
The Tail
at Scale

COMMUNICATIONS
OF THE ACM

Association for
Computing Machinery

C
o

m
m

u
n

ic
a

t
io

n
s

 o
f

 t
h

e
 A

C
m

	cA

C

M
.a

c
m

.o
r

g
�

0
2

/
1

3
 V

O
L

.5
6

 NO

.2

cACM.acm.org� 02/2013 VOL.56 NO.2

http://CACM.ACM.ORG

Build for the new Windows Store.
Open for business at windowsstore.com

Cook up the
next great app.
Opportunity doesn’t just knock. In the Windows Store
it swipes, taps and clicks, too. See how Allrecipes
and others are building immersive apps for the new
Windows experience and learn how you can put
your app in the hands of new users everywhere.

C

M

Y

CM

MY

CY

CMY

K

Windows_CommACM_December12.pdf 1 11/28/12 9:21 AM

http://windowsstore.com

CONFERENCE 19 NOV - 22 NOV
EXHIBITION 20 NOV - 22 NOV

HONG KONG CONVENTION
AND EXHIBITION CENTRE

SA2013.SIGGRAPH.ORG

C

M

Y

CM

MY

CY

CMY

K

SA13 8.125"x10.875" CACM Feb13 Ad.ai 1 5/12/12 3:37 PM

http://SA2013.SIGGRAPH.ORG

2 communications of the acm | february 2013 | vol. 56 | no. 2

communications of the acm

P
h

o
t

o
g

r
a

p
h

 b
y

 R
o

y
 K

a
lt

s
c

h
m

i
d

t
,

c
o

u
r

t
e

s
y

 o
f

 L
a

w
r

e
n

c
e

 B
e

r
k

e
l

e
y

 N
a

t
i

o
n

a
l

 L
a

b
o

r
a

t
o

r
y

Departments

5	 Letter from ACM Publications
Board Co-Chairs
Positioning ACM for
an Open Access Future
By Ronald F. Boisvert
and Jack W. Davidson

7	 From the President
Growing the ACM Family
By Vinton G. Cerf

8	 BLOG@CACM
When Reviews Do More than Sting
Bertrand Meyer wonders
why malicious reviews run rampant
in computer science.

35	 Calendar

103	 Careers

Last Byte

112	 Puzzled
Tumbling Dice
By Peter Winkler

News

11	 Life in Simulation
Computational models
are tackling the complexity
of biology, from single-celled
microbes to human organs.
By Neil Savage

14	 Revving the Rover
The new Mars rover has attracted
plenty of attention for its
planetary gymnastics, but the big
breakthroughs are under the hood.
By Alex Wright

17	 A New Model for Healthcare
Computer modeling is radically
redefining healthcare and
epidemiology by providing new tools
for understanding the impact
of different intervention strategies.
By Samuel Greengard

Viewpoints

20	 Privacy and Security
The Tangled Web We Have Woven
Seeking to protect the fundamental
privacy of network interactions.
By Eben Moglen

23	 Inside Risks
More Sight on Foresight
Reflecting on elections, natural
disasters, and the future.
By Peter G. Neumann

26	 Kode Vicious
Divided by Division
Is there a “best used by”
date for software?
By George V. Neville-Neil

28	 Education
Reflections on Stanford’s MOOCs
New possibilities in online education
create new challenges.
By Steve Cooper and Mehran Sahami

31	 Economic and Business Dimensions
The Value of Microprocessor Designs
Applying a centuries-old technique
to modern cost estimation.
By Ana Aizcorbe, Samuel Kortum,
and Unni Pillai

33	 Viewpoint
Cloud Services Certification
How to address the lack of
transparency, trust, and
acceptance in cloud services.
By Ali Sunyaev and Stephan Schneider

37	 Viewpoint
The Explosive Growth of Postdocs
in Computer Science
Considering the factors influencing
the recent rapid increase in
the number of postdoctoral positions
in computer science.
By Anita Jones

Association for Computing Machinery
Advancing Computing as a Science & Profession

11

february 2013 | vol. 56 | no. 2 | communications of the acm 3

02/2013
vol. 56 no. 02

L
e

f
t

-t
o

-r
i

g
h

t
:

I
l

l
u

s
t

r
a

t
i

o
n

s
 b

y
 B

r
i

a
n

 G
r

e
e

n
b

e
r

g
 /

 A
n

d
r

i
j

 B
o

r
y

s
 A

s
s

o
c

i
a

t
e

s
;

G
i

a
c

o
m

o
 M

a
r

c
h

e
s

i
;

m
a

r
i

u
s

 w
a

t
z

Practice

40	 Rethinking Passwords
Our authentication system is lacking.
Is improvement possible?
By William Cheswick

45	 Thinking Methodically
about Performance
The USE method addresses
shortcomings in other commonly
used methodologies.
By Brendan Gregg

52	 A Decade of OS
Access-Control Extensibility
Open source security foundations
for mobile and embedded devices.
By Robert N.M. Watson

 Articles’ development led by
 queue.acm.org

Contributed Articles

64	 New Approaches to Security
and Availability for Cloud Data
Extending the data trust perimeter
from the enterprise to the public
cloud requires more than encryption.
By Ari Juels and Alina Oprea

74	 The Tail at Scale
Software techniques that tolerate
latency variability are vital to
building responsive large-scale
Web services.
By Jeffrey Dean and Luiz André Barroso

Review Articles

82	 Symbolic Execution for Software
Testing: Three Decades Later
The challenges—and great
promise—of modern symbolic
execution techniques, and
the tools to help implement them.
By Cristian Cadar and Koushik Sen

Research Highlights

92	 Technical Perspective
Is Dark Silicon Real?
By Pradip Bose

93	 Power Challenges May End
the Multicore Era
By Hadi Esmaeilzadeh,
Emily Blem, Renée St. Amant,
Karthikeyan Sankaralingam,
and Doug Burger

About the Cover:
The technologies needed
to shave milliseconds off
the time systems respond
to user actions are critical
for enhancing the fluid
nature of the query action.
This month’s cover story
(p. 74) explores the power
of tail-tolerant techniques
that allow for higher
system utilization without
sacrificing responsiveness.
Cover illustration by
Giacomo Marchesi.

52 74

http://queue.acm.org

4 communications of the acm | february 2013 | vol. 56 | no. 2

communications of the acm
Trusted insights for computing’s leading professionals.

Communications of the ACM is the leading monthly print and online magazine for the computing and information technology fields.
Communications is recognized as the most trusted and knowledgeable source of industry information for today’s computing professional.
Communications brings its readership in-depth coverage of emerging areas of computer science, new trends in information technology,
and practical applications. Industry leaders use Communications as a platform to present and debate various technology implications,
public policies, engineering challenges, and market trends. The prestige and unmatched reputation that Communications of the ACM
enjoys today is built upon a 50-year commitment to high-quality editorial content and a steadfast dedication to advancing the arts,
sciences, and applications of information technology.

P
L

E

A
S E R E C Y

C
L

E

T
H

I

S M A G A Z

I
N

E

ACM, the world’s largest educational
and scientific computing society, delivers
resources that advance computing as a
science and profession. ACM provides the
computing field’s premier Digital Library
and serves its members and the computing
profession with leading-edge publications,
conferences, and career resources.

Executive Director and CEO
John White
Deputy Executive Director and COO
Patricia Ryan
Director, Office of Information Systems
Wayne Graves
Director, Office of Financial Services
Russell Harris
Director, Office of SIG Services
Donna Cappo
Director, Office of Publications
Bernard Rous
Director, Office of Group Publishing
Scott E. Delman

ACM Council
President
Vinton G. Cerf
Vice-President
Alexander L. Wolf
Secretary/Treasurer
Vicki L. Hanson
Past President
Alain Chesnais
Chair, SGB Board
Erik Altman
Co-Chairs, Publications Board
Ronald Boisvert and Jack Davidson
Members-at-Large
Eric Allman; Ricardo Baeza-Yates;
Radia Perlman; Mary Lou Soffa;
Eugene Spafford
SGB Council Representatives
Brent Hailpern; Joseph Konstan;
Andrew Sears

Board Chairs
Education Board
Andrew McGettrick
Practitioners Board
Stephen Bourne

Regional Council Chairs
ACM Europe Council
Fabrizio Gagliardi
ACM India Council
Anand S. Deshpande, PJ Narayanan
ACM China Council
Jiaguang Sun

Publications Board
Co-Chairs
Ronald F. Boisvert; Jack Davidson
Board Members
Marie-Paule Cani; Nikil Dutt; Carol Hutchins;
Joseph A. Konstan; Ee-Peng Lim;
Catherine McGeoch; M. Tamer Ozsu;
Vincent Shen; Mary Lou Soffa

ACM U.S. Public Policy Office
Cameron Wilson, Director
1828 L Street, N.W., Suite 800
Washington, DC 20036 USA
T (202) 659-9711; F (202) 667-1066

Computer Science Teachers Association
Chris Stephenson,
Executive Director

STAFF

Director of Group Publishing
Scott E. Delman
publisher@cacm.acm.org

Executive Editor
Diane Crawford
Managing Editor
Thomas E. Lambert
Senior Editor
Andrew Rosenbloom
Senior Editor/News
Jack Rosenberger
Web Editor
David Roman
Editorial Assistant
Zarina Strakhan
Rights and Permissions
Deborah Cotton

Art Director
Andrij Borys
Associate Art Director
Margaret Gray
Assistant Art Directors
Mia Angelica Balaquiot
Brian Greenberg
Production Manager
Lynn D’Addesio
Director of Media Sales
Jennifer Ruzicka
Public Relations Coordinator
Virginia Gold
Publications Assistant
Emily Williams

Columnists
Alok Aggarwal; Phillip G. Armour;
Martin Campbell-Kelly;
Michael Cusumano; Peter J. Denning;
Shane Greenstein; Mark Guzdial;
Peter Harsha; Leah Hoffmann;
Mari Sako; Pamela Samuelson;
Gene Spafford; Cameron Wilson

Contact Points
Copyright permission
permissions@cacm.acm.org
Calendar items
calendar@cacm.acm.org
Change of address
acmhelp@acm.org
Letters to the Editor
letters@cacm.acm.org

WebSITE
http://cacm.acm.org

Author Guidelines
http://cacm.acm.org/guidelines

ACM Advertising Department
2 Penn Plaza, Suite 701, New York, NY
10121-0701
T (212) 626-0686
F (212) 869-0481

Director of Media Sales
Jennifer Ruzicka
jen.ruzicka@hq.acm.org

Media Kit acmmediasales@acm.org

Association for Computing Machinery
(ACM)
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA
T (212) 869-7440; F (212) 869-0481

editorial Board

Editor-in-chief
Moshe Y. Vardi
eic@cacm.acm.org

News
Co-Chairs
Marc Najork and Prabhakar Raghavan
Board Members
Hsiao-Wuen Hon; Mei Kobayashi;
William Pulleyblank; Rajeev Rastogi

Viewpoints
Co-Chairs
Susanne E. Hambrusch; John Leslie King;
J Strother Moore
Board Members
William Aspray; Stefan Bechtold; Judith
Bishop; Stuart I. Feldman;
Peter Freeman; Seymour Goodman;
Mark Guzdial; Richard Heeks;
Rachelle Hollander; Richard Ladner;
Susan Landau; Carlos Jose Pereira de Lucena;
Beng Chin Ooi; Loren Terveen;
Jeannette Wing

 Practice
Chair
Stephen Bourne
Board Members
Eric Allman; Charles Beeler; Bryan Cantrill;
Terry Coatta; Stuart Feldman; Benjamin Fried;
Pat Hanrahan; Tom Limoncelli;
Marshall Kirk McKusick; Erik Meijer;
George Neville-Neil; Theo Schlossnagle;
Jim Waldo

The Practice section of the CACM
Editorial Board also serves as
the Editorial Board of .

Contributed Articles
Co-Chairs
Al Aho and Georg Gottlob
Board Members
William Aiello; Robert Austin; Elisa Bertino;
Gilles Brassard; Kim Bruce; Alan Bundy;
Peter Buneman; Erran Carmel;
Andrew Chien; Peter Druschel; Carlo Ghezzi;
Carl Gutwin; James Larus; Igor Markov;
Gail C. Murphy; Shree Nayar; Bernhard
Nebel; Lionel M. Ni; Sriram Rajamani;
Marie-Christine Rousset; Avi Rubin;
Krishan Sabnani; Fred B. Schneider;
Abigail Sellen; Ron Shamir; Yoav Shoham;
Marc Snir; Larry Snyder; Manuela Veloso;
Michael Vitale; Wolfgang Wahlster;
Hannes Werthner; Andy Chi-Chih Yao

Research Highlights
Co-Chairs
Stuart J. Russell and Gregory Morrisett
Board Members
Martin Abadi; Sanjeev Arora; Dan Boneh;
Andrei Broder; Stuart K. Card; Jon Crowcroft;
Alon Halevy; Monika Henzinger;
Maurice Herlihy; Norm Jouppi;
Andrew B. Kahng; Xavier Leroy;
Mendel Rosenblum; Ronitt Rubinfeld;
David Salesin; Guy Steele, Jr.; David Wagner;
Alexander L. Wolf; Margaret H. Wright

Web
Chair
James Landay
Board Members
Gene Golovchinsky; Marti Hearst;
Jason I. Hong; Jeff Johnson; Wendy E. MacKay

 

ACM Copyright Notice
Copyright © 2013 by Association for
Computing Machinery, Inc. (ACM).
Permission to make digital or hard copies
of part or all of this work for personal
or classroom use is granted without
fee provided that copies are not made
or distributed for profit or commercial
advantage and that copies bear this
notice and full citation on the first
page. Copyright for components of this
work owned by others than ACM must
be honored. Abstracting with credit is
permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to
lists, requires prior specific permission
and/or fee. Request permission to publish
from permissions@acm.org or fax
(212) 869-0481.

For other copying of articles that carry a
code at the bottom of the first or last page
or screen display, copying is permitted
provided that the per-copy fee indicated
in the code is paid through the Copyright
Clearance Center; www.copyright.com.

Subscriptions
An annual subscription cost is included
in ACM member dues of $99 ($40 of
which is allocated to a subscription to
Communications); for students, cost
is included in $42 dues ($20 of which
is allocated to a Communications
subscription). A nonmember annual
subscription is $100.

ACM Media Advertising Policy
Communications of the ACM and other
ACM Media publications accept advertising
in both print and electronic formats. All
advertising in ACM Media publications is
at the discretion of ACM and is intended
to provide financial support for the various
activities and services for ACM members.
Current Advertising Rates can be found
by visiting http://www.acm-media.org or
by contacting ACM Media Sales at
(212) 626-0686.

Single Copies
Single copies of Communications of the
ACM are available for purchase. Please
contact acmhelp@acm.org.

Communications of the ACM
(ISSN 0001-0782) is published monthly
by ACM Media, 2 Penn Plaza, Suite 701,
New York, NY 10121-0701. Periodicals
postage paid at New York, NY 10001,
and other mailing offices.

POSTMASTER
Please send address changes to
Communications of the ACM
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA

Printed in the U.S.A.

mailto:publisher@cacm.acm.org
mailto:permissions@cacm.acm.org
mailto:calendar@cacm.acm.org
mailto:acmhelp@acm.org
mailto:letters@cacm.acm.org
http://cacm.acm.org
http://cacm.acm.org/guidelines
mailto:jen.ruzicka@hq.acm.org
mailto:acmmediasales@acm.org
mailto:eic@cacm.acm.org
mailto:permissions@acm.org
http://www.copyright.com
http://www.acm-media.org
mailto:acmhelp@acm.org

february 2013 | vol. 56 | no. 2 | communications of the acm 5

letter from acm publications board co-chairs

T
he age of open access is
upon us. Increasingly, the con-
sensus of authors of research
articles and their funding in-
stitutions is that the fruits of

taxpayer-supported research should be
freely available to the public. This is a
compelling argument and a noble goal.

But, achieving open access is not
easy. Professional maintenance and dis-
tribution of large digital archives, guar-
anteed for the long term, does incur
significant cost. The most promising
model for recovering such costs under
an open-access regime is an author-
pays (or, in effect, a funding institution
pays) model. Such a scheme introduces
issues of its own. If publishers gener-
ate revenue by producing more content
(paid for by authors) rather than quality
content (paid for by subscribers), then
the natural tendency in the system will
be for the generation of large quanti-
ties of low-quality content. Indeed, we
have seen the rise of predatory pub-
lishers, actively seeking authors to pay
for publication in venues devoid of the
exacting scrutiny of conscientious peer
review. The result is a glut of third-rate
publications that add noise rather than
insight to the scientific enterprise.

The important question is: Can we
establish a sustainable economic model
for publication that serves the interest
of both authors and the reading public?
We submit that non-profit professional
societies must play a critical role in this
regard. They are the hallmark of quality
in publications, and must remain so to
serve the interests of the reading public.
But, how do we transition from the cur-
rent subscription model to a new finan-
cial model enabling open access in a way
that does not bankrupt the organization
in the process? This question has occu-
pied the attention of the ACM Publica-
tions Board for several years. Because
the stakes are high, the Board has cho-
sen to move with caution.

Because we do not have a reliable
crystal ball, we have chosen to provide
an array of options for ACM authors
and Special Interest Groups (SIGs) to
enable a natural, slow, and (hopefully)
stable evolution of the publication en-

terprise into the future. Examples of
this are ACM’s long-standing policies
enabling author-produced versions of
ACM-published materials to be posted
on author Web pages, on the pages
of their institutions, and on archives
mandated by funding institutions. A
shining example of such green open-
access policies is ACM’s Author-Izer
service, which allows authors to place
specialized links on their Web pages
that tunnel through ACM’s paywall to
provide free access to the definitive ver-
sions of their papers, while capturing
download statistics displayed in the
ACM Digital Library (DL).

In the next few months ACM will roll
out more options for authors and SIGs,
which will provide even greater levels of
flexibility with regard to open access.

1.	 Author-pays Open Access Option.
Individual authors (or their institu-
tions) will have the option to pay a fee
that covers ACM publication and cura-
tion costs at the time of publication,
after which the article will be freely
available via the ACM DL platform. The
fee, which has yet to be set, will differ-
entiate between journal articles and
conference papers, as well as between
ACM members and non-members.

2.	 Open Access During the Period
Around SIG Conferences Option. SIGs
will have the option to make the pro-
ceedings from their conferences freely
available via the ACM DL platform for
up to two weeks before the event and
up to two weeks after. Not only will this
option facilitate easy access to the pro-
ceedings by conference attendees, it
will also enable the community at large
to experience the excitement of learn-
ing about the latest developments be-
ing presented in the period surround-
ing the event itself.

3.	 Open Access for Most Recent In-
stance of SIG Conferences Option. SIGs
will have the option to maintain ta-
bles-of-contents for the most recent
instance of its conferences on the
conference website with ACM Author-
Izer links that provide free access to the
definitive version of the article main-
tained in the ACM DL. For conferences
that are not in a recurring series, such

access will be enabled for up to one
year. When selected by the sponsor-
ing SIG, this reverse embargo will pro-
vide open access to conference papers
during the period in which they are of
greatest interest.

4.	 Options for Rights Management.
When publishing articles with ACM,
authors will have three options for the
management of publication rights
for their work. Authors who desire the
convenience of having ACM maintain
rights and permissions associated with
their works will continue to be able
to execute copyright transfer to ACM.
ACM’s copyright policy will continue to
grant authors liberal rights for the re-
use of their work and the posting of per-
sonal versions. Authors who prefer to
retain copyright or want a more explicit
publishing contract will have the op-
tion of signing one of two license agree-
ments. The first will have terms similar
to that of the existing copyright trans-
fer. However, this option will provide
increased clarity about the rights of
both parties. Finally, those authors who
wish to retain all rights to their work
can do so by exercising the author-pays
open access option described previ-
ously. In that case all rights remain with
the author and ACM is simply granted a
permanent license to distribute.

The set of changes unveiled here
are but another step in an ongoing
process in which ACM adapts to the
new realities of scholarly publishing.
Many further refinements are pos-
sible. For example, if the author-pays
option is successful, the Publications
Board may consider the feasibility of
making previously published papers
in the DL open access, or making
entire proceedings open access us-
ing funding from registration fees or
sponsors. As the Board considers each
change it will continue to be respon-
sive to the needs and wishes of the
ACM community while fulfilling its re-
sponsibility to maintain a healthy and
sustainable publications program.	

Ronald F. Boisvert and Jack W. Davidson are co-chairs
of the ACM Publications Board.

© 2013 ACM 0001-0782/13/02

Positioning ACM for an Open Access Future
DOI:10.1145/2408776.2408777		 Ronald F. Boisvert and Jack W. Davidson

Priority Code: AD13

Online
http://www.acm.org/join

Phone
+1-800-342-6626 (US & Canada)

+1-212-626-0500 (Global)

Fax
+1-212-944-1318

membership application &
digital library order form

PROFESSIONAL MEMBERSHIP:

o ACM Professional Membership: $99 USD

o ACM Professional Membership plus the ACM Digital Library:

$198 USD ($99 dues + $99 DL)

o ACM Digital Library: $99 USD (must be an ACM member)

STUDENT MEMBERSHIP:

o ACM Student Membership: $19 USD

o ACM Student Membership plus the ACM Digital Library: $42 USD

o ACM Student Membership PLUS Print CACMMagazine: $42 USD

o ACM Student Membership w/Digital Library PLUS Print

CACM Magazine: $62 USD

choose one membership option:

Name

Address

City State/Province Postal code/Zip

Country E-mail address

Area code & Daytime phone Fax Member number, if applicable

 Payment must accompany application. If paying by check or
money order, make payable to ACM, Inc. in US dollars or foreign
currency at current exchange rate.

o Visa/MasterCard o American Express o Check/money order

o Professional Member Dues ($99 or $198) $ ______________________

o ACM Digital Library ($99) $ ______________________

o Student Member Dues ($19, $42, or $62) $ ______________________

Total Amount Due $ ______________________

Card # Expiration date

Signature

Professional membership dues include $40 toward a subscription
to Communications of the ACM. Student membership dues include
$15 toward a subscription to XRDS. Member dues, subscriptions,
and optional contributions are tax-deductible under certain
circumstances. Please consult with your tax advisor.

payment:

RETURN COMPLETED APPLICATION TO:

All new ACM members will receive an
ACM membership card.

For more information, please visit us at www.acm.org

Association for Computing Machinery, Inc.
General Post Office
P.O. Box 30777
New York, NY 10087-0777

Questions? E-mail us at acmhelp@acm.org
Or call +1-800-342-6626 to speak to a live representative

Satisfaction Guaranteed!

Purposes of ACM
ACM is dedicated to:
1) advancing the art, science, engineering,
and application of information technology
2) fostering the open interchange of
information to serve both professionals and
the public
3) promoting the highest professional and
ethics standards

I agree with the Purposes of ACM:

Signature

ACM Code of Ethics:
http://www.acm.org/about/code-of-ethics

You can join ACM in several easy ways:

Or, complete this application and return with payment via postal mail

Special rates for residents of developing countries:
http://www.acm.org/membership/L2-3/

Special rates for members of sister societies:
http://www.acm.org/membership/dues.html

Advancing Computing as a Science & Profession

Please print clearly

http://www.acm.org/join
http://www.acm.org/membership/L2-3/
http://www.acm.org/membership/dues.html
http://www.acm.org/about/code-of-ethics
http://www.acm.org
mailto:acmhelp@acm.org

february 2013 | vol. 56 | no. 2 | communications of the acm 7

from the president

I have been thinking about the demographics
of the computing profession and wondering
what steps ACM and its members might take
to increase interest in this career across a full

spectrum of potential candidates. I spent a
good part of a day browsing around in the
ACM website discovering that this topic
is and has been on the table in many dif-
ferent venues. One obvious place to look
was in ACM publicationsa and I found
many that had stories on this topic: Com-
munications, ACM Inroads, ACM Queue,
eLearn, XRDS (formerly Crossroads, the
student magazine), Ubiquity, interac-
tions, among others. I also checked for
blogs and found a bunchb including
Communications, ACM Inroads, ACM
Queue, eLearn, USACM, ACM-W and CS-
TA-advocate. Then I looked at the Spe-
cial Interest Groupsc and found many
that seemed likely to be addressing this
topic: Computer Science Education
(SIGCSE), Computers and Society (SIG-
CAS), Access (SIGACCESS), Information
Technology Education (SIGITE), Univer-
sity and College Computing Services (SI-
GUCC). It would not surprise me to find
I have missed some key publications
or that other SIGs that tend to be more
technically focused have also, at least on
occasion, addressed this same question.

Then I found the Educational Ac-
tivities paged that had even more in-
formation and links to publications,
organizations, and activities. And
there is, of course, a wide range of ac-
tivities focused on engaging women
in computing led by ACM-W, the ACM
Women’s Council.e

a	 http://www.acm.org/publications
b	 https://myacm.acm.org/dashboard.

cfm?svc=acmblogs
c	 http://www.acm.org/sigs
d	 http://www.acm.org/education
e	 http://women.acm.org

If you accept that we do not have
nearly as wide a range of participants as
desired in the computing profession,
the question is whether we can take ad-
ditional steps to foster interest in this
field. There are all kinds of extramural
activities that draw young people into
computing. For example, the FIRST
robotics competitionsf and CAMPUS
PARTYg and the ACM International Col-
legiate Programming Contest (ACM-
ICPCh). There are many more such
activities, several of them focused on
computer and network security.

On top of all that, we have the
emerging Massive Open Online
Courses (MOOCs) phenomenon that
may involve hundreds of thousands
of participants in all age groups. I am
not even going to try to give you a list
of those—just employ your favorite
search engine and you should reap a
long list of Web pages, reports, news
articles, and other references to this
new use of the Internet.

Indeed, there is no dearth of effort
on the educational and activities side
to stimulate interest in all aspects of
computing but there persists a sense
that the demographics of computing
are still skewed in many ways. One
possibility is that the statistics are
wrong and we are not measuring the
full range of participation. What about
people who develop applications for
mobile devices? What about Web page
designers? Perhaps we might not be

f	 http://www.usfirst.org/
g	 http://www.campus-party.org/home-en.html
h	 http://icpc.baylor.edu/

comfortable including many of these
participants in the definition of com-
puting professional—is that an issue?
On the other hand, the statistics may
be telling us that despite our varied ef-
forts, we are not awakening interest in
the field broadly enough. Considering
that this field involves primarily think-
ing logically, designing, implement-
ing, testing of software and hardware,
it is difficult to imagine that in and of
itself, the profession has any built-in
biases against anyone. Of course, not
everyone is interested in this kind of
activity but anyone who is interested
should not be excluded by virtue of any
inherent constraints.

As the twenty-first century contin-
ues to unfold, we are surrounded by a
growing number of devices with pro-
grammable features. Software (and
hardware) is everywhere. Even casual
users need to know something about
the nature of this topic. Of course,
many people use the products of com-
puting without much musing about
its origins: computer games, laptops,
desktops, tablets and mobiles to say
nothing of cloud computing are all
part of daily life, even when their com-
plexity is largely hidden. (A good thing
for the most part.)

I am sure I must be missing some-
thing. So let me pose the question:
What, if anything, might ACM do more
than it is already doing, to grow inter-
est in and familiarity with computing
and the computing profession?

Vinton G. Cerf, ACM PRESIDENT

Growing the ACM Family
DOI:10.1145/2408776.2408778		 Vinton G. Cerf

http://www.acm.org/publications
https://myacm.acm.org/dashboard.cfm?svc=acmblogs
http://www.acm.org/sigs
http://www.acm.org/education
http://women.acm.org
http://www.usfirst.org
http://www.campus-party.org/home-en.html
http://icpc.baylor.edu
https://myacm.acm.org/dashboard.cfm?svc=acmblogs

8 communications of the acm | February 2013 | vol. 56 | no. 2

Follow us on Twitter at http://twitter.com/blogCACM

The Communications Web site, http://cacm.acm.org,
features more than a dozen bloggers in the BLOG@CACM
community. In each issue of Communications, we’ll publish
selected posts or excerpts.

Bertrand Meyer
“The Nastiness
Problem in
Computer Science”

�http://cacm.acm.org/blogs/blog-cacm/
123611-the-nastiness-problem-in-
computer-science/fulltext
August 22, 2011

Are we malevolent grumps? Nothing
personal, but as a community, com-
puter scientists sometimes seem to
succumb to negativism. They admit it
themselves. A common complaint in
the profession is that instead of tak-
ing a cue from our colleagues in more
cogently organized fields such as
physics, who band together for funds,
promotion, and recognition, we are
incurably fractious. In committees,
for example, we damage everyone’s
chances by badmouthing colleagues
with approaches other than ours. At
least this is a widely perceived view
(“Circling the wagons and shooting in-
ward,” as Greg Andrews put it in a re-
cent discussion). Is it accurate?

One statistic that I have heard cited
is that in 1-to-5 evaluations of projects

committee did come to its senses, and
afterward several members wondered
aloud what was the reason for this
perfectionism that almost made us
waste a great opportunity to reward.
We come across such cases so often—
the research proposal evaluation that
gratuitously but lethally states that you
have “less than a 10% chance” of reach-
ing your goals, the killer argument “I
didn’t hear anything that surprised me”
after a candidate’s talk—that we con-
sider such nastiness normal without
asking any more whether it is ethical
or helpful. (The “surprise” comment
is particularly vicious. Its real purpose
is to make its author look smart and
knowledgeable about the ways of the
world, since he is so hard to surprise;
and few people are ready to contradict
it: Who wants to admit that he is naïve
enough to have been surprised?)

A particular source of evidence is
refereeing, as in the SIGMOD example.
I keep wondering at the sheer nasti-
ness of referees in CS venues.

We should note that the large num-
ber of rejected submissions is not by
itself the problem. Naughton com-
plains that researchers spend their en-
tire careers being graded, as if passing
exams again and again. Well, I too like
acceptance better than rejection, but
we have to consider the reality: with
acceptance rates in the 8%–20% range
at good conferences, much referee-
ing is bound to be negative. Nor can
we angelically hope for higher accep-
tance rates overall; research is a com-
petitive business, and we are evaluat-
ed at every step of our careers, whether

submitted to the U.S. National Sci-
ence Foundation the average grade
of computer science projects is one
full point lower than the average for
other disciplines. This is secondhand
information, however, and I would
be interested to know if readers with
direct knowledge of the situation can
confirm or disprove it.

More examples can be found in the
material from a recent keynote by Jef-
frey Naughton, full of fascinating
insights (see http://pages.cs.wisc.
edu/~naughton/naughtonicde.pptx).
Naughton, a database expert, mentions
that only one paper out of 350 submis-
sions to SIGMOD 2010 received a unan-
imous “accept” from its referees, and
only four had an average accept recom-
mendation. As he writes, “either we all
suck or something is broken!”

Much of the other evidence I have
seen and heard is anecdotal, but per-
sistent enough to make one wonder if
there is something special with us. I am
reminded of a committee for a gener-
ously funded CS award some time ago,
where we came close to not giving the
prize at all because we only had “good”
proposals, and none that a commit-
tee member was willing to die for. The

When Reviews
Do More than Sting
Bertrand Meyer wonders why malicious reviews
run rampant in computer science.

doi:10.1145/2408776.2408780			 http://cacm.acm.org/blogs/blog-cacm

http://cacm.acm.org
http://twitter.com/blogCACM
http://cacm.acm.org/blogs/blog-cacm
http://cacm.acm.org/blogs/blog-cacm/123611-the-nastiness-problem-in-computer-science/fulltext
http://cacm.acm.org/blogs/blog-cacm/123611-the-nastiness-problem-in-computer-science/fulltext
http://cacm.acm.org/blogs/blog-cacm/123611-the-nastiness-problem-in-computer-science/fulltext
http://pages.cs.wisc.edu/~naughton/naughtonicde.pptx
http://pages.cs.wisc.edu/~naughton/naughtonicde.pptx

blog@cacm

february 2013 | vol. 56 | no. 2 | communications of the acm 9

we like it or not. One could argue that
most papers submitted to ICSE and
ESEC are pretty reasonable contribu-
tions to software engineering, and
hence these conferences should ac-
cept four out of five submissions; but
the only practical consequence would
be that some other venue would soon
replace ICSE and ESEC as the publi-
cation place that matters in software
engineering. In reality, rejection re-
mains a frequent occurrence even for
established authors.

Rejecting a paper, however, is not
the same thing as insulting the au-
thor under the convenient cover of
anonymity.

The particular combination of
incompetence and arrogance that
characterizes much of what Naugh-
ton calls “bad refereeing” always
stings when you are on the receiving
end, although after a while it can be
retrospectively funny; one day I will
publish some of my own inventory
collected over the years. As a preview,
here are two comments on the first pa-
per I wrote on Eiffel, rejected in 1987
by the IEEE Transactions on Software
Engineering (it was later published,
thanks to a more enlightened editor,
Robert Glass, in the Journal of Systems
and Software). The IEEE rejection was
on the basis of such review gems as:

˲˲ I think time will show that inheri-
tance (section 1.5.3) is a terrible idea.

˲˲ Systems that do automatic garbage
collection and prevent the designer from
doing his own memory management are
not good systems for industrial-strength
software engineering.

One of the reviewers also wrote:
“But of course, the bulk of the paper is
contained in Part 2, where we are given
code fragments showing how well things
can be done in Eiffel. I only read 2.1 ar-
rays. After that I could not bring myself to
waste the time to read the others.”

This is sheer boorishness passing
itself off as refereeing. I wonder if edi-
tors in other, more established disci-
plines tolerate such attitudes. I also
have the impression that in non-CS
journals the editor has more personal
leverage. How can the editor of IEEE-
TSE have based his decision on such
a biased an unprofessional review?
Quis custodiet ipsos custodes?

“More established disciplines.” In-
deed, the usual excuse is that we are

still a young field, suffering from ado-
lescent aggressiveness. If so, it may be,
as Lance Fortnow has argued in a more
general context, “time for computer sci-
ence to grow up.” After some 60 or 70
years we are not so young any more.

What is your experience? Is the grass
greener elsewhere? Are we just like ev-
eryone else, or do we truly have a nasti-
ness problem in computer science?

Readers’ Comments
This is only a problem for academics. In the
real world (industry), the customers stand
in judgment.

—Anonymous

I am a physicist but have entered CS
and now publish in this field. I do notice the
attitudes you describe and they scare me
because I get the impression that every
other computer scientist is very insecure.
Rude comments from reviewers are
common and editors seem not to care. But
more so, it is common that reviewers are
clueless and barely understand the paper
they review. So, if one reviewer is rude
and clueless, and two are knowledgeable
and positive, then the editor still mainly
listens to the clueless one, simply because
a negative critique is more worthy than
positive in this field...

—Anonymous

As a reviewer and as an author, I get
the feeling (in some cases I actually know)
that some of my (co)reviewers did one
of two things: Had someone else less/
not qualified review the paper, without
bothering to check the quality of the
review; or reviewed the paper at the last
possible minute, probably after several
reminders from the program chair.

In either case, it is hard to get a fair
review.

—Anonymous

I am from physics, it has its own share
of nastiness, different from what you
describe. Right now, I work in a research
organization dominated by computer
scientists and have written and reviewed
some computer science papers. At the risk
of sounding haughty (I do not mean to),
I would say:

As you have mentioned, computer
science is a relatively new field and
physics far more mature. This not only
means that computer science has more
upstarts reviewing and writing papers, but
that the quality of research varies from
excellent to mediocre to rather poor. As
opposed to physics or natural sciences,
where almost all research in a field is of
similar quality (with respect to maturity).
Now you might say that is good or not
good, I don’t know.

Also, computer scientists have far more
funds to publish and hold conferences (at
exotic locations), leading in turn to lots
more papers to write and review, and all the
related rage. I wrote one paper in two years
and reviewed maybe a couple every year
while I was in physics. I do some reviewing/
writing activity every week in computer
science research.

—Anonymous

One challenge this poses to program
chairs is that we can be misled by nasty
reviews versus genuine rejections,
especially when the nasty guy works hard.
A solution might be to publish reviewer
stats, including how often a reviewer is the
minority, average length of review, and so
on. It might improve behavior if we know
that poor numbers could brand us out
of prestigious committees. We all want
to be on program committees, and then
act as if we can’t be bothered and are too
busy! This needs to change. Coming from
industry, I know that sticks work better
than carrots!

—Anonymous

Bertrand Meyer is a professor at ETH Zurich and ITMO
(St. Petersburg) and chief architect of Eiffel Software.

© 2013 ACM 0001-0782/13/02

Rejecting a paper
is not the same
thing as insulting
the author under
the convenient
cover of anonymity.

Association for
Computing Machinery

interactions.acm.org

interactions

magazine’s website

interactions.acm.org,

is designed to

capture the

in� uential voice of

its print component

in covering the � elds

that envelop the

study of people and

computers.

The site offers a rich

history of the conversations,

collaborations, and discoveries

from issues past, present,

and future.

Check out the current issue,

look up a past prototype, or

discuss an upcoming trend in

the communities of design and

human-computer interaction.

FORUMS

BLOGS

FEATURES

DOWNLOADS

IAX_WebAd2012_V02.indd 1 1/7/13 12:50 PM

http://interactions.acm.org
http://interactions.acm.org

 N
news

february 2013 | vol. 56 | no. 2 | communications of the acm 11

P
h

o
t

o
g

r
a

p
h

 b
y

 R
o

y
 K

a
lt

s
c

h
m

i
d

t
,

c
o

u
r

t
e

s
y

 o
f

 L
a

w
r

e
n

c
e

 B
e

r
k

e
l

e
y

 N
a

t
i

o
n

a
l

 L
a

b
o

r
a

t
o

r
y

B
i o l o g i s t s a r e awa s h in
data; the genomes of 18,840
organisms had been se-
quenced by mid-October
2012, according to the U.S.

Department of Energy’s Joint Ge-
nome Institute. And scientists around
the world are trying to determine how
to wring value from all that data, with
projects studying how those genes
interact with each other and the envi-
ronment, how embryos develop, how
toxins affect tissues, and why some
cells become cancerous, among many
other questions. With so much data,
and with questions that hinge on un-
derstanding the complex interplay of
multiple factors, computer scientists
are working to develop software that
can simulate the behavior of biologi-
cal systems, from cells to organs to
entire organisms.

“It’s trivial to generate terabytes of
data in a day or two,” says Mark Isa-
lan, a systems biologist at the Centre
for Genomic Regulation in Barcelona,
Spain. The bigger challenge is how to
use all that data to address important
questions.

Yet that volume of data also makes
problems in biology more tractable
for computer scientists seeking to
model biological behavior. “Because
we can measure the cells much more
precisely, we actually have numbers we

Life in Simulation
Computational models are tackling the complexity
of biology, from single-celled microbes to human organs.

Science | doi:10.1145/2408776.2408781	 Neil Savage

The huge volume of data generated from genome sequencing technologies, like those used
as part of the DOE’s Joint Genome Institute, has inspired computer scientists worldwide
to create software that can take that data and build computational models simulating the
behavior of biological systems.

12 communications of the acm | February 2013 | vol. 56 | no. 2

news

28 sub-models, each simulating a
different process. One, for instance,
modeled the replication of DNA,
while another described the process
of transcribing RNA, and another
simulated how proteins produced by
the cell folded into particular shapes.
One advantage of this approach, says
Karr, is that it makes sense from a
software engineering perspective;
“That’s the way programs are built,”
he says. Another plus is that, instead
of using one type of mathematical
representation to describe the entire
organism, it allowed the researchers
to use the mathematical approach
most appropriate to the activity of a
particular module and to the amount
of data available about that cellular
function. One module might rely on
ordinary differential equations, for
instance, while another uses a Bool-
ean model. “Different aspects of cell
biology are not all characterized to the
same level of detail,” Karr explains.
“There are just certain aspects of cell
life we know more about and others
where we know less.” The team fed
the model data gleaned from research
literature about the bacteria and oth-
er similar organisms, and added addi-
tional information they generated in
laboratory experiments.

To make all the sub-models work
together, the researchers built a piece
of software to plug them all into. The
sub-models run independently for a
short time, less than a second. But to
emulate how biology relies on feed-
back loops, the sub-models are linked
by 16 variable metabolic states that,
taken together, represent everything
going on in the whole cell. At each
time step of one second, the sub-mod-
els take the states of those variables
and use them to run their simulation,
then make the revised values available
to the other sub-models. Also at each
time step, the computer estimates the
amount of metabolic resources a given
biological process would require, then
allocates the cell’s total resources pro-
portionally among the different pro-
cesses. These steps—measure, calcu-
late, share, repeat—run thousands of
times until the simulated cell reaches
the point where a real-life cell would
divide into two, at which point the
simulation is done. When the team
ran their simulation, the computer
produced results that matched those
that had already been determined in
lab experiments. But beyond that, says
Karr, the simulation can also highlight
inconsistencies in the data and sug-
gest the existence of cellular functions

can give to models,” Isalan says. And
once they have built accurate models,
researchers can then change some of
the model’s parameters and see what
happens, which can help explain the
mechanisms of disease, or suggest
new targets for drugs to treat diseases.

Researchers from Stanford Uni-
versity and the Craig Venter Institute
in Rockville, MD, have taken an im-
portant step toward getting value out
of the huge datasets by creating what
they say is the first comprehensive
computational model of a living or-
ganism. They built a model of the bac-
terium Mycoplasma genitalium, a par-
asite that infects the human urethra.
The scientists chose that microbe be-
cause it has only 525 genes, the fewest
of any independently living organism;
humans, by contrast, have around
25,000. “We really wanted to build
something that was complete,” says
Jonathan Karr, a doctoral student in
biophysics at Stanford and lead author
of a paper about the work. “Anything
larger we felt would just be impossible
at this point to build a complete mod-
el.” Even this model, the researchers
say, is essentially a “first draft.”

To build their model, the team
broke down the cell into various indi-
vidual functions. They came up with

ACM Announces
Distinguished Members
ACM has named 41 of its
members as Distinguished
Members for their individual
contributions and their
singular impacts on the
dynamic computing field. Their
achievements have advanced
the science, engineering,
and education of computing,
enabling a range of technologies
that drive innovation in
the digital age. The 2012
Distinguished Members hail
from universities in Australia,
Denmark, Italy, Korea, China,
and the U.K. in addition to North
America, and from leading
corporations and research
institutions around the world.

To view the full list of 2012
Distinguished Members, visit
http://distinguished.acm.org.

