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editor’s letter

On P, NP, and  
Computational Complexity

August 7 and 8, and suddenly the whole 
world was paying attention. Richard 
Lipton’s August 15 blog entry at blog@
CACM was viewed by about 10,000 
readers within a week. Hundreds of 
computer scientists and mathemati-
cians, in a massive Web-enabled col-
laborative effort, dissected the proof in 
an intense attempt to verify its validity. 
By the time the New York Times pub-
lished an article on the topic on August 
16, major gaps had been identified, and 
the excitement was starting to subside. 
The P vs. NP problem withstood anoth-
er challenge and remained wide open.

During and following that exciting 
week many people have asked me to 
explain the problem and why it is so 
important to computer science. “If ev-
eryone believes that P is different than 
NP,” I was asked, “why it is so impor-
tant to prove the claim?’’ The answer, 
of course, is that believing is not the 
same as knowing. The conventional 
“wisdom’’ can be wrong. While our 
intuition does tell us that finding solu-
tions ought to be more difficult than 
checking solutions, which is what the 
P vs. NP problem is about, intuition 
can be a poor guide to the truth. Case 
in point: modern physics.

While the P vs. NP quandary is a 
central problem in computer science, 
we must remember that a resolution of 
the problem may have limited practi-
cal impact. It is conceivable that P = NP, 
but the polynomial-time algorithms 
yielded by a proof of the equality are 
completely impractical, due to a very 

large degree of the polynomial or a very 
large multiplicative constant; after all, 
(10n)1000 is a polynomial! Similarly, it is 
conceivable that P ≠ NP, but NP prob-
lems can be solved by algorithms with 
running time bounded by nlog log log n—a 
bound that is not polynomial but in-
credibly well behaved.

Even more significant, I believe, is 
the fact that computational complex-
ity theory sheds limited light on be-
havior of algorithms in the real world. 
Take, for example, the Boolean Satisfi-
ability Problem (SAT), which is the ca-
nonical NP-complete problem. When 
I was a graduate student, SAT was a 
“scary” problem, not to be touched 
with a 10-foot pole. Garey and John-
son’s classical textbook showed a long 
sad line of programmers who have 
failed to solve NP-complete problems. 
Guess what? These programmers 
have been busy! The August 2009 is-
sue of Communications contained an 
article by Sharad Malik and Lintao 
Zhang (p. 76) in which they described 
SAT’s journey from theoretical hard-
ness to practical success. Today’s SAT 
solvers, which enjoy wide industrial 
usage, routinely solve SAT instances 
with over one million variables. How 
can a scary NP-complete problem be 
so easy? What is going on?

The answer is that one must read 
complexity-theoretic claims carefully. 
Classical NP-completeness theory is 
about worst-case complexity. 

Indeed, SAT does seem hard in the 
worst case. There are SAT instances 

with a few hundred variables that can-
not be solved by any extant SAT solver. 
“So what?’’ shrugs the practitioner, 
“these are artificial problems.” Some-
how, industrial SAT instances are 
quite amenable to current SAT-solv-
ing technology, but we have no good 
theory to explain this phenomenon. 
There is a branch of complexity theory 
that studies average-case complexity, 
but this study also seems to shed little 
light on practical SAT solving. How to 
design good algorithms is one of the 
most fundamental questions in com-
puter science, but complexity theory 
offers only very limited guidelines for 
algorithm design.

An old cliché asks what the differ-
ence is between theory and practice, 
and answers that “in theory, they are 
not that different, but in practice, they 
are quite different.” This seems to ap-
ply to the theory and practice of SAT 
and similar problems. My point here 
is not to criticize complexity theory. It 
is a beautiful theory that has yielded 
deep insights over the last 50 years, 
as well as posed fundamental, tan-
talizing problems, such as the P vs. 
NP problem. But an important role 
of theory is to shed light on practice, 
and there we have large gaps. We 
need, I believe, a richer and broader 
complexity theory, a theory that would 
explain both the difficulty and the 
easiness of problems like SAT. More 
theory, please!

Moshe Y. Vardi, editor-in-chief

The second week of August was an exciting 
week. On Friday, August 6, Vinay Deolalikar 
announced a claimed proof that P ≠ NP. 
Slashdotted blogs broke the news on 

DOI:10.1145/1839676.1839677	 	 Moshe Y. Vardi
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letters to the editor

T
hough I agree with Morde-
chai Ben-Ari’s Viewpoint 
“Objects Never? Well, Hard-
ly Ever!” (Sept. 2010) saying 
that students should be in-

troduced to procedural programming 
before object-oriented programming, 
dismissing OOP could mean throwing 
out the baby with the bathwater. 

OOP was still in the depths of the re-
search labs when I was earning my col-
lege degrees. I was not exposed to it for 
the first few years of my career, but it in-
trigued me, so I began to learn it on my 
own. The adjustment from procedural 
programming to OOP wasn’t just a mat-
ter of learning a few new language con-
structs. It required a new way of thinking 
about problems and their solutions. 

That learning process has continued. 
The opportunity to learn elegant new 
techniques for solving difficult prob-
lems is precisely why I love the field. But 
OOP is not the perfect solution, just one 
tool in the software engineer’s toolbox. 
If it were the only tool, we would run the 
risk of repeating psychologist Abraham 
Maslow’s warning that if the only tool 
you have is a hammer, every problem 
tends to look like a nail. 

Learning any new software tech-
nique—procedural programming, 
OOP, or simply what’s next—takes 
time, patience, and missteps. I have 
made plenty myself learning OOP, as 
well as other technologies, and contin-
ue to learn from and improve because 
of them. 

For his next sabbatical, Ben-Ari 
might consider stepping back into the 
industrial world for a year or two. We’ve 
learned a great deal about OOP since 
he left for academia 15 years ago. 

Jim Humelsine, Neptune, NJ 

Evaluating Research:  
Hypercriticality vs.  
Radical Empiricism
In his Viewpoint “Is Computer Science 
Truly Scientific?” (July 2010), Gon-
zalo Génova suggested that computer 
science suffers from “radical empiri-
cism,” leading to rejection of research 

not supported by empirical evidence. 
We take issue with both his claim and 
(perhaps ironically) the evidence he 
used to support it. 

Génova rhetorically asked “Must all 
scientific works be reasoned and de-
monstrable?,” answering emphatical-
ly, “Yes, of course,” to which we whole-
heartedly agree. Broadly, there are two 
ways to achieve this goal: inference 
and deduction. Responding to the 
letter to the editor by Joseph G. Davis 
“No Straw Man in Empirical Research” 
(Sept. 2010, p. 7), Génova said theo-
retical research rests on definition and 
proof, not on evidence. Nonetheless, 
he appeared to be conflating inference 
and deduction in his argument that 
seminal past research would be unac-
ceptable today. Many of the famous 
computer scientists he cited to sup-
port this assertion—Turing, Shannon, 
Knuth, Hoare, Dijkstra—worked (and 
proved their findings) largely in the 
more-theoretical side of CS. Even a cur-
sory reading of the latest Proceedings of 
the Symposium on Discrete Algorithms 
or Proceedings of Foundations of Com-
puter Science turns up many theoreti-
cal papers with little or no empirical 
content. The work of other pioneers 
Génova cited, including Meyer and 
Gamma, might have required more 
empirical evidence if presented today. 
Génova implied their work would not 
be accepted, and we would therefore 
be unable to benefit from it. The fact 
that they met the requirements of their 
time but (arguably) not of ours does 
not mean they would not have risen to 
the occasion had the bar been set high-
er. We suspect they would have, and CS 
would be none the poorer for it. 

Génova’s suggestion that CS suf-
fers today from “radical empiricism” 
is an empirical, not deductive, claim 
that can be investigated through sur-
veys and reviews. Still, he supported 
it via what he called “inductive justifi-
cation,” which sounds to us like argu-
ment by anecdote. Using the same in-
ductive approach, conversations with 
our colleagues here at the University 
of California, Davis, especially those in 

the more theoretical areas of CS, lead 
us to conclude that today’s reviews, 
though demanding and sometimes 
disappointing, are not “radically em-
pirical.” To the extent a problem ex-
ists in the CS review process, it is due 
to “hypercriticality,” as Moshe Y. Vardi 
said in his “Editor’s Letter” (July 2010, 
p. 5), not “radical empiricism.” 

Earl Barr and Christian Bird, 
	D avis, CA 

Author’s Response: 
I’m glad to hear from Barr and Bird that 
there are healthy subfields in CS in this 
respect. I used “inductive justification” 
to support the claim that many classical 
works in the field are more theoretical 
and speculative than experimental, not to 
support an argument that CS suffers today 
from “radical empiricism.” Investigating the 
latter through exhaustive empirical surveys 
of reviews would require surveyors being 
able to classify a reviewer as a “radical 
empiricist.” If my column served this 
purpose, then I am content with it. 

Gonzalo Génova, Madrid, Spain 

Conclude with the Conclusions 
The Kode Vicious Viewpoint “Present-
ing Your Project” by George V. Neville-
Neil (Aug. 2010) made several debat-
able points about presentations, one of 
which was inexcusable: “…I always end 
with a Questions slide.” 

You have just given a 25-minute 
technical presentation to an educat-
ed, knowledgeable, technical audi-
ence. Using a series of slides, you have 
explained your problem, described 
your solutions, discussed your experi-
ments, and finally concluded, display-
ing each slide for a minute or two. 
Your penultimate slide summarizes 
the whole presentation, including its 
“takeaway” message—everything you 
want your listeners to remember. Now 
you expect to spend four or five min-
utes answering questions. The slide 
you show as you answer will be on 
screen two or three times longer than 
any other slide. 

How to Think About Objects  
DOI:10.1145/1839676.1839678	 	
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letters to the editor

So why remove the most useful slide 
in the whole presentation—the sum-
mary—and replace it with a content-
free alternative showing perhaps a word 
or two. Is your audience so dense it can-
not hear you say “Thank you” or ask for 
questions unless they’re on the screen? 
Do you think the audience will forget to 
say something? Or is the problem with 
you, the presenter? Would you yourself 
forget to ask for questions if the slide 
wasn’t on the screen in front of you? 

Technical presentations should be 
held to a higher standard of informa-
tion content and knowledge transfer 
than a sales pitch. My advice: Remove 
the “Thank You” and “Questions” 
slides, and leave up your “Conclusions” 
and “Summary” as long as possible. 

Michael Wolfe, Hillsboro, OR 

For Electronic Health Records, 
Don’t Ignore VistA 
Why did Stephen V. Cantrill’s article 
“Computers in Patient Care: The Prom-
ise and the Challenge” (Sept. 2010) say 
nothing about the Veterans Health 
Information Systems and Technology 
Architecture (VistA) used for decades 
throughout the U.S. Department of 
Veterans Affairs (VA) medical system 
for its patients’ electronic medical re-
cords? With 153 medical centers and 
1,400 points of care, the VA in 2008 de-
livered care to 5.5 million people, reg-
istering 60 million visits (http://www1.
va.gov/opa/publications/factsheets/
fs_department_of_veterans_affairs.pdf). 

In his book The Best Care Anywhere 
(http://p3books.com/bestcareanywhere) 
Phillip Longman documented VistA’s 
role in delivering care with better out-
comes than national averages to a pop-
ulation less healthy than national aver-
ages at a cost that has risen more slowly 
than national averages. Included was a 
long list of references (more than 100 
in the 2010 second edition), yet Cantrill 
wrote “Although grand claims are of-
ten made about the potential improve-
ments in the quality of care, decreases 
in cost, and so on, these are very diffi-
cult to demonstrate in a rigorous, sci-
entific fashion.” 

Public-domain VistA also general-
izes well outside the VA. For example, 
it has been deployed in the U.S. Indian 
Health Service, with additional func-
tionality, including pediatrics. Speak-

ing at the 2010 O’Reilly Open Source 
Convention (http://www.oscon.com/
oscon2010/public/schedule/detail/15255), 
David Whiles, CIO of Midland Memo-
rial Hospital, Midland, TX, described 
his hospital’s deployment of VistA and 
how it has since seen a reduction in 
mortality rates of about two per month, 
as well as a dramatic 88% decrease in 
central-line infections entering at cath-
eter sites (http://www.youtube.com/
watch?v=ExoF_Tq14WY). Mean-
while, the country of Jordan (http://ehs.
com.jo) is piloting an open source soft-
ware stack deployment of VistA to pro-
vide electronic health records within 
its national public health care system. 

[In the interests of full disclosure, 
I am an active member of the global 
VistA community, co-founding World-
VistA in 2002 (http://worldvista.org), a 
501(c)(3) promoting affordable health 
care IT through VistA. Though now re-
tired from an official role, I previously 
served as a WorldVistA Director.] 

K.S. Bhaskar, Malvern, PA 

Author’s Response:
I appreciate Bhaskar’s comments about 
the VA’s VistA medical information system 
and applaud his efforts to generate a 
workable system in the public domain, but 
he misunderstood the intent of my article. It 
was not to be a comparison of good vs. bad 
or best vs. worst, but rather a discussion 
of many of the endemic issues that have 
plagued developers in the field since the 
1960s. For example, MUMPS, the language 
on which VistA is based, was developed in 
the early 1970s for medical applications; 
VistA achieved general distribution in the 
VA in the late 1990s, almost 30 years later. 
Why so long? I tried to address some of 
these issues in the article. Also, VistA does 
not represent an integrated approach, but 
rather an interfaced approach with several 
proprietary subsystems. 

Stephen V. Cantrill, M.D., Denver 

Correction 
The tribute “Robin Milner: The Elegant 
Pragmatist” by Leah Hoffmann (June 
2010) requires a small correction. It 
said Milner “served as the first chair 
of the University of Cambridge Com-
puter Laboratory.” For all his many 
gifts, however, Milner was not preco-
cious enough to have run a university 

laboratory at age three. He was born in 
1934, and the University of Cambridge 
Computer Laboratory was founded (as 
the Mathematical Laboratory) in 1937. 
The source of the error is apparently 
Milner’s official obituary, which noted 
he “held the first established Chair in 
Computer Science at the University of 
Cambridge.” Translation to American: 
He held the first endowed professor-
ship. In Britain, the word “Chair” refers 
to a professorship and should not be 
confused with “Head of Department.” 

Lawrence C. Paulson, 
	 Cambridge, England 

Correction 
Tom Geller’s news story “Beyond the 
Smart Grid” (June 2010) should have 
cited Froehlich, J. Larson, E., Camp-
bell, T., Haggerty, C., Fogarty, J., and 
Patel, S. “HydroSense: Infrastructure-
Mediated Single-Point Sensing of 
Whole-Home Water Activity in Proceed-
ings of UbiComp 2009 (Orlando, FL, 
Sept. 30–Oct. 3, 2009) instead of Patel, 
S.N., Reynolds, M.S., and Abowd, G.D. 
“Detecting Human Movement By Dif-
ferential Air Pressure Sensing in HVAC 
System Ductwork: An Exploration in 
Infrastructure-Mediated Sensing” in 
Proceedings of Pervasive 2008, the Sixth 
International Conference on Pervasive 
Computing (Sydney, Australia, May 19–
22, 2008). We apologize for this error. 

Communications welcomes your opinion. To submit a 
Letter to the Editor, please limit your comments to 500 
words or less and send to letters@cacm.acm.org. 
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contributed article
DOI: 10.1145/1839676.1839702

Supporting Ubiquitous Location 
Information in Interworking  
3G and Wireless Networks
Massimo Ficco, Roberto Pietrantuono,  
and Stefano Russo 

Users and wireless ISPs could tap location-
based services across networks belonging 
to other ISPs to create ubiquitous personal 
networks. 

Location-based services have 
emerged as a main interest of wireless 
ISPs, or WISPs, and network operators. 

Positioning mobile devices in the third 
generation (3G) of wireless communication 
networks (such as the Universal Mobile 
Telecommunications System) is crucial 
to many commercial services, including 
location applications that utilize accurate 
positioning (such as handset navigation 
tracking and locating points of interest); 
public and private emergency services, 
calling firefighters, medical teams, and 
emergency roadside assistance; and future 
applications (such as fraud detection, 
location-sensitive billing, and advertising). 

However, positioning techniques vary 
by accuracy, implementation cost, and 
application scenarios (such as indoor 
and outdoor). WISPs can exploit their 
availability in order to locate their users in 
heterogeneous environments by using the 
most suitable positioning technique in a 
manner transparent to the user. 

The recent interworking between 3G 
systems and wireless networks (such 
as IEEE 802.11 and Bluetooth) allows 
WISPs to leverage wireless networks for 
localization purposes. Wireless hotspots in 
public and private places (such as homes, 
offices, airports, shopping malls, arenas, 
hotels, and libraries), along with the new 
generation of mobile devices supporting 
multiple positioning technologies (such 
as GPS, Bluetooth, Wi-Fi, and RFID), 
fosters WISP development of integrated 
positioning systems.

contributed article
DOI: 10.1145/1839676.1839701

Relative Status of Journal  
and Conference Publications  
in Computer Science
Jill Freyne, Lorcan Coyle, Barry Smyth,  
and Padraig Cunningham 

Citations represent a trustworthy measure 
of CS research quality—whether in articles 
in conference proceedings or in CS journals. 

Though computer scientists agree that 
conference publications enjoy greater 
status in CS than in other disciplines, there 
is little quantitative evidence to support this 
view. The importance of journal publication 
in academic promotion makes it a highly 
personal issue, since focusing exclusively 
on journal papers misses many significant 
papers published by CS conferences.

This article aims to quantify the relative 
importance of CS journal and conference 
papers, showing that those in leading 
conferences match the impact of those 
in mid-ranking journals and surpass the 
impact of those in journals in the bottom 
half of the Thompson Reuters rankings 
(http://www.isiknowledge.com) for impact 
measured in terms of citations in Google 
Scholar. We also show that poor correlation 
between this measure and conference 
acceptance rates indicates conference 
publication is an inefficient market where 
venues equally challenging in terms of 
rejection rates offer quite different returns 
in terms of citations. 

How to measure the quality of academic 
research and performance of particular 
researchers has always involved debate. 
Many CS researchers feel that performance 
assessment is an exercise in futility, in 
part because academic research cannot be 
boiled down to a set of simple performance 
metrics, and any attempt to introduce 
them would expose the entire research 
enterprise to manipulation and gaming. 
On the other hand, many researchers want 
some reasonable way to evaluate academic 
performance, arguing that even an 
imperfect system sheds light on research 
quality, helping funding agencies and 
tenure committees make more informed 
decisions.

viewpoint
DOI: 10.1145/1839676.1839703

In Support of Computer Science 
Teachers and the CSTA
Duncan Buell

A number of recent articles and comments 
have discussed the imbalance between 
enrollment and opportunities in computer 
science and the under-enrollments by 
minorities and women. An ongoing thread 
in Peter Denning’s Communications 
columns and elsewhere concerns the 
identity of the discipline to which we 
belong. As the national representative 
from universities to the board of the 
Computer Science Teachers Association 
(CSTA), I continually see the question of 
the identity of our discipline both within 
and external to our field.

The identity of computer science is 
nowhere more important to the discipline 
of computer science than in the K–12 
school system. We can instruct our own 
students in the nature of the discipline, but 
those we so instruct will only be those who 
first choose to come to us. If we want more 
students, and if we want to be understood 
for what we are, we must clarify the 
message about computer science that all 
students will receive as part of their K–12 
education.

Even if one does not believe that 
“computer science” should be taught 
in the K–12 system, it is nonetheless 
necessary for us to be involved in 
defining for the schools that which is 
called “computer science.” There will 
be courses in Photoshop, Web design, 
office tools, A+ certification, networking, 
and such, and there will be (a smaller 
number of) courses in Visual Basic, C++, 
or even Java. The simple fact is that these 
courses will exist in the schools, and there 
is nothing fundamentally wrong with 
that. What is a problem is for students 
to be misled into thinking that these 
are all indistinguishable and all equally 
describable as “computer science.”

In the Virtual Extension
To ensure the timely publication of articles, Communications created the Virtual Extension (VE) 
to expand the page limitations of the print edition by bringing readers the same high-quality 
articles in an online-only format. VE articles undergo the same rigorous review process as those  
in the print edition and are accepted for publication on merit. The following synopses are from 
articles now available in their entirety to ACM members via the Digital Library.
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The Communications Web site, http://cacm.acm.org, 
features more than a dozen bloggers in the BLOG@CACM  
community. In each issue of Communications, we’ll publish 
selected posts or excerpts.

Tessa Lau
“What Makes a Good 
HCI Systems Paper?”
http://cacm.acm.org/
blogs/blog-cacm/86066

There has been much 
discussion on Twitter, Facebook, and 
in blogs about problems with the re-
viewing system for HCI systems papers 
(see James Landay’s blog post, “I give 
up on CHI/UIST” and the comment 
thread at http://dubfuture.blogspot.
com/2009/11/i-give-up-on-chiuist.html). 
Unlike papers on interaction meth-
ods or new input devices, systems are 
messy. You can’t evaluate a system 
using a clean little lab study, or show 
that it performs 2% better than the last 
approach. Systems often try to solve a 
novel problem for which there was no 
previous approach. The value of these 
systems might not be quantified un-
til they are deployed in the field and 
evaluated with large numbers of users. 
Yet doing such an evaluation incurs a 
significant amount of time and engi-
neering work, particularly compared 
to non-systems papers. The result, 
observed in conferences like CHI and 
UIST, is that systems researchers find 
it very difficult to get papers accepted. 

complexities of system building, it is 
often impossible to specify all the pa-
rameters and heuristics being used 
within a 10-page paper limit. But the 
paper ought to present enough detail 
to enable another researcher to build 
a comparable, if not identical, system.

˲˲ Alternative approaches. Why did 
you choose this particular approach? 
What other approaches could you 
have taken instead? What is the design 
space in which your system represents 
one point?

˲˲ Evidence that the system solves the 
problem as presented. This does not 
have to be a user study. Describe situa-
tions where the system would be useful 
and how the system as implemented 
performs in those scenarios. If users 
have used the system, what did they 
think? Were they successful?

˲˲ Barriers to use. What would pre-
vent users from adopting the system, 
and how have they been overcome?

˲˲ Limitations of the system. Under 
what situations does it fail? How can 
users recover from these failures?

What do you think? Let’s discuss.
 

Readers’ comments 
I’d like to second your first recommendation. 
I’ve reviewed a number of systems papers 
that do not provide a sufficiently compelling 
motivation or use case—why should I or 
anyone care about this system? Without 
this, the paper often represents technology 
in search of a problem.

Now, having read Don Norman’s 
provocative article “Technology First, Needs 
Last: The Research-Product Gulf” in the 

Reviewers reject messy systems papers 
that don’t have a thorough evaluation 
of the system, or that don’t compare 
the system against previous systems 
(which were often designed to solve a 
different problem).

At CHI 2010 there was an ongoing 
discussion about how to fix this prob-
lem. Can we create a conference/pub-
lishing process that is fair to systems 
work? Plans are afoot to incorporate 
iterative reviewing into the systems pa-
per review process for UIST, giving au-
thors a chance to have a dialogue with 
reviewers and address their concerns 
before publication.

However, I think the first step is to 
define a set of reviewing criteria for 
HCI systems papers. If reviewers don’t 
agree on what makes a good systems 
paper, how can we encourage authors 
to meet a standard for publication?

Here’s my list:
˲˲ A clear and convincing description 

of the problem being solved. Why isn’t 
current technology sufficient? How 
many users are affected? How much 
does this problem affect their lives?

˲˲ How the system works, in enough 
detail for an independent researcher 
to build a similar system. Due to the 

Rethinking the Systems 
Review Process  
Tessa Lau launches a discussion about the acceptance criteria  
for HCI systems papers at CHI, UIST, and other conferences.
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recent issue of interactions magazine, I 
have a keener appreciation for the possible 
contribution of some technologies in 
search of problems, but I still believe these 
are more the exception than the norm …
and that without adequately making the 
case for the human-centered value(s) the 
systems will help realize, such papers are 
probably more suitable for other venues.

—Joseph McCarthy

One problem is that our field is moving 
so fast that we have to allow new ideas to 
cross evolve with other ideas rapidly. If we 
require evaluations of every paper, then we 
don’t have the rapid turnaround required for 
innovations to cross paths with each other.

On the other hand, it seems wrong not 
to have some filter. Without filters, we 
might end up publishing ideas that seem 
interesting, but are actually quite useless.

I think you have a great start on a list of 
discussion points. One thing to keep in mind 
is that we should evaluate papers in whole 
rather in parts. I will often recommend 
accepting papers that are deficient in one 
area but very good in another.

—Ed Chi

I think it would be useful to some of 
us discussing your post if you could say 
more about the kinds of evidence you are 
referring to when you say “evidence that 
the system solves the problem” that are not 
user studies.

So, what are some examples of specific 
system problems (“clearly and convincingly 
presented”), and what would you consider 
appropriate evidence to show that your 
system solved the problem? Is it a set 
of usage scenarios that have been hard 
to address through previous designs and 
you show how a single interface design 
can address them completely? Is it a 
new, significantly more efficient algorithm 
or mechanism, for example, to handle 
complex preferences around group 
permissions, which would be useful to the 
builders of group systems to know about? 
(In the latter case, would evidence be 
performance testing, using logs of previous 
queries as data?) Is it a new approach for 
using skin-tapping as input?

—Dan Gruen

I am a strong proponent of rigorous 
gatekeeping at conferences simply because 
I need some help figuring out which things 
are worth following in my limited time. 
At the same time, I think it is important 

to keep in mind all the different ways a 
systems paper can be really valuable and 
worth seeing at a conference like CHI. A 
systems paper could be interesting thanks 
to a thorough analysis of its deployment 
and usage (evaluation). Or it could be 
interesting thanks to a well-argued 
discussion of why it was built a particular 
way (design). Or it might just demonstrate 
that a given interesting capability could 
be created at all. Or it could be a careful 
argument about why a certain system 
would be really useful, even if it hasn’t 
been built or evaluated yet (motivation/
position paper). In the end, what I want are 
papers that stimulate thought and action. 
I’m not going to demand any particular 
levels of motivation, design, or evaluation; 
rather, I’m going to ask whether the 
whole is innovative enough. This is a highly 
subjective decision, which is why I greatly 
value wise program committees who can 
make such a judgment on my behalf.

—David Karger

I like your list, and think that the 
bullet points are representative of good 
evaluation criteria for systems papers 
across computer science.

The main sticking point is, as I see 
it, “Evidence that the system solves the 
problem as presented.” In some other 
areas of empirical computer science, we 
have repositories of test problems, suites 
of agreed-upon performance metrics, 
testing harnesses for software, and so forth. 
Usability testing is seen as the gold standard 
in HCI, though, and it’s much harder to 
leverage such tools to make evaluation by 
user testing efficient. The effort devoted 
to user testing of a new system can 

sometimes rival the effort to having built the 
system in the first place—okay, I might be 
exaggerating a bit, but still....

If we could agree on some reasonable 
substitutes, that would be good. Some of 
the papers I’ve worked on have included 
GOMS models of performance, for example, 
but not everyone buys into a purely 
analytical approach. Sometimes, even 
worse, what I’d like to convey in a paper 
is a conceptual shift, a different way of 
thinking about some kind of problem, and 
that’s even harder to evaluate than pure 
performance.

—Robert St. Amant

I’ve suggested it before and will suggest 
it again. An easy start could be to make 
accepted interactivity demos “worth” 
as much as a full paper at CHI—same 
presentation length, and the associated 
paper (maybe six pages long) needs to be 
of the same “archival” status in the ACM 
Digital Library. 

This could show a true commitment to 
systems research.

—Florian Mueller

Tessa Lau responds
Thank you all for the interesting dis-
cussion. My goal was to initiate a dis-
cussion within our community, not to 
have all the answers.

Along those lines, Dan, the question 
you raise about what constitutes “ap-
propriate evidence” is one that I’ll turn 
back to the community for a collective 
answer.

For what it’s worth, though, I don’t 
think of your examples as “systems.” 
The first is usage scenarios or design. 
The second is an algorithm. The third 
is an interaction method. Each of those 
is fairly self-contained and possible to 
evaluate using a fairly closed study.

What I meant by “systems” is an im-
plemented prototype that gives people 
access to new functionality that did not 
exist before. Examples of “systems” in-
clude CoScripter, Many Eyes, Landay’s 
DENIM and SILK, Gajos’s SUPPLE, An-
drew Ko’s Whyline. How can we show 
that each of these systems is “innova-
tive enough” (in David’s words) to mer-
it publication?	

Tessa Lau is a research staff member and manager at 
IBM’s Almaden Research Center.

© 2010 ACM 0001-0782/10/1100 $10.00 

Tessa LAU

“If reviewers  
don’t agree on 
what makes a good 
systems paper,  
how can we 
encourage authors  
to meet a standard 
for publication?”
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ACM 
Member 
News
Chris Stephenson  
on K–12 CS Education 

ACM Member 
News recently 
interviewed 
Chris 
Stephenson, 
executive 
director of the 

Computer Science Teachers 
Association, about the status of 
K–12 CS education in the U.S. 
and how ACM members can 
help. “I think computer science 
teachers in the U.S. face a 
number of challenges that make 
it difficult for them to teach to 
their full potential,” says 
Stephenson. “First, computer 
science is poorly understood in 
the U.S. school system, so 
administra-tors and decision-
makers have no idea what CS 
teachers do or why it is 
important. This means teachers 
have to continually fight for 
their programs and their 
students and are often 
under-supported in terms of 
resources. Also, our teacher 
certification requirements are  
a complete mess, and CS 
teachers in many states must 
first be certified in some other 
discipline. This doubles the 
time and effort required. And it 
means CS teachers can be 
assigned to teach something 
other than computer science at 
any time. Finally, our discipline 
requires teachers to continually 
upgrade both their teaching and 
technical knowledge, and there 
is very little access to relevant 
and timely professional 
development. 

“The most important thing 
ACM members can do is to 
advocate for computer science 
courses in their local schools…. 
The other really important action 
that U.S. members can do is 
to contact their congressional 
representatives and request 
that they support the Computer 
Science Education Act [HR 5929]. 
With enough support, this bill 
has the power to fundamentally 
change computer science 
education in this country.”

A new joint ACM–CSTA 
report, Running on Empty: The 
Failure to Teach K–12 Computer 
Science in the Digital Age, is 
available at http://acm.org/
Runningonempty/.

—Jack Rosenberger
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T
he a m ount  o f  data available 
to scientists of nearly every 
discipline has almost be-
come a “Can you top this?” 
exercise in numbers.

The Sloan Digital Sky Survey (SDSS), 
for example, is often cited as a prime 
example. Since the survey’s 2.5-meter 
telescope first went online in 1998, 
more than 2,000 refereed publications 
have been produced, but they use just 
10% of the survey’s available imag-
ing data, according to a recent U.S. 
National Science Foundation work-
shop on data-enabled science in the 
mathematical and physical sciences. 
Once the next-generation, state-of-the-
art Large Synoptic Survey Telescope 
(LSST) goes online in 2016, however, it 
is estimated to be capable of produc-
ing a SDSS-equivalent dataset every 
night for the next 10 years. Another of-
ten-cited example is the Large Hadron 
Collider. It will generate two SDSS’s 
worth of data each day.

On the surface, then, the scientific 
community’s mandate seems clear: 
create better computational tools to 
visualize, analyze, and catalog these 
enormous datasets. And to some ex-
tent, there is wide agreement these 
tasks must be pursued.

Some leading computational re-
search scientists believe, however, that 
progress in utilizing the vast expansion 
of data will best be attacked on a project-
by-project basis rather than by a pan-
disciplinary computational blueprint.

“In theory, you might think we 
should all be working together, and 

the reality might be that each of the 
people working on their own discipline 
are achieving the results they need to 
scientifically,” says Dan Masys, M.D., 
chairman of biomedical informatics at 
Vanderbilt University. “There’s a cost 
of communication that reaches an ir-
reducible minimum when you work 

Turning Data  
Into Knowledge 
Today’s data deluge is leading to new approaches  
to visualize, analyze, and catalog enormous datasets.

Science  |  doi:10.1145/1839676.1839682	 Gregory Goth

The Large Synoptic Survey Telescope will have the ability to survey the entire sky in only 
three nights.
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likely speed processing of problems 
involving multiplying “several million 
genome data points by several thou-
sand people” from five days to three 
hours—a prime example of focused 
intradisciplinary collaboration and 
leading-edge hardware.

New Perspectives on Data
Both Mitchell and Randal Bryant, dean 
of the school of computer science at 
CMU, cite the influence of commercial 
companies for helping to expand the 
concept of what kind of data, and what 
kind of data storage and computational 
architectures, can produce useful sci-
entific results.

“The commercial world, Google 
and its peers, have been the drivers 
on the data side, much more than the 
traditional sciences or universities,” 
says Bryant, who cites the example of a 
Google cluster running a billion-word 
index that outperformed the Big Iron 
architecture of the “usual suspects” 
in a 2005 language-translation contest 
sponsored by the U.S. National Insti-
tute of Standards and Technology.

The availability of such large datas-
ets can lead to serendipitous discover-
ies such as one made by Mitchell and his 
colleagues, using a trillion-word index 
Google had originally provided for ma-
chine translation projects. “We found 
we could build a computational model 
that predicts the neural activity that will 
show up in your brain when you think 
about an arbitrary noun,” Mitchell says. 
“It starts by using a trillion-word collec-

tion of text provided to us by Google, 
and looks up the statistical properties 
of that word in the text; that is, if you 
give it the word ‘telephone’, it will look 
up how often ‘telephone’ occurs with 
words from a long list of verbs—for 
example, how often does it occur with 
‘hug’, or ‘eat’, and so on. 

“To Google’s credit they put this 
out on the Web for anybody to use, but 
they were thinking it would be used by 
researchers working on translation—
and it turned out to be useful for some-
thing else.”

Meanwhile, the LSST project is 
planning multiple vectors by which its 
huge dataset—all of which will be pub-
licly available in near-real time—will 
aid research by professional astrono-
mers; programs at museums, second-
ary schools, and other institutions; and 
citizen scientists. The project’s goal, 
say the organizers, is “open source, 
open data.”

“We will develop methods for en-
gaging the public so anyone with a Web 
browser can effectively explore aspects 
of the LSST sky that interest and im-
pact the public,” according to the LSST 
organizers. “We will work with the IT 
industry on enhanced visualization 
involving dynamic graphics overlays 
from metadata and provide tools for 
public query of the LSST database.” 

The LSST organization’s hope, then, 
is that the distributed nature of allow-
ing any researcher at any level to ac-
cess the data will result in a plethora of 
projects—a kind of “given enough eye-

across disciplinary boundaries, and 
sometimes it’s worth it.

“But the grander potential for syn-
ergy that’s often spoken of at the level 
of federal funding agencies probably 
doesn’t happen as much as people 
think would be best for science,” Masys 
continues. “You can’t push that rope 
all that well, because it depends on the 
art of the possible with respect to tech-
nologies and the vision of the scientists 
doing the work.”

Tom Mitchell, chairman of the ma-
chine learning department at Carn-
egie Mellon University (CMU), concurs 
with Masys’ assessment. “I think it 
starts from the bottom up and at some 
point you’ll see commonalities across 
domains,” he says. As an example, he 
cites time series algorithms being de-
veloped by CMU colleague Eric Xing 
that may also be useful for brain imag-
ing work Mitchell is undertaking.

“There’s an example I think is prob-
ably pretty representative of how it’s 
going to go,” Mitchell says. “People en-
counter problems and have to design 
algorithms to address them, but time 
series analysis is a pretty generic prob-
lem. So I think bottom up it will grow 
and then they will start connecting 
across [different disciplines].”

Vanderbilt’s Masys is about to be-
gin a collaboration with computation-
al biologists from Oak Ridge National 
Laboratory. Masys says the Oak Ridge 
scientists’ optimization of Vander-
bilt’s fundamental algorithms and the 
lab’s teraflop-capable architecture will 

Ubiquitous Computing 

Intel’s Friendly, Smart Machines 
Context-aware computing, in 
which devices understand what a 
user is doing and anticipate his 
or her needs without being 
asked, are the next step in the 
evolution of smart machines, 
says Justin Rattner, Intel vice 
president and chief technology 
officer.

In his keynote address at 
IDF2010, the recent Intel 
Developer Forum in San 
Francisco, Rattner laid out a 
vision in which computers use a 
variety of sensors—microphones, 
accelerometers, and global 
positioning systems (GPSs)—

combined with “soft sensors” 
such as calendars and social 
networks, to track people’s 
activity and figure out how the 
devices can help. For instance, a 
device might locate someone at 
her office, hear the sound of 
human voices, crosscheck her 
calendar, and conclude she’s in a 
business meeting, then suggest 
to the husband trying to call her 
that this wouldn’t be a good time 
to interrupt.

A television remote control, 
using unsupervised learning in 
which it continuously collects 
data and makes inferences 

about what’s going on around 
it, could learn to recognize 
which person is holding it—
based on how the user moves, 
what angle he holds it at, and 
how fast he presses the 
buttons—then make 
personalized recommendations 
for shows, based on past 
preferences. A prototype 
Personal Vacation Assistant, 
developed with Fodor’s Travel, 
uses GPS location, time of day, 
and past behavior to 
recommend restaurants and 
tourist sites. Data, collected over 
time and shared among devices, 

is run through an inference 
algorithm that examines the 
input and generates confidence 
scores to determine what is 
likely going on.

Collecting this data will 
require giving users control over 
what gets shared, and allow them 
to turn off sensors, Rattner says. 
He gives no timeline for 
introducing such applications, 
but says, “We believe that 
context-aware computing is 
poised to fundamentally change 
the way we interact and relate to 
the devices that we use today.”

—Neil Savage
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Research & Development

Paper 
Chase
Due to enormous governmental 
investments in research and 
development, scientists in 
many Asian countries are 
steadily increasing their 
number of papers published in 
scientific journals. 

The Asia-Pacific region 
increased its total of published 
science articles from 13% in 
the early 1980s to slightly more 
than 30% in 2009, according 
to the Thomson Reuters 
National Science Indicators, 
an annual database of the 
number of articles published 
in about 12,000 internationally 
recognized journals. China 
leads the pack with 11% in 
2009, up from 0.4% in the early 
1980s, followed by Japan with 
6.7% and India with 3.4%. In 
contrast, the ratio of articles 
from scientists in the U.S. 
decreased to 28% in 2009, 
down from 40% in the early 
1980s. 

In all, 25 nations have 
increased their research, but 
none more so than Singapore. 
With a population of just five 
million, the nation published 
8,500 articles in 2009, 
compared with only 200 in 
1981. Singapore now allocates 
3% of its gross domestic 
product to research and 
development, a figure expected 
to rise to 3.5% by 2015. 

The increase in scientific 
publications, especially in 
East Asian countries, reflects 
a “phenomenal” increase in 
funding, Simon Marginson, a 
professor of higher education 
at the University of Melbourne, 
told The New York Times. 
Marginson attributed the 
increase in research output to 
governments’ commitment 
to establishing knowledge-
intensive economies. “It’s 
very much not simply about 
knowledge itself—it’s about 
its usefulness throughout the 
economy. I think that that 
economic vision is really the 
principal driver,” Marginson 
said. 

Another reason for 
increased publications is that 
many Asian universities now 
receive additional funding to 
have their papers translated 
into English, the language used 
by the majority of academic 
journals. 

—Phil Scott

‘We want to start a joint Ph.D. program 
in public policy and machine learning, 
because we think the future of policy 
analysis will be increasingly evidence-
based. And we want to train people 
who understand the algorithms for 
analyzing and collecting that evidence 
as well as they understand the policy 
side.’” As a result, the joint Ph.D. pro-
gram was created at CMU.	
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balls” approach to massive datasets.
However, even massive datasets are 

sometimes not complete enough to 
deliver definitive results. Recent dis-
coveries in biomedical research have 
revealed that even a complete index 
of the human genome’s three billion 
pairs of chemical bases has not greatly 
accelerated breakthroughs in health 
care, because other crucial medical 
data is missing. A study of 19,000 wom-
en, led by researchers at Brigham and 
Women’s Hospital in Boston, used data 
constructed from the National Human 
Genome Research Institute’s catalog 
of genome-wide association study re-
sults published between 2005 and June 
2009—only to find that the single big-
gest predictor of heart disease among 
the study’s cohort is self-reported fam-
ily history. Correlating such personal 
data with genetic indexes on a wide de-
mographic scale today is nearly impos-
sible as an estimated 80% of U.S.-based 
primary-care physicians do not record 
patient data in electronic medical re-
cords (EMRs). Recent government fi-
nancial incentives are meant to spur 
EMR adoption, but for the immediate 
future, crucial data in biomedical re-
search will not exist in digital form.

Another issue in biomedical research 
is the reluctance of traditionally trained 
scientists to accept datasets that were 
not created under the strict parameters 
required by, for example, epidemiolo-
gists and pharmaceutical companies.

CMU’s Mitchell says this arena of 
public health research could be in the 
vanguard of what may be the true crux 
of the new data flood—the idea that the 
provenance of a given dataset should 
matter less than the provenance of a 
given hypothesis.

“The right question is, Do I have a 
scientific question and a method for 
answering it that is scientific, no matter 
what the dataset is?” Mitchell asks. In-
creasingly, he says, computational sci-
entists will need to frame their questions 
and provide data for an audience that ex-
tends far beyond their traditional peers.

“We’re at the beginning of the curve 
of a decades-long trend of increas-
ingly evidence-based decision-making 
across society, that’s been noticed by 
people in all walks of life,” he says. 
“For example, the people at the public 
policy school at CMU came to the ma-
chine learning department and said, 

“The right question is, 
Do I have a scientific 
question and a 
method for answering 
it that is scientific,  
no matter what  
the dataset is?”  
asks Tom Mitchell.
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Security in the Cloud 
Cloud computing offers many advantages, but also involves security 
risks. Fortunately, researchers are devising some ingenious solutions.

Technology  |  doi:10.1145/1839676.1839683	 Gary Anthes

C
omp utin g may s ome  day be 
organized as a public util-
ity, just as the telephone 
system is a public utility,” 
Massachusetts Institute of 

Technology (MIT) computer science 
pioneer John McCarthy noted in 1961. 

We aren’t quite there yet, but cloud 
computing brings us close. Clouds 
are all the rage today, promising con-
venience, elasticity, transparency, 
and economy. But with the many ben-
efits come thorny issues of security 
and privacy.

The history of computing since the 
1960s can be viewed as a continuous 
move toward ever greater specializa-
tion and distribution of computing 
resources. First we had mainframes, 
and security was fairly simple. Then 
we added minicomputers and desktop 
and laptop computers and client-server 
models, and it got more complicated. 
These computing paradigms gave way 
in turn to n-tier and grid computing 
and to various types of virtualization.

As hardware infrastructures grew 
more complicated and fragmented, 
so did the distribution of software and 
data. There seemed no end to the ways 
that users could split up their comput-
ing resources, and no end to the securi-
ty problems that arose as a result. Part 
of the problem has been one of moving 
targets—just as one computing para-
digm seemed solid, a new, more attrac-
tive one beckoned.

In a sense, cloud computing sim-
plifies security issues for users by out-
sourcing them to another party, one 
that is presumed to be highly skilled 
at dealing with them. Cloud users 
may think they don’t have to worry 
about the security of their software 
and data anymore, because they’re in 
expert hands.

But such complacency is a mistake, 
say researchers at Hewlett-Packard 
(HP) Laboratories in Bristol, U.K. They 
are prototyping Cells as a Service, by 
which they hope to automate secu-

rity management in the cloud. A cell, 
managed as a single administrative 
domain using common security poli-
cies, contains a bundle of virtual ma-
chines, storage volumes, and networks 
running across multiple physical ma-
chines. Around the cells HP inserts 
various sensors, detectors, and mitiga-
tors that look for viruses, intrusions, 
and other suspicious behavior. Virtual-
ization enables these agents to be very 
close to the action without being part 
of it or observed by it, according to HP.

“People often think of virtualization 
as adding to security problems, but it 
is fundamentally the answer to a lot of 
those problems,” says Martin Sadler, 
director of HP’s Systems Security Lab. 
“You can do all sorts of things you can’t 
do when these things are physical ma-
chines.” For example, the sensors can 
watch CPU activity, I/O patterns, and 
memory usage and, based on models 
of past behavior, recognize suspicious 
activity. They can also assess the prob-
ability of certain events happening and 

take action accordingly. They might, 
for instance, throttle back the CPU, 
stop all I/O to a virtual machine (VM), 
or take a clone of the VM and move it 
elsewhere for evaluation. Agents could 
be deployed by cloud users, cloud ser-
vice providers, or third parties such as a 
virus protection company, Sadler says.

But these agents introduce their 
own management challenges. There 
might be as many as 30 agents, inter-
acting in various ways and with varying 
drains on system resources. HP Labs 
is developing analytic tools that can 
generate playbooks that script system 
behavior. These templates, tailorable 
by users, employ cost/benefit analyses 
and reflect what is most important to 
users and what cost they are willing to 
bear for various types of protection.

Virtual Machine Introspection
IBM Research is pursuing a similar 
approach called “virtual machine in-
trospection.” It puts security inside 
a protected VM running on the same 

Cloud computing simplifies security issues for users by outsourcing them to companies such 
as Microsoft, which recently opened a $550 million data center in Chicago.
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adversary could launch a side-channel 
attack based on the VM’s sharing of 
physical resources such as CPU data 
caches. The researchers also outlined 
a number of mitigation steps, but con-
cluded the only practical and foolproof 
protection is for cloud users to require 
that their VMs run on dedicated ma-
chines, which is potentially a costly so-
lution.

Difficulties With Encryption
Encryption is sometimes seen as the 
ultimate security measure, but it also 
presents difficulties in the cloud. At 
present, processing encrypted data 
means downloading it and decrypting 
it for local use and then possibly up-
loading the results, which is a cumber-
some and costly process.

The ability to process encrypted 
data in place has been a dream of 
cryptographers for years, but it is now 
demonstrating some progress. Last 
year, Craig Gentry, first at Stanford 
University and then at IBM Research, 
proved it is possible to perform cer-
tain operations on data without first 
decrypting it. The technique, called 
“fully homomorphic encryption,” was 
hailed as a conceptual breakthrough, 
but is so computationally demanding 
that practical applications are years 
away, experts say.

Meanwhile, the more limited abil-
ity to search encrypted data is closer to 
reality. In “Cryptographic Cloud Stor-

physical machine as the guest VMs 
running in the cloud. The security VM 
employs a number of protective meth-
ods, including the whitelisting and 
blacklisting of guest kernel functions. 
It can determine the operating system 
and version of the guest VM and can 
start monitoring a VM without any 
beginning assumption of its running 
state or integrity.

Instead of running 50 virus scan-
ners on a machine with 50 guest VMs, 
virtual machine introspection uses just 
one, which is much more efficient, says 
Matthias Schunter, a researcher at IBM 
Research’s Zurich lab. “Another big 
advantage is the VM can’t do anything 
against the virus scan since it’s not 
aware it’s being scanned,” he says.

Another variation, called “lie de-
tection,” puts a tiny piece of software 
inside the VM to look at the list of run-
ning processes as seen by the user. In-
trospection software outside the VM 
can reliably determine all the process-
es actually running on the VM; if there 
is any difference between the two lists, 
some malware, such as a rootkit, is sus-
pected of running on the VM.

Looking from both within the VM 
and without, the lie detector can also 
compare the lists of files on disk, the 
views of open sockets, the lists of load-
ed kernel modules, and so on. “Each 
of these lie tests improves the chanc-
es of detecting potential malware, 
but none of them can prove that no 
malware exists,” says IBM researcher 
Klaus Julisch.

In a third application, a virtual in-
trusion detection system runs inside 
the physical machine to monitor traf-
fic among the guest VMs. The virtual 
networks hidden inside a physical 
machine are not visible to conven-
tional detectors because the detec-
tors usually reside in a separate ma-
chine, Schunter says.  

Indeed, snooping between VMs in-
side a machine was shown to be a real 
possibility by researchers last year. 
Computer scientists Thomas Risten-
part, Hovav Shacham, and Stefan Sav-
age at the University of California, San 
Diego and Eran Tromer at MIT proved 
it was possible for an adversary to get 
his or her VM co-located with a target’s 
VM on a cloud’s physical machine 40% 
of the time. In a paper, “Hey, You, Get 
Off of My Cloud,” they showed how the 

“People often think 
of virtualization as 
adding to security 
problems, but  
it is fundamentally 
the answer to a lot 
of those problems,” 
says Martin Sadler, 
director of  
HP’s Systems 
Security Lab.

Society

Pew 
Report on 
Mobile 
Apps 
Although a greater number of 
adults are turning to mobile 
phones to text and access 
the Internet, age and gender 
differences exist, according to a 
report by Pew Research Center’s 
Internet & American Life Project 
and The Nielsen Company.

The report, titled The Rise 
of Apps Culture, found that 35% 
of U.S. adults have software 
applications or apps on their 
phones, yet only 24% of adults 
use those apps. Overall, today’s 
apps culture—essentially born 
a couple of years ago with 
the introduction of Apple’s 
iPhone—is predominantly 
male, younger, and more 
affluent.

Eighteen to 29-year-olds 
comprise only 23% of the U.S. 
adult population but constitute 
44% of the apps-using 
population. By contrast, 41% of 
the adult population is age 50 
and older but this group makes 
up just 14% of apps users. 
Younger adopters also use apps, 
including games and social 
media, more frequently.

Gender differences were 
also apparent. Women are 
more likely to rely on social 
networking apps such as 
Facebook and Twitter while 
men are inclined to use 
productivity and financial apps.

Nevertheless, adoption is 
growing rapidly. The Nielsen 
Company found that the 
average number of apps on 
a smartphone has swelled 
from 22 in December 2009 
to 27 today. Not surprisingly, 
iPhone owners top the list with 
an average of 40 apps, while 
Android users claim 25 and 
BlackBerry owners 14.

The next few years will  
likely usher in dramatic 
changes. “Every metric we 
capture shows a widening 
embrace of all kinds of apps  
by a widening population, 
states Roger Entner, coauthor 
of the report and senior vice 
president at Nielsen. “It’s … not  
too early to say that this is  
an important new part of the 
technology world.”

—Samuel Greengard
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“Many hands make light work,” 
goes the old adage. Now there’s 
data to prove it.

In recent weeks, both Yahoo! 
and Google have announced the 
results of separate mathematical 
experiments that demonstrate 
the computational power of large 
clusters of networked PCs.

At Yahoo!, a team led by 
researcher Tsz-Wo Sze broke 
the world record for calculating 
the digits of pi, crunching the 
famously irrational number 
to the two-quadrillionth bit by 
stitching together more than 
1,000 computers to complete the 
calculation over a 23-day period. 

The researchers estimate that 
a typical computer would have 
taken at least 500 years to carry 
out the same operation.

Another group of researchers 
recently took advantage of 
Google’s distributed computing 
infrastructure to tackle another 
famously thorny computational 
challenge: Rubik’s Cube. The 
team developed an algorithm 
capable of solving any Rubik’s 
Cube configuration in 20 
moves or less, resolving a 
conundrum that has puzzled 
mathematicians for three 
decades. The computers 
simulated all 43 quintillion 

possible combinations of the 
cube in just a few weeks, a task 
the researchers estimate would 
have taken a single computer 
35 years. 

Google has yet to release the 
details of its technical solution, 
but it probably bears some 
resemblance to the approach 
used at Yahoo!, where the team 
used Apache Hadoop, open-
source software originally 
developed at Google (and later  
developed extensively by Yahoo!) 
that allows developers to stitch 
together thousands of computers 
over the network into a powerful 
cloud computer. 

