
the state-explosion problem include
symmetry exploitation,24 partial order
reduction,5 or some form of abstrac-
tion28, possibly combined with au-
tomatic refinement.15,19 All these ap-
proaches take inspiration in classical
model checking advances, which often
get much more intricate to realize, and
raise interesting theoretical and practi-
cal challenges. All together, they have
advanced the field considerably in the
ability to handle cases as the ones dis-
cussed earlier.

An important feature of model
checkers for non-stochastic systems is
the generation of counterexamples for
properties that have been refuted by
the model checker. The principal situ-
ation is more difficult in the stochastic
setting, as for probabilistic properties,
say the requirement that a certain un-
desired event will appear with prob-
ability at most 10-3, single error traces
are not adequate. The generation and
representation of counterexamples is
therefore a topic of much increasing
attention17,29 within the community.

To overcome the limitation to finite
state spaces, much work has been done
to treat infinite-state probabilistic sys-
tems, in many different flavors.1,23

Another topic of ongoing interest
lies in combining probabilistic behav-
ior with continuous dynamics as in

timed25 or hybrid automata, but more
work on the tool side is needed to as-
sess the merits of these approaches
faithfully. Theorem-proving tech-
niques for analyzing probabilistic sys-
tems21 are also a very promising direc-
tion. One of the major open technical
problems is the treatment of models
with nondeterminism and continuous
distributions. Initial results are inter-
esting but typically subject to (severe)
restrictions.

As a final item, we mention the need
to tailor the general-purpose probabi-
listic model checking techniques to
special application areas. This covers
the design of special modeling lan-
guages and logics that extend or adapt
classical modeling languages and tem-
poral logics by adding features that are
specific for the application area.

Acknowledgments
We thank Andrea Bobbio, Gianfranco
Ciardo, William Knottenbelt, Marta
Kwiatkowska, Evgenia Smirni, and the
anonymous reviewers for their valu-
able feedback.	

References
Due to space limitations, a comprehensive list of all
references cited in this article can be found at the authors’
Web sites.

1.	 Abdulla, P., Bertrand, N., Rabinovich, A. and
Schnoebelen, P. Verification of probabilistic systems
with faulty communication. Inf. and Comp. 202, 2
(2007), 141–165.

2.	 Ajmone Marsan, M., Conte, G., Balbo, G. A class of
generalized stochastic Petri nets for the performance
evaluation of multiprocessor systems. ACM Trans.
Comput. Syst. 2, 2 (1984), 93-122.

3.	 Andova, S., Hermanns, H., and Katoen, J.-P. Discrete-
time rewards model-checked. FORMATS, LNCS 2791,
(2003), 88–104.

4.	 Aziz, A., Sanwal, K., Singhal, V. and Brayton, R.K. Model
checking continuous-time Markov chains. ACM TOCL
1, 1 (2000), 162–170.

5.	B aier, C., Größer, M., and Ciesinski, F. Partial order
reduction for probabilistic systems. Quantitative
Evaluation of Systems. IEEE CS Press, 2004,
230–239.

6.	B aier, C., Haverkort, B.R., Hermanns, H., and Katoen,
J-P. Model checking algorithms for continuous-time
Markov chains. IEEE TSE 29, 6 (2003), 524–541.

7.	B aier, C. and Katoen, J-P. Principles of Model Checking.
MIT Press, 2008.

8.	B ianco, A. and De Alfaro, L. Model checking of
probabilistic and non-deterministic systems.
Foundations of Softw. Technology and Theor. Comp.
Science. LNCS 1026 (1995), 499–513.

9.	B ohnenkamp, H., van der Stok, P., Hermanns, H.,
and Vaandrager, F.W. Cost optimisation of the IPv4
zeroconf protocol. In Proceedings of the Intl. Conf. on
Dependable Systems and Networks. IEEE CS Press.
2003, 531-540.

10.	B olch, G., Greiner, S., de Meer, H., Trivedi, K.S. Queueing
Networks and Markov Chains. Wiley Press, 1998.

11.	C larke, E.M., Grumberg, O., and Peled, D. Model
Checking. MIT Press, 1999.

12.	C loth, L. and Haverkort, B.R. Model checking for
survivability. Quantitative Evaluation of Systems. IEEE
CS Press (2005), 145–154.

13.	C oker, A., Taylor, V., Bhaduri, D., Shukla, S.,
Raychowdhury, A., and Roy, K. Multijunction fault-
tolerance architecture for nanoscale crossbar

memories. IEEE Trans. on Nanotechnology 7, 2 (2008),
202–208.

14.	C ourcoubetis, C. and Yannakakis, M. The complexity of
probabilistic verification. JACM 42, 4 (1995), 857–907.

15.	D ’Argenio, P.R. Jeannet, B., Jensen, H., and Larsen,
K.G. Reduction and refinement strategies for
probabilistic analysis. LNCS 2399 (2002), 335–372.

16.	D erisavi, S., Hermanns, H., and Sanders, W.H. Optimal
state-space lumping in Markov chains. Inf. Proc.
Letters 87, 6 (2003), 309–315.

17.	H an, Y., Katoen, J.-P. and Damman, B. Counter-
examples in probabilistic model checking. IEEE TSE
36, 3 (2010), 390–408.

18.	H ansson, H. and Jonsson, B. A logic for reasoning
about time and reliability. Formal Aspects of Comp. 6,
5 (1994), 512–535.

19.	H ermanns, H., Wachter, B., and Zhang, L. Probabilistic
CEGAR. Computer-Aided Verification LNCS 5123
(2008), 162–175.

20.	 www.prismmodelchecker.org.
21.	H urd, J., McIver, A., and Morgan, C. Probabilistic

guarded commands mechanized in HOL. Theor. Comp.
Sc. 346, 1 (2005), 96–112.

22.	J ain, R. The Art of Computer System Performance
Analysis. Wiley, 1991.

23.	 Kucera, A., Esparza, J., and Mayr, R. Model checking
probabilistic pushdown automata. Logical Methods in
Computer Science 2, 1 (2006).

24.	 Kwiatkowska, M.Z., Norman, G., and Parker, D.
Symmetry reduction for probabilistic model checking.
Computer-Aided Verification LNCS 4144 (2008),
238–248.

25.	 Kwiatkowska, M.Z., Norman, G., Parker, D., and
Sproston, J. Performance analysis of probabilistic
timed automata using digital clocks. Formal Methods
in System Design 29, 11 (2006), 33–78.

26.	 Kwiatkowska, M.Z., Norman, G., and Parker, D.
Probabilistic model checking for systems biology.
Symbolic Systems Biology, 2010.

27.	L arsen, K.G. and Skou, A. Bisimulation through
probabilistic testing. Inf. & Comp., 94, 1 (1989), 1–28.

28.	 McIver, A. and Morgan, C. Abstraction, Refinement
and Proof for Probabilistic Systems. Springer, 2005.

29.	 McIver, A., Morgan, C., and Gonzalia, C. Proofs and
refutation for probabilistic systems. Formal Methods
LNCS 5014 (2008), 100–115.

30.	 Miner, A. and Parker, D. Symbolic representation and
analysis of large probabilistic systems. Validation of
Stochastic Systems. A Guide to Current Research.
LNCS 2925 (2005), 296–338.

31.	N orman, G., Parker, D., Kwiatkowska, M.Z. Shukla,
S.K., Gupta, R. Using probabilistic model checking for
dynamic power management. Formal Asp. Comp. 17, 2
(2005), 160-176.

32.	R emke, A., Haverkort, B.R. and Cloth, L. A versatile
infinite-state Markov reward model to study
bottlenecks in 2-hop ad hoc networks. Quantitative
Evaluation of Systems IEEE CS Press, 2006, 63–72.

33.	 Sanders, W.H. and Meyer, J.F. Reduced base model
construction methods for stochastic activity networks.
IEEE J. on Selected Areas in Comms. 9, 1 (1991),
25–36.

34.	 Shmatikov, V. Probabilistic model checking of an
anonymity system. J. Computer Security 12, (2004)
355–377.

35.	 Stoelinga, M. Fun with FireWire: A comparative study
of formal verification methods applied to the IEEE
1394 root contention protocol. Formal Asp. Comp., 14,
3 (2003), 328–337.

36.	 Vardi, M.Y. Automatic verification of probabilistic
concurrent finite-state programs. In Proceedings
of the 26th IEEE Symp. on Foundations of Comp.
Science. IEEE CS Press (1985), 327–338.

Christel Baier (baier@tcs.inf.tu-dresden.de) is a professor
at TU Dresden, Germany.

Boudewijn R. Haverkort (brh@cs.utwente.nl) is a
professor at the University of Twente, and scientific
director of the Embedded Systems Institute, Eindhoven,
The Netherlands.

Holger Hermanns (hermanns@cs.uni-sb.de) is a
professor at Saarland University, Saarbrücken, Germany.

Joost-Pieter Katoen (katoen@cs.rwth-aachen.de) is a
professor at RWTH Aachen University, Aachen, Germany.

© 2010 ACM 0001-0782/10/0900 $10.00

mailto:baier@tcs.inf.tu-dresden.de
mailto:brh@cs.utwente.nl
mailto:hermanns@cs.uni-sb.de
mailto:katoen@cs.rwth-aachen.de
http://www.prismmodelchecker.org

You’ve come a long way.
Share what you’ve learned.

ACM has partnered with MentorNet, the award-winning nonprofit e-mentoring
network in engineering, science and mathematics. MentorNet’s award-winning
One-on-One Mentoring Programs pair ACM student members with mentors
from industry, government, higher education, and other sectors.

• Communicate by email about career goals, course work, and many other topics.
• Spend just 20 minutes a week - and make a huge difference in a student’s life.
• Take part in a lively online community of professionals and students all over the world.

Make a difference to a student in your field.

Sign up today at: www.mentornet.net

Find out more at: www.acm.org/mentornet

MentorNet’s sponsors include 3M Foundation, ACM, Alcoa Foundation, Agilent Technologies, Amylin Pharmaceuticals,
Bechtel Group Foundation, Cisco Systems, Hewlett-Packard Company, IBM Corporation, Intel Foundation, Lockheed
Martin Space Systems, National Science Foundation, Naval Research Laboratory, NVIDIA, Sandia National Laboratories,
Schlumberger, S.D. Bechtel, Jr. Foundation, Texas Instruments, and The Henry Luce Foundation.

CM Ad:Layout 1 3/3/09 3:08 PM Page 1

http://www.mentornet.net
http://www.acm.org/mentornet

research highlights

september 2010 | vol. 53 | no. 9 | communications of the acm 87

p. 99

Constraint Satisfaction
Problems and Global
Cardinality Constraints
By Andrei A. Bulatov and Dániel Marx

p. 98

Technical
Perspective
Constraint
Satisfaction
Problems and
Computational
Complexity
By Mark Jerrum

p. 89

Privacy Integrated Queries:
An Extensible Platform for
Privacy-Preserving Data Analysis
By Frank McSherry

p. 88

Technical
Perspective
Programming with
Differential Privacy
By Johannes Gehrke

88 communications of the acm | september 2010 | vol. 53 | no. 9

Govern ment agencie s world wide are
required to release statistical informa-
tion about population, education, and
health, crime, and economic activities.
In the U.S., protecting this data goes
back to the 19th century when Carrol
Wright, the first head of the Bureau
of Labor Statistics, which was estab-
lished in 1885, argued that protecting
the confidentiality of the Bureau’s data
was necessary. If enterprises feared
that data about an enterprise collected
by the Bureau would be shared with
competitors, investigators, or the tax
authorities, data quality would severely
suffer. The field of statistical disclosure
limitation was born.4

Fast-forward a few decades, Stanley
Warner was faced with a similar co-
nundrum. During interviews for mar-
ket surveys, individuals would refuse
questions of sensitive or controversial
issue “for reasons of modesty, fear of
being thought bigoted, or merely a re-
luctance to confide secrets to strang-
ers.”7 His answer was a technique
where the interviewee would flip a
biased coin without showing the out-
come to the interviewer. Depending
on the outcome of the coin flip, the
interviewee would (truthfully) answer
either the original yes/no question or
she would negate her answers. This
method intuitively protects the inter-
viewee since her answer could always
have been due to the coin flipping on
the other side.

Tore Dalenius formulated a very
strong notion of protection a decade
later:2 “If the release of the statistic S
makes it possible to determine the (mi-
crodata) value more accurately than
without access to S, a disclosure has
taken place…”. This very strong notion
of semantic security implies that data
publishers should think about adver-
saries and their knowledge since the
published data could give new infor-
mation to an adversary.

Fast-forward a few more decades
to the turn of the century. Statisti-

cians have developed many different
methods for limiting disclosure when
publishing data such as suppression,
sampling, swapping, generalization
(also called coarsening), synthetic
data generation, data perturbation,
and the publishing of marginals for
contingency tables, just to name a
few. These methods are applied in
practice, but they do not provide for-
mal privacy guarantees—the methods
do not formally state how much an
attacker can learn, and they preserve
confidentiality by hiding the param-
eters used.

Fast-forward to 1999. In his Innova-
tions Award Talk at the annual ACM
SIGKDD Conference, Rakesh Agrawal
posed the challenge of privacy-preserv-
ing data mining to the community. In
the next year, two papers with the same
title “Privacy Preserving Data Mining”
(one by Agrawal and Srikant1 and the
other by Lindell and Pinkas5) are pub-
lished, and the computer science com-
munity has entered the picture.

Computer scientists were especially
intrigued by formal models of data pri-
vacy—formal definitions of informa-
tion leakage and attacker models as
they have been pioneered and used in
cryptography and computer security.
The strongest formal definition of dis-
closure in use today is differential pri-
vacy as pioneered by Dwork, McSherry,
Nissim, and Smith.3 Differential pri-
vacy beautifully captures the intuitive
notion that the published data should
not reveal much information about an
individual whether or not that individ-
ual’s data was in the data.

Since its original proposal, much
progress has been made in the devel-
opment of mechanisms that protect
published data with differential pri-
vacy while maximizing information
content. The national statistical offices
have also started to pay attention; for
example, OnTheMap, a U.S. Census
Bureau application that provides maps
showing where workers live and are

employed, has now been published
with a variant of differential privacy.6

The following paper by Frank Mc-
Sherry introduces a system called
PINQ that integrates differential pri-
vacy into the C# LINQ framework,
which adds database query function-
ality to C#. PINQ enables queries over
data while elegantly hiding the com-
plexity of the underlying differentially
privacy mechanisms. Users of PINQ
write programs that look almost iden-
tical to standard LINQ programs, but
PINQ ensures that all query answers
adhere to differential privacy, and it
composes the information leakage
from different queries until the priva-
cy budget of the program has run out.

Differential privacy and PINQ give
only a glimpse into a new exciting area
at the confluence of ideas from com-
puter science, statistics, law, and so-
cial sciences. I believe we will see much
further progress on formal privacy defi-
nitions and improved methods, and
I hope that future data products from
the national statistics offices will be
published with some formal notion of
disclosure control.

Carrol Wright would be amazed by
the field today.	

References
1.	 Agrawal, R. and Srikant, R. Privacy-preserving data

mining. In Proceedings of ACM SIGMOD (May 2000).
ACM Press, NY.

2.	D alenius, T. Towards a methodology for statistical
disclosure control. Statistik Tidskrift 15 (1977), 429-444.

3.	D work, C., McSherry, F., Nissim, K. and Smith, A.
Calibrating noise to sensitivity in private data analysis.
In Proceedings of the 2006 TCC Conference (Mar.
2006), Springer-Verlag, 265-284.

4.	G oldberg, J.P. and Moye, W.T. The first hundred years
of the Bureau of Labor Statistics. Bureau of Labor
Statistics, 1985.

5.	L indell, Y. and Pinkas, B. Privacy preserving data
mining. In Proceedings of Crypto ‘00 (Aug. 2000),
Springer-Verlag, 20-24.

6.	U .S. Census Bureau’s Longitudinal Employer-
Household Dynamics Program OnTheMap Application;
http://lehdmap4.did.census.gov

7.	W arner, S. Randomized response: A survey technique
for eliminating evasive answer bias. Journal of the
American Statistical Association (1965), 63-69.

Johannes Gehrke (Johannes@cs.cornell.edu) is a
professor in the Department of Computer Sciences at
Cornell University, Ithaca, NY.

© 2010 ACM 0001-0782/10/0900 $10.00

Technical Perspective
Programming with
Differential Privacy
By Johannes Gehrke

research highlights

doi:10.1145/1810891.1810915

http://lehdmap4.did.census.gov
mailto:Johannes@cs.cornell.edu

doi:10.1145/1810891.1810916

september 2010   | vol. 53 | no. 9 | communications of the acm 89

Privacy Integrated Queries:
An Extensible Platform for Privacy-Preserving Data Analysis
By Frank McSherry

Abstract
Privacy Integrated Queries (PINQ) is an extensible data
analysis platform designed to provide unconditional privacy
guarantees for the records of the underlying data sets. PINQ
provides analysts with access to records through an SQL-
like declarative language (LINQ) amidst otherwise arbitrary
C# code. At the same time, the design of PINQ’s analysis
language and its careful implementation provide formal
guarantees of differential privacy for any and all uses of the
platform. PINQ’s guarantees require no trust placed in the
expertise or diligence of the analysts, broadening the scope
for design and deployment of privacy-preserving data analy-
ses, especially by privacy nonexperts.

