
Association for
Computing Machinery

COMMuNICATIONS
OF	THE	ACMOF	THE	ACMOF	THE	ACMOF	THECACM.ACM.ORG 11/2010 VOL.53 NO.11

using
complexity
to Protect
elections

http://CACM.ACM.ORG

CALL FOR PARTICIPATIONCALL FOR PARTICIPATION

CTSCTS 20112011
Philadelphia, Pennsylvania, USA

The 2011 International Conference onThe 2011 International Conference on

Collaboration Technologies and SystemsCollaboration Technologies and Systems

For more information, visit the CTS 2011 web site at:

http://cts2011.cisedu.info/

May 23 – 27, 2011

The Sheraton University CityThe Sheraton University City HotelHotel

Philadelphia, Pennsylvania, USA

Important Dates:

 Paper Submission Deadline --- December 15, 2010December 15, 2010

 Workshop/Special Session Proposal Deadline ----------------- November 15, 2010November 15, 2010

 Tutorial/Demo/Panel Proposal Deadline ------------------------- January 8, 2011January 8, 2011

 Notification of Acceptance --- February 1, 2011February 1, 2011

 Final Papers Due --- March 1, 2011March 1, 2011

In cooperation with the ACM, IEEE, IFIP

http://cts2011.cisedu.info/

014712x

ABCD springer.com

Easy Ways to Order for the Americas 7 Write: Springer Order Department, PO Box 2485, Secaucus, NJ 07096-2485, USA 7 Call: (toll free) 1-800-SPRINGER
7 Fax: 1-201-348-4505 7 Email: orders-ny@springer.com or for outside the Americas 7 Write: Springer Customer Service Center GmbH, Haberstrasse 7,
69126 Heidelberg, Germany 7 Call: +49 (0) 6221-345-4301 7 Fax : +49 (0) 6221-345-4229 7 Email: orders-hd-individuals@springer.com
7 Prices are subject to change without notice. All prices are net prices.

Springer References & Key Library Titles
Handbook of
Ambient
Intelligence
and Smart
Environments
H. Nakashima, Future
University, Hakodate,
Hokkaido, Japan;

H. Aghajan, Stanford University, Stanford,
CA, USA; J. C. Augusto, University of Ulster at
Jordanstown, Newtownabbey, UK (Eds.)

Provides readers with comprehensive, up-to-
date coverage in this emerging field. Organizes
all major concepts, theories, methodologies,
trends and challenges into a coherent, unified
repository. Covers a wide range of applications
relevant to both ambient intelligence and
smart environments. Examines case studies
of recent major projects to present the reader
with a global perspective of actual develop-
ments.

2010. XVIII, 1294 p. 100 illus. Hardcover
ISBN 978-0-387-93807-3 7 $229.00

Handbook of
Multimedia
for Digital
Entertainment
and Arts
B. Furht, Florida Atlantic
University, Boca Raton,
FL, USA (Ed.)

The first comprehensive handbook to cover
recent research and technical trends in the field
of digital entertainment and art. Includes an
outline for future research directions within
this explosive field. The main focus targets
interactive and online games, edutainment,
e-performance, personal broadcasting, innova-
tive technologies for digital arts, digital visual
and other advanced topics.

2009. XVI, 769 p. 300 illus., 150 in color. Hardcover
ISBN 978-0-387-89023-4 7 $199.00

Handbook
of Natural
Computing
G. Rozenberg, T. Bäck,
J. N. Kok, Leiden Univer-
sity, The Netherlands
(Eds.)

We are now witnessing
an exciting interaction between computer
science and the natural sciences. Natural
Computing is an important catalyst for this
interaction, and this handbook is a major
record of this important development.

2011. Approx. 1700 p. (In 3 volumes, not available
seperately) Hardcover
ISBN 978-3-540-92909-3 7 $749.00

eReference
ISBN 978-3-540-92910-9 7 $749.00

Print + eReference
2011. Approx. 1700 p.
ISBN 978-3-540-92911-6 7 $939.00

Handbook of
Biomedical
Imaging
N. Paragios, École
Centrale de Paris, France;
J. Duncan, Yale Univer-
sity, USA; N. Ayache,
INRIA, France (Eds.)

This book offers a unique guide to the entire
chain of biomedical imaging, explaining how
image formation is done, and how the most
appropriate algorithms are used to address
demands and diagnoses. It is an exceptional
tool for radiologists, research scientists, senior
undergraduate and graduate students in health
sciences and engineering, and university
professors.

2010. Approx. 590 p. Hardcover
ISBN 978-0-387-09748-0 7 approx. $179.00

Encyclopedia of
Machine
Learning
C. Sammut, G. I. Webb
(Eds.)

The first reference work
on Machine Learning
Comprehensive A-Z

coverage of this complex subject area makes
this work easily accessible to professionals and
researchers in all fields who are interested in a
particular aspect of Machine LearningTargeted
literature references provide additional value
for researchers looking to study a topic in more
detail.

2010. 800 p. Hardcover
ISBN 978-0-387-30768-8 7 approx. $549.00

eReference
2010. 800 p.
ISBN 978-0-387-30164-8 7 approx. $549.00

Print + eReference
2010. 800 p.
ISBN 978-0-387-34558-1 7 approx. $689.00

Handbook of
Peer-to-Peer
Networking
X. Shen, University of
Waterloo, ON, Canada;
H. Yu, Huawei Technolo-
gies, Bridgewater, NJ,
USA; J. Buford, Avaya

Labs Research, Basking Ridge, NJ, USA;
M. Akon, University of Waterloo, ON,
Canada (Eds.)

Offers elaborate discussions on fundamentals
of peer-to-peer computing model, networks
and applications. Provides a comprehensive
study on recent advancements, crucial design
choices, open problems, and possible solution
strategies. Written by a team of leading
international researchers and professionals.

2010. XLVIII, 1500 p. Hardcover
ISBN 978-0-387-09750-3 7 $249.00

http://springer.com
mailto:orders-ny@springer.com
mailto:orders-hd-individuals@springer.com

2 communications of the acm | november 2010 | vol. 53 | no. 11

communications of the acm

I
m

a
g

e
 c

o
u

r
t

e
s

y
 o

f
 L

SST

 C

o
r

p
o

r
a

t
i

o
n

Association for Computing Machinery
Advancing Computing as a Science & Profession

Departments

5	 Editor’s Letter
On P, NP, and
Computational Complexity
By Moshe Y. Vardi

6	 Letters To The Editor
How to Think About Objects

9	 In the Virtual Extension

10	 BLOG@CACM
Rethinking the Systems
Review Process
Tessa Lau launches a discussion
about the acceptance criteria
for HCI systems papers at CHI,
UIST, and other conferences.

12	 CACM Online
A Preference for PDF
By David Roman

31	 Calendar

103	 Careers

Last Byte

112	 Puzzled
Rectangles Galore
By Peter Winkler

News

13	 Turning Data Into Knowledge
Today’s data deluge is leading to
new approaches to visualize, analyze,
and catalog enormous datasets.
By Gregory Goth

16	 Security in the Cloud
Cloud computing offers many
advantages, but also involves security
risks. Fortunately, researchers are
devising some ingenious solutions.
By Gary Anthes

19	 Career Opportunities
What are the job prospects for
today’s—and tomorrow’s—
graduates?
By Leah Hoffmann

23	 Wide Open Spaces
The U.S. Federal Communications
Commission’s decision to open
frequencies in the broadcast
spectrum could enable broadband
networks in rural areas, permit smart
electric grids, and more.
By Neil Savage

Viewpoints

24	 Economic and Business Dimensions
The Divergent Online
News Preferences of
Journalists and Readers
Reading between the lines of the
thematic gap between the supply
and demand of online news.
By Pablo J. Boczkowski

27	 Education
K–12 Computational Learning
Enhancing student learning and
understanding by combining
theories of learning with the
computer’s unique attributes.
By Stephen Cooper, Lance C. Pérez,
and Daphne Rainey

30	 Legally Speaking
Why Do Software Startups
Patent (or Not)?
Assessing the controversial results
of a recent empirical study
of the role of intellectual property
in software startups.
By Pamela Samuelson

33	 Privacy and Security
Why Isn’t Cyberspace More Secure?
Evaluating governmental
actions—and inactions—toward
improving cyber security and
addressing future challenges.
By Joel F. Brenner

36	 Viewpoint
Sensor Networks for the Sciences
Lessons from the field derived
from developing wireless sensor
networks for monitoring active
and hazardous volcanoes.
By Matt Welsh

	 In Support of Computer Science
Teachers and the CSTA
A call to action to clarify
the computer science
definition to K–12 students.
By Duncan Buell

november 2010 | vol. 53 | no. 11 | communications of the acm 3

11/2010
vol. 53 no. 11

P
H

OTOGRAP

H

 B
Y

 TARAN

 RAMPERSA

D

Practice

42	 The Case Against Data Lock-in
Want to keep your users?
Just make it easy for them to leave.
By Brian W. Fitzpatrick and JJ Lueck

47	 Keeping Bits Safe:
How Hard Can It Be?
As storage systems grow larger
and larger, protecting their data
for long-term storage is becoming
ever more challenging.
By David S.H. Rosenthal

56	 Sir, Please Step Away
from the ASR-33!
To move forward with programming
languages we must first break free
from the tyranny of ASCII.
By Poul-Henning Kamp

 Articles’ development led by
 queue.acm.org

Contributed Articles

58	 Understanding Throughput-Oriented
Architectures
For workloads with abundant
parallelism, GPUs deliver higher
peak computational throughput
than latency-oriented CPUs.
By Michael Garland and David B. Kirk

67	 Regulating the Information
Gatekeepers
Concerns about biased
manipulation of search results
may require intervention involving
government regulation.
By Patrick Vogl and Michael Barrett

	 Relative Status of Journal
and Conference Publications
in Computer Science
Citations represent a trustworthy
measure of CS research quality—
whether in articles in conference
proceedings or in CS journals.
By Jill Freyne, Lorcan Coyle,
Barry Smyth, and Padraig Cunningham

	 Supporting Ubiquitous Location
Information in Interworking
3G and Wireless Networks
Users and wireless ISPs could tap
location-based services across
networks to create ubiquitous
personal networks.
By Massimo Ficco, Roberto
Pietrantuono, and Stefano Russo

Review Articles

74	 Using Complexity to Protect Elections
Computational complexity
may truly be the shield against
election manipulation.
By Piotr Faliszewski,
Edith Hemaspaandra, and
Lane A. Hemaspaandra

Research Highlights

84	 Technical Perspective
Data Races are Evil
with No Exceptions
By Sarita Adve

85	 Goldilocks: A Race-Aware
Java Runtime
By Tayfun Elmas, Shaz Qadeer,
and Serdar Tasiran

93	 FastTrack: Efficient and Precise
Dynamic Race Detection
By Cormac Flanagan
and Stephen N. Freund

About the Cover:
Vulnerabilities in
the election process
have been around for
centuries. This month’s
cover story, beginning
on p. 74, examines the
use of computational
complexity as an effective
shield against election
manipulation. Artist
Melvin Galapon picks up
that theme by colorfully
depicting a protective
layer of interference

hovering over the election practice.

47

http://queue.acm.org

4 communications of the acm | november 2010 | vol. 53 | no. 11

communications of the acm
Trusted insights for computing’s leading professionals.

Communications of the ACM is the leading monthly print and online magazine for the computing and information technology fields.
Communications is recognized as the most trusted and knowledgeable source of industry information for today’s computing professional.
Communications brings its readership in-depth coverage of emerging areas of computer science, new trends in information technology,
and practical applications. Industry leaders use Communications as a platform to present and debate various technology implications,
public policies, engineering challenges, and market trends. The prestige and unmatched reputation that Communications of the ACM
enjoys today is built upon a 50-year commitment to high-quality editorial content and a steadfast dedication to advancing the arts,
sciences, and applications of information technology.

ACM, the world’s largest educational
and scientific computing society, delivers
resources that advance computing as a
science and profession. ACM provides the
computing field’s premier Digital Library
and serves its members and the computing
profession with leading-edge publications,
conferences, and career resources.

Executive Director and CEO
John White
Deputy Executive Director and COO
Patricia Ryan
Director, Office of Information Systems
Wayne Graves
Director, Office of Financial Services
Russell Harris
Director, Office of Membership
Lillian Israel
Director, Office of SIG Services
Donna Cappo
Director, Office of Publications
Bernard Rous
Director, Office of Group Publishing
Scott Delman

ACM Council
President
Wendy Hall
Vice-President
Alain Chesnais
Secretary/Treasurer
Barbara Ryder
Past President
Stuart I. Feldman
Chair, SGB Board
Alexander Wolf
Co-Chairs, Publications Board
Ronald Boisvert and Jack Davidson
Members-at-Large
Carlo Ghezzi;
Anthony Joseph;
Mathai Joseph;
Kelly Lyons;
Bruce Maggs;
Mary Lou Soffa;
Fei-Yue Wang
SGB Council Representatives
Joseph A. Konstan;
Robert A. Walker;
Jack Davidson

Publications Board
Co-Chairs
Ronald F. Boisvert; Jack Davidson
Board Members
Nikil Dutt; Carol Hutchins;
Joseph A. Konstan; Ee-Peng Lim;
Catherine McGeoch; M. Tamer Ozsu;
Holly Rushmeier; Vincent Shen;
Mary Lou Soffa; Ricardo Baeza-Yates

ACM U.S. Public Policy Office
Cameron Wilson, Director
1828 L Street, N.W., Suite 800
Washington, DC 20036 USA
T (202) 659-9711; F (202) 667-1066

Computer Science Teachers Association
Chris Stephenson
Executive Director
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA
T (800) 401-1799; F (541) 687-1840

Association for Computing Machinery
(ACM)
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA
T (212) 869-7440; F (212) 869-0481

STAFF

Director of Group Publishing
Scott E. Delman
publisher@cacm.acm.org

Executive Editor
Diane Crawford
Managing Editor
Thomas E. Lambert
Senior Editor
Andrew Rosenbloom
Senior Editor/News
Jack Rosenberger
Web Editor
David Roman
Editorial Assistant
Zarina Strakhan
Rights and Permissions
Deborah Cotton

Art Director
Andrij Borys
Associate Art Director
Alicia Kubista
Assistant Art Director
Mia Angelica Balaquiot
Production Manager
Lynn D’Addesio
Director of Media Sales
Jennifer Ruzicka
Marketing & Communications Manager
Brian Hebert
Public Relations Coordinator
Virgina Gold
Publications Assistant
Emily Eng

Columnists
Alok Aggarwal; Phillip G. Armour;
Martin Campbell-Kelly;
Michael Cusumano; Peter J. Denning;
Shane Greenstein; Mark Guzdial;
Peter Harsha; Leah Hoffmann;
Mari Sako; Pamela Samuelson;
Gene Spafford; Cameron Wilson

Contact Points
Copyright permission
permissions@cacm.acm.org
Calendar items
calendar@cacm.acm.org
Change of address
acmcoa@cacm.acm.org
Letters to the Editor
letters@cacm.acm.org

Web SITE
http://cacm.acm.org

Author Guidelines
http://cacm.acm.org/guidelines

Advertising

ACM Advertising Department
2 Penn Plaza, Suite 701, New York, NY
10121-0701
T (212) 869-7440
F (212) 869-0481

Director of Media Sales
Jennifer Ruzicka
jen.ruzicka@hq.acm.org

Media Kit acmmediasales@acm.org

editorial Board

Editor-in-chief
Moshe Y. Vardi
eic@cacm.acm.org

News
Co-chairs
Marc Najork and Prabhakar Raghavan
Board Members
Brian Bershad; Hsiao-Wuen Hon;
Mei Kobayashi; Rajeev Rastogi;
Jeannette Wing

Viewpoints
Co-chairs
Susanne E. Hambrusch; John Leslie King;
J Strother Moore
Board Members
P. Anandan; William Aspray;
Stefan Bechtold; Judith Bishop;
Stuart I. Feldman; Peter Freeman;
Seymour Goodman; Shane Greenstein;
Mark Guzdial; Richard Heeks;
Rachelle Hollander; Richard Ladner;
Susan Landau; Carlos Jose Pereira de Lucena;
Beng Chin Ooi; Loren Terveen

 Practice
Chair
Stephen Bourne
Board Members
Eric Allman; Charles Beeler; David J. Brown;
Bryan Cantrill; Terry Coatta; Mark Compton;
Stuart Feldman; Benjamin Fried;
Pat Hanrahan; Marshall Kirk McKusick;
George Neville-Neil; Theo Schlossnagle;
Jim Waldo

The Practice section of the CACM
Editorial Board also serves as
the Editorial Board of .

Contributed Articles
Co-chairs
Al Aho and Georg Gottlob
Board Members
Yannis Bakos; Elisa Bertino; Gilles
Brassard; Alan Bundy; Peter Buneman;
Andrew Chien; Anja Feldmann;
Blake Ives; James Larus; Igor Markov;
Gail C. Murphy; Shree Nayar; Lionel M. Ni;
Sriram Rajamani; Jennifer Rexford;
Marie-Christine Rousset; Avi Rubin;
Fred B. Schneider; Abigail Sellen;
Ron Shamir; Marc Snir; Larry Snyder;
Manuela Veloso; Michael Vitale;
Wolfgang Wahlster; Andy Chi-Chih Yao;
Willy Zwaenepoel

Research Highlights
Co-chairs
David A. Patterson and Stuart J. Russell
Board Members
Martin Abadi; Stuart K. Card; Jon Crowcroft;
Deborah Estrin; Shafi Goldwasser;
Monika Henzinger; Maurice Herlihy;
Dan Huttenlocher; Norm Jouppi;
Andrew B. Kahng; Gregory Morrisett;
Michael Reiter; Mendel Rosenblum;
Ronitt Rubinfeld; David Salesin;
Lawrence K. Saul; Guy Steele, Jr.;
Madhu Sudan; Gerhard Weikum;
Alexander L. Wolf; Margaret H. Wright

Web
Co-chairs
James Landay and Greg Linden
Board Members
Gene Golovchinsky; Jason I. Hong;
Jeff Johnson; Wendy E. MacKay

 

ACM Copyright Notice
Copyright © 2010 by Association for
Computing Machinery, Inc. (ACM).
Permission to make digital or hard copies
of part or all of this work for personal
or classroom use is granted without
fee provided that copies are not made
or distributed for profit or commercial
advantage and that copies bear this
notice and full citation on the first
page. Copyright for components of this
work owned by others than ACM must
be honored. Abstracting with credit is
permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to
lists, requires prior specific permission
and/or fee. Request permission to publish
from permissions@acm.org or fax
(212) 869-0481.

For other copying of articles that carry a
code at the bottom of the first or last page
or screen display, copying is permitted
provided that the per-copy fee indicated
in the code is paid through the Copyright
Clearance Center; www.copyright.com.

Subscriptions
An annual subscription cost is included
in ACM member dues of $99 ($40 of
which is allocated to a subscription to
Communications); for students, cost
is included in $42 dues ($20 of which
is allocated to a Communications
subscription). A nonmember annual
subscription is $100.

ACM Media Advertising Policy
Communications of the ACM and other
ACM Media publications accept advertising
in both print and electronic formats. All
advertising in ACM Media publications is
at the discretion of ACM and is intended
to provide financial support for the various
activities and services for ACM members.
Current Advertising Rates can be found
by visiting http://www.acm-media.org or
by contacting ACM Media Sales at
(212) 626-0654.

Single Copies
Single copies of Communications of the
ACM are available for purchase. Please
contact acmhelp@acm.org.

Communications of the ACM
(ISSN 0001-0782) is published monthly
by ACM Media, 2 Penn Plaza, Suite 701,
New York, NY 10121-0701. Periodicals
postage paid at New York, NY 10001,
and other mailing offices.

POSTMASTER
Please send address changes to
Communications of the ACM
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA

Printed in the U.S.A.

P
L

E

A
S E R E C Y

C
L

E

T
H

I

S M A G A Z

I
N

E

mailto:publisher@cacm.acm.org
mailto:permissions@cacm.acm.org
mailto:calendar@cacm.acm.org
mailto:acmcoa@cacm.acm.org
mailto:letters@cacm.acm.org
http://cacm.acm.org
http://cacm.acm.org/guidelines
mailto:jen.ruzicka@hq.acm.org
mailto:acmmediasales@acm.org
mailto:eic@cacm.acm.org
mailto:permissions@acm.org
http://www.copyright.com
http://www.acm-media.org
mailto:acmhelp@acm.org

november 2010 | vol. 53 | no. 11 | communications of the acm 5

editor’s letter

On P, NP, and
Computational Complexity

August 7 and 8, and suddenly the whole
world was paying attention. Richard
Lipton’s August 15 blog entry at blog@
CACM was viewed by about 10,000
readers within a week. Hundreds of
computer scientists and mathemati-
cians, in a massive Web-enabled col-
laborative effort, dissected the proof in
an intense attempt to verify its validity.
By the time the New York Times pub-
lished an article on the topic on August
16, major gaps had been identified, and
the excitement was starting to subside.
The P vs. NP problem withstood anoth-
er challenge and remained wide open.

During and following that exciting
week many people have asked me to
explain the problem and why it is so
important to computer science. “If ev-
eryone believes that P is different than
NP,” I was asked, “why it is so impor-
tant to prove the claim?’’ The answer,
of course, is that believing is not the
same as knowing. The conventional
“wisdom’’ can be wrong. While our
intuition does tell us that finding solu-
tions ought to be more difficult than
checking solutions, which is what the
P vs. NP problem is about, intuition
can be a poor guide to the truth. Case
in point: modern physics.

While the P vs. NP quandary is a
central problem in computer science,
we must remember that a resolution of
the problem may have limited practi-
cal impact. It is conceivable that P = NP,
but the polynomial-time algorithms
yielded by a proof of the equality are
completely impractical, due to a very

large degree of the polynomial or a very
large multiplicative constant; after all,
(10n)1000 is a polynomial! Similarly, it is
conceivable that P ≠ NP, but NP prob-
lems can be solved by algorithms with
running time bounded by nlog log log n—a
bound that is not polynomial but in-
credibly well behaved.

Even more significant, I believe, is
the fact that computational complex-
ity theory sheds limited light on be-
havior of algorithms in the real world.
Take, for example, the Boolean Satisfi-
ability Problem (SAT), which is the ca-
nonical NP-complete problem. When
I was a graduate student, SAT was a
“scary” problem, not to be touched
with a 10-foot pole. Garey and John-
son’s classical textbook showed a long
sad line of programmers who have
failed to solve NP-complete problems.
Guess what? These programmers
have been busy! The August 2009 is-
sue of Communications contained an
article by Sharad Malik and Lintao
Zhang (p. 76) in which they described
SAT’s journey from theoretical hard-
ness to practical success. Today’s SAT
solvers, which enjoy wide industrial
usage, routinely solve SAT instances
with over one million variables. How
can a scary NP-complete problem be
so easy? What is going on?

The answer is that one must read
complexity-theoretic claims carefully.
Classical NP-completeness theory is
about worst-case complexity.

Indeed, SAT does seem hard in the
worst case. There are SAT instances

with a few hundred variables that can-
not be solved by any extant SAT solver.
“So what?’’ shrugs the practitioner,
“these are artificial problems.” Some-
how, industrial SAT instances are
quite amenable to current SAT-solv-
ing technology, but we have no good
theory to explain this phenomenon.
There is a branch of complexity theory
that studies average-case complexity,
but this study also seems to shed little
light on practical SAT solving. How to
design good algorithms is one of the
most fundamental questions in com-
puter science, but complexity theory
offers only very limited guidelines for
algorithm design.

An old cliché asks what the differ-
ence is between theory and practice,
and answers that “in theory, they are
not that different, but in practice, they
are quite different.” This seems to ap-
ply to the theory and practice of SAT
and similar problems. My point here
is not to criticize complexity theory. It
is a beautiful theory that has yielded
deep insights over the last 50 years,
as well as posed fundamental, tan-
talizing problems, such as the P vs.
NP problem. But an important role
of theory is to shed light on practice,
and there we have large gaps. We
need, I believe, a richer and broader
complexity theory, a theory that would
explain both the difficulty and the
easiness of problems like SAT. More
theory, please!

Moshe Y. Vardi, editor-in-chief

The second week of August was an exciting
week. On Friday, August 6, Vinay Deolalikar
announced a claimed proof that P ≠ NP.
Slashdotted blogs broke the news on

DOI:10.1145/1839676.1839677	 	 Moshe Y. Vardi

http://cacm.acm.org/magazines/2009/8/34498
http://cacm.acm.org/magazines/2009/8/34498

6 communications of the acm | november 2010 | vol. 53 | no. 11

letters to the editor

T
hough I agree with Morde-
chai Ben-Ari’s Viewpoint
“Objects Never? Well, Hard-
ly Ever!” (Sept. 2010) saying
that students should be in-

troduced to procedural programming
before object-oriented programming,
dismissing OOP could mean throwing
out the baby with the bathwater.

OOP was still in the depths of the re-
search labs when I was earning my col-
lege degrees. I was not exposed to it for
the first few years of my career, but it in-
trigued me, so I began to learn it on my
own. The adjustment from procedural
programming to OOP wasn’t just a mat-
ter of learning a few new language con-
structs. It required a new way of thinking
about problems and their solutions.

That learning process has continued.
The opportunity to learn elegant new
techniques for solving difficult prob-
lems is precisely why I love the field. But
OOP is not the perfect solution, just one
tool in the software engineer’s toolbox.
If it were the only tool, we would run the
risk of repeating psychologist Abraham
Maslow’s warning that if the only tool
you have is a hammer, every problem
tends to look like a nail.

Learning any new software tech-
nique—procedural programming,
OOP, or simply what’s next—takes
time, patience, and missteps. I have
made plenty myself learning OOP, as
well as other technologies, and contin-
ue to learn from and improve because
of them.

For his next sabbatical, Ben-Ari
might consider stepping back into the
industrial world for a year or two. We’ve
learned a great deal about OOP since
he left for academia 15 years ago.

Jim Humelsine, Neptune, NJ

Evaluating Research:
Hypercriticality vs.
Radical Empiricism
In his Viewpoint “Is Computer Science
Truly Scientific?” (July 2010), Gon-
zalo Génova suggested that computer
science suffers from “radical empiri-
cism,” leading to rejection of research

not supported by empirical evidence.
We take issue with both his claim and
(perhaps ironically) the evidence he
used to support it.

Génova rhetorically asked “Must all
scientific works be reasoned and de-
monstrable?,” answering emphatical-
ly, “Yes, of course,” to which we whole-
heartedly agree. Broadly, there are two
ways to achieve this goal: inference
and deduction. Responding to the
letter to the editor by Joseph G. Davis
“No Straw Man in Empirical Research”
(Sept. 2010, p. 7), Génova said theo-
retical research rests on definition and
proof, not on evidence. Nonetheless,
he appeared to be conflating inference
and deduction in his argument that
seminal past research would be unac-
ceptable today. Many of the famous
computer scientists he cited to sup-
port this assertion—Turing, Shannon,
Knuth, Hoare, Dijkstra—worked (and
proved their findings) largely in the
more-theoretical side of CS. Even a cur-
sory reading of the latest Proceedings of
the Symposium on Discrete Algorithms
or Proceedings of Foundations of Com-
puter Science turns up many theoreti-
cal papers with little or no empirical
content. The work of other pioneers
Génova cited, including Meyer and
Gamma, might have required more
empirical evidence if presented today.
Génova implied their work would not
be accepted, and we would therefore
be unable to benefit from it. The fact
that they met the requirements of their
time but (arguably) not of ours does
not mean they would not have risen to
the occasion had the bar been set high-
er. We suspect they would have, and CS
would be none the poorer for it.

Génova’s suggestion that CS suf-
fers today from “radical empiricism”
is an empirical, not deductive, claim
that can be investigated through sur-
veys and reviews. Still, he supported
it via what he called “inductive justifi-
cation,” which sounds to us like argu-
ment by anecdote. Using the same in-
ductive approach, conversations with
our colleagues here at the University
of California, Davis, especially those in

the more theoretical areas of CS, lead
us to conclude that today’s reviews,
though demanding and sometimes
disappointing, are not “radically em-
pirical.” To the extent a problem ex-
ists in the CS review process, it is due
to “hypercriticality,” as Moshe Y. Vardi
said in his “Editor’s Letter” (July 2010,
p. 5), not “radical empiricism.”

Earl Barr and Christian Bird,
	D avis, CA

Author’s Response:
I’m glad to hear from Barr and Bird that
there are healthy subfields in CS in this
respect. I used “inductive justification”
to support the claim that many classical
works in the field are more theoretical
and speculative than experimental, not to
support an argument that CS suffers today
from “radical empiricism.” Investigating the
latter through exhaustive empirical surveys
of reviews would require surveyors being
able to classify a reviewer as a “radical
empiricist.” If my column served this
purpose, then I am content with it.

Gonzalo Génova, Madrid, Spain

Conclude with the Conclusions
The Kode Vicious Viewpoint “Present-
ing Your Project” by George V. Neville-
Neil (Aug. 2010) made several debat-
able points about presentations, one of
which was inexcusable: “…I always end
with a Questions slide.”

You have just given a 25-minute
technical presentation to an educat-
ed, knowledgeable, technical audi-
ence. Using a series of slides, you have
explained your problem, described
your solutions, discussed your experi-
ments, and finally concluded, display-
ing each slide for a minute or two.
Your penultimate slide summarizes
the whole presentation, including its
“takeaway” message—everything you
want your listeners to remember. Now
you expect to spend four or five min-
utes answering questions. The slide
you show as you answer will be on
screen two or three times longer than
any other slide.

How to Think About Objects
DOI:10.1145/1839676.1839678	 	

november 2010 | vol. 53 | no. 10 | communications of the acm 7

letters to the editor

So why remove the most useful slide
in the whole presentation—the sum-
mary—and replace it with a content-
free alternative showing perhaps a word
or two. Is your audience so dense it can-
not hear you say “Thank you” or ask for
questions unless they’re on the screen?
Do you think the audience will forget to
say something? Or is the problem with
you, the presenter? Would you yourself
forget to ask for questions if the slide
wasn’t on the screen in front of you?

Technical presentations should be
held to a higher standard of informa-
tion content and knowledge transfer
than a sales pitch. My advice: Remove
the “Thank You” and “Questions”
slides, and leave up your “Conclusions”
and “Summary” as long as possible.

Michael Wolfe, Hillsboro, OR

For Electronic Health Records,
Don’t Ignore VistA
Why did Stephen V. Cantrill’s article
“Computers in Patient Care: The Prom-
ise and the Challenge” (Sept. 2010) say
nothing about the Veterans Health
Information Systems and Technology
Architecture (VistA) used for decades
throughout the U.S. Department of
Veterans Affairs (VA) medical system
for its patients’ electronic medical re-
cords? With 153 medical centers and
1,400 points of care, the VA in 2008 de-
livered care to 5.5 million people, reg-
istering 60 million visits (http://www1.
va.gov/opa/publications/factsheets/
fs_department_of_veterans_affairs.pdf).

In his book The Best Care Anywhere
(http://p3books.com/bestcareanywhere)
Phillip Longman documented VistA’s
role in delivering care with better out-
comes than national averages to a pop-
ulation less healthy than national aver-
ages at a cost that has risen more slowly
than national averages. Included was a
long list of references (more than 100
in the 2010 second edition), yet Cantrill
wrote “Although grand claims are of-
ten made about the potential improve-
ments in the quality of care, decreases
in cost, and so on, these are very diffi-
cult to demonstrate in a rigorous, sci-
entific fashion.”

Public-domain VistA also general-
izes well outside the VA. For example,
it has been deployed in the U.S. Indian
Health Service, with additional func-
tionality, including pediatrics. Speak-

ing at the 2010 O’Reilly Open Source
Convention (http://www.oscon.com/
oscon2010/public/schedule/detail/15255),
David Whiles, CIO of Midland Memo-
rial Hospital, Midland, TX, described
his hospital’s deployment of VistA and
how it has since seen a reduction in
mortality rates of about two per month,
as well as a dramatic 88% decrease in
central-line infections entering at cath-
eter sites (http://www.youtube.com/
watch?v=ExoF_Tq14WY). Mean-
while, the country of Jordan (http://ehs.
com.jo) is piloting an open source soft-
ware stack deployment of VistA to pro-
vide electronic health records within
its national public health care system.

[In the interests of full disclosure,
I am an active member of the global
VistA community, co-founding World-
VistA in 2002 (http://worldvista.org), a
501(c)(3) promoting affordable health
care IT through VistA. Though now re-
tired from an official role, I previously
served as a WorldVistA Director.]

K.S. Bhaskar, Malvern, PA

Author’s Response:
I appreciate Bhaskar’s comments about
the VA’s VistA medical information system
and applaud his efforts to generate a
workable system in the public domain, but
he misunderstood the intent of my article. It
was not to be a comparison of good vs. bad
or best vs. worst, but rather a discussion
of many of the endemic issues that have
plagued developers in the field since the
1960s. For example, MUMPS, the language
on which VistA is based, was developed in
the early 1970s for medical applications;
VistA achieved general distribution in the
VA in the late 1990s, almost 30 years later.
Why so long? I tried to address some of
these issues in the article. Also, VistA does
not represent an integrated approach, but
rather an interfaced approach with several
proprietary subsystems.

Stephen V. Cantrill, M.D., Denver

Correction
The tribute “Robin Milner: The Elegant
Pragmatist” by Leah Hoffmann (June
2010) requires a small correction. It
said Milner “served as the first chair
of the University of Cambridge Com-
puter Laboratory.” For all his many
gifts, however, Milner was not preco-
cious enough to have run a university

laboratory at age three. He was born in
1934, and the University of Cambridge
Computer Laboratory was founded (as
the Mathematical Laboratory) in 1937.
The source of the error is apparently
Milner’s official obituary, which noted
he “held the first established Chair in
Computer Science at the University of
Cambridge.” Translation to American:
He held the first endowed professor-
ship. In Britain, the word “Chair” refers
to a professorship and should not be
confused with “Head of Department.”

Lawrence C. Paulson,
	 Cambridge, England

Correction
Tom Geller’s news story “Beyond the
Smart Grid” (June 2010) should have
cited Froehlich, J. Larson, E., Camp-
bell, T., Haggerty, C., Fogarty, J., and
Patel, S. “HydroSense: Infrastructure-
Mediated Single-Point Sensing of
Whole-Home Water Activity in Proceed-
ings of UbiComp 2009 (Orlando, FL,
Sept. 30–Oct. 3, 2009) instead of Patel,
S.N., Reynolds, M.S., and Abowd, G.D.
“Detecting Human Movement By Dif-
ferential Air Pressure Sensing in HVAC
System Ductwork: An Exploration in
Infrastructure-Mediated Sensing” in
Proceedings of Pervasive 2008, the Sixth
International Conference on Pervasive
Computing (Sydney, Australia, May 19–
22, 2008). We apologize for this error.

Communications welcomes your opinion. To submit a
Letter to the Editor, please limit your comments to 500
words or less and send to letters@cacm.acm.org.

© 2010 ACM 0001-0782/10/1100 $10.00

Coming Next Month in	

Communications
The Impact of
Web 2.0 Technologies

Bayesian Networks

CS Education Week

Why We Need a Research
Data Census

As well as the latest news on topic
modeling, eye tracking and mobile
phones, and crowdsourcing for
social good.

http://www1.va.gov/opa/publications/factsheets/fs_department_of_veterans_affairs.pdf
http://p3books.com/bestcareanywhere
http://www.oscon.com/oscon2010/public/schedule/detail/15255
http://www.youtube.com/watch?v=ExoF_Tq14WY
http://ehs.com.jo
mailto:letters@cacm.acm.org
http://www.youtube.com/watch?v=ExoF_Tq14WY
http://ehs.com.jo
http://worldvista.org
http://www.oscon.com/oscon2010/public/schedule/detail/15255
http://www1.va.gov/opa/publications/factsheets/fs_department_of_veterans_affairs.pdf
http://www1.va.gov/opa/publications/factsheets/fs_department_of_veterans_affairs.pdf

ACM A.M. TURING AWARD
NOMINATIONS SOLICITED

Previous
A.M. Turing Award
Recipients

1966 A.J. Perlis
1967 Maurice Wilkes
1968 R.W. Hamming
1969 Marvin Minsky
1970 J.H. Wilkinson
1971 John McCarthy
1972 E.W. Dijkstra
1973 Charles Bachman
1974 Donald Knuth
1975 Allen Newell
1975 Herbert Simon
1976 Michael Rabin
1976 Dana Scott
1977 John Backus
1978 Robert Floyd
1979 Kenneth Iverson
1980 C.A.R Hoare
1981 Edgar Codd
1982 Stephen Cook
1983 Ken Thompson
1983 Dennis Ritchie
1984 Niklaus Wirth
1985 Richard Karp
1986 John Hopcroft
1986 Robert Tarjan
1987 John Cocke
1988 Ivan Sutherland
1989 William Kahan
1990 Fernando Corbató
1991 Robin Milner
1992 Butler Lampson
1993 Juris Hartmanis
1993 Richard Stearns
1994 Edward Feigenbaum
1994 Raj Reddy
1995 Manuel Blum
1996 Amir Pnueli
1997 Douglas Engelbart
1998 James Gray
1999 Frederick Brooks
2000 Andrew Yao
2001 Ole-Johan Dahl
2001 Kristen Nygaard
2002 Leonard Adleman
2002 Ronald Rivest
2002 Adi Shamir
2003 Alan Kay
2004 Vinton Cerf
2004 Robert Kahn
2005 Peter Naur
2006 Frances E. Allen
2007 Edmund Clarke
2007 E. Allen Emerson
2007 Joseph Sifakis
2008 Barbara Liskov
2009 Charles P. Thacker

Additional information
on the past recipients of
the A.M. Turing Award
is available on: http://
awards.acm.org/home­
page.cfm?awd=140

Nominations are invited for the 2010 ACM A.M. Turing Award. This, ACM’s
oldest and most prestigious award, is presented for contributions of a technical
nature to the computing com¬munity. Although the long-term influences
of the nominee’s work are taken into consideration, there should be a particular
outstanding and trendsetting technical achievement that constitutes the principal
claim to the award. The award carries a prize of $250,000 and the recipient is
expected to present an address that will be published in an ACM journal. Financial
support of the Turing Award is provided by the Intel Corporation and Google Inc.

Nominations should include:

1) A curriculum vitae, listing publications, patents, honors, other awards, etc.

2) �A letter from the principal nominator, which describes the work of the nominee,
and draws particular attention to the contribution which is seen as meriting the
award.

3) �Supporting letters from at least three endorsers. The letters should not all be
from colleagues or co-workers who are closely associated with the nominee,
and preferably should come from individuals at more than one organization.
Successful Turing Award nominations usually include substantive letters of
support from a group of prominent individuals broadly representative of the
candidate’s field.

For additional information on ACM’s award program
please visit: www.acm.org/awards/

Additional information on the past recipients
of the A.M. Turing Award is available on:
http://awards.acm.org/homepage.cfm?awd=140

Nominations should be sent electronically
by November 30, 2010 to:
Vinton G. Cerf, c/o mcguinness@acm.org

http://www.acm.org/awards/
http://awards.acm.org/homepage.cfm?awd=140
mailto:mcguinness@acm.org
http://awards.acm.org/homepage.cfm?awd=140
http://awards.acm.org/homepage.cfm?awd=140
http://awards.acm.org/homepage.cfm?awd=140

in the virtual extension

november 2010 | vol. 53 | no. 11 | communications of the acm 9

contributed article
DOI: 10.1145/1839676.1839702

Supporting Ubiquitous Location
Information in Interworking
3G and Wireless Networks
Massimo Ficco, Roberto Pietrantuono,
and Stefano Russo

Users and wireless ISPs could tap location-
based services across networks belonging
to other ISPs to create ubiquitous personal
networks.

Location-based services have
emerged as a main interest of wireless
ISPs, or WISPs, and network operators.

Positioning mobile devices in the third
generation (3G) of wireless communication
networks (such as the Universal Mobile
Telecommunications System) is crucial
to many commercial services, including
location applications that utilize accurate
positioning (such as handset navigation
tracking and locating points of interest);
public and private emergency services,
calling firefighters, medical teams, and
emergency roadside assistance; and future
applications (such as fraud detection,
location-sensitive billing, and advertising).

However, positioning techniques vary
by accuracy, implementation cost, and
application scenarios (such as indoor
and outdoor). WISPs can exploit their
availability in order to locate their users in
heterogeneous environments by using the
most suitable positioning technique in a
manner transparent to the user.

The recent interworking between 3G
systems and wireless networks (such
as IEEE 802.11 and Bluetooth) allows
WISPs to leverage wireless networks for
localization purposes. Wireless hotspots in
public and private places (such as homes,
offices, airports, shopping malls, arenas,
hotels, and libraries), along with the new
generation of mobile devices supporting
multiple positioning technologies (such
as GPS, Bluetooth, Wi-Fi, and RFID),
fosters WISP development of integrated
positioning systems.

contributed article
DOI: 10.1145/1839676.1839701

Relative Status of Journal
and Conference Publications
in Computer Science
Jill Freyne, Lorcan Coyle, Barry Smyth,
and Padraig Cunningham

Citations represent a trustworthy measure
of CS research quality—whether in articles
in conference proceedings or in CS journals.

Though computer scientists agree that
conference publications enjoy greater
status in CS than in other disciplines, there
is little quantitative evidence to support this
view. The importance of journal publication
in academic promotion makes it a highly
personal issue, since focusing exclusively
on journal papers misses many significant
papers published by CS conferences.

This article aims to quantify the relative
importance of CS journal and conference
papers, showing that those in leading
conferences match the impact of those
in mid-ranking journals and surpass the
impact of those in journals in the bottom
half of the Thompson Reuters rankings
(http://www.isiknowledge.com) for impact
measured in terms of citations in Google
Scholar. We also show that poor correlation
between this measure and conference
acceptance rates indicates conference
publication is an inefficient market where
venues equally challenging in terms of
rejection rates offer quite different returns
in terms of citations.

How to measure the quality of academic
research and performance of particular
researchers has always involved debate.
Many CS researchers feel that performance
assessment is an exercise in futility, in
part because academic research cannot be
boiled down to a set of simple performance
metrics, and any attempt to introduce
them would expose the entire research
enterprise to manipulation and gaming.
On the other hand, many researchers want
some reasonable way to evaluate academic
performance, arguing that even an
imperfect system sheds light on research
quality, helping funding agencies and
tenure committees make more informed
decisions.

viewpoint
DOI: 10.1145/1839676.1839703

In Support of Computer Science
Teachers and the CSTA
Duncan Buell

A number of recent articles and comments
have discussed the imbalance between
enrollment and opportunities in computer
science and the under-enrollments by
minorities and women. An ongoing thread
in Peter Denning’s Communications
columns and elsewhere concerns the
identity of the discipline to which we
belong. As the national representative
from universities to the board of the
Computer Science Teachers Association
(CSTA), I continually see the question of
the identity of our discipline both within
and external to our field.

The identity of computer science is
nowhere more important to the discipline
of computer science than in the K–12
school system. We can instruct our own
students in the nature of the discipline, but
those we so instruct will only be those who
first choose to come to us. If we want more
students, and if we want to be understood
for what we are, we must clarify the
message about computer science that all
students will receive as part of their K–12
education.

Even if one does not believe that
“computer science” should be taught
in the K–12 system, it is nonetheless
necessary for us to be involved in
defining for the schools that which is
called “computer science.” There will
be courses in Photoshop, Web design,
office tools, A+ certification, networking,
and such, and there will be (a smaller
number of) courses in Visual Basic, C++,
or even Java. The simple fact is that these
courses will exist in the schools, and there
is nothing fundamentally wrong with
that. What is a problem is for students
to be misled into thinking that these
are all indistinguishable and all equally
describable as “computer science.”

In the Virtual Extension
To ensure the timely publication of articles, Communications created the Virtual Extension (VE)
to expand the page limitations of the print edition by bringing readers the same high-quality
articles in an online-only format. VE articles undergo the same rigorous review process as those
in the print edition and are accepted for publication on merit. The following synopses are from
articles now available in their entirety to ACM members via the Digital Library.

DOI:10.1145/1839676.1839679	 	

http://www.isiknowledge.com
http://doi.acm.org/10.1145/1839676.1839703
http://doi.acm.org/10.1145/1839676.1839702
http://doi.acm.org/10.1145/1839676.1839701

10 communications of the acm | november 2010 | vol. 53 | no. 11

Follow us on Twitter at http://twitter.com/blogCACM

The Communications Web site, http://cacm.acm.org,
features more than a dozen bloggers in the BLOG@CACM
community. In each issue of Communications, we’ll publish
selected posts or excerpts.

Tessa Lau
“What Makes a Good
HCI Systems Paper?”
http://cacm.acm.org/
blogs/blog-cacm/86066

There has been much
discussion on Twitter, Facebook, and
in blogs about problems with the re-
viewing system for HCI systems papers
(see James Landay’s blog post, “I give
up on CHI/UIST” and the comment
thread at http://dubfuture.blogspot.
com/2009/11/i-give-up-on-chiuist.html).
Unlike papers on interaction meth-
ods or new input devices, systems are
messy. You can’t evaluate a system
using a clean little lab study, or show
that it performs 2% better than the last
approach. Systems often try to solve a
novel problem for which there was no
previous approach. The value of these
systems might not be quantified un-
til they are deployed in the field and
evaluated with large numbers of users.
Yet doing such an evaluation incurs a
significant amount of time and engi-
neering work, particularly compared
to non-systems papers. The result,
observed in conferences like CHI and
UIST, is that systems researchers find
it very difficult to get papers accepted.

complexities of system building, it is
often impossible to specify all the pa-
rameters and heuristics being used
within a 10-page paper limit. But the
paper ought to present enough detail
to enable another researcher to build
a comparable, if not identical, system.

˲˲ Alternative approaches. Why did
you choose this particular approach?
What other approaches could you
have taken instead? What is the design
space in which your system represents
one point?

˲˲ Evidence that the system solves the
problem as presented. This does not
have to be a user study. Describe situa-
tions where the system would be useful
and how the system as implemented
performs in those scenarios. If users
have used the system, what did they
think? Were they successful?

˲˲ Barriers to use. What would pre-
vent users from adopting the system,
and how have they been overcome?

˲˲ Limitations of the system. Under
what situations does it fail? How can
users recover from these failures?

What do you think? Let’s discuss.

Readers’ comments
I’d like to second your first recommendation.
I’ve reviewed a number of systems papers
that do not provide a sufficiently compelling
motivation or use case—why should I or
anyone care about this system? Without
this, the paper often represents technology
in search of a problem.

Now, having read Don Norman’s
provocative article “Technology First, Needs
Last: The Research-Product Gulf” in the

Reviewers reject messy systems papers
that don’t have a thorough evaluation
of the system, or that don’t compare
the system against previous systems
(which were often designed to solve a
different problem).

At CHI 2010 there was an ongoing
discussion about how to fix this prob-
lem. Can we create a conference/pub-
lishing process that is fair to systems
work? Plans are afoot to incorporate
iterative reviewing into the systems pa-
per review process for UIST, giving au-
thors a chance to have a dialogue with
reviewers and address their concerns
before publication.

However, I think the first step is to
define a set of reviewing criteria for
HCI systems papers. If reviewers don’t
agree on what makes a good systems
paper, how can we encourage authors
to meet a standard for publication?

Here’s my list:
˲˲ A clear and convincing description

of the problem being solved. Why isn’t
current technology sufficient? How
many users are affected? How much
does this problem affect their lives?

˲˲ How the system works, in enough
detail for an independent researcher
to build a similar system. Due to the

Rethinking the Systems
Review Process
Tessa Lau launches a discussion about the acceptance criteria
for HCI systems papers at CHI, UIST, and other conferences.

doi:10.1145/1839676.1839680	 	 	 http://cacm.acm.org/blogs/blog-cacm

http://cacm.acm.org
http://twitter.com/blogcacm
http://cacm.acm.org/blogs/blog-cacm
http://cacm.acm.org/blogs/blog-cacm/86066
http://cacm.acm.org/blogs/blog-cacm/86066
http://dubfuture.blogspot.com/2009/11/i-give-up-on-chiuist.html
http://dubfuture.blogspot.com/2009/11/i-give-up-on-chiuist.html

blog@cacm

november 2010 | vol. 53 | no. 11 | communications of the acm 11

recent issue of interactions magazine, I
have a keener appreciation for the possible
contribution of some technologies in
search of problems, but I still believe these
are more the exception than the norm …
and that without adequately making the
case for the human-centered value(s) the
systems will help realize, such papers are
probably more suitable for other venues.

—Joseph McCarthy

One problem is that our field is moving
so fast that we have to allow new ideas to
cross evolve with other ideas rapidly. If we
require evaluations of every paper, then we
don’t have the rapid turnaround required for
innovations to cross paths with each other.

On the other hand, it seems wrong not
to have some filter. Without filters, we
might end up publishing ideas that seem
interesting, but are actually quite useless.

I think you have a great start on a list of
discussion points. One thing to keep in mind
is that we should evaluate papers in whole
rather in parts. I will often recommend
accepting papers that are deficient in one
area but very good in another.

—Ed Chi

I think it would be useful to some of
us discussing your post if you could say
more about the kinds of evidence you are
referring to when you say “evidence that
the system solves the problem” that are not
user studies.

So, what are some examples of specific
system problems (“clearly and convincingly
presented”), and what would you consider
appropriate evidence to show that your
system solved the problem? Is it a set
of usage scenarios that have been hard
to address through previous designs and
you show how a single interface design
can address them completely? Is it a
new, significantly more efficient algorithm
or mechanism, for example, to handle
complex preferences around group
permissions, which would be useful to the
builders of group systems to know about?
(In the latter case, would evidence be
performance testing, using logs of previous
queries as data?) Is it a new approach for
using skin-tapping as input?

—Dan Gruen

I am a strong proponent of rigorous
gatekeeping at conferences simply because
I need some help figuring out which things
are worth following in my limited time.
At the same time, I think it is important

to keep in mind all the different ways a
systems paper can be really valuable and
worth seeing at a conference like CHI. A
systems paper could be interesting thanks
to a thorough analysis of its deployment
and usage (evaluation). Or it could be
interesting thanks to a well-argued
discussion of why it was built a particular
way (design). Or it might just demonstrate
that a given interesting capability could
be created at all. Or it could be a careful
argument about why a certain system
would be really useful, even if it hasn’t
been built or evaluated yet (motivation/
position paper). In the end, what I want are
papers that stimulate thought and action.
I’m not going to demand any particular
levels of motivation, design, or evaluation;
rather, I’m going to ask whether the
whole is innovative enough. This is a highly
subjective decision, which is why I greatly
value wise program committees who can
make such a judgment on my behalf.

—David Karger

I like your list, and think that the
bullet points are representative of good
evaluation criteria for systems papers
across computer science.

The main sticking point is, as I see
it, “Evidence that the system solves the
problem as presented.” In some other
areas of empirical computer science, we
have repositories of test problems, suites
of agreed-upon performance metrics,
testing harnesses for software, and so forth.
Usability testing is seen as the gold standard
in HCI, though, and it’s much harder to
leverage such tools to make evaluation by
user testing efficient. The effort devoted
to user testing of a new system can

sometimes rival the effort to having built the
system in the first place—okay, I might be
exaggerating a bit, but still....

If we could agree on some reasonable
substitutes, that would be good. Some of
the papers I’ve worked on have included
GOMS models of performance, for example,
but not everyone buys into a purely
analytical approach. Sometimes, even
worse, what I’d like to convey in a paper
is a conceptual shift, a different way of
thinking about some kind of problem, and
that’s even harder to evaluate than pure
performance.

—Robert St. Amant

I’ve suggested it before and will suggest
it again. An easy start could be to make
accepted interactivity demos “worth”
as much as a full paper at CHI—same
presentation length, and the associated
paper (maybe six pages long) needs to be
of the same “archival” status in the ACM
Digital Library.

This could show a true commitment to
systems research.

—Florian Mueller

Tessa Lau responds
Thank you all for the interesting dis-
cussion. My goal was to initiate a dis-
cussion within our community, not to
have all the answers.

Along those lines, Dan, the question
you raise about what constitutes “ap-
propriate evidence” is one that I’ll turn
back to the community for a collective
answer.

For what it’s worth, though, I don’t
think of your examples as “systems.”
The first is usage scenarios or design.
The second is an algorithm. The third
is an interaction method. Each of those
is fairly self-contained and possible to
evaluate using a fairly closed study.

What I meant by “systems” is an im-
plemented prototype that gives people
access to new functionality that did not
exist before. Examples of “systems” in-
clude CoScripter, Many Eyes, Landay’s
DENIM and SILK, Gajos’s SUPPLE, An-
drew Ko’s Whyline. How can we show
that each of these systems is “innova-
tive enough” (in David’s words) to mer-
it publication?	

Tessa Lau is a research staff member and manager at
IBM’s Almaden Research Center.

© 2010 ACM 0001-0782/10/1100 $10.00

Tessa LAU

“If reviewers
don’t agree on
what makes a good
systems paper,
how can we
encourage authors
to meet a standard
for publication?”

12 communications of the acm | november 2010 | vol. 53 | no. 11

cacm online

When it comes to electronic formats, Communications readers prefer PDF to
HTML, according to data on a year’s worth of published articles. PDF’s faithful re-
production of magazine pages appears to give it an edge. Legacy is another factor.
Every article in Communications’ 52-year history is available in PDF, while HTML
versions date back to 1999. Also, members are accustomed to accessing ACM’s
many transactions, proceedings, and journals exclusively in PDF.

The table shows how the most popular articles published over a 12-month span
were accessed from the DL and Communications’ Web site.

A Preference for PDF
DOI:10.1145/1839676.1839681	 David Roman

ACM
Member
News
Chris Stephenson
on K–12 CS Education

ACM Member
News recently
interviewed
Chris
Stephenson,
executive
director of the

Computer Science Teachers
Association, about the status of
K–12 CS education in the U.S.
and how ACM members can
help. “I think computer science
teachers in the U.S. face a
number of challenges that make
it difficult for them to teach to
their full potential,” says
Stephenson. “First, computer
science is poorly understood in
the U.S. school system, so
administra-tors and decision-
makers have no idea what CS
teachers do or why it is
important. This means teachers
have to continually fight for
their programs and their
students and are often
under-supported in terms of
resources. Also, our teacher
certification requirements are
a complete mess, and CS
teachers in many states must
first be certified in some other
discipline. This doubles the
time and effort required. And it
means CS teachers can be
assigned to teach something
other than computer science at
any time. Finally, our discipline
requires teachers to continually
upgrade both their teaching and
technical knowledge, and there
is very little access to relevant
and timely professional
development.

“The most important thing
ACM members can do is to
advocate for computer science
courses in their local schools….
The other really important action
that U.S. members can do is
to contact their congressional
representatives and request
that they support the Computer
Science Education Act [HR 5929].
With enough support, this bill
has the power to fundamentally
change computer science
education in this country.”

A new joint ACM–CSTA
report, Running on Empty: The
Failure to Teach K–12 Computer
Science in the Digital Age, is
available at http://acm.org/
Runningonempty/.

—Jack Rosenberger

Title

1 A Few Billion Lines of Code Later  http://cacm.acm.org/magazines/2010/2/69354

2 What Should We Teach New Software Developers? Why? 
http://cacm.acm.org/magazines/2010/1/55760

3 You Don’t Know Jack About Software Maintenance 
http://cacm.acm.org/magazines/2009/11/48444

4 MapReduce: A Flexible Data Processing Tool  http://cacm.acm.org/magazines/2010/1/55744

5 You’re Doing it Wrong  http://cacm.acm.org/magazines/2010/7/95061

6 Retrospective: An Axiomatic Basis for Computer Programming 
http://cacm.acm.org/magazines/2009/10/42360

7 An Interview With Edsger W. Dijkstra  http://cacm.acm.org/magazines/2010/8/96632

8 Recent Progress in Quantum Algorithms  http://cacm.acm.org/magazines/2010/2/69352

9 MapReduce and Parallel DBMSs: Friends or Foes?  
http://cacm.acm.org/magazines/2010/1/55743

10 Scratch: Programming for All  http://cacm.acm.org/magazines/2009/11/48421

11 How we Teach Introductory Computer Science is Wrong 
http://cacm.acm.org/blogs/blog-cacm/45725

12 Are You Invisible?  http://cacm.acm.org/blogs/blog-cacm/94307

13 The “NoSQL” Discussion has Nothing to Do With SQL 
http://cacm.acm.org/blogs/blog-cacm/50678

14 A Tale of A Serious Attempt At P≠NP  http://cacm.acm.org/blogs/blog-cacm/97587

Methodology: Cited articles were published online or in the monthly print Communications between October 2009
through September 2010, and include the 10 titles with the most PDF downloads from the ACM Digital Library in
the 12 months following their publication, and the 10 titles with the most HTML pageviews on the Communications
Web site over the same period, according to Google Analytics.

72,000

25,000

50,000

0 25,000 75,000 115,000

	� more PDF downloads than HTML pageviews.

	� no PDF downloads (on CACM Web site only)

HTM

L

P

ag
ev

ie
w

s

PDF Downloads

1

23

4

5

6

79
10

11

12
13
14 8

http://cacm.acm.org/magazines/2010/2/69354
http://cacm.acm.org/magazines/2010/1/55760
http://cacm.acm.org/magazines/2009/11/48444
http://cacm.acm.org/magazines/2010/1/55744
http://cacm.acm.org/magazines/2010/7/95061
http://cacm.acm.org/magazines/2009/10/42360
http://cacm.acm.org/magazines/2010/8/96632
http://cacm.acm.org/magazines/2010/2/69352
http://cacm.acm.org/magazines/2010/1/55743
http://cacm.acm.org/magazines/2009/11/48421
http://cacm.acm.org/blogs/blog-cacm/45725
http://cacm.acm.org/blogs/blog-cacm/94307
http://cacm.acm.org/blogs/blog-cacm/50678
http://cacm.acm.org/blogs/blog-cacm/97587
http://acm.org/Runningonempty/
http://acm.org/Runningonempty/

 N
news

november 2010 | vol. 53 | no. 11 | communications of the acm 13

I
m

a
g

e
 c

o
u

r
t

e
s

y
 o

f
 L

SST

 C

o
r

p
o

r
a

t
i

o
n

T
he a m ount o f data available
to scientists of nearly every
discipline has almost be-
come a “Can you top this?”
exercise in numbers.

The Sloan Digital Sky Survey (SDSS),
for example, is often cited as a prime
example. Since the survey’s 2.5-meter
telescope first went online in 1998,
more than 2,000 refereed publications
have been produced, but they use just
10% of the survey’s available imag-
ing data, according to a recent U.S.
National Science Foundation work-
shop on data-enabled science in the
mathematical and physical sciences.
Once the next-generation, state-of-the-
art Large Synoptic Survey Telescope
(LSST) goes online in 2016, however, it
is estimated to be capable of produc-
ing a SDSS-equivalent dataset every
night for the next 10 years. Another of-
ten-cited example is the Large Hadron
Collider. It will generate two SDSS’s
worth of data each day.

On the surface, then, the scientific
community’s mandate seems clear:
create better computational tools to
visualize, analyze, and catalog these
enormous datasets. And to some ex-
tent, there is wide agreement these
tasks must be pursued.

Some leading computational re-
search scientists believe, however, that
progress in utilizing the vast expansion
of data will best be attacked on a project-
by-project basis rather than by a pan-
disciplinary computational blueprint.

“In theory, you might think we
should all be working together, and

the reality might be that each of the
people working on their own discipline
are achieving the results they need to
scientifically,” says Dan Masys, M.D.,
chairman of biomedical informatics at
Vanderbilt University. “There’s a cost
of communication that reaches an ir-
reducible minimum when you work

Turning Data
Into Knowledge
Today’s data deluge is leading to new approaches
to visualize, analyze, and catalog enormous datasets.

Science | doi:10.1145/1839676.1839682	 Gregory Goth

The Large Synoptic Survey Telescope will have the ability to survey the entire sky in only
three nights.

14 communications of the acm | november 2010 | vol. 53 | no. 11

news

likely speed processing of problems
involving multiplying “several million
genome data points by several thou-
sand people” from five days to three
hours—a prime example of focused
intradisciplinary collaboration and
leading-edge hardware.

New Perspectives on Data
Both Mitchell and Randal Bryant, dean
of the school of computer science at
CMU, cite the influence of commercial
companies for helping to expand the
concept of what kind of data, and what
kind of data storage and computational
architectures, can produce useful sci-
entific results.

“The commercial world, Google
and its peers, have been the drivers
on the data side, much more than the
traditional sciences or universities,”
says Bryant, who cites the example of a
Google cluster running a billion-word
index that outperformed the Big Iron
architecture of the “usual suspects”
in a 2005 language-translation contest
sponsored by the U.S. National Insti-
tute of Standards and Technology.

The availability of such large datas-
ets can lead to serendipitous discover-
ies such as one made by Mitchell and his
colleagues, using a trillion-word index
Google had originally provided for ma-
chine translation projects. “We found
we could build a computational model
that predicts the neural activity that will
show up in your brain when you think
about an arbitrary noun,” Mitchell says.
“It starts by using a trillion-word collec-

tion of text provided to us by Google,
and looks up the statistical properties
of that word in the text; that is, if you
give it the word ‘telephone’, it will look
up how often ‘telephone’ occurs with
words from a long list of verbs—for
example, how often does it occur with
‘hug’, or ‘eat’, and so on.

“To Google’s credit they put this
out on the Web for anybody to use, but
they were thinking it would be used by
researchers working on translation—
and it turned out to be useful for some-
thing else.”

Meanwhile, the LSST project is
planning multiple vectors by which its
huge dataset—all of which will be pub-
licly available in near-real time—will
aid research by professional astrono-
mers; programs at museums, second-
ary schools, and other institutions; and
citizen scientists. The project’s goal,
say the organizers, is “open source,
open data.”

“We will develop methods for en-
gaging the public so anyone with a Web
browser can effectively explore aspects
of the LSST sky that interest and im-
pact the public,” according to the LSST
organizers. “We will work with the IT
industry on enhanced visualization
involving dynamic graphics overlays
from metadata and provide tools for
public query of the LSST database.”

The LSST organization’s hope, then,
is that the distributed nature of allow-
ing any researcher at any level to ac-
cess the data will result in a plethora of
projects—a kind of “given enough eye-

across disciplinary boundaries, and
sometimes it’s worth it.

“But the grander potential for syn-
ergy that’s often spoken of at the level
of federal funding agencies probably
doesn’t happen as much as people
think would be best for science,” Masys
continues. “You can’t push that rope
all that well, because it depends on the
art of the possible with respect to tech-
nologies and the vision of the scientists
doing the work.”

Tom Mitchell, chairman of the ma-
chine learning department at Carn-
egie Mellon University (CMU), concurs
with Masys’ assessment. “I think it
starts from the bottom up and at some
point you’ll see commonalities across
domains,” he says. As an example, he
cites time series algorithms being de-
veloped by CMU colleague Eric Xing
that may also be useful for brain imag-
ing work Mitchell is undertaking.

“There’s an example I think is prob-
ably pretty representative of how it’s
going to go,” Mitchell says. “People en-
counter problems and have to design
algorithms to address them, but time
series analysis is a pretty generic prob-
lem. So I think bottom up it will grow
and then they will start connecting
across [different disciplines].”

Vanderbilt’s Masys is about to be-
gin a collaboration with computation-
al biologists from Oak Ridge National
Laboratory. Masys says the Oak Ridge
scientists’ optimization of Vander-
bilt’s fundamental algorithms and the
lab’s teraflop-capable architecture will

Ubiquitous Computing

Intel’s Friendly, Smart Machines
Context-aware computing, in
which devices understand what a
user is doing and anticipate his
or her needs without being
asked, are the next step in the
evolution of smart machines,
says Justin Rattner, Intel vice
president and chief technology
officer.

In his keynote address at
IDF2010, the recent Intel
Developer Forum in San
Francisco, Rattner laid out a
vision in which computers use a
variety of sensors—microphones,
accelerometers, and global
positioning systems (GPSs)—

combined with “soft sensors”
such as calendars and social
networks, to track people’s
activity and figure out how the
devices can help. For instance, a
device might locate someone at
her office, hear the sound of
human voices, crosscheck her
calendar, and conclude she’s in a
business meeting, then suggest
to the husband trying to call her
that this wouldn’t be a good time
to interrupt.

A television remote control,
using unsupervised learning in
which it continuously collects
data and makes inferences

about what’s going on around
it, could learn to recognize
which person is holding it—
based on how the user moves,
what angle he holds it at, and
how fast he presses the
buttons—then make
personalized recommendations
for shows, based on past
preferences. A prototype
Personal Vacation Assistant,
developed with Fodor’s Travel,
uses GPS location, time of day,
and past behavior to
recommend restaurants and
tourist sites. Data, collected over
time and shared among devices,

is run through an inference
algorithm that examines the
input and generates confidence
scores to determine what is
likely going on.

Collecting this data will
require giving users control over
what gets shared, and allow them
to turn off sensors, Rattner says.
He gives no timeline for
introducing such applications,
but says, “We believe that
context-aware computing is
poised to fundamentally change
the way we interact and relate to
the devices that we use today.”