“We believe that our Hadoop 
clusters are already more 
powerful than many other 
supercomputers,” says Sze, who 
conceived of the project as part 
of an internal Yahoo! contest to 
demonstrate the capabilities of 
Hadoop.

In both cases, the 
mathematical problems proved 
particularly well-suited to 
distributed computing because 
the calculations can be parceled 
out over the network into much 
smaller operations, capable of 
running on a standard-issue PC.  
Making light work indeed.

—Alex Wright

Distributed Computing

Math at Web Speed

age,” a paper published earlier this 
year, researchers Seny Kamara and 
Kristin Lauter of Microsoft Research 
described a virtual private storage ser-
vice that aims to provide the security 
of a private cloud and the cost savings 
of a public cloud. Data in the cloud 
remains encrypted, and hence pro-
tected from the cloud provider, court 
subpoenas, and the like. Users index 
their data, then upload the data and 
the index, which are both encrypted, to 
the cloud. As needed, users can gener-
ate tokens and credentials that control 
who has access to what data.

Given a token for a keyword, an 
authorized user can retrieve point-
ers to the encrypted files that contain 
the keyword, and then search for and 
download the desired data in encrypt-
ed form. Unauthorized observers can’t 
know anything useful about the files or 
the keywords.

The experimental Microsoft service 
also offers users “proof of storage,” a 
protocol by which a server can prove to 
a client that it did not tamper with its 
encrypted data. The client encodes the 
data before uploading it and can verify 
the data’s integrity at will.

Not all cloud security risks arise 
from technology, says Radu Sion, a 
computer science professor at Stony 
Brook University. There is scant le-
gal or regulatory framework, and few 
precedents, to deal with issues of li-
ability among the parties in cloud ar-
rangements, he notes. “What happens 

when your data is on a server in China 
but you outsourced to a cloud service 
in New York?” asks Sion. “Or what if 
you have the legal resources to fight a 
subpoena for your data, but they sub-
poena your cloud provider instead? 
You will be under scrutiny for moving 
to the cloud by your shareholders and 
everyone else.”

Nevertheless, Sion says all but the 
most sophisticated enterprises will 
be safer putting their computing re-
sources in the expert hands of one of 
the major cloud providers. “Compa-

nies like Google and Amazon and Mi-
crosoft have hundreds of people de-
voted to security,” he says. “How many 
do you have?”	

Further Reading
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L
ast fall, Jim Wordelman found 
himself in an enviable po-
sition. At a time when un-
employment for recent U.S. 
college graduates was at the 

highest level since 1983, Wordelman, 
a senior at the University of Illinois at 
Urbana-Champaign’s (UIUC’s) Depart-
ment of Computer Science, had several 
job offers from companies that wanted 
to hire him the following summer. Even-
tually, he took a job with Microsoft as a 
developer on its Internet Explorer team. 
“I did work for the company before and 
loved it,” Wordelman explains. The job 
also put him in a position to follow his 
greatest passion: accessibility.

If recent data is any indication, 
Wordelman’s case is not unique among 
computer science graduates in the U.S. 
(the job prospects for graduates in the 
United Kingdom, China, and India are 
discussed later ). In fact, his fellow UIUC 
CS graduates received an average of 2.4 
job offers this year. The mean starting 
salary: $68,650. “Our undergrads have 
had no trouble getting positions,” says 
Rob Rutenbar, the department head. 
“Most of them are doing things like soft-
ware development. Some launch entre-
preneurial ventures.”

At Carnegie Mellon University 
(CMU), the job outlook is equally rosy: 
95% of this year’s CS students had jobs 
waiting for them upon graduation. 
“Companies may be a little choosier, 
but they are still hiring,” says Susanne 
Hambrusch, a computer science profes-
sor at Purdue University, where gradu-
ates enjoyed mean starting salaries of 
$66,875 last year.

According to projections from the 
U.S. Bureau of Labor Statistics (BLS), 
computing will be one of the fastest-
growing job markets through 2018. 
Employment of software engineers, 
computer scientists, and network, da-
tabase, and systems administrators is 
expected to grow between 24%–32% 
through 2018. They account for 71% 
of new jobs among the STEM (science, 

technology, engineering, and math-
ematics) fields. For a discipline that 
is still struggling with the public per-
ception that its jobs are migrating off-
shore, such career predictions offer an 
important counterpoint.

Of the new jobs, according to BLS 
projections, 27% will be in software en-
gineering, 21% in computing network-
ing, and 10% in systems analysis. Soft-
ware engineering alone is expected to 
add nearly 300,000 jobs in the next eight 
years. 

Computer programmers will fare 
less well, with a projected decline in 
employment of 3% through 2018. The 
BLS cites advances in programming 
tools, as well as offshore outsourcing, 
as contributing factors to this decline. 
Nonetheless, the federal agency pre-
dicts employers will continue to need 
some local programmers, especially 
ones with strong technical skills. And 
many companies, having discovered 
that outsourcing is more challenging to 
manage than anticipated, are turning to 
domestic outsourcing to complete their 

programming projects, which is a trend 
the BLS expects to continue.

“The BLS projections are pretty com-
pelling,” says Peter Harsha, director of 
government affairs at the Computing 
Research Association (CRA). “We’re op-
timistic.” 

College students seem to have picked 
up on that optimism, and are returning 
to the field after a steep six-year decline 
caused by the dot-com crash. According 
to the Taulbee Survey, an annual CRA 
study that gathers data for North Ameri-
can computer science and computer 
engineering programs, the number of 
computer science majors rose 8.1% in 
2008 and another 5.5% in 2009. “It’s a 
cautious uptrend,” says Hambrusch. 
At some schools, the surge in interest is 
even more pronounced: applications to 
UIUC’s CS program were up by 26% this 
year and increased by 32% at CMU.

The troubled economy has played a 
role in the uptick. Though the comput-
ing industry experienced a wave of lay-
offs at the height of the recession, it has 
been hit less hard than other sectors, 
and employment was up by an estimat-
ed 5% in the second quarter of 2010. 

The Coolness Factor
According to a recent study conducted 
by the National Association of Colleges 
and Employers, the average salary for 
this year’s crop of computer science 
grads stands at $61,112. And while it’s 
too early to say for sure, some industry 
watchers predict an influx of students 
who might otherwise have majored 
in finance. Harsha, for example, cites 
David E. Shaw, a computer scientist 
turned hedge fund manager who made 
a fortune in quantitative trading, then 
returned to scientific research: “He’s a 
model for a certain group.”

There is also a coolness factor among 
a generation of students who grew up 
with computers and are deeply engaged 
with technologies like cellphones, Face-
book and other social media, and the 
latest electronic devices from Apple and 

Career Opportunities 
What are the job prospects for today’s—and tomorrow’s—graduates?

Society  |  doi:10.1145/1839676.1839684	 Leah Hoffmann 

Computer science graduates at Carnegie 
Mellon University, shown above, and other 
schools often have jobs waiting for them 
upon graduation.
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other hardware companies. “For every 
popular trend in computing there’s 
a spike in interest,” says Harsha, cit-
ing a similar boom-and-bust cycle that 
happened with the rise of the personal 
computer during the mid-1980s. Also, 
Harsha says, students may finally have 
realized that the stereotype of comput-
ing as a lonely career in which you sit in 
a cube and write code is not true. 

“We all owe a non-trivial debt to com-
panies like Google and Apple, who do 
cool work on cool products and don’t 
look like your stereotypical guys in flan-
nel suits,” says Lenny Pitt, a UIUC com-
puter science professor.

Mark Stehlik, assistant dean for un-
dergraduate education at CMU’s School 
of Computer Science, has a different 
historical comparison: the space pro-
gram of the 1960s, which fueled the 
imaginations and ambitions of a gen-
eration of schoolchildren. “There was 
such an enterprise built around it,” he 
recalls. Of course, to go to the moon, you 
had to be a rocket scientist. “And what 
if rocket science wasn’t your thing?” 
Computer science majors, on the other 
hand, have a variety of career options to 
choose from once they graduate. “You 
can do software development across 
such a wide range of sectors,” notes Ste-
hlik, as nowadays almost every industry 
has computing needs.

In spite of recent gains, the supply 
of CS graduates is still dwarfed by the 
projected number of jobs. According to 
the BLS projections, there will be more 
than twice as many new computing jobs 
per annum in the next eight years than 
the current level of 50,000 computing 
graduates will be able to fill. Nor can 
computer science departments, many 
of whom had trouble dealing with the 
influx of students in the late 1990s, 

expand as quickly as companies and 
universities might like. “We currently 
have about 775 undergrads, and we can 
add another couple hundred without a 
problem,” says UIUC’s Rutenbar. “But 
we need to do some soul searching if we 
want to grow larger than that.”

The International Outlook
The job prospects for computer science 
graduates in the United Kingdom, Chi-
na, and India vary widely as does each 
country’s educational and economic 
situations. 

According to the United Kingdom’s 
Higher Education Statistics Agency 
(HESA), 17% of 2009’s CS graduates 
were unemployed six months later—
more than any other discipline. Indus-
try watchers caution that the figure 
should be taken with a grain of salt, 
however, since the category includes 
students who studied softer subjects 
like human-computer interaction and 
information development as well as tra-
ditional CS majors. “Higher-level things 
like software and systems design are a 
different picture,” says Bill Mitchell, di-
rector of the British Computer Society. 
“They are very much recruiting these 
types of people.”

Research institutions like the Univer-
sity of Southampton, which placed 94% 
of its computer science graduates in 
2009, echo Mitchell’s sentiment. “Com-
panies still need people with really good 
skills, who have been exposed to dif-
ferent languages and platforms, who 
are confident and can code,” says Joyce 
Lewis, communications manager for 
the University of Southampton’s School 
of Electronics and Computer Science. 
And while the University of Southamp-
ton and other members of the Russell 
Group—an association of 20 universi-
ties that’s often referred to as the U.K.’s 
Ivy League—have no trouble filling spac-
es in their computer science programs, 
educators are nonetheless concerned by 
a massive nationwide drop in interest in 
the field. “Enrollment has dropped by 
nearly 60% over the past eight years,” 
says Mitchell, who is working to reform 
the national IT curriculum and reverse 
the trend. “Companies tell us they have 
to bring people in from Silicon Valley.”

Recent computer science gradu-
ates in China are also struggling with 
a demanding job market. According to 
a study conducted by the MyCOS Insti-

Software engineering 
alone is expected  
to add nearly 300,000 
jobs in the U.S. in  
the next eight years.
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Milestones

David Kuck Wins Ken Kennedy Award
David Kuck, an Intel Fellow, 
is the recipient of the second 
annual ACM-IEEE Computer 
Society Ken Kennedy Award for 
his four decades of contributions 
to compiler technology and 
parallel computing, which have 
improved the cost-effectiveness of 
multiprocessor computing.

 In an email interview, Kuck 
discussed his current research. 
“I’m working on hardware/
software codesign at a very 
comprehensive level, considering 
system cost, performance, and 

operating cost (in terms of 
energy), as well as applications 
sensitivity. I’m working on theory 
and tools to support codesign. 
I introduced a computational 
capacity model in the 1970s 
and pushed it much further in 
the past few years.  Measured 
bandwidth and capacity 
(bandwidth used) for a set of 
architectural nodes for each 
phase in a computation provide 
capacity ratios that are invariant 
across hardware changes. This 
leads to very fast simulations of 

new machines, solving linear 
programming and related 
problems to satisfy design goals.”

Asked about the next 
important innovation with 
compilers, Kuck said, “Compiler 
optimization transformations 
are well developed, but where 
and how to apply them is still a 
mystery. I believe that building 
a large repository of codelets 
could remove much of the 
mystery related to sequential, 
vector, parallel, and energy-aware 
compilation. Many trade-offs 

must be made, so a pre-analyzed 
repository would allow phases, 
and sequences of them, to be 
matched to codelets for optimal 
compilation. This is a combined 
static and dynamic approach to 
compilation.” 

The Ken Kennedy Award 
recognizes substantial 
contributions to programmability 
and productivity in computing and 
substantial community service 
or mentoring contributions, and 
includes a $5,000 honorarium. 

—Jack Rosenberger

tute, a Beijing-based think tank, com-
puter science, English, and law have 
topped a list of majors with the most un-
employed graduates for the past three 
years. In 2009, the most recent year for 
which data is available, computer sci-
ence was second only to English in the 
number of unemployed graduates.

Here, too, the figures underlie a more 
complicated picture. Thanks to govern-
mental encouragement, the number of 
university graduates in China has risen 
dramatically during the past 10 years. 
In 2008, more than six million students 
graduated nationwide; in 2002, the 
total number was below 1.5 million. 
Such increases, education experts con-
tend, were not matched with employ-
ment prospects, particularly in tech-
nical fields, where market needs are 
highly specialized. Therefore, students 
must work hard to distinguish them-
selves from a glut of applicants. Often, 
that means earning a graduate degree. 
“Companies get a lot of applicants, and 
to  make it easier, some use the degree 
as a filter,” says Xiaoge Wang, an as-
sociate professor in the department of 
computer science and technology at 
Tsinghua University. At Tsinghua, 83% 
of 2009’s computer science graduates 
enrolled in graduate programs at home 
or abroad, up from 78% in 2008 and 66% 
in 2007. “Our students would like to go 
to companies like Microsoft or IBM, 
which require a Ph.D. or a master’s,” 
says Wang. 

In India, the IT industry is doing 
well after a slowdown brought on by 
the global downturn. According to 

the country’s National Association of 
Software and Services Companies, the 
IT services sector, still the dominant 
source of computing jobs, grew nearly 
16.5% in 2009, and software exports are 
expected to increase by 14.4% in the cur-
rent fiscal year. Job placements at the 
country’s top engineering schools are 
robust, with many students receiving 
multiple offers upon graduation. One 
concern, however, is the growing lack 
of educators to teach the next genera-
tion of software engineers—a shortage 
of up to 70,000 teachers, according to 
some estimates. University pay scales 
are low compared to the private sector, 
and few students pursue the advanced 
degrees that would qualify them for uni-
versity positions. As a report published 

in the International Journal of Engineer-
ing Studies explained, “The teaching 
load of professors in the top research-
intensive schools has increased, and 
talented potential research students 
are being attracted by high-paying pri-
vate-sector jobs, or by research oppor-
tunities at better-funded institutions 
abroad.” Those students who do pur-
sue advanced degrees, according to the 
study’s authors, often do so to improve 
their market value in the job market.	

Further Reading

National Association of Software  
and Services Companies 
The IT-BPO Sector in India: Strategic 
Review 2009, http://www.nasscom.
in/Nasscom/templates/NormalPage.
aspx?id=55816.

Solanki, K., Dalal, S., and Bharti, V. 
Software engineering education and 
research in India: a survey, International 
Journal of Engineering Studies 1,3, 2009. 

U.S. Bureau of Labor Statistics 
Occupational Outlook Handbook, 2010-11 
edition, http://www.bls.gov/oco/.

Universities & Colleges Admissions Service 
Unistats From Universities and Colleges 
in the U.K.,  http://unistats.direct.gov.uk/
retrieveColleges_en.do.

Zhang, M. and Virginia M.L. 
Undergraduate computer science 
education in China, Proceedings of the 41st 
ACM Technical Symposium on Computer 
Science Education, March 10–13, 2010, 
Milwaukee, WI.

Leah Hoffmann is a Brooklyn, NY-based technology 
writer. 

© 2010 ACM 0001-0782/10/1100 $10.00

One concern in India 
is the growing lack 
of educators to teach 
the next generation 
of software 
engineers—a 
shortage of up to 
70,000 teachers, 
according to some 
estimates.

http://www.bls.gov/oco/
http://unistats.direct.gov.uk/retrieveColleges_en.do
http://unistats.direct.gov.uk/retrieveColleges_en.do
http://www.nasscom.in/Nasscom/templates/NormalPage.aspx?id=55816
http://www.nasscom.in/Nasscom/templates/NormalPage.aspx?id=55816
http://www.nasscom.in/Nasscom/templates/NormalPage.aspx?id=55816


22    communications of the acm    |   november 2010  |   vol.  53  |   no.  11

Programming Massively 
Parallel Processors 
By David B. Kirk and 
Wen-mei W. Hwu
ISBN: 9780123814722
$69.95 | January 2010

Analyzing Social Media 
Networks with NodeXL 
By Derek Hansen, Ben 
Shneiderman and 
Marc A. Smith 
ISBN: 9780123822291
$44.95 | August 2010

GPU Computing Gems
By Wen-mei Hwu
ISBN: 9780123849885
$74.95 | December 2010

Smart Things
By Mike Kuniavsky
ISBN: 9780123748997 
$39.95 | August 2010

An Introduction to 
Parallel Programming
By Peter Pacheco
ISBN: 9780123742605 
$79.95 | January 2011

No Code Required
By Allen Cypher, Mira 
Dontcheva, Tessa Lau 
and Jeffrey Nichols
ISBN: 9780123815415 
$49.95 | April 2010

Get the Knowledge of Experts in the Computing 
Community from Morgan Kaufmann Publishers

Use Code 43446 to save 20% on these or other great MK titles at the NEW mkp.com. 
Also available at Amazon.com or your favorite online retailer!

Programming Massively 
Parallel Processors 
By David B. Kirk and 
Wen-mei W. Hwu
ISBN: 9780123814722
$69.95 | January 2010

Analyzing Social Media 
Networks with NodeXL
By Derek Hansen, Ben 
Shneiderman and 
Marc A. Smith 
ISBN: 9780123822291
$44.95 | August 2010

GPU Computing Gems
By Wen-mei Hwu
ISBN: 9780123849885
$74.95 | December 2010

Smart Things
By Mike Kuniavsky
ISBN: 9780123748997 
$39.95 | August 2010

An Introduction to 
Parallel Programming
By Peter Pacheco
ISBN: 9780123742605 
$79.95 | January 2011

No Code Required
By Allen Cypher, Mira 
Dontcheva, Tessa Lau 
and Jeffrey Nichols
ISBN: 9780123815415 
$49.95 | April 2010

20102800_AD_CACMAd_077_1200.indd   1 9/24/10   10:29 AM

COMING SOON!

High Performance
Computing

Programming and 
Applications

• Presents over 20 algo-
rithms in pseudocode

• Offers primers on matrix
algebra, probability the-
ory, and number theory 

Catalog no. C7058
December 2010, c. 248 pp.
ISBN: 978-1-4200-7705-6

$89.95 / £57.99

• Reviews the latest and most common
clustering methods 

• Includes a DVD with color figures 

Catalog no. K10863, November 2010
c. 247 pp., ISBN: 978-1-4398-1678-3

$79.95 / £49.99

• Contains hundreds of programs, experiments,
exercises, and illustrations

• Offers source code, installation guides, and an
interactive discussion forum online

Catalog no. K12068, September 2010
888 pp., ISBN: 978-1-4398-4620-9

$99.95 / £49.99

SAVE 20% when you order online at www.crcpress.com and enter Promo Code 933JM
Limited time offer: Discount expires 1/31/2011

http://mkp.com
http://Amazon.com
http://www.crcpress.com


november 2010  |   vol.  53  |   no.  11  |   communications of the acm     23

news
p

h
o

t
o

g
r

a
p

h
 b

y
 J

.D
. 

L
a

s
i

c
a

/S
o

c
i

a
l

m
e

di


a
.biz




N
ewly available frequencies 
in the broadcast spectrum 
should increase Internet ac-
cess and spur innovation, 
U.S. Federal Communica-

tions Commission (FCC) Chairman 
Julius Genachowski said in opening 
those frequencies to unlicensed com-
mercial use. 

When TV broadcasters switched to 
narrower digital channels in 2009, they 
freed up frequencies below 700 mega-
hertz, the so-called “white spaces” be-
tween channels. Signals at these fre-
quencies can travel about three times 
as far as the traditional Wi-Fi frequency 
of 2.4 gigahertz, and easily penetrate 
buildings and other physical obstacles.

The new FCC rules create room for 
two classes of devices: fixed, high-pow-
er ones that transmit at up to 4 watts 
and portable, low-power devices limit-
ed to 100 milliwatts. Harold Feld, legal 
director of Public Knowledge, a Wash-
ington, D.C., public interest group, 
says thousands of small wireless Inter-
net service providers in rural areas, un-
derserved by broadband connections, 
will be quick to take advantage of the 
range and penetration, to achieve good 
coverage with fewer towers. 

But that will not happen tomorrow. 
“It’s going to take a minimum of 18 
months to get even the most basic de-
vices approved and out there,” Feld says.

Neeraj Srivastava, vice president 
of marketing at Spectrum Bridge, a 
wireless networking company in Lake 
Mary, FL, that works with white spaces, 
expects the first enhanced Wi-Fi sys-
tems, using fixed devices, could start 
appearing in the first quarter of 2011. 
Under experimental licenses from the 
FCC, Srivastava says Spectrum Bridge 
has run several pilot programs that 
demonstrate the near-term uses.

One project provided the connectiv-
ity to deploy smart grid power monitors 
across the electrical system in Plym-

outh, CA. By placing white-space radios 
at substations, Spectrum Bridge cre-
ated a wireless network to keep track 
of power usage and simultaneously 
supplied the town’s residents with 
wireless broadband. A project in Wilm-
ington, NC, provided wireless links to 
inaccessible water-quality monitors 
and traffic-monitoring bridge cam-
eras. At a hospital in Logan, OH, where 
concrete walls blocked Wi-Fi and the 
building’s structure made cabling dif-
ficult, Spectrum Bridge created a wire-
less network to monitor patients, share 
data, and access security cameras. They 
also brought broadband access to rural 
Claudville, VA.  

The 4-watt applications can use ex-
isting standards; Spectrum Bridge used 
a modified WiMAX radio in the Logan 
hospital, for example. Meanwhile, IEEE 
is working on a standard for the low-
power devices, comparable to its 802.11 
standard for Wi-Fi. That will determine 
the design of chips for the smartphones 
and laptops that will use them, Srivas-
tava says, so it may be more than two 

years before the appearance of the first 
low-power applications.

Feld believes that, as the utility of 
white spaces becomes apparent, the 
FCC will look for more spectrum to re-
lease. “As people think about how you 
could have radios that are more cogni-
tive, more sensitive to their spectrum 
environments and act accordingly, 
people are going to want to see that 
technology become more widely avail-
able,” he says.

Srivastava notes that when the FCC 
made the spectrum now used by Wi-Fi 
available in 1985, the popular wireless 
applications were garage door open-
ers and baby monitors. Nobody had 
thought of Bluetooth, Wi-Fi, or home 
networking. “There’s always a third 
class of devices, and those are the un-
known ones. Those probably have the 
most promise, but I can’t tell you what 
they are,” Srivastava says.  	

Neil Savage is science and technology writer based in 
Lowell, MA.

© 2010 ACM 0001-0782/10/1100 $10.00

U.S. Federal Communications Commission Chairman Julius Genachowski.

Wide Open Spaces  
The U.S. Federal Communications Commission’s decision to open 
frequencies in the broadcast spectrum could enable broadband 
networks in rural areas, permit smart electric grids, and more. 
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Economic and  
Business Dimensions 
The Divergent Online  
News Preferences of  
Journalists and Readers 
Reading between the lines of the thematic gap between  
the supply and demand of online news. 

doi:10.1145/1839676.1839685	 Pablo J. Boczkowski 

T
he political body, like the 
biological one, needs the 
right combination of nutri-
ents to function adequately. 
One such key ingredient is 

news about public affairs that is nec-
essary to inform political deliberation 
and encourage educated participa-
tion among the citizenry. In most lib-
eral democratic societies, this news is 
largely provided by elite news organi-
zations in print, broadcast, and online 
media. But, at least on the Web, while 
these organizations have supplied this 
kind of news in considerable quanti-
ties, the demand for news among on-
line readers has gravitated toward oth-
er kinds of content also provided on 
these sites, such as information about 
weather, sports, crime, gossip, and en-
tertainment. That frames an interest-
ing dilemma for online news, and also 
for society as a whole.

Measuring Divergence 
in Online News
I did not look for the dilemma in on-
line news. Once I found it in one place, 
however, I went looking for it else-
where and found it everywhere.

For a book on imitation in online 
and offline news,1 I measured the 
amount of readers’ news choices and 
the thematic composition of their 
choices. I found a large, double-digit 
difference between supply (preferenc-
es of journalists) and demand (prefer-
ences of readers).

More precisely, I calculated the de-
gree of similarity in the events covered 
in the stories the three leading online 
news sites in Argentina considered 
the most important ones in any given 
news cycle. This meant collecting each 
homepage’s first 10 stories counting 
from left to right and from the top 
down in a grid-like manner. The analy-

sis sought to determine whether an 
event covered in one site was also cov-
ered in at least one of the others. 

The high level of similarity in news 
products could not be explained by 
patterns in the nature of demand. If 
anything, consumers seemed to want 
more differentiated news products 
and also news marked by a different 
thematic composition than what was 
offered to them. These sites shared 
52% of the events presented on their 
respective top 10 stories. Furthermore, 
almost 59% of these stories shared by 
more than one site dealt with political, 
business, economic, and international 
matters. 

By contrast, the most popular sto-
ries among the readers of these sites 
were quite dissimilar: only 36% of the 
hard news in the top 10 most viewed 
stories on one site were also among the 
top 10 most viewed stories in at least 
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one of the other two sites, and only 32% 
of these stories popular in more than 
one site dealt with politics, business, 
economic, and international matters. 
This amounted to a 16 percentage 
point gap between the levels of similar-
ity of the top news choices of journal-
ists and consumers, and a 27 percent-
age point gap between the thematic 
composition of these similar choices. 

That initial study begged a follow-
up question: do similar patterns arise 
elsewhere? A second study showed 
that the mismatch also applies to the 
leading, elite media in the U.S. My col-
laborator Limor Peer of Yale University 
and I conducted a study that compared 
the concurrent news choices of jour-
nalists and consumers of four leading, 
U.S.-based sites: CNN, Yahoo News, 
Chicago Tribune, and the now-defunct 
Seattle Post-Intelligencer.3 We chose 
these sites to represent broadcast, on-

line-only, and newspaper parent com-
panies, and also different geographic 
orientations. The first two sites were 
national-global, while the second two 
were local.  

In all cases journalists selected 
more news about politics, economics, 
business, and international matters 
than readers, who, in turn, were more 
interested in topics such as sports, 
weather, entertainment, and crime. 
On each data collection day, research 
assistants gathered information on the 
top 10 stories selected by journalists 
and by consumers, respectively, as op-
erationalized in the previous study. A 
comparison of the thematic composi-
tion of journalists’ and consumers’ top 
story preferences per site revealed 13 
percentage point gaps on Seattle Post-
Intelligencer and Yahoo, 14 percentage 
point gaps on CNN, and 17 percentage 
point gaps on Chicago Tribune.

We worried that supply and demand 
are interdependent: journalists might 
prioritize certain stories because they 
perceive that consumers could find 
them appealing, and consumers might 
click more often on stories that receive 
major treatment by journalists. To try 
to get past these interdependencies, we 
conducted a second analysis on each 
site that excluded the stories that were 
selected by both journalists and con-
sumers. Focusing on the stories that 
journalists chose irrespective of their 
level of popularity among consumers, 
and those that consumers chose even 
though they were not prominently dis-
played on the homepage, would give us 
a stronger measure of each group’s in-
dependent preference. 

The results suggest that indepen-
dent from the influence of each other, 
the choices of journalists and con-
sumers would follow strikingly diver-



26    communications of the acm    |   November 2010  |   vol.  53  |   no.  11

viewpoints

gent trajectories. The gaps between 
the thematic composition of the top 
stories selected by journalists and 
consumers increased by an average of 
19 percentage points. 

Does the divergence between supply 
and demand depend on geography or 
ideology? Results from a third study, 
undertaken in collaboration with 
Northwestern University graduate stu-
dents Eugenia Mitchelstein and Mar-
tin Walter, show that the mismatch is 
a widespread phenomenon that cuts 
across media from countries and re-
gions with disparate histories, cultural 
makeup, and ideological positions.2 

This study deployed the design 
of the second study to examine 11 
sites in Western Europe and Latin 
America: The Guardian and The Times 
in the United Kingdom; El País and 
El Mundo in Spain; Die Welt and Der 
Tagesspiegel in Germany; La Reforma 
and El Universal in Mexico; Clarín 
and La Nación in Argentina; and Fol-
ha de Sao Paulo in Brazil (there was 
only one Brazilian site because data 
from a second comparable site was 
not publicly available). All the sites 
were the online presence of leading 
generalist, mainstream, and elite 
newspapers with national reach in 
their respective countries. Moreover, 
in the five countries from which two 
news sites were sampled, the pairs 
had somewhat divergent ideological 
outlooks—either conservative and 
centrist or conservative and liberal. 

Once again, there was a sizable the-
matic gap between the supply and de-
mand of online news, with the journal-
ists leaning more toward stories about 
politics, business, economics, and in-
ternational matters than readers. The 
differences between the top news choic-
es of journalists and consumers ranged 
from 30 percentage points in The Guard-
ian to 9 percentage points in Clarín, with 
an average of 19 percentage points. In 
addition, there were no major patterns 
of variance in this gap by geographical 
region or ideological preference. First, 
journalists choose news about politics, 
economics, business, and internation-
al matters 20 percentage points more 
often than readers in Western Europe 
and 19 percentage points more often 
in Latin America. Second, while on con-
servative sites the thematic difference 
between journalists’ and consumers’ 

choices was 21 percentage points, on 
centrist/liberal sites this difference was 
19 percentage points. 

The Future of Media and Democracy
It is unlikely that the mismatch be-
tween supply and demand of news in 
the elite media began with the Web. 
As the noted sociologist and former 
journalist Robert Park wrote many 
decades ago, “The things which most 
of us would like to publish are not the 
things that most of us want to read. We 
may be eager to get into print what is, 
or seems to be, edifying, but we want 
to read what is interesting.” But the 
strong market position of these elite 
media meant that because advertisers 
had to go through them to reach po-
tential consumers, journalists could 
get away with fulfilling their sense of 
civic duty by disseminating “edify-
ing” news despite their limited appeal 
among the general public. 

But in the highly competitive con-
temporary media environment, few 
news organizations enjoy the kind of 
natural monopoly or oligopoly position 
that newspapers and television net-
works had in the past. Perhaps, none 
do. Of all media markets, the Web is 
the most competitive one because of 
low geographic and distribution barri-
ers and the very high number of players. 

In addition, the Web enables orga-
nizations to automatically track the 
number of clicks garnered by each 
story. This has meant that personnel 
at elite online news sites are deeply 
aware of the extent to which supply 
and demand don’t meet. They must 
confront the dilemma introduced 
at the beginning of this column on a 
daily basis. 

What should they do? If they stay 

the course and the nature of consum-
er preferences does not change (and 
there is no reason to suspect it might), 
the mismatch between supply and de-
mand will further erode their econom-
ic sustainability. If they change course 
and give consumers more of what they 
want, they will likely pay the price of 
becoming a different kind of news or-
ganization and having to compete in 
an already crowded space of “populist 
media.” Either way, the future does not 
bode well for them. 

The potential implications of these 
trends for democracy are not encour-
aging either. As noted earlier, the lead-
ing, elite news organizations are major 
contributors of the kind of informa-
tion about political, economic, and 
international matters that is essential 
for well-informed democratic delibera-
tion and participation. This informa-
tion is much more difficult to find in 
other sources such as tabloid media 
and even blogs (which largely amplify 
the information that originates in elite 
news organizations). 

Society’s appetite for informa-
tion might get satiated by news about 
weather, sports, crime, gossip, and 
entertainment. But the contributions 
of these symbolic nutrients for the 
healthy functioning of the body politic 
will surely be lacking. If, in part, we are 
what we eat, we should be aware that 
we also are the news that we consume. 
And when the supply and demand of 
online news does not meet, it is not 
just elite media organizations that 
might suffer, but also all of us.	
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Education   
K–12 Computational Learning 
Enhancing student learning and understanding by combining theories  
of learning with the computer’s unique attributes. 

doi:10.1145/1839676.1839686	 Stephen Cooper, Lance C. Pérez, and Daphne Rainey

I
n “Computational Thinking,”14 
Jeannette Wing struck a chord 
that has resonated strongly 
(generating positive as well as 
negative responses) with many 

computer scientists and non-comput-
er scientists. Wing has subsequently 
defined computational thinking as 
the process of abstraction,15 guided 
by various engineering-type concerns 
including efficiency, correctness, and 
several software engineering “-ilities” 
(maintainability, usability, modifi-
ability, and so forth). Some have inter-
preted computational thinking as an 
attempt to capture the set of computer 
science skills essential to virtually ev-
ery person in a technological society, 
while others view it as a new descrip-
tion of the fundamental discipline 
that represents computer science and 
its intersection with other fields. The 
National Academies report1 captures 
both of these views, as well as present-
ing others.

While we can live with such defini-
tions/descriptions in the higher educa-
tion arena, we struggle with these no-
tions of computational thinking in the 
K–12 arena (note that we primarily con-
sider K–12 education within the U.S.). 
Several concerns spring to mind: 

1.	 Computer science does not ap-
pear within the core topics covered in 
high school. We would have a tough 
time justifying a computer science 
course, even the “great ideas” AP Princi-
ples course (being developed as part of 
Denning4) replacing Algebra 2, Biology, 
or American Government. K–12 educa-
tion is a zero-sum game. If one wishes 

to add a course, one must also propose 
a course to be removed.

2.	 Even as an elective topic, comput-
er science tends to be disproportionate-
ly available to those wealthy suburban 
schools. Margolis et al.6 explore this 
situation in depth within the urban Los 
Angeles school district.

3.	 Too few K–12 computing teachers 
are available to implement a national-
scale computing requirement. CUNY’s 
ambitious 10,000 teacher project2 will 
not produce sufficient numbers of com-
puting teachers required to instruct all 
schoolchildren in the U.S. It would not 
even get one qualified teacher into each 
of the nation’s 30,000+ high schools 
(see http://nces.ed.gov/programs/di-
gest/d09/tables/dt09_086.asp).

4.	 It is not clear to us how teachers in 

other K–12 subjects would take advan-
tage of school children who had been 
trained in computational thinking.

5.	 The most common definitions of 
computational thinking are confusing 
when explained to non-computer scien-
tists. And many K–12 computing teach-
ers are not computer scientists.

We find the above definitions of 
computational thinking not espe-
cially useful when considered in the 
context of K–12 education, and, more 
specifically, K–12 science, technol-
ogy, engineering, and mathematics 
(STEM) education. We propose an al-
ternative to the common definition 
of computational thinking we believe 
is appropriate for operationalization 
in K–12 education and consider its 
broader implications.

Berkeley public elementary school students on a field trip learn how computers enable 
science.

http://nces.ed.gov/programs/digest/d09/tables/dt09_086.asp
http://nces.ed.gov/programs/digest/d09/tables/dt09_086.asp
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A K–12 View of 
Computational Thinking
We have struggled with how computa-
tional thinking might be different from 
mathematical thinking, algorithmic 
thinking, quantitative reasoning, de-
sign thinking, and several other models 
of math, science, and even engineering 
to critical thinking and problem solv-
ing. It was after struggling with the lat-
est type of thinking that we realized that 
perhaps even the term “computational 
thinking” was misleading (from a K–12 
perspective), and we were approaching 
the definition incorrectly. Rather than 
considering computational thinking as 
a part of the process for problem solv-
ing, we instead developed a model of 
computational learning that empha-
sizes the central role that a computer 
(and possibly its abstraction) can play in 
enhancing the learning process and im-
proving achievement of K–12 students 
in STEM and other courses. The figure 
here depicts our current working model 
of computational learning. It should be 
noted that this model is explicit in its 
use of a computer and specifically ex-
cludes non-cognitive uses of technology 
(Powerpoint, wikis, blogs, clickers, and 
so forth).  

Similar to Wing’s original vision of 
computational thinking, we see com-
putational learning as an iterative and 
interactive process between the hu-
man (the K–12 student in our case) and 
the computer (or, in a more theoretical 
construct, a model of computation). 
We also make explicit the two conse-
quences of the human cognitive pro-
cess, namely, the capacity for abstrac-
tion and for problem formulation, and 

two strengths of the computer, namely, 
their ability to present complex data 
sets, often visually, and their capacity 
for storing factual and relational knowl-
edge. These four elements frame and 
establish the boundaries of the iterative 
interaction between the human being 
and the computer. Note that the accom-
panying figure does not explicitly in-
clude a teacher, not because we believe 
teachers are unnecessary, but rather 
because the role of the teacher in this 
model is complex and requires further 
investigation.

In developing this model, we ob-
served that it includes other extant 
models in scientific learning and in-
quiry. For example, one can view com-
putational science as the interaction 
between the human and the computer 
that is contained within the box where 
a human being formulates a problem 
and provides a representation suitable 
for a computer. The computer then acts 
on this representation and returns the 
results of these actions to the human 
being through, for example, a visual 
representation. Computational learn-
ing expands this interaction by allow-
ing the computer to add foundational 
knowledge, not just data, unknown to 
the human and by having the results of 
the computer’s actions represented in 
a form compatible with the human’s 
current capacity for abstraction. In the 
more interesting instances of computa-
tional learning, both of these processes 
are likely to be adaptive and personal-
ized to the individual.

We make several observations about 
computational learning:

˲˲ Computational learning is iterative, 

requiring interaction between the com-
puter and the human.

˲˲ In computational learning, the 
computer can compensate for a hu-
man’s lack of factual and relational 
knowledge and mathematical and sci-
entific sophistication.

˲˲ The computer’s ability to quickly 
compute multiple examples and pres-
ent them via a modality appropriate to 
a human’s current development stage 
and level of meta-cognitive awareness 
can leverage the human’s inherent, 
though perhaps not fully conscious, ca-
pacity for abstraction. 

This model for computational learn-
ing differs significantly from other pro-
posed notions of computational think-
ing. For example, algorithmic thinking 
does not require a computer and math-
ematical thinking is almost solely de-
pendent on the human’s formalization 
capacity for abstraction.2 

To better understand how our pro-
posed computational learning model 
can be operationalized, we present 
two examples: one from middle school 
computing and one from high school 
biology. 

Digitizing Data
Cutler and Hutton3 modified a CS Un-
plugged activity on image represen-
tation (see http://csunplugged.org/
sites/default/files/activity_pdfs_full/
unplugged-02-image_representation.
pdf) to enable middle school students 
to work interactively with a computer 
program as they learn about how com-
puters digitize images. The purpose of 
these activities is to help students to un-
derstand what it means for a computer 
to digitally represent an image. More 
importantly, the students learn to move 
from concrete representations of im-
ages to more abstract representations 
of those images (as a digital represen-
tation), and from representation of im-
ages in 2D to representing objects in 3D. 
And this ability to abstract is important 
across all STEM disciplines. 

Students work interactively with the 
computer program, receiving feedback 
to their attempts at digitizing their data. 
Over the series of lessons, they develop 
an initial ability to abstract away from 
the physical representation of an im-
age to its digital representation. They 
are then further able to develop their 
ability to abstract as they move from 2D 

A view of computational learning.

Capacity for Abstraction

External Knowledge

Memory Working MemoryVisualization

Computation KnowledgeProblem 
Formulation

Computer
Computational Science

Human

http://csunplugged.org/sites/default/files/activity_pdfs_full/unplugged-02-image_representation.pdf
http://csunplugged.org/sites/default/files/activity_pdfs_full/unplugged-02-image_representation.pdf
http://csunplugged.org/sites/default/files/activity_pdfs_full/unplugged-02-image_representation.pdf
http://csunplugged.org/sites/default/files/activity_pdfs_full/unplugged-02-image_representation.pdf
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Other (though the computer obviously 
cannot think at a higher level than the 
student),11 or even fits within Newell 
and Simon’s Information Processing 
Theory framework.8 Our hope is that by 
considering our model of computation-
al learning, we can better educate and 
prepare teachers to benefit from com-
puting in and outside the classroom, 
and that approaches and computing 
tools can be identified and built to im-
prove K–12 student STEM learning.	
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images to 3D objects. Finally, students 
develop a further ability to abstract. As 
part of the creation of a single 3D object, 
say a chair, the students are then chal-
lenged to place many chairs in a room. 
They need to be able to recognize that 
representing a 3D chair consists of two 
parts: the relative coordinates of each of 
the parts of the chair, and the absolute 
location of one part (say the bottom-
right corner of the front-right leg). 

Evolutionary Biology
The second example involves the teach-
ing of evolution using computational 
learning. Our vision is of a 3D visualiza-
tion system that could simulate evolu-
tion. A student could specify an organ-
ism, with primitive appendages (arms, 
legs, joints, and other attributes) to ac-
complish locomotion. Then, by provid-
ing an environment, the student could 
run the simulation to watch how the 
organism’s ability to move evolves over 
time as a function of its current loco-
motion capability coupled with the im-
pact of that organism’s environment. 
Students could change the appendag-
es and/or the environment to observe 
how such changes lead to a difference 
in the organism’s evolution over time. 
In computer science terms, this exam-
ple is similar to passing a program and 
an initial state as input to a Universal 
Turing Machine.

Such a simulation allows the stu-
dent to work interactively with the 
computer program. The student learns 
both from the impact of the changes 
she makes to the initial configuration 
of the organism and to the initial en-
vironment (which will lead to the or-
ganism evolving the ability to move 
differently) as well as by the ability to 
observe the simulation/visualization 
as it is running. In science, researchers 
have found that visualization is central 
to increasing conceptual understand-
ing and prompting the formation of 
dynamic mental models of particulate 
matter and processes (see 5,7,9,12). Vi-
sualization and computer interaction 
through animation allow students to 
engage more in the cognitive process, 
and to select and organize more rele-
vant information for problem-solving.7 
Computer animations incorporated 
into interactive simulations offer the 
user a chance to manipulate variables 
to observe the effect on the system’s 

behavior (see 9,10,13).
While we know of no tool that pro-

vides the exact support/simulation we 
are describing, there are several avail-
able visualization systems that can 
simulate/model the world. Two of these 
systems have helped to shape our vision 
of the above-mentioned simulation: 
The 3D visualization system, Fram-
sticks (www.framsticks.com) can be 
used for modeling evolution, and the 
2D simulation system, NetLogo (http://
ccl.northwestern.edu/netlogo/) has 
many available pre-built simulations, 
including those that model evolution 
albeit in a different manner than what 
we describe.

Conclusion
Most papers we’ve seen on compu-
tational thinking represent attempts 
at repackaging computing science 
concepts, especially in the form of al-
gorithmic thinking and introductory 
programming, sometimes in other do-
mains. Though this may be useful in 
some contexts, it is unlikely such a sim-
ple approach will have significant im-
pact on student learning—of computer 
science or other disciplines—in the 
K–12 setting. The proposed model of 
computational learning combines the-
ories of learning with the computer’s 
superiority in dealing with complexity 
and variability and its ability to present 
results using modalities that appeal to 
the learner in order to enhance student 
learning and understanding. We believe 
that computational learning can be 
framed within various theories of learn-
ing, where the computer plays a similar 
role as Vygotsky’s More Knowledgeable 

This model for 
computational 
learning differs 
significantly from 
other proposed 
notions of 
computational 
thinking.
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T
wo-thirds of the approxi-
mately 700 software entre-
preneurs who participated 
in the 2008 Berkeley Patent 
Survey report that they nei-

ther have nor are seeking patents for 
innovations embodied in their prod-
ucts and services. These entrepre-
neurs rate patents as the least impor-
tant mechanism among seven options 
for attaining competitive advantage. 
Even software startups that hold pat-
ents regard them as providing only a 
slight incentive to innovate. 

These are three of the most striking 
findings from a recently published ar-
ticle, “High Technology Entrepreneurs 
and the Patent System: Results of the 
2008 Berkeley Patent Survey.”1 After 
providing some background about the 
survey, I will discuss some key findings 
about how software startup firms use 
and are affected by the patent system. 

While the three findings highlighted 
above might seem to support a software 
patent abolitionist position, it is sig-
nificant that one-third of the software 
entrepreneur respondents reported 
having or seeking patents, and that they 
perceive patents to be important to per-
sons or firms from whom they hope to 
obtain financing. 

Some Background on the Survey 
More than 1,300 high-technology en-
trepreneurs in the software, biotech-
nology, medical devices, and computer 
hardware fields completed the Berkeley 
Patent Survey. All of these firms were 

no more than 10 years old before the 
survey was conducted. We drew our 
sample from a general population of 
high-tech firms registered with Dun 
& Bradstreet (D&B) and from the Ven-
tureXpert (VX) database that has a rich 
data set on venture-backed startups. 
(Just over 500 of the survey software re-
spondents were D&B firms; just under 
200 respondents were VX firms.)

Eighty percent of the software re-
spondents were either the CEOs or 
CTOs of their firms, and most had 
experience in previous startups. The 
average software firm had 58 employ-
ees, half of whom were engineers. Be-

tween 10%–15% of the software startup 
respondents among the D&B respon-
dents were venture-backed firms. 
Among the software respondents, only 
2% had experienced an initial public 
offering (IPO), while 9% had been ac-
quired by another firm.

Our interest in conducting this sur-
vey arose because high-technology 
entrepreneurs have contributed sig-
nificantly to economic growth in recent 
decades. They build firms that create 
new products, services, organizations, 
and opportunities for complementary 
economic activities. We were curious 
to know the extent to which high-tech 

Legally Speaking   
Why Do Software Startups 
Patent (or Not)? 
Assessing the controversial results of a recent empirical study  
of the role of intellectual property in software startups.

doi:10.1145/1839676.1839687	 Pamela Samuelson 
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startups were utilizing the patent sys-
tem, as well as to learn their reasons 
for choosing to avail themselves of the 
patent system—or not. 

The basic economic principle un-
derlying the patent system is that 
technology innovations are often ex-
pensive, time-consuming, and risky 
to develop, although once developed, 
these innovations are often inexpen-
sive and easy to copy; in the absence of 
intellectual property rights (IPRs), in-
novative high-tech firms may have in-
sufficient incentives to invest in inno-
vation insofar as they cannot recoup 
their research and development (R&D) 
expenses and justify further invest-
ments in innovation because of cheap 
copies that undermine the firms’ re-
coupment strategy. 

Although this economic principle ap-
plies to all companies, early-stage tech-
nology firms might, we conjectured, 
be more sensitive to IPRs than more 
mature firms. The former often lack 
various kinds of complementary assets 
(such as well-defined marketing chan-
nels and access to cheap credit) that the 
latter are more likely to enjoy. We de-
cided it would be worthwhile to test this 
conjecture empirically. With generous 
funding from the Ewing Marion Kauff-
man Foundation, three colleagues and I 
designed and carried out the survey and 
have begun analyzing the results.

Why Startups Patent 
The most important reasons for seek-
ing patents, as reported by software ex-
ecutives who responded to the Berkeley 
Patent Survey, were these: to prevent 
competitors from copying the innova-
tion (2.3 on a 4 point scale, where 2 was 
moderately important), to enhance the 
firms’ reputation (2.2), and to secure in-
vestment and improve the likelihood of 
an IPO (1.96 and 1.97 respectively). 

The importance of patents to inves-
tors was also evident from survey data 
showing striking differences in the rate 
of patenting among the VX and the D&B 
software companies. 

Three-quarters of the D&B firms had 
no patents and were not seeking them. 
Because the D&B firms are, we believe, 
fairly typical of the population of soft-
ware startup firms in the U.S., their re-
sponses may well be representative of 
patenting rates among software start-
ups generally. It is, in fact, possible 

that the overall rate of software startup 
patenting is lower than this given that 
patent-holders may have been more 
likely than non-patent-holders to take 
time to fill out a Berkeley Patent Survey.

In striking contrast to the D&B re-
spondents, over two-thirds of the VX 
software startup respondents in the 
sample, all venture-backed, had or were 
seeking patents. We cannot say why 
these venture-backed firms were more 
likely to seek patents than other firms. 
Perhaps venture capitalists (VCs) are 
urging firms they fund to seek patents; 
or VCs may be choosing to fund the 
development of software technologies 
that VCs think are more amenable to 
patenting. 

Interestingly, the rate of patenting 
did not vary by the age of the firm (that 
is, older firms did not patent more than 
younger firms).

Why Forego Patenting?
The survey asked two questions about 
decisions to forego patenting: For the 
last innovation for which the firm chose 
not to seek a patent, what factors influ-
enced this decision, and what was the 
most important factor in the decision?

The costs of obtaining and of en-
forcing patents emerged as the first 
and second most frequent explana-
tion. Twenty-eight percent of the soft-
ware startup executives reported that 
the costs of obtaining patents had 
been the most important factor in this 
decision, and 12% said that the costs of 
enforcing patents was the most impor-
tant factor. (They reported that average 
cost of getting a software patent was 
just under $30,000.)

It is an article of  
faith among many 
IP lawyers that 
patents provide 
significant incentives 
for firms to engage  
in R&D and develop 
new products.
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Ease of inventing around the innova-
tion and satisfaction with secrecy also 
influenced software startup decisions 
not to seek patents, although only rarely 
were these factors considered the most 
important.

Intriguingly, more than 40% of the 
software respondents cited the unpat-
entability of the invention as a factor in 
decisions to forego patenting. Almost a 
quarter of them rated this as the most 
important factor. Indeed, unpatentabil-
ity ranked just behind costs of obtain-
ing patents as the most frequently cited 
“most important factor” for not seeking 
patents.

It is difficult to know what to make of 
the unpatentability finding. One expla-
nation may be that the software respon-
dents believed that patent standards of 
novelty, non-obviousness, and the like 
are so rigorous that their innovation 
might not have satisfied patent require-
ments. Yet, because the patentability of 
software innovations has been conten-
tious for decades, it may also be that a 
significant number of these entrepre-
neurs have philosophical or practical 
objections to patents in their field.

How Important Are Patents to 
Competitive Advantage?
One of the most striking findings of our 
study is that software firms ranked pat-
ents dead last among seven strategies 
for attaining competitive advantage, as 
the accompanying figure shows. (The 
relative unimportance of patents for 
competitive advantage in the software 
field contrasts sharply with the per-
ceived importance of patents in the bio-
tech industry, where patents are ranked 
the most important means of attaining 
such advantage.)

As shown in the figure on page 30, 
software startups regard first-mover 
advantage as the single most impor-
tant strategy for attaining competitive 
advantage. The next most important 
strategy was complementary assets (for 
example, providing services for licensed 
software or offering a proprietary com-
plement to an open source program). 

Among IPRs, copyrights and trade-
marks—closely followed by secrecy 
and difficulties of reverse engineer-
ing—outranked patents as means of at-
taining competitive advantage among 
software respondents by a statistically 
significant margin. 

What Incentive Effects 
Do Patents Have?
The Berkeley Patent survey asked start-
up executives to rate the incentive ef-
fects of patents on a scale, where 0 = no 
incentive, 1 = weak incentive, 2 = moder-
ate incentive, and 3 = strong incentive, 
for engaging in four types of innovation: 
(1) inventing new products, processes, 
or services, (2) conducting initial R&D, 
(3) creating internal tools or processes, 
and (4) undertaking the risks and costs 
of commercializing the innovation. 

We were surprised to discover the 
software respondents reported that pat-
ents provide only weak incentives for 
engaging in core activities, such as in-
vention of new products (0.96) and com-
mercialization (0.93). By contrast, bio-
tech and medical device firms reported 
just above 2 (moderate incentives) for 
these same questions.

Interestingly, the results did not 
change significantly when considering 
only responses from software entrepre-
neurs whose firms hold at least one pat-
ent or application. Even patent-holding 
software entrepreneurs reported that 
patents provide just above a weak incen-
tive for engaging in these innovation-re-
lated activities.