1. INTRODUCTION
Vast quantities of individual information are currently col-
lected and analyzed by a broad spectrum of organizations.
While these data clearly hold great potential for analysis,
they are commonly collected under the premise of privacy.
Careless disclosures can cause harm to the data’s subjects
and jeopardize future access to such sensitive information.

This has led to substantial interest in data analysis
techniques with guarantees of privacy for the underly-
ing records. Despite significant progress in the design of
such algorithms, privacy results are subtle, numerous, and
largely disparate. Myriad definitions, assumptions, and
guarantees challenge even privacy experts to assess and
adapt new techniques. Careful and diligent collaborations
between nonexpert data analysts and data providers are all
but impossible.

In an attempt to put much of the successful privacy
research in the hands of privacy nonexperts, we designed
 the Privacy Integrated Queries (PINQ) language and run-
time, in which all analyses are guaranteed to have one of
the strongest unconditional privacy guarantees: differen-
tial privacy.5, 8 Differential privacy requires that computa-
tions be formally indistinguishable when run with and
without any one record, almost as if each participant had
opted out of the data set. PINQ comprises a declarative
programming language in which all written statements
provide differential privacy, and an execution environment
whose implementation respects the formal requirements
of differential privacy.

Importantly, the privacy guarantees are provided by the
platform itself; they require no privacy sophistication on the
part of the platform’s users. This is unlike much prior pri-
vacy research which often relies heavily on expert design and
analysis to create analyses, and expert evaluation to vet pro-
posed approaches. In such a mode, nonexpert analysts are
unable to express themselves clearly or convincingly, and

nonexpert providers are unable to verify or interpret their
privacy guarantees. Here the platform itself serves as a com-
mon basis for trust, even for analysts and providers with no
privacy expertise.

The advantage our approach has over prior platforms lies
in differential privacy: its robust guarantees are compatible
with many declarative operations and permit end-to-end
analysis of arbitrary programs containing these operations.
Its guarantees hold in the presence of arbitrary prior knowl-
edge and for arbitrary subsequent behavior, simplifying the
attack model and allowing realistic, incremental deploy-
ment. Its formal nature also enables unexpected new
functionality, including grouping and joining records on
sensitive attributes, the analysis of text and unstructured
binary data, modular algorithm design (i.e., without whole-
program knowledge), and analyses which integrate multiple
data sources from distinct and mutually distrustful data
providers.

The main restriction of this approach is that analysts
can only operate on the data from a distance: the opera-
tions are restricted to declarative transformations and
aggregations; no source or derived records are returned to
the analysts. This restriction is not entirely unfamiliar to
many analysts, who are unable to personally inspect large
volumes of data. Instead, they write computer programs to
distill the data to manageable aggregates, on which they
base further analyses. While the proposed platform intro-
duces a stricter boundary between analyst and data, it is
not an entirely new one.

1.1. An overview of PINQ
We start by sketching the different aspects of PINQ that
come together to provide a data analysis platform with dif-
ferential privacy guarantees. Each of these sections are then
developed further in the remaining sections of the note, but
the high level descriptions here should give a taste for the
different facets of the project.
Mathematics of PINQ: The mathematical basis of PINQ, dif-
ferential privacy, requires any outcome of a computation
over a set of records be almost as likely with and without any
one of those records. Computations with this guarantee be-
have, from the point of view of each participant, as if their
data were never used. It is currently one of the strongest of
privacy guarantees. The simplest example of a differentially
private computation is noisy counting: releasing of the num-
ber of records in a data set perturbed by symmetric exponen-

The original version of this paper is entitled “Privacy
Integrated Queries” and was published in the Proceedings
of SIGMOD 2009.

90 communications of the acm | september 2010 | vol. 53 | no. 9

research highlights

performant LINQ providers.
We stress that PINQ represents a very modest code base;

in its current implementation it is only 613 lines of C# code.
The assessment logic, following the math, is uncomplicated.
The aggregations must be carefully implemented to provide
differential privacy, but these are most often only a matter
of postprocessing the correct aggregate (e.g., adding noise).
PINQ must also ensure that the submitted queries con-
form to our mathematical model for them. LINQ achieves
substantial power by allowing general C# computations in
predicates of Where, functions of Select, and other opera-
tions. PINQ must restrict and shepherd these computations
to mitigate the potential for exploitation of side channels.
Applications of PINQ: Programming with PINQ is done
through the declarative LINQ language, in an otherwise
unconstrained C# program. The analyst is not given direct
access to the underlying data; instead, information is ex-
tracted via PINQ’s aggregation methods. In exchange for
this indirection, the analyst’s code is allowed to operate on
unmasked, unaltered, live records.

With a few important exceptions, programs written with
PINQ look almost identical to their counterparts in LINQ.
The analysts assemble an arbitrary query from permit-
ted transformations, and specify the accuracy for aggrega-
tions. Example 1 contains a C# PINQ fragment for counting
distinct IP addresses issuing searches for an input query
phrase.

Example 1. Counting searches from distinct users in
PINQ.

We will develop this example into a more complex search
log visualization application showcasing several of PINQ’s

advantages over other approaches: rich data types, complex
transformations, and integration into higher level applica-
tions, among many others. The full application is under 100
lines of code and took less than a day to write.

We have written several other examples of data analy-
ses in PINQ, including k-means clustering, perceptron

tial (Laplace) noise. Many other simple aggregations (e.g.,
Sum, Average, Median, among others) have similarly accu-
rate randomized analogs.

To allow nonexpert analysts to produce new differen-
tially private computations, we introduce the use of trans-
formations, applied to data before differentially private
aggregations, without weakening the differential pri-
vacy guarantees. For several relational transformations,
a changed record in the input data set always results in
relatively few changes in the output data set. A differen-
tially private analysis applied to transformed data masks
changes in the transformation’s output, and consequently
masks changes in its input as well. The composed trans-
formation and analysis will provide differential privacy,
with a formal guarantee depending on the quantitative
form of “relatively few,” which we must determine for each
transformation. Such transformations can be composed
arbitrarily, by nonexpert analysts, and combined with
differentially private aggregations will serve as our query
language.

Finally, any sequence of differentially private compu-
tations also provides differential privacy; the quantitative
privacy depletions are at worst additive (and occasionally
better), and can be tracked online. Consequently, we can
embed the query language above into any general purpose
programming language, allowing arbitrary use of the results
that return from the queries, as long as we monitor and con-
strain the total privacy depletion.
Implementation of PINQ: We have implemented a proto-
type of PINQ based on C#’s Language Integrated Queries
(LINQ), an SQL-like declarative query language extension
to .NET languages. Data providers use PINQ to wrap arbi-
trary LINQ data sources with a specified differential priva-
cy allotment for each analyst. Analysts then write arbitrary
C# programs, writing queries over PINQ data sources al-
most as if they were using unprotected LINQ data sources.
PINQ’s restricted language and run-time checks ensure
that the provider’s differential privacy requirements are
respected, no matter how an analyst uses these protected
data sets.

At a high level, PINQ allows the analyst to compose arbi-
trary queries over the source data, whose quantitative dif-
ferential privacy guarantees are evaluated before the query
is executed. If the analyst has framed a query whose privacy
cost falls within the bounds prescribed by the data provid-
ers, the query is executed and the privacy cost subtracted
from the amount available to the analyst for the associated
data sets. If the cost falls outside the bounds, PINQ does not
execute the query.

PINQ is designed as a thin layer in front of an exist-
ing query engine (Figure 1); it does not manage data or
execute queries. Instead, it supplies differentially private
implementations of common transformations and aggre-
gations, themselves written in LINQ and executed by the
LINQ providers of the underlying data sets. This approach
substantially simplifies our implementation, but also allows
a large degree of flexibility in its deployment. A data source
only needs a LINQ interface to support PINQ, and we can
take advantage of any investment and engineering put in to

 var data = new PINQueryable<SearchRecord>(...  ...);

 var users = from record in data
	 where record.Query == argv[0]

	 groupby record.IPAddress;

 Console.WriteLine(argv[0] + “:” + users.Count(0.1) );

?

?
?

Figure 1. PINQ provides a thin protective layer in front of existing
data sources, presenting an interface that appears to be that of the
raw data itself.

september 2010 | vol. 53 | no. 9 | communications of the acm 91

classification, and contingency table measurement. These
examples have all been relatively easy adaptations of exist-
ing approaches.2, 4

2. MATHEMATICAL FOUNDATIONS
We now develop some supporting mathematics for PINQ.
We review the privacy definition we use, differential pri-
vacy, and develop several properties necessary to design
a programming language supporting its guarantees.
Specifically, we discuss the data types we can support, com-
mon differentially private aggregations, how transformations
of the data sets impact privacy, and how privacy guarantees of
multiple analyses compose. All of our conclusions are imme-
diate consequences of differential privacy, rather than addi-
tional assumptions or implementation details. The proofs
are available in the full version of the paper.10

2.1. Differential privacy
Differential privacy is a relatively new privacy definition,
building upon the work of Dwork et al.8 and publicly articu-
lated in Dwork.5 It differs from most previous definitions in
that it does not attempt to guarantee the prevention of data
disclosures, privacy violations, or other bad events; instead,
it guarantees that participation in the data set is not their
cause.

The definition of differential privacy requires that a ran-
domized computation yield nearly identical distributions
over outcomes when executed on nearly identical input data
sets. Treating the input data sets as multisets of records over
an arbitrary domain and using  for symmetric difference
(i.e., A  B is the set of records in A or B, but not both):

Definition 1. A randomized computation M provides -
differential privacy if for any two input data sets A and B, and
any set of possible outputs S of M,

For values of x much less than one, exp(x) is approximately
1 + x. Differential privacy relies only on the assumption that
the data sets are comprised of records, of any data type, and
is most meaningful when there are few records for each par-
ticipant, relative to 1/.

The definition is not difficult to motivate to nonexperts.
A potential participant can choose between two inputs to
the computation M: a data set containing their records (A)
and the equivalent data set with their records removed (B).
Their privacy concerns stem from the belief that these two
inputs may lead to noticeably different outcomes for them.
However, differential privacy requires that any output event
(S) is almost as likely to occur with these records as without.
From the point of view of any participant, computations
which provide differential privacy behave almost as if their
records had not been included in the analysis.

Taking a concrete example, consider the sensible con-
cern of most Web search users that their name and search
history might appear on the front page of the New York
Times.3 For each participant, there is some set S of outputs
of M that would prompt the New York Times to this publica-
tion; we do not necessarily know what this set S of outputs is,

but we need not define S for the privacy guarantees to hold.
For all users, differential privacy ensures that the probability
the New York Times publishes their name and search history
is barely more than had it not been included as input to M.
Unless the user has made the queries public in some other
way, we imagine that this is improbable indeed.

2.2. Basic aggregations
The simplest differentially private aggregation (from Dwork
et al.8) releases the number of records in a data set, after the
addition of symmetric exponential (Laplace) noise, scaled
by  (Figure 2). The Laplace distribution is chosen because
it has the property that the probability of any outcome
decrease by a factor of exp() with each unit step away from
its mean. Translating its mean (shifting the true value) by
one unit scales the probability of any output by a multiplica-
tive factor of at most exp(). Changing an input data set from
A to B can shift the true count by at most |A  B|, and conse-
quently a multiplicative change of at most exp( × |A  B|) in
the probability of any outcome.

Theorem 1. The mechanism M(X) = |X| + Laplace (1/)
provides -differential privacy.

The Laplace distribution has exponential tails in both
directions, and the probability that the error exceeds t/ in
either direction is exponentially small in t. Consequently,
the released counts are likely to be close to the true counts.
Other Primitive Aggregations: There are many other mecha-
nisms that provide differential privacy; papers on the sub-
ject typically contain several. To date each has privacy es-
tablished as above, by written mathematical proof based on
intended behavior. While this is clearly an important step in
developing such a computation, the guarantees are only as
convincing as the proof is accessible and the implementa-
tion is correct.

Our goal is to enable the creation of as many differentially
private computations as possible using only a few primitive
components, whose mathematical properties and imple-
mentations can be publicly scrutinized and possibly verified.
While we shouldn’t preclude the introduction of novel primi-
tives, they should be the exceptional, rather than default,
approach to designing new differentially private algorithms.

2.3. Stable transformations
Rather than restrict programmers to a fixed set of aggre-
gations, we intend to supply analysts with a programming
language they can use to describe new and unforeseen com-
putations. Most of the power of PINQ lies in arming the

107 108 109 110 111 112 113106105104103102

Figure 2. Adding symmetric exponential noise to counts causes the
probability of any output (or set of outputs) to increase or decrease
by at most a multiplicative factor when the counts are translated.

92 communications of the acm | september 2010 | vol. 53 | no. 9

research highlights

result in a set of pairs of records, one from each input, of
records whose keys match. A single record in either set could
match an unbounded number of records in the other set.
Consequently, this important transformation has no sta-
bility bound. As we discuss later, there are restricted forms
of Join that do have bounded stability (stability one, with
respect to both inputs), but their semantics deviate from the
unrestricted Join present in LINQ.

2.4. Composition
Any sequence of differentially private computations also
provides differential privacy. Importantly, this is true even
when subsequent computations can depend arbitrarily on
the outcomes of the preceding computations.

Theorem 3. Let Mi each provide i-differential privacy. The
sequence of Mi(X) provides (Si  i) -differential privacy.

This simple theorem indicates that to track the cumu-
lative privacy implications of several analyses, we need
not do anything more complicated than add the privacy
depletions.

If the queries are applied to disjoint subsets of the input
domain we can improve the bound to the worst of the pri-
vacy guarantees, rather than the sum.

Theorem 4. Let Mi each provide -differential privacy.
Let Di be arbitrary disjoint subsets of the input domain D. The
sequence of Mi (X Ç Di ) provides -differential privacy.

Whereas sequential composition is critical for any
functional privacy platform, parallel composition is a very
important part of extracting good performance from a pri-
vacy platform. Although such operations could be analyzed
as sequential composition, the privacy guarantee would
scale with the number of subsets analyzed, often quite
large.

2.5. A privacy calculus
The mathematics of this section allows us to quantitatively
bound the privacy implications of arbitrary sequences of
rich transformations and aggregations. This simplicity
allows us to avoid burdening the analyst with the responsi-
bility of correctly or completely describing the mathemati-
cal features of their query. Even for researchers familiar with
the mathematics (e.g., the author), the reasoning process
can be quite subtle and error-prone. Fortunately, it can be
automated, the subject of Section 3.

3. IMPLEMENTING PINQ
PINQ is built atop C#’s LINQ. LINQ is a recent language
extension to the .NET framework integrating declarative
access to data streams (using a language very much like
SQL) into arbitrary C# programs. Central to LINQ is the
IQueryable<T> type, a generic sequence of records
of type T. An IQueryable admits transformations
such as Where, GroupBy, Union, Join, and more,
returning new IQueryable objects over possibly new
types. Only once an aggregation or enumeration is

analyst with a rich set of transformations to apply to the data
set before differentially private aggregations.

Definition 2. We say a transformation T is c-stable if for any
two input data sets A and B,

Transformations with bounded stability propagate dif-
ferential privacy guarantees made of their outputs back to
their inputs, scaled by their stability constant.

Theorem 2. Let M provide -differential privacy, and let T
be an arbitrary c-stable transformation. The composite compu-
tation M ° T provides ( × c)-differential privacy.

Once stability bounds are established for a set of trans-
formations, a nonexpert analyst can combine any number
of them as they see fit. Differential privacy bounds result
from repeated application of Theorem 2, compounding the
stability constants of the applied transformations with the 
value of the final aggregation.
Example Transformations: To give a sense for the types of
stability bounds to expect, we consider a few representative
transformations from LINQ.

The Where transformation takes an arbitrary predicate
over records, and results in the subset of records satisfying
the predicate. Any records in difference between A and B will
result in at most those records in difference between their
restrictions, resulting in a stability of one. Importantly, this
is true independent of the supplied predicate; the predi-
cate’s logic can use arbitrarily sensitive information in the
records and will still have stability one.

The GroupBy transformation takes a key selection func-
tion, mapping records to some key type, and results in a set
of groups, one for each observed key, where each group con-
tains the records mapped to the associated key value. For
every record in difference between A and B, a group in the
output can change. A change corresponds to symmetric dif-
ference two, not one; despite the apparent similarities in the
groups, subsequent logic (e.g., a Where) can treat the two
groups as arbitrarily different. As with Where, the stability
of two holds for any key selection function, including those
based on very sensitive fields or functions thereof.

The Union transformation takes a second data set, and
results in the set of elements in either the first or the second
data set. A record in difference between A and B results in no
more than one record in difference in the output, yielding
stability one. This is also true for records in difference in the
second data set, giving us an example of a binary transforma-
tion. A differentially private analysis of the result of a binary
transformation reflects information about both sources.
This is uncomplicated unless the inputs derive from com-
mon data. Even so, a single change to a data set in common
induces a bounded change in each of the transformation’s
inputs, and a bounded change in its output (i.e., the stability
constants add).

The Join transformation takes a second data set, and
key selection functions for both data sets. It intends to

september 2010 | vol. 53 | no. 9 | communications of the acm 93

aggregation only if the eventual response is positive.
Count is implemented as per Theorem 1, returning

the accurate count of the underlying data plus Laplace
noise whose magnitude is specified by the analyst, if large
enough. Example 2 depicts the implementation of Count.