—Neil Savage

news

november 2010 | vol. 53 | no. 11 | communications of the acm 15

Research & Development

Paper
Chase
Due to enormous governmental
investments in research and
development, scientists in
many Asian countries are
steadily increasing their
number of papers published in
scientific journals.

The Asia-Pacific region
increased its total of published
science articles from 13% in
the early 1980s to slightly more
than 30% in 2009, according
to the Thomson Reuters
National Science Indicators,
an annual database of the
number of articles published
in about 12,000 internationally
recognized journals. China
leads the pack with 11% in
2009, up from 0.4% in the early
1980s, followed by Japan with
6.7% and India with 3.4%. In
contrast, the ratio of articles
from scientists in the U.S.
decreased to 28% in 2009,
down from 40% in the early
1980s.

In all, 25 nations have
increased their research, but
none more so than Singapore.
With a population of just five
million, the nation published
8,500 articles in 2009,
compared with only 200 in
1981. Singapore now allocates
3% of its gross domestic
product to research and
development, a figure expected
to rise to 3.5% by 2015.

The increase in scientific
publications, especially in
East Asian countries, reflects
a “phenomenal” increase in
funding, Simon Marginson, a
professor of higher education
at the University of Melbourne,
told The New York Times.
Marginson attributed the
increase in research output to
governments’ commitment
to establishing knowledge-
intensive economies. “It’s
very much not simply about
knowledge itself—it’s about
its usefulness throughout the
economy. I think that that
economic vision is really the
principal driver,” Marginson
said.

Another reason for
increased publications is that
many Asian universities now
receive additional funding to
have their papers translated
into English, the language used
by the majority of academic
journals.

—Phil Scott

‘We want to start a joint Ph.D. program
in public policy and machine learning,
because we think the future of policy
analysis will be increasingly evidence-
based. And we want to train people
who understand the algorithms for
analyzing and collecting that evidence
as well as they understand the policy
side.’” As a result, the joint Ph.D. pro-
gram was created at CMU.	

Further Reading

Duda, S.N. Cushman, C., and Masys, D.R.
An XML model of an enhanced dictionary
to facilitate the exchange of pre-existing
clinical research data in international
studies, Proceedings of the 12th World
Congress on Health Informatics, Brisbane,
Australia, August 20–24, 2007.

Mitchell,T.M., Shinkareva, S.V., Carlson, A.,
Chang, K.-M., Malave, V.L., Mason, R.A.,
and Just, M.A.
Predicting human brain activity associated
with the meanings of nouns, Science 320,
5880, May 30, 2008.

Murray-Rust, P.
Data-driven science—a scientist’s view,
NSF/JISC Repositories Workshop position
paper, April 10, 2007.

Newman, H.B.
Data intensive grids and networks for high
energy and nuclear physics: drivers of the
formation of an information society, World
Summit on the Information Society, Pan-
European Ministerial Meeting, Bucharest,
Romania, November 7–9, 2002.

Thakar, A.R.
The Sloan Digital Sky Survey: drinking from
the fire hose, Computing in Science and
Engineering 10, 1, Jan./Feb. 2008.

Gregory Goth is an Oakville, CT-based writer who
specializes in science and technology.

© 2010 ACM 0001-0782/10/1100 $10.00

balls” approach to massive datasets.
However, even massive datasets are

sometimes not complete enough to
deliver definitive results. Recent dis-
coveries in biomedical research have
revealed that even a complete index
of the human genome’s three billion
pairs of chemical bases has not greatly
accelerated breakthroughs in health
care, because other crucial medical
data is missing. A study of 19,000 wom-
en, led by researchers at Brigham and
Women’s Hospital in Boston, used data
constructed from the National Human
Genome Research Institute’s catalog
of genome-wide association study re-
sults published between 2005 and June
2009—only to find that the single big-
gest predictor of heart disease among
the study’s cohort is self-reported fam-
ily history. Correlating such personal
data with genetic indexes on a wide de-
mographic scale today is nearly impos-
sible as an estimated 80% of U.S.-based
primary-care physicians do not record
patient data in electronic medical re-
cords (EMRs). Recent government fi-
nancial incentives are meant to spur
EMR adoption, but for the immediate
future, crucial data in biomedical re-
search will not exist in digital form.

Another issue in biomedical research
is the reluctance of traditionally trained
scientists to accept datasets that were
not created under the strict parameters
required by, for example, epidemiolo-
gists and pharmaceutical companies.

CMU’s Mitchell says this arena of
public health research could be in the
vanguard of what may be the true crux
of the new data flood—the idea that the
provenance of a given dataset should
matter less than the provenance of a
given hypothesis.

“The right question is, Do I have a
scientific question and a method for
answering it that is scientific, no matter
what the dataset is?” Mitchell asks. In-
creasingly, he says, computational sci-
entists will need to frame their questions
and provide data for an audience that ex-
tends far beyond their traditional peers.

“We’re at the beginning of the curve
of a decades-long trend of increas-
ingly evidence-based decision-making
across society, that’s been noticed by
people in all walks of life,” he says.
“For example, the people at the public
policy school at CMU came to the ma-
chine learning department and said,

“The right question is,
Do I have a scientific
question and a
method for answering
it that is scientific,
no matter what
the dataset is?”
asks Tom Mitchell.

16 communications of the acm | november 2010 | vol. 53 | no. 11

news

P
H

OTOGRAP

H

 USE

D

 W
I

T
H

 PERM

I
SS

I

ON

 FROM

 M
I

CROSOFT

Security in the Cloud
Cloud computing offers many advantages, but also involves security
risks. Fortunately, researchers are devising some ingenious solutions.

Technology | doi:10.1145/1839676.1839683	 Gary Anthes

C
omp utin g may s ome day be
organized as a public util-
ity, just as the telephone
system is a public utility,”
Massachusetts Institute of

Technology (MIT) computer science
pioneer John McCarthy noted in 1961.

We aren’t quite there yet, but cloud
computing brings us close. Clouds
are all the rage today, promising con-
venience, elasticity, transparency,
and economy. But with the many ben-
efits come thorny issues of security
and privacy.

The history of computing since the
1960s can be viewed as a continuous
move toward ever greater specializa-
tion and distribution of computing
resources. First we had mainframes,
and security was fairly simple. Then
we added minicomputers and desktop
and laptop computers and client-server
models, and it got more complicated.
These computing paradigms gave way
in turn to n-tier and grid computing
and to various types of virtualization.

As hardware infrastructures grew
more complicated and fragmented,
so did the distribution of software and
data. There seemed no end to the ways
that users could split up their comput-
ing resources, and no end to the securi-
ty problems that arose as a result. Part
of the problem has been one of moving
targets—just as one computing para-
digm seemed solid, a new, more attrac-
tive one beckoned.

In a sense, cloud computing sim-
plifies security issues for users by out-
sourcing them to another party, one
that is presumed to be highly skilled
at dealing with them. Cloud users
may think they don’t have to worry
about the security of their software
and data anymore, because they’re in
expert hands.

But such complacency is a mistake,
say researchers at Hewlett-Packard
(HP) Laboratories in Bristol, U.K. They
are prototyping Cells as a Service, by
which they hope to automate secu-

rity management in the cloud. A cell,
managed as a single administrative
domain using common security poli-
cies, contains a bundle of virtual ma-
chines, storage volumes, and networks
running across multiple physical ma-
chines. Around the cells HP inserts
various sensors, detectors, and mitiga-
tors that look for viruses, intrusions,
and other suspicious behavior. Virtual-
ization enables these agents to be very
close to the action without being part
of it or observed by it, according to HP.

“People often think of virtualization
as adding to security problems, but it
is fundamentally the answer to a lot of
those problems,” says Martin Sadler,
director of HP’s Systems Security Lab.
“You can do all sorts of things you can’t
do when these things are physical ma-
chines.” For example, the sensors can
watch CPU activity, I/O patterns, and
memory usage and, based on models
of past behavior, recognize suspicious
activity. They can also assess the prob-
ability of certain events happening and

take action accordingly. They might,
for instance, throttle back the CPU,
stop all I/O to a virtual machine (VM),
or take a clone of the VM and move it
elsewhere for evaluation. Agents could
be deployed by cloud users, cloud ser-
vice providers, or third parties such as a
virus protection company, Sadler says.

But these agents introduce their
own management challenges. There
might be as many as 30 agents, inter-
acting in various ways and with varying
drains on system resources. HP Labs
is developing analytic tools that can
generate playbooks that script system
behavior. These templates, tailorable
by users, employ cost/benefit analyses
and reflect what is most important to
users and what cost they are willing to
bear for various types of protection.

Virtual Machine Introspection
IBM Research is pursuing a similar
approach called “virtual machine in-
trospection.” It puts security inside
a protected VM running on the same

Cloud computing simplifies security issues for users by outsourcing them to companies such
as Microsoft, which recently opened a $550 million data center in Chicago.

news

november 2010 | vol. 53 | no. 11 | communications of the acm 17

adversary could launch a side-channel
attack based on the VM’s sharing of
physical resources such as CPU data
caches. The researchers also outlined
a number of mitigation steps, but con-
cluded the only practical and foolproof
protection is for cloud users to require
that their VMs run on dedicated ma-
chines, which is potentially a costly so-
lution.

Difficulties With Encryption
Encryption is sometimes seen as the
ultimate security measure, but it also
presents difficulties in the cloud. At
present, processing encrypted data
means downloading it and decrypting
it for local use and then possibly up-
loading the results, which is a cumber-
some and costly process.

The ability to process encrypted
data in place has been a dream of
cryptographers for years, but it is now
demonstrating some progress. Last
year, Craig Gentry, first at Stanford
University and then at IBM Research,
proved it is possible to perform cer-
tain operations on data without first
decrypting it. The technique, called
“fully homomorphic encryption,” was
hailed as a conceptual breakthrough,
but is so computationally demanding
that practical applications are years
away, experts say.

Meanwhile, the more limited abil-
ity to search encrypted data is closer to
reality. In “Cryptographic Cloud Stor-

physical machine as the guest VMs
running in the cloud. The security VM
employs a number of protective meth-
ods, including the whitelisting and
blacklisting of guest kernel functions.
It can determine the operating system
and version of the guest VM and can
start monitoring a VM without any
beginning assumption of its running
state or integrity.

Instead of running 50 virus scan-
ners on a machine with 50 guest VMs,
virtual machine introspection uses just
one, which is much more efficient, says
Matthias Schunter, a researcher at IBM
Research’s Zurich lab. “Another big
advantage is the VM can’t do anything
against the virus scan since it’s not
aware it’s being scanned,” he says.

Another variation, called “lie de-
tection,” puts a tiny piece of software
inside the VM to look at the list of run-
ning processes as seen by the user. In-
trospection software outside the VM
can reliably determine all the process-
es actually running on the VM; if there
is any difference between the two lists,
some malware, such as a rootkit, is sus-
pected of running on the VM.

Looking from both within the VM
and without, the lie detector can also
compare the lists of files on disk, the
views of open sockets, the lists of load-
ed kernel modules, and so on. “Each
of these lie tests improves the chanc-
es of detecting potential malware,
but none of them can prove that no
malware exists,” says IBM researcher
Klaus Julisch.

In a third application, a virtual in-
trusion detection system runs inside
the physical machine to monitor traf-
fic among the guest VMs. The virtual
networks hidden inside a physical
machine are not visible to conven-
tional detectors because the detec-
tors usually reside in a separate ma-
chine, Schunter says.

Indeed, snooping between VMs in-
side a machine was shown to be a real
possibility by researchers last year.
Computer scientists Thomas Risten-
part, Hovav Shacham, and Stefan Sav-
age at the University of California, San
Diego and Eran Tromer at MIT proved
it was possible for an adversary to get
his or her VM co-located with a target’s
VM on a cloud’s physical machine 40%
of the time. In a paper, “Hey, You, Get
Off of My Cloud,” they showed how the

“People often think
of virtualization as
adding to security
problems, but
it is fundamentally
the answer to a lot
of those problems,”
says Martin Sadler,
director of
HP’s Systems
Security Lab.

Society

Pew
Report on
Mobile
Apps
Although a greater number of
adults are turning to mobile
phones to text and access
the Internet, age and gender
differences exist, according to a
report by Pew Research Center’s
Internet & American Life Project
and The Nielsen Company.

The report, titled The Rise
of Apps Culture, found that 35%
of U.S. adults have software
applications or apps on their
phones, yet only 24% of adults
use those apps. Overall, today’s
apps culture—essentially born
a couple of years ago with
the introduction of Apple’s
iPhone—is predominantly
male, younger, and more
affluent.

Eighteen to 29-year-olds
comprise only 23% of the U.S.
adult population but constitute
44% of the apps-using
population. By contrast, 41% of
the adult population is age 50
and older but this group makes
up just 14% of apps users.
Younger adopters also use apps,
including games and social
media, more frequently.

Gender differences were
also apparent. Women are
more likely to rely on social
networking apps such as
Facebook and Twitter while
men are inclined to use
productivity and financial apps.

Nevertheless, adoption is
growing rapidly. The Nielsen
Company found that the
average number of apps on
a smartphone has swelled
from 22 in December 2009
to 27 today. Not surprisingly,
iPhone owners top the list with
an average of 40 apps, while
Android users claim 25 and
BlackBerry owners 14.

The next few years will
likely usher in dramatic
changes. “Every metric we
capture shows a widening
embrace of all kinds of apps
by a widening population,
states Roger Entner, coauthor
of the report and senior vice
president at Nielsen. “It’s … not
too early to say that this is
an important new part of the
technology world.”

—Samuel Greengard

18 communications of the acm | november 2010 | vol. 53 | no. 11

news

“Many hands make light work,”
goes the old adage. Now there’s
data to prove it.

In recent weeks, both Yahoo!
and Google have announced the
results of separate mathematical
experiments that demonstrate
the computational power of large
clusters of networked PCs.

At Yahoo!, a team led by
researcher Tsz-Wo Sze broke
the world record for calculating
the digits of pi, crunching the
famously irrational number
to the two-quadrillionth bit by
stitching together more than
1,000 computers to complete the
calculation over a 23-day period.

The researchers estimate that
a typical computer would have
taken at least 500 years to carry
out the same operation.

Another group of researchers
recently took advantage of
Google’s distributed computing
infrastructure to tackle another
famously thorny computational
challenge: Rubik’s Cube. The
team developed an algorithm
capable of solving any Rubik’s
Cube configuration in 20
moves or less, resolving a
conundrum that has puzzled
mathematicians for three
decades. The computers
simulated all 43 quintillion

possible combinations of the
cube in just a few weeks, a task
the researchers estimate would
have taken a single computer
35 years.

Google has yet to release the
details of its technical solution,
but it probably bears some
resemblance to the approach
used at Yahoo!, where the team
used Apache Hadoop, open-
source software originally
developed at Google (and later
developed extensively by Yahoo!)
that allows developers to stitch
together thousands of computers
over the network into a powerful
cloud computer.

“We believe that our Hadoop
clusters are already more
powerful than many other
supercomputers,” says Sze, who
conceived of the project as part
of an internal Yahoo! contest to
demonstrate the capabilities of
Hadoop.

In both cases, the
mathematical problems proved
particularly well-suited to
distributed computing because
the calculations can be parceled
out over the network into much
smaller operations, capable of
running on a standard-issue PC.
Making light work indeed.

—Alex Wright

Distributed Computing

Math at Web Speed

age,” a paper published earlier this
year, researchers Seny Kamara and
Kristin Lauter of Microsoft Research
described a virtual private storage ser-
vice that aims to provide the security
of a private cloud and the cost savings
of a public cloud. Data in the cloud
remains encrypted, and hence pro-
tected from the cloud provider, court
subpoenas, and the like. Users index
their data, then upload the data and
the index, which are both encrypted, to
the cloud. As needed, users can gener-
ate tokens and credentials that control
who has access to what data.

Given a token for a keyword, an
authorized user can retrieve point-
ers to the encrypted files that contain
the keyword, and then search for and
download the desired data in encrypt-
ed form. Unauthorized observers can’t
know anything useful about the files or
the keywords.

The experimental Microsoft service
also offers users “proof of storage,” a
protocol by which a server can prove to
a client that it did not tamper with its
encrypted data. The client encodes the
data before uploading it and can verify
the data’s integrity at will.

Not all cloud security risks arise
from technology, says Radu Sion, a
computer science professor at Stony
Brook University. There is scant le-
gal or regulatory framework, and few
precedents, to deal with issues of li-
ability among the parties in cloud ar-
rangements, he notes. “What happens

when your data is on a server in China
but you outsourced to a cloud service
in New York?” asks Sion. “Or what if
you have the legal resources to fight a
subpoena for your data, but they sub-
poena your cloud provider instead?
You will be under scrutiny for moving
to the cloud by your shareholders and
everyone else.”

Nevertheless, Sion says all but the
most sophisticated enterprises will
be safer putting their computing re-
sources in the expert hands of one of
the major cloud providers. “Compa-

nies like Google and Amazon and Mi-
crosoft have hundreds of people de-
voted to security,” he says. “How many
do you have?”	

Further Reading

Christodorescu, M., Sailer, R., Schales, D.,
Sgandurra, D., and Zamboni, D.
Cloud security is not (just) virtualization
security, Proceedings of the 2009 ACM
Workshop on Cloud Computing Security,
Chicago, IL, Nov. 13, 2009.

Gentry, C.
Fully homomorphic encryption using ideal
lattices, Proceedings of the 41st Annual
ACM Symposium on Theory of Computing,
Bethesda, MD, May 31–June 2, 2009.

Kamara, S. and Lauter, K.
Cryptographic cloud storage, Proceedings
of Financial Cryptography: Workshop on
Real-Life Cryptographic Protocols and
Standardization, Tenerife, Canary Islands,
Spain, January 25–28, 2010.

Ristanpart, T., Tromer, E., Sacham, H.,
and Savage, S.
Hey, you, get off of my cloud: exploring
information leakage in third-party
compute clouds, Proceedings of the
16th ACM Conference on Computer and
Communications Security, Chicago, IL,
Nov. 9–13, 2009.

Shi, E., Bethencourt, J., Chan, T-H., Song, D.,
and Perrig, A.
Multi-dimensional range query over
encrypted data, Computer Science
Technical Report CMU-CS-06-135R,
Carnegie Mellon University, March 2007.

Gary Anthes is a technology writer and editor based in
Arlington, VA.

© 2010 ACM 0001-0782/10/1100 $10.00

In “Cryptographic
Cloud Storage,”
Microsoft
researchers Seny
Kamara and Kristin
Lauter describe
a virtual private
storage service that
provides the security
of a private cloud
and the cost savings
of a public cloud.

november 2010 | vol. 53 | no. 11 | communications of the acm 19

news
P

H
OTOGRAP

H
 B

Y
 D

AN

I
E

L
 M

I
YAMOTO

L
ast fall, Jim Wordelman found
himself in an enviable po-
sition. At a time when un-
employment for recent U.S.
college graduates was at the

highest level since 1983, Wordelman,
a senior at the University of Illinois at
Urbana-Champaign’s (UIUC’s) Depart-
ment of Computer Science, had several
job offers from companies that wanted
to hire him the following summer. Even-
tually, he took a job with Microsoft as a
developer on its Internet Explorer team.
“I did work for the company before and
loved it,” Wordelman explains. The job
also put him in a position to follow his
greatest passion: accessibility.

If recent data is any indication,
Wordelman’s case is not unique among
computer science graduates in the U.S.
(the job prospects for graduates in the
United Kingdom, China, and India are
discussed later). In fact, his fellow UIUC
CS graduates received an average of 2.4
job offers this year. The mean starting
salary: $68,650. “Our undergrads have
had no trouble getting positions,” says
Rob Rutenbar, the department head.
“Most of them are doing things like soft-
ware development. Some launch entre-
preneurial ventures.”

At Carnegie Mellon University
(CMU), the job outlook is equally rosy:
95% of this year’s CS students had jobs
waiting for them upon graduation.
“Companies may be a little choosier,
but they are still hiring,” says Susanne
Hambrusch, a computer science profes-
sor at Purdue University, where gradu-
ates enjoyed mean starting salaries of
$66,875 last year.

According to projections from the
U.S. Bureau of Labor Statistics (BLS),
computing will be one of the fastest-
growing job markets through 2018.
Employment of software engineers,
computer scientists, and network, da-
tabase, and systems administrators is
expected to grow between 24%–32%
through 2018. They account for 71%
of new jobs among the STEM (science,

technology, engineering, and math-
ematics) fields. For a discipline that
is still struggling with the public per-
ception that its jobs are migrating off-
shore, such career predictions offer an
important counterpoint.

Of the new jobs, according to BLS
projections, 27% will be in software en-
gineering, 21% in computing network-
ing, and 10% in systems analysis. Soft-
ware engineering alone is expected to
add nearly 300,000 jobs in the next eight
years.

Computer programmers will fare
less well, with a projected decline in
employment of 3% through 2018. The
BLS cites advances in programming
tools, as well as offshore outsourcing,
as contributing factors to this decline.
Nonetheless, the federal agency pre-
dicts employers will continue to need
some local programmers, especially
ones with strong technical skills. And
many companies, having discovered
that outsourcing is more challenging to
manage than anticipated, are turning to
domestic outsourcing to complete their

programming projects, which is a trend
the BLS expects to continue.

“The BLS projections are pretty com-
pelling,” says Peter Harsha, director of
government affairs at the Computing
Research Association (CRA). “We’re op-
timistic.”

College students seem to have picked
up on that optimism, and are returning
to the field after a steep six-year decline
caused by the dot-com crash. According
to the Taulbee Survey, an annual CRA
study that gathers data for North Ameri-
can computer science and computer
engineering programs, the number of
computer science majors rose 8.1% in
2008 and another 5.5% in 2009. “It’s a
cautious uptrend,” says Hambrusch.
At some schools, the surge in interest is
even more pronounced: applications to
UIUC’s CS program were up by 26% this
year and increased by 32% at CMU.

The troubled economy has played a
role in the uptick. Though the comput-
ing industry experienced a wave of lay-
offs at the height of the recession, it has
been hit less hard than other sectors,
and employment was up by an estimat-
ed 5% in the second quarter of 2010.

The Coolness Factor
According to a recent study conducted
by the National Association of Colleges
and Employers, the average salary for
this year’s crop of computer science
grads stands at $61,112. And while it’s
too early to say for sure, some industry
watchers predict an influx of students
who might otherwise have majored
in finance. Harsha, for example, cites
David E. Shaw, a computer scientist
turned hedge fund manager who made
a fortune in quantitative trading, then
returned to scientific research: “He’s a
model for a certain group.”

There is also a coolness factor among
a generation of students who grew up
with computers and are deeply engaged
with technologies like cellphones, Face-
book and other social media, and the
latest electronic devices from Apple and

Career Opportunities
What are the job prospects for today’s—and tomorrow’s—graduates?

Society | doi:10.1145/1839676.1839684	 Leah Hoffmann

Computer science graduates at Carnegie
Mellon University, shown above, and other
schools often have jobs waiting for them
upon graduation.

20 communications of the acm | november 2010 | vol. 53 | no. 11

news

other hardware companies. “For every
popular trend in computing there’s
a spike in interest,” says Harsha, cit-
ing a similar boom-and-bust cycle that
happened with the rise of the personal
computer during the mid-1980s. Also,
Harsha says, students may finally have
realized that the stereotype of comput-
ing as a lonely career in which you sit in
a cube and write code is not true.

“We all owe a non-trivial debt to com-
panies like Google and Apple, who do
cool work on cool products and don’t
look like your stereotypical guys in flan-
nel suits,” says Lenny Pitt, a UIUC com-
puter science professor.

Mark Stehlik, assistant dean for un-
dergraduate education at CMU’s School
of Computer Science, has a different
historical comparison: the space pro-
gram of the 1960s, which fueled the
imaginations and ambitions of a gen-
eration of schoolchildren. “There was
such an enterprise built around it,” he
recalls. Of course, to go to the moon, you
had to be a rocket scientist. “And what
if rocket science wasn’t your thing?”
Computer science majors, on the other
hand, have a variety of career options to
choose from once they graduate. “You
can do software development across
such a wide range of sectors,” notes Ste-
hlik, as nowadays almost every industry
has computing needs.

In spite of recent gains, the supply
of CS graduates is still dwarfed by the
projected number of jobs. According to
the BLS projections, there will be more
than twice as many new computing jobs
per annum in the next eight years than
the current level of 50,000 computing
graduates will be able to fill. Nor can
computer science departments, many
of whom had trouble dealing with the
influx of students in the late 1990s,

expand as quickly as companies and
universities might like. “We currently
have about 775 undergrads, and we can
add another couple hundred without a
problem,” says UIUC’s Rutenbar. “But
we need to do some soul searching if we
want to grow larger than that.”

The International Outlook
The job prospects for computer science
graduates in the United Kingdom, Chi-
na, and India vary widely as does each
country’s educational and economic
situations.

According to the United Kingdom’s
Higher Education Statistics Agency
(HESA), 17% of 2009’s CS graduates
were unemployed six months later—
more than any other discipline. Indus-
try watchers caution that the figure
should be taken with a grain of salt,
however, since the category includes
students who studied softer subjects
like human-computer interaction and
information development as well as tra-
ditional CS majors. “Higher-level things
like software and systems design are a
different picture,” says Bill Mitchell, di-
rector of the British Computer Society.
“They are very much recruiting these
types of people.”

Research institutions like the Univer-
sity of Southampton, which placed 94%
of its computer science graduates in
2009, echo Mitchell’s sentiment. “Com-
panies still need people with really good
skills, who have been exposed to dif-
ferent languages and platforms, who
are confident and can code,” says Joyce
Lewis, communications manager for
the University of Southampton’s School
of Electronics and Computer Science.
And while the University of Southamp-
ton and other members of the Russell
Group—an association of 20 universi-
ties that’s often referred to as the U.K.’s
Ivy League—have no trouble filling spac-
es in their computer science programs,
educators are nonetheless concerned by
a massive nationwide drop in interest in
the field. “Enrollment has dropped by
nearly 60% over the past eight years,”
says Mitchell, who is working to reform
the national IT curriculum and reverse
the trend. “Companies tell us they have
to bring people in from Silicon Valley.”

Recent computer science gradu-
ates in China are also struggling with
a demanding job market. According to
a study conducted by the MyCOS Insti-

Software engineering
alone is expected
to add nearly 300,000
jobs in the U.S. in
the next eight years.

ht
tp:
//w
ww
.ac
m
.or
g/
su
bs
cr
ibe

ACM’s
interactions
magazine explores
critical relationships
between experiences, people,
and technology, showcasing
emerging innovations and industry
leaders from around the world
across important applications of
design thinking and the broadening
field of the interaction design.
Our readers represent a growing
community of practice that
is of increasing and vital
global importance.

http://www.acm.org/subscribe

november 2010 | vol. 53 | no. 11 | communications of the acm 21

news

Milestones

David Kuck Wins Ken Kennedy Award
David Kuck, an Intel Fellow,
is the recipient of the second
annual ACM-IEEE Computer
Society Ken Kennedy Award for
his four decades of contributions
to compiler technology and
parallel computing, which have
improved the cost-effectiveness of
multiprocessor computing.

 In an email interview, Kuck
discussed his current research.
“I’m working on hardware/
software codesign at a very
comprehensive level, considering
system cost, performance, and

operating cost (in terms of
energy), as well as applications
sensitivity. I’m working on theory
and tools to support codesign.
I introduced a computational
capacity model in the 1970s
and pushed it much further in
the past few years. Measured
bandwidth and capacity
(bandwidth used) for a set of
architectural nodes for each
phase in a computation provide
capacity ratios that are invariant
across hardware changes. This
leads to very fast simulations of

new machines, solving linear
programming and related
problems to satisfy design goals.”

Asked about the next
important innovation with
compilers, Kuck said, “Compiler
optimization transformations
are well developed, but where
and how to apply them is still a
mystery. I believe that building
a large repository of codelets
could remove much of the
mystery related to sequential,
vector, parallel, and energy-aware
compilation. Many trade-offs

must be made, so a pre-analyzed
repository would allow phases,
and sequences of them, to be
matched to codelets for optimal
compilation. This is a combined
static and dynamic approach to
compilation.”

The Ken Kennedy Award
recognizes substantial
contributions to programmability
and productivity in computing and
substantial community service
or mentoring contributions, and
includes a $5,000 honorarium.

—Jack Rosenberger

tute, a Beijing-based think tank, com-
puter science, English, and law have
topped a list of majors with the most un-
employed graduates for the past three
years. In 2009, the most recent year for
which data is available, computer sci-
ence was second only to English in the
number of unemployed graduates.

Here, too, the figures underlie a more
complicated picture. Thanks to govern-
mental encouragement, the number of
university graduates in China has risen
dramatically during the past 10 years.
In 2008, more than six million students
graduated nationwide; in 2002, the
total number was below 1.5 million.
Such increases, education experts con-
tend, were not matched with employ-
ment prospects, particularly in tech-
nical fields, where market needs are
highly specialized. Therefore, students
must work hard to distinguish them-
selves from a glut of applicants. Often,
that means earning a graduate degree.
“Companies get a lot of applicants, and
to make it easier, some use the degree
as a filter,” says Xiaoge Wang, an as-
sociate professor in the department of
computer science and technology at
Tsinghua University. At Tsinghua, 83%
of 2009’s computer science graduates
enrolled in graduate programs at home
or abroad, up from 78% in 2008 and 66%
in 2007. “Our students would like to go
to companies like Microsoft or IBM,
which require a Ph.D. or a master’s,”
says Wang.

In India, the IT industry is doing
well after a slowdown brought on by
the global downturn. According to

the country’s National Association of
Software and Services Companies, the
IT services sector, still the dominant
source of computing jobs, grew nearly
16.5% in 2009, and software exports are
expected to increase by 14.4% in the cur-
rent fiscal year. Job placements at the
country’s top engineering schools are
robust, with many students receiving
multiple offers upon graduation. One
concern, however, is the growing lack
of educators to teach the next genera-
tion of software engineers—a shortage
of up to 70,000 teachers, according to
some estimates. University pay scales
are low compared to the private sector,
and few students pursue the advanced
degrees that would qualify them for uni-
versity positions. As a report published

in the International Journal of Engineer-
ing Studies explained, “The teaching
load of professors in the top research-
intensive schools has increased, and
talented potential research students
are being attracted by high-paying pri-
vate-sector jobs, or by research oppor-
tunities at better-funded institutions
abroad.” Those students who do pur-
sue advanced degrees, according to the
study’s authors, often do so to improve
their market value in the job market.	

Further Reading

National Association of Software
and Services Companies
The IT-BPO Sector in India: Strategic
Review 2009, http://www.nasscom.
in/Nasscom/templates/NormalPage.
aspx?id=55816.

Solanki, K., Dalal, S., and Bharti, V.
Software engineering education and
research in India: a survey, International
Journal of Engineering Studies 1,3, 2009.

U.S. Bureau of Labor Statistics
Occupational Outlook Handbook, 2010-11
edition, http://www.bls.gov/oco/.

Universities & Colleges Admissions Service
Unistats From Universities and Colleges
in the U.K., http://unistats.direct.gov.uk/
retrieveColleges_en.do.

Zhang, M. and Virginia M.L.
Undergraduate computer science
education in China, Proceedings of the 41st
ACM Technical Symposium on Computer
Science Education, March 10–13, 2010,
Milwaukee, WI.

Leah Hoffmann is a Brooklyn, NY-based technology
writer.

© 2010 ACM 0001-0782/10/1100 $10.00

One concern in India
is the growing lack
of educators to teach
the next generation
of software
engineers—a
shortage of up to
70,000 teachers,
according to some
estimates.

http://www.bls.gov/oco/
http://unistats.direct.gov.uk/retrieveColleges_en.do
http://unistats.direct.gov.uk/retrieveColleges_en.do
http://www.nasscom.in/Nasscom/templates/NormalPage.aspx?id=55816
http://www.nasscom.in/Nasscom/templates/NormalPage.aspx?id=55816
http://www.nasscom.in/Nasscom/templates/NormalPage.aspx?id=55816

22 communications of the acm | november 2010 | vol. 53 | no. 11

Programming Massively
Parallel Processors
By David B. Kirk and
Wen-mei W. Hwu
ISBN: 9780123814722
$69.95 | January 2010

Analyzing Social Media
Networks with NodeXL
By Derek Hansen, Ben
Shneiderman and
Marc A. Smith
ISBN: 9780123822291
$44.95 | August 2010

GPU Computing Gems
By Wen-mei Hwu
ISBN: 9780123849885
$74.95 | December 2010

Smart Things
By Mike Kuniavsky
ISBN: 9780123748997
$39.95 | August 2010

An Introduction to
Parallel Programming
By Peter Pacheco
ISBN: 9780123742605
$79.95 | January 2011

No Code Required
By Allen Cypher, Mira
Dontcheva, Tessa Lau
and Jeffrey Nichols
ISBN: 9780123815415
$49.95 | April 2010

Get the Knowledge of Experts in the Computing
Community from Morgan Kaufmann Publishers

Use Code 43446 to save 20% on these or other great MK titles at the NEW mkp.com.
Also available at Amazon.com or your favorite online retailer!

Programming Massively
Parallel Processors
By David B. Kirk and
Wen-mei W. Hwu
ISBN: 9780123814722
$69.95 | January 2010

Analyzing Social Media
Networks with NodeXL
By Derek Hansen, Ben
Shneiderman and
Marc A. Smith
ISBN: 9780123822291
$44.95 | August 2010

GPU Computing Gems
By Wen-mei Hwu
ISBN: 9780123849885
$74.95 | December 2010

Smart Things
By Mike Kuniavsky
ISBN: 9780123748997
$39.95 | August 2010

An Introduction to
Parallel Programming
By Peter Pacheco
ISBN: 9780123742605
$79.95 | January 2011

No Code Required
By Allen Cypher, Mira
Dontcheva, Tessa Lau
and Jeffrey Nichols
ISBN: 9780123815415
$49.95 | April 2010

20102800_AD_CACMAd_077_1200.indd 1 9/24/10 10:29 AM

COMING SOON!

High Performance
Computing

Programming and
Applications

• Presents over 20 algo-
rithms in pseudocode

• Offers primers on matrix
algebra, probability the-
ory, and number theory

Catalog no. C7058
December 2010, c. 248 pp.
ISBN: 978-1-4200-7705-6

$89.95 / £57.99

• Reviews the latest and most common
clustering methods

• Includes a DVD with color figures

Catalog no. K10863, November 2010
c. 247 pp., ISBN: 978-1-4398-1678-3

$79.95 / £49.99

• Contains hundreds of programs, experiments,
exercises, and illustrations

• Offers source code, installation guides, and an
interactive discussion forum online

Catalog no. K12068, September 2010
888 pp., ISBN: 978-1-4398-4620-9

$99.95 / £49.99

SAVE 20% when you order online at www.crcpress.com and enter Promo Code 933JM
Limited time offer: Discount expires 1/31/2011

http://mkp.com
http://Amazon.com
http://www.crcpress.com

november 2010 | vol. 53 | no. 11 | communications of the acm 23

news
p

h
o

t
o

g
r

a
p

h
 b

y
 J

.D
.

L
a

s
i

c
a

/S
o

c
i

a
l

m
e

di

a
.biz

N
ewly available frequencies
in the broadcast spectrum
should increase Internet ac-
cess and spur innovation,
U.S. Federal Communica-

tions Commission (FCC) Chairman
Julius Genachowski said in opening
those frequencies to unlicensed com-
mercial use.

When TV broadcasters switched to
narrower digital channels in 2009, they
freed up frequencies below 700 mega-
hertz, the so-called “white spaces” be-
tween channels. Signals at these fre-
quencies can travel about three times
as far as the traditional Wi-Fi frequency
of 2.4 gigahertz, and easily penetrate
buildings and other physical obstacles.

The new FCC rules create room for
two classes of devices: fixed, high-pow-
er ones that transmit at up to 4 watts
and portable, low-power devices limit-
ed to 100 milliwatts. Harold Feld, legal
director of Public Knowledge, a Wash-
ington, D.C., public interest group,
says thousands of small wireless Inter-
net service providers in rural areas, un-
derserved by broadband connections,
will be quick to take advantage of the
range and penetration, to achieve good
coverage with fewer towers.

But that will not happen tomorrow.
“It’s going to take a minimum of 18
months to get even the most basic de-
vices approved and out there,” Feld says.

Neeraj Srivastava, vice president
of marketing at Spectrum Bridge, a
wireless networking company in Lake
Mary, FL, that works with white spaces,
expects the first enhanced Wi-Fi sys-
tems, using fixed devices, could start
appearing in the first quarter of 2011.
Under experimental licenses from the
FCC, Srivastava says Spectrum Bridge
has run several pilot programs that
demonstrate the near-term uses.

One project provided the connectiv-
ity to deploy smart grid power monitors
across the electrical system in Plym-

outh, CA. By placing white-space radios
at substations, Spectrum Bridge cre-
ated a wireless network to keep track
of power usage and simultaneously
supplied the town’s residents with
wireless broadband. A project in Wilm-
ington, NC, provided wireless links to
inaccessible water-quality monitors
and traffic-monitoring bridge cam-
eras. At a hospital in Logan, OH, where
concrete walls blocked Wi-Fi and the
building’s structure made cabling dif-
ficult, Spectrum Bridge created a wire-
less network to monitor patients, share
data, and access security cameras. They
also brought broadband access to rural
Claudville, VA.

The 4-watt applications can use ex-
isting standards; Spectrum Bridge used
a modified WiMAX radio in the Logan
hospital, for example. Meanwhile, IEEE
is working on a standard for the low-
power devices, comparable to its 802.11
standard for Wi-Fi. That will determine
the design of chips for the smartphones
and laptops that will use them, Srivas-
tava says, so it may be more than two

years before the appearance of the first
low-power applications.

Feld believes that, as the utility of
white spaces becomes apparent, the
FCC will look for more spectrum to re-
lease. “As people think about how you
could have radios that are more cogni-
tive, more sensitive to their spectrum
environments and act accordingly,
people are going to want to see that
technology become more widely avail-
able,” he says.

Srivastava notes that when the FCC
made the spectrum now used by Wi-Fi
available in 1985, the popular wireless
applications were garage door open-
ers and baby monitors. Nobody had
thought of Bluetooth, Wi-Fi, or home
networking. “There’s always a third
class of devices, and those are the un-
known ones. Those probably have the
most promise, but I can’t tell you what
they are,” Srivastava says. 	

Neil Savage is science and technology writer based in
Lowell, MA.

© 2010 ACM 0001-0782/10/1100 $10.00

U.S. Federal Communications Commission Chairman Julius Genachowski.

Wide Open Spaces
The U.S. Federal Communications Commission’s decision to open
frequencies in the broadcast spectrum could enable broadband
networks in rural areas, permit smart electric grids, and more.

Emerging Technology | doi:10.1145/1839676.1839704	 Neil Savage

http://SOCIALMEDIA.BIZ

24 communications of the acm | November 2010 | vol. 53 | no. 11

V
viewpoints

Economic and
Business Dimensions
The Divergent Online
News Preferences of
Journalists and Readers
Reading between the lines of the thematic gap between
the supply and demand of online news.

doi:10.1145/1839676.1839685	 Pablo J. Boczkowski

T
he political body, like the
biological one, needs the
right combination of nutri-
ents to function adequately.
One such key ingredient is

news about public affairs that is nec-
essary to inform political deliberation
and encourage educated participa-
tion among the citizenry. In most lib-
eral democratic societies, this news is
largely provided by elite news organi-
zations in print, broadcast, and online
media. But, at least on the Web, while
these organizations have supplied this
kind of news in considerable quanti-
ties, the demand for news among on-
line readers has gravitated toward oth-
er kinds of content also provided on
these sites, such as information about
weather, sports, crime, gossip, and en-
tertainment. That frames an interest-
ing dilemma for online news, and also
for society as a whole.

Measuring Divergence
in Online News
I did not look for the dilemma in on-
line news. Once I found it in one place,
however, I went looking for it else-
where and found it everywhere.

For a book on imitation in online
and offline news,1 I measured the
amount of readers’ news choices and
the thematic composition of their
choices. I found a large, double-digit
difference between supply (preferenc-
es of journalists) and demand (prefer-
ences of readers).

More precisely, I calculated the de-
gree of similarity in the events covered
in the stories the three leading online
news sites in Argentina considered
the most important ones in any given
news cycle. This meant collecting each
homepage’s first 10 stories counting
from left to right and from the top
down in a grid-like manner. The analy-

sis sought to determine whether an
event covered in one site was also cov-
ered in at least one of the others.

The high level of similarity in news
products could not be explained by
patterns in the nature of demand. If
anything, consumers seemed to want
more differentiated news products
and also news marked by a different
thematic composition than what was
offered to them. These sites shared
52% of the events presented on their
respective top 10 stories. Furthermore,
almost 59% of these stories shared by
more than one site dealt with political,
business, economic, and international
matters.

By contrast, the most popular sto-
ries among the readers of these sites
were quite dissimilar: only 36% of the
hard news in the top 10 most viewed
stories on one site were also among the
top 10 most viewed stories in at least

V
viewpoints

november 2010 | vol. 53 | no. 11 | communications of the acm 25

I
L

L
USTRAT

I

ON

 B
Y

 RAYMON

D
 B

I
ES

I

NGER

one of the other two sites, and only 32%
of these stories popular in more than
one site dealt with politics, business,
economic, and international matters.
This amounted to a 16 percentage
point gap between the levels of similar-
ity of the top news choices of journal-
ists and consumers, and a 27 percent-
age point gap between the thematic
composition of these similar choices.

That initial study begged a follow-
up question: do similar patterns arise
elsewhere? A second study showed
that the mismatch also applies to the
leading, elite media in the U.S. My col-
laborator Limor Peer of Yale University
and I conducted a study that compared
the concurrent news choices of jour-
nalists and consumers of four leading,
U.S.-based sites: CNN, Yahoo News,
Chicago Tribune, and the now-defunct
Seattle Post-Intelligencer.3 We chose
these sites to represent broadcast, on-

line-only, and newspaper parent com-
panies, and also different geographic
orientations. The first two sites were
national-global, while the second two
were local.

In all cases journalists selected
more news about politics, economics,
business, and international matters
than readers, who, in turn, were more
interested in topics such as sports,
weather, entertainment, and crime.
On each data collection day, research
assistants gathered information on the
top 10 stories selected by journalists
and by consumers, respectively, as op-
erationalized in the previous study. A
comparison of the thematic composi-
tion of journalists’ and consumers’ top
story preferences per site revealed 13
percentage point gaps on Seattle Post-
Intelligencer and Yahoo, 14 percentage
point gaps on CNN, and 17 percentage
point gaps on Chicago Tribune.

We worried that supply and demand
are interdependent: journalists might
prioritize certain stories because they
perceive that consumers could find
them appealing, and consumers might
click more often on stories that receive
major treatment by journalists. To try
to get past these interdependencies, we
conducted a second analysis on each
site that excluded the stories that were
selected by both journalists and con-
sumers. Focusing on the stories that
journalists chose irrespective of their
level of popularity among consumers,
and those that consumers chose even
though they were not prominently dis-
played on the homepage, would give us
a stronger measure of each group’s in-
dependent preference.

The results suggest that indepen-
dent from the influence of each other,
the choices of journalists and con-
sumers would follow strikingly diver-

26 communications of the acm | November 2010 | vol. 53 | no. 11

viewpoints

gent trajectories. The gaps between
the thematic composition of the top
stories selected by journalists and
consumers increased by an average of
19 percentage points.

Does the divergence between supply
and demand depend on geography or
ideology? Results from a third study,
undertaken in collaboration with
Northwestern University graduate stu-
dents Eugenia Mitchelstein and Mar-
tin Walter, show that the mismatch is
a widespread phenomenon that cuts
across media from countries and re-
gions with disparate histories, cultural
makeup, and ideological positions.2

This study deployed the design
of the second study to examine 11
sites in Western Europe and Latin
America: The Guardian and The Times
in the United Kingdom; El País and
El Mundo in Spain; Die Welt and Der
Tagesspiegel in Germany; La Reforma
and El Universal in Mexico; Clarín
and La Nación in Argentina; and Fol-
ha de Sao Paulo in Brazil (there was
only one Brazilian site because data
from a second comparable site was
not publicly available). All the sites
were the online presence of leading
generalist, mainstream, and elite
newspapers with national reach in
their respective countries. Moreover,
in the five countries from which two
news sites were sampled, the pairs
had somewhat divergent ideological
outlooks—either conservative and
centrist or conservative and liberal.

Once again, there was a sizable the-
matic gap between the supply and de-
mand of online news, with the journal-
ists leaning more toward stories about
politics, business, economics, and in-
ternational matters than readers. The
differences between the top news choic-
es of journalists and consumers ranged
from 30 percentage points in The Guard-
ian to 9 percentage points in Clarín, with
an average of 19 percentage points. In
addition, there were no major patterns
of variance in this gap by geographical
region or ideological preference. First,
journalists choose news about politics,
economics, business, and internation-
al matters 20 percentage points more
often than readers in Western Europe
and 19 percentage points more often
in Latin America. Second, while on con-
servative sites the thematic difference
between journalists’ and consumers’

choices was 21 percentage points, on
centrist/liberal sites this difference was
19 percentage points.

The Future of Media and Democracy
It is unlikely that the mismatch be-
tween supply and demand of news in
the elite media began with the Web.
As the noted sociologist and former
journalist Robert Park wrote many
decades ago, “The things which most
of us would like to publish are not the
things that most of us want to read. We
may be eager to get into print what is,
or seems to be, edifying, but we want
to read what is interesting.” But the
strong market position of these elite
media meant that because advertisers
had to go through them to reach po-
tential consumers, journalists could
get away with fulfilling their sense of
civic duty by disseminating “edify-
ing” news despite their limited appeal
among the general public.

But in the highly competitive con-
temporary media environment, few
news organizations enjoy the kind of
natural monopoly or oligopoly position
that newspapers and television net-
works had in the past. Perhaps, none
do. Of all media markets, the Web is
the most competitive one because of
low geographic and distribution barri-
ers and the very high number of players.

In addition, the Web enables orga-
nizations to automatically track the
number of clicks garnered by each
story. This has meant that personnel
at elite online news sites are deeply
aware of the extent to which supply
and demand don’t meet. They must
confront the dilemma introduced
at the beginning of this column on a
daily basis.

What should they do? If they stay

the course and the nature of consum-
er preferences does not change (and
there is no reason to suspect it might),
the mismatch between supply and de-
mand will further erode their econom-
ic sustainability. If they change course
and give consumers more of what they
want, they will likely pay the price of
becoming a different kind of news or-
ganization and having to compete in
an already crowded space of “populist
media.” Either way, the future does not
bode well for them.

The potential implications of these
trends for democracy are not encour-
aging either. As noted earlier, the lead-
ing, elite news organizations are major
contributors of the kind of informa-
tion about political, economic, and
international matters that is essential
for well-informed democratic delibera-
tion and participation. This informa-
tion is much more difficult to find in
other sources such as tabloid media
and even blogs (which largely amplify
the information that originates in elite
news organizations).

Society’s appetite for informa-
tion might get satiated by news about
weather, sports, crime, gossip, and
entertainment. But the contributions
of these symbolic nutrients for the
healthy functioning of the body politic
will surely be lacking. If, in part, we are
what we eat, we should be aware that
we also are the news that we consume.
And when the supply and demand of
online news does not meet, it is not
just elite media organizations that
might suffer, but also all of us.	

References
1.	 Boczkowski, P. News at Work: Imitation in an Age of

Information Abundance. University of Chicago Press,
Chicago, IL, 2010.

2.	 Boczkowski, P., Mitchelstein, E., and Walter, M. (in
press). Convergence across divergence: Understanding
the gap in the online news choices of journalists and
consumers in Western Europe and Latin America.
Communication Research.

3.	 Boczkowski, P. and Peer, L. (in press). The choice gap:
The divergent online news preferences of journalists
and consumers. Journal of Communication.

Pablo J. Boczkowski (pjb9@northwestern.edu) is a
professor in the Department of Communication Studies at
Northwestern University and also, during the 2010–2011
academic year, a visiting scholar at the University of Chicago
Booth School of Business. He is the author of Digitizing
the News: Innovation in Online Newspapers (MIT Press,
2004) and News at Work: Imitation in an Age of Information
Abundance (University of Chicago Press, 2010).

I would like to thank Shane Greenstein for the invitation to
write this column and Shane and Eugenia Mitchelstein for
feedback on earlier versions.

Copyright held by author.

It is unlikely that
the mismatch
between supply
and demand of news
in the elite media
began with the Web.

mailto:pjb9@northwestern.edu

november 2010 | vol. 53 | no. 11 | communications of the acm 27

V
viewpoints

Ph

o
t

o
g

r
a

p
h

 b
y

 R
o

y
 K

a
lt

s
c

h
m

id

t
,

L
a

w
r

e
n

c
e

 B
e

r
k

e
l

e
y

 N
a

t
’l

 L
a

b

Education
K–12 Computational Learning
Enhancing student learning and understanding by combining theories
of learning with the computer’s unique attributes.

doi:10.1145/1839676.1839686	 Stephen Cooper, Lance C. Pérez, and Daphne Rainey

I
n “Computational Thinking,”14
Jeannette Wing struck a chord
that has resonated strongly
(generating positive as well as
negative responses) with many

computer scientists and non-comput-
er scientists. Wing has subsequently
defined computational thinking as
the process of abstraction,15 guided
by various engineering-type concerns
including efficiency, correctness, and
several software engineering “-ilities”
(maintainability, usability, modifi-
ability, and so forth). Some have inter-
preted computational thinking as an
attempt to capture the set of computer
science skills essential to virtually ev-
ery person in a technological society,
while others view it as a new descrip-
tion of the fundamental discipline
that represents computer science and
its intersection with other fields. The
National Academies report1 captures
both of these views, as well as present-
ing others.

While we can live with such defini-
tions/descriptions in the higher educa-
tion arena, we struggle with these no-
tions of computational thinking in the
K–12 arena (note that we primarily con-
sider K–12 education within the U.S.).
Several concerns spring to mind:

1.	 Computer science does not ap-
pear within the core topics covered in
high school. We would have a tough
time justifying a computer science
course, even the “great ideas” AP Princi-
ples course (being developed as part of
Denning4) replacing Algebra 2, Biology,
or American Government. K–12 educa-
tion is a zero-sum game. If one wishes

to add a course, one must also propose
a course to be removed.

2.	 Even as an elective topic, comput-
er science tends to be disproportionate-
ly available to those wealthy suburban
schools. Margolis et al.6 explore this
situation in depth within the urban Los
Angeles school district.

3.	 Too few K–12 computing teachers
are available to implement a national-
scale computing requirement. CUNY’s
ambitious 10,000 teacher project2 will
not produce sufficient numbers of com-
puting teachers required to instruct all
schoolchildren in the U.S. It would not
even get one qualified teacher into each
of the nation’s 30,000+ high schools
(see http://nces.ed.gov/programs/di-
gest/d09/tables/dt09_086.asp).

4.	 It is not clear to us how teachers in

other K–12 subjects would take advan-
tage of school children who had been
trained in computational thinking.

5.	 The most common definitions of
computational thinking are confusing
when explained to non-computer scien-
tists. And many K–12 computing teach-
ers are not computer scientists.

We find the above definitions of
computational thinking not espe-
cially useful when considered in the
context of K–12 education, and, more
specifically, K–12 science, technol-
ogy, engineering, and mathematics
(STEM) education. We propose an al-
ternative to the common definition
of computational thinking we believe
is appropriate for operationalization
in K–12 education and consider its
broader implications.

Berkeley public elementary school students on a field trip learn how computers enable
science.

http://nces.ed.gov/programs/digest/d09/tables/dt09_086.asp
http://nces.ed.gov/programs/digest/d09/tables/dt09_086.asp

28 communications of the acm | November 2010 | vol. 53 | no. 11

viewpoints

A K–12 View of
Computational Thinking
We have struggled with how computa-
tional thinking might be different from
mathematical thinking, algorithmic
thinking, quantitative reasoning, de-
sign thinking, and several other models
of math, science, and even engineering
to critical thinking and problem solv-
ing. It was after struggling with the lat-
est type of thinking that we realized that
perhaps even the term “computational
thinking” was misleading (from a K–12
perspective), and we were approaching
the definition incorrectly. Rather than
considering computational thinking as
a part of the process for problem solv-
ing, we instead developed a model of
computational learning that empha-
sizes the central role that a computer
(and possibly its abstraction) can play in
enhancing the learning process and im-
proving achievement of K–12 students
in STEM and other courses. The figure
here depicts our current working model
of computational learning. It should be
noted that this model is explicit in its
use of a computer and specifically ex-
cludes non-cognitive uses of technology
(Powerpoint, wikis, blogs, clickers, and
so forth).

Similar to Wing’s original vision of
computational thinking, we see com-
putational learning as an iterative and
interactive process between the hu-
man (the K–12 student in our case) and
the computer (or, in a more theoretical
construct, a model of computation).
We also make explicit the two conse-
quences of the human cognitive pro-
cess, namely, the capacity for abstrac-
tion and for problem formulation, and

two strengths of the computer, namely,
their ability to present complex data
sets, often visually, and their capacity
for storing factual and relational knowl-
edge. These four elements frame and
establish the boundaries of the iterative
interaction between the human being
and the computer. Note that the accom-
panying figure does not explicitly in-
clude a teacher, not because we believe
teachers are unnecessary, but rather
because the role of the teacher in this
model is complex and requires further
investigation.

In developing this model, we ob-
served that it includes other extant
models in scientific learning and in-
quiry. For example, one can view com-
putational science as the interaction
between the human and the computer
that is contained within the box where
a human being formulates a problem
and provides a representation suitable
for a computer. The computer then acts
on this representation and returns the
results of these actions to the human
being through, for example, a visual
representation. Computational learn-
ing expands this interaction by allow-
ing the computer to add foundational
knowledge, not just data, unknown to
the human and by having the results of
the computer’s actions represented in
a form compatible with the human’s
current capacity for abstraction. In the
more interesting instances of computa-
tional learning, both of these processes
are likely to be adaptive and personal-
ized to the individual.

We make several observations about
computational learning:

˲˲ Computational learning is iterative,

requiring interaction between the com-
puter and the human.

˲˲ In computational learning, the
computer can compensate for a hu-
man’s lack of factual and relational
knowledge and mathematical and sci-
entific sophistication.

˲˲ The computer’s ability to quickly
compute multiple examples and pres-
ent them via a modality appropriate to
a human’s current development stage
and level of meta-cognitive awareness
can leverage the human’s inherent,
though perhaps not fully conscious, ca-
pacity for abstraction.

This model for computational learn-
ing differs significantly from other pro-
posed notions of computational think-
ing. For example, algorithmic thinking
does not require a computer and math-
ematical thinking is almost solely de-
pendent on the human’s formalization
capacity for abstraction.2

To better understand how our pro-
posed computational learning model
can be operationalized, we present
two examples: one from middle school
computing and one from high school
biology.

Digitizing Data
Cutler and Hutton3 modified a CS Un-
plugged activity on image represen-
tation (see http://csunplugged.org/
sites/default/files/activity_pdfs_full/
unplugged-02-image_representation.
pdf) to enable middle school students
to work interactively with a computer
program as they learn about how com-
puters digitize images. The purpose of
these activities is to help students to un-
derstand what it means for a computer
to digitally represent an image. More
importantly, the students learn to move
from concrete representations of im-
ages to more abstract representations
of those images (as a digital represen-
tation), and from representation of im-
ages in 2D to representing objects in 3D.
And this ability to abstract is important
across all STEM disciplines.

Students work interactively with the
computer program, receiving feedback
to their attempts at digitizing their data.
Over the series of lessons, they develop
an initial ability to abstract away from
the physical representation of an im-
age to its digital representation. They
are then further able to develop their
ability to abstract as they move from 2D

A view of computational learning.

Capacity for Abstraction

External Knowledge

Memory Working MemoryVisualization

Computation KnowledgeProblem
Formulation

Computer
Computational Science

Human

http://csunplugged.org/sites/default/files/activity_pdfs_full/unplugged-02-image_representation.pdf
http://csunplugged.org/sites/default/files/activity_pdfs_full/unplugged-02-image_representation.pdf
http://csunplugged.org/sites/default/files/activity_pdfs_full/unplugged-02-image_representation.pdf
http://csunplugged.org/sites/default/files/activity_pdfs_full/unplugged-02-image_representation.pdf

viewpoints

november 2010 | vol. 53 | no. 11 | communications of the acm 29

Other (though the computer obviously
cannot think at a higher level than the
student),11 or even fits within Newell
and Simon’s Information Processing
Theory framework.8 Our hope is that by
considering our model of computation-
al learning, we can better educate and
prepare teachers to benefit from com-
puting in and outside the classroom,
and that approaches and computing
tools can be identified and built to im-
prove K–12 student STEM learning.	

References
1.	C ommittee for the Workshops on Computational

Thinking, National Research Council. Report of a
Workshop on the Scope and Nature of Computational
Thinking. National Academies Press, Washington, D.C.,
2010.

2.	C uny, J. Finding 10,000 teachers. CSTA Voice, 5, 6
(2010), 1–2; http://www.csta.acm.org/Communications/
sub/CSTAVoice_Files/csta_voice_01_2010.pdf

3.	C utler, R. and Hutton, M. Digitizing data: Computational
thinking for middle school students through computer
graphics. In Proceedings of the 31st Annual Conference
of the European Association for Computer Graphics EG
2010—Education Papers. (Norrköping, Sweden, May
2010), 17–24.

4.	 Denning, P. Beyond computational thinking. Commun.
ACM 52, 6 (June 2009), 28–30.

5.	G ilbert, J.K., Justi, R., and Aksela, M. The visualization
of models: A metacognitive competence in the learning
of chemistry. Paper presented at the 4th Annual
Meeting of the European Science Education Research
Association, Noordwijkerhout, The Netherlands, 2003.

6.	M argolis, J. et al. Stuck in the Shallow End: Education,
Race, and Computing. The MIT Press, 2008.

7.	N ational Science Foundation. Molecular visualization
in science education. Report from the molecular
visualization in science education workshop. NCSA
access center, National Science Foundation, Arlington,
VA, 2001.

8.	N ewell, A., and Simon, H.A. Human Problem Solving.
Prentice-Hall, Englewood Cliffs, NJ, 1972.

9.	R otbain, Y., Marbach-Ad, G., and Stavy, R. Using a
computer animation to teach high school molecular
biology. Journal of Science Education and Technology
17 (2008), 49–58.

10.	S ewell R., Stevens, R., and Lewis, D. Multimedia
computer technology as a tool for teaching and
assessment of biological science. Journal of Biological
Education 29 (1995), 27–32.

11.	 Vygotsky, L.S. Mind and Society: The Development of
Higher Mental Processes. Harvard University Press,
Cambridge, MA, 1978.

12.	 Williamson V.M. and Abraham, M.R. The effects of
computer animation on the particulate mental models
of college chemistry students. Journal of Research in
Science Teaching 32 (1995), 522–534.

13.	 Windschitl, M.A. A practical guide for incorporating
computer-based simulations into science instruction.
The American Biology Teacher 60 (1998), 92–97.

14.	 Wing, J.M. Computational thinking. Commun. ACM 49,
3 (Mar. 2006), 33–35.

15.	 Wing, J.M. Computational thinking and thinking about
computing. Philosophical Transactions of the Royal
Society A, 366 (2008), 3717–3725.

Stephen Cooper (coopersc@purdue.edu) is an associate
professor (teaching) in the Computer Science Department
at Stanford University.

Lance C. Pérez (lperez@unl.edu) is an associate professor
in the Department of Electrical Engineering at the
University of Nebraska-Lincoln where he also holds the
position of Associate Vice Chancellor for Academic Affairs.

Daphne Rainey (raineyd4@gmail.com) is a biologist
currently serving in a temporary assignment as a program
director at NSF’s Division of Undergraduate Education
within its Education and Human Resources Directorate.

Copyright held by author.

images to 3D objects. Finally, students
develop a further ability to abstract. As
part of the creation of a single 3D object,
say a chair, the students are then chal-
lenged to place many chairs in a room.
They need to be able to recognize that
representing a 3D chair consists of two
parts: the relative coordinates of each of
the parts of the chair, and the absolute
location of one part (say the bottom-
right corner of the front-right leg).

Evolutionary Biology
The second example involves the teach-
ing of evolution using computational
learning. Our vision is of a 3D visualiza-
tion system that could simulate evolu-
tion. A student could specify an organ-
ism, with primitive appendages (arms,
legs, joints, and other attributes) to ac-
complish locomotion. Then, by provid-
ing an environment, the student could
run the simulation to watch how the
organism’s ability to move evolves over
time as a function of its current loco-
motion capability coupled with the im-
pact of that organism’s environment.
Students could change the appendag-
es and/or the environment to observe
how such changes lead to a difference
in the organism’s evolution over time.
In computer science terms, this exam-
ple is similar to passing a program and
an initial state as input to a Universal
Turing Machine.

Such a simulation allows the stu-
dent to work interactively with the
computer program. The student learns
both from the impact of the changes
she makes to the initial configuration
of the organism and to the initial en-
vironment (which will lead to the or-
ganism evolving the ability to move
differently) as well as by the ability to
observe the simulation/visualization
as it is running. In science, researchers
have found that visualization is central
to increasing conceptual understand-
ing and prompting the formation of
dynamic mental models of particulate
matter and processes (see 5,7,9,12). Vi-
sualization and computer interaction
through animation allow students to
engage more in the cognitive process,
and to select and organize more rele-
vant information for problem-solving.7
Computer animations incorporated
into interactive simulations offer the
user a chance to manipulate variables
to observe the effect on the system’s

behavior (see 9,10,13).
While we know of no tool that pro-

vides the exact support/simulation we
are describing, there are several avail-
able visualization systems that can
simulate/model the world. Two of these
systems have helped to shape our vision
of the above-mentioned simulation:
The 3D visualization system, Fram-
sticks (www.framsticks.com) can be
used for modeling evolution, and the
2D simulation system, NetLogo (http://
ccl.northwestern.edu/netlogo/) has
many available pre-built simulations,
including those that model evolution
albeit in a different manner than what
we describe.

Conclusion
Most papers we’ve seen on compu-
tational thinking represent attempts
at repackaging computing science
concepts, especially in the form of al-
gorithmic thinking and introductory
programming, sometimes in other do-
mains. Though this may be useful in
some contexts, it is unlikely such a sim-
ple approach will have significant im-
pact on student learning—of computer
science or other disciplines—in the
K–12 setting. The proposed model of
computational learning combines the-
ories of learning with the computer’s
superiority in dealing with complexity
and variability and its ability to present
results using modalities that appeal to
the learner in order to enhance student
learning and understanding. We believe
that computational learning can be
framed within various theories of learn-
ing, where the computer plays a similar
role as Vygotsky’s More Knowledgeable

This model for
computational
learning differs
significantly from
other proposed
notions of
computational
thinking.

http://www.framsticks.com
http://ccl.northwestern.edu/netlogo/
http://www.csta.acm.org/communications/sub/CSTAVoice_Files/csta_voice_01_2010.pdf
mailto:coopersc@purdue.edu
mailto:lperez@unl.edu
mailto:raineyd4@gmail.com
http://ccl.northwestern.edu/netlogo/
http://www.csta.acm.org/communications/sub/CSTAVoice_Files/csta_voice_01_2010.pdf

30 communications of the acm | November 2010 | vol. 53 | no. 11

V
viewpoints

T
wo-thirds of the approxi-
mately 700 software entre-
preneurs who participated
in the 2008 Berkeley Patent
Survey report that they nei-

ther have nor are seeking patents for
innovations embodied in their prod-
ucts and services. These entrepre-
neurs rate patents as the least impor-
tant mechanism among seven options
for attaining competitive advantage.
Even software startups that hold pat-
ents regard them as providing only a
slight incentive to innovate.

These are three of the most striking
findings from a recently published ar-
ticle, “High Technology Entrepreneurs
and the Patent System: Results of the
2008 Berkeley Patent Survey.”1 After
providing some background about the
survey, I will discuss some key findings
about how software startup firms use
and are affected by the patent system.

While the three findings highlighted
above might seem to support a software
patent abolitionist position, it is sig-
nificant that one-third of the software
entrepreneur respondents reported
having or seeking patents, and that they
perceive patents to be important to per-
sons or firms from whom they hope to
obtain financing.

Some Background on the Survey
More than 1,300 high-technology en-
trepreneurs in the software, biotech-
nology, medical devices, and computer
hardware fields completed the Berkeley
Patent Survey. All of these firms were

no more than 10 years old before the
survey was conducted. We drew our
sample from a general population of
high-tech firms registered with Dun
& Bradstreet (D&B) and from the Ven-
tureXpert (VX) database that has a rich
data set on venture-backed startups.
(Just over 500 of the survey software re-
spondents were D&B firms; just under
200 respondents were VX firms.)

Eighty percent of the software re-
spondents were either the CEOs or
CTOs of their firms, and most had
experience in previous startups. The
average software firm had 58 employ-
ees, half of whom were engineers. Be-

tween 10%–15% of the software startup
respondents among the D&B respon-
dents were venture-backed firms.
Among the software respondents, only
2% had experienced an initial public
offering (IPO), while 9% had been ac-
quired by another firm.