Smithsonian
Recognizes Thrun’s
Udacity Work
Sebastian Thrun won the
inaugural Smithsonian
American Ingenuity in
Education Award for his work
with Udacity, an independent
online education company
he co-founded that provides
high-quality education for free.
Thrun, a roboticist, AI expert,
Stanford research professor,
and leading light at Google X,
describes Udacity as an effort to
democratize higher education.
In accepting the award, Thrun
said there is so much potential
to do better than the classroom.
“Higher education should be a
basic human right; we should
amend the Constitution,” he
said. “You can give a man a fish
and he has dinner for the night,

or you can teach a man to fish
and he has dinner for the rest of
his life. That’s what education
is all about.”

ABET Honors Zweben
Stuart H. Zweben, an ACM
Fellow and former ACM
president (1994–1996), has
received the 2012 Linton E.
Grinter Distinguished Service
Award from the Accreditation
Board for Engineering and
Technology (ABET). The award
cites Zweben, a Professor
Emeritus at Ohio State
University’s Computer Science
and Engineering Department,
for “outstanding leadership
in computing accreditation
worldwide.” In the early 1980s,
Zweben played a key role in
ACM’s decision to join with the
IEEE-CS to form the Computing

Sciences Accreditation Board,
now known as CSAB.

Leroy Receives
Microsoft Award
Xavier Leroy, senior computer
scientist at INRIA’s Paris-
Rocquencourt research center,
received the 2012 Microsoft
Research Verified Software
Milestone Award. Leroy was
recognized for his role as architect
of the CompCert C Verified
Compiler. Said Judith Bishop,
principal research director,
computer science, at Microsoft
Research, “Compilers are the basis
for all the software we generate, and
by ruling out compiler-introduced
bugs, the CompCert project has
taken a huge leap in producing
strengthening guarantees for
reliable critical embedded
software across platforms.”

Milestones

Computer Science Awards, Honors

http://distinguished.acm.org

news

february 2013 | vol. 56 | no. 2 | communications of the acm 13

stance. And results in animal studies
may come from the high concentra-
tion of toxins used in tests, which may
not replicate a real-life situation. “In
most cases what the EPA cares about
is long-term and very low-level expo-
sure,” Shah says.

The approach Shah’s team takes
is agent-based multi-scale modeling.
They make models at various levels
of organization—the molecular path-
ways within a cell, the cell as a whole,
groups of cells, sections of liver. Like
the Stanford work, the whole model is
built as a series of modules, with each
module acting as an autonomous
agent. One module might be responsi-
ble for metabolizing a substance, an-
other might affect blood flow through
capillaries. The simulation focuses on
a lobule, a functional unit of the liver
containing roughly one million cells
of various types, with a defined three-
dimensional structure. Blood flows
through the lobule, nutrients are ex-
changed, bile is excreted. The team
simulates the activity of a single lob-
ule in detail, then groups 20 or 30 of
them together to build a larger model
of liver function.

 This kind of modeling is a different
approach to toxicology than statistical
modeling, which looks for associa-
tions between, say, a potential toxin
and a negative result. “We try to think
about it more in terms of a mecha-
nistic level,” Shah says. Mechanistic
modeling may not just reveal that a
chemical has an ill effect, but lead to a
greater understanding of why.

The project is far from complete.
The EPA team presented its first proof
of concept this year, running simula-

tions on 10 virtual individuals with
10 virtual livers, but Shah said there
needs to be much more refining of the
biological information that goes into
the models. One challenge that re-
mains is verifying that what the model
shows is a valid representation of the
real world; how do you test the com-
puter’s prediction against actual lab
results when you cannot do these ex-
periments on humans?

Karr would like to move from his
bacterium model to more complex or-
ganisms, starting perhaps with yeast
and then moving to simple multi-
celled organisms like worms, and on
up the scale of complexity from there.
Such models could allow synthetic
biologists to design and engineer
organisms, such as microbes that ef-
ficiently convert biomass into fuel or
pharmaceuticals. And they could play
a role in personalized medicine, al-
lowing doctors to prescribe the best
treatment based on an individual’s
own genome and history. That will
demand a lot of work, both gathering
the biological information and figur-
ing out the best computational ap-
proaches. “We eventually need to be
able to understand how you get from
a person’s DNA to the behavior of a
human being,” Karr says. “And we’re
going to need very detailed models to
be able to do that.” 	

Further Reading

Karr, J.R. et al.
A whole-cell computational model predicts
phenotype from genotype, Cell 150, July 20,
2012.

Wambaugh, J. and Shah, I.
Simulating microdosimetry in a virtual
hepatic lobule, PLoS Comput Biol 6, 4, Apr.
22. 2010.

Isalan, M.
A cell in a computer, Nature 498, Aug. 2, 2012.

Wambaugh, J, and Shah, I.
Virtual tissues in toxicology, J Toxicol. and
Environmental Health, Part B, 13, 2010.

Markum, H.
How do neurons connect to each other?
Blue Brain Project opens new insights,
Sept. 17, 2012; http://www.youtube.com/
watch?v=ySgmZOTkQA8/

Neil Savage is a science and technology writer based in
Lowell, MA.

© 2013 ACM 0001-0782/13/02

that are not yet recognized, point-
ing the way to new lines of research.
“The model helps us reason about the
things we as a field collectively don’t
know about cell biology,” he says.

From Bugs to Brains
While the Stanford group focuses on
simulating a whole organism, other
researchers are concentrating on sim-
ulating an organ. Since 2005, the Blue
Brain Project at École Polytechnique
Fédérale de Lausanne, in Switzer-
land, has been developing a comput-
er model of a brain. So far, they have
built and run a representation of part
of a rat’s cortex, consisting of 10,000
neurons. The researchers have asked
the European Union to fund a 10-year,
one billion euro project to create a
functioning model of an entire hu-
man brain, with hundreds of millions
of neurons that could be used to sim-
ulate neurological diseases or the ef-
fects of various drugs on the brain. At
press time, an answer was imminent.

In Germany, the Virtual Liver Net-
work consists of 70 research groups
working to build a model that, while
not fully duplicating the liver, rep-
resents the physiology of the organ,
simulating biological functions at
different levels, from activity within
individual cells to the liver as a whole.
Meanwhile, the U.S. Environmental
Protection Agency (EPA) is working on
a similar project, with the aim of being
able to simulate the effects of drugs
and environmental toxins on the liver.
The agency also has a virtual embryo
project to study how certain chemicals
might cause birth defects.

The EPA needs such data to set reg-
ulations about what levels of exposure
to chemicals should be considered
safe for humans. To date, such levels
are set based on data from animal
models, but an animal study can take
up to two years and cost millions of
dollars, says Imran Shah, a computa-
tional systems biologist at the EPA’s
National Center for Computational
Toxicology in Research Triangle Park,
NC, who works on the virtual liver. Fur-
ther, he says, there is some question
as to how closely the effects of chemi-
cals in animals match what happens
in humans; there are proteins whose
increased production causes liver
cancer in rats but not in people, for in-

“The model
helps us reason
about the things
we as a field
collectively
don’t know about
cell biology.”

http://www.youtube.com/watch?v=ySgmZOTkQA8/
http://www.youtube.com/watch?v=ySgmZOTkQA8/

14 communications of the acm | February 2013 | vol. 56 | no. 2

news

W
he n NASA’s rover Cu-
riosity touched down
on the surface of the
red planet on August
6, 2012, the cheering

in Mission Control was soon echoed by
a prolonged burst of public euphoria.
Crowds gathered in Times Square at
one in the morning to watch the land-
ing on a giant TV screen, while millions
of Web users blogged, tweeted, and
otherwise applauded the embattled
space agency’s continuing ability to
pull off Big Things.

Much of the Internet chatter cen-
tered on the acrobatic Sky Crane ma-
neuver, in which the landing capsule
morphed like a Transformer into a
rocket-powered hovercraft to ease its
precious cargo onto the planet sur-
face. While the landing made for great
online theater, those arresting images
may also have diverted attention from
several other important, though admit-
tedly less telegenic innovations.

The Curiosity mission (formally
known as the Mars Science Laboratory,
or MSL) may also mark the end of an
era for NASA, as planetary exploration
approaches a level of engineering com-
plexity that may call for fundamentally
rethinking the design and architecture
of future robotic missions.

“This represents the arc of an engi-
neering process that really started in
the 1960s,” says Rob Manning, chief
engineer of the Mars Exploration Pro-
gram at NASA’s Jet Propulsion Labora-
tory in Pasadena, California.

The earliest NASA missions of the
1960s and 1970s relied on highly dis-
tributed systems, with computing
power resident on multiple devices,
largely due to limitations in process-
ing power. Starting with the Mars
Pathfinder mission in 1996, however,
the agency started to embrace a more
centralized model, concentrating
most computing tasks onto a single
onboard computer.

While the basic contours of each
rover mission have stayed roughly the
same since then—namely, fly a space-
ship to Mars, land a wheeled vehicle,
then collect data while driving around
the planet surface—the data gathering
requirements have grown progressively
more sophisticated with each mission.

The 1996 Sojourner rover was con-
tent to snap photos and perform x-ray
spectrometry on a few rock samples
within about 40 feet of the landing
site. For the 2004 mission, the team
gave the Spirit and Opportunity rovers
considerably more autonomy, equip-
ping them with a new software system
dubbed Autonomous Exploration for
Gathering Increased Science (AEGIS)
that allowed the rovers to select poten-
tially interesting research targets with-
out requiring direction from Earth-
bound controllers. Curiosity takes
that autonomy several steps further,
moving far and wide—powered by a
plutonium-fueled nuclear engine—

Revving the Rover
The new Mars rover has attracted plenty of attention for its planetary
gymnastics, but the big breakthroughs are under the hood.

Technology | doi:10.1145/2408776.2408782	 Alex Wright

I
m

a
g

e
 c

o
u

r
t

e
s

y
 o

f
 NASA 

/

 J
P

L
-C

a
lt

e
c

h

NASA’s rover Curiosity landed on Mars last August carrying almost 2,000 pounds of state-of-the-art scientific instruments.

news

february 2013 | vol. 56 | no. 2 | communications of the acm 15

gets further exacerbated by the com-
plexities of safety-critical systems like
space exploration.

“Managing the development of a
few million lines of critical code car-
ries very different challenges from
the development of a few thousand or
even a few hundred thousand lines,”
says Holzmann.

To cope with the scale of the MSL
challenge, the team introduced sev-
eral important new software reliabil-
ity initiatives, including the design of
a new Institutional Coding Standard
that, while requiring relatively few
strict rules, was designed to support
automated compliance verification,
allowing the team to run a nightly
check on every new build. The team
also introduced a new peer code re-
view process and “scrub” tool inte-
grated with a suite of static source
code analysis tools including well-
known commercial testing and anal-
ysis tools like Coverity, Codesonar,
and Semmle, as well as Uno, a source
code analysis tool that Holzmann had
developed several years earlier while
working at Bell Labs.

The static source code analyzers
played a critical role in the software de-
velopment process, allowing the team
to ferret out risks of data corruption,
race conditions, or deadlocks.

“A good static analyzer is very much
like employing an additional, very con-
scientious and tireless developer on
your team,” says Holzmann. “It’s an ex-
tra set of eyes that never tires of point-
ing out new subtle flaws.”

The team also had a secret weapon
on hand in the form of Holzmann’s
Spin logic model checker, which he
developed over a period of several de-
cades in his previous job at Bell Labs.
The system targets the formal verifica-
tion of multithreaded software written

while carrying an arsenal of 10 differ-
ent scientific instruments, including
cameras and imaging equipment, en-
vironmental sensors, and sophisticat-
ed sampling tools. Curiosity weighs in
at nearly 2,000 pounds (compared to
Sojourner’s lithe 23 pounds).

Managing so much onboard equip-
ment constituted an enormously dif-
ficult hardware and software design
challenge. As the scientific require-
ments have grown more elaborate, the
team has discovered the downside of
centralized computing.

“We have one set of requirements
for cruise, one for landing, one for on
the surface,” explains Manning. “So
we have all this extra hardware and
interfaces—and now we have to lug it
all around.”

While the all-in-one approach
makes for a much bulkier machine
than previous rovers, the complexity
of the software stems primarily from
the rover’s high degree of autonomy,
demanding millions of lines of code
that would allow the rover to navigate
the planet surface, identify and react
to potential hazards while collecting
samples, aim precision-targeted laser
beams onto rocks several meters away,
and communicate with Earth via its
interplanetary ISP, NASA’s prodigious
Deep Space Network.

Managing so many discrete func-
tions on the same machine demands a
high level of functional decomposition,
so that different routines can take over
the system at appropriate times with-
out compromising other essential fea-
tures. As a result, the engineering team
had to think carefully about issues of
memory allocation and fault tolerance,
as well as managing a bewildering ar-
ray of input and output devices.

“Software grows exponentially fast
in this domain,” says Gerard Holz-
mann, head of the Laboratory for Reli-
able Software at NASA’s Jet Propulsion
Laboratory, an organization formed
in 2003 to improve the reliability of
mission-critical software. Indeed,
with each successive mission to Mars,
the size of the onboard flight code has
more than doubled. While software
engineers have long understood that
software packages often grow over
time—expanding to take advantage of
faster processors and additional stor-
age space, for example—that problem

The Curiosity
mission may mark
the end of an era
for NASA.

Sensor networks

WSNs
Head to

Himalayas
At press time a team of scientists
was heading to the Himalayas to
deploy innovative wireless sensor
networks (WSNs) in several
landslide-prone regions of the
world’s tallest mountain ranges
to provide real-time warnings
for often deadly deluges.

The development of these
WSNs began about five years
ago when an interdisciplinary
team of researchers from
Amrita University, Kerala,
India, combined efforts
to design warning systems that
would alert people living in
landslide-prone areas.
The team was made up of
computer scientists, Earth
scientists, and energy experts
and was led by Maneesha
Sudheer Ramesh, a founding
member of ACM-W India.

The warning system uses
WSN technology to issue real-
time warnings up to 24 hours
prior to an impending landslide,
thus facilitating evacuation and
disaster management. During
the creation of the WSN, Ramesh
and her team built a working
lab capable of mimicking a
landslide. Published papers
about the work intrigued the
scientific community as well as
the university’s chancellor, Sri
Mata Amritanandamayi Devi,
who was the first to proclaim the
technology worthy of real-world
applications. “Let us actually
deploy the wireless sensor
network in the field and enable
it to save lives.”

The first WSN system was
deployed in Munnar, Kerala,
in June 2009, and has
successfully delivered a high
level of safety to citizens living
in at-risk areas. While the
team faced several challenges,
including making the system
energy sustainable during
severe monsoon rains, Ramesh
said she was surprised at
the “immense amount of
psychological safety and security
the system seems to have given
to the local population, which
we never expected since the local
population is not that tech savvy.”

Last December, the team was
awarded the top prize for rural
innovation by the Government
of India.

—Diane Crawford

16 communications of the acm | February 2013 | vol. 56 | no. 2

news

ture consisting of Earthbound radio
transmitters and receivers, and a con-
stellation of satellites orbiting Mars.

NASA put the initial Mars communi-
cations system in place with the Mars
Global Surveyor mission communicat-
ing to the Spirit rover in 2004. Since
then, it has made steady improvements
to mitigate the ongoing problems of
data loss, such as space-link noise,
interfering spacecraft, and unpredict-
able technical problems at the relay
spacecraft and ground stations.

Complicating matters further are
the limited transmission windows be-
tween Mars and Earth due to orbital
constraints; usually Curiosity can con-
nect to the network only 2–4 times per
sol (astronomer-speak for a Martian
day), transmitting an average of 64
megabytes/sol broken into packets,
Internet-style.

“We are bandwidth limited,” says
Sandy Krasner, a NASA software sys-
tems engineer who has been working
on the Mars project for the past 10
years, “so we have to optimize the use
of our downlink as much as possible.”

Given the high cost of retransmit-
ting data, the network is designed to fo-
cus on error detection and correction,
and maximizing loss tolerance. The
system sets a maximum file size of one
quarter of a megabyte on command
files sent to the spacecraft; larger files
are broken into smaller datasets and
concatenated onboard. To ensure the
integrity of data received by the rover,
the system also detects and corrects for
errors at multiple levels. Data is trans-
mitted in 56-bit blocks assembled into
variable-length frames up to 1 kilobyte.

The team also tries to tolerate faults in
data received from the spacecraft, ac-
cepting partial transmissions of image
data, for example, where an occasional
pixel may get lost in space.

NASA is now working on a more
distributed network protocol known
as Disruption-Tolerant Networking
(DTN) that distributes data across a
network of nodes so that any delays
or transmission failures can be cor-
rected quickly by retransmitting the
data. NASA hopes this architecture will
make future interplanetary communi-
cation more efficient.

This ongoing network connectiv-
ity enabled the programming team
to keep tweaking the rover’s software
well after the mission’s launch date on
November 26, 2011, sending updates
to the onboard computer using a rela-
tively low-tech solution: compressed
binary files.

Last June, two months before land-
ing, the team sent up its final in-flight
software update while the capsule was
hurtling through space at 13,000 miles
per hour.

Manning remembers the satisfac-
tion of looking on from a distance of
20-odd light years as rover installed the
software and restarted, ready to strike
out for parts unknown. “Boot it up and
away we go.” 	

Further Reading

Sky Crane Video;
http://www.youtube.com/
watch?v=N9hXqzkH7YA

G.J. Holzmann
The Spin Model Checker—Primer and
Reference Manual, Addison-Wesley,
Reading MA, 2004, ISBN 0-321-22862-6.

Mars Science Laboratory (NASA site)
http://www.nasa.gov/mission_pages/msl/
index.html

G. Groth
Software on Mars, Communications of the
ACM 55, 11 (Nov. 2012), 13–15; http://cacm.
acm.org/news/156591-software-on-mars/
fulltext

B. Cichy
2010 Workshop on Spacecraft Flight
Software, California Institute of Technology;
http://win-dms-ms1.caltech.edu/five/View
er/?peid=476727664f1b4d8390d3ab3767
0ababd

Alex Wright is a writer and information architect based in
Brooklyn, NY.

© 2013 ACM 0001-0782/13/02

in C, the language used for about 96%
of all spacecraft software.

“A mission failure often has multiple
small triggers that combine in unsus-
pected ways,” he says. “By meticulously
fixing the small, relatively benign issues
with the same determination as the
larger issues, we make sure that serious
problems become much less likely.”

Those problems are further exacer-
bated by the organization’s now deeply
rooted commitment to a centralized
computing architecture. Looking
ahead, Manning thinks the NASA team
will need to rethink its architectural
approach for the next generation of ro-
botic flight missions. “Going forward,
I would take a more distributed ap-
proach,” he says.

For now, the team will continue to
fine-tune Curiosity’s work from a dis-
tance over the next several months. But
no matter how well the software works,
they know full well that space explo-
ration is an inherently unpredictable
business—especially on Mars, where
wild temperature swings and changes
in atmospheric pressure can ruin deli-
cate scientific instruments. To control
the onboard temperature, the engineer-
ing team developed thermal “catcher’s
mitts” (as Manning describes them) on
the back of the machine, consisting of
liquid freon pumped through a closed
loop and warmed from the hot pluto-
nium rocks that power the rover.

In order to model as many differ-
ent scenarios as possible, the team
is constantly running so-called soft
simulations with dedicated machines
analagous to the onboard RAD750
machine. The team also maintains a
full replica of the rover on Earth in a
testbed environment to troubleshoot
problems and rehearse potential fu-
ture maneuvers. If all else fails, the
rover also carries a fully redundant
version of its onboard computer,
ready to swap in at a moment’s notice
in case of system failure. “We work
hard to make sure the vehicle doesn’t
come to its knees if it has a small com-
plaint,” says Manning.

For all its autonomy, Curiosity still
depends heavily on regular communi-
cation with its handlers back on Earth.
To stay connected with Mission Con-
trol—up to 240 million miles, or 21
light minutes away—it relies on a so-
phisticated interplanetary infrastruc-

For all its autonomy,
Curiosity still
depends heavily
on regular
communication
with its handlers
back on Earth.

http://www.youtube.com/watch?v=N9hXqzkH7YA
http://www.nasa.gov/mission_pages/msl/index.html
http://www.nasa.gov/mission_pages/msl/index.html
http://cacm.acm.org/news/156591-software-on-mars/fulltext
http://win-dms-ms1.caltech.edu/five/Viewer/?peid=476727664f1b4d8390d3ab37670ababd
http://www.youtube.com/watch?v=N9hXqzkH7YA
http://cacm.acm.org/news/156591-software-on-mars/fulltext
http://cacm.acm.org/news/156591-software-on-mars/fulltext
http://win-dms-ms1.caltech.edu/five/Viewer/?peid=476727664f1b4d8390d3ab37670ababd
http://win-dms-ms1.caltech.edu/five/Viewer/?peid=476727664f1b4d8390d3ab37670ababd

february 2013 | vol. 56 | no. 2 | communications of the acm 17

news
I

m
a

g
e

 c
o

u
r

s
t

e
s

y
 o

f
 B

r
a

n
d

o
n

 M
a

r
s

h
a

l
l

 /
 B

r
o

w
n

 U
n

i
v

e
r

s
i

t
y

S
te p in side Brandon Mar-
shall’s lab at Brown Univer-
sity and you get a glimpse
into the unfolding future
of epidemiology. Marshall,

along with a multidisciplinary team
comprised of IT specialists, software
developers, mathematicians, health-
care analysts and others, are melding
their expertise to take HIV policymak-
ing to a new level. In a world filled with
what-if questions, the assistant profes-
sor of epidemiology is supplying an-
swers by building a model that in many
respects resembles a consumer-orient-
ed simulation game such as The Sims.

For example, Marshall can choose
to view a fictional person based on
particular characteristics. Overall, ap-
proximately 150,000 life courses reside
within the model, which is focused on
New York City. By selecting one agent
and observing the interactions with
other agents—including how they ap-
proach sex and drugs and how officials
and policymakers approach issues
such as the distribution of condoms
and sterile needles, it is possible to un-
derstand behavior and choices in a far
more complete and realistic way. “We
can track individuals over time, which
is really novel and exciting,” he says.

Marshall is one of a growing num-
ber of researchers turning to computer
modeling to go where researchers have
not gone before. For most of human
history, understanding the impact of a
disease or health problems was noth-
ing less than guesswork. When a new
virus or bacterial infection popped up,
public officials did their best to assem-
ble data, extrapolate on it and estab-
lish a course of action. “The problem,”
observes Marshall, “is that healthcare
and public policy experts have had lim-
ited knowledge and visibility into all
the factors and variables.”

However, by plugging into mas-
sive datasets and tapping into today’s
computing power—the list includes
mobile tools, social media, and crowd-
sourcing to track movements and be-
havior in real time—it is possible to
create far more realistic forecasts and
what-if scenarios. The impact of com-
puter modeling on decision-making
and public policy is nothing less than
revolutionary. Ruben Juanes, an associ-
ate professor at MIT, also turned to al-
gorithms and advance models “to un-
derstand extremely complex issues in
ways that weren’t possible in the past.”

By the Numbers
The idea of using computers to analyze
health data is nothing new, of course.
In the 1950s, researchers—including
epidemiological and public health of-
ficials—began exploring ways to trans-
form data into actionable models.
Unfortunately, a general lack of com-
puting power and far less sophisticat-
ed software imposed severe limits on
the breadth and depth of analysis that
could take place.

“Traditionally, researchers have
relied on a reductionist approach
to problem solving,” points out Pa-
tricia Mabry, senior advisor in the
Office of Behavioral and Social Sci-
ences Research at the National Insti-
tutes of Health (NIH). However, this
approach—known as a randomized
controlled trial—typically addresses
only one small aspect of the overall
problem. Reductionism essentially
attempts to condense and simplify
issues in order to make the process
more manageable. Controlled studies
focus on different groups and differ-
ent assigned or measured variables.
Both of these techniques rely on a rel-
atively narrow focus.

It was not until the 1990s that the
first robust computer models began
to appear. The addition of the Internet
and big data analytics has revolution-
ized computer modeling over the last
decade. Today, many new data points
exist, including databases and metrics
gleaned from mobile geolocation data
and social media. In the healthcare arena,
researchers now use computer model-

Last summer, Brown University’s Brandon Marshall unveiled a computer program calibrated
to model accurately the spread of HIV in New York City over a decade and to make specific
predictions about the future of the epidemic under various intervention scenarios.

A New Model
for Healthcare
Computer modeling is radically redefining healthcare
and epidemiology by providing new tools for understanding
the impact of different intervention strategies.

Society | doi:10.1145/2408776.2408783	 Samuel Greengard

18 communications of the acm | February 2013 | vol. 56 | no. 2

news

ing to examine the effect of different
HIV policies, emergency response sce-
narios surrounding a poison gas attack,
how eating and exercise impact obesity
and healthcare costs, and more.

Comprehensive simulation model-
ing is a key to effective decision-making,
particularly in today’s cost-conscious
environment, states Peter Aperin, M.D.,
vice president of medicine for Archime-
des Inc., a San Francisco, CA, company
that develops full-scale simulation mod-
els of human physiology, diseases, be-
haviors, interventions, and healthcare
practices for the likes of Kaiser Perman-
ente and the Robert Woods Foundation.

Aperin says these techniques are
useful for examining a wide range of
issues: everything from obesity and
diabetes to heart disease treatment
options. “What if we change treat-
ments? What if we use different inter-
ventions? What if different interven-
tions or treatments have different side
effects or cause different behavioral
changes? We are able to view how an
almost infinite number of decisions
affect downstream health outcomes
and costs.” In fact, it is possible to vi-
sualize these complex datasets rather
than poring over an endless stream of
statistics and numbers.

Moreover, researchers can select
specific groups—men, women, gays,
those who take certain medications, or
display high or low compliance rates
and much more—and watch these
simulations play out as agents interact
with others and change their behavior
over time. These virtual people influ-
ence each other, just as they do in the
real world. It is also possible to toss new
factors or variables into the equation,
such as a virus that mutates or a new
pharmaceutical drug, and watch events
unwind in a completely different way.
After researchers run a simulation a
number of different ways they begin to
view patterns and trends that provide
valuable clues about public policy strat-
egies and outcomes.

Marshall’s HIV research is a perfect
example. “The modeling allows us to
combine data in very interesting ways
that would be almost impossible em-
pirically,” Marshall explains. “We can
combine datasets based on things like
gender, sexual orientation, drug use,
drug treatments and associated behav-
ioral outcomes, access to drug abuse

treatment programs and more. The
model lets us see how decisions sup-
port one another or how an approach
or program could prove detrimental.”
Marshall’s model is designed to exam-
ine different approaches and policy de-
cisions over a 20-year span.

Consider “Agent 89,425,” who is male
and has sex with men. He participates
in needle exchanges, but according to
the probabilities built into the model,
in year three he begins to share needles
with another drug user with whom he is
also having unprotected sex. In the last
of those encounters, Agent 89,425 be-
comes infected with HIV. In year four he
begins participating in drug treatment
and in year five he gets tested for HIV,
starts antiretroviral treatment, and re-
duces the frequency with which he has
unprotected sex. Because he takes his
HIV medication without exception, he
never transmits the virus further.

The research has already yielded
some remarkable insights. For ex-
ample, Marshall projects that with no
change in New York City’s current pro-
grams, the infection rate among injec-
tion drug users will be 2.1 per 1,000 in
2040. Expanding HIV testing by 50%
would drop the rate only 12% to 1.9 per
1,000; increasing enrollment in drug
treatment programs by 50% would re-
duce the rate 26% to 1.6 per 1,000; pro-
viding earlier delivery of antiretroviral
therapy and better adherence would
drop the rate 45% to 1.2 per 1,000; and
expanding needle exchange programs
by 50% would reduce the rate 34% to 1.4
per 1,000. However, adopting all four
tactics would cut the rate by more than
60%, to 0.8 per 1,000.

These types of analyses/dependenc-
es are routine in large data analysis in
other fields. Is this true in healthcare
or are the actors just learning this now?
Or is Marshall’s model something new
and better than what already exists?

Putting Models to Work
The appeal of advanced computing
modeling—referred to by Mabry and
her NIH colleagues as systems science
methodologies—is that it allows re-
searchers far greater latitude to address
the complexity of real-world phenom-
enon and “and to investigate what-if
scenarios that cannot be studied in the
real world due to time, money, ethical,
or other constraints,” Mabry says.

This is no small matter. Complexi-
ties of the real world include making
sense out of bidirectional relationships
where one variable affects another
and vice versa. Because changes in the
variables feed off one another, such
relationships have the potential to, as
Mabry puts it, “generate vicious cycles in
which we observe things deteriorating
rapidly or virtuous cycles in which we
observe a situation improving rapidly.”

Because the underlying cause of
such situations is not always apparent
to the naked eye, policymakers may
actually make bad situations worse
by applying a remedy to the wrong
place in the system. “The goal of using
systems science methods is to under-
stand how the various components
that make up a system interact and
affect each other to produce an out-
come. These methods excel at iden-
tifying nonlinear relationships, and
time-delayed effects as well as inter-
dependencies,” Mabry explains.

At MIT, researchers in the Depart-
ment of Civil and Environmental
Engineering, led by Ruben Juanes,
are applying seemingly incongruous
methods to understand contagion
dynamics through the air transporta-
tion network. Presently, the team is
attempting to understand how likely
the 40 largest U.S. airports are to influ-
ence the spread of a contagious dis-
ease originating in their home cities.
The project could help determine how
fast a virus might spread and appropri-
ate measures for containing the infec-
tion—from quarantining individuals
to closing airports—in specific geo-
graphic areas. This information could

Comprehensive
simulation
modeling is a key
to effective
decision-making
in today’s
cost-conscious
environment.

news

february 2013 | vol. 56 | no. 2 | communications of the acm 19

partners at NIH—a major provider of
research grants—are now focusing on
model “verification, validation, and un-
certainty quantification.” They hope to
collectively produce some guidance for
model builders, as well as those review-
ing journal manuscripts and grant ap-
plications. Without this, the fledgling
field will continue to produce models
that range widely in quality, she says.

Yet, computer modeling continues
to evolve and gain acceptance. “Com-
puter modeling isn’t a crystal ball,”
Mabry concludes. “But it is helping to
illuminate the complexity of health
and social problems—along with po-
tential remedies. Success is ultimately
dependent on culling huge amounts of
data about the population, developing
good algorithms, and harnessing the
success of supercomputers to make
sense of complex relationships. This
information can then be used by public
policymakers to do their job.”	

Further Reading

Auchincloss, A.H., Gebreab, S.Y.,
Mair, C. and Diez Roux, A.V.
A review of spatial methods in
epidemiology, 2000–2010, Annual Review
of Public Health 33, 107-122; http://www.
annualreviews.org/doi/abs/10.1146/
annurev-publhealth-031811-124655

Marshall, B.D.L., Paczkowski, M.M.,
Seemann, L., Temalski, B., Pouget, E.R.,
Galea, S. and Friedman, S.R.
A complex systems approach to evaluate
HIV prevention in metropolitan areas:
Preliminary implications for combination
intervention strategies, PLOS, 2012;
http://www.plosone.org/article/
info%3Adoi%2F10.1371%2Fjournal.
pone.0044833

Meyer, J., Ostrzinski, S., Fredrich, D.,
Havemann, C., Krafcyk, J. and Hoffmann, W.
Efficient data management in a large-scale
epidemiology research project, Computer
Methods and Programs in Biomedicine 107,
3, Elsevier North-Holland, NY, 2012.

Mysore, V., Narzisi, G. and Mishra, B.
Emergency response planning for a
potential Sarin Gas Attack in Manhattan
using agent-based models, agent
technology for disaster management,
Hakodate, Japan, 2006; http://www.cs.nyu.
edu/mishra/PUBLICATIONS/06.sarin.pdf

Sobolev, B., Sanchez, V. and Kuramoto, L.
Health Care Evaluation Using Computer
Simulation, Springer, 2012.

Samuel Greengard is an author and journalist based in
West Linn, OR.

© 2013 ACM 0001-0782/13/02

also aid public health officials in mak-
ing decisions about the distribution of
vaccinations or treatments in the earli-
est days of contagion.

In order to predict how fast a con-
tagion might spread, researchers are
examining variations in travel patterns
among individuals, the geographic lo-
cations of airports, the disparity in in-
teractions among airports, and waiting
times at individual airports. Juanes, a
geoscientist, has tapped past research
on the flow of fluids through fracture
networks in subsurface rock to build
an algorithm for the current task.
Moreover, the team plugs in cellphone
usage data to understand real-world
human mobility patterns. The end re-
sult is “a model that’s very different
from a typical diffusion model,” he
says. It is plugging in more data—and
better data—to create a more robust
model than has ever before existed.

Archimedes’ Peter Alperin says that
today’s models are aiding and speed-
ing policy decisions in ways that were
unimaginable only a few years ago. The
NIH, government agencies, pharma-
ceutical firms, and healthcare organi-
zations use these models to help build
more effective policies or develop treat-
ment strategies or new medicines. Last
year, the firm began building models
for the U.S. Food and Drug Administra-
tion (FDA) to better understand clinical
trials evaluating weight loss medica-
tions. The data is being used to better
understand the benefits of weight loss
against the long-term risks of cardio-
vascular outcomes in patients treated
with weight loss drugs.

Nevertheless, computer modeling is
not a fix-all, says Sandro Galea, chair of
the Department of Epidemiology at Co-
lumbia University. Among other things,
he has examined how policy decisions
affect social problems ranging from
obesity to how large-scale disasters and
trauma affect mental health among
various demographic groups. In the
latter scenario, for example, modeling
helps identify who is at greater risk and
what types of treatment and services
can help reduce mental illness.

However, all models are built on as-
sumptions and have some flaws and
errors. Indeed, there is no standard
for how to build an effective computer
model or to establish confidence in
what a model produces. Mabry and her

ACM
Member
News
David Patterson’s
‘Big Data’ Project Takes
Aim At A Cancer Cure

David Patterson
and his team
have been
working for over
a year on what
he describes as
an odd sort of

project for a computer
scientist—building a software
pipeline for cancer genomics
that is faster, cheaper, and more
accurate than ones that already
exist.

Patterson, a former ACM
president who has been a
computer science professor
at the University of California
Berkeley since 1977, recalls
an application was needed for
the university’s new AMPLab,
which integrates Algorithms,
Machines, and People to make
sense of “big data.”

“A problem in academics
is that data is either small and
interesting or big and dull,”
he says. “Interesting big data
is usually proprietary. But, in
the case of cancer genetics, we
knew there would be lots of data
and a really important use for
it—helping discover treatments
that might put an end to what
is become the second leading
cause of death in the U.S.”

The pipeline uses The
Cancer Genome Atlas, a
repository of five petabytes of
data containing the genetic
sequencing of thousands of
cancer tumors. It is expected
to grow to millions—along
with what treatments were
given to patients to cure those
tumors, and the outcomes.
“The ultimate goal is that, by
sequencing the genome of a
cancer tumor, doctors will be
able to prescribe a personalized,
targeted therapy to stop a
cancer’s growth—or cure it,” he
says (see http://nyti.ms/rJOjeS).

Patterson, no stranger to
fighting diseases, has raised
over $200,000 to fight multiple
sclerosis after his wife was,
fortunately, misdiagnosed
with the disease. “Helping
people fight both cancer and
MS are worthwhile causes that
work against the unfortunate
stereotype of the uncaring
computer scientist,” he says.

—Paul Hyman

http://www.annualreviews.org/doi/abs/10.1146/annurev-publhealth-031811-124655
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0044833
http://www.cs.nyu.edu/mishra/PUBLICATIONS/06.sarin.pdf
http://nyti.ms/rJOjeS
http://www.annualreviews.org/doi/abs/10.1146/annurev-publhealth-031811-124655
http://www.annualreviews.org/doi/abs/10.1146/annurev-publhealth-031811-124655
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0044833
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0044833
http://www.cs.nyu.edu/mishra/PUBLICATIONS/06.sarin.pdf

20 communications of the acm | february 2013 | vol. 56 | no. 2

V
viewpoints

if we permit not only active surveil-
lance but also extensive data mining
of personal information in the Net,
we will not achieve that promise.
Indeed, if the Net is not engineered
to protect privacy, it will instead be-
come a jail for the human body and
the human soul.

We are failing at present because
our Net is being used to spy on us,
constantly, as we use it to enrich our
lives. The innovations in surveillance
have come from industry. Record-
keeping about how we use the Net—
what we search for, what we read, who
we contact—is intensively and instan-
taneously “mined” for its value to
those who want to sell us something.
What we share with our friends and
family, even the content of our email
and other private communications, is
scrutinized to the same end by compa-
nies that offer us “services” in return
for access to our private data. All this
data, assiduously gathered by busi-
nesses seeking profit, no matter how
responsibly they manage it, is also at
the disposal of any government capa-
ble—by law, force, or fraud—of gain-
ing their cooperation.

T
he last generation is being
born whose brains will de-
velop independently of the
Net. From now on, the way
the Web works will play a

dominant role in the socialization
of the human race. But because we
have built Web infrastructure with-
out considering privacy, we are also
endangering our basic freedoms. We
are on the verge of eliminating forev-
er the fundamental right to be alone
in our thoughts.

At the beginning of the sixteenth
century, moveable-type printing cre-
ated the experience of private read-
ing, and with it the Western idea of
the individual self freely developed,
self-made through a private process
of reading and thinking. In religion,
this led to the revolutionary adop-
tion of individualist forms of Prot-
estant Christianity. Secular society
adopted the scientific method, and
with it began radically improving
the human social condition. The
opening of learning also enabled
the gradual transformation of the
Western political landscape toward
democratic self-government and the

constitutional protection of freedom
of thought.

The Net should now universalize
that process throughout the human
race, should make it possible for ev-
ery person on Earth to read, watch,
listen, and participate in every form
of learning and culture, everywhere,
without discrimination between rich
and poor, old and young, male and
female. This truly universal learn-
ing system would immeasurably im-
prove the welfare of humankind. But
if we do not protect the fundamen-
tal privacy of network interactions,

Privacy and Security
The Tangled Web
We Have Woven
Seeking to protect the fundamental privacy of network interactions.

doi:10.1145/2408776.2408784	 Eben Moglen

We are on the verge
of eliminating forever
the fundamental
right to be alone
in our thoughts.

february 2013 | vol. 56 | no. 2 | communications of the acm 21

V
I

l
l

u
s

t
r

a
t

i
o

n
 b

y
 G

a
r

y
 N

e
i

l
l

Beyond the data itself lies the new
mathematics of inferring from it.
“Data mining,” which now politely
refers to itself as “data science,” is a
new subdiscipline of statistics, direct-
ed at using all this individually iden-
tifiable and aggregated behavioral
data to predict human social action.
Whether one is selling pharmaceuti-
cals, toys, advertising placement, or
a political candidate, data science is
now using our personal data to help
the seller identify, pursue, and per-
suade us. Our consumption supplies
information that can be used to read
our minds.

The situation is made still worse be-
cause we are rapidly adopting personal
service robots that are not working ex-
clusively in our interests. Unlike the
robots living intermixed with humans
in the science fiction of our child-
hoods, these robots have no hands
and feet—we are their hands and feet.
They see what we point them at; they
have ears to hear everything going on
around us; they know our location all

the time. These robots we call smart-
phones and tablets often contain soft-
ware we cannot read or understand,
much less change. We do not control
them; rather, they offer others the op-
portunity to control us.

Development in the private market
of technologies to surveil, predict, and
influence individuals through the Net
has of course drawn the attention of
states. Governments are rapidly mov-
ing, to the fullest extent of their differ-
ing means, to harness the power of big
personal data to improve their social
control. No matter what your politics,
somewhere in the world, right now, a
government of whose principles you
completely disapprove is beginning
to use the Net to locate support, influ-
ence the population, and find its en-
emies. Everywhere in the world, from
now on, governments that become
tyrannical will have immensely pow-
erful new tools for remaining perma-
nently in power.

This privacy crisis is ecological. The
unintended consequences of tiny in-

dividual activities, aggregated over the
vast scope of the Net, are producing a
threat to our common human interests
on a global scale.

Fortunately, because the parts of
this crisis are all our creation, we can
remedy the problem. We need to re-
build the operating software of the Net
in keeping with certain ethical princi-
ples. This does not mean forcing peo-
ple or businesses to change what they
are presently doing. It means providing
the equivalent of green technologies,
and helping people shift to them.

First, then, we need to build re-
sponsible replacement software,
providing existing functions in ways
that respect users’ privacy, to replace
systems that are hazardous to privacy.
Current webmail and social network-
ing services, for example, put all their
users’ communications with their
respective social circles inside huge
centralized databases maintained by
the service operator, who in return
for doing the storing and providing
sophisticated access services to users,

viewpoints

22 communications of the acm | february 2013 | vol. 56 | no. 2

viewpoints

gets the right to mine the data, which
is now centralized and vulnerable to
government acquisition.

But email and the Web are by de-
sign federated services, in which in-
dividual servers can provide storage
and access services cheaply, securely,
and with near-perfect reliability for
individual users. Users began using
centralized services that hurt their
privacy because they gained tangible
convenience at no apparent cost. No
one knew how to run her own mail
server or Web server, and we did not
make it easy to learn. But we can—and
we should—help people to use free
software and a coming flood of inex-
pensive “personal server” hardware to
make personal privacy appliances.

The FreedomBox Foundation I am
currently advising is an example of an
attempt in this direction, making free
personal privacy software for creating
such appliances. Small, inexpensive,
power-miserly devices you just plug in
and forget, they keep your communi-
cations private, help you navigate the
Web without being spied on, and let
you share with the world, safely. Let
me get technical for a few sentences to
describe how.

Much of the implementation of
such a software stack involves using
existing free software tools. A privacy
proxy located in the router between
a user’s smartphone or PC browser
and the public Net can remove adver-
tising and Web bugs, manage cookie
flow, and improve browsing privacy
and security by providing “HTTPS
everywhere.” Automating use of SSH
proxies and personal VPNs can not
only protect the privacy of Web ac-
cess behind the FreedomBox used
as a router, it can also provide se-
cure communications and privacy-
protected Web access from a mobile
device used on untrusted networks
away from home.