Example 2. [Abbreviated] Implementation of Count.

PINQ includes other aggregations—including Sum,
Average, and Median among others—each of which takes
epsilon and a function converting each record to a double.
To provide differential privacy, the resulting values are first

clamped to the interval [−1, +1] before they are aggregated.
This is important to ensure that a single record has only a
limited impact on the aggregate, allowing a relatively small
perturbation to provide differential privacy.

The implementations of these methods and the proofs
of their privacy guarantees are largely prior work. Sum, like
Count, is implemented via the addition of Laplace noise
and is discussed in Dwork et al.8 Average and Median
are implemented using the exponential mechanism
of McSherry and Talwar,11 and output values in the range
[−1, +1] with probabilities

Each downweights the probability of a possible output x by
(the exponentiation of) the fewest modifications to the input
A needed to make x the correct answer.

The accuracy of Average is roughly 2/ divided by the
number of records in the data set. Median results in a value
which partitions the input records into two sets whose sizes
differ by roughly an additive 2/; it need not be numerically
close to the actual median.

3.2. Transformation operators
PINQ’s flexibility derives from its transformation operators,
each of which results in a new PINQueryable wrapped
around an updated data source. The associated PINQAgent
is wired to forward requests on to the participating source
data sets before accepting, scaling epsilon by the transfor-
mation’s stability constant.

Our implementations of many transformations are
mostly a matter of constructing new PINQueryable and
PINQAgent objects with the appropriate parameters.
Some care is taken to restrict computations, as discussed in
Section 3.4. Example 3 depicts the implementation of PINQ’s
GroupBy. Most transformations require similarly simple pri-
vacy logic.

invoked is any computation performed; until this point
the IQueryable only records the structure of the query
and its data sources.

PINQ’s implementation centers on a PINQueryable<T>
generic type, wrapped around an underlying
IQueryable<T>. This type supports the same methods
as an IQueryable, but with implementations ensuring
that the appropriate privacy calculations are conducted
before any execution is invoked. Each PINQueryable is
comprised of a private member data set (an IQueryable),
and a second new data type, a PINQAgent, responsible for
accepting or rejecting requested increments to epsilon.
Aggregations test the associated PINQAgent to confirm
that the increment to epsilon is acceptable before they
execute. Transformations result in new PINQueryable
objects with a transformed data source and a new
PINQAgent, containing transformation-appropriate logic
to forward modified epsilon requests to the agents of its
source PINQueryable data sets.

The PINQAgent interface has one method,
Alert(epsilon), invoked before executing any differen-
tially private aggregation with the appropriate value of epsi-
lon, to confirm access. For PINQueryable objects wrapped
around raw data sets, the PINQAgent is implemented by
the data provider based on its privacy requirements, either
from scratch or using one of several defaults (e.g., decre-
menting a per-analyst budget). For objects resulting from
transformations of other PINQueryable data sets, PINQ
constructs a PINQAgent which queries the PINQAgent
objects of the transformation’s inputs with transformation-
appropriate scaled values of epsilon. These queries are be
forwarded recursively, with appropriate values of epsilon,
until all source data have been consulted. The process is
sketched in Figure 3.

3.1. Aggregation operators
Each aggregation in PINQ takes epsilon as a param-
eter and provides -differential privacy with respect to its
immediate data source. The privacy implications may be
far worse for the underlying data sets from which this data
set derives, and it is important to confirm the appropriately
scaled amount of differentially private access. Before execu-
tion, each aggregation invokes the Alert method of their
associated PINQAgent with this epsilon, conducting the

Figure 3. PINQ control/data flow. An analyst initiates a request to
a PINQ object, whose agent (A) confirms, recursively, differentially
private access. Once approved by the providers’ agents, data
(D) flows back through trusted code ensuring the appropriate level
of differential privacy.

??
Policy

Policy

D

A

D

A

D

A

 double Count(double epsilon)

{

	   if (epsilon > 0.0 && myagent.Alert(epsilon))

	      return mysource.Count() + Laplace(1.0/epsilon);
	   else

	      throw new Exception(“Access is denied”);

}

94 communications of the acm | september 2010 | vol. 53 | no. 9

research highlights

Partition in PINQ can be seen in the following two
queries:

Q1.  How many ZIP codes contain at least 10 patients?
Q2.  For each ZIP code, how many patients live there?

For Q1, a GroupBy by ZIP, a Where on the number of
patients, and a Count gives an approximate answer to the
exact number of ZIP codes with at least 10 patients. For
Q2, a Partition by ZIP, followed by a Count on each part
returns an approximate count for each ZIP code. As the mea-
surements can be noisy, neither query necessarily provides
a good estimate for the other. However, both are at times
important questions, and PINQ is able to answer either
accurately depending on how the question is posed.

The Partition operator can be followed not only by
aggregation but by further differentially private computa-
tion on each of the parts. It enables a powerful recursive
descent programming paradigm demonstrated in Section 4,
and is very important in most nontrivial data analyses.

3.4. Security issues in implementation
Although the stability mathematics, composition properties,
and definition of differential privacy provide mathematical
guarantees, they do so only when PINQ’s behavior is in line
with our mathematical expectations. There are many impor-
tant but subtle implementation details intended to protect
against clever attackers who might use the implementa-
tion details of PINQ to learn information the mathematics
would conceal. These are largely the result of user-defined
code that may attempt to pass information out through side
channels, either directly through disk or network channels,
or indirectly by throwing exceptions or simply not terminat-
ing. PINQ’s purify function gives the provider the oppor-
tunity to examine incoming methods and rewrite them,
either by restricting the computations to those comprised
of known-safe methods, or by rewriting the methods with
appropriate guards. There are other issues and countermea-
sures in the full paper, and likely more unrecognized issues
to be discovered and addressed.

4. APPLICATIONS AND EVALUATION
In this section, we present data analyses written with
PINQ. Clearly not all analysis tasks can be implemented
in PINQ (indeed, this is the point), but we aim to convince
the reader that the set is sufficiently large as to be broadly
useful.

Our main example application is a data visualization
based on Web search logs containing IP addresses and query
text. The application demonstrates many features of PINQ
largely absent from other privacy-preserving data analysis
platforms. These include direct access to unmodified data,
user-supplied record-to-record transformations, operations
such as GroupBy and Join on “sensitive” attributes, mul-
tiple independent data sets, and unfettered integration into
higher-level programs.

For our experiments we use the DryadLINQ15 provider.
DryadLINQ is a research LINQ provider implemented on
top of the Dryad9 middleware for data parallel computation,

Example 3. [Abbreviated] Implementation of GroupBy.

PINQueryable<IGrouping<K,T>>
GroupBy<T,K>(Expression<Func<T,K>> keyFunc)
{
	 // Section 3.4 explains this, and why it is needed
	 keyFunc = Purify(keyFunc) as Expression<Func<T,K>>;

	 // new agent with appropriate ancestor and stability
	 var newagent = new PINQAgentUnary(this.agent, 2.0);

	 // new data source reflecting the operation
	 var newsource = this.source.GroupBy(keyFunc);

	 // construct and return a new source and agent pair
	 return new PINQueryable<IGrouping<K,T>>(newsource,
		 newagent);
}

The Join transformation is our main deviation from
LINQ. To ensure stability one with respect to each input,
we only report pairs that are the result of unique key
matches. To ensure these semantics, PINQ’s Join invokes
LINQ’s GroupBy on each input, using their key selection
functions. Groups with more than one element are dis-
carded, and the resulting singleton elements are joined
using LINQ’s Join.

While this clearly (and intentionally) interferes with
standard uses of Join, analysts can reproduce its standard
behavior by first invoking GroupBy on each data set, ensur-
ing that there is at most one record per group, before invok-
ing Join. The difference is that the Join is now required
to reduce pairs of groups, rather than pairs of records.
Each pair of groups yields a single result, rather than the
unbounded cartesian product of the two, constraining the
output but enabling privacy guarantees.

3.3. The partition operator
Theorem 4 tells us that structurally disjoint queries cost
only the maximum privacy differential, and we would like
to expose this functionality to the analyst. To that end, we
introduce a Partition operation, like GroupBy, but in
which the analyst must explicitly provide a set of candidate
keys. The analyst is rewarded with a set of PINQueryable
objects, one for each candidate key, containing the (pos-
sibly empty) subset of records that map to the each of the
associated keys. It is important that PINQ does not reveal
the set of keys present in the actual data, as this would vio-
late differential privacy. For this reason, the analyst must
specify the keys of interest, and PINQ must not correct
them. Some subsets may be empty, and some records may
not be reflected in any subset.

The PINQAgent objects of these new PINQueryable
objects all reference the same source PINQAgent, of the
source data, but following Theorem 4 will alert the agent
only to changes in the maximum value of epsilon. The
agents share a vector of their accumulated epsilon values
since construction, and consult this vector with each update
to see if the maximum has increased. If so, they forward the
change in maximum. If the maximum has not increased,
they accept the request.

The difference between the uses of GroupBy and

september 2010 | vol. 53 | no. 9 | communications of the acm 95

and associated parts, grouping the records in each by IP
address. To further enrich the example, we then parti-
tion each of these data sets by the number of times each
IP address has issued the query, before producing a noisy
count (see Example 5).

Example 5. Measuring many query frequencies in PINQ.

 // prepare data with privacy budget
 var agent = new PINQAgentBudget(1.0);
 var data = new PINQueryable<string>(rawdata, agent);

 // break out fields, but partition rather than filter
 var parts = data.Select(line => line.Split(’,’))
	 .Partition(args, fields =>
fields[20]);

 foreach (var query in args)
 {
	 // use the searches for query, grouped by IP address
	 var users = parts[query].GroupBy(fields => fields[0]);

	 // further partition by the frequency of searches
	 var freqs = users.Partition(new int[] { 1,2,3,4,5 },
	 group => group.Count());

	 // output the counts to the screen, or anywhere else
	 Console.WriteLine(query + “:”);
	 foreach (var count in new int[] { 1,2,3,4,5 })
	 Console.WriteLine(freqs[count].Count(0.1));
 }

Because we use Partition rather than multiple
Where calls, the privacy cost associated with the program
can be seen by PINQ to be only the maximum of the pri-
vacy costs of each of the loops, exactly the same cost as in
Example 4.

Table 1 reports the measurements of a few query strings
taken over our data set. Each reported measurement is
the exact count plus Laplace noise with parameter 10, cor-
responding to standard deviation For most mea-
surements this error is relatively insignificant. For some
measurements it is significant, but nonetheless reveals that
the original value is quite small.

4.3. Data analysis: Stage 3 of 3
We now expand out our example program from simple

and currently scales to at least thousands of compute
nodes. Our test data sets are of limited size, roughly 100GB,
and do not fully exercise the scalability of the DryadLINQ
provider. We do not report on execution times, as PINQ’s
reasoning is an insignificant contribution, but rather the
amount and nature of information we can extract from the
data privately.

For clarity, we present examples written as if the data ana-
lyst is also the data provider, charged with assembling the
source PINQueryable objects. In a real deployment, this
assembly should be done on separate trusted infrastructure.

4.1. Data analysis: Stage 1 of 3
We start with a simple application of PINQ, approximating
the number of distinct search users who have searched for
an arbitrary query term. Our approach is just as it would
have been in LINQ: we first transform the search records
(comma-delimited strings) into tuples (string arrays) whose
fields have known meaning, then restrict the data to records
with the input search query, then group by the supplied
IP address to get a proxy for distinct users, then count the
remaining records (groups of string arrays). The program is
reproduced in Example 4.

Example 4. Measuring query frequencies in PINQ.

 // prepare data with privacy budget
 var agent = new PINQAgentBudget(1.0);
 var data = new PINQueryable<string>(rawdata, agent);

 // break out fields, filter by query, group by IP
 var users = data.Select(line => line.Split(’,’))
	 .Where(fields => fields[20] == args[0])
	 .GroupBy(fields => fields[0]);

 // output the count to the screen, or anywhere else
 Console.WriteLine(args[0] + “:” + users.Count(0.1));

This relatively simple example demonstrates sev-
eral important features of PINQ. The input data are text
strings; we happen to know a priori that they are comma
delimited, but this information plays no role in the pri-
vacy guarantees. The filtering is done against an analyst-
supplied query term, and may be frequent or infrequent,
sensitive or insensitive. To get the set of distinct users we
group using the logged IP address, clearly highly sensitive
information. Despite these uncertainties about the analy-
sis, the differential privacy guarantees are immediately
quantifiable.

4.2. Data analysis: Stage 2 of 3
Our program as written gives the count for a single query,
and if the analyst wants additional counts they must run the
program again. This incurs additional privacy cost, and will
be unsuitable for extracting large numbers of query counts.

Instead, we can rewrite the previous program to use
the Partition operator to permit an arbitrary number
of counts at fixed privacy cost. Rather than filter records
with Where, we use the same key selection function and
an input set of query strings to Partition the records.
Having done so, we iterate through each of the queries

Table 1. Numbers of Users Searching for Various Terms, Broken Out
by Number of Times They Searched.

Freq 1 Freq 2 Freq 3 Freq 4 Freq 5

google 356,743 108,336 45,363 25,092 14,347

yahoo 140,966 42,379 17,624 9671 5,707

baidu 300 79 29 26 9

amazon 16,798 3,376 808 378 132

ebay 100,338 26,205 9,564 4,065 2,604

cnn 25,442 7,492 2,899 1,658 919

msnbc 7,828 2,496 849 565 283

96 communications of the acm | september 2010 | vol. 53 | no. 9

research highlights

reporting (a not uncommon task) to a richer analysis appli-
cation. Our goal is to visualize the distribution of locations
of searches for various search queries. At a high level, we
will transform the IP addresses into latitude–longitude
pairs, by joining with a second proprietary data set, and
then send the coordinates to a visualization algorithm bor-
rowed from the work of McSherry and Talwar.12 Although we
will describe the visualization algorithm at a high level, it
is fundamental that PINQ provides privacy guarantees even
without the knowledge of what the algorithm plans to do
with the data.

Starting from the prior examples, in which we have
partitioned the data sets by query and grouped the
results by IP address, we now demonstrate a fragment
that will let us transform IP addresses into latitude–
longitude coordinates. We use a second data set iplat-
lon whose entries are IP addresses and corresponding
latitude–longitude coordinates. We join these two data
sets, using the IP addresses in each as keys, resulting
in a lat-lon coordinate pair in place of each group of
searches. Example 6 contains the code for this Join
transformation.

Example 6. Transforming IP addresses to coordinates.

 // ... within the per-query loop, from before ...

 // use the searches for query, group by IP address
 var users = parts[query].GroupBy(fields => fields[0]);

 // extract IP address from each group, and match
 var coords = users.Join(iplatlon,
			       group => group.Key,
		       entry => entry.IP,
		     (group, entry) => entry.LatLon);

Recall that Join in PINQ only reports pairs that result
from unique matches. In this program, we know that each
IP occurs as a key at most once in users, as we have just
performed a GroupBy with this field as the key. In the
second data set, we assume (perhaps wrongly) that there
is one entry per IP address. If this is not the case, or if we
are not sure, we could also group the second data set by IP
address and use the first lat-lon entry in each group. This is
arguably more robust, but results in an additional factor of
two in the privacy cost against the iplatlon data set; we
would like to avoid this cost when we know we can safely
do so.

Finally, our algorithm takes the list of lat-lon coor-
dinates of the IPs searching for the input search query,
and invokes a Visualization subroutine, whose
implementation is not specified here. An example for
the query “cricket” can be seen in Figure 4. Readers who
are not entirely sure how or why this routine works are in
roughly the same situation as most data providers. We
have no intuition as to why the computation should be
preserve privacy, nor is any forthcoming. Nonetheless,
as the routine is only provided access to the data through
a PINQueryable, we are assured of differential privacy
guarantees even without understanding the algorithm’s
intent or implementation.

Support for such “modular design” of privacy algo-
rithms is an important enabler for research and develop-
ment, removing the need for end-to-end understanding of
the computation. This is especially important for explor-
atory data analysis, where even the analysts themselves
may not know the questions they will need answered
until they start asking them. Removing the requirement
of whole-program understanding also enables propri-
etary data analyses, in which an analyst may not want
to divulge the analysis they intend to conduct. While
the execution platform clearly must be instructed in the
computations the analyst requires, the data provider
does not need to be informed of their specifics to have
privacy assurances.

Our second data set raises an interesting point about
alternate applications of differential privacy. While the
operation we perform, mapping IP addresses to latitude–
longitude pairs, is essentially just a complicated Select,
the data set describing the mapping is proprietary. Each
record in the data set required some investment of effort
to produce, from which the owners presumably hope to
extract value; they may not want to release the records in
the clear. Using this data set through PINQ prevents the
dissemination of individual records, preserving the value
of the data set while still permitting its use in analyses.
Similarly, many organizations have data retention poli-
cies requiring the deletion of data after a certain amount
of time. Ensuring that this deletion happens when ana-
lysts are allowed to create their own copies of the data
is effectively impossible. Again, PINQ allows analysts to
use such data without compromising the organization’s
obligations.