Resolving a Paradox 
If patents provide only weak incen-
tives for investing in innovation among 
software startups, why did two-thirds 
of the VX respondents and at least 
one-quarter of the D&B respondents 
seeking patents? The answer may lie 
in the perception among software en-
trepreneurs that patents may be im-
portant to potential funders, such as 
VCs, angel investors, other firms, com-
mercial banks, and friends and fam-
ily. Sixty percent of software startup 
respondents who had negotiated with 
VCs reported that they perceived VC 
decisions about whether to make the 
investments to be affected by patents. 
Between 40% and 50% of the software 
respondents reported that patents 
were important to other types of inves-
tors, such as angels, investment banks, 
and other companies.

Controversy Over Survey Findings 
It is an article of faith among many IP 
lawyers that patents provide significant 
incentives for firms to engage in R&D 
and develop new products. Most would 

also expect, as we did, that high-tech 
startup companies would regard pat-
ents as more important as an induce-
ment to innovation than large firms, 
given that the latter have lots of other 
assets for achieving and maintaining 
success in the marketplace. 

Anecdotes highlighting the impor-
tance of patents to high-tech entrepre-
neurs are relatively easy to find. Because 
data from the Berkeley Patent Survey 
suggests that software entrepreneurs 
regard patents as quite unimportant, 
the reaction of some prominent patent 
lawyers to our article about the survey 
has been sharply negative. We believe, 
however, that our analysis is sound and 
these critiques are off-base. We encour-
age readers to read the full article and 
make their own judgments.

Future Research 
Over the next several years, the co-authors 
of the Berkeley Patent Survey article ex-
pect to analyze further data from this 
survey and to report new findings. We will 
look more closely, for example, at differ-
ences in patenting rates among those in 
different sectors of the software industry 
and differences between patent holders 
and non-patent holders. We know already 
that product innovators seek patents 
more often than process innovators.

The findings reported here suggest 
that software entrepreneurs do not find 
persuasive the canonical story that pat-
ents provide strong incentives to engage 
in technology innovation. These execu-
tives regard first-mover advantage and 
complementary assets as more impor-
tant than IPRs in conferring competitive 
advantage upon their firms. Moreover, 
among IPRs, copyrights and trademarks 
are perceived to be more important than 
patents. Still, about one-third of the 
software entrepreneur respondents re-
ported having or seeking patents, and 
their perception that their investors care 
about patents seems to be a key factor in 
decisions to obtain patents. 	
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I
n  c y b e r sp ac e  it  ’ s  easy to get 
away with criminal fraud, easy 
to steal corporate intellectual 
property, and easy to pene-
trate governmental networks. 

Last spring the new Commander of 
USCYBERCOM, NSA’s General Keith 
Alexander, acknowledged for the first 
time that even U.S. classified networks 
have been penetrated.2 Not only do 
we fail to catch most fraud artists, IP 
thieves, and cyber spies—we don’t 
even know who most of them are. Yet 
every significant public and private 
activity—economic, social, govern-
mental, military—depends on the se-
curity of electronic systems. Why has 
so little happened in 20 years to alter 
the fundamental vulnerability of these 
systems? If you’re sure this insecurity 
is either (a) a hoax or (b) a highly desir-
able form of anarchy, you can skip the 
rest of this column.

Presidential Directives to Fix This 
Problem emerge dramatically like 
clockwork from the White House echo 
chamber, chronicling a history of ex-
ecutive torpor. One of the following 
statements was made in a report to 
President Obama in 2009, the other by 
President George H.W. Bush in 1990. 
Guess which is which:

“Telecommunications and informa-
tion processing systems are highly sus-
ceptible to interception, unauthorized 
electronic access, and related forms of 
technical exploitation, as well as other 
dimensions of the foreign intelligence 
threat.”

“The architecture of the Nation’s 
digital infrastructure, based largely on 
the Internet, is not secure or resilient. 
Without major advances in the security 
of these systems or significant change 
in how they are constructed or operat-
ed, it is doubtful that the United States 
can protect itself from the growing 
threat of cybercrime and state-spon-
sored intrusions and operations.”

Actually, it doesn’t much matter 

which is which.a In between, for the 
sake of nonpartisan continuity, Presi-

a	 The first quotation is from President G.H.W. 
Bush’s National Security Directive 42, July 5, 
1990, redacted for public release, April 1, 1992; 
http://www.fas.org/irp/offdocs/nsd/nsd_42.
htm. The second quotation is from the pref-
ace to “Cyberspace Policy Review: Assuring a 
Trusted and Resilient Information and Com-
munications Infrastructure,” May 2009; http://
www.whitehouse.gov/assets/documents/Cyber-
space_Policy_Review_final.pdf.

Privacy and Security 
Why Isn’t Cyberspace 
More Secure?
Evaluating governmental actions—and inactions—toward  
improving cyber security and addressing future challenges.
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dent Clinton warned of the insecurities 
created by cyber-based systems and di-
rected in 1998 that “no later than five 
years from today the United States shall 
have achieved and shall maintain the 
ability to protect the nation’s critical 
infrastructures from intentional acts 
that would significantly diminish” our 
security.6 Five years later would have 
been 2003.

In 2003, as if in a repeat perfor-
mance of a bad play, the second Presi-
dent Bush stated that his cybersecurity 
objectives were to “[p]revent cyber at-
tacks against America’s critical infra-
structure; [r]educe national vulner-
ability to cyber attacks; and [m]inimize 
damage and recovery time from cyber 
attacks that do occur.”7 

These Presidential pronouncements 
will be of interest chiefly to historians 
and to Congressional investigators who, 
in the aftermath of a disaster that we 
can only hope will be relatively minor, 
will be shocked, shocked to learn that 
the nation was electronically naked. 

Current efforts in Washington to 
deal with cyber insecurity are promis-
ing—but so was Sisyphus’ fourth or 
fifth trip up the hill. These efforts are 
moving at a bureaucratically feverish 
pitch—which is to say, slowly—and 
so far they have produced nothing 
but more declarations of urgency and 
more paper. Why?

Lawsuits and Markets
Change in the U.S. is driven by three 
things: liability, market demand, and 
regulatory (usually federal) action. The 
role and weight of these factors vary in 
other countries, but the U.S. experience 
may nevertheless be instructive trans-
nationally since most of the world’s in-
tellectual property is stored in the U.S., 
and the rest of the world perceives U.S. 
networks as more secure than we do.4 So 
let’s examine each of these three factors. 

Liability has been a virtually nonex-
istent factor in achieving greater Inter-
net security. This may be surprising un-
til you ask: Liability for what, and who 
should bear it? Software licenses are 
enforceable, whether shrink-wrapped 
or negotiated, and they nearly always 
limit the manufacturer’s liability to 
the cost of the software. So suing the 
software manufacturer for allegedly 
lousy security would not be worth the 
money and effort expended. What are 

the damages, say, from finding your 
computer is an enslaved member of a 
botnet run out of Russia or Ukraine? 
And how do you prove the problem was 
caused by the software rather than your 
own sloppy online behavior? 

Asking Congress to make software 
manufacturers liable for defects would 
be asking for trouble: All software is 
defective, because it’s so astoundingly 
complicated that even the best of it 
hides surprises. Deciding what level 
of imperfection is acceptable is not 
a task you want your Congressional 
representative to perform. Any such 
legislation would probably drive some 
creative developers out of the market. 
It would also slow down software devel-
opment—which would not be all bad if 
it led to higher security. But the general 
public has little or no understanding of 
the vulnerabilities inherent in poorly 
developed applications. On the con-
trary, the public clamors for rapidly 
developed apps with lots of bells and 
whistles, so an equipment vendor that 
wants to control this proliferation of 
vulnerabilities in the name of security 
is in a difficult position. 

Banks, merchants, and other hold-
ers of personal information do face lia-
bility for data breaches, and some have 
paid substantial sums for data losses 
under state and federal statutes grant-
ing liquidated damages for breaches. 
In one of the best known cases, Heart-
land Payments Systems may end up 
paying approximately $100 million as a 
result of a major breach, not to mention 
millions more in legal fees. But the de-
fendants in such cases are buyers, not 
makers and designers, of the hardware 
and software whose deficiencies create 
many (but not all) cyber insecurities. 

Liability presumably makes these com-
panies somewhat more vigilant in their 
business practices, but it doesn’t make 
hardware and software more secure. 

Many major banks and other com-
panies already know they have been 
persistently penetrated by highly 
skilled, stealthy, and anonymous ad-
versaries, very likely including foreign 
intelligence services and their sur-
rogates. These firms spend millions 
fending off attacks and cleaning their 
systems, yet no forensic expert can 
honestly tell them that all advanced 
persistent intrusions have been de-
feated. (If you have an expert who will 
say so, fire him right away.) 

In an effective liability regime, in-
surers play an important role in raising 
standards because they tie premiums 
to good practices. Good automobile 
drivers, for example, pay less for car 
insurance. Without a liability dynamic, 
however, insurers play virtually no role 
in raising cyber security standards. 

If liability hasn’t made cyberspace 
more secure, what about market de-
mand? The simple answer is that the 
consuming public buys on price and 
has not been willing to pay for more 
secure software. In some cases the af-
termath of identity theft is an ordeal. 
In most instances of credit card fraud, 
however, the bank absorbs 100% of the 
loss, so their customers have little in-
centive to spend more for security. (In 
Britain, where the customer rather than 
the bank usually pays, the situation is ar-
guably worse because banks are in a bet-
ter position than customers to impose 
higher security requirements.) Most 
companies also buy on price, especially 
in the current economic downturn. 

Unfortunately we don’t know wheth-
er consumers or corporate custom-
ers would pay more for security if they 
knew the relative insecurities of the 
products on the market. As J. Alex Hal-
derman of the University of Michigan 
recently noted, “most customers don’t 
have enough information to accurately 
gauge software quality, so secure soft-
ware and insecure software tend to sell 
for about the same price.”3 This could 
be fixed, but doing so would require 
agreed metrics for judging products 
and either the systematic disclosure of 
insecurities or a widely accepted test-
ing and evaluation service that enjoyed 
the public’s confidence. Consumer Re-

Deciding what level 
of imperfection is 
acceptable is not 
a task you want 
your Congressional 
representative  
to perform.
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ports plays this role for automobiles 
and many other consumer products, 
and it wields enormous power. The 
same day Consumer Reports issued a 
“Don’t buy” recommendation for the 
2010 Lexus GX 460, Toyota took the 
vehicle off the market. If the engineer-
ing and computer science professions 
could organize a software security lab-
oratory along the lines of Consumer Re-
ports, it would be a public service.

Federal Action
Absent market- or liability-driven im-
provement, there are eight steps the 
U.S. federal government could take to 
improve Internet security, and none of 
them would involve creating a new bu-
reaucracy or intrusive regulation:

1.	 Use the government’s enormous 
purchasing power to require higher se-
curity standards of its vendors. These 
standards would deal, for example, 
with verifiable software and firmware, 
means of authentication, fault toler-
ance, and a uniform vocabulary and 
taxonomy across the government in 
purchasing and evaluation. The Feder-
al Acquisition Regulations, guided by 
the National Institute of Standards and 
Technology, could drive higher secu-
rity into the entire market by ensuring 
federal demand for better products. 

2.	 Amend the Privacy Act to make 
it clear that Internet Service Providers 
(ISPs) must disclose to one another and 
to their customers when a customer’s 
computer has become part of a bot-
net, regardless of the ISP’s customer 
contract, and may disclose that fact to 
a party that is not its own customer. 
ISPs may complain that such a service 
should be elective, at a price. That’s 
equivalent to arguing that cars should 
be allowed on the highway without 
brakes, lights, and seatbelts. This re-
quirement would generate significant 
remedial business.

3.	 Define behaviors that would per-
mit ISPs to block or sequester traffic 
from botnet-controlled addresses—
not merely from the botnet’s com-
mand-and-control center.

4.	 Forbid federal agencies from do-
ing business with any ISP that is a hos-
pitable host for botnets, and publicize 
the list of such companies. 

5.	 Require bond issuers that are 
subject to the jurisdiction of the Fed-
eral Energy Regulatory Commission to 

disclose in the “Risk Factors” section 
of their prospectuses whether the com-
mand-and-control features of their 
SCADA networks are connected to the 
Internet or other publicly accessible 
network. Issuers would scream about 
this, even though a recent McAfee 
study plainly indicates that many of 
them that do follow this risky practice 
think it creates an “unresolved security 
issue.”1 SCADA networks were built for 
isolated, limited access systems. Al-
lowing them to be controlled via pub-
lic networks is rash. This point was 
driven home forcefully this summer 
by discovery of the “Stuxnet” computer 
worm, which was specifically designed 
to attack SCADA systems.4 Yet public 
utilities show no sign of ramping up 
their typically primitive systems.

6.	 Increase support for research into 
attribution techniques, verifiable soft-
ware and firmware, and the benefits of 
moving more security functions into 
hardware.

7.	 Definitively remove the antitrust 
concern when U.S.-based firms collab-
orate on researching, developing, or 
implementing security functions.

8.	 Engage like-minded governments 
to create international authorities to 
take down botnets and make naming-
and-addressing protocols more diffi-
cult to spoof.

Political Will
These practical steps would not solve 
all problems of cyber insecurity but 
they would dramatically improve it. 
Nor would they involve government 
snooping and or reengineering the 
Internet or other grandiose schemes. 
They would require a clear-headed 
understanding of the risks to privacy, 
intellectual property, and national se-
curity when an entire society relies for 
its commercial, governmental, and 
military functions on a decades-old in-
formation system designed for a small 
number of university and government 
researchers. 

Translating repeated diagnoses 
of insecurity into effective treatment 
would also require the political will to 
marshal the resources and effort nec-
essary to do something about it. The 
Bush Administration came by that will 
too late in the game, and the Obama 
Administration has yet to acquire it. 
After his inauguration, Obama dith-

ered for nine months over the package 
of excellent recommendations put on 
his desk by a nonpolitical team of civil 
servants from several departments 
and agencies. The Administration’s 
lack of interest was palpable; its hands 
are full with a war, health care, and a 
bad economy. In difficult economic 
times the President naturally prefers 
invisible risk to visible expense and is 
understandably reluctant to increase 
costs for business. In the best of times 
cross-departmental (or cross-ministe-
rial) governance would be extremely 
difficult—and not just in the U.S. Do-
ing it well requires an interdepartmen-
tal organ of directive power that can 
muscle entrenched and often parochi-
al bureaucracies, and in the cyber are-
na, we simply don’t have it. The media, 
which never tires of the cliché, told us 
we were getting a cyber “czar,” but the 
newly created cyber “Coordinator” ac-
tually has no directive power and has 
yet to prove his value in coordinating, 
let alone governing, the many depart-
ments and agencies with an interest in 
electronic networks. 

And so cyber-enabled crime and po-
litical and economic espionage contin-
ue apace, and the risk of infrastructure 
failure mounts. As for me, I’m already 
drafting the next Presidential Direc-
tive. It sounds a lot like the last one.	
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M
uch computer sci -

e nc e  research is inter-
disciplinary, bringing 
together experts from 
multiple fields to solve 

challenging problems in the sciences, 
engineering, and medicine. One area 
where the interface between computer 
scientists and domain scientists is es-
pecially strong is wireless sensor net-
works, which offer the opportunity to 
apply computer science concepts to 
obtaining measurements in challeng-
ing field settings. Sensor networks have 
been applied to studying vibrations on 
the Golden Gate Bridge,1 tracking zebra 
movements,2 and understanding mi-
croclimates in redwood canopies.4

Our own work on sensor networks 
for volcano monitoring6 has taught us 
some valuable lessons about what’s 
needed to make sensor networks suc-
cessful for scientific campaigns. At the 
same time, we find a number of myths 
that persist in the sensor network lit-
erature, possibly leading to invalid as-
sumptions about what field conditions 
are like, and what research problems 
fall out of working with domain scien-
tists. We believe these lessons are of 
broad interest to “applied computer 
scientists” beyond the specific area of 
sensor networks.

Our group at Harvard has been col-
laborating with geophysicists at New 
Mexico Tech, UNC, and the Instituto 
Geofísico in Ecuador for the last five 
years on developing wireless sensor 
networks for monitoring active and 

hazardous volcanoes (see Figure 1). We 
have deployed three sensor networks on 
two volcanoes in Ecuador: Tungurahua 
and Reventador. In each case, wireless 
sensors measured seismic and acoustic 
signals generated by the volcano, and 
digitized signals are collected at a cen-
tral base station located at the volcano 
observatory. This application pushes 
the boundaries of conventional sensor 
network design in terms of the high 
data rates involved (100Hz or more per 
channel); the need for fine-grained time 
synchronization to compare signals col-
lected across different nodes; the need 

for reliable, complete signal collection 
over the lossy wireless network; and the 
need to discern “interesting” signals 
from noise.

These deployments have taught us 
many lessons about what works and 
what doesn’t in the field, and what the 
important problems are from the per-
spective of the domain scientists. In-
terestingly, many of these problems are 
not the focus of much of the computer 
science research community. Our view 
is that a sensor network should be treat-
ed as a scientific instrument, and there-
fore subject to the same high standards 

Viewpoint 
Sensor Networks  
for the Sciences 
Lessons from the field derived from developing wireless sensor 
networks for monitoring active and hazardous volcanoes.

doi:10.1145/1839676.1839690	 Matt Welsh

Harvard University Ph.D. student Konrad Lorincz installing sensors at Reventador volcano.
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of data quality applied to conventional 
scientifi c instrumentation.

some myths
First, let us dispel a few common myths 
about sensor network fi eld deploy-
ments. 

Myth #1: Nodes are deployed ran-
domly. A common assumption in sen-
sor network papers is that nodes will be 
randomly distributed over some spatial 
area (see Figure 2). An often-used idiom 
is that of dropping sensor nodes from 
an airplane. (Presumably, this implies 
that the packaging has been designed 
to survive the impact and there is a 
mechanism to orient the radio anten-
nas vertically once they hit the ground.)

Such a haphazard approach to sen-
sor siting would be unheard of in many 
scientifi c campaigns. In volcano seis-
mology, sensor locations are typically 
chosen carefully to ensure good spatial 
coverage and the ability to reconstruct 
the seismic fi eld. The resulting topolo-
gies are fairly irregular and do not exhib-
it the spatial uniformity often assumed 
in papers. Moreover, positions for each 
node must be carefully recorded using 
GPS, to facilitate later data analysis. In 
our case, installing each sensor node 
took nearly an hour (involving digging 
holes for the seismometer and antenna 
mast), not to mention the four-hour 
hike through the jungle just to reach the 
deployment site.

Myth #2: Sensor nodes are cheap 
and tiny. The original vision of sensor 
networks drew upon the idea of “smart 
dust” that could be literally blown onto 
a surface. While such technology is still 
an active area of research, sensor net-
works have evolved around off-the-shelf 
“mote” platforms that are substantially 
larger, more power hungry, and expen-
sive than their hypothetically aerosol 
counterparts (“smart rocks” is a more 
apt metaphor). The notion that sensor 
nodes are disposable has led to much 
research that assumes it is possible to 
deploy many more sensor nodes than 
are strictly necessary to meet scientifi c 
requirements, leveraging redundancy 
to extend network battery lifetime and 
tolerate failures.

It should be emphasized that the 
cost of the attached sensor can outstrip 
the mote itself. A typical mote costs ap-
proximately $100, sometimes with on-
board sensors for temperature, light, 

and humidity. The inexpensive sensors 
used on many mote platforms many not 
be appropriate for scientifi c use, con-
founded by low resolution and the need 
for calibration. While the microphones 
used in our volcano sensor network cost 
pennies, seismometers cost upward of 
thousands of dollars. In our deploy-
ments, we use a combination of rela-
tively inexpensive ($75 or so) geophones 
with limited sensitivity, and more ex-
pensive ($1,000) seismometers. The 
instruments used by many volcano de-
ployments are in the tens of thousands 
of dollars, so much that many research 
groups borrow (rather than buy) them.

Myth #3: The network is dense. Re-
lated to the previous myths is the idea 
that node locations will be spatially ho-
mogeneous and dense, with each node 
having on the order of 10 or more neigh-
bors in radio range. Routing protocols, 
localization schemes, and failover tech-
niques often leverage such high density 
through the power of many choices.

This assumption depends on how 
closely aligned the spatial resolution of 
the desired network matches the radio 
range, which can be hundreds of me-

ters with a suitably designed antenna 
confi guration. In volcanology, the prop-
agation speed of seismic waves (on the 
order of kilometers per second) dictates 
sensor placements hundreds of meters 
apart or more, which is at the practical 
limit of the radio range. As a result, our 
networks have typically featured nodes 
with at most two or three radio neigh-
bors, with limited opportunities for 
redundancy in the routing paths. Like-
wise, the code-propagation protocol we 
used worked well in a lab setting when 
all of the nodes were physically close 
to each other; when spread across the 
volcano, the protocol fell over, prob-
ably due to the much higher degree of 
packet loss.

Lessons Learned
Working with domain scientists has 
taught us some valuable lessons about 
sensor network design. Our original in-
tentions were to leverage the collabora-
tion as a means of furthering our own 
computer science research agenda, as-
suming that whatever we did would be 
satisfactory to the geophysicists. In ac-
tuality, their data requirements ended 
up driving our research in several new 
directions, none of which we anticipat-
ed when we started the project.

Lesson #1: It’s all about the data. 
This may seem obvious, but it’s interest-
ing how often the actual data produced 
by a sensor network is overlooked when 
designing a clever new protocol or pro-
gramming abstraction. To fi rst approxi-
mation, scientists simply want all of the 
data produced by all of the sensors, all of 
the time.

The approach taken by such sci-
entists is to go to the fi eld, install in-

Working with domain 
scientists has taught 
us some valuable 
lessons about sensor 
network design.

FreeWave 
radio modem 

Base station 
at observatory 

Long-distance 
radio link (4km) 

GPS receiver 
for time sync 

figure 1. sensor network design for monitoring active volcanoes.
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struments, collect as much data as 
possible, and then spend a consider-
able amount of time analyzing it and 
writing journal papers. After all, data 
collection is expensive and time con-
suming, and requires working in dirty 
places without a decent Internet con-
nection. Scientists have a vested inter-
est in getting as much “scientific val-
ue” as possible out of a field campaign, 
even if this requires a great deal of ef-
fort to understand the data once it has 
been collected. In contrast, the sensor 
network community has developed a 
wide range of techniques to perform 
data processing on the fly, aggregating 
and reducing the amount of data pro-
duced by the network to satisfy band-
width and energy constraints. Many of 
these techniques are at odds with the 
domain scientists’ view of instrumen-
tation. No geophysicist is interested in 

the “average seismic signal” sampled 
by multiple nodes in the network. We 
advocate a two-pronged approach to 
this problem. The first is to incorpo-
rate large flash memories onto sen-
sor nodes: it is now possible to build 
multi-gigabyte SD or Compact Flash 
memory into every node, allowing for 
months of continuous sensor data to 
be stored locally.

Though this converts the sensor 
node into a glorified data logger, it also 
ensures that all of the data will be avail-
able for (later) analysis and validation 
of the network’s correct operation. It is 
often necessary to service nodes in the 
field, such as to change batteries, offer-
ing an early opportunity to retrieve the 
data manually by swapping flash cards. 
The second approach is to perform 
data collection with the goal of maxi-
mizing scientific value while satisfying 

resource constraints, such as a target 
battery lifetime. Our work on the Lance 
system5 demonstrated it is possible to 
drive signal downloads from a sensor 
network in a manner that achieves near 
optimal data quality subject to these 
constraints. Figure 3 shows the rectifi-
cation of raw signals collected from the 
network.

Inherent in this approach is the as-
sumption that not all data is created 
equal: there must be some domain-
specific assignment of “value” to the 
signals collected by the network to 
drive the process. In volcano seismol-
ogy, scientists are interested in signals 
corresponding to geophysical events 
(earthquakes, tremors, explosions) 
rather than the quiet lull that can last 
for hours or days between such events. 
Fortunately, a simple amplitude filter 
running on each sensor node can read-
ily detect seismic events of interest.

Lesson #2: Computer scientists 
and domain scientists need common 
ground. It should come as no surprise 
that the motivations of computer sci-
entists and “real” scientists are not 
always aligned. Domain scientists are 
largely interested in obtaining high-
quality data (see Lesson #1 above); 
whereas computer scientists are driven 
by the desire to do “cool stuff:” new 
protocols, new algorithms, new pro-
gramming models. Our field thrives 
on novelty whereas domain scientists 
have an interest in measured conserva-
tism. Anything new we computer scien-
tists throw into the system potentially 
makes it harder, not easier, for the 
domain scientists to publish papers 
based on the results.

Finding common ground is essen-
tial to making such collaborations 
work. Starting small can help. Our 
first volcano deployment involved just 
three nodes running for two days, but 
in the process we learned an incred-
ible amount about how volcanolo-
gists do field work (and what a donkey 
will—and will not—carry on its back). 
Our second deployment focused on 
collecting data with the goal of mak-
ing the geophysicists happy with the fi-
delity of the instrument. The third was 
largely driven by CS goals, but with an 
eye toward meeting the scientists’ data 
requirements. Writing joint grant pro-
posals can also help to get everyone on 
the same page.

Figure 2a. Myth (taken from Sankarasubramaniam3). 

SinkEvent radius

Figure 2b. Reality (Reventador volcano, 2005; from Werner-Allen et al6). 
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Lesson #3: Don’t forget about the 
base station! The base station is a criti-
cal component of any sensor network 
architecture: it is responsible for coor-
dinating the network’s operation, mon-
itoring its activity, and collecting the 
sensor data itself. Yet it often gets short 
shrift, perhaps because of the false im-
pression the base station code will be 
easy to write or that it is uninteresting.

The vast majority of our development 
efforts focused on the sensor node soft-
ware, which is fairly complex and uses 
nonstandard programming languages 
and tools. The base station, in our case 
a laptop located at the volcano obser-
vatory, was mostly an afterthought: 
some slapped-together Perl scripts and 
a monolithic Java program acting as a 
combined network controller, data log-

ger, monitor, and GUI. The base station 
code underwent a major overhaul in the 
first two days after arriving in the field, 
mostly to add features (such as logging) 
that we didn’t anticipate needing dur-
ing our lab testing. We paid for the slap-
dash nature of the base station software. 
One race condition in the Java code (for 
which the author takes full credit) led 
to an 8-hour outage, while everyone was 
asleep. (We also assumed that the elec-
tricity supply at the observatory would 
be fairly reliable, which turned out not 
to be true.)

Our redesign for the 2007 Tungura-
hua deployment involved modularizing 
the base station code, so that each com-
ponent can fail independently. One pro-
gram communicates with the network; 
another acts as a GUI; another logs the 
sensor data; and another runs the algo-
rithm for scheduling downloads. Bugs 
can be fixed and each of these programs 
can be restarted at any time without dis-
rupting the other programs. 

Conclusion
Scientific discovery is increasingly driv-
en by advances in computing technol-
ogy, and sensor networks are an impor-
tant tool to enhance data collection in 
many scientific domains. Still, there is a 
gap between the stereotype of a sensor 
network in the literature and what many 
scientists need to obtain good field data. 
Working closely with domain scientists 
yields tremendous opportunities for 
furthering a computer science research 
agenda driven by real-world problems.	
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Figure 3a. Original data: bad timing, unnormalized signals.
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Figure 3b. Data after cleanup.
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Engineers employ many different tactics to focus on the 
user when writing software: for example, listening 
to user feedback, fixing bugs, and adding features 
that their users are clamoring for. Since Web-based 
services have made it easier for users to move to new 
applications, it is becoming even more important 
to focus on building and retaining user trust. We 
have found that an incredibly effective—although 
certainly counterintuitive—way to earn and maintain 
user trust is to make it easy for users to leave your 
product with their data in tow. This not only prevents 
lock-in and engenders trust, but also forces your 
team to innovate and compete on technical merit. 
We call this data liberation.

Until recently, users rarely asked 
whether they could quickly and eas-
ily get their data out before they put 
reams of personal information into a 
new Internet service. They were more 
likely to ask questions such as: “Are 
my friends using the service?” “How 
reliable  is it?” and “What are the odds 
that the company providing the service 
is going to be around in six months or 
a year?” Users are starting to realize, 
however, that as they store more of 
their personal data in services that are 
not physically accessible, they run the 
risk of losing vast swaths of their on-
line legacy if they do not have a means 
of removing their data.

It is typically a lot easier for software 
engineers to pull data out of a service 
that they use than it is for regular us-

The Case 
Against  
Data  
Lock-in
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ers. If APIs are available, we engineers 
can cobble together a program to pull 
our data out. Without APIs, we can even 
whip up a screen scraper to get a copy of 
the data. Unfortunately, for most users 
this is not an option, and they are often 
left wondering if they can get their data 
out at all.  

Locking your users in, of course, has 
the advantage of making it more diffi-
cult for them to leave you for a competi-
tor. Likewise, if your competitors lock 
their users in, it is harder for those users 
to move to your product. Nonetheless, 
it is far preferable to spend your engi-
neering effort on innovation than it is 
to build bigger walls and stronger doors 
that prevent users from leaving. Making 
it easier for users to experiment today 
greatly increases their trust in you, and 

they are more likely to return to your 
product line tomorrow.

Locking users in may suppress a 
company’s need to innovate as rapidly 
as possible. Instead, your company may 
decide—for business reasons—to slow 
down development on your product 
and move engineering resources to an-
other product. This makes your prod-
uct vulnerable to other companies that 
innovate at a faster rate. Lock-in allows 
your company to have the appearance 
of continuing success when, without in-
novation, it may in fact be withering on 
the vine.

If you do not—or cannot—lock your 
users in, the best way to compete is 
to innovate at a breakneck pace. Let’s 
use Google Search as an example. It’s a 
product that cannot lock users in: users 

do not have to install software to use it; 
they do not have to upload data to use 
it; they do not have to sign two-year con-
tracts; and if they decide to try another 
search engine, they merely type it into 
their browser’s location bar, and they 
are off and running. 

How has Google managed to get us-
ers to keep coming back to its search 
engine? By focusing obsessively on 
constantly improving the quality of its 
results. The fact that it is so easy for 
users to switch has instilled an incred-
ible sense of urgency in Google’s search 
quality and ranking teams. At Google we 
think that if we make it easy for users to 
leave any of our products, failure to im-
prove a product results in immediate 
feedback to the engineers, who respond 
by building a better product.



44    communications of the acm    |   november 2010  |   vol.  53  |   no.  11

practice

What Data Liberation Looks Like
At Google, our attitude has always been 
that users should be able to control the 
data they store in any of our products, 
and that means they should be able to 
get their data out of any product. Period. 
There should be no additional mone-
tary cost to do so, and perhaps most im-
portantly, the amount of effort required 
to get the data out should be constant, 
regardless of the amount of data. Indi-
vidually downloading a dozen photos is 
no big inconvenience, but what if a user 
had to download 5,000 photos, one at a 
time, to get them out of an application? 
That could take weeks of their time. 

Even if users have a copy of their 
data, it can still be locked in if it is in a 
proprietary format. Some word proces-
sor documents from 15 years ago can-
not be opened with modern software 
because they are stored in a proprietary 
format. It is important, therefore, not 
only to have access to data, but also to 
have it in a format that has a publicly 
available specification. Furthermore, 
the specification must have reason-
able license terms: for example, it 
should be royalty-free to implement. 
If an open format already exists for the 
exported data (for example, JPEG or 
TIFF for photos), then that should be 
an option for bulk download. If there 
is no industry standard for the data in 
a product (for example, blogs do not 
have a standard data format), then 
at the very least the format should be 
publicly documented—bonus points if 
your product provides an open source 
reference implementation of a parser 
for your format. 

The point is that users should be in 
control of their data, which means they 
need an easy way of accessing it. Provid-
ing an API or the ability to download 
5,000 photos one at a time does not ex-
actly make it easy for your average user 
to move data in or out of a product. 
From the user-interface point of view, 
users should see data liberation merely 
as a set of buttons for import and export 
of all data in a product.

Google is addressing this problem 
through its Data Liberation Front, 
an engineering team whose goal is to 
make it easier to move data in and out 
of Google products. The data libera-
tion effort focuses specifically on data 
that could hinder users from switch-
ing to another service or competing 

product—that is, data that users cre-
ate in or import into Google products. 
This is all data stored intentionally via 
a direct action—such as photos, email, 
documents, or ad campaigns—that us-
ers would most likely need a copy of if 
they wanted to take their business else-
where. Data indirectly created as a side 
effect (for example, log data) falls out-
side of this mission, as it is not particu-
larly relevant to lock-in.

Another “non-goal” of data libera-
tion is to develop new standards: we al-
low users to export in existing formats 
where we can, as in Google Docs where 
users can download word processing 
files in OpenOffice or Microsoft Office 
formats. For products where there is 
no obvious open format that can con-
tain all of the information necessary, 
we provide something easily machine 
readable such as XML (for example, 
for Blogger feeds, including posts and 
comments, we use Atom), publicly 
document the format, and, where pos-
sible, provide a reference implementa-
tion of a parser for the format (see the 
Google Blog Converters AppEngine 
project for an examplea). We try to give 
the data to the user in a format that 
makes it easy to import into another 
product. Since Google Docs deals 
with word processing documents and 
spreadsheets that predate the rise of 
the open Web, we provide a few differ-
ent formats for export; in most prod-
ucts, however, we assiduously avoid 
the rat hole of exporting into every 
known format under the sun.

The User’s View
There are several scenarios where us-
ers might want to get a copy of their 
data from your product: they may have 
found another product that better suits 
their needs and they want to bring their 
data into the new product; you have an-
nounced that you are going to stop sup-
porting the product they are using; or, 
worse, you may have done something to 
lose their trust. 

Of course, just because your users 
want a copy of their data does not nec-
essarily mean they are abandoning your 
product. Many users just feel safer hav-

a	 http://code.google.com/p/google-blog-converters-
appengine/wiki/BloggerExportTemplate; and 
http://code.google.com/apis/blogger/docs/2.0/
reference.html#LinkCommentsToPosts.

It is preferable 
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engineering effort 
on innovation than 
it is to build bigger 
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doors that prevent 
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today greatly 
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are more likely  
to return to  
your product  
line tomorrow.
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ing a local copy of their data as a backup. 
We saw this happen when we first liber-
ated Blogger: many users started export-
ing their blogs every week while continu-
ing to host and write in Blogger. This 
last scenario is more rooted in emotion 
than logic. Most data that users have on 
their computers is not backed up at all, 
whereas hosted applications almost al-
ways store multiple copies of user data 
in multiple geographic locations, ac-
counting for hardware failure in addi-
tion to natural disasters. Whether users’ 
concerns are logical or emotional, they 
need to feel their data is safe: it’s impor-
tant that your users trust you.

Case Study: Google Sites
Google Sites is a Web site creator that 
allows WYSIWYG editing through the 
browser. We use this service inside of 
Google for our main project page, as it is 
really convenient for creating or aggre-
gating project documentation. We took 
on the job of creating the import and ex-
port capabilities for Sites in early 2009.

Early in the design, we had to de-
termine what the external format of a 
Google Site should be. Considering that 
the utility Sites provides is the ability to 
create and collaborate on Web sites, 
we decided that the format best suited 
for true liberation would be XHTML. 
HTML, as the language of the Web, also 
makes it the most portable format for 
a Web site: just drop the XHTML pages 
on your own Web server or upload them 
to your Web service provider. We want-
ed to make sure this form of data por-
tability was as easy as possible with as 
little loss of data as possible.

Sites uses its internal data format to 
encapsulate the data stored in a Web 
site, including all revisions to all pages 
in the site. The first step to liberating 
this data was to create a Google Data 
API. A full export of a site is then pro-
vided through an open source Java cli-
ent tool that uses the Google Sites Data 
API and transforms the data into a set of 
XHTML pages.  

The Google Sites Data API, like all 
Google Data APIs, is built upon the 
AtomPub specification. This allows for 
RPC (remote procedure call)-style pro-
grammatic access to Google Sites data 
using Atom documents as the wire for-
mat for the RPCs. Atom works well for 
the Google Sites use case, as the data fits 
fairly easily into an Atom envelope.

Figure 1 is a sample of one Atom en-
try that encapsulates a Web page within 
Sites. This can be retrieved by using the 
Content Feed to Google Sites.

We have highlighted (in red) the ac-
tual data that is being exported, which 
includes an identifier, a last update time 
in ISO 8601 format, title, revision num-
ber, and the actual Web-page content. 
Mandatory authorship elements and 
other optional information included in 
the entry have been removed to keep the 
example short.

Once the API was in place, the sec-
ond step was to implement the trans-
formation from a set of Atom feeds 
into a collection of portable XHTML 
Web pages. To protect against losing 
any data from the original Atom, we 
chose to embed all of the metadata 
about each Atom entry right into the 
transformed XHTML. Not having this 

metadata in the transformed pages 
poses a problem during an import—it 
becomes unclear which elements of 
XHTML correspond to the pieces of the 
original Atom entry. Luckily, we did not 
have to invent our own metadata em-
bedding technique; we simply used the 
hAtom microformat.  

To demonstrate the utility of micro-
formats, Figure 2 shows the same sam-
ple after being converted into XHTML 
with hAtom microformat embedded:

The highlighted class attributes map 
directly to the original Atom elements, 
making it very explicit how to recon-
struct the original Atom when import-
ing this information back into Sites. 
The microformat approach also has the 
side benefit that any Web page can be 
imported into Sites if the author is will-
ing to add a few class attributes to data 
within the page. This ability to reimport 

Figure 1. Atom entry encapsulating a Web page within Sites.

<entry xmlns:sites=”http://schemas.google.com/sites/2008”>
  <id>https://sites.google.com/feeds/content/site/...</id>
  <updated>2009-02-09T21:46:14.991Z</updated>
  <category scheme=”http://schemas.google.com/g/2005#kind”
         term=”http://schemas.google.com/sites/2008#webpage”
         label=”webpage”/> 
  <title>Maps API Examples</title> 
  <sites:revision>2</sites:revision>
  <content type=”xhtml”> 
    <div xmlns=”http://www.w3.org/1999/xhtml”>
    ... PAGE CONTENT HERE ...
    </div>
  </content>
</entry>

Figure 2. Atom entry converted into XHTML.

<div class=”hentry webpage”
     id=”https://sites.google.com/feeds/content/site/...”>
  <h3>
    <span class=”entry-title”>Maps API Examples</span>
  </h3>
  <div>
    <div class=”entry-content”>
      <div xmlns=”http://www.w3.org/1999/xhtml”>
      ... PAGE CONTENT HERE ...
      </div>
    </div>
  </div>
  <small>
    Updated on 
    <abbr class=”updated” title=”2009-02-09T21:46:14.991Z”>
      Feb 9, 2009
     </abbr>
    (Version <span class=”sites:revision”>2</span>)
  </small>
</div> 
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a user’s exported data in a lossless man-
ner is key to data liberation—it may take 
more time to implement, but we think 
the result is worthwhile.

Case Study: Blogger
One of the problems we often encoun-
ter when doing a liberation project is ca-
tering to the power user. These are our 
favorite users. They are the ones who 
love to use the service, put a lot of data 
into it, and want the comfort of being 
able to do very large imports or exports 
of data at any time. Five years of jour-
nalism through blog posts and photos, 
for example, can easily extend beyond 
a few gigabytes of information, and at-
tempting to move that data in one fell 
swoop is a real challenge. In an effort 
to make import and export as simple as 
possible for users, we decided to imple-
ment a one-click solution that would 
provide the user with a Blogger export 
file that contains all of the posts, com-
ments, static pages, and even settings 
for any Blogger blog. This file is down-
loaded to the user’s hard drive and can 
be imported back into Blogger later 
or transformed and moved to another 
blogging service.   

One mistake we made when creat-
ing the import/export experience for 
Blogger was relying on one HTTP trans-
action for an import or an export. HTTP 
connections become fragile when the 
size of the data you are transferring be-
comes large. Any interruption in that 
connection voids the action and can 
lead to incomplete exports or missing 
data upon import. These are extremely 
frustrating scenarios for users and, 
unfortunately, much more prevalent 
for power users with lots of blog data. 
We neglected to implement any form 
of partial export as well, which means 
power users sometimes need to resort 
to silly things such as breaking up their 
export files by hand in order to have 
better success when importing. We 
recognize this is a bad experience for 
users and are hoping to address it in a 
future version of Blogger.

A better approach, one taken by ri-
val blogging platforms, is not to rely 
on the user’s hard drive to serve as the 
intermediary when attempting to mi-
grate lots of data between cloud-based 
Blogging services. Instead, data lib-
eration is best provided through APIs, 
and data portability is best provided by 

lenge. An extensive photo collection, 
for example, which can easily scale into 
multiple gigabytes, can pose difficulties 
with delivery given the current transfer 
speeds of most home Internet connec-
tions. In this case, either we have a cli-
ent for the product that can sync data 
to and from the service (such as Picasa), 
or we rely on established protocols and 
APIs (for example, POP and IMAP for 
Gmail) to allow users to sync incremen-
tally or export their data.

Conclusion
Allowing users to get a copy of their 
data is just the first step on the road to 
data liberation: we have a long way to 
go to get to the point where users can 
easily move their data from one prod-
uct on the Internet to another. We look 
forward to this future, where we as en-
gineers can focus less on schlepping 
data around and more on building in-
teresting products that can compete 
on their technical merits—not by hold-
ing users hostage. Giving users control 
over their data is an important part of 
establishing user trust, and we hope  
more companies will see that if they 
want to retain their users for the long 
term, the best way to do that is by set-
ting them free. 
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building code using those APIs to per-
form cloud-to-cloud migration. These 
types of migrations require multiple 
RPCs between services to move the 
data piece by piece, and each of these 
RPCs can be retried upon failure auto-
matically without user intervention. It 
is a much better model than the one 
transaction import. It increases the 
likelihood of total success and is an 
all-around better experience for the 
user. True cloud-to-cloud portability, 
however, works only when each cloud 
provides a liberated API for all of the 
user’s data. We think cloud-to-cloud 
portability is really good for users, and 
it’s a tenet of the Data Liberation Front.

Challenges
As you have seen from these case stud-
ies, the first step on the road to data 
liberation is to decide exactly what us-
ers need to export. Once you have cov-
ered data that users have imported or 
created by themselves into your prod-
uct, it starts to get complicated. Take 
Google Docs, for example: a user clear-
ly owns a document that he or she cre-
ated, but what about a document that 
belongs to another user, then is edited 
by the user currently doing the export? 
What about documents to which the 
user has only read access? The set of 
documents the user has read access 
to may be considerably larger than the 
set of documents the user has actually 
read or opened if you take into account 
globally readable documents. Lastly, 
you have to take into account docu-
ment metadata such as access control 
lists. This is just one example, but it 
applies to any product that lets users 
share or collaborate on data.

Another important challenge to 
keep in mind involves security and 
authentication. When you are making 
it very easy and fast for users to pull 
their data out of a product, you drasti-
cally reduce the time required for an 
attacker to make off with a copy of all 
your data. This is why it’s a good idea to 
require users to re-authenticate before 
exporting sensitive data (such as their 
search history), as well as over-commu-
nicating export activity back to the user 
(for example, email notification that 
an export has occurred). We are explor-
ing these mechanisms and more as we 
continue liberating products.

Large data sets pose another chal-
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These days ,  w e  are all data pack rats. Storage is 
cheap, so if there is a chance the data could possibly 
be useful, we keep it. We know that storage isn’t 
completely reliable, so we keep backup copies as 
well. But the more data we keep, and the longer we 
keep it, the greater the chance that some of it will be 
unrecoverable when we need it. 

There is an obvious question we should 
be asking: how many copies in storage 
systems with what reliability do we 
need to get a given probability that the 
data will be recovered when we need 
it? This may be an obvious question 
to ask, but it is a surprisingly difficult 
question to answer. Let’s look at the 
reasons why. 

To be specific, let’s suppose we need 
to keep a petabyte for a century and 
have a 50% chance that every bit will 
survive undamaged. This may sound 
like a lot of data and a long time, but 
there are already data collections big-
ger than a petabyte that are important 
to keep forever. The Internet Archive is 

already multiple petabytes. 
The state of our knowledge about 

keeping bits safe can be summarized 
as: 

˲˲ The more copies, the safer. As the 
size of the data increases, the per-copy 
cost increases, reducing the number of 
backup copies that can be afforded. 

˲˲ The more independent the copies, the 
safer. As the size of the data increases, 
there are fewer affordable storage tech-
nologies. Thus, the number of copies 
in the same storage technology in-
creases, decreasing the average level of 
independence. 

˲˲ The more frequently the copies are 
audited, the safer. As the size of the data 
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increases, the time and cost needed for 
each audit to detect and repair damage 
increases, reducing their frequency.

At first glance, keeping a petabyte 
for a century is not difficult. Storage 
system manufacturers make claims 
for their products that far exceed the 
reliability we need. For example, Sun 
claimed that its ST5800 Honeycomb 
product had an MTTDL (mean time to 
data loss) of 2.4×106 years.a,41 Off-the-
shelf solutions appear so reliable that 
backups are unnecessary. Should we 
believe these claims? Where do they 
come from? 

Before using Sun’s claim for the 
ST5800 as an example, I should stipu-
late that the ST5800 was an excellent 
product. It represented the state of the 
art in storage technology, and Sun’s 
marketing claims represented the state 
of the art in storage marketing. Nev-
ertheless, Sun did not guarantee that 
data in the ST5800 would last 2.4×106 
years. Sun’s terms and conditions ex-
plicitly disclaimed any liability whatso-
ever for loss of, or damage to, the data 
the ST5800 stores40 whenever it occurs. 

a	 Numbers are expressed in powers-of-10 nota-
tion to help readers focus on the scale of the 
problems and the extraordinary level of reli-
ability required.

All that Sun was saying was if you 
watched a large number of ST5800 
systems for a long time, recorded 
the time at which each of them first 
suffered a data loss, and then aver-
aged these times, the result would be 
2.4×106 years. Suppose Sun watched 
10 ST5800s and noticed that three of 
them lost data during the first year, 
four of them lost data after 2.4×106 
years, and the remaining three lost 
data after 4.8×106 years; Sun would be 
correct that the MTTDL was 2.4×106 
years. But we would not consider a 
system with a 30% chance of data loss 

in the first year was adequate to keep 
a petabyte safe for a century. A single 
MTTDL number is not a useful charac-
terization of a solution. 

Let’s look at the slightly more 
scientific claim made at the re-
cent launch of the SC5800 by the 
marketing department of Sirius 
Cybernetics:b “SC5800 has an MTTDL 
of (2.4±0.4)×106 years.” Sirius implic-
itly assumes the failures are normally 
distributed and thus claims that about 
two-thirds of the failures would oc-
cur between 2.0×106 and 2.8×106 years 

b	 Purveyors of chatty doors, existential eleva-
tors, and paranoid androids to the nobility 
and gentry of this galaxy.1

after the start of the experiment. As 
Sirius did not start watching a batch 
of SC5800s 2.8 million years ago, how 
would they know? 

Sirius says it will sell 2×104 SC5800s 
per year at $5×104 each (a $1 billion-
a-year business), and it expects the 
product to be in the market for 10 
years. The SC5800 has a service life of 
10 years. So if Sirius watched the entire 
production of SC5800s ($1010 worth of 
storage systems) over their entire ser-
vice life, the experiment would end 
20 years from now after accumulating 
about 2×106 system-years of data. If its 
claim were correct, Sirius would have 
about a 17% chance of seeing a single 
data-loss event. 

In other words, Sirius claims the 
probability that no SC5800 will ever 
lose any data is more than 80%. Or, 
since each SC5800 stores 5×1013 bytes, 
there is an 80% probability that 1019 
bytes of data will survive 10 years un-
damaged. 

If one could believe Sirius’ claim, 
the petabyte would look pretty safe 
for a century. But even if Sirius were 
to base its claim on an actual experi-
ment, it would not provide results for 
20 years and even when it did, would 
not validate the number in question. 
In fact, claims such as those of Sun and 
Sirius are not the result of experimen-
tation at all. No feasible experiment 
could validate them. They are projec-
tions based on models of how compo-
nents of the system such as disks and 
software behave. 

Models 
The state of the art in this kind of mod-
eling is exemplified by the Pergamum 
project at UC Santa Cruz.39 Its model 
includes disk failures at rates derived 
from measurements30,35 and sector fail-
ures at rates derived from disk vendor 
specifications. This system attempts to 
conserve power by spinning the disks 
down whenever possible; it makes an 
allowance for the effect of doing so on 
disk lifetime, but it is not clear upon 
what this allowance is based. The Per-
gamum team reports that the simula-
tions were difficult: 

“This lack of data is due to the ex-
tremely high reliability of these con-
figurations—the simulator modeled 
many failures, but so few caused data 
loss that the simulation ran very slowly. P

H
OTOGRAP










H
 B

Y
 TARAN







 RAMPERSA











D



practice

november 2010  |   vol.  53  |   no.  11  |   communications of the acm     49

The more data we 
keep, and the longer 
we keep it, the 
greater the chance 
that some of it will 
be unrecoverable 
when we need it. 

This behavior is precisely what we want 
from an archival storage system: it can 
gracefully handle many failure events 
without losing data. Even though we 
captured fewer data points for the tri-
ple inter-parity configuration, we be-
lieve the reported MTTDL is a reason-
able approximation.”39

Although the Pergamum team’s ef-
fort to obtain “a reasonable approxi-
mation” to the MTTDL of its system 
is praiseworthy, there are a number of 
reasons to believe it overestimates the 
reliability of the system in practice: 

˲˲ The model draws its failures from 
exponential distributions. The team 
thus assumes that both disk and sec-
tor failures are uncorrelated, although 
all observations of actual failures5,42 
report significant correlations. Corre-
lated failures greatly increase the prob-
ability of data loss.6,13

˲˲ Other than a small reduction in 
disk lifetime from each power-on 
event, the Pergamum team assumes 
that failure rates observed in always-on 
disk usage translate to the mostly off 
environment. A study43 published after 
the Pergamum paper reports a quan-
titative accelerated life test of data re-
tention in almost-always-off disks. It 
shows that some of the 3.5-inch disks 
anticipated by the Pergamum team 
have data life dramatically worse in 
this usage mode than 2.5-inch disks 
using the same head and platter tech-
nology. 

˲˲ The team assumes that disk and 
sector failures are the only failures 
contributing to the system failures, 
although a study17 shows that other 
hardware components contribute sig-
nificantly. 

˲˲ It assumes that its software is bug-
free, despite several studies of file and 
storage implementations14,20,31 that 
uniformly report finding bugs capa-
ble of causing data loss in all systems 
studied. 

˲˲ It also ignores all other threats 
to stored data34 as possible causes of 
data loss. Among these are operator er-
ror, insider abuse, and external attack. 
Each of these has been the subject of 
anecdotal reports of actual data loss. 

What can such models tell us? 
Their results depend on both of the 
following: 

˲˲ The details of the simulation of 
the system being studied, which, one 

hopes, accurately reflect its behavior.
˲˲ The data used to drive the simu-

lation, which, one hopes, accurately 
reflects the behavior of the system’s 
components. 

Under certain conditions, it is rea-
sonable to use these models to com-
pare different storage-system technol-
ogies. The most important condition is 
that the models of the two systems use 
the same data. A claim that modeling 
showed system A to be more reliable 
than system B when the data used to 
model system A had much lower fail-
ure rates for components such as disk 
drives would not be credible. 

These models may well be the best 
tools available to evaluate different 
techniques for preventing data loss, 
but they aren’t good enough to an-
swer our question. We need to know 
the maximum rate at which data will 
be lost. The models assume things, 
such as uncorrelated errors and bug-
free software, that all real-world stud-
ies show are false. The models exclude 
most of the threats to which stored 
data is subject. In those cases where 
similar claims, such as those for disk 
reliability,30,35 have been tested, they 
have been shown to be optimistic. The 
models thus provide an estimate of the 
minimum data loss rate to be expected. 