Some of the tools needed for per-
sonal privacy appliances are com-
binations of existing functionality.
Combining a HTTPS Web server and
a XMPP server with OpenPGP-based
authentication, for example, along
with a method for building the “web
of trust” through exchange of public
keys embodied in QR codes (the 2D
barcodes that smartphones already
scan) yields a method for secure text,

voice, and video chat that is easy for
ordinary users to deploy. That in turn
also easily extends to a method for
secure communication with journal-
ists and public media outlets for re-
laying video and audio recorded with
mobile phones. Beyond our present
stage of development lie the new
tools we need to build, like feder-
ated social networking software that
can smoothly and without disrupt-
ing the web of social sharing replace
Facebook and similar “services,” that
have imposed centralized storage,
data mining, and control.

Soon, such privacy servers will be
available to replace your home wireless
router or other similar device at even
lower cost, but with enormous overall
social benefit. Think of them as per-
sonal coal-scrubbers that cost next to
nothing and improve the atmosphere
we all breathe.

But this is not all. We must also
provide clear, factual, technical pub-
lic education about privacy and “the
cloud.” Currently basic technical in-
formation is either altogether missing
from or else distorted in the public
debate. We need to help people un-
derstand why they might be better off
storing their personal data on physi-
cal objects in their possession rather
than in other peoples’ data centers in
“the cloud.” We should make the re-
sults of “data science” accessible to a
public that will never interest itself in
the mathematics.

We must help people think eco-

When we act
to improve
our own privacy
we are also
protecting
the privacy of
our children,
our families,
and our friends.

logically about privacy. Users do not
recognize that their correspondents’
privacy is also reduced when they use
a “free” email service that reads and
data mines email sent and received.
They do not realize that everyone in
the photographs they post on cen-
tralized social networking services is
being facially identified and tagged.
That the social networking service’s
operator has access to all those pic-
tures and all the tags, and so does
anyone with whom the operator “co-
operates.” We need to explain that
every little decision to give away one’s
own information also gives away
other peoples’. We can teach people
that when we act to improve our own
privacy we are also protecting the pri-
vacy of our children, our families, and
our friends. If we help people around
us to understand the effects their ac-
tions have on others, they will decide
for themselves what changes they
should make.

Untangling the Web, restoring pri-
vacy in what we do and anonymity in
what we read, will not be easy. Many
fine businesses will make a little less
money if we do not offer all our per-
sonal data to be mined by intermedi-
aries on their behalf. Governments—
pretty much all governments of every
stripe—are rapidly discovering how
much real control they can get with-
out showing their hands if they make
use of the currently misconfigured,
anti-privacy Net. A consensus of the
great and the good against privacy is
forming; the one against anonymity
is already full-blown. Imagine how
different our world would be if all the
books in the West for the last half-
millennium had reported their read-
ers to headquarters, including in-
forming the Prince or the Pope how
many seconds each reader spent on
each page. The book, which anyone
could read to herself in the privacy of
her mind, is being replaced by an ap-
pliance that tracks your reading for
the bookseller, subject to the Prince’s
subpoena. It will not be easy to save
privacy. But if we believe in liberty,
we have absolutely no choice.	

Eben Moglen (moglen@columbia.edu) is a law professor
at Columbia Law School and the founding director
of the Software Freedom Law Center in New York.

Copyright held by author.

mailto:moglen@columbia.edu

february 2013 | vol. 56 | no. 2 | communications of the acm 23

V
viewpoints

P
h

o
t

o
g

r
a

p
h

 b
y

 C
r

a
i

g
 R

u
t

t
l

e
 /

 A
P

 P
h

o
t

o

M
y previous column,
“The Foresight Saga,
Redux” (Communica-
tions, October 2012),
began a discussion that

is continued here regarding some les-
sons learned from the 2012 U.S. No-
vember elections. I also pick up on
where I left off four years ago in my col-
umn “U.S. Election After-Math” (Com-
munications, February 2009). In addi-
tion, I reflect on the collateral effects of
Hurricane Sandy, along with the needs
to anticipate and minimize the poten-
tial effects of other natural disasters
more generally.

Election Integrity, Oversight,
Accountability, and Auditing
State and federal roles in elections thus
far have been rather inadequate, fail-
ing to provide any meaningful assur-
ances that elections can be conducted
without serious problems, especially
where these roles have often become
strongly politicized. It is clear that
some sort of impartial oversight is nec-
essary to ensure integrity throughout
the entire election process—from be-
ginning to end. At present, every step
along the way is a potential weak link,
with respect to accidental and inten-
tional misuse as well as deceptive or
otherwise biased practices that create
voter confusion and inconvenience. It
is also clear that much greater account-
ability is necessary, particularly in
cases where rectification of egregious
problems is difficult, or in some cases
rendered essentially impossible, as a

result of shortsighted legislation and
regulations, inadequacies of propri-
etary systems, and the lack of foresight
and planning for exceptional condi-
tions such as clearly evident election
irregularities and process disruptions.

However, these considerations were
exacerbated by what happened in the
northeastern United States in the week
before the 2012 U.S. general election:
Hurricane Sandy resulted in ensuing
losses of power and Internet access,
shut-downs of public transit and busi-
nesses, and losses of life and property.
The federal, state, and local govern-
ment responses were generally excep-
tional, although Election Day on the
East Coast was severely complicated in
many places as a result.

Various attempts were made to re-
duce the hardships that voters had ex-
perienced—by allowing for more early
voting, extending polling place hours,
accommodating voters whose polling
places were without power or other-
wise inaccessible, and actually issuing
and counting many more provisional
ballots. However, inherent weaknesses
in the election process made some of
the would-be fixes even more vulner-
able to unfortunate disruptions and
even willful misuse—such as last-min-
ute changes in software, procedures,
and even voting places. When a voter
has neither electricity nor the ability
to travel (no gas, no subways, or other
transportation options), and when
polling places with no power have to be

Inside Risks
More Sight
on Foresight
Reflecting on elections, natural disasters, and the future.

doi:10.1145/2408776.2408785	 Peter G. Neumann

Voting machines located under a tent at a temporary voting site in the Rockaways, NY,
following Hurricane Sandy.

24 communications of the acm | february 2013 | vol. 56 | no. 2

viewpoints

monstrable fraud by election officials),
to name just a few. Several specific
anomalies deserve mention here.

˲˲ Andrew Appel noted some serious
irregularities in New Jersey, where the
Lieutenant Governor issued a well-
publicized directive permitting storm-
displaced voters to vote by email—de-
spite the state’s declared illegality of
the announced directive as stated.
Matt Blaze further warned that New
Jersey’s emergency email voting could
be “an insecure, illegal nightmare”
(see https://freedom-to-tinker.com/
blog/appel/nj-lt-governor-invites-voters-
to-submit-invalid-ballots/).

˲˲ Voting system software was up-
graded with “experimental” patches
just a few days before the election in
39 counties in Ohio, bypassing normal
election night reporting, and purport-
edly “fixing” problems.

˲˲ Alex Halderman demonstrated
how easily existing voter registration
addresses and other voter personal
information in Washington state
and Maryland could be accessed and
changed online, by anyone else—
based only on the ability to provide
some publicly available personal in-
formation on the would-be victim.

˲˲ In addition to reports of on-screen
vote flipping, machines in Covington,
VA, mistakenly listed the Obama-Biden
ticket as Republican, leaving open the
question of what would happen under
straight-party voting.

˲˲ Reports by Thom Hartmann and
Sam Sacks (Truthout, The Daily Take
blog) discussed claims by the Anony-
mous group regarding attempts to
rig the presidential election in three
states. Irrespective of the validity of
those claims, it is clear that such ef-
forts could succeed with relatively little
evidence based on the fragility and lack
of accountability in the existing propri-
etary election systems.

˲˲ ORCA, the Republicans’ high-tech
program to dynamically monitor vot-
ing trends and identify potentially
sympathetic voters, failed during the
election.

If Internet-based and other remote
computer or mobile-device enhanced
voting is ever to take place in any wide-
spread use, it deserves much greater
scrutiny, accountability, and over-
sight—considering the risks of tam-
pering, coercion, vote selling, and vote

relocated, voting in person can become
exceedingly difficult and confused by
misleading reports of voting site un-
availability—sometimes intermixing
both real and bogus location changes.
Furthermore, proposed emergency al-
ternatives of voting by Internet or email
without adequate preparation and
concern for the possible risks, or even
trying to print a ballot from some last-
minute supposedly correct location on
the Web, are likely to be problematic
in the absence of electrical power, sup-
posedly trustworthy computers, the
rush to provide those alternatives with-
out any real assurances, and so on.

One of the main goals for the con-
duct of elections should be to provide
sufficient assurance throughout the
entire process such that every loser
and every voter who voted for any of the
losers can justifiably believe that the
elections were fair and justly evaluat-
ed—that is, that there were no events,
circumstances, or externalities, ac-
countable or otherwise, that might
have altered the results.

From the perspective of the past
Inside Risks columns and our peri-
odic discussions of factors relating to
election integrity, one of the most in-
teresting aspects in the 2012 Novem-
ber elections was that the results of
the Presidential race were definitive
enough that they did not depend on
the outcomes in larger states such as
Ohio and Florida. If those results had
been very close, it is quite likely that we
would have seen prolonged law suits
from both parties leading to the Su-
preme Court—irrespective of the per-
ceived initial outcome. In Florida, the
outcome of the presidential election
was apparently not known officially for
a week. In Arizona, it took two weeks to
resolve three Congressional races be-
cause of the huge number of provision-
al ballots, all of which were ultimately
counted after challenges by the losing
candidates. Almost three weeks after
the election, votes in 37 states and the
District of Columbia were still waiting
to be counted.

Overall for the election for all of-
fices and ballot measures, numerous
issues arose during the campaigning
and the voting process. Examples re-
lated to voter registration, voter disen-
franchisement, voter authentication,
restrictions on early voting, shortages

of voting machines and trained elec-
tion officials that resulted in huge lines
in certain precincts, unsanctioned and
unsupervised last-minute changes to
proprietary election software, reported
cases of vote flipping on touch screens
in both directions, inconsistent party
affiliations with unclear implications
for straight-party voting, irregulari-
ties in issuing, validating, and count-
ing provisional ballots, cases in which
more votes were reported counted than
ballots issued, disappearing ballots,
inconsistencies in announcements of
policies, deceptive practices, poorly
defined policies for reviewing and de-
finitively recounting close races, po-
tentially riskful emergency attempts at
alternatives (noted earlier), along with
many other factors such as the percep-
tion of even less visibility, account-
ability, and oversight for other than
top races. The Supreme Court ruling
that corporations are people as well as
relaxed procedures on contributions
also skewed the election processes,
and gives the appearance of elections
being bought.

Most of these problems were pre-
dictable. For many years, Inside Risks
columns have reported issues with vot-
ing machines (disabled, failing, or mis-
calibrated touch-screens, erratic and
nonreproducible behaviors, serious
shortages of alternatives in times of
failures, lack of accountability and au-
dit capabilities) and election processes
(for example, inadequate allocation of
operative voting machines and provi-
sional ballots, lack of adequate proce-
dures for election integrity, reports of
insider misuse and in some cases de-

Some sort of
impartial oversight
is necessary to ensure
integrity throughout
the entire electoral
process—from
beginning to end.

https://freedom-to-tinker.com/blog/appel/nj-lt-governor-invites-voters-to-submit-invalid-ballots/
https://freedom-to-tinker.com/blog/appel/nj-lt-governor-invites-voters-to-submit-invalid-ballots/
https://freedom-to-tinker.com/blog/appel/nj-lt-governor-invites-voters-to-submit-invalid-ballots/

viewpoints

february 2013 | vol. 56 | no. 2 | communications of the acm 25

buying. For example, see Barbara Si-
mons and Douglas W. Jones, “Internet
Voting in the U.S.,” Communications,
October 2012; See also Mark Halvorson
and Barbara Simons, “Recount Rou-
lette,” Huffington Post (http://www.
huffingtonpost.com/barbara-simons/
voting-ballots-recount_b_2069192.html?
utm_hp_ref=politics).

Above all, elections represent a col-
lection of holistic problems that en-
compass not just technology but also
everything else that is largely nontech-
nological—governments, policies, lob-
byists, corruption, and political biases.
For example, the U.S. Election Assis-
tance Commission currently has no
commissioners, and has been reduced
to the efforts of a few staffers. Con-
certed efforts to disenfranchise voters
seem to have succeeded in making vot-
ing much more difficult than it should
be, and yet evidently resulted in some
major efforts to counter them. The
nontechnological aspects of achiev-
ing equal opportunity for voters seem
to dominate the technological issues,
which are themselves considerable.

In retrospect, unauditable pro-
prietary paperless direct-recording
voting machines (for example, with
touch-screens or other non-keyboard
inputs, but typically with no real as-
surance for system integrity or mean-
ingful trustworthy audit trails) seem
to be generally discredited by the
security community, but neverthe-
less still used—irrespective of the
risks. Similarly, proposals for cast-
ing ballots over the Internet all seem
to ignore the risks of integrity com-
promises, denials of service, loss of
privacy, and vote selling/buying. How-
ever, consensus seems to be emerg-
ing that the most sensible approach
at the moment utilizes computer-
scanned hand-marked paper ballots
(even if obtained via the Internet, per-
haps in the case of overseas voters).
Such systems can achieve a measure
of verifiability that is unattainable by
the unauditable direct recording sys-
tems and by Internet voting—in part
because they provide something tan-
gible against which discrepancies and
other irregularities can be evaluated.
However, significant further research
and development are needed, plus
enforceable operational procedures
directed at the realization that many

of the risks in elections also lie far be-
yond the technology. Once again, the
efforts to obtain pervasively fair elec-
tions are decidedly holistic.

Emergency Preparedness
and Oversight
The effects that Hurricane Sandy had
on the election on the East Coast (and
elsewhere because of airport closures)
remind us of the importance of trying
to expect the unexpected and acting
according to standards of preventive
care. For example, climate change is
now scientifically a reality, and needs
to be confronted realistically. In ad-
dition, past hurricanes, earthquakes,
tornados, and so on always tend to re-
mind us that we do not devote enough
attention to emergency prepared-
ness. On October 29, 2012, Hurricane
Sandy devastated shore areas of New
Jersey and New York, with ocean surg-
es destroying houses, disrupting trav-
el, causing long-lasting power out-
ages affecting millions of people (in
some cases without power for weeks).
Some landline and mobile telecom-
munications were shut down—with
reports of failures of undersea cables
as well. Wired and wireless Internet
infrastructures were also affected,
including some entire data centers.
Payphones were suddenly in great
demand. Various deaths were report-
edly caused by the hurricane. Many
organizations without off-site backup
systems or enough emergency gen-
erators and spare fuel were seriously
hindered in their efforts to recover.
Some parts of the New York subway
system were completely shut down
for many days by flooded tunnels and
damaged wiring. The PATH Trans-
Hudson line from Newark to the
World Trade Center was inoperable

for almost a month, and the line from
Hoboken, NJ, even longer. Enough
of the New York University Bellevue
Hospital backup system was situated
in a basement that flooded, necessi-
tating evacuation of the hospital. Sev-
enteen million gallons of water had to
be pumped out from the basement of
the hospital, although the pumps in
the basement shorted out and were
unable to feed the backup generators
on the 13th floor!

Of course, only some of these prob-
lems were suggested by past experi-
ences going back to the November
1965 New England blackout, but the
effects of Sandy were in many ways
unprecedented. However, the scale
of the disruption probably exceeded
the overall disruption during the ice
storm of 1998 in Quebec and Ontario,
when the power transmission lines
froze heavily and many of them col-
lapsed completely under the exces-
sive weight—resulting in a month of
powerlessness in a huge but some-
what less densely populated area.

Conclusion
In the context of environmental disas-
ters and election integrity problems,
the preceding analysis suggests that
much more attention needs to be de-
voted in the future to proactive plan-
ning for adversities, rather than simply
waiting for the next environmental ca-
tastrophe, or the next heatedly disputed
local or national election. Much greater
accountability, contingency planning,
and objective oversight are needed—
along with considerably greater non-
partisan even-handedness—to ensure
that the effects of future environmen-
tal disasters can be less widespread
and that future elections will be able
to avoid problems that are likely to re-
cur or unfold anew in the future. Thus,
it seems that a common link between
election integrity and environmental
emergency preparedness lies in in-
creased understanding of the risks and
greater foresight in anticipating what
can go wrong.	

Peter G. Neumann (neumann@csl.sri.com), Principal
Scientist in SRI International’s Computer Science
Laboratory, is moderator of the ACM Risks Forum (http://
www.risks.org). Please check out recent issues of RISKS
for source information and see his website for further
background (http://www.csl.sri.com/neumann).

Copyright held by author.

More attention
needs to be devoted
in the future to
proactive planning
for adversities.

http://www.huffingtonpost.com/barbara-simons/voting-ballots-recount_b_2069192.html?utm_hp_ref=politics
http://www.huffingtonpost.com/barbara-simons/voting-ballots-recount_b_2069192.html?utm_hp_ref=politics
mailto:neumann@csl.sri.com
http://www.risks.org
http://www.csl.sri.com/neumann
http://www.huffingtonpost.com/barbara-simons/voting-ballots-recount_b_2069192.html?utm_hp_ref=politics
http://www.huffingtonpost.com/barbara-simons/voting-ballots-recount_b_2069192.html?utm_hp_ref=politics
http://www.risks.org

26 communications of the acm | february 2013 | vol. 56 | no. 2

V
viewpoints

doi:10.1145/2408776.2408786	 George V. Neville-Neil

Once completed, however, the
process of neglect sets in—cost cut-
ting, slow repairs, ignoring major de-
sign flaws until bits of the roadways
fall down. Finally, the highway is so
poorly maintained that it is a menace,
and then, unless you get lucky and
an earthquake destroys the hideous
thing, you come to the usual engineer-
ing decision: repair or rebuild.

The difference with software is that
if code is used in the same way, day in
and day out, and never extended or
changed—other than fixing previously
existing bugs—it should not wear out.
Not wearing out depends on a few
things—especially that hardware does
not advance. A working system deliv-
ered in 1980—on, say, a classic mini-
computer such as the VAX—should, if
the same hardware is present, work the
same today as it did when it was built.

The problems of software mainte-
nance arise because things change.

Dear KV,
Do you know of any rule of thumb for
how often a piece of software should
need maintenance? I am not thinking
about bug fixes, since bugs are there
from the moment the code is written,
but about the constant refactoring that
seems to go on in code. Sometimes I
feel as if programmers use refactoring
as a way of keeping their jobs, rather
than offering any real improvement. Is
there a “best used by” date for software?

Fresh Code

Dear Fresh,
I definitely like the idea of software
coming with a freshness mark like you
see on milk cartons. As with other per-
ishable products, software does seem
to go bad after a while, and I am often
reminded of the stench of spoiled milk
when I open certain source files in my ed-
itor. No wonder so many programmers
grimace whenever they go to fix bugs.

I think that a better analogy for soft-
ware is that of infrastructure. Anyone
who has lived long enough to see new
infrastructure built, neglected, and
then repaired should understand this
analogy. Consider the highways built in
the U.S. in the 1950s. When these roads
were first built they were considered
a marvel, helping commuters get into
and out of large cities. Everyone loves
something new, and the building of
this infrastructure was heralded with
a good deal of fanfare, speeches, and
other celebratory events that you asso-
ciate with large projects.

While the original libraries used to
build a system do not wear out in any
physical sense, the code they inter-
act with changes over time as idiots
(oops, I meant to say marketers) de-
mand new features and as the speed
and complexity of hardware advanc-
es. Efforts at portability are noble
and often worthwhile, but there is
simply no way that a piece of code
that ran on a 1-MIPS CISC (complex
instruction set computing) computer
is going to run—without significant
retesting and changes—on a modern
processor with modern peripherals.
Operating systems and device drivers
can go only so far to hide the underly-
ing changes from applications.

While I have seen plenty of navel-
gazing exercises masquerading as
refactoring, there comes a time in
the life of all software when the de-
sign decisions it expresses must be
reexamined. There is no hard and
fast limit for this. If the code was a
“prototype”—you know, code that
management swore up and down
they would never use, and then did—
it is going to go bad sooner rather
than later.

Programs that were written in a
more reasonable style and without
ridiculous schedules imposed from
above maintain their freshness longer.
I consider my own code to have a “best
by date” of one year from when I com-
plete the project. If I have not looked
at some code in a year, I have probably
forgotten how it worked, anyway.

KV

Kode Vicious
Divided by Division
Is there a “best used by” date for software?

 Article development led by
 queue.acm.org

V
viewpoints

http://queue.acm.org

viewpoints

february 2013 | vol. 56 | no. 2 | communications of the acm 27

V
viewpoints

ago there was a language called APL
that required a special keyboard.
That language is mostly dead—look
at the keyboard shown here to find
out why.

That brings us to where we are
now with / meaning one thing and
// meaning another. I am quite sure
many bugs will result from this con-
flation of images, and I am sure they
are going to occur when the person
working on the code has just been
awakened from a deep sleep by a pan-
icked telephone call. In the light of
day, it is easy to tell / from //, but
in the dim light of reawakening, it is
not so easy.

KV

 Related articles
 on queue.acm.org

You Don’t Know Jack
About Software Maintenance

Paul Stachour, David Collier-Brown
http://queue.acm.org/detail.cfm?id=1640399

The Meaning of Maintenance

George V. Neville-Neil
http://queue.acm.org/detail.cfm?id=1594861

The Software Industry IS the Problem
Poul-Henning Kamp
http://queue.acm.org/detail.cfm?id=2030258

Concurrency’s Shysters
January 14, 2009
http://blogs.sun.com/bmc/entry/
concurrency_s_shysters

George V. Neville-Neil (kv@v acm.org) is the proprietor
of Neville-Neil Consulting and a member of the ACM
Queue editorial board. He works on networking and
operating systems code for fun and profit, teaches courses
on various programming-related subjects, and encourages
your comments, quips, and code snips pertaining to his
Communications column.

Copyright held by author.

Dear KV,
I have been upgrading some Python 2
code to Python 3 and ran across the
following change in the language. It
used to be that division (/) of two inte-
gers resulted in an integer, but to get
that functionality in Python 3, I need
to use //. There is still a /, but that is
different. Why would anyone in their
right mind have two similar opera-
tions that are so closely coded? Don’t
they know this will lead to errors?

Divided by Division

Dear Divided,
Python is not the first—and I am quite
sure it will not be the last—language
to use visually similar keywords to
mean different things. Consider C
and C++ where bitwise and logical
operations use very similar images
to mean totally different operations:
| for bitwise or operation and || for
the logical, for example. I also recent-
ly discovered this change in Python 3
and my coworkers discovered it just
after I did, as I was quite vocal in my
reaction.

The problem of not having visually
distinctive images in programming
goes back to the problem, alluded to
by Poul-Henning Kamp (“Sir, Please
Step Away from the ASR-33!,” Com-
munications, November 2010), of the
character set we use to create our
languages. Language designers have
only the character set shown in the ac-
companying figure to work with when
they are looking for something to
represent a shortcut to an operation.
Many of the characters already have
well-established meanings outside

of programming, such as the arith-
metic operations +, -, *, and /, and
the language designer who decides to
change their meanings should be se-
verely punished.

It is certainly possible to forgo
shortcuts and to make everything
a function such as (plus a b) for
functional syntax, or create a large list
of reserved words as in a equals b
plus c for Algol-like languages. The
fact is, as programmers, we like com-
pact syntax and would balk at using
something as bulky as the example I
have just given.

Another alternative is to throw
away ASCII encoding and move to
something richer in which we can
have more distinct images to which
we can attach semantic meanings.
The problem then arises of how to
type in that code. Modern computer
keyboards are meant to allow pro-
grammers to type ASCII. Ask Japa-
nese programmers whether they use
a Japanese keyboard or an American
one, and nine out of 10 will tell you
an American one. They choose the
U.S. version because the “program-
mer keys,” the ones that represent
the glyphs shown in the figure, are
in the easiest-to-use placement. Ex-
tending our character set to allow
for complex glyphs will slow the pro-
cess of entering new code, and we all
know that typing speed is the biggest
indicator of code quality. Many years

Language character set.

!”#$%&’()*+,-./:;<=>?@[\]^_`{|}~

An APL keyboard.

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1640399
http://queue.acm.org/detail.cfm?id=1594861
http://queue.acm.org/detail.cfm?id=2030258
http://blogs.sun.com/bmc/entry/concurrency_s_shysters
mailto:kv@vacm.org
http://blogs.sun.com/bmc/entry/concurrency_s_shysters

28 communications of the acm | february 2013 | vol. 56 | no. 2

V
viewpoints

akin to on-campus Stanford students,
received the same level of service in
the evaluation of the their work, and
received course credit upon passing
classes. The costs involved, however,
meant the number of remote students
enrolled in the Stanford courses was
usually dwarfed by the number of on-
campus students in the courses.

That equation changed in 2008 with
the launch of Stanford Engineering

Everywhere (SEE; http://see.stanford.
edu). Through the SEE initiative, Stan-
ford made several of its most popular
engineering courses—including six
CS courses—freely available online,
including full videos of class lectures
and all course materials (handouts,
assignments, and software). Course
videos were released through You-
Tube, Apple’s iTunes University, and
on Stanford’s own website. While

The Stanford Engineering Everywhere website (http://see.stanford.edu) was launched in 2008.

doi:10.1145/2408776.2408787	 Steve Cooper and Mehran Sahami

T
he recent wave of Mas-
sive Open Online Courses
(MOOCs) has highlighted
the potential for making
educational offerings ac-

cessible at a global level. The atten-
tion MOOCs have received is well
deserved, but it belies the fact that
various forms of online education
have existed for many years. Rather
than attempting to catalogue the
broad spectrum of online learning
resources, we focus on a sampling of
initiatives in online education—with
an emphasis on our home institu-
tion, Stanford University, with which
we are most familiar—highlighting
some of the opportunities and chal-
lenges at hand.

By way of background, the Stan-
ford Center for Professional Devel-
opment (SCPD) began offering dis-
tance-learning courses via television
microwave channels in 1969. Stu-
dents—mostly engineers working in
the local Silicon Valley area—had the
opportunity to watch course lectures
on television at off-campus locations
and submit course work via a courier
system. By 1996, these course offer-
ings had evolved to using streaming
video via the Internet and a variety of
means for electronic assignment sub-
mission and distribution of course
materials. While in some respects
these course offerings were similar
to the more modern MOOCs, a criti-
cal differentiator was cost. Students
enrolled in SCPD courses paid tuition

Education
Reflections on
Stanford’s MOOCs
New possibilities in online education create new challenges.

V
viewpoints

http://see.stanford.edu
http://see.stanford.edu
http://see.stanford.edu

viewpoints

february 2013 | vol. 56 | no. 2 | communications of the acm 29

V
viewpoints

provide some form of certification
to students. While the experience
with SEE (which provides no form of
certification) leads us to believe that
many students will still pursue online
education regardless of certification,
we recognize that many students will
be concerned they receive external
validation/certification of their learn-
ing. There are many companies (both
non-profit and for-profit) that have
experience in awarding various forms
of certifications, and several colleges
offer purely online certificates and
even degrees. Hybrid models are also
emerging. For example, the Univer-
sity of Washington has offered to give
college credit for some of its courses
taken through Coursera for students
who pay a fee and complete addition-
al assessments.2 Thus, models for the
certification of online work certainly
exist. The extent to which such certi-
fications are recognized by others, es-
pecially employers, will certainly im-
pact how MOOCs are viewed relative
to more traditional courses.

Richer Evaluation
Although the initial set of MOOCs
focused on relatively straightforward
means for evaluation, such as multi-
ple-choice quizzes or short-answer
questions, richer evaluation models
measuring student engagement more
fully with the material soon emerged.
In a computing context, such evalua-
tions include assessing students’ pro-
grams and assessing larger student
projects. While mechanisms such as
testing suites can be used to measure
aspects of a program’s functional-
ity, such tests are not applicable in
all contexts, such as with interactive
applications. Care must be given in
developing assessment platforms al-
lowing for a rich design space of as-
signments while still making (semi-)
automated assessment feasible.

Peer assessments have also been
proposed as a means for providing hu-
man assessments at scale. Research
in peer assessment has shown the po-
tential for this approach.6 For exam-
ple, Stanford’s online Human-Com-
puter Interaction course, taught by
Scott Klemmer, emphasizes student
design work. Enabling assessment of
these designs at scale requires each
student in the course to provide an or-

the SEE initiative was not itself novel
(MIT’s OpenCourseWare project was
created years prior to SEE), the re-
sponse to the open online materials
was significant. Among the classes
released was an offering of CS106A
(Stanford’s Java-based CS1 course).
That course’s (hour-long) lecture vid-
eos have been viewed more than two
million times on YouTube alone. The
availability of such online materials
has resulted in universities in the U.S.,
China, India, and Brazil using these
videos as part of teaching their own
introductory programming courses.
And since the CS106A course covers
much of the same material as the AP
computer science curriculum, stu-
dents without access to traditional CS
courses at high school have reported
being able to study for and pass the
AP CS exam as a result of watching the
course videos (either alone or through
a teacher-guided independent study
at their school). Of note is the fact
that these online materials generated
such a strong response without any
of the affordances of MOOCs (which
typically offer enrollment, quizzes and
assessments, assignment deadlines,
statements of accomplishment, and
so forth). Importantly, it is these seem-
ingly evolutionary additional features
that allowed the recent set of MOOCs
to cross a line from being considered
yet another free educational resource
to being viewed as scalable free cours-
es. This change in perception also
brought with it a new set of possibili-
ties and expectations.

The trio of MOOCs released by
Stanford faculty in fall 2011—courses
in artificial intelligence, databases,
and machine learning—attracted
hundreds of thousands of students
and spawned two private ventures:
Coursera and Udacity. Concurrently,
edX evolved from MITx as a non-prof-
it consortium for online education,
comprised initially of MIT and Har-
vard, with UC Berkeley and the Uni-
versity of Texas later joining forces.
Stanford has also developed two new
online learning platforms—Class2Go
and Venture Lab—and committed it-
self to further work in this area by ap-
pointing CS professor John Mitchell
as the inaugural Vice Provost for On-
line Education.

MOOCs have the potential to pro-

vide education on a global scale. But
many challenges remain if MOOCs,
either in a standalone or hybrid con-
text, are to become competitive with
the “classical” model of in-class edu-
cation. Here, we discuss some of the
opportunities and challenges facing
MOOCs based on our experiences.

Validation and Plagiarism
Perhaps the most widely discussed
challenge in online education is that
of validating original work and pre-
venting (or at least detecting) pla-
giarism. It has been reported that
plagiarism is a potentially signifi-
cant problem in online courses.10 In
response, Coursera has stated it may
attempt to employ plagiarism-detec-
tion software. It is too early to tell the
efficacy of automated methods for
plagiarism detection, but the clear
need may motivate further research
in this area. Both edX and Udacity
have partnered with Pearson VUE, a
provider of testing centers, to validate
students taking proctored exams.4,7
While the use of testing centers to val-
idate students’ identity and original
work seems more straightforward in
practice than automated methods for
plagiarism detection, it also carries
with it cost for the student. How such
costs are to be weighed with respect
to the costs and benefits of enrolling
in a traditional course will be an im-
portant factor in the future success of
MOOCs.

Certification
Another important component of
MOOCs is whether and how they

Many challenges
remain if MOOCs
are to become
competitive with
the “classical”
model of in-class
education.

30 communications of the acm | february 2013 | vol. 56 | no. 2

viewpoints

dering of several designs with which
they are presented. The orderings
from all students are then combined
to get a more global ranking of de-
signs. Interestingly, some of the de-
signs presented to students to order
have been graded by human experts
(for example, the teaching assistants
for the on-campus course). Since
these graded designs are now embed-
ded in the global ordering, a grade
can be determined for a student-sub-
mitted design by determining how
it ranks relative to expert-evaluated
designs. While such a system is not
without issues, it does provide an
interesting model for injecting ex-
pert evaluation into a primarily peer-
based assessment scheme.

Personalized Education
The massive scale of MOOCs pro-
vides the opportunity to collect un-
precedented volumes of data on
students’ interactions with learn-
ing systems. As a result, it becomes
possible to use machine learning
to gain insight on and potentially
personalize human learning. Work
in this vein has existed for years un-
der the rubric of intelligent tutoring
systems and educational data min-
ing. As one recent example, Piech et
al.5 applied machine learning tech-
niques to build probabilistic models
of automatically logged intermediate
versions of student programs in our
CS106A course. Such models, built
on initial assignments in the course,
were better predictors of students’
performance later in the course than
the grades on those assignments.
Such techniques could be used to
identify students who are struggling
in an online course and suggest re-
mediation via alternative learning
paths through a MOOC.

MOOCs also have the potential
to present information to students
using many different pedagogic ap-
proaches, allowing each student to
select a particular desired approach,
or even making such suggestions to
the student. A meta-analysis of more
than 1,000 online studies8 argues that
features such as instructor-directed
and collaborative online instruction
led to improved learning for stu-
dents, and that blended learning en-
vironments tended to be better for

students than purely online ones. On-
line courses can evolve to incorporate
such identified best practices.

Hybrid Education
As evidenced by Martin,3 some uni-
versities are leveraging MOOCs by
having their students watch videos
from an online course—Stanford’s ar-
tificial intelligence class in Martin’s
case—prior to attending class at their
own university to discuss the mate-
rial and engage in additional assess-
ments. Such “flipped classrooms,”
which existed in various forms be-
fore MOOCs, enable the instructor to
spend less time lecturing and more
time interacting with the students.
Indeed, we are likely only scratch-
ing the surface in exploring ways in
which online videos can augment or
potentially improve education. More
work is needed to determine what in-
struction students should do on their
own in preparing for class, as well as
identifying how best to utilize class
time given the fact that students have
watched videos and engaged in atten-
dant exercises in preparation.

Innovation Beyond Online Videos
We need to identify new ways to think
about online learning. Tools, such as
algorithm visualizations (for example,
AlgoViz, http://algoviz.org, or Amit
Patel’s probability visualizations,
http://www.redblobgames.com), pro-
gramming practice environments
(such as Nick Parlante’s CodingBat,
http://codingbat.com, or Amruth Ku-
mar’s Problets, http://problets.org),
and editable coding visualizers (such
as Philip Guo’s Online Python Tutor,
http://www.pythontutor.com) all of-
fer promising online environments to
aid student learning. We believe such
innovations can become especially ef-
fective in online education, augment-

ing video presentations with myriad
interactive activities for the learner
to perform. Perhaps incorporation of
appropriate interactive aids can be-
gin to move closer toward identifying
and constructing curricula for mak-
ing Alan Kay’s Dynabook1 a reality.

It was Thomas Edison who be-
lieved that the advent of the phono-
graph would completely revolution-
ize education, rendering teachers
obsolete. In the intervening century,
similar predictions have been made
about many other technological in-
novations. We do not believe MOOCs
are going to render teachers obsolete,
certainly not in the foreseeable fu-
ture. Online education can augment
more traditional instruction, and
serve as an effective means to scale
education to students when other
(in-person) forms of instruction are
unavailable. Like Vardi,9 we believe
MOOCs are here to stay. However, we
are much more positive about online
education’s transformative potential,
if we as a community can find solu-
tions to the challenges at hand. It is
really up to us.	

References
1.	 Kay, A. A personal computer for children of all ages.

In Proceedings of the ACM Annual Conference—
Volume 1 (1972).

2.	L ong, K. UW to offer fee-based courses through
Coursera. The Seattle Times (July 18, 2012).

3.	M artin, F. Will massive open online courses change
how we teach? Commun. ACM 55, 8 (Aug. 2012),
26–28.

4.	 Parry, M. EdX offers proctored exams for open online
course. The Chronicle of Higher Education (Sept. 6,
2012).

5.	 Piech, C., Sahami, M., Koller, D., Cooper, S. and
Blikstein, P. Modeling how students learn to
program. In Proceedings of the 43rd ACM Technical
Symposium on Computer Science Education
(SIGCSE ‘12). ACM, New York, 2012, 153–160.

6.	S adlar, P. and Good, E. The impact of self- and
peer-grading on student learning. Educational
Assessment 11, 1 (2006), 1–31.

7.	U dacity blog. Udacity in partnership with Pearson
VUE announces testing centers. (June 1, 2012);
http://blog.udacity.com/2012/06/udacity-in-
partnership-with-pearson-vue.html.

8.	U .S. Department of Education, Office of Planning,
Evaluation, and Policy Development. Evaluation
of evidence-based practices in online learning: A
meta-analysis and review of online learning studies,
Washington, D.C., 2010

9.	 Vardi, M.Y. Will MOOCs destroy academia? Commun.
ACM 55, 11 (Nov. 2012), 5.

10.	Y oung, J. Dozens of plagiarism incidents are
reported in Coursera’s free online courses. The
Chronicle of Higher Education (Aug. 16, 2012).

Steve Cooper (coopers@cs.stanford.edu) is an
associate professor in the computer science department
at Stanford University.

Mehran Sahami (sahami@cs.stanford.edu) is an
associate professor in the computer science department
at Stanford University.

Copyright held by author.

We need to identify
new ways to
think about
online learning.

http://algoviz.org
http://www.redblobgames.com
http://codingbat.com
http://problets.org
http://www.pythontutor.com
http://blog.udacity.com/2012/06/udacity-in-partnership-with-pearson-vue.html
http://blog.udacity.com/2012/06/udacity-in-partnership-with-pearson-vue.html
mailto:coopers@cs.stanford.edu
mailto:sahami@cs.stanford.edu

february 2013 | vol. 56 | no. 2 | communications of the acm 31

V
viewpoints

doi:10.1145/2408776.2408788	 Ana Aizcorbe, Samuel Kortum, and Unni Pillai

O
ver the years the leading
microprocessor compa-
ny, Intel, has introduced
a steady stream of new
microprocessor designs:

the 286, 386, 486, Pentium, Pentium
II, Pentium III, Pentium 4, and more
recently the Multicore design. In the
microprocessor industry these de-
signs are called microarchitectures.
If there was a market for microar-
chitectures what would each design
sell for? Our research addresses that
modern question using economic
insights developed almost two cen-
turies ago.

Why estimate the value of these
designs? This type of calculation can
inform many aspects of firm strategy
and valuation. Many companies devel-
op new designs and increasingly out-
source the manufacturing of the prod-
ucts. For example, fabless companies
like Qualcomm and Broadcomm de-
sign chips and do none of their own
manufacturing. Foundries do it for
them on contract. The value of the fab-
less firms depends predominantly on
the value of designs.

Many factors complicate any at-
tempt to estimate the value of intel-
lectual property associated with such
product designs. In microprocessors
for instance, consumers are not willing
to pay for a new design per se, but for
the increase in computing power that
comes with a new design.

The classical economist, David Ricar-
do, had the key insight in 1817.2 Ricardo
asked how much would be the rent to a
unit of fertile land (say close to a river). Ri-
cardo reasoned that producing a pound
of corn in the fertile land is less costly to
a farmer than producing a pound on
marginal land (the worst land being cul-
tivated, say in the hills). The fertile land
requires less effort to achieve the same
output. The rent for the fertile land
arises from the difference between the
labor cost of producing the same quan-
tity of crop on the fertile land and on
the marginal land. Charge the farmer
a rent higher than this maximum, and
the farmer would prefer to move out
and start cultivating the marginal land.

Ricardo’s logic still applies today,
and can help estimate the rent to a new
microprocessor design at any point in
time. Think of a new design as analo-
gous to fertile land and an old design
as the marginal land. A microprocessor
made with a new design can compute
faster and hence sells for a higher price.
To get the same revenue from selling
microprocessors with older designs, In-
tel would need to sell more of the older
microprocessors, something that in-
volves more labor cost than making one
microprocessor with the new design.
The rent for the new design, therefore,
is the difference between the cost of
producing a dollar of revenue with the
new design and the cost using the old

Economic and
Business Dimensions
The Value of
Microprocessor Designs
Applying a centuries-old technique to modern cost estimation.

0.12

0.10

0.08

0.06

0.04

0.02

0

(PII, 0.25)

Cost/revenue ratios for three Intel processors.

0 1 2 3 4 5 6 7

C
os

t/
R

ev
en

u
e

Revenue (Billions $)

(PII, 0.35)

(P5, 0.35)

32 communications of the acm | february 2013 | vol. 56 | no. 2

viewpoints

ence in cost of production is the rent to
the process technology.

The accompanying figure illustrates
the approach, using data from Intel’s
production for the third quarter of 1997.
There were two designs in operation in
the quarter, Pentium (P5) and Pentium
II (PII). There were process technologies,
0.35 microns and 0.25 microns. There
were three microprocessor vintages in
production, (P5, 0.35), (PII, 0.35), and
(PII, 0.25). The y-axis shows the average
cost/average price of microprocessors of
each vintage. The x-axis shows the total
revenue obtained from each vintage.

What is the message of the figure?
The (P5, 0.35) vintage of microproces-
sors were the oldest ones, and had a
high cost/revenue ratio. Microproces-
sors produced with the same process
technology, but with a new design (PII)
had a lower cost/price ratio. The latest
microprocessors featuring a new de-
sign (PII) and a new process technolo-
gy (0.25) had the lowest cost/price ratio
among the three vintages. The vertical
distance between the top and the sec-
ond horizontal lines is the cost saving
provided by the new design PII over the
old design P5, for each dollar of rev-
enue that Intel obtained by selling the
chips that used PII design. Hence the
total rent to PII design during the quar-
ter is the area of the rectangle shaded
with vertical lines. Similarly, the area
of the rectangle shaded with diagonal
lines is the rent to 0.25-micron process
technology during the quarter.

An estimate of the total value of the
design or process technology to Intel
comes from constructing similar dia-
grams for all the quarters in which a
design or process technology was in
use and by adding these up. The ac-

design in a given time period. Adding
up all such rent across the lifetime of a
specific design provides an estimate of
the value of the design to Intel.

It is not quite that simple in prac-
tice, of course. Increases in comput-
ing power can come from factors other
than a new design. The decreasing size
of transistors used in microproces-
sors is the leading example. Advances
in semiconductor process technology
have steadily driven down transistor
sizes from three microns (where a mi-
cron is a millionth of a meter) in the
original 8086 made by Intel to around
0.022 microns in the latest chip. These
smaller transistors—by themselves—
lead to greater computing power, with-
out any improvements in designs. In
other words, a proper estimate must
separate the value provided to Intel by
new designs from the value provided
by the technological transitions to
smaller transistors.