Our interest in conducting this sur-
vey arose because high-technology
entrepreneurs have contributed sig-
nificantly to economic growth in recent
decades. They build firms that create
new products, services, organizations,
and opportunities for complementary
economic activities. We were curious
to know the extent to which high-tech

Legally Speaking
Why Do Software Startups
Patent (or Not)?
Assessing the controversial results of a recent empirical study
of the role of intellectual property in software startups.

doi:10.1145/1839676.1839687	 Pamela Samuelson

Measures of capturing “competitive advantage” from inventions.

 S oftware
 M edical Devices
  Biotechnology

Importance

How important or unimportant is each of the following in your company’s
ability to capture competitive advantage from its technology inventions?

Not important
at all

Slightly
important

Moderately
important

Very
important

First-mover
advantage

Reverse
engineering

Complementary
assets

Secrecy

Patents

Copyright

Trademark

V
viewpoints

november 2010 | vol. 53 | no. 11 | communications of the acm 31

startups were utilizing the patent sys-
tem, as well as to learn their reasons
for choosing to avail themselves of the
patent system—or not.

The basic economic principle un-
derlying the patent system is that
technology innovations are often ex-
pensive, time-consuming, and risky
to develop, although once developed,
these innovations are often inexpen-
sive and easy to copy; in the absence of
intellectual property rights (IPRs), in-
novative high-tech firms may have in-
sufficient incentives to invest in inno-
vation insofar as they cannot recoup
their research and development (R&D)
expenses and justify further invest-
ments in innovation because of cheap
copies that undermine the firms’ re-
coupment strategy.

Although this economic principle ap-
plies to all companies, early-stage tech-
nology firms might, we conjectured,
be more sensitive to IPRs than more
mature firms. The former often lack
various kinds of complementary assets
(such as well-defined marketing chan-
nels and access to cheap credit) that the
latter are more likely to enjoy. We de-
cided it would be worthwhile to test this
conjecture empirically. With generous
funding from the Ewing Marion Kauff-
man Foundation, three colleagues and I
designed and carried out the survey and
have begun analyzing the results.

Why Startups Patent
The most important reasons for seek-
ing patents, as reported by software ex-
ecutives who responded to the Berkeley
Patent Survey, were these: to prevent
competitors from copying the innova-
tion (2.3 on a 4 point scale, where 2 was
moderately important), to enhance the
firms’ reputation (2.2), and to secure in-
vestment and improve the likelihood of
an IPO (1.96 and 1.97 respectively).

The importance of patents to inves-
tors was also evident from survey data
showing striking differences in the rate
of patenting among the VX and the D&B
software companies.

Three-quarters of the D&B firms had
no patents and were not seeking them.
Because the D&B firms are, we believe,
fairly typical of the population of soft-
ware startup firms in the U.S., their re-
sponses may well be representative of
patenting rates among software start-
ups generally. It is, in fact, possible

that the overall rate of software startup
patenting is lower than this given that
patent-holders may have been more
likely than non-patent-holders to take
time to fill out a Berkeley Patent Survey.

In striking contrast to the D&B re-
spondents, over two-thirds of the VX
software startup respondents in the
sample, all venture-backed, had or were
seeking patents. We cannot say why
these venture-backed firms were more
likely to seek patents than other firms.
Perhaps venture capitalists (VCs) are
urging firms they fund to seek patents;
or VCs may be choosing to fund the
development of software technologies
that VCs think are more amenable to
patenting.

Interestingly, the rate of patenting
did not vary by the age of the firm (that
is, older firms did not patent more than
younger firms).

Why Forego Patenting?
The survey asked two questions about
decisions to forego patenting: For the
last innovation for which the firm chose
not to seek a patent, what factors influ-
enced this decision, and what was the
most important factor in the decision?

The costs of obtaining and of en-
forcing patents emerged as the first
and second most frequent explana-
tion. Twenty-eight percent of the soft-
ware startup executives reported that
the costs of obtaining patents had
been the most important factor in this
decision, and 12% said that the costs of
enforcing patents was the most impor-
tant factor. (They reported that average
cost of getting a software patent was
just under $30,000.)

It is an article of
faith among many
IP lawyers that
patents provide
significant incentives
for firms to engage
in R&D and develop
new products.

Calendar
of Events
November 17–19
Asian Internet Engineering
Conference,
Bangkok, Thailand,
Contact: Kanchanasut
Kanchana,
Email: kk@cs.ait.ac.th

November 17–19
Advances in Computer
Entertainment Technology
Conference,
Taipei, Taiwan,
Contact: Duh Henry B.L.,
Email: eledbl@nus.edu.sg

November 22–23
Conference on Decision and
Game Theory for Security,
Berlin, Germany,
Contact: Tansu Alpcan,
Email: alpcan@sec.t-labs.tu-
berlin.de

November 22–24
The 17th ACM Symposium on
Virtual Reality Software and
Technology,
Hong Kong,
Contact: George Baciu,
Email: csgeorge@comp.polyu.
edu.hk

December 1–3
9th International Conference
on Mobile and Ubiquitous
Multimedia,
Limassol, Cyprus,
Contact: Angelides Marios,
Email: marios.angelides@
brunel.ac.uk

December 4–8
The 43rd Annual IEEE/ACM
International Symposium on
Microarchitecture,
Atlanta, GA,
Sponsored: SIGMICRO,
Contact: Sudhakar
Yalamanchili,
Email: suhdha@ece.gatech.edu

December 5–8
Winter Simulation Conference,
Baltimore, Maryland,
Sponsored: SIGSIM ,
Contact: Joe Hugan,
Email: jhugan@gmail.com

December 12–13
Virtual Reality Continuum and
its Applications in Industry,
Seoul, Republic of Korea,
Sponsored: SIGGRAPH ,
Contact: Hyunseung Yang,
Email: hsyang@cs.kaist.ac.kr

mailto:kk@cs.ait.ac.th
mailto:eledbl@nus.edu.sg
mailto:suhdha@ece.gatech.edu
mailto:jhugan@gmail.com
mailto:hsyang@cs.kaist.ac.kr
mailto:alpcan@sec.t-labs.tuberlin.de
mailto:alpcan@sec.t-labs.tuberlin.de
mailto:csgeorge@comp.polyu.edu.hk
mailto:csgeorge@comp.polyu.edu.hk
mailto:marios.angelides@brunel.ac.uk
mailto:marios.angelides@brunel.ac.uk

32 communications of the acm | November 2010 | vol. 53 | no. 11

viewpoints

Ease of inventing around the innova-
tion and satisfaction with secrecy also
influenced software startup decisions
not to seek patents, although only rarely
were these factors considered the most
important.

Intriguingly, more than 40% of the
software respondents cited the unpat-
entability of the invention as a factor in
decisions to forego patenting. Almost a
quarter of them rated this as the most
important factor. Indeed, unpatentabil-
ity ranked just behind costs of obtain-
ing patents as the most frequently cited
“most important factor” for not seeking
patents.

It is difficult to know what to make of
the unpatentability finding. One expla-
nation may be that the software respon-
dents believed that patent standards of
novelty, non-obviousness, and the like
are so rigorous that their innovation
might not have satisfied patent require-
ments. Yet, because the patentability of
software innovations has been conten-
tious for decades, it may also be that a
significant number of these entrepre-
neurs have philosophical or practical
objections to patents in their field.

How Important Are Patents to
Competitive Advantage?
One of the most striking findings of our
study is that software firms ranked pat-
ents dead last among seven strategies
for attaining competitive advantage, as
the accompanying figure shows. (The
relative unimportance of patents for
competitive advantage in the software
field contrasts sharply with the per-
ceived importance of patents in the bio-
tech industry, where patents are ranked
the most important means of attaining
such advantage.)

As shown in the figure on page 30,
software startups regard first-mover
advantage as the single most impor-
tant strategy for attaining competitive
advantage. The next most important
strategy was complementary assets (for
example, providing services for licensed
software or offering a proprietary com-
plement to an open source program).

Among IPRs, copyrights and trade-
marks—closely followed by secrecy
and difficulties of reverse engineer-
ing—outranked patents as means of at-
taining competitive advantage among
software respondents by a statistically
significant margin.

What Incentive Effects
Do Patents Have?
The Berkeley Patent survey asked start-
up executives to rate the incentive ef-
fects of patents on a scale, where 0 = no
incentive, 1 = weak incentive, 2 = moder-
ate incentive, and 3 = strong incentive,
for engaging in four types of innovation:
(1) inventing new products, processes,
or services, (2) conducting initial R&D,
(3) creating internal tools or processes,
and (4) undertaking the risks and costs
of commercializing the innovation.

We were surprised to discover the
software respondents reported that pat-
ents provide only weak incentives for
engaging in core activities, such as in-
vention of new products (0.96) and com-
mercialization (0.93). By contrast, bio-
tech and medical device firms reported
just above 2 (moderate incentives) for
these same questions.

Interestingly, the results did not
change significantly when considering
only responses from software entrepre-
neurs whose firms hold at least one pat-
ent or application. Even patent-holding
software entrepreneurs reported that
patents provide just above a weak incen-
tive for engaging in these innovation-re-
lated activities.

Resolving a Paradox
If patents provide only weak incen-
tives for investing in innovation among
software startups, why did two-thirds
of the VX respondents and at least
one-quarter of the D&B respondents
seeking patents? The answer may lie
in the perception among software en-
trepreneurs that patents may be im-
portant to potential funders, such as
VCs, angel investors, other firms, com-
mercial banks, and friends and fam-
ily. Sixty percent of software startup
respondents who had negotiated with
VCs reported that they perceived VC
decisions about whether to make the
investments to be affected by patents.
Between 40% and 50% of the software
respondents reported that patents
were important to other types of inves-
tors, such as angels, investment banks,
and other companies.

Controversy Over Survey Findings
It is an article of faith among many IP
lawyers that patents provide significant
incentives for firms to engage in R&D
and develop new products. Most would

also expect, as we did, that high-tech
startup companies would regard pat-
ents as more important as an induce-
ment to innovation than large firms,
given that the latter have lots of other
assets for achieving and maintaining
success in the marketplace.

Anecdotes highlighting the impor-
tance of patents to high-tech entrepre-
neurs are relatively easy to find. Because
data from the Berkeley Patent Survey
suggests that software entrepreneurs
regard patents as quite unimportant,
the reaction of some prominent patent
lawyers to our article about the survey
has been sharply negative. We believe,
however, that our analysis is sound and
these critiques are off-base. We encour-
age readers to read the full article and
make their own judgments.

Future Research
Over the next several years, the co-authors
of the Berkeley Patent Survey article ex-
pect to analyze further data from this
survey and to report new findings. We will
look more closely, for example, at differ-
ences in patenting rates among those in
different sectors of the software industry
and differences between patent holders
and non-patent holders. We know already
that product innovators seek patents
more often than process innovators.

The findings reported here suggest
that software entrepreneurs do not find
persuasive the canonical story that pat-
ents provide strong incentives to engage
in technology innovation. These execu-
tives regard first-mover advantage and
complementary assets as more impor-
tant than IPRs in conferring competitive
advantage upon their firms. Moreover,
among IPRs, copyrights and trademarks
are perceived to be more important than
patents. Still, about one-third of the
software entrepreneur respondents re-
ported having or seeking patents, and
their perception that their investors care
about patents seems to be a key factor in
decisions to obtain patents. 	

Reference
1.	G raham, S.J.H., Merges, R.P., Samuelson, P., and

Sichelman, T. High technology entrepreneurs and the
patent system: Results of the 2008 Berkeley patent
survey. Berkeley Technology Law Journal 25, 4 (2010),
1255–1327; http://papers.ssrn.com/sol3/papers.
cfm?abstract_id=1429049.

Pamela Samuelson (pam@law.berkeley.edu) is the
Richard M. Sherman Distinguished Professor of Law and
Information at the University of California, Berkeley.

Copyright held by author.

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1429049
mailto:pam@law.berkeley.edu
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1429049

november 2010 | vol. 53 | no. 11 | communications of the acm 33

V
viewpoints

I
L

L
USTRAT

I

ON

 B
Y

 CE

L
I

A
 J

O
H

NSON

I
n c y b e r sp ac e it ’ s easy to get
away with criminal fraud, easy
to steal corporate intellectual
property, and easy to pene-
trate governmental networks.

Last spring the new Commander of
USCYBERCOM, NSA’s General Keith
Alexander, acknowledged for the first
time that even U.S. classified networks
have been penetrated.2 Not only do
we fail to catch most fraud artists, IP
thieves, and cyber spies—we don’t
even know who most of them are. Yet
every significant public and private
activity—economic, social, govern-
mental, military—depends on the se-
curity of electronic systems. Why has
so little happened in 20 years to alter
the fundamental vulnerability of these
systems? If you’re sure this insecurity
is either (a) a hoax or (b) a highly desir-
able form of anarchy, you can skip the
rest of this column.

Presidential Directives to Fix This
Problem emerge dramatically like
clockwork from the White House echo
chamber, chronicling a history of ex-
ecutive torpor. One of the following
statements was made in a report to
President Obama in 2009, the other by
President George H.W. Bush in 1990.
Guess which is which:

“Telecommunications and informa-
tion processing systems are highly sus-
ceptible to interception, unauthorized
electronic access, and related forms of
technical exploitation, as well as other
dimensions of the foreign intelligence
threat.”

“The architecture of the Nation’s
digital infrastructure, based largely on
the Internet, is not secure or resilient.
Without major advances in the security
of these systems or significant change
in how they are constructed or operat-
ed, it is doubtful that the United States
can protect itself from the growing
threat of cybercrime and state-spon-
sored intrusions and operations.”

Actually, it doesn’t much matter

which is which.a In between, for the
sake of nonpartisan continuity, Presi-

a	 The first quotation is from President G.H.W.
Bush’s National Security Directive 42, July 5,
1990, redacted for public release, April 1, 1992;
http://www.fas.org/irp/offdocs/nsd/nsd_42.
htm. The second quotation is from the pref-
ace to “Cyberspace Policy Review: Assuring a
Trusted and Resilient Information and Com-
munications Infrastructure,” May 2009; http://
www.whitehouse.gov/assets/documents/Cyber-
space_Policy_Review_final.pdf.

Privacy and Security
Why Isn’t Cyberspace
More Secure?
Evaluating governmental actions—and inactions—toward
improving cyber security and addressing future challenges.

doi:10.1145/1839676.1839688	 Joel F. Brenner

http://www.fas.org/irp/offdocs/nsd/nsd_42.htm
http://www.fas.org/irp/offdocs/nsd/nsd_42.htm
http://www.whitehouse.gov/assets/documents/Cyberspace_Policy_Review_final.pdf
http://www.whitehouse.gov/assets/documents/Cyberspace_Policy_Review_final.pdf
http://www.whitehouse.gov/assets/documents/Cyberspace_Policy_Review_final.pdf

34 communications of the acm | november 2010 | vol. 53 | no. 11

viewpoints

dent Clinton warned of the insecurities
created by cyber-based systems and di-
rected in 1998 that “no later than five
years from today the United States shall
have achieved and shall maintain the
ability to protect the nation’s critical
infrastructures from intentional acts
that would significantly diminish” our
security.6 Five years later would have
been 2003.

In 2003, as if in a repeat perfor-
mance of a bad play, the second Presi-
dent Bush stated that his cybersecurity
objectives were to “[p]revent cyber at-
tacks against America’s critical infra-
structure; [r]educe national vulner-
ability to cyber attacks; and [m]inimize
damage and recovery time from cyber
attacks that do occur.”7

These Presidential pronouncements
will be of interest chiefly to historians
and to Congressional investigators who,
in the aftermath of a disaster that we
can only hope will be relatively minor,
will be shocked, shocked to learn that
the nation was electronically naked.

Current efforts in Washington to
deal with cyber insecurity are promis-
ing—but so was Sisyphus’ fourth or
fifth trip up the hill. These efforts are
moving at a bureaucratically feverish
pitch—which is to say, slowly—and
so far they have produced nothing
but more declarations of urgency and
more paper. Why?

Lawsuits and Markets
Change in the U.S. is driven by three
things: liability, market demand, and
regulatory (usually federal) action. The
role and weight of these factors vary in
other countries, but the U.S. experience
may nevertheless be instructive trans-
nationally since most of the world’s in-
tellectual property is stored in the U.S.,
and the rest of the world perceives U.S.
networks as more secure than we do.4 So
let’s examine each of these three factors.

Liability has been a virtually nonex-
istent factor in achieving greater Inter-
net security. This may be surprising un-
til you ask: Liability for what, and who
should bear it? Software licenses are
enforceable, whether shrink-wrapped
or negotiated, and they nearly always
limit the manufacturer’s liability to
the cost of the software. So suing the
software manufacturer for allegedly
lousy security would not be worth the
money and effort expended. What are

the damages, say, from finding your
computer is an enslaved member of a
botnet run out of Russia or Ukraine?
And how do you prove the problem was
caused by the software rather than your
own sloppy online behavior?

Asking Congress to make software
manufacturers liable for defects would
be asking for trouble: All software is
defective, because it’s so astoundingly
complicated that even the best of it
hides surprises. Deciding what level
of imperfection is acceptable is not
a task you want your Congressional
representative to perform. Any such
legislation would probably drive some
creative developers out of the market.
It would also slow down software devel-
opment—which would not be all bad if
it led to higher security. But the general
public has little or no understanding of
the vulnerabilities inherent in poorly
developed applications. On the con-
trary, the public clamors for rapidly
developed apps with lots of bells and
whistles, so an equipment vendor that
wants to control this proliferation of
vulnerabilities in the name of security
is in a difficult position.

Banks, merchants, and other hold-
ers of personal information do face lia-
bility for data breaches, and some have
paid substantial sums for data losses
under state and federal statutes grant-
ing liquidated damages for breaches.
In one of the best known cases, Heart-
land Payments Systems may end up
paying approximately $100 million as a
result of a major breach, not to mention
millions more in legal fees. But the de-
fendants in such cases are buyers, not
makers and designers, of the hardware
and software whose deficiencies create
many (but not all) cyber insecurities.

Liability presumably makes these com-
panies somewhat more vigilant in their
business practices, but it doesn’t make
hardware and software more secure.

Many major banks and other com-
panies already know they have been
persistently penetrated by highly
skilled, stealthy, and anonymous ad-
versaries, very likely including foreign
intelligence services and their sur-
rogates. These firms spend millions
fending off attacks and cleaning their
systems, yet no forensic expert can
honestly tell them that all advanced
persistent intrusions have been de-
feated. (If you have an expert who will
say so, fire him right away.)

In an effective liability regime, in-
surers play an important role in raising
standards because they tie premiums
to good practices. Good automobile
drivers, for example, pay less for car
insurance. Without a liability dynamic,
however, insurers play virtually no role
in raising cyber security standards.

If liability hasn’t made cyberspace
more secure, what about market de-
mand? The simple answer is that the
consuming public buys on price and
has not been willing to pay for more
secure software. In some cases the af-
termath of identity theft is an ordeal.
In most instances of credit card fraud,
however, the bank absorbs 100% of the
loss, so their customers have little in-
centive to spend more for security. (In
Britain, where the customer rather than
the bank usually pays, the situation is ar-
guably worse because banks are in a bet-
ter position than customers to impose
higher security requirements.) Most
companies also buy on price, especially
in the current economic downturn.

Unfortunately we don’t know wheth-
er consumers or corporate custom-
ers would pay more for security if they
knew the relative insecurities of the
products on the market. As J. Alex Hal-
derman of the University of Michigan
recently noted, “most customers don’t
have enough information to accurately
gauge software quality, so secure soft-
ware and insecure software tend to sell
for about the same price.”3 This could
be fixed, but doing so would require
agreed metrics for judging products
and either the systematic disclosure of
insecurities or a widely accepted test-
ing and evaluation service that enjoyed
the public’s confidence. Consumer Re-

Deciding what level
of imperfection is
acceptable is not
a task you want
your Congressional
representative
to perform.

viewpoints

november 2010 | vol. 53 | no. 11 | communications of the acm 35

ports plays this role for automobiles
and many other consumer products,
and it wields enormous power. The
same day Consumer Reports issued a
“Don’t buy” recommendation for the
2010 Lexus GX 460, Toyota took the
vehicle off the market. If the engineer-
ing and computer science professions
could organize a software security lab-
oratory along the lines of Consumer Re-
ports, it would be a public service.

Federal Action
Absent market- or liability-driven im-
provement, there are eight steps the
U.S. federal government could take to
improve Internet security, and none of
them would involve creating a new bu-
reaucracy or intrusive regulation:

1.	 Use the government’s enormous
purchasing power to require higher se-
curity standards of its vendors. These
standards would deal, for example,
with verifiable software and firmware,
means of authentication, fault toler-
ance, and a uniform vocabulary and
taxonomy across the government in
purchasing and evaluation. The Feder-
al Acquisition Regulations, guided by
the National Institute of Standards and
Technology, could drive higher secu-
rity into the entire market by ensuring
federal demand for better products.

2.	 Amend the Privacy Act to make
it clear that Internet Service Providers
(ISPs) must disclose to one another and
to their customers when a customer’s
computer has become part of a bot-
net, regardless of the ISP’s customer
contract, and may disclose that fact to
a party that is not its own customer.
ISPs may complain that such a service
should be elective, at a price. That’s
equivalent to arguing that cars should
be allowed on the highway without
brakes, lights, and seatbelts. This re-
quirement would generate significant
remedial business.

3.	 Define behaviors that would per-
mit ISPs to block or sequester traffic
from botnet-controlled addresses—
not merely from the botnet’s com-
mand-and-control center.

4.	 Forbid federal agencies from do-
ing business with any ISP that is a hos-
pitable host for botnets, and publicize
the list of such companies.

5.	 Require bond issuers that are
subject to the jurisdiction of the Fed-
eral Energy Regulatory Commission to

disclose in the “Risk Factors” section
of their prospectuses whether the com-
mand-and-control features of their
SCADA networks are connected to the
Internet or other publicly accessible
network. Issuers would scream about
this, even though a recent McAfee
study plainly indicates that many of
them that do follow this risky practice
think it creates an “unresolved security
issue.”1 SCADA networks were built for
isolated, limited access systems. Al-
lowing them to be controlled via pub-
lic networks is rash. This point was
driven home forcefully this summer
by discovery of the “Stuxnet” computer
worm, which was specifically designed
to attack SCADA systems.4 Yet public
utilities show no sign of ramping up
their typically primitive systems.

6.	 Increase support for research into
attribution techniques, verifiable soft-
ware and firmware, and the benefits of
moving more security functions into
hardware.

7.	 Definitively remove the antitrust
concern when U.S.-based firms collab-
orate on researching, developing, or
implementing security functions.

8.	 Engage like-minded governments
to create international authorities to
take down botnets and make naming-
and-addressing protocols more diffi-
cult to spoof.

Political Will
These practical steps would not solve
all problems of cyber insecurity but
they would dramatically improve it.
Nor would they involve government
snooping and or reengineering the
Internet or other grandiose schemes.
They would require a clear-headed
understanding of the risks to privacy,
intellectual property, and national se-
curity when an entire society relies for
its commercial, governmental, and
military functions on a decades-old in-
formation system designed for a small
number of university and government
researchers.

Translating repeated diagnoses
of insecurity into effective treatment
would also require the political will to
marshal the resources and effort nec-
essary to do something about it. The
Bush Administration came by that will
too late in the game, and the Obama
Administration has yet to acquire it.
After his inauguration, Obama dith-

ered for nine months over the package
of excellent recommendations put on
his desk by a nonpolitical team of civil
servants from several departments
and agencies. The Administration’s
lack of interest was palpable; its hands
are full with a war, health care, and a
bad economy. In difficult economic
times the President naturally prefers
invisible risk to visible expense and is
understandably reluctant to increase
costs for business. In the best of times
cross-departmental (or cross-ministe-
rial) governance would be extremely
difficult—and not just in the U.S. Do-
ing it well requires an interdepartmen-
tal organ of directive power that can
muscle entrenched and often parochi-
al bureaucracies, and in the cyber are-
na, we simply don’t have it. The media,
which never tires of the cliché, told us
we were getting a cyber “czar,” but the
newly created cyber “Coordinator” ac-
tually has no directive power and has
yet to prove his value in coordinating,
let alone governing, the many depart-
ments and agencies with an interest in
electronic networks.

And so cyber-enabled crime and po-
litical and economic espionage contin-
ue apace, and the risk of infrastructure
failure mounts. As for me, I’m already
drafting the next Presidential Direc-
tive. It sounds a lot like the last one.	

References
1.	 Baker, S. et al. In the Crossfire: Critical Infrastructure

in the Age of Cyber War, CSIS and McAfee, (Jan.
28, 2010), 19; http://img.en25.com/Web/McAfee/
NA_CIP_RPT_REG_2840.pdf. See also P. Kurtz et
al., Virtual Criminology Report 2009: Virtually Here:
The Age of Cyber Warfare, McAfee and Good Harbor
Consulting, 2009, 17; http://iom.invensys.com/EN/
pdfLibrary/McAfee/WP_McAfee_Virtual_Criminology_
Report_2009_03-10.pdf.

2.	G ertz, B. 2008 intrusion of networks spurred combined
units. The Washington Times, (June 3, 2010); http://
www.washingtontimes.com/news/2010/jun/3/2008-
intrusion-of-networks-spurred-combined-units/.

3.	 Halderman, J.Q. To strengthen security, change
developers’ incentives. IEEE Security and Privacy
(Mar./Apr. 2010), 79.

4.	 Krebs, B. “Stuxnet” worm far more sophisticated than
previously thought. Krebs on Security, Sept. 14, 2010;
http://krebsonsecurity.com/2010/09/stuxnet-worm-
far-more-sophisticated-than-previously-thought/.

5.	M cAfee. Unsecured Economies: Protecting Vital
Information. 2009, 4, 13–14; http://www.cerias.
purdue.edu/assets/pdf/mfe_unsec_econ_pr_rpt_fnl_
online_012109.pdf.

6.	P residential Decision Directive 63, (May 22, 1998);
http://www.fas.org/irp/offdocs/pdd/pdd-63.htm.

7.	 The National Strategy to Secure Cyberspace 2003.
U.S. Department of Homeland Security.

Joel F. Brenner (jbrenner@cooley.com) of the law firm
Cooley LLP in Washington, D.C., was the U.S. National
Counterintelligence Executive from 2006–2009 and the
Inspector General of the National Security Agency from
2002–2006.

Copyright held by author.

http://img.en25.com/Web/mcafee/NA_CIP_RPT_REG_2840.pdf
http://www.washingtontimes.com/news/2010/jun/3/2008-intrusion-of-networks-spurred-combined-units/
http://www.fas.org/irp/offdocs/pdd/pdd-63.htm
mailto:jbrenner@cooley.com
http://img.en25.com/Web/mcafee/NA_CIP_RPT_REG_2840.pdf
http://iom.invensys.com/EN/pdfLibrary/McAfee/WP_McAfee_Virtual_Criminology_Report_2009_03-10.pdf
http://iom.invensys.com/EN/pdfLibrary/McAfee/WP_McAfee_Virtual_Criminology_Report_2009_03-10.pdf
http://iom.invensys.com/EN/pdfLibrary/McAfee/WP_McAfee_Virtual_Criminology_Report_2009_03-10.pdf
http://www.washingtontimes.com/news/2010/jun/3/2008-intrusion-of-networks-spurred-combined-units/
http://www.washingtontimes.com/news/2010/jun/3/2008-intrusion-of-networks-spurred-combined-units/
http://krebsonsecurity.com/2010/09/stuxnet-worm-far-more-sophisticated-than-previously-thought/
http://krebsonsecurity.com/2010/09/stuxnet-worm-far-more-sophisticated-than-previously-thought/
http://www.cerias.purdue.edu/assets/pdf/mfe_unsec_econ_pr_rpt_fnl_online_012109.pdf
http://www.cerias.purdue.edu/assets/pdf/mfe_unsec_econ_pr_rpt_fnl_online_012109.pdf
http://www.cerias.purdue.edu/assets/pdf/mfe_unsec_econ_pr_rpt_fnl_online_012109.pdf

36 communications of the acm | November 2010 | vol. 53 | no. 11

V
viewpoints

p
h

o
t

o
g

r
a

p
h

 b
y

 K
o

n
r

a
d

 L
o

r
i

n
c

z

M
uch computer sci -

e nc e research is inter-
disciplinary, bringing
together experts from
multiple fields to solve

challenging problems in the sciences,
engineering, and medicine. One area
where the interface between computer
scientists and domain scientists is es-
pecially strong is wireless sensor net-
works, which offer the opportunity to
apply computer science concepts to
obtaining measurements in challeng-
ing field settings. Sensor networks have
been applied to studying vibrations on
the Golden Gate Bridge,1 tracking zebra
movements,2 and understanding mi-
croclimates in redwood canopies.4

Our own work on sensor networks
for volcano monitoring6 has taught us
some valuable lessons about what’s
needed to make sensor networks suc-
cessful for scientific campaigns. At the
same time, we find a number of myths
that persist in the sensor network lit-
erature, possibly leading to invalid as-
sumptions about what field conditions
are like, and what research problems
fall out of working with domain scien-
tists. We believe these lessons are of
broad interest to “applied computer
scientists” beyond the specific area of
sensor networks.

Our group at Harvard has been col-
laborating with geophysicists at New
Mexico Tech, UNC, and the Instituto
Geofísico in Ecuador for the last five
years on developing wireless sensor
networks for monitoring active and

hazardous volcanoes (see Figure 1). We
have deployed three sensor networks on
two volcanoes in Ecuador: Tungurahua
and Reventador. In each case, wireless
sensors measured seismic and acoustic
signals generated by the volcano, and
digitized signals are collected at a cen-
tral base station located at the volcano
observatory. This application pushes
the boundaries of conventional sensor
network design in terms of the high
data rates involved (100Hz or more per
channel); the need for fine-grained time
synchronization to compare signals col-
lected across different nodes; the need

for reliable, complete signal collection
over the lossy wireless network; and the
need to discern “interesting” signals
from noise.

These deployments have taught us
many lessons about what works and
what doesn’t in the field, and what the
important problems are from the per-
spective of the domain scientists. In-
terestingly, many of these problems are
not the focus of much of the computer
science research community. Our view
is that a sensor network should be treat-
ed as a scientific instrument, and there-
fore subject to the same high standards

Viewpoint
Sensor Networks
for the Sciences
Lessons from the field derived from developing wireless sensor
networks for monitoring active and hazardous volcanoes.

doi:10.1145/1839676.1839690	 Matt Welsh

Harvard University Ph.D. student Konrad Lorincz installing sensors at Reventador volcano.

V
viewpoints

november 2010 | vol. 53 | no. 11 | communications of the acm 37

of data quality applied to conventional
scientifi c instrumentation.

some myths
First, let us dispel a few common myths
about sensor network fi eld deploy-
ments.

Myth #1: Nodes are deployed ran-
domly. A common assumption in sen-
sor network papers is that nodes will be
randomly distributed over some spatial
area (see Figure 2). An often-used idiom
is that of dropping sensor nodes from
an airplane. (Presumably, this implies
that the packaging has been designed
to survive the impact and there is a
mechanism to orient the radio anten-
nas vertically once they hit the ground.)

Such a haphazard approach to sen-
sor siting would be unheard of in many
scientifi c campaigns. In volcano seis-
mology, sensor locations are typically
chosen carefully to ensure good spatial
coverage and the ability to reconstruct
the seismic fi eld. The resulting topolo-
gies are fairly irregular and do not exhib-
it the spatial uniformity often assumed
in papers. Moreover, positions for each
node must be carefully recorded using
GPS, to facilitate later data analysis. In
our case, installing each sensor node
took nearly an hour (involving digging
holes for the seismometer and antenna
mast), not to mention the four-hour
hike through the jungle just to reach the
deployment site.

Myth #2: Sensor nodes are cheap
and tiny. The original vision of sensor
networks drew upon the idea of “smart
dust” that could be literally blown onto
a surface. While such technology is still
an active area of research, sensor net-
works have evolved around off-the-shelf
“mote” platforms that are substantially
larger, more power hungry, and expen-
sive than their hypothetically aerosol
counterparts (“smart rocks” is a more
apt metaphor). The notion that sensor
nodes are disposable has led to much
research that assumes it is possible to
deploy many more sensor nodes than
are strictly necessary to meet scientifi c
requirements, leveraging redundancy
to extend network battery lifetime and
tolerate failures.

It should be emphasized that the
cost of the attached sensor can outstrip
the mote itself. A typical mote costs ap-
proximately $100, sometimes with on-
board sensors for temperature, light,

and humidity. The inexpensive sensors
used on many mote platforms many not
be appropriate for scientifi c use, con-
founded by low resolution and the need
for calibration. While the microphones
used in our volcano sensor network cost
pennies, seismometers cost upward of
thousands of dollars. In our deploy-
ments, we use a combination of rela-
tively inexpensive ($75 or so) geophones
with limited sensitivity, and more ex-
pensive ($1,000) seismometers. The
instruments used by many volcano de-
ployments are in the tens of thousands
of dollars, so much that many research
groups borrow (rather than buy) them.

Myth #3: The network is dense. Re-
lated to the previous myths is the idea
that node locations will be spatially ho-
mogeneous and dense, with each node
having on the order of 10 or more neigh-
bors in radio range. Routing protocols,
localization schemes, and failover tech-
niques often leverage such high density
through the power of many choices.

This assumption depends on how
closely aligned the spatial resolution of
the desired network matches the radio
range, which can be hundreds of me-

ters with a suitably designed antenna
confi guration. In volcanology, the prop-
agation speed of seismic waves (on the
order of kilometers per second) dictates
sensor placements hundreds of meters
apart or more, which is at the practical
limit of the radio range. As a result, our
networks have typically featured nodes
with at most two or three radio neigh-
bors, with limited opportunities for
redundancy in the routing paths. Like-
wise, the code-propagation protocol we
used worked well in a lab setting when
all of the nodes were physically close
to each other; when spread across the
volcano, the protocol fell over, prob-
ably due to the much higher degree of
packet loss.

Lessons Learned
Working with domain scientists has
taught us some valuable lessons about
sensor network design. Our original in-
tentions were to leverage the collabora-
tion as a means of furthering our own
computer science research agenda, as-
suming that whatever we did would be
satisfactory to the geophysicists. In ac-
tuality, their data requirements ended
up driving our research in several new
directions, none of which we anticipat-
ed when we started the project.

Lesson #1: It’s all about the data.
This may seem obvious, but it’s interest-
ing how often the actual data produced
by a sensor network is overlooked when
designing a clever new protocol or pro-
gramming abstraction. To fi rst approxi-
mation, scientists simply want all of the
data produced by all of the sensors, all of
the time.

The approach taken by such sci-
entists is to go to the fi eld, install in-

Working with domain
scientists has taught
us some valuable
lessons about sensor
network design.

FreeWave
radio modem

Base station
at observatory

Long-distance
radio link (4km)

GPS receiver
for time sync

figure 1. sensor network design for monitoring active volcanoes.

38 communications of the acm | November 2010 | vol. 53 | no. 11

viewpoints

struments, collect as much data as
possible, and then spend a consider-
able amount of time analyzing it and
writing journal papers. After all, data
collection is expensive and time con-
suming, and requires working in dirty
places without a decent Internet con-
nection. Scientists have a vested inter-
est in getting as much “scientific val-
ue” as possible out of a field campaign,
even if this requires a great deal of ef-
fort to understand the data once it has
been collected. In contrast, the sensor
network community has developed a
wide range of techniques to perform
data processing on the fly, aggregating
and reducing the amount of data pro-
duced by the network to satisfy band-
width and energy constraints. Many of
these techniques are at odds with the
domain scientists’ view of instrumen-
tation. No geophysicist is interested in

the “average seismic signal” sampled
by multiple nodes in the network. We
advocate a two-pronged approach to
this problem. The first is to incorpo-
rate large flash memories onto sen-
sor nodes: it is now possible to build
multi-gigabyte SD or Compact Flash
memory into every node, allowing for
months of continuous sensor data to
be stored locally.

Though this converts the sensor
node into a glorified data logger, it also
ensures that all of the data will be avail-
able for (later) analysis and validation
of the network’s correct operation. It is
often necessary to service nodes in the
field, such as to change batteries, offer-
ing an early opportunity to retrieve the
data manually by swapping flash cards.
The second approach is to perform
data collection with the goal of maxi-
mizing scientific value while satisfying

resource constraints, such as a target
battery lifetime. Our work on the Lance
system5 demonstrated it is possible to
drive signal downloads from a sensor
network in a manner that achieves near
optimal data quality subject to these
constraints. Figure 3 shows the rectifi-
cation of raw signals collected from the
network.

Inherent in this approach is the as-
sumption that not all data is created
equal: there must be some domain-
specific assignment of “value” to the
signals collected by the network to
drive the process. In volcano seismol-
ogy, scientists are interested in signals
corresponding to geophysical events
(earthquakes, tremors, explosions)
rather than the quiet lull that can last
for hours or days between such events.
Fortunately, a simple amplitude filter
running on each sensor node can read-
ily detect seismic events of interest.

Lesson #2: Computer scientists
and domain scientists need common
ground. It should come as no surprise
that the motivations of computer sci-
entists and “real” scientists are not
always aligned. Domain scientists are
largely interested in obtaining high-
quality data (see Lesson #1 above);
whereas computer scientists are driven
by the desire to do “cool stuff:” new
protocols, new algorithms, new pro-
gramming models. Our field thrives
on novelty whereas domain scientists
have an interest in measured conserva-
tism. Anything new we computer scien-
tists throw into the system potentially
makes it harder, not easier, for the
domain scientists to publish papers
based on the results.

Finding common ground is essen-
tial to making such collaborations
work. Starting small can help. Our
first volcano deployment involved just
three nodes running for two days, but
in the process we learned an incred-
ible amount about how volcanolo-
gists do field work (and what a donkey
will—and will not—carry on its back).
Our second deployment focused on
collecting data with the goal of mak-
ing the geophysicists happy with the fi-
delity of the instrument. The third was
largely driven by CS goals, but with an
eye toward meeting the scientists’ data
requirements. Writing joint grant pro-
posals can also help to get everyone on
the same page.

Figure 2a. Myth (taken from Sankarasubramaniam3).

SinkEvent radius

Figure 2b. Reality (Reventador volcano, 2005; from Werner-Allen et al6).

viewpoints

november 2010 | vol. 53 | no. 11 | communications of the acm 39

Lesson #3: Don’t forget about the
base station! The base station is a criti-
cal component of any sensor network
architecture: it is responsible for coor-
dinating the network’s operation, mon-
itoring its activity, and collecting the
sensor data itself. Yet it often gets short
shrift, perhaps because of the false im-
pression the base station code will be
easy to write or that it is uninteresting.

The vast majority of our development
efforts focused on the sensor node soft-
ware, which is fairly complex and uses
nonstandard programming languages
and tools. The base station, in our case
a laptop located at the volcano obser-
vatory, was mostly an afterthought:
some slapped-together Perl scripts and
a monolithic Java program acting as a
combined network controller, data log-

ger, monitor, and GUI. The base station
code underwent a major overhaul in the
first two days after arriving in the field,
mostly to add features (such as logging)
that we didn’t anticipate needing dur-
ing our lab testing. We paid for the slap-
dash nature of the base station software.
One race condition in the Java code (for
which the author takes full credit) led
to an 8-hour outage, while everyone was
asleep. (We also assumed that the elec-
tricity supply at the observatory would
be fairly reliable, which turned out not
to be true.)

Our redesign for the 2007 Tungura-
hua deployment involved modularizing
the base station code, so that each com-
ponent can fail independently. One pro-
gram communicates with the network;
another acts as a GUI; another logs the
sensor data; and another runs the algo-
rithm for scheduling downloads. Bugs
can be fixed and each of these programs
can be restarted at any time without dis-
rupting the other programs.

Conclusion
Scientific discovery is increasingly driv-
en by advances in computing technol-
ogy, and sensor networks are an impor-
tant tool to enhance data collection in
many scientific domains. Still, there is a
gap between the stereotype of a sensor
network in the literature and what many
scientists need to obtain good field data.
Working closely with domain scientists
yields tremendous opportunities for
furthering a computer science research
agenda driven by real-world problems.	

References
1.	 Kim, S. et al. Health monitoring of civil infrastructures

using wireless sensor networks. In Proceedings of
IPSN 2007 (Cambridge, MA, Apr. 2007).

2.	 Liu, T. et al. Implementing software on resource-
constrained mobile sensors: Experiences with
Impala and ZebraNet. In Proceedings of the Second
International Conference on Mobile Systems,
Applications, and Services (MobiSYS’04), June 2004.

3.	S ankarasubramaniam, Y., Akan, O., and Akyildiz, I.
ESRT: Event-to-sink reliable transport in wireless
sensor networks. In Proceedings of MobiHoc’03, 2003.

4.	T olle, G. et al. A macroscope in the redwoods.
In Proceedings of the Third ACM Conference on
Embedded Networked Sensor Systems (SenSys 2005).

5.	 Werner-Allen, G., Dawson-Haggerty, S., and Welsh, M.
Lance: Optimizing high-resolution signal collection in
wireless sensor networks. In Proceedings of the 6th
ACM Conference on Embedded Networked Sensor
Systems (SenSys’08), Nov. 2008.

6.	 Werner-Allen, G. et al. Fidelity and yield in a volcano
monitoring sensor network. In Proceedings of the 7th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 2006), Nov. 2006.

Matt Welsh (mdw@eecs.harvard.edu) is a professor of
computer science at Harvard University in Cambridge, MA.

Copyright held by author.

Figure 3a. Original data: bad timing, unnormalized signals.

 1.2e+07

1e+07

8e+06

6e+06

4e+06

2e+06

0

–2e+06

–4e+06

1.1239e+09 1.1239e+09 1.1239e+09 1.1239e+09 1.1239e+09 1.1239e+09 1.1239e+

Figure 3b. Data after cleanup.

204

213

208

206

209

207

200

201

250

203

202

205

212

210

251

214

0
3:

4
4

:3
0

0
3:

4
4

:4
0

30
:4

4
:5

0

0
3:

45
:0

0

0
3:

45
:1

0

0
3:

45
:2

0

0
3:

45
:3

0

0
3:

45
:4

0

0
3:

45
:5

0

0
3:

4
6:

0
0

0
3:

4
6:

10

0
3:

4
6:

20

0
3:

4
6:

30

Time (UTC)

mailto:mdw@eecs.harvard.edu

ACM, Advancing Computing as
a Science and a Profession

Advancing Computing as a Science & Profession

Dear Colleague,

The power of computing technology continues to drive innovation to all corners of the globe,
bringingwith it opportunities for economic development and job growth. ACM is ideally positioned

to help computing professionals worldwide stay competitive in this dynamic community.

ACM provides invaluable member benefits to help you advance your career and achieve success in your
chosen specialty. Our international presence continues to expand and we have extended our online

resources to serve needs that span all generations of computing practitioners, educators, researchers, and
students.

ACM conferences, publications, educational efforts, recognition programs, digital resources, and diversity
initiatives are defining the computing profession and empowering the computing professional.

This year we are launchingTech Packs, integrated learning packages on current technical topics created and
reviewed by expert ACMmembers. The Tech Pack core is an annotated bibliography of resources from the
renowned ACMDigital Library – articles from journals, magazines, conference proceedings, Special Interest
Group newsletters, videos, etc. – and selections from ourmany online books and courses, as well an non-
ACM resources where appropriate.

BY BECOMING AN ACMMEMBERYOU RECEIVE:

Timely access to relevant information
Communications of the ACMmagazine • ACMTech Packs • TechNews email digest • Technical Interest Alerts and
ACM Bulletins • ACM journals and magazines at member rates • full access to the acmqueue website for practi-
tioners • ACM SIG conference discounts • the optional ACMDigital Library

Resources that will enhance your career and follow you to new positions
Career & Job Center • online books from Safari® featuring O’Reilly and Books24x7® • online courses in multiple
languages • virtual labs • e-mentoring services • CareerNews email digest • access to ACM’s 34 Special Interest
Groups • an acm.org email forwarding address with spam filtering

ACM’s worldwide network of more than 97,000 members ranges from students to seasoned professionals and
includesmany renowned leaders in the field. ACMmembers get access to this network and the advantages that
come from their expertise to keep you at the forefront of the technology world.

Please take a moment to consider the value of an ACM membership for your career and your future in the
dynamic computing profession.

Sincerely,

Alain Chesnais

President
Association for Computing Machinery

ACM, Advancing Computing as
a Science and a Profession

Advancing Computing as a Science & Profession

Dear Colleague,

The power of computing technology continues to drive innovation to all corners of the globe,
bringingwith it opportunities for economic development and job growth. ACM is ideally positioned

to help computing professionals worldwide stay competitive in this dynamic community.

ACM provides invaluable member benefits to help you advance your career and achieve success in your
chosen specialty. Our international presence continues to expand and we have extended our online

resources to serve needs that span all generations of computing practitioners, educators, researchers, and
students.

ACM conferences, publications, educational efforts, recognition programs, digital resources, and diversity
initiatives are defining the computing profession and empowering the computing professional.

This year we are launchingTech Packs, integrated learning packages on current technical topics created and
reviewed by expert ACMmembers. The Tech Pack core is an annotated bibliography of resources from the
renowned ACMDigital Library – articles from journals, magazines, conference proceedings, Special Interest
Group newsletters, videos, etc. – and selections from ourmany online books and courses, as well an non-
ACM resources where appropriate.

BY BECOMING AN ACMMEMBERYOU RECEIVE:

Timely access to relevant information
Communications of the ACMmagazine • ACMTech Packs • TechNews email digest • Technical Interest Alerts and
ACM Bulletins • ACM journals and magazines at member rates • full access to the acmqueue website for practi-
tioners • ACM SIG conference discounts • the optional ACMDigital Library

Resources that will enhance your career and follow you to new positions
Career & Job Center • online books from Safari® featuring O’Reilly and Books24x7® • online courses in multiple
languages • virtual labs • e-mentoring services • CareerNews email digest • access to ACM’s 34 Special Interest
Groups • an acm.org email forwarding address with spam filtering

ACM’s worldwide network of more than 97,000 members ranges from students to seasoned professionals and
includesmany renowned leaders in the field. ACMmembers get access to this network and the advantages that
come from their expertise to keep you at the forefront of the technology world.

Please take a moment to consider the value of an ACM membership for your career and your future in the
dynamic computing profession.

Sincerely,

Alain Chesnais

President
Association for Computing Machinery

http://acm.org

ACM, Advancing Computing as
a Science and a Profession

Advancing Computing as a Science & Profession

Dear Colleague,

The power of computing technology continues to drive innovation to all corners of the globe,
bringingwith it opportunities for economic development and job growth. ACM is ideally positioned

to help computing professionals worldwide stay competitive in this dynamic community.

ACM provides invaluable member benefits to help you advance your career and achieve success in your
chosen specialty. Our international presence continues to expand and we have extended our online

resources to serve needs that span all generations of computing practitioners, educators, researchers, and
students.

ACM conferences, publications, educational efforts, recognition programs, digital resources, and diversity
initiatives are defining the computing profession and empowering the computing professional.

This year we are launchingTech Packs, integrated learning packages on current technical topics created and
reviewed by expert ACMmembers. The Tech Pack core is an annotated bibliography of resources from the
renowned ACMDigital Library – articles from journals, magazines, conference proceedings, Special Interest
Group newsletters, videos, etc. – and selections from ourmany online books and courses, as well an non-
ACM resources where appropriate.

BY BECOMING AN ACMMEMBERYOU RECEIVE:

Timely access to relevant information
Communications of the ACMmagazine • ACMTech Packs • TechNews email digest • Technical Interest Alerts and
ACM Bulletins • ACM journals and magazines at member rates • full access to the acmqueue website for practi-
tioners • ACM SIG conference discounts • the optional ACMDigital Library

Resources that will enhance your career and follow you to new positions
Career & Job Center • online books from Safari® featuring O’Reilly and Books24x7® • online courses in multiple
languages • virtual labs • e-mentoring services • CareerNews email digest • access to ACM’s 34 Special Interest
Groups • an acm.org email forwarding address with spam filtering

ACM’s worldwide network of more than 97,000 members ranges from students to seasoned professionals and
includesmany renowned leaders in the field. ACMmembers get access to this network and the advantages that
come from their expertise to keep you at the forefront of the technology world.

Please take a moment to consider the value of an ACM membership for your career and your future in the
dynamic computing profession.

Sincerely,

Alain Chesnais

President
Association for Computing Machinery

Priority Code: AD10

Online
http://www.acm.org/join

Phone
+1-800-342-6626 (US & Canada)

+1-212-626-0500 (Global)

Fax
+1-212-944-1318

membership application &
digital library order form

PROFESSIONALMEMBERSHIP:

o ACM Professional Membership: $99 USD

o ACM Professional Membership plus the ACMDigital Library:

$198 USD ($99 dues + $99 DL)

o ACMDigital Library: $99 USD (must be an ACMmember)

STUDENTMEMBERSHIP:

o ACM Student Membership: $19 USD

o ACM StudentMembershipplus theACMDigital Library: $42USD

o ACM StudentMembership PLUSPrintCACMMagazine: $42USD

o ACM Student Membership w/Digital Library PLUS Print

CACMMagazine: $62 USD

choose onemembership option:

Name

Address

City State/Province Postal code/Zip

Country E-mail address

Area code & Daytime phone Fax Member number, if applicable

Payment must accompany application. If paying by check or
money order, make payable to ACM, Inc. in US dollars or foreign
currency at current exchange rate.

o Visa/MasterCard o American Express o Check/money order

o Professional Member Dues ($99 or $198) $ ______________________

o ACM Digital Library ($99) $ ______________________

o Student Member Dues ($19, $42, or $62) $ ______________________

Total Amount Due $ ______________________

Card # Expiration date

Signature

Professional membership dues include $40 toward a subscription
to Communications of the ACM. Member dues, subscriptions,
and optional contributions are tax-deductible under certain
circumstances. Please consult with your tax advisor.

payment:

RETURN COMPLETED APPLICATIONTO:

All new ACMmembers will receive an
ACMmembership card.

For more information, please visit us at www.acm.org

Association for Computing Machinery, Inc.
General Post Office
P.O. Box 30777
NewYork, NY 10087-0777

Questions? E-mail us at acmhelp@acm.org
Or call +1-800-342-6626 to speak to a live representative

Satisfaction Guaranteed!

Purposes of ACM
ACM is dedicated to:
1) advancing the art, science, engineering,
and application of information technology
2) fostering the open interchange of
information to serve both professionals and
the public
3) promoting the highest professional and
ethics standards

I agree with the Purposes of ACM:

Signature

ACM Code of Ethics:
http://www.acm.org/serving/ethics.html

You can join ACM in several easy ways:

Or, complete this application and return with payment via postal mail

Special rates for residents of developing countries:
http://www.acm.org/membership/L2-3/

Special rates for members of sister societies:
http://www.acm.org/membership/dues.html

Advancing Computing as a Science & Profession

Please print clearly

ACM, Advancing Computing as
a Science and a Profession

Advancing Computing as a Science & Profession

Dear Colleague,

The power of computing technology continues to drive innovation to all corners of the globe,
bringingwith it opportunities for economic development and job growth. ACM is ideally positioned

to help computing professionals worldwide stay competitive in this dynamic community.

ACM provides invaluable member benefits to help you advance your career and achieve success in your
chosen specialty. Our international presence continues to expand and we have extended our online

resources to serve needs that span all generations of computing practitioners, educators, researchers, and
students.

ACM conferences, publications, educational efforts, recognition programs, digital resources, and diversity
initiatives are defining the computing profession and empowering the computing professional.

This year we are launchingTech Packs, integrated learning packages on current technical topics created and
reviewed by expert ACMmembers. The Tech Pack core is an annotated bibliography of resources from the
renowned ACMDigital Library – articles from journals, magazines, conference proceedings, Special Interest
Group newsletters, videos, etc. – and selections from ourmany online books and courses, as well an non-
ACM resources where appropriate.

BY BECOMING AN ACMMEMBERYOU RECEIVE:

Timely access to relevant information
Communications of the ACMmagazine • ACMTech Packs • TechNews email digest • Technical Interest Alerts and
ACM Bulletins • ACM journals and magazines at member rates • full access to the acmqueue website for practi-
tioners • ACM SIG conference discounts • the optional ACMDigital Library

Resources that will enhance your career and follow you to new positions
Career & Job Center • online books from Safari® featuring O’Reilly and Books24x7® • online courses in multiple
languages • virtual labs • e-mentoring services • CareerNews email digest • access to ACM’s 34 Special Interest
Groups • an acm.org email forwarding address with spam filtering

ACM’s worldwide network of more than 97,000 members ranges from students to seasoned professionals and
includesmany renowned leaders in the field. ACMmembers get access to this network and the advantages that
come from their expertise to keep you at the forefront of the technology world.

Please take a moment to consider the value of an ACM membership for your career and your future in the
dynamic computing profession.

Sincerely,

Alain Chesnais

President
Association for Computing Machinery

http://www.acm.org/join
http://www.acm.org/membership/L2-3/
http://www.acm.org/membership/dues.html
http://www.acm.org/serving/ethics.html
http://www.acm.org
mailto:acmhelp@acm.org

42 communications of the acm | november 2010 | vol. 53 | no. 11

practice

Engineers employ many different tactics to focus on the
user when writing software: for example, listening
to user feedback, fixing bugs, and adding features
that their users are clamoring for. Since Web-based
services have made it easier for users to move to new
applications, it is becoming even more important
to focus on building and retaining user trust. We
have found that an incredibly effective—although
certainly counterintuitive—way to earn and maintain
user trust is to make it easy for users to leave your
product with their data in tow. This not only prevents
lock-in and engenders trust, but also forces your
team to innovate and compete on technical merit.
We call this data liberation.

Until recently, users rarely asked
whether they could quickly and eas-
ily get their data out before they put
reams of personal information into a
new Internet service. They were more
likely to ask questions such as: “Are
my friends using the service?” “How
reliable is it?” and “What are the odds
that the company providing the service
is going to be around in six months or
a year?” Users are starting to realize,
however, that as they store more of
their personal data in services that are
not physically accessible, they run the
risk of losing vast swaths of their on-
line legacy if they do not have a means
of removing their data.

It is typically a lot easier for software
engineers to pull data out of a service
that they use than it is for regular us-

The Case
Against
Data
Lock-in

doi:10.1145/1839676.1839691

 Article development led by
 queue.acm.org

Want to keep your users?
Just make it easy for them to leave.

by Brian W. Fitzpatrick and JJ Lueck

http://queue.acm.org

november 2010 | vol. 53 | no. 11 | communications of the acm 43

ill

u

s
t

r
a

t
i

o
n

 b
y

 g
a

r
y

 n
e

ill

ers. If APIs are available, we engineers
can cobble together a program to pull
our data out. Without APIs, we can even
whip up a screen scraper to get a copy of
the data. Unfortunately, for most users
this is not an option, and they are often
left wondering if they can get their data
out at all.

Locking your users in, of course, has
the advantage of making it more diffi-
cult for them to leave you for a competi-
tor. Likewise, if your competitors lock
their users in, it is harder for those users
to move to your product. Nonetheless,
it is far preferable to spend your engi-
neering effort on innovation than it is
to build bigger walls and stronger doors
that prevent users from leaving. Making
it easier for users to experiment today
greatly increases their trust in you, and

they are more likely to return to your
product line tomorrow.

Locking users in may suppress a
company’s need to innovate as rapidly
as possible. Instead, your company may
decide—for business reasons—to slow
down development on your product
and move engineering resources to an-
other product. This makes your prod-
uct vulnerable to other companies that
innovate at a faster rate. Lock-in allows
your company to have the appearance
of continuing success when, without in-
novation, it may in fact be withering on
the vine.

If you do not—or cannot—lock your
users in, the best way to compete is
to innovate at a breakneck pace. Let’s
use Google Search as an example. It’s a
product that cannot lock users in: users

do not have to install software to use it;
they do not have to upload data to use
it; they do not have to sign two-year con-
tracts; and if they decide to try another
search engine, they merely type it into
their browser’s location bar, and they
are off and running.

How has Google managed to get us-
ers to keep coming back to its search
engine? By focusing obsessively on
constantly improving the quality of its
results. The fact that it is so easy for
users to switch has instilled an incred-
ible sense of urgency in Google’s search
quality and ranking teams. At Google we
think that if we make it easy for users to
leave any of our products, failure to im-
prove a product results in immediate
feedback to the engineers, who respond
by building a better product.

44 communications of the acm | november 2010 | vol. 53 | no. 11

practice

What Data Liberation Looks Like
At Google, our attitude has always been
that users should be able to control the
data they store in any of our products,
and that means they should be able to
get their data out of any product. Period.
There should be no additional mone-
tary cost to do so, and perhaps most im-
portantly, the amount of effort required
to get the data out should be constant,
regardless of the amount of data. Indi-
vidually downloading a dozen photos is
no big inconvenience, but what if a user
had to download 5,000 photos, one at a
time, to get them out of an application?
That could take weeks of their time.

Even if users have a copy of their
data, it can still be locked in if it is in a
proprietary format. Some word proces-
sor documents from 15 years ago can-
not be opened with modern software
because they are stored in a proprietary
format. It is important, therefore, not
only to have access to data, but also to
have it in a format that has a publicly
available specification. Furthermore,
the specification must have reason-
able license terms: for example, it
should be royalty-free to implement.
If an open format already exists for the
exported data (for example, JPEG or
TIFF for photos), then that should be
an option for bulk download. If there
is no industry standard for the data in
a product (for example, blogs do not
have a standard data format), then
at the very least the format should be
publicly documented—bonus points if
your product provides an open source
reference implementation of a parser
for your format.

The point is that users should be in
control of their data, which means they
need an easy way of accessing it. Provid-
ing an API or the ability to download
5,000 photos one at a time does not ex-
actly make it easy for your average user
to move data in or out of a product.
From the user-interface point of view,
users should see data liberation merely
as a set of buttons for import and export
of all data in a product.

Google is addressing this problem
through its Data Liberation Front,
an engineering team whose goal is to
make it easier to move data in and out
of Google products. The data libera-
tion effort focuses specifically on data
that could hinder users from switch-
ing to another service or competing

product—that is, data that users cre-
ate in or import into Google products.
This is all data stored intentionally via
a direct action—such as photos, email,
documents, or ad campaigns—that us-
ers would most likely need a copy of if
they wanted to take their business else-
where. Data indirectly created as a side
effect (for example, log data) falls out-
side of this mission, as it is not particu-
larly relevant to lock-in.

Another “non-goal” of data libera-
tion is to develop new standards: we al-
low users to export in existing formats
where we can, as in Google Docs where
users can download word processing
files in OpenOffice or Microsoft Office
formats. For products where there is
no obvious open format that can con-
tain all of the information necessary,
we provide something easily machine
readable such as XML (for example,
for Blogger feeds, including posts and
comments, we use Atom), publicly
document the format, and, where pos-
sible, provide a reference implementa-
tion of a parser for the format (see the
Google Blog Converters AppEngine
project for an examplea). We try to give
the data to the user in a format that
makes it easy to import into another
product. Since Google Docs deals
with word processing documents and
spreadsheets that predate the rise of
the open Web, we provide a few differ-
ent formats for export; in most prod-
ucts, however, we assiduously avoid
the rat hole of exporting into every
known format under the sun.

The User’s View
There are several scenarios where us-
ers might want to get a copy of their
data from your product: they may have
found another product that better suits
their needs and they want to bring their
data into the new product; you have an-
nounced that you are going to stop sup-
porting the product they are using; or,
worse, you may have done something to
lose their trust.

Of course, just because your users
want a copy of their data does not nec-
essarily mean they are abandoning your
product. Many users just feel safer hav-

a	 http://code.google.com/p/google-blog-converters-
appengine/wiki/BloggerExportTemplate; and
http://code.google.com/apis/blogger/docs/2.0/
reference.html#LinkCommentsToPosts.

It is preferable
to spend your
engineering effort
on innovation than
it is to build bigger
walls and stronger
doors that prevent
users from leaving.
Making it easier for
users to experiment
today greatly
increases their
trust, and they
are more likely
to return to
your product
line tomorrow.

http://code.google.com/p/google-blog-converters-appengine/wiki/BloggerExportTemplate
http://code.google.com/apis/blogger/docs/2.0/reference.html#LinkCommentsToPosts
http://code.google.com/p/google-blog-converters-appengine/wiki/BloggerExportTemplate
http://code.google.com/apis/blogger/docs/2.0/reference.html#LinkCommentsToPosts

practice

november 2010 | vol. 53 | no. 11 | communications of the acm 45

ing a local copy of their data as a backup.
We saw this happen when we first liber-
ated Blogger: many users started export-
ing their blogs every week while continu-
ing to host and write in Blogger. This
last scenario is more rooted in emotion
than logic. Most data that users have on
their computers is not backed up at all,
whereas hosted applications almost al-
ways store multiple copies of user data
in multiple geographic locations, ac-
counting for hardware failure in addi-
tion to natural disasters. Whether users’
concerns are logical or emotional, they
need to feel their data is safe: it’s impor-
tant that your users trust you.

Case Study: Google Sites
Google Sites is a Web site creator that
allows WYSIWYG editing through the
browser. We use this service inside of
Google for our main project page, as it is
really convenient for creating or aggre-
gating project documentation. We took
on the job of creating the import and ex-
port capabilities for Sites in early 2009.

Early in the design, we had to de-
termine what the external format of a
Google Site should be. Considering that
the utility Sites provides is the ability to
create and collaborate on Web sites,
we decided that the format best suited
for true liberation would be XHTML.
HTML, as the language of the Web, also
makes it the most portable format for
a Web site: just drop the XHTML pages
on your own Web server or upload them
to your Web service provider. We want-
ed to make sure this form of data por-
tability was as easy as possible with as
little loss of data as possible.

Sites uses its internal data format to
encapsulate the data stored in a Web
site, including all revisions to all pages
in the site. The first step to liberating
this data was to create a Google Data
API. A full export of a site is then pro-
vided through an open source Java cli-
ent tool that uses the Google Sites Data
API and transforms the data into a set of
XHTML pages.

The Google Sites Data API, like all
Google Data APIs, is built upon the
AtomPub specification. This allows for
RPC (remote procedure call)-style pro-
grammatic access to Google Sites data
using Atom documents as the wire for-
mat for the RPCs. Atom works well for
the Google Sites use case, as the data fits
fairly easily into an Atom envelope.

Figure 1 is a sample of one Atom en-
try that encapsulates a Web page within
Sites. This can be retrieved by using the
Content Feed to Google Sites.

We have highlighted (in red) the ac-
tual data that is being exported, which
includes an identifier, a last update time
in ISO 8601 format, title, revision num-
ber, and the actual Web-page content.
Mandatory authorship elements and
other optional information included in
the entry have been removed to keep the
example short.

Once the API was in place, the sec-
ond step was to implement the trans-
formation from a set of Atom feeds
into a collection of portable XHTML
Web pages. To protect against losing
any data from the original Atom, we
chose to embed all of the metadata
about each Atom entry right into the
transformed XHTML. Not having this

metadata in the transformed pages
poses a problem during an import—it
becomes unclear which elements of
XHTML correspond to the pieces of the
original Atom entry. Luckily, we did not
have to invent our own metadata em-
bedding technique; we simply used the
hAtom microformat.

To demonstrate the utility of micro-
formats, Figure 2 shows the same sam-
ple after being converted into XHTML
with hAtom microformat embedded:

The highlighted class attributes map
directly to the original Atom elements,
making it very explicit how to recon-
struct the original Atom when import-
ing this information back into Sites.
The microformat approach also has the
side benefit that any Web page can be
imported into Sites if the author is will-
ing to add a few class attributes to data
within the page. This ability to reimport

Figure 1. Atom entry encapsulating a Web page within Sites.

<entry xmlns:sites=”http://schemas.google.com/sites/2008”>
 <id>https://sites.google.com/feeds/content/site/...</id>
 <updated>2009-02-09T21:46:14.991Z</updated>
 <category scheme=”http://schemas.google.com/g/2005#kind”
 term=”http://schemas.google.com/sites/2008#webpage”
 label=”webpage”/>
 <title>Maps API Examples</title>
 <sites:revision>2</sites:revision>
 <content type=”xhtml”>
 <div xmlns=”http://www.w3.org/1999/xhtml”>
 ... PAGE CONTENT HERE ...
 </div>
 </content>
</entry>

Figure 2. Atom entry converted into XHTML.

<div class=”hentry webpage”
 id=”https://sites.google.com/feeds/content/site/...”>
 <h3>
 Maps API Examples
 </h3>
 <div>
 <div class=”entry-content”>
 <div xmlns=”http://www.w3.org/1999/xhtml”>
 ... PAGE CONTENT HERE ...
 </div>
 </div>
 </div>
 <small>
 Updated on
 <abbr class=”updated” title=”2009-02-09T21:46:14.991Z”>
 Feb 9, 2009
 </abbr>
 (Version 2)
 </small>
</div>

46 communications of the acm | november 2010 | vol. 53 | no. 11

practice

a user’s exported data in a lossless man-
ner is key to data liberation—it may take
more time to implement, but we think
the result is worthwhile.