Figure 4. Example output, displaying a representative distribution of
the latitude–longitude coordinates of users searching for “cricket.”
The computation has differential privacy not because of properties
of the output itself, a quite complicated artifact, but because of the
manner in which it was produced.

september 2010 | vol. 53 | no. 9 | communications of the acm 97

5. RELATED WORK
The analysis of sensitive data under the constraints of con-
fidentiality has been the subject of a substantial amount
of prior research; for an introductory survey we recom-
mend the reader to Adam and Wortmann,1 but stress that
the field is still very much evolving. For an introduction to
differential privacy we recommend the reader to Dwork.6

While PINQ is the first platform we are aware of pro-
viding differential privacy guarantees, several other inter-
active data analysis platforms have been proposed as an
approach to providing privacy guarantees. Such platforms
are generally built on the principle that aggregate values
are less sensitive that individual records, but are very aware
that allowing an analyst to define an arbitrary aggregation
is very dangerous. Various and varying criteria are used
to determine which aggregates an analyst should be able
to conduct. To the best of our knowledge, none of these
systems have provided quantifiable end-to-end privacy
guarantees.

Recent interest in differential privacy for interactive
systems appears to have started with Mirkovic,13 who pro-
posed using differential privacy as a criteria for admit-
ting analyst-defined aggregations. The work defines an
analysis language (targeted at network trace analysis) but
does not go so far as to specify semantics that provide
formal differential privacy guarantees. It seems possible
that PINQ could support much of the proposed language
without much additional work, with further trace-specific
transformations and aggregations added as extensions to
PINQ.

Airavat14 is a recent analogue of PINQ for Map-Reduce
computations. The authors invest much more effort in
hardening the system, securing the computation through
the use of a mandatory access control operating system
and an instrumented java virtual machine, as well as PINQ-
style differential privacy mathematics. At the same time,
it seems that the resulting analysis language (one Map-
Reduce stage) is less expressive than LINQ. It remains to be
seen to what degree the system level guarantees of Airavat
can be fruitfully hybridized with the language level restric-
tion used in PINQ.

6. CONCLUSION
We have presented “Privacy Integrated Queries” (PINQ), a
trustworthy platform for privacy-preserving data analysis.
PINQ provides private access to arbitrarily sensitive data,
without requiring privacy expertise of analysts or provid-
ers. The interface and behavior are very much like that
of Language Intergrated Queries (LINQ), and the privacy
guarantees are the unconditional guarantees of differen-
tial privacy.

PINQ presents an opportunity to establish a more formal
and transparent basis for privacy technology and research.
PINQ’s contribution is not only that one can write private
programs, but that one can write only private programs.
Algorithms built out of trusted components inherit privacy
properties structurally, and do not require expert analysis
and understanding to safely deploy. This expands the set
of capable users of sensitive data, increases the portability

of privacy-preserving algorithms across data sets and
domains, and broadens the scope of the analysis of sensi-
tive data.

6.1. Availability
The prototype of PINQ used for the experiments in this
paper, as well as further example programs and a brief
tutorial, are available at http://research.microsoft.com/
PINQ.

Acknowledgments
The author gratefully acknowledges the contributions of sev-
eral collaborators. Ilya Mironov, Kobbi Nissim, and Adam
Smith have each expressed substantial interest in and support
for privacy tools and technology usable by nonexperts. Yuan
Yu, Dennis Fetterly, Úlfar Erlingsson, and Mihai Budiu helped
tremendously in educating the author about LINQ, and have
informed the design and implementation of PINQ. Many read-
ers and reviewers have provided comments that have substan-
tially improved the presentation of this paper.�

© 2010 ACM 0001-0782/10/0900 $10.00

  1. �Adam, N.R., Wortmann, J.C. Security-
control methods for statistical
databases: A comparative study,
ACM Comput. Surv., 21, 4 (1989),
515–556.

  2. �B arak, B., Chaudhuri, K., Dwork, C.,
Kale, S., McSherry, F., Talwar, K.
Privacy, accuracy, and consistency too:
a holistic solution to contingency table
release, in PODS (2007), 273–282.

  3. �B arbaro, M., Zeller Jr., T. A face
is exposed for AOL searcher no.
4417749, The New York Times,
August 9, 2006.

  4. �B lum, A., Dwork, C., McSherry, F.,
Nissim, K. Practical privacy: The SuLQ
framework, in PODS (2005), 128–138.

  5. �D work, C. Differential privacy, in
ICALP (2006), 1–12.

  6. �D work, C. A firm foundation for private
data analysis, Communications of
the ACM, Association for Computing
Machinery, Inc., 2010.

  7. �D work, C., Kenthapadi, K., McSherry,
F., Mironov, I., Naor, M., Our data,
ourselves: Privacy via distributed noise
generation, in EUROCRYPT (2006),
486–503.

  8. �D work, C., McSherry, F., Nissim,
K., Smith, A. Calibrating noise to

sensitivity in private data analysis, in
TCC (2006), 265–284.

  9. � Isard, M., Budiu, M., Yu, Y., Birrell, A.,
Fetterly, D. Dryad: distributed data-
parallel programs from sequential
building blocks, in EuroSys. ACM
(2007), 59–72.

10. � McSherry, F. Privacy integrated
queries: an extensible platform for
privacy-preserving data analysis, in
SIGMOD Conference (2009), 19–30.

11. � McSherry, F., Talwar, K. Mechanism
design via differential privacy, in FOCS
(2007), 94–103.

12. � McSherry, F., Talwar, K. Synthetic
data via differential privacy,
Manuscript.

13. � Mirkovic, J. Privacy-safe nework trace
sharing via secure queries, in NDA
(2008).

14. �R oy, I., Setty, S.T., Kilzer, A.,
Shmatikov, V., Witchel, E. Airavat:
Security and privacy for mapreduce, in
NSDI Conference (2010).

15. �Y u, Y., Isard, M., Fetterly, D., Budiu,
M., Erlingsson, U, Gunda, P.K.,
Currey, J. DryadLINQ: A system for
general-purpose distributed data-
parallel computing using a high-level
language, in OSDI (2008).

References

Frank McSherry (mcsherry@microsoft.
com), Microsoft Research, SVC, Mountain
View, CA.

http://research.microsoft.com/PINQ
http://research.microsoft.com/PINQ
mailto:mcsherry@microsoft.com
mailto:mcsherry@microsoft.com

98 communications of the acm | september 2010 | vol. 53 | no. 9

Consider the following very general
setting for computational problems.
An instance is presented as a set of
variables taking values in a finite
domain, together with a set of con-
straints on those variables. Each
constraint applies to a certain tuple
of variables and imposes a certain
relation on the values they may take.
The imposed relations come from an
agreed “constraint language.” We ask
the question: Does there exist an as-
signment to the variables that simul-
taneously satisfies all the constraints?
So, if the domain has nine elements
and the constraint language contains
the binary relation “not equal to,”
then we could express the problem of
whether the vertices of a given graph
can be properly colored with just nine
colors. Or, more picturesquely, we
could specify an arbitrary instance of
Sudoku. (Technically, we would also
require nine unary relations picking
out the nine values in the domain.)

It takes only a little imagination to
come up with a wealth of problems in
scheduling and planning that can be
expressed as Constraint Satisfaction
Problems (CSPs) within an appropriate
constraint language. It should come as
no surprise, then, that CSPs have an im-
portant place in the fields of artificial
intelligence and operations research.
But why should there be such an inter-
est in CSPs within the computational
complexity community? Well, each
constraint language (set of allowed
constraint relations) defines a particu-
lar class of CSPs, and, as the constraint
language becomes richer, the compu-
tational complexity of the correspond-
ing class of CSPs becomes potentially
greater. Classifying the computational
complexity of the infinite array of pos-
sible constraint languages provides a
challenging and stimulating task for
complexity theorists, and hopefully
one that has some practical value too.

The starting point was a result of
Schaefer, which completely classified
the computational complexity of CSPs
in the case of a two-element (Boolean)
domain. He identified certain polyno-
mial-time solvable cases, for example,
where all constraints can be expressed
as conjunctions of Horn clauses. But
the remarkable part of his result is
that all other cases are NP-complete.
In other words, he identified a di-
chotomy within Boolean CSPs—un-
der the assumption P ≠ NP—between
ones solvable in polynomial time, and
ones that are NP-complete. This is
significant, as a similar dichotomy is
known not to exist in NP itself. There
is no contradiction here, as not every
problem in NP is expressible as a CSP.
For example, it is not possible to ex-
press the Hamiltonian Cycle problem
(a stripped-down version of the infa-
mous Traveling Salesman problem) in
any finite constraint language.

An article by Feder and Vardi pro-
vided a major spur to work on the com-
putational complexity of CSPs. It would
not be appropriate to describe their
work in detail here, beyond noting they
conjectured that a complexity dichot-
omy holds for the entire class of CSPs,
not just ones over the Boolean domain.
It transpires that the technical difficul-
ties encountered when attempting to
generalize Schaefer’s dichotomy to do-
mains with more than two values are ex-
treme, and the Feder-Vardi conjecture
remains unresolved to this day. Fortu-
nately, much progress has been made
on related problems and special cases,
making this a lively and dynamic area.

In the following paper, Bulatov and
Marx deal with just such a related prob-
lem. Suppose the domain is Boolean,
and the constraint language consists of
the single binary relation “nand.” This
class of CSPs contains the n-Queens
Problem since we can use this binary
relation to express the rule that we

are not allowed to have a queen at this
position and that one. Well, not quite,
since we must also insist there are n
queens in all on the board, to deny
the trivial solution with no queens!
One way to incorporate such problems
into the CSP framework is by adding a
global cardinality constraint that de-
termines the number of variables that
take on each of the values in the under-
lying domain, in this instance that n of
the variables should be set to “true.”
This extended class of “CCSPs” is the
subject of the paper. Again, it is possi-
ble to imagine less frivolous examples
of CCSPs than the 8-Queens Problem.
For example, in determining locations
for a number of facilities, one would
want to ensure not only that various
proximity and capacity constraints
are met, but that the total number of
facilities is within budget. Note that
a cardinality constraint may increase
computational complexity: the single
relation “nand” in isolation leads to
trivial CSPs (just set every variable to
“false”), but adding a cardinality con-
straint yields the NP-complete prob-
lem “Maximum Independent Set.”

Aside from establishing a dichot-
omy theorem for CCSPs, the authors
provide an excellent introduction to
the concerns and techniques of re-
searchers in the computational com-
plexity of CSPs. Intuition having been
quickly developed in a sequence of
examples and counterexamples, the
reader is introduced to some of the
tricks of the trade. A basic challenge in
analyzing the computational complex-
ity of CSPs is the following: Although
the constraint language may be small,
nevertheless these explicitly given re-
lations can be combined (together
with some extra variables) to generate
a rich variety of derived, or “pp-defin-
able” relations. One effective way to
gain control over the ramifications of
pp-definable relations is to transfer
to a dual world of so-called polymor-
phisms: operations under which the
class of definable relations is invari-
ant. All this rich circle of ideas may be
glimpsed in this study of CSPs with
cardinality constraints.	

Mark Jerrum (mrj@inf.edu.ac.uk) is a professor of pure
mathematics at Queen Mary, University of London.

© 2010 ACM 0001-0782/10/0900 $10.00

Technical Perspective
Constraint Satisfaction
Problems and Computational
Complexity
By Mark Jerrum

research highlights

doi:10.1145/1810891.1810913

mailto:mrj@inf.edu.ac.uk

September 2010 | vol. 53 | no. 9 | communications of the acm 99

doi:10.1145/1810891.1810914

Constraint Satisfaction Problems
and Global Cardinality Constraints
By Andrei A. Bulatov and Dániel Marx

Abstract
In a constraint satisfaction problem (CSP) the goal is to find
an assignment of a given set of variables subject to speci-
fied constraints. A global cardinality constraint is an addi-
tional requirement that prescribes how many variables
must be assigned a certain value. We study the complexity
of the problem CCSP(G), the CSP with global cardinality
constraints that allows only relations from the set G. The
main result of this paper characterizes sets G that give rise
to problems solvable in polynomial time, and states that the
remaining such problems are NP-complete.

1. CONSTRAINT PROBLEMS
1.1. Constraint satisfaction problem
Among formalisms unifying and classifying various com-
binatorial problems the Constraint Satisfaction Problem (or
CSP) is one of the most successful ones. In this problem, we
are given a set of variables and a collection of restrictions—
constraints—on the allowed combinations of values of the
variables; the goal is to find an assignment to the variables
so that all constraints are satisfied. Usually constraints are
imposed on small sets of variables; thus, the CSP formalizes
the idea of finding a global solution bound by local restric-
tions. The Sudoku puzzle gives a popular toy example of CSP.
We need to assign values—numbers from 1 to 9—to vari-
ables—entries of the puzzle so that the values of variables in
a row, column, or 3 × 3 block are different. Another toy exam-
ple whose CSP encoding is less obvious is the 8-Queen prob-
lem: place eight queens on a 8 × 8 chessboard so that they
do not hit each other.15 To represent it as a CSP we consider
the columns {a, b, c, d, e, f, g, h} (see Figure 1) as variables
that can be assigned values from the set of rows, and the
assigned value shows the position of a queen in this column.

Many combinatorial problems readily fall into this
framework. For example, in the Graph 3-Coloring prob-
lem, the vertices of a given graph are variables to receive
one of the three colors, and assignments are constrained
by the requirement that adjacent vertices receive different
colors. Thus, this problem is a CSP. The list of examples
can be extended by other combinatorial problems like
Satisfiability, problems in scheduling, temporal and spatial
reasoning, and many others.

CSPs have been studied from both practical and theoreti-
cal perspectives. On the practical side, the expressive power
of the CSP allows to model a wide range of real-world prob-
lems from planning24 and scheduling,35 frequency assign-
ment problems,17 to image processing,32 to programming
language analysis,33 to natural language understanding.1
A number of commercial and freeware solvers exist capable

of solving a wide range of CSPs of nearly industrial scale,
and methods of solving constraint problems are develop-
ing rapidly.15 On the theoretical side, researchers focus on
several directions such as the complexity of CSPs prob-
lems, efficient algorithms for CSPs, where such algorithms
exist, and connections of CSPs with other combinatorial
problems.3, 8, 10, 13, 18, 21, 22, 26, 31, 34

1.2. Global constraints
The ‘pure’ CSP described above is sometimes not enough
to model practical problems, as some constraints that have
to be satisfied are not ‘local’ in the sense that they cannot
be viewed as applied to only a limited number of variables.
Constraints of this type are called global. Global constraints
are very diverse; the current Global Constraint Catalog
(see http://www.emn.fr/x-info/sdemasse/gccat/) lists 313
types of such constraints. In this paper we focus on global
cardinality constraints.6, 14

Some of the global constraints such as the surjectivity of a
solution, that is, the requirement that all variables take dis-
tinct values (cf. the Sudoku puzzle), allow simulation by local

The original version of this paper was published in the
Proceedings of the 24th Annual IEEE Symposium on Logic
in Computer Science (Los Angeles, CA, Aug. 11–14, 2009),
419–428.

a

1

2

3

4

5

Va
lu

es

6

7

8

cb d

Variables

e f g h

Figure 1. The 8-Queen problem.

http://www.emn.fr/x-info/sdemasse/gccat/

100 communications of the acm | september 2010 | vol. 53 | no. 9

research highlights

is often called a constraint language. Same restrictions can
be applied to problems with cardinality constraints. We use
CCSP(G) to denote such problem.

Problems of the form CSP(G) and CCSP(G) span a wide
range of combinatorial problems such as ones in Figure 3,
and many others.
Graph 3-Coloring. Let denote the disequality rela-
tion on a 3-element set, that is, the binary relation con-
taining all pairs (a, b) of elements from the set such that
a ¹ b:

(Observe that we write pairs, and later longer tuples of ele-
ments vertically, so members of the relation are the columns
of the matrix.) Then the 3-Coloring problem equals CSP(G3−

Col) where .
2-Satisfiability. Recall that a literal is a propositional
variable or its negation. A disjunction of literals (of 2 liter-
als) is called a clause (a 2-clause). A propositional formula
that is a conjunction of clauses (2-clauses) is said to be a
conjunctive normal form, or a CNF (2-CNF) for short. In the
2-Satisfiability problem, given a 2-CNF, the goal is to find an
assignment to its variables that makes the formula true. If
the set of variables of the CNF is V then every clause defines
a constraint on a pair of variables that forbids exactly one
combination of values. Let G2−SAT be the following set of 4
binary relations, each of which omits a certain pair:

Then CSP(G2−SAT) represents 2-Satisfiability and it is known
to be polynomial-time solvable.
3-Satisfiability. Analogously to 2-SAT, let G3−SAT be the
set consisting of eight ternary relations on {0, 1}, each of
which omits a certain triple. Then CSP(G3−SAT) represents
3-Satisfiability and it is NP-complete.
Independent Set. An independent set in a graph is a set of
vertices, no two of which are connected with an edge. In the
Independent Set problem, given a graph and a natural num-
ber k, the question is whether or not there exists an indepen-
dent set of size k. Let

that is, RIS = excludes only (1, 1), and GIS = {RIS}. Now, to
reduce Independent Set to the CSP the vertices of a given
graph are treated as variables and the constraint RIS is
imposed on every pair of adjacent vertices. For any solu-
tion of such CSP the variables (vertices) assigned 1 form
an independent set in the graph. To express the restric-
tion on the size of an independent set we can use a car-
dinality constraint that requires that exactly k variables

constraints. Surjectivity can be enforced by requiring that
every two variables receive distinct values. However, some-
times it is not possible. In this paper we focus on one type
of such ‘truly’ global constraints, cardinality constraints, that
impose restrictions on the number of variables assigned
certain values, see Figure 2. For instance, in the 3-Coloring
problem, a cardinality constraint may require that at least
half of the vertices of the graph are colored red.