To summarize, Ricardo’s logic still
applies. It can be applied to the mea-
surement of rent to a new micropro-
cessor design at any point in time. A
new microprocessor can be defined as
a pair of attributes: the design it uses
and the semiconductor process tech-
nology it was made with. The rent to
the combination of design and pro-
cess technology used in a new micro-
processor is the cost savings the new
microprocessor provides over the old-
est one currently in use. If the new mi-
croprocessor uses the same process
technology as the oldest one currently
in use, then the difference in the cost
of production is the rent to the design.
On the other hand, if the new micro-
processor uses the same design as the
oldest one currently in use, the differ-

companying table shows the estimates
we obtained in our study.1

The cost savings from new design is
in many billions of U.S. dollars. One can
see from the table that Intel’s savings
from new process technologies was al-
most three times the savings from new
microprocessor designs, indicating the
relative importance of new manufac-
turing technology transitions to Intel.

The table also includes information
about the value of specific designs. The
Pentium 4 design provided very little
value to Intel. This is not surprising
due to its problems with overheating,
which forced Intel to move to the new
multicore designs. The Pentium III
was the most valuable design for Intel,
reflecting perhaps the high price that
new designs were able to command at
the height of the Internet boom of the
late 1990s. In that period, Intel used
the 0.13 manufacturing technology,
again the one that we estimated to have
provided most value to Intel.

It should be noted that these values
are calculated ex-post, after the mi-
croprocessors that used these designs
were sold on the market. This meth-
od is not appropriate for forecasting
value prior to any market experience,
an important precaution in interpret-
ing these figures. Intel probably spent
the most on developing the Pentium 4
among all its designs, an investment
that did not pan out for Intel.

Overall, these calculations provide
a rough estimate of the value to Intel
of intellectual property embedded in
new designs. Ricardo’s centuries-old
wisdom on land rents turns out to be in-
sightful for valuing intangible assets. 	

References
1.	A izcorbe, A., Kortum, S., and Pillai, U. Measuring

Knowledge Capital and its Contribution to Productivity
Growth. 2012, Working paper.

2.	R icardo, D. Principles of Political Economy and Taxation.
London, U.K., 1817.

Ana Aizcorbe (ana.aizcorbe@bea.gov) is Chief Economist,
Bureau of Economic Analysis, U.S. Department of
Commerce in Washington, D.C.

Samuel Kortum (samuel.kortum@yale.edu) is a
professor in the Department of Economics at Yale
University in New Haven, CT.

Unni Pillai (usadasivanpillai@albany.edu) is an assistant
professor in the College of Nanoscale Science and
Engineering at the State University of New York at Albany.

The opinions expressed in this column are those of the
authors and do not represent those of the U.S. Bureau of
Economic Analysis.

Copyright held by author.

Estimate of the total value of the Intel design or process technology.

Design Cost Savings* Process Technology Cost Savings*

486 	 0.26 	0.80 	 0.96

Pentium 	 2.74 	0.60 	 1.18

Pentium II 	 0.82 	0.35 	 5.16

Pentium III 	 4.30 	0.25 	 1.64

Pentium-M 	 1.35 	0.18 	 3.00

Pentium 4 	 0.01 	0.13 	 14.40

CORE 	 2.63 	0.09 	 5.01

	0.065 	 2.08

TOTAL 	 11.85 TOTAL 	 33.43

*Cost savings in billions of dollars.

mailto:ana.aizcorbe@bea.gov
mailto:samuel.kortum@yale.edu
mailto:usadasivanpillai@albany.edu

february 2013 | vol. 56 | no. 2 | communications of the acm 33

V
viewpoints

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 A
l

i
c

i
a

 K
u

b
i

s
t

a
 /

 A
n

d
r

i
j

 B
o

r
y

s
 A

s
s

o
c

i
a

t
e

s

doi:10.1145/2408776.2408789 Ali Sunyaev and Stephan Schneider

C
l o ud c o mpu t i n g i s an
evolving paradigm that af-
fects a large part of the IT
industry, in particular the
way hardware and software

are deployed: as a service.1 Cloud
computing provides new opportuni-
ties for IT service providers, such as
the adoption of new business models
and the realization of economies of
scale by increasing efficiency of re-
source utilization. Adopters are sup-
posed to benefit from advantages like
up-to-date IT resources with a high
degree of flexibility and low upfront
capital investments.6

However, despite advantages of
cloud computing, small and medium
enterprises (SMEs) in particular re-
main cautious implementing cloud
service solutions.4 This holds true for
both IT service providers and IT ser-
vice users. The main reasons for the re-
luctance of companies to adopt cloud
computing include:

˲˲ Due to the prevailing information
asymmetry on the market, companies
have difficulties comprehensively as-
sessing the individual benefits and
challenges associated with the adop-
tion of cloud services. Furthermore,
the information asymmetry impedes
providers from aligning their services
with the needs of potential customers.

˲˲ Companies lack appropriate,
qualified, trustworthy information and
benchmarks to assess cloud services
with regard to individual benefits and
associated risks.

˲˲ Companies lack approaches and
metrics to adequately assess and
compare the service quality of cloud
services, especially, regarding secu-
rity and reliability.

˲˲ Industry-specific requirements
and restrictions on IT usage and data
processing limit the adoption of cloud
services in sectors like health care or
banking. Many of those requirements
and restrictions are outdated and
were issued long before broadband
Internet connections and mobile de-
vices became ubiquitous.

˲˲ Noteworthy uncertainties concern-
ing legal compliance and conformance
with international privacy require-
ments can be observed. Providers are
constantly faced with the challenge to
design niche-oriented, demand-specific
services in a legally compliant manner.

Reflecting these reasons for inhib-
iting cloud computing adoption, the
environment surrounding cloud com-
puting is characterized by uncertainty
and a lack of transparency. Yet, trust
is necessary in situations in which the
interested party is confronted with un-

Viewpoint
Cloud Services
Certification
How to address the lack of transparency,
trust, and acceptance in cloud services.

34 communications of the acm | february 2013 | vol. 56 | no. 2

viewpoints

certainty.7 Addressing the present trust
issues in cloud computing and promot-
ing transparent information exchange
between cloud service providers and
cloud users are essential premises to
accomplish broad diffusion of cloud
computing in the market.

Certification of Cloud Services
We believe certification of cloud servic-
es by independent certification insti-
tutions can cope with the challenging
lack of transparency, trust, and accep-
tance. Research has shown that trust
can be built through supporting IT-
based mechanisms like certifications
and escrows if experience in a market
is not readily available.8 Furthermore,
certifications help to establish market
transparency, which companies may
not be able to achieve on their own.
Potential cloud adopters are faced with
an abundance of service offerings of
similar functionality. SMEs may not
have sufficient resources to adequately
assess cloud services, whereas large en-
terprises may have the resources, but
still have to raise funds and undergo
significant efforts in order to assess
and benchmark cloud services. Ulti-
mately, all companies, which are plan-
ning to adopt a cloud service, need to
perform similar assessments. Thus, it
is economically beneficial to dedicate
these assessments to specialized orga-
nizations, which issue broadly accept-
ed and standardized certifications.

A cloud service certification process
should include on-site data center
audits as well as extensive evaluation
of contracts and services. In order to
achieve such a certification, a cloud
service should satisfy specific quality
specifications including contractual
requirements (for example, service
level agreements), legal requirements
(for example, privacy policy), security
requirements (for example, encryp-
tion), functional requirements (for
example, API implementations), busi-
ness processes (for example, quality
management), and data center infra-
structure (for example, physical access
control). Additional industry-specific
requirements may apply (for example,
in the domain of health care3,9). In
fact, models to assess perceived qual-
ity of service have been extensively re-
searched and validated in practice.5
Assessments of service quality by a

provider’s customers or independent
third parties can improve trust and ac-
ceptance of a service. This approach
has successfully been applied in other
service industries, for example, sale of
goods, news media, or entertainment.2

Reflecting the aforementioned rea-
sons for adoption uncertainty, a certi-
fication is particularly beneficial in the
following scenarios:

Security and trust. The implementa-
tion of cloud computing creates addi-
tional challenges concerning IT securi-
ty. Besides technical issues, customers
need to trust in the security and reli-
ability of a service in order to adopt it.
In the case of online banking or online
shopping, public key certificates issued
by certificate authorities are a common
way to verify a website’s authenticity
and promote customers’ trust. Extend-
ed Validation Certificates do not dif-
fer in structure or cryptography from
other (cheaper) certificates, but require
extensive identity verification of the re-
questing organization. Thus, the online
transaction itself is not more secure (ac-
cording to its encryption), but the certi-
fication is presented more prominently
to the user and the extended validation
fosters the trustfulness of the website.
In the context of cloud computing, a
certification by an independent certifi-
cation authority can improve trust the
same way as in the domains of online
banking and online shopping. In addi-
tion to the provider’s identity, a cloud
certificate could evaluate infrastructure
security and IT security measures of the
cloud service provider. We consider the
certification of large infrastructure,
platform, or software providers as im-
portant since these providers serve as
hubs for enormous amounts of data.

Therefore, security flaws or outages in
the systems of these large providers af-
fect a vast number of cloud users.

Legal compliance and privacy. Cur-
rent discussions on legal conflicts be-
tween the United States Patriot Act and
the European Union (EU) Data Protec-
tion Directive (95/46/EC) intensify the
need for legally compliant cloud ser-
vices. Moreover, individual member
states of the EU have implemented
the 16-year-old EU data protection di-
rective in very different manners. As a
consequence, cloud service providers
must deal thoroughly with 27 differ-
ent policies in order to comply with
all 27 EU member states’ data protec-
tion laws. In addition, sector-specific
regulations may apply (for example,
the Health Insurance Portability and
Accountability Act in the U.S.). Imple-
menting a framework with clear guide-
lines for privacy and legal compliance
of cloud services would support pro-
viders to design and implement com-
pliant cloud solutions. Cloud service
certifications verifying the adherence
to such a legal and privacy framework
can support users in their adoption de-
cisions as they can rely on the ongoing
legal compliance of certified cloud ser-
vices. Likewise, specialized cloud ser-
vice providers can benefit from cloud
certifications when selecting platform
or infrastructure providers to deploy
their services, which need to adhere
to the national or industry-specific re-
quirements of their customers.

Digital preservation and lock-in ef-
fects. Digital preservation describes
the management of digital informa-
tion in order to keep it accessible, re-
producible, and interpretable over long
periods of time and different innova-
tion cycles. Digital preservation does
not only focus on preserving data, but
also on preserving the representation
information necessary to interpret the
preserved data. For example, the rep-
resentation information may be an ap-
plication used to access and interpret
the data or specifications of the data
format. In cloud computing, hardware
and software are delivered as a service
and are not in possession of the user.
Thus, neither data nor applications are
physically accessible. Moreover, data
formats in cloud services like Google
Docs are opaque. Supporting digital
preservation of cloud-based informa-

Certifications help
to establish market
transparency,
which companies
may not be able to
achieve on their own.

viewpoints

february 2013 | vol. 56 | no. 2 | communications of the acm 35

tion and applications might be includ-
ed in the certification requirements for
cloud services. Another challenge for
cloud service providers includes the
prevention of lock-in effects. In order
to acquire a certification, interfaces for
digital preservation and data migra-
tion to other cloud service providers
need to be provided.

Transparency. As a result of the
late-2000s financial crisis, customers
lost their confidence in the banking
industry. Risky, complex, and non-
transparent financial products, such
as mortgage-backed securities or col-
lateralized debt obligations, were
placed on the capital market as sup-
posedly secure investments. Apply-
ing this situation correspondingly on
cloud services, users do not necessar-
ily know which cloud services they are
actually using and where data will be
processed and stored. A Software as a
Service provider in Germany may pro-
vide a cloud service, which integrates
the capabilities of several cloud ser-
vices in Europe, Asia, and North Amer-
ica. The provider may implement the
service within a Platform as a Service
environment in the U.S., which in turn
utilizes databases at an Infrastruc-
ture as a Service provider in Ireland
and sources computing power from
a cloud marketplace like Spotcloud
(a marketplace for cloud service pro-
viders to sell their unused cloud ca-
pacity). Cloud adopters will contract
and interact with a German provider,
assuming the strict German privacy
restrictions apply, but in fact it is to-
tally opaque where data is processed
and stored. But the concept of cloud
computing does not need to be cloudy
at all. The clarification of a service’s
interrelations as part of the certifica-
tion requirements can clarify complex
provider cooperation and interaction.

Challenges for Cloud Certifications
Cloud service certifications can resolve
adoption uncertainties and thereby
support users and providers of cloud
services in their adoption decisions.
However, adherence to certification
standards also entails challenges that
need to be considered:

˲˲ Particularly, small- and medium-
sized cloud service providers may not
have the budget to acquire a certifica-
tion for their cloud services; therefore,

they would have to struggle with a com-
petitive disadvantage. A certification
needs to be affordable, but neverthe-
less comprehensive in terms of on-site
auditing and contractual evaluations.

˲˲ The demands of maintaining certi-
fications may preclude small cloud ser-
vice providers from delivering services
in a cost-effective manner, while large
cloud service providers can continue to
differentiate themselves by their abil-
ity to provide significant cost savings
and a high level of resource elasticity to
their customers. Thus, large cloud ser-
vice providers can neglect undergoing
audits of their physical facilities, ser-
vices, and processes and accomplish
a similar outcome to certification by
solely relying on their reputation. In
contrast, small cloud service providers
may be urged to undergo certification
audits in order to differentiate them-
selves on the market and thereby suffer
a competitive disadvantage.

˲˲ Certifications need to balance the
tension between usefulness and com-
plexity. A certification framework may
slow down innovation if adherence
to the framework is connected with
very strict requirements. But innova-
tive, pioneering services, and short
innovation cycles are main benefits
of the cloud computing paradigm.
Therefore, a certification framework
needs to be flexible and adaptable in
order to cope with the fast innovation
cycles of the IT industry. However,
due to the wide diversity of cloud ser-
vice offerings, designing a compre-
hensive and widely applicable certi-
fication framework includes the risk
of devolving into a set of lowest com-

We believe introducing
a certification for
cloud services
is a step forward
to a more trustworthy
and transparent
cloud computing
environment.

Calendar
of Events
February 18–20
Third ACM Conference
on Data and Application
Security and Privacy,
San Antonio, TX,
Contact: Elisa Bertino,
Phone: 765-496-2399,
Email: bertino@cerias.purdue.edu

February 23–27
Computer Supported
Cooperative Work,
Computer History Museum
of Silicon Valley,
Contact: Magali Cohen,
Phone: 650-964-2858,
Email: magaliis@pmwcintl.com

February 23–27
ACM SIGPLAN Symposium
on Principles and Practice of
Parallel Programming,
Shenzhen, China,
Sponsored: SIGPLAN,
Contact: Alexandru Nicolau,
Phone: 949-824-4079,
Email: nicolau@ics.uci.edu

February 26–27
14th Workshop on Mobile
Computing Systems and
Applications,
Florida,
Sponsored: SIGMOBILE,
Contact: Sharad Agarwal,
Phone: 425-722-5521,
Email: sharad.agarwal@
microsoft.com

February 27–March 1
International Symposium on
Engineering Secure Software
and Systems,
Rocquencourt, France,
Contact: Valerie Issarny,
Email: Valerie.issarny@inria.fr

February 27–March 1
Multimedia Systems Conference
2013,
Oslo, Norway,
Sponsored: SIGMM,
Contact: Carsten Griwodz,
Email: griff+acm@ifi.uio.no

March
March 3–6
ACM/IEEE International
Conference on Human-Robot
Interaction,
Tokyo, Japan,
Sponsored: SIGART and
SIGCHI,
Contact: Hideaki Kuzuoka,
Email: kuzuoka@iit.tsukuba.ac.jp

mailto:bertino@cerias.purdue.edu
mailto:magaliis@pmwcintl.com
mailto:nicolau@ics.uci.edu
mailto:sharad.agarwal@microsoft.com
mailto:sharad.agarwal@microsoft.com
mailto:Valerie.issarny@inria.fr
mailto:griff+acm@ifi.uio.no
mailto:kuzuoka@iit.tsukuba.ac.jp

36 communications of the acm | february 2013 | vol. 56 | no. 2

viewpoints

taining similar services in-house. By
producing trustworthy cloud service
certifications, cloud adopters are able
to identify risks and benefits of indi-
vidual cloud services and consider
those in their adoption decisions.

Currently, organizations such as
Cloud Security Alliance and EuroCloud
are launching cloud certification pro-
grams for individuals, providers, or
services. We emphasize the need for
broadly accepted, established, and
feasible cloud service certification so-
lutions as well as trustworthy auditing
institutions. Time will tell if certifica-
tions can mitigate challenges concern-
ing transparency, trust, and accep-
tance and whether current providers
can cope with the outlined challenges
of a certification itself. We want to mo-
tivate researchers and practitioners
to engage in topics concerning cloud
service certifications. We believe in-
troducing a certification for cloud ser-
vices is one possible way to address the
current gaps and issues in cloud com-
puting, and that it is a step forward to
a more trustworthy and transparent
cloud computing environment.	

References
1.	A rmbrust, M. et al. A view of cloud computing.

Commun. ACM 53, 4 (Apr. 2010), 50–58.
2.	D ellarocas, C. The digitization of word of mouth:

Promise and challenges of online feedback mechanisms.
Management Science 10, (2003) 1407–1424.

3.	D ünnebeil, S. et al. Determinants of physicians’
technology acceptance for e-health in ambulatory care.
International Journal of Medical Informatics, 2012;
DOI: 10.1016/j.ijmedinf.2012.02.002.

4.	E uropean Commission, Cloud Computing: Public
Consultation Report, European Commission, 2011;
http://ec.europa.eu/information_society/activities/
cloudcomputing/docs/ccconsultationfinalreport.pdf.

5.	F assnacht, M. and Koese, I. Quality of electronic
services. Journal of Service Research 9, 1 (2006), 19–37.

6.	M arston, S. et al. Cloud computing—The business
perspective. Decision Support Systems 51, 1 (2011),
176–189.

7.	M ayer, R.C., Davis, J.H., and Schoorman, F.D. An
integrative model of organizational trust. Academy of
Management Review 20, 3 (1995), 709–734.

8.	 Pavlou, P. and Gefen, D. Building effective online
marketplaces with institution-based trust. Information
Systems Research 15, 1 (2004), 37–59.

9.	S unyaev, A. and Chornyi, D. Supporting chronic disease
care quality: Design and implementation of a health
service and its integration with electronic health
records. ACM Journal of Data and Information Quality
3, 2 (2012), 1–21.

Ali Sunyaev (sunyaev@wiso.uni-koeln.de) is an assistant
professor in the Department of Management, Economics,
and Social Sciences at the University of Cologne in
Germany.

Stephan Schneider (schneider@wiso.uni-koeln.de) is a
doctoral researcher in the Department of Information
Systems and Systems Development at the University of
Cologne.

Copyright held by author.

mon denominator standards, which
in turn would undermine the desired
outcomes of a certification.

˲˲ Trustworthy certification institu-
tions need to be appointed in order to
ensure acceptance of the certification.
Decision makers of cloud service pro-
viders and cloud adopters must trust
the certification authority; otherwise,
the credibility of certified cloud servic-
es would be undermined.

˲˲ Existing cloud service certifica-
tions are valid for a predefined time-
frame (usually two years) and only
provide a snapshot of the situation be-
fore and during the time of the audit.
Whether the certified criteria are met
during the validity period cannot be
ensured. By implementing automated
certification processes for continuous
monitoring and refreshment of the
certification in addition to periodic
on-site audits (for example, bienni-
ally), a constant level of service quality
can be monitored and proved, which
regular on-site audits cannot accom-
plish in an economic manner.

Conclusion
Considering the current situation on
the cloud computing market, unre-
solved obstacles need to be addressed
for effective development and diffu-
sion of innovative cloud services. A
standardized certification for cloud
services aims to establish trust and
improves acceptance of the cloud
computing paradigm. Small, medi-
um, and large cloud service provid-
ers as well as cloud users can benefit
from the outcomes of established
cloud service certifications. By achiev-
ing practice-oriented and market-rel-
evant certificates for their cloud ser-
vices, small and regionally oriented IT
service providers can stand out in the
marketplace and gain a broader cus-
tomer base. Furthermore, mid-sized
IT service providers can implement
legally compliant, customer-specific
requirements, which cannot be sat-
isfied by usually highly standardized
solutions of large service providers.
By signaling valuable qualities like
transparency of their services, legal
compliance, reliable service levels,
and a high level of security at their
data centers, large providers can at-
tract other cloud service providers to
utilize their services instead of main-

Our new URL is
ComputingReviews.com

A daily snapshot of what is new
and hot in computing.

Computing Reviews
is on the move

C

M

Y

CM

MY

CY

CMY

K

1962 CR Arrow Circle Ad-ThirdVERT-F.pdf 2/9/2012 5:00:14 PM

http://ComputingReviews.com
mailto:sunyaev@wiso.uni-koeln.de
mailto:schneider@wiso.uni-koeln.de
http://ec.europa.eu/information_society/activities/cloudcomputing/docs/ccconsultationfinalreport.pdf
http://ec.europa.eu/information_society/activities/cloudcomputing/docs/ccconsultationfinalreport.pdf

february 2013 | vol. 56 | no. 2 | communications of the acm 37

V
viewpoints

doi:10.1145/2408776.2408801	 Anita Jones

T
h e numb e r o f postdoctoral
researchers in computer
science slightly more than
doubled in the decade end-
ing in 2008. It is troubling

that the number has doubled again
in the subsequent three years. This
changes the demographics of the
academic computing research enter-
prise, in particular. In this Viewpoint,
I discuss some of the different facets
of this troubling trend.

The chart shown in the accompa-
nying figure plots data from the 2012
Taulbee surveya excluding data on grad-
uates going into industry and those in
the Taulbee “other” category. The data
indicates tenure-track faculty positions
for new Ph.D.’s have declined steadily
since 2004 from 224 to 124 in 2011
while the number of postdoc positions
greatly increased. In 2011, new Ph.D.
graduates accepted twice as many post-
doc positions as tenure-track positions.
Around 2003 there were approximately
2.5 times more tenure-track positions
than postdoc positions.

Most graduate departments primari-
ly train Ph.D. students for a tenure-track

a	 Unless otherwise documented, the statis-
tics quoted in this Viewpoint are extracted
from the Taulbee survey, an annual survey of
Ph.D.-granting departments in computer sci-
ence, computer engineering, and informa-
tion systems conducted by the Computing
Research Association.

faculty position in a research institu-
tion, though there is now some diversity
in career path training in some univer-
sities. The Taulbee statistics document
that most graduates will not achieve an
academic tenure-track position. A mere
7% of graduates were hired directly into
tenure-track faculty positions in 2011.
Teaching faculty and research faculty
have roughly stayed constant.

In past years computer science has
been notable for the low level of post-
docs. The National Science Board re-
ports that in 2006, of the total number
of postdocs in science and engineering

disciplines, approximately 1% were in
computer science. Engineering, phys-
ics, and chemistry each had between
4% and 9.5% of the total.3

The Computing Community Con-
sortium created the CIFellows Pro-
gram to provide postdocs with funds
from the National Science Foundation
during the economic downturn at the
end of the last decade in order to retain
Ph.D.’s in research and teaching when
universities dramatically curtailed hir-
ing. With an improving economy that
program has served its purpose and is
concluding. The three-year program

Viewpoint
The Explosive Growth
of Postdocs in
Computer Science
Considering the factors influencing the recent rapid increase
in the number of postdoctoral positions in computer science.

300

250

200

150

100

50

0

Tenure-track faculty

1998 1999 2000 2011

Hiring of computer science Ph.D.’s in academia, as a three-year rolling average 1998–2011.

Research faculty

N
u

m
b

er
s

of
 n

ew
 P

h
.D

.’s
 h

ir
ed

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

PostdocsTeaching faculty

38 communications of the acm | february 2013 | vol. 56 | no. 2

viewpoints

ulty member was paid an average of
$70,000. At the same time the compara-
ble postdoc salary was $50,000. In some
universities postdocs have fewer or
lesser benefits in areas such as health
care, retirement, access to childcare,
and access to wellness centers.

Second, the postdoc generally fo-
cuses only on their individual postdoc
objectives without other distractions
and responsibilities. Unless there is
good mentoring and a strong collegial
relation around a postdoc, that person
could become isolated. In some cases,
postdocs are directed to work on re-
search projects or take on teaching ob-
ligations that do not advance their long-
term career trajectories, simply because
they are cheap labor for their advisors.

Third, the postdoc is mature in her
or his intellectual power. Yet, at most
universities and in industry, postdocs
are isolated from participation in the
discussions, much less the decisions,
that set the future of the organization.
Typically, postdocs cannot be principal
investigators on grant proposals.

Last, the postdoc position is taken
shortly after the degree. This is most of-
ten the time of life when couples start
families. A postdoc position is not per-
manent; therefore the individual must
do another job search, and typically
will move from one geographic locale
to another with the associated career
disruption, personal disruption, and
expense. Relocation is more difficult
for women and men who are nurturing
a young family. Delaying the bearing of
children has health implications for
women. In summary, there are distinct
downsides to the postdoc experience.

Balance in the Academic
Research Enterprise
The dramatic increase in postdocs
changes the overall balance in the num-
ber of participants of different kinds in
the academic research enterprise, that
is the number of tenure-track faculty,
graduate students, research faculty,
teaching faculty, and postdocs. What
effect does that have on other mem-
bers of the enterprise?

When a recently graduated Ph.D.
moves to a new research project, that
person brings fresh ideas and even dif-
ferent assumptions about research. It
is possible that a rapidly flowing pipe-
line of postdocs moving through a re-

funded 127 postdocs, a small number
in relation to the postdoc growth in
computer science.b

Biomedical sciences have gotten
very badly out of balance with respect
to the number of postdocs and the long
delay before they, on average, take per-
manent positions. The average age of
first-time principal investigators ob-
taining R01-equivalent research fund-
ing (the major source of support for
young investigators in the biomedical
sciences) from the National Institutes
of Health has risen to 44 years as of
2011, up from about 36 years in 1980.2
To what degree will computer science
move in the same direction?

The Postdoc Experience
A postdoc position is a training oppor-
tunity in which a person who has just
completed a Ph.D. can deepen his or
her expertise and research skills for a
short period of time, en route to a per-
manent position. A postdoc—the per-
son—may accept such a position for
different reasons: to work under the
tutelage of a specific expert, perhaps
in a more highly regarded institution
than his or her Ph.D.-granting univer-
sity; to gain exposure in a related area;
to remain research active while wait-
ing for a faculty position; or to change
fields altogether. The postdoc can have
reasons that go beyond “training.”
For example, the postdoc may wish to
strengthen a research portfolio in an-
ticipation of a competitive job search
or to synchronize job search timing
with that of a spouse.

A postdoc experience can genuinely
advance an individual’s career: sharpen
research skills, insight and knowledge;
permit increase in publications; and
enlarge the group of peers who know
and respect the individual’s work.

The postdoc experience also has
negatives. First, postdocs in academia
are paid at a rate that is substantially
lower than close peers. Taulbee data
indicates the average (not starting)
nine-month salary for an assistant fac-
ulty member was $90,000 in 2010. A
research faculty member was paid an
average of $81,000, and a teaching fac-

b	 The author has been a principal investigator on
all the grants supporting the Computing Com-
munity Consortium and has been a member of
its governing Council from founding to date.

ACM Conference
Proceedings

Now Available via
Print-on-Demand!

Did you know that you can
now order many popular

ACM conference proceedings
via print-on-demand?

Institutions, libraries and
individuals can choose
from more than 100 titles
on a continually updated
list through Amazon, Barnes
& Noble, Baker & Taylor,
Ingram and NACSCORP:
CHI, KDD, Multimedia,
SIGIR, SIGCOMM, SIGCSE,
SIGMOD/PODS,
and many more.

For available titles and
ordering info, visit:
librarians.acm.org/pod

ACM Conference
Proceedings

Now Available via
Print-on-Demand!

http://librarians.acm.org/pod

viewpoints

february 2013 | vol. 56 | no. 2 | communications of the acm 39

work is correlated with the number of
publications consistent with a post-
doc, rather than a number of publica-
tions consistent with a recent Ph.d.
degree. Over the decades we have built
a vibrant industrial and academic
computer science research enterprise
based on hiring for quality, not hiring
for extensive publication.

I conclude that the increase in post-
docs derives from desires of the re-
search organizations to meet their own
changed objectives, for example, in re-
search project management and hiring
or from a shortage of supply of high-
quality Ph.D. students, not from a per-
ception of training shortfalls among
Ph.D. graduates.

Community Action
I recommend the community, with
leadership from the Computing Re-
search Association, take action.

˲˲ Get the data. Taulbee surveys do
not provide all the information needed
to understand the increase in postdocs
and their later career paths.

˲˲ Understand this trend and articu-
late clearly what constitutes the best
balance among different categories of
positions in the research community
going forward.

˲˲ Better manage the postdoc experi-
ence to deliver high value to the post-
docs themselves.

Postdocs are frequently isolated,
and sometimes benignly neglected. If
the field requires many more postdocs
for its own purposes, then the sponsor-
ing departments and laboratories—
not simply the mentors—should take
responsibility to ensure the experience
substantially contributes to the post-
doc still in training. NSF now requires
a postdoc training supplement to pro-

posals that fund postdocs. A postdoc
should be given:

˲˲ A mentor who provides adequate
guidance;

˲˲ A supportive set of colleagues in
tenure-track faculty, other postdocs
and research faculty who provide the
postdoc with rich and frequent intel-
lectual interaction;

˲˲ Skills in conducting research from
proposal preparation to presentation
and research group management; and

˲˲ Career development support with
thoughtful exposure to alternative ca-
reer paths, for example industrial re-
search and development positions and
bridges to other fields where computer
science has a substantive role to play.

The sponsoring department or re-
search laboratory—not only the men-
tor—should proactively support and
enforce high standards for all four.

In addition, the Ph.D. advisor—who
typically regards a Ph.D. student as an
“intellectual descendent”—may want
to continue vigilance on behalf of the
Ph.D. student who accepts a postdoc
position. The advisor should moni-
tor to ensure the host organization for
the postdoc is providing an experience
that will genuinely advance the post-
doc’s career.

The increase in the number of post-
docs is a major change for our field. We
should manage it thoughtfully. A docu-
ment outlining “best practices” for
nurturing postdocs in computer sci-
ence can be found on the Computing
Research Association website (http://
cra.org/resources/bp-view/best_prac-
tices_memo_computer_science_post-
docs_best_practices/).	

References
1.	C omputing Research Association, Taulbee Survey,

1996–2011; http://www.cra.org/resources/taulbee/.
2.	N ational Institutes of Health Office of Extramural

Research. NIH Extramural Data Book: Average Age
of Principal Investigators; http://report.nih.gov/
NIH_Investment/PDF_sectionwise/NIH_Extramural_
DataBook_PDF/NEDB_SPECIAL_TOPIC-AVERAGE_
AGE.pdf.

3.	 National Science Board, Science and Engineering
Indicators 2010; http://www.nsf.gov/statistics/seind10/.

Anita Jones (jones@virginia.edu) is University Professor
Emerita and past Department Chair and faculty member
in the Department of Computer Science at the University
of Virginia in Charlottesville.

I thank Erwin Gianchandani for his thoughtful discussion
of this issue as we drafted the first Computing Research
Association paper on the subject of postdocs (http://cra.
org/postdocs/) and for the preparation of the data used in
the figure in this Viewpoint.

Copyright held by author.

search organization introduces new
knowledge, broader interdisciplinary
knowledge, more vitality, and a pro-
pensity to challenge assumptions—all
in a way that students and the perma-
nent faculty do not.

Perhaps the increase in postdocs
is due to funding agencies insist-
ing on project milestones that have a
short duration or even a development,
versus research, character. Perhaps
postdocs are used to help manage re-
search performance against tighter
grant constraints.

One can make the simplistic as-
sumption that the total computing
research budget is fixed and does not
increase or decrease with the number
of postdocs. More postdocs means that
fewer graduate students can be sup-
ported. Principal investigators make
a choice among the categories—re-
search faculty, students, and post-
docs—and to a lesser degree to tenure-
track faculty as they craft proposals.

Alternatively, the increase in post-
docs may indicate a maturation of the
field. Postdocs are more prevalent in
math and the physical sciences. Post-
doc positions are historically more
prevalent in theoretical areas of com-
puter science, as well.

Certainly, the explosive increase of
postdocs in the life sciences is trace-
able back to funding. When the NIH
budget doubled during the 1990s, ei-
ther postdocs were the simplest way
to rapidly expend the funding with no
permanent obligations, or they were a
way to deal with the overproduction of
Ph.D.’s relative to tenure-track faculty
positions. It is not clear that the life sci-
ences expected to increase the number
of postdocs so dramatically.

I have two principal concerns. First,
I am concerned that our field is redefin-
ing “career progression” for research-
ers by expecting Ph.D. graduates to
accept one to two years (or even more)
of postdoc training before attaining a
first, independent, permanent posi-
tion. If that is necessary, then the com-
munity should clearly articulate why.
I see no evidence that the increase de-
rives from today’s students not being
as prepared as in the past.

Second, I am concerned that some
academic departments and research
laboratories are redefining hiring cri-
teria so the quality of a candidate’s

The increase in
the number of
postdocs is a major
change for our field.
We should manage
it thoughtfully.

http://www.cra.org/resources/taulbee/
http://report.nih.gov/NIH_Investment/PDF_sectionwise/NIH_Extramural_DataBook_PDF/NEDB_SPECIAL_TOPIC-AVERAGE_AGE.pdf
http://www.nsf.gov/statistics/seind10/
mailto:jones@virginia.edu
http://report.nih.gov/NIH_Investment/PDF_sectionwise/NIH_Extramural_DataBook_PDF/NEDB_SPECIAL_TOPIC-AVERAGE_AGE.pdf
http://report.nih.gov/NIH_Investment/PDF_sectionwise/NIH_Extramural_DataBook_PDF/NEDB_SPECIAL_TOPIC-AVERAGE_AGE.pdf
http://report.nih.gov/NIH_Investment/PDF_sectionwise/NIH_Extramural_DataBook_PDF/NEDB_SPECIAL_TOPIC-AVERAGE_AGE.pdf

40 communications of the acm | february 2013 | vol. 56 | no. 2

practice

T h e r e i s a n authentication plague upon the land.
We have to claim and assert our identity repeatedly
to a host of authentication trolls, each jealously
guarding an Internet service of some sort. Each troll
has specific rules for passwords, and the rules vary
widely and incomprehensibly.

Password length requirements vary: Dartmouth
wants exactly eight characters; my broker, six to eight;
Wells Fargo, eight or more. Special characters are
often encouraged or required, but some characters
are too special: many disallow spaces, single or
double quotes, underlines, or hyphens. Some systems
disallow certain characters at the beginning of the
password; dictionary checks abound, including
foreign language dictionaries.

Sure, brokerage, bank, and medical sites need
to protect accounts from unauthorized use. So do
shopping sites such as Amazon. An email account
might be just as important: ask Sarah Palin.
The value of an account can change over time:
perhaps a new online store is added to a previously
unimportant account.

 Authentication may be more im-
portant to the service provider than to
the client: do I care if someone gains
access to my newspaper account?
(The terms of use undoubtedly say I
am supposed to care, but I do not.) In
this case, the newspaper’s very require-
ment of a password is a nuisance, and
the password-“strengthening” rules
just increase my annoyance. The mar-
ketplace does work here: studies show
that competitive pressure tends to
force sites toward simpler passwords.4

Not only do these authentication
rules vary widely, the rules themselves
are often considered to be part of the
security secret and not available at
login time, when a hint about the rules
would be helpful. I call these eye-of-
newt password rules: they remind me
of the formulae for magic potions from
Shakespeare. They are often particular,
exacting, and sometimes difficult to
satisfy. Can you think of a long pass-
phrase that does not repeat any charac-
ter more than four times?

The problem is emergent: if we
had only one account, authentica-
tion would be much easier. But an
active Internet user can have one- or
two dozen accounts, some impor-
tant, some not. These authentication
trolls bother most online users, and it
is easy to elicit a litany of complaints
from casual users.

Many of today’s rules are rooted
in the deep past of security concerns,
when access, threats, and targets were
different. Many of these ideas were
presented in the Password Manage-
ment Guideline, (Technical Report
CSC-STD-002-85), published by the
Department of Defense Computer
Security Center (DoD CSC) in 1985.2
Known as the Green Book, this re-
port was one of the Rainbow Series of
books put out by the U.S. government
in the 1980s and 1990s. Its advice was
good at the time, and much of it still
holds up, but many of our password
aphorisms come from dated assump-
tions about threats and technology.

This is not a criticism of the original
authors or their document: no sensible

Rethinking
Passwords

doi:10.1145/2408776.2408790

 Article development led by
 queue.acm.org

Our authentication system is lacking.
Is improvement possible?

By William Cheswick

http://queue.acm.org

february 2013 | vol. 56 | no. 2 | communications of the acm 41

P
h

o
t

o
g

r
a

p
h

 b
y

 S
t

u
d

i
o

 3
7

security person would expect these
rules to stand unamended for decades.
The lore has simply not kept up with
the threats and vulnerabilities.

The Green Book In Today’s World
The Password Management Guideline
came out shortly after the more-fa-
mous Orange Book (Trusted Com-
puter System Evaluation Criteria). The
Green Book was the DoD’s manage-
ment guideline for access to classified
or sensitive government computers. It
is also the basis for most of the current
password rules. Most computer access
at the time was either via local batch
processing (with cards!) or through
local or remote serial lines using ter-
minals. The PC and Macintosh were
available, but they were not especially
relevant to secure computing and cer-
tainly were not networked.

Here is an important note found
early in the report:

Because it is anticipated that diverse
user communities will adopt this guide-
line, all recommendations are presented
in general rather than specific terminol-
ogy…Where features require the setting
of a specific value (for example, password
maximum lifetime), it is suggested that
these be designed as parametric settings
leaving the determination of exact values
to local security management…

The question for today’s security
specialists is, what still makes sense
from the 1985 guidelines? The cur-
rent authentication mess suggests
that we have not kept up with this task.
Perhaps this article will spur some re-
thinking along these lines.

The DoD report offered specific ad-
vice about authentication and pass-
words. It stated that in a password-
based authentication mechanism
implemented on an ADP (automated
data processing) system, passwords
are vulnerable to compromise because
of five essential aspects of the pass-
word system:

1.	 A password must be initially as-
signed to a user when enrolled on the ADP
system. This rule is still fine. Many sites
have used a standard password for

the initial password but skipped the
requirement to force a change to the
default password—an attacker could
simply try a number of accounts with
the default password to break into a
system. The same held for some reset
password schemes. One solution that
encouraged a change of default pass-
word was to set the default or recovery
password to “I am stupid.”

2.	 A user’s password must be changed
periodically. I will discuss this in more
detail later.

3.	 The ADP system must maintain a
password database. This rule is still fine.

4.	 Users must remember their pass-
words. It turns out this rule is unrea-
sonable, especially for machine-gen-

erated passwords. These passwords
are simply not that memorable, and
to memorize multiple ones for a long
time is beyond the abilities of most
people. Also, people logged into many
fewer systems in 1985.

5.	 Users must enter their passwords
into the ADP system at authentication
time. Rule 5 is incomplete: it is only
single-factor authentication. The alter-
natives were undoubtedly well known
to the authors, but probably too expen-
sive for general deployment. I suspect
that a remark to this effect at that time
might have changed our world.

Furthermore, according to the report:
˲˲ Users should be able to change their

own passwords. This is a good idea.

42 communications of the acm | february 2013 | vol. 56 | no. 2

practice

sample operating systems, found with
the command find / -user root
-perm -4000 –print.

Each of the examples in Table 1 is a
potential root compromise, and an at-
tacker can often find at least one.

˲˲ Passwords should be changed on a
periodic basis to counter the possibility
of undetected password compromise.

The most obvious threat to the se-
curity provided by a password system
is from the compromise of passwords.
The greater the length of time during
which a password is used for authenti-
cation purposes, the more opportuni-
ties there are for exposing it. In a use-
ful password system, the probability of
compromise of a password increases
during its lifetime.

This section refers to Green book
Appendix C, which gets to the meat
of password strength and lifetime in
the face of dictionary attacks. Several
simple formulae are offered (an ASCII
layout and typos makes the math more
difficult to follow in the online ver-
sions), and results computed for a typi-
cal case of the time.

The goal is to resist a year’s worth
of dictionary attacks with a cracking
probability of 10–6 (or 10–20 for sensi-
tive systems). To give one of the re-
port’s examples, a nine-character
password of only uppercase letters
can resist a yearlong dictionary attack
over a 30-character-per-second ter-
minal session, assuming 8.5 guesses
per minute. The report offers similar
computations for uppercase alphanu-
meric characters and words selected
from a 23,300-entry dictionary of Eng-
lish words from four to six characters
in length. The authors admit a much
higher guessing rate if a file on hand is
protected by a password.

Let’s plug in the numbers for a
modern dictionary attack using 100
million and seven billion trials per
second. The first is an easy rate for a
multicore machine running on typi-
cal password-hashing algorithms. The
second rate is claimed for attacks im-
plemented on modern GPUs by a com-
mercial source. These are somewhat
conservative numbers in an age of
multicore processors, clusters of com-
puters, and botnets. If you think they
are too aggressive, wait a year. Table 2
shows the cracking time and password
change rates for some variations.

Some systems in the deep past did not
allow this.

˲˲ Passwords should be machine-gener-
ated rather than user-created. It is true
that machine-generated passwords
tend to be much stronger: the work
factor needed to crack them is easy to
compute and noncontroversial. Not so
for human-created passwords, where a
sea of associations and language rules
greatly reduces the search space.

˲˲ Certain audit reports (for example,
date and time of last login) should be pro-
vided by the system directly to the user.
This gives the user an opportunity to
spot unauthorized accesses. The prac-
tice was widely adopted in Unix sys-
tems with the login(1) command. It
is still a fine idea.

˲˲ User ID is a unique symbol or charac-
ter string that is used by an ADP system
to uniquely identify a user. The security
provided by a password system should
not rely on secrecy of the user’s ID. This
is a typical cryptographic assumption,
that only the key is secret, not the user
ID. (I wish this were true for the Social
Security Number in the U.S.) Obscuring
the user ID can be a useful barrier to
wholesale attacks, however, especially
against massive online systems.