Case Study: Blogger
One of the problems we often encoun-
ter when doing a liberation project is ca-
tering to the power user. These are our
favorite users. They are the ones who
love to use the service, put a lot of data
into it, and want the comfort of being
able to do very large imports or exports
of data at any time. Five years of jour-
nalism through blog posts and photos,
for example, can easily extend beyond
a few gigabytes of information, and at-
tempting to move that data in one fell
swoop is a real challenge. In an effort
to make import and export as simple as
possible for users, we decided to imple-
ment a one-click solution that would
provide the user with a Blogger export
file that contains all of the posts, com-
ments, static pages, and even settings
for any Blogger blog. This file is down-
loaded to the user’s hard drive and can
be imported back into Blogger later
or transformed and moved to another
blogging service.

One mistake we made when creat-
ing the import/export experience for
Blogger was relying on one HTTP trans-
action for an import or an export. HTTP
connections become fragile when the
size of the data you are transferring be-
comes large. Any interruption in that
connection voids the action and can
lead to incomplete exports or missing
data upon import. These are extremely
frustrating scenarios for users and,
unfortunately, much more prevalent
for power users with lots of blog data.
We neglected to implement any form
of partial export as well, which means
power users sometimes need to resort
to silly things such as breaking up their
export files by hand in order to have
better success when importing. We
recognize this is a bad experience for
users and are hoping to address it in a
future version of Blogger.

A better approach, one taken by ri-
val blogging platforms, is not to rely
on the user’s hard drive to serve as the
intermediary when attempting to mi-
grate lots of data between cloud-based
Blogging services. Instead, data lib-
eration is best provided through APIs,
and data portability is best provided by

lenge. An extensive photo collection,
for example, which can easily scale into
multiple gigabytes, can pose difficulties
with delivery given the current transfer
speeds of most home Internet connec-
tions. In this case, either we have a cli-
ent for the product that can sync data
to and from the service (such as Picasa),
or we rely on established protocols and
APIs (for example, POP and IMAP for
Gmail) to allow users to sync incremen-
tally or export their data.

Conclusion
Allowing users to get a copy of their
data is just the first step on the road to
data liberation: we have a long way to
go to get to the point where users can
easily move their data from one prod-
uct on the Internet to another. We look
forward to this future, where we as en-
gineers can focus less on schlepping
data around and more on building in-
teresting products that can compete
on their technical merits—not by hold-
ing users hostage. Giving users control
over their data is an important part of
establishing user trust, and we hope
more companies will see that if they
want to retain their users for the long
term, the best way to do that is by set-
ting them free.

Acknowledgments
Thanks to Bryan O’Sullivan, Ben Col-
lins-Sussman, Danny Berlin, Josh
Bloch, Stuart Feldman, and Ben Laurie
for reading drafts of this article.	

 Related articles
 on queue.acm.org

Other People’s Data
Stephen Petschulat
http://queue.acm.org/detail.cfm?id=1655240

Why Cloud Computing Will Never Be Free
Dave Durkee
http://queue.acm.org/detail.cfm?id=1772130

Brian Fitzpatrick started Google’s Chicago engineering
office in 2005 and is the engineering manager for the
Data Liberation Front and the Google Affiliate Network.
A published author, frequent speaker, and open source
contributor for more than 12 years, Fitzpatrick is a
member of the Apache Software Foundation and the Open
Web Foundation, as well as a former engineer at Apple
and CollabNet.

JJ Lueck joined the software engineering party at Google
in 2007. An MIT graduate and prior engineer at AOL,
Bose, and startups Bang Networks and Reactivity, he
enjoys thinking about problems such as cloud-to-cloud
interoperability and exploring the depths and potentials of
virtual machines.

© 2010 ACM 0001-0782/10/1100 $10.00

building code using those APIs to per-
form cloud-to-cloud migration. These
types of migrations require multiple
RPCs between services to move the
data piece by piece, and each of these
RPCs can be retried upon failure auto-
matically without user intervention. It
is a much better model than the one
transaction import. It increases the
likelihood of total success and is an
all-around better experience for the
user. True cloud-to-cloud portability,
however, works only when each cloud
provides a liberated API for all of the
user’s data. We think cloud-to-cloud
portability is really good for users, and
it’s a tenet of the Data Liberation Front.

Challenges
As you have seen from these case stud-
ies, the first step on the road to data
liberation is to decide exactly what us-
ers need to export. Once you have cov-
ered data that users have imported or
created by themselves into your prod-
uct, it starts to get complicated. Take
Google Docs, for example: a user clear-
ly owns a document that he or she cre-
ated, but what about a document that
belongs to another user, then is edited
by the user currently doing the export?
What about documents to which the
user has only read access? The set of
documents the user has read access
to may be considerably larger than the
set of documents the user has actually
read or opened if you take into account
globally readable documents. Lastly,
you have to take into account docu-
ment metadata such as access control
lists. This is just one example, but it
applies to any product that lets users
share or collaborate on data.

Another important challenge to
keep in mind involves security and
authentication. When you are making
it very easy and fast for users to pull
their data out of a product, you drasti-
cally reduce the time required for an
attacker to make off with a copy of all
your data. This is why it’s a good idea to
require users to re-authenticate before
exporting sensitive data (such as their
search history), as well as over-commu-
nicating export activity back to the user
(for example, email notification that
an export has occurred). We are explor-
ing these mechanisms and more as we
continue liberating products.

Large data sets pose another chal-

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1655240
http://queue.acm.org/detail.cfm?id=1772130

november 2010 | vol. 53 | no. 11 | communications of the acm 47

These days , w e are all data pack rats. Storage is
cheap, so if there is a chance the data could possibly
be useful, we keep it. We know that storage isn’t
completely reliable, so we keep backup copies as
well. But the more data we keep, and the longer we
keep it, the greater the chance that some of it will be
unrecoverable when we need it.

There is an obvious question we should
be asking: how many copies in storage
systems with what reliability do we
need to get a given probability that the
data will be recovered when we need
it? This may be an obvious question
to ask, but it is a surprisingly difficult
question to answer. Let’s look at the
reasons why.

To be specific, let’s suppose we need
to keep a petabyte for a century and
have a 50% chance that every bit will
survive undamaged. This may sound
like a lot of data and a long time, but
there are already data collections big-
ger than a petabyte that are important
to keep forever. The Internet Archive is

already multiple petabytes.
The state of our knowledge about

keeping bits safe can be summarized
as:

˲˲ The more copies, the safer. As the
size of the data increases, the per-copy
cost increases, reducing the number of
backup copies that can be afforded.

˲˲ The more independent the copies, the
safer. As the size of the data increases,
there are fewer affordable storage tech-
nologies. Thus, the number of copies
in the same storage technology in-
creases, decreasing the average level of
independence.

˲˲ The more frequently the copies are
audited, the safer. As the size of the data

Keeping
Bits Safe:
How Hard
Can It Be?

doi:10.1145/1839676.1839692

 Article development led by
 queue.acm.org

As storage systems grow larger and larger,
protecting their data for long-term storage
is becoming ever more challenging.

by David S.H. Rosenthal

http://queue.acm.org

48 communications of the acm | november 2010 | vol. 53 | no. 11

practice

increases, the time and cost needed for
each audit to detect and repair damage
increases, reducing their frequency.

At first glance, keeping a petabyte
for a century is not difficult. Storage
system manufacturers make claims
for their products that far exceed the
reliability we need. For example, Sun
claimed that its ST5800 Honeycomb
product had an MTTDL (mean time to
data loss) of 2.4×106 years.a,41 Off-the-
shelf solutions appear so reliable that
backups are unnecessary. Should we
believe these claims? Where do they
come from?

Before using Sun’s claim for the
ST5800 as an example, I should stipu-
late that the ST5800 was an excellent
product. It represented the state of the
art in storage technology, and Sun’s
marketing claims represented the state
of the art in storage marketing. Nev-
ertheless, Sun did not guarantee that
data in the ST5800 would last 2.4×106
years. Sun’s terms and conditions ex-
plicitly disclaimed any liability whatso-
ever for loss of, or damage to, the data
the ST5800 stores40 whenever it occurs.

a	 Numbers are expressed in powers-of-10 nota-
tion to help readers focus on the scale of the
problems and the extraordinary level of reli-
ability required.

All that Sun was saying was if you
watched a large number of ST5800
systems for a long time, recorded
the time at which each of them first
suffered a data loss, and then aver-
aged these times, the result would be
2.4×106 years. Suppose Sun watched
10 ST5800s and noticed that three of
them lost data during the first year,
four of them lost data after 2.4×106
years, and the remaining three lost
data after 4.8×106 years; Sun would be
correct that the MTTDL was 2.4×106
years. But we would not consider a
system with a 30% chance of data loss

in the first year was adequate to keep
a petabyte safe for a century. A single
MTTDL number is not a useful charac-
terization of a solution.

Let’s look at the slightly more
scientific claim made at the re-
cent launch of the SC5800 by the
marketing department of Sirius
Cybernetics:b “SC5800 has an MTTDL
of (2.4±0.4)×106 years.” Sirius implic-
itly assumes the failures are normally
distributed and thus claims that about
two-thirds of the failures would oc-
cur between 2.0×106 and 2.8×106 years

b	 Purveyors of chatty doors, existential eleva-
tors, and paranoid androids to the nobility
and gentry of this galaxy.1

after the start of the experiment. As
Sirius did not start watching a batch
of SC5800s 2.8 million years ago, how
would they know?

Sirius says it will sell 2×104 SC5800s
per year at $5×104 each (a $1 billion-
a-year business), and it expects the
product to be in the market for 10
years. The SC5800 has a service life of
10 years. So if Sirius watched the entire
production of SC5800s ($1010 worth of
storage systems) over their entire ser-
vice life, the experiment would end
20 years from now after accumulating
about 2×106 system-years of data. If its
claim were correct, Sirius would have
about a 17% chance of seeing a single
data-loss event.

In other words, Sirius claims the
probability that no SC5800 will ever
lose any data is more than 80%. Or,
since each SC5800 stores 5×1013 bytes,
there is an 80% probability that 1019
bytes of data will survive 10 years un-
damaged.

If one could believe Sirius’ claim,
the petabyte would look pretty safe
for a century. But even if Sirius were
to base its claim on an actual experi-
ment, it would not provide results for
20 years and even when it did, would
not validate the number in question.
In fact, claims such as those of Sun and
Sirius are not the result of experimen-
tation at all. No feasible experiment
could validate them. They are projec-
tions based on models of how compo-
nents of the system such as disks and
software behave.

Models
The state of the art in this kind of mod-
eling is exemplified by the Pergamum
project at UC Santa Cruz.39 Its model
includes disk failures at rates derived
from measurements30,35 and sector fail-
ures at rates derived from disk vendor
specifications. This system attempts to
conserve power by spinning the disks
down whenever possible; it makes an
allowance for the effect of doing so on
disk lifetime, but it is not clear upon
what this allowance is based. The Per-
gamum team reports that the simula-
tions were difficult:

“This lack of data is due to the ex-
tremely high reliability of these con-
figurations—the simulator modeled
many failures, but so few caused data
loss that the simulation ran very slowly. P

H
OTOGRAP

H
 B

Y
 TARAN

 RAMPERSA

D

practice

november 2010 | vol. 53 | no. 11 | communications of the acm 49

The more data we
keep, and the longer
we keep it, the
greater the chance
that some of it will
be unrecoverable
when we need it.

This behavior is precisely what we want
from an archival storage system: it can
gracefully handle many failure events
without losing data. Even though we
captured fewer data points for the tri-
ple inter-parity configuration, we be-
lieve the reported MTTDL is a reason-
able approximation.”39

Although the Pergamum team’s ef-
fort to obtain “a reasonable approxi-
mation” to the MTTDL of its system
is praiseworthy, there are a number of
reasons to believe it overestimates the
reliability of the system in practice:

˲˲ The model draws its failures from
exponential distributions. The team
thus assumes that both disk and sec-
tor failures are uncorrelated, although
all observations of actual failures5,42
report significant correlations. Corre-
lated failures greatly increase the prob-
ability of data loss.6,13

˲˲ Other than a small reduction in
disk lifetime from each power-on
event, the Pergamum team assumes
that failure rates observed in always-on
disk usage translate to the mostly off
environment. A study43 published after
the Pergamum paper reports a quan-
titative accelerated life test of data re-
tention in almost-always-off disks. It
shows that some of the 3.5-inch disks
anticipated by the Pergamum team
have data life dramatically worse in
this usage mode than 2.5-inch disks
using the same head and platter tech-
nology.

˲˲ The team assumes that disk and
sector failures are the only failures
contributing to the system failures,
although a study17 shows that other
hardware components contribute sig-
nificantly.

˲˲ It assumes that its software is bug-
free, despite several studies of file and
storage implementations14,20,31 that
uniformly report finding bugs capa-
ble of causing data loss in all systems
studied.

˲˲ It also ignores all other threats
to stored data34 as possible causes of
data loss. Among these are operator er-
ror, insider abuse, and external attack.
Each of these has been the subject of
anecdotal reports of actual data loss.

What can such models tell us?
Their results depend on both of the
following:

˲˲ The details of the simulation of
the system being studied, which, one

hopes, accurately reflect its behavior.
˲˲ The data used to drive the simu-

lation, which, one hopes, accurately
reflects the behavior of the system’s
components.

Under certain conditions, it is rea-
sonable to use these models to com-
pare different storage-system technol-
ogies. The most important condition is
that the models of the two systems use
the same data. A claim that modeling
showed system A to be more reliable
than system B when the data used to
model system A had much lower fail-
ure rates for components such as disk
drives would not be credible.

These models may well be the best
tools available to evaluate different
techniques for preventing data loss,
but they aren’t good enough to an-
swer our question. We need to know
the maximum rate at which data will
be lost. The models assume things,
such as uncorrelated errors and bug-
free software, that all real-world stud-
ies show are false. The models exclude
most of the threats to which stored
data is subject. In those cases where
similar claims, such as those for disk
reliability,30,35 have been tested, they
have been shown to be optimistic. The
models thus provide an estimate of the
minimum data loss rate to be expected.

Metrics
Even if we believed the models, the
MTTDL number does not tell us how
much data was lost in the average data-
loss event. Is petabyte system A with an
MTTDL of 106 years better than a sim-
ilar-size system B with an MTTDL of
103 years? If the average data-loss event
in system A loses the entire petabyte,
where the average data-loss event in
system B loses a kilobyte, it would be
easy to argue that system B was 109
times better.

Mean time to data loss is not a use-
ful metric for how well a system stores
bits through time, because it relates to
time but not to bits. Nor is the UBER
(unrecoverable bit error rate) typically
quoted by disk manufacturers; it is the
probability that a bit will be read in-
correctly regardless of how long it has
been sitting on the disk. It relates to
bits but not to time. Thus, we see that
we lack even the metric we would need
to answer our question.

Let us oversimplify the problem to

50 communications of the acm | november 2010 | vol. 53 | no. 11

practice

Our inability to
compute how many
backup copies we
need to achieve a
reliability target
is something we
are just going to
have to live with.
We are not going
to have enough
backup copies, and
stuff will get lost or
damaged.

get a clearer picture. Suppose we had
eliminated all possible sources of cor-
related data loss, from operator error
to excess heat. All that remained would
be bit rot, a process that randomly flips
the bits the system stores with a con-
stant small probability per unit time.
In this model we can treat bits as ra-
dioactive atoms, so that the time after
which there is a 50% probability that a
bit will have flipped is the bit half-life.

The requirement of a 50% chance
that a petabyte will survive for a centu-
ry translates into a bit half-life of 8×1017
years. The current estimate of the age
of the universe is 1.4×1010 years, so this
is a bit half-life approximately 6×107
times the age of the universe.

This bit half-life requirement clearly
shows the high degree of difficulty of
the problem we have set for ourselves.
Suppose we want to know whether a
system we are thinking of buying is
good enough to meet the 50% chance
of keeping a petabyte for a century.
Even if we are sublimely confident that
every source of data loss other than
bit rot has been totally eliminated, we
still have to run a benchmark of the
system’s bit half-life to confirm it is
longer than 6×107 times the age of the
universe. And this benchmark has to
be complete in a year or so; it can’t take
a century.

So we take 103 systems just like the
one we want to buy, write a petabyte of
data into each so we have an exabyte of
data altogether, wait a year, read the ex-
abyte back, and check it. If the system
is just good enough, we might see five
bit flips. Or, because bit rot is a random
process, we might see more, or less. We
would need either a lot more than an
exabyte of data or a lot more than a year
to be reasonably sure the bit half-life
was long enough for the job. But even
an exabyte of data for a year costs 10
times as much as the system we want
to buy.

What this thought-experiment tells
us is we are now dealing with such
large numbers of bits for such a long
time that we are never going to know
whether the systems we use are good
enough:

˲˲ The known causes of data loss are
too various and too highly correlated
for models to produce credible projec-
tions.

˲˲ Even if we ignore all those causes,

the experiments that would be needed
to be reasonably sure random bit rot
is not significant are too expensive, or
take too long, or both.

Measuring Failures
It wasn’t until 2007 that researchers
started publishing studies of the reli-
ability that actual large-scale storage
systems were delivering in practice.
Enterprises such as Google9 and insti-
tutions such the Sloan Digital Sky Sur-
vey37 and the Large Hadron Collider8
were collecting petabytes of data with
long-term value that had to remain
online to be useful. The annual cost
of keeping a petabyte online was more
than $1 million.27 It is easy to see why
questions of the economics and reli-
ability of storage systems became the
focus of researchers’ attention.

Papers at the 2007 File and Storage
Technologies (FAST) conference used
data from NetApp35 and Google30 to
study disk-replacement rates in large
storage farms. They showed that the
manufacturer’s MTTF numbers were
optimistic. Subsequent analysis of the
NetApp data17 showed that all other
components contributed to the storage
system failures and that:

“Interestingly, [the earlier studies]
found disks are replaced much more
frequently (2–4 times) than vendor-
specified [replacement rates]. But as
this study indicates, there are other
storage subsystem failures besides
disk failures that are treated as disk
faults and lead to unnecessary disk re-
placements.”17

Two studies, one at CERN (European
Organization for Nuclear Research)18
and one using data from NetApp,5
greatly improved on earlier work using
data from the Internet Archive.6,36 They
studied silent data corruption—events
in which the content of a file in storage
changes with no explanation or record-
ed errors—in state-of-the-art storage
systems.

The NetApp study looked at the in-
cidence of silent storage corruption in
individual disks in RAID arrays. The
data was collected over 41 months
from NetApp’s filers in the field, cov-
ering more than 1.5×106 drives. The
study found more than 4×105 silent
corruption incidents. More than 3×104
of them were not detected until RAID
restoration and could thus have caused

practice

november 2010 | vol. 53 | no. 11 | communications of the acm 51

we need to be, and thus the cost of the
necessary replication. At small scales
the response to this uncertainty is to
add more replicas, but as the scale in-
creases this rapidly becomes unafford-
able.

Replicating among identical sys-
tems is much less effective than repli-
cating among diverse systems. Iden-
tical systems are subject to common
mode failures—for example, those
caused by a software bug in all the sys-
tems damaging the same data in each.
On the other hand, purchasing and op-
erating a number of identical systems

will be considerably cheaper than oper-
ating a set of diverse systems.

Each replica is vulnerable to loss
and damage. Unless they are regularly
audited they contribute little to in-
creasing bit half-life. The bandwidth
and processing capacity needed to
scrub the data are both costly, and add-
ing these costs increases the risk of
failure. Custom hardware25 could com-
pute the SHA-128 checksum of a pet-
abyte of data in a month, but doing so
requires impressive bandwidth—the
equivalent of three gigabit Ethernet
interfaces running at full speed the en-
tire month. User access to data in long-
term storage is typically infrequent; it
is therefore rarely architected to pro-

data loss despite the replication and
auditing provided by NetApp’s row-di-
agonal parity RAID.11

The CERN study used a program
that wrote large files into CERN’s vari-
ous data stores, which represent a
broad range of state-of-the-art enter-
prise storage systems (mostly RAID ar-
rays), and checked them over a period
of six months. A total of about 9.7×1016
bytes was written and about 1.92×108
bytes were found to have suffered si-
lent corruption, of which about two-
thirds were persistent; rereading did
not return good data. In other words,
about 1.2×10–9 of the data written to
CERN’s storage was permanently cor-
rupted within six months. We can place
an upper bound on the bit half-life in
this sample of current storage systems
by assuming the data was written in-
stantly at the start of the six months
and checked instantly at the end; the
result is 2×108 or about 10–2 times the
age of the universe. Thus, to reach the
petabyte for a century requirement
we would need to improve the perfor-
mance of current enterprise storage
systems by a factor of at least 109.

Tolerating Failures
Despite manufacturers’ claims, cur-
rent research shows that state-of-the-
art storage systems fall so many orders
of magnitude below our bit preserva-
tion requirements that we cannot ex-
pect even dramatic improvements in
technology to fill the gap. Maintaining
a single replica in a single storage sys-
tem is not an adequate solution to the
bit preservation problem.

Practical digital preservation sys-
tems must therefore:

˲˲ Maintain more than one copy by
replicating their data on multiple, ide-
ally different, storage systems.

˲˲ Audit or (scrub) the replicas to de-
tect damage, and repair it by overwrit-
ing the known-bad copy with data from
another.

The more replicas and the more fre-
quently they are audited and repaired,
the longer the bit half-life we can ex-
pect. This is, after all, the basis for the
backups and checksums technique in
common use. In fact, current storage
systems already use such techniques
internally—for example, in the form
of RAID.29 Despite this, the bit half-life
they deliver is inadequate. Unfortu-

nately, adding the necessary inter-stor-
age-system replication and scrubbing
is expensive.

Cost figures from the San Diego
Supercomputer Centerc in 2008 show
that maintaining a single online copy
of a petabyte for a year costs about
$1.05×106. A single near-line copy on
tape costs about $4.2×105 a year. These
costs decrease with time, albeit not as
fast as raw disk costs. The British Li-
brary estimates a 30% per annum de-
crease. Assuming this rate continues
for at least a decade, if you can afford
about 3.3 times the first year’s cost to

store an extra replica for a decade, you
can afford to store it indefinitely. So,
adding a second replica of a petabyte
on disk would cost about $3.5×106 and
on tape about $1.4×106. Adding cost to
a preservation effort to increase reli-
ability in this way is a two-edged sword:
doing so necessarily increases the risk
that preservation will fail for economic
reasons.

Further, without detailed under-
standing of the rates at which different
mechanisms cause loss and damage, it
still is not possible to answer the ques-
tion we started with and to know how
many replicas would make us as safe as

c	 Figures for 2007 are in Moore et al.27

P
H

OTOGRAP

H

 B
Y

 TARAN

 RAMPERSA

D

52 communications of the acm | november 2010 | vol. 53 | no. 11

practice

vide such high-bandwidth read access.
System cost increases rapidly with I/O
bandwidth, and the additional access-
es to the data (whether on disk or on
tape) needed for scrubbing themselves
potentially increase the risk of failure.

The point of writing software that
reads and verifies the data-systems
store in this way is to detect damage
and exploit replication among systems
to repair it, thereby increasing bit half-
life. How well can we do this? RAID is
an example of a software technique of
this type applied to disks. In practice,
the CERN study18 looking at real RAID

systems from the outside showed a
significant rate of silent data corrup-
tion, and the NetApp study5 looking
at them from the inside showed a sig-
nificant rate of silent disk errors that
would lead to silent data corruption.
A study20 of the full range of current
algorithms used to implement RAID
found flaws leading to potential data
loss in all of them. Both this study, and
another from IBM,16 propose improve-
ments to the RAID algorithms but nei-
ther claims it can eliminate silent cor-
ruption, or even accurately predict its
incidence:

“While we attempt to use as realistic
probability numbers as possible, the
goal is not to provide precise data-loss

probabilities, but to illustrate the ad-
vantage of using a model checker, and
discuss potential trade-offs between
different protection schemes.”20

Thus, although intersystem repli-
cation and scrubbing are capable of
decreasing the incidence of data loss,
they cannot eliminate it completely.
And the replication and scrubbing
software itself will contain bugs that
can cause data loss. It must be doubt-
ful that we can implement these tech-
niques well enough to increase the bit
half-life of systems with an affordable
number of replicas by 109.

Magic Media
Considering the difficulties facing
disk-drive technology,12 the reliabil-
ity storage systems achieve is astonish-
ing, but it clearly isn’t enough. News
sites regularly feature stories reporting
claims that some new storage medium
has solved the problem of long-term
data storage. Synthetic stone DVDs23
claimed to last 1,000 years were a re-
cent example. These claims should be
treated as skeptically as those of Sun
and other storage system manufactur-
ers. It may well be that the media in
question are more reliable than their
competitors, but as we have seen, raw
media reliability is only a part of the
story. Our petabyte would be a stack

of 2×105 stone DVDs. A lot can happen
to a stack that big in 100 years. Truly
magic media that are utterly reliable
would make the problems better, but
they would not make them go away
completely.

I remember magnetic bubble mem-
ory, so I have a feeling of déjà vu, but it
is starting to look possible that flash
memory, or possibly more exotic solid-
state technologies such as memristors
or phase-change memory, may sup-
plant disks. There is a lot to like about
these technologies for long-term stor-
age, but will they improve storage reli-
ability?

Again, we don’t know the answer
yet. Despite flash memory’s ubiquity, it
is not even clear yet how to measure its
UBER:

“UBER values can be much better
than 10−15 but UBER is a strong func-
tion of program/erase cycling and
subsequent retention time, so UBER
specifications must be coupled with
maximum specifications for these
quantities.”26

In other words, it depends how you
use it, which does not appear to be the
case for disk. Flash memory used for
long-term data storage, which is writ-
ten once and read infrequently, should
in principle perform very well. And the
system-level effects of switching from
hard disk to flash can be impressive:

“FAWN [fast array of wimpy nodes]
couples low-power embedded CPUs to
small amounts of local flash storage,
and balances computation and I/O ca-
pabilities to enable efficient, massively
parallel access to data. …FAWN clus-
ters can handle roughly 350 key-value
queries per joule of energy—two orders
of magnitude more than a disk-based
system.”3

Fast CPUs, fast RAM, and fast disks
all use lots of power, so the low power
draw of FAWN is not a surprise. But
the high performance comes from an-
other aspect of disk evolution. Table 1
shows how long it would take to read
the whole of a state-of-the-art disk of
various generations.

Disks have been getting bigger but
they have not been getting equivalently
faster. This is to be expected; the data
rate depends on the inverse of the
diameter of a bit, but the capacity de-
pends on the inverse of the area of a bit.
FAWN nodes can read their entire con- P

H
OTOGRAP

H
 B

Y
 TARAN

 RAMPERSA

D

practice

november 2010 | vol. 53 | no. 11 | communications of the acm 53

Disks have been
getting bigger but
they have not been
getting equivalently
faster. This is to be
expected; the data
rate depends on
the inverse of the
diameter of a bit,
but the capacity
depends on the
inverse of the area
of a bit.

tents very quickly, useful for scrubbing,
as well as answering queries.

This is all encouraging, but once it
became possible to study the behavior
of disk storage at a large scale, it became
clear that system-level reliability fell far
short of the media specifications. This
should make us cautious about pre-
dicting a revolution from flash or any
other new storage technology.

Economics
Ever since Clayton Christensen pub-
lished The Innovator’s Dilemma10 it
has been common knowledge that
disk-drive cost per byte halves every
two years. So you might argue that you
don’t need to know how many copies
you need to keep your data safe for the
long term, you just need to know how
many you need to keep it safe for the
next few years. After that, you can keep
more copies.

In fact, what has happened is the
capacity at constant cost has been dou-
bling every two years, which is not quite
the same thing. As long as this expo-
nential grows faster than you generate
new data, adding copies through time
is a feasible strategy.

Alas, exponential curves can be de-
ceiving. Moore’s Law has continued to
deliver smaller and smaller transistors.
A few years ago, however, it effectively
ceased delivering faster and faster CPU
clock rates. It turned out that, from a
business perspective, there were more
important things to spend the extra
transistors on than making a single
CPU faster. Like putting multiple CPUs
on a chip.

At a recent Library of Congress
meeting, Dave Anderson of Seagate
warned4 that something similar is
about to happen to hard disks. Tech-
nologies—HAMR (heat-assisted mag-
netic recording) and BPM (bit pattern
media)—are in place to deliver the

2013 disk generation (that is, a con-
sumer 3.5-inch drive holding 8TB).
But the business case for building it
is weak. The cost of the transition to
BPM in particular is daunting.24 Lap-
tops, netbooks, and now tablets are
destroying the market for the desktop
boxes that 3.5-inch drives go into. And
very few consumers fill up the 2009
2TB disk generation, so what value
does having an 8TB drive add? Let
alone the problem of how to back up
an 8TB drive on your desk!

What is likely to happen—indeed,
is already happening—is that the con-
sumer market will transition rather
quickly to 2.5-inch drives. This will
eliminate the high-capacity $100 3.5-
inch drive, since it will no longer be
produced in consumer quantities.
Consumers will still buy $100 drives,
but they will be 2.5 inches and have
perhaps one-third the capacity. For a
while the $/byte curve will at best flat-
ten, and more likely go up. The prob-
lem this poses is that large-scale disk
farms are currently built from consum-
er 3.5-inch drives. The existing players
in the market have bet heavily on the
exponential cost decrease continuing;
if they’re wrong, it will be disruptive.

The Bigger Picture
Our inability to compute how many
backup copies we need to achieve a re-
liability target is something we are just
going to have to live with. In practice,
we are not going to have enough back-
up copies, and stuff will get lost or dam-
aged. This should not be a surprise, but
somehow it is. The fact that bits can be
copied correctly leads to an expecta-
tion that they always will be copied cor-
rectly, and then to an expectation that
digital storage will be reliable. There is
an odd cognitive dissonance between
this and people’s actual experience of
digital storage, which is that loss and
damage are routine occurrences.22

The fact that storage is not reliable
enough to allow us to ignore the prob-
lem of failures is just one aspect of a
much bigger problem looming over
computing as it continues to scale up.
Current long-running petascale high-
performance computer applications
require complex and expensive check-
point and restart schemes, because
the probability of a failure during ex-
ecution is so high that restarting from

Table 1. The time to read an entire disk of
various generations.

1990 240

2000 720

2006 6450

2009 8000

2013 12800

54 communications of the acm | november 2010 | vol. 53 | no. 11

practice

scratch is infeasible. This approach
will not scale to the forthcoming gen-
eration:

“…it is anticipated that exascale
systems will experience various kinds
of faults many times per day. It is also
anticipated that the current approach
for resilience, which relies on auto-
matic or application-level checkpoint-
restart, will not work because the time
for checkpointing and restarting will
exceed the mean time to failure of a full
system. …

“Some projections estimate that,
with the current technique, the time to
checkpoint and restart may exceed the
mean time to interrupt of top super-
computers before 2015. This not only
means that a computation will do little
progress; it also means that fault-han-
dling protocols have to handle multi-
ple errors—current solutions are often
designed to handle single errors.”7

Just as with storage, the numbers
of components and interconnections
are so large that the incidence of fail-
ures is significant, and the available
bandwidths are relatively so low that
recovering from the failures is time
consuming enough that multiple
failure situations have to be handled.
There is no practical, affordable way
to mask the failures from the applica-
tions. Application programmers will
need to pay much more attention to
detecting and recovering from errors
in their environment. To do so they
will need both the APIs and the system
environments implementing them to
become much more failure-aware.

API Enhancements
Storage APIs are starting to move in this
direction. Recent interfaces to storage
services2 allow the application’s write
call to provide not just a pointer to the
data and a length, but also, optionally,
the application’s message digest of the
data. This allows the storage system
to detect whether the data was dam-
aged during its journey from the ap-

plication to the device, or while it was
sitting in the storage device, or being
copied back to the application. Recent
research has shown the memory buf-
fers44 and data paths17 between the ap-
plication and the storage devices con-
tribute substantially to errors.

Let’s take the Amazon S3 (Simple
Storage Service) REST API2 as an exam-
ple to show that, while these develop-
ments are welcome, they are far from
a panacea. The PUT request supports
an optional (and recommended) Con-
tent-MD5 (Message-Digest algorithm
5) header containing the application’s
digest of the data. The responses to
most requests, including PUT, include
an ETag (entity tag) header with the
service’s MD5 of the object. The appli-
cation can remember the digest it com-
puted before the PUT and, when the
PUT returns, verify that the service’s
digest matches.

Doing so is a wise precaution, but
all it really tells the application is that
the service knows what the application
thinks is the correct digest. The service
knows this digest, not because it com-
puted the digest of the correct data, but
because the application provided it in
the Content-MD5 header. A malign or
malfunctioning service could respond
correctly to PUT and HEAD requests by
remembering the application’s digest,
without ever storing the data or com-
puting its digest.

The application could try to detect
a malign or malfunctioning service by
using a GET to obtain the stored data,
computing the digest (a) of the returned
data, and comparing that with (b) either
the digest in the response’s ETag head-
er or the digest it computed before the
original PUT and remembered (which
should be the same). It might seem that
there are two cases: if the two message
digests match, then the data is OK;d oth-
erwise it isn’t. There are actually four

d	 Assuming the digest algorithm has not been
broken, not a safe assumption for MD5.19

cases, as shown in Table 2, depending
on whether the digest (b) is unchanged
or not. The four cases illustrate two
problems:

˲˲ The bits forming the digest are
no different from the bits forming the
data; neither is magically incorrupt-
ible. A malign or malfunctioning ser-
vice could return bad data with a di-
gest in the ETag header that matched
the data but was not the digest origi-
nally computed. Applications need
to know whether the digest has been
changed. A system for doing so with-
out incorruptible storage is described
in Haber et al.15

˲˲ Given the pricing structure for
cloud storage services such as Ama-
zon S3, it is too expensive to extract the
entire data at intervals to confirm it is
being stored correctly. Some method
in which the service computes the
digest of the data is needed, but sim-
ply asking the service to return the
digest of a stored object is not an ad-
equate check.33 The service must be
challenged to prove its object is good.
The simplest way to do this is to ask
the service to compute the digest of
a nonce (a random string of bits) and
the object; because the service cannot
predict the nonce, a correct response
requires access to the data after the
request is received. Systems using this
technique are described in Maniatis et
al.21 and Shah et al.38

Early detection is a good thing:
the shorter the time between detec-
tion and repair, the smaller the risk
that a second error will compromise
the repair. But detection is only part
of the solution; the system also has to
be able to repair the damaged data. It
can do so only if it has replicated the
data elsewhere—and some dedupli-
cation layer has not optimized away
this replication.

Conclusion
It would be nice to end on an upbeat
note, describing some technological
fix that would allow applications to ig-
nore the possibility of failures in their
environment, and specifically in long-
term storage. Unfortunately, in the real
world, failures are inevitable. As sys-
tems scale up, failures become more
frequent. Even throwing money at the
problem can only reduce the incidence
of failures, not exclude them entirely.

Table 2. The four cases of message digest comparison.

Digest Match No Match

Unchanged Data OK Data bad

Changed Deliberate alteration Data and/or digest bad

practice

november 2010 | vol. 53 | no. 11 | communications of the acm 55

Applications in the future will need to
be much more aware of, and careful in
responding to, failures.

The high-performance computing
community accurately describes what
needs to be done:

“We already mentioned the lack of
coordination between software layers
with regards to errors and fault man-
agement. Currently, when a software
layer or component detects a fault it
does not inform the other parts of the
software running on the system in a
consistent manner. As a consequence,
fault-handling actions taken by this
software component are hidden to the
rest of the system. …In an ideal wor[l]
d, if a software component detects a
potential error, then the information
should propagate to other compo-
nents that may be affected by the error
or that control resources that may be
responsible for the error.”7

In particular, as regards storage,
APIs should copy Amazon’s S3 by pro-
viding optional data-integrity capabili-
ties that allow applications to perform
end-to-end checks. These APIs should
be enhanced to allow the application
to provide an optional nonce that is
prepended to the object data before
the message digest reported to the ap-
plication is computed. This would al-
low applications to exclude the possi-
bility that the reported digest has been
remembered rather than recomputed.

Acknowledgments
Grateful thanks are due to Eric Allman,
Kirk McKusick, Jim Gettys, Tom Lipkis,
Mark Compton, Petros Maniatis, Mary
Baker, Fran Berman, Tsutomu Shimo-
mura, and the late Jim Gray. Some of
this material was originally presented
at iPRES 2008 and subsequently pub-
lished in the International Journal of
Digital Curation.32

This work was funded by the mem-
ber libraries of the LOCKSS Alliance,
and the Library of Congress’ National
Digital Information Infrastructure
and Preservation Program. Errors and
omissions are the author’s own.	

 Related articles
 on queue.acm.org

Triple-Parity RAID and Beyond
Adam Leventhal
http://queue.acm.org/detail.cfm?id=1670144

Hard Disk Drives: The Good, the Bad
and the Ugly!
Jon Elerath
http://queue.acm.org/detail.cfm?id=1317403

You Don’t Know Jack about Disks
Dave Anderson
http://queue.acm.org/detail.cfm?id=864058

References
1.	A dams, D. The Hitchhiker’s Guide to the Galaxy. British

Broadcasting Corp., 1978.
2.	A mazon. Amazon S3 API Reference (Mar. 2006);

http://docs.amazonwebservices.com/AmazonS3/
latest/API/.

3.	A ndersen, D.G., Franklin, J., Kaminsky, M.,
Phanishayee, A., Tan, L., Vasudevan, V. FAWN: A fast
array of wimpy nodes. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems
Principles (2009), 1–14.

4.	A nderson. D. Hard drive directions (Sept. 2009);
http://www.digitalpreservation.gov/news/events/
other_meetings/storage09/docs/2-4_Anderson-
seagate-v3_HDtrends.pdf.

5.	 Bairavasundaram, L., Goodson, G., Schroeder, B.,
Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H. An
analysis of data corruption in the storage stack. In
Proceedings of 6th Usenix Conference on File and
Storage Technologies, (2008).

6.	 Baker, M., Shah, M., Rosenthal, D.S.H., Roussopoulos,
M., Maniatis, P., Giuli, T.J., Bungale, P. A fresh look
at the reliability of long-term digital storage. In
Proceedings of EuroSys2006, (Apr. 2006).

7.	C appello, F., Geist, A., Gropp, B., Kale, S., Kramer, B.,
Snir, M. Toward exascale resilience. Technical Report
TR-JLPC-09-01. INRIA-Illinois Joint Laboratory on
Petascale Computing, (July 2009).

8.	CERN . Worldwide LHC Computing Grid, 2008; http://
lcg.web.cern.ch/LCG/.

9.	C hang, F., Dean, J., Ghemawat, S., Hsieh, W. C.,
Wallach, D. A., Burrows, M., Chandra, T., Fikes, A.,
Grube, R.E. Bigtable: A distributed storage system
for structured data. In Proceedings of the 7th
Usenix Symposium on Operating System Design and
Implementation, (2006), 205–218.

10.	C hristensen, C.M. The Innovator’s Dilemma: When
New Technologies Cause Great Firms to Fail. Harvard
Business School Press (June 1997), Cambridge, MA.

11.	C orbett, P., English, B., Goel, A., Grcanac, T., Kleiman,
S., Leong, J., Sankar, S. Row-diagonal parity for double
disk failure correction. In 3rd Usenix Conference on
File and Storage Technologies (Mar. 2004).

12.	E lerath. J. Hard-disk drives: The good, the bad, and the
ugly. Commun. ACM 52, 6 (June 2009).

13.	E lerath, J.G., Pecht, M. Enhanced reliability modeling
of RAID storage systems. In Proceedings of the
37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, (2007), 175–184.

14.	E ngler, D. A system’s hackers crash course: techniques
that find lots of bugs in real (storage) system code.
In Proceedings of 5th Usenix Conference on File and
Storage Technologies, (Feb. 2007).

15.	 Haber, S., Stornetta, W.S. How to timestamp a digital
document. Journal of Cryptology 3, 2 (1991), 99–111.

16.	 Hafner, J.L., Deenadhayalan, V., Belluomini, W., Rao, K.
Undetected disk errors in RAID arrays. IBM Journal
of Research & Development 52, 4/5, (2008).

17.	 Jiang, W., Hu, C., Zhou, Y., Kanevsky, A. Are disks
the dominant contributor for storage failures? A
comprehensive study of storage subsystem failure
characteristics. In Proceedings of 6th Usenix
Conference on File and Storage Technologies, (2008).

18.	 Kelemen, P. Silent corruptions. In 8th Annual Workshop
on Linux Clusters for Super Computing, (2007)

19.	 Klima, V. Finding MD5 collisions—A toy for a notebook.
Cryptology ePrint Archive, Report 2005/075; http://
eprint.iacr.org/2005/075.

20.	 Krioukov, A., Bairavasundaram, L.N., Goodson, G.R.,
Srinivasan, K., Thelen, R., Arpaci-Dusseau, A.C.,
Arpaci-Dusseau, R.H. Parity lost and parity regained.
In Proceedings of 6th Usenix Conference on File and
Storage Technologies, (2008).

21.	M aniatis, P., Roussopoulos, M., Giuli, T.J., Rosenthal,
D.S.H., Baker, M., Muliadi, Y. Preserving peer replicas
by rate-limited sampled voting. In Proceedings of
the 19th ACM Symposium on Operating Systems
Principles, (Oct. 2003), 44–59.

22.	M arshall, C. “It’s like a fire. You just have to move on:”
Rethinking personal digital archiving. In 6th Usenix

Conference on File and Storage Technologies, (2008).
23.	M earian, L. Start-up claims its DVDs last 1,000 years.

Computerworld, (Nov. 2009).
24.	M ellor, C. Drive suppliers hit capacity increase

difficulties. The Register, (July 2010).
25.	M ichail, H.E., Kakarountas, A.P., Theodoridis, G.,

Goutis, C.E. A low-power and high-throughput
implementation of the SHA-1 hash function. In
Proceedings of the 9th WSEAS International
Conference on Computers, (2005).

26.	M ielke, N., Marquart, T., Wu1, N., Kessenich, J., Belgal,
H., Schares, E., Trivedi, F., Goodness, E., Nevill, L.R. Bit
error rate in NAND flash memories. In 46th Annual
International Reliability Physics Symposium, (2008),
9–19.

27.	M oore, R. L., D’Aoust, J., McDonald, R. H., Minor, D. Disk
and tape storage cost models. In Archiving 2007.

28.	N ational Institute of Standards and Technology
(NIST). Federal Information Processing Standard
Publication 180-1: Secure Hash Standard, (Apr. 1995).

29.	P atterson, D. A., Gibson, G., Katz, R.H. A case for
redundant arrays of inexpensive disks (RAID). In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, (June 1988),
109–116.

30.	P inheiro, E., Weber, W.-D., Barroso, L. A. Failure trends
in a large disk drive population. In Proceedings of 5th
Usenix Conference on File and Storage Technologies,
(Feb. 2007).

31.	P rabhakaran, V., Agrawal, N., Bairavasundaram, L.,
Gunawi, H., Arpaci-Dusseau, A.C., Arpaci-Dusseau,
R.H. IRON file systems. In Proceedings of the 20th
Symposium on Operating Systems Principles, (2005).

32.	R osenthal, D.S.H. Bit preservation: A solved problem?
International Journal of Digital Curation 1, 5 (2010).

33.	R osenthal, D.S.H. LOCKSS: Lots of copies keep stuff
safe. In NIST Digital Preservation Interoperability
Framework Workshop, (Mar. 2010).

34.	R osenthal, D.S.H., Robertson, T.S., Lipkis, T., Reich,
V., Morabito, S. Requirements for digital preservation
systems: a bottom-up approach. D-Lib Magazine 11, 11
(2005).

35.	S chroeder, B., Gibson, G. Disk failures in the real world:
What does an MTTF of 1,000,000 hours mean to you?
In Proceedings of 5th Usenix Conference on File and
Storage Technologies (Feb. 2007).

36.	S chwarz, T., Baker, M., Bassi, S., Baumgart, B., Flagg,
W., van Imngen, C., Joste, K., Manasse, M., Shah, M.
Disk failure investigations at the Internet Archive. In
Work-in-Progress Session, NASA/IEEE Conference on
Mass Storage Systems and Technologies, (2006).

37.	S DSS (Sloan Digital Sky Survey), 2008; http://www.
sdss.org/.

38.	S hah, M.A., Baker, M., Mogul, J.C., Swaminathan, R.
Auditing to keep online storage services honest. In
11th Workshop on Hot Topics in Operating Systems,
(May 2007).

39.	S torer, M.W., Greenan, K. M., Miller, E.L., Voruganti,
K. Pergamum: replacing tape with energy-efficient,
reliable, disk-based archival storage. In Proceedings
of 6th Usenix Conference on File and Storage
Technologies, (2008).

40.	Sun Microsystems. Sales Terms and Conditions,
Section 11.2, (Dec. 2006); http://store.sun.com/
CMTemplate/docs/legal_terms/TnC.jsp#11.

41.	S un Microsystems. ST5800 presentation. Sun PASIG
Meeting, (June 2008).

42.	T alagala, N. Characterizing large storage systems:
error behavior and performance benchmarks. Ph.D.
thesis, Computer Science Division, University of
California at Berkeley, (Oct. 1999).

43.	 Williams, P., Rosenthal, D. S. H., Roussopoulos, M.,
Georgis, S. Predicting the archival life of removable
hard disk drives. In Archiving 2008, (June 2008).

44.	Zhang, Y., Rajimwale, A., Arpaci-Dusseau, A.C.,
Arpaci-Dusseau, R.H. End-to-end data integrity for file
systems: A ZFS case study. In 8th Usenix Conference
on File and Storage Technologies, (2010).

David S.H. Rosenthal has been an engineer in
Silicon Valley for a quarter of a century, including as
a Distinguished Engineer at Sun Microsystems and
employee #4 at NVIDIA. For the last decade he has been
working on the problems of long-term digital preservation
under the auspices of the Stanford Library.

© 2010 ACM 0001-0782/10/1100 $10.00

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1670144
http://queue.acm.org/detail.cfm?id=1317403
http://queue.acm.org/detail.cfm?id=864058
http://lcg.web.cern.ch/Lcg/
http://eprint.iacr.org/2005/075
http://lcg.web.cern.ch/Lcg/
http://eprint.iacr.org/2005/075
http://www.sdss.org/
http://www.sdss.org/
http://store.sun.com/CMTemplate/docs/legal_terms/TnC.jsp#11
http://store.sun.com/CMTemplate/docs/legal_terms/TnC.jsp#11
http://docs.amazonwebservices.com/AmazonS3/latest/API/
http://docs.amazonwebservices.com/AmazonS3/latest/API/
http://www.digitalpreservation.gov/news/events/other_meetings/storage09/docs/2-4_Anderson-seagate-v3_HDtrends.pdf
http://www.digitalpreservation.gov/news/events/other_meetings/storage09/docs/2-4_Anderson-seagate-v3_HDtrends.pdf
http://www.digitalpreservation.gov/news/events/other_meetings/storage09/docs/2-4_Anderson-seagate-v3_HDtrends.pdf

56 communications of the acm | november 2010 | vol. 53 | no. 11

practice
doi:10.1145/1839676.1839693

 Article development led by
 queue.acm.org

To move forward with programming
languages we must first break free from
the tyranny of ASCII.

by Poul-Henning Kamp

me I have a tough row to hoe, but I will
attempt to argue that this time Pike is
merely rearranging the deckchairs of
the Titanic and that he missed the next
big thing by a wide margin.

Pike got fed up with C++ and Java
and did what any self-respecting hacker
would do: he created his own language—
better than Java, better than C++, better
than C—and he called it Go.

But did he go far enough?
The Go language does not in any way

look substantially different from any
of the other programming languages.
Fiddle a couple of glyphs here and there
and you have C, C++, Java, Python, Tcl, or
whatever.

Programmers are a picky bunch
when it comes to syntax, and it is a so-
bering thought that one of the most rap-
idly adopted programming languages
of all time, Perl, barely had one for the
longest time. Ironically, what syntax de-
signers are really fighting about is not so
much the proper and best syntax for the
expression of ideas in a machine-under-
standable programming language as it
is the proper and most efficient use of
the ASCII table real estate.

It’s all ASCII to me…
There used to be a programming lan-
guage called ALGOL, the lingua franca
of computer science back in its heyday.
ALGOL was standardized around 1960
and dictated about a dozen mathemat-
ical glyphs such as ×, ÷, ¬, and the very
readable subscripted 10 symbol, for
use in what today we call scientific no-
tation. Back then computers were built
by hand and had one-digit serial num-
bers. Having a teletypewriter custom-
ized for your programming language
was the least of your worries.

A couple of years later came the APL
programming language, which includ-
ed an extended character set containing
a lot of math symbols. I am told that APL
still survives in certain obscure corners
of insurance and economics modeling.

Then ASCII happened around 1963,
and ever since, programming languages
have been trying to fit into it. (Wikipedia
claims that ASCII grew the backslash [\]

One o f the naughty details of my Varnish software
is that the configuration is written in a domain-
specific language that is converted into C source
code, compiled into a shared library, and executed
at hardware speed. That obviously makes me a
programming language syntax designer, and just as
obviously I have started to think more about how we
express ourselves in these syntaxes.

Rob Pike recently said some very pointed words
about the Java programming language, which if you
think about it, sounded a lot like the pointed words
James Gosling had for C++, and remarkably similar to
what Bjarne Stroustrup said about good ol’ C.

I have always admired Pike. He was already a giant in
the field when I started, and his ability to foretell the
future has been remarkably consistent.1 In front of

Sir, Please
Step Away
from the
ASR-33!

http://queue.acm.org

november 2010 | vol. 53 | no. 11 | communications of the acm 57

specifically to support ALGOL’s /\ and \/
Boolean operators. No source is provid-
ed for the claim.)

The trouble probably started for real
with the C programming language’s
need for two kinds of and and or op-
erators. It could have used just or and
bitor, but | and || saved one and three
characters, which on an ASR-33 teletype
amounts to 1/10 and 3/10 second, re-
spectively.

It was certainly a fair trade-off—just
think about how fast you type yourself—
but the price for this temporal frugality
was a whole new class of hard-to-spot
bugs in C code.

Niklaus Wirth tried to undo some of
the damage in Pascal, and the bickering
over begin and end would no } take.

C++ is probably the language that
milks the ASCII table most by allow-
ing templates and operator overload-
ing. Until you have inspected your data
types, you have absolutely no idea what
+ might do to them (which is probably
why there never was enough interest to
stage an International Obfuscated C++
Code Contest, parallel to the IOCCC for
the C language).

C++ stops short of allowing the pro-
grammer to create new operators. You
cannot define :-: as an operator; you have
to stick to the predefined set. If Bjarne
Stroustrup had been more ambitious on
this aspect, C++ could have beaten Perl
by 10 years to become the world’s sec-
ond write-only programming language,
after APL.

How desperate the hunt for glyphs is
in syntax design is exemplified by how
Guido van Rossum did away with the
canonical scope delimiters in Python,
relying instead on indentation for this
purpose. What could possibly be of such
high value that a syntax designer would
brave the controversy this caused? A
high-value pair of matching glyphs, {
and }, for other use in his syntax could.
(This decision also made it impossible
to write Fortran programs in Python, a
laudable achievement in its own right.)

The best example of what happens
if you do the opposite is John Ouster-
hout’s Tcl programming language. De-

spite all its desirable properties—such
as being created as a language to be
embedded in tools—it has been widely
spurned, often with arguments about
excessive use of, or difficult-to-figure-
out placement of, {} and [].

My disappointment with Rob Pike’s
Go language is that the rest of the
world has moved on from ASCII, but
he did not. Why keep trying to cram an
expressive syntax into the straitjacket
of the 95 glyphs of ASCII when Unicode
has been the new black for most of the
past decade?

Unicode has the entire gamut of
Greek letters, mathematical and techni-
cal symbols, brackets, brockets, sprock-
ets, and weird and wonderful glyphs
such as “Dentistry symbol light down
and horizontal with wave” (0x23c7). Why
do we still have to name variables Ome-
gaZero when our computers now know
how to render 0x03a9+0x2080 properly?

The most recent programming lan-
guage syntax development that had
anything to do with character sets apart
from ASCII was when the ISO-C stan-
dard committee adopted trigraphs to
make it possible to enter C source code
on computers that do not have ASCII’s
95 characters available—a bold and de-
cisive step in the wrong direction.

While we are at it, have you noticed
that screens are getting wider and wider
these days, and that today’s text pro-
cessing programs have absolutely no
problem with multiple columns, insert
displays, and hanging enclosures being
placed in that space?

But programs are still decisively ver-
tical, to the point of being horizontally
challenged. Why can’t we pull minor
scopes and subroutines out in that
right-hand space and thus make them

supportive to the understanding of the
main body of code?

And need I remind anybody that you
cannot buy a monochrome screen any-
more? Syntax-coloring editors are the
default. Why not make color part of the
syntax? Why not tell the compiler about
protected code regions by putting them
on a framed light gray background? Or
provide hints about likely and unlikely
code paths with a green or red back-
ground tint?

For some reason computer people
are so conservative we still find it more
uncompromisingly important for our
source code to be compatible with a Tele-
type ASR-33 terminal and its 1963-vin-
tage ASCII table than it is for us to be
able to express our intentions clearly.

And, yes, me too: I wrote this in vi(1),
which is why the article does not have
all the fancy Unicode glyphs in the first
place.	

 Related articles
 on queue.acm.org

A Conversation with Arthur Whitney
http://queue.acm.org/detail.cfm?id=1531242

You’re Doing It Wrong
Poul-Henning Kamp
http://queue.acm.org/detail.cfm?id=1814327

How Not to Write Fortran in Any Language
Donn Seeley
http://queue.acm.org/detail.cfm?id=1039535

Reference
1.	P ike, R. Systems software research is irrelevant;

http://herpolhode.com/rob/utah2000.pdf.

Poul-Henning Kamp (phk@FreeBSD.org) has
programmed computers for 26 years and is the inspiration
behind bikeshed.org. His software has been widely
adopted as “under the hood” building blocks. His most
recent project is the Varnish HTTP accelerator, which is
used to speed up large Web sites such as Facebook.

© 2010 ACM 0001-0782/10/1100 $10.00

practice

Result of the Go Language ASR33 Compatibility Test.

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1531242
http://queue.acm.org/detail.cfm?id=1814327
http://queue.acm.org/detail.cfm?id=1039535
http://herpolhode.com/rob/utah2000.pdf
mailto:phk@freeBsD.org
http://bikeshed.org

58 communications of the acm | november 2010 | vol. 53 | no. 11

contributed articles

Understanding
Throughput-
Oriented
Architectures

doi:10.1145/1839676.1839694

For workloads with abundant parallelism,
GPUs deliver higher peak computational
throughput than latency-oriented CPUs.

by Michael Garland and David B. Kirk

NVIDIA’s graphics processing units, or
GPUs, follow in the footsteps of earlier
throughput-oriented processor designs
but have achieved far broader use in
commodity machines. Broadly speak-
ing, they focus on executing parallel
workloads while attempting to maxi-
mize total throughput, even though
sacrificing the serial performance of a
single task may be required. Though
improving total throughput at the ex-
pense of increased latency on individual
tasks is not always a desirable trade-off,
it is unquestionably the right design de-
cision in many problem domains that
rely on parallel computations, includ-
ing real-time computer graphics, video
processing, medical-image analysis,
molecular dynamics, astrophysical sim-
ulation, and gene sequencing.

Modern GPUs are fully programma-
ble and designed to meet the needs of a
problem domain—real-time computer
graphics—with tremendous inherent
parallelism. Furthermore, real-time
graphics places a premium on the to-
tal amount of work that can be accom-
plished within the span of a single frame
(typically lasting 1/30 second). Due to
their historical development, GPUs have
evolved as exemplars of throughput-
oriented processor architecture. Their
emphasis on throughput optimiza-
tion and their expectation of abundant
available parallelism is more aggressive
than many other throughput-oriented
architectures. They are also widely avail-
able and easily programmable. NVIDIA

Mu ch has been written about the transition of
commodity microprocessors from single-core to
multicore chips, a trend most apparent in CPU
processor families. Commodity PCs are now typically
built with CPUs containing from two to eight cores,
with even higher core counts on the horizon. These
chips aim to deliver higher performance by exploiting
modestly parallel workloads arising from either the
need to execute multiple independent programs
or individual programs that themselves consist of
multiple parallel tasks, yet maintain the same level
of performance as single-core chips on sequential
workloads.

A related architectural trend is the growing
prominence of throughput-oriented microprocessor
architectures. Processors like Sun’s Niagara and

 key insights

 � �Throughput-oriented processors
tackle problems where parallelism is
abundant, yielding design decisions
different from more traditional latency-
oriented processors.

 � �Due to their design, programming
throughput-oriented processors
requires much more emphasis on
parallelism and scalability than
programming sequential processors.

 � �GPUs are the leading exemplars
of modern throughput-oriented
architecture, providing a ubiquitous
commodity platform for exploring
throughput-oriented programming.

november 2010 | vol. 53 | no. 11 | communications of the acm 59

released its first GPU supporting the
CUDA parallel computing architecture
in 2006 and is currently shipping its
third-generation CUDA architecture,
code-named “Fermi,”24 released in 2010
in the Tesla C2050 and other processors.

Figure 1 is a nucleosome structure
(with 25,095 atoms) used in bench-
marking the AMBER suite of molecular
dynamics simulation programs. Many
core computations performed in molec-
ular dynamics are intrinsically parallel,

and AMBER recently added CUDA-ac-
celerated computations (http://am-
bermd.org/gpus/). Its Generalized Born
implicit solvent calculation for this sys-
tem running on the eight cores of a dual
four-core Intel Xeon E5462 executes at a
rate of 0.06 nanoseconds of simulation
time per day of computation. The same
calculation running on an NVIDIA Tesla
C2050 executes the simulation at a rate
of 1.04 ns/day, roughly 144 times more
work per day than a single sequential

core and just over 17 times the through-
put of all eight cores.

Using the GPU as a case study, this
article explores the fundamental archi-
tectural design decisions differentiating
throughput-oriented processors from
their more traditional latency-oriented
counterparts. These architectural differ-
ences also lead to an approach to paral-
lel programming that is qualitatively dif-
ferent from the parallel thread models
prevalent on today’s CPUs.

Figure 1. Throughput-oriented processors like the NVIDIA Tesla C2050 deliver substantially higher performance on intrinsically parallel
computations, including molecular dynamics simulations.

http://ambermd.org/gpus/
http://ambermd.org/gpus/

60 communications of the acm | november 2010 | vol. 53 | no. 11

contributed articles

Throughput-Oriented Processors
Two fundamental measures of proces-
sor performance are task latency (time
elapsed between initiation and comple-
tion of some task) and throughput (to-
tal amount of work completed per unit
time). Processor architects make many
carefully calibrated trade-offs between
latency and throughput optimization,
since improving one could degrade the
other. Real-world processors tend to em-
phasize one over the other, depending
on the workloads they are expected to
encounter.

Traditional scalar microprocessors
are essentially latency-oriented archi-
tectures. Their goal is to minimize the
running time of a single sequential
program by avoiding task-level latency
whenever possible. Many architectural
techniques, including out-of-order
execution, speculative execution, and
sophisticated memory caches, have
been developed to help achieve it. This
traditional design approach is predi-
cated on the conservative assumption
that the parallelism available in the
workload presented to the processor is
fundamentally scarce. Single-core sca-
lar CPUs typified by the Intel Pentium
IV were aggressively latency-oriented.
More recent multicore CPUs (such as
the Intel Core2 Duo and Core i7) re-
flect a trend toward somewhat less-ag-
gressive designs that expect a modest
amount of parallelism.

Throughput-oriented processors,
in contrast, arise from the assumption
that they will be presented with work-
loads in which parallelism is abundant.
This fundamental difference leads to
architectures that differ from tradition-
al sequential machines. Broadly speak-
ing, throughput-oriented processors
rely on three key architectural features:
emphasis on many simple processing
cores, extensive hardware multithread-
ing, and use of single-instruction, mul-
tiple-data, or SIMD, execution. Aggres-
sively throughput-oriented processors,
exemplified by the GPU, willingly sacri-
fice single-thread execution speed to in-
crease total computational throughput
across all threads.

No successful processor can afford
to optimize aggregate task throughput
while completely ignoring single-task la-
tency or vice versa. Different processors
may also vary in the degree they empha-
size one over the other; for instance, in-

dividual throughput-oriented architec-
tures may not use all three architectural
features just listed. Also worth noting is
that several architectural strategies, in-
cluding pipelining, multiple issue, and
out-of-order execution, avoid task-level
latency by improving instruction-level
throughput.

Hardware multithreading. A compu-
tation in which parallelism is abundant
can be decomposed into a collection of
concurrent sequential tasks that may
potentially be executed in parallel, or
simultaneously, across many threads.
We view a thread as a virtualized sca-
lar processor, typically meaning each
thread has a program counter, register
file, and associated processor state. A
thread is thus able to execute the in-
struction stream corresponding to a
single sequential task. Note this model
of threads says nothing about the way
concurrent threads are scheduled; for
instance, whether they are scheduled
fairly (any thread ready to run is eventu-
ally executed) is a separate issue.

It is well known that multithread-
ing, whether in hardware31 or software,4
provides a way of tolerating latency. If a
given thread is prevented from running
because it is waiting for an instruction to
make its way through a pipelined func-
tional unit, data to arrive from external
DRAM or some other event, a multi-
threaded system can allow another un-
blocked thread to run. That is, the long-
latency operations of a single thread can
be hidden or covered by ready-to-run
work from another thread. This focus
on tolerating latency, where processor
utilization does not suffer simply be-
cause a fraction of the active threads are
blocked, is a hallmark of throughput-
oriented processors.

Hardware multithreading as a de-
sign strategy for improving aggregate
performance on parallel workloads has
a long history. The peripheral proces-
sors of the Control Data Corp. CDC 6600
developed in the 1960s and the Het-
erogeneous Element Processor (HEP)
system28 developed in the late 1970s
are notable examples of the early use of
hardware multithreading. Many more
multithreaded processors have been
designed over the years31; for example,
the Tera,1,2 Sun Niagara,18 and NVIDIA
GPU22 architectures all use aggres-
sive multithreading to achieve high-
throughput performance on parallel

workloads, all with interleaved multi-
threading.21 Each is capable of switch-
ing between threads at each cycle. Thus
the execution of threads is interleaved at
extremely fine granularity, often at the
instruction level.

Blocking multithreading is a coarser-
grain strategy in which a thread might
run uninterrupted until encountering a
long-latency operation, at which point
a different thread is selected for execu-
tion. The streaming processors Imag-
ine,16 Merrimac,9 and SPI Storm17 are
notable examples of throughput-orient-
ed architectures adopting this strategy.
These machines explicitly partition pro-
grams into bulk load/store operations
on entire data blocks and “kernel” tasks
in which memory accesses are restrict-
ed to on-chip blocks loaded on their
behalf. When a kernel finishes process-
ing its on-chip data, a different task in
which required memory blocks have
been loaded onto the chip is executed.
Overlapping the bulk data transfer for
one or more tasks while another is ex-
ecuting hides memory-access latency.
Strategic placement of kernel bound-
aries where context switches occur can
also substantially reduce the amount
of state that must be retained between
task executions.

A third strategy called simultane-
ous multithreading30 allows different
threads to simultaneously issue instruc-
tions to independent functional units
and is used to improve the efficiency
of superscalar sequential processors
without having to find instruction-level
parallelism within a single thread. It is
likewise used by NVIDIA’s Fermi archi-
tecture24 in place of intra-thread dual is-
sue to achieve higher utilization.

The design of the HEP,28 Tera,2 and
NVIDIA G8022 processors highlights
an instructive characteristic of some
throughput-oriented processors: none
provides a traditional cache for load/
store operations on external memory,
unlike latency-oriented processors
(such as typical CPUs) that expend
substantial chip area on sophisticated
cache subsystems. These machines are
able to achieve high throughput in the
absence of caches because they assume
there is sufficient parallel work available
to hide the latency of off-chip memory
accesses. Unlike previous NVIDIA pro-
cessors, the Fermi architecture provides
a cache hierarchy for external memory

contributed articles

november 2010 | vol. 53 | no. 11 | communications of the acm 61

accesses but still relies on extensive
multithreading for latency tolerance.

Many simple processing units. The
high transistor density in modern semi-
conductor technologies makes it feasi-
ble for a single chip to contain multiple
processing units, raising the question of
how to use the available area on the chip
to achieve optimal performance: one
very large processor, a handful of large
processors, or many small processors?

Designing increasingly large single-
processor chips is unattractive.6 The
strategies used to obtain progressively
higher scalar performance (such as
out-of-order execution and aggres-
sive speculation) come at the price of
rapidly increasing power consump-
tion; incremental performance gains
incur increasingly large power costs.15
Thus, while increasing the power con-
sumption of a single-threaded core is
physically possible, the potential perfor-
mance improvement from more aggres-
sive speculation appears insignificant
by comparison. This analysis has led to
an industrywide transition toward mul-
ticore chips, though their designs re-
main fundamentally latency-oriented.
Individual cores maintain roughly com-
parable scalar performance to earlier
generations of single-core chips.