Metrics 
Even if we believed the models, the 
MTTDL number does not tell us how 
much data was lost in the average data-
loss event. Is petabyte system A with an 
MTTDL of 106 years better than a sim-
ilar-size system B with an MTTDL of 
103 years? If the average data-loss event 
in system A loses the entire petabyte, 
where the average data-loss event in 
system B loses a kilobyte, it would be 
easy to argue that system B was 109 
times better. 

Mean time to data loss is not a use-
ful metric for how well a system stores 
bits through time, because it relates to 
time but not to bits. Nor is the UBER 
(unrecoverable bit error rate) typically 
quoted by disk manufacturers; it is the 
probability that a bit will be read in-
correctly regardless of how long it has 
been sitting on the disk. It relates to 
bits but not to time. Thus, we see that 
we lack even the metric we would need 
to answer our question. 

Let us oversimplify the problem to 
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Our inability to 
compute how many 
backup copies we 
need to achieve a 
reliability target 
is something we 
are just going to 
have to live with. 
We are not going 
to have enough 
backup copies, and 
stuff will get lost or 
damaged.

get a clearer picture. Suppose we had 
eliminated all possible sources of cor-
related data loss, from operator error 
to excess heat. All that remained would 
be bit rot, a process that randomly flips 
the bits the system stores with a con-
stant small probability per unit time. 
In this model we can treat bits as ra-
dioactive atoms, so that the time after 
which there is a 50% probability that a 
bit will have flipped is the bit half-life. 

The requirement of a 50% chance 
that a petabyte will survive for a centu-
ry translates into a bit half-life of 8×1017 
years. The current estimate of the age 
of the universe is 1.4×1010 years, so this 
is a bit half-life approximately 6×107 
times the age of the universe. 

This bit half-life requirement clearly 
shows the high degree of difficulty of 
the problem we have set for ourselves. 
Suppose we want to know whether a 
system we are thinking of buying is 
good enough to meet the 50% chance 
of keeping a petabyte for a century. 
Even if we are sublimely confident that 
every source of data loss other than 
bit rot has been totally eliminated, we 
still have to run a benchmark of the 
system’s bit half-life to confirm it is 
longer than 6×107 times the age of the 
universe. And this benchmark has to 
be complete in a year or so; it can’t take 
a century. 

So we take 103 systems just like the 
one we want to buy, write a petabyte of 
data into each so we have an exabyte of 
data altogether, wait a year, read the ex-
abyte back, and check it. If the system 
is just good enough, we might see five 
bit flips. Or, because bit rot is a random 
process, we might see more, or less. We 
would need either a lot more than an 
exabyte of data or a lot more than a year 
to be reasonably sure the bit half-life 
was long enough for the job. But even 
an exabyte of data for a year costs 10 
times as much as the system we want 
to buy. 

What this thought-experiment tells 
us is we are now dealing with such 
large numbers of bits for such a long 
time that we are never going to know 
whether the systems we use are good 
enough: 

˲˲ The known causes of data loss are 
too various and too highly correlated 
for models to produce credible projec-
tions. 

˲˲ Even if we ignore all those causes, 

the experiments that would be needed 
to be reasonably sure random bit rot 
is not significant are too expensive, or 
take too long, or both. 

Measuring Failures 
It wasn’t until 2007 that researchers 
started publishing studies of the reli-
ability that actual large-scale storage 
systems were delivering in practice. 
Enterprises such as Google9 and insti-
tutions such the Sloan Digital Sky Sur-
vey37 and the Large Hadron Collider8 
were collecting petabytes of data with 
long-term value that had to remain 
online to be useful. The annual cost 
of keeping a petabyte online was more 
than $1 million.27 It is easy to see why 
questions of the economics and reli-
ability of storage systems became the 
focus of researchers’ attention. 

Papers at the 2007 File and Storage 
Technologies (FAST) conference used 
data from NetApp35 and Google30 to 
study disk-replacement rates in large 
storage farms. They showed that the 
manufacturer’s MTTF numbers were 
optimistic. Subsequent analysis of the 
NetApp data17 showed that all other 
components contributed to the storage 
system failures and that: 

“Interestingly, [the earlier studies] 
found disks are replaced much more 
frequently (2–4 times) than vendor-
specified [replacement rates]. But as 
this study indicates, there are other 
storage subsystem failures besides 
disk failures that are treated as disk 
faults and lead to unnecessary disk re-
placements.”17

Two studies, one at CERN (European 
Organization for Nuclear Research)18 
and one using data from NetApp,5 
greatly improved on earlier work using 
data from the Internet Archive.6,36 They 
studied silent data corruption—events 
in which the content of a file in storage 
changes with no explanation or record-
ed errors—in state-of-the-art storage 
systems. 

The NetApp study looked at the in-
cidence of silent storage corruption in 
individual disks in RAID arrays. The 
data was collected over 41 months 
from NetApp’s filers in the field, cov-
ering more than 1.5×106 drives. The 
study found more than 4×105 silent 
corruption incidents. More than 3×104 
of them were not detected until RAID 
restoration and could thus have caused 
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we need to be, and thus the cost of the 
necessary replication. At small scales 
the response to this uncertainty is to 
add more replicas, but as the scale in-
creases this rapidly becomes unafford-
able. 

Replicating among identical sys-
tems is much less effective than repli-
cating among diverse systems. Iden-
tical systems are subject to common 
mode failures—for example, those 
caused by a software bug in all the sys-
tems damaging the same data in each. 
On the other hand, purchasing and op-
erating a number of identical systems 

will be considerably cheaper than oper-
ating a set of diverse systems. 

Each replica is vulnerable to loss 
and damage. Unless they are regularly 
audited they contribute little to in-
creasing bit half-life. The bandwidth 
and processing capacity needed to 
scrub the data are both costly, and add-
ing these costs increases the risk of 
failure. Custom hardware25 could com-
pute the SHA-128 checksum of a pet-
abyte of data in a month, but doing so 
requires impressive bandwidth—the 
equivalent of three gigabit Ethernet 
interfaces running at full speed the en-
tire month. User access to data in long-
term storage is typically infrequent; it 
is therefore rarely architected to pro-

data loss despite the replication and 
auditing provided by NetApp’s row-di-
agonal parity RAID.11

The CERN study used a program 
that wrote large files into CERN’s vari-
ous data stores, which represent a 
broad range of state-of-the-art enter-
prise storage systems (mostly RAID ar-
rays), and checked them over a period 
of six months. A total of about 9.7×1016 
bytes was written and about 1.92×108 
bytes were found to have suffered si-
lent corruption, of which about two-
thirds were persistent; rereading did 
not return good data. In other words, 
about 1.2×10–9 of the data written to 
CERN’s storage was permanently cor-
rupted within six months. We can place 
an upper bound on the bit half-life in 
this sample of current storage systems 
by assuming the data was written in-
stantly at the start of the six months 
and checked instantly at the end; the 
result is 2×108 or about 10–2 times the 
age of the universe. Thus, to reach the 
petabyte for a century requirement 
we would need to improve the perfor-
mance of current enterprise storage 
systems by a factor of at least 109. 

Tolerating Failures 
Despite manufacturers’ claims, cur-
rent research shows that state-of-the-
art storage systems fall so many orders 
of magnitude below our bit preserva-
tion requirements that we cannot ex-
pect even dramatic improvements in 
technology to fill the gap. Maintaining 
a single replica in a single storage sys-
tem is not an adequate solution to the 
bit preservation problem. 

Practical digital preservation sys-
tems must therefore: 

˲˲ Maintain more than one copy by 
replicating their data on multiple, ide-
ally different, storage systems. 

˲˲ Audit or (scrub) the replicas to de-
tect damage, and repair it by overwrit-
ing the known-bad copy with data from 
another. 

The more replicas and the more fre-
quently they are audited and repaired, 
the longer the bit half-life we can ex-
pect. This is, after all, the basis for the 
backups and checksums technique in 
common use. In fact, current storage 
systems already use such techniques 
internally—for example, in the form 
of RAID.29 Despite this, the bit half-life 
they deliver is inadequate. Unfortu-

nately, adding the necessary inter-stor-
age-system replication and scrubbing 
is expensive. 

Cost figures from the San Diego 
Supercomputer Centerc in 2008 show 
that maintaining a single online copy 
of a petabyte for a year costs about 
$1.05×106. A single near-line copy on 
tape costs about $4.2×105 a year. These 
costs decrease with time, albeit not as 
fast as raw disk costs. The British Li-
brary estimates a 30% per annum de-
crease. Assuming this rate continues 
for at least a decade, if you can afford 
about 3.3 times the first year’s cost to 

store an extra replica for a decade, you 
can afford to store it indefinitely. So, 
adding a second replica of a petabyte 
on disk would cost about $3.5×106 and 
on tape about $1.4×106. Adding cost to 
a preservation effort to increase reli-
ability in this way is a two-edged sword: 
doing so necessarily increases the risk 
that preservation will fail for economic 
reasons. 

Further, without detailed under-
standing of the rates at which different 
mechanisms cause loss and damage, it 
still is not possible to answer the ques-
tion we started with and to know how 
many replicas would make us as safe as 

c	 Figures for 2007 are in Moore et al.27
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vide such high-bandwidth read access. 
System cost increases rapidly with I/O 
bandwidth, and the additional access-
es to the data (whether on disk or on 
tape) needed for scrubbing themselves 
potentially increase the risk of failure. 

The point of writing software that 
reads and verifies the data-systems 
store in this way is to detect damage 
and exploit replication among systems 
to repair it, thereby increasing bit half-
life. How well can we do this? RAID is 
an example of a software technique of 
this type applied to disks. In practice, 
the CERN study18 looking at real RAID 

systems from the outside showed a 
significant rate of silent data corrup-
tion, and the NetApp study5 looking 
at them from the inside showed a sig-
nificant rate of silent disk errors that 
would lead to silent data corruption. 
A study20 of the full range of current 
algorithms used to implement RAID 
found flaws leading to potential data 
loss in all of them. Both this study, and 
another from IBM,16 propose improve-
ments to the RAID algorithms but nei-
ther claims it can eliminate silent cor-
ruption, or even accurately predict its 
incidence: 

“While we attempt to use as realistic 
probability numbers as possible, the 
goal is not to provide precise data-loss 

probabilities, but to illustrate the ad-
vantage of using a model checker, and 
discuss potential trade-offs between 
different protection schemes.”20 

Thus, although intersystem repli-
cation and scrubbing are capable of 
decreasing the incidence of data loss, 
they cannot eliminate it completely. 
And the replication and scrubbing 
software itself will contain bugs that 
can cause data loss. It must be doubt-
ful that we can implement these tech-
niques well enough to increase the bit 
half-life of systems with an affordable 
number of replicas by 109. 

Magic Media 
Considering the difficulties facing 
disk-drive technology,12 the reliabil-
ity storage systems achieve is astonish-
ing, but it clearly isn’t enough. News 
sites regularly feature stories reporting 
claims that some new storage medium 
has solved the problem of long-term 
data storage. Synthetic stone DVDs23 
claimed to last 1,000 years were a re-
cent example. These claims should be 
treated as skeptically as those of Sun 
and other storage system manufactur-
ers. It may well be that the media in 
question are more reliable than their 
competitors, but as we have seen, raw 
media reliability is only a part of the 
story. Our petabyte would be a stack 

of 2×105 stone DVDs. A lot can happen 
to a stack that big in 100 years. Truly 
magic media that are utterly reliable 
would make the problems better, but 
they would not make them go away 
completely. 

I remember magnetic bubble mem-
ory, so I have a feeling of déjà vu, but it 
is starting to look possible that flash 
memory, or possibly more exotic solid-
state technologies such as memristors 
or phase-change memory, may sup-
plant disks. There is a lot to like about 
these technologies for long-term stor-
age, but will they improve storage reli-
ability? 

Again, we don’t know the answer 
yet. Despite flash memory’s ubiquity, it 
is not even clear yet how to measure its 
UBER: 

“UBER values can be much better 
than 10−15 but UBER is a strong func-
tion of program/erase cycling and 
subsequent retention time, so UBER 
specifications must be coupled with 
maximum specifications for these 
quantities.”26 

In other words, it depends how you 
use it, which does not appear to be the 
case for disk. Flash memory used for 
long-term data storage, which is writ-
ten once and read infrequently, should 
in principle perform very well. And the 
system-level effects of switching from 
hard disk to flash can be impressive: 

“FAWN [fast array of wimpy nodes] 
couples low-power embedded CPUs to 
small amounts of local flash storage, 
and balances computation and I/O ca-
pabilities to enable efficient, massively 
parallel access to data. …FAWN clus-
ters can handle roughly 350 key-value 
queries per joule of energy—two orders 
of magnitude more than a disk-based 
system.”3 

Fast CPUs, fast RAM, and fast disks 
all use lots of power, so the low power 
draw of FAWN is not a surprise. But 
the high performance comes from an-
other aspect of disk evolution. Table 1 
shows how long it would take to read 
the whole of a state-of-the-art disk of 
various generations. 

Disks have been getting bigger but 
they have not been getting equivalently 
faster. This is to be expected; the data 
rate depends on the inverse of the 
diameter of a bit, but the capacity de-
pends on the inverse of the area of a bit. 
FAWN nodes can read their entire con- P
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Disks have been 
getting bigger but 
they have not been 
getting equivalently 
faster. This is to be 
expected; the data 
rate depends on 
the inverse of the 
diameter of a bit, 
but the capacity 
depends on the 
inverse of the area 
of a bit.

tents very quickly, useful for scrubbing, 
as well as answering queries. 

This is all encouraging, but once it 
became possible to study the behavior 
of disk storage at a large scale, it became 
clear that system-level reliability fell far 
short of the media specifications. This 
should make us cautious about pre-
dicting a revolution from flash or any 
other new storage technology. 

Economics 
Ever since Clayton Christensen pub-
lished The Innovator’s Dilemma10 it 
has been common knowledge that 
disk-drive cost per byte halves every 
two years. So you might argue that you 
don’t need to know how many copies 
you need to keep your data safe for the 
long term, you just need to know how 
many you need to keep it safe for the 
next few years. After that, you can keep 
more copies. 

In fact, what has happened is the 
capacity at constant cost has been dou-
bling every two years, which is not quite 
the same thing. As long as this expo-
nential grows faster than you generate 
new data, adding copies through time 
is a feasible strategy. 

Alas, exponential curves can be de-
ceiving. Moore’s Law has continued to 
deliver smaller and smaller transistors. 
A few years ago, however, it effectively 
ceased delivering faster and faster CPU 
clock rates. It turned out that, from a 
business perspective, there were more 
important things to spend the extra 
transistors on than making a single 
CPU faster. Like putting multiple CPUs 
on a chip. 

At a recent Library of Congress 
meeting, Dave Anderson of Seagate 
warned4 that something similar is 
about to happen to hard disks. Tech-
nologies—HAMR (heat-assisted mag-
netic recording) and BPM (bit pattern 
media)—are in place to deliver the 

2013 disk generation (that is, a con-
sumer 3.5-inch drive holding 8TB). 
But the business case for building it 
is weak. The cost of the transition to 
BPM in particular is daunting.24 Lap-
tops, netbooks, and now tablets are 
destroying the market for the desktop 
boxes that 3.5-inch drives go into. And 
very few consumers fill up the 2009 
2TB disk generation, so what value 
does having an 8TB drive add? Let 
alone the problem of how to back up 
an 8TB drive on your desk! 

What is likely to happen—indeed, 
is already happening—is that the con-
sumer market will transition rather 
quickly to 2.5-inch drives. This will 
eliminate the high-capacity $100 3.5-
inch drive, since it will no longer be 
produced in consumer quantities. 
Consumers will still buy $100 drives, 
but they will be 2.5 inches and have 
perhaps one-third the capacity. For a 
while the $/byte curve will at best flat-
ten, and more likely go up. The prob-
lem this poses is that large-scale disk 
farms are currently built from consum-
er 3.5-inch drives. The existing players 
in the market have bet heavily on the 
exponential cost decrease continuing; 
if they’re wrong, it will be disruptive. 

The Bigger Picture 
Our inability to compute how many 
backup copies we need to achieve a re-
liability target is something we are just 
going to have to live with. In practice, 
we are not going to have enough back-
up copies, and stuff will get lost or dam-
aged. This should not be a surprise, but 
somehow it is. The fact that bits can be 
copied correctly leads to an expecta-
tion that they always will be copied cor-
rectly, and then to an expectation that 
digital storage will be reliable. There is 
an odd cognitive dissonance between 
this and people’s actual experience of 
digital storage, which is that loss and 
damage are routine occurrences.22

The fact that storage is not reliable 
enough to allow us to ignore the prob-
lem of failures is just one aspect of a 
much bigger problem looming over 
computing as it continues to scale up. 
Current long-running petascale high-
performance computer applications 
require complex and expensive check-
point and restart schemes, because 
the probability of a failure during ex-
ecution is so high that restarting from 

Table 1. The time to read an entire disk of 
various generations.

1990 240 

2000 720 

2006 6450 

2009 8000 

2013 12800 
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scratch is infeasible. This approach 
will not scale to the forthcoming gen-
eration: 

“…it is anticipated that exascale 
systems will experience various kinds 
of faults many times per day. It is also 
anticipated that the current approach 
for resilience, which relies on auto-
matic or application-level checkpoint-
restart, will not work because the time 
for checkpointing and restarting will 
exceed the mean time to failure of a full 
system. … 

“Some projections estimate that, 
with the current technique, the time to 
checkpoint and restart may exceed the 
mean time to interrupt of top super-
computers before 2015. This not only 
means that a computation will do little 
progress; it also means that fault-han-
dling protocols have to handle multi-
ple errors—current solutions are often 
designed to handle single errors.”7

Just as with storage, the numbers 
of components and interconnections 
are so large that the incidence of fail-
ures is significant, and the available 
bandwidths are relatively so low that 
recovering from the failures is time 
consuming enough that multiple 
failure situations have to be handled. 
There is no practical, affordable way 
to mask the failures from the applica-
tions. Application programmers will 
need to pay much more attention to 
detecting and recovering from errors 
in their environment. To do so they 
will need both the APIs and the system 
environments implementing them to 
become much more failure-aware. 

API Enhancements 
Storage APIs are starting to move in this 
direction. Recent interfaces to storage 
services2 allow the application’s write 
call to provide not just a pointer to the 
data and a length, but also, optionally, 
the application’s message digest of the 
data. This allows the storage system 
to detect whether the data was dam-
aged during its journey from the ap-

plication to the device, or while it was 
sitting in the storage device, or being 
copied back to the application. Recent 
research has shown the memory buf-
fers44 and data paths17 between the ap-
plication and the storage devices con-
tribute substantially to errors. 

Let’s take the Amazon S3 (Simple 
Storage Service) REST API2 as an exam-
ple to show that, while these develop-
ments are welcome, they are far from 
a panacea. The PUT request supports 
an optional (and recommended) Con-
tent-MD5 (Message-Digest algorithm 
5) header containing the application’s 
digest of the data. The responses to 
most requests, including PUT, include 
an ETag (entity tag) header with the 
service’s MD5 of the object. The appli-
cation can remember the digest it com-
puted before the PUT and, when the 
PUT returns, verify that the service’s 
digest matches. 

Doing so is a wise precaution, but 
all it really tells the application is that 
the service knows what the application 
thinks is the correct digest. The service 
knows this digest, not because it com-
puted the digest of the correct data, but 
because the application provided it in 
the Content-MD5 header. A malign or 
malfunctioning service could respond 
correctly to PUT and HEAD requests by 
remembering the application’s digest, 
without ever storing the data or com-
puting its digest. 

The application could try to detect 
a malign or malfunctioning service by 
using a GET to obtain the stored data, 
computing the digest (a) of the returned 
data, and comparing that with (b) either 
the digest in the response’s ETag head-
er or the digest it computed before the 
original PUT and remembered (which 
should be the same). It might seem that 
there are two cases: if the two message 
digests match, then the data is OK;d oth-
erwise it isn’t. There are actually four 

d	 Assuming the digest algorithm has not been 
broken, not a safe assumption for MD5.19

cases, as shown in Table 2, depending 
on whether the digest (b) is unchanged 
or not. The four cases illustrate two 
problems: 

˲˲ The bits forming the digest are 
no different from the bits forming the 
data; neither is magically incorrupt-
ible. A malign or malfunctioning ser-
vice could return bad data with a di-
gest in the ETag header that matched 
the data but was not the digest origi-
nally computed. Applications need 
to know whether the digest has been 
changed. A system for doing so with-
out incorruptible storage is described 
in Haber et al.15

˲˲ Given the pricing structure for 
cloud storage services such as Ama-
zon S3, it is too expensive to extract the 
entire data at intervals to confirm it is 
being stored correctly. Some method 
in which the service computes the 
digest of the data is needed, but sim-
ply asking the service to return the 
digest of a stored object is not an ad-
equate check.33 The service must be 
challenged to prove its object is good. 
The simplest way to do this is to ask 
the service to compute the digest of 
a nonce (a random string of bits) and 
the object; because the service cannot 
predict the nonce, a correct response 
requires access to the data after the 
request is received. Systems using this 
technique are described in Maniatis et 
al.21 and Shah et al.38 

Early detection is a good thing: 
the shorter the time between detec-
tion and repair, the smaller the risk 
that a second error will compromise 
the repair. But detection is only part 
of the solution; the system also has to 
be able to repair the damaged data. It 
can do so only if it has replicated the 
data elsewhere—and some dedupli-
cation layer has not optimized away 
this replication. 

Conclusion 
It would be nice to end on an upbeat 
note, describing some technological 
fix that would allow applications to ig-
nore the possibility of failures in their 
environment, and specifically in long-
term storage. Unfortunately, in the real 
world, failures are inevitable. As sys-
tems scale up, failures become more 
frequent. Even throwing money at the 
problem can only reduce the incidence 
of failures, not exclude them entirely. 

Table 2. The four cases of message digest comparison.

Digest Match No Match

Unchanged Data OK Data bad

Changed Deliberate alteration Data and/or digest bad
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Applications in the future will need to 
be much more aware of, and careful in 
responding to, failures. 

The high-performance computing 
community accurately describes what 
needs to be done: 

“We already mentioned the lack of 
coordination between software layers 
with regards to errors and fault man-
agement. Currently, when a software 
layer or component detects a fault it 
does not inform the other parts of the 
software running on the system in a 
consistent manner. As a consequence, 
fault-handling actions taken by this 
software component are hidden to the 
rest of the system. …In an ideal wor[l]
d, if a software component detects a 
potential error, then the information 
should propagate to other compo-
nents that may be affected by the error 
or that control resources that may be 
responsible for the error.”7 

In particular, as regards storage, 
APIs should copy Amazon’s S3 by pro-
viding optional data-integrity capabili-
ties that allow applications to perform 
end-to-end checks. These APIs should 
be enhanced to allow the application 
to provide an optional nonce that is 
prepended to the object data before 
the message digest reported to the ap-
plication is computed. This would al-
low applications to exclude the possi-
bility that the reported digest has been 
remembered rather than recomputed. 
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To move forward with programming  
languages we must first break free from  
the tyranny of ASCII.

by Poul-Henning Kamp

me I have a tough row to hoe, but I will 
attempt to argue that this time Pike is 
merely rearranging the deckchairs of 
the Titanic and that he missed the next 
big thing by a wide margin.

Pike got fed up with C++ and Java 
and did what any self-respecting hacker 
would do: he created his own language—
better than Java, better than C++, better 
than C—and he called it Go.

But did he go far enough? 
The Go language does not in any way 

look substantially different from any 
of the other programming languages. 
Fiddle a couple of glyphs here and there 
and you have C, C++, Java, Python, Tcl, or 
whatever.

Programmers are a picky bunch 
when it comes to syntax, and it is a so-
bering thought that one of the most rap-
idly adopted programming languages 
of all time, Perl, barely had one for the 
longest time. Ironically, what syntax de-
signers are really fighting about is not so 
much the proper and best syntax for the 
expression of ideas in a machine-under-
standable programming language as it 
is the proper and most efficient use of 
the ASCII table real estate.

It’s all ASCII to me…
There used to be a programming lan-
guage called ALGOL, the lingua franca 
of computer science back in its heyday. 
ALGOL was standardized around 1960 
and dictated about a dozen mathemat-
ical glyphs such as ×, ÷, ¬, and the very 
readable subscripted 10 symbol, for 
use in what today we call scientific no-
tation. Back then computers were built 
by hand and had one-digit serial num-
bers. Having a teletypewriter custom-
ized for your programming language 
was the least of your worries.

A couple of years later came the APL 
programming language, which includ-
ed an extended character set containing 
a lot of math symbols. I am told that APL 
still survives in certain obscure corners 
of insurance and economics modeling.

Then ASCII happened around 1963, 
and ever since, programming languages 
have been trying to fit into it. (Wikipedia 
claims that ASCII grew the backslash [\] 

One o f the  naughty details of my Varnish software 
is that the configuration is written in a domain-
specific language that is converted into C source 
code, compiled into a shared library, and executed 
at hardware speed. That obviously makes me a 
programming language syntax designer, and just as 
obviously I have started to think more about how we 
express ourselves in these syntaxes.

Rob Pike recently said some very pointed words 
about the Java programming language, which if you 
think about it, sounded a lot like the pointed words 
James Gosling had for C++, and remarkably similar to 
what Bjarne Stroustrup said about good ol’ C.

I have always admired Pike. He was already a giant in 
the field when I started, and his ability to foretell the 
future has been remarkably consistent.1 In front of 

Sir, Please 
Step Away 
from the  
ASR-33!

http://queue.acm.org
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specifically to support ALGOL’s /\ and \/ 
Boolean operators. No source is provid-
ed for the claim.)

The trouble probably started for real 
with the C programming language’s 
need for two kinds of and and or op-
erators. It could have used just or and 
bitor, but | and || saved one and three 
characters, which on an ASR-33 teletype 
amounts to 1/10 and 3/10 second, re-
spectively.

It was certainly a fair trade-off—just 
think about how fast you type yourself—
but the price for this temporal frugality 
was a whole new class of hard-to-spot 
bugs in C code.

Niklaus Wirth tried to undo some of 
the damage in Pascal, and the bickering 
over begin and end would no } take.

C++ is probably the language that 
milks the ASCII table most by allow-
ing templates and operator overload-
ing. Until you have inspected your data 
types, you have absolutely no idea what 
+ might do to them (which is probably 
why there never was enough interest to 
stage an International Obfuscated C++ 
Code Contest, parallel to the IOCCC for 
the C language).

C++ stops short of allowing the pro-
grammer to create new operators. You 
cannot define :-: as an operator; you have 
to stick to the predefined set. If Bjarne 
Stroustrup had been more ambitious on 
this aspect, C++ could have beaten Perl 
by 10 years to become the world’s sec-
ond write-only programming language, 
after APL.

How desperate the hunt for glyphs is 
in syntax design is exemplified by how 
Guido van Rossum did away with the 
canonical scope delimiters in Python, 
relying instead on indentation for this 
purpose. What could possibly be of such 
high value that a syntax designer would 
brave the controversy this caused? A 
high-value pair of matching glyphs, { 
and }, for other use in his syntax could. 
(This decision also made it impossible 
to write Fortran programs in Python, a 
laudable achievement in its own right.)

The best example of what happens 
if you do the opposite is John Ouster-
hout’s Tcl programming language. De-

spite all its desirable properties—such 
as being created as a language to be 
embedded in tools—it has been widely 
spurned, often with arguments about 
excessive use of, or difficult-to-figure-
out placement of, {} and [].

My disappointment with Rob Pike’s 
Go language is that the rest of the 
world has moved on from ASCII, but 
he did not. Why keep trying to cram an 
expressive syntax into the straitjacket 
of the 95 glyphs of ASCII when Unicode 
has been the new black for most of the 
past decade?

Unicode has the entire gamut of 
Greek letters, mathematical and techni-
cal symbols, brackets, brockets, sprock-
ets, and weird and wonderful glyphs 
such as “Dentistry symbol light down 
and horizontal with wave” (0x23c7). Why 
do we still have to name variables Ome-
gaZero when our computers now know 
how to render 0x03a9+0x2080 properly?

The most recent programming lan-
guage syntax development that had 
anything to do with character sets apart 
from ASCII was when the ISO-C stan-
dard committee adopted trigraphs to 
make it possible to enter C source code 
on computers that do not have ASCII’s 
95 characters available—a bold and de-
cisive step in the wrong direction.

While we are at it, have you noticed 
that screens are getting wider and wider 
these days, and that today’s text pro-
cessing programs have absolutely no 
problem with multiple columns, insert 
displays, and hanging enclosures being 
placed in that space?

But programs are still decisively ver-
tical, to the point of being horizontally 
challenged. Why can’t we pull minor 
scopes and subroutines out in that 
right-hand space and thus make them 

supportive to the understanding of the 
main body of code?

And need I remind anybody that you 
cannot buy a monochrome screen any-
more?  Syntax-coloring editors are the 
default. Why not make color part of the 
syntax? Why not tell the compiler about 
protected code regions by putting them 
on a framed light gray background? Or 
provide hints about likely and unlikely 
code paths with a green or red back-
ground tint?

For some reason computer people 
are so conservative we still find it more 
uncompromisingly important for our 
source code to be compatible with a Tele-
type ASR-33 terminal and its 1963-vin-
tage ASCII table than it is for us to be 
able to express our intentions clearly.

And, yes, me too: I wrote this in vi(1), 
which is why the article does not have 
all the fancy Unicode glyphs in the first 
place.	
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For workloads with abundant parallelism, 
GPUs deliver higher peak computational 
throughput than latency-oriented CPUs.

by Michael Garland and David B. Kirk

NVIDIA’s graphics processing units, or 
GPUs, follow in the footsteps of earlier 
throughput-oriented processor designs 
but have achieved far broader use in 
commodity machines. Broadly speak-
ing, they focus on executing parallel 
workloads while attempting to maxi-
mize total throughput, even though 
sacrificing the serial performance of a 
single task may be required. Though 
improving total throughput at the ex-
pense of increased latency on individual 
tasks is not always a desirable trade-off, 
it is unquestionably the right design de-
cision in many problem domains that 
rely on parallel computations, includ-
ing real-time computer graphics, video 
processing, medical-image analysis, 
molecular dynamics, astrophysical sim-
ulation, and gene sequencing. 

Modern GPUs are fully programma-
ble and designed to meet the needs of a 
problem domain—real-time computer 
graphics—with tremendous inherent 
parallelism. Furthermore, real-time 
graphics places a premium on the to-
tal amount of work that can be accom-
plished within the span of a single frame 
(typically lasting 1/30 second). Due to 
their historical development, GPUs have 
evolved as exemplars of throughput-
oriented processor architecture. Their 
emphasis on throughput optimiza-
tion and their expectation of abundant 
available parallelism is more aggressive 
than many other throughput-oriented 
architectures. They are also widely avail-
able and easily programmable. NVIDIA 

Mu ch has been  written about the transition of 
commodity microprocessors from single-core to 
multicore chips, a trend most apparent in CPU 
processor families. Commodity PCs are now typically 
built with CPUs containing from two to eight cores, 
with even higher core counts on the horizon. These 
chips aim to deliver higher performance by exploiting 
modestly parallel workloads arising from either the 
need to execute multiple independent programs 
or individual programs that themselves consist of 
multiple parallel tasks, yet maintain the same level 
of performance as single-core chips on sequential 
workloads. 

A related architectural trend is the growing 
prominence of throughput-oriented microprocessor 
architectures. Processors like Sun’s Niagara and 

 key insights

 � �Throughput-oriented processors 
tackle problems where parallelism is 
abundant, yielding design decisions 
different from more traditional latency-
oriented processors. 

 � �Due to their design, programming 
throughput-oriented processors 
requires much more emphasis on 
parallelism and scalability than 
programming sequential processors. 

 � �GPUs are the leading exemplars 
of modern throughput-oriented 
architecture, providing a ubiquitous 
commodity platform for exploring 
throughput-oriented programming. 
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released its first GPU supporting the 
CUDA parallel computing architecture 
in 2006 and is currently shipping its 
third-generation CUDA architecture, 
code-named “Fermi,”24 released in 2010 
in the Tesla C2050 and other processors. 

Figure 1 is a nucleosome structure 
(with 25,095 atoms) used in bench-
marking the AMBER suite of molecular 
dynamics simulation programs. Many 
core computations performed in molec-
ular dynamics are intrinsically parallel, 

and AMBER recently added CUDA-ac-
celerated computations (http://am-
bermd.org/gpus/). Its Generalized Born 
implicit solvent calculation for this sys-
tem running on the eight cores of a dual 
four-core Intel Xeon E5462 executes at a 
rate of 0.06 nanoseconds of simulation 
time per day of computation. The same 
calculation running on an NVIDIA Tesla 
C2050 executes the simulation at a rate 
of 1.04 ns/day, roughly 144 times more 
work per day than a single sequential 

core and just over 17 times the through-
put of all eight cores. 

Using the GPU as a case study, this 
article explores the fundamental archi-
tectural design decisions differentiating 
throughput-oriented processors from 
their more traditional latency-oriented 
counterparts. These architectural differ-
ences also lead to an approach to paral-
lel programming that is qualitatively dif-
ferent from the parallel thread models 
prevalent on today’s CPUs. 

Figure 1. Throughput-oriented processors like the NVIDIA Tesla C2050 deliver substantially higher performance on intrinsically parallel 
computations, including molecular dynamics simulations. 

http://ambermd.org/gpus/
http://ambermd.org/gpus/
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Throughput-Oriented Processors
Two fundamental measures of proces-
sor performance are task latency (time 
elapsed between initiation and comple-
tion of some task) and throughput (to-
tal amount of work completed per unit 
time). Processor architects make many 
carefully calibrated trade-offs between 
latency and throughput optimization, 
since improving one could degrade the 
other. Real-world processors tend to em-
phasize one over the other, depending 
on the workloads they are expected to 
encounter. 

Traditional scalar microprocessors 
are essentially latency-oriented archi-
tectures. Their goal is to minimize the 
running time of a single sequential 
program by avoiding task-level latency 
whenever possible. Many architectural 
techniques, including out-of-order 
execution, speculative execution, and 
sophisticated memory caches, have 
been developed to help achieve it. This 
traditional design approach is predi-
cated on the conservative assumption 
that the parallelism available in the 
workload presented to the processor is 
fundamentally scarce. Single-core sca-
lar CPUs typified by the Intel Pentium 
IV were aggressively latency-oriented. 
More recent multicore CPUs (such as 
the Intel Core2 Duo and Core i7) re-
flect a trend toward somewhat less-ag-
gressive designs that expect a modest 
amount of parallelism. 

Throughput-oriented processors, 
in contrast, arise from the assumption 
that they will be presented with work-
loads in which parallelism is abundant. 
This fundamental difference leads to 
architectures that differ from tradition-
al sequential machines. Broadly speak-
ing, throughput-oriented processors 
rely on three key architectural features: 
emphasis on many simple processing 
cores, extensive hardware multithread-
ing, and use of single-instruction, mul-
tiple-data, or SIMD, execution. Aggres-
sively throughput-oriented processors, 
exemplified by the GPU, willingly sacri-
fice single-thread execution speed to in-
crease total computational throughput 
across all threads. 

No successful processor can afford 
to optimize aggregate task throughput 
while completely ignoring single-task la-
tency or vice versa. Different processors 
may also vary in the degree they empha-
size one over the other; for instance, in-

dividual throughput-oriented architec-
tures may not use all three architectural 
features just listed. Also worth noting is 
that several architectural strategies, in-
cluding pipelining, multiple issue, and 
out-of-order execution, avoid task-level 
latency by improving instruction-level 
throughput. 

Hardware multithreading. A compu-
tation in which parallelism is abundant 
can be decomposed into a collection of 
concurrent sequential tasks that may 
potentially be executed in parallel, or 
simultaneously, across many threads. 
We view a thread as a virtualized sca-
lar processor, typically meaning each 
thread has a program counter, register 
file, and associated processor state. A 
thread is thus able to execute the in-
struction stream corresponding to a 
single sequential task. Note this model 
of threads says nothing about the way 
concurrent threads are scheduled; for 
instance, whether they are scheduled 
fairly (any thread ready to run is eventu-
ally executed) is a separate issue. 

It is well known that multithread-
ing, whether in hardware31 or software,4 
provides a way of tolerating latency. If a 
given thread is prevented from running 
because it is waiting for an instruction to 
make its way through a pipelined func-
tional unit, data to arrive from external 
DRAM or some other event, a multi-
threaded system can allow another un-
blocked thread to run. That is, the long-
latency operations of a single thread can 
be hidden or covered by ready-to-run 
work from another thread. This focus 
on tolerating latency, where processor 
utilization does not suffer simply be-
cause a fraction of the active threads are 
blocked, is a hallmark of throughput-
oriented processors. 

Hardware multithreading as a de-
sign strategy for improving aggregate 
performance on parallel workloads has 
a long history. The peripheral proces-
sors of the Control Data Corp. CDC 6600 
developed in the 1960s and the Het-
erogeneous Element Processor (HEP) 
system28 developed in the late 1970s 
are notable examples of the early use of 
hardware multithreading. Many more 
multithreaded processors have been 
designed over the years31; for example, 
the Tera,1,2 Sun Niagara,18 and NVIDIA 
GPU22 architectures all use aggres-
sive multithreading to achieve high-
throughput performance on parallel 

workloads, all with interleaved multi-
threading.21 Each is capable of switch-
ing between threads at each cycle. Thus 
the execution of threads is interleaved at 
extremely fine granularity, often at the 
instruction level. 

Blocking multithreading is a coarser-
grain strategy in which a thread might 
run uninterrupted until encountering a 
long-latency operation, at which point 
a different thread is selected for execu-
tion. The streaming processors Imag-
ine,16 Merrimac,9 and SPI Storm17 are 
notable examples of throughput-orient-
ed architectures adopting this strategy. 
These machines explicitly partition pro-
grams into bulk load/store operations 
on entire data blocks and “kernel” tasks 
in which memory accesses are restrict-
ed to on-chip blocks loaded on their 
behalf. When a kernel finishes process-
ing its on-chip data, a different task in 
which required memory blocks have 
been loaded onto the chip is executed. 
Overlapping the bulk data transfer for 
one or more tasks while another is ex-
ecuting hides memory-access latency. 
Strategic placement of kernel bound-
aries where context switches occur can 
also substantially reduce the amount 
of state that must be retained between 
task executions. 

A third strategy called simultane-
ous multithreading30 allows different 
threads to simultaneously issue instruc-
tions to independent functional units 
and is used to improve the efficiency 
of superscalar sequential processors 
without having to find instruction-level 
parallelism within a single thread. It is 
likewise used by NVIDIA’s Fermi archi-
tecture24 in place of intra-thread dual is-
sue to achieve higher utilization. 

The design of the HEP,28 Tera,2 and 
NVIDIA G8022 processors highlights 
an instructive characteristic of some 
throughput-oriented processors: none 
provides a traditional cache for load/
store operations on external memory, 
unlike latency-oriented processors 
(such as typical CPUs) that expend 
substantial chip area on sophisticated 
cache subsystems. These machines are 
able to achieve high throughput in the 
absence of caches because they assume 
there is sufficient parallel work available 
to hide the latency of off-chip memory 
accesses. Unlike previous NVIDIA pro-
cessors, the Fermi architecture provides 
a cache hierarchy for external memory 
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accesses but still relies on extensive 
multithreading for latency tolerance. 

Many simple processing units. The 
high transistor density in modern semi-
conductor technologies makes it feasi-
ble for a single chip to contain multiple 
processing units, raising the question of 
how to use the available area on the chip 
to achieve optimal performance: one 
very large processor, a handful of large 
processors, or many small processors? 

Designing increasingly large single-
processor chips is unattractive.6 The 
strategies used to obtain progressively 
higher scalar performance (such as 
out-of-order execution and aggres-
sive speculation) come at the price of 
rapidly increasing power consump-
tion; incremental performance gains 
incur increasingly large power costs.15 
Thus, while increasing the power con-
sumption of a single-threaded core is 
physically possible, the potential perfor-
mance improvement from more aggres-
sive speculation appears insignificant 
by comparison. This analysis has led to 
an industrywide transition toward mul-
ticore chips, though their designs re-
main fundamentally latency-oriented. 
Individual cores maintain roughly com-
parable scalar performance to earlier 
generations of single-core chips. 

Throughput-oriented processors 
achieve even higher levels of perfor-
mance by using many simple, and hence 
small, processing cores.10 The individu-
al processing units of a throughput-ori-
ented chip typically execute instructions 
in the order they appear in the program, 
rather than trying to dynamically reor-
der instructions for out-of-order execu-
tion. They also generally avoid specula-
tive execution and branch prediction. 
These architectural simplifications of-
ten reduce the speed with which a sin-
gle thread completes its computation. 
However, the resulting savings in chip 
area allow for more parallel processing 
units and correspondingly higher total 
throughput on parallel workloads. 

SIMD execution. Parallel processors 
frequently employ some form of single-
instruction, multiple-data, or SIMD, 
execution12 to improve their aggregate 
throughput. Issuing a single instruction 
in a SIMD machine applies the given 
operation to potentially many data op-
erands; SIMD addition might, for ex-
ample, perform pairwise addition of two 
64-element sequences. As with multi-

threading, SIMD execution has a long 
history dating to at least the 1960s. 

Most SIMD machines can be classi-
fied into two basic categories. First is 
the SIMD processor array, typified by the 
ILLIAC IV developed at the University of 
Illinois,7 the Thinking Machines CM-2,29 
and the MasPar Computer Corp. MP-1.5 
All consisted of a large array of process-
ing elements (hundreds or thousands) 
and a single control unit that would 
consume a single instruction stream. 
The control unit would broadcast each 
instruction to all processing elements 
that would then execute the instruction 
in parallel. 

The second category is the vector 
processor, exemplified by the Cray-125 
and numerous other machines11 that 
augment a traditional scalar instruc-
tion set with additional vector instruc-
tions operating on data vectors of some 
fixed width—64-element vectors in the 
Cray-1 and four-element vectors in the 
most current vector extensions (such as 
the x86 Streaming SIMD Extensions, or 
SSE). The operation of a vector instruc-
tion, like vector addition, may be per-
formed in a pipelined fashion (as on the 
Cray-1) or in parallel (as in current SSE 
implementations). Several modern pro-
cessor families, including x86 proces-
sors from Intel and AMD and the ARM 
Cortex-A series, provide vector SIMD 
instructions that operate in parallel 
on 128-bit (such as four 32-bit integer) 
values. Programmable GPUs have long 
made aggressive use of SIMD; current 
NVIDIA GPUs have a SIMD width of 32. 
Many recent research designs, includ-
ing the Vector IRAM,19 SCALE,20 and 
Imagine and Merrimac streaming pro-
cessors,9,16 have also used SIMD archi-
tectures to improve efficiency. 

SIMD execution is attractive because, 
among other things, it increases the 
amount of resources that can be devot-
ed to functional units rather than con-
trol logic. For instance, 32 floating-point 
arithmetic units coupled with a single 
control unit takes less chip area than 
32 arithmetic units with 32 separate 
control units. The desire to amortize 
the cost of control logic over numerous 
functional units was the key motivating 
factor behind even the earliest SIMD 
machines.7 

However, devoting less space to con-
trol comes at a cost. SIMD execution de-
livers peak performance when parallel 

Aggressively 
throughput-oriented 
processors, 
exemplified  
by the GPU,  
willingly sacrifice  
single-thread 
execution speed 
to increase total 
computational 
throughput across 
all threads. 
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tasks follow the same execution trace 
and can suffer when heterogeneous 
tasks follow completely different ex-
ecution traces. The effi ciency of SIMD 
architectures depends on the availabil-
ity of suffi cient amounts of uniform 
work. In practice, suffi cient uniformity 
is often present in abundantly parallel 
workloads, since it is more likely that 
a pool of 10,000 concurrent tasks con-
sists of a small number of task types 
rather than 10,000 completely dispa-
rate computations. 

GPus 
Programmable GPUs are the leading ex-
emplars of aggressively throughput-ori-
ented processors, taking the emphasis 
on throughput further than the vast ma-
jority of other processors and thus offer-
ing tremendous potential performance 
on massively parallel problems.13 

Historical perspective. Modern GPUs 
have evolved according to the needs of 
real-time computer graphics, two as-
pects of which are of particular impor-
tance to understanding the develop-
ment of GPU designs: it is an extremely 
parallel problem, and throughput is its 
paramount measure of performance. 

Visual applications generally model 
the environments they display through a 
collection of geometric primitives, with 
triangles the most common. The most 
widely used techniques for producing 
images from these primitives proceed 
through several stages where processing 
is performed on each triangle, triangle 
corner, and pixel covered by a triangle. 
At each stage, individual triangles/
vertices/pixels can be processed inde-
pendently of all others. An individual 

scene can easily paint millions of pixels 
at a time, thus generating a great deal 
of completely parallel work. Further-
more, processing an element generally 
involves launching a thread to execute 
a program—usually called a shader—
written by the developer. Consequently, 
GPUs are specifi cally designed to ex-
ecute literally billions of small user-writ-
ten programs per second. 

Most real-time visual applications 
are designed to run at a rate of 30–60 
frames per second. A graphics system is 
therefore expected to generate, render, 
and display images of visually complex 
worlds within 33ms. Since it must com-
plete many millions of independent 
tasks within this timeframe, the time 
to complete any one of these tasks is 
relatively unimportant. But the total 
amount of work that can be completed 
within 33ms is of great importance, as 
it is generally closely correlated with the 
visual richness of the environment be-
ing displayed. 

Their role in accelerating real-time 
graphics has also made it possible for 
GPUs to become mass-market devices, 
and, unlike many earlier throughput-
oriented machines, they are also widely 
available. Since late 2006, NVIDIA has 
shipped almost 220 million CUDA-capa-
ble GPUs—several orders of magnitude 
more than historical massively parallel 
architectures like the CM-2 and MasPar 
machines. 

NVIDIA GPU architecture. Beginning 
with the G80 processor released in late 
2006, all modern NVIDIA GPUs sup-
port the CUDA architecture for parallel 
computing. They are built around an 
array of multiprocessors, referred to as 

streaming multiprocessors, or SMs.22,24

Figure 2 diagrams a representative 
Fermi-generation GPU like the GF100 
processor used in the Tesla C2050. Each 
multiprocessor supports on the order of 
a thousand co-resident threads and is 
equipped with a large register fi le, giv-
ing each thread its own dedicated set 
of registers. A high-end GPU with many 
SMs can thus sustain tens of thousands 
of threads simultaneously. Multiproces-
sors contain many scalar processing 
elements that execute the instructions 
issued by the running threads. Each 
multiprocessor also contains high-
bandwidth, low-latency on-chip shared 
memory, while at the same time provid-
ing its threads with direct read/write ac-
cess to off-chip DRAM. The Fermi archi-
tecture can confi gure its 64KB of per-SM 
memory as either a 16KB L1 cache and 
48KB RAM or a 48KB L1 cache and 16KB 
RAM. It also provides a global 768KB L2 
cache shared by all SMs. The table here 
summarizes the capacity of a single SM 
for the three generations of NVIDIA CU-
DA-capable GPUs. 

The SM multiprocessor handles all 
thread creation, resource allocation, 
and scheduling in hardware, inter-
leaving the execution of threads at the 
instruction-level with essentially zero 
overhead. Allocation of dedicated regis-
ters to all active threads means there is 
no state to save/restore when switching 
between threads. With all thread man-
agement performed in hardware, the 
cost of employing many threads is mini-
mal. For example, a Tesla C2050 execut-
ing the increment() kernel in Figure 3 
will create, execute, and retire threads at 
a rate of roughly 13 billion threads/sec. 

figure 2. nViDia GPu consisting of an array of multithreaded multiprocessors. 
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To manage its large population of 
threads efficiently, the GPU employs 
a single-instruction, multiple-thread, 
or SIMT, architecture in which threads 
resident on a single SM are executed in 
groups of 32, called warps, each execut-
ing a single instruction at a time across 
all its threads. Warps are the basic unit 
of thread scheduling, and in any given 
cycle the SM is free to issue an instruc-
tion from any runnable warp. The 
threads of a warp are free to follow their 
own execution path, and all such execu-
tion divergence is handled automatical-
ly in hardware. However, it is obviously 
more efficient for threads to follow the 
same execution path for the bulk of the 
computation. Different warps may fol-
low different execution paths without 
penalty. 

While SIMT architectures share 
many performance characteristics with 
SIMD vector machines, they are, from 
the programmer’s perspective, quali-
tatively different. Vector machines are 
typically programmed with either vector 
intrinsics explicitly operating on vectors 
of some fixed width or compiler auto-
vectorization of loops. In contrast, SIMT 
machines are programmed by writing a 
scalar program describing the action of 
a single thread. A SIMT machine implic-
itly executes groups of independent sca-
lar threads in a SIMD fashion, whereas a 
vector machine explicitly encodes SIMD 
execution in the vector operations in the 
instruction stream it is given. 

CUDA programming model. The CUDA 
programming model23,26 provides a 
minimalist set of abstractions for par-
allel programming on massively multi-
threaded architectures like the NVIDIA 
GPU. A CUDA program is organized into 
one or more threads executing on a host 
processor and one or more parallel ker-
nels that can be executed by the host 
thread(s) on a parallel device. 

Individual kernels execute a scalar 
sequential program across a set of par-
allel threads. The programmer orga-
nizes the kernel’s threads into thread 
blocks, specifying for each kernel 
launch the number of blocks and num-
ber of threads per block to be created. 
CUDA kernels are thus similar in style 
to a blocked form of the familiar sin-
gle-program, multiple-data, or SPMD, 
paradigm. However, CUDA is somewhat 
more flexible than most SPMD sys-
tems in that the host program is free to 

customize the number of threads and 
blocks launched for a particular kernel 
at each invocation. A thread block is a 
group of parallel threads that may syn-
chronize with one another at a per-block 
barrier and communicate among them-
selves through per-block shared mem-
ory. Threads from different blocks may 
coordinate with one another via atomic 
operations on variables in the global 
memory space visible to all threads. 
There is an implicit barrier between suc-
cessive dependent kernels launched by 
the host program. 

The NVIDIA CUDA Toolkit (http://
www.nvidia.com/cuda) includes a C 
compiler equipped with a small set of 
language extensions for writing CUDA 
programs. Figure 3 sketches a simple 
CUDA program fragment illustrating 
these extensions. The    global    modifi-
er indicates the increment() function 
is a kernel entry point and may be called 
only when launching a kernel. Unmodi-
fied functions and those functions ex-
plicitly marked    host    are normal C 
functions. The host program launches 
kernels using the function-call-like 
syntax increment<<<B, T>>>(...), 

indicating the function increment() 
will be launched in parallel across B 
blocks of T threads each. The blocks 
of a kernel are numbered using two-di-
mensional indices visible to the kernel 
as the special variables blockIdx.x 
and blockIdx.y, ranging from 0 to 
gridDim.x-1 and gridDim.y-1, 
respectively. Similarly, the threads 
of a block are numbered with three-
dimensional indices threadIdx.x, 
threadIdx.y, threadIdx.z; the ex-
tent of the block in each dimension is 
given by blockDim.x, blockDim.y, 
and blockDim.z. 

The function parallel _ incre-
ment() accepts an array x of n elements 
and launches a parallel kernel with 
at least one thread for each element 
organized into blocks of 256 threads 
each. Since the data in the example is 
one-dimensional, the code in Figure 
3 uses one-dimensional indices. Also, 
since every thread in this computation 
is completely independent, deciding to 
use 256 threads per block in our imple-
mentation was largely arbitrary. Every 
thread of the kernel computes a globally 
unique index i from its local thread-

Capacity of each SM over three GPU generations.