˲˲ Throughout the lifetime of an ADP

system, each user ID should be assigned
to only one person. In other words, do
not share accounts and their associ-
ated passwords. This is still a good idea
for important accounts, because it may
aid in logging and attribution. This can
be especially important for shared ac-
counts when a marriage is failing: for-
mer partners can be very nasty.

˲˲ All user IDs should be revalidated
periodically. This is a good idea, but it
is rarely implemented. Many break-
ins have occurred on unused or fallow
accounts. Some systems implement a
“we-haven’t-seen-you-in-a-while” in-
crease in authentication requirements,
a good idea. A modern version includes
stronger authentication when connec-
tions come from unusual locations or
IP addresses.

˲˲ The simplest way to recover from the
compromise of a password is to change
it. Ah, the good old days! This is just
wrong now. Once an account is com-
promised, the rot sets in and spreads
through further attacks and transitive
trust. Other accounts are attacked with
the same password, often successfully.
Bank accounts are drained (at least
temporarily—personal exposure has
declined on this,3 plasma screens or-
dered, billing addresses changed, and
identities stolen.)

On Unix/Linux personal accounts,
a stolen password is just the begin-
ning. Systems are rooted, backdoors
installed, and, often, other security
weaknesses are fixed. SSH (secure
shell) clients are installed to capture
other passwords. It tends to be easier
to root a Unix host given a user ac-
count. Table 1 is a sample of the num-
ber of SUID(root) programs on a few

Table 1. Number of setuid(root)
programs found with find.

System Number of programs

Linux (Ubuntu) 19

FreeBSD 9.0 38

OSX 10.8.2 34

FreeBSD 7.2 46

Table 2. Cracking time and password change rates.

Search
space
(bits)

7 billion
trials/second

10 million
trials/second

Scheme Cracked in Change time Cracked in Change time

8-character,
full alphanumeric

47.6 0.36 mins. 31.19 ms. 252.71 days 21.83 sec.

8-character,
eye-of-newt

52.3 9.25 days 799.40 ms. 17.74 years 559.58 sec.

11-character,
eye-of-newt

71.9 20,390 years 7 days 1.43E+07 years 14.3 years

13-character,
full alphanumeric

77.4 906,123 years 331 days 2.32E+11 years 634 years

12 character,
eye-of-newt

78.5 1,896,229 years 692 days 4.84E+11 years 1,327 years

practice

february 2013 | vol. 56 | no. 2 | communications of the acm 43

Once an account
is compromised,
the rot sets in and
spreads through
further attacks and
transitive trust.
Other accounts are
attacked with the
same password,
often successfully.

The second scheme shown in the
table is tougher than passwords con-
sidered secure these days: it is eight
random characters chosen from the 93
characters found on a keyboard (a bit
more than eye-of-newt). This strong
password needs to be changed every 31
milliseconds for security purposes. (My
crude spreadsheet for exploring this is
available on my Web site.1)

The last two schemes in the table
roughly meet the criteria of this docu-
ment: the password may be changed
annually without risking more than a
one-in-a-million chance of compro-
mise after a yearlong dictionary attack.
These correspond to a work factor of
77–79 bits, which might surprise you
as being much larger than typical pass-
word strengths actually required, usu-
ally from 20 to the mid-40s.3 The added
bits come from the requirement of 10–6
guessing success probability, which
adds 20 bits to the password length.
(The spec actually calls for a probabil-
ity of 10–20 for classified access: that
adds 66 bits!)

The one-in-a-million requirement
is probably unreasonable. With an in-
stallation of very expensive brute-force
hardware, I am unlikely to deploy it for
a year to gain access to a high-value tar-
get if my chances of success are, say,
1%. On the other hand, history is full of
examples of defenders underestimat-
ing the amount of work an attacker is
willing to undertake.

Other Aphorisms
˲˲ Do not use the same password on mul-

tiple services. This is still a very good
idea, though I realize that it is a pain in
the neck. If I break into your Facebook
account, then I am going to try that
same password on LinkedIn, Gmail,
iTunes, and so on. This attack works
beautifully, because most people do
not follow this rule.

Most practitioners who do follow
this rule use a basic password, modi-
fied by some service-dependent por-
tion. If that variable portion is obvious,
they probably should not bother. In
this case, it would probably be better
to choose different, strong passwords
and ignore the next piece of advice.

˲˲ Do not write your passwords down.
This rule depends very strongly on your
threat model: what are you afraid of? In
the deep past, many attacks came from

fellow students, co-workers, family
members, and on-site spies. The mov-
ie trope of checking for Post-It notes
around the desk worked, and still does.

Writing your passwords down, how-
ever, is probably much safer than us-
ing the same password on multiple
machines. In most cases today, the
attacker does not have to be present
to win. Your machine can be compro-
mised from very far away. Or the attack-
er leaves infected USB thumb-sticks in
the company parking lot. The check-
the-Post-It attack is much less com-
mon than networked hacking attacks.

Of course, there is no need to make it
too easy. Write down a comment or vari-
ation on the password that is sufficient
to remind you of the real password.
Sometimes I find a reminder of the par-
ticular site’s eye-of-newt rule is enough.

Password wallets are a terrific idea
for storing passwords, but they get you
back in the game of storing secrets on
possibly unsecured computers with
network access. The yellow pad in your
office is probably more secure.

˲˲ Change your passwords often. This
is often enforced by the authentica-
tion service, and it is generally a bad
idea—and not useful. A good, strong
password that you can remember is
difficult to create and probably diffi-
cult to remember, especially if there
are different passwords for different
accounts. When a password is changed
by force, all that goodness goes away,
requiring a whole new effort.

This can be a particular problem
for rarely used passwords. For exam-
ple, corporate-provided health care in
the U.S. requires employees to review
and make changes to coverage op-
tions annually. These systems require
strong authentication and tend to
be used exactly once a year, so to re-
member the password at all, I either
write it down or rely on the password-
recovery scheme. On some systems,
I have cycled through several strong
passwords over a longer period than
the authentication server remembers.
Those really good passwords are too
good to let go.

What We Have Learned
It is simply poor engineering to expect
people to choose and remember pass-
words that are resistant to dictionary
attacks. User training does not work:

44 communications of the acm | february 2013 | vol. 56 | no. 2

practice

˲˲ fooled otherwise faustus
˲˲ exclaimed democrat cruz
˲˲ deauville attaches ornamented
˲˲ acutely jeep pasha

These give a search space of more
than 43 bits, matching the estimated
strength of today’s strongest pass-
words. They also offer a chance to ex-
pand one’s vocabulary. Alas, they prob-
ably fail most eye-of-newt rules.

Suggestions
My dream is that authentication might
become a lot less odious, maybe even
fun. Passwords and passphrases should
be easier to type and include automatic
correction for typing and “tapographi-
cal” errors (on smart phones). This can
be done without loss of security.

Why do the eye-of-newt rules re-
main? Account unlocking is a problem,
requiring relatively costly or unsecured
secondary authentication efforts. In
some cases, it would be appropriate to
have someone else—for example, an
authorized spouse on a shared back
account—enable the temporary au-
thentication and subsequent password
change. “Honey, I did it again” could
be much easier than getting through to
an 800 number on a weekend.

It would be nice to have more than
one way to log into a site, each way
having about the same strength. This
gives the users a choice of authentica-
tion methods, with other methods as a
backup login. (Mother’s maiden name
is not what I am talking about here.
Secondary passwords tend to be much
weaker and should not be used. Secu-
rity history is full of attacks that force
the defender to drop back to second-
ary, less effective defenses.)

If one tries the same password twice
in a session, that should not count as
two tries. We all make, or suspect that
we make, typographical errors. Did I
enter that password correctly? I will try
again more carefully. This should not
count as a second wish for the pass-
word troll.

Conclusion
I am not optimistic that these changes
will happen rapidly, or even at all. There
is a huge installed base out there. “We
do the same thing as everybody else” is
an effective legal defense against mal-
feasance, so why change things? (I hate
the word legacy!)

people will write down their pass-
words regardless.

Fortunately, dictionary attacks are
rarely the problem. They are com-
pletely frustrated by getting out of the
game: limit the number of attempts to
a handful, then disable the account.
Multiple-factor authentication and
better recovery from compromise have
also helped out.

This is not a new idea. I got my first
bank ATM card in the early 1970s; it
had a four-digit PIN. I do not recall if
I was allowed to select the PIN myself,
but it did not matter: it was my only
PIN, and the service was unique and
useful enough that I committed the
PIN to memory. If I forgot it, the card
would be eaten, or the account locked.
This policy is still used in the U.S. bank-
ing system some four decades later,
proof that it is working. It is also not a
rare solution. Most authentication sys-
tems lock a user out after several tries.

More importantly, the threats have
changed. Dictionary attacks on pass-
words are not nearly the problem they
used to be. Today’s threats include:

˲˲ Keystroke loggers record any pass-
word, no matter how complex.

˲˲ Phishing sites capture the pass-
words of the unwary, and it is very easy to
be unwary. The mail reader should pres-
ent any URL found in an email with red
flags and warnings, especially if it refers
to an unfamiliar domain.

˲˲ Password files from poorly protect-
ed servers spill our secrets across the In-
ternet, eye-of-newt passwords included.

˲˲ Sites that have passed state-of-the-
art security audits are later found to have
been leaking credit card information
for years. Best-in-practice may be good
enough for the lawyers, but it really is
not solving very hard security problems.

Client systems are hardly secure—
we have built our houses on sand. Why
should any mouse click present a secu-
rity threat?

Dictionary attacks can be launched
on password wallets, SSH agent pass-
phrases, PGP (Pretty Good Privacy) key
rings, and stolen password databases.
For strong passwords, words, rather
than eye-of-newt strings, are easier to
type and remember. From the Brown
corpus’s top 23,300 common English
words, I generated several random
passphrases in the spirit of STD-002
and xkcd:5

Authentication systems are vital,
and changes to them can produce
widespread and embarrassing failures.
It is not clear that easier authentication
would provide a market advantage. Is a
company less secure than another com-
pany because it is easier to log into?
Will it gain market share by doing so?

In spite of all this, the system
seems to be working. We are leak-
ing military and industrial secrets to
attackers all over the world, but mil-
lions of people use the Internet suc-
cessfully every day, and it is an im-
portant part of the world’s economy.
Somehow, we get by.

Finally, I would like to see these
systems engineered such that the user
needs to remember only one security
maxim: Don’t be a moron. Do not pick
a password that someone who knows
you can guess in a few tries, or that
someone watching you type can figure
out easily.

Unlike the eye-of-newt password
rules, this last rule makes sense to the
casual user and is easy to remember.
All we have to do is engineer the rest to
be reasonably secure.	

 Related articles
 on queue.acm.org

Security - Problem Solved?

John Viega
http://queue.acm.org/detail.cfm?id=1071728

Building Secure Web Applications

George V. Neville-Neil
http://queue.acm.org/detail.cfm?id=1281889

LinkedIn Password Leak: Salt Their Hide
Poul-Henning Kamp
http://queue.acm.org/detail.cfm?id=2254400

References
1.	C heswick, W. 2012; http://www.cheswick.com/ches/

papers/std-002-results.xls; and http://www.cheswick.
com/ches/papers/std-002-results.numbers.

2.	D epartment of Defense Computer Security Center.
Password Management Guideline, 1985.Technical
Report CSC-STD-002-85.

3.	F lorêncio, D. and Herley, C. Is everything we know
about password stealing wrong? IEEE Security and
Privacy 99 (2012). DOI 10.1109/MSP.2012.57.

4.	F lorêncio, D. and Herley, C. Where do security policies
come from?. In Proceedings of the Sixth Symposium
on Usable Privacy and Security (2012). ACM, NY,
DOI 10.1145/1837110.1837124. http://doi.acm.
org/10.1145/1837110.1837124.

5.	 xkcd; http://xkcd.com/936/.

William “Ches” Cheswick was formerly with Bell Labs,
Lumeta Corporation, and AT&T Shannon Lab. One of
his current projects is promoting better passwords. The
earliest password he can remember using is “polpis,”
a location in Nantucket. He now uses multiple random
words for important accounts, and writes stuff down.

© 2013 ACM 0001-0782/13/02

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1071728
http://queue.acm.org/detail.cfm?id=1281889
http://queue.acm.org/detail.cfm?id=2254400
http://www.cheswick.com/ches/papers/std-002-results.xls
http://www.cheswick.com/ches/papers/std-002-results.numbers
http://www.cheswick.com/ches/papers/std-002-results.numbers
http://doi.acm.org/10.1145/1837110.1837124
http://xkcd.com/936/
http://www.cheswick.com/ches/papers/std-002-results.xls
http://doi.acm.org/10.1145/1837110.1837124

february 2013 | vol. 56 | no. 2 | communications of the acm 45

Performance issues can be complex and mysterious,
providing little or no clue to their origin. In the absence
of a starting point—or a methodology to provide one—
performance issues are often analyzed randomly:
guessing where the problem may be and then changing
things until it goes away. While this can deliver results—

if you guess correctly—it can also be
time consuming, disruptive, and may
ultimately overlook certain issues. This
article describes system-performance
issues and the methodologies in use to-
day for analyzing them, and it proposes
a new methodology for approaching and
solving a class of issues.

Systems-performance analysis is com-
plex because of the number of compo-
nents and their interactions in a typical
system. An environment may be com-
posed of databases, Web servers, load
balancers, and custom applications, all
running upon operating systems—ei-
ther bare-metal or virtual. And that is just
the software. Hardware and firmware,
including external storage systems and

network infrastructure, add many more
components to the environment, any
of which is a potential source of issues.
Each of these components may require
its own field of expertise, and a company
may not have staff knowledgeable in all
the components in its environment.

Performance issues may also arise
from complex interactions between
components that work well in isola-
tion. Solving this type of problem may
require multiple domains of expertise
to work together.

As an example of such complex-
ity within an environment, consider
a mysterious performance issue we
encountered at Joyent for a cloud-
computing customer: the problem ap-

Thinking
Methodically
about
Performance

doi:10.1145/2408776.2408791

 Article development led by
 queue.acm.org

The USE method addresses shortcomings
in other commonly used methodologies.

by Brendan Gregg

http://queue.acm.org

46 communications of the acm | february 2013 | vol. 56 | no. 2

practice

analysis, as shown by the streetlight
anti-method. This is the absence of any
deliberate methodology. The user ana-
lyzes performance by selecting observ-
ability tools that are familiar, found on
the Internet, or found at random and
then seeing whether anything obvious
shows up. This hit-or-miss approach
can overlook many types of issues.

Finding the right tool can take a
while. The most familiar tools are
run first, even if they do not make the
most sense. This is related to an ob-
servational bias called the streetlight
effect,17 named after a parable:

A policeman sees a drunk hunting
for something under a streetlight and
asks what he is looking for. The drunk
says he has lost his keys. The police-
man cannot find them either, and
asks if he lost them under the street-
light. The drunk replies: “No, but this
is where the light is best.”

The performance equivalent would
be looking at top(1), not because it
makes sense but because the user
does not know how to read other tools.

Learning more tools helps but is
still a limited approach. Certain sys-
tem components or resources may be
overlooked because of a lack of ob-
servability tools or metrics. Further-
more, the user, unaware that the view
is incomplete, has no way of identify-
ing “unknown unknowns.”

Better performance-analysis meth-
odologies are available that may solve
issues before you run any tools at all.
These include the problem statement
method, workload characterization,
and drill-down analysis.

Problem Statement Method
The problem statement method, com-
monly used by support staff for col-
lecting information about a problem,
has been adapted for performance
analysis.9 It can be the first methodol-
ogy attempted for performance issues.

The intent is to collect a detailed
description of the issue—the problem
statement—that directs deeper analy-
sis. The description on its own may
even solve the issue. This is typically
entered into a ticketing system by ask-
ing the following questions:

˲˲ What makes you think there is a
performance problem?

˲˲ Has this system ever performed
well?

peared to be a memory leak, but from
an unknown location. This was not
reproducible in a lab environment
with the components in isolation. The
production environment included the
operating system and system libraries,
the customer’s own application code
written in node.js, and a Riak database
running on the Erlang VM (virtual ma-
chine). Finding the root cause required
knowledge of the customer’s code,
node.js, Riak, Erlang, and the operat-
ing system, each of which was provided
by one or more different engineers.
The problem turned out to be in the
system library, identified by engineers
with operating-systems expertise.

Another complicating factor is that
“good” or “bad” performance can be
subjective: what may be unacceptable
latency for one user may be acceptable
for another. Without a means of clearly
identifying issues, it can be difficult to
know not only if an issue is present, but
also when it is fixed. The ability to mea-
sure performance issues—for example,
as an expression of response time—al-
lows them to be quantified and different
issues ranked in order of importance.

Performance-analysis methodology
can provide an efficient means of ana-
lyzing a system or component and
identifying the root cause(s) of prob-
lems, without requiring deep expertise.
Methodology can also provide ways of
identifying and quantifying issues, al-
lowing them to be known and ranked.

Performance texts have provided
methodologies for various activities,
such as capacity planning,1,16 bench-
marking,18 and modeling systems.7,8,10
Methodologies for finding the root
causes of performance issues, how-
ever, are uncommon. One example
is the drill-down analysis method in-
troduced in Solaris Performance and
Tools,13 which describes a three-stage
procedure for moving from a high-
level symptom down to analyzing the
cause. These texts have typically cov-
ered analysis by use of ad hoc check-
lists of recent tips and tuning, and by
teaching operating-systems internals
and tools.2,11,12,15 The latter allows per-
formance analysts to develop their
own methodologies, although this can
take considerable time to accomplish.

Ad hoc performance checklists have
been a popular resource. For example,
Sun Performance and Tuning2 includes

“Quick Reference for Common Tuning
Tips,” which lists 11 tips, intended to
find disk bottlenecks, network file sys-
tem (NFS), memory, and CPU issues,
and is both easy to follow and prescrip-
tive. Support staff groups often use
these lists because they provide a con-
sistent check of all items, including the
most egregious issues. This approach
poses some problems, however. Observ-
ability is limited to the specific items in
the list, and they are usually point-in-
time recommendations that go out of
date and require updates. These check-
lists also focus on issues for which there
are known fixes that can be easily docu-
mented, such as the setting of tunable
parameters, but not custom fixes to the
source code or environment.

In this article I summarize several
other methodologies for systems-per-
formance analysis, including the USE
method, which is explained in detail. I
begin by describing two commonly used
anti-methodologies—the blame-some-
one-else anti-method and the streetlight
anti-method—that serve as compari-
sons with later methodologies.

The “Blame-Someone-Else”
Anti-Method
The first anti-methodology follows
these simple steps:

1.	 Find a system or environment
component you are not responsible for.

2.	 Hypothesize that the issue is with
that component.

3.	 Redirect the issue to the respon-
sible team.

4.	 When proven wrong, go back to
step 1.

For example, “Maybe it’s the net-
work. Can you check with the network
team to see if they have had dropped
packets or something?”

Instead of investigating perfor-
mance issues, this methodology makes
them someone else’s problem, which
can be wasteful of other teams’ resourc-
es. A lack of data analysis—or even data
to begin with—leads to the hypothesis.
Ask for screen shots showing which
tools were run and how their output
was interpreted. These can be taken to
someone else for a second opinion.

The Streetlight Anti-Method
While running tools and collecting
data is better than wild hypotheses, it is
not sufficient for effective performance

practice

february 2013 | vol. 56 | no. 2 | communications of the acm 47

“Good” or “bad”
performance
can be subjective:
what may be
unacceptable
latency for
one user may be
acceptable
for another.
Without a means
of clearly identifying
issues, it can be
difficult to know
not only if an issue
is present, but also
when it is fixed.

˲˲ What has changed recently? (Soft-
ware? Hardware? Load?)

˲˲ Can the performance degradation
be expressed in terms of latency or
runtime?

˲˲ Does the problem affect other peo-
ple or applications (or is it just you)?

˲˲ What is the environment? What
software and hardware is used? Ver-
sions? Configuration?

These questions may be custom-
ized to the environment. While the
questions may seem obvious, the an-
swers often resolve a class of issues,
requiring no deeper methodologies.
When that is not the case, other meth-
odologies can be called into service,
including workload characterization
and drill-down analysis.

The Workload
Characterization Method
The workload can be characterized by
answering questions such as:

˲˲ Who is causing the load? Process
ID, user ID, remote IP address?

˲˲ Why is the load being called?
Code path?

˲˲ What are other characteristics of
the load? IOPS, throughput, type?

˲˲ How is the load changing over
time?

This helps to separate problems of
load from problems of architecture, by
identifying the former.

The best performance wins often
arise from eliminating unnecessary
work. Sometimes these bottlenecks
are caused by applications malfunc-
tioning (for example, a thread stuck
in a loop) or bad configurations (sys-
temwide backups running during the
day). With maintenance or reconfigu-
ration, such unnecessary work can be
eliminated. Characterizing the load
can identify this class of issue.

The Drill-Down Analysis Method
Drill-down analysis involves peeling
away layers of software and hardware
to find the core of the issue—moving
from a high-level view to deeper details.
These deeper details may include exam-
ining kernel internals—for example, by
using profiling to sample kernel stack
traces, or dynamic tracing to examine
the execution of kernel functions.

Solaris Performance and Tools13
provides a drill-down analysis meth-
odology for system performance. It

follows three stages:
˲˲ Monitoring. This continually re-

cords high-level statistics over time
across many systems, identifying or
alerting if a problem is present.

˲˲ Identification. Given a system with
a suspected problem, this narrows the
investigation to particular resources
or areas of interest using system tools
and identifying possible bottlenecks.

˲˲ Analysis. This stage provides fur-
ther examination of particular system
areas, identifying the root cause(s) and
quantifying the issue.

The analysis stage may follow its
own drill-down approach, beginning
with applications at the top of the soft-
ware stack and drilling down into sys-
tem libraries, system calls, kernel in-
ternals, device drivers, and hardware.

While drill-down analysis often
pinpoints the root cause of issues, it
can be time consuming, and when
drilling in the wrong direction, it can
waste a great deal of time.

The Need for a New Methodology
I recently analyzed a database per-
formance issue on the Joyent public
cloud, which began with a ticket con-
taining a problem statement as de-
scribed in the previous section. The
statement indicated that there was a
real issue that needed deeper analysis.

The issue had been intermittent,
with some database queries taking
seconds to complete. The customer
blamed the network, hypothesizing
that the query latency was caused by
dropped network packets. This was
not a wild hypothesis, as the ticket in-
cluded output from ping(1) showing
occasional high latency; ping(1) is a
common and familiar tool, however,
and with no other supporting evi-
dence, this seemed to be an example
of the streetlight anti-method.

The support team ran tools to in-
vestigate the network in much more
detail, including examining TCP/IP
stack network counters, without find-
ing any problems. This analysis took
time because there are dozens of such
statistics, some of which are difficult
to interpret and must be examined
over time to look for correlations.
While logged into the systems, the
team also checked CPU usage vs. the
cloud-imposed limits, following their
own ad hoc checklist of common is-

48 communications of the acm | february 2013 | vol. 56 | no. 2

practice

vidually. Some software resources can
be examined using the same methodol-
ogy, provided the metrics make sense.

Utilization is the percentage of time
that the resource is busy servicing
work during a specific time interval.
While busy, the resource may still be
able to accept more work; the degree
to which it cannot do so is identified
by saturation. That extra work is often
waiting in a queue.

For some resource types, including
main memory, utilization is the capac-
ity of the resource that is used. This is
different from the time-based defini-
tion. Once a capacity resource reaches
100% utilization, no more work can be
accepted, and it either queues the work
(saturation) or returns errors, either of
which is identified by the USE method.

Errors in terms of the USE method
refer to the count of error events. Er-
rors should be investigated because
they can degrade performance, and
they may not be immediately noticed
when the failure mode is recoverable.
This includes operations that fail and
are retried, as well as devices that fail
in a pool of redundant devices.

In contrast to the streetlight anti-
method, the USE method iterates over
system resources instead of starting
with tools. This creates a complete list of
questions to ask, and only then search-
es for the tools to answer them. Even
when tools cannot be found to answer
the questions, the knowledge that these
questions are unanswered can be ex-
tremely useful for the performance ana-
lyst: they are now “known unknowns.”

The USE method also directs analy-
sis to a limited number of key met-
rics, so that all system resources are
checked as quickly as possible. After
this, if no issues have been found, you
can turn to other methodologies.

The key metrics of the USE method
are usually expressed as follows:

˲˲ Utilization as a percentage over a
time interval (for example, one CPU is
running at 90% utilization).

˲˲ Saturation as a wait queue length
(for example, the CPUs have an aver-
age run queue length of four).

˲˲ Errors as the number of errors re-
ported (for example, the network in-
terface has had 50 late collisions).

It is also important to express the
time interval for the measurement.
Though it may seem counterintuitive, a

sues. Their conclusion was that there
was no issue while they were watch-
ing: the network and CPUs were fine.

At this point, many system compo-
nents and tens of thousands of system
statistics had not yet been checked, as
they were assumed to be unrelated to
the issue. Without a direction to fol-
low, checking everything across all
systems in the customer’s cloud envi-
ronment could take days. The analysis
to date had not found any evidence of
a real issue, which was discouraging.

The next step was to try dynamic trac-
ing of the originally reported problem
(network packet drops), in the hope of
finding something that the standard
network counters had missed. I have
used the DTrace tool many times to
perform drill-down analysis of the TCP/
IP stack. This can provide many details
beyond the standard network observ-
ability toolset, including inspection
of kernel-dropped packets and inter-
nal TCP state. It still can take hours to
catch intermittent issues, however. I
was tempted to begin drill-down analy-
sis from the database query latency, in
case the issue was not network related,
or to begin characterizing the database
workload over time, in case the problem
was caused by a burst of load, but these
approaches are also time consuming.

Before beginning deeper analysis, I
wanted to perform a quick check of all
system components, not just the net-
work and CPUs, to look for bottlenecks
or errors. For this to be quick, it would
need to check only a limited number
of statistics per system, not the tens of

thousands available. And for this to be
complete, it would need to check all
components, including those that might
be missed because they have no observ-
ability tools or statistics by default.

The utilization, saturation, and er-
rors (USE) method provided one way of
doing this. It quickly revealed that the
database system was out of memory
and was paging, and that the disks were
occasionally running at saturation.
Focusing troubleshooting efforts on
networking early on had meant these
areas were overlooked in the team’s
analysis. The real issues were in the
system memory and disks, which were
much quicker to read and interpret.

I developed the USE method while
teaching classes in operating-systems
performance. The goal was to help my
students find common issues and to
ensure that they were not overlook-
ing important areas. I have used it
successfully many times in enterprise
and cloud-computing environments,
but it does not solve all types of prob-
lems and should be treated as just one
methodology in the toolbox.

The USE Method
The USE method is intended to be
used early in a performance investi-
gation, after the problem-statement
method, to identify systemic bottle-
necks quickly. It can be summarized
as: For every resource, check utilization,
saturation, and errors.

Resource in this case means all physi-
cal server functional components (CPUs,
disks, buses, and so on) examined indi-

Figure 1. A two-socket system.

CPU Interconnect

Memory
Bus

DRAM DRAMCPU 1

I/O Bridge

Expander Interconnect

Interface Transports

I/O Bus

I/O Controller

Disk Disk

Network Controller

CPU 2

Net Net

practice

february 2013 | vol. 56 | no. 2 | communications of the acm 49

short burst of high utilization can cause
saturation and performance issues,
even though the overall utilization is low
over a long interval. Some monitoring
tools report utilization as five-minute
averages. CPU utilization, for example,
can vary dramatically from second to
second, and a five-minute average can
disguise short periods of 100% utiliza-
tion and, therefore, saturation.

The first step in the USE method is
to create a list of resources. Try to be as
complete as possible. Here is a generic
list of server hardware resources, with
specific examples:

˲˲ �CPUs—Sockets, cores, hardware
threads (virtual CPUs).

˲˲ Main memory—DRAM.
˲˲ �Network interfaces—Ethernet
ports.

˲˲ Storage devices—Disks.
˲˲ Controllers—Storage, network.
˲˲ �Interconnects—CPU,
memory, I/O.

Each component typically acts as a
single resource type. For example, main
memory is a capacity resource, and a
network interface is an I/O resource,
which can mean either IOPS (I/O opera-
tions per second) or throughput. Some
components can behave as multiple
resource types—for example, a storage
device is both an I/O resource and a ca-
pacity resource. Consider all types that
can lead to performance bottlenecks.
Also note that I/O resources can be fur-
ther studied as queueing systems, which
queue and then service these requests.

Some physical components can
be left off your checklist, such as
hardware caches (for example, MMU
TLB/TSB, CPU Level-1/2/3). The USE
method is most effective for resources
that suffer performance degradation
under high utilization or saturation,
leading to bottlenecks; caches improve
performance under high utilization.

Cache hit rates and other perfor-
mance attributes can be checked after
the USE method has been applied—
that is, after systemic bottlenecks have
been ruled out. If you are unsure wheth-
er to include a resource, go ahead and
include it and then see how well the
metrics work in practice.

Function Block Diagram
Another way to iterate over resources is
to find or draw a function block diagram3
for the system. This type of diagram also

shows relationships, which can be very
useful when looking for bottlenecks in
the flow of data. Figure 1 is a generic dia-
gram showing a two-socket system.

While determining utilization for
the various buses, annotate each one
on the functional diagram with its
maximum bandwidth. The resulting
diagram may pinpoint systemic bottle-
necks before a single measurement
has been taken. (This is also a useful
exercise during hardware product de-
sign, while you still have time to change
physical components.)

CPU, memory, and I/O intercon-
nects are often overlooked. Fortunately,
they are not commonly the cause of sys-
tem bottlenecks. Unfortunately, when
they are, the problem can be difficult
to solve (maybe you can upgrade the
main board or reduce load (for exam-
ple, “zero copy” projects lighten mem-
ory bus load). At least the USE method
takes interconnect performance into
consideration. (See Analyzing the Hy-
perTransport4 for an example of an in-
terconnect issue identified in this way.)

Once you have your list of resources,
consider the types of metrics you need for
each (utilization, saturation, and errors).
Table 1 lists some example resources
and metric types, along with possible
metrics (from generic Unix/Linux).
These metrics can be expressed either
as averages per interval or as counts.

Repeat for all combinations and
include instructions for fetching each
metric. Take note of metrics that are
not currently available: these are the
“known unknowns.” You will end up
with a list of about 30 metrics, some
of which are difficult to measure and
some of which cannot be measured at
all. Example checklists have been built
for Linux- and Solaris-based systems.5,6

Fortunately, the most common is-
sues are usually found with the easier
metrics (for example, CPU saturation,
memory capacity saturation, network
interface utilization, disk utilization),
so these can be checked first.

Table 2 lists some examples of
harder combinations. Some of these
metrics may not be available from

Table 1. Resources and metric types.

Resource Type Metric

CPU utilization CPU utilization (ideally per CPU)

CPU saturation dispatcher queue length (aka run-queue length)

Memory utilization available free memory (systemwide)

Memory saturation anonymous paging or thread swapping
(“page scanning” is another indicator)

Network interface utilization RX/TX throughput / max bandwidth

Storage device I/O utilization device busy percent

Storage device I/O saturation wait queue length

Storage device I/O errors device errors (“soft,” “hard”)

Table 2. Harder combinations.

Resource Type Metric

CPU errors correctable CPU cache ECC events or faulted CPUs
(if the OS+HW supports that)

Memory errors failed malloc()s (although this is usually because
of virtual memory exhaustion, not physical)

Network saturation saturation-related NIC or operating-system errors
(for example, Solaris “nocanputs”)

Storage Controller utilization depends on the controller; it may have a max IOPS
or throughput that can be checked vs. current activity

CPU interconnect utilization per port throughput/max bandwidth
(CPU performance counters)

Memory interconnect saturation memory stall cycles, high CPI
(CPU performance counters)

I/O interconnect utilization bus throughput/max bandwidth
(performance counters may exist on your hardware; for
example, Intel “uncore” events)

50 communications of the acm | february 2013 | vol. 56 | no. 2

practice

standard operating-system tools. I of-
ten have to write my own software for
such metrics, using either static or dy-
namic tracing (DTrace) or the CPU per-
formance counter facility.

Some software resources can be sim-
ilarly examined. This usually applies to
smaller components of software, not to
entire applications. For example:

˲˲ Mutex locks. Utilization may be
defined as the time the lock was held,
saturation by those threads queued
waiting on the lock.

˲˲ Thread pools. Utilization may be
defined as the time threads were busy
processing work, saturation by the
number of requests waiting to be ser-
viced by the thread pool.

˲˲ Process/thread capacity. The sys-
tem may have a limited number of pro-
cesses or threads whose current usage
may be defined as utilization; waiting
on allocation may indicate saturation;

and errors occur when the allocation
fails (for example, “cannot fork”).

˲˲ File descriptor capacity. This is
similar to the above, but for file de-
scriptors.

If the metrics work well, then use
them; otherwise, software troubleshoot-
ing can be left to other methodologies.

Suggested Interpretations
The USE method helps identify which
metrics to use. After you learn how to
read them from the operating system,
your next task is to interpret their cur-
rent values. For some metrics, interpre-
tation may be obvious (and well docu-
mented). Others are not so obvious
and may depend on workload require-
ments or expectations. Here are some
general suggestions for interpreting
metric types:

˲˲ Utilization. 100% utilization is
usually a sign of a bottleneck (check

saturation and its effect to confirm).
High utilization (for example, beyond
60%) can begin to be a problem for a
couple of reasons. First, when utiliza-
tion is measured over a relatively long
time period (multiple seconds or min-
utes), a total utilization of, say, 60%
can hide short bursts of 100% utiliza-
tion. Second, some system resources,
such as hard disks, usually cannot be
interrupted during an operation, even
for higher-priority work. Compare this
with CPUs, which can be interrupted
(“preempted”) at almost any moment.
Once disk utilization is above 60%,
queueing delays can become more
frequent and noticeable, as the tail of
the queue becomes longer. This can
be quantified using queuing theory to
model response time vs. utilization (for
example, modeling a disk as M/M/1).

˲˲ Saturation. Any degree of saturation
can be a problem (non-zero). This may be
measured as the length of a wait queue or
time spent waiting on the queue.

˲˲ Errors. Non-zero error counters are
worth investigating, especially if they
are still increasing while performance
is poor.

It is easy to interpret the negative
cases: low utilization, no saturation,
no errors. This is more useful than it
sounds. Narrowing the scope of an in-
vestigation can help you focus quickly
on the problem area.

Cloud Computing
In a cloud-computing environment,
software resource controls may be in
place to limit or throttle tenants who
are sharing one system. At Joyent, we
primarily use operating-system virtu-
alization (the SmartOS-based Smart-
Machine), which imposes memory and
CPU limits, as well as storage I/O throt-
tling. Each of these resource limits can
be examined with the USE method, sim-
ilar to examining the physical resources.

For example, in our environment
memory capacity utilization can be the
tenant’s memory usage vs. its memory
cap. Memory capacity saturation can
be seen by anonymous paging activity,
even though the traditional Unix page
scanner may be idle.

˲˲ Strategy. The USE method is pic-
tured as a flowchart in Figure 2. Errors
come first, because they are usually
easier and quicker to interpret than
utilization and saturation.

Figure 2. The USE method.

Start

End

A Problem Identified

Identify Components

Choose a Component

Errors Present?

High Utilization?

Saturation?

Components Checked?

Y

Y

N

N

N

N

Y

Y

practice

february 2013 | vol. 56 | no. 2 | communications of the acm 51

The USE method identifies prob-
lems that are likely to be system bottle-
necks. Unfortunately, a system may be
suffering more than one performance
problem, so the first issue you find may
be a problem but not the problem. You
can investigate each discovery using
further methodologies before return-
ing to the USE method as needed to
iterate over more resources. Or you
may find it more efficient to complete
the USE method checklist first and list
all problems found, then to investigate
each based on its likely priority.

Methodologies for further analysis
include the workload characterization
method and drill-down analysis method,
summarized earlier. After completing
these (if needed), you should have evi-
dence to determine whether the correc-
tive action needed is to adjust the load
applied or to tune the resource itself.

While the previous methodologies
may solve most server issues, latency-
based methodologies (for example,
Method R14) can approach finding
100% of all issues. These methodolo-
gies, however, can take much more
time if you are unfamiliar with soft-
ware internals, and they may be more
suited for database administrators or
application developers who already
have this familiarity.

Conclusion
Systems-performance analysis can be
complex, and issues can arise from
any component, including from in-
teractions among them. Methodolo-
gies in common use today sometimes
resemble guesswork: trying familiar
tools or posing hypotheses without
solid evidence.

The USE Method was developed to
address shortcomings in other com-
monly used methodologies and is a
simple strategy for performing a com-
plete check of system health. It consid-
ers all resources so as to avoid overlook-
ing issues, and it uses limited metrics
so that it can be followed quickly. This
is especially important for distributed
environments including cloud com-
puting, where many systems may need
to be checked. This methodology will,
however, find only certain types of is-
sues—bottlenecks and errors—and
should be considered as one tool in a
larger methodology toolbox.	

Acknowledgments
Carry Millsap’s methodology research
including Method R has been inspira-
tional and my impetus for document-
ing system methodologies. Thanks to
Bryan Cantrill for helping with this ar-
ticle and for fathering DTrace—which
has allowed system methodologies
to be developed and used in practice
far beyond what traditional observ-
ability allows. And thanks to Deirdré
Straughan for editing and feedback. 	

 Related articles
 on queue.acm.org

The Price of Performance

Luiz André Barroso
http://queue.acm.org/detail.cfm?id=1095420

Performance Anti-Patterns

Bart Smaalders
http://queue.acm.org/detail.cfm?id=1117403

Thinking Clearly about Performance
Cary Millsap
http://queue.acm.org/detail.cfm?id=1854041

References
1.	A llspaw, J. The Art of Capacity Planning. O’Reilly, 2008.
2.	C ockcroft, A. Sun Performance and Tuning. Prentice

Hall, NJ, 1995.
3.	F unction block diagram; http://en.wikipedia.org/wiki/

Function_block_diagram.
4.	G regg, B. 7410 hardware update, and analyzing the

HyperTransport; http://dtrace.org/blogs/brendan/
2009/09/22/7410-hardware-update-and-analyzing-
thehypertransport/.

5.	G regg, B. The USE method: Linux performance checklist,
2012; http://dtrace.org/blogs/brendan/2012/03/07/
the-use-method-linux-performance-checklist/.

6.	G regg, B. The USE method: Solaris performance
checklist, 2012; http://dtrace.org/blogs/brendan/2012/03/01/
the-use-method-solaris-performance-checklist/.

7.	G unther, N. Guerrilla Capacity Planning. Springer, 2007.
8.	G unther, N. The Practical Performance Analyst.

McGraw Hill, 1997.
9.	H argreaves, A. I have a performance problem, 2011;

http://alanhargreaves.wordpress.com/2011/06/27/
i-have-a-performance-problem/.

10.	J ain, R. The Art of Computer Systems Performance
Analysis. Wiley, 1991.

11.	L oukidas, M. System Performance Tuning. O’Reilly, 1990.
12.	M cDougall, R. and Mauro, J. Solaris Internals—Solaris

10 and OpenSolaris Kernel Architecture. Prentice Hall,
2006.

13.	M cDougall, R., Mauro, J. and Gregg, B. Solaris
Performance and Tools: DTrace and MDB Techniques
for Solaris 10 and OpenSolaris. Prentice Hall, 2006.

14.	M illsap, C. and Holt, J. Optimizing Oracle Performance.
O’Reilly, 2003.

15.	M usumeci, G.D. and Loukidas, M. System Performance
Tuning, 2nd Edition. O’Reilly, 2002.

16.	S chlossnagle, T. Scalable Internet Architectures.
Sams Publishing, 2006.

17.	S treetlight effect; http://en.wikipedia.org/wiki/
Streetlight_effect.

18.	W ong, B. Configuration and Capacity Planning for
Solaris Servers. Prentice Hall, 1997.

Brendan Gregg is the lead performance engineer at
Joyent, where he analyzes performance and scalability
at any level of the software stack. He is the primary
author of DTrace (Prentice Hall, 2011), and co-author of
Solaris Performance and Tools (Prentice Hall, 2006), and
numerous articles about systems performance. He was
previously a performance lead and kernel engineer at Sun
Microsystems, where he developed the ZFS L2ARC.

© 2013 ACM 0001-0782/13/02

In a cloud-computing
environment,
software resource
controls may be
in place to limit
or throttle tenants
who are sharing
one system.

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1095420
http://queue.acm.org/detail.cfm?id=1117403
http://queue.acm.org/detail.cfm?id=1854041
http://en.wikipedia.org/wiki/Function_block_diagram
http://dtrace.org/blogs/brendan/2009/09/22/7410-hardware-update-and-analyzing-the-hypertransport/
http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-performance-checklist/
http://alanhargreaves.wordpress.com/2011/06/27/i-have-a-performance-problem/
http://en.wikipedia.org/wiki/Streetlight_effect
http://en.wikipedia.org/wiki/Function_block_diagram
http://dtrace.org/blogs/brendan/2009/09/22/7410-hardware-update-and-analyzing-the-hypertransport/
http://dtrace.org/blogs/brendan/2009/09/22/7410-hardware-update-and-analyzing-the-hypertransport/
http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-performance-checklist/
http://alanhargreaves.wordpress.com/2011/06/27/i-have-a-performance-problem/
http://en.wikipedia.org/wiki/Streetlight_effect

52 communications of the acm | february 2013 | vol. 56 | no. 2

practice
doi:10.1145/2408776.2408792

 Article development led by
 queue.acm.org

Open source security foundations
for mobile and embedded devices.

By Robert N.M. Watson

A Decade of OS
Access-Control
Extensibility

movement from multiuser computing
toward single-user devices with com-
plex application models. The transition
was facilitated by extensible access-con-
trol frameworks, which allow operating-
system kernels to be more easily adapt-
ed to new security requirements.

One such extensible kernel refer-
ence-monitor framework is the Trust-
edBSD MAC (Mandatory Access Con-
trol) Framework, developed beginning
in 2000 and shipped in the open source
FreeBSD operating system in 2003.
This article first describes the context
and challenges for access-control ex-
tensibility and high-level framework
design, then turns to practical expe-
rience deploying security policies in
several framework-based products, in-
cluding FreeBSD, nCircle appliances,
Juniper’s Junos, and Apple’s OS X and
iOS. While extensibility was key to each
of these projects, they motivated con-
siderable changes to the framework it-
self, so the article also explores how the
framework did (and did not) meet each
product’s requirements, and finally re-
flects on the continuing evolution of
operating-system security.