Throughput-oriented processors
achieve even higher levels of perfor-
mance by using many simple, and hence
small, processing cores.10 The individu-
al processing units of a throughput-ori-
ented chip typically execute instructions
in the order they appear in the program,
rather than trying to dynamically reor-
der instructions for out-of-order execu-
tion. They also generally avoid specula-
tive execution and branch prediction.
These architectural simplifications of-
ten reduce the speed with which a sin-
gle thread completes its computation.
However, the resulting savings in chip
area allow for more parallel processing
units and correspondingly higher total
throughput on parallel workloads.

SIMD execution. Parallel processors
frequently employ some form of single-
instruction, multiple-data, or SIMD,
execution12 to improve their aggregate
throughput. Issuing a single instruction
in a SIMD machine applies the given
operation to potentially many data op-
erands; SIMD addition might, for ex-
ample, perform pairwise addition of two
64-element sequences. As with multi-

threading, SIMD execution has a long
history dating to at least the 1960s.

Most SIMD machines can be classi-
fied into two basic categories. First is
the SIMD processor array, typified by the
ILLIAC IV developed at the University of
Illinois,7 the Thinking Machines CM-2,29
and the MasPar Computer Corp. MP-1.5
All consisted of a large array of process-
ing elements (hundreds or thousands)
and a single control unit that would
consume a single instruction stream.
The control unit would broadcast each
instruction to all processing elements
that would then execute the instruction
in parallel.

The second category is the vector
processor, exemplified by the Cray-125
and numerous other machines11 that
augment a traditional scalar instruc-
tion set with additional vector instruc-
tions operating on data vectors of some
fixed width—64-element vectors in the
Cray-1 and four-element vectors in the
most current vector extensions (such as
the x86 Streaming SIMD Extensions, or
SSE). The operation of a vector instruc-
tion, like vector addition, may be per-
formed in a pipelined fashion (as on the
Cray-1) or in parallel (as in current SSE
implementations). Several modern pro-
cessor families, including x86 proces-
sors from Intel and AMD and the ARM
Cortex-A series, provide vector SIMD
instructions that operate in parallel
on 128-bit (such as four 32-bit integer)
values. Programmable GPUs have long
made aggressive use of SIMD; current
NVIDIA GPUs have a SIMD width of 32.
Many recent research designs, includ-
ing the Vector IRAM,19 SCALE,20 and
Imagine and Merrimac streaming pro-
cessors,9,16 have also used SIMD archi-
tectures to improve efficiency.

SIMD execution is attractive because,
among other things, it increases the
amount of resources that can be devot-
ed to functional units rather than con-
trol logic. For instance, 32 floating-point
arithmetic units coupled with a single
control unit takes less chip area than
32 arithmetic units with 32 separate
control units. The desire to amortize
the cost of control logic over numerous
functional units was the key motivating
factor behind even the earliest SIMD
machines.7

However, devoting less space to con-
trol comes at a cost. SIMD execution de-
livers peak performance when parallel

Aggressively
throughput-oriented
processors,
exemplified
by the GPU,
willingly sacrifice
single-thread
execution speed
to increase total
computational
throughput across
all threads.

62 communications of the acm | november 2010 | vol. 53 | no. 11

contributed articles

tasks follow the same execution trace
and can suffer when heterogeneous
tasks follow completely different ex-
ecution traces. The effi ciency of SIMD
architectures depends on the availabil-
ity of suffi cient amounts of uniform
work. In practice, suffi cient uniformity
is often present in abundantly parallel
workloads, since it is more likely that
a pool of 10,000 concurrent tasks con-
sists of a small number of task types
rather than 10,000 completely dispa-
rate computations.

GPus
Programmable GPUs are the leading ex-
emplars of aggressively throughput-ori-
ented processors, taking the emphasis
on throughput further than the vast ma-
jority of other processors and thus offer-
ing tremendous potential performance
on massively parallel problems.13

Historical perspective. Modern GPUs
have evolved according to the needs of
real-time computer graphics, two as-
pects of which are of particular impor-
tance to understanding the develop-
ment of GPU designs: it is an extremely
parallel problem, and throughput is its
paramount measure of performance.

Visual applications generally model
the environments they display through a
collection of geometric primitives, with
triangles the most common. The most
widely used techniques for producing
images from these primitives proceed
through several stages where processing
is performed on each triangle, triangle
corner, and pixel covered by a triangle.
At each stage, individual triangles/
vertices/pixels can be processed inde-
pendently of all others. An individual

scene can easily paint millions of pixels
at a time, thus generating a great deal
of completely parallel work. Further-
more, processing an element generally
involves launching a thread to execute
a program—usually called a shader—
written by the developer. Consequently,
GPUs are specifi cally designed to ex-
ecute literally billions of small user-writ-
ten programs per second.

Most real-time visual applications
are designed to run at a rate of 30–60
frames per second. A graphics system is
therefore expected to generate, render,
and display images of visually complex
worlds within 33ms. Since it must com-
plete many millions of independent
tasks within this timeframe, the time
to complete any one of these tasks is
relatively unimportant. But the total
amount of work that can be completed
within 33ms is of great importance, as
it is generally closely correlated with the
visual richness of the environment be-
ing displayed.

Their role in accelerating real-time
graphics has also made it possible for
GPUs to become mass-market devices,
and, unlike many earlier throughput-
oriented machines, they are also widely
available. Since late 2006, NVIDIA has
shipped almost 220 million CUDA-capa-
ble GPUs—several orders of magnitude
more than historical massively parallel
architectures like the CM-2 and MasPar
machines.

NVIDIA GPU architecture. Beginning
with the G80 processor released in late
2006, all modern NVIDIA GPUs sup-
port the CUDA architecture for parallel
computing. They are built around an
array of multiprocessors, referred to as

streaming multiprocessors, or SMs.22,24

Figure 2 diagrams a representative
Fermi-generation GPU like the GF100
processor used in the Tesla C2050. Each
multiprocessor supports on the order of
a thousand co-resident threads and is
equipped with a large register fi le, giv-
ing each thread its own dedicated set
of registers. A high-end GPU with many
SMs can thus sustain tens of thousands
of threads simultaneously. Multiproces-
sors contain many scalar processing
elements that execute the instructions
issued by the running threads. Each
multiprocessor also contains high-
bandwidth, low-latency on-chip shared
memory, while at the same time provid-
ing its threads with direct read/write ac-
cess to off-chip DRAM. The Fermi archi-
tecture can confi gure its 64KB of per-SM
memory as either a 16KB L1 cache and
48KB RAM or a 48KB L1 cache and 16KB
RAM. It also provides a global 768KB L2
cache shared by all SMs. The table here
summarizes the capacity of a single SM
for the three generations of NVIDIA CU-
DA-capable GPUs.

The SM multiprocessor handles all
thread creation, resource allocation,
and scheduling in hardware, inter-
leaving the execution of threads at the
instruction-level with essentially zero
overhead. Allocation of dedicated regis-
ters to all active threads means there is
no state to save/restore when switching
between threads. With all thread man-
agement performed in hardware, the
cost of employing many threads is mini-
mal. For example, a Tesla C2050 execut-
ing the increment() kernel in Figure 3
will create, execute, and retire threads at
a rate of roughly 13 billion threads/sec.

figure 2. nViDia GPu consisting of an array of multithreaded multiprocessors.

GPU Off-chip memory

DRAM

DRAM

DRAM

H
os

t
In

te
rf

ac
e

PCIe Bus

T
hr

ea
d

sc
he

du
lin

g SM

 SIMT Control

On-chip memoryL1 On-chip memoryL1 On-chip memoryL1

SMSM

M
em

or
y

In
te

rf
ac

e

Global L2 Cache

 SIMT Control SIMT Control

Interconnection Network

Processing
Elements

Processing
Elements

Processing
Elements

contributed articles

november 2010 | vol. 53 | no. 11 | communications of the acm 63

To manage its large population of
threads efficiently, the GPU employs
a single-instruction, multiple-thread,
or SIMT, architecture in which threads
resident on a single SM are executed in
groups of 32, called warps, each execut-
ing a single instruction at a time across
all its threads. Warps are the basic unit
of thread scheduling, and in any given
cycle the SM is free to issue an instruc-
tion from any runnable warp. The
threads of a warp are free to follow their
own execution path, and all such execu-
tion divergence is handled automatical-
ly in hardware. However, it is obviously
more efficient for threads to follow the
same execution path for the bulk of the
computation. Different warps may fol-
low different execution paths without
penalty.

While SIMT architectures share
many performance characteristics with
SIMD vector machines, they are, from
the programmer’s perspective, quali-
tatively different. Vector machines are
typically programmed with either vector
intrinsics explicitly operating on vectors
of some fixed width or compiler auto-
vectorization of loops. In contrast, SIMT
machines are programmed by writing a
scalar program describing the action of
a single thread. A SIMT machine implic-
itly executes groups of independent sca-
lar threads in a SIMD fashion, whereas a
vector machine explicitly encodes SIMD
execution in the vector operations in the
instruction stream it is given.

CUDA programming model. The CUDA
programming model23,26 provides a
minimalist set of abstractions for par-
allel programming on massively multi-
threaded architectures like the NVIDIA
GPU. A CUDA program is organized into
one or more threads executing on a host
processor and one or more parallel ker-
nels that can be executed by the host
thread(s) on a parallel device.

Individual kernels execute a scalar
sequential program across a set of par-
allel threads. The programmer orga-
nizes the kernel’s threads into thread
blocks, specifying for each kernel
launch the number of blocks and num-
ber of threads per block to be created.
CUDA kernels are thus similar in style
to a blocked form of the familiar sin-
gle-program, multiple-data, or SPMD,
paradigm. However, CUDA is somewhat
more flexible than most SPMD sys-
tems in that the host program is free to

customize the number of threads and
blocks launched for a particular kernel
at each invocation. A thread block is a
group of parallel threads that may syn-
chronize with one another at a per-block
barrier and communicate among them-
selves through per-block shared mem-
ory. Threads from different blocks may
coordinate with one another via atomic
operations on variables in the global
memory space visible to all threads.
There is an implicit barrier between suc-
cessive dependent kernels launched by
the host program.

The NVIDIA CUDA Toolkit (http://
www.nvidia.com/cuda) includes a C
compiler equipped with a small set of
language extensions for writing CUDA
programs. Figure 3 sketches a simple
CUDA program fragment illustrating
these extensions. The global modifi-
er indicates the increment() function
is a kernel entry point and may be called
only when launching a kernel. Unmodi-
fied functions and those functions ex-
plicitly marked host are normal C
functions. The host program launches
kernels using the function-call-like
syntax increment<<<B, T>>>(...),

indicating the function increment()
will be launched in parallel across B
blocks of T threads each. The blocks
of a kernel are numbered using two-di-
mensional indices visible to the kernel
as the special variables blockIdx.x
and blockIdx.y, ranging from 0 to
gridDim.x-1 and gridDim.y-1,
respectively. Similarly, the threads
of a block are numbered with three-
dimensional indices threadIdx.x,
threadIdx.y, threadIdx.z; the ex-
tent of the block in each dimension is
given by blockDim.x, blockDim.y,
and blockDim.z.

The function parallel _ incre-
ment() accepts an array x of n elements
and launches a parallel kernel with
at least one thread for each element
organized into blocks of 256 threads
each. Since the data in the example is
one-dimensional, the code in Figure
3 uses one-dimensional indices. Also,
since every thread in this computation
is completely independent, deciding to
use 256 threads per block in our imple-
mentation was largely arbitrary. Every
thread of the kernel computes a globally
unique index i from its local thread-

Capacity of each SM over three GPU generations.

G8x/G9x GT2xx GF100

Registers (32-bit) 8192 16384 32768

Co-resident threads 768 1024 1536

Independent warps 24 32 48

Shared memory (KB) 16 16 48/16

L1 cache (KB) — — 16/48

L2 cache (KB per chip) — — 768

Figure 3. Trivial CUDA C kernel for incrementing each element of an array.

__global__ void increment(float *x, int n)
{
 // Each thread will process 1 element, which
 // is determined from the thread’s index.
 int i = blockIdx.x*blockDim.x + threadIdx.x;

 if(i<n) x[i] = x[i] + 1;
}

__host__ void parallel_increment(float *x, int n)
{
 // Launch increment() kernel with 1 thread
 // per element, grouped into ⎡n/256⎤ blocks
 // of 256 threads each.
 increment<<<ceil(n/256), 256>>>(x, n);
}

http://www.nvidia.com/cuda
http://www.nvidia.com/cuda

64 communications of the acm | november 2010 | vol. 53 | no. 11

contributed articles

Idx and the blockIdx of its block. It
increments the value of xi by 1 if i < n—a
conditional check required since n need
not be a multiple of 256.

Throughput-Oriented Programming
Scalability is the programmer’s central
concern in designing efficient algo-
rithms for throughput-oriented ma-
chines. Today’s architectural trends
clearly favor increasing parallelism, and
effective algorithmic techniques must
scale with hardware parallelism. Some
techniques suitable for four parallel
threads may be entirely unsuitable for
4,000 parallel threads. Running thou-
sands of threads at a time, GPUs are a
powerful platform for exploring scalable
algorithms and a leading indicator for
algorithm design on future throughput-
oriented architectures.

Abundant parallelism. Throughput-
oriented programs must expose sub-
stantial amounts of fine-grain parallel-
ism, fulfilling the expectations of the
architecture. Exploiting multicore CPUs
obviously requires exposing parallel-
ism as well, but a programmer’s mental
model of parallelism on a throughput-
oriented processor is qualitatively dif-
ferent from multicore. A four-core CPU
can be fully utilized by four to eight
threads. Thread creation and schedul-
ing are computationally heavyweight,
since they can involve the saving and
restoration of processor state and rela-
tively expensive calls to the operating
system kernel. In contrast, a GPU typi-
cally requires thousands of threads to
cover memory latency and reach full
utilization, while thread scheduling is
essentially without cost.

Consider computing the product
y=Ax, where A is a n×n matrix, and x is an
n-element vector. For sparse problems,
because the vast majority of matrix en-
tries is 0, A is best represented using a
data structure that stores only its non-
zero elements. The algorithm for sparse
matrix-vector multiplication (SpMV)
would look like this:

procedure spmv(y, A, x):
 for each row i:
 y[i] = 0
 for each non-zero column
j:
 y[i] += A[i,j] * x[j]

Since each row is processed indepen-

dently, a simple CUDA implementation
would assign a separate thread to each
row. For large matrices, this could eas-
ily expose millions of threads of paral-
lelism. However, for smaller matrices
with only a few thousand rows, this level
of parallelism might be insufficient, so
an efficient implementation could in-
stead assign multiple threads to process
each row. In the most extreme case, each
non-zero element could be assigned to a
separate thread.

Figure 4 plots an experiment mea-
suring the performance of three differ-
ent parallel granularities: one thread/
row, 32 threads/row, and one thread/
non-zero.3 These tests use synthetic ma-
trices with a constant number of entries
distributed across a variable number of
rows ranging from one row with four
million entries on the left to four mil-
lion rows of one entry each on the right.
The maximal parallelism resulting from
assigning one thread per non-zero ele-
ment yields the most efficient imple-
mentation when there are few rows
but suffers from lower absolute perfor-
mance due to its need for inter-thread
synchronization. For intermediate row
counts, assigning 32 threads per row is
the best solution, while assigning one
thread per row is best when the number
of rows is sufficiently large.

Calculation is cheap. Computation
generally costs considerably less than
memory transfers, particularly external
memory transfers that frequently re-
quire hundreds of cycles to complete.
The fact that the cost of memory access
has continued to increase and is now
quite high relative to the cost of compu-
tation is often referred to as the “mem-
ory wall.” The energy required to move
data between the chip and external
DRAM is also far higher than required to
operate an on-chip functional unit. In a
45nm process, a 64-bit integer addition
unit expends roughly 1pJ (picojoule),
and a 64-bit floating point fused multi-
ply add, or FMA, unit requires around
100pJ. In contrast, reading a 64-bit value
from external DRAM requires on the or-
der of 2,000pJ.8

The high relative cost of access-
ing memory affects both latency and
throughput-oriented processors, since
the cost is the result of the physical prop-
erties of semiconductor technology.
However, the performance consequenc-
es of external memory references for

GPUs are
specifically
designed to
execute literally
billions of small
user-written
programs
per second.

contributed articles

november 2010 | vol. 53 | no. 11 | communications of the acm 65

throughput-oriented processors can be
more significant; these processors are
designed to reach a higher peak com-
putational throughput and may have a
higher peak throughput-to-bandwidth
ratio than latency-oriented processors.
More important, they seek to tolerate
rather than avoid latency. To hide the
latency of frequent movement of data
to/from main memory requires either
more threads or more work per thread,
generally requiring larger data sets.

The best performance is typically
achieved when calculation is more
common than data access. Performing
roughly 10 to 20 operations per word of
data loaded from memory is ideal, and
it may be preferable to locally recom-
pute values rather than store frequently
needed values in external memory. Con-
sider a simple example of computing a
moderately expensive function like sin
θ for 256 unique values of θ. Tabulating
all 256 possible values would require
little space, but accessing them from ex-
ternal memory would require hundreds
of cycles. In the same amount of time, a
thread could execute perhaps 50 to 100
instructions that could be used to com-
pute the result and leave the memory
bandwidth available for other uses.

Divide and conquer. Divide-and-con-
quer methods often yield effective paral-
lel algorithms, even for apparently serial
problems. Consider the merging of two
sorted sequences A and B, a common

problem for which most computer sci-
ence students learn a sequential solu-
tion like this:

function merge1(A, B):
 if empty(A): return B
 if empty(B): return A

 if first(A)<first(B):
 �return first(A) +

merge1(rest(A), B)
 else:
 �return first(B) +

merge1(A, rest(B))

A related divide-and-conquer algo-
rithm picks an element s from either A
or B and partitions both sequences into
those elements A1,B1 that are less than s
and elements A2,B2 that are not less than
s. Having split the input sequences, con-
structing the merged sequence is simply
a matter of recursively merging Ai with
Bi. The code for doing it would look like
this:

function merge2(A, B):
 if empty(A): return B
 if empty(B): return A

 s = select _ an _ element(A,B)
 A1, A2 = partition(A, s)
 B1, B2 = partition(B, s)

 �return merge2(A1,B1) + [s] +
merge2(A2,B2)

This approach is reminiscent of
quicksort though more efficient since A
and B are both sorted. If s is drawn from
A, “partitioning” A is trivial, since the el-
ements less than s are simply those pre-
ceding s, and the corresponding point
at which s splits B can be found through
binary search.

This divide-and-conquer method can
lead to an inherently parallel algorithm
by picking a sorted sequence of k split-
ting elements s1, …, sk. These splitters
partition both A and B into k+1 subse-
quences that can be merged indepen-
dently like this:

function merge3(A, B):
 if empty(A): return B
 if empty(B): return A

 �// Pick k elements from A
and B, in sorted order
 �S = [s1, ..., sk] = select _
elements(A, B, k)
 �A0, ..., Ak] = partition(A,
S)
 �[B0, ..., Bk] = partition(B,
S)

 �return merge3(A0,B0) + [s1] +
... + [sk] + merge3(Ak,Bk)

Since each recursive merge is inde-
pendent, this is an intrinsically paral-
lel algorithm. Merge algorithms of this
form have been used in the parallel pro-
gramming literature for decades14 and
can be used to build efficient merge sort
routines in CUDA.27

Hierarchical synchronization. More
often than not, parallel threads must
synchronize with one another at various
times, but excessive synchronization
can undermine the efficiency of paral-
lel programs. Synchronization must be
treated carefully on massively parallel
throughput-oriented processors where
thousands of threads could potentially
contend for a lock.

To avoid unnecessary synchroniza-
tion, threads should synchronize hier-
archically, keeping parallel computa-
tions independent as long as possible.
When parallel programs are decom-
posed hierarchically, as in divide-and-
conquer methods, the synchronization
of threads can also be organized in a hi-
erarchical fashion. For example, when
evaluating merge3(A,B) earlier, each
recursive parallel merge step can pro-

Figure 4. Double-precision throughput of SpMV strategies on an NVIDIA GeForce GTX 285
GPU; all matrices have exactly 4 x 210 nonzeros but differing row counts.

20

18

16

14

12

10

8

6

4

2

0

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

G
F

L
O

P
/s

Matrix Rows

  1 thread/non-zero     32 threads/row     1 thread/row

66 communications of the acm | november 2010 | vol. 53 | no. 11

contributed articles

ceed independently of all the others.
Any synchronization required within
these subtasks can be localized to the
subtasks. Only at the end, when all sub-
sequent operations are merged, must
the parallel subtasks be synchronized
with one another. Organizing synchro-
nization hierarchically also aligns well
with the physical cost of synchronizing
threads spread across different sections
of a given system. It is natural to expect
that threads executing on a single core
can be synchronized much more cheap-
ly than threads spread across an entire
processor, just as threads on a single
machine can be synchronized more
cheaply than threads across the mul-
tiple nodes of a cluster.

Conclusion
The transition from single-core to mul-
ticore processors and the increasing use
of throughout-oriented architectures
signal greater emphasis on parallelism
as the driving force for higher computa-
tional performance. Yet these two kinds
of processors differ in the degree of par-
allelism they expect to encounter in a
typical workload. Throughput-oriented
processors assume parallelism is abun-
dant, rather than scarce, and their para-
mount design goal is maximizing total
throughput of all parallel tasks rather
than minimizing the latency of a single
sequential task.

Emphasizing total throughput over
the running time of a single task leads
to a number of architectural design de-
cisions. Among them, the three primary
architectural trends typical of through-
put-oriented processors are hardware
multithreading, many simple process-
ing elements, and SIMD execution.
Hardware multithreading makes man-
aging the expected abundant parallel-
ism cheap. Simple in-order cores forgo
out-of-order execution and speculation,
and SIMD execution increases the ratio
of functional units to control logic. Sim-
ple core design and SIMD execution re-
duce the area and power cost of control
logic, leaving more resources for paral-
lel functional units.

These design decisions are all predi-
cated on the assumption that sufficient
parallelism exists in the workloads the
processor is expected to handle. The
performance of a program with insuf-
ficient parallelism may therefore suffer.
A fully general-purpose chip (such as a

CPU) cannot afford to aggressively trade
for increased total performance at the
cost of single-thread performance. The
spectrum of workloads presented to it
is simply too broad, and not all compu-
tations are parallel. For computations
that are largely sequential, latency-ori-
ented processors perform better than
throughput-oriented processors. On
the other hand, a processor specifically
intended for parallel computation can
accept this trade-off and realize signifi-
cantly greater total throughput on paral-
lel problems as a result.

As the differences between these
architectures appear durable rather
than transient, the ideal system is thus
heterogeneous, where a latency-ori-
ented processor (such as a CPU) and a
throughput-oriented processor (such as
a GPU) work in tandem to address the
heterogeneous workloads presented to
them. 	

References
1.	A lverson, G., Alverson, R., Callahan, D., Koblenz, B.,

Porterfield, A., and Smith, B. Exploiting heterogeneous
parallelism on a multithreaded multiprocessor. In
Proceedings of the Sixth international Conference on
Supercomputing (Washington, D.C., July 19–24). ACM
Press, New York, 1992, 188–197.

2.	A lverson, R., Callahan, D., Cummings, D., Koblenz,
B., Porterfield, A., and Smith, B. The Tera computer
system. In Proceedings of the Fourth international
Conference on Supercomputing (Amsterdam, The
Netherlands, June 11–15). ACM Press, New York,
1990, 1–6

3.	 Bell, N. and Garland, M. Implementing sparse
matrix-vector multiplication on throughput-oriented
processors. In Proceedings of the Conference on High
Performance Computing Networking, Storage and
Analysis (Portland, OR, Nov. 14–20). ACM Press, New
York, 2009, 1–11.

4.	 Birrell, A.D. An Introduction to Programming with
Threads. Research Report 35. Digital Equipment Corp.
Systems Research, Palo Alto, CA, 1989.

5.	 Blank, T. The MasPar MP-1 architecture. In
Proceedings of Compcon (San Francisco, CA, Feb. 26–
Mar. 2). IEEE Press, 1990, 20–24.

6.	 Borkar, S., Jouppi, N.P., and Stenstrom, P.
Microprocessors in the era of terascale integration. In
Proceedings of the Conference on Design, Automation
and Test in Europe (Nice, France, Apr. 16–20). EDA
Consortium, San Jose, CA, 2007, 237–242.

7.	 Bouknight, W.J., Denenberg, S.A., McIntyre, D.E.,
Randall, J.M., Sameh, A.H., and Slotnick, D.L. The
Illiac IV system. Proceedings of the IEEE 60, 4 (Apr.
1972), 369–388.

8.	 Dally, W. Power efficient supercomputing. Presented
at the Accelerator-based Computing and Manycore
Workshop (Lawrence Berkeley National Laboratory,
Berkeley, CA, Nov. 30–Dec. 2, 2009); http://www.lbl.
gov/cs/html/Manycore_Workshop09/GPU Multicore
SLAC 2009/dallyppt.pdf

9.	 Dally, W.J., Labonte, F., Das, A., Hanrahan, P., Ahn, J.,
Gummaraju, J., Erez, M., Jayasena, N., Buck, I., Knight,
T. J., and Kapasi, U.J. Merrimac: Supercomputing
with streams. In Proceedings of the 2003 ACM/IEEE
Conference on Supercomputing (Nov. 15–21). IEEE
Computer Society, Washington, D.C., 2003.

10.	 Davis, J.D., Laudon, J., and Olukotun, K. Maximizing
CMP throughput with mediocre cores. In Proceedings
of the 14th international Conference on Parallel
Architectures and Compilation Techniques (Sept.
17–21). IEEE Computer Society, Washington, D.C.,
2005, 51–62.

11.	E spasa, R., Valero, M., and Smith, J.E. Vector
architectures: Past, present and future. In
Proceedings of the 12th international Conference on

Supercomputing (Melbourne, Australia). ACM Press,
New York, 1998, 425–432.

12.	F lynn, M.J. Very high-speed computing systems.
Proceedings of the IEEE 54, 12 (Dec. 1966), 1901–1909.

13.	G arland, M., Grand, S.L., Nickolls, J., Anderson, J.,
Hardwick, J., Morton, S., Phillips, E., Zhang, Y., and
Volkov, V. Parallel computing experiences with CUDA.
IEEE Micro 28, 4 (July 2008), 13–27.

14.	G avril, F. Merging with parallel processors. Commun.
ACM 18, 10 (Oct. 1975), 588–591.

15.	G rochowski, E., Ronen, R., Shen, J., and Wang, H. Best
of both latency and throughput. In Proceedings of the
IEEE international Conference on Computer Design
(Oct. 11–13). IEEE Computer Society, Washington,
D.C., 2004, 236–243.

16.	 Kapasi, U., Dally, W.J., Rixner, S., Owens, J.D.,
and Khailany, B. The Imagine stream processor.
In Proceedings of the 2002 IEEE International
Conference on Computer Design (Sept. 16–18). IEEE
Computer Society, Washington, D.C., 2002, 282–288.

17.	 Khailany, B.K., Williams, T., Lin, J., Long, E.P., Rygh,
M., Tovey, D.W., and Dally, W.J. A programmable 512
GOPS stream processor for signal, image, and video
processing. IEEE Journal of Solid-State Circuits 43, 1
(Jan. 2008), 202–213.

18.	 Kongetira, P., Aingaran, K., and Olukotun, K. Niagara:
A 32-way multithreaded Sparc processor. IEEE Micro
25, 2 (Mar./Apr. 2005), 21–29.

19.	 Kozyrakis, C. and Patterson, D. Vector vs. superscalar
and VLIW architectures for embedded multimedia
benchmarks. In Proceedings of the 35th Annual ACM/
IEEE International Symposium on Microarchitecture
(Istanbul, Turkey, Nov. 18–22). IEEE Computer
Society Press, Los Alamitos, CA, 2002, 283–293.

20.	 Krashinsky, R., Batten, C., Hampton, M., Gerding, S.,
Pharris, B., Casper, J., and Asanovic, K. The vector-
thread architecture. SIGARCH Computer Architecture
News 32, 2 (Mar. 2004), 52–63.

21.	 Laudon, J., Gupta, A., and Horowitz, M. Interleaving:
A multithreading technique targeting multiprocessors
and workstations. In Proceedings of the Sixth
International Conference on Architectural Support
For Programming Languages and Operating Systems
(San Jose, CA, Oct. 5–7). ACM Press, New York, 1994,
308–318.

22.	 Lindholm, E., Nickolls, J., Oberman, S., and Montrym,
J. NVIDIA Tesla: A unified graphics and computing
architecture. IEEE Micro 28, 2 (Mar./Apr. 2008), 39–55.

23.	N ickolls, J., Buck, I., Garland, M., and Skadron, K.
Scalable parallel programming with CUDA. Queue 6, 2
(Mar./Apr. 2008), 40–53.

24.	N VIDIA. NVIDIA’s Next-Generation CUDA Compute
Architecture: Fermi, Oct. 2009; http://www.nvidia.com/
fermi

25.	R ussell, R.M. The Cray-1 computer system. Commun.
ACM, 21, 1 (Jan. 1978), 63–72.

26.	S anders, J. and Kandrot, E. CUDA By Example: An
Introduction to General-Purpose GPU Programming.
Addison-Wesley, July 2010.

27.	S atish, N., Harris, M., and Garland, M. Designing
efficient sorting algorithms for manycore GPUs.
In Proceedings of the 2009 IEEE international
Symposium on Parallel & Distributed Processing (May
23–29). IEEE Computer Society, Washington, D.C.,
2009, 1–10.

28.	S mith, B.J. Architecture and applications of the HEP
multiprocessor computer system. Proceedings of the
International Society for Optical Engineering 298 (Aug.
1981), 241–248.

29.	T ucker, L.W. and Robertson, G.G. Architecture and
applications of the Connection Machine. Computer 21,
8 (Aug. 1988), 26–38.

30.	T ullsen, D.M., Eggers, S.J., and Levy, H.M.
Simultaneous multithreading: maximizing on-chip
parallelism. In Proceedings of the 22nd Annual
international Symposium on Computer Architecture
(S. Margherita Ligure, Italy, June 22–24). ACM Press,
New York, 1995, 392–403.

31. Ungerer, T., Robic̆, B., and Šilc, J. A survey of
processors with explicit multithreading. ACM
Computing Surveys 35, 1 (Mar. 2003), 29–63.

Michael Garland (mgarland@nvidia.com) is a senior
research scientist in NVIDIA Research, Santa Clara, CA.

David B. Kirk (dk@nvidia.com) is an NVIDIA Fellow and
former chief scientist of NVIDIA Research, Santa Clara,
CA.

© 2010 ACM 0001-0782/10/1100 $10.00

mailto:mgarland@nvidia.com
mailto:dk@nvidia.com
http://www.lbl.gov/cs/html/Manycore_Workshop09/GPU_MulticoreSLAC2009/dallyppt.pdf
http://www.lbl.gov/cs/html/Manycore_Workshop09/GPU_MulticoreSLAC2009/dallyppt.pdf
http://www.lbl.gov/cs/html/Manycore_Workshop09/GPU_MulticoreSLAC2009/dallyppt.pdf
http://www.nvidia.com/fermi
http://www.nvidia.com/fermi

november 2010 | vol. 53 | no. 11 | communications of the acm 67

In 2003, 2bi gfeet, an Internet business specializing
in the sale of oversize shoes ranked among the top
results in Google searches for its products. Its prime
location on the virtual equivalent of New York’s high-end
shopping mecca Fifth Avenue brought a steady stream
of clicks and revenue. But success was fleeting:

That November, Google’s engineers
modified their search engine’s algo-
rithms, an update later dubbed “Flor-
ida” by the search-engine community.
2bigfeet’s rankings dropped abruptly
just before the Christmas selling sea-
son, and this Internet success story
was suddenly on the brink of bank-
ruptcy.2

Search engines have established
themselves as critical gatekeepers
of information. However, despite an
increasingly monopolistic Internet
search market, they and the implicit
filtering process in their rankings re-
main largely beyond public scrutiny
and control. This has inspired us to
explore an increasingly topical ques-
tion: Should search-engine ranking be
regulated?

Search engines generally work by
indexing the Web through so-called
crawler programs. When a user types
in a request, search algorithms deter-

mine the most relevant results in the
index. Although the precise workings
of these algorithms are kept at least as
secret as Coca-Cola’s formula they are
usually based on two main functions:
keyword analysis (for evaluating pages
along such dimensions as frequency
of specific words) and link analysis
(based on the number of times a page
is linked to from other sites and the
rank of these other sites) (see Figure 1).

Regulating the
Information
Gatekeepers

doi:10.1145/1839676.1839695

Concerns about biased manipulation of search
results may require intervention involving
government regulation.

By Patrick Vogl and Michael Barrett

 key insights

 � �With search engines guiding access to
critical Web-based information flow,
many users are increasingly concerned
over possible targeted manipulation of
search results.

 � �With markets and technology both
unlikely to ensure unbiased results,
regulation may be the only alternative.

 � �One promising way forward is
clearer guidelines for search-engine
optimization through self-regulation.

68 communications of the acm | november 2010 | vol. 53 | no. 11

contributed articles

Appreciating the value of top rank-
ings, Webmasters have learned to
optimize their pages so big search
engines rank them more highly. This
has spawned a worldwide industry of
search-engine-optimization consul-
tants, whose techniques are grouped
into two categories: white-hat, ensur-
ing that search engines easily analyze
a site and are accepted by search en-
gines; and black-hat, including hid-
den text, as in white text on a white
background, considered illicit by
most search engines and upon discov-
ery generally punished with degraded
ranking.

Search engines clearly have a le-
gitimate interest in fighting inappro-
priate third-party optimization tech-
niques to ensure their search-result
quality; for instance, sites with no
other purpose than linking to specific
sites to increase page rank (link farms)
are black-hat and must be dealt with
accordingly, though punishment can
be problematic for multiple reasons:

First, sudden ranking demotion
and resulting diminished inflow of vis-
itors have major effects on businesses,
as illustrated by the cases of Skyfacet
(which reportedly lost $500,000 of rev-
enue in 2006) and MySolitaire (which
reportedly lost $250,000 the same
year14). Only a few cases, including the
companies SearchKing18 and Kinder-
start11 involving lawsuits over page

rankings and German car manufac-
turer BMW, received notable media at-
tention. Many more cases of dropped
ranking have been condemned to vir-
tual silence, among them search-en-
gine optimizer Bigmouthmedia.

Second, though market-leader
Google has published guidelines on
creating “Google-friendly” pages, the
line between permitted and illicit
practices is blurry at best.20 For exam-
ple, Google’s guidelines rightly warn
against cloaking, “the practice of pre-
senting different content […] to users
and search engines.”13 However, to a
certain extent cloaking can be justified
and used with good intent by major
sites without penalty.8 For instance,
the Wall Street Journal uses it to show
full versions of pay-per-view articles to
Google’s indexing program.8

The difficulty of straddling the line
between permitted and illicit prac-
tices is further illustrated by a case
involving paid links: In February 2009
Google punished its subsidiary Google
Japan through a page rank demotion
for paying for online reviews of a new
widget.23 While Google’s attempt to
play by its own rules is positive the
case highlights the difficulty of dis-
tinguishing permitted from illicit op-
timization techniques. A leading U.S.
commentator in online search asked:
“If Google itself […] found itself in
this situation, how are ordinary Web

sites to be expected to know the ‘rules’
about what they can or cannot do?”23

Third, our research supports the
idea that there is no established pro-
cess of announcement or appeal prior
to rank demotion. Companies af-
fected usually realize their fate only
through a sudden loss of traffic or rev-
enue. In a personal interview [2008],
the CEO of an educational company
told us: “The office called me and told
me [...] that revenue was down [...], so
I checked our logs and our history [...]
It was all on one day. We were up to 14
million pageviews per month, and on
one day it dropped 70% and [stayed
there], and that was it.”

Fourth, options are limited for
companies affected by ranking demo-
tion. One interviewee recalls his com-
pany got no response, even though he
personally went to the search engine
firm’s headquarters for assistance.

Fifth, several allegations in the
blogosphere claim large players are
treated better than their less-powerful
counterparts. For example, in May
2008, Hewlett-Packard began offer-
ing free blog templates, including
hidden links to its own pages, a quick
way to gather “high-quality” links and
clicks.25 However, there was no evi-
dence of punishment by major search
engines, sparking significant contro-
versy in the community.25

Finally, search engines have pun-
ished Web sites using search-engine
optimization, as well as the search-en-
gine-optimization companies them-
selves. In the case of SearchKing, a
search-engine consulting company
in Oklahoma, U.S. courts have found
that Google “knowingly and inten-
tionally” dropped the company’s Web
sites in its rankings to punish what it
deemed illicit ranking manipulation
that SearchKing had carried out for its
clients.18

Rationale for Regulation
Several researchers have pointed to
the dangers of targeted manipulation,
arguing it undermines values like free
speech, fairness, economic efficiency,
and autonomy, as well as the institu-
tion of democracy. Concerning de-
mocracy and free speech, Introna and
Nissenbaum17 argued a decade ago
that search engines’ broad structural
bias can lead to underrepresentation

Figure 1. How ranking works.

Spider/Crawler

Search engine
software User

Index

Web
Searches Web,
storing pages in index

Algorithm accesses index,
determining most relevant
results for queries based on:

˲˲ keyword analysis (such as
word location and frequency)

˲˲ link analysis (such as number
of links from other pages and
rank of these pages)

Makes request

contributed articles

november 2010 | vol. 53 | no. 11 | communications of the acm 69

of niches and minority interests and a
loss of variety. Drawing on Anderson’s
theory of ethic limitations to mar-
kets,1 they made a solid case that this
lack of pluralism does not correspond
to society’s “liberal commitments to
freedom, autonomy, and welfare.”1 In-
trona and Nissenbaum viewed the In-
ternet as a “political good” due to its
role as “conveyor of information” and
function like “traditional public spac-
es” as a “forum for political delibera-
tion.”17 Consequently, just as schools
and national heritage are not left to
the mercy of free markets, they argued
the Internet is a public good requiring
special protection.17 Similarly, Bracha
and Pasquale3 made the case in 2007
that targeted manipulation of search
engine results “threatens the open-
ness and diversity of the Internet as a
system of public expression.”3

Another approach based on demo-
cratic values emphasizes the right of
free speech. Chandler5 argued it pro-
tects not only the ability to listen and
speak, but that intermediaries can-
not impose “discriminatory filters
that the listener would not otherwise
have used.”5 Since extraneous bias
introduces different discrimination
criteria, free speech is undermined
by targeted search-engine-result ma-
nipulation.5

Fairness might also be under-
mined. Since search-engine rankings
have enormous influence on business
performance, ranking manipulation
can cause significant harm both arbi-
trarily and more deliberately. Search
engines as private entities are gener-
ally free to conduct business as they
wish within the limitations applicable
to all companies. However, Webmas-
ters cannot simply opt out of their de-
pendence on search engines, perhaps
representing an “inescapable influ-
ence,”10 taking their relationship from
the private to the public sphere where
more dependable accountability is ex-
pected.10

Other concerns involve economic
efficiency, deception, and autonomy.
Targeted manipulation can limit the
availability of information, causing
market inefficiencies and barriers to
entry.3 Manipulating search results,
while leading users “to believe that
search results are based on relevancy
alone,”16 could be deceptive, while

search engines shaping user options
and information could limit user au-
tonomy.3

Regulation and alternatives. Tra-
ditional justification for regulation
includes control of monopoly power
and excess profits, compensation for
externalities, inadequate informa-
tion, unequal bargaining power, and
scarcity of essential products.4 While
none perfectly fits the case of targeted
results manipulation, intervention
could be supported through two ratio-
nales:

Information asymmetries. Elkin-Ko-
ren and Salzberger7 pointed out that
the Internet’s common market failure
is an overload rather than undersup-
ply of information.7 However, the so-
lution to this problem—the Internet
search market—suffers from a lack
of information. Just as laymen cannot
easily assess the services of doctors or
the effects of a particular medicine,4
users of search engines are unable to
adequately evaluate search services.

Market power. While the Internet
search market shows monopolistic
tendencies (extremely strong market
positions of a few key players), there
is no strong case for regulatory inter-
vention on the standard antitrust ar-
gument of abuse of monopoly power
(such as lack of competition leading
to excessive pricing). However, a case
can be based on Breyer’s argument4
of an “unjustifiably discriminatory ex-
ercise of personal power” combined
with the “concentration of substantial
social and political power” in a private
entity that controls an “essential prod-
uct”4 (see also Bracha and Pasquale3
for a similar view on the application of
essential-facility arguments to search
engines). These arguments were de-
veloped in the early 20th century U.S.
business environment when a group
of railway companies in control of ac-
cess to the city of St. Louis prevented
competitors from offering services in
the same area.21 Even if these argu-
ments do not apply to users of search
engines, they may apply to Webmas-
ters unable to choose the search en-
gines the public uses to find informa-
tion.

Regulation must be compared to
other solutions, particularly free mar-
kets. The basic market argument is
that search engines have an incentive

Companies affected
usually notice their
fate only through
a sudden loss of
traffic or revenue.

70 communications of the acm | november 2010 | vol. 53 | no. 11

contributed articles

to produce the most relevant search
results; otherwise, users would switch
to their competitors.17 However, mar-
kets alone are unlikely to address the
concerns of targeted manipulation for
three reasons:

Proprietary algorithms. Users would
not be able to detect targeted manipu-
lation in most cases, as search engines
keep their algorithms secret.3 More-
over, even if users are more aware of
results manipulation, their expecta-
tion of what they are searching for is
shaped during the search process.17
Consequently, they cannot objectively
evaluate search-engine quality17;

Concentrated market. While the
Internet search market is highly con-
centrated, a less monopolistic mar-
ket is unlikely to emerge due to high
economies of scale.3 Furthermore, in-
cumbents benefit from their existing
user base by, say, collecting user data
through such products as the Google
toolbar. Moreover, the emergence of
new big players is also unlikely, since
promising start-ups could be acquired
by such dominant search giants as
Google and Microsoft; and

User inertia. While switching might
seem easy (users simply type another
address), evidence suggests that per-
sonal habit is a key factor when select-
ing a search engine22; moreover, new
technologies like personalized search
are likely to raise switching costs sig-
nificantly.

Technological development is also
often mentioned in the context of
search-engine bias.12 However, while
new technologies may alleviate some
concern (such as reinforcement of
popular sites), no technology in sight
is likely to cure the problem of target-
ed manipulation.

Two counterarguments often
brought up against regulation of
search-engine bias are that search
results are free speech and therefore
cannot be regulated, and search en-
gines are not essential facilities, as
they do not fulfil the criteria of essen-
tial facilities accepted by U.S. courts.

While these arguments have mer-
it, they are insufficient for reject-
ing intervention for several reasons:
Though the courts have acknowledged
First Amendment rights for search
engines, a number of legal scholars
have argued against this view.3,5 Both

arguments emerge from a U.S.-centric
context, which, as the Microsoft anti-
trust case in the 1990s showed, is not
the only legal arena for regulation.
Moreover, in legal circles it has been
suggested that the existing regula-
tory frameworks may be inadequate
for something as groundbreaking as
Internet search. Given the state of the
law, governments and multinational
bodies may need to create a new regu-
latory framework.

Search and Its Stakeholders
Who are the stakeholders and what
are their interests? Mitchell wrote19
that stakeholders are characterized by
power, legitimacy, and urgency. Build-
ing on a broad investigation of stake-
holder interests in search-engine law
by Grimmelmann,15 we see four main
actors—users, search engines, Web-
masters, and search-engine optimiz-
ers—that are, to some extent, charac-
terised by Mitchell’s attributes.

Table 1 is an overview of key stake-
holder interests in Internet search
bias and stakeholder recognition of
possible manipulation. Search-engine
optimizers are particularly conflicted.
On the one hand, they stand to gain
from greater transparency in Inter-
net search, as their business would
be easier and more efficient, and a
clearer picture of accepted practices
would enable them to guarantee their
clients that search engines tolerate
their techniques. On the other hand,
they profit from lack of transparency,
as it raises the value of their key as-
sets—expertise and inside knowledge.
Moreover, search-engine optimizers
with good contacts and community-
wide attention can profit from their
influence with search-engine com-
panies in “curing” cases of rank de-
motion. Therefore, top performers
arguably have little interest in greater
transparency.

Commentators have made several
proposals for regulating targeted ma-
nipulations. We comment first on the
two most promising, then introduce a
new approach (outlined in Table 2).

Obligation to provide reasons for
rank demotion. One proposal20 sug-
gested establishing an obligation to
provide a reason for rank demotion to
increase transparency in the relation-
ship between Webmasters and search

Markets alone
are unlikely to be
sufficient to address
the concerns
about targeted
manipulation.

contributed articles

november 2010 | vol. 53 | no. 11 | communications of the acm 71

tween black-hat and white-hat search
engine optimizers are gray, often
forcing Webmasters and optimizers
to speculate as to which techniques
would be punished through ranking
degradation. In a personal interview
on search engine optimization, one
search-engine consultant said the
key to differentiating between black-
hat and white-hat optimization tech-
niques in unclear cases is “implica-
tion of intent.” However, in the 2008
case of Hewlett-Packard mentioned
earlier, comments by search-engine
optimizers indicate the existence of
at least some bias distinguishing be-
tween permitted and illicit optimiza-
tion methods.

One approach to increasing trans-
parency in the relationship between
Webmasters and search engines is to
establish clearer guidelines distin-
guishing black-hat from white-hat op-
timization. The gray area in between
would be diminished, giving Webmas-

engines. In this context, Pasquale20
drew an interesting analogy with cred-
it-reporting agencies providing rea-
sons for adverse credit information to
consumers.20 It would favor the inter-
ests of users and especially Webmas-
ters, because it would support Web-
site optimization for search engines.
Search-engine optimizers would
probably be divided between the less
influential that gain and top perform-
ers that lose from greater transpar-
ency. Building on the credit-agency
analogy, Pasquale20 argued that the
cost to search engines and risk of al-
gorithmic reverse engineering would
be low.20 However, as the number of
potential queries on rank demotion is
arguably much higher than the num-
ber on adverse credit ratings, cost to
the search engines would likely be
significant. Moreover, search engines
would likely oppose any obligation to
provide precise reasons for each rank
demotion, as it would increase the
risk of lawsuits.

Installation of ombudsmen and pro-
cess of appeal. Taking the previous
proposal a step further, some have
called for an appeal process against
rank demotion.24 For example, For-
syth10 emphasized if search engines
were public entities with ensuing
accountability, a process of appeal
would probably already have been
established.10 While Google offers a
way to submit pages for “reconsidera-
tion,”8 such appeals are judged inter-
nally without transparency, and, while
successful in some cases, a Webmas-
ter’s only option might be to attract
enough publicity to get a search-en-
gine representative to take up the case
internally.9

Installing a formal, transparent ap-
peals process would clearly be in the
interest of both users and Webmas-
ters, while assisting some search en-
gine optimizers but diminishing the
value of top optimizer contacts. On
the other hand, search engines would
arguably incur somewhat higher costs
for installing such a process. More-
over, a formal process with a clear
chance of success would facilitate ap-
peals, thereby increasing numbers of
requests and probably encouraging
“appeal gaming.”

Clearer guidelines for search engine
optimization. Current guidelines be-

ters and optimizers a better idea of
what to expect from search engines.
The diminished gray area would lead
to more consistent application of
ranking degradation, as questionable
sites would fall more clearly into one
category or the other. Moreover, new
guidelines could also cover search
engines’ assessment of intent in ques-
tionable cases, further promoting
consistent treatment of market play-
ers. This approach is promising be-
cause it has advantages for all stake-
holders (see Figure 2).

Clearer guidelines. A self-regulato-
ry approach initiated by regulators
would be the easiest and most ef-
ficient way to achieve clearer guide-
lines. There is ample precedence that
self-regulation works in cyberspace;
for example, in the early days of Inter-
net search, many search engines did
not distinguish between organic and
paid results (advertisements). Howev-
er, following a letter by the U.S. Feder-

Table 1. Stakeholder interests in the regulation of search bias.

Interests Awareness of manipulation

Users ˲˲ �High-quality content, particularly quick query
response and inclusion of new pages; clear,
well-structured results; transparent construction
of results

˲˲ Pleasant search experience, easy usability

Low

Search Engines ˲˲ �Protection of trade secrets, particularly
algorithms

˲˲ �Freedom to make changes to algorithms for
preventing abuse of search-engine optimization

˲˲ Low cost of regulation

High

Webmasters ˲˲ �Consistent, transparent ranking of pages in
search engines

Low, some among
professionals

Search-Engine
Optimizers

˲˲ Top group: low transparency
˲˲ �Low-level search-engine optimizers:

high transparency

High

Table 2. Regulatory proposals and stakeholder interests.

Regulatory Proposal Users
Search
Engines

Content
Providers

Search-Engine
Optimizers

Obligation to provide reasons for rank
demotion

++ — ++ divided

Installation of ombudsmen and appeal
process

++ — ++ divided

Clearer guidelines for search-engine
optimization

++ + ++ divided

	 ++	 strongly supportive
	 + 	 supportive

	 — 	 opposed
	— — 	 strongly opposed

72 communications of the acm | november 2010 | vol. 53 | no. 11

contributed articles

al Trade Commission in 2002 recom-
mending search engines ensure that
“paid […] results are distinguished
from non-paid results with clear and
conspicuous disclosures,”16 all major
search engines implemented such
practices. Also, self-regulation would
help the process of regulation keep up
with the pace of technological change.
Finally, as clearer guidelines would ar-
guably favor all stakeholders, search
engines would at least join the public
dialogue on self-regulation.

Policymakers could signal the im-
portance of targeted manipulation
and initiate a dialogue on self-regu-
lation by creating a committee of key
stakeholders to examine cases of rank
demotion and recommend ways to
improve today’s optimization guide-
lines. In addition, the topic of search-
engine regulation could be put on the
agenda of the next United Nations
Internet Governance Forum (www.in-
tgovforum.org).

Self-regulation alone may not alle-
viate concern about rank demotion.
One idea from the Internet’s early
days may chart another way forward.
As disputes over domain names be-
came more heated in the 1990s and
U.S. trademark law proved insuffi-
cient, the Internet Corporation for
Assigned Names and Numbers (www.
icann.org) and the World Intellectual
Property Organization (www.wipo.
int) developed the Uniform Domain-
Name Dispute-Resolution Policy
(www.icann.org/en/udrp/udrp.htm) to

promote quick and inexpensive reso-
lution of domain-name conflicts.6 A
similar body could help establish new
optimization guidelines and manage
the mediation process.

Conclusion
Here, we’ve argued for the need to
open a debate on how to regulate
targeted ranking manipulation that
hinders search-engine optimization.
These practices threaten democracy
and free speech, fairness, market ef-
ficiency, autonomy, and freedom
from deception. Making the case for
regulation can be based on the search
market’s failure of information asym-
metries and concentration of market
power over an essential product in a
private entity. Our analysis of specific
regulatory proposals and their impli-
cations for stakeholders highlights
the benefits of establishing clearer
guidelines for optimizers. 	

References
1.	A nderson, E. Value in Ethics and Economics. Harvard

University Press, Cambridge, MA, 1993.
2.	 Battelle, J. The Search: How Google and Its Rivals

Rewrote the Rules of Business and Transformed Our
Culture. Nicholas Brealey Publishing, London, 2005.

3.	 Bracha, O. and Pasquale, F. Federal Search
Commission? Access, Fairness and Accountability in
the Law of Search. University of Texas Public Law
Research Paper No. 123, Austin, TX, 2007.

4.	 Breyer, S. Typical justifications for regulation. In A
Reader on Regulation, R. Baldwin, C. Scott, and C.
Hood, Eds. Oxford University Press, New York, 1998,
59–93.

5.	C handler, J. A right to reach an audience: An
approach to intermediary bias on the Internet.
Hofstra Law Review 35, 3 (Spring 2007), 1095–1139.

6.	 Davis, G. The ICANN uniform domain name dispute
resolution policy after nearly two years of history.
e-OnTheInternet (Jan./Feb. 2002); http://www.isoc.

org/oti/articles/1201/icann.html
7.	E lkin-Koren, N. Law, Economics and Cyberspace.

Edward Elgar Publishing, Cheltenham, U.K., 2004.
8.	F ishkin, R. White-hat cloaking: It exists, it’s

permitted, it’s useful. SEOMoz Blog (June 30, 2008);
http://www.seomoz.org/blog/white-hat-cloaking-it-
exists-its-permitted-its-useful

9.	F ontenot, D. Matt Cutts, Why am I still being
punished? SEO Scoop (Jan. 24, 2008); http://www.
seo-scoop.com/2008/01/24/matt-cutts-why-am-i-
still-being-punished/

10.	F orsyth, H. Google MP? How the Internet Is
Challenging Our Notions of Political Power.
Presentation at Pembroke College Ivory Tower
Society, Cambridge, U.K. (Jan. 28, 2008).

11.	G oldman, E. KinderStart v. Google dismissed:
With sanctions against KinderStart’s counsel.
Technology & Marketing Law Blog (Mar. 20, 2007);
http://blog.ericgoldman.org/archives/2007/03/
kinderstart_v_g_2.htm

12.	G oldman, E. Search engine bias and the demise of
search engine utopianism. Yale Journal of Law &
Technology 8 (Spring 2006), 188–200.

13.	G oogle, Inc. Webmaster Tools Help Cloaking, Sneaky
Javascript Redirects, and Doorway Pages (Dec. 4,
2008); http://www.google.com/support/webmasters/
bin/answer.py?answer=66355&topic=15263.

14.	G reenberg, A. Condemned to Google hell. Forbes
(Apr. 4, 2007); http://www.forbes.com/2007/04/29/
sanar-google-skyfacet-tech-cx_ag_0430googhell.
html

15.	G rimmelmann, J. The structure of search engine law.
Iowa Law Review 93, 1 (Nov. 2007), 3–63.

16.	 Hippsley, H. Letter from FTC to Search Engines
Regarding Commercial Alert Complaint Requesting
Investigation of Various Internet Search Engine
Companies for Paid Placement and Paid Inclusion
Programs. Federal Trade Commission, Washington,
D.C., June 27, 2002; http://www.ftc.gov/os/closings/
staff/commercialalertattatch.shtm

17.	 Introna, L.D. and Nissenbaum, H. Shaping the Web:
Why the politics of search engines matters. The
Information Society 16, 3 (2000), 169–185.

18.	M iles-LaGrange, V. SearchKing, Inc. v. Google
Technology, Inc. CIV-02-1457-M.U.S. District Court
for the Western District of Oklahoma, 2003.

19.	M itchell, R.K., Agle, B.R., and Wood, D.J. Toward a
theory of stakeholder identification and salience:
Defining the principle of who and what really counts.
The Academy of Management Review 22, 4 (Oct.
1997), 853–886.

20.	Pasquale, F. Rankings, Reductionism, and
Responsibility. Seton Hall Public Law Research Paper.
Seton Hall University, South Orange, NJ, Feb. 25,
2006.

21.	P itofsky, R. The Essential Facility Doctrine Under
United States Antitrust Law. Federal Trade
Commission, Washington, D.C., 2001; http://www.
ftc.gov/os/comments/intelpropertycomments/
pitofskyrobert.pdf

22.	S herman, C. Search engine users: Loyal or blasé?
Search Engine Watch (Apr. 19, 2004); http://
searchenginewatch.com/3342041

23.	S ullivan, D. Google penalizes Google Japan for buying
links. Search Engine Land (Feb. 11, 2009); http://
searchengineland.com/google-penalizes-google-
japan-16541

24.	S ullivan, D. Google ombudsman? Search
ombudsman? Great idea: Bring them on!
Search Engine Watch (July 2006); http://blog.
searchenginewatch.com/blog/060706-075235

25.	 Wall, A. Strategic content as marketing for link
building. SEO Book (May 8, 2008); http://www.
seobook.com/content-marketing-win

Patrick Vogl (pvogl@gmx.at) is a graduate of the MPhil
in Technology Policy at the Judge Business School,
University of Cambridge, U.K.

Michael Barrett (m.barrett@jbs.cam.ac.uk) is a Reader in
Information Technology and Innovation and Director of
Programmes at the Judge Business School, University of
Cambridge, U.K.

© 2010 ACM 0001-0782/10/1100 $10.00

Figure 2. How clearer search-engine optimization guidelines would affect stakeholders.

Clearer
Guidelines

Search Engines Search-Engine
Optimization Consultants

Webmasters Users

+	�L ess risk of lawsuits
–	�S lightly less freedom

fighting abusive
search-engine
optimization

+	� Able to guarantee clients that
their practices are accepted

+	�L ess risk of sudden rank
demotion

+	�O ptimization gets easier
–	�L ess value of inside knowledge

and contacts

+	�E asier Website
optimization for search engines

+	�L ess risk of sudden ranking demotion

+	�I ncreased relevance of results

http://www.intgovforum.org
http://www.intgovforum.org
http://www.icann.org
http://www.icann.org/en/udrp/udrp.htm
http://www.seomoz.org/blog/white-hat-cloaking-itexists-its-permitted-its-useful
http://www.seo-scoop.com/2008/01/24/matt-cutts-why-am-i-still-being-punished/
http://blog.ericgoldman.org/archives/2007/03/kinderstart_v_g_2.htm
http://www.google.com/support/webmasters/bin/answer.py?answer=66355&topic=15263
http://www.forbes.com/2007/04/29/sanar-google-skyfacet-tech-cx_ag_0430googhell.html
http://www.ftc.gov/os/closings/staff/commercialalertattatch.shtm
http://www.ftc.gov/os/comments/intelpropertycomments/pitofskyrobert.pdf
http://searchenginewatch.com/3342041
http://searchengineland.com/google-penalizes-google-japan-16541
http://blog.searchenginewatch.com/blog/060706-075235
http://www.seobook.com/content-marketing-win
mailto:pvogl@gmx.at
mailto:m.barrett@jbs.cam.ac.uk
http://www.icann.org
http://www.wipo.int
http://www.wipo.int
http://www.seomoz.org/blog/white-hat-cloaking-itexists-its-permitted-its-useful
http://www.seo-scoop.com/2008/01/24/matt-cutts-why-am-i-still-being-punished/
http://www.seo-scoop.com/2008/01/24/matt-cutts-why-am-i-still-being-punished/
http://blog.ericgoldman.org/archives/2007/03/kinderstart_v_g_2.htm
http://www.google.com/support/webmasters/bin/answer.py?answer=66355&topic=15263
http://www.forbes.com/2007/04/29/sanar-google-skyfacet-tech-cx_ag_0430googhell.html
http://www.forbes.com/2007/04/29/sanar-google-skyfacet-tech-cx_ag_0430googhell.html
http://www.ftc.gov/os/closings/staff/commercialalertattatch.shtm
http://www.isoc.org/oti/articles/1201/icann.html
http://www.isoc.org/oti/articles/1201/icann.html
http://www.ftc.gov/os/comments/intelpropertycomments/pitofskyrobert.pdf
http://www.ftc.gov/os/comments/intelpropertycomments/pitofskyrobert.pdf
http://searchenginewatch.com/3342041
http://searchengineland.com/google-penalizes-google-japan-16541
http://searchengineland.com/google-penalizes-google-japan-16541
http://blog.searchenginewatch.com/blog/060706-075235
http://www.seobook.com/content-marketing-win

Introducing:

XRDS delivers the tools, resources, knowledge, and connections
that computer science students need to succeed

in their academic and professional careers!

The All-New XRDS: Crossroads is the official
magazine for ACM student members featuring:

� Breaking ideas from top researchers and PhD students

� Career advice from professors, HR managers, entrepreneurs, and others

� Interviews and profiles of the biggest names in the field

� First-hand stories from interns at internationally acclaimed research labs

� Up-to-date information on the latest conferences, contests, and submission
deadlines for grants, scholarships, fellowships, and more!

XRDS.acm.org

The ACM Magazine for Students

Also available
The All-New XRDS.acm.org

XRDS.acm.org is the new online hub of XRDS
magazine where you can read the latest news
and event announcements, comment on articles,
plus share what’s happening at your ACM chapter,
and more. Get involved by visiting today!

ACM_XRDS_Ad_Final.indd 1 4/21/10 12:41:51 PM

http://XRDS.acm.org
http://XRDS.acm.org
http://XRDS.acm.org

74 communications of the acm | november 2010 | vol. 53 | no. 11

review articles

ill

u

s
t

r
a

t
i

o
n

 B
y

 m
e

lvi

n

 g
a

l
a

p
o

n

For thousands of years, people—and more recently,
electronic agents—have been conducting elections.
And surely for just as long, people—or more recently,
electronic agents—have been trying to affect the
outcomes of those elections. Such attempts take
many forms. Often and naturally, actors may seek to
change the structure of the election, for example, by
attracting new voters, suppressing turnout, recruiting
candidates, or setting election district boundaries.
Sometimes voters may even be bribed to vote a certain
way. And a voter may try to manipulate an election
by casting an insincere vote that may yield a more
favorable outcome than would the voter’s sincere vote:
Not all people who preferred Ralph Nader in the 2004
U.S. presidential election actually voted for him.

One might hope that by choosing a particularly
wonderful election system, one can perfectly block

such attacks. However, classic work
from economics and political science
proves that every reasonable election
system sometimes gives voters an in-
centive to vote insincerely (see Duggan17
and the references therein). Reasonable
election systems cannot make manipu-
lation impossible. However, they can
make manipulation computationally
infeasible.

This article is a nontechnical intro-
duction to a startling approach to pro-
tecting elections: using computational
complexity as a shield. This approach
seeks to make the task of whoever is
trying to affect the election computa-
tionally prohibitive. To better under-
stand the cases in which such protec-
tion cannot be achieved, researchers
in this area also spend much of their
time working for the Dark Side: trying
to build polynomial-time algorithms to
attack election systems.

This complexity-based approach to
protecting elections was pioneered in
a stunning set of papers, about two de-
cades ago, by Bartholdi, Orlin, Tovey,
and Trick.2,3,5 The intellectual fire they
lit smoldered for quite a while, but
in recent years has burst into open
flame. Computational complexity may
truly be the key to defending elections
from manipulation.

Preliminaries and the Complexity
of the Winner Problem
In the introduction, we focused on

doi:10.1145/1839676.1839696

Computational complexity may truly be
the shield against election manipulation.

by Piotr Faliszewski, Edith Hemaspaandra,
and Lane A. Hemaspaandra

Using
Complexity
to Protect
Elections

 key insights

 � �Algorithms can be used to seek attacks
on elections, and complexity can serve
to protect elections from attacks. For
some election systems, manipulation
has been proven NP-hard.

 � �Dichotomy theorems pinpoint what
it is about an election system that
makes it computationally resistant to
manipulation.

 � �It is natural to consider an election
system's computational weaknesses and
strengths as one factor, among many,
when selecting a system for a given
task. In particular, one must consider
which types of attacks one most needs
to thwart.

76 communications of the acm | november 2010 | vol. 53 | no. 11

review articles

ping from (C, V) to a “winner set” W,
Ø Í W Í C. Perhaps the most famous
and common election system is plural-
ity, in which each candidate who most
often comes at the top of voters’ orders
is put into W. We will focus quite a bit
on plurality in this article, since it has
been extensively studied with respect
to using complexity to protect elec-
tions. Plurality is itself a special case
of a broad class of election systems
known as scoring systems or scoring-
rule systems. In these, each candidate
gets from each voter a certain number
of points based on where he or she
falls in the voter’s ordering, and who-
ever gets the most points wins. For
example, the scoring point system for
plurality (in k-candidate elections) is
that a voter’s favorite candidate gets
one point from that voter and the
other k−1 candidates get zero points
from that voter. In the Borda election
system, proposed in the 18th century,
the points from favorite to least fa-
vorite are k−1, k−2, . . . , 0. In veto elec-
tions, the points are 1, 1, 1, . . . , 1, 0;
that is, the voter in effect votes against
one candidate. Scoring systems are
a fl exible, important class of voting
systems and, as we will see, they are a
class whose manipulation complexity
(for fi xed numbers of candidates) is
completely analyzed. There are many
other important election systems, but
to move the article along, we will intro-
duce them as we need.

An election system that immediately
merits note is the Condorcet rule. In
Condorcet elections, a candidate is a
winner exactly if he or she beats each
other candidate in head-to-head major-
ity-rule elections under the voters’ pref-
erences. Consider the election shown
in Figure 1. In that election there is no
Condorcet winner, since is beaten by

 3-to-1, is beaten by 4-to-0, and

protecting elections, rather than on
why and in what settings elections are
used for aggregating preferences in
the fi rst place. The latter issue could
itself fi ll a survey—but not this survey.
However, before moving on we briefl y
mention a few varied examples of how
elections can be useful in aggregating
preference. In daily life, humans use
elections to aggregate preferences in
tasks ranging from citizens choosing
their political representatives to an ac-
ademic department’s faculty members
selecting which job candidate to hire to
conference business meeting attend-
ees selecting future locations for their
conference. In electronic settings, elec-
tions often can take on quite different,
yet also interesting and important,
challenges. For example, one can build
a metasearch engine based on combin-
ing underlying search engines, in or-
der to seek better results and be more
resistant to “Web spam.”18 One can
use voting as an approach to building
recommender systems41 and to plan-
ning.20 Voting was already very impor-
tant before computers and the inter-
net existed, and in the modern world,
where multiagent settings abound, the
importance of voting is greater still.