1.3. Complexity of constraints
As the general CSP is NP-hard, the study of its complexity
focuses on considering restricted versions of the problem.
There are two principal ways to restrict the CSP, both of them
can be applied to CSPs with cardinality constraints as well.

The first approach restricts the way constraints interact.
The interaction of constraints can be represented by the
primal graph whose vertices are variables, and two vertices
are connected if and only if they belong to the scope of a
constraint. This approach was motivated by the observation
that if the primal graph is acyclic or close to acyclic in a well-
defined sense (has bounded treewidth), then CSP becomes
polynomial-time solvable.20 Interestingly, attempts to char-
acterize conjunctive queries to databases that can be pro-
cessed efficiently led to the same question.26 After a series
of recent breakthrough results21, 31 the structure of polyno-
mial-time solvable CSPs of this type is largely understood.

The second approach to restrict the CSP is to limit the
allowed types of constraints. It can be expressed formally as
follows. Let the possible values of variables in the problem
be taken from a set D (the domain). In this paper, we always
assume D to be finite. Then every constraint that can be
imposed on a set of k variables is a list of all allowed com-
binations of values these variables can take simultaneously,
that is, a k-ary relation on D. If now we fix a set G of such rela-
tions on D and allow constraints to be chosen only from G,
we arrive to the problem denoted CSP(G). In this context, G

Figure 2. Formal definition of CSP and CCSP.

CSP
Let D be a (finite) set (the domain). Every instance I = (V,C) of the
problem CSP consists of:

•  a set V of variables, and
•  a set C of constraints. Every constraint is a pair 〈s, R〉, where

— �s = (v1, … , vk) is a tuple of variables from V, not necessarily
distinct, and

— R is a k-ary relation over D.
A solution of I = (V, C) is a mapping j : V → D such that for any
constraint 〈s, R〉, we have j (s) ∈ R.

CCSP
A global cardinality constraint for an instance I = (V,C) is a mapping
p: D →  such that Sa ∈D p(a) = |V|. Solution j satisfies p if |j −1(a)| =
p(a) for every a ∈ D. The question is whether or not there is a solution
satisfying one of the given cardinality constraints.

CSP(G) and CCSP(G)
Let G be a set (finite or infinite) of relations on D, called a constraint
language. The problems CSP(G) and CCSP(G) include those instances
of CSP and CCSP, respectively, that use only relations from G.

september 2010 | vol. 53 | no. 9 | communications of the acm 101

are assigned 1. Therefore Independent Set is equivalent to
CCSP(GIS). The Independent Set problem is well known to
be NP-complete.

Despite such expressive power, problems of the form
CSP(G) probably cannot capture all combinatorial prob-
lems. As is easily seen, all CSPs belong to the class NP. Some
of them, such as 3-Coloring or 3-SAT are NP-complete,
while others, for example, 2-SAT, belong to the class P,
that is, solvable in polynomial time. If P ¹ NP, there is an
infinite hierarchy of complexity classes between P and NP
such that problems from different classes are not reduc-
ible to each other in a natural sense.28 However, all known
problems CSP(G) turn out to be either in P or NP-complete.
This phenomenon is known as complexity dichotomy.18
The dichotomy phenomenon was first discovered by
Schaefer34 for CSPs with 2-element domain, and was
later confirmed in many particular cases.3, 7, 9 This caused
Feder and Vardi to pose a conjecture, called the Dichotomy
Conjecture, that every problem CSP(G) is either solvable
in polynomial time or is NP-complete. The Dichotomy
Conjecture remains open till now.

Remarkably, the phenomenon of complexity

dichotomy extends inside P, although a weaker notion of
reduction is needed for this. To date, only four complex-
ity classes and a series of very similar classes inside P are
known such that CSP(G) can be complete in.2, 29 In some
cases the lack of problems CSP(G) of intermediate com-
plexity is shown.29

In this paper, we report on a dichotomy theorem for CSPs
with cardinality constraints. The next section describes a
dynamic programming algorithm that solves CCSPs when-
ever it can be solved efficiently. In Section 3, we outline the
algebraic approach to the CSP and CCSP and show how
it can be used to formulate the dichotomy theorem for
the CCSP. Finally, in Section 4 we present the main ideas
behind the hardness result. A longer version of the paper
can be found in.12

2. EASY CASES OF CCSP
2.1. Boolean CCSP
To gain some intuition we start with the Boolean CSP and
CCSP, in which values are taken from the set {0, 1}. The
dichotomy result for Boolean CSPs34 identifies six types of
tractable relations, that is, those which give rise to a CSP
solvable in polynomial time. Among these relations are
those representable by a 2-CNF, solution spaces of systems
of linear equations over the 2-element field, and some oth-
ers. If a constraint language G is not composed from rela-
tions of one of these six types, CSP(G) is NP-complete. For
CCSPs, a dichotomy result was proved in Creignou et al.14
The structure of tractable CCSPs is much simpler. Let R=2

 and
R≠2

 denote the equality and disequality relations on {0, 1}.
Then CCSP(G) is solvable in polynomial time if and only
if every relation from G can be expressed by a conjunction
of R=2

 and R≠2
 clauses, and the two constant constraints 0

and 1. Otherwise the Bipartite Independent Set or Linear
Equations problems can be reduced to CCSP(G), and the
problem is NP-complete.

The polynomial-time solvable cases can be handled by
a standard application of dynamic programming. Suppose
that the instance is given by a set of binary equality/disequal-
ity clauses (see Figure 4 for a concrete example). Consider
the graph formed by the binary clauses. There are at most
two possible assignments for each connected component
of the graph: setting the value of a variable uniquely deter-
mines the values of all the other variables in the component.
Thus the problem is to select one of the two assignments for
each component. Trying all possibilities would be exponen-
tial in the number of components. Instead, for i = 1, 2, …,
we compute the set Pi of all possible pairs (x, y) such that
there is a partial solution on the first i components contain-
ing exactly x zeros and exactly y ones. It is not difficult to see
that Pi+1 can be efficiently computed if Pi is already known.

2.2. Generalizations
We generalize the results of Creignou et al.14 for arbi-
trary finite sets and arbitrary constraint languages. As
usual, the characterization for arbitrary finite domains
is significantly more complex and technical than for
the 2-element domain. As a straightforward general-
ization of the 2-element case, we can observe that the

Bipartite Independent Set.  We say that a graph is bipartite if the ver-
tices can be partitioned into two classes X and Y such that every edge
connects a vertex of X and a vertex of Y. In the Bipartite Independent
Set problem, we are looking for a independent set containing exactly
kX vertices of X and kY vertices of Y. This problem is equivalent to a
CCSP over the domain {0X, 0Y, 1X, 1Y} where each edge is represented
by the binary relation

and we require kX variables with value 1X and kY variables with value
1Y in the solution. Bipartite Independent Set is known to be NP-hard.
The variant of the problem, where we require an independent set of
size k in a bipartite graph (without specifying the number of vertices
in each class) is polynomial-time solvable; however, this variant can-
not be expressed as a CCSP.

Linear Equations.  In the regular Linear Equations problem the
question is, given a system of linear equations over a finite field,
decide whether it is consistent or not. The version of this problem
allowing global cardinality constraints asks whether such a system
has a solution that assigns each of the elements from the field to
a prescribed number of variables. While Linear Equations without
cardinality constraints is polynomial-time solvable, cardinality con-
straints make it NP-complete,5 even if the variables are over the two
element field and every equation is of the form x + y + z = 1. This
means that CCSP({RODD−3}) is NP-complete, where

is the ternary relation satisfied by an odd number of 1s.

Figure 3. More examples of CSPs and CCSPs.

102 communications of the acm | september 2010 | vol. 53 | no. 9

research highlights

problem is polynomial-time solvable if every relation can
be expressed by graphs of bijective mappings. For a map-
ping j: A ® A, the graph of j is the binary relation consist-
ing of pairs of the form (a, j (a) ), a Î A. In this case, setting
a single value in a component uniquely determines all
the values in the component. Therefore, if the domain
is D, then there are at most |D| possible assignments in
each component, and the same dynamic programming
technique can be applied (but this time the set Pi contains
|D|-tuples instead of pairs).

One might be tempted to guess that the class described
in the previous paragraph is the only class where CCSP
is polynomial-time solvable. However, it turns out that
there are more general tractable classes. First, suppose
that the domain is partitioned into equivalence classes,
and the binary constraints are mappings between the sets
of equivalence classes. This means that the values in the
same equivalence class are completely interchangeable.
Thus it is sufficient to keep one representative from each
class, and then the problem can be solved by the algo-
rithm sketched in the previous paragraph. Again, one
might believe that this construction gives all the tracta-
ble classes, but the example in Figure 5 shows that there
are more complicated constraint languages, where CCSP

is polynomial-time solvable, but we have to do two-level
dynamic programming on the subcomponents of each
component. It is not difficult to make this example more
complicated in such a way that we have to look at sub-
subcomponents and perform multiple levels of dynamic
programming. This suggests that it would be difficult to
characterize the tractable relations in a simple combina-
torial way.

2.3. Algorithm for the tractable CCSP problems
In this section, we present a general algorithm for solving
CCSP. We prove our dichotomy theorem by showing that for
every finite constraint language G, either this algorithm solves
CCSP(G) in polynomial time, or CCSP(G) is NP-complete. In
this section, we cannot give a full characterization of those
constraint languages G for which the algorithm works: we
postpone it to Section 3.3, as it can be done most conveniently
using the algebraic tools introduced in the next section.

The first condition that we require is that every relation
in G is defined by its binary projections. Formally, we say
that r-ary relation R is 2-decomposable, if there are binary
relations Rij (1 £ i < j £ r) such that (a1, …, ar) Î R if and only if
(ai, aj) Î Rij for every 1 £ i < j £ r. For example, the relation R
in Figure 5 is 2-decomposable, as it is shown by the relations

On the other hand, relation RODD−3 of Figure 3 is not 2-decom-
posable: all three of the corresponding relations R12, R13, R23
contain the pair (0, 0), but tuple (0, 0, 0) is not in R.

If a constraint is 2-decomposable, then it can be expressed
by a set of binary constraints. Thus in the following, we can
assume that every constraint of the CCSP instance is binary.

The algorithm finds all cardinality constraints that
are satisfied by solutions of the instance. First, given an
instance, we make sure that every variable v is associated
with a domain Dv that contains all the values that are useful
for this variable. That is, if 〈(v, w), R〉 is a constraint, then Dv
is exactly {x | (x, y) Î R}, or in other words, Dv is exactly the
set of values that the pairs of R contain at the position corre-
sponding to v. This is achieved by the standard propagation
algorithm, see, e.g., Freuder19.

A binary constraint 〈(v, w), R〉 is trivial if R = Dv × Dw, allowing
any combination of values from the domains of v and w. Let G
be the graph formed by the nontrivial binary constraints of the
problem. If graph G is disconnected, then arbitrary satisfying
assignments for the connected components can be combined
to obtain a satisfying assignment for the instance. Therefore,
the algorithm recurses on the problems induced by con-
nected components, and then merges the solutions using the
same dynamic programming approach as for Boolean CCSP
(Figure 4). If G is connected, the algorithm chooses an arbi-
trary variable v and tries to substitute every possible value of
Dv into v. This way, we get |Dv| new instances and it is clear that
the original problem has a solution satisfying a cardinality

Example 1. Let G = {=2, ¹2} contain the binary equality and disequality
relations. Consider the following instance of CCSP(G) with 15 variables
and 13 constraints:

C1 C3 C4C2

Each component has exactly two satisfying assignments: either the
“black” variables have value 0 and the “white” variables have value
1, or vice versa. Let set Pi contain all possible pairs (x, y) such that
the union of the first i components have a solution with x 0’s and y
1’s. Then

  P1 = {(2, 3), (3, 2)}
  P2 = {(3, 5), (4, 4), (5, 3)}
  P3 = {(4, 7), (5, 6), (6, 5), (7, 4)}
  P4 = {(5, 10), (6, 9), (7, 8), (8, 7), (9, 6), (10, 5)}

If component Ci has bi black and wi white vertices, then clearly a pair
(x, y) is in Ci if and only if either (x − bi, yi − wi) Î Pi − 1 or (x − wi, yi − bi)
Î Pi − 1. This gives us an efficient way of computing Pi if Pi − 1 has been
computed.

Figure 4. Using dynamic programming to solve Boolean CCSP with
binary equalities and disequalities.

september 2010 | vol. 53 | no. 9 | communications of the acm 103

constraint if and only if one of the new instances has such a
solution. Thus in this case, the problem can be solved by recur-
sively solving |Dv| instances and taking the union of the set of
cardinality constraints satisfied by these instances.

There is no question that the scheme described above
finds every cardinality constraint satisfied by the instance.
The only issue is whether the running time is polynomial:
branching into |Dv| directions in the case when G is con-
nected can create an exponentially large recursion tree. We
identify a useful special case that guarantees a polynomial
bound on the size of the recursion tree. After substituting
a value into v, we can rerun the propagation algorithm to
reduce the domains of the variables by throwing away those
values that are no longer useful. The key property that we
require is the following:

Key Property: If G is connected, then no matter what
value we substitute, propagation strictly decreases
the domain of every variable.

If this property is true, then the algorithm has to terminate
after at most |D| substitutions, and therefore the height of
the recursion tree is at most |D|, which is constant for a fixed
constraint language. This gives us a polynomial bound on
the size of the recursion tree.

Are there constraint languages G for which the key prop-
erty described above holds? Yes, there are, for example, if
every binary relation is the graph of a bijective mapping and
G is connected, then substituting any value to a variable v
decreases the domain of every other variable to a single ele-
ment. As mentioned earlier, it is not easy to give a simple

combinatorial characterization of those sets G for which the
algorithm works (in the next section, we characterize them
in a more algebraic way). We can at least give some necessary
conditions that show what kind of generalizations of map-
pings should we deal with.

Let R be a binary relation from a set A to set B, that is,
R Í A × B. Relation R is said to be a thick mapping if when-
ever pairs (a, c), (a, d), (b, c) belong to R, the pair (b, d)
also belongs to R. As is easily seen, any thick mapping R
has two associated equivalence relations a and b on A and
B, respectively, such that R can be thought of as a mapping
from the set of equivalence classes of a to that of b.

To give some intuition why it is a problem if a relation is not
a thick mapping, consider the relation R = {(a, c), (a, d), (b, c)}.
Suppose that there are only two variables v, w and there is a sin-
gle constraint 〈(v, w), R〉. In this case, the domains are Dv = {a,
b} and Dw = {c, d}. The constraint is nontrivial, thus the graph
G is connected. But if we assign value a to variable v, then the
domain size of w does not decrease: b and d are both possible.
Thus for this relation, the algorithm does not have the prop-
erty that every substitution decreases every domain, and we
cannot guarantee a polynomial bound on the recursion tree.

Unfortunately, requiring that every relation is a thick
mapping is not sufficient for tractability, as thick map-
pings can interact with each other in a way that makes CCSP
hard. Therefore in order to the problem CCSP(G) for a set G
of thick mappings to be easy, more restrictions have to be
imposed on G. Such a condition called noncrossing requires
that if two thick mappings induce equivalence relations a
and b on a certain set, then for any equivalence class C of a
and a class D of b that are not disjoint, either C Í D or D Í C.
We need even stronger conditions: not only relations from G
must be noncrossing thick mappings, but also certain rela-
tions derived from them. A detailed explanation is given in
the next section.

3. ALGEBRAIC APPROACH
One of the main difficulties in studying problems CSP(G) and
CCSP(G) is: How can one describe or characterize a constraint
language (possibly infinite)? A combinatorial characteriza-
tion is very often impossible, so two alternative approaches
have been widely used, one through logic and another one
through algebra. Here we use the algebraic one.

3.1. Primitive positive definitions
In a CSP, possible combinations of values of certain variables
can be constrained even if there is no explicit constraint
imposed on them, see Figure 6. That is, we can use the con-
straints in G to build “gadgets” that enforce a constraint
relation on a certain set of variables. Note that, as in Figure
6, the constraint relation expressed by the gadget does not
necessarily belong to G. This means that for every constraint
language G, there is a set of implicit constraints that do not
belong to G, but can still be expressed by instances of CSP(G).

How can we characterize all the implicit constraints of
a constraint language G? It turns out that the implicit con-
straints that can be expressed in instances of CSP(G) admit a
simple logic representation. Treating relations in G as predi-
cates, one can construct logic formulas from them, and use

Example 2. We claim that CCSP({R}) is polynomial-time solvable for
the relation

Consider the graph on the variables where two variables are connect-
ed if and only if they appear together in a constraint. As in Figure 4,
for each component, we compute a set containing all possible cardi-
nality vectors, and then use dynamic programming. In each compo-
nent, we have to consider only two cases: either every variable is in
{1, 2, 3, 4, 5} or every variable is in {a, b, c, d, e}. If every variable of
component K is in {1, 2, 3, 4, 5}, then R can be expressed by the unary
constant relation 1, and the binary relation R' = {(2, 3), (4, 5)}. The bina-
ry relations partition component K into sub-components K1, … , Kt. Since
R' is the graph of a mapping, there are at most 2 possible assignments
for each sub-component. Thus we can use dynamic programming to
compute the set of all possible cardinality vectors on K that use only
the values in {1, 2, 3, 4, 5}. If every variable of K is in {a, b, c, d, e}, then
R can be expressed as the unary constant relation c and the binary
relation R" = {(a, b), (d, e)}. Again, binary relation R" partitions K into
sub-components, and we can use dynamic programming on them. Ob-
serve that the sub-components formed by R' and the sub-components
formed by R" can be different: in the first case, u and v are adjacent if
they appear in the second and third coordinates of a constraint, while
in the second case, u and v are adjacent if they appear in the first and
second coordinates of a constraint.