A Quiet Revolution in OS Design
Embedded and mobile operating sys-
tems have changed greatly in the past
20 years: devices have gained the CPU
power to run general-purpose operat-
ing systems; they have been placed in
ubiquitous networking environments;
they have needed to support mature
software stacks including third-party
applications; and they have found
themselves exposed to malicious ac-
tivity motivated by strong financial
incentives. Vendors built on exist-
ing operating systems—often open
source—to avoid creating them from
scratch. This provided mature applica-
tion frameworks and complex network
stacks, both areas of weakness for
then-contemporary “embedded oper-
ating systems.” One early example is
Juniper’s Junos, a version of FreeBSD
adapted for router control planes in
1998. This trend had come to fruition
by 2007 when Google’s Android, based

To discuss operating-system security is to marvel
at the diversity of deployed access-control models:
Unix and Windows NT multiuser security, Type
Enforcement in SELinux, anti-malware products, app
sandboxing in Apple OS X, Apple iOS, and Google
Android, and application-facing systems such as
Capsicum in FreeBSD. This diversity is the result of a
stunning transition from the narrow 1990s Unix and
NT status quo to security localization—the adaptation
of operating-system security models to site-local or
product-specific requirements.

This transition was motivated by three changes:
the advent of ubiquitous Internet connectivity; a
migration from dedicated embedded operating
systems to general-purpose ones in search of more
sophisticated software stacks; and widespread

http://queue.acm.org

february 2013 | vol. 56 | no. 2 | communications of the acm 53

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 B
r

i
a

n
 G

r
e

e
n

b
e

r
g

 /
 A

n
d

r
i

j
 B

o
r

y
s

 A
s

s
o

c
i

a
t

e
s

on Linux, and Apple’s iOS, based in
part on Mach and FreeBSD, became
available, transforming the smart-
phone market.

Common to all of these environ-
ments is a focus on security and reli-
ability: as third-party applications are
deployed in systems from Junos, via its
SDK, and to iOS/Android app stores,
sandboxing becomes critical, first to
prevent bricking (reducing a device to
a mere brick as a result of malfunction
or abuse) and later to constrain mal-
ware. This trend is reinforced by mo-
bile-phone access to online purchas-
ing, and most recently, banking and
payment systems. As a result, the role
of operating-system security has shift-
ed from protecting multiple users from
each other toward protecting a single
operator or user from untrustworthy
applications. In 2013, embedded de-
vices, mobile phones, and tablets are
points of confluence: the interests of
many different parties—consumers,
phone vendors, application authors,
and online services—must be medi-
ated with the help of operating systems

that were designed for another place
and time.

Access-Control Frameworks. Oper-
ating-system developers must satisfy
device vendors, who require everything
from router and firewall hardening
to mobile-phone app sandboxing.
Operating-system vendors had accu-
rately observed a difficult adoption
path for historic trusted operating sys-
tems, whose mandatory access-control
schemes suffered from poor usability,
performance, maintainability, and—
perhaps most critically—end-user de-
mand. Likewise, they saw many prom-
ising new security models in research,
each with unknown viability, suggest-
ing that no single access-control mod-
el would meet all needs. This practical
reality of security localization directly
motivates extensible access control.

Research over the preceding 20
years had made clear the need for a ref-
erence monitor—a self-contained, non-
bypassable, and compact (hence verifi-
able) centralization of access control.2
By the early 1990s, this concept had
been combined with the notion of en-

capsulation, appearing in Abrams et
al.’s Generalized Framework for Ac-
cess Control (GFAC),1 and by the late
1990s in Ott’s Rule Set-based Access
Control (RSBAC)14 and Spencer et al.’s
Flask security architecture.17 Main-
stream operating-system vendors did
not adopt these approaches until the
early 2000s with the MAC Framework
on FreeBSD22 and shortly after, Linux
Security Modules (LSM).23 In both cas-
es, a key concern was supporting third-
party security models without com-
mitting to fixed policies as had earlier
trusted systems.

The MAC Framework
The MAC Framework was proposed
in 1999, with the first whitepaper on
its design published in June 2000.20 It
appeared in FreeBSD 5.0 in 2003 as an
experimental feature—compiled out
by default but available to early adopt-
ers. FreeBSD 8.0 in 2009 included the
framework as a production feature,
compiled into the default kernel. (A
timeline of key events in its develop-
ment appears in Figure 1.)

54 communications of the acm | february 2013 | vol. 56 | no. 2

practice

compiled into the kernel or loadable
modules and implement well-defined
kernel programming interfaces (KPIs).
Policies can augment access-control
decisions and make use of common
infrastructure such as object labeling
to avoid direct kernel modification
and code duplication. They are able to
enforce access control across a broad

The MAC Framework offers a logi-
cal solution to the problem of kernel
access-control augmentation: exten-
sion infrastructure able to represent
many different policies, offering im-
proved maintainability and supported
by the operating-system vendor. Simi-
lar to device drivers and virtual file
system (VFS) modules,10 policies are

range of object types, from files to net-
work interfaces, and integrate with the
kernel’s concurrency model.

Mandatory Policies. MAC describes
a class of security models in which
policies constrain the interactions
of all system users. Whereas discre-
tionary access control (DAC) schemes
such as file-system access-control lists

Figure 1. MAC Framework research and development with key corporate contributions.

20012000 2004 200720052002 200920062003 2010 201220112008 2013

June 2000: extensible access control
framework for FreeBSD proposed at
Network Associates Laboratories

2001–2004 DARPA CBOSS project
on access control extensibility at
McAfee Reasearch

2004–2007 US Navy SEFOS project at
McAfee Research improves the MAC
Framework; SEBSD; Apple OS X port

October 2007, August 2008: MAC
Framework improvements merged
to FreeBSD from Apple OS X

2009: MAC Framework DTrace
instrumentation added by University of
Cambridge during dynamic analysis study

July 2002: MAC Framework merged to
FreeBSD 5.0 development tree

November 2006: nCircle contributes OS
privilege extensions to MAC Framework

2007: Secure Computing Corporation
(later McAfee) contributes MAC Framework
patches from FreeBSD transition;
Sidewinder is evaluated to EAL 4+

2008: Seccuris contributes MAC
Framework IPC enhancements while
developing Biba-based network intrusion
detection appliance

Figure 2. Policy models are encapsulated in kernel modules that augment kernel access control.

Kernel subsystems
consult framework to check
access control decisions
and notify the framework
of object lifecycle events
to support labeling

Label management APIs
support security-aware but
policy-agnostic applications

DTrace probes allow
monitoring and tracing
of framework entry point
invocation and results

Policy modules can be com-
piled into the kernel, loaded
at boot, or (where supported
by policy semantics) loaded
and uploaded at runtime.

Process Process Process Process

Biba MLS

ugidfw

VFS
Process
signals

Socket
IPC

MAC label
system

calls
DTrace

System call interface

MAC Framework

Operating
system
kernel

practice

february 2013 | vol. 56 | no. 2 | communications of the acm 55

(ACLs) allow object owners to protect
(or share) objects at their own discre-
tion, MAC enforces systemwide se-
curity invariants regardless of user
preference. The research literature de-
scribes a plethora of mandatory poli-
cies grounded in information flow and
rule-based models.

Early mandatory policies focused on
information flow, requiring ubiquitous
enforcement throughout the kernel.
Multilevel security (MLS) protects con-
fidentiality by labeling user clearance
and data confidentiality, limiting flow.5
The Biba integrity policy is the logi-
cal dual of MLS, protecting integrity.6
These models maintain subject and
object security labels holding confi-
dentiality or integrity information, and
controlling operations that might lead
to information upgrade or downgrade.

SRI International’s PSOS (Provably
Secure Operating System) design in-
cluded strong enforcement of object
types, supplementing capability protec-
tions.13 This evolved into Boebert’s Type
Enforcement (TE)7 and Badger et al.’s
Domain and Type Enforcement (DTE),4
which have proven influential, with TE
deployed in SELinux11 and McAfee’s
Sidewinder firewall. Both models are
flexible and fine-grained, labeling sub-
jects and objects with symbolic do-
mains and types. Administrator-con-
trolled rules authorize interactions and
transitions between domains.

Finally, a broad class of product-
specific hardening policies is also rel-
evant; these take less principled ap-
proaches, offering direct control over
services rather than abstract models.

Before Access-Control Extensibil-
ity. In implementation papers, we cri-
tiqued contemporaneous techniques
from experience:

˲˲ Direct kernel modification was used
for most trusted systems, whether
originated by operating-system ven-
dors (for example, Trusted Solaris) or
third-party extensions (for example,
Argus Pitbull). Tracking upstream
operating-system development is
problematic: extensions are unable
to depend on public, and hence more
stable, APIs (application program-
ming interfaces) and KPIs—and less
obvious at the time, ABIs (application
binary interfaces) and KBIs (kernel
binary interfaces). Upstream churn
frequently triggers design and source-

code conflicts with security exten-
sions. Assurance is also affected, as
the burden of arguing for correctness
is left entirely in the hands of the ex-
tension writer.

˲˲ System call interposition is widely
used in antivirus systems and, in the
past, security extension products and
research systems.9 Kernel concurren-
cy proves a particular challenge, and
we have demonstrated easily exploit-
ed race conditions between wrappers
and kernels.19

Guiding Design Principles. The
dual goals of access-control extensi-
bility and encouraging upstream and
downstream vendor engagement mo-
tivated several design principles for
the MAC Framework:

Do not commit to a specific access-
control policy. There is no consensus
on a single policy or even policy lan-
guage; instead, capture policy models
in C code.

Avoid policy-specific intrusions into
the kernel. Encapsulate internals be-
hind policy-agnostic interfaces. This
leads naturally to object-centered de-
sign—access-control checks with re-
spect to subjects, objects, and methods.

Provide policy-agnostic infrastructure.
This satisfies common requirements
beyond access-control instrumenta-
tion, such as labeling and tracing.

Support multiple simultaneously
loaded policies. In this way different
aspects of policy, perhaps from differ-
ent vendors, can be independently ex-
pressed. For example, Trusted IRIX and
Argus Pitbull both employed MLS for
user-data confidentiality and Biba for
trusted computing base (TCB) protec-
tion. Composition must be predictable,
deterministic, and ideally sensible.

Impose structures that facilitate as-
surance arguments. This can be done
by separating policy and mechanism
via a reference monitor and through
well-defined KPI semantics (for exam-
ple, locking).

Design for an increasingly concurrent
kernel. Policies must not only behave
correctly, but also scale with the fea-
tures they protect.

Architecture of the MAC Frame-
work. The MAC Framework, illustrated
in Figure 2, is a thin layer linking kernel
services, policies, and security-aware
applications. Control passes from ker-
nel consumers to framework to poli-

The MAC
Framework
offers a logical
solution to the
problem of kernel
access-control
augmentation:
extension
infrastructure able
to represent many
different policies,
offering improved
maintainability and
supported by the
operating-system
vendor.

56 communications of the acm | february 2013 | vol. 56 | no. 2

practice

˲˲ Policy entry points connect the
framework and policies, adding ex-
plicit label arguments relative to corre-
sponding kernel-service entry points.
They are supplemented by policy life-
cycle events and library functions.

cies through roughly 250 entry points
(object types × methods):

˲˲ Kernel-service entry points allow
subsystems (for example, VFS) to en-
gage the reference-monitor framework
in relevant events and access control.

Policies need implement only the entry
points they require.

˲˲ Applications manage labels (on
processes and files, among others) us-
ing the label-management API.

˲˲ DTrace probes allow entry-point
tracing, profiling, and instrumentation.8

Collectively, these interfaces allow
policies to augment kernel access con-
trol in a maintainable manner.

Entry-Point Invocation. To under-
stand how these layers interact, let’s fol-
low a single file-write check through the
kernel. Figure 3 illustrates vn _ write,
a VFS function implementing the
write and writev system calls. The
mac _ vnode _ check _ write ker-
nel service-entry point authorizes a write
to a vnode (vp) by two subject creden-
tials: fp->f _ cred, which opened the
file, and active _ cred, which initi-
ated the write operation. Policies can
implement Unix capability semantics
(fp->f _ cred) or revocation seman-
tics (active _ cred). The vnode lock
(vp->v _ lock)is held over both check
and use, protecting label state and pre-
venting time-of-check-to-time-of-use
race conditions.

Arguments excluded from entry
points are as important as those in-
cluded. For example, vn _ write’s
data pointer (uio) is omitted, as this
data resides in user memory and can-
not be accessed race-free with respect
to the write. Similar design choices
throughout the framework discourage
behavior not safely expressible through
the kernel synchronization model.

Wherever possible, it is best to take
the perspective that kernel subsys-
tems implement labeled objects, and
that policies may be enforced through
controls on method invocation. This
approach is a natural fit for the ker-
nel, which adopts an object-oriented
structure despite an absence of lan-
guage features in C. Once objects have
been identified, placing entry points
requires care: the more granular the
KPI, the more expressive policies can
be—at the cost of policy complexity.
The fewer the calling sites, the easier
they are to validate; too few, however,
leads to inadequate protection. Entry-
point design must also balance placing
checks deep enough to allow insight
into object types while minimizing en-
forcement points for a particular level
of abstraction.

Figure 3. VFS invokes the MAC Framework to authorize file writes.

static int
vn_write(struct file *fp, struct uio *uio,
 struct ucred *active_cred, int flags,
 struct thread *td)
{
 ...
 vn_lock(vp, lock_flags | LK_RETRY);
 ...
#ifdef MAC
 error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
 if (error == 0)
#endif
 error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
 ...
 VOP_UNLOCK(vp, 0);
 ...
 return (error);
}

Figure 4. Framework access control on file writes; lock assertions and DTrace probes are
central design elements.

int
mac_vnode_check_write(struct ucred *active_cred,
 struct ucred *file_cred, struct vnode *vp)
{
 int error;

 ASSERT_VOP_LOCKED(vp, “mac_vnode_check_write”);
 MAC_POLICY_CHECK(vnode_check_write, active_cred,
 file_cred, vp, vp->v_label);
 MAC_CHECK_PROBE3(vnode_check_write, error,
 active_cred, file_cred, vp);
 return (error);
}

Figure 5. Biba authorization of file writes.

#define LABEL(l) ((struct mac_biba *)mac_label_get((l), biba_slot))

static int
biba_vnode_check_write(struct ucred *active_cred,
 struct ucred *file_cred, struct vnode *vp,struct label *vplabel)
{
 	 struct mac_biba *subj, *obj;

 	 if (!biba_enabled || !revocation_enabled)
 		 return (0);
 	 subj = LABEL(active_cred->cr_label);
 	 obj = LABEL(vplabel);
 	 if (!biba_dominate_effective(subj, obj))
 		 return (EACCES);
 	 return (0);
}

practice

february 2013 | vol. 56 | no. 2 | communications of the acm 57

Figure 4 illustrates mac _ vnode _
check _ write, a thin shim that as-
serts locks, invokes interested policies,
and fires a DTrace probe. Policies are
not prohibited from directly accessing
vnode fields; however, passing an ex-
plicit label reference avoids encoding
vnode structure layout into policies
in a common case, improving KPI and
KBI resilience.

Policy entry-point invocation, en-
capsulated in MAC _ POLICY _ CHECK,
is nontrivial: access to the policy list
must be synchronized to prevent races
with module unload, interested poli-
cies must be called, and results must be
composed. The framework employs a
simple composition metapolicy: if any
policy returns failure, then access is de-
nied. For example, an EACCES returned
by Biba would be selected in preference
to 0 (success) returned by MLS. The
only exception lies in privilege exten-
sions discussed later. This metapolicy
is simple, deterministic, predictable by
developers, and above all, useful.

Figure 5 illustrates Biba invocation:
Biba checks its revocation configura-
tion, unwraps policy-specific labels,
and computes a decision using its
dominance operator.

Kernel-Object Labeling. Many ac-
cess-control policies label subjects
and objects in order to support access-
control decisions (for example, integ-
rity or confidentiality levels). The MAC
Framework provides policy-agnostic
label facilities for kernel objects, la-
bel-management system calls, and
persistent storage for file labels. Poli-
cies control label semantics—not only
the bytes stored, but also the memory
model: policies might store per-in-
stance, reference-counted, or global
data. For example, when a process
creates a new socket, Biba propagates
the current subject integrity level (for
example, low) to the socket label. The
partition policy, concerned with inter-
process access control, labels only
processes and not sockets, so will not
assign a label value for the socket.

The framework represents label
storage using struct label, which
is opaque to both kernel services and
policies. Where object types support
metadata schemes (for example, mbuf
tags that hold per-packet metadata),
those are used; otherwise, label point-
ers are added to core structures (for
example, vnode). Policies may borrow
existing object locks to protect label

data, where supported by the synchro-
nization model.

From Research to Product
Having presented the design of the
MAC Framework, let’s turn our at-
tention to policies found in FreeBSD-
derived commercial or open source
products. Table 1 and Figure 6 illus-
trate several such policy modules, their
feature footprints, and ship dates. A
number of factors contributed to the
success of this transition:

The need for new access control was
pressing. The classic Unix model failed
to meet the needs of ISPs, firewalls,
and smartphones. Simultaneously, the
threat of attack became universal with
ubiquitous networking and strong fi-
nancial incentives for attackers.

Structural arguments for a frame-
work were correct. Access-control ex-
tensibility is the preferred way of sup-
porting security localization, catering
to diverse requirements.

No one policy model has become domi-
nant. Therefore, many must be supported.

Hardware performance improvement
increased tolerance for security over-
head. This was true even in consumer
and embedded devices.

Table 1. Comparison of policies and their feature footprints.

Name OSS CP Product Type Lab Priv Proc VFS IPC Net API Sig

mac none P - FreeBSD Null policy - - - - - - - -

mac_stub P - FreeBSD Template policy P P P P P P P -

mac_test P - FreeBSD Framework self-test P - P P P P P -

mac_ugidfw P P FreeBSD File system firewall - - - P - - - -

mac_biba P P FreeBSD Fixed integrity P P P P P P P -

mac_lomac P ? FreeBSD Floating integrity P P P P P P P -

mac_mls P ? FreeBSD Confidentiality P - P P P P P -

sebsd P P FreeBSD Type Enforcement P P P P P P P -

sandbox - P Apple OS X Rule-based P P P P P - P P

quarantine - P Apple OS X Taint-based P - - P - - P -

tmsafetynet - P Apple OS X Fixed integrity P - - P - - P -

amfi - P Apple iOS Fixed integrity - P P - - - - P

sandbox - P Apple iOS Rule-based P P P P P - P P

mac_runasnonroot - P Apple iOS Hardening - - P - - - - P

mac_pcap - P Juniper Junos Grant BPF privs P P - P - P P -

mac_veriexec - P Juniper Junos Signed binaries P - - P - - - P

sidewinder_te - P McAfee Sidewinder Type Enforcement P P P P P P P -

mac_ncircle - P nCircle IP360 Hardening - P - P - - - -

Key:
OSS: open source software
CP: shipped in a commercial product
Lab: uses subject or object label facility

Priv, Proc, VFS, IPC, Net: implements
access-control entry points for privileges,
processes, file system, interprocess
communication, or the network stack

API: uses MAC Framework application APIs
Sig: provides or depends on application
digital signatures

58 communications of the acm | february 2013 | vol. 56 | no. 2

practice

Open source technology transition
works. FreeBSD provided not only a fo-
rum for collaborative research and de-
velopment, but also a pipeline to com-
mercial products.

The framework has evolved con-
siderably since 2003 thanks to contri-
butions from companies deploying it
in products.

FreeBSD
FreeBSD is an open source operat-
ing system used to build online ser-
vices, appliances, and embedded
devices. FreeBSD or its components
can be found in data centers (Inter-
net Systems Consortium, Yahoo!), as
a foundation for integrated products
(NetApp and EMC Isilon storage ap-
pliances), and in embedded/mobile
devices (Juniper switches and Apple
iPhones). Its origins lie in BSD (the
Berkeley Software Distribution), de-
veloped in the 1970s and 1980s.12 BSD
originated a number of central Unix
technologies, including FFS (the Fast
File System) and the Berkeley TCP/IP
stack and sockets API. The BSD license
and its variations (MIT, CMU, ISC,
Apache) have encouraged technol-
ogy transition by allowing unrestricted
commercial use. FreeBSD’s diverse
consumers both motivate and are the
perfect target for security localization.

The MAC Framework is a com-
plex piece of software; although the
framework itself is only 8,500 lines of

code, with 15,000 lines in reference
policies, it integrates with a multi-
million-line kernel. The transition to
production relied on several factors,
including increasing confidence in
mediation and response to commu-
nity feedback on design, compatibil-
ity, and performance. The framework,
as first shipped in FreeBSD 5.0, was
marked as experimental, with several
implications:

˲˲ Enabling it required recompiling
the kernel.

˲˲ Documentation marked it as po-
tentially incomplete, unstable, or inse-
cure, and therefore unsupported.

˲˲ Programming and binary interface
(API, KPI, ABI, and KBI) stability was
disclaimed, allowing change without
formal depreciation.

Merging the framework while still
experimental was key to gaining users
who could help validate and improve
the approach, while retaining the flex-
ibility to make changes. Two concerns
needed to be addressed before the
framework could be considered pro-
duction worthy:

˲˲ Binary compatibility impact for
the kernel, policies, and other modules
must be better understood.

˲˲ Performance must be analyzed and
optimized based on community review.

KPI and KBI Resilience. FreeBSD
policy dictates that certain classes of
kernel modules compiled against a
release must work with later minor

versions in the same series (for ex-
ample, a FreeBSD 9.0 network device
driver should work with FreeBSD 9.1).
The goals were to avoid disrupting the
KBIs of consumer subsystems and
to offer similar levels of binary com-
patibility for policy modules. Label
storage opacity for subsystems and
policies was the primary area of refine-
ment, which avoids encoding kernel
data-structure internals into policies
if they require only label access, as
well as providing flexibility to change
label implementation.

Performance Optimization. Many
FreeBSD deployments are extremely
performance sensitive, requiring
minimal overhead, especially if the
framework is disabled. As sites se-
lect policies based on local security-
performance trade-offs, it is also de-
sirable for policies to incur only the
performance penalties of features
they actually use—performance pro-
portionality. As shipped in FreeBSD
5.0, however, regressions were mea-
surable, an obstacle to enabling the
framework by default.

Label Allocation Trade-offs. Even
when the framework was compiled
out, bloat from adding a label to ker-
nel data structures (especially packet
mbufs) created significant allocation-
time zeroing cost. In FreeBSD 5.1, in-
lined mbuf labels were replaced with
pointers, and for all object types in
5.2; this decreased costs for non-MAC

Figure 6. Timelines of selected MAC Framework-based product ship dates.

20012000 2004 200720052002 200920062003 2010 201220112008 2013

January 2003: FreeBSD 5.0 released
with MAC Framework marked as an
experimental feature

July 2007: nCircle ships IP360 6.7
with MAC Framework policy

January 2007: Secure Computing
Corporation (later McAfee)
ships Sidewinder 7.0 product
with MAC Framework

2009: Juniper ships Junos using the MAC
Framework for access control

November 2009: FreeBSD 8.0 released with
MAC Framework in default kernel marked
as a production feature

October 2007: Apple ships OS X
Leopard with MAC Framework
support and sandboxing model

April 2010 Apple
ships iPad with
app sandboxing

July 2008: Apple ships iPhone
OS 2.0 with App Store and
sandboxed third-party applications

2010: Apple completes
EAL 3+ evaluation with MAC
Framework enforcement

July 2011: Apple ships
OS X Lion with preliminary
app sandboxing

July 2012: Apple ships
OS X Mountain Lion with
mandatory app sandboxing

practice

february 2013 | vol. 56 | no. 2 | communications of the acm 59

kernels at the expense of additional
allocation and indirection for MAC-
enabled kernels.

Label allocation was even more
measurable with the framework en-
abled—and unnecessary for unla-
beled policies. The effect was most
pronounced with network packets
and led, in FreeBSD 5.1, to a per-poli-
cy flag to request packet labels. In 8.0,
this approach was generalized so that
labels were allocated only for object
types for which at least one loaded
policy defined an initialization entry
point. This effectively eliminated the
cost of labeling when not required by
a policy, restoring performance pro-
portionality and satisfying the general
case well. However, one commercial
product that used packet labeling, the
McAfee Sidewinder Firewall, saw suf-
ficient overhead to bypass the label
abstraction in favor of direct struc-
ture modification.

Minimizing Synchronization Over-
heads. With the framework compiled in,
lock-protected reference count opera-
tions on entry-point invocation were eas-
ily measurable for frequent operations,
such as per-packet delivery checks. As
multicore hardware became more com-
mon, lock (and later cache-line) conten-
tion also became significant.

Beginning in FreeBSD 5.2, policies
were divided into static and dynamic
sets to help fixed-configuration em-
bedded systems. The former were com-
piled in or loaded at boot and unload-
able thereafter, and hence required no
synchronization. Dynamic policies—
those loaded after boot, or potentially
unloadable—still required multiple
lock operations.

In FreeBSD 8.0, synchronization
was further optimized so that the MAC
Framework could be shipped in the de-
fault kernel. This effort benefited from
continuing improvements in kernel
scalability driven by increasingly com-
mon eight-core machines. Particularly
critical were read-mostly locks, which
do not trigger cache-line migrations
during read-only acquisition, at the
cost of more expensive exclusive ac-
quisition—perfect for infrequently
changed policy lists.

nCircle IP360 Appliance
nCircle Network Security produces a
FreeBSD-based appliance, the IP360,

to scan networks for vulnerable soft-
ware and Sarbanes-Oxley compliance.
While most of its security require-
ments could be captured with conven-
tional DAC, customers requested the
ability to audit appliance content and
configuration directly. To meet this
requirement, while limiting potential
damage in case audit access is misused
or compromised, nCircle developed a
custom policy.

The policy authorizes an audit user
to read all file-system and configura-
tion data, bypassing permissions,
while also preventing file-system
writes. The MAC Framework could ex-
press only a subset of this augmenta-
tion: policies could constrain rights
but not grant them. nCircle therefore
enhanced the framework to allow con-
trol over fine-grained system privileges.

Privilege Extensions. Operating-sys-
tem privilege confers the right to bypass
operating-system security policies (for
example, changing system settings or
overriding DAC or the process model).
In classic Unix, system privileges are
granted to any process running as the
root user. To meet nCircle’s goals, a
policy must be able to augment the ker-
nel’s default privilege policy to grant
(and moderate) privileges for other us-
ers. This presented two technical chal-
lenges: how to identify and distinguish
different types of privilege; and how to
add extensibility to the existing privilege
model. These problems resemble, in mi-
crocosm, the larger concern addressed
by the MAC Framework—structuring of
a reference monitor for extensibility—
and seemed a natural fit despite a depar-
ture from the original design choice to
only limit, rather than grant, rights.

All existing kernel privilege checks
were analyzed and replaced with checks
for specific named privileges. Privilege
checking was then reworked to include
an explicit composition policy for
sources and limitations of privilege,
including two new MAC Framework
entry points: mac _ priv _ check fol-
lows the standard entry-point conven-
tions, accepting a credential, named
privilege arguments, and restrict-
ing privileges by returning an error;
mac _ priv _ grant diverges from
this model by overriding the base oper-
ating-system policy to grant new rights,
using a new composition operator that
allows any policy to grant a right, rather

It is desirable for
policies to incur only
the performance
penalties of
features they
actually use—
performance
proportionality.

60 communications of the acm | february 2013 | vol. 56 | no. 2

practice

than requiring them all to agree.
Existing policies were updated to

take advantage of the new features,
providing stronger nondiscretionary
control of the root user. For example,
the Biba policy now limits access to a
number of privileges that might allow
bypass of the process model or system
reconfiguration when operating as the
root user without Biba privilege. These
features shipped in FreeBSD 7.0.

The nCircle MAC Policy. The nCircle
policy extends (and restricts) rights
available to the audit user:

˲˲ It identifies a specific user ID to
which all remaining policy activities
apply.

˲˲ Privileges are granted, including
read access to the kernel log and fire-
wall configuration, and file read/look-
up protections are overridden.

˲˲ VFS entry points deny write access
to all objects and read access to certain
files such as the password file.

With these enhancements, the nCir-
cle policy is able to combine controlled
privilege escalation with mandatory
constraints, meeting product needs
while minimizing local operating-sys-
tem modification.

Juniper Junos
The Junos router operating system
runs on the control planes of all Juni-
per routers and switches. Juniper main-
tains substantial local modifications to
FreeBSD and is undergoing a multiyear
process to minimize its patches by re-
turning improvements to the FreeBSD
community and increasing use of oper-
ating-system extensibility frameworks
that allow local features to be cleanly
grafted onto an unmodified operating
system. As part of that project, Juniper
has been moving local security exten-
sions into MAC Framework policies,
both to reduce conflicts during FreeBSD
updates and to prepare certain policies

for upstreaming. Junos ships with four
local security extensions:

˲˲ mac _ runasnonroot. Ensures
that third-party applications written
against the Junos SDK are not run as
the root user.

˲˲ mac _ pcap. Allows Junos SDK
applications to capture packets despite
not running as root.

˲˲ mac _ veriexec. Implements
support for digitally signed binaries.

˲˲ Junos SDK sandboxing. Constrains
third-party applications based on mac_
veriexec certificates.

The mac _ runasnonroot and
mac _ pcap extensions first shipped
as framework policies in 2009. Then
mac _ veriexec shipped in 2012,
replacing a previous directly patched
implementation. Juniper is preparing
to migrate Junos SDK sandboxing to
the MAC Framework to reduce local
patches further, as well as upstream
mac _ veriexec.

These policies required minor
changes to the MAC Framework, includ-
ing additional entry points; perhaps
most interesting is a new O _ VERIFY
flag to the open system call, which sig-
nals to the framework that the user-
space runtime linker has requested that
a file be validated.

Apple OS X and iOS
In quick succession, Apple released
versions of OS X Leopard for the desk-
top/server in 2007, and iPhone OS 2 for
the iPhone and iPod Touch in 2008,
incorporating the MAC Framework as
a reference-monitor framework. OS
X Snow Leopard shipped with three
MAC policies:

˲˲ Sandbox. Provides policy-driven
sandboxing of risky components that
process untrustworthy data such as
network services and video codecs.

˲˲ Quarantine. Taints downloaded
files, supporting a user dialog display-

ing the originating website.
˲˲ Time Machine Safety Net. Protects

the integrity of Time Machine backups.
With OS X Mountain Lion, applica-

tions distributed via Apple’s App Store
have mandatory sandboxing. Apple’s
iOS 2.0 shipped with two policies:
Sandbox and one additional:

˲˲ Apple Mobile File Integrity (AMFI).
Works in concert with a code-signing
facility, terminating apps whose digi-
tal signatures have been invalidated at
runtime; exempts debugging during
app development.

Collectively the policies support sys-
tem integrity and provide strong sepa-
ration between apps in order to keep
data private. Both OS X and iOS diverge
substantially from our design expecta-
tions for the MAC Framework, requir-
ing significant adaptation.

XNU Prototype. Apple began beta
testing OS X in 2000, and the promise
of a commodity desktop operating sys-
tem with an open source kernel was
difficult to ignore. The XNU kernel is
a sophisticated blend of Carnegie Mel-
lon University’s Mach microkernel,
FreeBSD 5.0, cherry-picked newer Free-
BSD elements, and numerous features
developed by Apple. With these foun-
dations, it seemed likely that the MAC
Framework approach, and even code,
would be reusable.

Though not a microkernel, XNU
(short for X is not Unix) adopts many
elements from Mach, including its
scheduler, interprocess communica-
tion (IPC) model, and VM system. The
FreeBSD process model, IPC, network
stack, and VFS are grafted onto Mach,
providing a rich POSIX program-
ming model. Apple-developed kernel
components in the first release of OS
X included the I/O Kit device-driver
framework, network kernel extensions
(NKEs), and the HFS+ file system; this
list has only grown over time.

Table 2. Apple OS X applications may use one of several statically configured profiles, or define their own.

Profile Description

kSBXProfileNoInternet TCP/IP networking is prohibited

kSBXProfileNoNetwork All sockets-based networking is prohibited

kSBXProfileNoWrite File-system writes are prohibited

kSBXProfileNoWriteExceptTemporary File-system writes are restricted to temporary folders

kSBXProfilePureComputation Only Mach IPC to the host process is permitted

practice

february 2013 | vol. 56 | no. 2 | communications of the acm 61

Interesting questions abounded:
for example, would ideas developed in
the DTMach16 and DTOS17 microker-
nel projects apply better or worse than
the monolithic kernel approach in the
MAC Framework? Between 2003 and
2007, the increasingly mature MAC
Framework was ported to OS X.18

Adapting to OS X. The MAC Frame-
work required a detailed analysis of
the FreeBSD kernel and is tightly in-
tegrated with low-level memory man-
agement and synchronization, as well
as higher-level services such as the file
system, IPC, and network stack. While
the adaptation to OS X was able to rely
heavily on Apple’s use of FreeBSD com-
ponents, fundamental changes were
needed to reflect differences between
FreeBSD and XNU.

The first step was integrating the
MAC Framework with the closely
aligned BSD process model, file system,
and network stack. High-level architec-
tural alignment made some of the ad-
aptation easy, but nontrivial differenc-
es were also encountered. For example,
FreeBSD’s Unix file system (UFS) con-
siders directories to be specialized file
objects, whereas HFS+ considers the
directory and object attribute struc-
ture, or disk catalog, to be a first-class
object. This required changes to both
the framework and XNU.

Next, coverage was extended to in-
clude Mach tasks and IPC. Each XNU
process links a Mach task (schedul-
ing, VM) with a FreeBSD process (cre-
dentials, file descriptors), presenting
a philosophical problem: is the MAC
Framework part of Mach or BSD?
While useful architecturally, the Mach-
BSD boundary in XNU proves artificial:
references frequently span layers, re-
quiring the MAC Framework to serve
both. Label modifications on BSD pro-
cess labels are mirrored to correspond-
ing Mach task labels.

Mach ports are another case in
which microkernel origins come into
conflict with the monolithic kernel
premise of the MAC Framework. Un-
like BSD IPC objects, with kernel-
managed namespaces, Mach ports rely
on userspace namespaces managed
by launchd (for example, for desk-
top IPC). Taking a leaf from DTOS,
launchd is responsible for labeling
and enforcement but queries the ref-
erence monitor to authorize lookups.

A userspace label handle abstraction
similar to the kernel label structure
serves this purpose.

Adoption by Apple. Apple is the
world’s largest vendor of desktop Unix
systems and was among the first to de-
ploy Unix in a smartphone. It has like-
wise seen exploding use cases and new
security requirements motivated by
ubiquitous networking and malicious
attackers. Apple’s adoption of the MAC
Framework was not assured, however,
as competing technologies were also
considered, motivated by similar ob-
servations, awareness of future prod-
uct directions, performance concerns,
and our research.

Alternatives included system-call
interposition-based technology similar
to that discussed earlier, and Apple’s
Kauth3 (short for kernel authorization),
an authorization framework targeted
at antivirus vendors (modeled in part
on the MAC Framework). Apple found
arguments about the fallibility of sys-
tem-call interposition convincing, and
in the end adopted two technologies:
Kauth for third-party antivirus vendors;
and the more expressive and capable
MAC Framework for its own sandbox-
ing technologies.

The Sandbox Policy. Since Apple’s
OS X and iOS policy modules are not
open source, we are unable to consid-
er their implementations, but public
documentation exists for the Sandbox
policy used by Mac OS X components

and third-party applications such as
Google’s Chrome Web browser. Sand-
box allows applications voluntarily to
restrict their access to resources (for ex-
ample, the file system, IPC namespac-
es, and networking). Process sandbox
profiles are stored in process labels.

Bytecode-compiled policies can be
set via public APIs, or by the sandbox-
exec helper program. Applications
may select from several Apple-defined
policies (Table 2) or define custom poli-
cies. Several applications use default
policies such as the iChat video codec,
which employs the computation-only
profile limited to IPC with the host pro-
cess. Many other software components,
such as Spotlight indexing, the BIND
name server, Quicklook document pre-
views, and the System Log Daemon, uti-
lize custom profiles to limit the effects
of potential vulnerabilities.

Figure 7 shows excerpts from the
common.sb profile used by Chrome,
illustrating key Sandbox constructs:
coarse controls for sysctl kernel-man-
agement interfaces and shared memo-
ry, and fine-grained regular expression
matching of file paths. File path-based
control is a highlight of the Sandbox
policy, addressing programmer mod-
els much better than file labels in Biba,
MLS, and TE. Path-based schemes are
difficult to implement on the Unix VFS
model, which considers paths to be
second-class constructs. Whereas Free-
BSD permits files to have zero (unlinked

Figure 7. Chrome OS X sandbox policy excerpts.

(deny default)

; Allow sending signals to self - http://crbug.com/20370
(allow signal (target self))

; Needed for full-page-zoomed controls -
; http://crbug.com/11325
(allow sysctl-read)

; Allow following symlinks
(allow file-read-metadata)

; Loading System Libraries.
(allow file-read-data
 (regex #”^/System/Library/Frameworks($|/)”))
(allow file-read-data
 (regex #”^/System/Library/PrivateFrameworks($|/)”))
(allow file-read-data
 (regex #”^/System/Library/CoreServices($|/)”))

; Needed for IPC on 10.6
(allow ipc-posix-shm)

62 communications of the acm | february 2013 | vol. 56 | no. 2

practice

The MAC Framework
has become
the foundation
for numerous
instances of
security localization,
allowing local
access-control
policies to be
composed with
the still-popular
Unix discretionary
access control
model.

but open), one, or multiple names
(hard links), HFS+ implements a par-
ent pointer for files and ensures that the
name cache always contains the infor-
mation required to calculate unambig-
uous paths for in-use files.

While Sandbox is used with many OS
X services, a number of third-party ap-
plications incorporate strong assump-
tions of ambient authority, the ability to
access any object in the system. With
the iPhone, Apple broke this assump-
tion: applications execute in isolation
from system services and each other.
This model is now appearing in OS X
and could similarly help protect device
integrity against misbehaving apps
and, increasingly, end-user data.

Performance Optimizations. OS X
and iOS were shipped with the MAC
Framework prior to FreeBSD 8.0’s per-
formance optimizations, requiring
Apple to make its own optimizations
based on product-specific constraints.
As with FreeBSD optimizations, these
were generally concerned with the over-
head of framework entry and labeling.
By default, labeling is compiled out of
the kernel for certain object types; for
others, such as vnodes, policies may
selectively request label allocation, ca-
tering to the often-sparse labeling use
in OS X’s policies.

In FreeBSD, framework instrumen-
tation and synchronization optimiza-
tions rely on all-or-nothing distinc-
tions between sites willing to pay for
additional access-control extension.
In OS X, the assumption is that sand-
boxing is used on most machines, but
selectively applied to high-risk process-
es. To this end, each process carries a
mask, set by policies, indicating which
object types require enforcement. As
OS X adopts more universal sandbox-
ing, as is the case in iOS, it may be de-
sirable to apply more global optimiza-
tions as in FreeBSD.

Reflections
Over the past decade, the MAC Frame-
work has become the foundation for
numerous instances of security local-
ization, allowing local access-control
policies to be composed with the still-
popular Unix discretionary access con-
trol (DAC) model—a timely conver-
gence of industry requirements and
research. Deploying via open source
proved a successful strategy, providing

a forum for collaborative refinement,
access to early adopters, and a path to
numerous products.

Perhaps the most surprising adop-
tion was at McAfee itself: when the
framework was open sourced by
McAfee Research, Secure Computing
Corporation (then a competitor) ad-
opted it for Sidewinder, which McAfee
later acquired. More generally, this
speaks to the success of open source in
providing a venue in which competing
companies can collaborate to develop
common infrastructure technolo-
gies. The industry’s adoption of open
source foundations for appliances and
embedded devices has been well-ca-
tered to by our access-control extensi-
bility argument:

˲˲ Security localization in devices has
become widespread.

˲˲ The criticality of multiprocessing
has only increased.

˲˲ Security label abstractions have
proven beneficial beyond their MAC
roots.

˲˲ Non-consensus on access-control
policies continues.

The MAC Framework, however, also
required refinement and extension to
address several unanticipated concerns:

˲˲ The desire to revisit the structure
of Unix privilege.

˲˲ The importance of digital signa-
tures when applying access control to
third-party applications.

˲˲ Continued tensions over the desire
for name-based vs. label-based access
control.

New Design Principles. In light of
extensive field experience with the
MAC Framework, we have added sev-
eral new design principles:

Policy authors determine their own
performance, functionality, and assur-
ance trade-offs. Policies may not re-
quire heavyweight infrastructure (for
example, labels), so offer performance
proportionality.

Traceability is a key design concern.
Programming and binary interface

stability is critical. API, ABI, KPI, and
KBI sustainability is often overlooked
in research, where prototypes are fre-
quently one-offs without multi-decade
support obligations.

Manipulating operating-system privi-
lege is important to policies that augment
rather than supplement DAC.

It is clear from the work of down-

practice

february 2013 | vol. 56 | no. 2 | communications of the acm 63

stream consumers, however, that
two further principles are now also
necessary:

Application authors are first-class
principals. Apple’s App Store and Ju-
niper’s SDK both employ application
signatures and certificates as policy
inputs.

Applications themselves require flex-
ible access control to support application
compartmentalization.

This latter observation led us to
develop the application-focused Cap-
sicum protection model,21 recently
shipped as an experimental feature in
FreeBSD 9.0. It can be viewed as com-
plementary to policy-driven kernel ac-
cess control.

Domain-Specific Policy Models.
Why no consensus has been reached in
the expression of operating-system pol-
icies is an interesting question—cer-
tainly, proponents of successive policy
models have argued that their models
capture the key concerns in system
design. In catering to a variety of mod-
els, our observations are twofold: first,
policy models aim to capture aspects of
the principle of least privilege15 but often
in fundamentally different forms (for
example, information flow vs. system
privileges), making their approaches
complementary; second, different
models address different spaces in a
multidimensional trade-off between
types of expression, assurance, perfor-
mance, administrative complexity, im-
plementation complexity, compatibil-
ity, and maintainability. This instead
reflects a consensus for domain-specific
policy models.