In this article, we will discuss the
successes and failures to date in using
complexity to defend against three im-
portant classes of attacks on election
systems: (structural) control attacks,
(voter) manipulation, and bribery. In
these three settings, high computa-
tional complexity is the goal. But fi rst,
we briefl y discuss a case so surprising
that one might not even think of it,
namely, the case in which an election
system is so complex that even deter-
mining who won is intractable.

We must fi rst introduce the model of
elections we will use throughout this ar-
ticle. While doing so, we will also defi ne
some election systems, such as plurality
rule. An election consists of a candidate
set C and a list V of votes (ballots) over
those candidates. In almost all the elec-
tion systems we discuss, a vote is simply
a strict ordering of all the candidates,
for example, “Nader > Gore > Bush” if
the voter likes Nader most, Gore next
most, and Bush least. An exception is
approval voting, in which each vote
is a bit-vector giving a thumbs-up or
thumbs-down to each candidate.

An election system is simply a map-

Voting was already
very important
before computers
and the internet
existed, and in the
modern world,
where multiagent
settings abound,
the importance of
voting is greater
still.

figure 1. an election.

review articles

november 2010 | vol. 53 | no. 11 | communications of the acm 77

in a 2-to-2 tie, fails to beat .
Although this example shows that

Condorcet elections sometimes have no
winner, some election systems—the so-
called Condorcet-consistent systems—
so value the naturalness of the notion
of being a Condorcet winner that they
ensure that when a Condorcet winner
exists, he or she is the winner in their
system. One particularly interesting sys-
tem is the election system proposed by
the famous author and mathematician
Lewis Carroll in 1876. Carroll took an
approach that should warm the hearts
of computer scientists. He said, in ef-
fect, that whoever had the smallest edit
distance from being a Condorcet winner
was the winner in his election system.
His edit distance was with respect to
the number of sequential exchanges of
adjacent candidates in voter orderings.
So in the Figure 1 example, and tie
as Carroll winners, since either of them
with one adjacent exchange can become
a Condorcet winner (for example, if we by
one exchange turn voter 1’s preference
list into > > > , then becomes
a Condorcet winner), but for example
would take seven adjacent exchanges
to become a Condorcet winner.

Lewis Carroll’s system is quite lovely
in that it focuses on the closeness to
Condorcet winnerhood. Carroll’s paper
has been included in books collecting
the most important social choice pa-
pers of all time. However, Carroll’s sys-

tem has one glaring fl aw: It is compu-
tationally intractable to tell who won!
This was fi rst shown in a paper by Bar-
tholdi, Tovey, and Trick,4 who showed
that this problem was NP-hard. Later,
Hemaspaandra, Hemaspaandra, and
Rothe30 precisely classifi ed the prob-
lem’s complexity as “complete” (that
is, in a certain formal sense the hardest
problem) for the class of problems that
can be solved by parallel access to NP (a
class that forms the Θ

p
2 level of the poly-

nomial hierarchy).a

On its face, this result is a disaster
for Lewis Carroll’s election system. Al-
though we want manipulation of elec-
tions to be diffi cult, we do not want to
achieve this by migrating to election
systems so opaque that we cannot ef-
fi ciently compute who won.

This disaster may not be quite as
severe as it fi rst seems. Recent work
on Lewis Carroll elections seeks to
slip around the edges of the just-men-
tioned intractability result. In particu-
lar, two recent papers show that simple

a We will not provide here a discussion of NP-
hardness/NP-completeness/Θp

2-completeness,
but suffi ce it to say that complexity theorists
broadly believe any problem that has any one
of these properties is intractable, that is, does
not have a deterministic polynomial-time algo-
rithm. However, these notions are worst-case
notions. In the section “Using Complexity to
Block Election Manipulation” we will discuss
how their worst-case nature is itself a worry
when using them to protect election systems.

polynomial-time greedy algorithms
correctly fi nd the Lewis Carroll winner
all but an asymptotically exponentially
vanishing portion of the time when the
number of voters is more than qua-
dratically larger than the number of
candidates and the inputs are drawn
from the uniform probability distri-
bution.35,39 In fact, that algorithm can
even be made “self-knowingly cor-
rect”—it almost always declares that
its answer is correct, and when it does
so it is never wrong.35 Another way of ar-
guably bypassing the hardness results
for the Lewis Carroll winner problem
is through approximation algorithms.
For example, Caragiannis et al.9 have
recently developed two approximation
algorithms for computing candidates’
scores in Carroll’s system. And a third
way to sidestep the hardness results is
to change the framework, namely, to
assume that the number of candidates
or the number of voters is bounded by
a fi xed constant, and to seek polynomi-
al-time algorithms in that setting.b The
seminal paper of Bartholdi, Tovey, and
Trick4 successfully pursued this line, as

b Many real-life settings have relatively few can-
didates. And a particularly interesting setting
with few voters but many candidates comes
from Dwork et al.,18 who suggested building a
search engine for the Web that would simply
query other search engines and then conduct
an election given the search engines’ answers
as votes.

table 1. the computational complexity of control in condorcet, copeland, Llull, and plurality elections.

election system condorcet copeland Llull Plurality

control type
const.
control

Dest.
control

const.
control

Dest.
control

const.
control

Dest.
control

const.
control

Dest.
control

Adding (unlimited number of) Candidates i v r v v v r r

Adding Candidates i v r v r v r r

deleting Candidates v i r v r v r r

run-off Partition of Candidates (ties Promote) v i r v r v r r

run-off Partition of Candidates (ties eliminate) v i r v r v r r

Partition of Candidates (ties Promote) v i r v r v r r

Partition of Candidates (ties eliminate) v i r v r v r r

Partition of voters (ties eliminate) r v r r r r v v

Partition of voters (ties Promote) r v r r r r r r

Adding voters r v r r r r v v

deleting voters r v r r r r v v

the results regarding constructive control in Condorcet and plurality elections are due to bartholdi et al.,5 the results on
destructive control for Condorcet and plurality are due to hemaspaandra et al.,31 and the results regarding llull and Copeland
are due to Faliszewski et al.25 Adding (unlimited number of) Candidates has not been explicitly studied in bartholdi et al.5 and
hemaspaandra et al.,31 but the results on this for Condorcet and plurality elections are corollaries to these papers’ proofs.

78 communications of the acm | november 2010 | vol. 53 | no. 11

review articles

have more recent papers.7,11,24, 25 Howev-
er, their polynomial-time algorithms
sometimes involve truly astronomical
multiplicative constants.

Finally, we mention that in the
years since the work showing Lewis
Carroll’s election system to have a win-
ner problem that is complete for paral-
lel access to NP, a number of other sys-
tems, most notably those of Kemeny
and Young, have also been shown to be
complete for parallel access to NP.33,43

Naturally, researchers have sought to
bypass these hardness results as well
(for examples, see6,9,12,36).

using complexity to Block
election control
Can our choice of election systems—and
not merely nasty ones with hard winner
problems but rather natural ones with
polynomial-time winner problems—be
used to make infl uencing election out-
comes costly? We start the discussion
of this issue by considering problems
of election control, introduced by Bar-
tholdi, Tovey, and Trick5 in 1992. In
election control, some actor who has
complete knowledge of all the votes
seeks to achieve a desired outcome—ei-
ther making a favored candidate be the
sole winner (“constructive control”) or
precluding a despised candidate from
being a unique winner (“destructive
control”)—via changing the structure
of the election. The types of structural
changes that Bartholdi, Tovey, and
Trick proposed are adding or deleting
candidates, adding or deleting voters,
or partitioning candidates or voters
into a two-round election structure.

The other control types similarly
are motivated as abstractions of real-
world actions—many far more savory
than vote suppression. For example,
Control by Adding Voters abstracts
such actions as get-out-the-vote drives,
positive advertising campaigns, pro-
viding vans to drive elderly people to
the polls, registration drives, and so
on. Control by Adding Candidates and
Control by Deleting Candidates refl ect
the effect of recruiting candidates
into—and pressuring them to with-
draw from—the race. The memory of
the 2000 U.S. presidential race sug-
gests that whether a given small-party
candidate—say Ralph Nader—enters
a race can change the outcome. The
partition models loosely capture other
behaviors, such as gerrymandering.

Table 1 summarized the construc-
tive and destructive control results for
four election systems whose behavior
is completely known: Plurality, Con-
dorcet, Llull, and Copeland. The mys-
tic and philosopher Ramon Llull (Fig-
ure 2) defi ned the Llull system in the
1200s, and the Copeland system is a
closely related system defi ned in mod-
ern times. In both of these systems
one considers each pair of candidates
and awards one point to the winner in
their head-to-head majority-rule con-
test, and if the head-to-head contest
is a tie, in Copeland each gets half a
point but in Llull each still gets one
point. So, for example, in Copeland
one gets ||C||−1 points exactly if one is
a Condorcet winner. The Llull/Cope-
land system is used in the group stage

control actor knows all the votes of all the vot-
ers. But note that that just makes the “shield”
results stronger: they show that even if one had
perfect information about the votes, fi nding a
control action is still intractable.

Between these types and the different
tie-breaking rules that can be used to
decide which candidates move forward
from the preliminary rounds of two-
round elections in the case of ties (that
is, whether all the tied people move for-
ward or none of them do), there now
are eleven types of control that are typi-
cally studied—each having both a con-
structive and a destructive version.

For reasons of space we will not de-
fi ne all 11 types here. We will defi ne
one type explicitly and will mention
the motivations behind most of the
others. Let us consider Control by De-
leting Voters. In this control scenario,
the input to the problem is the elec-
tion (C, V), a candidate p ∈ C, and an
integer k. The question is whether by
removing at most k votes from V one
can make p be the sole winner (for the
constructive case) or can preclude p
from being a unique winner (for the
destructive case). Control by Delet-
ing Voters is loosely inspired by vote
suppression: It is asking whether by
the targeted suppression of at most k
votes the given goal can be reached.
(By discussing vote suppression we are
in no way endorsing it, and indeed we
are discussing paths toward making it
computationally infeasible.) So, for a
given election system E, we are inter-
ested in the complexity of the set com-
posed of all inputs (C, V, p, k) for which
the goal can be reached.c

c As to who is seeking to do the control, that is ex-
ternal to the model. For example, it can be some
central authority or a candidate’s campaign
committee. In fact, in the real world there often
are competing control actors. But results we
will soon cover show that even a single control
actor faces a computationally infeasible prob-
lem. Also, the reader may naturally feel uncom-
fortable with the model’s assumption that the

figure 3. the points assigned by the Llull/copeland systems in the head-to-head contests
of the election of figure 1.

1. Llull

 : 0 : 0 : 0

 : 1 : 1 : 1

 : 1 : 1

 : 1 : 0

 : 0

 : 1

2. copeland

 : 0 : 0 : 0

 : 1 : 1 : 1

 : 0.5 : 1

 : 0.5 : 0

 : 0

 : 1

figure 2. Ramon Llull, 13th-century mystic
and philosopher.

review articles

november 2010 | vol. 53 | no. 11 | communications of the acm 79

of the World Cup soccer tournament,
except there (after rescaling) wins get
one point and ties get one third of a
point. Figure 3 shows how the election
from Figure 1 comes out under the
Llull and Copeland systems. In Table
1, I (immunity) means one can never
change the outcome with that type of
control attack—a dream case; R (re-
sistance) means it is NP-hard to de-
termine whether a given instance can
be successfully attacked—still a quite
good case; and V (vulnerability) means
there is a polynomial-time algorithm
to detect whether there is a successful
attack of the given type (and indeed to
produce the exact attack)—the case
we wish to avoid.

Remarkably, given that Llull cre-
ated his system in the 1200s, among all
natural systems based on preference
orders, Llull and Copeland are the
systems that currently have the great-
est numbers of proven resistances
to control. As one can see from Table
1, Copeland is perfectly resistant to
the constructive control types and to
all voter-related control types (but is
vulnerable to the destructive, can-
didate-related control types). And
Llull’s 13th-century system is almost
as good. Ramon Llull, the mystic, truly
was ahead of his time.

If one wants an even greater num-
ber of resistances than Copeland/Llull
provides, one currently can do that in
two different ways. Recently, Erdélyi,
Nowak, and Rothe22 showed that a vot-
ing system whose votes are in a differ-
ent, richer model—each voter provides
both an approval vector and a strict
ordering—has a greater number
of control resistances, although in
achieving that it loses some of the
particular resistances of Cope-
land/Llull. And Hemaspaandra,
Hemaspaandra, and Rothe32 con-
structed a hybridization scheme that
allows one to build an election system
whose winner problem—like the win-
ner problem of all four systems from
Table 1—is computationally easy, yet
the system is resistant to all 22 control
attacks. Unfortunately, that election
system is in a somewhat tricky manner
“built on top of” other systems each
of which will in some cases determine
the winner, and so the system lacks the
attractiveness and transparency that
real-world voters reasonably expect.

To conclude our discussion of con-
trol, we mention one other setting, that
of choosing a whole assembly or com-
mittee through an election. Such assem-
bly-election settings introduce a range
of new challenges. For example, the
voters will have preferences over assem-
blies rather than over individual candi-
dates. We point the reader to the work of
Meir et al.40 for results on the complexity
of controlling elections of this type.

Using Complexity to Block
Election Manipulation
Manipulation is often used informally
as a broad term for attempts to affect
election outcomes. But in the litera-
ture, manipulation is also used to refer
just to the particular attack in which a
voter or a coalition of voters seeks to
cast their votes in such a way as to ob-
tain a desired outcome, for example,
making some candidate win. In formu-
lating such problems, one often stud-
ies the case in which each voter has a
weight, as is the case in the electoral
college and in stockholder votes. The
input to such problems consists of the
weights of all voters, the votes of the
nonmanipulators, and the candidate
the manipulators are trying to make a
winner.

Manipulation problems have been
studied more extensively than either
control or bribery problems, and so
the literature is too broad to survey in
any detail. But we now briefly mention
a few of the key themes in this study,
including using complexity to protect,
using algorithms to attack, studying
approximations to bypass protections,
and analyzing manipulation properties
of random elections.

The seminal papers on complex-
ity of manipulation are those of Bar-
tholdi, Orlin, Tovey, and Trick.2,3
Bartholdi, Tovey, and Trick3 gave
polynomial-time algorithms for ma-
nipulation and proved a hardness-of-
manipulation result (regarding so-
called second-order Copeland voting).
Bartholdi and Orlin2 showed that for
“single transferable vote,” a system
that is used for some countries’ elec-
tions, whether a given voter can ma-
nipulate the election is NP-complete,
even in the unweighted case.

Even if election systems are proven
intractable to manipulate in general, it
remains possible that if one allows only

The current push-
pull between using
complexity as a
shield and seeking
holes in and paths
around that shield is
a natural part of the
drama of science.

80 communications of the acm | november 2010 | vol. 53 | no. 11

review articles

famously developed the theory of aver-
age-case NP-hardness,37 and although
that theory is difficult to apply and is
tied to what distributions one uses, it
would be extremely interesting to es-
tablish that the manipulation, control,
and bribery problems for important
election systems are average-case NP-
hard with respect to some appropriate
and compellingly natural distribution.

A very exciting new path toward
circumventing hardness-of-manipula-
tion results (and, potentially, toward
more generally circumventing hard-
ness results about election-related is-
sues) is to look at restricted domains
for the collections of votes the elec-
torate may cast. In particular, there
is a very important political science
notion called “single-peaked prefer-
ences,” in which the candidates are
modeled along an axis, such as liberal
to conservative, and as one goes away
from each voter’s most preferred can-
didate in either of the axis’s directions
the voter prefers the candidates less
and less. Walsh46 raised the fascinat-
ing question of whether hard election-
manipulation problems remain hard
even for electorates that follow the
single-peaked model, and he provided
natural examples in which manipula-
tion problems remain hard even when
restricted to single-peaked electorates.
In contrast, and inspired by a differ-
ent part of Walsh’s paper that showed
some profile completion problems
are easy for single-peaked electorates,
a recent paper by Faliszewski et al.27
shows that for single-peaked elector-
ates many NP-hard manipulation and
control problems have polynomial-
time algorithms. The point of—and
threat of—this research line is that
for electorates that are single-peaked,

can be many-one polynomial-time reduced
to) a set that is easy on overwhelmingly many
of its instances.21 Unfortunately, this does not
necessarily imply that the original set is easy
on overwhelmingly many of its instances. In
fact, it is known that relative to a random “ora-
cle” (black box), there are NP sets on which no
polynomial-time heuristic algorithm can do
well.34 Also, it is well known that if any NP-hard
set has a polynomial-time heuristic algorithm
that is correct on all but a “sparse” amount of
its input, then P = NP.44 However, “sparse” in
that research line is so small as to not reassure
us here. And, finally, there has been much in-
terest in distributions, problems, and settings
that remove the gap between worst-case and
average-case complexities.1,38

a certain number of candidates, the
manipulation problem becomes easy.
Conitzer, Sandholm, and Lang15 pro-
vide a detailed study of this behavior,
showing for each of many election sys-
tems the exact number of candidates
necessary to make its (constructive,
weighted, coalitional) manipulation
problem computationally infeasible.
For example, in this setting manipula-
tion is easy for Borda with up to two can-
didates, but becomes infeasible when
restricted even to three candidates.

In contrast, it is well known that
manipulation is simple for plurality
elections regardless of the number of
candidates. That is unfortunate, since
plurality elections are the most com-
mon and most important elections in
the real world.

What holds for scoring-rule elec-
tion systems other than plurality? One
could try analyzing scoring systems
one at a time to see which are sub-
ject to manipulation, but it might be
a long slog since there are an infinite
number of scoring systems. This mo-
tivates us to look toward an excellent
general goal: finding a dichotomy the-
orem that in one fell swoop pinpoints
what it is about an election system
that makes it vulnerable to manipu-
lation or that makes manipulation
computationally prohibitive. For
scoring systems, this was achieved in
Hemaspaandra and Hemaspaandra29
(see also the closely related work15,42),

which showed that scoring systems
are NP-complete to manipulate (in the
weighted setting) precisely if they al-
low “diversity of dislike” (that is, the
point values for the second favorite
and least favorite candidates differ),
and that all other scoring systems are
easy to manipulate. From this it fol-
lows that the only easily manipulable
scoring systems are an infinite collec-
tion of trivial systems, plurality, and
an infinite collection of systems that
are disguised, transformed versions
of plurality; all other scoring systems
are NP-hard to manipulate.

There has been an intense effort
to circumvent such hardness results.
Indeed, the seminal paper on manipu-
lation3 provided a greedy single-voter
manipulation algorithm that was later
proved to also work in an interest-
ing range of coalitional-manipulation
settings.42,49 An influential paper of
Conitzer and Sandholm14 shows that
voting systems and distributions that
on a large probability weight of the in-
puts satisfy certain conditions have a
manipulability-detection algorithm
that is correct on at least that same set
of inputs. A different line of research fo-
cuses on analyzing the probability with
which a randomly selected election is
susceptible to a given form of manipu-
lation.16,28,47,48 In the standard probabi-
listic model used in this line of work,d
for many natural election systems the
probability that a voter can affect the
result of an election by simply casting a
random vote is small but nonnegligible.

This work is motivated by perhaps
the greatest single worry related to us-
ing NP-hardness to protect elections—
a worry that applies to NP-hardness re-
sults not just about manipulation, but
also about control and bribery. That
worry is that NP-hardness is a worst-
case theory, and it is in concept pos-
sible that NP-hard sets may be easily
solved on many of their input instanc-
es even if P and NP differ.e Levin has

d	 This model is called impartial culture. In im-
partial culture each vote is chosen uniformly
at random from the set of all permutations of
the candidates.

e	 There are a number of results in theoretical
computer science that are related to this issue,
while as a practical matter not resolving it for
the concrete cases we care about. For example,
by an easy “padding” trick one can see that
every NP-hard set can have its instances trans-
formed into questions about (in the jargon,

Figure 4. An example of a weighted
plurality election.

6
4

2

5

8

6

4

2

0

c1 c2 p

Each bar represents a weighted vote for a
particular candidate. We can make p a win-
ner by bribing the weight-5 voter to vote for
p, but bribing only the heaviest voter to vote
for p would not be sufficient.

review articles

november 2010 | vol. 53 | no. 11 | communications of the acm 81

NP-hardness results simply may fail to
hold. And the reason that can happen
is the assumption of single-peaked
preferences is so restrictive that it can
rule out some of the collections of
votes used in the outputs of reductions
in general-case NP-hardness proofs.

Yet another path toward circum-
venting hardness-of-manipulation
results leads to relaxing the notion
of solving a manipulation problem.
Procaccia and Rosenschein42 initi-
ated this approach by showing that
the heuristic from the seminal work
of Bartholdi, Tovey, and Trick,3 when
extended to a coalitional manipula-
tion setting, works correctly on an
interesting class of scoring-system
manipulation instances. By an even
more careful analysis, together with
Zuckerman, they later extended this
result to a number of other election
systems,49 and they obtained approxi-
mation results and results that for ma-
nipulable instances are guaranteed to
return a manipulation that will work if
one is allowed to add a certain number
and weight of additional manipula-
tors. Brelsford et al.8 provide their own
framework for studying approximabil-
ity of manipulation problems (as well
as approximability of bribery and con-
trol problems) and for a large class of
scoring systems gives approximation
algorithms for manipulation.

Returning to playing defense, what
can we do if a system has a polynomial-
time manipulation algorithm? Can we
somehow feed the system a can of spin-
ach and turn it fearsome? To a surpris-
ing extent the answer is yes, as studied
in work of Conitzer and Sandholm13
and Elkind and Lipmaa.19 They vari-
ously do this by adding an elimination
“pre-round” (that may or may not be
based on a hypothetical one-way func-
tion) or by changing the election into
a long series of rounds of candidate
elimination. The good news is that this
approach often boosts the complexity,
and the bad news is that these multi-
round election systems are simply not
the same intuitively attractive animals
that they are built from.

Using Complexity to Block
Bribery in Elections
The complexity-theoretic study of
bribery in elections was proposed by
Faliszewski, Hemaspaandra, and He-

maspaandra,24 and started far more
recently than did the complexity-the-
oretic study of control and manipu-
lation of elections. Bribery comes in
many variants, but the basic pattern
is just what the term brings to mind.
The briber has a certain budget, the
voters (who depending on the model
may or may not have weights) each
have a price for which their vote can be
bought, and depending on the model
voters may or may not be required to
each have unit cost (the former case
is referred to as the “without prices”
case). And the question is whether
the briber can achieve his or her
goal—typically, to make a preferred
candidate p be a winner—within the
budget. Note that bribery has aspects
of both control and manipulation.
Like some types of control one has to
choose which collection of voters to
act on, but like manipulation one is
altering votes.

For reasons of space, we cover brib-
ery only briefly. We do so by giving a few
examples focusing on plurality elec-
tions and Llull elections.

For plurality elections, the complex-
ity of bribery turns out to be very sensi-
tive to the model. For plurality, brib-
ery is NP-complete when voters have
weights and prices, but is in polynomi-
al time if voters have only weights, only
prices, or neither weights nor prices.24,f
For the weighted and the weighted-
and-priced cases, these results can be
extended to dichotomy theorems that
completely classify which scoring-rule
election systems have NP-complete
bribery problems and which have fea-
sible bribery problems.24 Also, for plu-
rality, there is an efficient algorithm
that can approximately solve the prob-
lem up to any given precision23—a so-
called fully polynomial-time approxi-
mation scheme.

For Llull elections, the results again
are very sensitive to the model. On one
hand, both with and without weights,
and both with and without voter pric-
es, the bribery problem for Llull elec-
tions is NP-complete. On the other

f	 The bribery algorithms are far from trivial. For
example, Figure 4 shows an election (without
prices) where the very natural heuristic of first
bribing the heaviest voter yields a suboptimal
solution. Similarly, it is easy to find examples
where bribing the heaviest voter of a current
winner does not lead to an optimal solution.

hand, if one changes one’s model and
associates a cost not to each voter, but
rather to each pairwise preference of
each voter (so the more one changes a
given voter’s vote, the more one has to
pay—so-called “microbribery”), Llull
bribery (without weights) can be done,
in a slightly different model that al-
lows irrational preferences, in polyno-
mial time.25

Summary
In this article, we discussed some of
the main streams—control, manipu-
lation, and bribery—in the study of
how complexity can be used as a shield
to protect elections (see Faliszewski
et al.26 for a more technical survey).
This line was started by the striking
insight of Bartholdi, Orlin, Tovey, and
Trick (see also Simon45 for even earlier
roots) that although economics proves
we cannot make manipulation impos-
sible, we can seek to make it compu-
tationally infeasible. As we have seen,
many hardness results have been ob-
tained, as have many polynomial-time
attacks. Election systems and settings
vary greatly in the behaviors one can
establish. It is natural to consider
an election system’s computational
weaknesses and strengths, as one fac-
tor among many, when choosing an
election system for a given task, and
in particular to choose a system care-
fully in light of the types of attacks one
most needs it to thwart. Yet the work
on computational protection of elec-
tions has also energized the search for
end runs around that protection, such
as approximation algorithms and heu-
ristics having provably frequent good
performance, and one must also worry
about such potential end runs when
making one’s election-system choice.

This work all falls within the
emerging area known as computa-
tional social choice (see Chevaleyre et
al.10 for a superb survey), an area that
links AI, systems, and theory within
computer science, as well as econom-
ics, political science, mathematics,
and operations research. Elections
have been important for thousands
of years, and with the current and
anticipated increase of electronic
agency, elections become more im-
portant—and more open to attacks—
with each passing year. The current
push-pull between using complexity

82 communications of the acm | november 2010 | vol. 53 | no. 11

review articles

manipulated often. In Proceedings of the 49th IEEE
Symposium on Foundations of Computer Science (Oct.
2008). IEEE Computer Society, 243–249.

29.	 Hemaspaandra, E., Hemaspaandra, L. Dichotomy for
voting systems. Journal of Computer and System
Sciences 73, 1 (2007), 73–83.

30.	 Hemaspaandra, E., Hemaspaandra, L. and Rothe, J.
Exact analysis of Dodgson elections: Lewis Carroll’s
1876 voting system is complete for parallel access to
NP. Journal of the ACM 44, 6 (1997), 806–825.

31.	 Hemaspaandra, E., Hemaspaandra, L. and Rothe, J.
Anyone but him: The complexity of precluding an
alternative. Artificial Intelligence 171, 5–6 (2007),
255–285.

32.	 Hemaspaandra, E., Hemaspaandra, L. and Rothe,
J. Hybrid elections broaden complexity-theoretic
resistance to control. Mathematical Logic Quarterly
55, 4 (2009), 397–424.

33.	 Hemaspaandra, E., Spakowski, H. and Vogel, J.
The complexity of Kemeny elections. Theoretical
Computer Science 349, 3 (2005), 382–391.

34.	 Hemaspaandra, L. and Zimand, M. Strong self-
reducibility precludes strong immunity. Mathematical
Systems Theory 29, 5 (1996), 535–548.

35.	 Homan, C. and Hemaspaandra, L. Guarantees for
the success frequency of an algorithm for finding
Dodgson-election winners. Journal of Heuristics 15, 4
(2009), 403–423.

36.	 Kenyon-Mathieu, C. and Schudy, W. How to rank
with few errors. In Proceedings of the 39th ACM
Symposium on Theory of Computing (June 2007).
ACM Press, 95–103.

37.	 Levin, L. Average case complete problems. SIAM
Journal on Computing 15, 1 (1986), 285–286.

38.	 Li, M. and Vitányi, P. Average case complexity
under the universal distribution equals worst-case
complexity. Information Processing Letters 42, 3
(1992), 145–149.

39.	M cCabe-Dansted, J., Pritchard, G. and Slinko, A.
Approximability of Dodgson’s rule. Social Choice and
Welfare 31, 2 (2008), 311–330.

40.	Meir, R., Procaccia, A., Rosenschein, J. and Zohar, A.
The complexity of strategic behavior in multi-winner
elections. Journal of Artificial Intelligence Research
33 (2008), 149–178.

41.	P ennock, D., Horvitz, E. and Giles, C. Social choice
theory and recommender systems: Analysis of the
axiomatic foundations of collaborative filtering. In
Proceedings of the 17th National Conference on
Artificial Intelligence (July/Aug. 2000). AAAI Press,
729–734.

42.	P rocaccia, A. and Rosenschein, J. Junta distributions
and the average-case complexity of manipulating
elections. Journal of Artificial Intelligence Research
28 (2007), 157–181.

43.	R othe, J., Spakowski, H. and Vogel, J. Exact complexity
of the winner problem for Young elections. Theory of
Computing Systems 36, 4 (2003), 375–386.

44.	Schöning, U. Complete sets and closeness to
complexity classes. Mathematical Systems Theory 19,
1 (1986), 29–42.

45.	S imon, H. The Sciences of the Artificial. MIT Press,
1969. Third edition, 1996.

46.	 Walsh, T. Uncertainty in preference elicitation and
aggregation. In Proceedings of the 22nd AAAI
Conference on Artificial Intelligence (July 2007).
AAAI Press, 3–8.

47.	 Xia, L. and Conitzer, V. Generalized scoring rules
and the frequency of coalitional manipulability. In
Proceedings of the 9th ACM Conference on Electronic
Commerce (July 2008). ACM Press, NY, 109–118.

48.	 Xia, L. and Conitzer, V. A sufficient condition for voting
rules to be frequently manipulable. In Proceedings
of the 9th ACM Conference on Electronic Commerce
(July 2008). ACM Press, NY, 99–108.

49.	Zuckerman, M. Procaccia, A. and Rosenschein, J.
Algorithms for the coalitional manipulation problem.
Artificial Intelligence 173, 2 (2009), 392–412.

Piotr Faliszewski (faliszew@agh.edu.pl) is an assistant
professor at the AGH University of Science and
Technology, Kraków, Poland.

Edith Hemaspaandra (eh@cs.rit.edu) is a professor at
the Rochester Institute of Technology, Rochester, NY.

Lane A. Hemaspaandra (lane@cs.rochester.edu) is a
professor at the University of Rochester, Rochester, NY.

© 2010 ACM 0001-0782/10/1100 $10.00

as a shield and seeking holes in and
paths around that shield is a natural,
exciting part of the drama of science,
and is likely to continue for decades to
come as new models, techniques, and
attacks are formulated and studied.
This study will clearly benefit from the
broadest possible participation, and
we urge any interested readers—and
most especially those early in their
careers—to bring their own time and
skills to bear on the many problems
that glimmer in the young, important,
challenging study of the complexity of
elections.

Acknowledgments
We are deeply grateful to Preetjot
Singh, Communications editors Georg
Gottlob, Moshe Vardi, and Andrew Yao,
and the anonymous referees for help-
ful suggestions and encouragement.

Piotr Faliszewski was supported
in part by Polish Ministry of Science
and Higher Education grant N-N206-
378637, AGH-UST grant 11.11.120.865,
and by the Foundation for Polish Sci-
ence's Homing Program. Edith He-
maspaandra was supported in part
by NSF grant IIS-0713061 and a Fried-
rich Wilhelm Bessel Research Award
from the Alexander von Humboldt
Foundation. Lane A. Hemaspaandra
was supported in part by NSF grants
CCF-0426761 and CCF-0915792 and
a Friedrich Wilhelm Bessel Research
Award from the Alexander von Hum-
boldt Foundation.	

References
1.	A jtai, M. Worst-case complexity, average-case

complexity and lattice problems. Documenta
Mathematica, Extra Volume ICM III (1998), 421–428.

2.	 Bartholdi, III, J. and Orlin, J. Single transferable vote
resists strategic voting. Social Choice and Welfare 8, 4
(1991) 341–354.

3.	 Bartholdi, III, J., Tovey, C. and Trick, M. The
computational difficulty of manipulating an election.
Social Choice and Welfare 6, 3 (1989) 227–241.

4.	 Bartholdi, III, J., Tovey, C. and Trick, M. Voting
schemes for which it can be difficult to tell who won
the election. Social Choice and Welfare 6, 2 (1989),
157–165.

5.	 Bartholdi, III, J., Tovey, C. and Trick, M. How hard is
it to control an election? Mathematical and Computer
Modeling 16, 8/9 (1992), 27–40.

6.	 Betzler, N., Fellows, M., Guo, J., Niedermeier, R. and
Rosamond, F. Fixed-parameter algorithms for Kemeny
scores. In Proceedings of the 4th International
Conference on Algorithmic Aspects in Information
and Management. Lecture Notes in Computer Science
#5034 (June 2008). Springer-Verlag, 60–71.

7.	 Betzler, N., Guo, J., Niedermeier, R. Parameterized
computational complexity of Dodgson and Young
elections. In Proceedings of the 11th Scandinavian
Workshop on Algorithm Theory. Lecture Notes in
Computer Science #5124 (July 2008). Springer-
Verlag, 402–413.

8.	 Brelsford, E., Faliszewski, P., Hemaspaandra, E.,
Schnoor, H., and Schnoor, I. Approximability of

manipulating elections. In Proceedings of the 23rd
AAAI Conference on Artificial Intelligence (July
2008). AAAI Press, 44–49.

9.	C aragiannis, I., Covey, J., Feldman, M., Homan,
C. Kaklamanis, C., Karanikolas, N., Procaccia, A.
and Rosenschein, J. On the approximability of
Dodgson and Young elections. In Proceedings of the
20th Annual ACM-SIAM Symposium on Discrete
Algorithms (Jan. 2009). Society for Industrial and
Applied Mathematics, 1058–1067.

10.	C hevaleyre, Y., Endriss, U., Lang, J. and Maudet, N. A
short introduction to computational social choice. In
Proceedings of the 33rd International Conference on
Current Trends in Theory and Practice of Computer
Science. Lecture Notes in Computer Science #4362
(Jan. 2007). Springer-Verlag, 51–69.

11.	C hristian, R., Fellows, M., Rosamond, F. and Slinko,
A. On complexity of lobbying in multiple referenda.
Review of Economic Design 11, 3 (2007), 217–224.

12.	C onitzer, V., Davenport, A. and Kalagnanam, J.
Improved bounds for computing Kemeny rankings.
In Proceedings of the 21st National Conference
on Artificial Intelligence (July 2006). AAAI Press,
620–626.

13.	C onitzer, V. and Sandholm, T. Universal voting protocol
tweaks to make manipulation hard. In Proceedings of
the 18th International Joint Conference on Artificial
Intelligence (Aug. 2003). Morgan Kaufmann, 781–788.

14.	C onitzer, V. and Sandholm, T. Nonexistence of
voting rules that are usually hard to manipulate.
In Proceedings of the 21st National Conference
on Artificial Intelligence (July 2006). AAAI Press,
627–634.

15.	C onitzer, V., Sandholm, T. and Lang, J. When are
elections with few candidates hard to manipulate?
Journal of the ACM 54, 3 (2007), Article 14.

16.	 Dobzinski, S. and Procaccia, A. Frequent manipulability
of elections: The case of two voters. In Proceedings
of the 4th International Workshop on Internet and
Network Economics. (Dec. 2008). Springer-Verlag
Lecture Notes in Computer Science #5385, 653–664

17.	 Duggan, J. and Schwartz, T. Strategic manipulability
without resoluteness or shared beliefs: Gibbard–
Satterthwaite generalized. Social Choice and Welfare
17, 1 (2000), 85–93

18.	 Dwork, C., Kumar, R., Naor, M. and Sivakumar, D. Rank
aggregation methods for the Web. In Proceedings of
the 10th International World Wide Web Conference
(Mar. 2001). ACM Press, NY, 613–622.

19.	E lkind, E. and Lipmaa, H. Hybrid voting protocols and
hardness of manipulation. In Proceedings of the 16th
Annual International Symposium on Algorithms and
Computation (Dec. 2005). Springer-Verlag Lecture
Notes in Computer Science #3872, 206–215.

20.	E phrati, E. and Rosenschein, J. A heuristic technique
for multi-agent planning. Annals of Mathematics and
Artificial Intelligence 20, 1-4 (1997), 13–67.

21.	E rdélyi, G., Hemaspaandra, L., Rothe, J. and
Spakowski, H. Generalized juntas and NP-hard sets.
Theoretical Computer Science 410, 38–40 (2009),
3995–4000.

22.	E rdélyi, G., Nowak, M. and Rothe, J. Sincere-strategy
preference-based approval voting fully resists
constructive control and broadly resists destructive
control. Mathematical Logic Quarterly 55, 4 (2009),
425–443.

23.	F aliszewski, P. Nonuniform bribery (short paper). In
Proceedings of the 7th International Conference on
Autonomous Agents and Multiagent Systems (May
2008), 1569–1572.

24.	F aliszewski, P., Hemaspaandra, E. and Hemaspaandra,
L. How hard is bribery in elections? Journal of
Artificial Intelligence Research 35 (2009), 485–532.

25.	F aliszewski, P., Hemaspaandra, E., Hemaspaandra,
L. and Rothe, J. Llull and Copeland voting
computationally resist bribery and constructive
control. Journal of Artificial Intelligence Research 35
(2009), 275–341.

26.	F aliszewski, P., Hemaspaandra, E., Hemaspaandra, L.
and Rothe, J. A richer understanding of the complexity
of election systems. In Fundamental Problems in
Computing: Essays in Honor of Professor Daniel J.
Rosenkrantz. S. Ravi and S. Shukla, eds. Springer,
2009, 375–406.

27.	F aliszewski, P., Hemaspaandra, E., Hemaspaandra,
L. and Rothe, J. The shield that never was: Societies
with single-peaked preferences are more open to
manipulation and control. In Proceedings of the 12th
Conference on Theoretical Aspects of Rationality and
Knowledge (July 2009). ACM Digital Library, 118–127.

28.	F riedgut, E., Kalai, G. and Nisan, N. Elections can be

mailto:faliszew@agh.edu.pl
mailto:eh@cs.rit.edu
mailto:lane@cs.rochester.edu

research highlights

november 2010 | vol. 53 | no. 11 | communications of the acm 83

p. 85

Goldilocks:
A Race-Aware Java Runtime
By Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran

p. 84

Technical
Perspective
Data Races are Evil
with No Exceptions
By Sarita Adve

p. 93

FastTrack: Efficient and Precise
Dynamic Race Detection
By Cormac Flanagan and Stephen N. Freund

84 communications of the acm | november 2010 | vol. 53 | no. 11

Exploiting parallelism has become the
primary means to higher performance.
Shared memory is a pervasively used
programming model, where parallel
tasks or threads communicate through
a global address space. Popular lan-
guages, such as C, C++, and Java have
(or will soon have) standardized sup-
port for shared-memory threads. Unfor-
tunately, shared-memory programs are
notoriously prone to subtle bugs, often
due to data races.

Languages that allow data races ob-
fuscate true communication and syn-
chronization. Since any load or store
may communicate or synchronize with
another thread through a data race, it
becomes difficult to reason about sec-
tions of code in isolation. Data races
also create non-determinism since the
ordering between two racing accesses
is timing-dependent. Racy programs
therefore require reasoning about
many interleavings of individual mem-
ory accesses and their executions are
difficult to reproduce. Data races have
therefore been widely considered as
symptoms of bugs and there is much
research to automatically detect them.

An arguably more fundamental
problem with data races concerns se-
mantics. Every programming language
must specify what value a load can re-
turn, also called the memory model.
It has been surprisingly difficult to
specify an acceptable model that bal-
ances ease-of-use and performance
for languages that allow data races.1
Programmers usually expect a sequen-
tial interleaving-based model called se-
quential consistency. For data-race-free
programs, it is straightforward to pro-
vide sequential consistency and high
performance. With racy code, however,
routine compiler and hardware opti-
mizations can result in surprising be-
haviors. Consequently, the upcoming C
and C++ memory models specify “unde-
fined” behavior for programs with data
races. This gives freedom to implement-
ers but poses challenges for debugging

racy code. Java’s safety requirements
preclude the use of “undefined” behav-
ior. The Java memory model, therefore,
specifies very weak semantics for racy
programs, but is extremely complex and
currently has known bugs.

Despite the debugging and seman-
tics difficulties, some prior work refers
to certain data races (for example, some
unsynchronized reads) as benign and
useful for performance. Unfortunately,
reasonable semantics for programs with
any type of data race remain elusive; C,
C++, and Java do not provide usable se-
mantics with any (benign or not) data race.

A natural conclusion is to strive for
languages that eliminate data races.
Although there is much progress, such
general-purpose languages,2 are not
yet commercially available. The follow-
ing two papers on Goldilocks and Fast-
Track suggest alternative solutions that
use always-on data race detection for
current languages.

Goldilocks was the first work to pro-
pose a data race be treated as a language-
level exception, just like null pointer
dereferences. This insight cleans up the
most difficult part of the memory mod-
els mess—executions are either sequen-
tially consistent or throw an exception.
No complicated semantics of Java and
no unsafe behavior of C/C++!

The challenge, compared to much
prior work on race detection, is that
an always-on language-level exception
mechanism must be both fast and pre-
cise. The well-established race detec-
tion algorithm based on vector clocks
is precise, but incurs orders-of-magni-
tude slowdown. Faster algorithms (for
example, based on a lockset approach)
exist, but produce false positives, which
are unacceptable for enforcing lan-
guage-level semantics.

Goldilocks extends the lockset ap-
proach to make it precise, at a much
faster speed than the previous precise
vector clock algorithm. FastTrack fol-
lowed up by optimizing the vector clock
approach to make it run faster, without

losing precision and performing even
better than Goldilocks. For the first
time, these papers made it possible to
believe that “data race as an exception”
may be a viable solution to the vexing
debugging and semantics problems of
shared memory.

The absolute slowdown of both tech-
niques is still quite significant, but they
expose an exciting research agenda. An
immediate challenge is to improve per-
formance. Another concerns mapping
races detected in compiler-generated
code to source code. Others are explor-
ing hardware for similar goals.3

More broadly, these papers encour-
age a fundamental rethinking of pro-
gramming models, languages, compil-
ers, and hardware. Should languages
be designed to eliminate data races by
design?2 Or should the runtime auto-
matically detect races? Or should the
hardware?3 Can similar techniques be
used for enforcing even stronger prop-
erties such as determinism and ato-
micity? Does this impact how we view
shared memory as a programming
model? The answer to all these ques-
tions is probably “yes.”

It is unlikely that any of language,
runtime, or hardware techniques alone
will strike the best balance between
ease-of-use, generality, performance,
and complexity, but designing systems
that combine the strengths of such
techniques remains challenging. It is
also unclear what high-level language
properties such systems will finally en-
sure; for example, race elimination is
certainly a critical factor in ensuring de-
terminism and atomicity. What is clear
is these papers provide key insights to
shape the final solutions and are impor-
tant steps toward making parallel pro-
gramming amenable to the masses.	

References
1.	A dve, S.V. and Boehm, H-J. Memory models: A case

for rethinking parallel languages and hardware.
Commun. ACM 53, 8 (Aug. 2010) 90–101.

2.	 Bocchino, R.L. et al. A type and effect system
for deterministic parallel Java. In Proceedings
of the International Conference on Object-
Oriented Programming, Systems, Languages, and
Applications, 2009.

3.	 Lucia, B. et al. Conflict exceptions: Providing simple
concurrent language semantics with precise hardware
exceptions. In Proceedings of the International
Symposium on Computer Architecture, 2010.

Sarita Adve (sadve@illinois.edu) is a professor in the
Department of Computer Science at the University of
Illinois at Urbana-Champaign.

© 2010 ACM 0001-0782/10/1100 $10.00

Technical Perspective
Data Races are Evil
with No Exceptions
By Sarita Adve

research highlights

doi:10.1145/1839676.1839697

mailto:sadve@illinois.edu

doi:10.1145/1839676.1839698

november 2010 | vol. 53 | no. 11 | communications of the acm 85

Goldilocks:
A Race-Aware Java Runtime
By Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran

Abstract
We present Goldilocks, a Java runtime that monitors
program executions and throws a DataRaceException
when a data race is about to occur. This prevents racy
accesses from taking place, and allows race conditions to
be handled before they cause errors that may be difficult
to diagnose later. The DataRaceException is a valuable
debugging tool, and, if supported with reasonable compu-
tational overhead, can be an important safety feature for
deployed programs. Experiments by us and others on race-
aware Java runtimes indicate that the DataRaceException
may be a viable mechanism to enforce the safety of execu-
tions of multithreaded Java programs.

An important benefit of DataRaceException is that
executions in our runtime are guaranteed to be race free
and thus sequentially consistent as per the Java Memory
Model. This strong guarantee provides an easy-to-use, clean
semantics to programmers, and helps to rule out many
concurrency-related possibilities as the cause of errors. To
support the DataRaceException, our runtime incorpo-
rates the novel Goldilocks algorithm for precise dynamic race
detection. The Goldilocks algorithm is general, intuitive, and
can handle different synchronization patterns uniformly.

1. INTRODUCTION
When two accesses by two different threads to a shared
variable are enabled simultaneously, i.e., at the same pro-
gram state, a race condition is said to occur. An equiva-
lent definition involves an execution in which two threads
make conflicting accesses to a variable without proper
synchronization actions being executed between the two
accesses. A common way to ensure race freedom is to asso-
ciate a lock with every shared variable, and to ensure that
threads hold this lock when accessing the shared variable.
The lock release by one thread and the lock acquire by the
next establish the required synchronization between the
two threads.

Data races are undesirable for two key reasons. First, a
race condition is often a symptom of a higher-level logical
error such as an atomicity violation. Thus, race detectors
serve as a proxy for more general concurrency-error detec-
tion when higher-level specifications such as atomicity
annotations do not exist. Second, a race condition makes
the outcome of certain shared variable accesses nondeter-
ministic. For this and other reasons, both the Java Memory
Model (JMM)10 and the C++ Memory Model (C++MM)2 define
well-synchronized programs to be programs whose execu-
tions are free of race conditions. For race-free executions,
these models guarantee sequentially consistent semantics;

in particular, every read deterministically returns the value
of the “last” write. This semantics is widely considered to
be the only simple-enough model with which writing useful
concurrent programs is practical. For executions containing
race conditions, the semantics is either completely unde-
fined (as is the case for C++MM2) or is complicated enough
that writing a useful and correct program with “benign
races” is a challenge.

Detection and/or elimination of race conditions has been
an area of intense research activity. The work presented in
this paper (and initially presented in Elmas et al.6) makes
two important contributions to this area.

First, for the first time in the literature, we propose that
race conditions should be language-level exceptions just
like null pointer dereferences and indexing an array out of
its bounds. The Goldilocks runtime for Java provides a
new exception, DataRaceException,a that is thrown pre-
cisely when an access that causes an actual race condition is
about to be executed. Since a racy execution is never allowed
to take place, this guarantees that the execution remains
sequentially consistent.

The DataRaceException brings races to the program-
mer’s attention explicitly. When this exception is caught, the
recommended course of action is to terminate the program
gracefully. This is because, for racy Java programs, a wide
range of compiler optimizations are allowed by the JMM,
and this makes it complicated to relate program executions
to source code. If the exception is not caught, the Goldilocks
runtime terminates the thread that threw the exception.
While not recommended, the programmer could also
choose to make optimistic use of a DataRaceException
by, for instance, retrying the code block that led to the race,
hoping that the conflicting thread has performed the syn-
chronization necessary to avoid a race in the meantime.
Since the first paper on the Goldilocks runtime,6 the idea
that certain concurrency errors, especially ones that result
in sequential consistency violations, should result in excep-
tions has gained significant support and several implemen-
tations of the idea have been investigated.9, 11

To support a DataRaceException, a runtime must

The original version of this paper was published in the
Proceedings of the ACM SIGPLAN 2007 Conference on
Programming Language Design and Implementation (PLDI),
June 2007.

a  We define DataRaceException as a subclass of the Runtime
Exception class in Java.

86 communications of the acm | november 2010 | vol. 53 | no. 11

research highlights

but they cannot handle concurrency patterns implemented
using volatile variables such as barrier synchronization.

There is a significant body of research on dynamic data-
race detection based on computing the happens-before
relation4, 7, 14, 15, 17 using vector clocks.12 Hybrid techniques14, 20

combine lockset and happens-before analysis. For exam-
ple, RaceTrack20 uses a basic vector clock algorithm to
capture thread-local accesses to objects thereby eliminat-
ing unnecessary and imprecise applications of the Eraser
algorithm. Similarly, MultiRace14 presents djit+, a vector
clock algorithm with several optimizations to reduce the
number of checks at an access, including keeping distinct
vector clocks for reads and writes and using a lockset algo-
rithm as a fast-path check. To the best of our knowledge,
FastTrack,7 which builds on djit+, is the best-performing
vector clock-based algorithm in the literature. By exploit-
ing some access patterns, FastTrack reduces the cost of
vector clock updates to O(1) on average. We provide a quali-
tative comparison of the Goldilocks and FastTrack algo-
rithms in Section 4.3. Vector clock and Goldilocks are
both precise, but the generalized locksets in Goldilocks
provide an intuitive representation of how shared variables
are protected at each point the execution.
Concurrency-Related Exceptions: Since proposed first by
the authors in Elmas et al.,6 the idea that programming plat-
forms should be able to guarantee sequential consistency
for all programs has gained significant support. Marino
et.al.11 and Lucia et.al.9 provide platforms with explicit mem-
ory model exceptions. Both platforms define stronger but
simpler contracts than JMM and C++MM, which enable effi-
cient hardware implementations that support the memory
model exceptions.

2. A GENERIC MEMORY MODEL
In this section, we present a generic memory model and
express the JMM as a special case of it. This generic model
allows a uniform treatment of the various synchronization
constructs in Java. We also believe that memory models at
different levels (e.g., the hardware level) and for different
languages (e.g., C++MM) can be expressed as instances of
this model. This allows Goldilocks to be applied in these
settings directly.
Variables and Actions: Program variables are separated into
two categories: data variables (Data) and synchronization
variables (Sync). We use x, and o to refer to data and syn-
chronization variables, respectively. Threads in a program
execute actions from the following categories:

•	 Data variable accesses: read(t, x, v) by thread t reads the
current value v of a data variable x, and write(t, x, v) by
thread t writes the value v to x.

•	 Synchronization operations: When threads synchronize
using a synchronization mechanism, a thread ti executes
a notification action, which is then observed by other
threads tj. Such a notification–observation pair defines a
“synchronizes-with” edge from the former action to the
latter. We classify actions that serve as sources and sinks
of a synchronizes-with edge as synchronization source
and sink actions, respectively.

incorporate a precise yet efficient race detection mecha-
nism. In this context, false positives in race detection can-
not be tolerated. The second contribution of our work is the
Goldilocks algorithm, a novel, precise, and general algo-
rithm for detecting data races at runtime. In Elmas et al.,6
we presented an implementation of the Goldilocks algo-
rithm in a Java Virtual Machine (JVM) called Kaffe.19 Our
experiments with Goldilocks on benchmarks brought up
the new possibility that the overhead of post-deployment
precise race detection in a runtime may be tolerable. There
has been significant progress in the efficiency of precise race
detection since the Goldilocks runtime was first published
(see Flanagan and Freund, and Pozmiansky and Schuster,7, 14
for example) and this idea appears viable today.

The Goldilocks algorithm is based on an intuitive, gen-
eral representation for the happens-before relationship as
a generalized lockset (Goldilockset) for each variable. In
the traditional use of the term, a lockset for a shared vari-
able x at a point in an execution contains a set of locks. A
thread can perform a race-free access to x at that point by
first acquiring a lock in this lockset. A Goldilockset is a gen-
eralization of a lockset. In Java, locks and volatile variables
are synchronization objects, and acquiring and releasing a
lock, as well as reading from and writing to a volatile vari-
able, are synchronization operations. To reflect this, at each
point in an execution, the Goldilockset for a shared variable
x may contain thread ids, locks, and volatile variables. A
thread can perform a race-free access to x iff its thread id
is in the Goldilockset, or if it first acquires a lock that is in
the Goldilockset, or reads a volatile variable that is in the
Goldilockset. In other words, the Goldilockset indicates
the threads that have the ownership of x and the synchro-
nization objects that protect access to x at that point. The
Goldilockset is updated during the execution as synchroni-
zation operations are performed. As a result, Goldilocksets
are a compact, intuitive way to precisely represent the
happens-before relationship. Thread-local variables, vari-
ables protected by different locks at different points of the
execution, and event-based synchronization with condi-
tion variables are all uniformly handled by Goldilocks.
Furthermore, Goldilocksets can easily be generalized to
handle other synchronization primitives such as software
transactions18 and adapted to handle memory models of
languages other than Java, such as C++MM. To facilitate
this, in this paper (differently from Elmas et al.6) we present
Goldilocks on a generic memory model and then show
how the algorithm can be specialized to JMM.

1.1. Related work
Dynamic Race Detection: There are two approaches to
dynamic data-race detection, one based on locksets and the
other based on the happens-before relation. Eraser16 is a
well-known lockset-based algorithm for detecting race con-
ditions dynamically by enforcing the locking discipline that
every shared variable is protected by a unique lock. In spite
of the numerous papers that refined the Eraser algorithm to
reduce the number of false alarms, there are still cases, such
as dynamically changing locksets, that cannot be handled
precisely. Precise lockset algorithms exist for Cilk programs,3

november 2010 | vol. 53 | no. 11 | communications of the acm 87

•	 The union of the program orders for all t ∈ Tid and the
synchronization orders for all variables o ∈ Sync is a valid
partial order. During an execution, our data-race detec-
tion algorithm examines a linearization of this partial
order and identifies the happens-before edges between
data accesses.

Sequential Consistency: Sequential consistency is a prop-
erty that allows programmers to use an interleaving model
of execution where accesses from different threads are inter-
leaved into a total order, and every read sees the value of the
most recent write. Sequential consistency is widely consid-
ered to be the only simple-enough model with which writing
useful concurrent programs is practical. Formally, an execu-
tion E  Tid, A, W, →po ., →so . is sequentially consistent if there
exists a total order →SC over Act satisfying the following:

•	 For every thread t ∈ Tid, →SC respects the program order
→po

t, i.e., →p  o
t ⊆ →

SC .
•	 Every read a  = read(x) sees the most recent write to x in →SC ,

i.e., there is no other b = write(x) such that W(a) →SC b →SC  a.

Data Races: Two data variable accesses are called conflicting
if they refer to the same shared data variable and at least one
of them is a write access.

One frequently used definition of a race condition involves
a program state in which two conflicting accesses by two dif-
ferent threads to a shared data variable are simultaneously
enabled. To distinguish this definition from others, let us refer
to this condition as a simultaneity race. The definition of a race
condition used in most work on dynamic race detection is
what we call a happens-before race and involves two conflicting
accesses not ordered by the happens before relationship, i.e.,
not separated by proper synchronization operations. For C++,
these two definitions of a race condition have been shown to
be equivalent.2 This proof also generalizes to Java executions.
Formally, an execution E  Tid, Act, W, →po , →so . contains a
happens-before race if there are two conflicting actions,
a, b ∈ Act|x accessing a data variable x, such that neither
a →hb  b nor b →hb a holds. Conversely, the execution is race free
if every pair of conflicting accesses to a data variable are
ordered by happens-before.

The well-formedness of an execution guarantees that if
the execution has no race conditions, then it is sequentially
consistent. The Goldilocks runtime makes use of this and
the DataRaceException to guarantee for all programs
(whether racy or not) that every concurrent execution is
sequentially consistent at the byte-code level. This does not
restrict the Goldilocks runtime’s use as a debugging tool,
because, for the Java and C++ memory models, it has been
proven2, 10 that if a program has a racy execution, then it is
guaranteed to have at least one execution that is sequentially
consistent and racy. Thus, it is sufficient to restrict one’s
attention to looking for races in sequentially consistent exe-
cutions only.

3. THE GOLDILOCKS ALGORITHM
In this section, we describe our algorithm for detecting data
races in an execution E  Tid, Act, W, →po ., →so .. For simplicity

–	 Synchronization source actions: sync-source(t, o) by
thread t creates a synchronizes-with source by writing
to a synchronization variable o. Lock releases and vola-
tile variable writes in Java are synchronization source
actions.

–	 Synchronization sink actions: sync-sink(t, o) by thread
t creates a synchronizes-with sink by reading from a
synchronization variable o. Lock acquires and vola-
tile variable reads in Java are synchronization sink
actions.

Multithreaded Executions: An execution E is represented by
a tuple E  Tid, Act, W, →po .,→so ..

•	 Tid is the set of identifiers for threads involved in the
execution. Each newly forked thread is given a new
unique id from Tid.

•	 Act is the set of actions that occur in this execution. Act|t
is the set of actions performed by t ∈ Tid, and Act|x (resp.
Act|o) are the sets of actions performed on data variable x
(resp. synchronization variable o).

•	 W is a total function that maps each read(t, x, v) in Act to
a write(u, x, v) in Act. W is used to model the write-seen
relationship between a read of x and the write to x it
sees. In a race-free, sequentially consistent execution,
this is the last write before read(t, x, v). In order to make
the function W total, we assume an initial write for each
variable before any reads.

•	 →p            o
t is the program order per thread t. For each thread t,

→p    o
t is a total order over Act|t and gives in which order the

actions were issued to execute. This order is sometimes
referred to as the observed execution order.

•	 →s      o
o is the synchronization order per synchronization

variable o ∈ Sync. For each o ∈ Sync, →s   o
o is a total order

over Act|o.

Synchronizes-With and Happens-Before: Given an execu-
tion with program and synchronization orders, we extract
two additional orders called the synchronizes-with (→sw) and
happens-before (→hb) orders. Data races are defined using
these orders.

A synchronization operation a1 by thread t1 syn-
chronizes with a2 by thread t2, denoted a1 →

sw a2, if a1 is a
sync-source on some synchronization variable o, a2 is a
sync-sink on o, and a1 →

so
o a2.

The happens-before partial order →hb on the execution E is
defined as the transitive closure of the program orders →po

t for
all t ∈ Tid and the synchronizes-with order →sw .

In this paper, we focus only on well-formed executions,10
which respect (i) the intra-thread semantics and (ii) the
semantics of the synchronization variables and operations.
In addition, well-formed executions satisfy two essential
requirements for data-race detection:

•	 Happens-before consistency: This property makes use of
the happens-before order to restrict the write-seen rela-
tionship. For example, for a read action a, a →hb W(a)
cannot happen, and W(a) cannot be overwritten by
another write action b such that W(a) →hb b →hb a.

88 communications of the acm | november 2010 | vol. 53 | no. 11

research highlights

of exposition, we initially do not distinguish between read
and write accesses.

The Goldilocks algorithm processes the actions in Act
one at a time, as a sequence. Before a thread t performs an
action a in Act, t notifies the Goldilocks algorithm that
a is about to occur. The order in which these notifications
from different threads are interleaved and processed by
Goldilocks is represented mathematically by p, where p(i) is
the i-th action in the sequence. This linear order, by construc-
tion, respects the program order for each thread, and the syn-
chronization total order for each synchronization variable.b

The Goldilocks algorithm maintains for each data vari-
able a “Goldilockset”: a map GLS such that, for every data vari-
able x, its Goldlilockset is a set GLS(x)  Tid  Sync. Roughly
speaking, GLSi(x), the Goldilockset of x immediately before
processing action p(i), consists of (i) the id’s of threads that can
access x in a race-free way at that point in the execution, and (ii)
the synchronization variables on which a thread can perform a
sync-sink access in order to gain race-free access to x.

As Goldilocks processes each action p (i) from E,
it updates the Goldilocksets of variables. Initially, the
Goldilockset GLS(x) is empty for all data variables, including
static ones. When a new object is created, the Goldilockset
for all of its instance fields is initialized to the empty set.
After every action, the Goldilockset of every data variable x
is potentially updated. For every data variable x, three sim-
ple rules specify how GLS(x) is updated after p (i) based on
whether p (i) is (1) a synchronization source, (2) a synchroni-
zation sink, or (3) a read or write access to x, as shown in the
procedure ApplyLocksetRules in Figure 2.

If the action p (i) is a synchronization operation on a vari-
able o, we update the lockset GLS(x) for every data variable
x in Data. If p (i) is a sync-source operation, rule 1 adds o to
GLS(x) if it contains the id t of the current accessor thread.
Intuitively, this represents that a later sync-sink operation by
a thread u on synchronization variable o will be sufficient for
u to gain race-free access to x. This is formalized by rule 2.
If p (i) is a sync-sink(o) operation, rule 2 checks whether the
synchronization variable o is in GLS(x). If this is the case,
then t is added to the Goldilockset.

If the action p (i) is an access to a data variable x, rule 3
checks the Goldilockset of the variable GLS(x) to decide
whether this access is race free. If GLS(x) is empty, it indi-
cates that x is a fresh variable which has not been accessed
so far and any access to x at this point is race free. If GLS(x)
is not empty, only threads whose id’s are in GLS(x) can per-
form race-free accesses to x. If the accessing thread’s id t is
not in GLS(x) then we throw a DataRaceException on x.
Otherwise, the access to x is race free and GLS(x) becomes
the singleton {t}, indicating that, without further synchroni-
zation operations, only t can access x in a race free manner.

Figure 1 shows two cases where the ownership of a
data variable x is transferred from a thread ti to another
thread tj, and indicates how the Goldilocksets evolve in
each case. Program order (→po) and synchronizes-with (→sw)

edges between consecutive actions are indicated in the
figure. Figure 1a illustrates direct ownership transfer from
ti to tj. After accessing x, ti performs a sync-source opera-
tion (lock release) on synchronization variable Lx. Later,
tj obtains ownership of x by executing a sync-sink operation
(lock acquire) on synchronization variable Lx. Figure 1b illus-
trates transitive ownership transfer. Threads ti and tj do not
synchronize on the same synchronization variable. Instead,
the synchronization involves a chain of synchronizes-with
edges between other threads and synchronization variables.
ti synchronizes with tk via synchronization variable o1 and,
later tk synchronizes with tj via synchronization variable o2.

Rules 1 and 2 in Figure 2 require updating the lockset
of each data variable. A naive implementation of this algo-
rithm would be too expensive for programs that manipu-
late large heaps. In Section 4, we present an efficient way
of implement our algorithm by representing Goldilocksets
implicitly and by applying update rules lazily.

b  A racy read may appear earlier in p than the write that it sees. If an execu-
tion contains a data race between a pair of accesses, Goldilocks declares a
race at one of these accesses regardless of which linearization p is picked.

acquire(Lx)

acquire(Lx)

access(x)

access(x)

access(x)

volwrite(o1)

volread(o1)

{ ti, o1, tk } { ti, o1, tk, o2 }

{ ti, o1, tk, o2, tj }volwrite(o2)

volwrite(o2)

(a) Direct ownership transfer using lock Lx

(b) Transitive ownership transfer using volatiles o1 and o2

access(x)

release(Lx)

release(Lx)

{ ti, Lx, tj } { tj }

{ tj }

{ tj, Lx }

{ Lx, ti } { ti }

{ ti }

{ ti, Lx }

{ ti, o1 }

ti

ti

tj

tj

tk

po

po

po

po

po

po po
sw

sw

sw

p

p

p (j)

(i)

(i)

(j)p

Figure 1. Transferring ownership of x, and GLS(x).

Figure 2. The core lockset update rules.

ApplyLocksetRules(p(i)):

1.  if p(i) = sync-source(t, o)

	 foreach x ∈ Data:

     if t ∈ GLS(x)

	 GLS(x) := GLS(x)  {o}

2.  if p(i) = sync-sink(t, o)

	 foreach x ∈ Data:

     if o ∈ GLS(x)

       GLS(x) := GLS(x)  {t}

3.  if p(i) = write(t, x) or p(i) = read(t, x)

	 if t ∈ GLS(x) or GLS(x) = 0/

        GLS(x) := {t}

	 else

     throw a DataRaceException on x

november 2010 | vol. 53 | no. 11 | communications of the acm 89

Correctness: The following theorem expresses the fact
that the Goldilocks algorithm is both sound, i.e.,
detects all actual races in a given execution, and pre-
cise, i.e., never reports false alarms. The full proof of the
original Goldilocks algorithm for Java can be found in
Elmas et al.5

Theorem 1 (Correctness). Let E  Tid, Act, W, →po .,→so .
be a well-formed execution, x a data variable, and p a linear
order on Act as described earlier. Let i < j, and let p(i) and p(j)
be two accesses to x performed by threads ti and tj, with no other
action p(k) in between (i < k < j) accessing x. Then tj ∈ GLSj(x),
i.e., the access p(j) is declared to be race free by the Goldilocks
algorithm iff p(i) →hb p(j).

3.1. Example: precise data-race detection
In this section, we illustrate on an example the Goldilocks
algorithm and how Goldilocksets capture the synchroniza-
tion mechanism protecting access to a variable at each point
in an execution. In this example, earlier lockset algorithms
would have erroneously declared a race condition.

Consider the execution shown in Figure 3 in which all
actions of T1 happen first, followed by all actions of T2 and
then of T3. This example mimics a scenario in which an
object is created and initialized and then made visible glob-
ally by T1. This Int object (referred to as o from now on) is
a container object for its data field (referred to as x from
now on). The object o is referred to by different global vari-
ables (a and b) and local variables (tmp1,tmp2,and tmp3)

at different points in this execution. The contained variable
x is protected by synchronization on the container object o,
and during the execution, the lock (La or Lb) protecting o
and x changes depending on which variable (a or b) points
to o. Notice that, T2 changes the protecting lock of the con-
tainer object o from La to Lb, without accessing x. Figure 3
shows the Goldilocks update rules applied on GLS(x) for
each action and the resulting value of GLS(x).