G8x/G9x  GT2xx  GF100

Registers (32-bit) 8192 16384 32768

Co-resident threads 768 1024 1536

Independent warps  24 32 48

Shared memory (KB) 16 16 48/16

L1 cache (KB)      — — 16/48

L2 cache (KB per chip) — — 768

Figure 3. Trivial CUDA C kernel for incrementing each element of an array. 

__global__ void increment(float *x, int n)
{
    // Each thread will process 1 element, which
    // is determined from the thread’s index.
    int i = blockIdx.x*blockDim.x + threadIdx.x;

    if( i<n )  x[i] = x[i] + 1;
}

__host__ void parallel_increment(float *x, int n)
{
    // Launch increment() kernel with 1 thread
    // per element, grouped into ⎡n/256⎤ blocks
    // of 256 threads each.
    increment<<<ceil(n/256), 256>>>(x, n);
}

http://www.nvidia.com/cuda
http://www.nvidia.com/cuda
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Idx and the blockIdx of its block. It 
increments the value of xi by 1 if i < n—a 
conditional check required since n need 
not be a multiple of 256. 

Throughput-Oriented Programming 
Scalability is the programmer’s central 
concern in designing efficient algo-
rithms for throughput-oriented ma-
chines. Today’s architectural trends 
clearly favor increasing parallelism, and 
effective algorithmic techniques must 
scale with hardware parallelism. Some 
techniques suitable for four parallel 
threads may be entirely unsuitable for 
4,000 parallel threads. Running thou-
sands of threads at a time, GPUs are a 
powerful platform for exploring scalable 
algorithms and a leading indicator for 
algorithm design on future throughput-
oriented architectures. 

Abundant parallelism. Throughput-
oriented programs must expose sub-
stantial amounts of fine-grain parallel-
ism, fulfilling the expectations of the 
architecture. Exploiting multicore CPUs 
obviously requires exposing parallel-
ism as well, but a programmer’s mental 
model of parallelism on a throughput-
oriented processor is qualitatively dif-
ferent from multicore. A four-core CPU 
can be fully utilized by four to eight 
threads. Thread creation and schedul-
ing are computationally heavyweight, 
since they can involve the saving and 
restoration of processor state and rela-
tively expensive calls to the operating 
system kernel. In contrast, a GPU typi-
cally requires thousands of threads to 
cover memory latency and reach full 
utilization, while thread scheduling is 
essentially without cost. 

Consider computing the product 
y=Ax, where A is a n×n matrix, and x is an 
n-element vector. For sparse problems, 
because the vast majority of matrix en-
tries is 0, A is best represented using a 
data structure that stores only its non-
zero elements. The algorithm for sparse 
matrix-vector multiplication (SpMV) 
would look like this: 

procedure spmv(y, A, x):
   for each row i:
    y[i] = 0
     for each non-zero column 
j:
      y[i] += A[i,j] * x[j]

Since each row is processed indepen-

dently, a simple CUDA implementation 
would assign a separate thread to each 
row. For large matrices, this could eas-
ily expose millions of threads of paral-
lelism. However, for smaller matrices 
with only a few thousand rows, this level 
of parallelism might be insufficient, so 
an efficient implementation could in-
stead assign multiple threads to process 
each row. In the most extreme case, each 
non-zero element could be assigned to a 
separate thread. 

Figure 4 plots an experiment mea-
suring the performance of three differ-
ent parallel granularities: one thread/
row, 32 threads/row, and one thread/
non-zero.3 These tests use synthetic ma-
trices with a constant number of entries 
distributed across a variable number of 
rows ranging from one row with four 
million entries on the left to four mil-
lion rows of one entry each on the right. 
The maximal parallelism resulting from 
assigning one thread per non-zero ele-
ment yields the most efficient imple-
mentation when there are few rows 
but suffers from lower absolute perfor-
mance due to its need for inter-thread 
synchronization. For intermediate row 
counts, assigning 32 threads per row is 
the best solution, while assigning one 
thread per row is best when the number 
of rows is sufficiently large. 

Calculation is cheap. Computation 
generally costs considerably less than 
memory transfers, particularly external 
memory transfers that frequently re-
quire hundreds of cycles to complete. 
The fact that the cost of memory access 
has continued to increase and is now 
quite high relative to the cost of compu-
tation is often referred to as the “mem-
ory wall.” The energy required to move 
data between the chip and external 
DRAM is also far higher than required to 
operate an on-chip functional unit. In a 
45nm process, a 64-bit integer addition 
unit expends roughly 1pJ (picojoule), 
and a 64-bit floating point fused multi-
ply add, or FMA, unit requires around 
100pJ. In contrast, reading a 64-bit value 
from external DRAM requires on the or-
der of 2,000pJ.8 

The high relative cost of access-
ing memory affects both latency and 
throughput-oriented processors, since 
the cost is the result of the physical prop-
erties of semiconductor technology. 
However, the performance consequenc-
es of external memory references for 

GPUs are 
specifically 
designed to  
execute literally 
billions of small  
user-written 
programs  
per second. 
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throughput-oriented processors can be 
more significant; these processors are 
designed to reach a higher peak com-
putational throughput and may have a 
higher peak throughput-to-bandwidth 
ratio than latency-oriented processors. 
More important, they seek to tolerate 
rather than avoid latency. To hide the 
latency of frequent movement of data 
to/from main memory requires either 
more threads or more work per thread, 
generally requiring larger data sets. 

The best performance is typically 
achieved when calculation is more 
common than data access. Performing 
roughly 10 to 20 operations per word of 
data loaded from memory is ideal, and 
it may be preferable to locally recom-
pute values rather than store frequently 
needed values in external memory. Con-
sider a simple example of computing a 
moderately expensive function like sin 
θ for 256 unique values of θ. Tabulating 
all 256 possible values would require 
little space, but accessing them from ex-
ternal memory would require hundreds 
of cycles. In the same amount of time, a 
thread could execute perhaps 50 to 100 
instructions that could be used to com-
pute the result and leave the memory 
bandwidth available for other uses. 

Divide and conquer. Divide-and-con-
quer methods often yield effective paral-
lel algorithms, even for apparently serial 
problems. Consider the merging of two 
sorted sequences A and B, a common 

problem for which most computer sci-
ence students learn a sequential solu-
tion like this: 

function merge1(A, B):
 if empty(A): return B
 if empty(B): return A

 if first(A)<first(B):
     �return first(A) + 

merge1(rest(A), B)
 else:
     �return first(B) + 

merge1(A, rest(B))

A related divide-and-conquer algo-
rithm picks an element s from either A 
or B and partitions both sequences into 
those elements A1,B1 that are less than s 
and elements A2,B2 that are not less than 
s. Having split the input sequences, con-
structing the merged sequence is simply 
a matter of recursively merging Ai with 
Bi. The code for doing it would look like 
this: 

function merge2(A, B):
 if empty(A): return B
 if empty(B): return A

 s = select _ an _ element(A,B)
 A1, A2 = partition(A, s)
 B1, B2 = partition(B, s)

 �return merge2(A1,B1) + [s] + 
merge2(A2,B2)

This approach is reminiscent of 
quicksort though more efficient since A 
and B are both sorted. If s is drawn from 
A, “partitioning” A is trivial, since the el-
ements less than s are simply those pre-
ceding s, and the corresponding point 
at which s splits B can be found through 
binary search. 

This divide-and-conquer method can 
lead to an inherently parallel algorithm 
by picking a sorted sequence of k split-
ting elements s1, …, sk. These splitters 
partition both A and B into k+1 subse-
quences that can be merged indepen-
dently like this: 

function merge3(A, B):
 if empty(A): return B
 if empty(B): return A

 �// Pick k elements from A 
and B, in sorted order
 �S = [s1, ..., sk] = select _
elements(A, B, k)
 �A0, ..., Ak] = partition(A, 
S)
 �[B0, ..., Bk] = partition(B, 
S)

 �return merge3(A0,B0) + [s1] + 
... + [sk] + merge3(Ak,Bk)

Since each recursive merge is inde-
pendent, this is an intrinsically paral-
lel algorithm. Merge algorithms of this 
form have been used in the parallel pro-
gramming literature for decades14 and 
can be used to build efficient merge sort 
routines in CUDA.27 

Hierarchical synchronization. More 
often than not, parallel threads must 
synchronize with one another at various 
times, but excessive synchronization 
can undermine the efficiency of paral-
lel programs. Synchronization must be 
treated carefully on massively parallel 
throughput-oriented processors where 
thousands of threads could potentially 
contend for a lock. 

To avoid unnecessary synchroniza-
tion, threads should synchronize hier-
archically, keeping parallel computa-
tions independent as long as possible. 
When parallel programs are decom-
posed hierarchically, as in divide-and-
conquer methods, the synchronization 
of threads can also be organized in a hi-
erarchical fashion. For example, when 
evaluating merge3(A,B) earlier, each 
recursive parallel merge step can pro-

Figure 4. Double-precision throughput of SpMV strategies on an NVIDIA GeForce GTX 285 
GPU; all matrices have exactly 4 x 210 nonzeros but differing row counts. 
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ceed independently of all the others. 
Any synchronization required within 
these subtasks can be localized to the 
subtasks. Only at the end, when all sub-
sequent operations are merged, must 
the parallel subtasks be synchronized 
with one another. Organizing synchro-
nization hierarchically also aligns well 
with the physical cost of synchronizing 
threads spread across different sections 
of a given system. It is natural to expect 
that threads executing on a single core 
can be synchronized much more cheap-
ly than threads spread across an entire 
processor, just as threads on a single 
machine can be synchronized more 
cheaply than threads across the mul-
tiple nodes of a cluster. 

Conclusion 
The transition from single-core to mul-
ticore processors and the increasing use 
of throughout-oriented architectures 
signal greater emphasis on parallelism 
as the driving force for higher computa-
tional performance. Yet these two kinds 
of processors differ in the degree of par-
allelism they expect to encounter in a 
typical workload. Throughput-oriented 
processors assume parallelism is abun-
dant, rather than scarce, and their para-
mount design goal is maximizing total 
throughput of all parallel tasks rather 
than minimizing the latency of a single 
sequential task. 

Emphasizing total throughput over 
the running time of a single task leads 
to a number of architectural design de-
cisions. Among them, the three primary 
architectural trends typical of through-
put-oriented processors are hardware 
multithreading, many simple process-
ing elements, and SIMD execution. 
Hardware multithreading makes man-
aging the expected abundant parallel-
ism cheap. Simple in-order cores forgo 
out-of-order execution and speculation, 
and SIMD execution increases the ratio 
of functional units to control logic. Sim-
ple core design and SIMD execution re-
duce the area and power cost of control 
logic, leaving more resources for paral-
lel functional units. 

These design decisions are all predi-
cated on the assumption that sufficient 
parallelism exists in the workloads the 
processor is expected to handle. The 
performance of a program with insuf-
ficient parallelism may therefore suffer. 
A fully general-purpose chip (such as a 

CPU) cannot afford to aggressively trade 
for increased total performance at the 
cost of single-thread performance. The 
spectrum of workloads presented to it 
is simply too broad, and not all compu-
tations are parallel. For computations 
that are largely sequential, latency-ori-
ented processors perform better than 
throughput-oriented processors. On 
the other hand, a processor specifically 
intended for parallel computation can 
accept this trade-off and realize signifi-
cantly greater total throughput on paral-
lel problems as a result. 

As the differences between these 
architectures appear durable rather 
than transient, the ideal system is thus 
heterogeneous, where a latency-ori-
ented processor (such as a CPU) and a 
throughput-oriented processor (such as 
a GPU) work in tandem to address the 
heterogeneous workloads presented to 
them. 	
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In 2003,  2bi gfeet,  an Internet business specializing 
in the sale of oversize shoes ranked among the top 
results in Google searches for its products. Its prime 
location on the virtual equivalent of New York’s high-end 
shopping mecca Fifth Avenue brought a steady stream 
of clicks and revenue. But success was fleeting: 

That November, Google’s engineers 
modified their search engine’s algo-
rithms, an update later dubbed “Flor-
ida” by the search-engine community. 
2bigfeet’s rankings dropped abruptly 
just before the Christmas selling sea-
son, and this Internet success story 
was suddenly on the brink of bank-
ruptcy.2 

Search engines have established 
themselves as critical gatekeepers 
of information. However, despite an 
increasingly monopolistic Internet 
search market, they and the implicit 
filtering process in their rankings re-
main largely beyond public scrutiny 
and control. This has inspired us to 
explore an increasingly topical ques-
tion: Should search-engine ranking be 
regulated? 

Search engines generally work by 
indexing the Web through so-called 
crawler programs. When a user types 
in a request, search algorithms deter-

mine the most relevant results in the 
index. Although the precise workings 
of these algorithms are kept at least as 
secret as Coca-Cola’s formula they are 
usually based on two main functions: 
keyword analysis (for evaluating pages 
along such dimensions as frequency 
of specific words) and link analysis 
(based on the number of times a page 
is linked to from other sites and the 
rank of these other sites) (see Figure 1). 

Regulating the 
Information 
Gatekeepers

doi:10.1145/1839676.1839695

Concerns about biased manipulation of search 
results may require intervention involving 
government regulation. 

By Patrick Vogl and Michael Barrett 

 key insights

 � �With search engines guiding access to 
critical Web-based information flow, 
many users are increasingly concerned 
over possible targeted manipulation of 
search results. 

 � �With markets and technology both 
unlikely to ensure unbiased results, 
regulation may be the only alternative. 

 � �One promising way forward is 
clearer guidelines for search-engine 
optimization through self-regulation. 
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Appreciating the value of top rank-
ings, Webmasters have learned to 
optimize their pages so big search 
engines rank them more highly. This 
has spawned a worldwide industry of 
search-engine-optimization consul-
tants, whose techniques are grouped 
into two categories: white-hat, ensur-
ing that search engines easily analyze 
a site and are accepted by search en-
gines; and black-hat, including hid-
den text, as in white text on a white 
background, considered illicit by 
most search engines and upon discov-
ery generally punished with degraded 
ranking. 

Search engines clearly have a le-
gitimate interest in fighting inappro-
priate third-party optimization tech-
niques to ensure their search-result 
quality; for instance, sites with no 
other purpose than linking to specific 
sites to increase page rank (link farms) 
are black-hat and must be dealt with 
accordingly, though punishment can 
be problematic for multiple reasons: 

First, sudden ranking demotion 
and resulting diminished inflow of vis-
itors have major effects on businesses, 
as illustrated by the cases of Skyfacet 
(which reportedly lost $500,000 of rev-
enue in 2006) and MySolitaire (which 
reportedly lost $250,000 the same 
year14). Only a few cases, including the 
companies SearchKing18 and Kinder-
start11 involving lawsuits over page 

rankings and German car manufac-
turer BMW, received notable media at-
tention. Many more cases of dropped 
ranking have been condemned to vir-
tual silence, among them search-en-
gine optimizer Bigmouthmedia. 

Second, though market-leader 
Google has published guidelines on 
creating “Google-friendly” pages, the 
line between permitted and illicit 
practices is blurry at best.20 For exam-
ple, Google’s guidelines rightly warn 
against cloaking, “the practice of pre-
senting different content […] to users 
and search engines.”13 However, to a 
certain extent cloaking can be justified 
and used with good intent by major 
sites without penalty.8 For instance, 
the Wall Street Journal uses it to show 
full versions of pay-per-view articles to 
Google’s indexing program.8 

The difficulty of straddling the line 
between permitted and illicit prac-
tices is further illustrated by a case 
involving paid links: In February 2009 
Google punished its subsidiary Google 
Japan through a page rank demotion 
for paying for online reviews of a new 
widget.23 While Google’s attempt to 
play by its own rules is positive the 
case highlights the difficulty of dis-
tinguishing permitted from illicit op-
timization techniques. A leading U.S. 
commentator in online search asked: 
“If Google itself […] found itself in 
this situation, how are ordinary Web 

sites to be expected to know the ‘rules’ 
about what they can or cannot do?”23 

Third, our research supports the 
idea that there is no established pro-
cess of announcement or appeal prior 
to rank demotion. Companies af-
fected usually realize their fate only 
through a sudden loss of traffic or rev-
enue. In a personal interview [2008], 
the CEO of an educational company 
told us: “The office called me and told 
me [...] that revenue was down [...], so 
I checked our logs and our history [...] 
It was all on one day. We were up to 14 
million pageviews per month, and on 
one day it dropped 70% and [stayed 
there], and that was it.” 

Fourth, options are limited for 
companies affected by ranking demo-
tion. One interviewee recalls his com-
pany got no response, even though he 
personally went to the search engine 
firm’s headquarters for assistance. 

Fifth, several allegations in the 
blogosphere claim large players are 
treated better than their less-powerful 
counterparts. For example, in May 
2008, Hewlett-Packard began offer-
ing free blog templates, including 
hidden links to its own pages, a quick 
way to gather “high-quality” links and 
clicks.25 However, there was no evi-
dence of punishment by major search 
engines, sparking significant contro-
versy in the community.25 

Finally, search engines have pun-
ished Web sites using search-engine 
optimization, as well as the search-en-
gine-optimization companies them-
selves. In the case of SearchKing, a 
search-engine consulting company 
in Oklahoma, U.S. courts have found 
that Google “knowingly and inten-
tionally” dropped the company’s Web 
sites in its rankings to punish what it 
deemed illicit ranking manipulation 
that SearchKing had carried out for its 
clients.18 

Rationale for Regulation 
Several researchers have pointed to 
the dangers of targeted manipulation, 
arguing it undermines values like free 
speech, fairness, economic efficiency, 
and autonomy, as well as the institu-
tion of democracy. Concerning de-
mocracy and free speech, Introna and 
Nissenbaum17 argued a decade ago 
that search engines’ broad structural 
bias can lead to underrepresentation 

Figure 1. How ranking works. 

Spider/Crawler

Search engine 
software User

Index

Web
Searches Web,  
storing pages in index

Algorithm accesses index, 
determining most relevant  
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word location and frequency)

˲˲ link analysis (such as number 
of links from other pages and  
rank of these pages)

Makes request
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of niches and minority interests and a 
loss of variety. Drawing on Anderson’s 
theory of ethic limitations to mar-
kets,1 they made a solid case that this 
lack of pluralism does not correspond 
to society’s “liberal commitments to 
freedom, autonomy, and welfare.”1 In-
trona and Nissenbaum viewed the In-
ternet as a “political good” due to its 
role as “conveyor of information” and 
function like “traditional public spac-
es” as a “forum for political delibera-
tion.”17 Consequently, just as schools 
and national heritage are not left to 
the mercy of free markets, they argued 
the Internet is a public good requiring 
special protection.17 Similarly, Bracha 
and Pasquale3 made the case in 2007 
that targeted manipulation of search 
engine results “threatens the open-
ness and diversity of the Internet as a 
system of public expression.”3 

Another approach based on demo-
cratic values emphasizes the right of 
free speech. Chandler5 argued it pro-
tects not only the ability to listen and 
speak, but that intermediaries can-
not impose “discriminatory filters 
that the listener would not otherwise 
have used.”5 Since extraneous bias 
introduces different discrimination 
criteria, free speech is undermined 
by targeted search-engine-result ma-
nipulation.5 

Fairness might also be under-
mined. Since search-engine rankings 
have enormous influence on business 
performance, ranking manipulation 
can cause significant harm both arbi-
trarily and more deliberately. Search 
engines as private entities are gener-
ally free to conduct business as they 
wish within the limitations applicable 
to all companies. However, Webmas-
ters cannot simply opt out of their de-
pendence on search engines, perhaps 
representing an “inescapable influ-
ence,”10 taking their relationship from 
the private to the public sphere where 
more dependable accountability is ex-
pected.10 

Other concerns involve economic 
efficiency, deception, and autonomy. 
Targeted manipulation can limit the 
availability of information, causing 
market inefficiencies and barriers to 
entry.3 Manipulating search results, 
while leading users “to believe that 
search results are based on relevancy 
alone,”16 could be deceptive, while 

search engines shaping user options 
and information could limit user au-
tonomy.3 

Regulation and alternatives. Tra-
ditional justification for regulation 
includes control of monopoly power 
and excess profits, compensation for 
externalities, inadequate informa-
tion, unequal bargaining power, and 
scarcity of essential products.4 While 
none perfectly fits the case of targeted 
results manipulation, intervention 
could be supported through two ratio-
nales: 

Information asymmetries. Elkin-Ko-
ren and Salzberger7 pointed out that 
the Internet’s common market failure 
is an overload rather than undersup-
ply of information.7 However, the so-
lution to this problem—the Internet 
search market—suffers from a lack 
of information. Just as laymen cannot 
easily assess the services of doctors or 
the effects of a particular medicine,4 
users of search engines are unable to 
adequately evaluate search services. 

Market power. While the Internet 
search market shows monopolistic 
tendencies (extremely strong market 
positions of a few key players), there 
is no strong case for regulatory inter-
vention on the standard antitrust ar-
gument of abuse of monopoly power 
(such as lack of competition leading 
to excessive pricing). However, a case 
can be based on Breyer’s argument4 
of an “unjustifiably discriminatory ex-
ercise of personal power” combined 
with the “concentration of substantial 
social and political power” in a private 
entity that controls an “essential prod-
uct”4 (see also Bracha and Pasquale3 
for a similar view on the application of 
essential-facility arguments to search 
engines). These arguments were de-
veloped in the early 20th century U.S. 
business environment when a group 
of railway companies in control of ac-
cess to the city of St. Louis prevented 
competitors from offering services in 
the same area.21 Even if these argu-
ments do not apply to users of search 
engines, they may apply to Webmas-
ters unable to choose the search en-
gines the public uses to find informa-
tion. 

Regulation must be compared to 
other solutions, particularly free mar-
kets. The basic market argument is 
that search engines have an incentive 

Companies affected 
usually notice their 
fate only through 
a sudden loss of 
traffic or revenue. 
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to produce the most relevant search 
results; otherwise, users would switch 
to their competitors.17 However, mar-
kets alone are unlikely to address the 
concerns of targeted manipulation for 
three reasons: 

Proprietary algorithms. Users would 
not be able to detect targeted manipu-
lation in most cases, as search engines 
keep their algorithms secret.3 More-
over, even if users are more aware of 
results manipulation, their expecta-
tion of what they are searching for is 
shaped during the search process.17 
Consequently, they cannot objectively 
evaluate search-engine quality17; 

Concentrated market. While the 
Internet search market is highly con-
centrated, a less monopolistic mar-
ket is unlikely to emerge due to high 
economies of scale.3 Furthermore, in-
cumbents benefit from their existing 
user base by, say, collecting user data 
through such products as the Google 
toolbar. Moreover, the emergence of 
new big players is also unlikely, since 
promising start-ups could be acquired 
by such dominant search giants as 
Google and Microsoft; and 

User inertia. While switching might 
seem easy (users simply type another 
address), evidence suggests that per-
sonal habit is a key factor when select-
ing a search engine22; moreover, new 
technologies like personalized search 
are likely to raise switching costs sig-
nificantly. 

Technological development is also 
often mentioned in the context of 
search-engine bias.12 However, while 
new technologies may alleviate some 
concern (such as reinforcement of 
popular sites), no technology in sight 
is likely to cure the problem of target-
ed manipulation. 

Two counterarguments often 
brought up against regulation of 
search-engine bias are that search 
results are free speech and therefore 
cannot be regulated, and search en-
gines are not essential facilities, as 
they do not fulfil the criteria of essen-
tial facilities accepted by U.S. courts. 

While these arguments have mer-
it, they are insufficient for reject-
ing intervention for several reasons: 
Though the courts have acknowledged 
First Amendment rights for search 
engines, a number of legal scholars 
have argued against this view.3,5 Both 

arguments emerge from a U.S.-centric 
context, which, as the Microsoft anti-
trust case in the 1990s showed, is not 
the only legal arena for regulation. 
Moreover, in legal circles it has been 
suggested that the existing regula-
tory frameworks may be inadequate 
for something as groundbreaking as 
Internet search. Given the state of the 
law, governments and multinational 
bodies may need to create a new regu-
latory framework. 

Search and Its Stakeholders 
Who are the stakeholders and what 
are their interests? Mitchell wrote19 
that stakeholders are characterized by 
power, legitimacy, and urgency. Build-
ing on a broad investigation of stake-
holder interests in search-engine law 
by Grimmelmann,15 we see four main 
actors—users, search engines, Web-
masters, and search-engine optimiz-
ers—that are, to some extent, charac-
terised by Mitchell’s attributes. 

Table 1 is an overview of key stake-
holder interests in Internet search 
bias and stakeholder recognition of 
possible manipulation. Search-engine 
optimizers are particularly conflicted. 
On the one hand, they stand to gain 
from greater transparency in Inter-
net search, as their business would 
be easier and more efficient, and a 
clearer picture of accepted practices 
would enable them to guarantee their 
clients that search engines tolerate 
their techniques. On the other hand, 
they profit from lack of transparency, 
as it raises the value of their key as-
sets—expertise and inside knowledge. 
Moreover, search-engine optimizers 
with good contacts and community-
wide attention can profit from their 
influence with search-engine com-
panies in “curing” cases of rank de-
motion. Therefore, top performers 
arguably have little interest in greater 
transparency. 

Commentators have made several 
proposals for regulating targeted ma-
nipulations. We comment first on the 
two most promising, then introduce a 
new approach (outlined in Table 2). 

Obligation to provide reasons for 
rank demotion. One proposal20 sug-
gested establishing an obligation to 
provide a reason for rank demotion to 
increase transparency in the relation-
ship between Webmasters and search 

Markets alone 
are unlikely to be 
sufficient to address 
the concerns 
about targeted 
manipulation. 
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tween black-hat and white-hat search 
engine optimizers are gray, often 
forcing Webmasters and optimizers 
to speculate as to which techniques 
would be punished through ranking 
degradation. In a personal interview 
on search engine optimization, one 
search-engine consultant said the 
key to differentiating between black-
hat and white-hat optimization tech-
niques in unclear cases is “implica-
tion of intent.” However, in the 2008 
case of Hewlett-Packard mentioned 
earlier, comments by search-engine 
optimizers indicate the existence of 
at least some bias distinguishing be-
tween permitted and illicit optimiza-
tion methods. 

One approach to increasing trans-
parency in the relationship between 
Webmasters and search engines is to 
establish clearer guidelines distin-
guishing black-hat from white-hat op-
timization. The gray area in between 
would be diminished, giving Webmas-

engines. In this context, Pasquale20 
drew an interesting analogy with cred-
it-reporting agencies providing rea-
sons for adverse credit information to 
consumers.20 It would favor the inter-
ests of users and especially Webmas-
ters, because it would support Web-
site optimization for search engines. 
Search-engine optimizers would 
probably be divided between the less 
influential that gain and top perform-
ers that lose from greater transpar-
ency. Building on the credit-agency 
analogy, Pasquale20 argued that the 
cost to search engines and risk of al-
gorithmic reverse engineering would 
be low.20 However, as the number of 
potential queries on rank demotion is 
arguably much higher than the num-
ber on adverse credit ratings, cost to 
the search engines would likely be 
significant. Moreover, search engines 
would likely oppose any obligation to 
provide precise reasons for each rank 
demotion, as it would increase the 
risk of lawsuits. 

Installation of ombudsmen and pro-
cess of appeal. Taking the previous 
proposal a step further, some have 
called for an appeal process against 
rank demotion.24 For example, For-
syth10 emphasized if search engines 
were public entities with ensuing 
accountability, a process of appeal 
would probably already have been 
established.10 While Google offers a 
way to submit pages for “reconsidera-
tion,”8 such appeals are judged inter-
nally without transparency, and, while 
successful in some cases, a Webmas-
ter’s only option might be to attract 
enough publicity to get a search-en-
gine representative to take up the case 
internally.9 

Installing a formal, transparent ap-
peals process would clearly be in the 
interest of both users and Webmas-
ters, while assisting some search en-
gine optimizers but diminishing the 
value of top optimizer contacts. On 
the other hand, search engines would 
arguably incur somewhat higher costs 
for installing such a process. More-
over, a formal process with a clear 
chance of success would facilitate ap-
peals, thereby increasing numbers of 
requests and probably encouraging 
“appeal gaming.” 

Clearer guidelines for search engine 
optimization. Current guidelines be-

ters and optimizers a better idea of 
what to expect from search engines. 
The diminished gray area would lead 
to more consistent application of 
ranking degradation, as questionable 
sites would fall more clearly into one 
category or the other. Moreover, new 
guidelines could also cover search 
engines’ assessment of intent in ques-
tionable cases, further promoting 
consistent treatment of market play-
ers. This approach is promising be-
cause it has advantages for all stake-
holders (see Figure 2). 

Clearer guidelines. A self-regulato-
ry approach initiated by regulators 
would be the easiest and most ef-
ficient way to achieve clearer guide-
lines. There is ample precedence that 
self-regulation works in cyberspace; 
for example, in the early days of Inter-
net search, many search engines did 
not distinguish between organic and 
paid results (advertisements). Howev-
er, following a letter by the U.S. Feder-

Table 1. Stakeholder interests in the regulation of search bias. 

Interests Awareness of manipulation

Users ˲˲ �High-quality content, particularly quick query 
response and inclusion of new pages; clear, 
well-structured results; transparent construction 
of results 

˲˲ Pleasant search experience, easy usability

Low

Search Engines ˲˲ �Protection of trade secrets, particularly 
algorithms 

˲˲ �Freedom to make changes to algorithms for 
preventing abuse of search-engine optimization 

˲˲ Low cost of regulation

High

Webmasters ˲˲ �Consistent, transparent ranking of pages in 
search engines 

Low, some among  
professionals

Search-Engine 
Optimizers

˲˲ Top group: low transparency
˲˲ �Low-level search-engine optimizers:  

high transparency

High

Table 2. Regulatory proposals and stakeholder interests. 

Regulatory Proposal Users
Search 
Engines

Content 
Providers

Search-Engine 
Optimizers

Obligation to provide reasons for rank 
demotion

++ — ++ divided

Installation of ombudsmen and appeal 
process

++ — ++ divided

Clearer guidelines for search-engine 
optimization

++ + ++ divided

	 ++	 strongly supportive  
	 + 	 supportive 

	 — 	 opposed 
	— — 	 strongly opposed
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al Trade Commission in 2002 recom-
mending search engines ensure that 
“paid […] results are distinguished 
from non-paid results with clear and 
conspicuous disclosures,”16 all major 
search engines implemented such 
practices. Also, self-regulation would 
help the process of regulation keep up 
with the pace of technological change. 
Finally, as clearer guidelines would ar-
guably favor all stakeholders, search 
engines would at least join the public 
dialogue on self-regulation. 

Policymakers could signal the im-
portance of targeted manipulation 
and initiate a dialogue on self-regu-
lation by creating a committee of key 
stakeholders to examine cases of rank 
demotion and recommend ways to 
improve today’s optimization guide-
lines. In addition, the topic of search-
engine regulation could be put on the 
agenda of the next United Nations 
Internet Governance Forum (www.in-
tgovforum.org). 

Self-regulation alone may not alle-
viate concern about rank demotion. 
One idea from the Internet’s early 
days may chart another way forward. 
As disputes over domain names be-
came more heated in the 1990s and 
U.S. trademark law proved insuffi-
cient, the Internet Corporation for 
Assigned Names and Numbers (www.
icann.org) and the World Intellectual 
Property Organization (www.wipo.
int) developed the Uniform Domain-
Name Dispute-Resolution Policy 
(www.icann.org/en/udrp/udrp.htm) to 

promote quick and inexpensive reso-
lution of domain-name conflicts.6 A 
similar body could help establish new 
optimization guidelines and manage 
the mediation process. 

Conclusion 
Here, we’ve argued for the need to 
open a debate on how to regulate 
targeted ranking manipulation that 
hinders search-engine optimization. 
These practices threaten democracy 
and free speech, fairness, market ef-
ficiency, autonomy, and freedom 
from deception. Making the case for 
regulation can be based on the search 
market’s failure of information asym-
metries and concentration of market 
power over an essential product in a 
private entity. Our analysis of specific 
regulatory proposals and their impli-
cations for stakeholders highlights 
the benefits of establishing clearer 
guidelines for optimizers. 	
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Figure 2. How clearer search-engine optimization guidelines would affect stakeholders. 
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For thousands of  years, people—and more recently, 
electronic agents—have been conducting elections. 
And surely for just as long, people—or more recently, 
electronic agents—have been trying to affect the 
outcomes of those elections. Such attempts take 
many forms. Often and naturally, actors may seek to 
change the structure of the election, for example, by 
attracting new voters, suppressing turnout, recruiting 
candidates, or setting election district boundaries. 
Sometimes voters may even be bribed to vote a certain 
way. And a voter may try to manipulate an election 
by casting an insincere vote that may yield a more 
favorable outcome than would the voter’s sincere vote: 
Not all people who preferred Ralph Nader in the 2004 
U.S. presidential election actually voted for him.

One might hope that by choosing a particularly 
wonderful election system, one can perfectly block

such attacks. However, classic work 
from economics and political science 
proves that every reasonable election 
system sometimes gives voters an in-
centive to vote insincerely (see Duggan17 
and the references therein). Reasonable 
election systems cannot make manipu-
lation impossible. However, they can 
make manipulation computationally 
infeasible.

This article is a nontechnical intro-
duction to a startling approach to pro-
tecting elections: using computational 
complexity as a shield. This approach 
seeks to make the task of whoever is 
trying to affect the election computa-
tionally prohibitive. To better under-
stand the cases in which such protec-
tion cannot be achieved, researchers 
in this area also spend much of their 
time working for the Dark Side: trying 
to build polynomial-time algorithms to 
attack election systems.

This complexity-based approach to 
protecting elections was pioneered in 
a stunning set of papers, about two de-
cades ago, by Bartholdi, Orlin, Tovey, 
and Trick.2,3,5 The intellectual fire they 
lit smoldered for quite a while, but 
in recent years has burst into open 
flame. Computational complexity may 
truly be the key to defending elections 
from manipulation.

Preliminaries and the Complexity 
of the Winner Problem
In the introduction, we focused on 

doi:10.1145/1839676.1839696

Computational complexity may truly be  
the shield against election manipulation. 

by Piotr Faliszewski, Edith Hemaspaandra,  
and Lane A. Hemaspaandra

Using 
Complexity 
to Protect 
Elections

 key insights

 � �Algorithms can be used to seek attacks 
on elections, and complexity can serve 
to protect elections from attacks.  For 
some election systems, manipulation 
has been proven NP-hard.

 � �Dichotomy theorems pinpoint what 
it is about an election system that 
makes it computationally resistant to 
manipulation.

 � �It is natural to consider an election 
system's computational weaknesses and 
strengths as one factor, among many, 
when selecting a system for a given 
task.  In particular, one must consider 
which types of attacks one most needs 
to thwart.
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ping from (C, V ) to a “winner set” W, 
Ø Í W Í C. Perhaps the most famous 
and common election system is plural-
ity, in which each candidate who most 
often comes at the top of voters’ orders 
is put into W. We will focus quite a bit 
on plurality in this article, since it has 
been extensively studied with respect 
to using complexity to protect elec-
tions. Plurality is itself a special case 
of a broad class of election systems 
known as scoring systems or scoring-
rule systems. In these, each candidate 
gets from each voter a certain number 
of points based on where he or she 
falls in the voter’s ordering, and who-
ever gets the most points wins. For 
example, the scoring point system for 
plurality (in k-candidate elections) is 
that a voter’s favorite candidate gets 
one point from that voter and the 
other k−1 candidates get zero points 
from that voter. In the Borda election 
system, proposed in the 18th century, 
the points from favorite to least fa-
vorite are k−1, k−2, . . . , 0. In veto elec-
tions, the points are 1, 1, 1, . . . , 1, 0; 
that is, the voter in effect votes against 
one candidate. Scoring systems are 
a fl exible, important class of voting 
systems and, as we will see, they are a 
class whose manipulation complexity 
(for fi xed numbers of candidates) is 
completely analyzed. There are many 
other important election systems, but 
to move the article along, we will intro-
duce them as we need.

An election system that immediately 
merits note is the Condorcet rule. In 
Condorcet elections, a candidate is a 
winner exactly if he or she beats each 
other candidate in head-to-head major-
ity-rule elections under the voters’ pref-
erences. Consider the election shown 
in Figure 1. In that election there is no 
Condorcet winner, since  is beaten by 

 3-to-1,  is beaten by  4-to-0, and 

protecting elections, rather than on 
why and in what settings elections are 
used for aggregating preferences in 
the fi rst place. The latter issue could 
itself fi ll a survey—but not this survey. 
However, before moving on we briefl y 
mention a few varied examples of how 
elections can be useful in aggregating 
preference. In daily life, humans use 
elections to aggregate preferences in 
tasks ranging from citizens choosing 
their political representatives to an ac-
ademic department’s faculty members 
selecting which job candidate to hire to 
conference business meeting attend-
ees selecting future locations for their 
conference. In electronic settings, elec-
tions often can take on quite different, 
yet also interesting and important, 
challenges. For example, one can build 
a metasearch engine based on combin-
ing underlying search engines, in or-
der to seek better results and be more 
resistant to “Web spam.”18 One can 
use voting as an approach to building 
recommender systems41 and to plan-
ning.20 Voting was already very impor-
tant before computers and the inter-
net existed, and in the modern world, 
where multiagent settings abound, the 
importance of voting is greater still.

In this article, we will discuss the 
successes and failures to date in using 
complexity to defend against three im-
portant classes of attacks on election 
systems: (structural) control attacks, 
(voter) manipulation, and bribery. In 
these three settings, high computa-
tional complexity is the goal. But fi rst, 
we briefl y discuss a case so surprising 
that one might not even think of it, 
namely, the case in which an election 
system is so complex that even deter-
mining who won is intractable.

We must fi rst introduce the model of 
elections we will use throughout this ar-
ticle. While doing so, we will also defi ne 
some election systems, such as plurality 
rule. An election consists of a candidate 
set C and a list V of votes (ballots) over 
those candidates. In almost all the elec-
tion systems we  discuss, a vote is simply 
a strict ordering of all the candidates, 
for example, “Nader > Gore > Bush” if 
the voter likes Nader most, Gore next 
most, and Bush least. An exception is 
approval voting, in which each vote 
is a bit-vector giving a thumbs-up or 
thumbs-down to each candidate.

An election system is simply a map-

Voting was already 
very important 
before computers 
and the internet 
existed, and in the 
modern world, 
where multiagent 
settings abound, 
the importance of 
voting is greater 
still.

       
       
       
       

figure 1. an election.
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in a 2-to-2 tie,  fails to beat .
Although this example shows that 

Condorcet elections sometimes have no 
winner, some election systems—the so-
called Condorcet-consistent systems—
so value the naturalness of the notion 
of being a Condorcet winner that they 
ensure that when a Condorcet winner 
exists, he or she is the winner in their 
system. One particularly interesting sys-
tem is the election system proposed by 
the famous author and mathematician 
Lewis Carroll in 1876. Carroll took an 
approach that should warm the hearts 
of computer scientists. He said, in ef-
fect, that whoever had the smallest edit 
distance from being a Condorcet winner 
was the winner in his election system. 
His edit distance was with respect to 
the number of sequential exchanges of 
adjacent candidates in voter orderings. 
So in the Figure 1 example,  and  tie 
as Carroll winners, since either of them 
with one adjacent exchange can become 
a Condorcet winner (for example, if we by 
one exchange turn voter 1’s preference 
list into  >  >  > , then  becomes 
a Condorcet winner), but  for example 
would take seven adjacent exchanges 
to become a Condorcet winner.

Lewis Carroll’s system is quite lovely 
in that it focuses on the closeness to 
Condorcet winnerhood. Carroll’s paper 
has been included in books collecting 
the most important social choice pa-
pers of all time. However, Carroll’s sys-

tem has one glaring fl aw: It is compu-
tationally intractable to tell who won! 
This was fi rst shown in a paper by Bar-
tholdi, Tovey, and Trick,4 who showed 
that this problem was NP-hard. Later, 
Hemaspaandra, Hemaspaandra, and 
Rothe30 precisely classifi ed the prob-
lem’s complexity as “complete” (that 
is, in a certain formal sense the hardest 
problem) for the class of problems that 
can be solved by parallel access to NP (a 
class that forms the Θ

p
2 level of the poly-

nomial hierarchy).a

On its face, this result is a disaster 
for Lewis Carroll’s election system. Al-
though we want manipulation of elec-
tions to be diffi cult, we do not want to 
achieve this by migrating to election 
systems so opaque that we cannot ef-
fi ciently compute who won.

This disaster may not be quite as 
severe as it fi rst seems. Recent work 
on Lewis Carroll elections seeks to 
slip around the edges of the just-men-
tioned intractability result. In particu-
lar, two recent papers show that simple 

a We will not provide here a discussion of NP-
hardness/NP-completeness/Θp

2-completeness, 
but suffi ce it to say that complexity theorists 
broadly believe any problem that has any one 
of these properties is intractable, that is, does 
not have a deterministic polynomial-time algo-
rithm. However, these notions are worst-case 
notions. In the section “Using Complexity to 
Block Election Manipulation” we will discuss 
how their worst-case nature is itself a worry 
when using them to protect election systems.

polynomial-time greedy algorithms 
correctly fi nd the Lewis Carroll winner 
all but an asymptotically exponentially 
vanishing portion of the time when the 
number of voters is more than qua-
dratically larger than the number of 
candidates and the inputs are drawn 
from the uniform probability distri-
bution.35,39 In fact, that algorithm can 
even be made “self-knowingly cor-
rect”—it almost always declares that 
its answer is correct, and when it does 
so it is never wrong.35 Another way of ar-
guably bypassing the hardness results 
for the Lewis Carroll winner problem 
is through approximation algorithms. 
For example, Caragiannis et al.9 have 
recently developed two approximation 
algorithms for computing candidates’ 
scores in Carroll’s system. And a third 
way to sidestep the hardness results is 
to change the framework, namely, to 
assume that the number of candidates 
or the number of voters is bounded by 
a fi xed constant, and to seek polynomi-
al-time algorithms in that setting.b The 
seminal paper of Bartholdi, Tovey, and 
Trick4 successfully pursued this line, as 

b Many real-life settings have relatively few can-
didates. And a particularly interesting setting 
with few voters but many candidates comes 
from Dwork et al.,18 who suggested building a 
search engine for the Web that would simply 
query other search engines and then conduct 
an election given the search engines’ answers 
as votes.

table 1. the computational complexity of control in condorcet, copeland, Llull, and plurality elections. 

election system condorcet copeland Llull Plurality

control type
const. 
control

Dest. 
control

const. 
control

Dest. 
control

const. 
control

Dest. 
control

const. 
control

Dest. 
control

Adding (unlimited number of) Candidates i v r v v v r r

Adding Candidates i v r v r v r r

deleting Candidates v i r v r v r r

run-off Partition of Candidates (ties Promote) v i r v r v r r

run-off Partition of Candidates (ties eliminate) v i r v r v r r

Partition of Candidates (ties Promote) v i r v r v r r

Partition of Candidates (ties eliminate) v i r v r v r r

Partition of voters (ties eliminate) r v r r r r v v

Partition of voters (ties Promote) r v r r r r r r

Adding voters r v r r r r v v

deleting voters r v r r r r v v

the results regarding constructive control in Condorcet and plurality elections are due to bartholdi et al.,5 the results on 
destructive control for Condorcet and plurality are due to hemaspaandra et al.,31 and the results regarding llull and Copeland 
are due to Faliszewski et al.25 Adding (unlimited number of) Candidates has not been explicitly studied in bartholdi et al.5 and 
hemaspaandra et al.,31 but the results on this for Condorcet and plurality elections are corollaries to these papers’ proofs.



78    communications of the acm    |   november 2010  |   vol.  53  |   no.  11

review articles

have more recent papers.7,11,24, 25 Howev-
er, their polynomial-time algorithms 
sometimes involve truly astronomical 
multiplicative constants.

Finally, we mention that in the 
years since the work showing Lewis 
Carroll’s election system to have a win-
ner problem that is complete for paral-
lel access to NP, a number of other sys-
tems, most notably those of Kemeny 
and Young, have also been shown to be 
complete for parallel access to NP.33,43

Naturally, researchers have sought to 
bypass these hardness results as well 
(for examples, see6,9,12,36).

using complexity to Block 
election control
Can our choice of election systems—and 
not merely nasty ones with hard winner 
problems but rather natural ones with 
polynomial-time winner problems—be 
used to make infl uencing election out-
comes costly? We start the discussion 
of this issue by considering problems 
of election control, introduced by Bar-
tholdi, Tovey, and Trick5 in 1992. In 
election control, some actor who has 
complete knowledge of all the votes 
seeks to achieve a desired outcome—ei-
ther making a favored candidate be the 
sole winner (“constructive control”) or 
precluding a despised candidate from 
being a unique winner (“destructive 
control”)—via changing the structure 
of the election. The types of structural 
changes that Bartholdi, Tovey, and 
Trick proposed are adding or deleting 
candidates, adding or deleting voters, 
or partitioning candidates or voters 
into a two-round election structure. 

The other control types similarly 
are motivated as abstractions of real-
world actions—many far more savory 
than vote suppression. For example, 
Control by Adding Voters abstracts 
such actions as get-out-the-vote drives, 
positive advertising campaigns, pro-
viding vans to drive elderly people to 
the polls, registration drives, and so 
on. Control by Adding Candidates and 
Control by Deleting Candidates refl ect 
the effect of recruiting candidates 
into—and pressuring them to with-
draw from—the race. The memory of 
the 2000 U.S. presidential race sug-
gests that whether a given small-party 
candidate—say Ralph Nader—enters 
a race can change the outcome. The 
partition models loosely capture other 
behaviors, such as gerrymandering.

Table 1 summarized the construc-
tive and destructive control results for 
four election systems whose behavior 
is completely known: Plurality, Con-
dorcet, Llull, and Copeland. The mys-
tic and philosopher Ramon Llull (Fig-
ure 2) defi ned the Llull system in the 
1200s, and the Copeland system is a 
closely related system defi ned in mod-
ern times. In both of these systems 
one considers each pair of candidates 
and awards one point to the winner in 
their head-to-head majority-rule con-
test, and if the head-to-head contest 
is a tie, in Copeland each gets half a 
point but in Llull each still gets one 
point. So, for  example, in Copeland 
one gets ||C||−1 points exactly if one is 
a Condorcet winner. The Llull/Cope-
land system is used in the group stage 

control actor knows all the votes of all the vot-
ers. But note that that just makes the “shield” 
results stronger: they show that even if one had 
perfect information about the votes, fi nding a 
control action is still intractable.

Between these types and the different 
tie-breaking rules that can be used to 
decide which candidates move forward 
from the preliminary rounds of two-
round elections in the case of ties (that 
is, whether all the tied people move for-
ward or none of them do), there now 
are eleven types of control that are typi-
cally studied—each having both a con-
structive and a destructive version.

For reasons of space we will not de-
fi ne all 11 types here. We will defi ne 
one type explicitly and will mention 
the motivations behind most of the 
others. Let us consider Control by De-
leting Voters. In this control scenario, 
the input to the problem is the elec-
tion (C, V ), a candidate p ∈ C, and an 
integer k. The question is whether by 
removing at most k votes from V one 
can make p be the sole winner (for the 
constructive case) or can preclude p 
from being a unique winner (for the 
destructive case). Control by Delet-
ing Voters is loosely inspired by vote 
suppression: It is asking whether by 
the targeted suppression of at most k 
votes the given goal can be reached. 
(By discussing vote suppression we are 
in no way endorsing it, and indeed we 
are discussing paths toward making it 
computationally infeasible.) So, for a 
given election system E, we are inter-
ested in the complexity of the set com-
posed of all inputs (C, V, p, k) for which 
the goal can be reached.c

c As to who is seeking to do the control, that is ex-
ternal to the model. For example, it can be some 
central authority or a candidate’s campaign 
committee. In fact, in the real world there often 
are competing control actors. But results we 
will soon cover show that even a single control 
actor faces a computationally infeasible prob-
lem. Also, the reader may naturally feel uncom-
fortable with the model’s assumption that the 

figure 3. the points assigned by the Llull/copeland systems in the head-to-head contests 
of the election of figure 1.

1. Llull

 : 0  : 0  : 0

 : 1  : 1  : 1

 : 1  : 1

 : 1  : 0

 : 0

 : 1

2. copeland

  : 0  : 0  : 0

  : 1  : 1  : 1

  : 0.5  : 1

  : 0.5  : 0

  : 0

  : 1

figure 2. Ramon Llull, 13th-century mystic 
and philosopher.
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of the World Cup soccer tournament, 
except there (after rescaling) wins get 
one point and ties get one third of a 
point. Figure 3 shows how the election 
from Figure 1 comes out under the 
Llull and Copeland systems. In Table 
1, I (immunity) means one can never 
change the outcome with that type of 
control attack—a dream case; R (re-
sistance) means it is NP-hard to de-
termine whether a given instance can 
be successfully attacked—still a quite 
good case; and V (vulnerability) means 
there is a polynomial-time algorithm 
to detect whether there is a successful 
attack of the given type (and indeed to 
produce the exact attack)—the case 
we wish to avoid.

Remarkably, given that Llull cre-
ated his system in the 1200s, among all 
natural systems based on preference 
orders, Llull and Copeland are the 
systems that currently have the great-
est numbers of proven resistances 
to control. As one can see from Table 
1, Copeland is perfectly resistant to 
the constructive control types and to 
all voter-related control types (but is 
vulnerable to the destructive, can-
didate-related control types). And 
Llull’s 13th-century system is almost 
as good. Ramon Llull, the mystic, truly 
was ahead of his time.

If one wants an even greater num-
ber of resistances than Copeland/Llull 
provides, one currently can do that in 
two different ways. Recently, Erdélyi, 
Nowak, and Rothe22 showed that a vot-
ing system whose votes are in a differ-
ent, richer model—each voter provides 
both an approval vector and a strict 
ordering—has a greater number 
of control resistances, although in 
achieving that it loses some of the 
particular resistances of Cope-
land/Llull.  And Hemaspaandra, 
Hemaspaandra, and Rothe32 con-
structed a hybridization scheme that 
allows one to build an election system 
whose winner problem—like the win-
ner problem of all four systems from 
Table 1—is computationally easy, yet 
the system is resistant to all 22 control 
attacks. Unfortunately, that election 
system is in a somewhat tricky manner 
“built on top of” other systems each 
of which will in some cases determine 
the winner, and so the system lacks the 
attractiveness and transparency that 
real-world voters reasonably expect.

To conclude our discussion of con-
trol, we mention one other setting, that 
of choosing a whole assembly or com-
mittee through an election. Such assem-
bly-election settings introduce a range 
of new challenges. For example, the 
voters will have preferences over assem-
blies rather than over individual candi-
dates. We point the reader to the work of 
Meir et al.40 for results on the complexity 
of controlling elections of this type.

Using Complexity to Block 
Election Manipulation
Manipulation is often used informally 
as a broad term for attempts to affect 
election outcomes. But in the litera-
ture, manipulation is also used to refer 
just to the particular attack in which a 
voter or a coalition of voters seeks to 
cast their votes in such a way as to ob-
tain a desired outcome, for example, 
making some candidate win. In formu-
lating such problems, one often stud-
ies the case in which each voter has a 
weight, as is the case in the electoral 
college and in stockholder votes. The 
input to such problems consists of the 
weights of all voters, the votes of the 
nonmanipulators, and the candidate 
the manipulators are trying to make a 
winner.

Manipulation problems have been 
studied more extensively than either 
control or bribery problems, and so 
the literature is too broad to survey in 
any detail. But we now briefly mention 
a few of the key themes in this study, 
including using complexity to protect, 
using algorithms to attack, studying 
approximations to bypass protections, 
and analyzing manipulation properties 
of random elections.