The Value of Extensibility. Does the
need for significant design enhance-
ment confirm or reject the hypoth-
esis of access-control extensibility?
Further comparison to similar frame-
works, such as VFS and device drivers,
seems appropriate: both are regularly
extended to adapt to new require-
ments such as changes in distributed
file-system technology or improve-
ment in power management. The
willingness of industrial consumers
to extend the framework and return
improvements reflects our fundamen-
tally economic hypothesis regarding
extensibility: managing the upstream-
downstream relationship for signifi-
cant source-code bases is a strong mo-
tivator. Widespread and continuing

deployment of the MAC Framework
appears to confirm the more general
argument that access-control extensi-
bility is a critical aspect of contempo-
rary operating-system design.

Acknowledgments
Systems research emphasizes the
practical application of ideas to real-
world systems: only by implementing
an idea can you fully understand it;
this is even more true in the transition
from research to practice. Acknowl-
edgments are due to a large cast span-
ning many institutions; to view full
list, see queue.acm.org. Helpful feed-
back on this article came from Ross
Anderson, Simon Cooper, Jon Crow-
croft, Simon Gerraty, Matthew Grosve-
nor, Steve Hand, Mark Handley, Steve
Kiernan, Anil Madhavapeddy, Peter G.
Neumann, George Neville-Neil, and
Mike Silbersack.

This work was supported by DAR-
PA/AFRL contract FA8750-10-C-0237
(CTSRD), with previous support from
the DARPA CBOSS and SPAWAR SE-
FOS contracts, spanning the DARPA
CHATS and DARPA CRASH research
programs. The views, opinions, and/
or findings in this article are author’s
and should not be interpreted as rep-
resenting the official views or poli-
cies, either expressed or implied, of
DARPA, the U.S. Navy, AFRL, or the
Department of Defense. Google, Inc.
also supported this work.	

 Related articles
 on queue.acm.org

Building Systems to Be Shared, Securely

Poul-Henning Kamp, Robert Watson
ttp://queue.acm.org/detail.cfm?id=1017001

Extensible Programming
for the 21st Century

Gregory V. Wilson
http://queue.acm.org/detail.cfm?id=1039534

ACM CTO Roundtable on
Mobile Devices in the Enterprise
Mache Creeger
http://queue.acm.org/detail.cfm?id=2016038

References
1.	A brams, M.D., Eggers, K.W., LaPadula, L.J. and Olson,

I.M. A generalized framework for access control: An
informal description. In Proceedings of the 13th NIST-
NCSC National Computer Security Conference (1990),
135–143.

2.	A nderson, J.P. Computer Security Technology
Planning Study. Technical report, Electronic Systems
Division, Air Force Systems Command, 1972.

3.	A pple Inc. Kernel authorization. Technical Note
TN2127, 2007; http://developer.apple.com/technotes/
tn2005/tn2127.html.

4.	B adger, L., Sterne, D.F., Sherman, D. ., Walker, K.M.
and Haghighat, S.A. Practical domain and type
enforcement for Unix. In Proceedings of the 1995
IEEE Symposium on Security and Privacy 66 (1995).
IEEE Computer Society.

5.	B ell, D.E., and L.J. LaPadula. Secure computer systems:
mathematical foundations and model. Technical Report
M74-244. Mitre Corp., Bedford, MA, 1973.

6.	B iba, K. Integrity considerations for secure computer
systems. Technical Report TR-3153. Mitre Corp.,
Bedford, MA, 1977.

7.	B oebert, W.E. and Kain, R.Y. A practical alternative to
hierarchical integrity policies. In Proceedings of the 8th
National Computer Security Conference, 1985.

8.	C antrill, B.M., Shapiro, M.W. and Leventhal,
A.H. Dynamic instrumentation of production
systems. In Proceedings of the Usenix Annual
Technical Conference (Berkeley, CA, 2004). Usenix
Association.

9.	F raser, T., Badger, L. and Feldman, M. Hardening
COTS software with generic software wrappers. In
Proceedings of the 1999 IEEE Symposium on Security
and Privacy.

10.	 Kleiman, S.R. Vnodes: An architecture for multiple
file system types in Sun Unix. In Proceedings of the
Summer 1986 Usenix Conference.

11.	L oscocco, P.A. and Smalley, S.D. Integrating flexible
support for security policies into the Linux operating
system. In Proceedings of the 2001 Usenix Annual
Technical Conference. Usenix Association, 29–42.

12.	M cKusick, M.K., Neville-Neil, G.V. The Design and
Implementation of the FreeBSD Operating System.
Pearson Education, 2004.

13.	N eumann, P.G., Boyer, R.S., Feiertag, R.J., Levitt, K.N.
and Robinson, L. A provably secure operating system:
the system, its applications, and proofs, second
edition. Technical Report CSL-116. Computer Science
Laboratory, SRI International, 1980.

14.	O tt, A. Rule-set-based access control (RSBAC) for
Linux (2010); http://www.rsbac.org/.

15.	S altzer, J.H. and Schroeder, M.D. The protection of
information in computer systems. In Proceedings of
the IEEE 63, 9 (1975), 1278–1308.

16.	S ebes, E.J. Overview of the architecture of
Distributed Trusted Mach. In Proceedings of the
Usenix Mach Symposium (1991). Usenix Association,
20–22.

17.	S pencer, R., Smalley, S., Loscocco, P., Hibler, M.,
Andersen, D. and Lepreau, J. 1999. The Flask
security architecture: system support for diverse
security policies. In Proceedings of the 8th Usenix
Security Symposium (1999). Usenix Association,
123–139.

18.	 Vance, C., Miller, T. C., Dekelbaum, R., Reisse, A. 2007.
Security-enhanced Darwin: Porting SELinux to Mac
OS X. In Proceedings from the Third Annual Security
Enhanced Linux Symposium (2007).

19.	W atson, R.N.M. Exploiting concurrency vulnerabilities
in system call wrappers. In Proceedings of the First
Usenix Workshop on Offensive Technologies. Usenix
Association, 2007, 1–8.

20.	Watson, R.N.M. New approaches to operating system
security extensibility. Technical Report UCAM-
CL-TR-818. University of Cambridge, Computer
Laboratory, 2012.

21.	W atson, R.N.M., Anderson, J., Laurie, B. and
Kennaway, K. Capsicum: Practical capabilities for
Unix. In Proceedings of the 19th Usenix Security
Symposium (2010). Usenix Association.

22.	W atson, R.N.M. Feldman, B., Migus, A. and Vance,
C. Design and implementation of the TrustedBSD
MAC Framework. In Proceedings of the Third DARPA
Information Survivability Conference and Exhibition
(2003). IEEE.

23.	W right, C., Cowan, C., Morris, J., Smalley, S. and
Kroah-Hartman, G. 2002. Linux security modules:
General security support for the Linux kernel. In
Proceedings of the 11th Usenix Security Symposium
(2002). Usenix Association.

Robert N.M. Watson is a senior research associate at
the University of Cambridge Computer Laboratory, and
a Research Fellow at St John’s College Cambridge. He
was a senior principal scientist at SPARTA ISSO, and a
senior research scientist at McAfee Research, where he
led the development of a kernel access control extension
framework for the open source FreeBSD operating system,
now used in products such as Junos, Apple OS X, and iOS.

© 2013 ACM 0001-0782/13/02

http://queue.acm.org
http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1017001
http://queue.acm.org/detail.cfm?id=1039534
http://queue.acm.org/detail.cfm?id=2016038
http://developer.apple.com/technotes/tn2005/tn2127.html
http://developer.apple.com/technotes/tn2005/tn2127.html
http://www.rsbac.org/

64 communications of the acm | february 2013 | vol. 56 | no. 2

contributed articles

Cl oud computing is a service model that offers users
(herein called “tenants”) on-demand network access
to a large shared pool of computing resources (the
cloud). The financial benefits of cloud computing
are widely recognized. Building and managing a
large-scale data center results in savings of a factor
between five and seven over one of medium size in
terms of electricity, hardware, network-bandwidth,
and operational costs.1 From the tenant’s perspective,
the ability to use and pay for resources on demand
and the elasticity of the cloud are strong incentives for
migration to the cloud.

Despite these benefits, public clouds are still not
widely adopted, especially by enterprises. Most large
organizations today run private clouds, in the sense

of virtualized and geographically dis-
tributed data centers, but rarely rely
primarily on externally managed re-
sources; notable exceptions include
Twitter and The New York Times, which
run on Amazon infrastructure.

Major barriers to adoption are
the security and operational risks to
which existing cloud infrastructures
are prone, including hardware failure,
software bugs, power outages, server
misconfiguration, malware, and insid-
er threats. Such failure and attack vec-
tors are not new, but their risk is am-
plified by the large scale of the cloud.5
They can even be disastrous, including
data loss and corruption, breaches of
data confidentiality, and malicious
tampering with data. Strong protec-
tions beyond encryption are therefore
a necessity for data outsourced to the
cloud, with two standing out as particu-
larly important: integrity, or assurance
against data tampering, and freshness,
or the guarantee that retrieved data re-
flects the latest updates.

Another concern hindering mi-
gration into a public cloud is lack of
availability and reliability guarantees.
Well-known cloud providers have ex-
perienced temporary lack of availabil-
ity lasting at least several hours11,21 and
striking loss of personal customer data,
most notably the 2011 T-Mobile/Side-
kick incident.23 Traditional reliability
models for hardware make certain as-
sumptions about failure patterns (such
as independence of failures among
hard drives) that are not accurate in
the world of cloud computing. With-
out novel data-reliability protections

New Approaches
to Security
and Availability
for Cloud Data

doi:10.1145/2408776.2408793

Extending the data trust perimeter from
the enterprise to the public cloud requires
more than encryption.

By Ari Juels and Alina Oprea

 key insights
 � �Security concerns limit or even impede

enterprise migration into public clouds.

 � �Creating incentives for cloud adoption
requires thinking beyond data
encryption, which alone rarely provides
confidentiality on data processed in the
cloud or protects against tampering,
corruption, or loss of availability.

 � �Real-time auditing by tenants or third
parties can create new security visibility
in the cloud and strong assurance of
correct cloud-service operation.

february 2013 | vol. 56 | no. 2 | communications of the acm 65

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 A
l

i
c

i
a

 K
u

b
i

s
t

a
 /

 A
n

d
r

i
j

 B
o

r
y

s
 A

s
s

o
c

i
a

t
e

s

(beyond today’s RAID-5 and RAID-6),
maintaining correctness of massive
amounts of data over long periods of
time is extremely difficult.4

Another top concern for enterprises
migrating into the cloud is collocation
with potentially malicious tenants.5 In
an Infrastructure-as-a-Service (IaaS)
model, tenants rent virtual machines
(VMs) on servers they share with other
tenants; logical isolation among VMs
is enforced by hypervisors. In a Plat-
form-as-a-Service (PaaS) model, differ-
ent tenants may run applications in the
same operating system, without clear
isolation beyond basic OS-level pro-
tections (easily bypassed by advanced
malware). Ristenpart et al.18 showed
that an attacker can collocate a VM
under its control on the same server
as a targeted victim VM in the Amazon
IaaS infrastructure; they also provided

evidence that such an attacker can ex-
ploit side channels in shared hardware
(such as the L2 cache) to exfiltrate sen-
sitive data from the victim.

Our research addresses the chal-
lenge of migrating enterprise data
into the public cloud while retaining
tenant trust and visibility. We have
devised cryptographic protocols that
extend traditional trust perimeters
from enterprise data centers into the
public cloud by conferring strong pro-
tections on migrated data, including
integrity, freshness, and high avail-
ability. In addition, we propose an au-
diting framework to verify properties
of the internal operation of the cloud
and assure enterprises that their
cloud data—and workloads—are han-
dled securely and reliably.

Adversarial model. Here, we are
concerned mainly with cloud provid-

ers subject to a range of threats. These
providers might deviate from our pro-
tocols for cost savings or due to poor
security practices but not for pure mali-
cious intent. In most cases, we are able
to detect deviations from our protocols
by misbehaving cloud providers but do
not provide remediation mechanisms
against fully malicious cloud provid-
ers. By using multiple cloud providers
in the design of our High-Availability
and Integrity Layer, or HAIL, protocol,
described later, we show we can also
provide data integrity and availability
in a setting in which a fraction of pro-
viders can be fully compromised.

Solution overview. Figure 1 out-
lines our vision of a more-trustworthy
cloud-computing model for enter-
prises. A small trusted gateway with-
in the enterprise intermediates all
communication, from internal data

66 communications of the acm | february 2013 | vol. 56 | no. 2

contributed articles

center to external public cloud. The
gateway manages cryptographic keys
(for encrypting data for confidential-
ity requirements), maintains trusted
storage for integrity and freshness en-
forcement, and may add redundancy
to data for enhanced availability. Once
the data and workloads of a particular
enterprise migrate to the cloud, an
independent cloud-auditing service
(run by the enterprise or, alternative-
ly, a third party) monitors the enter-
prise’s cloud resources. This service
regularly communicates bi-direction-
ally with the gateway. Updates on en-
terprise data and workloads migrated
to the cloud propagate from the en-
terprise to the auditing service, which
communicates the results of its audits
back to the enterprise, including, say,
the health scores of various resources
(such as data repositories and virtual
machines).

Organization. Here, we describe
several research projects that are com-
ponents of this broad vision, starting
with our design for an authenticated
file system called Iris that allows mi-
gration of existing internal enterprise
file systems into the cloud. Iris offers
strong integrity and freshness guaran-
tees of both file-system data and meta-
data accessed while users perform file-
system operations. Iris minimizes the
effects of network latency on file-sys-
tem operations and is optimized for

typical file-system workloads (sequen-
tial file accesses). We then introduce
our auditing framework, including
Proofs of Retrievability (PoR) and relat-
ed protocols that cryptographically ver-
ify the correctness of all cloud-stored
data with minimal communication.
(Remarkably, even against a cheat-
ing cloud, PoRs show that every bit of
data stored in the cloud is intact.) We
describe a dynamic PoR architecture
that supports data updates in Iris and
audit of physical-layer storage proper-
ties. We also show how to verify that
cloud data is replicated across mul-
tiple hard drives with our Reversible
Addition-Fragmentation chain Trans-
fer, or RAFT, protocol. For further data
protection we address the challenge of
data availability in the face of cloud-
service failures, including potentially
malicious ones. We also describe our
HAIL protocol, which distributes data
redundantly across multiple cloud
providers. HAIL is a cloud extension of
the RAID principle, building reliable
storage systems from inexpensive,
unreliable components. We conclude
with yet more challenges in securing
cloud data.

Integrity Checking with Iris
Tenants commonly assume encrypt-
ing their data before sending it to the
cloud is sufficient for securing it. En-
cryption provides strong confidential-

ity against a prying or breached cloud
provider. It does not, however, protect
against corruption of data due to soft-
ware bugs or configuration errors,
which require enforcement of a differ-
ent property—data integrity—to en-
sure that data retrieved by a tenant is
authentic, or has not been modified or
corrupted by an unauthorized party. On
its own, data integrity is relatively easy
to achieve through cryptography (typi-
cally through Message-Authentication
Codes, or MACs, on data blocks). But
one critical yet subtle related security
property—freshness—of data is often
overlooked. Freshness ensures the lat-
est updates are always propagated to
the cloud and prevents rollback attacks
in which stale versions of the data are
presented to tenants.

Data freshness ensures retrieved
data always reflects the most recent
updates while preventing rollback at-
tacks. Achieving data freshness is es-
sential for protecting against miscon-
figuration errors or rollbacks that are
caused intentionally and is the main
technical challenge in building the
Iris system we describe in the follow-
ing section:

Iris design goals. Iris is an authenti-
cated file system that supports migra-
tion of an enterprise-class distributed
file system into the cloud, efficiently,
transparently, and in a scalable man-
ner. It is authenticated in the sense

Figure 1. Extending trust perimeter from enterprise data center to the public cloud.

Gateway

Audit
Cloud

Service

Data
Computation

Public Cloud

Periodic Audit

Enterprise

Confidentiality
Integrity

Freshness
Availability

contributed articles

february 2013 | vol. 56 | no. 2 | communications of the acm 67

that it enables an enterprise tenant
to verify the integrity and freshness of
retrieved data while performing file-
system operations.

A key Iris design requirement is
that it imposes on client applications
no changes to file-system operations,
including file read, write, update, and
delete operations, as well as creation
and removal of directories. That is, Iris
does not require user machines to run
modified applications. It also aims to
achieve a slowdown in operation la-
tency small enough to go unnoticed
by users even when a large number of
clients in the enterprise (on the order
of hundreds and even thousands) issue
file-system operations in parallel.

Iris architecture. An important
challenge we faced when designing
Iris is how to address the typically
high network latency between an en-
terprise and the cloud. To reduce the
effect of network latency on individual
operation latency and the cost of net-
work transfer to and from the cloud,
Iris employs heavy caching on the en-
terprise side.

In Iris, a trusted gateway residing
within the enterprise trust bound-
ary, as in Figure 1, intermediates all
communication from enterprise us-
ers to the cloud. The gateway caches
data and meta-data blocks from the
file system recently accessed by enter-
prise users. The gateway computes in-
tegrity checks, namely MACs, on data
blocks. It also maintains integrity and
freshness information for cached data
consisting of parts of a tree-based au-
thenticated data structure stored in
the cloud.

The cloud maintains the distributed
file system consisting of all enterprise
files and directories. Iris is designed
to use any existing back-end cloud-
storage system transparently, without
modification. The cloud also stores
MACs for block-level integrity checks,
as well as a tree-based cryptographic
data structure needed to ensure the
freshness of data blocks and the direc-
tory tree of the file system.

Integrity and freshness verification.
To guarantee data integrity and fresh-
ness for an entire file system, Iris uses
an authentication scheme consist-
ing of two layers (see Figure 2). At the
lower layer, it stores a MAC for each
file block; file blocks are fixed-size

file segments of typical size 4KB. This
structure enables random access to file
blocks and verification of individual
file-block integrity without accessing
full files. For freshness, MACs are not
sufficient, so Iris associates a counter
or version number with each file block
incremented on every block update15
and included in the block MAC. Dif-
ferent versions of a block can be dis-
tinguished through different version
numbers. But for freshness, block ver-
sion numbers must also be authenti-
cated.

The upper layer of the authentica-
tion scheme is a Merkle tree tailored
to the file system directory tree. The
leaves of the Merkle tree store block-
version numbers in compressed form.
The authentication of data is separated
from the authentication of block-ver-
sion numbers to enable optimizations
in the data structure. Internal nodes of
the tree contain hashes of their chil-
dren, as in a standard Merkle tree. The
root of the Merkle tree must be main-
tained at all times within the enter-
prise-trust boundary at the gateway.

The tenant can efficiently verify the
integrity and freshness of a file data
block by checking the block MAC and
the freshness of the block-version
number. The tenant verifies the block-
version number by accessing the sib-
ling nodes on the path from the leaf
storing the version number up to the
root of the tree, recomputing all hash-

es on the path to the root and checking
that the root matches the value stored
locally. With a similar mechanism, the
tenant can additionally verify the cor-
rectness of file paths in the file system
and, more generally, of any other file
system metadata (such as file names,
number of files in a directory, and file-
creation time).

This Merkle-tree-based structure
has two distinctive features compared
to other authenticated file systems:
Support for existing file-system opera-
tions (Iris maintains a balanced binary
tree over the file system directory struc-
ture to efficiently support existing file
system calls); and support for concur-
rent operations (the Merkle tree sup-
ports efficient updates from multiple
clients operating on the file system
in parallel). Iris also optimizes for se-
quential file-block accesses; sequences
of identical version counters are com-
pressed into a single leaf.

The Iris authentication mechanism
is practical and scalable; in a prototype
system, a Merkle tree cache of only
10MB increases the system through-
put by a factor of 3, so, compared to
no caching, the throughput is fairly
constant for approximately 100 clients
executing operations on the file system
in parallel; the operation-latency over-
head introduced by processing at the
gateway, including the integrity-check-
ing mechanism, is at most 15%. These
numbers are reported from a user-level

Figure 2. Authentication data structure in Iris.

/u/

 a c d f v/

 b e g

Merkle tree

/u/

 c a f v/ d

 g b e

Directory tree

File version tree

Data file

MAC file

68 communications of the acm | february 2013 | vol. 56 | no. 2

contributed articles

implementation of Iris evaluated on
commonly used benchmarks, includ-
ing IOZone, sequential file reads and
writes, and archiving of an entire direc-
tory structure.20

Auditing Framework
Tools like Iris enable tenants to de-
ploy their own security protections
for data migrated to the cloud. But
tenant self-protection is effective only
to a point; for instance, even with Iris
in place, a tenant’s data is not safe
against wholesale service-provider
failure. Moreover, while Iris enables
tenants to detect data loss resulting
from a drive crash, it does not give
them early warning of the probable
precondition—a dangerous lack of
provider storage redundancy.

A strong auditing framework is the
cornerstone of tenant confidence in a
service provider. Regulatory, reputa-
tional, and contractual assurances of
provider safeguards are important, but
ongoing technical assurances of solid
security are irreplaceable.

Our research aims to develop a
tenant-provider auditing relationship
in which a tenant or external auditing
service acting on the tenant’s behalf,
as in Figure 1, can continuously audit
a provider to prove or disprove com-
pliance with a given security policy.
The provider responds to a challenge
with a compact, real-time proof. Such
auditing draws on the structure of
a cryptographic challenge-response
protocol; the tenant can rigorously
verify the provider’s response, obtain-
ing a technically strong guarantee of
policy compliance.

The challenge-response-style pro-
tocols described here cover a range
of security properties, from data cor-
rectness to availability in the face of
provider failures. We give a high-level
overview of how they work and the
guarantees they offer; we also briefly
discuss their place in a larger vision, in
which trusted hardware complements
our auditing framework.

For concreteness, we mimic the
cryptographic literature, referring
to our canonical tenant as Alice and
cloud provider as Bob. In our descrip-
tion here, Alice also acts as the auditor
verifying properties of cloud-stored
data, but in our more general frame-
work, from Figure 1, the auditing pro-

tocol could be executed by a separate
entity—the auditing service.

Auditing data retrievability. When
Alice (the tenant) stores data with Bob
(the cloud), the most basic assurance
she is likely to seek is that her data re-
mains intact. She wants to know that
Bob has not let her data succumb to
bit rot, storage-device failure, corrup-
tion by buggy software, or myriad other
common threats to data integrity. Be-
cause even a well-meaning Bob may
be vulnerable to infection by malware,
Alice also needs such assurance to be
robust even if Bob cheats.

One strong cryptographic approach
to assurance is the PoR,12 a challenge-
response protocol in which Bob proves
to Alice that a given piece of data D
stored in the cloud is intact and retriev-
able. While the Iris system enables
verification of data integrity for data
retrieved from the cloud in the course
of performing regular file-system op-
erations, a PoR enables verification of
an entire data collection without first
retrieving it from the cloud.

This goal might seem counterintui-
tive at first, even impossible. A PoR can
demonstrate with a compact proof (on
the order of, say, hundreds of bytes)
that every single bit of data is intact
and accessible to Alice, even if it is very
large (gigabytes or more).

Building a PoR, step by step. Here, to
give a sense of how a PoR works, we de-
velop a construction in stages. An ob-
vious candidate approach is for Alice
to simply store a cryptographic hash c
= h(D) of data D in the cloud. To verify
that D is intact, she challenges Bob to
send her c. However, this idea involves
two problems: Bob can cheat, storing c
and throwing away D, though a refine-
ment incorporating a secret “nonce”
into the hash would address it. Effi-
ciency considerations are a more fun-
damental drawback; to generate c from
D authentically, Bob must hash all of D,
a resource-intensive process if D is big.

An alternative approach is for Alice
to sample data blocks and verify their
correctness, in effect spot-checking
her data. Now let ri denote the ith data
block; blocks are fixed-size segments
of data with typical size 4KB. Before
storing the data into the cloud, Alice
locally retains a randomly selected
block ri. To challenge Bob, she sends
him the block-index i and asks him to

When Alice
(the tenant) stores
data with Bob
(the cloud),
she wants to know
that Bob has not let
her data succumb
to bit rot,
storage-device
failures, corruption
by buggy software,
or myriad other
common threats
to data integrity.

contributed articles

february 2013 | vol. 56 | no. 2 | communications of the acm 69

transmit ri, which she verifies against
her local copy. To amplify the prob-
ability of detecting data corruption,
Alice can request multiple blocks with
independent random indices i1, i2,…,
im simultaneously.

Bob now has to touch only a small
portion of the data to respond to a chal-
lenge, solving the resource-consump-
tion problem with hashing. If D, or a
large chunk of D, is missing or corrupt-
ed, Alice will detect this fact with high
probability, as desired. However, the
scheme still involves two drawbacks:

First, while Alice can detect large
corruptions with high probability, she
is unlikely to detect small corruptions
of, say, limited bit rot, even with mul-
tiple challenge blocks. Suppose her
data has one million blocks and she
challenges Bob on 10 randomly se-
lected blocks; the probability of Alice
detecting a one-bit error would be less
than 0.001%. And second, she must use
fresh blocks for each challenge, so Bob
cannot predict future challenges from
past ones. So, if Alice plans to chal-
lenge Bob many times, she must store
a considerable amount of data locally.

To solve the first, we can appeal to
an error-correcting code, a technique
for adding redundancy to some piece
of data D (called “message”), yielding
encoded data D* (called “code word”).
D* is often constructed by appending
what are called “parity blocks” to the
end of D. If a limited portion of the en-
coded data D* is corrupted or erased, a
decoding function can still be applied
to restore the original data D. The ex-
pansion ratio (|D*|=|D|) and amount
of tolerable corruption depend on the
code parameters. For the sake of the
example, though, consider an error-
correcting code that expands data by
10%—|D*|=|D| = 1.1—and can success-
fully decode it provided that at most
10% of the blocks in D* are corrupted.

Now, if Alice stores D* instead of
D, she is assured her data will be lost
only if a significant fraction of her data
is corrupted or erased. That is, for a
single bit of D to be irretrievably cor-
rupted, a large chunk of D* must be
corrupted Use of error-correcting ef-
fectively amplifies the power of Alice’s
challenges. Suppose, for instance, she
uses a code that corrects up to 10% cor-
ruption. Now, issuing 10 challenges
against a one-million-block data col-

lection will result in detection of any
irretrievably corrupted bits in D with
probability over 65%—a vast improve-
ment over 0.001%.

Solving the problem of excessive lo-
cal storage is fairly easy. Using a locally
stored secret key k, Alice can compute
MACs—secret-key digital signatures—
over data blocks r1, r2,…, rn. She can
safely have Bob store MACs c1, c2,…, cn
alongside D*. To verify the correctness
of a block r1, Alice uses k and ci. So Alice
needs to store only the key k. Figure 3
shows the data stored by Alice and Bob
in this PoR construction.

Concerning other challenges in
constructing a practical PoR, Alice can
send, say, a key to a pseudorandom
function during a challenge, based
on which Bob can infer the position
of all challenged blocks. Bob can also
aggregate multiple response blocks
into one, rendering transmission and
verification more efficient. Addition-
ally, making error-correcting practical
for large data collections requires cod-
ing and cryptographic tricks, though
the solution presented here provides
much of the intuition behind a full-
blown PoR construction.

A PoR can be used to verify the integ-
rity and correctness of any type of data
collection stored in the cloud, includ-
ing file systems and key-value stores.
Its salient property is it gives Alice
strong guarantees about the correct-

ness of an entire data collection using
minimal computation and bandwidth
for auditing. The auditing protocol
could be performed by a third-party au-
diting service.

Variants. Several PoR variants are
available for auditing data integrity:
for example, a Proof of Data Posses-
sion (PDP)2 enables public verifica-
tion of data integrity by employing
public-key cryptography. Compared
with PoRs, PDP provides detection of
only large amounts of data corruption,
without a recovering mechanism. PDP
and PoR protocols can be privately or
publicly verifiable. In a privately veri-
fiable protocol, auditing can be per-
formed only by the party who knows
the secret key used for encoding the
data. In contrast, in a publicly verifi-
able protocol, auditing can be per-
formed by any third-party service, at
the cost of more computationally ex-
pensive encoding and auditing proto-
cols. The term Proof of Storage (PoS)3
has evolved as a convenient catchall
for PoRs and PDPs. Most PoS protocols
can be combined with other crypto-
graphic protections (such as encryp-
tion for data confidentiality) to achieve
a suite of cloud-data protections.13

PoRs in Iris. A basic PoR, as de-
scribed earlier, has a notable limita-
tion: an inability to handle data up-
dates gracefully. Changing a single
data block in D requires propagation

Figure 3. Data stored by Alice and Bob in a PoR. To issue a challenge to Bob, Alice indicates
positions i1,…, im to Bob. Bob returns data blocks ri1,…, rim, along with MACs ci1,…, cim. Alice
verifies the correctness of rij against MAC cij, for all j ∈ {1,…, m} using secret key k.

D*

D parity blocks MACs

r1 r2
rj rn c1 c2 cn

K

Challenge: i1, i2, … im

Response: …

ci1
ri1

cim
rim

Bob (Cloud Provider)Alice (Tenant)

70 communications of the acm | february 2013 | vol. 56 | no. 2

contributed articles

of changes across the parity blocks of
D*. So a basic PoR is efficient only for
checks on static data (such as archived
data). The situation is somewhat bet-
ter without error correction; research-
ers have proposed (asymptotically
efficient) PDP systems that support
data updates.8 But support for updates
also rules out recovering from a small
amount of data corruption.

It is natural, then, to ask whether
we can have the best of both worlds—a
PoR for dynamically changing data. Yes
is the answer.

Check values (MACs or digital sig-
natures) pose the first major challenge
in supporting a dynamic PoR/PDP.
Not only must they be updated in con-
junction with data-block updates, but,
when verifying them, Alice must be
able to determine they are both correct
and fresh. The Iris system is designed
precisely to tackle the tricky problem
of efficient freshness verification for
file systems, making it ideal for build-
ing a dynamic PoR.

An even more formidable challenge
is updating error-correcting blocks as
data blocks change. That is, to protect
against targeted corruption by Bob, the
structure of the error-correcting code,
and thus the pattern of parity block
updates, must be hidden from him.
Encryption is no help; basic encryption
hides data, not access patterns.

The way out of this conundrum is a
model shift inspired by the deployment
objectives of Iris. While PoR designers
generally aim to keep Alice’s storage
to a minimum, Iris aims at enterprise-

class cloud deployment. When Alice is
a company, rather than an individual,
substantial tenant-side resources are a
reasonable expectation.

The key idea for dynamic PoR lay-
ered on Iris is to have Alice cache parity
blocks locally, on the enterprise side,
and periodically back them up to the
cloud. This approach conceals indi-
vidual parity-block updates from Bob,
as well as the code structure. It has an-
other advantage, too: Alice’s updates
to parity blocks can be made locally.
As a single data-block update results
in multiple parity-block updates, the
ability to make updates locally greatly
reduces communication between Alice
and Bob.

The result is an enhancement such
that Iris not only verifies file integrity
and freshness but can also check (ef-
ficiently) whether an entire file system
is intact, down to the last bit. In addi-
tion, if corruptions to data are found
(through auditing or through integrity
verification using the Merkle tree struc-
ture described earlier), Iris can recover
corrupted blocks from the additional
redundancy provided by the erasure
code. Iris provides strong guarantees of
detection and remediation of data cor-
ruption, resulting in retrievability of an
entire file system stored in the cloud. A
great Iris benefit is that its parameters
for the erasure code and the communi-
cation during an audit can be adjusted
for a desired level of recoverability.

While construction in Iris provides
the first practical solution to a dynamic
PoR protocol, it relies on some amount

of local storage maintained by the ten-
ant; in our Iris instantiation the client
maintains O(√n) local storage for a file
system with n data blocks. The prob-
lem of constructing a dynamic PoR
protocol with constant storage at the
client-side is the major remaining the-
oretical cryptographic research chal-
lenge in auditing data retrievability.

Auditing of drive-failure resilience.
Detecting data loss via Proofs of Stor-
age (PoS) is helpful, though prevention
is best. One major cause of data loss
is drive crashes. In a large data center
with hundreds of thousands of drives,
drive failure is the norm rather than
the exception. With 2%–3% annual fail-
ure rates published by manufacturers
and even higher numbers observed in
the field,19 a large data center is likely to
experience thousands of drive failures
each year.

Services (such as Amazon S3) claim
to store files in triplicate. But how can
such a claim be verified remotely? At first
glance, it seems impossible. Suppose
Alice wants to verify that Bob is storing
three copies of her data. Downloading
the three copies would not work; if Bob
is cheating and storing only one copy
of the data, he can simply transmit that
one copy three times. There is, however,
a very simple solution: Alice can encrypt
each copy of her data under a separate
key, yielding three distinct encryptions.
Executing a PoS against each encrypted
version ensures the existence of three
distinct copies.

In many cases, though, Alice does
not want to have to store her data in en-

Figure 4. Responding to challenges from one disk (on the left) and two disks (on the right) in the RAFT protocol.

K

Alice (Tenant) Bob (Cloud Provider)

Challenge: (ri , rj)?

Response:

ri rj

D*

K

Alice (Tenant) Bob (Cloud Provider)

Challenge: (ri , rj)?

Response:

ri rj

D* D*

(Copy 1) (Copy 2)

contributed articles

february 2013 | vol. 56 | no. 2 | communications of the acm 71

crypted form. She may want Bob to be
able to process her data for her or make
it available to her friends. More impor-
tant, the existence of three distinct cop-
ies does not per se ensure resilience to
drive crashes. All three copies could be
sitting on the same drive, after all. So
how can Alice verify that there are three
distinct copies of the data, each on a
different drive?

A striking feature of the problem is
that it is primarily physical, not logical.
The objective is not to verify the encod-
ing or mere existence of data but its
disposition on a physical substrate.

RAFT7 is the solution, allowing Al-
ice to verify that Bob has stored some
piece of data D so it can survive up to t
drive failures, for a desired parameter
t. RAFT allows D to be dispersed using
erasure coding, a more space-efficient
technique than maintaining full file
copies. RAFT operates specifically on
data stored in rotational drives, ex-
ploiting their performance limitations
as a bounding parameter. The more
drives across which Bob has striped
D, the faster he can respond to a chal-
lenge. In particular, RAFT makes use
of bounds on the seek time of a rota-
tional drive. Alice transforms her data
D using an erasure code into encoded
data D*. D* can be striped across c
drives such that if any t fail, D can be
recovered. She asks Bob to store D*
across c drives.

To verify resilience to t drive fail-
ures, Alice challenges Bob to fetch a set
of n randomly distributed blocks from
D*. Suppose Bob stores D* on d drives.

Each block fetch incurs a seek (assum-
ing the random blocks are spread apart
at a large distance). So on average, if
a seek takes time µ, Bob’s total fetch
time is µn/d. If d < c, then his response
time will take µn(1/d–1/c) longer than
expected, on average. By measuring
Bob’s response time, then, Alice can
determine whether he is indeed using
c drives, as required (see Figure 4).

While we do not go into detail here,
many complications arise in real-world
settings. Variations in drive perfor-
mance, as well as in network latency, be-
tween Alice and Bob must be measured
carefully. Sensitive statistical analysis
and structuring of challenges is required
to accommodate these variations.

Hardware roots of trust. Another
approach to assurance within the
challenge-response framework we ex-
plore here is a hardware root of trust,
as supported by, say, Trusted Platform
Modules that permit a tenant to verify
remotely, via a challenge-response pro-
tocol, a provider is executing a particu-
lar software stack.

But hardware roots of trust cannot
directly enforce guarantees on storage
integrity or reliability. Even if Bob’s
servers are configured precisely, as
specified by Alice, and even if Alice con-
trols their operation, she obtains no di-
rect guarantee as to their correspond-
ing storage subsystem. For instance,
the only way for Alice to determine a
file F is intact in storage without full-
file inspection is to perform a PoR. The
same holds for properties verified by
Iris, HAIL, and RAFT, none guaranteed

solely through trustworthy execution
environments.

Enhancing Data
Availability with HAIL
We have described an auditing frame-
work that offers tenants visibility into
the operations of the cloud and veri-
fication of some properties of their
cloud-side data. But what happens
if the cloud provider fails to respond
correctly to an audit due to data loss?
A major impediment to cloud adop-
tion by enterprises is temporary lack
of availability by the provider or even
permanent failure. This is a real threat,
as illustrated by catastrophic provider
failures resulting in massive customer
data loss.23

We designed HAIL6 specifically to
address this challenge, predicated on
the idea that it is wise to distribute
data across multiple cloud providers
for continuous availability. HAIL thus
leverages multiple cloud providers
to construct a reliable, cost-effective
cloud-storage service from unreliable
components. The idea is similar in fla-
vor to RAID,16 which creates reliable
storage arrays from unreliable hard
drives. HAIL extends the idea into the
cloud, the main differences being its
support for a stronger adversarial mod-
el and a higher-level abstraction.

HAIL works by promptly detecting
and recovering from data corruption.
The tenant (or third-party service) peri-
odically audits individual cloud provid-
ers toward this end. HAIL auditing is
lightweight in terms of both bandwidth

Figure 5. Encoding of data D: on the left, original data is represented as a matrix; on the right, encoded data with parity blocks is added for
both server and dispersal codes.

Original data block

Server-code parity block

Dispersal-code parity
block and MAC

Dispersal-code parity block
and MAC over server-code
parity block

r1, 1 r1, 2

S1 S2 S3

r1, 3

r2, 1 r2, 2 r2, 3

r3, 1 r3, 2 r3, 3

r4, 1 r4, 2 r4, 3

r5, 1 r5, 2 r5, 3

Data D

Embedded MAC

Dispersal-code
codeword

r1, 1

S1

r2, 1

r3, 1

r4, 1

r5, 1

r1, 2

S2

r2, 2

r3, 2

r4, 2

r5, 2

S3

r1, 3

r2, 3

r3, 3

r4, 3

r5, 3

r1, 4

S4

r2, 4

r3, 4

r4, 4

r5, 4

S5

r1, 5

r2, 5

r3, 5

r4, 5

r5, 5

r6, 1

r7, 1

r6, 2

r7, 2

r6, 3

r7, 3

r6, 4

r7, 4

r6, 5

r7, 5

72 communications of the acm | february 2013 | vol. 56 | no. 2

contributed articles

and computation. Using the redun-
dancy embedded across different cloud
providers, the tenant (or third party) re-
mediates corruption detected in a sub-
set of providers. HAIL is reactive, rather
than proactive, meaning it remediates
data only on detected corruption.

System model. In HAIL a tenant
like Alice distributes her data with em-
bedded redundancy to a set of n cloud
providers: S1,…, Sn. In our model, data
generated by all enterprise users is
transmitted to the gateway, as in Fig-
ure 1. The gateway performs some data
encoding, described in the following
paragraphs, optionally encrypts data,
and distributes a data fragment to
each cloud provider. HAIL operates
through an adversarial model in which
a strong mobile adversary can corrupt
all cloud providers over time. But with-
in a single epoch (a predetermined pe-
riod of fixed length) the adversary can
corrupt at most b out of n servers, for
some b < n.

HAIL encoding. Figure 5 outlines
the encoding of data in HAIL. To pro-
vide resilience against cloud-provider
failure, the gateway splits the data into
fixed-size blocks and encodes it with
a new erasure code we call “dispersal
code.” The figure includes a matrix
representation of the data on the left,
resulting in an encoded matrix on the
right. Each row in the encoded ma-
trix is a stripe or code word obtained
by applying the dispersal code. Each
row contains the original data blocks,
as well as new parity blocks obtained
with the dispersal code. Each matrix
column is stored at a different cloud
provider. The dispersal code guaran-
tees the original data can be recon-
structed, given up to b cloud provider
failures (and n – b intact columns).

However, a single layer of encod-
ing is not sufficient to guarantee data
availability and integrity in HAIL’s
strong adversarial model. Consider
this attack: The adversary corrupts b
new servers in each epoch, picks a par-
ticular row index i, and corrupts the
corresponding block ri,j at server Sj. Af-
ter n/b epochs, the adversary corrupts
all servers and the entire row i in the
encoded matrix from Figure 5. In this
case, the redundancy of the dispersal
code is not helpful in recovering the
corrupted row, and the entire data D is
permanently corrupted.

How can the system prevent such
a creeping-corruption attack? By sim-
ply auditing a few randomly selected
blocks at each server, the probability
that the tenant would discover the cor-
ruption of blocks in a single row of the
encoded matrix is quite low. Therefore,
another encoding layer we call a “serv-
er code” is needed within each server.
The server code adds additional redun-
dancy (parity blocks) to each column
in the encoded matrix representation.
The role of the server code is to recover
from a small amount of corruption at
each cloud provider that would other-
wise be undetectable through the au-
diting protocol.

To prevent adversarial data corrup-
tion, the tenant also needs to store
MACs on data blocks in the cloud. With
a new technique we call an “integrity-
protected dispersal code,” parity
blocks of the dispersal code can them-
selves be used as MACs on the rows,
thus reducing the storage overhead for
integrity protection.

Auditing and recovering from fail-
ures. In HAIL, the gateway (or an exter-
nal auditing service, as in Figure 1) pe-
riodically audits the correctness of the
cloud data by contacting all cloud pro-
viders. The gateway sends a random
row index i as a challenge to each
cloud provider, and verifies, upon re-
ceiving the responses ri,j, for j in {1,…,
n} the correctness of the entire row. It
is also possible to aggregate multiple
responses (multiple randomly select-
ed blocks) from each server to reduce
bandwidth and amplify the probability
of failure detection.

When data corruption at one or
more cloud providers is detected, the
corrupted data can be reconstructed at
the tenant side using the two encoding
layers—the dispersal and server code.
Data reconstruction is an expensive
protocol, one rarely invoked (only upon
detection of data corruption).

With its encoding, auditing, and
recovery mechanisms, HAIL provides
resilience against a strong mobile ad-
versary that might potentially corrupt
all providers over time. However, a
limitation of HAIL is that, as designed,
it does not handle file updates grace-
fully. Rather, it is most suited to archi-
val data, or data stored in the cloud for
retention purposes and not regularly
modified. More-efficient versions of

HAIL is an extension
of RAID into the
cloud, distributing
data across multiple
cloud providers to
achieve continuous
availability.

contributed articles

february 2013 | vol. 56 | no. 2 | communications of the acm 73

HAIL can be constructed under a weak-
er adversarial model that may be prac-
tical for short-term data storage.