Observe that the update rules allow a variable’s
Goldilockset to grow during the execution. This enables
them to represent threads transfering ownership using
different synchronization variables during the execution.
In this example, this ownership transfer takes place with-
out the variable itself being accessed. For example, after
T2 finishes in Figure 2, GLS(x) has the value {T1, La, T2,
Lb}, meaning that a thread can access x without data race
by locking either La or Lb. Then T3 makes Lb the only pro-
tecter lock by acquiring Lb and accesses x.

3.2. Distinguishing read and write accesses
The basic Goldilocks algorithm in Figure 2 tracks the
happens-before relationship between any two accesses to a
variable x. In order to perform race detection, we must check
the happens-before relationship only between conflicting
actions, i.e., at least one action in the pair must be a write
access. We extend the basic Goldilocks algorithm by keep-
ing track of (i) GLSW (x), the “write Goldilockset of x”, and (ii)
GLSR(t, x), the “read Goldilockset of t and x” for each thread t.
The update rules in ApplyLocksetRules are adapted to main-
tain these Goldilocksets, but have essentially the same form
as the rules in Figure 2. In the extended algorithm, it is suf-
ficient to check happens-before between the current access
to x and the most recent accesses (in the linear order p) to
x. How this extension is performed for Java can be found in
Elmas et al.6

3.3. Specializing Goldilocks to the JMM
The JMM requires that all synchronization operations be
ordered by a total order →so , whereas in our execution model,
a separate total order →so

o per synchronization variable is
sufficient.
Data Variables and Operations: In Java, every data variable is
in the form of (o, d) where o is an object and d is a nonvola-
tile field. The byte-code instructions x load and xstore access
memory to read from and write to fields of objects, respec-
tively (x changes depending on the type of the field).

The JMM specifies three synchronization mechanisms:
monitors, volatile fields, and fork/join operations.
Monitors: In Java, a monitor per object (denoted by mo) pro-
vides a reentrant lock for each object o. Acquiring the lock
of an object o (acquire(o) ) corresponds to a sync-sink opera-
tion on mo, while releasing the lock of o (release(o) ) corre-
sponds to a sync-source operation on mo. Nested acquires
and releases of the same lock are treated as no-ops. In the
JMM, each release(o) synchronizes with the next acquire(o)
operation in →so mo.
Volatile Variables: Each volatile variable is denoted (o, v)
where o is an object, and v is a volatile field. Each read
volread(o, v) from a volatile variable (o, v), and each write

Figure 3. Precise data-race detection example.

Class Int { int data; }

Int a, b; // Global variables

Execution	 Goldilockset update rule applied	 GLS(x)

Thread 1 (T1):

tmp1 = new Int;	 Initialize lockset	 0/

tmp1.data = 0;	 First access	 {T1}

acquire(La);	 La ∈ GLS(x) → add T1 to GLS(x)	 {T1}

a = tmp1;	 No access to x	 {T1}

release (La);	 T1 ∈ GLS(x) → add La to GLS(x)	 {T1,La}

Thread 2 (T2):

acquire(La); 	 La ∈ GLS(x) → add T2 to GLS(x)	 {T1,La,T2}

tmp2 = a; 	 No access to x	 {T1,La,T2}

release(La); 	 T2 ∈ GLS(x) → add La to GLS(x)	 {T1,La,T2}

acquire(Lb); 	 Lb ∈ GLS(x) → add T2 to GLS(x)	 {T1,La,T2}

b = tmp2; 	 No acces s to x	 {T1,La,T2}

release(Lb); 	 T2 ∈ GLS(x) → add Lb to GLS(x)	 {T1,La,T2,Lb}

Thread 3 (T3):

acquire(Lb); 	 Lb ∈ GLS(x) → add T3 to GLS(x)	

{T1,La,T2,Lb,T3}

b.data = 2;	 T3 ∈ GLS(x) → Race-free access	 {T3}

tmp3 = b;	 No access to x	 {T3}

release(Lb);	 T3 ∈ GLS(x) → add Lb to GLS(x)	 {T3,Lb}

tmp3.data = 3;	 T3 ∈ GLS(x) → Race-free access	 {T3}

90 communications of the acm | november 2010 | vol. 53 | no. 11

research highlights

volwrite(o, v) to (o, v) is implemented by the xload and xstore
byte-code instructions, respectively. While volread(o, v)
corresponds to a sync-sink, volwrite(o, v) corresponds to
sync-source operation on (o, v). In the JMM, there is a syn-
chronizes-with relationship between each volread(o, v) and
the volwrite(o, v) that it sees.
Fork/Join: Creating a new thread with id t (fork(t) ) syn-
chronizes with the first action of thread t, denoted start(t).
The last action of thread t, denoted end(t) synchronizes
with the join operation on t, denoted join(t). For each
thead t, fork(t) and end(t) correspond to sync-source
operations on a (fictitious) synchronization variable t–,
and start(t) and join(t) correspond to sync-sink opera-
tions on t–. The JMM guarantees that for each thread t,
there exists an order →so

t– such that: fork(t) →so
t– start(t) →so

t–

end(t) →so
t– join(t).

Handling other Synchronization Mechanisms: Using the
lockset update rules above, Goldilocks is able to uni-
formly handle various approaches to synchronization such
as dynamically changing locksets, permanent or temporary
thread-locality of objects, container-protected objects, own-
ership transfer of variable without accessing the variable (as
in the example in Section 3.1). Furthermore, Goldilocks
can also handle the synchronization idioms in the java.
util.concurrent package such as semaphores and bar-
riers, since these primitives are built using locks and volatile
variables. The happens-before edges induced by the wait/
notify(All) construct are computed by simply applying the
Goldilockset update rules to the acquire and release opera-
tions invoked inside wait.

3.4. Race detection and sequential consistency
The Java and C++ memory models provide the data-race free-
dom (DRF) property.2, 10 The DRF property guarantees that if
all sequentially consistent executions of a source program
are race free, then the compiled program only exhibits these
sequentially consistent executions of the source program,
after any compiler and hardware optimizations permitted by
the memory model. The Goldilocks algorithm check races
by monitoring the executions of the compiled program, and
assumes that the compiler and the runtime it is built on
(hardware or virtual machine) conform to the language and
the memory model specifications. Therefore, if the source
program is race free, then any execution of the compiled
program corresponds to a sequentially consistent execu-
tion of the source program, and no DataRaceException
is thrown.

If the source program has a race, the Goldilocks run-
time still ensures that all executions of the compiled pro-
gram will run under the sequential consistency semantics,
i.e., sequential consistency is guaranteed at the byte-code
level. This is accomplished by preventing accesses that will
cause a data race and throwing a DataRaceException
right before that access. However, in the case of a racy
program, the JMM permits compiler optimizations that
result in executions that are not sequentially consistent
behaviors of the original source code. In this case, the JMM
and the DRF property are not strong enough to allow the
Goldilocks runtime to relate byte-code level executions

to executions of the source-level program, which makes
debugging hard.

To use Goldilocks for debugging purposes, this diffi-
culty can be remedied by disabling compiler optimizations.
For post-deployment use, a stronger memory model9, 11 that
is able to relate each (racy and race-free) execution of the
compiled program to a sequentially consistent execution of
the source program is needed.

4. IMPLEMENTING GOLDILOCKS
There are two published implementation of the Goldilocks
algorithm, both of which monitor the execution at the Java
byte-code level. At this level, each variable access or syn-
chronization operation corresponds to a single byte-code
instruction, and each byte-code instruction can be associ-
ated with a source code line and/or variable.

The first Goldilocks implementation, by the authors of
this paper, was carried out in Kaffe,19 a clean-room imple-
mentation of the Java virtual machine (JVM) in C. In Kaffe,
we integrated Goldilocks into the interpreting mode of
Kaffe’s runtime engine. Implementing the algorithm in the
JVM enables fast access to internal data structures of the
JVM that manage the layout of object in the memory and
using the efficient mechanisms that exist in the JVM inter-
nally, such as fast mutex locks.

The second implementation of Goldilocks is by Flanagan
and Freund and was carried out using the RoadRunner dy
namic program analysis tool.8 In RoadRunner, Goldilocks
is implemented in Java and injected by byte-code instrumen-
tation at load-time of the program. This allows the algorithm
to benefit from Java compiler optimizations and just-in-time
compilation and to be portable to any JVM. Flanagan and
Freund showed that this implementation is competitive with
ours in Kaffe for most of the common benchmarks.7

In the following, we present the most important imple-
mentation features and optimizations. The implementation
is described based on the core algorithm presented in Figure
2. The extension of the implementation that distinguishes
read and write accesses can be found in Elmas et al.6

4.1. Implicit representation and lazy evaluation
of Goldilocksets
For programs with a large number of data variables, repre-
senting Goldilocksets explicitly for each data variable and
implementing the Goldilocks algorithm as described in
Figure 2 may have high memory and computational cost.
We avoid the memory cost by representing the Goldilocksets
implicitly and the computational cost by evaluating
Goldilocksets lazily as described below.

Instead of keeping a separate Goldilockset GLS(x) for each
variable x, we represent GLS(x) implicitly as long as no access
to x happens and is computed temporarily when an access
happens. At this point, the Goldilockset is a singleton, and we
continue to represent it implicitly until the next access. For
this, we keep the synchronization events in a single, global
linked list called the synchronization-event list and repre-
sent by its head and tail pointers in Figure 4. The ordering of
these events in the list is consistent with the program order
→p    o

t for each thread t and the synchronization orders →so
o for

november 2010 | vol. 53 | no. 11 | communications of the acm 91

each synchronization variable o.c When a thread performs a
synchronization action a, it must append a corresponding
event to the synchronization-event list atomically with the
event. In Kaffe, we make sure this is the case by modifying
the implementations of the Java synchronization actions.

In order to represent GLS(x), each variable x in the pro-
gram is associated with two bits of information regarding
the most recent access to x: owner(x) stores the id of the
thread that most recently accessed x, and pos(x) points to
the last synchronization event in the list that was taken into
account when GLS(x) was last computed.

Figure 4 shows four variables pointing to entries in
the synchronization-event list. Figure 5 shows how the
Goldilockset GLS(x) is computed when x is accessed.

5(a): After each access to x by a thread ti, owner(x) is set to ti, and
pos(x) is set to point the tail of the synchronization event list.
5(b): Right before an access to x by thread tj, temporarily,
we represent GLS(x) explicitly. GLS(x) is initially {owner(x)}
and is updated by processing the synchronization events
between pos(x) (denoted by a1, …, an) and tail according to
the rules 1 and 2 of Figure 2. This process stops either when

tj is added to GLS(x) or the last event (an) is processed. In the
former case, no race is reported according to the rule 3 of
Figure 2. In the latter case, a race is reported since tj ∉ GLS(x)
after the evaluation.
5(c): After the check, owner(x) is set to tj and pos(x) is set to
the tail of the synchronization event list.

The implementation does not use any extra threads for
race detection. The algorithm is performed in a decentral-
ized manner by instrumented threads of the program being
checked. For each data variable x, we use a unique lock to
make atomic the Goldilockset update and the race-freedom
check for each access to x and to serialize all the race-freedom
checks for x.

4.2. Performance optimizations
Short-Circuit Checks: A cheap-to-evaluate sufficient con-
dition for a happens-before edge between the last two
accesses to a variable can reduce race-detection overhead.
We make use of two such conditions, called short-circuit
checks, and bypass the traversal of the synchronization
event list when these checks succeed. In this case, the final
Goldilockset of the variable consists of the id of the thread
that accessed it last.

We employ two constant-time short-circuit checks. First,
when the last two accesses to a shared variable are per-
formed by the same thread t, the happens-before relation-
ship is guaranteed by the program order of t. This is detected
by checking whether owner(t), the last accessor thread, is the
same as the thread performing the current access.

In the second short-circuit check, we determine whether
the variable x is protected by the same lock during the last
two accesses to x. For this, we associate with each variable x
a lock alock(x), which is randomly selected among the locks
held by the most recent accessor thread. When a thread t
accesses x and if alock(x) is held by t, then that access is race
free.
Direct Ownership Transfer: A sound but imprecise third
optimization is to consider only the subset of synchroni-
zation events executed by the current and last accessing
thread when examining the portion of the synchronization
event list between pos(x) and tail. This check is not constant
time, but we found that it succeeds often enough to improve
Goldilocks overhead.
Garbage Collection: The synchronization events list is peri-
odically garbage-collected when there are entries in the
beginning of the list that are not relevant for the Goldilockset
computation of any variable. This is the case when an entry
in the list is not reachable from pos(x) for any data variable x,
and is tracked by maintaining incremental reference counts
for each list entry.
Partially Eager Evaluation: Sometimes the synchronization
event list gets too long and it is not possible to garbage-
collect the event list when variable x is accessed early in
an execution but is not used afterwards. We address this
problem by “partially eager” Goldilockset evaluation. We
move pos(x) forward towards the tail to a new position
poś (x), and partially evaluate a Goldilockset GLS(x) of x by
processing events (i.e., running ApplyLocksetRules on them)

head
pos(y)

pos(x) pos(w)

pos(z)
tail

Figure 4. The synchronization event list.

head

head

head

pos(x)

pos(x)

tail

tail

tail

pos(x)

owner(x) = ti

owner(x) = ti

owner(x) = ti

(a) After ti accesses x

(b) Before ti accesses x

(c) After ti accesses x

Events to consider
in lockset evaluation

a1 a2

a2a1

an

an

Figure 5. Lazy evaluation of Goldilockset GLS(x).

c  For Java, there is a total order on all synchronization operations, and the en-
tries in the list are in this order.

92 communications of the acm | november 2010 | vol. 53 | no. 11

research highlights

Tayfun Elmas (telmas@ku.edu.tr), Koç
University, Istanbul, Turkey.

Shaz Qadeer (qadeer@microsoft.com),
Microsoft Research, Redmond, WA.

Serdar Tasiran (stasiran@ku.edu.tr), Koç
University, Istanbul, Turkey.

	 1.	A badi, M, Flanagan, C., Freund, S.N.
Types for safe locking: Static race
detection for Java. ACM Trans.
Program. Lang. Syst. (2006).

	 2.	 Boehm, H.-J., Adve, S.V. Foundations
of the C++ concurrency memory
model. In Proceedings of the 2008
ACM SIGPLAN Conf. on Programming
Language Design and Implementation
(PLDI 2008)

	 3.	C heng, G.-I., Feng, M., Leiserson, C.E.,
Randall, K.H., Stark, A.F. Detecting
data races in Cilk programs that use
locks. In ACM Symposium on Parallel
Algorithms and Architectures (SPAA
1998).

	 4.	C hristiaens, M. De Bosschere, K.
TRaDe: Data race detection for
Java. Proc. Intl. Conference on
Computational Science. V. Alexandrov,
J. Dongarra, B. Juliano, R. Renner, and
C. Tan, eds. (ICCS 2001).

	 5.	E lmas, T., Qadeer, S., Tasiran, S.
Goldilocks: Efficiently computing
the happens-before relation using
locksets. Technical Report MSR-
TR-2006–163, Microsoft Research
(2006).

	 6.	E lmas, T., Qadeer, S., Tasiran, S.
Goldilocks: A race and transaction-
aware java runtime. In Proceedings of
the 2007 ACM SIGPLAN Conference
on Programming Language Design and
Implementation (PLDI 2007).

	 7.	F lanagan, C., Freund, S.N. FastTrack:
Efficient and precise dynamic race
detection. In Proceedings of the
2009 ACM SIGPLAN Conference on
Programming Language Design and
Implementation (PLDI 2009).

	 8.	F lanagan, C., Freund, S.N. The
RoadRunner dynamic analysis
framework for concurrent programs,
In ACM Workshop on Program
Analysis for Software Tools and
Engineering (PASTE 2010).

	 9.	 Lucia, B., Ceze, L., Strauss, K., Qadeer,
S., Boehm H.-J. Conflict exceptions:
Simplifying concurrent language
semantics with precise hardware
exceptions for data-races. In
Proceedings of the 37th International
Symposium on Computer Architecture
(ISCA 2010).

	10.	M anson, J., Pugh, W., Adve, S.V. The
Java memory model. In Proceedings

of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles
of Programming Languages (POPL
2005).

	11.	M arino, D., Singh, A., Millstein, T.,
Musuvathi, M., Narayanasamy, S.
DRFx: A simple and efficient memory
model for concurrent programming
languages. In Proceedings of the
2010 ACM SIGPLAN Conference on
Programming Language Design and
Implementation (PLDI 2010).

	12.	M attern, F. Virtual time and global
states of distributed systems. In
Proceedings of the International
Workshop on Parallel and Distributed
Algorithms (1988).

	13.	N aik, M., Aiken, A., Whaley, J. Effective
static race detection for Java. In
Proceedings 2006 ACM SIGPLAN
Conference on Programming Language
Design and Implementation (PLDI
2006).

	14.	P ozniansky, E., Schuster, A. Multirace:
Efficient on-the-fly data race detection
in multithreaded C++ programs:
Research articles. Concurr. Comput.
Pract. Exp. (2007).

	15.	R onsse, M., Bosschere, K.D. RecPlay:
A fully integrated practical record/
replay system. ACM Trans. Comput.
Syst. (1999).

	16.	S avage, S., Burrows, M., Nelson, G.,
Sobalvarro, P., Anderson, T. Eraser:
A dynamic data race detector for
multithreaded programs. ACM Trans.
Comput. Syst. (1997).

	17.	S chonberg, E. On-the-fly detection
of access anomalies. In Proceedings
of the ACM SIGPLAN Conference on
Programming Language Design and
Implementation (PLDI 1989).

	18.	S havit, N., Touitou, D. Software
transactional memory. In Symposium
on Principles of Distributed Computing
(1995).

	19.	 Wilkinson, T. Kaffe: A JIT and
interpreting virtual machine to run
Java code. http://www.transvirtual.
com (1998).

	20.	Y u, Y., Rodeheffer, T., Chen, W.
RaceTrack: Efficient detection of data
race conditions via adaptive tracking.
In Proceedings of the 20th ACM
Symposium on Operating Systems
Principles (SOSP 2005).

References

remain sequentially consistent at the byte-code level.
Experiments with Goldilocks have demonstrated that the
runtime overhead of supporting a DataRaceException
can be made reasonable.

Acknowledgments
We would like to thank Hans Boehm, Cormac Flanagan,
Steve Freund, and Madan Musuvathi for their critique of
this paper. This research was supported by the Software
Reliability Research Group at Microsoft Research,
Redmond, WA, by the Scientific and Technical Research
Council of Turkey (TUBITAK) under grant 104E058, and by
the Turkish Academy of Sciences (TUBA).�

between pos(x) and poś (x). During the next access the evalu-
tion of GLS(x) starts from the stored Goldilockset, not from
{owner(x)}.
Sound Static Race Analysis: The runtime overhead of race
detection is directly related to the number of data variable
accesses checked and synchronization events that occur.
To reduce the number of accesses checked at runtime, we
use static analysis at compile time to determine accesses
that are guaranteed to be race free. While implementing
Goldilocks in Kaffe, we worked with two static analysis
tools for this purpose: Chord13 and RccJava.1

4.3. Race-detection overhead
At the time of the original Goldilocks work, the vector clock
algorithm12 was the only precise dynamic-race-detection
algorithm in the literature. The vector clock algorithm, for
an execution with n threads, requires for every thread and
synchronization variable a separate vector clock (VC) of
size n and performs O(n) operations (merging or compar-
ing two VCs) whenever a synchronization operation or data
access happens. In preliminary research, compared to a
straightforward implementation of vector clocks, we found
Goldilocks overhead to be significantly less.6

In Elmas et al.,6 we measured the overhead of the
Goldilocks implementation inside Kaffe on a set of widely
used Java benchmarks. This implementation required us to
run all programs in interpreted (not just-in-time compiled)
mode. We found that, with powerful static analysis tools
eliminating much of the monitoring, we were able to obtain
a slowdown of within approximately 2 for all benchmarks.
Without static elimination of some checks, overheads
remained high; some benchmarks experienced slowdowns
of over 15. The overhead results with static pre-elimination
were encouraging in that they showed precise race detection
to be a practical debugging tool, and they indicated that,
with further optimizations, post-deployment runtime race
detection to support DataRaceDetection could be viable.

Later work on FastTrack,7 a dynamic race detector
based on vector clocks, is able to avoid worst-case perfor-
mance of vector clocks much of the time using optimiza-
tions for common cases. Flanagan and Freund7 compare
a number of race-detection algorithms, including just-
in-time compiled implementations of FastTrack and
Goldilocks in RoadRunner. FastTrack achieves
significantly better overheads than both implementa-
tions of Goldilocks. The low overheads achieved by
FastTrack provide further support that a practical
race-aware runtime for deployed programs supporting
a DataRaceException can be built. It is reported in
Flanagan and Freund7 that additional short-circuit checks
similar to ones we discussed above dramatically reduce the
runtime of FastTrack. Most of these checks can be incor-
porated into Goldilocks implementations as well.

5. CONCLUSION
We have presented a race-aware runtime for Java incor-
porating a novel algorithm, Goldilocks, for pre-
cise dynamic race detection. The runtime provides a
DataRaceException, and thus ensures that executions © 2010 ACM 0001-0782/10/1100 $10.00

mailto:telmas@ku.edu.tr
mailto:qadeer@microsoft.com
mailto:stasiran@ku.edu.tr
http://www.transvirtual.com
http://www.transvirtual.com

doi:10.1145/1839676.1839699

november 2010 | vol. 53 | no. 11 | communications of the acm 93

FastTrack: Efficient and Precise
Dynamic Race Detection
By Cormac Flanagan and Stephen N. Freund

Abstract
Multithreaded programs are notoriously prone to race con-
ditions. Prior work developed precise dynamic race detec-
tors that never report false alarms. However, these checkers
employ expensive data structures, such as vector clocks
(VCs), that result in significant performance overhead.

This paper exploits the insight that the full generality of
VCs is not necessary in most cases. That is, we can replace
VCs with an adaptive lightweight representation that,
for almost all operations of the target program, requires
constant space and supports constant-time operations.
Experimental results show that the resulting race detection
algorithm is over twice as fast as prior precise race detectors,
with no loss of precision.

1. INTRODUCTION
Multithreaded programs are prone to race conditions and
other concurrency errors such as deadlocks and violations
of expected atomicity or determinism properties. The broad
adoption of multicore processors is exacerbating these prob-
lems, both by driving the development of multithreaded
software and by increasing the interleaving of threads in
existing multithreaded systems.

A race condition occurs when two threads concurrently
perform memory accesses that conflict. Accesses conflict
when they read or write the same memory location and at
least one of them is a write. In this situation, the order in
which the two conflicting accesses are performed can affect
the program’s subsequent state and behavior, likely with
unintended and erroneous consequences.

Race conditions are notoriously problematic because
they typically cause problems only on rare interleavings,
making them difficult to detect, reproduce, and eliminate.
Consequently, much prior work has focused on static and
dynamic analysis tools for detecting race conditions.

To maximize test coverage, race detectors use a very
broad notion of when two conflicting accesses are consid-
ered concurrent. The accesses need not be performed at
exactly the same time. Instead, the central requirement is
that there is no “synchronization dependence” between the
two accesses, such as the dependence between a lock release
by one thread and a subsequent lock acquire by a different
thread. These various kinds of synchronization dependen-
cies form a partial order over the instructions in the execu-
tion trace called the happens-before relation.13 Two memory
accesses are then considered to be concurrent if they are not
ordered by this happens-before relation.

In this paper, we focus on online dynamic race detectors,
which generally fall into two categories depending on whether

they report false alarms. Precise race detectors never produce
false alarms. Instead, they compute a precise representation
of the happens-before relation for the observed trace and
report an error if and only if the observed trace has a race con-
dition. Note that there are typically many possible traces for a
particular program, depending on test inputs and scheduling
choices. Precise dynamic race detectors do not reason about
all possible traces, however, and may not identify races that
occur only when other code paths are taken. While full cover-
age is desirable, it comes at the cost of potential false alarms
because of the undecidability of the halting problem. To avoid
these false alarms, precise race detectors focus on detecting
only race conditions that occur on the observed trace.

Typically, precise detectors represent the happens-before
relation with vector clocks (VCs),14 as in the Djit+ race detec-
tor.16 Vector clocks are expensive to maintain, however,
because a VC encodes information about each thread in a
system. Thus, if the target program has n threads, each VC
requires O(n) storage space and VC operations (such as com-
parison) require O(n) time. Since a VC must be maintained
for each memory location and modified on each access to
that location, this O(n) time and space overhead precludes
the use of VC-based race detectors in many settings.

A variety of alternative imprecise race detectors have been
developed, which may provide improved performance (and
sometimes better coverage), but which report false alarms
on some race-free programs. For example, Eraser’s LockSet
algorithm18 enforces a lock-based synchronization disci-
pline and reports an error if no lock is consistently held on
each access to a particular memory location. Eraser may
report false alarms, however, on programs that use alter-
native synchronization idioms such as fork/join or bar-
rier synchronization. Some LockSet-based race detectors
include limited happens-before reasoning to improve preci-
sion in such situations.15, 16, 22

Other optimizations include using static analyses or
dynamic escape analyses3, 21 or using “accordion” VCs
that reduce space overheads for programs with shortlived
threads.5 Alternative approaches record program events for
post-mortem race identification.1, 4, 17

Although these imprecise tools successfully detect race
conditions, their potential to generate many false alarms lim-
its their effectiveness. Indeed, it has proven surprisingly dif-
ficult and time consuming to identify the real errors among

The original version of this paper was published in the
Proceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation, June
2009.

94 communications of the acm | november 2010 | vol. 53 | no. 11

research highlights

a number of concurrently executing threads, each with a
thread identifier t ∈ Tid. These threads manipulate variables
x ∈ Var and locks m ∈ Lock. A trace a captures an execution
of a multithreaded program by listing the sequence of opera-
tions performed by the various threads. The operations that
a thread t can perform include:

•	 rd(t, x) and wr(t, x), which read and write a value from a
variable x

•	 acq(t, m) and rel(t, m), which acquire and release a
lock m

•	 fork(t, u), which forks a new thread u
•	 join(t, u), which blocks until thread u terminates

The happens-before relation (<a) for a trace a is a
partial order over the operations in a that captures con-
trol and synchronization dependencies. In particular,
the relation a <a b holds whenever operation a occurs
before operation b in a and one of the following condi-
tions applies:

•	 Program order: The two operations are performed by
the same thread.

•	 Synchronization order: The two operations acquire or
release the same lock.

•	 Fork order: The first operation is fork(t, u) and the
second is by thread u.

•	 Join order: The first operation is by thread u and the
second is join(t, u).

In addition, the happens-before relation is transitively
closed: that is, if a <a b and b <a c then a <a c.

If a happens before b, then we also say that b happens
after a. If two operations in a trace are not related by the
happens-before relation, then they are considered con-
current. Two memory access conflict if they both access
(read or write) the same variable, and at least one of the
operations is a write. Using this terminology, a trace
has a race condition if it has two concurrent conflicting
accesses.

2.2. Vector clocks and the Djit+ algorithm
Before presenting the FastTrack algorithm, we briefly
review the Djit+ online race detection algorithm,16 which is
based on VCs.14 A VC

V  :  Tid → Nat

records a clock for each thread in the system. Vector
clocks are partially-ordered () in a pointwise manner,
with an associated join operation () and minimal ele-
ment (⊥V). In addition, the helper function inct incre-
ments the t-component of a VC:

= λ = +() . () 1 ()inc V u u t V u V uif then else

1 2 1 2

1 2 1 2

iff . () ()

. ((), ())

. 0V

t

V V t V t V t
V V t max V t V t

t

∀ ≤
= λ

⊥ = λ

the spurious warnings produced by some tools. Even if a code
block looks suspicious, it may still be race-free due to some
subtle synchronization discipline that is not (yet) under-
stood by the current code maintainer. Even worse, additional
real bugs (e.g., deadlocks or performance problems) could
be added while attempting to “fix” a spurious warning pro-
duced by these tools. Conversely, real race conditions could
be ignored because they appear to be false alarms.

This paper exploits the insight that, while VCs provide
a general mechanism for representing the happens-before
relation, their full generality is not actually necessary in
most cases. The vast majority of data in multithreaded pro-
grams is either thread local, lock protected, or read shared.
Our FastTrack analysis uses an adaptive representation for
the happens-before relation to provide constant-time and
constant-space overhead for these common cases, without
any loss of precision or correctness.

In more detail, a VC-based race detector such as Djit+
records the time of the most recent write to each variable
x by each thread t. By comparison, FastTrack exploits the
observation that all writes to x are totally ordered by the
happens-before relation, assuming no races on x have been
detected so far, and records information only about the very
last write to x. Specifically, FastTrack records the clock and
thread identifier of that write. We refer to this pair of a clock
and a thread identifier as an epoch.

Read operations on thread-local and lock-protected data
are also totally ordered, assuming no races on x have been
detected, and FastTrack records only the epoch of the last
read from such data. FastTrack adaptively switches from
epochs to VCs when necessary (e.g., when data becomes
read-shared) in order to guarantee no loss of precision. It also
switches from VCs back to lightweight epochs when possible
(e.g., when read-shared data is subsequently updated).

Using these representation techniques, FastTrack
reduces the analysis overhead of almost all monitored oper-
ations from O(n) time, where n is the number of threads in
the target program, to O(1) time.

In addition to improving performance, the epoch rep-
resentation also reduces space overhead. A VC-based race
detector requires O(n) space for each memory location of the
target program and can quickly exhaust memory resources.
By comparison, FastTrack reduces the space overhead for
thread-local and lock-protected data from O(n) to O(1).

For comparison purposes, we implemented six differ-
ent dynamic race detectors: FastTrack plus five other race
detectors described in the literature. Experimental results
on Java benchmarks, including the Eclipse programming
environment, show that FastTrack outperforms the other
tools. For example, it provides almost a 10x speedup over a
traditional VC-based race detector and a 2.3x speedup over
the Djit+ algorithm. It also provides a substantial increase in
precision over Eraser, with no loss in performance.

2. PRELIMINARIES

2.1. Multithreaded program traces
We begin with some terminology and definitions regard-
ing multithreaded execution traces. A program consists of

november 2010 | vol. 53 | no. 11 | communications of the acm 95

In Djit+, each thread has its own clock that is incre-
mented at each lock release operation. Each thread t also
keeps a VC Ct such that, for any thread u, the clock entry
Ct(u) records the clock for the last operation of thread u
that happens before the current operation of thread t. In
addition, the algorithm maintains a VC Lm for each lock m.
These VCs are updated on synchronization operations that
impose a happens-before order between operations of dif-
ferent threads. For example, when thread u releases lock m,
the Djit+ algorithm updates Lm to be Cu. If a thread t subse-
quently acquires m, the algorithm updates Ct to be Ct  Lm,
since subsequent operations of thread t now happen after
that release operation.

To identify conflicting accesses, the Djit+ algorithm keeps
two VCs, Rx and Wx, for each variable x. For any thread t, Rx(t)
and Wx(t) record the clock of the last read and write to x by
thread t. A read from x by thread u is race-free provided it
happens after the last write of each thread, that is, Wx  Cu.
A write to x by thread u is race-free provided that the write
happens after all previous accesses to that variable, that is,
Wx  Cu and Rx  Cu.

As an example, consider the execution trace fragment
shown in Figure 1, where we include the relevant portion
of the Djit+ instrumentation state: the VCs C0 and C1 for
threads 0 and 1; and the VCs Lm and Wx for the last release
of lock m and the last write to variable x, respectively. We
show two components for each VC, but the target program
may of course contain additional threads.a

At the write wr(0, x), Djit+ updates Wx with current
clock of thread 0. At the release rel(0, m), Lm is updated
with C0. At the acquire acq(1, m), C1 is joined with Lm, thus
capturing the dashed release-acquire happens-before

edge shown above. At the second write, Djit+ compares
the VCs:

Wx = á4, 0, ...ñ  á4, 8, ...ñ = C1

Since this check passes, the two writes are not concurrent,
and no race condition is reported.

3. THE FastTrack ALGORITHM
A limitation of VC-based race detectors such as Djit+ is their
performance, since each VC requires O(n) space and each VC
operation (copying, comparing, joining, etc.) requires O(n)
time.

Empirical benchmark data indicates that reads and
writes operations account for the vast majority (over
96%) of monitored operations. The key insight behind
FastTrack is that the full generality of VCs is not nec-
essary in over 99% of these read and write operations: a
more lightweight representation of the happens-before
information can be used instead. Only a small fraction of
operations performed by the target program necessitate
expensive VC operations.

We begin by providing an overview of how our analysis
catches each type of race condition on a memory location. A
race condition is either: a write–write race condition (where a
write is concurrent with a later write); a write–read race condi-
tion (where a write is concurrent with a later read); or a read–
write race condition (where a read is concurrent with a later
write).
Detecting Write–Write Races: We first consider how to
efficiently analyze write operations. At the second write
operation in the trace in Figure 1, Djit+ compares the
VCs Wx  C1 to determine whether there is a race. A care-
ful inspection reveals, however, that it is not necessary
to record the entire VC á4, 0, …ñ from the first write to x.
Assuming no races have been detected on x so far, then
all writes to x are totally ordered by the happens-before
relation, and the only critical information that needs to
be recorded is the clock (4) and identity (thread 0) of the
thread performing the last write. This information (clock
4 of thread 0) is sufficient to determine if a subsequent
write to x is in a race with any preceding write.

We refer to a pair of a clock c and a thread t as an
epoch, denoted c@t. Although rather simple, epochs pro-
vide the crucial lightweight representation for recording
sufficiently-precise aspects of the happens-before relation
efficiently. Unlike VCs, an epoch requires only constant
space and supports constant-time operations.

An epoch c@t happens before a VC V (c@t  V) if and only
if the clock of the epoch is less than or equal to the corre-
sponding clock in the vector:

c@t  V  iff  c ≤ V(t)

We use ^e to denote a minimal epoch 0@0.
Using this optimized representation, FastTrack analyzes

the trace from Figure 1 using a more compact instrumenta-
tion state that records only a write epoch Wx for variable x,
rather than the entire VC Wx, reducing space overhead, as

a  for clarity, we present a variant of the Djit+ algorithm where some clocks
are one less than in the original formulation.16 This revised algorithm has
the same performance as the original but is slightly simpler and more di-
rectly comparable to FastTrack.

Figure 1. Execution trace under Djit+.

C0 C1 Lm Wx

á4,0,…ñ á0,8,…ñ á0,0,…ñ á0,0,…ñ

wr(0,x)

á4,0,…ñ á0,8,…ñ á0,0,…ñ á4,0,…ñ

rel(0,m)

á5,0,…ñ á0,8,…ñ á4,0,…ñ á4,0,…ñ

acq(1,m)

á5,0,…ñ á4,8,…ñ á4,0,…ñ á4,0,…ñ

wr(1,x)

á5,0,…ñ á4,8,…ñ á4,0,…ñ á4,8,…ñ

96 communications of the acm | november 2010 | vol. 53 | no. 11

research highlights

shown in Figure 2. (C and L record the same information as
C and L in Djit+.)

At the first write to x, FastTrack performs an O(1)-time
epoch write Wx := 4@0. FastTrack subsequently ensures
that the second write is not concurrent with the preceding
write via the O(1)-time comparison:

Wx = 4@0  á4, 8, ...ñ = C1

To summarize, epochs reduce the space overhead for
detecting write–write conflicts from O(n) to O(1) per allo-
cated memory location, and replaces the O(n)-time VC com-
parison “” with the O(1)-time comparison “”.
Detecting Write–Read Races: Detecting write–read races
under the new representation is also straightforward. On
each read from x with current VC Ct, we check that the read
happens after the last write via the same O(1)-time compari-
son Wx  Ct.
Detecting Read–Write Races: Detecting read–write race con-
ditions is somewhat more difficult. Unlike write operations,
which are totally ordered in race-free programs, reads are
not necessarily totally ordered. Thus, a write to a variable x
could potentially conflict with the last read of x performed
by any other thread, not just the last read in the entire trace
seen so far. Thus, we may need to record an entire VC Rx,
in which Rx(t) records the clock of the last read from x by
thread t.

We can avoid keeping a complete VC in many cases,
however. Our examination of data access patterns across a
variety of multithreaded Java programs indicates that read
operations are often totally ordered in practice, particularly
in the following common situations:

•	 Thread-local data, where only one thread accesses a
variable, and hence these accesses are totally ordered
by program-order

•	 Lock-protected data, where a protecting lock is held on
each access to a variable, and hence all access are totally
ordered, either by program order (for accesses by the
same thread) or by synchronization order (for accesses
by different threads)

Reads are typically unordered only when data is read-
shared, that is, when the data is first initialized by one
thread and then shared between multiple threads in a read-
only manner.

FastTrack uses an adaptive representation for the read
history of each variable that is optimized for the common
case of totally-ordered reads, while still retaining the full
precision of VCs when necessary.

In particular, if the last read to a variable happens after all
preceding reads, then FastTrack records only the epoch of
this last read, which is sufficient to precisely detect whether
a subsequent write to that variable conflicts with any preced-
ing read in the entire program history. Thus, for thread-local
and lock-protected data (which do exhibit totally-ordered
reads), FastTrack requires only O(1) space for each allo-
cated memory location and only O(1) time per memory
access.

In the less common case where reads are not totally
ordered, FastTrack stores the entire VC, but still handles
read operations in O(1) time. Since such data is typically
read-shared, writes to such variables are rare, and their anal-
ysis overhead is negligible.

3.1. Analysis details
Based on the above intuition, we now describe the
FastTrack algorithm in detail. Our analysis is an online
algorithm whose analysis state consists of four components:

•	 Ct is the current VC of thread t.
•	 Lm is the VC of the last release of lock m.
•	 Rx is either the epoch of the last read from x, if all

other reads happened-before that read, or else is a
VC that records the last read from x by multiple
threads.

•	 Wx is the epoch of the last write to x.

The analysis starts with Ct = inct(^V), since the first opera-
tions of all threads are not ordered by happens-before. In
addition, initially Lm = ^V and Rx = Wx = ^e.

Figure 3 presents the key details of how FastTrack (left
column) and Djit+ (right column) handle read and write
operations of the target program. For each read or write oper-
ation, the relevant rules are applied in the order presented
until one matches the current instrumentation state. If an
assertion fails, a race condition exists. The figure shows the
instruction frequencies observed in the programs described
in Section 4, as well as how frequently each rule was applied.
For example, 82.3% of all memory and synchronization opera-
tions performed by our benchmarks were reads, and rule [FT
read same epoch] was used to check 63.4% of those reads.
Expensive O(n)-time operations are highlighted in grey.
Read Operations: The first four rules provide various alter-
natives for analyzing a read operation rd(t, x). The first rule

Figure 2. Execution trace under FastTrack.

C0 C1 Lm Wx

á4,0,…ñ á0,8,…ñ á0,0,…ñ ⊥e

wr(0,x)

á4,0,…ñ á0,8,…ñ á0,0,…ñ 4@0

rel(0,m)

á5,0,…ñ á0,8,…ñ á4,0,…ñ 4@0

acq(1,m)

á5,0,…ñ á4,8,…ñ á4,0,…ñ 4@0

wr(1,x)

á5,0,…ñ á4,8,…ñ á4,0,…ñ 8@1

november 2010 | vol. 53 | no. 11 | communications of the acm 97

FastTrack State: Djit+ State:
Ct    :  VC Ct    :  VC
Lm    :  VC Lm    :  VC
Wx   :  Epoch Wx   :  VC
Rx   :  Epoch  VC Rx   :  VC

When Thread t performs rd(t, x):    82.3% of all Operations

[FT read same epoch]        [Djit+ read same epoch]
   if Rx = Et then
       skip
   endif

63.4% of reads if Rx(t) = Ct(t) then 78.0% of reads

 skip
 endif

[FT read shared]
 if Rx ∈ VC then 20.8% of reads

 assert Wx  Ct

  Rx (t) := Ct(t)
 endif

[FT read exclusive] [Djit+ read]
 if Rx ∈ Epoch and Rx  Ct then 15.7% of reads if Rx(t) ≠ Ct(t) then 22.0% of reads

 assert Wx  Ct assert Wx  Ct

  Rx := Et Rx(t) := Ct(t)
 endif endif

[FT read share]
 if Rx ∈ Epoch then 0.1% of reads

 let c@u = Rx

 assert Wx  Ct

  Rx := ⊥V[t  Ct(t), u  c]
 endif

When Thread t performs wr(t, x): 14.5% of all Operations

[FT write same epoch] [Djit+ write same epoch]
 if Wx = Et then 71.0% of writes if Wx(t) = Ct(t) then 71.0% of writes

 skip skip
 endif endif

[FT write exclusive]
 if Rx ∈ Epoch then 28.9% of writes

 assert Rx  Ct

 assert Wx  Ct

 Wx := Et

 endif

[FT write shared] [Djit+ write]
 if Rx ∈ VC then 0.1% of writes if Wx(t) ≠ Ct(t) then 29.0% of writes

 assert Rx  Ct assert Wx  Ct

 assert Wx  Ct assert Rx  Ct

 Wx := Et
 Wx(t) := Ct(t)

 Rx := ⊥e endif
 endif

Figure 3. FastTrack race detection algorithm and its comparison to Djit+.

98 communications of the acm | november 2010 | vol. 53 | no. 11

research highlights

[FT read same epoch] optimizes the case where x was
already read in this epoch. This fast path requires only a
single epoch comparison and handles over 60% of all reads.
We use Et to denote the current epoch c@t of thread t, where
c = Ct(t) is t’s current clock. Djit+ incorporates a comparable
rule [Djit+ read same epoch].

The remaining three read rules all check for write–read
conflicts via the fast epoch-VC comparison Wx  Ct, and then
update Rx appropriately. If Rx is already a VC, then [FT read
shared] simply updates the appropriate component of
that vector. Note that multiple reads of read-shared data
from the same epoch are all covered by this rule. We could
extend rule [FT read same epoch] to handle same-epoch
reads of read-shared data by matching the case that Rx ∈ VC
and Rx(t) = Ct(t). The extended rule would cover 78% of all
reads (the same as [Djit+ read same epoch]) but does not
improve performance perceptibly.

If the current read happens after the previous read epoch
(where that previous read may be either by the same thread
or by a different thread, presumably with interleaved syn-
chronization), [FT read exclusive] simply updates Rx with
the accessing thread’s current epoch. For the more general
situation where the current read is concurrent with the pre-
vious read, [FT read share] allocates a VC to record the
epochs of both reads, since either read could subsequently
participate in a read–write race.

Of these three rules, the last rule is the most expen-
sive but is rarely needed (0.1% of reads) and the first
three rules provide commonly-executed, constant-time
fast paths. In contrast, the corresponding rule [Djit+
read] always executes an O(n)-time VC comparison for
these cases.
Write Operations: The next three FastTrack rules handle a
write operation wr(t, x). Rule [FT write same epoch] opti-
mizes the case where x was already written in this epoch,
which applies to 71.0% of write operations, and Djit+ incor-
porates a comparable rule. [FT write exclusive] provides

a fast path for the 28.9% of writes for which Rx is an epoch,
and this rule checks that the write happens after all previous
accesses. In the case where Rx is a VC, [FT write shared]
requires a full (slow) VC comparison, but this rule applies
only to a tiny fraction (0.1%) of writes. In contrast, the cor-
responding Djit+ rule [Djit+ write] requires a VC compari-
son on 29.0% of writes.
Other Operations: Figure 4 shows how FastTrack handles
synchronization operations. These operations are rare, and the
traditional analysis for these operations in terms of expensive
VC operations is perfectly adequate. Thus, these FastTrack
rules are similar to those of Djit+ and other VC-based analyses.
Example: The execution trace in Figure 5 illustrates how
FastTrack dynamically adapts the representation for the
read history Rx of a variable x. Initially, Rx is ⊥e, indicating
that x has not yet been read. After the first read operation
rd(1, x), Rx becomes the epoch 1@1 recording both the
clock and the thread identifier of that read. The second
read rd(0, x) at clock 8 is concurrent with the first read, and
so FastTrack switches to the VC representation á8, 1, …ñ
for Rx, recording the clocks of the last reads from x by both
threads 0 and 1. After the two threads join, the write opera-
tion wr(0, x) happens after all reads. Hence, any later opera-
tion cannot be in a race with either read without also being
in a race on that write operation, and so the rule [FT write
shared] discards the read history of x by resetting Rx to
⊥e, which also switches x back into epoch mode and so

Other:  3.3% of all Operations

When Thread t performs acq(t, m):

  Ct  :=  Ct  Lm

When Thread t performs rel(t, m):

  Lm  :=  Ct

  Ct  :=  inct(Ct)

When Thread t performs fork(t, u):

  Cu  :=  Cu  Ct

  Ct  :=  inct(Ct)

When Thread t performs join(t, u):

  Ct  :=  Ct  Cu

  Cu  :=  incu(Cu)

Figure 4. Synchronization, threading operations.

Figure 5. Adaptive read history representation.

C0 C1 Wx Rx

á7,0,…ñ á0,1,…ñ ⊥e ⊥e

wr(0,x)

á7,0,…ñ á0,1,…ñ 7@0 ⊥e

fork(0,1)

á8,0,…ñ á7,1,…ñ 7@0 ⊥e

rd(1,x)

á8,0,…ñ á7,1,…ñ 7@0 1@1

rd(0,x)

á8,0,…ñ á7,1,…ñ 7@0 á8,1,…ñ

rd(1,x)

á8,0,…ñ á7,1,…ñ 7@0 á8,1,…ñ

join(0,1)

á8,1,…ñ á7,2,…ñ 7@0 á8,1,…ñ

wr(0,x)

á8,1,…ñ á7,2,…ñ 8@0 ⊥e

rd(0,x)
á8,1,…ñ á7,2,…ñ 8@0 8@0

november 2010 | vol. 53 | no. 11 | communications of the acm 99

optimizes later accesses to x. The last read in the trace then
sets Rx to a nonminimal epoch.

4. EVALUATION
To validate FastTrack, we implemented it as a component
of the RoadRunner dynamic analysis framework for mul-
tithreaded Java programs.10 RoadRunner takes as input a
compiled Java target program and inserts instrumentation
code into the target to generate an event stream of memory
and synchronization operations. Back-end checking tools
process these events as the target executes. The FastTrack
implementation extends the algorithm described so far
to handle additional Java primitives, such as volatile
variables and wait(), as outlined previously.8 Some of the
benchmarks contain faulty implementations of barrier
synchronization.9 FastTrack contains a specialized analy-
sis to compensate for these bugs.

We compare FastTrack’s precision and performance
to six other analyses implemented in the same framework:

–	 Empty, a trivial checker that performs no analysis
and is used to measure the overhead of RoadRunner

–	 Eraser,18 an imprecise race detector based on the
LockSet algorithm described in Section 1

–	 Goldilocks, a precise race detector based on an
extended notion of LockSets7

–	 BasicVC, a traditional VC-based race detector that
maintains a read and a write VC for each memory
location and performs at least one VC comparison on
every memory access

–	 Djit+, a high-performance VC-based race detector16
described in Section 2

–	 MultiRace, a hybrid LockSet/Djit+ race detector16

4.1. Performance and precision
Table 1 lists the size, number of threads, and uninstru-
mented running times for a variety of benchmark programs
drawn from the Java Grande Forum,12 Standard Performance
Evaluation Corporation,19 and elsewhere.2,7,11,21 All timing
measurements are the average of 10 test runs. Variability
across runs was typically less than 10%.

The “Instrumented Time” columns show the running
times of each program under each of the tools, reported as
the ratio to the uninstrumented running time. Thus, tar-
get programs ran 4.1 times slower, on average, under the
Empty tool. Most of this overhead is due to communicat-
ing all target program operations to the back-end checker.

The variations in slowdowns for different programs
are not uncommon for dynamic race condition checkers.
Different programs exhibit different memory access and
synchronization patterns, some of which impact analysis
performance more than others. In addition, instrumenta-
tion can impact cache performance, class loading time, and
other low-level JVM operations. These differences can some-
times even make an instrumented program run slightly
faster than the uninstrumented (as in colt).

The last six columns show the number of warnings pro-
duced by each checker. The tools report at most one race
for each field of each class, and at most one race for each
array access in the program source code. All eight warn-
ings from FastTrack reflect real race conditions. Some
of these are benign (as in tsp, mtrt, and jbb) but oth-
ers can impact program behavior (as in raytracer and
hedc).15, 20, 21

Program
Size
(loc)

Thread
Count

Base
Time

(s)

Instrumented Time (slowdown) Warnings

E
m
p
t
y

E
r
a
s
e
r

M
u
l
t
iR
a
c
e

G
o
l
d
il
o
c
k
s

B
a
s
ic

V
C

D
j
it

+

Fa
s
t
T
r
a
c
k

E
r
a
s
e
r

M
u
l
t
iR
a
c
e

G
o
l
d
il
o
c
k
s

B
a
s
ic

V
C

D
j
it

+

Fa
s
t
T
r
a
c
k

colt 111,421 11 16.1 0.9 0.9 0.9 1.8 0.9 0.9 0.9 3 0 0 0 0 0

crypt 1,241 7 0.2 7.6 14.7 54.8 77.4 84.4 54.0 14.3 0 0 0 0 0 0

lufact 1,627 4 4.5 2.6 8.1 42.5 – 95.1 36.3 13.5 4 0 – 0 0 0

moldyn 1,402 4 8.5 5.6 9.1 45.0 17.5 111.7 39.6 10.6 0 0 0 0 0 0

montecarlo 3,669 4 5.0 4.2 8.5 32.8 6.3 49.4 30.5 6.4 0 0 0 0 0 0

mtrt 11,317 5 0.5 5.7 6.5 7.1 6.7 8.3 7.1 6.0 1 1 1 1 1 1

raja 12,028 2 0.7 2.8 3.0 3.2 2.7 3.5 3.4 2.8 0 0 0 0 0 0

raytracer 1,970 4 6.8 4.6 6.7 17.9 32.8 250.2 18.1 13.1 1 1 1 1 1 1

sparse 868 4 8.5 5.4 11.3 29.8 64.1 57.5 27.8 14.8 0 0 0 0 0 0

series 967 4 175.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1 0 0 0 0 0

sor 1,005 4 0.2 4.4 9.1 16.9 63.2 24.6 15.8 9.3 3 0 0 0 0 0

tsp 706 5 0.4 4.4 24.9 8.5 74.2 390.7 8.2 8.9 9 1 1 1 1 1

elevator* 1,447 5 5.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 0 0 0 0 0 0

philo* 86 6 7.4 1.1 1.0 1.1 7.2 1.1 1.1 1.1 0 0 0 0 0 0

hedc* 24,937 6 5.9 1.1 0.9 1.1 1.1 1.1 1.1 1.1 2 1 0 3 3 3

jbb* 30,491 5 72.9 1.3 1.5 1.6 2.1 1.6 1.6 1.4 3 1 – 2 2 2

Average slowdown/total warnings 4.1 8.6 21.7 31.6 89.8 20.2 8.5 27 5 3 8 8 8

Table 1. Benchmark results. Programs marked with ‘*’ are not compute-bound and are excluded from average slowdowns.

100 communications of the acm | november 2010 | vol. 53 | no. 11

research highlights

Eraser Comparison: Our reimplementation of Eraser
incurs an overhead of 8.7x, which is competitive with similar
Eraser implementations built on top of unmodified JVMs.15
Surprisingly, FastTrack is slightly faster than Eraser on
some programs, even though it performs a precise analysis
that traditionally has been considered more expensive.

More significantly, Eraser reported many spurious warn-
ings that do not correspond to actual races. Augmenting
our Eraser implementation to reason about additional
synchronization constructs, such as fork/join or wait/
notify operations,16, 22 would eliminate some of these
spurious warnings, but not all. On hedc, Eraser reported
a spurious warning but also missed two of the real race
conditions reported by FastTrack, due to an (intentional)
unsoundness in how the Eraser algorithm reasons about
thread-local and read-shared data.18

BasicVC and Djit+ Comparison: Djit+ and BasicVC
reported exactly the same race conditions as FastTrack.
That is, all three checkers provide identical precision.
However, FastTrack outperforms the other checkers. It is
roughly 10x faster than BasicVC and 2.3x faster than Djit+.
These performance improvements are due primarily to the
reduction in the allocation and use of VCs. Across all bench-
marks, Djit+ allocated more over 790 million VCs, whereas
FastTrack allocated only 5.1 million. Djit+ performed
over 5.1 billion O(n)-time VC operations, while FastTrack
performed only 17 million. The memory overhead for stor-
ing the extra VCs leads to significant cache performance
degradation in some programs, particularly those that ran-
domly access large arrays. These tools are likely to incur
even greater overhead when checking programs with larger
numbers of threads.
MultiRace Comparison: MultiRace maintains Djit+’s
instrumentation state, as well as a lock set for each memory
location.16 The checker updates the lock set for a location
on the first access in an epoch, and full VC comparisons
are performed only after this lock set becomes empty. This
synthesis substantially reduces the number of VC opera-
tions, but introduces the overhead of storing and updating
lock sets. In addition, the use of Eraser’s unsound state
machine for thread-local and read-shared data leads to
imprecision.

Our reimplementation of the MultiRace algorithm
exhibited performance comparable to Djit+. Performance
of MultiRace (and, in fact, all of our other checkers) can
be improved by adopting a coarse-grain analysis in which all
fields of an object are represented as a single “logical loca-
tion” in the instrumentation state.16, 22

Goldilocks Comparison: Goldilocks7 is a precise race
detector that does not use VCs to capture the happens-before
relation. Instead, it maintains, for each memory location, a
set of “synchronization devices” and threads. A thread in
that set can safely access the memory location, and a thread
can add itself to the set (and possibly remove others) by per-
forming any of the operations described by the synchroniza-
tion devices in the set.

Goldilocks is a complicated algorithm to optimize, and
ideally requires tight integration with the underlying virtual
machine and garbage collector, which is not possible under

RoadRunner. Because of these difficulties, Goldilocks
reimplemented in RoadRunner incurred a slowdown of
31.6x across our benchmarks, but ran out of memory on
lufact. Our Goldilocks reimplementation missed three
races in hedc, due to an unsound performance optimiza-
tion for handling thread-local data efficiently.7 We believe
some performance improvements are possible, for both
Goldilocks and the other tools, by integration into the vir-
tual machine.

4.2. Checking eclipse for race conditions
To validate FastTrack in a more realistic setting, we also
applied it to five common operations in the Eclipse devel-
opment environment.6 These include launching Eclipse,
importing a project, rebuilding small and large workspaces,
and starting the debugger. The checking overhead for these
operations is as follows:

Operation
Base

Time (s)

Instrumented Time (Slowdown)

Empty Eraser Djit+ FastTrack

Startup 6.0 13.0 16.0 17.3 16.0

Import 2.5 7.6 14.9 17.1 13.1

Clean Small 2.7 14.1 16.7 24.4 15.2

Clean Large 6.5 17.1 17.9 38.5 15.4

Debug 1.1 1.6 1.7 1.7 1.6

Eraser reported potential races on 960 distinct field and
array accesses for these five tests, largely because Eclipse
uses many synchronization idioms that Eraser cannot
handle, such as wait()and notify(), semaphores, and
readers-writer locks. FastTrack reported 27 distinct warn-
ings, 4 of which were subsequently verified to be potentially
destructive.9 Djit+ reported 28 warnings, which overlapped
heavily with those reported by FastTrack, but schedul-
ing differences led to several being missed and several new
(benign) races being identified. Although our exploration of
Eclipse is far from complete, these preliminary observations
are quite promising. FastTrack is able to scale to precisely
check large applications with lower run-time and memory
overheads than existing tools.

5. CONCLUSION
Race conditions are difficult to find and fix. Precise race
detectors avoid the programmer-overhead of identifying
and eliminating spurious warnings, which are particularly
problematic when using imprecise checkers on large pro-
grams with complex synchronization. Our FastTrack anal-
ysis is a new precise race detection algorithm that achieves
better performance than existing algorithms by tracking
less information and dynamically adapting its represen-
tation of the happens-before relation based on memory
access patterns. We have used FastTrack to identify data
races in programs as large as the Eclipse programming
environment, and also to improve the performance of other
analyses that rely on precise data race information, such
as serializability checkers.8 The FastTrack algorithm and
adaptive epoch representation is straightforward to imple-
ment and may be useful in other dynamic analyses for

november 2010 | vol. 53 | no. 11 | communications of the acm 101

multithreaded software.

Acknowledgments
This work was supported in part by NSF Grants 0341179,
0341387, 0644130, and 0707885. We thank Ben Wood for
implementing Goldilocks in RoadRunner and for com-
ments on a draft of this paper, and Tayfun Elmas, Shaz
Qadeer, and Serdar Tasiran for their assistance with
Goldilocks.�

Cormac Flanagan, Computer Science
Department, University of California at
Santa Cruz, Santa Cruz, CA.

Stephen N. Freund, Computer
Science Department, Williams College,
Williamstown, MA.

	 1.	A dve, S.V., Hill, M.D., Miller, B.P.,
Netzer, R.H.B. Detecting data races
on weak memory systems. In ISCA
(1991), 234–243.

	 2.	CERN . Colt 1.2.0. Available at
http://dsd.lbl.gov/~hoschek/colt/
(2007).

	 3.	C hoi, J.-D., Lee, K., Loginov, A.,
O’Callahan, R., Sarkar, V., Sridhara,
M. Efficient and precise datarace
detection for multithreaded object-
oriented programs. In PLDI (2002),
258–269.

	 4.	C hoi, J.-D., Miller, B.P., Netzer R.H.B.
Techniques for debugging parallel
programs with flowback analysis.
TOPLAS 13, 4 (1991), 491–530.

	 5.	C hristiaens, M., Bosschere, K.D.
TRaDe: Data race detection for
Java. In International Conference

on Computational Science (2001),
761–770.

	 6.	T he Eclipse programming
environment, version 3.4.0.
Available at http://www.eclipse.org,
2009.

	 7.	E lmas, T., Qadeer, S., Tasiran, S.
Goldilocks: A race and transaction-
aware Java runtime. In PLDI (2007),
245–255.

	 8.	F lanagan, C., Freund, S.N. FastTrack:
Efficient and precise dynamic race
detection. In PLDI (2009), 121–133.

	 9.	F lanagan, C., Freund, S.N. Adversarial
memory for detecting destructive
races. In PLDI (2010), 244–254.

10.	F lanagan, C., Freund, S.N. The
RoadRunner dynamic analysis
framework for concurrent programs.
In PASTE (2010), 1–8.

11.	F leury, E., Sutre, G. Raja, version
0.4.0-pre4. Available at http://raja.
sourceforge.net/, 2007.

12.	 Java Grande Forum. Java Grande
benchmark suite. Available at
http://www.javagrande.org/, 2008.

13.	 Lamport, L. Time, clocks, and the
ordering of events in a distributed
system. Commun. ACM 21, 7 (1978),
558–565.

14.	M attern, F. Virtual time and global
states of distributed systems. In
Workshop on Parallel and Distributed
Algorithms, 1988.

15.	O ’Callahan, R., Choi J.-D. Hybrid
dynamic data race detection. In
PPOPP (2003), 167–178.

16.	P ozniansky, E., Schuster, A. MultiRace:
Efficient on-the-fly data race detection
in multithreaded C++ programs.
Concurrency and Computation:
Practice and Experience 19, 3 (2007),
327–340.

17.	R onsse, M., Bosschere, K.D. RecPlay: A
fully integrated practical record/replay
system. TCS 17, 2 (1999), 133–152.

18.	S avage, S., Burrows, M., Nelson, G.,
Sobalvarro, P., Anderson, T.E. Eraser:
A dynamic data race detector for
multi-threaded programs. TOCS 15, 4
(1997), 391–411.

19.	S tandard Performance Evaluation
Corporation. SPEC benchmarks.
http://www.spec.org/, 2003.

20.	 von Praun, C., Gross, T. Object race
detection. In OOPSLA, 2001,
70–82.

21.	 von Praun, C., Gross, T. Static conflict
analysis for multi-threaded object-
oriented programs. In PLDI (2003),
115–128.

22.	Y u, Y., Rodeheffer, T., Chen, W.
RaceTrack: Efficient detection of data
race conditions via adaptive tracking.
In SOSP (2005), 221–234.

References

© 2010 ACM 0001-0782/10/1100 $10.00

◆ ACM Professional Members can enjoy the convenience of making a single payment for their
entire tenure as an ACM Member, and also be protected from future price increases by
taking advantage of ACM's Lifetime Membership option.

◆ ACM Lifetime Membership dues may be tax deductible under certain circumstances, so
becoming a Lifetime Member can have additional advantages if you act before the end of
2010. (Please consult with your tax advisor.)

◆ Lifetime Members receive a certificate of recognition suitable for framing, and enjoy all of
the benefits of ACM Professional Membership.

Learn more and apply at:
http://www.acm.org/life

Take Advantage of
ACM’s Lifetime Membership Plan!

CACM lifetime mem half page ad:Layout 1 2/3/10 2:21 PM Page 1

http://dsd.lbl.gov/~hoschek/colt/
http://www.eclipse.org
http://www.javagrande.org/
http://www.spec.org/
http://www.acm.org/life
http://raja.sourceforge.net/
http://raja.sourceforge.net/

49771 (2010) ©Seabury & Smith, Inc. 2010

Administered by:
d/b/a in CA Seabury & Smith Insurance Program Management

CA Ins. Lic. #0633005
AR Ins. Lic. #245544

Group Term Life Insurance

10- or 20-Year Group Term
Life Insurance

Group Disability Income Insurance

Group Accidental Death &
Dismemberment Insurance

Group Catastrophic Major
Medical Insurance

Group Dental Plan

Long-Term Care Plan

Major Medical Insurance

Short-Term Medical Plan

Who has time to think
about insurance?

Today, it’s likely you’re busier than ever. So, the last thing you probably have on your mind is

whether or not you are properly insured.

But in about the same time it takes to enjoy a cup of coffee, you can learn more about your

ACM-sponsored group insurance program — a special member benefit that can help provide

you financial security at economical group rates.

Take just a few minutes today to make sure you’re properly insured.

Call Marsh U.S. Consumer, a service of Seabury & Smith, Inc., at 1-800-503-9230 or visit
www.personal-plans.com/promo/acm/49771.

49771 ACM AD (2010)
Full Size: 8.125" x 10.875" Bleed: 8.375" x 11.125" Live: 7" x 9.5"
Folds to: NA Perf: N/A
Colors: 4C
Stock: NA
Postage: N/A
Misc: N/AM

A
R
S
H

49771 ACM All Plans ad.indd 1 3/8/10 9:25 AM

http://www.personal-plans.com/promo/acm/49771

november 2010 | vol. 53 | no. 11 | communications of the acm 103

careers

Appalachian State University
Tenure Track Assistant Professor

The Department of Computer Science at Appa-
lachian State University invites applications for
a tenure-track faculty position at the rank of as-
sistant professor beginning August 2011. Quali-
fications for this position include a Ph.D. degree
in Computer Science or a closely related field.
Responsibilities include teaching undergraduate
and graduate computer science courses, an active
program of scholarship, pursuit of external fund-
ing, and participation in service activities.

The Department of Computer Science at Ap-
palachian State University has 10 tenured faculty
members. Approximately 25 students are enrolled
in the Master of Science program. The Bachelor of
Science in Computer Science program is accredit-
ed by the Computing Accreditation Commission
of ABET and serves about 220 students.

Appalachian State University is a member in-
stitution of the seventeen-campus University of
North Carolina. Located in Boone, North Carolina,
the university has approximately 17,000 students,
primarily in bachelors and masters programs in
both liberal arts and applied fields. Additional
information about the Department of Computer
Science, the university, and the surrounding area
can be found at www.appstate.edu.

Applicants must send: 1) statements on teach-
ing, research, and interest/qualifications for this
position, 2) a copy of their graduate transcript,
3) a curriculum vita, and 4) names and contact
information for three references. All application
material should be sent by e-mail to search@
cs.appstate.edu in a single PDF file attachment or
by mail to the chair of the search committee: Dr.
Rahman Tashakkori, Department of Computer
Science, 525 Rivers Street, Boone, NC 28608. The
initial review of complete applications will begin
on December 2, 2010 and will continue until the
position is filled.

Appalachian State University is an Affirmative
Action/Equal Opportunity Employer. The univer-
sity has a strong commitment to the principles of
diversity and inclusion, and to maintaining work-
ing and learning environments that are free of all
forms of discrimination.

Individuals with disabilities may request ac-
commodations in the application process by con-
tacting the chair of the search committee. Crimi-
nal background checks will be conducted on all
finalists invited for on-campus interviews.

College of the Holy Cross
Assistant Professor, Tenure Track

The Department of Mathematics and Computer
Science at the College of the Holy Cross invites
applications for a full-time tenure-track ap-
pointment to begin in August 2011. All research
specialties will be considered and breadth of in-
terests within computer science will be viewed

that will be available to the successful candidate.
The Department of Computer Science (www.
cs.dartmouth.edu) is home to 17 tenured and
tenure-track faculty whose research spans com-
putational biology, vision/graphics, machine
learning, algorithms, theory, and systems. The
department has strong Ph.D. and M.S. programs,
outstanding undergraduate majors and minors,
and is affiliated with an M.D./Ph.D. program.