The seminal papers on complex-
ity of manipulation are those of Bar-
tholdi, Orlin, Tovey, and Trick.2,3 
Bartholdi, Tovey, and Trick3 gave 
polynomial-time algorithms for ma-
nipulation and proved a hardness-of-
manipulation result (regarding so-
called second-order Copeland voting). 
Bartholdi and Orlin2 showed that for 
“single transferable vote,” a system 
that is used for some countries’ elec-
tions, whether a given voter can ma-
nipulate the election is NP-complete, 
even in the unweighted case.

Even if election systems are proven 
intractable to manipulate in general, it 
remains possible that if one allows only 

The current push-
pull between using 
complexity as a 
shield and seeking 
holes in and paths 
around that shield is 
a natural part of the 
drama of science.
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famously developed the theory of aver-
age-case NP-hardness,37 and although 
that theory is difficult to apply and is 
tied to what distributions one uses, it 
would be extremely interesting to es-
tablish that the manipulation, control, 
and bribery problems for important 
election systems are average-case NP-
hard with respect to some appropriate 
and compellingly natural distribution.

A very exciting new path toward 
circumventing hardness-of-manipula-
tion results (and, potentially, toward 
more generally circumventing hard-
ness results about election-related is-
sues) is to look at restricted domains 
for the collections of votes the elec-
torate may cast. In particular, there 
is a very important political science 
notion called “single-peaked prefer-
ences,” in which the candidates are 
modeled along an axis, such as liberal 
to conservative, and as one goes away 
from each voter’s most preferred can-
didate in either of the axis’s directions 
the voter prefers the candidates less 
and less. Walsh46 raised the fascinat-
ing question of whether hard election-
manipulation problems remain hard 
even for electorates that follow the 
single-peaked model, and he provided 
natural examples in which manipula-
tion problems remain hard even when 
restricted to single-peaked electorates. 
In contrast, and inspired by a differ-
ent part of Walsh’s paper that showed 
some profile completion problems 
are easy for single-peaked electorates, 
a recent paper by Faliszewski et al.27 
shows that for single-peaked elector-
ates many NP-hard manipulation and 
control problems have polynomial-
time algorithms. The point of—and 
threat of—this research line is that 
for electorates that are single-peaked, 

can be many-one polynomial-time reduced 
to) a set that is easy on overwhelmingly many 
of its instances.21 Unfortunately, this does not 
necessarily imply that the original set is easy 
on overwhelmingly many of its instances. In 
fact, it is known that relative to a random “ora-
cle” (black box), there are NP sets on which no 
polynomial-time heuristic algorithm can do 
well.34 Also, it is well known that if any NP-hard 
set has a polynomial-time heuristic algorithm 
that is correct on all but a “sparse” amount of 
its input, then P = NP.44 However, “sparse” in 
that research line is so small as to not reassure 
us here. And, finally, there has been much in-
terest in distributions, problems, and settings 
that remove the gap between worst-case and 
average-case complexities.1,38

a certain number of candidates, the 
manipulation problem becomes easy. 
Conitzer, Sandholm, and Lang15 pro-
vide a detailed study of this behavior, 
showing for each of many election sys-
tems the exact number of candidates 
necessary to make its (constructive, 
weighted, coalitional) manipulation 
problem computationally infeasible. 
For example, in this setting manipula-
tion is easy for Borda with up to two can-
didates, but becomes infeasible when 
restricted even to three candidates.

In contrast, it is well known that 
manipulation is simple for plurality 
elections regardless of the number of 
candidates. That is unfortunate, since 
plurality elections are the most com-
mon and most important elections in 
the real world.

What holds for scoring-rule elec-
tion systems other than plurality? One 
could try analyzing scoring systems 
one at a time to see which are sub-
ject to manipulation, but it might be 
a long slog since there are an infinite 
number of scoring systems. This mo-
tivates us to look toward an excellent 
general goal: finding a dichotomy the-
orem that in one fell swoop pinpoints 
what it is about an election system 
that makes it vulnerable to manipu-
lation or that makes manipulation 
computationally prohibitive. For 
scoring systems, this was achieved in 
Hemaspaandra and Hemaspaandra29 
(see also the closely related work15,42), 

which showed that scoring systems 
are NP-complete to manipulate (in the 
weighted setting) precisely if they al-
low “diversity of dislike” (that is, the 
point values for the second favorite 
and least favorite candidates differ), 
and that all other scoring systems are 
easy to manipulate. From this it fol-
lows that the only easily manipulable 
scoring systems are an infinite collec-
tion of trivial systems, plurality, and 
an infinite collection of systems that 
are disguised, transformed versions 
of plurality; all other scoring systems 
are NP-hard to manipulate.

There has been an intense effort 
to circumvent such hardness results. 
Indeed, the seminal paper on manipu-
lation3 provided a greedy single-voter 
manipulation algorithm that was later 
proved to also work in an interest-
ing range of coalitional-manipulation 
settings.42,49 An influential paper of 
Conitzer and Sandholm14 shows that 
voting systems and distributions that 
on a large probability weight of the in-
puts satisfy certain conditions have a 
manipulability-detection algorithm 
that is correct on at least that same set 
of inputs. A different line of research fo-
cuses on analyzing the probability with 
which a randomly selected election is 
susceptible to a given form of manipu-
lation.16,28,47,48 In the standard probabi-
listic model used in this line of work,d 
for many natural election systems the 
probability that a voter can affect the 
result of an election by simply casting a 
random vote is small but nonnegligible.

This work is motivated by perhaps 
the greatest single worry related to us-
ing NP-hardness to protect elections—
a worry that applies to NP-hardness re-
sults not just about manipulation, but 
also about control and bribery. That 
worry is that NP-hardness is a worst-
case theory, and it is in concept pos-
sible that NP-hard sets may be easily 
solved on many of their input instanc-
es even if P and NP differ.e Levin has 

d	 This model is called impartial culture. In im-
partial culture each vote is chosen uniformly 
at random from the set of all permutations of 
the candidates.

e	 There are a number of results in theoretical 
computer science that are related to this issue, 
while as a practical matter not resolving it for 
the concrete cases we care about. For example, 
by an easy “padding” trick one can see that 
every NP-hard set can have its instances trans-
formed into questions about (in the jargon, 

Figure 4. An example of a weighted  
plurality election. 
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Each bar represents a weighted vote for a 
particular candidate. We can make p a win-
ner by bribing the weight-5 voter to vote for 
p, but bribing only the heaviest voter to vote 
for p would not be sufficient.
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NP-hardness results simply may fail to 
hold. And the reason that can happen 
is the assumption of single-peaked 
preferences is so restrictive that it can 
rule out some of the collections of 
votes used in the outputs of reductions 
in general-case NP-hardness proofs.

Yet another path toward circum-
venting hardness-of-manipulation 
results leads to relaxing the notion 
of solving a manipulation problem. 
Procaccia and Rosenschein42 initi-
ated this approach by showing that 
the heuristic from the seminal work 
of Bartholdi, Tovey, and Trick,3 when 
extended to a coalitional manipula-
tion setting, works correctly on an 
interesting class of scoring-system 
manipulation instances. By an even 
more careful analysis, together with 
Zuckerman, they later extended this 
result to a number of other election 
systems,49 and they obtained approxi-
mation results and results that for ma-
nipulable instances are guaranteed to 
return a manipulation that will work if 
one is allowed to add a certain number 
and weight of additional manipula-
tors. Brelsford et al.8 provide their own 
framework for studying approximabil-
ity of manipulation problems (as well 
as approximability of bribery and con-
trol problems) and for a large class of 
scoring systems gives approximation 
algorithms for manipulation.

Returning to playing defense, what 
can we do if a system has a polynomial-
time manipulation algorithm? Can we 
somehow feed the system a can of spin-
ach and turn it fearsome? To a surpris-
ing extent the answer is yes, as studied 
in work of Conitzer and Sandholm13 
and Elkind and Lipmaa.19 They vari-
ously do this by adding an elimination 
“pre-round” (that may or may not be 
based on a hypothetical one-way func-
tion) or by changing the election into 
a long series of rounds of candidate 
elimination. The good news is that this 
approach often boosts the complexity, 
and the bad news is that these multi-
round election systems are simply not 
the same intuitively attractive animals 
that they are built from.

Using Complexity to Block 
Bribery in Elections
The complexity-theoretic study of 
bribery in elections was proposed by 
Faliszewski, Hemaspaandra, and He-

maspaandra,24 and started far more 
recently than did the complexity-the-
oretic study of control and manipu-
lation of elections. Bribery comes in 
many variants, but the basic pattern 
is just what the term brings to mind. 
The briber has a certain budget, the 
voters (who depending on the model 
may or may not have weights) each 
have a price for which their vote can be 
bought, and depending on the model 
voters may or may not be required to 
each have unit cost (the former case 
is referred to as the “without prices” 
case). And the question is whether 
the briber can achieve his or her 
goal—typically, to make a preferred 
candidate p be a winner—within the 
budget. Note that bribery has aspects 
of both control and manipulation. 
Like some types of control one has to 
choose which collection of voters to 
act on, but like manipulation one is 
altering votes.

For reasons of space, we cover brib-
ery only briefly. We do so by giving a few 
examples focusing on plurality elec-
tions and Llull elections.

For plurality elections, the complex-
ity of bribery turns out to be very sensi-
tive to the model. For plurality, brib-
ery is NP-complete when voters have 
weights and prices, but is in polynomi-
al time if voters have only weights, only 
prices, or neither weights nor prices.24,f 
For the weighted and the weighted-
and-priced cases, these results can be 
extended to dichotomy theorems that 
completely classify which scoring-rule 
election systems have NP-complete 
bribery problems and which have fea-
sible bribery problems.24 Also, for plu-
rality, there is an efficient algorithm 
that can approximately solve the prob-
lem up to any given precision23—a so-
called fully polynomial-time approxi-
mation scheme.

For Llull elections, the results again 
are very sensitive to the model. On one 
hand, both with and without weights, 
and both with and without voter pric-
es, the bribery problem for Llull elec-
tions is NP-complete. On the other 

f	 The bribery algorithms are far from trivial. For 
example, Figure 4 shows an election (without 
prices) where the very natural heuristic of first 
bribing the heaviest voter yields a suboptimal 
solution. Similarly, it is easy to find examples 
where bribing the heaviest voter of a current 
winner does not lead to an optimal solution.

hand, if one changes one’s model and 
associates a cost not to each voter, but 
rather to each pairwise preference of 
each voter (so the more one changes a 
given voter’s vote, the more one has to 
pay—so-called “microbribery”), Llull 
bribery (without weights) can be done, 
in a slightly different model that al-
lows irrational preferences, in polyno-
mial time.25

Summary
In this article, we discussed some of 
the main streams—control, manipu-
lation, and bribery—in the study of 
how complexity can be used as a shield 
to protect elections (see  Faliszewski 
et al.26 for a more technical survey). 
This line was started by the striking 
insight of Bartholdi, Orlin, Tovey, and 
Trick (see also Simon45 for even earlier 
roots) that although economics proves 
we cannot make manipulation impos-
sible, we can seek to make it compu-
tationally infeasible. As we have seen, 
many hardness results have been ob-
tained, as have many polynomial-time 
attacks. Election systems and settings 
vary greatly in the behaviors one can 
establish. It is natural to consider 
an election system’s computational 
weaknesses and strengths, as one fac-
tor among many, when choosing an 
election system for a given task, and 
in particular to choose a system care-
fully in light of the types of attacks one 
most needs it to thwart. Yet the work 
on computational protection of elec-
tions has also energized the search for 
end runs around that protection, such 
as approximation algorithms and heu-
ristics having provably frequent good 
performance, and one must also worry 
about such potential end runs when 
making one’s election-system choice.

This work all falls within the 
emerging area known as computa-
tional social choice (see Chevaleyre et 
al.10 for a superb survey), an area that 
links AI, systems, and theory within 
computer science, as well as econom-
ics, political science, mathematics, 
and operations research. Elections 
have been important for thousands 
of years, and with the current and 
anticipated increase of electronic 
agency, elections become more im-
portant—and more open to attacks—
with each passing year. The current 
push-pull between using complexity 
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as a shield and seeking holes in and 
paths around that shield is a natural, 
exciting part of the drama of science, 
and is likely to continue for decades to 
come as new models, techniques, and 
attacks are formulated and studied. 
This study will clearly benefit from the 
broadest possible participation, and 
we urge any interested readers—and 
most especially those early in their 
careers—to bring their own time and 
skills to bear on the many problems 
that glimmer in the young, important, 
challenging study of the complexity of 
elections.
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Exploiting parallelism has become the 
primary means to higher performance. 
Shared memory is a pervasively used 
programming model, where parallel 
tasks or threads communicate through 
a global address space. Popular lan-
guages, such as C, C++, and Java have 
(or will soon have) standardized sup-
port for shared-memory threads. Unfor-
tunately, shared-memory programs are 
notoriously prone to subtle bugs, often 
due to data races.

Languages that allow data races ob-
fuscate true communication and syn-
chronization. Since any load or store 
may communicate or synchronize with 
another thread through a data race, it 
becomes difficult to reason about sec-
tions of code in isolation. Data races 
also create non-determinism since the 
ordering between two racing accesses 
is timing-dependent. Racy programs 
therefore require reasoning about 
many interleavings of individual mem-
ory accesses and their executions are 
difficult to reproduce. Data races have 
therefore been widely considered as 
symptoms of bugs and there is much 
research to automatically detect them.

An arguably more fundamental 
problem with data races concerns se-
mantics. Every programming language 
must specify what value a load can re-
turn, also called the memory model. 
It has been surprisingly difficult to 
specify an acceptable model that bal-
ances ease-of-use and performance 
for languages that allow data races.1 
Programmers usually expect a sequen-
tial interleaving-based model called se-
quential consistency. For data-race-free 
programs, it is straightforward to pro-
vide sequential consistency and high 
performance. With racy code, however, 
routine compiler and hardware opti-
mizations can result in surprising be-
haviors. Consequently, the upcoming C 
and C++ memory models specify “unde-
fined” behavior for programs with data 
races. This gives freedom to implement-
ers but poses challenges for debugging 

racy code.  Java’s safety requirements 
preclude the use of “undefined” behav-
ior. The Java memory model, therefore, 
specifies very weak semantics for racy 
programs, but is extremely complex and 
currently has known bugs.

Despite the debugging and seman-
tics difficulties, some prior work refers 
to certain data races (for example, some 
unsynchronized reads) as benign and 
useful for performance. Unfortunately, 
reasonable semantics for programs with 
any type of data race remain elusive; C, 
C++, and Java do not provide usable se-
mantics with any (benign or not) data race. 

A natural conclusion is to strive for 
languages that eliminate data races. 
Although there is much progress, such 
general-purpose languages,2 are not 
yet commercially available. The follow-
ing two papers on Goldilocks and Fast-
Track suggest alternative solutions that 
use always-on data race detection for 
current languages. 

Goldilocks was the first work to pro-
pose a data race be treated as a language-
level exception, just like null pointer 
dereferences. This insight cleans up the 
most difficult part of the memory mod-
els mess—executions are either sequen-
tially consistent or throw an exception. 
No complicated semantics of Java and 
no unsafe behavior of C/C++!

The challenge, compared to much 
prior work on race detection, is that 
an always-on language-level exception 
mechanism must be both fast and pre-
cise. The well-established race detec-
tion algorithm based on vector clocks 
is precise, but incurs orders-of-magni-
tude slowdown. Faster algorithms (for 
example, based on a lockset approach) 
exist, but produce false positives, which 
are unacceptable for enforcing lan-
guage-level semantics. 

Goldilocks extends the lockset ap-
proach to make it precise, at a much 
faster speed than the previous precise 
vector clock algorithm. FastTrack fol-
lowed up by optimizing the vector clock 
approach to make it run faster, without 

losing precision and performing even 
better than Goldilocks. For the first 
time, these papers made it possible to 
believe that “data race as an exception” 
may be a viable solution to the vexing 
debugging and semantics problems of 
shared memory.  

The absolute slowdown of both tech-
niques is still quite significant, but they 
expose an exciting research agenda. An 
immediate challenge is to improve per-
formance. Another concerns mapping 
races detected in compiler-generated 
code to source code. Others are explor-
ing hardware for similar goals.3

More broadly, these papers encour-
age a fundamental rethinking of pro-
gramming models, languages, compil-
ers, and hardware. Should languages 
be designed to eliminate data races by 
design?2 Or should the runtime auto-
matically detect races? Or should the 
hardware?3 Can similar techniques be 
used for enforcing even stronger prop-
erties such as determinism and ato-
micity? Does this impact how we view 
shared memory as a programming 
model? The answer to all these ques-
tions is probably “yes.” 

It is unlikely that any of language, 
runtime, or hardware techniques alone 
will strike the best balance between 
ease-of-use, generality, performance, 
and complexity, but designing systems 
that combine the strengths of such 
techniques remains challenging. It is 
also unclear what high-level language 
properties such systems will finally en-
sure; for example, race elimination is 
certainly a critical factor in ensuring de-
terminism and atomicity.  What is clear 
is these papers provide key insights to 
shape the final solutions and are impor-
tant steps toward making parallel pro-
gramming amenable to the masses.	
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Goldilocks:  
A Race-Aware Java Runtime
By Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran

Abstract
We present Goldilocks, a Java runtime that monitors 
program executions and throws a DataRaceException 
when a data race is about to occur. This prevents racy 
accesses from taking place, and allows race conditions to 
be handled before they cause errors that may be difficult 
to diagnose later. The DataRaceException is a valuable 
debugging tool, and, if supported with reasonable compu-
tational overhead, can be an important safety feature for 
deployed programs. Experiments by us and others on race-
aware Java runtimes indicate that the DataRaceException 
may be a viable mechanism to enforce the safety of execu-
tions of multithreaded Java programs.

An important benefit of DataRaceException is that 
executions in our runtime are guaranteed to be race free 
and thus sequentially consistent as per the Java Memory 
Model. This strong guarantee provides an easy-to-use, clean 
semantics to programmers, and helps to rule out many 
concurrency-related possibilities as the cause of errors. To 
support the DataRaceException, our runtime incorpo-
rates the novel Goldilocks algorithm for precise dynamic race 
detection. The Goldilocks algorithm is general, intuitive, and 
can handle different synchronization patterns uniformly.

1. INTRODUCTION
When two accesses by two different threads to a shared 
variable are enabled simultaneously, i.e., at the same pro-
gram state, a race condition is said to occur. An equiva-
lent definition involves an execution in which two threads 
make conflicting accesses to a variable without proper 
synchronization actions being executed between the two 
accesses. A common way to ensure race freedom is to asso-
ciate a lock with every shared variable, and to ensure that 
threads hold this lock when accessing the shared variable. 
The lock release by one thread and the lock acquire by the 
next establish the required synchronization between the 
two threads.

Data races are undesirable for two key reasons. First, a 
race condition is often a symptom of a higher-level logical 
error such as an atomicity violation. Thus, race detectors 
serve as a proxy for more general concurrency-error detec-
tion when higher-level specifications such as atomicity 
annotations do not exist. Second, a race condition makes 
the outcome of certain shared variable accesses nondeter-
ministic. For this and other reasons, both the Java Memory 
Model (JMM)10 and the C++ Memory Model (C++MM)2 define 
well-synchronized programs to be programs whose execu-
tions are free of race conditions. For race-free executions, 
these models guarantee sequentially consistent semantics; 

in particular, every read deterministically returns the value 
of the “last” write. This semantics is widely considered to 
be the only simple-enough model with which writing useful 
concurrent programs is practical. For executions containing 
race conditions, the semantics is either completely unde-
fined (as is the case for C++MM2) or is complicated enough 
that writing a useful and correct program with “benign 
races” is a challenge.

Detection and/or elimination of race conditions has been 
an area of intense research activity. The work presented in 
this paper (and initially presented in Elmas et al.6) makes 
two important contributions to this area.

First, for the first time in the literature, we propose that 
race conditions should be language-level exceptions just 
like null pointer dereferences and indexing an array out of 
its bounds. The Goldilocks runtime for Java provides a 
new exception, DataRaceException,a that is thrown pre-
cisely when an access that causes an actual race condition is 
about to be executed. Since a racy execution is never allowed 
to take place, this guarantees that the execution remains 
sequentially consistent.

The DataRaceException brings races to the program-
mer’s attention explicitly. When this exception is caught, the 
recommended course of action is to terminate the program 
gracefully. This is because, for racy Java programs, a wide 
range of compiler optimizations are allowed by the JMM, 
and this makes it complicated to relate program executions 
to source code. If the exception is not caught, the Goldilocks 
runtime terminates the thread that threw the exception. 
While not recommended, the programmer could also 
choose to make optimistic use of a DataRaceException 
by, for instance, retrying the code block that led to the race, 
hoping that the conflicting thread has performed the syn-
chronization necessary to avoid a race in the meantime. 
Since the first paper on the Goldilocks runtime,6 the idea 
that certain concurrency errors, especially ones that result 
in sequential consistency violations, should result in excep-
tions has gained significant support and several implemen-
tations of the idea have been investigated.9, 11

To support a DataRaceException, a runtime must 

The original version of this paper was published in the 
Proceedings of the ACM SIGPLAN 2007 Conference on 
Programming Language Design and Implementation (PLDI), 
June 2007.

a  We define DataRaceException as a subclass of the Runtime
Exception class in Java.
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but they cannot handle concurrency patterns implemented 
using volatile variables such as barrier synchronization.

There is a significant body of research on dynamic data-
race detection based on computing the happens-before 
relation4, 7, 14, 15, 17 using vector clocks.12 Hybrid techniques14, 20

combine lockset and happens-before analysis. For exam-
ple, RaceTrack20 uses a basic vector clock algorithm to 
capture thread-local accesses to objects thereby eliminat-
ing unnecessary and imprecise applications of the Eraser 
algorithm. Similarly, MultiRace14 presents djit+, a vector 
clock algorithm with several optimizations to reduce the 
number of checks at an access, including keeping distinct 
vector clocks for reads and writes and using a lockset algo-
rithm as a fast-path check. To the best of our knowledge, 
FastTrack,7 which builds on djit+, is the best-performing 
vector clock-based algorithm in the literature. By exploit-
ing some access patterns, FastTrack reduces the cost of 
vector clock updates to O(1) on average. We provide a quali-
tative comparison of the Goldilocks and FastTrack algo-
rithms in Section 4.3. Vector clock and Goldilocks are 
both precise, but the generalized locksets in Goldilocks 
provide an intuitive representation of how shared variables 
are protected at each point the execution.
Concurrency-Related Exceptions: Since proposed first by 
the authors in Elmas et al.,6 the idea that programming plat-
forms should be able to guarantee sequential consistency 
for all programs has gained significant support. Marino 
et.al.11 and Lucia et.al.9 provide platforms with explicit mem-
ory model exceptions. Both platforms define stronger but 
simpler contracts than JMM and C++MM, which enable effi-
cient hardware implementations that support the memory 
model exceptions.

2. A GENERIC MEMORY MODEL
In this section, we present a generic memory model and 
express the JMM as a special case of it. This generic model 
allows a uniform treatment of the various synchronization 
constructs in Java. We also believe that memory models at 
different levels (e.g., the hardware level) and for different 
languages (e.g., C++MM) can be expressed as instances of 
this model. This allows Goldilocks to be applied in these 
settings directly.
Variables and Actions: Program variables are separated into 
two categories: data variables (Data) and synchronization 
variables (Sync). We use x, and o to refer to data and syn-
chronization variables, respectively. Threads in a program 
execute actions from the following categories:

•	 Data variable accesses: read(t, x, v) by thread t reads the 
current value v of a data variable x, and write(t, x, v) by 
thread t writes the value v to x.

•	 Synchronization operations: When threads synchronize 
using a synchronization mechanism, a thread ti executes 
a notification action, which is then observed by other 
threads tj. Such a notification–observation pair defines a 
“synchronizes-with” edge from the former action to the 
latter. We classify actions that serve as sources and sinks 
of a synchronizes-with edge as synchronization source 
and sink actions, respectively.

incorporate a precise yet efficient race detection mecha-
nism. In this context, false positives in race detection can-
not be tolerated. The second contribution of our work is the 
Goldilocks algorithm, a novel, precise, and general algo-
rithm for detecting data races at runtime. In Elmas et  al.,6 
we presented an implementation of the Goldilocks algo-
rithm in a Java Virtual Machine (JVM) called Kaffe.19 Our 
experiments with Goldilocks on benchmarks brought up 
the new possibility that the overhead of post-deployment 
precise race detection in a runtime may be tolerable. There 
has been significant progress in the efficiency of precise race 
detection since the Goldilocks runtime was first published 
(see Flanagan and Freund, and Pozmiansky and Schuster,7, 14 
for example) and this idea appears viable today.

The Goldilocks algorithm is based on an intuitive, gen-
eral representation for the happens-before relationship as 
a generalized lockset (Goldilockset) for each variable. In 
the traditional use of the term, a lockset for a shared vari-
able x at a point in an execution contains a set of locks. A 
thread can perform a race-free access to x at that point by 
first acquiring a lock in this lockset. A Goldilockset is a gen-
eralization of a lockset. In Java, locks and volatile variables 
are synchronization objects, and acquiring and releasing a 
lock, as well as reading from and writing to a volatile vari-
able, are synchronization operations. To reflect this, at each 
point in an execution, the Goldilockset for a shared variable 
x may contain thread ids, locks, and volatile variables. A 
thread can perform a race-free access to x iff its thread id 
is in the Goldilockset, or if it first acquires a lock that is in 
the Goldilockset, or reads a volatile variable that is in the 
Goldilockset. In other words, the Goldilockset indicates 
the threads that have the ownership of x and the synchro-
nization objects that protect access to x at that point. The 
Goldilockset is updated during the execution as synchroni-
zation operations are performed. As a result, Goldilocksets 
are a compact, intuitive way to precisely represent the 
happens-before relationship. Thread-local variables, vari-
ables protected by different locks at different points of the 
execution, and event-based synchronization with condi-
tion variables are all uniformly handled by Goldilocks. 
Furthermore, Goldilocksets can easily be generalized to 
handle other synchronization primitives such as software 
transactions18 and adapted to handle memory models of 
languages other than Java, such as C++MM. To  facilitate 
this, in this paper (differently from Elmas et al.6) we present 
Goldilocks on a generic memory model and then show 
how the algorithm can be specialized to JMM.

1.1. Related work
Dynamic Race Detection: There are two approaches to 
dynamic data-race detection, one based on locksets and the 
other based on the happens-before relation. Eraser16 is a 
well-known lockset-based algorithm for detecting race con-
ditions dynamically by enforcing the locking discipline that 
every shared variable is protected by a unique lock. In spite 
of the numerous papers that refined the Eraser algorithm to 
reduce the number of false alarms, there are still cases, such 
as dynamically changing locksets, that cannot be handled 
precisely. Precise lockset algorithms exist for Cilk programs,3 
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•	 The union of the program orders for all t ∈ Tid and the 
synchronization orders for all variables o ∈ Sync is a valid 
partial order. During an execution, our data-race detec-
tion algorithm examines a linearization of this partial 
order and identifies the happens-before edges between 
data accesses.

Sequential Consistency: Sequential consistency is a prop-
erty that allows programmers to use an interleaving model 
of execution where accesses from different threads are inter-
leaved into a total order, and every read sees the value of the 
most recent write. Sequential consistency is widely consid-
ered to be the only simple-enough model with which writing 
useful concurrent programs is practical. Formally, an execu-
tion E  Tid, A, W, →po ., →so . is sequentially consistent if there 
exists a total order →SC  over Act satisfying the following:

•	 For every thread t ∈ Tid, →SC  respects the program order   
→po

t, i.e., →p  o
t ⊆  →

SC .
•	 Every read a  = read(x) sees the most recent write to x in →SC , 

i.e., there is no other b = write(x) such that W(a) →SC  b →SC   a.

Data Races: Two data variable accesses are called conflicting 
if they refer to the same shared data variable and at least one 
of them is a write access.

One frequently used definition of a race condition involves 
a program state in which two conflicting accesses by two dif-
ferent threads to a shared data variable are simultaneously 
enabled. To distinguish this definition from others, let us refer 
to this condition as a simultaneity race. The definition of a race 
condition used in most work on dynamic race detection is 
what we call a happens-before race and involves two conflicting 
accesses not ordered by the happens before relationship, i.e., 
not separated by proper synchronization operations. For C++, 
these two definitions of a race condition have been shown to 
be equivalent.2 This proof also generalizes to Java executions.
Formally, an execution E  Tid, Act, W, →po , →so . contains a 
happens-before race if there are two conflicting actions,  
a, b ∈ Act|x accessing a data variable x, such that neither 
a →hb  b nor b →hb  a holds. Conversely, the execution is race free 
if every pair of conflicting accesses to a data variable are 
ordered by happens-before.

The well-formedness of an execution guarantees that if 
the execution has no race conditions, then it is sequentially 
consistent. The Goldilocks runtime makes use of this and 
the DataRaceException to guarantee for all programs 
(whether racy or not) that every concurrent execution is 
sequentially consistent at the byte-code level. This does not 
restrict the Goldilocks runtime’s use as a debugging tool, 
because, for the Java and C++ memory models, it has been 
proven2, 10 that if a program has a racy execution, then it is 
guaranteed to have at least one execution that is sequentially 
consistent and racy. Thus, it is sufficient to restrict one’s 
attention to looking for races in sequentially consistent exe-
cutions only.

3. THE GOLDILOCKS ALGORITHM
In this section, we describe our algorithm for detecting data 
races in an execution E  Tid, Act, W, →po ., →so .. For simplicity 

–	 Synchronization source actions: sync-source(t, o) by 
thread t creates a synchronizes-with source by writing 
to a synchronization variable o. Lock releases and vola-
tile variable writes in Java are synchronization source 
actions.

–	 Synchronization sink actions: sync-sink(t, o) by thread 
t creates a synchronizes-with sink by reading from a 
synchronization variable o. Lock acquires and vola-
tile variable reads in Java are synchronization sink 
actions.

Multithreaded Executions: An execution E is represented by 
a tuple E  Tid, Act, W, →po .,→so ..

•	 Tid is the set of identifiers for threads involved in the 
execution. Each newly forked thread is given a new 
unique id from Tid.

•	 Act is the set of actions that occur in this execution. Act|t 
is the set of actions performed by t ∈ Tid, and Act|x (resp. 
Act|o) are the sets of actions performed on data variable x 
(resp. synchronization variable o).

•	 W is a total function that maps each read(t, x, v) in Act to 
a write(u, x, v) in Act. W is used to model the write-seen 
relationship between a read of x and the write to x it 
sees. In a race-free, sequentially consistent execution, 
this is the last write before read(t, x, v). In order to make 
the function W total, we assume an initial write for each 
variable before any reads.

•	 →p            o  
t is the program order per thread t. For each thread t, 

→p    o  
t is a total order over Act|t and gives in which order the 

actions were issued to execute. This order is sometimes 
referred to as the observed execution order.

•	 →s      o
o is the synchronization order per synchronization 

variable o ∈ Sync. For each o ∈ Sync, →s   o
o is a total order 

over Act|o.

Synchronizes-With and Happens-Before: Given an execu-
tion with program and synchronization orders, we extract 
two additional orders called the synchronizes-with (→sw ) and 
happens-before (→hb ) orders. Data races are defined using 
these orders.

A synchronization operation a1 by thread t1 syn-
chronizes with a2 by thread t2, denoted a1 →

sw  a2, if a1 is a 
sync-source on some synchronization variable o, a2 is a 
sync-sink on o, and a1 →

so 
o a2.

The happens-before partial order →hb  on the execution E is 
defined as the transitive closure of the program orders →po 

t for 
all t ∈ Tid and the synchronizes-with order →sw .

In this paper, we focus only on well-formed executions,10 
which respect (i) the intra-thread semantics and (ii) the 
semantics of the synchronization variables and operations. 
In addition, well-formed executions satisfy two essential 
requirements for data-race detection:

•	 Happens-before consistency: This property makes use of 
the happens-before order to restrict the write-seen rela-
tionship. For example, for a read action a, a →hb  W(a) 
cannot happen, and W(a) cannot be overwritten by 
another write action b such that W(a) →hb  b  →hb  a.
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of exposition, we initially do not distinguish between read 
and write accesses.

The Goldilocks algorithm processes the actions in Act 
one at a time, as a sequence. Before a thread t performs an 
action a in Act, t notifies the Goldilocks algorithm that 
a is about to occur. The order in which these notifications 
from different threads are interleaved and processed by 
Goldilocks is represented mathematically by p, where p(i) is 
the i-th action in the sequence. This linear order, by construc-
tion, respects the program order for each thread, and the syn-
chronization total order for each synchronization variable.b

The Goldilocks algorithm maintains for each data vari-
able a “Goldilockset”: a map GLS such that, for every data vari-
able x, its Goldlilockset is a set GLS(x)  Tid  Sync. Roughly 
speaking, GLSi(x), the Goldilockset of x immediately before 
processing action p(i), consists of (i) the id’s of threads that can 
access x in a race-free way at that point in the execution, and (ii) 
the synchronization variables on which a thread can perform a 
sync-sink access in order to gain race-free access to x.

As Goldilocks processes each action p (i) from E, 
it updates the Goldilocksets of variables. Initially, the 
Goldilockset GLS(x) is empty for all data variables, including 
static ones. When a new object is created, the Goldilockset 
for all of its instance fields is initialized to the empty set. 
After every action, the Goldilockset of every data variable x 
is potentially updated. For every data variable x, three sim-
ple rules specify how GLS(x) is updated after p (i) based on 
whether p (i) is (1) a synchronization source, (2) a synchroni-
zation sink, or (3) a read or write access to x, as shown in the 
procedure ApplyLocksetRules in Figure 2.

If the action p (i) is a synchronization operation on a vari-
able o, we update the lockset GLS(x) for every data variable 
x in Data. If p (i) is a sync-source operation, rule 1 adds o to 
GLS(x) if it contains the id t of the current accessor thread. 
Intuitively, this represents that a later sync-sink operation by 
a thread u on synchronization variable o will be sufficient for 
u to gain race-free access to x. This is formalized by rule 2. 
If p (i) is a sync-sink(o) operation, rule 2 checks whether the 
synchronization variable o is in GLS(x). If this is the case, 
then t is added to the Goldilockset.

If the action p (i) is an access to a data variable x, rule 3 
checks the Goldilockset of the variable GLS(x) to decide 
whether this access is race free. If GLS(x) is empty, it indi-
cates that x is a fresh variable which has not been accessed 
so far and any access to x at this point is race free. If GLS(x) 
is not empty, only threads whose id’s are in GLS(x) can per-
form race-free accesses to x. If the accessing thread’s id t is 
not in GLS(x) then we throw a DataRaceException on x. 
Otherwise, the access to x is race free and GLS(x) becomes 
the singleton {t}, indicating that, without further synchroni-
zation operations, only t can access x in a race free manner.

Figure 1 shows two cases where the ownership of a 
data variable x is transferred from a thread ti to another 
thread tj, and indicates how the Goldilocksets evolve in 
each case. Program order (→po ) and synchronizes-with (→sw )

edges between consecutive actions are indicated in the 
figure. Figure 1a illustrates direct ownership transfer from 
ti to tj. After accessing x, ti performs a sync-source opera-
tion (lock release) on synchronization variable Lx. Later, 
tj obtains ownership of x by executing a sync-sink operation 
(lock acquire) on synchronization variable Lx. Figure 1b illus-
trates transitive ownership transfer. Threads ti and tj do not 
synchronize on the same synchronization variable. Instead, 
the synchronization involves a chain of synchronizes-with 
edges between other threads and synchronization variables. 
ti synchronizes with tk via synchronization variable o1 and, 
later tk synchronizes with tj via synchronization variable o2.

Rules 1 and 2 in Figure 2 require updating the lockset 
of each data variable. A naive implementation of this algo-
rithm would be too expensive for programs that manipu-
late large heaps. In Section 4, we present an efficient way 
of implement our algorithm by representing Goldilocksets 
implicitly and by applying update rules lazily.

b  A racy read may appear earlier in p than the write that it sees. If an execu-
tion contains a data race between a pair of accesses, Goldilocks declares a 
race at one of these accesses regardless of which linearization p is picked.
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(a) Direct ownership transfer using lock Lx
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Figure 1. Transferring ownership of x, and GLS(x).

Figure 2. The core lockset update rules.

ApplyLocksetRules(p(i)):

1.  if p(i) = sync-source(t, o)

	 foreach x ∈ Data:

        if t ∈ GLS(x)

	 GLS(x) := GLS(x)  {o}

2.  if p(i) = sync-sink(t, o)

	 foreach x ∈ Data:

        if o ∈ GLS(x)

            GLS(x) := GLS(x)  {t}

3.  if p(i) = write(t, x) or p(i) = read(t, x)

	 if t ∈ GLS(x) or GLS(x) = 0/

             GLS(x) := {t}

	 else

        throw a DataRaceException on x
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Correctness: The following theorem expresses the fact 
that the Goldilocks algorithm is both sound, i.e., 
detects all actual races in a given execution, and pre-
cise, i.e., never reports false alarms. The full proof of the 
original Goldilocks algorithm for Java can be found in 
Elmas et al.5

Theorem 1 (Correctness). Let E  Tid, Act, W, →po .,→so . 
be a well-formed execution, x a data variable, and p a linear 
order on Act as described earlier. Let i < j, and let p(i) and p(j) 
be two accesses to x performed by threads ti and tj, with no other 
action p(k) in between (i < k < j) accessing x. Then tj ∈ GLSj(x), 
i.e., the access p(j) is declared to be race free by the Goldilocks 
algorithm iff p(i) →hb  p(j).

3.1. Example: precise data-race detection
In this section, we illustrate on an example the Goldilocks 
algorithm and how Goldilocksets capture the synchroniza-
tion mechanism protecting access to a variable at each point 
in an execution. In this example, earlier lockset algorithms 
would have erroneously declared a race condition.

Consider the execution shown in Figure 3 in which all 
actions of T1 happen first, followed by all actions of T2 and 
then of T3. This example mimics a scenario in which an 
object is created and initialized and then made visible glob-
ally by T1. This Int object (referred to as o from now on) is 
a container object for its data field (referred to as x from 
now on). The object o is referred to by different global vari-
ables (a and b) and local variables (tmp1,tmp2,and tmp3) 

at different points in this execution. The contained variable 
x is protected by synchronization on the container object o, 
and during the execution, the lock (La or Lb) protecting o 
and x changes depending on which variable (a or b) points 
to o. Notice that, T2 changes the protecting lock of the con-
tainer object o from La to Lb, without accessing x. Figure 3 
shows the Goldilocks update rules applied on GLS(x) for 
each action and the resulting value of GLS(x).

Observe that the update rules allow a variable’s 
Goldilockset to grow during the execution. This enables 
them to represent threads transfering ownership using 
different synchronization variables during the execution. 
In this example, this ownership transfer takes place with-
out the variable itself being accessed. For example, after 
T2 finishes in Figure 2, GLS(x) has the value {T1, La, T2, 
Lb}, meaning that a thread can access x without data race 
by locking either La or Lb. Then T3 makes Lb the only pro-
tecter lock by acquiring Lb and accesses x.

3.2. Distinguishing read and write accesses
The basic Goldilocks algorithm in Figure 2 tracks the 
happens-before relationship between any two accesses to a 
variable x. In order to perform race detection, we must check 
the happens-before relationship only between conflicting 
actions, i.e., at least one action in the pair must be a write 
access. We extend the basic Goldilocks algorithm by keep-
ing track of (i) GLSW (x), the “write Goldilockset of x”, and (ii) 
GLSR(t, x), the “read Goldilockset of t and x” for each thread t. 
The update rules in ApplyLocksetRules are adapted to main-
tain these Goldilocksets, but have essentially the same form 
as the rules in Figure 2. In the extended algorithm, it is suf-
ficient to check happens-before between the current access 
to x and the most recent accesses (in the linear order p) to 
x. How this extension is performed for Java can be found in 
Elmas et al.6

3.3. Specializing Goldilocks to the JMM
The JMM requires that all synchronization operations be 
ordered by a total order →so , whereas in our execution model, 
a separate total order →so

o per synchronization variable is 
sufficient.
Data Variables and Operations: In Java, every data variable is 
in the form of (o, d) where o is an object and d is a nonvola-
tile field. The byte-code instructions x load and xstore access 
memory to read from and write to fields of objects, respec-
tively (x changes depending on the type of the field).

The JMM specifies three synchronization mechanisms: 
monitors, volatile fields, and fork/join operations.
Monitors: In Java, a monitor per object (denoted by mo) pro-
vides a reentrant lock for each object o. Acquiring the lock 
of an object o (acquire(o) ) corresponds to a sync-sink opera-
tion on mo, while releasing the lock of o (release(o) ) corre-
sponds to a sync-source operation on mo. Nested acquires 
and releases of the same lock are treated as no-ops. In the 
JMM, each release(o) synchronizes with the next acquire(o) 
operation in →so  mo.
Volatile Variables: Each volatile variable is denoted (o,  v) 
where o is an object, and v is a volatile field. Each read 
volread(o, v) from a volatile variable (o, v), and each write 

Figure 3. Precise data-race detection example.

Class Int {  int data; }

Int a, b; // Global variables

Execution	 Goldilockset update rule applied	 GLS(x)

Thread 1 (T1):

tmp1 = new Int;	 Initialize lockset	 0/

tmp1.data = 0;	 First access	 {T1}

acquire(La);	 La ∈ GLS(x) → add T1 to GLS(x)	 {T1}

a = tmp1;	 No access to x	 {T1}

release (La);	 T1 ∈ GLS(x) → add La to GLS(x)	 {T1,La}

Thread 2 (T2):

acquire(La); 	 La ∈ GLS(x) → add T2 to GLS(x)	 {T1,La,T2}

tmp2 = a; 	 No access to x	 {T1,La,T2}

release(La); 	 T2 ∈ GLS(x) → add La to GLS(x)	 {T1,La,T2}

acquire(Lb); 	 Lb ∈ GLS(x) → add T2 to GLS(x)	 {T1,La,T2}

b = tmp2; 	 No acces s to x	 {T1,La,T2}

release(Lb); 	 T2 ∈ GLS(x) → add Lb to GLS(x)	 {T1,La,T2,Lb}

Thread 3 (T3):

acquire(Lb); 	 Lb ∈ GLS(x) → add T3 to GLS(x)	

{T1,La,T2,Lb,T3}

b.data = 2;	 T3 ∈ GLS(x) → Race-free access	 {T3}

tmp3 = b;	 No access to x	 {T3}

release(Lb);	 T3 ∈ GLS(x) → add Lb to GLS(x)	 {T3,Lb}

tmp3.data = 3;	 T3 ∈ GLS(x) → Race-free access	 {T3}
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volwrite(o, v) to (o, v) is implemented by the xload and xstore 
byte-code instructions, respectively. While volread(o,  v)
corresponds to a sync-sink, volwrite(o,  v)  corresponds to 
sync-source operation on (o, v). In the JMM, there is a syn-
chronizes-with relationship between each volread(o, v) and 
the volwrite(o, v) that it sees.
Fork/Join: Creating a new thread with id t (fork(t) ) syn-
chronizes with the first action of thread t, denoted start(t). 
The last action of thread t, denoted end(t) synchronizes 
with the join operation on t, denoted join(t). For each 
thead t, fork(t) and end(t) correspond to sync-source 
operations on a (fictitious) synchronization variable t–, 
and start(t) and join(t) correspond to sync-sink opera-
tions on t–. The JMM guarantees that for each thread t, 
there exists an order →so

t– such that: fork(t) →so
t– start(t) →so

t–

end(t) →so
t– join(t).

Handling other Synchronization Mechanisms: Using the 
lockset update rules above, Goldilocks is able to uni-
formly handle various approaches to synchronization such 
as dynamically changing locksets, permanent or temporary 
thread-locality of objects, container-protected objects, own-
ership transfer of variable without accessing the variable (as 
in the example in Section 3.1). Furthermore, Goldilocks 
can also handle the synchronization idioms in the java.
util.concurrent package such as semaphores and bar-
riers, since these primitives are built using locks and volatile 
variables. The happens-before edges induced by the wait/
notify(All) construct are computed by simply applying the 
Goldilockset update rules to the acquire and release opera-
tions invoked inside wait.

3.4. Race detection and sequential consistency
The Java and C++ memory models provide the data-race free-
dom (DRF) property.2, 10 The DRF property guarantees that if 
all sequentially consistent executions of a source program 
are race free, then the compiled program only exhibits these 
sequentially consistent executions of the source program, 
after any compiler and hardware optimizations permitted by 
the memory model. The Goldilocks algorithm check races 
by monitoring the executions of the compiled program, and 
assumes that the compiler and the runtime it is built on 
(hardware or virtual machine) conform to the language and 
the memory model specifications. Therefore, if the source 
program is race free, then any execution of the compiled 
program corresponds to a sequentially consistent execu-
tion of the source program, and no DataRaceException 
is thrown.

If the source program has a race, the Goldilocks run-
time still ensures that all executions of the compiled pro-
gram will run under the sequential consistency semantics, 
i.e., sequential consistency is guaranteed at the byte-code 
level. This is accomplished by preventing accesses that will 
cause a data race and throwing a DataRaceException 
right before that access. However, in the case of a racy 
program, the JMM permits compiler optimizations that 
result in executions that are not sequentially consistent 
behaviors of the original source code. In this case, the JMM 
and the DRF property are not strong enough to allow the 
Goldilocks runtime to relate byte-code level executions 

to executions of the source-level program, which makes 
debugging hard.

To use Goldilocks for debugging purposes, this diffi-
culty can be remedied by disabling compiler optimizations. 
For post-deployment use, a stronger memory model9, 11 that 
is able to relate each (racy and race-free) execution of the 
compiled program to a sequentially consistent execution of 
the source program is needed.

4. IMPLEMENTING GOLDILOCKS
There are two published implementation of the Goldilocks 
algorithm, both of which monitor the execution at the Java 
byte-code level. At this level, each variable access or syn-
chronization operation corresponds to a single byte-code 
instruction, and each byte-code instruction can be associ-
ated with a source code line and/or variable.

The first Goldilocks implementation, by the authors of 
this paper, was carried out in Kaffe,19 a clean-room imple-
mentation of the Java virtual machine (JVM) in C. In Kaffe, 
we integrated Goldilocks into the interpreting mode of 
Kaffe’s runtime engine. Implementing the algorithm in the 
JVM enables fast access to internal data structures of the 
JVM that manage the layout of object in the memory and 
using the efficient mechanisms that exist in the JVM inter-
nally, such as fast mutex locks.

The second implementation of Goldilocks is by Flanagan 
and Freund and was carried out using the RoadRunner dy
namic program analysis tool.8 In RoadRunner, Goldilocks 
is implemented in Java and injected by byte-code instrumen-
tation at load-time of the program. This allows the algorithm 
to benefit from Java compiler optimizations and just-in-time 
compilation and to be portable to any JVM. Flanagan and 
Freund showed that this implementation is competitive with 
ours in Kaffe for most of the common benchmarks.7

In the following, we present the most important imple-
mentation features and optimizations. The implementation 
is described based on the core algorithm presented in Figure 
2. The extension of the implementation that distinguishes 
read and write accesses can be found in Elmas et al.6

4.1. Implicit representation and lazy evaluation  
of Goldilocksets
For programs with a large number of data variables, repre-
senting Goldilocksets explicitly for each data variable and 
implementing the Goldilocks algorithm as described in 
Figure 2 may have high memory and computational cost. 
We avoid the memory cost by representing the Goldilocksets 
implicitly and the computational cost by evaluating 
Goldilocksets lazily as described below.

Instead of keeping a separate Goldilockset GLS(x) for each 
variable x, we represent GLS(x) implicitly as long as no access 
to x happens and is computed temporarily when an access 
happens. At this point, the Goldilockset is a singleton, and we 
continue to represent it implicitly until the next access. For 
this, we keep the synchronization events in a single, global 
linked list called the synchronization-event list and repre-
sent by its head and tail pointers in Figure 4. The ordering of 
these events in the list is consistent with the program order 
→p    o

t for each thread t and the synchronization orders →so
o for
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each synchronization variable o.c When a thread performs a 
synchronization action a, it must append a corresponding 
event to the synchronization-event list atomically with the 
event. In Kaffe, we make sure this is the case by modifying 
the implementations of the Java synchronization actions.

In order to represent GLS(x), each variable x in the pro-
gram is associated with two bits of information regarding 
the most recent access to x: owner(x) stores the id of the 
thread that most recently accessed x, and pos(x) points to 
the last synchronization event in the list that was taken into 
account when GLS(x) was last computed.

Figure 4 shows four variables pointing to entries in 
the synchronization-event list. Figure 5 shows how the 
Goldilockset GLS(x) is computed when x is accessed.

5(a): After each access to x by a thread ti, owner(x) is set to ti, and 
pos(x) is set to point the tail of the synchronization event list.
5(b): Right before an access to x by thread tj, temporarily, 
we represent GLS(x) explicitly. GLS(x) is initially {owner(x)} 
and is updated by processing the synchronization events 
between pos(x) (denoted by a1, …, an) and tail according to 
the rules 1 and 2 of Figure 2. This process stops either when 

tj is added to GLS(x) or the last event (an) is processed. In the 
former case, no race is reported according to the rule 3 of 
Figure 2. In the latter case, a race is reported since tj ∉ GLS(x) 
after the evaluation.
5(c): After the check, owner(x) is set to tj and pos(x) is set to 
the tail of the synchronization event list.

The implementation does not use any extra threads for 
race detection. The algorithm is performed in a decentral-
ized manner by instrumented threads of the program being 
checked. For each data variable x, we use a unique lock to 
make atomic the Goldilockset update and the race-freedom 
check for each access to x and to serialize all the race-freedom 
checks for x.

4.2. Performance optimizations
Short-Circuit Checks: A cheap-to-evaluate sufficient con-
dition for a happens-before edge between the last two 
accesses to a variable can reduce race-detection overhead. 
We make use of two such conditions, called short-circuit 
checks, and bypass the traversal of the synchronization 
event list when these checks succeed. In this case, the final 
Goldilockset of the variable consists of the id of the thread 
that accessed it last.

We employ two constant-time short-circuit checks. First, 
when the last two accesses to a shared variable are per-
formed by the same thread t, the happens-before relation-
ship is guaranteed by the program order of t. This is detected 
by checking whether owner(t), the last accessor thread, is the 
same as the thread performing the current access.