Figure 5. A two-level dynamic programming algorithm for CCSP.

104 communications of the acm | september 2010 | vol. 53 | no. 9

research highlights

these formulas to express other predicates (relations). The
type of formulas that is just right for representing implicit
constraints is called primitive positive. Primitive positive
(pp-) formulas include predicates from G (atomic formu-
las) and the equality, conjunctions of atomic formulas, and
existential quantifiers. Relations (or predicates) that can be
expressed by using pp-formulas with predicates from G are
said to be pp-definable in G.

Jeavons et al.23 proved that pp-definitions give rise to
reductions between CSPs: If G and D are constraint lan-
guages on the same set such that D is finite and every
relation in D is pp-definable in G, then CSP(D) is polyno-
mial-time reducible to CSP(G) (can be improved to loga-
rithmic-space reducibility). Thus, when proving hardness
of CSPs one can use any relations pp-definable in the given
constraint language. Very often ‘gadgets’ used in complex-
ity proofs can be expressed as pp-definitions, so primitive
positive definitions generalize and unify gadget reductions.

In CSPs with cardinality constraints, it is not obvious
that adding pp-definable relations to the constraint lan-
guage does not increase hardness. The difficulty is that
introducing gadgets (like the one in Figure 6) means
adding auxiliary variables, and the values appearing on
these variables can affect the cardinality constraints.
Nevertheless, we can show that adding a new constraint
R′ to the constraint language of a CSP with cardinality
constraints does not change the complexity if R′ is pp-
definable without using the equality relation. Relations
expressible in such a weaker way are called pp-definable
without equality. In fact, relations that are pp-definable in
a certain G with or without equality can only be different by
certain redundant parts that are not so important for con-
straint problems. Therefore, we can essentially assume

that G is closed under pp-definitions, and hence we can
use the algebraic framework discussed in more detail in
the next section.

3.2. Polymorphisms and invariants
Although pp-definitions are helpful in hardness proofs,
they do not resolve the main difficulty of studying the com-
plexity of CSPs, as they do not help much in describing
constraint languages. However, pp-definitions provide a
bridge to a tool that allows to do that. Polymorphisms can be
viewed as a sort of extended symmetries of relations. Let R
be a relation on some set D and f a function on the same set
that may depend on more than one variable; let f be n-ary,
that is, depends on n variables. The function f is a polymor-
phism of R if for any choice of tuples a–1, …, –an from R the
tuple f (–a1, … ,–an) obtained by component-wise application
of f also belongs to R. Relation R in this case is said to be
an invariant of f. Polymorphisms and invariants naturally
extend to constraint languages and functions: A function is
a polymorphism of a constraint language if it is a polymor-
phism of every relation in it, and a relation is an invariant
of a set of functions if it is an invariant of every function in
the set. For constraint languages G, and set of functions C,
by Pol G we denote the set of all polymorphisms of G, and
Inv C the set of all invariants of C, see Figure 7.

Sets of the form Pol G and Inv C have a number of inter-
esting properties, see, e.g., Denecke and Wismath.16 For
any set C of functions Inv C is a relational clone, that is,
constraint language D such that every relation pp-definable
in D also belongs to D. Therefore Jeavons’ result (and this
paper’s analogous result) can be stated in terms of polymor-
phisms: If G and D are constraint languages on the same set
such that D is finite and every polymorphism of G is also a
polymorphism of D, then CSP(D) is polynomial-time reduc-
ible to CSP(G). For CCSP we only have to add the require-
ment that relations in D do not contain redundancies.

For any constraint language G the set Pol G is a clone,
that is, a set of functions that contains the identity func-
tions, and closed under compositions. Clones have been a
subject of intensive study in algebra for decades; the results
of those studies are readily available to be applied to con-
straint problems.

Clearly, large constraint languages have few polymor-
phisms. Thus, a number of important properties of relations
can be inferred merely from the existence of polymorphisms
of certain types. A ternary function h on a set D is said to be
majority function if h(x, x, y) = h(x, y, x) = h(y, x, x) = x for any
x, y Î D. If a constraint language has a polymorphism that
is a majority function, then the constraint language is
2-decomposable. A ternary operation m is called Maltsev if
m(x, y, y) = m(y, y, x) = x for any x, y Î D. Any binary relation hav-
ing a Maltsev polymorphism is a thick mapping, see Figure 8.

For regular CSPs, complexity questions are usually
reduced one step further, to universal algebras and their
varieties. Most of the strong complexity results about CSPs
are obtained this way.3, 7, 9 Moreover, research on CSP com-
plexity have revolutionized certain fields of algebra, see, e.g.,
Barto and Kozik.4 For our result, however, we do not need
more algebra than polymorphisms.

Example 3.8 Let G be a constraint language containing a single
binary relation R over the set D = {0, 1, 2}, where R is given by R =
{(0, 0), (0, 1), (1, 0), (1, 2), (2, 1), (2, 2)}. Consider the instance of CSP(G)
with the set of variables {v1, v2, v3, v4} and set of constraints {C1, C2,
C3, C4, C5}, where C1 = 〈(v1, v2), R〉, C2 = 〈(v1, v3), R〉, C3 = 〈(v2, v3), R〉,
C4 = 〈(v2, v4), R〉, C5 = 〈(v3, v4), R〉. There is no explicit constraint on the
pair (v1, v4). However, by considering all solutions to the instance, it
can be shown that the possible pairs of values which can be taken
by this pair of variables are precisely the elements of the relation
R' = R È{(1, 1)}. Thus this instance can be considered as a “gadget”
implementing R' using only the relations R.

C1

C3

C2 C5

C4

v2

v4

v3

v1

The relation R' can be expressed as the following primitive positive
(pp-) definition:

R'(x, y) = ∃z, t(R(x, z)∧R(x, t)∧R(z, t)∧R(z, y)∧R(t, y) ).

Figure 6. Implicit constraints.

september 2010 | vol. 53 | no. 9 | communications of the acm 105

3.3. Easy cardinality constraints: The full result
We can finally explain the main result in details. A function
f is said to be conservative if it always equal to one of its argu-
ments. For instance, a ternary function f is conservative if
f (a, b, c) Î {a, b, c} for any a, b, c. The main result can be
stated compactly the following way:

Main Theorem Let G be a finite constraint language. If G
has a majority polymorphism and has a conservative Maltsev
polymorphism, then CCSP(G) is polynomial-time solvable.
Otherwise, the problem is NP-complete.

We can show that if a constraint language G satisfies the
conditions above, then the problem can be solved in poly-
nomial time by the algorithm presented in Section 2.3. Let D
be the set of binary relations pp-definable in G. Since G has
a majority polymorphism, it is 2-decomposable; hence, every
constraint with a relation R Î G can be replaced with a collec-
tion of binary constraints, the ‘projections’ of R, which are pp-
definable in G and thus belong to D. Therefore we only need to
verify that the Key Property (Section 2.3) always holds. Due to
2-decomposability, G can be replaced with D. This constraint
language has a Maltsev polymorphism, and this makes its
relations thick mappings. Suppose now that the graph G of a
problem from CCSP(D) is connected. For any two variables v,
w the set of all allowed combinations of their values is a binary
relation, denoted Rvw and an implicit constraint. Since D con-
tains all binary relations pp-definable in D, we have Rvw Î D.
Thus Rvw is a thick mapping from Dv to Dw. The connectedness
of G and the fact that all relations in D are noncrossing can
be used to show that Rvw is a nontrivial thick mapping. Let a
and b be equivalence relations it induces on Dv and Dw, respec-
tively. If we fix a value a Î Dv then the possible values of w are
restricted to one equivalence class of b, a proper subset of Dw.
As this is true for all variables w, the key property follows.

The Main Theorem also leads to a more combinatorial
characterization of tractable problems CCSP(G): Such a
problem is tractable if and only if G is 2-decomposable, and
the binary relations pp-definable in G are noncrossing thick
mappings.

What remains now is to show that otherwise the problem
is hard.

4. HARD CSPS WITH CARDINALITY CONSTRAINTS
If one of the three conditions on a constraint language
G (a) 2-decomposability, (b) all binary pp-definable rela-
tions are thick mappings, and (c) all such binary rela-
tions are noncrossing does not hold, we show that either
Bipartite Independent Set or Linear Equation is reducible
to CCSP(G), thus showing that CCSP(G) is NP-complete.
This part is technical, but we outline the intuition behind
the technique.

Suppose first that a binary relation R is pp-definable in G,
but is not a thick mapping. This means that for some a, b,
c, d pairs (a, c), (a, d), (b, c) belong to R while (b, d) does not.
If a, b, c, d are distinct values, then R contains a fragment
that looks like RBIS. We exploit this fact to reduce Bipartite
Independent Set to CCSP(G) and conclude NP-hardness in
this case. In general, it is possible that some of a, b, c, d coin-
cide. However, a case analysis shows that reduction from
Bipartite Independent Set is possible in all cases.

If there exist two thick mappings pp-definable in G that
are not noncrossing, then there are also two equivalence
relations with this property; denote them a and b. Since they

All relations

Relational
clone of G

G

Inv C Pol G
Clone of C

S
ets of functionsS

et
s

of
 r

el
at

io
ns

All functions

C

Figure 7. Pol and Inv.

Majority implies 2-decomposability.
Let R be a ternary relation and h a majority function, which is a poly-
morphism of R. We show that any triple (a, b, c) such that each of
(a, b), (b, c), and (a, c) is extendible to a triple from R, belongs to R.
This means the 2-decomposability of R in this case. By the assump-
tion, there are (a, b, z), (a, y, c), (x, b, c) Î R for some x, y, z. Since h is
a majority polymorphism of R we have

and (a, b, c) belongs to R.
Maltsev implies thick mapping.
Let R be a binary relation and m its Maltsev polymorphism. We have
to prove that for any (a, c), (a, d), (b, c) Î R the pair (b, d) also belong to
R. It follows from a single application of the Maltsev polymorphism:

Linear equations.
As another example of a property of relations expressible by a poly-
morphism, we consider relations that are solution spaces of systems
of linear equations over a finite field F. Then if a relation R has such
representation it is an invariant of the affine function f(x, y, z) = x − y +
z, where +, − are operations of the field F. Indeed, let A ⋅ x = b be the
system defining R, and x, y, z Î R.
Then

A ⋅ f(x, y, z) = A ⋅ (x − y + z) = A ⋅ x − A ⋅ y + A ⋅ z = b.

In fact, the converse can also be shown: if R is invariant under f then
it is the solution space of a certain system of linear equations.

Figure 8. Examples of polymorphism.

106 communications of the acm | september 2010 | vol. 53 | no. 9

research highlights

are not noncrossing, some a-class and some b-class overlap,
but are not subsets of one another. Hence for some a, b, c,
we have (a, b) is in a but not in b, and (b, c) is in b but not in
a. If we can restrict a and b onto {a, b, c} somehow, then
the product of binary relations a ° b given by a pp-formula
∃ z a(x, z) ∧ b(z, y), contains (a, a), (a, c), (c, c), but does not
contain (c, a). Again, this fact can be used to reduce Bipartite
Independent Set to CCSP(G).

Finally, let R Î G be non-2-decomposable. For simplicity
assume R ternary. There is a triple (a, b, c) such that (a, b, z),
(a, y, c), (x, b, c) belong to R for some x, y, z, but (a, b, c) does
not. We show that either a binary relation which is not a
thick mapping can be pp-defined in G, or two thick map-
pings that are not noncrossing, or all the tuples can be cho-
sen such that a = b = c = 0, x = y = z = 1 (we assume 0 and 1 are
elements of the domain we can use here), and R restricted to
{0, 1} is RODD−3. Therefore a reduction of Linear Equations to
CCSP(G) can be found.

5. CONCLUSION
We have completed the study of CSP extended with cardi-
nality constraints, and proved a dichotomy theorem charac-
terizing the complexity of the problem for every constraint
language G over an arbitrary finite domain D. Dichotomy
theorems over non-Boolean domains are notoriously hard to
prove, but possibly due to the rather restrictive nature of the
CCSP problem, we managed to obtain a complete character-
ization. One can think of several natural variants with more
expressive power, for example, the domain is {1, 2, 3, 4},
and we have upper bounds on the cardinalities of 1 and 2,
while there are lower bounds on the cardinalities of 3 and
4. Therefore, upper and/or lower bounds instead of exact
cardinality requirements, bounds only on a subset of val-
ues, bounds on the total cardinality of a subset of values, etc.
give lots of interesting problems to look at. However, some
of these questions seem to be very difficult, as a dichotomy
result would immediately imply the Feder–Vardi Dichotomy
Conjecture (after all, we do not fully understand CSP even
without cardinality constraints).

Another natural direction is to consider optimization
variants (minimize/maximize the number of times certain
values appear) and determine the approximability of the
resulting problems. In the Boolean case, the approximabil-
ity of the MinOnes/MaxOnes problems, where the task is
to find a satisfying assignment minimizing/maximizing
the number of variables receiving value 1, was classified by
Khanna et al.25 Again, not being able to solve the Feder–Vardi
conjecture limits what immediate progress we can expect in
the study of non-Boolean domains.

Finally, one can look at CCSP from the viewpoint of
parameterized complexity. The basic issues of parameter-
ized complexity is whether an algorithm of running time
f (k) ⋅ nc exists, where k is some parameter of the input (for
example, the size of the solution we are looking for), f (k) is
an arbitrary function depending on k, and c is a universal
constant independent of k. For example, in Boolean CCSP,
one can answer in time nO(k) whether there is a solution with
exactly k variables set to 1, but it would be preferable to find
an algorithm with running time of the form f (k) ⋅ nc, that is,

  1. � Allen, J. Natural Language Understanding.
Benjamin Cummihgs, 1994.

  2. � Allender, E., Bauland, M., Immerman,
N., Schnoor, H., Vollmer, H. The
complexity of satisfiability problems:
Refining Schaefer’s theorem. J. Comput.
Syst. Sci. 75, 4 (2009), 245–254.

  3. �B arto, L., Kozik, M. Constraint
satisfaction problems of bounded
width. In FOCS (2009), 595–603.

  4. �B arto, L., Kozik, M. New conditions for
Taylor varieties and CSP. In LICS,
2010. to appear.

  5. �B azgan, C., Karpinski, M. On the
complexity of global constraint
satisfaction. In ISAAC (2005), 624–633.

  6. �B essière. C., Hebrard, E., Hnich, B.,
Walsh, T. The complexity of global
constraints. In AAAI (2004), 112–117.

  7. �B ulatov, A. Tractable conservative
constraint satisfaction problems. In
LICS (2003), 321–330.

  8. �B ulatov, A., Jeavons, P., Krokhin, A.
Functions of multiple-valued logic
and the complexity of constraint
satisfaction: A short survey. In ISMVL
(2003), 343–351.

  9. �B ulatov, A.A. A dichotomy theorem for
constraint satisfaction problems on a
3-element set. J. ACM 53, 1 (2006),
66–120.

10. �B ulatov, A.A., Krokhin, A.A., Larose, B.
Dualities for constraint satisfaction
problems. In Complexity of
Constraints (2008), 93–124.

11. �B ulatov, A.A., Marx, D. Constraint
satisfaction parameterized by solution
size. Manuscript.

12. �B ulatov, A.A., Marx, D. The complexity
of global cardinality constraints. In
LICS (2009), 419–428.

13. �B ulatov, A.A., Valeriote, M. Recent
results on the algebraic approach to
the csp. In Complexity of Constraints
(2008), 68–92.

14. �C reignou, N., Schnoor, H., Schnoor,
I. Non-uniform boolean constraint
satisfaction problems with cardinality
constraint. In CSL (2008), 109–123.

15. �D echter, R. Constraint Processing.
Morgan Kaufmann Publishers, 2003.

16. �D enecke, K., Wismath, S. Universal
Algebra and Applications in
Theoretical Computer Science.
Chapman and Hall, CRC Press, 2002.

17. �D unkin, N., Bater, J., Jeavons, P.,
Cohen, D. Toward high order constraint
represenations for the frequency
assignment problem. Technical
Report CSD-TR-98–05, Department
of Computer Science, Royal Holloway,
University of London, Egham, Surrey,
UK, 1998.

18. �F eder, T., Vardi, M. The computational
structure of monotone monadic SNP

and constraint satisfaction: A study
through datalog and group theory.
SIAM J. Comput. 28 (1998), 57–104.

19. �F reuder, E. Synthesizing constraint
expressions. Commun. ACM 21, (1978)
958–966.

20. �F reuder, E.C. Complexity of k-tree
structured constraint satisfaction
problems. In Proceedings of AAAI-90
(Boston, MA, 1990), 4–9.