Dartmouth is an Ivy League school situated in
Hanover, on the Connecticut River, in the Upper
Valley region of New Hampshire. It is a beautiful,
historic campus, located in a scenic, year-round,
outdoor recreational area. Dartmouth hosts an an-
nual film festival; renowned musical and theatrical
performers; and convenient public transportation
to Boston and New York, as well as local airports.

Applicants are invited to send their CV, re-
search statement, teaching statement, and names
of at least four references, one of whom should
comment about teaching. All material should be
sent to search@cs.dartmouth.edu by December
1st, 2010. All letters of recommendation should
be emailed or mailed to search, 6211 Sudikoff
Lab, Computer Science Department, Dartmouth
College, Hanover, NH 03755 by the recommender
themselves.

Direct inquiries may be sent to Professor Hany
Farid (farid@cs.dartmouth.edu).

Dartmouth is an equal opportunity/affirma-
tive action employer and encourages applications
from women and members of minority groups.

Furman University
Assistant Professor of Computer Science

The Department of Computer Science invites
applications for a tenure track position at the
Assistant Professor level to begin in the fall of
2011. Candidates must have a Ph.D. in Computer
Science or a closely related field. The position re-
quires teaching excellence, effective institutional
service, and an ability to work with colleagues
across disciplines. An ability to develop a pro-
gram of scholarly and professional activity involv-
ing undergraduates is a priority. Research special-
ty areas being sought include (but are not limited
to) high performance computing, computational
science, mathematical modeling, and bioin-
formatics. Of particular interest are candidates
willing to engage in collaborative research that
bridges the computational and medical sciences.
The position will be initially funded by and is ex-
pected to contribute to a major multi-disciplinary
and multi-organizational state-wide initiative
aimed at biofabrication of tissues and organs.

Furman is a highly selective, independent, top
40 undergraduate liberal arts institution with an
enrollment of approximately 2600 students. The
university is located in the vibrant and beautiful
upstate region of South Carolina, offers generous
benefits to fulltime faculty, and subscribes to a
problem-solving, project-oriented, experience-

favorably. Candidates must commit to, and excel
in, undergraduate teaching as well as scholarly
achievement. A Ph.D. in computer science or a
closely related field is required.

This position carries a 3-2 teaching load with
a full-salary one-semester research leave prior to
tenure review and generous sabbatical and fel-
lowship leaves for senior faculty. Please send a
cover letter describing research and teaching
interests, curriculum vitae, statement on teach-
ing, undergraduate and graduate transcripts, and
three letters of recommendation to:

Search Committee, reference #001
Department of Mathematics and Computer

Science
College of the Holy Cross
Worcester, MA 01610
email: search@mathcs.holycross.edu

Review of applications will begin on Decem-
ber 15, 2010 and continue until the position has
been filled.

The College of the Holy Cross is a highly se-
lective Catholic liberal arts college in the Jesuit
tradition. It enrolls about 2,700 students and is
located in a medium-sized city 45 miles west of
Boston. Holy Cross belongs to the Colleges of
Worcester Consortium (www.cowc.org) and the
New England Higher Education Recruitment
Consortium (www.neherc.org). The College is an
Equal Employment Opportunity Employer and
complies with all Federal and Massachusetts laws
concerning equal opportunity and affirmative ac-
tion in the workplace.

Additional information on the college, the de-
partment, and this position available at:

http://mathcs.holycross.edu/positionCS/
CSPos11.html

Dartmouth College
Neukom Institute for Computational Science
Department of Computer Science
Assistant Professor

The Neukom Institute for Computational Science
and the Department of Computer Science at Dart-
mouth College invite applications for a tenure-
track faculty position at the level of Assistant Pro-
fessor in the Department of Computer Science.
We seek candidates in the area of computational
biology and bioinformatics whose research fo-
cuses on the development and application of new
computational methods. Candidates will comple-
ment a growing program in computational biol-
ogy within the Departments of Biology, Computer
Science, Engineering Sciences, and Mathematics,
as well as the Dartmouth Medical School.

The Neukom Institute for Computational
Science (www.dartmouth.edu/~neukom) is an
endowed institute whose broad mandate is to in-
spire and support computational science across
the Dartmouth campus. The Institute has con-
siderable financial and computing resources

http://www.appstate.edu
mailto:search@cs.appstate.edu
http://www.dartmouth.edu/~neukom
http://www.cs.dartmouth.edu
mailto:search@mathcs.holycross.edu
http://www.cowc.org
http://www.neherc.org
http://www.cs.dartmouth.edu
mailto:search@cs.dartmouth.edu
mailto:farid@cs.dartmouth.edu
mailto:search@cs.appstate.edu
http://mathcs.holycross.edu/positionCS/CSPos11.html
http://mathcs.holycross.edu/positionCS/CSPos11.html

104 communications of the acm | november 2010 | vol. 53 | no. 11

careers

oration, and substantial support from the Harvard
School of Engineering and Applied Sciences.

We invite applications for a tenure-track pro-
fessor within Computer Science, and strongly
encourage applications from qualified women
and minority candidates. The appointment is ex-
pected to begin on July 1, 2011.

We seek outstanding applicants in areas relat-
ed to machine learning and artificial intelligence.
We are particularly interested in applicants
whose research examines computational issues
raised by very large data sets, broadly construed.
Specific areas of interest include but are not lim-
ited to statistical machine learning, probabilistic
modeling, reinforcement learning and massively
parallel processing. Potential application areas of
interest include computational science and engi-
neering and the social sciences.

Candidates should have an outstanding re-
search record and a strong commitment to un-
dergraduate teaching and graduate training.
Applicants must have completed a Ph.D. by Sep-
tember 1, 2011. Information about Harvard’s cur-
rent faculty, research, and educational programs
is available at http://www.seas.harvard.edu/teach-
ing-learning/areas/computer-science.

Candidates should send a curriculum vitae, a
list of publications, a statement of research and
teaching interests, and up to three representa-
tive papers (ideally as a single PDF document) to
cs-search@seas.harvard.edu. In addition, candi-
dates should have at least three letters of refer-
ence sent to the above address.

Alternatively, material may also be sent via
surface mail to CS Search Committee, School of
Engineering and Applied Sciences, Harvard Uni-
versity, Maxwell Dworkin 153, 33 Oxford Street,
Cambridge, MA 02138.

Applications will be reviewed as they are
received. For full consideration, applications
should be received by December 1, 2010.

Harvard is an Equal Opportunity/ Affirmative
Action Employer. Applications from women and
minorities are strongly encouraged.

Hologic, Inc.
Software Engineering

Hologic, Inc. is a leading developer, manufactur-
er and supplier of premium diagnostics, medical
imaging systems and surgical products dedicated
to serving the healthcare needs of women. Due to
continued growth & new products, Hologic has
multiple openings in our Danbury, CT and New-
ark, DE facilities in our Software Engineering de-
partment. Medical device experience preferred.
Apply to website; www.hologic.com/careers.

Hologic, Inc. is an
Equal Opportunity Employer.

Danbury - 1 Sr. Embedded SW Eng. BA in Eng/
Comp Sci and 5+ yrs experience. PWM motor driv-
ers/PID controllers. Proficiency with assembly, C
and C++ in embedded environment. Knowledge
of Freescale, .NET and failsafe experience useful.
(IRC #18231)

1 SW Eng. BA in EE/Comp Sci. Excellent
C/C#/C++ & object oriented programming skills,
DICOM, med imaging & image processing. Use
dev tools and all elements of standard dev envi-
ronment; source code control, compilers, config
mgmt. & defect tracking. (IRC #19788)

based approach to education that is referred to as
Engaged Learning. The Department of Computer
Science confers the B.S. degree with majors in
Computer Science, Information Technology, and
Computer Science/Mathematics. The successful
candidate will have the opportunity to teach in
Furman’s First Year Seminar program. Furman
University is an equal-opportunity employer.
Women and underrepresented minorities are
strongly encouraged to apply. For the complete
ad, please visit http://cs.furman.edu.

Applicants should submit a curriculum vitae,
statement of teaching philosophy, description of
research interests, an official copy of most recent
transcripts, and have three letters of recommen-
dation sent separately. Please send all materials
to Dr. Kevin Treu, Chair, Department of Com-
puter Science, Furman University, 3300 Poinsett
Hwy, Greenville, SC 29613. Materials may also be
sent in PDF format to kevin.treu@furman.edu.
Review of applications will continue until the po-
sition is filled.

Harvard University SEAS
Senior Lectureship in Computer Science

The School of Engineering and Applied Sciences
(SEAS) at Harvard University expects to appoint a
Senior Lecturer in Computer Science, either full-
time or part-time, starting in the Fall of 2011. This
position will be for five years and may be renewed.

We are particularly interested in candidates
who have demonstrated their excellence in and

commitment to introductory undergraduate
Computer Science instruction. We are seeking
applicants whose interests and experience focus
on teaching, pedagogy, and classroom and labo-
ratory innovations. While we are considering an
internal candidate for this position, we encourage
applications from all well qualified individuals,
especially from women and minority candidates.

The application deadline is December 1,
2010. A Ph.D. and significant postdoctoral teach-
ing experience are required. Applications includ-
ing a CV, a statement describing teaching experi-
ence and philosophy, and at least three letters of
recommendation should be sent to: Computer
Science Lectureship Committee, c/o Tristen Hub-
bard, School of Engineering and Applied Sciences,
Harvard University, 33 Oxford Street, Cambridge,
MA 02138. Email: tristen@eecs.harvard.edu.

Harvard is an Equal Opportunity/Affirmative
Action employer and encourages applications
from women and members of minority groups.

Harvard University SEAS
Tenure-Track Professor in Computer Science

Over the past several years, Harvard’s Computer
Science faculty has doubled in size, moved into
a state-of-the-art teaching and research facility,
and made a serious commitment to fostering col-
laboration with other academic disciplines. The
Computer Science program benefits from its out-
standing undergraduate and graduate students,
an excellent location, significant industrial collab-

1/3 Page ad
Cost: $4,750.00
Web see below
Proc. Charge $128.25

Total Cost: $4,878.25

in-column
Cost: $2,618.00
Web see below
Proc. Charge $70.68

Total Cost: $2,678.68

ESTIMATE #UDEL_CCMCLUSTER
PUBLICATION: COMMUNICATIONS OF THE ACM

DATE(S) OF RUN: NOVEMBER
DEADLINE: SEPT 24

One of the oldest institutions of higher education in this country, the
University of Delaware today combines tradition and innovation, offer-
ing students a rich heritage along with the latest in instructional and
research technology. The University of Delaware is a Land-Grant, Sea-Grant
and Space-Grant institution with its main campus in Newark, DE, located halfway
between Washington, DC and New York City. Please visit our website at www.udel.edu.

The Department of Electrical and Computer Engineering (ECE) at the University of Delaware (UD) invites nom-
inations and applications for tenure-track faculty positions at the Assistant, Associate, and Full Professor ranks.

The ECE Department invites candidates that complement the department's traditional strengths in (1) Computer
Engineering, (3) Signal Processing, Communications & Controls, and (3) Nanoelectronics, Electromagnetics,
and Photonics. A particular emphasis is placed on candidates aligned with UD's College of Engineering wide
cluster searches in: (1) Energy, (2) Information Technologies, (3) Security, and (4) Biomedical Engineering.
Exceptional cases outside of these traditional strengths and focused areas may also be considered.

Successful applicants will share our vision to grow the department into a leader in research and education-
al programs. ECE initiatives are supported by over 40,000 square feet of departmental facilities, including a
state-of-the art 7,000 sq ft clean room for nano-fabrication, and fueled with over $10M/year in research
expenditures. Applicants should hold a Ph.D. in electrical and/or computer engineering, or closely related
field in mathematics, biomedical, computer or physical sciences. Successful candidates are expected to
have demonstrated excellence in innovative research and show the potential for high-quality teaching and
mentoring. The University of Delaware offers very competitive salary and start-up packages, and has a gen-
erous benefit package. The application reviews start November 1st. The search will continue until the posi-
tions are filled; however, early application is strongly encouraged.

Applicants should submit a curriculum vitae, a statement of research and teaching interests, and a list of at
least four references to www.engr.udel.edu/facultysearch. Questions can be directed to f-search@udel.edu
or ECE Faculty Search Committee, 140 Evans Hall, University of Delaware, Newark, DE 19716. Applications
will be considered until the position is filled.

The UNIVERSITY OF DELAWARE is an Equal Opportunity Employer which encourages applications from
Minority Group Members and Women.

Faculty Positions in Electrical and Computer
Engineering at the University of Delaware

The Department of Electrical and Computer Engineering (ECE) at the
University of Delaware (UD) invites nominations and applications for
tenure-track faculty positions at the Assistant, Associate, and Full
Professor ranks.

The ECE Department invites candidates that complement the depart-
ment's traditional strengths in (1) Computer Engineering, (3) Signal
Processing, Communications & Controls, and (3) Nanoelectronics,
Electromagnetics, and Photonics. A particular emphasis is placed on can-
didates aligned with UD's College of Engineering wide cluster searches in:
(1) Energy, (2) Information Technologies, (3) Security, and (4) Biomedical
Engineering. Exceptional cases outside of these traditional strengths and
focused areas may also be considered.

Successful applicants will share our vision to grow the department into a
leader in research and educational programs. ECE initiatives are support-
ed by over 40,000 square feet of departmental facilities, including a state-
of-the art 7,000 sq ft clean room for nano-fabrication, and fueled with over
$10M/year in research expenditures. Applicants should hold a Ph.D. in
electrical and/or computer engineering, or closely related field in mathe-
matics, biomedical, computer or physical sciences. Successful candidates
are expected to have demonstrated excellence in innovative research and
show the potential for high-quality teaching and mentoring. The University
of Delaware offers very competitive salary and start-up packages, and has
a generous benefit package. The application reviews start November 1st.
The search will continue until the positions are filled; however, early appli-
cation is strongly encouraged.

Applicants should submit a curriculum vitae, a statement of research and
teaching interests, and a list of at least four references to
www.engr.udel.edu/facultysearch. Questions can be directed to f-
search@udel.edu or ECE Faculty Search Committee, 140 Evans Hall,
University of Delaware, Newark, DE 19716. Applications will be consid-
ered until the position is filled. The University of Delaware is an equal
opportunity employer.

The UNIVERSITY OF DELAWARE is an Equal Opportunity Employer
which encourages applications from Minority Group Members and

Women.

Faculty Positions in Electrical and Computer Engineering

http://cs.furman.edu
mailto:kevin.treu@furman.edu
http://www.udel.edu
http://www.engr.udel.edu/facultysearch
mailto:f-search@udel.edu
mailto:tristen@eecs.harvard.edu
http://www.seas.harvard.edu/teaching-learning/areas/computer-science
http://www.seas.harvard.edu/teaching-learning/areas/computer-science
mailto:cs-search@seas.harvard.edu
http://www.hologic.com/careers

november 2010 | vol. 53 | no. 11 | communications of the acm 105

http://www.sutd.edu.sg/careers.htm

106 communications of the acm | november 2010 | vol. 53 | no. 11

careers

Newark - 2 SW Eng (Embedded). BA in EE/
Comp Sci, Masters preferred. 3 yrs software dev
using C and C++ in an RTOS/embedded environ-
ment. Medical device/ medical imaging or driver
dev experience preferred. (IRC #19750)

1 Sr. SW Eng. BA in Comp Eng/Eng. 5 years
experience developing C/C#/C++ in Windows en-
vironment & object oriented programming skills.
DICOM, med imaging & image processing. (IRC
#19306)

The Hong Kong University of Science
and Technology
Department of Computer Science and
Engineering
Faculty Positions

The Department of Computer Science and Engi-
neering is one of the largest departments in the
School of Engineering. The Department currently
has 40 faculty members recruited from major
universities and research institutions around the
world, with about 1000 students (including 600
undergraduate and 180 postgraduate students).
The medium of instruction is English. More in-
formation on the Department can be found at
http://www.cse.ust.hk/.

The Department will have at least two tenure-
track faculty openings at Assistant Professor/
Associate Professor/Professor levels for the 2011-
2012 academic year. We are looking for faculty
candidates with interests in multidisciplinary re-
search areas related to computational science and

tions for two positions beginning in Fall 2011.

Senior Faculty Position in Systems
This position is in systems, broadly encom-
passing parallel computing and architectures,
distributed systems, cyberinfrastructure, and
networking. Applicants are expected to have a
well-established track record of substantial re-
search contributions to their field, externally
funded research, and leadership.

Faculty Position in Complex Networks
and Systems
This position is at the junior level but outstanding
senior candidates may be considered. Research
areas include complex networks, computational
biology and epidemiology, artificial life and ro-
botics, computational intelligence, bio-inspired
computing, large scale data modeling and simu-
lation, and Web applications, with special inter-
est in modeling the dynamics of complex infor-
mation networks, social networks and media,
and the spread of ideas and disease in human and
social systems.

Applicants for either position should have a
Ph.D.in Computer Science or another relevant
area and a well-established record (senior level)
or demonstrable potential for excellence in re-
search and teaching (junior level).

The IU Bloomington School of Informatics
and Computing is the first of its kind and among
the largest in the country, with a faculty of more
than 60 full time members, more than 400 gradu-
ate students, and strong undergraduate programs.
Degrees offered include M.S. degrees in Com-
puter Science, Bioinformatics, Human Computer
Interaction Design, and Security Informatics, and
Ph.D. degrees in Computer Science and in Infor-
matics. The School has received public recogni-
tion as a “top-ten program to watch” (Computer-
world) thanks to its excellence and leadership in
academic programs, interdisciplinary research,
placement, and outreach. The school offers excel-
lent work conditions, including attractive salaries
and research support, and low teaching loads in a
setting of strong student growth.

Located in the wooded, rolling hills of south-
ern Indiana, Bloomington is a culturally thriv-
ing college town with a moderate cost of living
and the amenities for an active lifestyle. IU is
renowned for its top-ranked music school, high
performance computing and networking facili-
ties, and performing and fine arts.

Applicants should submit a curriculum vitae,
a statement of research and teaching, and the
names of six references using the recruit link at
http://hiring.soic.indiana.edu (preferred) or by
mail to the Chair of either the Systems or Com-
plex Networks and Systems Faculty Search Com-
mittee, School of Informatics and Computing,
919 E 10th Street, Bloomington, IN 47408. Ques-
tions concerning the Systems search may be sent
to hiring-systems@informatics.indiana.edu;
questions concerning the Complex Networks
and Systems search to hiring-cnets@informatics.
indiana.edu. To receive full consideration com-
pleted applications must be received by Decem-
ber 1, 2010.

Indiana University is an Equal Opportunity/
Affirmative Action employer. Applications from
women and minorities are strongly encouraged.
IU Bloomington is vitally interested in the needs
of Dual Career couples.

engineering such as bioinformatics and financial
engineering. Strong candidates in core computer
science and engineering research areas will also
be considered. Applicants at Assistant Professor
level should have an earned PhD degree and dem-
onstrated potential in teaching and research.

Salary is highly competitive and will be com-
mensurate with qualifications and experience.
Fringe benefits include medical/dental benefits
and annual leave. Housing will also be provided
where applicable. For appointment at Assistant
Professor/Associate Professor level, initial ap-
pointment will normally be on a three-year con-
tract. A gratuity will be payable upon completion
of contract.

Applications should be sent through e-mail
including a cover letter, curriculum vitae (includ-
ing the names and contact information of at least
three referees), a research statement and a teach-
ing statement (all in PDF format) to csrecruit@
cse.ust.hk. Priority will be given to applications
received by 28 February 2011. Applicants will be
promptly acknowledged through e-mail upon re-
ceiving the electronic application material.

(Information provided by applicants will be
used for recruitment and other employment-re-
lated purposes.)

Indiana University
School of Informatics and Computing

The School of Informatics and Computing at In-
diana University, Bloomington, invites applica-

TEMASEK RESEARCH FELLOWSHIP (TRF
The Nanyang Technological University (NTU) and the National University of
Singapore (NUS) invite outstanding young researchers with a PhD Degree
in science or technology to apply for the prestigious TRF awards.

The TRF scheme provides selected young researchers an opportunity to
conduct and lead research that is a relevant to defence. It offers:

• 3-year research grant, with an option to extend up to
a further 3 years,

• possible tenure-track academic appointment with the
university at the end of the TRF,

• attractive and competitive remuneration.

Fellows may lead and conduct research, and publish in these areas:
1. Biomimicry
2. Cognitive Sciences
3. Cyber Security
4. Computational Photography
5. Microsystem Technologies

Other fundamental areas of science or technology, where a breakthrough
would be of interest to defence and security, will also be considered.

Singapore is a globally connected cosmopolitan city-state with
a supportive environment and vibrant research culture. For more
information and application procedure, please visit

NTU – http://www3.ntu.edu.sg/trf/
NUS – http://www.nus.edu.sg/dpr/funding/trf.htm

Closing date: 11 January 2011

Shortlisted candidates will be invited to Singapore to present
their research plans, meet local researchers and identify potential
collaborators in April/May 2011.

http://www.cse.ust.hk/
http://www3.ntu.edu.sg/trf/
http://www.nus.edu.sg/dpr/funding/trf.htm
http://hiring.soic.indiana.edu
mailto:hiring-systems@informatics.indiana.edu
mailto:csrecruit@cse.ust.hk
mailto:csrecruit@cse.ust.hk
mailto:hiring-cnets@informatics.indiana.edu
mailto:hiring-cnets@informatics.indiana.edu

november 2010 | vol. 53 | no. 11 | communications of the acm 107

Michigan Technological University
Department of Computer Science
Department Chair

Michigan Technological University invites ap-
plications and nominations for the position of
Chair of the Department of Computer Science.
The chair will be expected to build on a strong
undergraduate degree program and continue the
development of graduate education and research
programs. Candidates are expected to have a pro-
fessional record of accomplishments commen-
surate with the rank of full professor at Michigan
Tech, including a record of high quality publica-
tions and external funding. Candidates must also
have demonstrated administrative, supervisory,
or leadership experience.

The Computer Science Department has 325
undergraduate majors in three BS degree

programs and 50 graduate students in MS and
PhD degree programs in Computer Science

and in the Computational Science and Engi-
neering PhD program. The research interests of the
17 faculty include both core areas of computer sci-
ence and interdisciplinary topics. The Department
has close ties to the Department of Electrical and
Computer Engineering and offers many courses re-
quired by the Computer Engineering, Bioinformat-
ics, and Cheminformatics BS degree programs.

The University has approximately 7,000 stu-
dents and 400 faculty with educational and re-
search programs that emphasize solving techno-
logical problems in all aspects of life. Michigan
Tech is located in Michigan’s scenic Upper Penin-
sula and is bounded by Lake Superior and nearby
forests. The community offers year-round recre-
ational and cultural opportunities. This environ-
ment, combined with a competitive compensation
package, provides an excellent quality of life.

In addition to the present search, strategic
faculty hiring initiatives with up to ten new posi-
tions in “Next Generation Energy Systems” and
“Health: Basic Sciences, Technologies, and Medi-
cal Informatics” are in their second year. Quali-
fied candidates are encouraged to send a separate
application, following the “How to Apply” guide-
lines at http://www.mtu.edu/sfhi.

Michigan Tech is an ADVANCE institution,
one of a limited number of universities in

receipt of NSF funds in support of our com-
mitment to increase diversity and the

participation and advancement of women in
STEM.

Applications must include a vita, list of ref-
erences, and a cover letter that addresses the
candidate’s professional qualifications and ad-
ministrative philosophy. Applications received
by November 15, 2010, are assured of full consid-
eration. Applications must be submitted by email
to CSchairSearch@mtu.edu.

To learn more about this opportunity, please
visit: http://www.cs.mtu.edu/CSchairSearch.html
or contact:

Prof. Steven Seidel
steve@mtu.edu
Department of Computer Science
Michigan Technological University
1400 Townsend Drive
Houghton, MI 49931-1295

Michigan Technological University is an equal
opportunity educational institution/equal oppor-
tunity employer.

vision and multimedia; machine learning; natu-
ral language processing; scientific computing;
and verification and programming languages.

Collaborative research with industry is facili-
tated by geographic proximity to computer sci-
ence activities at AT&T, Google, IBM, Bell Labs,
NEC, and Siemens.

Please apply at https://cs.nyu.edu/webapps/
facapp/register

To guarantee full consideration, applications
should be submitted no later than December 1,
2010; however, this is not a hard deadline, as all
candidates will be considered to the full extent
feasible, until all positions are filled. Visiting po-
sitions may also be available.

New York University is an equal opportunity/
affirmative action employer.

North Carolina State University
Department of Computer Science
Faculty Positions

The Department of Computer Science at NC State
University (NCSU) seeks to fill multiple tenure
track faculty positions starting August 16, 2011.
Exceptional candidates in all areas of Computer
Science will be considered, but of particular inter-
est are candidates specializing in Computer and
Network Security.

Successful candidates must have a strong
commitment to academic and research excel-
lence, and an outstanding research record com-
mensurate with the expectations of a major re-
search university. Required credentials include a
doctorate in Computer Science or a related field.
While the department expects to hire faculty pri-
marily at the Assistant Professor level, candidates
with exceptional research records are encouraged
to apply for senior positions. The Department is
one of the largest and oldest in the country. It is
part of NCSU’s College of Engineering, which has
recently received significant increases in private
and public funding, faculty positions, and facili-
ties that will assist the Department in achieving
its goals. The department’s research expendi-
tures and recognition are growing steadily. For ex-
ample, we have one of the largest concentrations
in the country of prestigious NSF Early Career
Award winners (total of 20).

NCSU is located in Raleigh, the capital of
North Carolina, which forms one vertex of the
world-famous Research Triangle Park (RTP). RTP
is an innovative environment, both as a metropol-
itan area with one of the most diverse industrial
bases in the world, and as a center of excellence
promoting technology and science. The Research
Triangle area is routinely recognized in nation-
wide surveys as one of the best places to live in the
U.S. We enjoy outstanding public schools, afford-
able housing, and great weather, all in the prox-
imity to the mountains and the seashore.

Applications will be reviewed as they are re-
ceived. The positions will remain open until suit-
able candidates are identified. Applicants are
encouraged to apply by December 15, 2010. Ap-
plicants should submit the following materials
online at http://jobs.ncsu.edu (reference position
number 1091) cover letter, curriculum vitae, re-
search statement, teaching statement, and names
and complete contact information of four refer-
ences, including email addresses and phone num-
bers. Candidates can obtain information about

Montana State University
RightNow Technologies Professorships in
Computer Science

The Montana State University Computer Science
Department is searching for two faculty members
at either the Assistant, Associate or Full level,
based on experience. Candidates at the Associ-
ate or Full level must have established or rising
prominence in their field. A three-year start-up
package is being provided by RightNow Tech-
nologies. Montana State University is a Carnegie
Foundation RU/VH research university with an
enrollment of approximately 13,000. The website
www.cs.montana.edu/faculty-vacancies has infor-
mation on position requirements and application
procedures. ADA/EO/AA/Veterans Preference.

New Mexico State University
Assistant Professor

The Computer Science Department at New Mex-
ico State University invites applications for a ten-
ure-track position at the assistant professor level,
with appointment starting in the Fall 2011 semes-
ter. We are seeking strong candidates in any areas
of Computer Science, although applications with
expertise in computer architecture, operating
systems, compilers, and computer graphics/ani-
mation are particularly encouraged. Applications
from women and members of traditionally un-
der-represented groups are strongly encouraged.
For the complete announcement and applica-
tion procedure, please visit http://www.cs.nmsu.
edu/~epontell/job.html. Apply URL: http://www/
cs/nmsu.edu/~cssearch

New Mexico State University is an EEO/AA
Employer. All university positions are contingent
upon availability of funding. All offers of employ-
ment, oral and written, are contingent on the uni-
versity’s verification of credentials and other in-
formation required by federal law, state law, and
NMSU policies/procedures, and may include the
completion of a criminal history check.

New York University
Courant Institute of Mathematical Sciences
Department of Computer Science
Faculty

The department expects to have several regular
faculty positions beginning in September 2011
and invites candidates at all levels. We will con-
sider outstanding candidates in any area of com-
puter science, with systems and formal methods/
verification being high-priority areas.

Faculty members are expected to be outstand-
ing scholars and to participate in teaching at all
levels from undergraduate to doctoral. New ap-
pointees will be offered competitive salaries and
startup packages, with affordable housing within
a short walking distance of the department. New
York University is located in Greenwich Village,
one of the most attractive residential areas of
Manhattan.

The department has 32 regular faculty mem-
bers and several clinical, research, adjunct, and
visiting faculty members. The department’s cur-
rent research interests include algorithms, cryp-
tography and theory; computational biology; dis-
tributed computing and networking; graphics,

http://www.mtu.edu/sfhi
mailto:CSchairSearch@mtu.edu
http://www.cs.mtu.edu/CSchairSearch.html
mailto:steve@mtu.edu
http://www.cs.montana.edu/faculty-vacancies
http://jobs.ncsu.edu
http://www.cs.nmsu.edu/~epontell/job.html
http://www.cs.nmsu.edu/~epontell/job.html
http://www.cs.nmsu.edu/~cssearch
http://www.cs.nmsu.edu/~cssearch
https://cs.nyu.edu/webapps/facapp/register
https://cs.nyu.edu/webapps/facapp/register

108 communications of the acm | november 2010 | vol. 53 | no. 11

careers

candidates in all areas of computer science. We
have particular interest in candidates with experi-
ence in one or more of the areas: programming
language theory, formal verification, or security.

The Department also has openings for two
joint lecturer/post-doctoral researcher positions
and a variety of research positions. Research posi-
tions are contingent on external funding.

Applicants must hold a Ph.D. or equivalent in
Computer Science or a related discipline, or must
complete the Ph.D. by November 1, 2011. Please
specify in your application if you are applying for
the assistant professor position, for one of the lec-
turer/postdoc positions, or for a research position.

We will begin evaluating applications on No-
vember 15, 2010. Applications submitted after that
date may be considered, but we would prefer that
you complete your application by November 15.

More details on these positions can be found at
the Department’s web site http://compsci.rice.edu.
Apply URL: http://csfacultyapplications.rice.edu

Rice University is an Equal Opportunity/Affir-
mative Action Employer.

Saint Vincent College
Tenure-track position

The Computing & Information Science Depart-
ment at Saint Vincent College invites applications
for a tenure track, assistant professor position be-
ginning in August 2011, contingent on funding
and staffing within the Department. Applicants
should hold a graduate degree (preferably a PhD
or ABD) in information technology, information
systems, computer science, or a closely-related
discipline. Primary duties would include under-
graduate teaching and research in the areas of
networking, IT, computer security, and databases.
Candidates should be prepared to teach introduc-
tory CS classes, and the ability to teach some of
the following courses is a plus: programming lan-
guages, Java, graphics, and game development.

Saint Vincent College is a Catholic, Bene-
dictine liberal arts and science college of about
1700 undergraduate students and 200 graduate
students. It is located about forty miles east of
Pittsburgh, Pennsylvania in a pleasant suburban/
rural environment near the foothills of the Laurel
Mountains. Saint Vincent is an equal opportunity
employer. Review of applications will begin on
December 1, 2010 and continue until the position
is filled. To apply, send a letter of application, cur-
riculum vita, research statement, teaching state-
ment, transcripts, and three letters of reference
to:

Human Resources Director
Saint Vincent College
300 Fraser Purchase Road
Latrobe, PA 15650-2690
www.stvincent.edu/hr2

Stanford University
Tenured Professor Position in the
Communication Dept

The Department of Communication at Stanford
University invites applications for a tenured pro-
fessor position in the Department of Communi-
cation. The areas of expertise of applicants can in-
clude, but are not limited to, the changing forms
of journalism, the economics and regulation of

journalism, freedom of expression in the digital
age, the changing role of the media in campaigns
and elections, and the relation between news pro-
gramming and informed citizenship. Applicants
will be expected to teach at the graduate and
undergraduate levels in both academic and pre-
professional curricula.

We seek an innovative intellectual leader
with an interdisciplinary orientation whose work
speaks to both the academic and professional
communities. Applicants should have a record
of substantial research accomplishments in peer
reviewed publications. The successful applicant
is expected to eventually assume the director-
ship of the graduate program in journalism in the
department.

Applicants should send curriculum vitae,
bibliography, and a brief statement of research
interest to: Professor James S. Fishkin, Chair,
Department of Communication, McClatchy Hall,
Stanford University, Stanford, CA 94305-2050. For
full consideration, materials must be received by
January 15, 2011. The term of appointment would
begin September 1, 2011. Stanford University is an
equal opportunity employer and is committed to
increasing the diversity of its faculty. It welcomes
nominations of, and applications from, women
and members of minority groups, as well as oth-
ers who would bring additional dimensions to
the university’s research and teaching missions.

Swarthmore College
Visiting Assistant Professor

Swarthmore College invites applications for a
three-year faculty position in Computer Science,
at the rank of Visiting Assistant Professor, be-
ginning September 2011. Specialization is open.
Review of applications will begin January 1, 2011,
and continue until the position is filled. For infor-
mation, see http://www.cs.swarthmore.edu/job.

Swarthmore College has a strong commit-
ment to excellence through diversity in educa-
tion and employment and welcomes applications
from candidates with exceptional qualifications,
particularly those with demonstrable commit-
ments to a more inclusive society and world.

The University of Michigan - Dearborn
Department of Computer and Information
Science
Assistant/Associate/Full Professor

The Department of Computer and Information
Science (CIS) at the University of Michigan-Dear-
born invites applications for a tenure-track faculty
position in any of the following areas: computer
and data security, digital forensics, and informa-
tion assurance. Rank and salary will be commen-
surate with qualifications and experience. We of-
fer competitive salaries and start-up packages.

Qualified candidates must have, or expect to
have, a Ph.D. in CS or a closely related discipline
by the time of appointment and will be expected
to do scholarly and sponsored research, as well as
teaching at both the undergraduate and graduate
levels. Candidates at the associate or full profes-
sor ranks should already have an established
funded research program. The CIS Department
offers several BS and MS degrees, and participates
in an interdisciplinary Ph.D. program in informa-

the department and its research programs, as well
as more detail about the positions advertised here
at http://www.csc.ncsu.edu/. Inquiries may be sent
via email to: facultyhire@csc.ncsu.edu.

North Carolina State University is an equal op-
portunity and affirmative action employer. In ad-
dition, NC State University welcomes all persons
without regard to sexual orientation. Individuals
with disabilities desiring accommodations in the
application process should contact the Depart-
ment of Computer Science at (919) 515-2858.

Oklahoma State University
Assistant Professor
FACULTY SEARCH
University: Oklahoma State University
Department: Computer Science Department
Position: Faculty Position

Applications are invited for two anticipated full-
time, tenure-track Assistant Professor positions.

The term of initial appointment will begin in
August 2011.

The Oklahoma State University Computer Sci-
ence Department is seeking applications from
qualified candidates with teaching and research
experience in any area of Computer Science. A
Ph.D. or D.Sc. in Computer Science or a closely
related area is required.

The positions being sought are for the Stillwater
campus and duties may be assigned to either Still-
water or Tulsa campuses or both. Please send cur-
riculum vita, a statement of teaching and research
experience, and names of three references to:

Chair, Faculty Search Committee,
Computer Science Department
219 MSCS Building
Oklahoma State University
Stillwater, OK 74078-1053

Application via e-mail with pdf attachment(s)
is preferred.

Send e-mail to
faculty-search2010@cs.okstate.edu .

For full consideration, applications should be
received by December 20, 2010, but applications
will be accepted until the positions are filled.

These positions are contingent upon avail-
able funding.

Oklahoma State University is an Affirmative
Action/Equal Opportunity/E-Verify employer
committed to diversity. OSU-Stillwater is a tobac-
co-free campus.

Oklahoma State University is a modern com-
prehensive land grant university that serves the
state, national and international communities by
providing its students with exceptional academic
experiences, by conducting scholarly research
and other creative activities that advance funda-
mental knowledge, and by disseminating knowl-
edge to the people of Oklahoma and throughout
the world.

Rice University,
Computer Science Dept.
Tenure-track Assistant Professor

Rice University’s Department of Computer Sci-
ence seeks applications for a tenure-track assis-
tant professor to start in July 2011. We welcome

http://www.csc.ncsu.edu/
mailto:facultyhire@csc.ncsu.edu
mailto:faculty-search2010@cs.okstate.edu
http://www.stvincent.edu/hr2
http://www.cs.swarthmore.edu/job
http://compsci.rice.edu
http://csfacultyapplications.rice.edu

november 2010 | vol. 53 | no. 11 | communications of the acm 109

tion systems engineering. The current research
areas in the department include computer graph-
ics and geometric modeling, database systems,
networking, computer and network security, and
software engineering. These areas of research are
supported by several established labs.

The University of Michigan-Dearborn is lo-
cated in the southeastern Michigan area and of-
fers excellent opportunities for faculty collabora-
tion with many industries. We are one of three
campuses forming the University of Michigan
system and are a comprehensive university with
over 8500 students. One of university’s strategic
visions is to advance the future of manufacturing
in a global environment.

The University of Michigan-Dearborn is dedi-
cated to the goal of building a culturally-diverse
and pluralistic faculty committed to teaching
and working in a multicultural environment, and
strongly encourages applications from minori-
ties and women.

A cover letter, curriculum vitae including e-
mail address, teaching statement, research state-
ment, and three letters of reference should be
sent to,

Dr. William Grosky, Chair
Department of Computer and Information

Science
University of Michigan-Dearborn
4901 Evergreen Road
Dearborn, MI 48128-1491

Email: wgrosky@umich.edu
Internet: http://www.cis.umd.umich.edu
Phone: 313.583.6424
Fax: 313.593.4256

The University of Michigan-Dearborn is an
equal opportunity/affirmative action employer.

Toyota Technological Institute
at Chicago
Computer Science Faculty Positions
at All Levels

Toyota Technological Institute at Chicago (TTIC)
is a philanthropically endowed degree-granting
institute for computer science located on the
University of Chicago campus. The Institute is
expected to reach a steady-state of 12 traditional
faculty (tenure and tenure track), and 12 limited
term faculty. Applications are being accepted in
all areas, but we are particularly interested in

Theoretical computer science
Speech processing
Machine learning
Computational linguistics
Computer vision
Computational biology
Scientific computing

Positions are available at all ranks, and we
have a large number of limited term positions
currently available.

For all positions we require a Ph.D. Degree or
Ph.D. candidacy, with the degree conferred prior
to date of hire. Submit your application electroni-
cally at:

http://ttic.uchicago.edu/facapp/

Toyota Technological Institute at Chicago is an
Equal Opportunity Employer

should also arrange to have three letters of recom-
mendation sent to the department as soon as pos-
sible. Electronic submission of materials as PDF
documents is preferred. Electronic copies should
be sent to bmorris@umbc.edu. Copies can also
be sent to: Dr. Andrew Sears, Chair of Faculty
Search Committee, Information Systems Depart-
ment, UMBC, 1000 Hilltop Circle, Baltimore, MD
21250-5398. For inquiries, please contact Barbara
Morris at (410) 455-3795 or bmorris@umbc.edu.

Review of applications will begin immediately
and will continue until the position is filled. This
position is subject to the availability of funds.

UMBC is an Affirmative Action/Equal Opportu-
nity Employer and welcomes applications from mi-
norities, women and individuals with disabilities.

University at Buffalo, The State
University of New York
Faculty Position in Computer Science and
Engineering

The CSE Department invites excellent candidates
in all core areas of Computer science and Engi-
neering, especially Database Systems, Data Min-
ing, Information Retrieval, Machine Learning
and Robotics areas, to apply for an opening at the
assistant professor level.

The department is affiliated with successful
centers devoted to biometrics, bioinformatics,
biomedical computing, cognitive science, docu-
ment analysis and recognition, high performance
computing, and information assurance.

Candidates are expected to have a Ph.D. in
Computer Science/Engineering or related field by
August 2011, with an excellent publication record
and potential for developing a strong funded re-
search program.

Applications should be submitted by Decem-
ber 31, 2010 electronically via http://www.ubjobs.
buffalo.edu/

The University at Buffalo is an Equal Opportu-
nity Employer/Recruiter.

The University of Alabama
Tenure-Track Faculty Position
Software Engineering Focus
Department of Computer Science

The Department of Computer Science at the Uni-
versity of Alabama invites applications for a new
tenure-track Assistant Professor position to be-
gin August 2011. The general area of focus is in
software engineering, with a high priority area in
model-driven engineering. Candidates must have
an earned Ph.D. in Computer Science or a related
field, with solid evidence of superior research
and scholarly accomplishments, as well as dem-
onstrated excellence in teaching. Applicants who
specialize in software engineering are encour-
aged to apply.

The University of Alabama is considered the
Capstone of higher education in Alabama and is
also the largest institution in the State. The Uni-
versity was ranked in 2010 by US News and World
Report as 34th among US public universities. The
University led the nation in 2010 with ten USA To-
day Academic All-Americans (record for any US
university) and ranks 10th in the nation among
public universities in enrolling National Merit
Scholars.

University of California, Los Angeles
Computer Science Department

The Computer Science Department of the Henry
Samueli School of Engineering and Applied Sci-
ence at the University of California, Los Angeles,
invites applications for tenure-track positions in
all areas of Computer Science and Computer En-
gineering. Applications are also encouraged from
distinguished candidates at senior levels. Quality
is our key criterion for applicant selection. Appli-
cants should have a strong commitment both to
research and teaching and an outstanding record
of research for their level of seniority.

The University of California is an Equal Op-
portunity/Affirmative Action Employer. The de-
partment is committed to building a more diverse
faculty, staff and student body as it responds to
the changing population and educational needs
of California and the nation. To apply, please visit
http://www.cs.ucla.edu/recruit. Faculty applica-
tions received by January 15 will be given full con-
sideration.

UMBC
University of Maryland Baltimore County
An Honors University in Maryland
Information Systems Department

The Information Systems Department at UMBC
invites applications for a tenure-track faculty po-
sition at the Assistant Professor level in the area
of data mining starting August 2011. Outstanding
candidates in other areas will also be considered.

Candidates must have an earned PhD in In-
formation Systems or a related field no later than
August 2011. Applicants engaged in research in
data mining with overlapping interest in artifi-
cial intelligence in areas including but not lim-
ited to privacy preserving data mining, cyberse-
curity, spatial and spatio-temporal data mining,
and knowledge discovery in healthcare data, are
of primary interest. Ideal candidates will be en-
gaged in research that spans two or more of these
areas with preference given to those who can col-
laborate with current faculty. Candidates should
have a strong potential for excellence in research,
the ability to develop and sustain an externally
funded research program, and the ability to con-
tribute to our graduate and undergraduate teach-
ing mission.

The Department offers undergraduate degrees
in Information Systems and Business Technology
Administration as well as both the MS and PhD
in Information Systems. In addition, the Depart-
ment offers an MS and PhD in Human-Centered
Computing. Consistent with the UMBC vision,
the Department has excellent technical support
and teaching facilities as well as outstanding
laboratory space and state of the art technology.
UMBC’s Technology Center, Research Park, and
Center for Entrepreneurship are major indicators
of active research and outreach. Further details
on our research, academic programs, and faculty
can be found at http://www.is.umbc.edu/. Under-
represented groups including women and minor-
ities are especially encouraged to apply.

Applications will not be reviewed until the
following materials are received: a cover letter, a
one-page statement of teaching interests, a one-
page statement of research interests, one or more
sample research papers, and a CV. Applicants

mailto:wgrosky@umich.edu
http://www.cis.umd.umich.edu
http://www.cs.ucla.edu/recruit
http://www.is.umbc.edu/
mailto:bmorris@umbc.edu
mailto:bmorris@umbc.edu
http://www.ubjobs.buffalo.edu/
http://ttic.uchicago.edu/facapp/
http://www.ubjobs.buffalo.edu/

110 communications of the acm | november 2010 | vol. 53 | no. 11

careers

tion, gender identity, religion, color, national or
ethnic origin, age, disability, or status as a Viet-
nam Era Veteran or disabled veteran in the ad-
ministration of educational policies, programs or
activities; admissions policies; scholarship and
loan awards; athletic, or other University admin-
istered programs or employment. The Penn CIS
Faculty is sensitive to “two–body problems” and
opportunities in the Philadelphia region.

University of Rochester
Assistant to Full Professor
of Computer Science

The UR Department of Computer Science seeks
researchers in computer vision and/or machine
learning for a tenure-track faculty position begin-
ning in Fall 2011. Outstanding applicants in other
areas may be considered. Candidates must have
a PhD in computer science or related discipline.
Senior candidates should have an extraordinary
record of scholarship, leadership, and funding.

The Department of Computer Science is a
select research-oriented department, with an
unusually collaborative culture and strong ties to
cognitive science, linguistics, and electrical and
computer engineering. Over the past decade, a
third of its PhD graduates have won tenure-track
faculty positions, and its alumni include leaders
at major research laboratories such as Google,
Microsoft, and IBM.

The University of Rochester is a private, Tier I
research institution located in western New York
State. The University of Rochester consistently
ranks among the top 30 institutions, both public
and private, in federal funding for research and
development. Half of its undergraduates go on
to post-graduate or professional education. The
university includes the Eastman School of Music,
a premiere music conservatory, and the Univer-
sity of Rochester Medical Center, a major medical
school, research center, and hospital system. The
Rochester area features a wealth of cultural and
recreational opportunities, excellent public and
private schools, and a low cost of living.

Candidates should apply online at http://www.
cs.rochester.edu/recruit after Nov. 1, 2010. Review
of applications will begin on Dec. 1, and continue
until all interview openings are filled. The Uni-
versity of Rochester has a strong commitment
to diversity and actively encourages applications
from candidates from groups underrepresented
in higher education. The University is an Equal
Opportunity Employer.

The University of Washington Bothell
Lecturer or Senior Lecturer

The University of Washington Bothell Computing
and Software Systems Program invites applica-
tions for a full-time Lecturer or Senior Lecturer
position to begin fall 2011. Duties include teach-
ing/mentoring undergraduate and graduate stu-
dents, including industry internships. Areas of
expertise include: security, networking, operat-
ing systems, architecture, databases, multimedia
software development, computer engineering,
and parallel/distributed computing.

The Bothell campus was founded in 1990 as
an innovative, interdisciplinary campus within
the University of Washington system - one of the

University of Calgary
Calgary, Alberta, Canada T2N 1N4 or

search@cpsc.ucalgary.ca

The applications will be reviewed beginning
November 2010 and continue until the positions
are filled.

All qualified candidates are encouraged to ap-
ply; however, Canadians and permanent residents
will be given priority. The University of Calgary re-
spects, appreciates, and encourages diversity.

University of Pennsylvania
Department of Computer and Information
Science
Faculty Position

The University of Pennsylvania invites applicants
for tenure-track appointments in computer
graphics and animation to start July 1, 2011. Ten-
ured appointments will also be considered.

Faculty duties include teaching undergraduate
and graduate students and conducting high-quality
research. Teaching duties will be aligned with two
programs: the Bachelor of Science and Engineering
in Digital Media Design, and the Master of Science
and Engineering in Computer Graphics and Game
Technology (see http://cg.cis.upenn.edu). Research
and teaching will be enhanced by the recently reno-
vated SIG Center for Computer Graphics, which
houses the largest motion capture facility in the re-
gion, and is also the home of the Center for Human
Modeling and Simulation. Successful applicants
will find Penn to be a stimulating environment con-
ducive to professional growth.

The University of Pennsylvania is an Ivy
League University located near the center of Phil-
adelphia, the 5th largest city in the US. Within
walking distance of each other are its Schools of
Arts and Sciences, Engineering, Fine Arts, Medi-
cine, the Wharton School, the Annenberg School
of Communication, Nursing, and Law. The Uni-
versity campus and the Philadelphia area sup-
port a rich diversity of scientific, educational, and
cultural opportunities, major technology-driven
industries such as pharmaceuticals, finance, and
aerospace, as well as attractive urban and subur-
ban residential neighborhoods. Princeton and
New York City are within commuting distance.

To apply, please complete the form located on
the Faculty Recruitment Web Site at: http://www.
cis.upenn.edu/departmental/facultyRecruiting.
shtml. Electronic applications are strongly pre-
ferred, but hard-copy applications (including the
names of at least four references) may alterna-
tively be sent to:

Chair, Faculty Search Committee
Department of Computer and Information

Science
School of Engineering and Applied Science
University of Pennsylvania
Philadelphia, PA 19104-6389.

Applications should be received by January
15, 2011 to be assured full consideration. Applica-
tions will be accepted until the position is filled.
Questions can be addressed to faculty-search@
cis.upenn.edu. The University of Pennsylvania
values diversity and seeks talented students, fac-
ulty and staff from diverse backgrounds.

The University of Pennsylvania does not dis-
criminate on the basis of race, sex, sexual orienta-

The Department of Computer Science,
housed in the College of Engineering, currently
has twenty-three faculty members (16 tenured/
tenure track faculty, 6 of whom have interests in
software engineering), roughly 200 undergradu-
ates in an ABET accredited B.S. degree program,
and approximately 60 M.S. and Ph.D. students.
Throughout the 2010-2011 academic year, two
postdocs in software engineering will be sup-
ported in the Department. A recent Department
of Education GAANN award provides extended
fellowships to six Ph.D. students who are focus-
ing on software engineering.

The Department and College of Engineering
are undergoing a period of extensive growth. The
Department is housed in a new (opened August
2009) state-of-the art complex. Over the next three
years, the University will complete construction
of the science and engineering complex, which
is comprised of four buildings focused on the
expansion of research in engineering and the
sciences. Over 3000 square feet of new research
space has been constructed to support the efforts
of the software engineering faculty. The software
engineering faculty in the Department are PIs or
co-PIs on 13 active awards (over $3.25M) across
five different funding agencies.

For more information about the Software
Engineering Group at UA, please visit http://soft-
ware.eng.ua.edu

Details regarding the application procedures
for this position are available at http://cs.ua.edu. For
information about the position, please contact the
Search Committee at faculty.search@cs.ua.edu.

Review of applications will begin late-Fall 2010
and will continue until the position is filled. The
University of Alabama is an equal opportunity/af-
firmative action employer. Women and minority
applicants are particularly encouraged to apply.

University of Calgary
Department of Computer Science
Assistant Professor Positions

The Department of Computer Science and the
University of Calgary seeks outstanding candi-
dates for two tenure track positions at the As-
sistant Professor level. Applicants from areas of
Database Management and Human Computer
Interaction/Information Visualization are of par-
ticular interest. Details for each position appear
at: http://www.cpsc.ucalgary.ca/.

Applicants must possess a doctorate in Com-
puter Science or a related discipline at the time
of appointment, and have a strong potential to
develop an excellent research record.

The department is one of Canada’s leaders as
evidenced by our commitment to excellence in re-
search and teaching. It has an expansive graduate
program and extensive state-of-the-art comput-
ing facilities. Calgary is a multicultural city that is
the fastest growing city in Canada. Calgary enjoys
a moderate climate located beside the natural
beauty of the Rocky Mountains. Further informa-
tion about the department is available at http://
www.cpsc.ucalgary.ca/.

Interested applicants should send a CV, a con-
cise description of their research area and program,
a statement of teaching philosophy, and arrange to
have at least three reference letters sent to:

Dr. Carey Williamson
Department of Computer Science

http://software.eng.ua.edu
http://cs.ua.edu
mailto:faculty.search@cs.ua.edu
http://www.cpsc.ucalgary.ca/
http://www.cpsc.ucalgary.ca/
mailto:search@cpsc.ucalgary.ca
http://cg.cis.upenn.edu
http://www.cis.upenn.edu/departmental/facultyRecruiting
mailto:faculty-search@cis.upenn.edu
http://www.cs.rochester.edu/recruit
http://software.eng.ua.edu
http://www.cpsc.ucalgary.ca/
http://www.cis.upenn.edu/departmental/facultyRecruiting
mailto:faculty-search@cis.upenn.edu
http://www.cs.rochester.edu/recruit

november 2010 | vol. 53 | no. 11 | communications of the acm 111

premier institutions of higher education in the
US. Faculty members have full access to the re-
sources of a major research university, with the
culture and close relationships with students of a
small liberal arts college.

For additional information, including ap-
plication procedures, please see our website at
http://www.uwb.edu/CSS/. All University faculty
engage in teaching, research, and service. The
University of Washington, Bothell is an affirma-
tive action, equal opportunity employer.

University of Waterloo
David R. Cheriton School of Computer Science
Tenured and Tenure-Track Faculty Positions

Applications are invited for several positions in
computer science: (a) Up to two senior, tenured
David R. Cheriton Chairs in Software Systems are
open for candidates with outstanding research re-
cords in software systems (very broadly defined).
Successful applicants will be acknowledged lead-
ers in their fields or have demonstrated the po-
tential to become such leaders. These positions
include substantial research support and teaching
reduction. (b) One tenured or tenure-track posi-
tion is open in the area of Health Informatics, in-
cluding, but not limited to, healthcare IT, medical
informatics, and biomedical systems. The success-
ful applicant will help develop a new graduate de-
gree program in health informatics. (c) One other
tenured or tenure-track position is available for
excellent candidates in any computing area, but
highest priority will be given to candidates special-
izing in systems software (operating systems, dis-
tributed systems, networks, etc.) and information
systems (e-commerce systems, enterprise resource
planning systems, business intelligence, etc.).

Successful applicants who join the University
of Waterloo are expected to be leaders in research,
have an active graduate-student program, and con-
tribute to the overall development of the School.
A Ph.D. in Computer Science, or equivalent, is re-
quired, with evidence of excellence in teaching and
research. Rank and salary will be commensurate
with experience, and appointments are expected
to commence during the 2011 calendar year.

With over 70 faculty members, the University of
Waterloo’s David R. Cheriton School of Computer
Science is the largest in Canada. It enjoys an excel-
lent reputation in pure and applied research and
houses a diverse research program of international
stature. Because of its recognized capabilities, the
School attracts exceptionally well-qualified stu-
dents at both undergraduate and graduate levels.
In addition, the University has an enlightened in-
tellectual property policy which vests rights in the
inventor: this policy has encouraged the creation
of many spin-off companies including iAnywhere
Solutions Inc., Maplesoft Inc., Open Text Corp.,
and Research in Motion. Please see our web site for
more information: http://www.cs.uwaterloo.ca.

To submit an application, please register at the
submission site: http://www.cs.uwaterloo.ca/fac-
ulty-recruiting. Once registered, instructions will
be provided regarding how to submit your appli-
cation. Although applications will be considered
as soon as possible after they are complete and as
long as positions are available, full consideration
is assured for those received by November 30.

The University of Waterloo encourages appli-
cations from all qualified individuals, including

a closely related field by August 2011, have a com-
mitment to undergraduate teaching, and be able
to contribute to curriculum development.

Yale University
Senior Faculty

Yale University’s Electrical Engineering Depart-
ment invites applications from qualified individu-
als for a senior faculty position in either computer
systems or signals & systems. Subfields of interest
include wireless communications, networking,
systems on a chip, embedded systems, and emerg-
ing computing methodologies inspired by advanc-
es in the biological sciences, quantum computing,
and other novel research directions. All candidates
should be strongly committed to both teaching
and research and should be open to collaborative
research. Candidates should have distinguished
records of research accomplishments and should
be willing and able to take the lead in the shaping
of Yale’s expanding programs in either computer
engineering or signals & systems. Yale University is
an Affirmative Action/Equal Opportunity Employ-
er. Yale values diversity among its students, staff,
and faculty and strongly welcomes applications
from women and under represented minorities.
The review process will begin November 1, 2010.
Applicants should send a curriculum vitae to:

Chair
Electrical Engineering Search Committee
Yale University
P.O. Box 208267
New Haven, CT 06520-8267

women, members of visible minorities, native
peoples, and persons with disabilities. All quali-
fied candidates are encouraged to apply; however,
Canadian citizens and permanent residents will
be given priority. Fall 2010.

University of Wisconsin - Platteville
Assistant Professor - Software Engineering

The Department of Computer Science and Software
Engineering at the University of Wisconsin-Platte-
ville invites applications for a tenure-track faculty
position in Software Engineering starting Fall, 2011.
Candidates must have a Ph.D. in Software Engineer-
ing, Computer Science, or closely related field.

The primary duty for this position will be
teaching courses in an ABET-accredited software
engineering program. Candidates must have ex-
cellent verbal and written communication skills
and a strong commitment to teaching. Commit-
ment to scholarly and professional activities is
also required. The candidate must have a dem-
onstrated commitment to or experience with
racially diverse populations. Salary will be com-
petitive and commensurate with experience and
qualifications. In addition, there are consulting
opportunities with local companies.

Applications must be submitted electronical-
ly. Send a letter of application, undergraduate &
graduate transcripts, a statement illustrating your
commitment to fostering campus racial diversity,
and a vita including references to stutenbm@
uwplatt.edu. Visit our web site at http://www.uw-
platt.edu/csse for more information. Review of
applications will begin on December 6, 2010 and
continue until a suitable candidate is found.

The University of Wisconsin-Platteville, an
equal opportunity, affirmative action employer,
seeks to build a diverse faculty and staff and en-
courages applications from women and persons
of color. The names of all nominees and appli-
cants who have not requested in writing that their
identities be kept confidential, and of all finalists,
will be released upon request. Employment re-
quires a criminal background check.

 US Air Force Academy
Distinguished Visiting Professor
& Visiting Chair

U.S. AIR FORCE ACADEMY Department of Com-
puter Science is accepting applications for our
Coleman-Richardson Chair and Distinguished
Visiting Professor positions. See http://www.usa-
fa.edu/df/dfcs/index.cfm or call (719) 333-7474
for details. U.S. Citizenship required.

Valdosta State University
Assistant Professor

Applications are invited for two ten-month tenure-
track faculty positions at the rank of Assistant Pro-
fessor with starting date of August 1, 2011. Responsi-
bilities include teaching at the undergraduate level,
scholarly activity, and service to both the department
and the university. For a detailed job description and
application instructions email Dr. Ashok Kumar, In-
terim Head, akumar@valdosta.edu.

Applicants must complete a doctorate in Com-
puter Information Systems, Computer Science, or

Skidmore college
The Department of Mathematics and Computer
Science at Skidmore College invites applications for a
tenure-track position in Computer Science beginning
September 2011. Qualifications include a Ph.D. in
Computer Science. The appointment will be at the rank
of Assistant Professor. Salary will be competitive and
commensurate with experience. In addition, startup
funds and pre-tenure sabbaticals are available.

A commitment to quality instruction of undergraduates
and continuing scholarly achievement is essential. The
department has expertise in the theory of computation,
algorithms, artificial intelligence, computer vision and
graphics; we hope to widen our areas of expertise with
this appointment. In addition to strong disciplinary
teaching and scholarship, including collaborative
research with students, the College encourages
interdisciplinary teaching and scholarship via
participation in its First-Year Experience program and
other interdisciplinary programs such as Neuroscience,
Environmental Studies, and Gender Studies.

Located in the vibrant community of Saratoga
Springs, New York, Skidmore College is a highly
selective liberal arts college of 2400 students. The
Department of Mathematics and Computer Science
consists of eleven faculty members, offers both
major and minor programs in Computer Science, and
has its own Linux network supported by a dedicated
system administrator within the department . For
more detailed information, please go to http://cms.
skidmore.edu/mcs/.

Review of applications will begin December 15,
2010 and will continue until the position is filled.
Applications from members of underrepresented
groups are especially encouraged.

To learn more about and apply for this position
please visit Skidmore’s website at: jobs.skidmore.
edu/applicants/Central?quickFind=52518

Skidmore College is committed to being an inclusive
campus community and, as an Equal Opportunity
Employer, does not discriminate in its hiring or
employment practices on the basis of gender, race or
ethnicity, color, national origin, religion, age, disability,
family, veteran or marital status, sexual orientation,
gender identity or expression.

CREATIVE THOUGHT MATTERS.

http://www.uwb.edu/CSS/
http://www.cs.uwaterloo.ca
http://www.cs.uwaterloo.ca/faculty-recruiting
http://www.uwplatt.edu/csse
http://www.usafa.edu/df/dfcs/index.cfm
http://www.usafa.edu/df/dfcs/index.cfm
mailto:akumar@valdosta.edu
http://cms.skidmore.edu/mcs/
mailto:stutenbm@uwplatt.edu
mailto:stutenbm@uwplatt.edu
http://www.uwplatt.edu/csse
http://www.cs.uwaterloo.ca/faculty-recruiting
http://cms.skidmore.edu/mcs/
http://jobs.skidmore.edu/applicants/Central?quickFind=52518
http://jobs.skidmore.edu/applicants/Central?quickFind=52518

112 communications of the acm | november 2010 | vol. 53 | no. 11

last byte

DOI:10.1145/1839676.1839700	 	 Peter Winkler

Puzzled
Rectangles Galore
Welcome to three new puzzles. Solutions to the first two will be
published next month; the third is (as yet) unsolved. In each,
the issue is how your intuition matches up with the mathematics.

The hero of this column is the
simple, ordinary, axis-aligned
rectangle. Looking out the
window, how many do you
see? My view at the moment of
Cambridge, MA, easily takes in
more than one thousand,
mostly windows. Asking new
questions about an old figure
helps us see it in a new light.

1.A large rectangle in the
plane is partitioned into

a finite number of smaller
rectangles, each with either
integer width or integer height;
that is, its width, height, or
both width and height are
whole numbers of units. Now
prove that the large rectangle,
likewise, has integer width or
height (or both).

2.You are in a large
rectangular room with

mirrored walls. Your mortal
enemy, armed with a laser
gun, is elsewhere in the room.
As your only defense, you
may summon a number of
graduate students to stand

at designated spots in the
room, blocking all possible
shots by the enemy. How many
students do you need?

You may assume for this
purpose that you, your enemy,
and the students are all slim
enough to be considered
points (viewed from above),
rather than solid figures in 3D
space. If, for example, you had
continuum many graduate
students, you could place them
around you in a circle, with the
enemy outside. But you can do
better…

3.Before you (on the plane)
is a large rectangle

containing a finite number of
distinct dots, one of which is
at the rectangle’s lower-left-
hand corner. Your objective
is to pack smaller, disjoint
rectangles into the big one
(with sides parallel to those of
the big one) in such a way that
each small rectangle includes
one of the dots as its own
lower-left-hand corner; see the
figure for an example.

The conjecture is that there
is always a way to choose the
small rectangles so they cover
at least half the area of the big
rectangle. Be the first ever to
prove it. A far as I know, no
one has succeeded in even
showing you can cover any
fixed fraction (say, 1/100) of the
area of the original rectangle.

Alternatively, if you
reject the conjecture, find
a counterexample, a way to
distribute the dots (be sure
to include the lower-left-hand
corner of the big rectangle) so
there is, provably, no way to do
the packing so as to cover half
the area of the big rectangle.

All readers are encouraged to submit prospective puzzles for future columns to puzzled@cacm.acm.org.

Peter Winkler (puzzled@cacm.acm.org) is Professor of Mathematics and of Computer Science and Albert Bradley
Third Century Professor in the Sciences at Dartmouth College, Hanover, NH.

Packing rectangles with six given dots at
their lower-left-hand corners.

mailto:puzzled@cacm.acm.org
mailto:puzzled@cacm.acm.org

http://www.reviews.com
http://www.reviews.com

It’s not just what we make.
It’s what we make possible.

Advancing Technology Curriculum
Driving Software Evolution
Fostering Tomorrow’s Innovators

Learn more at: www.intel.com/thinkparallel

Copyright © 2009 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.
 *Other names and brands may be claimed as the property of others.

Think Parallel.....

http://www.intel.com/thinkparallel

	Table of Contents
	Departments
	Editor's Letter
	On P, NP, and Computational Complexity

	Letters To The Editor
	How to Think About Objects

	In the Virtual Extension
	BLOG@CACM
	Rethinking the Systems Review Process

	CACM Online
	A Preference for PDF

	Calendar
	Careers

	News
	Turning Data Into Knowledge
	Security in the Cloud
	Career Opportunities
	Wide Open Spaces

	Viewpoints
	Economic and Business Dimensions
	The Divergent Online News Preferences of Journalists and Readers

	Education
	K-12 Computational Learning

	Legally Speaking
	Why Do Software Startups Patent (or Not)?

	Privacy and Security
	Why Isn't Cyberspace More Secure?

	Viewpoint
	Sensor Networks for the Science
	In Support of Computer Science Teachers and the CSTA

	Practice
	The Case Against Data Lock-in
	Keeping Bits Safe: How Hard Can It Be?
	Sir, Please Step Away from the ASR-33!

	Contributed Articles
	Understanding Throughput-Oriented Architectures
	Regulating the Information Gatekeepers
	Relative Status of Journal and Conference Publications in Computer Science
	Supporting Ubiquitous Location Information in Interworking 3G and Wireless Networks

	Review Articles
	Using Complexity to Protect Elections

	Research Highlights
	Technical Perspective
	Data Races are Evil with No Exceptions

	Goldilocks: A Race-Aware Java Runtime
	FastTrack: Efficient and Precise Dynamic Race Detection

	Last Byte
	Puzzled
	Rectangles Galore