In the second short-circuit check, we determine whether 
the variable x is protected by the same lock during the last 
two accesses to x. For this, we associate with each variable x 
a lock alock(x), which is randomly selected among the locks 
held by the most recent accessor thread. When a thread t 
accesses x and if alock(x) is held by t, then that access is race 
free.
Direct Ownership Transfer: A sound but imprecise third 
optimization is to consider only the subset of synchroni-
zation events executed by the current and last accessing 
thread when examining the portion of the synchronization 
event list between pos(x) and tail. This check is not constant 
time, but we found that it succeeds often enough to improve 
Goldilocks overhead.
Garbage Collection: The synchronization events list is peri-
odically garbage-collected when there are entries in the 
beginning of the list that are not relevant for the Goldilockset 
computation of any variable. This is the case when an entry 
in the list is not reachable from pos(x) for any data variable x, 
and is tracked by maintaining incremental reference counts 
for each list entry.
Partially Eager Evaluation: Sometimes the synchronization 
event list gets too long and it is not possible to garbage-
collect the event list when variable x is accessed early in 
an execution but is not used afterwards. We address this 
problem by “partially eager” Goldilockset evaluation. We 
move pos(x) forward towards the tail to a new position 
poś (x), and partially evaluate a Goldilockset GLS(x) of x by 
processing events (i.e., running ApplyLocksetRules on them) 

head
pos(y)

pos(x) pos(w)

pos(z)
tail

Figure 4. The synchronization event list.

head

head

head

pos(x)

pos(x)

tail

tail

tail

pos(x)

owner(x) = ti

owner(x) = ti

owner(x) = ti

(a) After ti accesses x

(b) Before ti accesses x

(c) After ti accesses x

Events to consider
in lockset evaluation

a1 a2

a2a1

an
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Figure 5. Lazy evaluation of Goldilockset GLS(x).

c  For Java, there is a total order on all synchronization operations, and the en-
tries in the list are in this order.
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between pos(x) and poś (x). During the next access the evalu-
tion of GLS(x) starts from the stored Goldilockset, not from 
{owner(x)}.
Sound Static Race Analysis: The runtime overhead of race 
detection is directly related to the number of data variable 
accesses checked and synchronization events that occur. 
To reduce the number of accesses checked at runtime, we 
use static analysis at compile time to determine accesses 
that are guaranteed to be race free. While implementing 
Goldilocks in Kaffe, we worked with two static analysis 
tools for this purpose: Chord13 and RccJava.1

4.3. Race-detection overhead
At the time of the original Goldilocks work, the vector clock 
algorithm12 was the only precise dynamic-race-detection 
algorithm in the literature. The vector clock algorithm, for 
an execution with n threads, requires for every thread and 
synchronization variable a separate vector clock (VC) of 
size n and performs O(n) operations (merging or compar-
ing two VCs) whenever a synchronization operation or data 
access happens. In preliminary research, compared to a 
straightforward implementation of vector clocks, we found 
Goldilocks overhead to be significantly less.6

In Elmas et al.,6 we measured the overhead of the 
Goldilocks implementation inside Kaffe on a set of widely 
used Java benchmarks. This implementation required us to 
run all programs in interpreted (not just-in-time compiled) 
mode. We found that, with powerful static analysis tools 
eliminating much of the monitoring, we were able to obtain 
a slowdown of within approximately 2 for all benchmarks. 
Without static elimination of some checks, overheads 
remained high; some benchmarks experienced slowdowns 
of over 15. The overhead results with static pre-elimination 
were encouraging in that they showed precise race detection 
to be a practical debugging tool, and they indicated that, 
with further optimizations, post-deployment runtime race 
detection to support DataRaceDetection could be viable.

Later work on FastTrack,7 a dynamic race detector 
based on vector clocks, is able to avoid worst-case perfor-
mance of vector clocks much of the time using optimiza-
tions for common cases. Flanagan and Freund7 compare 
a number of race-detection algorithms, including just-
in-time compiled implementations of FastTrack and 
Goldilocks in RoadRunner. FastTrack achieves 
significantly better overheads than both implementa-
tions of Goldilocks. The low overheads achieved by 
FastTrack provide further support that a practical 
race-aware runtime for deployed programs supporting 
a DataRaceException can be built. It  is reported in 
Flanagan and Freund7 that additional short-circuit checks 
similar to ones we discussed above dramatically reduce the 
runtime of FastTrack. Most of these checks can be incor-
porated into Goldilocks implementations as well.

5. CONCLUSION
We have presented a race-aware runtime for Java incor-
porating a novel algorithm, Goldilocks, for pre-
cise dynamic race detection. The runtime provides a 
DataRaceException, and thus ensures that executions © 2010 ACM 0001-0782/10/1100 $10.00 
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FastTrack: Efficient and Precise 
Dynamic Race Detection
By Cormac Flanagan and Stephen N. Freund

Abstract
Multithreaded programs are notoriously prone to race con-
ditions. Prior work developed precise dynamic race detec-
tors that never report false alarms. However, these checkers 
employ expensive data structures, such as vector clocks 
(VCs), that result in significant performance overhead.

This paper exploits the insight that the full generality of 
VCs is not necessary in most cases. That is, we can replace 
VCs with an adaptive lightweight representation that, 
for almost all operations of the target program, requires 
constant space and supports constant-time operations. 
Experimental results show that the resulting race detection 
algorithm is over twice as fast as prior precise race detectors, 
with no loss of precision.

1. INTRODUCTION
Multithreaded programs are prone to race conditions and 
other concurrency errors such as deadlocks and violations 
of expected atomicity or determinism properties. The broad 
adoption of multicore processors is exacerbating these prob-
lems, both by driving the development of multithreaded 
software and by increasing the interleaving of threads in 
existing multithreaded systems.

A race condition occurs when two threads concurrently 
perform memory accesses that conflict. Accesses conflict 
when they read or write the same memory location and at 
least one of them is a write. In this situation, the order in 
which the two conflicting accesses are performed can affect 
the program’s subsequent state and behavior, likely with 
unintended and erroneous consequences.

Race conditions are notoriously problematic because 
they typically cause problems only on rare interleavings, 
making them difficult to detect, reproduce, and eliminate. 
Consequently, much prior work has focused on static and 
dynamic analysis tools for detecting race conditions.

To maximize test coverage, race detectors use a very 
broad notion of when two conflicting accesses are consid-
ered concurrent. The accesses need not be performed at 
exactly the same time. Instead, the central requirement is 
that there is no “synchronization dependence” between the 
two accesses, such as the dependence between a lock release 
by one thread and a subsequent lock acquire by a different 
thread. These various kinds of synchronization dependen-
cies form a partial order over the instructions in the execu-
tion trace called the happens-before relation.13 Two memory 
accesses are then considered to be concurrent if they are not 
ordered by this happens-before relation.

In this paper, we focus on online dynamic race detectors, 
which generally fall into two categories depending on whether 

they report false alarms. Precise race detectors never produce 
false alarms. Instead, they compute a precise representation 
of the happens-before relation for the observed trace and 
report an error if and only if the observed trace has a race con-
dition. Note that there are typically many possible traces for a 
particular program, depending on test inputs and scheduling 
choices. Precise dynamic race detectors do not reason about 
all possible traces, however, and may not identify races that 
occur only when other code paths are taken. While full cover-
age is desirable, it comes at the cost of potential false alarms 
because of the undecidability of the halting problem. To avoid 
these false alarms, precise race detectors focus on detecting 
only race conditions that occur on the observed trace.

Typically, precise detectors represent the happens-before 
relation with vector clocks (VCs),14 as in the Djit+ race detec-
tor.16 Vector clocks are expensive to maintain, however, 
because a VC encodes information about each thread in a 
system. Thus, if the target program has n threads, each VC 
requires O(n) storage space and VC operations (such as com-
parison) require O(n) time. Since a VC must be maintained 
for each memory location and modified on each access to 
that location, this O(n) time and space overhead precludes 
the use of VC-based race detectors in many settings.

A variety of alternative imprecise race detectors have been 
developed, which may provide improved performance (and 
sometimes better coverage), but which report false alarms 
on some race-free programs. For example, Eraser’s LockSet 
algorithm18 enforces a lock-based synchronization disci-
pline and reports an error if no lock is consistently held on 
each access to a particular memory location. Eraser may 
report false alarms, however, on programs that use alter-
native synchronization idioms such as fork/join or bar-
rier synchronization. Some LockSet-based race detectors 
include limited happens-before reasoning to improve preci-
sion in such situations.15, 16, 22

Other optimizations include using static analyses or 
dynamic escape analyses3, 21 or using “accordion” VCs 
that reduce space overheads for programs with shortlived 
threads.5 Alternative approaches record program events for 
post-mortem race identification.1, 4, 17

Although these imprecise tools successfully detect race 
conditions, their potential to generate many false alarms lim-
its their effectiveness. Indeed, it has proven surprisingly dif-
ficult and time consuming to identify the real errors among 

The original version of this paper was published in the 
Proceedings of the 2009 ACM SIGPLAN Conference on 
Programming Language Design and Implementation, June 
2009.
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a number of concurrently executing threads, each with a 
thread identifier t ∈ Tid. These threads manipulate variables 
x ∈ Var and locks m ∈ Lock. A trace a captures an execution 
of a multithreaded program by listing the sequence of opera-
tions performed by the various threads. The operations that 
a thread t can perform include:

•	 rd(t, x) and wr(t, x), which read and write a value from a 
variable x

•	 acq(t, m) and rel(t, m), which acquire and release a 
lock m

•	 fork(t, u), which forks a new thread u
•	 join(t, u), which blocks until thread u terminates

The happens-before relation (<a) for a trace a is a 
partial order over the operations in a that captures con-
trol and synchronization dependencies. In particular, 
the relation a <a b holds whenever operation a occurs 
before operation b in a and one of the following condi-
tions applies:

•	 Program order: The two operations are performed by 
the same thread.

•	 Synchronization order: The two operations acquire or 
release the same lock.

•	 Fork order: The first operation is fork(t, u) and the 
second is by thread u.

•	 Join order: The first operation is by thread u and the 
second is join(t, u).

In addition, the happens-before relation is transitively 
closed: that is, if a <a b and b <a c then a <a c.

If a happens before b, then we also say that b happens 
after a. If two operations in a trace are not related by the 
happens-before relation, then they are considered con-
current. Two memory access conflict if they both access 
(read or write) the same variable, and at least one of the 
operations is a write. Using this terminology, a trace 
has a race condition if it has two concurrent conflicting 
accesses.

2.2. Vector clocks and the Djit+ algorithm
Before presenting the FastTrack algorithm, we briefly 
review the Djit+ online race detection algorithm,16 which is 
based on VCs.14 A VC

V  :  Tid → Nat

records a clock for each thread in the system. Vector 
clocks are partially-ordered () in a pointwise manner, 
with an associated join operation () and minimal ele-
ment (⊥V). In addition, the helper function inct incre-
ments the t-component of a VC:
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the spurious warnings produced by some tools. Even if a code 
block looks suspicious, it may still be race-free due to some 
subtle synchronization discipline that is not (yet) under-
stood by the current code maintainer. Even worse, additional 
real bugs (e.g., deadlocks or performance problems) could 
be added while attempting to “fix” a spurious warning pro-
duced by these tools. Conversely, real race conditions could 
be ignored because they appear to be false alarms.

This paper exploits the insight that, while VCs provide 
a general mechanism for representing the happens-before 
relation, their full generality is not actually necessary in 
most cases. The vast majority of data in multithreaded pro-
grams is either thread local, lock protected, or read shared. 
Our FastTrack analysis uses an adaptive representation for 
the happens-before relation to provide constant-time and 
constant-space overhead for these common cases, without 
any loss of precision or correctness.

In more detail, a VC-based race detector such as Djit+ 
records the time of the most recent write to each variable 
x by each thread t. By comparison, FastTrack exploits the 
observation that all writes to x are totally ordered by the 
happens-before relation, assuming no races on x have been 
detected so far, and records information only about the very 
last write to x. Specifically, FastTrack records the clock and 
thread identifier of that write. We refer to this pair of a clock 
and a thread identifier as an epoch.

Read operations on thread-local and lock-protected data 
are also totally ordered, assuming no races on x have been 
detected, and FastTrack records only the epoch of the last 
read from such data. FastTrack adaptively switches from 
epochs to VCs when necessary (e.g., when data becomes 
read-shared) in order to guarantee no loss of precision. It also 
switches from VCs back to lightweight epochs when possible 
(e.g., when read-shared data is subsequently updated).

Using these representation techniques, FastTrack 
reduces the analysis overhead of almost all monitored oper-
ations from O(n) time, where n is the number of threads in 
the target program, to O(1) time.

In addition to improving performance, the epoch rep-
resentation also reduces space overhead. A VC-based race 
detector requires O(n) space for each memory location of the 
target program and can quickly exhaust memory resources. 
By comparison, FastTrack reduces the space overhead for 
thread-local and lock-protected data from O(n) to O(1).

For comparison purposes, we implemented six differ-
ent dynamic race detectors: FastTrack plus five other race 
detectors described in the literature. Experimental results 
on Java benchmarks, including the Eclipse programming 
environment, show that FastTrack outperforms the other 
tools. For example, it provides almost a 10x speedup over a 
traditional VC-based race detector and a 2.3x speedup over 
the Djit+ algorithm. It also provides a substantial increase in 
precision over Eraser, with no loss in performance.

2. PRELIMINARIES

2.1. Multithreaded program traces
We begin with some terminology and definitions regard-
ing multithreaded execution traces. A program consists of 
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In Djit+, each thread has its own clock that is incre-
mented at each lock release operation. Each thread t also 
keeps a VC Ct such that, for any thread u, the clock entry 
Ct(u) records the clock for the last operation of thread u 
that happens before the current operation of thread t. In 
addition, the algorithm maintains a VC Lm for each lock m. 
These VCs are updated on synchronization operations that 
impose a happens-before order between operations of dif-
ferent threads. For example, when thread u releases lock m, 
the Djit+ algorithm updates Lm to be Cu. If a thread t subse-
quently acquires m, the algorithm updates Ct to be Ct  Lm, 
since subsequent operations of thread t now happen after 
that release operation.

To identify conflicting accesses, the Djit+ algorithm keeps 
two VCs, Rx and Wx, for each variable x. For any thread t, Rx(t) 
and Wx(t) record the clock of the last read and write to x by 
thread t. A read from x by thread u is race-free provided it 
happens after the last write of each thread, that is, Wx  Cu. 
A  write to x by thread u is race-free provided that the write 
happens after all previous accesses to that variable, that is, 
Wx  Cu and Rx  Cu.

As an example, consider the execution trace fragment 
shown in Figure 1, where we include the relevant portion 
of the Djit+ instrumentation state: the VCs C0 and C1 for 
threads 0 and 1; and the VCs Lm and Wx for the last release 
of lock m and the last write to variable x, respectively. We 
show two components for each VC, but the target program 
may of course contain additional threads.a

At the write wr(0, x), Djit+ updates Wx with current 
clock of thread 0. At the release rel(0, m), Lm is updated 
with C0. At the acquire acq(1, m), C1 is joined with Lm, thus 
capturing the dashed release-acquire happens-before 

edge shown above. At the second write, Djit+ compares 
the VCs:

Wx = á4, 0, ...ñ  á4, 8, ...ñ = C1

Since this check passes, the two writes are not concurrent, 
and no race condition is reported.

3. THE FastTrack ALGORITHM
A limitation of VC-based race detectors such as Djit+ is their 
performance, since each VC requires O(n) space and each VC 
operation (copying, comparing, joining, etc.) requires O(n) 
time.

Empirical benchmark data indicates that reads and 
writes operations account for the vast majority (over 
96%) of monitored operations. The key insight behind 
FastTrack is that the full generality of VCs is not nec-
essary in over 99% of these read and write operations: a 
more lightweight representation of the happens-before 
information can be used instead. Only a small fraction of 
operations performed by the target program necessitate 
expensive VC operations.

We begin by providing an overview of how our analysis 
catches each type of race condition on a memory location. A 
race condition is either: a write–write race condition (where a 
write is concurrent with a later write); a write–read race condi-
tion (where a write is concurrent with a later read); or a read–
write race condition (where a read is concurrent with a later 
write).
Detecting Write–Write Races: We first consider how to 
efficiently analyze write operations. At the second write 
operation in the trace in Figure 1, Djit+ compares the 
VCs Wx  C1 to determine whether there is a race. A care-
ful inspection reveals, however, that it is not necessary 
to record the entire VC á4, 0, …ñ from the first write to x. 
Assuming no races have been detected on x so far, then 
all writes to x are totally ordered by the happens-before 
relation, and the only critical information that needs to 
be recorded is the clock (4) and identity (thread 0) of the 
thread performing the last write. This information (clock 
4 of thread 0) is sufficient to determine if a subsequent 
write to x is in a race with any preceding write.

We refer to a pair of a clock c and a thread t as an 
epoch, denoted c@t. Although rather simple, epochs pro-
vide the crucial lightweight representation for recording 
sufficiently-precise aspects of the happens-before relation 
efficiently. Unlike VCs, an epoch requires only constant 
space and supports constant-time operations.

An epoch c@t happens before a VC V (c@t  V) if and only 
if the clock of the epoch is less than or equal to the corre-
sponding clock in the vector:

c@t  V  iff  c ≤ V(t)

We use ^e to denote a minimal epoch 0@0.
Using this optimized representation, FastTrack analyzes 

the trace from Figure 1 using a more compact instrumenta-
tion state that records only a write epoch Wx for variable x, 
rather than the entire VC Wx, reducing space overhead, as 

a  for clarity, we present a variant of the Djit+ algorithm where some clocks 
are one less than in the original formulation.16 This revised algorithm has 
the same performance as the original but is slightly simpler and more di-
rectly comparable to FastTrack.

Figure 1. Execution trace under Djit+.

C0 C1 Lm Wx

á4,0,…ñ á0,8,…ñ á0,0,…ñ á0,0,…ñ

wr(0,x)

á4,0,…ñ á0,8,…ñ á0,0,…ñ á4,0,…ñ

rel(0,m)

á5,0,…ñ á0,8,…ñ á4,0,…ñ á4,0,…ñ

acq(1,m)

á5,0,…ñ á4,8,…ñ á4,0,…ñ á4,0,…ñ

wr(1,x)

á5,0,…ñ á4,8,…ñ á4,0,…ñ á4,8,…ñ
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shown in Figure 2. (C and L record the same information as 
C and L in Djit+.)

At the first write to x, FastTrack performs an O(1)-time 
epoch write Wx := 4@0. FastTrack subsequently ensures 
that the second write is not concurrent with the preceding 
write via the O(1)-time comparison:

Wx = 4@0  á4, 8, ...ñ = C1

To summarize, epochs reduce the space overhead for 
detecting write–write conflicts from O(n) to O(1) per allo-
cated memory location, and replaces the O(n)-time VC com-
parison “” with the O(1)-time comparison “”.
Detecting Write–Read Races: Detecting write–read races 
under the new representation is also straightforward. On 
each read from x with current VC Ct, we check that the read 
happens after the last write via the same O(1)-time compari-
son Wx  Ct.
Detecting Read–Write Races: Detecting read–write race con-
ditions is somewhat more difficult. Unlike write operations, 
which are totally ordered in race-free programs, reads are 
not necessarily totally ordered. Thus, a write to a variable x 
could potentially conflict with the last read of x performed 
by any other thread, not just the last read in the entire trace 
seen so far. Thus, we may need to record an entire VC Rx, 
in which Rx(t) records the clock of the last read from  x by 
thread t.

We can avoid keeping a complete VC in many cases, 
however. Our examination of data access patterns across a 
variety of multithreaded Java programs indicates that read 
operations are often totally ordered in practice, particularly 
in the following common situations:

•	 Thread-local data, where only one thread accesses a 
variable, and hence these accesses are totally ordered 
by program-order

•	 Lock-protected data, where a protecting lock is held on 
each access to a variable, and hence all access are totally 
ordered, either by program order (for accesses by the 
same thread) or by synchronization order (for accesses 
by different threads)

Reads are typically unordered only when data is read-
shared, that is, when the data is first initialized by one 
thread and then shared between multiple threads in a read-
only manner.

FastTrack uses an adaptive representation for the read 
history of each variable that is optimized for the common 
case of totally-ordered reads, while still retaining the full 
precision of VCs when necessary.

In particular, if the last read to a variable happens after all 
preceding reads, then FastTrack records only the epoch of 
this last read, which is sufficient to precisely detect whether 
a subsequent write to that variable conflicts with any preced-
ing read in the entire program history. Thus, for thread-local 
and lock-protected data (which do exhibit totally-ordered 
reads), FastTrack requires only O(1) space for each allo-
cated memory location and only O(1) time per memory 
access.

In the less common case where reads are not totally 
ordered, FastTrack stores the entire VC, but still handles 
read operations in O(1) time. Since such data is typically 
read-shared, writes to such variables are rare, and their anal-
ysis overhead is negligible.

3.1. Analysis details
Based on the above intuition, we now describe the 
FastTrack algorithm in detail. Our analysis is an online 
algorithm whose analysis state consists of four components:

•	 Ct is the current VC of thread t.
•	 Lm is the VC of the last release of lock m.
•	 Rx is either the epoch of the last read from x, if all 

other reads happened-before that read, or else is a 
VC that records the last read from x by multiple 
threads.

•	 Wx is the epoch of the last write to x.

The analysis starts with Ct = inct(^V), since the first opera-
tions of all threads are not ordered by happens-before. In 
addition, initially Lm = ^V and Rx = Wx = ^e.

Figure 3 presents the key details of how FastTrack (left 
column) and Djit+ (right column) handle read and write 
operations of the target program. For each read or write oper-
ation, the relevant rules are applied in the order presented 
until one matches the current instrumentation state. If an 
assertion fails, a race condition exists. The figure shows the 
instruction frequencies observed in the programs described 
in Section 4, as well as how frequently each rule was applied. 
For example, 82.3% of all memory and synchronization opera-
tions performed by our benchmarks were reads, and rule [FT 
read same epoch] was used to check 63.4% of those reads. 
Expensive O(n)-time operations are highlighted in grey.
Read Operations: The first four rules provide various alter-
natives for analyzing a read operation rd(t, x). The first rule 

Figure 2. Execution trace under FastTrack.

C0 C1 Lm Wx

á4,0,…ñ á0,8,…ñ á0,0,…ñ ⊥e

wr(0,x)

á4,0,…ñ á0,8,…ñ á0,0,…ñ 4@0

rel(0,m)

á5,0,…ñ á0,8,…ñ á4,0,…ñ 4@0

acq(1,m)

á5,0,…ñ á4,8,…ñ á4,0,…ñ 4@0

wr(1,x)

á5,0,…ñ á4,8,…ñ á4,0,…ñ 8@1
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FastTrack State: Djit+ State:
Ct      :  VC Ct      :  VC
Lm    :  VC Lm    :  VC
Wx   :  Epoch Wx   :  VC
Rx     :  Epoch  VC Rx     :  VC

When Thread t performs rd(t, x):                 82.3% of all Operations

[FT read same epoch]                              [Djit+ read same epoch]
   if Rx = Et then
       skip
   endif

63.4% of reads   if Rx(t) = Ct(t) then 78.0% of reads

      skip
  endif

[FT read shared]
  if Rx ∈ VC then 20.8% of reads

  assert Wx  Ct

       Rx (t) := Ct(t)
  endif

[FT read exclusive] [Djit+ read]
  if Rx ∈ Epoch and Rx  Ct then 15.7% of reads   if Rx(t) ≠ Ct(t) then 22.0% of reads

  assert Wx  Ct   assert Wx  Ct

       Rx := Et   Rx(t) := Ct(t)
  endif   endif

[FT read share]
  if Rx ∈ Epoch then 0.1% of reads

      let c@u = Rx

      assert Wx  Ct

       Rx  := ⊥V[t  Ct(t), u  c]
  endif

When Thread t performs wr(t, x):                  14.5% of all Operations

[FT write same epoch] [Djit+ write same epoch]
  if Wx = Et then 71.0% of writes   if Wx(t) = Ct(t) then 71.0% of writes

      skip       skip
  endif   endif

[FT write exclusive]
  if Rx ∈ Epoch then 28.9% of writes

  assert Rx  Ct

  assert Wx  Ct

  Wx := Et

  endif

[FT write shared] [Djit+ write]
  if Rx ∈ VC then 0.1% of writes   if Wx(t) ≠ Ct(t) then 29.0% of writes

  assert Rx  Ct   assert Wx  Ct

  assert Wx  Ct   assert Rx  Ct

  Wx := Et
  Wx(t) := Ct(t)

  Rx  := ⊥e   endif
  endif

Figure 3. FastTrack race detection algorithm and its comparison to Djit+.
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[FT  read same epoch] optimizes the case where x was 
already read in this epoch. This fast path requires only a 
single epoch comparison and handles over 60% of all reads. 
We use Et to denote the current epoch c@t of thread t, where 
c = Ct(t) is t’s current clock. Djit+ incorporates a comparable 
rule [Djit+ read same epoch].

The remaining three read rules all check for write–read 
conflicts via the fast epoch-VC comparison Wx  Ct, and then 
update Rx appropriately. If Rx is already a VC, then [FT read 
shared] simply updates the appropriate component of 
that vector. Note that multiple reads of read-shared data 
from the same epoch are all covered by this rule. We could 
extend rule  [FT read same epoch] to handle same-epoch 
reads of read-shared data by matching the case that Rx ∈ VC 
and Rx(t)  = Ct(t). The extended rule would cover 78% of all 
reads (the same as [Djit+ read same epoch]) but does not 
improve performance perceptibly.

If the current read happens after the previous read epoch 
(where that previous read may be either by the same thread 
or by a different thread, presumably with interleaved syn-
chronization), [FT read exclusive] simply updates Rx with 
the accessing thread’s current epoch. For the more general 
situation where the current read is concurrent with the pre-
vious read, [FT read share] allocates a VC to record the 
epochs of both reads, since either read could subsequently 
participate in a read–write race.

Of these three rules, the last rule is the most expen-
sive but is rarely needed (0.1% of reads) and the first 
three rules provide commonly-executed, constant-time 
fast paths. In contrast, the corresponding rule [Djit+ 
read] always executes an O(n)-time VC comparison for 
these cases.
Write Operations: The next three FastTrack rules handle a 
write operation wr(t, x). Rule [FT write same epoch] opti-
mizes the case where x was already written in this epoch, 
which applies to 71.0% of write operations, and Djit+ incor-
porates a comparable rule. [FT write exclusive] provides 

a fast path for the 28.9% of writes for which Rx is an epoch, 
and this rule checks that the write happens after all previous 
accesses. In the case where Rx is a VC, [FT write shared] 
requires a full (slow) VC comparison, but this rule applies 
only to a tiny fraction (0.1%) of writes. In contrast, the cor-
responding Djit+ rule [Djit+ write] requires a VC compari-
son on 29.0% of writes.
Other Operations: Figure 4 shows how FastTrack handles 
synchronization operations. These operations are rare, and the 
traditional analysis for these operations in terms of expensive 
VC operations is perfectly adequate. Thus, these FastTrack 
rules are similar to those of Djit+ and other VC-based analyses.
Example: The execution trace in Figure 5 illustrates how 
FastTrack dynamically adapts the representation for the 
read history Rx of a variable x. Initially, Rx is ⊥e, indicating 
that x has not yet been read. After the first read operation 
rd(1,  x), Rx becomes the epoch 1@1 recording both the 
clock and the thread identifier of that read. The second 
read rd(0, x) at clock 8 is concurrent with the first read, and 
so FastTrack switches to the VC representation á8,  1,  …ñ 
for Rx, recording the clocks of the last reads from x by both 
threads 0 and 1. After the two threads join, the write opera-
tion wr(0, x) happens after all reads. Hence, any later opera-
tion cannot be in a race with either read without also being 
in a race on that write operation, and so the rule [FT write 
shared] discards the read history of x by resetting Rx to 
⊥e, which also switches  x back into epoch mode and so 

Other:       3.3% of all Operations

When Thread t performs acq(t, m):

  Ct  :=  Ct  Lm

When Thread t performs rel(t, m):

  Lm  :=  Ct

   Ct  :=  inct(Ct)

When Thread t performs fork(t, u):

  Cu  :=  Cu  Ct

  Ct  :=  inct(Ct)

When Thread t performs join(t, u):

  Ct  :=  Ct  Cu

  Cu  :=  incu(Cu)

Figure 4. Synchronization, threading operations.

Figure 5. Adaptive read history representation.

C0 C1 Wx Rx

á7,0,…ñ á0,1,…ñ ⊥e ⊥e

wr(0,x)

á7,0,…ñ á0,1,…ñ 7@0 ⊥e

fork(0,1)

á8,0,…ñ á7,1,…ñ 7@0 ⊥e

rd(1,x)

á8,0,…ñ á7,1,…ñ 7@0 1@1

rd(0,x)

á8,0,…ñ á7,1,…ñ 7@0 á8,1,…ñ

rd(1,x)

á8,0,…ñ á7,1,…ñ 7@0 á8,1,…ñ

join(0,1)

á8,1,…ñ á7,2,…ñ 7@0 á8,1,…ñ

wr(0,x)

á8,1,…ñ á7,2,…ñ 8@0 ⊥e

rd(0,x)
á8,1,…ñ á7,2,…ñ 8@0 8@0



november 2010  |   vol.  53  |   no.  11  |   communications of the acm     99

 

optimizes later accesses to x. The last read in the trace then 
sets Rx to a nonminimal epoch.

4. EVALUATION
To validate FastTrack, we implemented it as a component 
of the RoadRunner dynamic analysis framework for mul-
tithreaded Java programs.10 RoadRunner takes as input a 
compiled Java target program and inserts instrumentation 
code into the target to generate an event stream of memory 
and synchronization operations. Back-end checking tools 
process these events as the target executes. The FastTrack 
implementation extends the algorithm described so far 
to handle additional Java primitives, such as volatile 
variables and wait(), as outlined previously.8 Some of the 
benchmarks contain faulty implementations of barrier 
synchronization.9 FastTrack contains a specialized analy-
sis to compensate for these bugs.

We compare FastTrack’s precision and performance 
to six other analyses implemented in the same framework:

–	 Empty, a trivial checker that performs no analysis 
and is used to measure the overhead of RoadRunner

–	 Eraser,18 an imprecise race detector based on the 
LockSet algorithm described in Section 1

–	 Goldilocks, a precise race detector based on an 
extended notion of LockSets7

–	 BasicVC, a traditional VC-based race detector that 
maintains a read and a write VC for each memory 
location and performs at least one VC comparison on 
every memory access

–	 Djit+, a high-performance VC-based race detector16 
described in Section 2

–	 MultiRace, a hybrid LockSet/Djit+ race detector16

4.1. Performance and precision
Table 1 lists the size, number of threads, and uninstru-
mented running times for a variety of benchmark programs 
drawn from the Java Grande Forum,12 Standard Performance 
Evaluation Corporation,19 and elsewhere.2,7,11,21 All timing 
measurements are the average of 10 test runs. Variability 
across runs was typically less than 10%.

The “Instrumented Time” columns show the running 
times of each program under each of the tools, reported as 
the ratio to the uninstrumented running time. Thus, tar-
get programs ran 4.1 times slower, on average, under the 
Empty tool. Most of this overhead is due to communicat-
ing all target program operations to the back-end checker.

The variations in slowdowns for different programs 
are not uncommon for dynamic race condition checkers. 
Different programs exhibit different memory access and 
synchronization patterns, some of which impact analysis 
performance more than others. In addition, instrumenta-
tion can impact cache performance, class loading time, and 
other low-level JVM operations. These differences can some-
times even make an instrumented program run slightly 
faster than the uninstrumented (as in colt).

The last six columns show the number of warnings pro-
duced by each checker. The tools report at most one race 
for each field of each class, and at most one race for each 
array access in the program source code. All eight warn-
ings from FastTrack reflect real race conditions. Some 
of these are benign (as in tsp, mtrt, and jbb) but oth-
ers can impact program behavior (as in raytracer and 
hedc).15, 20, 21

Program
Size  
(loc)

Thread  
Count

Base  
Time  
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Instrumented Time (slowdown) Warnings
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colt 111,421 11 16.1 0.9 0.9 0.9 1.8 0.9 0.9 0.9 3 0 0 0 0 0

crypt 1,241 7 0.2 7.6 14.7 54.8 77.4 84.4 54.0 14.3 0 0 0 0 0 0

lufact 1,627 4 4.5 2.6 8.1 42.5 – 95.1 36.3 13.5 4 0 – 0 0 0

moldyn 1,402 4 8.5 5.6 9.1 45.0 17.5 111.7 39.6 10.6 0 0 0 0 0 0

montecarlo 3,669 4 5.0 4.2 8.5 32.8 6.3 49.4 30.5 6.4 0 0 0 0 0 0

mtrt 11,317 5 0.5 5.7 6.5 7.1 6.7 8.3 7.1 6.0 1 1 1 1 1 1

raja 12,028 2 0.7 2.8 3.0 3.2 2.7 3.5 3.4 2.8 0 0 0 0 0 0

raytracer 1,970 4 6.8 4.6 6.7 17.9 32.8 250.2 18.1 13.1 1 1 1 1 1 1

sparse 868 4 8.5 5.4 11.3 29.8 64.1 57.5 27.8 14.8 0 0 0 0 0 0

series 967 4 175.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1 0 0 0 0 0

sor 1,005 4 0.2 4.4 9.1 16.9 63.2 24.6 15.8 9.3 3 0 0 0 0 0

tsp 706 5 0.4 4.4 24.9 8.5 74.2 390.7 8.2 8.9 9 1 1 1 1 1

elevator* 1,447 5 5.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 0 0 0 0 0 0

philo* 86 6 7.4 1.1 1.0 1.1 7.2 1.1 1.1 1.1 0 0 0 0 0 0

hedc* 24,937 6 5.9 1.1 0.9 1.1 1.1 1.1 1.1 1.1 2 1 0 3 3 3

jbb* 30,491 5 72.9 1.3 1.5 1.6 2.1 1.6 1.6 1.4 3 1 – 2 2 2

Average slowdown/total warnings 4.1 8.6 21.7 31.6 89.8 20.2 8.5 27 5 3 8 8 8

Table 1. Benchmark results. Programs marked with ‘*’ are not compute-bound and are excluded from average slowdowns.
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Eraser Comparison: Our reimplementation of Eraser 
incurs an overhead of 8.7x, which is competitive with similar 
Eraser implementations built on top of unmodified JVMs.15 
Surprisingly, FastTrack is slightly faster than Eraser on 
some programs, even though it performs a precise analysis 
that traditionally has been considered more expensive.

More significantly, Eraser reported many spurious warn-
ings that do not correspond to actual races. Augmenting 
our Eraser implementation to reason about additional 
synchronization constructs, such as fork/join or wait/
notify operations,16, 22 would eliminate some of these 
spurious warnings, but not all. On hedc, Eraser reported 
a spurious warning but also missed two of the real race 
conditions reported by FastTrack, due to an (intentional) 
unsoundness in how the Eraser algorithm reasons about 
thread-local and read-shared data.18

BasicVC and Djit+ Comparison: Djit+ and BasicVC 
reported exactly the same race conditions as FastTrack. 
That is, all three checkers provide identical precision. 
However, FastTrack outperforms the other checkers. It is 
roughly 10x faster than BasicVC and 2.3x faster than Djit+. 
These performance improvements are due primarily to the 
reduction in the allocation and use of VCs. Across all bench-
marks, Djit+ allocated more over 790 million VCs, whereas 
FastTrack allocated only 5.1 million. Djit+ performed 
over 5.1 billion O(n)-time VC operations, while FastTrack 
performed only 17 million. The memory overhead for stor-
ing the extra VCs leads to significant cache performance 
degradation in some programs, particularly those that ran-
domly access large arrays. These tools are likely to incur 
even greater overhead when checking programs with larger 
numbers of threads.
MultiRace Comparison: MultiRace maintains Djit+’s 
instrumentation state, as well as a lock set for each memory 
location.16 The checker updates the lock set for a location 
on the first access in an epoch, and full VC comparisons 
are performed only after this lock set becomes empty. This 
synthesis substantially reduces the number of VC opera-
tions, but introduces the overhead of storing and updating 
lock sets. In addition, the use of Eraser’s unsound state 
machine for thread-local and read-shared data leads to 
imprecision.

Our reimplementation of the MultiRace algorithm 
exhibited performance comparable to Djit+. Performance 
of MultiRace (and, in fact, all of our other checkers) can 
be improved by adopting a coarse-grain analysis in which all 
fields of an object are represented as a single “logical loca-
tion” in the instrumentation state.16, 22

Goldilocks Comparison: Goldilocks7 is a precise race 
detector that does not use VCs to capture the happens-before 
relation. Instead, it maintains, for each memory location, a 
set of “synchronization devices” and threads. A thread in 
that set can safely access the memory location, and a thread 
can add itself to the set (and possibly remove others) by per-
forming any of the operations described by the synchroniza-
tion devices in the set.

Goldilocks is a complicated algorithm to optimize, and 
ideally requires tight integration with the underlying virtual 
machine and garbage collector, which is not possible under 

RoadRunner. Because of these difficulties, Goldilocks 
reimplemented in RoadRunner incurred a slowdown of 
31.6x across our benchmarks, but ran out of memory on 
lufact. Our Goldilocks reimplementation missed three 
races in hedc, due to an unsound performance optimiza-
tion for handling thread-local data efficiently.7 We believe 
some performance improvements are possible, for both 
Goldilocks and the other tools, by integration into the vir-
tual machine.

4.2. Checking eclipse for race conditions
To validate FastTrack in a more realistic setting, we also 
applied it to five common operations in the Eclipse devel-
opment environment.6 These include launching Eclipse, 
importing a project, rebuilding small and large workspaces, 
and starting the debugger. The checking overhead for these 
operations is as follows:

Operation
Base  

Time (s)

Instrumented Time (Slowdown)

Empty Eraser Djit+ FastTrack

Startup 6.0 13.0 16.0 17.3 16.0

Import 2.5 7.6 14.9 17.1 13.1

Clean Small 2.7 14.1 16.7 24.4 15.2

Clean Large 6.5 17.1 17.9 38.5 15.4

Debug 1.1 1.6 1.7 1.7 1.6

Eraser reported potential races on 960 distinct field and 
array accesses for these five tests, largely because Eclipse 
uses many synchronization idioms that Eraser cannot 
handle, such as wait()and notify(), semaphores, and 
readers-writer locks. FastTrack reported 27 distinct warn-
ings, 4 of which were subsequently verified to be potentially 
destructive.9 Djit+ reported 28 warnings, which overlapped 
heavily with those reported by FastTrack, but schedul-
ing differences led to several being missed and several new 
(benign) races being identified. Although our exploration of 
Eclipse is far from complete, these preliminary observations 
are quite promising. FastTrack is able to scale to precisely 
check large applications with lower run-time and memory 
overheads than existing tools.

5. CONCLUSION
Race conditions are difficult to find and fix. Precise race 
detectors avoid the programmer-overhead of identifying 
and eliminating spurious warnings, which are particularly 
problematic when using imprecise checkers on large pro-
grams with complex synchronization. Our FastTrack anal-
ysis is a new precise race detection algorithm that achieves 
better performance than existing algorithms by tracking 
less information and dynamically adapting its represen-
tation of the happens-before relation based on memory 
access patterns. We have used FastTrack to identify data 
races in programs as large as the Eclipse programming 
environment, and also to improve the performance of other 
analyses that rely on precise data race information, such 
as serializability checkers.8 The FastTrack algorithm and 
adaptive epoch representation is straightforward to imple-
ment and may be useful in other dynamic analyses for 
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multithreaded software.
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Appalachian State University 
Tenure Track Assistant Professor

The Department of Computer Science at Appa-
lachian State University invites applications for 
a tenure-track faculty position at the rank of as-
sistant professor beginning August 2011. Quali-
fications for this position include a Ph.D. degree 
in Computer Science or a closely related field. 
Responsibilities include teaching undergraduate 
and graduate computer science courses, an active 
program of scholarship, pursuit of external fund-
ing, and participation in service activities.

The Department of Computer Science at Ap-
palachian State University has 10 tenured faculty 
members. Approximately 25 students are enrolled 
in the Master of Science program. The Bachelor of 
Science in Computer Science program is accredit-
ed by the Computing Accreditation Commission 
of ABET and serves about 220 students.

Appalachian State University is a member in-
stitution of the seventeen-campus University of 
North Carolina. Located in Boone, North Carolina, 
the university has approximately 17,000 students, 
primarily in bachelors and masters programs in 
both liberal arts and applied fields. Additional 
information about the Department of Computer 
Science, the university, and the surrounding area 
can be found at www.appstate.edu.

Applicants must send: 1) statements on teach-
ing, research, and interest/qualifications for this 
position, 2) a copy of their graduate transcript, 
3) a curriculum vita, and 4) names and contact 
information for three references. All application 
material should be sent by e-mail to search@
cs.appstate.edu in a single PDF file attachment or 
by mail to the chair of the search committee: Dr. 
Rahman Tashakkori, Department of Computer 
Science, 525 Rivers Street, Boone, NC 28608. The 
initial review of complete applications will begin 
on December 2, 2010 and will continue until the 
position is filled.

Appalachian State University is an Affirmative 
Action/Equal Opportunity Employer. The univer-
sity has a strong commitment to the principles of 
diversity and inclusion, and to maintaining work-
ing and learning environments that are free of all 
forms of discrimination.

Individuals with disabilities may request ac-
commodations in the application process by con-
tacting the chair of the search committee. Crimi-
nal background checks will be conducted on all 
finalists invited for on-campus interviews. 

College of the Holy Cross 
Assistant Professor, Tenure Track

The Department of Mathematics and Computer 
Science at the College of the Holy Cross invites 
applications for a full-time tenure-track ap-
pointment to begin in August 2011. All research 
specialties will be considered and breadth of in-
terests within computer science will be viewed 

that will be available to the successful candidate. 
The Department of Computer Science (www.
cs.dartmouth.edu) is home to 17 tenured and 
tenure-track faculty whose research spans com-
putational biology, vision/graphics, machine 
learning, algorithms, theory, and systems. The 
department has strong Ph.D. and M.S. programs, 
outstanding undergraduate majors and minors, 
and is affiliated with an M.D./Ph.D. program.

Dartmouth is an Ivy League school situated in 
Hanover, on the Connecticut River, in the Upper 
Valley region of New Hampshire. It is a beautiful, 
historic campus, located in a scenic, year-round, 
outdoor recreational area. Dartmouth hosts an an-
nual film festival; renowned musical and theatrical 
performers; and convenient public transportation 
to Boston and New York, as well as local airports.

Applicants are invited to send their CV, re-
search statement, teaching statement, and names 
of at least four references, one of whom should 
comment about teaching. All material should be 
sent to search@cs.dartmouth.edu by December 
1st, 2010. All letters of recommendation should 
be emailed or mailed to search, 6211 Sudikoff 
Lab, Computer Science Department, Dartmouth 
College, Hanover, NH 03755 by the recommender 
themselves.

Direct inquiries may be sent to Professor Hany 
Farid (farid@cs.dartmouth.edu).

Dartmouth is an equal opportunity/affirma-
tive action employer and encourages applications 
from women and members of minority groups.

Furman University
Assistant Professor of Computer Science

The Department of Computer Science invites 
applications for a tenure track position at the 
Assistant Professor level to begin in the fall of 
2011. Candidates must have a Ph.D. in Computer 
Science or a closely related field. The position re-
quires teaching excellence, effective institutional 
service, and an ability to work with colleagues 
across disciplines. An ability to develop a pro-
gram of scholarly and professional activity involv-
ing undergraduates is a priority. Research special-
ty areas being sought include (but are not limited 
to) high performance computing, computational 
science, mathematical modeling, and bioin-
formatics. Of particular interest are candidates 
willing to engage in collaborative research that 
bridges the computational and medical sciences. 
The position will be initially funded by and is ex-
pected to contribute to a major multi-disciplinary 
and multi-organizational state-wide initiative 
aimed at biofabrication of tissues and organs.

Furman is a highly selective, independent, top 
40 undergraduate liberal arts institution with an 
enrollment of approximately 2600 students. The 
university is located in the vibrant and beautiful 
upstate region of South Carolina, offers generous 
benefits to fulltime faculty, and subscribes to a 
problem-solving, project-oriented, experience-

favorably. Candidates must commit to, and excel 
in, undergraduate teaching as well as scholarly 
achievement. A Ph.D. in computer science or a 
closely related field is required.

This position carries a 3-2 teaching load with 
a full-salary one-semester research leave prior to 
tenure review and generous sabbatical and fel-
lowship leaves for senior faculty. Please send a 
cover letter describing research and teaching 
interests, curriculum vitae, statement on teach-
ing, undergraduate and graduate transcripts, and 
three letters of recommendation to: 

Search Committee, reference #001 
Department of Mathematics and Computer 

Science 
College of the Holy Cross 
Worcester, MA 01610 
email: search@mathcs.holycross.edu

Review of applications will begin on Decem-
ber 15, 2010 and continue until the position has 
been filled.

The College of the Holy Cross is a highly se-
lective Catholic liberal arts college in the Jesuit 
tradition. It enrolls about 2,700 students and is 
located in a medium-sized city 45 miles west of 
Boston. Holy Cross belongs to the Colleges of 
Worcester Consortium (www.cowc.org) and the 
New England Higher Education Recruitment 
Consortium (www.neherc.org). The College is an 
Equal Employment Opportunity Employer and 
complies with all Federal and Massachusetts laws 
concerning equal opportunity and affirmative ac-
tion in the workplace. 

Additional information on the college, the de-
partment, and this position available at: 

http://mathcs.holycross.edu/positionCS/
CSPos11.html

Dartmouth College
Neukom Institute for Computational Science
Department of Computer Science
Assistant Professor

The Neukom Institute for Computational Science 
and the Department of Computer Science at Dart-
mouth College invite applications for a tenure-
track faculty position at the level of Assistant Pro-
fessor in the Department of Computer Science. 
We seek candidates in the area of computational 
biology and bioinformatics whose research fo-
cuses on the development and application of new 
computational methods. Candidates will comple-
ment a growing program in computational biol-
ogy within the Departments of Biology, Computer 
Science, Engineering Sciences, and Mathematics, 
as well as the Dartmouth Medical School.

The Neukom Institute for Computational 
Science (www.dartmouth.edu/~neukom) is an 
endowed institute whose broad mandate is to in-
spire and support computational science across 
the Dartmouth campus. The Institute has con-
siderable financial and computing resources 
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oration, and substantial support from the Harvard 
School of Engineering and Applied Sciences.

We invite applications for a tenure-track pro-
fessor within Computer Science, and strongly 
encourage applications from qualified women 
and minority candidates. The appointment is ex-
pected to begin on July 1, 2011.

We seek outstanding applicants in areas relat-
ed to machine learning and artificial intelligence. 
We are particularly interested in applicants 
whose research examines computational issues 
raised by very large data sets, broadly construed. 
Specific areas of interest include but are not lim-
ited to statistical machine learning, probabilistic 
modeling, reinforcement learning and massively 
parallel processing. Potential application areas of 
interest include computational science and engi-
neering and the social sciences.

Candidates should have an outstanding re-
search record and a strong commitment to un-
dergraduate teaching and graduate training. 
Applicants must have completed a Ph.D. by Sep-
tember 1, 2011. Information about Harvard’s cur-
rent faculty, research, and educational programs 
is available at http://www.seas.harvard.edu/teach-
ing-learning/areas/computer-science.

Candidates should send a curriculum vitae, a 
list of publications, a statement of research and 
teaching interests, and up to three representa-
tive papers (ideally as a single PDF document) to 
cs-search@seas.harvard.edu. In addition, candi-
dates should have at least three letters of refer-
ence sent to the above address.

Alternatively, material may also be sent via 
surface mail to CS Search Committee, School of 
Engineering and Applied Sciences, Harvard Uni-
versity, Maxwell Dworkin 153, 33 Oxford Street, 
Cambridge, MA 02138.

Applications will be reviewed as they are 
received. For full consideration, applications 
should be received by December 1, 2010.

Harvard is an Equal Opportunity/ Affirmative 
Action Employer. Applications from women and 
minorities are strongly encouraged.

Hologic, Inc.
Software Engineering

Hologic, Inc. is a leading developer, manufactur-
er and supplier of premium diagnostics, medical 
imaging systems and surgical products dedicated 
to serving the healthcare needs of women. Due to 
continued growth & new products, Hologic has 
multiple openings in our Danbury, CT and New-
ark, DE facilities in our Software Engineering de-
partment. Medical device experience preferred. 
Apply to website; www.hologic.com/careers. 

Hologic, Inc. is an  
Equal Opportunity Employer.

Danbury - 1 Sr. Embedded SW Eng. BA in Eng/
Comp Sci and 5+ yrs experience. PWM motor driv-
ers/PID controllers. Proficiency with assembly, C 
and C++ in embedded environment. Knowledge 
of Freescale, .NET and failsafe experience useful. 
(IRC #18231)

1 SW Eng. BA in EE/Comp Sci. Excellent 
C/C#/C++ & object oriented programming skills, 
DICOM, med imaging & image processing. Use 
dev tools and all elements of standard dev envi-
ronment; source code control, compilers, config 
mgmt. & defect tracking. (IRC #19788)

based approach to education that is referred to as 
Engaged Learning. The Department of Computer 
Science confers the B.S. degree with majors in 
Computer Science, Information Technology, and 
Computer Science/Mathematics. The successful 
candidate will have the opportunity to teach in 
Furman’s First Year Seminar program. Furman 
University is an equal-opportunity employer. 
Women and underrepresented minorities are 
strongly encouraged to apply. For the complete 
ad, please visit http://cs.furman.edu.

Applicants should submit a curriculum vitae, 
statement of teaching philosophy, description of 
research interests, an official copy of most recent 
transcripts, and have three letters of recommen-
dation sent separately. Please send all materials 
to Dr. Kevin Treu, Chair, Department of Com-
puter Science, Furman University, 3300 Poinsett 
Hwy, Greenville, SC 29613. Materials may also be 
sent in PDF format to kevin.treu@furman.edu. 
Review of applications will continue until the po-
sition is filled.

Harvard University SEAS
Senior Lectureship in Computer Science

The School of Engineering and Applied Sciences 
(SEAS) at Harvard University expects to appoint a 
Senior Lecturer in Computer Science, either full-
time or part-time, starting in the Fall of 2011. This 
position will be for five years and may be renewed.

We are particularly interested in candidates 
who have demonstrated their excellence in and 

commitment to introductory undergraduate 
Computer Science instruction. We are seeking 
applicants whose interests and experience focus 
on teaching, pedagogy, and classroom and labo-
ratory innovations. While we are considering an 
internal candidate for this position, we encourage 
applications from all well qualified individuals, 
especially from women and minority candidates.

The application deadline is December 1, 
2010. A Ph.D. and significant postdoctoral teach-
ing experience are required. Applications includ-
ing a CV, a statement describing teaching experi-
ence and philosophy, and at least three letters of 
recommendation should be sent to: Computer 
Science Lectureship Committee, c/o Tristen Hub-
bard, School of Engineering and Applied Sciences, 
Harvard University, 33 Oxford Street, Cambridge, 
MA 02138. Email: tristen@eecs.harvard.edu.

Harvard is an Equal Opportunity/Affirmative 
Action employer and encourages applications 
from women and members of minority groups.

Harvard University SEAS
Tenure-Track Professor in Computer Science

Over the past several years, Harvard’s Computer 
Science faculty has doubled in size, moved into 
a state-of-the-art teaching and research facility, 
and made a serious commitment to fostering col-
laboration with other academic disciplines. The 
Computer Science program benefits from its out-
standing undergraduate and graduate students, 
an excellent location, significant industrial collab-
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One of the oldest institutions of higher education in this country, the
University of Delaware today combines tradition and innovation, offer-
ing students a rich heritage along with the latest in instructional and
research technology. The University of Delaware is a Land-Grant, Sea-Grant
and Space-Grant institution with its main campus in Newark, DE, located halfway
between Washington, DC and New York City.  Please visit our website at www.udel.edu.

The Department of Electrical and Computer Engineering (ECE) at the University of Delaware (UD) invites nom-
inations and applications for tenure-track faculty positions at the Assistant, Associate, and Full Professor ranks.

The ECE Department invites candidates that complement the department's traditional strengths in (1) Computer
Engineering, (3) Signal Processing, Communications & Controls, and (3) Nanoelectronics, Electromagnetics,
and Photonics. A particular emphasis is placed on candidates aligned with UD's College of Engineering wide
cluster searches in: (1) Energy, (2) Information Technologies, (3) Security, and (4) Biomedical Engineering.
Exceptional cases outside of these traditional strengths and focused areas may also be considered.