21. �G rohe, M. The complexity of
homomorphism and constraint
satisfaction problems seen from the
other side. J. ACM 54, 1 (2007).

22. �H ell, P., Nesetril, J. Colouring,
constraint satisfaction, and complexity.
Comput. Sci. Rev. 2, 3 (2008), 143–163.

23. �J eavons, P., Cohen, D., Gyssens, M.
Closure properties of constraints.
J. ACM 44 (1997), 527–548.

24. � Kautz, H.A., Selman, B. Planning as
satisfiability. In ECAI (1992), 359–363.

25. � Khanna, S., Sudan, M., Trevisan, L.,
Williamson, D.P. The approximability
of constraint satisfaction problems.
SIAM J. Comput. 30, 6 (2001)
1863–1920.

26. � Kolaitis, P., Vardi, M. Conjunctive-
query containment and constraint
satisfaction. J. Comput. Syst. Sci. 61
(2000), 302–332.

27 � Kratsch, S., Marx, D., Wahlström,
M. Parameterized complexity and
kernelizability of Max Ones and Exact
Ones problems. Submitted, 2010.

28. �L adner, R. On the structure of
polynomial time reducibility. J. ACM 22
(1975), 155–171.

29. �L arose, B., Tesson, P. Universal algebra
and hardness results for constraint
satisfaction problems. In ICALP
(2007), 267–278.

30. � Marx, D. Parameterized complexity
of constraint satisfaction problems.
Comput. Complex. 14, 2 (2005),
153–183. Special issue “Conference on
Computational Complexity (CCC) 2004”.

31. � Marx, D. Tractable hypergraph
properties for constraint satisfaction
and conjunctive queries. In STOC
(2010), to appear.

32. � Montanari, U. Networks of
constraints: Fundamental properties
and applications to picture
processing. Inf. Sci. 7 (1974), 95–132.

33. �N adel, B. Constraint satisfaction in
Prolog: Complexity and theory-based
heuristics. Inf. Sci. 83, 3–4 (1995),
113–131.

34. � Schaefer, T. The complexity of
satisfiability problems. In STOC
(1978), 216–226.

35. � van Beek, P. Reasoning about
qualitative temporal information. Artif.
Intell. 58 (1992), 297–326.

where the combinatorial explosion is restricted to k and the
exponent of n is independent of k. We can ask what those
Boolean constraint languages G are for which the problem
of finding a solution with exactly/at most/at least k vari-
ables having 1 can be solved in such running time. These
questions have been investigated and completely answered
in Kratsch et al. and Marx.27, 30 Generalization of some of
these results to arbitrary non-Boolean domains have been
obtained very recently by the authors.11�

References

Andrei A. Bulatov (abulatov@cs.sfu.ca),
School of Computing Science, Simon
Fraser Univerity, 8888 University Drive,
Burnaby, BC, Canada.

Dániel Marx (dmarx@cs.bme.hu), School
of Computer Science, Tel Aviv University,
Tel Aviv, Israel.

© 2010 ACM 0001-0782/10/0900 $10.00

mailto:abulatov@cs.sfu.ca
mailto:dmarx@cs.bme.hu

september 2010 | vol. 53 | no. 9 | communications of the acm 107

careers

rity, Parallel and Distributed Computing, Auton-
omous Systems, Biomedical Applications, and
Sustainable Computing are strongly encouraged
to apply. Industrial experience and willingness to
teach in multiple areas of the undergraduate cur-
riculum are desirable.

Candidates must have a strong commitment
to teaching excellence and laboratory-based in-
struction; dedication to continued professional
development and scholarship; and a broad-based
knowledge of computer engineering. Demon-
strated ability in written and oral use of the Eng-
lish language is required.

Cal Poly offers Bachelor’s Degrees in Comput-
er Engineering, Computer Science, Software Engi-
neering and Electrical Engineering, and Master’s
Degrees in Computer Science and Electrical Engi-
neering. Computer Engineering is a joint program
between the Departments of Computer Science
and Electrical Engineering. Cal Poly emphasizes
“learn by doing” which involves extensive lab work
and projects in support of theoretical knowledge.
The available computing facilities for instruction-
al and faculty support are modern and extensive.

Apply: http://www.calpolyjobs.org, apply to
requisition 102122

Central Michigan University
Department of Computer Science

The department has two tenure track positions in
Information Technology to be filled in Fall 2011.
One is in Applied Networking and one is in Medi-
cal or Health Informatics. For more information
and to apply electronically: www.jobs.cmich.edu.

Furman University
Assistant Professor of Computer Science

The Department of Computer Science invites
applications for a tenure track position at the
Assistant Professor level to begin in the fall of
2011. Candidates must have a Ph.D. in Computer
Science or a closely related field. The position re-
quires teaching excellence, effective institutional
service, and an ability to work with colleagues
across disciplines. An ability to develop a pro-
gram of scholarly and professional activity involv-
ing undergraduates is a priority. Research special-
ty areas being sought include (but are not limited
to) high performance computing, computational
science, mathematical modeling, and bioin-
formatics. Of particular interest are candidates
willing to engage in collaborative research that
bridges the computational and medical sciences.
The position will be initially funded by and is ex-
pected to contribute to a major multi-disciplinary
and multi-organizational state-wide initiative
aimed at biofabrication of tissues and organs.

Furman is a highly selective, independent, top
40 undergraduate liberal arts institution with an
enrollment of approximately 2600 students. The

Air Force Institute of Technology (AFIT)
Dayton, Ohio
Department of Electrical and Computer
Engineering
Graduate School of Engineering and
Management
Faculty Positions in Computer Science or
Computer Engineering

The Department of Electrical and Computer En-
gineering is seeking applicants for tenure track
positions in computer science or computer engi-
neering. The department is particularly interest-
ed in receiving applications from individuals with
strong backgrounds in formal methods (with em-
phasis on cryptography), software engineering,
bioinformatics, computer architecture/VLSI sys-
tems, and computer networks and security. The
positions are at the assistant professor level, al-
though qualified candidates will be considered at
all levels. Applicants must have an earned doctor-
ate in computer science or computer engineering
or closely related field and must be U.S. citizens.
These positions require teaching at the gradu-
ate level as well as establishing and sustaining a
strong research program.

AFIT is the premier institution for defense-re-
lated graduate education in science, engineering,
advanced technology, and management for the U.S.
Air Force and the Department of Defense (DoD).
Full details on these positions, the department,
and application procedures can be found at: http://
www.afit.edu/en/eng/employment_faculty.cfm

Review of applications will begin immediately
and will continue until the positions are filled.
The United States Air Force is an equal opportu-
nity, affirmative action employer.

Cal Poly State University
Tenure Track Position - Forbes Professor of
Computer Engineering

COMPUTER ENGINEERING - The Computer Sci-
ence Department and Computer Engineering
Program at Cal Poly, San Luis Obispo, invite ap-
plications for a full-time, academic year tenure-
track Computer Engineering faculty position at
the Assistant or Associate Professor rank, begin-
ning no later than Fall 2011. The appointment
will be designated as the “Forbes Professor of
Computer Engineering”. Duties include teaching
core undergraduate courses, and upper-division
and master’s level courses in a specialty area;
performing research in an area of computer en-
gineering; and service to the department, the uni-
versity, and the community.

Applicants from all mainstream areas of com-
puter engineering are encouraged to apply. A doc-
torate in Computer Engineering, Computer Sci-
ence, Electrical Engineering, or a closely related
field is required. Salary is commensurate with
qualifications and experience.

Candidates in the areas of: Computer Secu-

university is located in the vibrant and beautiful
upstate region of South Carolina, offers generous
benefits to fulltime faculty, and subscribes to a
problem-solving, project-oriented, experience-
based approach to education that is referred to as
Engaged Learning. The Department of Computer
Science confers the B.S. degree with majors in
Computer Science, Information Technology, and
Computer Science/Mathematics. The successful
candidate will have the opportunity to teach in
Furman’s First Year Seminar program. Furman
University is an equal-opportunity employer.
Women and underrepresented minorities are
strongly encouraged to apply. For the complete
ad, please visit http://cs.furman.edu.

Applicants should submit a curriculum vitae,
statement of teaching philosophy, description of re-
search interests, an official copy of most recent tran-
scripts, and have three letters of recommendation
sent separately. Please send all materials to Dr. Kev-
in Treu, Chair, Department of Computer Science,
Furman University, 3300 Poinsett Hwy, Greenville,
SC 29613. Materials may also be sent in PDF format
to kevin.treu@furman.edu. Review of applications
will continue until the position is filled.

Harvard University
Tenure-track Faculty Position in Biorobotics

The School of Engineering and Applied Sciences
(SEAS) and the Wyss Institute for Biologically In-
spired Engineering at Harvard University (Wyss
Institute) seek applicants for a tenure-track fac-
ulty position. The position will be at the level of
assistant professor in SEAS in the field of Bioro-
botics. Potential subareas include, but are not
limited to:

˲˲ Medical robots (e.g. prosthetics and rehabilita-
tion robotics)

˲˲ Robot locomotion (e.g. animal-inspired robotic
systems, bio-inspired adaptive locomotion and
control)

˲˲ Dynamics and control (e.g. machine learning
and robotics, swarm and modular robotics, and
human-robot interaction)

˲˲ Sensors and actuators (e.g. novel electroactive
materials)

˲˲ MEMS/NEMS devices and robots
˲˲ New concepts for energy storage
˲˲ Biomimetic materials for robotics

In addition to having a faculty appointment in
SEAS, the successful candidate will also become a
core faculty member of the Wyss Institute, which
is composed of engineers, scientists, clinicians
and theoreticians from Harvard, its affiliated hos-
pitals, and other leading academic institutions in
the Boston/Cambridge region. The Wyss Institute
focuses on fundamental science-driven technol-
ogy development in the field of Biologically In-
spired Engineering.

For additional information, visit the following
Websites:

http://www.afit.edu/en/eng/employment_faculty.cfm
http://www.jobs.cmich.edu
http://cs.furman.edu
http://www.afit.edu/en/eng/employment_faculty.cfm
http://www.calpolyjobs.org
mailto:kevin.treu@furman.edu

108 CommuniCations of the aCm | sEPtEMbEr 2010 | vol. 53 | no. 9

CArEErs

We are looking for two candidates with re-
search interest in areas of business intelligence,
data mining technologies, social networking,
ERP, and CRM. The successful applicant will have
a Ph.D. in Management Information Systems or
related fi eld and possess superior communica-
tion skills and a commitment to excellence in
both teaching and research. Santa Clara Universi-
ty is an equal opportunity/affi rmative action em-
ployer and welcomes applications from women,
persons of color, and members of historically un-
der-represented U.S. ethnic groups. Please email
(preferred) a letter of application, vita,

references and teaching evaluations to Eileen
Turner at eturner@scu.edu, or

mail your application packet to the following
address:

Chair
OMIS Search Committee
Santa Clara University
500 El Camino Real
Santa Clara, CA 95053-0382

university of technology, sydney
Lecturer/Senior Lecturer

The Faculty of Engineering and Information
Technology is seeking applicants for a full-time
permanent lecturer/senior lecturer position to
build on the existing research and teaching in the
faculty in the fi eld of game programming & devel-
opment, animation techniques or closely related
fi eld. For detailed information, visit http://www.
hru.uts.edu.au/jobs/

SEAS: http://www.seas.harvard.edu/
Wyss Institute: http://wyss.harvard.edu/

Candidates must have the ability to develop
a leading research program with a focus on tech-
nology development and translation. An enthusi-
asm for teaching is essential, and responsibilities
will include both core undergraduate engineer-
ing courses as well as graduate-level courses.

An application, assembled as a single PDF
fi le, should include a curriculum vitae, separate
two-page statements of research and teaching in-
terests, up to three scientifi c papers, and names
and contact information for at least three writers
of letters of recommendation. Applications should
be sent to biorobotics_search@seas.harvard.edu.
The deadline for applications is October 31, 2010.

Applications will be reviewed beginning Feb-
ruary 2010 and will be accepted until the position
is fi lled.

Harvard University is an Equal Opportunity/
Affi rmative Action Employer.

Applications from women and minority can-
didates are strongly encouraged.

Princeton university
Computer Science, Assistant Professor
Tenure-Track Positions

The Department of Computer Science at Princ-
eton University invites applications for faculty
positions at the Assistant Professor level. We are
accepting applications in all areas of Computer
Science.

Applicants must demonstrate superior re-
search and scholarship potential as well as teach-
ing ability. A PhD in Computer Science or a relat-
ed area is required.

Successful candidates are expected to pursue
an active research program and to contribute
signifi cantly to the teaching programs of the de-
partment. Applicants should include a resume
contact information for at least three people who
can comment on the applicant’s professional
qualifi cations.

There is no deadline, but review of applica-
tions will start in December 2010; the review of
applicants in the fi eld of theoretical computer
science will begin as early as October 2010.

Princeton University is an equal opportunity
employer and complies with applicable EEO and
affi rmative action regulations You may apply on-
line at: http://www.cs.princeton.edu/jobs

Requisition Number: 1000520

santa Clara university
Tenure Track position in Management
Information Systems
Department of Operations and Management
Information Systems

The Leavey School of Business invites applica-
tions for a tenure track position in Management
Information Systems within the Department of
Operations and Management Information Sys-
tems beginning Fall, 2011. Santa Clara University
is a private Jesuit university located in the heart of
Silicon Valley.

ArizonA StAte UniverSity
Engineering Faculty opening in

Human Activity Capture and Analysis

The School of Arts, Media and Engineering
(AME) and the School of Electrical, Computer
and Energy Engineering (ECEE) at Arizona
State University are seeking a jointly appointed
faculty member. Of particular interest is the
area of Human Activity Capture and Analysis
with emphasis on health, education or cultural
applications. Candidates are sought at the
assistant, associate or full professor level.

The School of Arts, Media and Engineering
(AME – http://ame.asu.edu), at the Herberger
Institute for Design and the Arts and the Ira
Fulton Schools of Engineering, is a leading
transdisciplinary program in media arts
and sciences. It offers PhD, Masters and
undergraduate degrees in new media in
collaboration with 12 partner units spanning
arts, design, sciences and engineering.
Significant federal, private foundation and
industry support along with clinical, education
and cultural partnerships contribute to the
development and deployment of innovative
media systems. The School of Electrical,
Computer and Energy Engineering leads
academic programs with more than 50 faculty
members, 500 undergraduates and 700
graduate students. The school’s programs
include extramural research funding of more
$20M and BSE, MSE, MS and Ph.D. degree
programs. Both Schools are strongly committed
to interdisciplinary research and education.
Application deadline: november 1, 2010.
For complete position details, please visit:
http://ame.asu.edu/about/employment.php

http://www.seas.harvard.edu/
http://wyss.harvard.edu/
http://www.cs.princeton.edu/jobs
http://www.hru.uts.edu.au/jobs/
http://ame.asu.edu
http://ame.asu.edu/about/employment.php
http://www.hru.uts.edu.au/jobs/
http://www.cse.cuhk.edu.hk
http://www.ie.cuhk.edu.hk
http://www.cuhk.edu.hk/personnel
mailto:recruit@erg.cuhk.edu.hk
mailto:recruit@cse.cuhk.edu.hk
mailto:recruit@ie.cuhk.edu.hk
mailto:eturner@scu.edu
mailto:biorobotics_search@seas.harvard.edu

september 2010 | vol. 53 | no. 9 | communications of the acm 109

Department Head
Department of Electrical
Engineering & Computer Science
South Dakota State University
Brookings, SD
South Dakota State University invites applications
and nominations for the position of Department
Head of Electrical Engineering & Computer Science.
SDSU, the state’s land-grant and largest university,

is a Carnegie RU/H (high research activity) institution with 12,400
students. The university is seeking an energetic academic leader with
strategic vision, outstanding academic credentials and successful
administrative experience. The Department Head, who reports to the
Dean of Engineering, holds a 12-month position and oversees all of
the department’s administrative functions including academic, budget,
facilities, research and outreach. In FY 2010 the department had 25
base-funded faculty and 390 students enrolled in undergraduate and
graduate programs in electrical engineering, computer science and
software engineering. The department is enjoying strong growth in
enrollments and funded research, strong ties to industry and a beautiful
new $12 million-72,000 sq. ft. building.

The successful applicant must have an earned Ph.D. and distinguished
record of performance consistent with appointment as a tenured full
professor in a discipline appropriate to the department. He/she must
also have a record of innovative and strategic leadership that would
apply to a progressive and growing academic environment and a record
of effective university administrative experience.

For detailed electronic application instructions, a full description of the
position and information on the department, university and community,
please visit http://www.sdstate.edu/eecs/. For the most complete
consideration, applications should be received by Nov. 1, 2010. For
questions on the electronic employment process, contact SDSU Human
Resources at (605) 688-4128.

South Dakota State University is an AA/EEO employer.

�ACM Professional Members can enjoy the convenience of making a single payment for their
entire tenure as an ACMMember, and also be protected from future price increases by
taking advantage of ACM's Lifetime Membership option.

�ACM Lifetime Membership dues may be tax deductible under certain circumstances, so
becoming a Lifetime Member can have additional advantages if you act before the end of
2009. (Please consult with your tax advisor.)

�Lifetime Members receive a certificate of recognition suitable for framing, and enjoy all of
the benefits of ACM Professional Membership.

Learn more and apply at:
http://www.acm.org/life

Take Advantage of
ACM’s LifetimeMembership Plan!

Advertising in Career
Opportunities

How to Submit a Classified Line Ad: Send an e-mail to
acmmediasales@acm.org. Please include text, and indicate
the issue/or issues where the ad will appear, and a contact
name and number.

Estimates: An insertion order will then be e-mailed back to
you. The ad will by typeset according to CACM guidelines.
NO PROOFS can be sent. Classified line ads are NOT
commissionable.

Rates: $325.00 for six lines of text, 40 characters per line.
$32.50 for each additional line after the first six. The MINIMUM
is six lines.

Deadlines: Five weeks prior to the publication date of the
issue (which is the first of every month). Latest deadlines:

http://www.acm.org/publications

Career Opportunities Online: Classified and recruitment
display ads receive a free duplicate listing on our website at:

http://campus.acm.org/careercenter

Ads are listed for a period of 30 days.
For More Information Contact:

ACM Media Sales
at 212-626-0686 or

acmmediasales@acm.org

http://www.acm.org/life
mailto:acmmediasales@acm.org
http://www.acm.org/publications
http://campus.acm.org/careercenter
mailto:acmmediasales@acm.org
http://www.sdstate.edu/eecs/

september 2010 | vol. 53 | no. 9 | communications of the acm 110

last byte

DOI:10.1145/1810891.1810917		 Peter Winkler

Puzzled
Solutions and Sources
It’s amazing how little we know about good old plane geometry. Last
month (August 2010, p. 128) we posted a trio of brainteasers, including
one as yet unsolved, concerning figures on a plane.
Here, we offer solutions to two of them.

1. Covering a Gravy Stain.
 Solution. The object was to

cover a gravy stain of area less than one
square inch with a plastic sheet con-
taining a grid of side one inch in such
a way that no intersection point of the
grid fell on the stain. This puzzle (as
I was reminded by Andrei Furtuna, a
Dartmouth computer science graduate
student) may date to the great Lithua-
nian-born mathematician Hermann
Minkowski (1864–1909).

It suffices to consider only grids ori-
ented North-South-East-West or, equiv-
alently, to assume the plastic sheet is
aligned with the table. Now imagine
cutting the tablecloth into one-inch
squares in an aligned grid pattern, pin
one of the stained squares to the table,
oriented as it was originally, and stack
(without rotating any square) all other
stained squares neatly on top of it.

The stain is now within one square,
but since the area of the stain is less
than one square inch (and can be re-
duced only through stacking), some
squares remain stain-free. Now pick a
stain-free point and place the plastic
so its intersection points lie directly on
the point.

Since all other intersection points
are outside the stained square, no in-
tersection point touches the stacked
stain. But what if the tablecloth were
sewn back together? Each stained
square would then be translated by an
integral number of tablecloth squares

East or West and North or South back
to the original position. It would then
bear the same relationship to the plas-
tic sheet’s grid points it did before; that
is, it would miss them.

2. Covering Dots on a Table.
 Solution. We had to show that

any 10 dots on a table can be covered
by non-overlapping $1 coins, in a
problem devised by Naoki Inaba and
sent to me by his friend, Hirokazu Iwa-
sawa, both puzzle mavens in Japan.

The key is to note that packing disks
arranged in a honeycomb pattern cover
more than 90% of the plane. But how do
we know they do? A disk of radius one
fits inside a regular hexagon made up of
six equilateral triangles of altitude one.
Since each such triangle has area √3/3,
the hexagon itself has area 2√3; since
the hexagons tile the plane in a honey-
comb pattern, the disks, each with area
π, cover π /(2√3) ~ .9069 of the plane’s
surface.

It follows that if the disks are placed
randomly on the plane, the probability
that any particular point is covered is
.9069. Therefore, if we randomly place
lots of $1 coins (borrowed) on the ta-
ble in a hexagonal pattern, on average,
9.069 of our 10 points will be covered,
meaning at least some of the time all
10 will be covered. (We need at most
only 10 coins so give back the rest.)

What does it mean that the disks
cover 90.69% of the infinite plane? The

easiest way to answer is to say, perhaps,
that the percentage of any large square
covered by the disks approaches this
value as the square expands. What is
“random” about the placement of the
disks? One way to think it through is to
fix any packing and any disk within it,
then pick a point uniformly at random
from the honeycomb hexagon con-
taining the disk and move the disk so
its center is at the chosen point.

3. Placing Coins.
 Unsolved. The solution to Puz-

zle 2 doesn’t tell us how to place the
coins, only that there is a way to do it.
Is there a constructive proof? Yes, and
we can use the solution to Puzzle 1
(concerning the stain) to find it. I leave
it to your imagination to follow up.

That proof can be used to increase
the number of dots to 11 or 12, still us-
ing only an aligned hexagonal lattice
of coins. However, since we aren’t re-
stricted to a lattice, it seems plausible
that quite a few dots can be covered,
perhaps as many as 25 (see the August
column). If you figure out a dot pattern
with, say, 30 or fewer points you think
can’t be covered by unit disks, please
send to me, along with your reasoning.

All readers are encouraged to submit prospective
puzzles for future columns to puzzled@cacm.acm.org.

Peter Winkler (puzzled@cacm.acm.org) is Professor of
Mathematics and of Computer Science and Albert Bradley
Third Century Professor in the Sciences at Dartmouth
College, Hanover, NH.

mailto:puzzled@cacm.acm.org
mailto:puzzled@cacm.acm.org

september 2010 | vol. 53 | no. 9 | communications of the acm 111

last byte

ties are find-
ing the costs reasonable for installing
their own surveillance systems.

All the highways, all the roads. All
the paths and trails. It’s just a matter
of software and hardware and money.
And fear.

Similar situations will play out ev-
erywhere, in a world where perceived
threats are far more important than
actual danger, politically and psycho-
logically. Zero-tolerance rules for rude
or reckless behavior will ramp up the
pressure on society’s marginals—in-
cluding immature young people, the
mentally ill, and petty thieves. Private
individuals and neighborhood-watch
groups will keep local records of indi-
viduals and pass them along to land-
lords or housing authorities, as well
as to the police, possibly using them
to justify the tracking of individual
movements and behavior around the
clock.

There is no right of privacy in public
thoroughfares.

Courts may rule that private record-
ings in public places are in fact unpro-
tected by constitutional safeguards,
particularly against self-incrimination.
All such records could become public
property. Individuals may find their
personal recordings subpoenaed for
cases in which they have minimal or no
involvement, as part of a sweep for in-
formation around a crime scene.

Ultimately, any unusual, reckless, or
outright bad behavior will be captured
by some surveillance system or other,
resulting in further scrutiny, court
orders, or law-enforcement investiga-
tions. The squeeze will be applied to
any potential miscreants, even if their
actions turn out to be relatively harm-
less.

Pictures of individuals alleged to
have been involved in suspicious activ-
ity will be posted on social-networking
sites. Wives will learn where their hus-
bands go at night, and vice versa.

Morally minded individuals will
post streaming video taken outside
clinics, hospitals, liquor stores, adult
entertainment stores.

Videos that might show bad inten-
tions—or might not—could force em-
ployers to fire those involved. This will
likely add to the self-perceived over-
whelming burden on those members
of society who already feel they have

nothing left to lose.
Anyone can own a gun. Everyone

can track everyone else. The weak links
could feel the pressure the most, and
might also break first.

That tailgater was having a very bad
day. Now, he’s going to have a very bad
couple of months. He could lose his
driver’s license and his job. What he
might do next will also be recorded in
glorious detail.

Everyone of us has, at one time or an-
other, done something foolish or just
plain thoughtless. Many of us have got-
ten away with petty crimes and grown
out of the bad behavior—without be-
ing caught. We mature. We learn. Our
lives are not minutely observed.

That will change. Escaping from
the consequences of minor offenses
functions as one kind of lubrication
in the gears of society. No society can
afford the cost of prosecuting every
minor crime. Few individuals can af-
ford complete, day-in, day-out scrutiny
in an increasingly judgmental society.
Vengeance is everywhere. Nobody gets
away with anything. We’re terrified
of our neighbors, and we hate being
afraid.

As forgiveness and forgetfulness
become conveniences of the past, as
lubrication is stripped off, friction and
stress will increase.

Welcome to the myriad eyes of Little
Brother. 	

Greg Bear (http://www.gregbear.com) is the author
of more than 30 books of science fiction and fantasy,
including Blood Music, The Forge of God, Darwin’s Radio,
and Quantico, and has been awarded two Hugos and five
Nebulas.

© 2010 ACM 0001-0782/10/0900 $10.00

[contin ued f rom p. 112]

As forgiveness and
forgetfulness become
conveniences of the
past, as lubrication
is stripped off,
friction and stress
will increase.

http://www.gregbear.com
http://www.acm.org/trets
http://www.acm.org/subscribe

last byte

112 communications of the acm | september 2010 | vol. 53 | no. 9

p
h

o
t

o
g

r
a

p
h

 b
y

 t
r

o
y

 h
o

l
d

e
n

One of the most important devel-
opments in surveillance will be facial-
recognition software capable of com-
paring blurry videos taken from many
different cameras and angles, as well
as still photos. Computer enhance-
ment will soon be able to approximate
3D scans from 2D sources. Still, even
with improved software, fewer than
one in 10 identification hits will be ac-
curate. Computers still find it difficult
to work with faces. Even many humans
aren’t very good at the art of compari-
son and identification.

A woman walks to her neighbor-
hood market. A man follows her to the
corner, dogging her every step. Built
into the woman’s cellphone is an ag-
gression-warning monitor she triggers

A w et, busy highway at dusk. A pickup
truck is tailgating you. Its front bumper
pushes up to within six feet of your car.
The driver glares, though he can easily
pass on either side. You’re in his way.

Your bumper camera is activated by
a proximity sensor and snaps a high-res
image of the truck and its license plate,
then sends it to the highway patrol. Your
car’s equipment is law-enforcement
certified, the evidence is clear, and the
driver of the pickup is issued a ticket
based on four such incidents within a
10-minute period. A record of aggres-
sive driving can result in hefty fines and
even a suspended license. Some mu-
nicipalities offer the equipment for free
to drivers in their jurisdictions. The im-
pressive revenue stream can be useful
in communities where angry voters no
longer want to pay taxes.

These are often the same folks
most interested in locking ‘em up and
throwing away the key—until they
themselves are snagged and fined.

The whole city and most of the high-
way system will soon be monitored
by millions or even billions of small,
cheap, hi-res cameras, some embed-
ded in paint and masonry—all feeding
into servers and computer hubs that
constantly process imagery, looking
for suspicious or illegal behavior.

The computers pass along potential
items of interest to tens of thousands
of human contract operators employed
at centers around the nation, where
they compare possible “hits” to recent
911 calls and criminal databases and
may pass them along to FBI and Home-
land Security hubs, where they are fur-
ther analyzed and refined.

with a finger or a word. It activates a 4K
video camera in her spex—what look
like glasses and may in fact contain
prescription lenses. As the man ap-
proaches, a video is recorded—surpris-
ingly detailed, even in low light.

The video integrates streams from
four cameras recording wide-angled
images all around the woman.

The man’s features are obscured
by a hoodie. The woman’s vest-em-
bedded health sensor confirms that
her heart-rate is up, she’s starting to
sweat, and the closeness and anonym-
ity of the man indicates the likelihood
of danger.

As the man in the hoodie comes
within 30 feet of the woman, her com-
puter sends an emergency alert to the
local police department. CCTV cam-
eras mounted throughout the neigh-
borhood automatically backtrack, log,
and process images from the last hour.
A good view of the man’s face from a
single camera hundreds of yards away
is compared to a database of known
offenders. Seconds later, the woman
is warned by a message flashed in her
spex that the man is very possibly a
convicted felon and sex offender. This
automatically triggers a blaring alarm
in the neighborhood.

The felon flees as neighbors come
out on their porches to see what’s up.
Police drones the size of small birds
flood the area, taking their own videos
and guiding patrol cars. An arrest war-
rant is issued for the felon for parole vio-
lation. There’s no place he can go with-
out being tracked—unless he leaves
the city completely. And even then, ru-
ral communi-

DOI:10.1145/1810891.1810918		 Greg Bear

Future Tense
Little Brother Is Watching
In a world of technology and fear, the public gets to know
what it wants to know… and more than it can possibly digest.

[continued on p. 111]

Future Tense, one of the revolving features on this page, presents stories and

essays from the intersection of computational science and technological speculation,

their boundaries limited only by our ability to imagine what will and could be.

http://www.reviews.com
http://Reviews.com

Lisbon, Portugal
September, 5-9 2011

Conference Theme
The conference theme, Building Bridges, recognizes the interdisciplinary and
intercultural spirit of Human-Computer Interaction (HCI) research. The
conference welcomes research that bridges disciplines, cultures and societies.
Within the broad umbrella of HCI, we seek high quality contributions opening
new and emerging HCI disciplines, bridging cultural differences, and tackling
important social problems. INTERACT 2011 provides a forum for practitioners
and researchers to discuss all aspects of HCI, including these challenges.

Call for Submissions
INTERACT 2011 solicits submissions in a broad range of categories, addressing
all aspects of Human-Computer Interaction. Submissions are welcome in the
form of long and short research papers; workshop, tutorial, panel and special
interest group proposals; industrial reports; interactive experience posters;
organizational overviews, and applications to join the doctoral consortium and
the student design competition.

Submission Categories
Submissions will be peer-reviewed by an international panel of experts
and are invited in the following track categories:
 :. Full Research Papers
 :. Short Papers
 :. Special Interest Groups
 :. Panels
 :. Interactive posters
 :. Demonstrations

Important Dates
 Conference:
 September 5th to 9th, 2011

 Full Research Paper Submission:
 January 10th, 2011 (abstract)
 January 24th, 2011 (paper)

Conference Language
INTERACT 2011 is an international conference whose official language
is English. All submissions must be in English.

Follow us on: tinyurl.com/facebook-interact2011

 twitter.com/interact2011

www.interact2011.org

www.interact2011.org

 Tutorial and Workshop Submission:
 March 21th, 2011

 Submissions to Other Categories:
 April 7th, 2011

 :. Doctoral Consortium
 :. Industrial Programme
 :. Workshops
 :. Tutorials
 :. Student Design Competition
 :. Organizational Overviews

Honorary Chairs:
Don Norman, Larry Constantine,
Annelise Mark Pejtersen

General Conference Chairs:
Joaquim Jorge, Philippe Palanque

Full Research Papers Chairs:
Nicholas Graham, Nuno Nunes

Short Papers Chairs:
Daniel Gonçalves, Janet Wesson

Special Interest Group (SIGs) Chairs:
Gerrit van der Veer, Teresa Romão

Panels Chairs:
Regina Bernhaupt, Peter Forbrig,
Nuno Correia

Interactive Posters Chairs:
Monique Noirhomme-Fraiture,
Adérito Marcos

Demonstrations Chairs:
Verónica Orvalho, Greg Phillips

Doctoral Consortium Chairs:
Gitte Lindgaard, Manuel João Fonseca

Industrial Programme Chairs:
Antonio Câmara, Miguel Dias, Stacy
Hobson, Oscar Pastor, Virpi Roto

Workshops Chairs:
Julio Abascal, Nuno Guimarães

Tutorials Chairs:
José Creissac Campos, Paula Kotze

Student Design Competition Chairs:
Simone Diniz Junqueira Barbosa,
Luis Carriço

Organizational Overviews Chairs:
Teresa Chambel, Mary Czerwinski

Publicity Chairs:
Paula Alexandra Silva, Tiago Guerreiro

Keynote speakers co-Chairs:
John Karat, Jean Vanderdonckt

Student Volunteers co-Chairs:
Xavier Ferre, Effie Law

Publications co-Chairs:
Pedro Campos, Marco Winckler

Website Chairs:
Gerhard Weber, Alfredo Ferreira

Local Organization Chairs:
Alfredo Ferreira, Pauline Jepp

http://www.interact2011.org
http://tinyurl.com/facebook-interact2011
http://twitter.com/interact2011
http://www.interact2011.org

	Table of Contents
	Departments
	Editor’s Letter
	Letters To The Editor
	BLOG@CACM
	CACM Online
	Calendar
	Careers

	Last Byte
	Puzzled
	Future Tense

	News
	Brains and Bytes
	Cycling Through Data
	Degrees, Distance, and Dollars
	ACM China Nearing Launch
	Kyoto Prize and Other CS Awards

	Viewpoints
	The Business of Software
	Return at Risk

	Law and Technology
	Principles of the Law of Software Contracts

	The Profession of IT
	Discussing Cyber Attack

	Viewpoint
	Objects Never? Well, Hardly Ever!

	Point/Counterpoint
	Future Internet Architecture: Clean-Slate Versus Evolutionary Research

	Practice
	Computers in Patient Care: The Promise and the Challenge
	Injecting Errors for Fun and Profit
	Thinking Clearly About Performance, Part 1

	Contributed Articles
	Confronting the Myth of Rapid Obsolescence in Computing Research
	Erlang

	Review Articles
	Performance Evaluation and Model Checking Join Forces

	Research Highlights
	Technical Perspective
	Programming with Differential Privacy

	Privacy Integrated Queries: An Extensible Platform for Privacy-Preserving Data Analysis
	Technical Perspective
	Constraint Satisfaction Problems and Computational Complexity

	Constraint Satisfaction Problems and Global Cardinality Constraints