Successful applicants will share our vision to grow the department into a leader in research and education-
al programs. ECE initiatives are supported by over 40,000 square feet of departmental facilities, including a
state-of-the art 7,000 sq ft clean room for nano-fabrication, and fueled with over $10M/year in research
expenditures.  Applicants should hold a Ph.D. in electrical and/or computer engineering, or closely related
field in mathematics, biomedical, computer or physical sciences. Successful candidates are expected to
have demonstrated excellence in innovative research and show the potential for high-quality teaching and
mentoring. The University of Delaware offers very competitive salary and start-up packages, and has a gen-
erous benefit package. The application reviews start November 1st. The search will continue until the posi-
tions are filled; however, early application is strongly encouraged.

Applicants should submit a curriculum vitae, a statement of research and teaching interests, and a list of at
least four references to www.engr.udel.edu/facultysearch. Questions can be directed to f-search@udel.edu
or ECE Faculty Search Committee, 140 Evans Hall, University of Delaware, Newark, DE 19716. Applications
will be considered until the position is filled. 

The UNIVERSITY OF DELAWARE is an Equal Opportunity Employer which encourages applications from
Minority Group Members and Women.

Faculty Positions in Electrical and Computer
Engineering at the University of Delaware

The Department of Electrical and Computer Engineering (ECE) at the
University of Delaware (UD) invites nominations and applications for
tenure-track faculty positions at the Assistant, Associate, and Full
Professor ranks.

The ECE Department invites candidates that complement the depart-
ment's traditional strengths in (1) Computer Engineering, (3) Signal
Processing, Communications & Controls, and (3) Nanoelectronics,
Electromagnetics, and Photonics. A particular emphasis is placed on can-
didates aligned with UD's College of Engineering wide cluster searches in:
(1) Energy, (2) Information Technologies, (3) Security, and (4) Biomedical
Engineering. Exceptional cases outside of these traditional strengths and
focused areas may also be considered.

Successful applicants will share our vision to grow the department into a
leader in research and educational programs. ECE initiatives are support-
ed by over 40,000 square feet of departmental facilities, including a state-
of-the art 7,000 sq ft clean room for nano-fabrication, and fueled with over
$10M/year in research expenditures.  Applicants should hold a Ph.D. in
electrical and/or computer engineering, or closely related field in mathe-
matics, biomedical, computer or physical sciences. Successful candidates
are expected to have demonstrated excellence in innovative research and
show the potential for high-quality teaching and mentoring. The University
of Delaware offers very competitive salary and start-up packages, and has
a generous benefit package. The application reviews start November 1st.
The search will continue until the positions are filled; however, early appli-
cation is strongly encouraged.

Applicants should submit a curriculum vitae, a statement of research and
teaching interests, and a list of at least four references to
www.engr.udel.edu/facultysearch. Questions can be directed to f-
search@udel.edu or ECE Faculty Search Committee, 140 Evans Hall,
University of Delaware, Newark, DE 19716. Applications will be consid-
ered until the position is filled. The University of Delaware is an equal
opportunity employer.

The UNIVERSITY OF DELAWARE is an Equal Opportunity Employer
which encourages applications from Minority Group Members and

Women.
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Newark - 2 SW Eng (Embedded). BA in EE/
Comp Sci, Masters preferred. 3 yrs software dev 
using C and C++ in an RTOS/embedded environ-
ment. Medical device/ medical imaging or driver 
dev experience preferred. (IRC #19750) 

1 Sr. SW Eng. BA in Comp Eng/Eng. 5 years 
experience developing C/C#/C++ in Windows en-
vironment & object oriented programming skills. 
DICOM, med imaging & image processing. (IRC 
#19306)

The Hong Kong University of Science 
and Technology
Department of Computer Science and 
Engineering
Faculty Positions

The Department of Computer Science and Engi-
neering is one of the largest departments in the 
School of Engineering. The Department currently 
has 40 faculty members recruited from major 
universities and research institutions around the 
world, with about 1000 students (including 600 
undergraduate and 180 postgraduate students). 
The medium of instruction is English. More in-
formation on the Department can be found at 
http://www.cse.ust.hk/.

The Department will have at least two tenure-
track faculty openings at Assistant Professor/
Associate Professor/Professor levels for the 2011-
2012 academic year. We are looking for faculty 
candidates with interests in multidisciplinary re-
search areas related to computational science and 

tions for two positions beginning in Fall 2011.

Senior Faculty Position in Systems
This position is in systems, broadly encom-
passing parallel computing and architectures, 
distributed systems, cyberinfrastructure, and 
networking. Applicants are expected to have a 
well-established track record of substantial re-
search contributions to their field, externally 
funded research, and leadership. 

Faculty Position in Complex Networks  
and Systems
This position is at the junior level but outstanding 
senior candidates may be considered. Research 
areas include complex networks, computational 
biology and epidemiology, artificial life and ro-
botics, computational intelligence, bio-inspired 
computing, large scale data modeling and simu-
lation, and Web applications, with special inter-
est in modeling the dynamics of complex infor-
mation networks, social networks and media, 
and the spread of ideas and disease in human and 
social systems. 

Applicants for either position should have a 
Ph.D.in Computer Science or another relevant 
area and a well-established record (senior level) 
or demonstrable potential for excellence in re-
search and teaching (junior level). 

The IU Bloomington School of Informatics 
and Computing is the first of its kind and among 
the largest in the country, with a faculty of more 
than 60 full time members, more than 400 gradu-
ate students, and strong undergraduate programs. 
Degrees offered include M.S. degrees in Com-
puter Science, Bioinformatics, Human Computer 
Interaction Design, and Security Informatics, and 
Ph.D. degrees in Computer Science and in Infor-
matics. The School has received public recogni-
tion as a “top-ten program to watch” (Computer-
world) thanks to its excellence and leadership in 
academic programs, interdisciplinary research, 
placement, and outreach. The school offers excel-
lent work conditions, including attractive salaries 
and research support, and low teaching loads in a 
setting of strong student growth. 

Located in the wooded, rolling hills of south-
ern Indiana, Bloomington is a culturally thriv-
ing college town with a moderate cost of living 
and the amenities for an active lifestyle. IU is 
renowned for its top-ranked music school, high 
performance computing and networking facili-
ties, and performing and fine arts.

Applicants should submit a curriculum vitae, 
a statement of research and teaching, and the 
names of six references using the recruit link at 
http://hiring.soic.indiana.edu (preferred) or by 
mail to the Chair of either the Systems or Com-
plex Networks and Systems Faculty Search Com-
mittee, School of Informatics and Computing, 
919 E 10th Street, Bloomington, IN 47408. Ques-
tions concerning the Systems search may be sent 
to hiring-systems@informatics.indiana.edu; 
questions concerning the Complex Networks 
and Systems search to hiring-cnets@informatics.
indiana.edu. To receive full consideration com-
pleted applications must be received by Decem-
ber 1, 2010. 

Indiana University is an Equal Opportunity/
Affirmative Action employer. Applications from 
women and minorities are strongly encouraged. 
IU Bloomington is vitally interested in the needs 
of Dual Career couples.

engineering such as bioinformatics and financial 
engineering. Strong candidates in core computer 
science and engineering research areas will also 
be considered. Applicants at Assistant Professor 
level should have an earned PhD degree and dem-
onstrated potential in teaching and research.

Salary is highly competitive and will be com-
mensurate with qualifications and experience. 
Fringe benefits include medical/dental benefits 
and annual leave. Housing will also be provided 
where applicable. For appointment at Assistant 
Professor/Associate Professor level, initial ap-
pointment will normally be on a three-year con-
tract. A gratuity will be payable upon completion 
of contract. 

Applications should be sent through e-mail 
including a cover letter, curriculum vitae (includ-
ing the names and contact information of at least 
three referees), a research statement and a teach-
ing statement (all in PDF format) to csrecruit@
cse.ust.hk. Priority will be given to applications 
received by 28 February 2011. Applicants will be 
promptly acknowledged through e-mail upon re-
ceiving the electronic application material. 

(Information provided by applicants will be 
used for recruitment and other employment-re-
lated purposes.)

Indiana University 
School of Informatics and Computing

The School of Informatics and Computing at In-
diana University, Bloomington, invites applica-

TEMASEK RESEARCH FELLOWSHIP (TRF
The Nanyang Technological University (NTU) and the National University of 
Singapore (NUS) invite outstanding young researchers with a PhD Degree 
in science or technology to apply for the prestigious TRF awards.

The TRF scheme provides selected young researchers an opportunity to 
conduct and lead research that is a relevant to defence. It offers:

•  3-year research grant, with an option to extend up to 
a further 3 years, 

•  possible tenure-track academic appointment with the 
university at the end of the TRF,

•  attractive and competitive remuneration.

Fellows may lead and conduct research, and publish in these areas:
1. Biomimicry 
2. Cognitive Sciences
3. Cyber Security
4. Computational Photography
5. Microsystem Technologies

Other fundamental areas of science or technology, where a breakthrough 
would be of interest to defence and security, will also be considered.

Singapore is a globally connected cosmopolitan city-state with 
a supportive environment and vibrant research culture. For more 
information and application procedure, please visit 

NTU – http://www3.ntu.edu.sg/trf/ 
NUS – http://www.nus.edu.sg/dpr/funding/trf.htm

Closing date: 11 January 2011

Shortlisted candidates will be invited to Singapore to present 
their research plans, meet local researchers and identify potential 
collaborators in April/May 2011.

http://www.cse.ust.hk/
http://www3.ntu.edu.sg/trf/
http://www.nus.edu.sg/dpr/funding/trf.htm
http://hiring.soic.indiana.edu
mailto:hiring-systems@informatics.indiana.edu
mailto:csrecruit@cse.ust.hk
mailto:csrecruit@cse.ust.hk
mailto:hiring-cnets@informatics.indiana.edu
mailto:hiring-cnets@informatics.indiana.edu
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Michigan Technological University 
Department of Computer Science 
Department Chair 

Michigan Technological University invites ap-
plications and nominations for the position of 
Chair of the Department of Computer Science. 
The chair will be expected to build on a strong 
undergraduate degree program and continue the 
development of graduate education and research 
programs. Candidates are expected to have a pro-
fessional record of accomplishments commen-
surate with the rank of full professor at Michigan 
Tech, including a record of high quality publica-
tions and external funding. Candidates must also 
have demonstrated administrative, supervisory, 
or leadership experience. 

The Computer Science Department has 325 
undergraduate majors in three BS degree 

programs and 50 graduate students in MS and 
PhD degree programs in Computer Science 

and in the Computational Science and Engi-
neering PhD program. The research interests of the 
17 faculty include both core areas of computer sci-
ence and interdisciplinary topics. The Department 
has close ties to the Department of Electrical and 
Computer Engineering and offers many courses re-
quired by the Computer Engineering, Bioinformat-
ics, and Cheminformatics BS degree programs. 

The University has approximately 7,000 stu-
dents and 400 faculty with educational and re-
search programs that emphasize solving techno-
logical problems in all aspects of life. Michigan 
Tech is located in Michigan’s scenic Upper Penin-
sula and is bounded by Lake Superior and nearby 
forests. The community offers year-round recre-
ational and cultural opportunities. This environ-
ment, combined with a competitive compensation 
package, provides an excellent quality of life. 

In addition to the present search, strategic 
faculty hiring initiatives with up to ten new posi-
tions in “Next Generation Energy Systems” and 
“Health: Basic Sciences, Technologies, and Medi-
cal Informatics” are in their second year. Quali-
fied candidates are encouraged to send a separate 
application, following the “How to Apply” guide-
lines at http://www.mtu.edu/sfhi. 

Michigan Tech is an ADVANCE institution, 
one of a limited number of universities in 

receipt of NSF funds in support of our com-
mitment to increase diversity and the 

participation and advancement of women in 
STEM. 

Applications must include a vita, list of ref-
erences, and a cover letter that addresses the 
candidate’s professional qualifications and ad-
ministrative philosophy. Applications received 
by November 15, 2010, are assured of full consid-
eration. Applications must be submitted by email 
to CSchairSearch@mtu.edu. 

To learn more about this opportunity, please 
visit: http://www.cs.mtu.edu/CSchairSearch.html 
or contact: 

Prof. Steven Seidel 
steve@mtu.edu 
Department of Computer Science 
Michigan Technological University 
1400 Townsend Drive 
Houghton, MI 49931-1295 

Michigan Technological University is an equal 
opportunity educational institution/equal oppor-
tunity employer.

vision and multimedia; machine learning; natu-
ral language processing; scientific computing; 
and verification and programming languages.

Collaborative research with industry is facili-
tated by geographic proximity to computer sci-
ence activities at AT&T, Google, IBM, Bell Labs, 
NEC, and Siemens.

Please apply at https://cs.nyu.edu/webapps/
facapp/register

To guarantee full consideration, applications 
should be submitted no later than December 1, 
2010; however, this is not a hard deadline, as all 
candidates will be considered to the full extent 
feasible, until all positions are filled. Visiting po-
sitions may also be available.

New York University is an equal opportunity/
affirmative action employer.

North Carolina State University 
Department of Computer Science
Faculty Positions

The Department of Computer Science at NC State 
University (NCSU) seeks to fill multiple tenure 
track faculty positions starting August 16, 2011. 
Exceptional candidates in all areas of Computer 
Science will be considered, but of particular inter-
est are candidates specializing in Computer and 
Network Security.

Successful candidates must have a strong 
commitment to academic and research excel-
lence, and an outstanding research record com-
mensurate with the expectations of a major re-
search university. Required credentials include a 
doctorate in Computer Science or a related field. 
While the department expects to hire faculty pri-
marily at the Assistant Professor level, candidates 
with exceptional research records are encouraged 
to apply for senior positions. The Department is 
one of the largest and oldest in the country. It is 
part of NCSU’s College of Engineering, which has 
recently received significant increases in private 
and public funding, faculty positions, and facili-
ties that will assist the Department in achieving 
its goals. The department’s research expendi-
tures and recognition are growing steadily. For ex-
ample, we have one of the largest concentrations 
in the country of prestigious NSF Early Career 
Award winners (total of 20).

NCSU is located in Raleigh, the capital of 
North Carolina, which forms one vertex of the 
world-famous Research Triangle Park (RTP). RTP 
is an innovative environment, both as a metropol-
itan area with one of the most diverse industrial 
bases in the world, and as a center of excellence 
promoting technology and science. The Research 
Triangle area is routinely recognized in nation-
wide surveys as one of the best places to live in the 
U.S. We enjoy outstanding public schools, afford-
able housing, and great weather, all in the prox-
imity to the mountains and the seashore.

Applications will be reviewed as they are re-
ceived. The positions will remain open until suit-
able candidates are identified. Applicants are 
encouraged to apply by December 15, 2010. Ap-
plicants should submit the following materials 
online at http://jobs.ncsu.edu (reference position 
number 1091) cover letter, curriculum vitae, re-
search statement, teaching statement, and names 
and complete contact information of four refer-
ences, including email addresses and phone num-
bers. Candidates can obtain information about 

Montana State University
RightNow Technologies Professorships in 
Computer Science

The Montana State University Computer Science 
Department is searching for two faculty members 
at either the Assistant, Associate or Full level, 
based on experience. Candidates at the Associ-
ate or Full level must have established or rising 
prominence in their field. A three-year start-up 
package is being provided by RightNow Tech-
nologies. Montana State University is a Carnegie 
Foundation RU/VH research university with an 
enrollment of approximately 13,000. The website 
www.cs.montana.edu/faculty-vacancies has infor-
mation on position requirements and application 
procedures. ADA/EO/AA/Veterans Preference.

New Mexico State University
Assistant Professor

The Computer Science Department at New Mex-
ico State University invites applications for a ten-
ure-track position at the assistant professor level, 
with appointment starting in the Fall 2011 semes-
ter. We are seeking strong candidates in any areas 
of Computer Science, although applications with 
expertise in computer architecture, operating 
systems, compilers, and computer graphics/ani-
mation are particularly encouraged. Applications 
from women and members of traditionally un-
der-represented groups are strongly encouraged. 
For the complete announcement and applica-
tion procedure, please visit http://www.cs.nmsu.
edu/~epontell/job.html. Apply URL: http://www/
cs/nmsu.edu/~cssearch

New Mexico State University is an EEO/AA 
Employer. All university positions are contingent 
upon availability of funding. All offers of employ-
ment, oral and written, are contingent on the uni-
versity’s verification of credentials and other in-
formation required by federal law, state law, and 
NMSU policies/procedures, and may include the 
completion of a criminal history check.

New York University
Courant Institute of Mathematical Sciences
Department of Computer Science
Faculty

The department expects to have several regular 
faculty positions beginning in September 2011 
and invites candidates at all levels. We will con-
sider outstanding candidates in any area of com-
puter science, with systems and formal methods/
verification being high-priority areas.

Faculty members are expected to be outstand-
ing scholars and to participate in teaching at all 
levels from undergraduate to doctoral. New ap-
pointees will be offered competitive salaries and 
startup packages, with affordable housing within 
a short walking distance of the department. New 
York University is located in Greenwich Village, 
one of the most attractive residential areas of 
Manhattan.

The department has 32 regular faculty mem-
bers and several clinical, research, adjunct, and 
visiting faculty members. The department’s cur-
rent research interests include algorithms, cryp-
tography and theory; computational biology; dis-
tributed computing and networking; graphics, 

http://www.mtu.edu/sfhi
mailto:CSchairSearch@mtu.edu
http://www.cs.mtu.edu/CSchairSearch.html
mailto:steve@mtu.edu
http://www.cs.montana.edu/faculty-vacancies
http://jobs.ncsu.edu
http://www.cs.nmsu.edu/~epontell/job.html
http://www.cs.nmsu.edu/~epontell/job.html
http://www.cs.nmsu.edu/~cssearch
http://www.cs.nmsu.edu/~cssearch
https://cs.nyu.edu/webapps/facapp/register
https://cs.nyu.edu/webapps/facapp/register
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careers

candidates in all areas of computer science. We 
have particular interest in candidates with experi-
ence in one or more of the areas: programming 
language theory, formal verification, or security.

The Department also has openings for two 
joint lecturer/post-doctoral researcher positions 
and a variety of research positions. Research posi-
tions are contingent on external funding.

Applicants must hold a Ph.D. or equivalent in 
Computer Science or a related discipline, or must 
complete the Ph.D. by November 1, 2011. Please 
specify in your application if you are applying for 
the assistant professor position, for one of the lec-
turer/postdoc positions, or for a research position.

We will begin evaluating applications on No-
vember 15, 2010. Applications submitted after that 
date may be considered, but we would prefer that 
you complete your application by November 15.

More details on these positions can be found at 
the Department’s web site http://compsci.rice.edu. 
Apply URL: http://csfacultyapplications.rice.edu

Rice University is an Equal Opportunity/Affir-
mative Action Employer.

Saint Vincent College
Tenure-track position

The Computing & Information Science Depart-
ment at Saint Vincent College invites applications 
for a tenure track, assistant professor position be-
ginning in August 2011, contingent on funding 
and staffing within the Department. Applicants 
should hold a graduate degree (preferably a PhD 
or ABD) in information technology, information 
systems, computer science, or a closely-related 
discipline. Primary duties would include under-
graduate teaching and research in the areas of 
networking, IT, computer security, and databases. 
Candidates should be prepared to teach introduc-
tory CS classes, and the ability to teach some of 
the following courses is a plus: programming lan-
guages, Java, graphics, and game development.

Saint Vincent College is a Catholic, Bene-
dictine liberal arts and science college of about 
1700 undergraduate students and 200 graduate 
students. It is located about forty miles east of 
Pittsburgh, Pennsylvania in a pleasant suburban/
rural environment near the foothills of the Laurel 
Mountains. Saint Vincent is an equal opportunity 
employer. Review of applications will begin on 
December 1, 2010 and continue until the position 
is filled. To apply, send a letter of application, cur-
riculum vita, research statement, teaching state-
ment, transcripts, and three letters of reference 
to: 

Human Resources Director
Saint Vincent College
300 Fraser Purchase Road
Latrobe, PA 15650-2690
www.stvincent.edu/hr2

Stanford University 
Tenured Professor Position in the 
Communication Dept 

The Department of Communication at Stanford 
University invites applications for a tenured pro-
fessor position in the Department of Communi-
cation. The areas of expertise of applicants can in-
clude, but are not limited to, the changing forms 
of journalism, the economics and regulation of 

journalism, freedom of expression in the digital 
age, the changing role of the media in campaigns 
and elections, and the relation between news pro-
gramming and informed citizenship. Applicants 
will be expected to teach at the graduate and 
undergraduate levels in both academic and pre-
professional curricula. 

We seek an innovative intellectual leader 
with an interdisciplinary orientation whose work 
speaks to both the academic and professional 
communities. Applicants should have a record 
of substantial research accomplishments in peer 
reviewed publications. The successful applicant 
is expected to eventually assume the director-
ship of the graduate program in journalism in the  
department.

Applicants should send curriculum vitae, 
bibliography, and a brief statement of research 
interest to: Professor James S. Fishkin, Chair, 
Department of Communication, McClatchy Hall, 
Stanford University, Stanford, CA 94305-2050. For 
full consideration, materials must be received by 
January 15, 2011. The term of appointment would 
begin September 1, 2011. Stanford University is an 
equal opportunity employer and is committed to 
increasing the diversity of its faculty. It welcomes 
nominations of, and applications from, women 
and members of minority groups, as well as oth-
ers who would bring additional dimensions to 
the university’s research and teaching missions. 

Swarthmore College 
Visiting Assistant Professor

Swarthmore College invites applications for a 
three-year faculty position in Computer Science, 
at the rank of Visiting Assistant Professor, be-
ginning September 2011. Specialization is open. 
Review of applications will begin January 1, 2011, 
and continue until the position is filled. For infor-
mation, see http://www.cs.swarthmore.edu/job.

Swarthmore College has a strong commit-
ment to excellence through diversity in educa-
tion and employment and welcomes applications 
from candidates with exceptional qualifications, 
particularly those with demonstrable commit-
ments to a more inclusive society and world.

The University of Michigan - Dearborn
Department of Computer and Information 
Science
Assistant/Associate/Full Professor

The Department of Computer and Information 
Science (CIS) at the University of Michigan-Dear-
born invites applications for a tenure-track faculty 
position in any of the following areas: computer 
and data security, digital forensics, and informa-
tion assurance. Rank and salary will be commen-
surate with qualifications and experience. We of-
fer competitive salaries and start-up packages.

Qualified candidates must have, or expect to 
have, a Ph.D. in CS or a closely related discipline 
by the time of appointment and will be expected 
to do scholarly and sponsored research, as well as 
teaching at both the undergraduate and graduate 
levels. Candidates at the associate or full profes-
sor ranks should already have an established 
funded research program. The CIS Department 
offers several BS and MS degrees, and participates 
in an interdisciplinary Ph.D. program in informa-

the department and its research programs, as well 
as more detail about the positions advertised here 
at http://www.csc.ncsu.edu/. Inquiries may be sent 
via email to: facultyhire@csc.ncsu.edu.

North Carolina State University is an equal op-
portunity and affirmative action employer. In ad-
dition, NC State University welcomes all persons 
without regard to sexual orientation. Individuals 
with disabilities desiring accommodations in the 
application process should contact the Depart-
ment of Computer Science at (919) 515-2858.

Oklahoma State University 
Assistant Professor
FACULTY SEARCH
University: Oklahoma State University
Department: Computer Science Department
Position: Faculty Position

Applications are invited for two anticipated full-
time, tenure-track Assistant Professor positions.

The term of initial appointment will begin in 
August 2011.

The Oklahoma State University Computer Sci-
ence Department is seeking applications from 
qualified candidates with teaching and research 
experience in any area of Computer Science. A 
Ph.D. or D.Sc. in Computer Science or a closely 
related area is required.

The positions being sought are for the Stillwater 
campus and duties may be assigned to either Still-
water or Tulsa campuses or both. Please send cur-
riculum vita, a statement of teaching and research 
experience, and names of three references to:

Chair, Faculty Search Committee,
Computer Science Department
219 MSCS Building
Oklahoma State University
Stillwater, OK 74078-1053

Application via e-mail with pdf attachment(s) 
is preferred.

Send e-mail to  
faculty-search2010@cs.okstate.edu .

For full consideration, applications should be 
received by December 20, 2010, but applications 
will be accepted until the positions are filled.

These positions are contingent upon avail-
able funding.

Oklahoma State University is an Affirmative 
Action/Equal Opportunity/E-Verify employer 
committed to diversity. OSU-Stillwater is a tobac-
co-free campus.

Oklahoma State University is a modern com-
prehensive land grant university that serves the 
state, national and international communities by 
providing its students with exceptional academic 
experiences, by conducting scholarly research 
and other creative activities that advance funda-
mental knowledge, and by disseminating knowl-
edge to the people of Oklahoma and throughout 
the world.

Rice University,  
Computer Science Dept.
Tenure-track Assistant Professor

Rice University’s Department of Computer Sci-
ence seeks applications for a tenure-track assis-
tant professor to start in July 2011. We welcome 

http://www.csc.ncsu.edu/
mailto:facultyhire@csc.ncsu.edu
mailto:faculty-search2010@cs.okstate.edu
http://www.stvincent.edu/hr2
http://www.cs.swarthmore.edu/job
http://compsci.rice.edu
http://csfacultyapplications.rice.edu
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tion systems engineering. The current research 
areas in the department include computer graph-
ics and geometric modeling, database systems, 
networking, computer and network security, and 
software engineering. These areas of research are 
supported by several established labs.

The University of Michigan-Dearborn is lo-
cated in the southeastern Michigan area and of-
fers excellent opportunities for faculty collabora-
tion with many industries. We are one of three 
campuses forming the University of Michigan 
system and are a comprehensive university with 
over 8500 students. One of university’s strategic 
visions is to advance the future of manufacturing 
in a global environment.

The University of Michigan-Dearborn is dedi-
cated to the goal of building a culturally-diverse 
and pluralistic faculty committed to teaching 
and working in a multicultural environment, and 
strongly encourages applications from minori-
ties and women.

A cover letter, curriculum vitae including e-
mail address, teaching statement, research state-
ment, and three letters of reference should be 
sent to,

Dr. William Grosky, Chair
Department of Computer and Information 

Science
University of Michigan-Dearborn
4901 Evergreen Road
Dearborn, MI 48128-1491

Email: wgrosky@umich.edu
Internet: http://www.cis.umd.umich.edu
Phone: 313.583.6424
Fax: 313.593.4256

The University of Michigan-Dearborn is an 
equal opportunity/affirmative action employer.

Toyota Technological Institute  
at Chicago 
Computer Science Faculty Positions  
at All Levels

Toyota Technological Institute at Chicago (TTIC) 
is a philanthropically endowed degree-granting 
institute for computer science located on the 
University of Chicago campus. The Institute is 
expected to reach a steady-state of 12 traditional 
faculty (tenure and tenure track), and 12 limited 
term faculty. Applications are being accepted in 
all areas, but we are particularly interested in

Theoretical computer science 
Speech processing
Machine learning
Computational linguistics
Computer vision 
Computational biology
Scientific computing

Positions are available at all ranks, and we 
have a large number of limited term positions 
currently available.

For all positions we require a Ph.D. Degree or 
Ph.D. candidacy, with the degree conferred prior 
to date of hire. Submit your application electroni-
cally at:

http://ttic.uchicago.edu/facapp/

Toyota Technological Institute at Chicago is an 
Equal Opportunity Employer 

should also arrange to have three letters of recom-
mendation sent to the department as soon as pos-
sible. Electronic submission of materials as PDF 
documents is preferred. Electronic copies should 
be sent to bmorris@umbc.edu. Copies can also 
be sent to: Dr. Andrew Sears, Chair of Faculty 
Search Committee, Information Systems Depart-
ment, UMBC, 1000 Hilltop Circle, Baltimore, MD 
21250-5398. For inquiries, please contact Barbara 
Morris at (410) 455-3795 or bmorris@umbc.edu. 

Review of applications will begin immediately 
and will continue until the position is filled. This 
position is subject to the availability of funds. 

UMBC is an Affirmative Action/Equal Opportu-
nity Employer and welcomes applications from mi-
norities, women and individuals with disabilities.

University at Buffalo, The State 
University of New York
Faculty Position in Computer Science and 
Engineering

The CSE Department invites excellent candidates 
in all core areas of Computer science and Engi-
neering, especially Database Systems, Data Min-
ing, Information Retrieval, Machine Learning 
and Robotics areas, to apply for an opening at the 
assistant professor level.

The department is affiliated with successful 
centers devoted to biometrics, bioinformatics, 
biomedical computing, cognitive science, docu-
ment analysis and recognition, high performance 
computing, and information assurance.

Candidates are expected to have a Ph.D. in 
Computer Science/Engineering or related field by 
August 2011, with an excellent publication record 
and potential for developing a strong funded re-
search program.

Applications should be submitted by Decem-
ber 31, 2010 electronically via http://www.ubjobs.
buffalo.edu/

The University at Buffalo is an Equal Opportu-
nity Employer/Recruiter.

The University of Alabama
Tenure-Track Faculty Position
Software Engineering Focus
Department of Computer Science

The Department of Computer Science at the Uni-
versity of Alabama invites applications for a new 
tenure-track Assistant Professor position to be-
gin August 2011. The general area of focus is in 
software engineering, with a high priority area in 
model-driven engineering. Candidates must have 
an earned Ph.D. in Computer Science or a related 
field, with solid evidence of superior research 
and scholarly accomplishments, as well as dem-
onstrated excellence in teaching. Applicants who 
specialize in software engineering are encour-
aged to apply.

The University of Alabama is considered the 
Capstone of higher education in Alabama and is 
also the largest institution in the State. The Uni-
versity was ranked in 2010 by US News and World 
Report as 34th among US public universities. The 
University led the nation in 2010 with ten USA To-
day Academic All-Americans (record for any US 
university) and ranks 10th in the nation among 
public universities in enrolling National Merit 
Scholars.

University of California, Los Angeles
Computer Science Department

The Computer Science Department of the Henry 
Samueli School of Engineering and Applied Sci-
ence at the University of California, Los Angeles, 
invites applications for tenure-track positions in 
all areas of Computer Science and Computer En-
gineering. Applications are also encouraged from 
distinguished candidates at senior levels. Quality 
is our key criterion for applicant selection. Appli-
cants should have a strong commitment both to 
research and teaching and an outstanding record 
of research for their level of seniority. 

The University of California is an Equal Op-
portunity/Affirmative Action Employer. The de-
partment is committed to building a more diverse 
faculty, staff and student body as it responds to 
the changing population and educational needs 
of California and the nation. To apply, please visit 
http://www.cs.ucla.edu/recruit. Faculty applica-
tions received by January 15 will be given full con-
sideration.

UMBC
University of Maryland Baltimore County
An Honors University in Maryland
Information Systems Department

The Information Systems Department at UMBC 
invites applications for a tenure-track faculty po-
sition at the Assistant Professor level in the area 
of data mining starting August 2011. Outstanding 
candidates in other areas will also be considered. 

Candidates must have an earned PhD in In-
formation Systems or a related field no later than 
August 2011. Applicants engaged in research in 
data mining with overlapping interest in artifi-
cial intelligence in areas including but not lim-
ited to privacy preserving data mining, cyberse-
curity, spatial and spatio-temporal data mining, 
and knowledge discovery in healthcare data, are 
of primary interest. Ideal candidates will be en-
gaged in research that spans two or more of these 
areas with preference given to those who can col-
laborate with current faculty. Candidates should 
have a strong potential for excellence in research, 
the ability to develop and sustain an externally 
funded research program, and the ability to con-
tribute to our graduate and undergraduate teach-
ing mission.

The Department offers undergraduate degrees 
in Information Systems and Business Technology 
Administration as well as both the MS and PhD 
in Information Systems. In addition, the Depart-
ment offers an MS and PhD in Human-Centered 
Computing. Consistent with the UMBC vision, 
the Department has excellent technical support 
and teaching facilities as well as outstanding 
laboratory space and state of the art technology. 
UMBC’s Technology Center, Research Park, and 
Center for Entrepreneurship are major indicators 
of active research and outreach. Further details 
on our research, academic programs, and faculty 
can be found at http://www.is.umbc.edu/. Under-
represented groups including women and minor-
ities are especially encouraged to apply.

Applications will not be reviewed until the 
following materials are received: a cover letter, a 
one-page statement of teaching interests, a one-
page statement of research interests, one or more 
sample research papers, and a CV. Applicants 

mailto:wgrosky@umich.edu
http://www.cis.umd.umich.edu
http://www.cs.ucla.edu/recruit
http://www.is.umbc.edu/
mailto:bmorris@umbc.edu
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careers

tion, gender identity, religion, color, national or 
ethnic origin, age, disability, or status as a Viet-
nam Era Veteran or disabled veteran in the ad-
ministration of educational policies, programs or 
activities; admissions policies; scholarship and 
loan awards; athletic, or other University admin-
istered programs or employment. The Penn CIS 
Faculty is sensitive to “two–body problems” and 
opportunities in the Philadelphia region.

University of Rochester
Assistant to Full Professor  
of Computer Science

The UR Department of Computer Science seeks 
researchers in computer vision and/or machine 
learning for a tenure-track faculty position begin-
ning in Fall 2011. Outstanding applicants in other 
areas may be considered. Candidates must have 
a PhD in computer science or related discipline. 
Senior candidates should have an extraordinary 
record of scholarship, leadership, and funding. 

The Department of Computer Science is a 
select research-oriented department, with an 
unusually collaborative culture and strong ties to 
cognitive science, linguistics, and electrical and 
computer engineering. Over the past decade, a 
third of its PhD graduates have won tenure-track 
faculty positions, and its alumni include leaders 
at major research laboratories such as Google, 
Microsoft, and IBM. 

The University of Rochester is a private, Tier I 
research institution located in western New York 
State. The University of Rochester consistently 
ranks among the top 30 institutions, both public 
and private, in federal funding for research and 
development. Half of its undergraduates go on 
to post-graduate or professional education. The 
university includes the Eastman School of Music, 
a premiere music conservatory, and the Univer-
sity of Rochester Medical Center, a major medical 
school, research center, and hospital system. The 
Rochester area features a wealth of cultural and 
recreational opportunities, excellent public and 
private schools, and a low cost of living.

Candidates should apply online at http://www.
cs.rochester.edu/recruit after Nov. 1, 2010. Review 
of applications will begin on Dec. 1, and continue 
until all interview openings are filled. The Uni-
versity of Rochester has a strong commitment 
to diversity and actively encourages applications 
from candidates from groups underrepresented 
in higher education. The University is an Equal 
Opportunity Employer.

The University of Washington Bothell
Lecturer or Senior Lecturer

The University of Washington Bothell Computing 
and Software Systems Program invites applica-
tions for a full-time Lecturer or Senior Lecturer 
position to begin fall 2011. Duties include teach-
ing/mentoring undergraduate and graduate stu-
dents, including industry internships. Areas of 
expertise include: security, networking, operat-
ing systems, architecture, databases, multimedia 
software development, computer engineering, 
and parallel/distributed computing.

The Bothell campus was founded in 1990 as 
an innovative, interdisciplinary campus within 
the University of Washington system - one of the 

University of Calgary
Calgary, Alberta, Canada T2N 1N4 or 

search@cpsc.ucalgary.ca 

The applications will be reviewed beginning 
November 2010 and continue until the positions 
are filled.

All qualified candidates are encouraged to ap-
ply; however, Canadians and permanent residents 
will be given priority. The University of Calgary re-
spects, appreciates, and encourages diversity.

University of Pennsylvania
Department of Computer and Information 
Science
Faculty Position

The University of Pennsylvania invites applicants 
for tenure-track appointments in computer 
graphics and animation to start July 1, 2011. Ten-
ured appointments will also be considered. 

Faculty duties include teaching undergraduate 
and graduate students and conducting high-quality 
research. Teaching duties will be aligned with two 
programs: the Bachelor of Science and Engineering 
in Digital Media Design, and the Master of Science 
and Engineering in Computer Graphics and Game 
Technology (see http://cg.cis.upenn.edu). Research 
and teaching will be enhanced by the recently reno-
vated SIG Center for Computer Graphics, which 
houses the largest motion capture facility in the re-
gion, and is also the home of the Center for Human 
Modeling and Simulation. Successful applicants 
will find Penn to be a stimulating environment con-
ducive to professional growth. 

The University of Pennsylvania is an Ivy 
League University located near the center of Phil-
adelphia, the 5th largest city in the US. Within 
walking distance of each other are its Schools of 
Arts and Sciences, Engineering, Fine Arts, Medi-
cine, the Wharton School, the Annenberg School 
of Communication, Nursing, and Law. The Uni-
versity campus and the Philadelphia area sup-
port a rich diversity of scientific, educational, and 
cultural opportunities, major technology-driven 
industries such as pharmaceuticals, finance, and 
aerospace, as well as attractive urban and subur-
ban residential neighborhoods. Princeton and 
New York City are within commuting distance. 

To apply, please complete the form located on 
the Faculty Recruitment Web Site at: http://www.
cis.upenn.edu/departmental/facultyRecruiting.
shtml. Electronic applications are strongly pre-
ferred, but hard-copy applications (including the 
names of at least four references) may alterna-
tively be sent to: 

Chair, Faculty Search Committee
Department of Computer and Information 

Science
School of Engineering and Applied Science
University of Pennsylvania
Philadelphia, PA 19104-6389. 

Applications should be received by January 
15, 2011 to be assured full consideration. Applica-
tions will be accepted until the position is filled. 
Questions can be addressed to faculty-search@
cis.upenn.edu. The University of Pennsylvania 
values diversity and seeks talented students, fac-
ulty and staff from diverse backgrounds.

The University of Pennsylvania does not dis-
criminate on the basis of race, sex, sexual orienta-

The Department of Computer Science, 
housed in the College of Engineering, currently 
has twenty-three faculty members (16 tenured/
tenure track faculty, 6 of whom have interests in 
software engineering), roughly 200 undergradu-
ates in an ABET accredited B.S. degree program, 
and approximately 60 M.S. and Ph.D. students. 
Throughout the 2010-2011 academic year, two 
postdocs in software engineering will be sup-
ported in the Department. A recent Department 
of Education GAANN award provides extended 
fellowships to six Ph.D. students who are focus-
ing on software engineering. 

The Department and College of Engineering 
are undergoing a period of extensive growth. The 
Department is housed in a new (opened August 
2009) state-of-the art complex. Over the next three 
years, the University will complete construction 
of the science and engineering complex, which 
is comprised of four buildings focused on the 
expansion of research in engineering and the 
sciences. Over 3000 square feet of new research 
space has been constructed to support the efforts 
of the software engineering faculty. The software 
engineering faculty in the Department are PIs or 
co-PIs on 13 active awards (over $3.25M) across 
five different funding agencies.

For more information about the Software 
Engineering Group at UA, please visit http://soft-
ware.eng.ua.edu

Details regarding the application procedures 
for this position are available at http://cs.ua.edu. For 
information about the position, please contact the 
Search Committee at faculty.search@cs.ua.edu. 

Review of applications will begin late-Fall 2010 
and will continue until the position is filled. The 
University of Alabama is an equal opportunity/af-
firmative action employer. Women and minority 
applicants are particularly encouraged to apply.

University of Calgary
Department of Computer Science
Assistant Professor Positions

The Department of Computer Science and the 
University of Calgary seeks outstanding candi-
dates for two tenure track positions at the As-
sistant Professor level. Applicants from areas of 
Database Management and Human Computer 
Interaction/Information Visualization are of par-
ticular interest. Details for each position appear 
at: http://www.cpsc.ucalgary.ca/. 

Applicants must possess a doctorate in Com-
puter Science or a related discipline at the time 
of appointment, and have a strong potential to 
develop an excellent research record. 

The department is one of Canada’s leaders as 
evidenced by our commitment to excellence in re-
search and teaching. It has an expansive graduate 
program and extensive state-of-the-art comput-
ing facilities. Calgary is a multicultural city that is 
the fastest growing city in Canada. Calgary enjoys 
a moderate climate located beside the natural 
beauty of the Rocky Mountains. Further informa-
tion about the department is available at http://
www.cpsc.ucalgary.ca/. 

Interested applicants should send a CV, a con-
cise description of their research area and program, 
a statement of teaching philosophy, and arrange to 
have at least three reference letters sent to: 

Dr. Carey Williamson
Department of Computer Science 

http://software.eng.ua.edu
http://cs.ua.edu
mailto:faculty.search@cs.ua.edu
http://www.cpsc.ucalgary.ca/
http://www.cpsc.ucalgary.ca/
mailto:search@cpsc.ucalgary.ca
http://cg.cis.upenn.edu
http://www.cis.upenn.edu/departmental/facultyRecruiting
mailto:faculty-search@cis.upenn.edu
http://www.cs.rochester.edu/recruit
http://software.eng.ua.edu
http://www.cpsc.ucalgary.ca/
http://www.cis.upenn.edu/departmental/facultyRecruiting
mailto:faculty-search@cis.upenn.edu
http://www.cs.rochester.edu/recruit
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premier institutions of higher education in the 
US. Faculty members have full access to the re-
sources of a major research university, with the 
culture and close relationships with students of a 
small liberal arts college.

For additional information, including ap-
plication procedures, please see our website at 
http://www.uwb.edu/CSS/. All University faculty 
engage in teaching, research, and service. The 
University of Washington, Bothell is an affirma-
tive action, equal opportunity employer.

University of Waterloo
David R. Cheriton School of Computer Science
Tenured and Tenure-Track Faculty Positions 

Applications are invited for several positions in 
computer science: (a) Up to two senior, tenured 
David R. Cheriton Chairs in Software Systems are 
open for candidates with outstanding research re-
cords in software systems (very broadly defined). 
Successful applicants will be acknowledged lead-
ers in their fields or have demonstrated the po-
tential to become such leaders. These positions 
include substantial research support and teaching 
reduction. (b) One tenured or tenure-track posi-
tion is open in the area of Health Informatics, in-
cluding, but not limited to, healthcare IT, medical 
informatics, and biomedical systems. The success-
ful applicant will help develop a new graduate de-
gree program in health informatics. (c) One other 
tenured or tenure-track position is available for 
excellent candidates in any computing area, but 
highest priority will be given to candidates special-
izing in systems software (operating systems, dis-
tributed systems, networks, etc.) and information 
systems (e-commerce systems, enterprise resource 
planning systems, business intelligence, etc.).

Successful applicants who join the University 
of Waterloo are expected to be leaders in research, 
have an active graduate-student program, and con-
tribute to the overall development of the School. 
A Ph.D. in Computer Science, or equivalent, is re-
quired, with evidence of excellence in teaching and 
research. Rank and salary will be commensurate 
with experience, and appointments are expected 
to commence during the 2011 calendar year. 

With over 70 faculty members, the University of 
Waterloo’s David R. Cheriton School of Computer 
Science is the largest in Canada. It enjoys an excel-
lent reputation in pure and applied research and 
houses a diverse research program of international 
stature. Because of its recognized capabilities, the 
School attracts exceptionally well-qualified stu-
dents at both undergraduate and graduate levels. 
In addition, the University has an enlightened in-
tellectual property policy which vests rights in the 
inventor: this policy has encouraged the creation 
of many spin-off companies including iAnywhere 
Solutions Inc., Maplesoft Inc., Open Text Corp., 
and Research in Motion. Please see our web site for 
more information: http://www.cs.uwaterloo.ca.

To submit an application, please register at the 
submission site: http://www.cs.uwaterloo.ca/fac-
ulty-recruiting. Once registered, instructions will 
be provided regarding how to submit your appli-
cation. Although applications will be considered 
as soon as possible after they are complete and as 
long as positions are available, full consideration 
is assured for those received by November 30.

The University of Waterloo encourages appli-
cations from all qualified individuals, including 

a closely related field by August 2011, have a com-
mitment to undergraduate teaching, and be able 
to contribute to curriculum development.

Yale University 
Senior Faculty

Yale University’s Electrical Engineering Depart-
ment invites applications from qualified individu-
als for a senior faculty position in either computer 
systems or signals & systems. Subfields of interest 
include wireless communications, networking, 
systems on a chip, embedded systems, and emerg-
ing computing methodologies inspired by advanc-
es in the biological sciences, quantum computing, 
and other novel research directions. All candidates 
should be strongly committed to both teaching 
and research and should be open to collaborative 
research. Candidates should have distinguished 
records of research accomplishments and should 
be willing and able to take the lead in the shaping 
of Yale’s expanding programs in either computer 
engineering or signals & systems. Yale University is 
an Affirmative Action/Equal Opportunity Employ-
er. Yale values diversity among its students, staff, 
and faculty and strongly welcomes applications 
from women and under represented minorities.  
The review process will begin November 1, 2010.  
Applicants should send a curriculum vitae to:

Chair
Electrical Engineering Search Committee
Yale University
P.O. Box 208267
New Haven, CT 06520-8267

women, members of visible minorities, native 
peoples, and persons with disabilities. All quali-
fied candidates are encouraged to apply; however, 
Canadian citizens and permanent residents will 
be given priority. Fall 2010.

University of Wisconsin - Platteville
Assistant Professor - Software Engineering

The Department of Computer Science and Software 
Engineering at the University of Wisconsin-Platte-
ville invites applications for a tenure-track faculty 
position in Software Engineering starting Fall, 2011. 
Candidates must have a Ph.D. in Software Engineer-
ing, Computer Science, or closely related field.

The primary duty for this position will be 
teaching courses in an ABET-accredited software 
engineering program. Candidates must have ex-
cellent verbal and written communication skills 
and a strong commitment to teaching. Commit-
ment to scholarly and professional activities is 
also required. The candidate must have a dem-
onstrated commitment to or experience with 
racially diverse populations. Salary will be com-
petitive and commensurate with experience and 
qualifications. In addition, there are consulting 
opportunities with local companies.

Applications must be submitted electronical-
ly. Send a letter of application, undergraduate & 
graduate transcripts, a statement illustrating your 
commitment to fostering campus racial diversity, 
and a vita including references to stutenbm@
uwplatt.edu. Visit our web site at http://www.uw-
platt.edu/csse for more information. Review of 
applications will begin on December 6, 2010 and 
continue until a suitable candidate is found.

The University of Wisconsin-Platteville, an 
equal opportunity, affirmative action employer, 
seeks to build a diverse faculty and staff and en-
courages applications from women and persons 
of color. The names of all nominees and appli-
cants who have not requested in writing that their 
identities be kept confidential, and of all finalists, 
will be released upon request. Employment re-
quires a criminal background check. 

 US Air Force Academy
Distinguished Visiting Professor  
& Visiting Chair

U.S. AIR FORCE ACADEMY Department of Com-
puter Science is accepting applications for our 
Coleman-Richardson Chair and Distinguished 
Visiting Professor positions. See http://www.usa-
fa.edu/df/dfcs/index.cfm or call (719) 333-7474 
for details. U.S. Citizenship required.

Valdosta State University
Assistant Professor

Applications are invited for two ten-month tenure-
track faculty positions at the rank of Assistant Pro-
fessor with starting date of August 1, 2011. Responsi-
bilities include teaching at the undergraduate level, 
scholarly activity, and service to both the department 
and the university. For a detailed job description and 
application instructions email Dr. Ashok Kumar, In-
terim Head, akumar@valdosta.edu. 

Applicants must complete a doctorate in Com-
puter Information Systems, Computer Science, or 

Skidmore college
The Department of Mathematics and Computer 
Science at Skidmore College invites applications for a 
tenure-track position in Computer Science beginning 
September 2011.  Qualifications include a Ph.D. in 
Computer Science. The appointment will be at the rank 
of Assistant Professor.  Salary will be competitive and 
commensurate with experience.  In addition, startup 
funds and pre-tenure sabbaticals are available.

A commitment to quality instruction of undergraduates 
and continuing scholarly achievement is essential.  The 
department has expertise in the theory of computation, 
algorithms, artificial intelligence, computer vision and 
graphics; we hope to widen our areas of expertise with 
this appointment. In addition to strong disciplinary 
teaching and scholarship, including collaborative 
research with students, the College encourages 
interdisciplinary teaching and scholarship via 
participation in its First-Year Experience program and 
other interdisciplinary programs such as Neuroscience, 
Environmental Studies, and Gender Studies.

Located in the vibrant community of Saratoga 
Springs, New York, Skidmore College is a highly 
selective liberal arts college of 2400 students.  The 
Department of Mathematics and Computer Science 
consists of eleven faculty members, offers both 
major and minor programs in Computer Science, and 
has its own Linux network supported by a dedicated 
system administrator within the department .  For 
more detailed information, please go to http://cms.
skidmore.edu/mcs/. 

Review of applications will begin December 15, 
2010 and will continue until the position is filled.  
Applications from members of underrepresented 
groups are especially encouraged.

To learn more about and apply for this position 
please visit Skidmore’s website at: jobs.skidmore.
edu/applicants/Central?quickFind=52518

Skidmore College is committed to being an inclusive 
campus community and, as an Equal Opportunity 
Employer, does not discriminate in its hiring or 
employment practices on the basis of gender, race or 
ethnicity, color, national origin, religion, age, disability, 
family, veteran or marital status, sexual orientation, 
gender identity or expression.

CREATIVE THOUGHT MATTERS.
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Puzzled 
Rectangles Galore 
Welcome to three new puzzles. Solutions to the first two will be  
published next month; the third is (as yet) unsolved. In each,  
the issue is how your intuition matches up with the mathematics. 

The hero of this column is the 
simple, ordinary, axis-aligned 
rectangle. Looking out the 
window, how many do you 
see? My view at the moment of 
Cambridge, MA, easily takes in  
more than one thousand, 
mostly windows. Asking new 
questions about an old figure 
helps us see it in a new light.

1.A large rectangle in the 
plane is partitioned into 

a finite number of smaller 
rectangles, each with either 
integer width or integer height; 
that is, its width, height, or 
both width and height are 
whole numbers of units. Now 
prove that the large rectangle, 
likewise, has integer width or 
height (or both).

2.You are in a large 
rectangular room with 

mirrored walls. Your mortal 
enemy, armed with a laser 
gun, is elsewhere in the room. 
As your only defense, you 
may summon a number of 
graduate students to stand 

at designated spots in the 
room, blocking all possible 
shots by the enemy. How many 
students do you need? 

You may assume for this 
purpose that you, your enemy, 
and the students are all slim 
enough to be considered 
points (viewed from above), 
rather than solid figures in 3D 
space. If, for example, you had 
continuum many graduate 
students, you could place them 
around you in a circle, with the 
enemy outside. But you can do 
better…

3.Before you (on the plane) 
is a large rectangle 

containing a finite number of 
distinct dots, one of which is 
at the rectangle’s lower-left-
hand corner. Your objective 
is to pack smaller, disjoint 
rectangles into the big one 
(with sides parallel to those of 
the big one) in such a way that 
each small rectangle includes 
one of the dots as its own 
lower-left-hand corner; see the 
figure for an example. 

The conjecture is that there 
is always a way to choose the 
small rectangles so they cover 
at least half the area of the big 
rectangle. Be the first ever to 
prove it. A far as I know, no 
one has succeeded in even 
showing you can cover any 
fixed fraction (say, 1/100) of the 
area of the original rectangle. 

Alternatively, if you 
reject the conjecture, find 
a counterexample, a way to 
distribute the dots (be sure 
to include the lower-left-hand 
corner of the big rectangle) so 
there is, provably, no way to do 
the packing so as to cover half 
the area of the big rectangle. 

All readers are encouraged to submit prospective puzzles for future columns to puzzled@cacm.acm.org. 

Peter Winkler (puzzled@cacm.acm.org) is Professor of Mathematics and of Computer Science and Albert Bradley 
Third Century Professor in the Sciences at Dartmouth College, Hanover, NH. 

Packing rectangles with six given dots at 
their lower-left-hand corners.
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