Conclusion
We have described new techniques
that secure cloud data by ensuring a
range of protections, from integrity
and freshness verification to high data
availability. We also proposed an audit-
ing framework that offers tenants vis-
ibility into the correct operation of the
cloud. These techniques enable an ex-
tension of the trust perimeter from en-
terprise internal data centers into pub-
lic clouds, as in Figure 1. Our hope is
these techniques will alleviate some of
the concern over security in the cloud
and facilitate migration of enterprise
resources into public clouds. We con-
clude here by mentioning several open
problems of interest in this context:

Performing computations over
tenants' encrypted data. We have em-
phasized data integrity and availabil-
ity, but data confidentiality is a major
open problem. General computation
over a tenant’s encrypted data is pos-
sible using a technique we call “fully
homomorphic encryption,” though
this breakthrough10 is not yet practi-
cal. Weaker, custom techniques can
achieve specific functionalities (such
as searches14 and general SQL que-
ries17) over encrypted data.

The impossibility of general com-
putations over multiple tenants’ en-
crypted data using only cryptographic
techniques and no interaction among
tenants was shown in van Dijk and
Juels.22 A promising area of research
is the design of custom protocols for
applications involving multiple ten-
ants’ data (such as data mining over
multiple institutions’ medical records
or financial transactions). Combining
secure hardware architectures with
cryptography (such as secure multi-
party computation protocols) offers
significant potential.

Ensuring tenant isolation. Cloud
co-tenancy with attackers can jeop-
ardize tenant data, as shown in
Ristenpart et al.,18 which explored
cache-based side channels for data
exfiltration. The risks of co-tenancy in
storage systems (such as storage-sys-
tem side channels) is an unexplored
vector of attack now deserving investi-
gation, in our view.

One approach to co-tenancy risks is
to isolate tenants by implementing vir-
tual private cloud (VPC) abstractions
within a public cloud. HomeAlone24
enables tenants to verify remotely that
a VPC is strongly enforced at the host
level, in the sense of creating physi-
cal isolation of a tenant’s workloads.
While physical isolation offers a solu-
tion for extremely sensitive workloads,
it can undercut the financial benefits of
tenant sharing of computing resourc-
es. For this reason, solutions offering
tenant isolation and enabling the shar-
ing of cloud resources at the same time
are extremely important. Trusted hard-
ware may also play an important role,
along with tight enforcement of logical
isolation abstractions throughout the
software stack, including hypervisor
and OS, and across the cloud fabric.

Geolocation of data. Of particular
commercial interest is the open prob-
lem of remote verification of the geo-
graphical location of cloud data. The
motivation is regulatory compliance,
with many laws requiring providers
keep customer data within, say, nation-
al boundaries.9 Given the challenge of
ensuring that data is not duplicated,
any solution probably requires a trust-
ed data-management system via, say,
trusted hardware, and localizing the
pieces of the system is an interesting
challenge. Geolocation of trusted hard-
ware via remote timing from trusted
anchor points seems a key avenue of
exploration. 	

References
1.	A rmbrust, M., Fox, A., Griffith, R., Joseph, A., Katz,

R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I., and Zaharia, M. A view of cloud computing.
Commun. ACM 53, 4 (Apr. 2010), 50–58.

2.	A teniese, G., Burns, R., Curtmola, R., Herring, J.,
Kissner, L., Peterson, Z., and Song, D. Provable data
possession at untrusted stores. In Proceedings
of the 14th ACM Conference on Computer and
Communications Security (Alexandria, VA, Oct. 28–31).
ACM Press, New York, 2007, 598–609.

3.	A teniese, G., Kamara, S., and Katz, J. Proofs of
storage from homomorphic identification protocols.
In Proceedings of the Conference on Advances in
Cryptology Lecture Notes in Computer Science 5912
(Tokyo, Dec. 6–10). Springer, 2009, 319–333.

4.	B aker, M., Shah, M., Rosenthal, D.S.H., Roussopoulos,
M., Maniatis, P., Giuli, T., and Bungale, P. A fresh look
at the reliability of long-term digital storage. In
Proceedings of the European Conference on Computer
Systems (Leuven, Belgium, Apr. 18–21). ACM Press,
New York, 2006, 221–234.

5.	B lumenthal, M. Is security lost in the cloud?
Communications and Strategies 1, 81 (2011), 69–86.

6.	B owers, K.D., Juels, A., and Oprea, A. HAIL: A high-
availability and integrity layer for cloud storage. In
Proceedings of the 16th ACM Conference on Computer
and Communications Security (Chicago, Nov. 9–13).
ACM Press, New York, 2009, 187–198.

7.	B owers, K.D., van Dijk, M., Juels, A., Oprea, A.,
and Rivest, R.L. How to tell if your cloud files are
vulnerable to drive crashes. In Proceedings of the 18th

ACM Conference on Computer and Communications
Security (Chicago, Oct. 17–21). ACM Press, New York,
2011, 501–514.

8.	E rway, C., Kupcu, A., Papamanthou, C., and Tamassia,
R. Dynamic provable data possession. In Proceedings
of the 16th ACM Conference on Computer and
Communications Security (Chicago, Nov. 9–13). ACM
Press, New York, 2009, 213–222.

9.	E uropean Parliament. Directive 95/46/EC of the
European Parliament of the Council (Data Protection
Directive), 1995; http://bit.ly/5eLDdi

10.	G entry, C. Computing arbitrary functions of encrypted
data. Commun. ACM 53, 3 (Mar. 2010), 97–105.

11.	H elft, M. Google confirms problems with reaching its
services. The New York Times (May 14, 2009); http://
www.developmentguruji.com/news/99/Google-
confirms-problems-with-reaching-its-services.html

12.	J uels, A. and Kaliski, B. PORs: Proofs of retrievability
for large files. In Proceedings of the 14th ACM
Conference on Computer and Communications
Security (Alexandria, VA, Oct. 28–31). ACM Press, New
York, 2007, 584–597.

13.	 Kamara, S. and Lauter, K. Cryptographic cloud
storage. In Proceedings of Financial Cryptography:
Workshop on Real-Life Cryptographic Protocols and
Standardization, Lecture Notes in Computer Science
6054 (Tenerife, Canary Islands, Spain, Jan. 25–28).
Springer, 2010, 136–149.

14.	 Kamara, S., Papamanthou, C., and Roeder, T. Cs2: A
Searchable Cryptographic Cloud Storage System.
Technical Report MSR-TR-2011-58. Microsoft,
Redmond, WA, 2011.

15.	O prea, A. and Reiter, M.K. Integrity checking in
cryptographic file systems with constant trusted
storage. In Proceedings of the 16th Usenix Security
Symposium (Boston, Aug. 6–10). USENIX Association,
Berkeley, CA, 2007, 183–198.

16.	 Patterson, D., Gibson, G., and Katz, R. A case for
redundant arrays of inexpensive disks (RAID).
SIGMOD Record 17, 3 (Sept. 1988), 109–116.

17.	 Popa, R.A., Redfield, C.M.S., Zeldovich, N., and
Balakrishnan, H. CryptDB: Protecting confidentiality
with encrypted query processing. In Proceedings
of the 23rd ACM Symposium on Operating Systems
Principles (Cascais, Portugal, Oct. 23–26). ACM Press,
New York, 2011, 85–100.

18.	R istenpart, T., Tromer, E., Shacham, H., and Savage,
S. Hey, you, get off of my cloud: Exploring information
leakage in third-party compute clouds. In Proceedings
of the 16th ACM Conference on Computer and
Communications Security (Chicago, Nov 9–13). ACM
Press, New York, 2009, 199–212.

19.	S chroeder, B. and Gibson, G. Disk failures in the
real world: What does an MTTF of 1,000,000 hours
mean to you? In Proceedings of the Fifth USENIX
Conference on File and Storage Technologies (San
Jose, CA, Feb. 13–16). USENIX Association, Berkeley,
CA, 2007, 1–16.

20.	S tefanov, E., van Dijk, M., Oprea, A., and Juels, A. Iris:
A scalable cloud file system with efficient integrity
checks. In Proceedings of the 28th Annual Computer
Security Applications Conference (Orlando, FL, Dec.
3–7, 2012).

21.	S tern, A. Update from Amazon regarding Friday S3
downtime. CenterNetworks, Feb. 16, 2008; http://
www.centernetworks.com/amazon-s3-downtime-
update

22.	 van Dijk, M. and Juels, A. On the impossibility of
cryptography alone for privacy-preserving cloud
computing. In Proceedings of the HOTSEC Workshop
on Hot Topics in Security (Washington, D.C., Aug.
11–13). USENIX Association, Berkeley, CA, 2010.

23.	W ingfield, N. Microsoft, T-Mobile stumble with
Sidekick glitch. The Wall Street Journal (Oct. 11,
2009); http://online.wsj.com/article/SB100014240527
48703790404574467431941990194.html

24.	Z hang, Y., Juels, A., Oprea, A., and Reiter, M.K.
HomeAlone: Co-residency detection in the cloud via
side-channel analysis. In Proceedings of the IEEE
Symposium on Security and Privacy (Berkeley, CA,
May 22–25). IEEE Computer Society Press, 2011,
313–328.

Ari Juels (ajuels@rsa.com) is Chief Scientist of RSA and
Director of RSA Laboratories, Cambridge, MA.

Alina Oprea (aoprea@rsa.com) is a research scientist in
RSA Laboratories, Cambridge, MA.

© 2013 ACM 0001-0782/13/02

mailto:ajuels@rsa.com
mailto:aoprea@rsa.com
http://bit.ly/5eLDdi
http://www.developmentguruji.com/news/99/Google-confirms-problems-with-reaching-its-services.html
http://www.developmentguruji.com/news/99/Google-confirms-problems-with-reaching-its-services.html
http://www.centernetworks.com/amazon-s3-downtime-update
http://www.centernetworks.com/amazon-s3-downtime-update
http://online.wsj.com/article/SB10001424052748703790404574467431941990194.html
http://www.developmentguruji.com/news/99/Google-confirms-problems-with-reaching-its-services.html
http://www.centernetworks.com/amazon-s3-downtime-update
http://online.wsj.com/article/SB10001424052748703790404574467431941990194.html

74 communications of the acm | february 2013 | vol. 56 | no. 2

contributed articles

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 G
i

a
c

o
m

o
 M

a
r

c
h

e
s

i

Systems that respond to user actions quickly (within
100ms) feel more fluid and natural to users than
those that take longer.3 Improvements in Internet
connectivity and the rise of warehouse-scale computing
systems2 have enabled Web services that provide fluid
responsiveness while consulting multi-terabyte datasets
spanning thousands of servers; for example, the Google
search system updates query results interactively as
the user types, predicting the most likely query based
on the prefix typed so far, performing the search and
showing the results within a few tens of milliseconds.
Emerging augmented-reality devices (such as the
Google Glass prototype7) will need associated Web
services with even greater responsiveness in order to
guarantee seamless interactivity.

It is challenging for service providers to keep the tail
of latency distribution short for interactive services
as the size and complexity of the system scales up or

as overall use increases. Temporary
high-latency episodes (unimportant in
moderate-size systems) may come to
dominate overall service performance at
large scale. Just as fault-tolerant comput-
ing aims to create a reliable whole out of
less-reliable parts, large online services
need to create a predictably responsive
whole out of less-predictable parts;
we refer to such systems as “latency
tail-tolerant,” or simply “tail-tolerant.”
Here, we outline some common causes
for high-latency episodes in large online
services and describe techniques that
reduce their severity or mitigate their
effect on whole-system performance.
In many cases, tail-tolerant techniques
can take advantage of resources already
deployed to achieve fault-tolerance, re-
sulting in low additional overhead. We
explore how these techniques allow sys-
tem utilization to be driven higher with-
out lengthening the latency tail, thus
avoiding wasteful overprovisioning.

Why Variability Exists?
Variability of response time that leads
to high tail latency in individual com-
ponents of a service can arise for many
reasons, including:

Shared resources. Machines might
be shared by different applications
contending for shared resources (such
as CPU cores, processor caches, mem-
ory bandwidth, and network band-
width), and within the same applica-
tion different requests might contend
for resources;

Daemons. Background daemons
may use only limited resources on aver-
age but when scheduled can generate
multi-millisecond hiccups;

The Tail
at Scale

doi:10.1145/2408776.2408794

Software techniques that tolerate latency
variability are vital to building responsive
large-scale Web services.

By Jeffrey Dean and Luiz André Barroso

 key insights
 � �Even rare performance hiccups affect

a significant fraction of all requests in
large-scale distributed systems.

 � �Eliminating all sources of latency
variability in large-scale systems
is impractical, especially in shared
environments.

 � �Using an approach analogous to
fault-tolerant computing, tail-tolerant
software techniques form a predictable
whole out of less-predictable parts.

c
r

e
d

i
t

 t
k

february 2013 | vol. 56 | no. 2 | communications of the acm 75

76 communications of the acm | february 2013 | vol. 56 | no. 2

contributed articles

Global resource sharing. Applica-
tions running on different machines
might contend for global resources
(such as network switches and shared
file systems);

Maintenance activities. Background
activities (such as data reconstruction
in distributed file systems, periodic log
compactions in storage systems like
BigTable,4 and periodic garbage collec-
tion in garbage-collected languages) can
cause periodic spikes in latency; and

Queueing. Multiple layers of queue-
ing in intermediate servers and network
switches amplify this variability.

Increased variability is also due to
several hardware trends:

Power limits. Modern CPUs are de-
signed to temporarily run above their
average power envelope, mitigating
thermal effects by throttling if this activ-
ity is sustained for a long period;5

Garbage collection. Solid-state stor-
age devices provide very fast random
read access, but the need to periodically
garbage collect a large number of data
blocks can increase read latency by a
factor of 100 with even a modest level of
write activity; and

Energy management. Power-saving
modes in many types of devices save
considerable energy but add additional
latency when moving from inactive to
active modes.

Component-Level Variability
Amplified By Scale
A common technique for reducing la-
tency in large-scale online services is to
parallelize sub-operations across many
different machines, where each sub-op-
eration is co-located with its portion of
a large dataset. Parallelization happens
by fanning out a request from a root to
a large number of leaf servers and merg-
ing responses via a request-distribution
tree. These sub-operations must all
complete within a strict deadline for the
service to feel responsive.

Variability in the latency distribu-
tion of individual components is mag-
nified at the service level; for example,
consider a system where each server
typically responds in 10ms but with a
99th-percentile latency of one second.
If a user request is handled on just one
such server, one user request in 100 will
be slow (one second). The figure here
outlines how service-level latency in this
hypothetical scenario is affected by very

modest fractions of latency outliers. If
a user request must collect responses
from 100 such servers in parallel, then
63% of user requests will take more than
one second (marked “x” in the figure).
Even for services with only one in 10,000
requests experiencing more than one-
second latencies at the single-server
level, a service with 2,000 such servers
will see almost one in five user requests
taking more than one second (marked
“o” in the figure).

Table 1 lists measurements from
a real Google service that is logically
similar to this idealized scenario; root
servers distribute a request through in-
termediate servers to a very large num-
ber of leaf servers. The table shows the
effect of large fan-out on latency distri-
butions. The 99th-percentile latency for
a single random request to finish, mea-
sured at the root, is 10ms. However, the
99th-percentile latency for all requests to
finish is 140ms, and the 99th-percentile
latency for 95% of the requests finish-
ing is 70ms, meaning that waiting for
the slowest 5% of the requests to com-
plete is responsible for half of the total
99%-percentile latency. Techniques that
concentrate on these slow outliers can
yield dramatic reductions in overall ser-
vice performance.

Overprovisioning of resources, care-
ful real-time engineering of software,
and improved reliability can all be
used at all levels and in all components
to reduce the base causes of variability.
We next describe general approaches
useful for reducing variability in ser-
vice responsiveness.

Reducing Component Variability
Interactive response-time variability
can be reduced by ensuring interactive
requests are serviced in a timely manner
through many small engineering deci-
sions, including:

Differentiating service classes and
higher-level queuing. Differentiated ser-
vice classes can be used to prefer sched-
uling requests for which a user is wait-
ing over non-interactive requests. Keep
low-level queues short so higher-level
policies take effect more quickly; for ex-
ample, the storage servers in Google’s
cluster-level file-system software keep
few operations outstanding in the op-
erating system’s disk queue, instead
maintaining their own priority queues
of pending disk requests. This shallow

queue allows the servers to issue incom-
ing high-priority interactive requests
before older requests for latency-insen-
sitive batch operations are served.

Reducing head-of-line blocking. High-
level services can handle requests with
widely varying intrinsic costs. It is some-
times useful for the system to break
long-running requests into a sequence
of smaller requests to allow interleaving
of the execution of other short-running
requests; for example, Google’s Web
search system uses such time-slicing to
prevent a small number of very compu-
tationally expensive queries from add-
ing substantial latency to a large num-
ber of concurrent cheaper queries.

Managing background activities and
synchronized disruption. Background
tasks can create significant CPU, disk,
or network load; examples are log
compaction in log-oriented storage
systems and garbage-collector activity
in garbage-collected languages. A com-
bination of throttling, breaking down
heavyweight operations into smaller
operations, and triggering such opera-
tions at times of lower overall load is
often able to reduce the effect of back-
ground activities on interactive request
latency. For large fan-out services, it is
sometimes useful for the system to syn-
chronize the background activity across
many different machines. This synchro-
nization enforces a brief burst of activity
on each machine simultaneously, slow-
ing only those interactive requests being
handled during the brief period of back-
ground activity. In contrast, without syn-
chronization, a few machines are always
doing some background activity, push-
ing out the latency tail on all requests.

Missing in this discussion so far is
any reference to caching. While effec-
tive caching layers can be useful, even a
necessity in some systems, they do not
directly address tail latency, aside from
configurations where it is guaranteed
that the entire working set of an applica-
tion can reside in a cache.

Living with Latency Variability
The careful engineering techniques in
the preceding section are essential for
building high-performance interactive
services, but the scale and complexity
of modern Web services make it infea-
sible to eliminate all latency variabil-
ity. Even if such perfect behavior could
be achieved in isolated environments,

contributed articles

february 2013 | vol. 56 | no. 2 | communications of the acm 77

systems with shared computational
resources exhibit performance fluctua-
tions beyond the control of application
developers. Google has therefore found
it advantageous to develop tail-tolerant
techniques that mask or work around
temporary latency pathologies, instead
of trying to eliminate them altogether.
We separate these techniques into two
main classes: The first corresponds to
within-request immediate-response
techniques that operate at a time scale
of tens of milliseconds, before longer-
term techniques have a chance to react.
The second consists of cross-request
long-term adaptations that perform on
a time scale of tens of seconds to min-
utes and are meant to mask the effect of
longer-term phenomena.

Within Request Short-Term
Adaptations
A broad class of Web services deploy
multiple replicas of data items to pro-
vide additional throughput capacity and
maintain availability in the presence of
failures. This approach is particularly
effective when most requests operate on
largely read-only, loosely consistent da-
tasets; an example is a spelling-correc-
tion service that has its model updated
once a day while handling thousands of
correction requests per second. Simi-
larly, distributed file systems may have
multiple replicas of a given data chunk
that can all be used to service read re-
quests. The techniques here show how
replication can also be used to reduce
latency variability within a single high-
er-level request:

Hedged requests. A simple way to
curb latency variability is to issue the
same request to multiple replicas and
use the results from whichever replica
responds first. We term such requests
“hedged requests” because a client first
sends one request to the replica be-
lieved to be the most appropriate, but
then falls back on sending a secondary
request after some brief delay. The cli-
ent cancels remaining outstanding re-
quests once the first result is received.
Although naive implementations of
this technique typically add unaccept-
able additional load, many variations
exist that give most of the latency-re-
duction effects while increasing load
only modestly.

One such approach is to defer send-
ing a secondary request until the first

request has been outstanding for more
than the 95th-percentile expected la-
tency for this class of requests. This
approach limits the additional load to
approximately 5% while substantially
shortening the latency tail. The tech-
nique works because the source of la-
tency is often not inherent in the par-
ticular request but rather due to other
forms of interference. For example, in
a Google benchmark that reads the val-
ues for 1,000 keys stored in a BigTable
table distributed across 100 different
servers, sending a hedging request after
a 10ms delay reduces the 99.9th-percen-
tile latency for retrieving all 1,000 values
from 1,800ms to 74ms while sending
just 2% more requests. The overhead of
hedged requests can be further reduced
by tagging them as lower priority than
the primary requests.

Tied requests. The hedged-requests
technique also has a window of vulner-

ability in which multiple servers can
execute the same request unnecessar-
ily. That extra work can be capped by
waiting for the 95th-percentile expect-
ed latency before issuing the hedged
request, but this approach limits the
benefits to only a small fraction of re-
quests. Permitting more aggressive
use of hedged requests with moderate
resource consumption requires faster
cancellation of requests.

A common source of variability is
queueing delays on the server before
a request begins execution. For many
services, once a request is actually
scheduled and begins execution, the
variability of its completion time goes
down substantially. Mitzenmacher10
said allowing a client to choose between
two servers based on queue lengths at
enqueue time exponentially improves
load-balancing performance over a uni-
form random scheme. We advocate not

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1 500 1,000 1,500 2,000

Probability of one-second service-level response time as the system scales and frequency
of server-level high-latency outliers varies.

0.18

0.63

1 in 10,0001 in 1,0001 in 100

Numbers of Servers

P
 (

se
rv

ic
e

la
te

n
cy

 >
 1

s)

Table 1. Individual-leaf-request finishing times for a large fan-out service tree (measured
from root node of the tree).

50%ile latency 95%ile latency 99%ile latency

One random leaf finishes 1ms 5ms 10ms

95% of all leaf
requests finish

12ms 32ms 70ms

100% of all leaf
requests finish

40ms 87ms 140ms

78 communications of the acm | february 2013 | vol. 56 | no. 2

contributed articles

choosing but rather enqueuing copies
of a request in multiple servers simulta-
neously and allowing the servers to com-
municate updates on the status of these
copies to each other. We call requests
where servers perform cross-server sta-
tus updates “tied requests.” The sim-
plest form of a tied request has the cli-
ent send the request to two different
servers, each tagged with the identity of
the other server (“tied”). When a request
begins execution, it sends a cancellation
message to its counterpart. The corre-
sponding request, if still enqueued in
the other server, can be aborted imme-
diately or deprioritized substantially.

There is a brief window of one aver-
age network message delay where both
servers may start executing the request
while the cancellation messages are
both in flight to the other server. A com-
mon case where this situation can occur
is if both server queues are completely
empty. It is useful therefore for the cli-
ent to introduce a small delay of two
times the average network message de-
lay (1ms or less in modern data-center
networks) between sending the first re-
quest and sending the second request.

Google’s implementation of this
technique in the context of its cluster-
level distributed file system is effective
at reducing both median and tail laten-
cies. Table 2 lists the times for servicing
a small read request from a BigTable
where the data is not cached in memory
but must be read from the underlying
file system; each file chunk has three
replicas on distinct machines. The table
includes read latencies observed with
and without tied requests for two sce-
narios: The first is a cluster in which the
benchmark is running in isolation, in
which case latency variability is mostly

from self-interference and regular clus-
ter-management activities. In it, send-
ing a tied request that does cross-server
cancellation to another file system
replica following 1ms reduces median
latency by 16% and is increasingly ef-
fective along the tail of the latency dis-
tribution, achieving nearly 40% reduc-
tion at the 99.9th-percentile latency. The
second scenario is like the first except
there is also a large, concurrent sorting
job running on the same cluster con-
tending for the same disk resources in
the shared file system. Although overall
latencies are somewhat higher due to
higher utilization, similar reductions in
the latency profile are achieved with the
tied-request technique discussed earli-
er. The latency profile with tied requests
while running a concurrent large sort-
ing job is nearly identical to the latency
profile of a mostly idle cluster without
tied requests. Tied requests allow the
workloads to be consolidated into a sin-
gle cluster, resulting in dramatic com-
puting cost reductions. In both Table 2
scenarios, the overhead of tied requests
in disk utilization is less than 1%, indi-
cating the cancellation strategy is effec-
tive at eliminating redundant reads.

An alternative to the tied-request and
hedged-request schemes is to probe re-
mote queues first, then submit the re-
quest to the least-loaded server.10 It can
be beneficial but is less effective than
submitting work to two queues simul-
taneously for three main reasons: load
levels can change between probe and re-
quest time; request service times can be
difficult to estimate due to underlying
system and hardware variability; and
clients can create temporary hot spots
by all clients picking the same (least-
loaded) server at the same time. The

Distributed Shortest-Positioning Time
First system9 uses another variation in
which the request is sent to one server
and forwarded to replicas only if the ini-
tial server does not have it in its cache
and uses cross-server cancellations.

Worth noting is this technique is not
restricted to simple replication but is
also applicable in more-complex coding
schemes (such as Reed-Solomon) where
a primary request is sent to the machine
with the desired data block, and, if no
response is received following a brief
delay, a collection of requests is issued
to a subset of the remaining replica-
tion group sufficient to reconstruct the
desired data, with the whole ensemble
forming a set of tied requests.

Note, too, the class of techniques de-
scribed here is effective only when the
phenomena that causes variability does
not tend to simultaneously affect mul-
tiple request replicas. We expect such
uncorrelated phenomena are rather
common in large-scale systems.

Cross-Request
Long-Term Adaptations
Here, we turn to techniques that are ap-
plicable for reducing latency variability
caused by coarser-grain phenomena
(such as service-time variations and
load imbalance). Although many sys-
tems try to partition data in such a way
that the partitions have equal cost, a
static assignment of a single partition
to each machine is rarely sufficient in
practice for two reasons: First, the per-
formance of the underlying machines
is neither uniform nor constant over
time, for reasons (such as thermal
throttling and shared workload inter-
ference) mentioned earlier. And second,
outliers in the assignment of items to
partitions can cause data-induced load
imbalance (such as when a particular
item becomes popular and the load for
its partition increases).

Micro-partitions. To combat imbal-
ance, many of Google’s systems gener-
ate many more partitions than there
are machines in the service, then do
dynamic assignment and load balanc-
ing of these partitions to particular ma-
chines. Load balancing is then a matter
of moving responsibility for one of these
small partitions from one machine to
another. With an average of, say, 20
partitions per machine, the system can
shed load in roughly 5% increments and

Table 2. Read latencies observed in a BigTable service benchmark.

Mostly idle cluster With concurrent terasort

No hedge Tied request after 1ms No hedge Tied request after 1ms

50%ile 19ms 	 16ms	 (–16%) 24ms 	 19ms	 (–21%)

90%ile 38ms 	 29ms	 (–24%) 56ms 	 38ms	 (–32%)

99%ile 67ms 	 42ms	 (–37%) 108ms 	 67ms	 (–38%)

99.9%ile 98ms 	 61ms	 (–38%) 159ms 	 108ms	 (–32%)

contributed articles

february 2013 | vol. 56 | no. 2 | communications of the acm 79

in 1/20th the time it would take if the sys-
tem simply had a one-to-one mapping
of partitions to machines. The BigTable
distributed-storage system stores data
in tablets, with each machine managing
between 20 and 1,000 tablets at a time.
Failure-recovery speed is also improved
through micro-partitioning, since many
machines pick up one unit of work when
a machine failure occurs. This method
of using micro-partitions is similar to
the virtual servers notion as described
in Stoica12 and the virtual-processor-
partitioning technique in DeWitt et al.6

Selective replication. An enhance-
ment of the micro-partitioning scheme
is to detect or even predict certain items
that are likely to cause load imbalance
and create additional replicas of these
items. Load-balancing systems can then
use the additional replicas to spread
the load of these hot micro-partitions
across multiple machines without hav-
ing to actually move micro-partitions.
Google’s main Web search system uses
this approach, making additional cop-
ies of popular and important docu-
ments in multiple micro-partitions. At
various times in Google’s Web search
system’s evolution, it has also created
micro-partitions biased toward particu-
lar document languages and adjusted
replication of these micro-partitions
as the mix of query languages changes
through the course of a typical day.
Query mixes can also change abruptly,
as when, say, an Asian data-center out-
age causes a large fraction of Asian-lan-
guage queries to be directed to a North
American facility, materially changing
its workload behavior.

Latency-induced probation. By ob-
serving the latency distribution of re-
sponses from the various machines in
the system, intermediate servers some-
times detect situations where the sys-
tem performs better by excluding a par-
ticularly slow machine, or putting it on
probation. The source of the slowness is
frequently temporary phenomena like
interference from unrelated network-
ing traffic or a spike in CPU activity for
another job on the machine, and the
slowness tends to be noticed when the
system is under greater load. However,
the system continues to issue shadow
requests to these excluded servers, col-
lecting statistics on their latency so they
can be reincorporated into the service
when the problem abates. This situa-

tion is somewhat peculiar, as removal
of serving capacity from a live system
during periods of high load actually im-
proves latency.

Large Information
Retrieval Systems
In large information-retrieval (IR) sys-
tems, speed is more than a performance
metric; it is a key quality metric, as re-
turning good results quickly is better
than returning the best results slowly.
Two techniques apply to such systems,
as well as other to systems that inher-
ently deal with imprecise results:

Good enough. In large IR systems,
once a sufficient fraction of all the leaf
servers has responded, the user may
be best served by being given slightly
incomplete (“good-enough”) results in
exchange for better end-to-end latency.
The chance that a particular leaf server
has the best result for the query is less
than one in 1,000 queries, odds further
reduced by replicating the most im-
portant documents in the corpus into
multiple leaf servers. Since waiting for
exceedingly slow servers might stretch
service latency to unacceptable levels,
Google’s IR systems are tuned to occa-
sionally respond with good-enough re-
sults when an acceptable fraction of the
overall corpus has been searched, while
being careful to ensure good-enough
results remain rare. In general, good-
enough schemes are also used to skip
nonessential subsystems to improve re-
sponsiveness; for example, results from
ads or spelling-correction systems are
easily skipped for Web searches if they
do not respond in time.

Canary requests. Another problem
that can occur in systems with very high
fan-out is that a particular request ex-
ercises an untested code path, causing
crashes or extremely long delays on
thousands of servers simultaneously. To
prevent such correlated crash scenarios,
some of Google’s IR systems employ
a technique called “canary requests”;
rather than initially send a request to
thousands of leaf servers, a root server
sends it first to one or two leaf servers.
The remaining servers are only queried
if the root gets a successful response
from the canary in a reasonable period
of time. If the server crashes or hangs
while the canary request is outstanding,
the system flags the request as poten-
tially dangerous and prevents further ex-

A simple way
to curb latency
variability is to issue
the same request
to multiple replicas
and use
the results from
whichever replica
responds first.

80 communications of the acm | february 2013 | vol. 56 | no. 2

contributed articles

ecution by not sending it to the remain-
ing leaf servers. Canary requests provide
a measure of robustness to back-ends in
the face of difficult-to-predict program-
ming errors, as well as malicious denial-
of-service attacks.

The canary-request phase adds only a
small amount of overall latency because
the system must wait for only a single
server to respond, producing much less
variability than if it had to wait for all
servers to respond for large fan-out re-
quests; compare the first and last rows
in Table 1. Despite the slight increase
in latency caused by canary requests,
such requests tend to be used for every
request in all of Google’s large fan-out
search systems due to the additional
safety they provide.

Mutations
The techniques we have discussed so
far are most applicable for operations
that do not perform critical mutations
of the system’s state, which covers a
broad range of data-intensive services.
Tolerating latency variability for opera-
tions that mutate state is somewhat eas-
ier for a number of reasons: First, the
scale of latency-critical modifications
in these services is generally small. Sec-
ond, updates can often be performed
off the critical path, after responding
to the user. Third, many services can
be structured to tolerate inconsistent
update models for (inherently more
latency-tolerant) mutations. And, final-
ly, for those services that require con-
sistent updates, the most commonly
used techniques are quorum-based
algorithms (such as Lamport’s Paxos8);
since these algorithms must commit to
only three to five replicas, they are in-
herently tail-tolerant.

Hardware Trends and Their Effects
Variability at the hardware level is likely
to be higher in the future due to more
aggressive power optimizations becom-
ing available and fabrication challenges
at deep submicron levels resulting in
device-level heterogeneity. Device het-
erogeneity combined with ever-increas-
ing system scale will make tolerating
variability through software techniques
even more important over time. For-
tunately, several emerging hardware
trends will increase the effectiveness
of latency-tolerating techniques. For
example, higher bisection bandwidth

in data-center networks and network-
interface optimizations that reduce
per-message overheads (such as remote
direct-memory access) will reduce the
cost of tied requests, making it more
likely that cancellation messages are re-
ceived in time to avoid redundant work.
Lower per-message overheads naturally
allow more fine-grain requests, contrib-
uting to better multiplexing and avoid-
ing head-of-line blocking effects.

Conclusion
Delivering the next generation of com-
pute-intensive, seamlessly interactive
cloud services requires consistently
responsive massive-scale computing
systems that are only now beginning to
be contemplated. As systems scale up,
simply stamping out all sources of per-
formance variability will not achieve
such responsiveness. Fault-tolerant
techniques were developed because
guaranteeing fault-free operation be-
came infeasible beyond certain levels
of system complexity. Similarly, tail-
tolerant techniques are being devel-
oped for large-scale services because
eliminating all sources of variability is
also infeasible. Although approaches
that address particular sources of la-
tency variability are useful, the most
powerful tail-tolerant techniques re-
duce latency hiccups regardless of
root cause. These tail-tolerant tech-
niques allow designers to continue to
optimize for the common case while
providing resilience against uncom-
mon cases. We have outlined a small
collection of tail-tolerant techniques
that have been effective in several of
Google’s large-scale software systems.
Their importance will only increase as
Internet services demand ever-larger
and more complex warehouse-scale
systems and as the underlying hard-
ware components display greater per-
formance variability.

While some of the most powerful
tail-tolerant techniques require addi-
tional resources, their overhead can be
rather modest, often relying on existing
capacity already provisioned for fault-
tolerance while yielding substantial la-
tency improvements. In addition, many
of these techniques can be encapsu-
lated within baseline libraries and sys-
tems, and the latency improvements
often enable radically simpler applica-
tion-level designs. Besides enabling low

latency at large scale, these techniques
make it possible to achieve higher sys-
tem utilization without sacrificing ser-
vice responsiveness.

Acknowledgments
We thank Ben Appleton, Zhifeng Chen,
Greg Ganger, Sanjay Ghemawat, Ali
Ghodsi, Rama Govindaraju, Lawrence
Greenfield, Steve Gribble, Brian Gus-
tafson, Nevin Heintze, Jeff Mogul, An-
drew Moore, Rob Pike, Sean Quinlan,
Gautham Thambidorai, Ion Stoica,
Amin Vahdat, and T.N. Vijaykumar for
their helpful feedback on earlier drafts
and presentations of this work. Numer-
ous people at Google have worked on
systems that use these techniques. 	

References
1.	B arroso, L.A. and Höelzle, U. The case for energy

proportional computing. IEEE Computer 40, 12 (Dec.
2007), 33–37.

2.	B arroso, L.A. and Höelzle, U. The Datacenter as a
Computer: An Introduction to the Design of Warehouse-
scale Machines. Synthesis Series on Computer
Architecture, Morgan & Claypool Publishers, May 2009.

3.	C ard, S.K., Robertson, G.G., and Mackinlay, J.D. The
information visualizer: An information workspace. In
Proceedings of the ACM SIGCHI Conference on Human
Factors in Computing Systems (New Orleans, Apr. 28–
May 2). ACM Press, New York, 1991, 181–188.

4.	C hang F., Dean J., Ghemawat, S., Hsieh, W.C., Wallach,
D.A., Burrows, M., Chandra, T., Fikes, A., and Gruber, R.E.
BigTable: A distributed storage system for structured
data. In Proceedings of the Seventh Symposium
on Operating Systems Design and Implementation
(Seattle, Nov.). USENIX Association, Berkeley CA, 2006,
205–218.

5.	C harles, J., Jassi, P., Ananth, N.S., Sadat, A., and
Fedorova, A. Evaluation of the Intel Core i7 Turbo Boost
feature. In Proceedings of the IEEE International
Symposium on Workload Characterization (Austin, TX,
Oct. 4–6). IEEE Computer Society Press, 2009, 188–197.

6.	D eWitt, D.J., Naughton, J.F., Schneider, D.A., and
Seshadri, S. Practical skew handling in parallel joins.
In Proceedings of the 18th International Conference on
Very Large Data Bases, Li-Yan Yuan, Ed. (Vancouver, BC,
Aug. 24–27). Morgan Kaufmann Publishers, Inc., San
Francisco, 1992, 27–40.

7.	G oogle, Inc. Project Glass; http://g.co/projectglass
8.	L amport, L. The part-time parliament. ACM

Transactions on Computer Systems 16, 2 (May 1998),
133–169.

9.	L umb, C.R. and Golding, R. D-SPTF: Decentralized
request distribution in brick-based storage systems.
SIGOPS Operating System Review 38, 5 (Oct. 2004),
37–47.

10.	M itzenmacher, M. The power of two choices in
randomized load balancing. IEEE Transactions on
Parallel and Distributed Computing 12, 10 (Oct. 2001),
1094–1104.

11.	M udge, T. and Hölzle, U. Challenges and opportunities
for extremely energy-efficient processors. IEEE Micro
30, 4 (July 2010), 20–24.

12.	S toica I., Morris, R., Karger, D., Kaashoek, F., and
Balakrishnan, H. Chord: A scalable peer-to-peer lookup
service for Internet applications. In Proceedings of
SIGCOMM (San Diego, Aug. 27–31). ACM Press, New
York, 2001, 149–160.

Jeffrey Dean (jeff@google.com) is a Google Fellow in the
Systems Infrastructure Group of Google Inc., Mountain
View, CA.

Luiz André Barroso (luiz@google.com) is a Google Fellow
and technical lead of core computing infrastructure at
Google Inc., Mountain View, CA.

© 2013 ACM 0001-0782/13/02

http://g.co/projectglass
mailto:jeff@google.com
mailto:luiz@google.com

TechNews mobile app users will enjoy:

• � Latest News: Concise summaries of the most
relevant news impacting the computing world

• �� Original Sources: Links to the full-length
articles published in over 3,000 news sources

• � Archive access: Access to the complete
archive of TechNews issues dating back to
the first issue published in December 1999

• � Article Sharing: The ability to share news
with friends and colleagues via email, text
messaging, and popular social networking sites

• � Touch Screen Navigation: Find news
articles quickly and easily with a
streamlined, fingertip scroll bar

• � Search: Simple search the entire TechNews
archive by keyword, author, or title

• � Save: One-click saving of latest news or archived
summaries in a personal binder for easy access

• � Automatic Updates: By entering and saving
your ACM Web Account login information,
the apps will automatically update with
the latest issues of TechNews published
every Monday, Wednesday, and Friday

ACM TechNews—ACM’s popular thrice-weekly news briefing service—is now
available as an easy to use mobile apps downloadable from the Apple iTunes Store.

These new apps allow nearly 100,000 ACM members to keep current with
news, trends, and timely information impacting the global IT and Computing
communities each day.

ACM TechNews Goes Mobile
iPhone & iPad Apps Now Available in the iTunes Store

The Apps are freely available to download from the Apple iTunes Store, but users must be registered
individual members of ACM with valid Web Accounts to receive regularly updated content.

http://www.apple.com/iphone/apps-for-iphone/  http://www.apple.com/ipad/apps-for-ipad/

ACM TechNews

http://www.apple.com/iphone/apps-for-iphone/
http://www.apple.com/ipad/apps-for-ipad/

82 communications of the acm | february 2013 | vol. 56 | no. 2

review articles

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 m
a

r
i

u
s

 w
a

t
z

Symb olic execution has garnered a lot of attention
in recent years as an effective technique for generating
high-coverage test suites and for finding deep errors
in complex software applications. While the key idea
behind symbolic execution was introduced more
than three decades ago,6,12,23 it has only recently been
made practical, as a result of significant advances
in constraint satisfiability,16 and of more scalable
dynamic approaches that combine concrete and
symbolic execution.9,19

Symbolic execution is typically used in software
testing to explore as many different program paths as
possible in a given amount of time, and for each path to
generate a set of concrete input values exercising it, and

check for the presence of various
kinds of errors including assertion
violations, uncaught exceptions, se-
curity vulnerabilities, and memory
corruption. The ability to generate
concrete test inputs is one of the ma-
jor strengths of symbolic execution:
from a test generation perspective, it
allows the creation of high-coverage
test suites, while from a bug-finding
perspective, it provides developers
with a concrete input that triggers the
bug, which can be used to confirm the
error independently of the symbolic
execution tool that generated it.

Furthermore, note that in terms
of finding errors on a given program
path, symbolic execution is much
more powerful than traditional dy-
namic execution techniques such as
those implemented by popular tools
like Valgrind28 or Purify,21 because it
has the ability to find a bug if there are
any buggy inputs on that path, rather
than depending on having a concrete
input that triggers the bug.

Finally, unlike other program analy-
sis techniques, symbolic execution is
not limited to finding generic errors
such as buffer overflows, but can reason
about higher-level program properties,
such as complex program assertions.

This article gives an overview of
symbolic execution by showing how it

Symbolic
Execution
for Software
Testing: Three
Decades Later

doi:10.1145/2408776.2408795

The challenges—and great promise—
of modern symbolic execution techniques,
and the tools to help implement them.

By Cristian Cadar and Koushik Sen

 key insights

 � �Modern symbolic execution techniques
provide an effective way to automatically
generate test inputs for real-world
software. Such inputs can achieve high
test coverage and find corner-case bugs
such as buffer overflows, uncaught
exceptions, and assertion violations.

 � �Symbolic execution works by exploring
as many program paths as possible in
a given time budget, creating logical
formula encoding the explored paths, and
using a constraint solver to generate test
inputs for feasible execution paths.

 � �Modern symbolic execution techniques
mix concrete and symbolic execution
and benefit from significant advances in
constraint solving to alleviate limitations
which prevented traditional symbolic
execution from being useful in practice
for about 30 years.

february 2013 | vol. 56 | no. 2 | communications of the acm 83

84 communications of the acm | february 2013 | vol. 56 | no. 2

review articles

works on a simple example and high-
lighting its main features. We describe
a couple of modern approaches to sym-
bolic execution that make it effective
for real-world software. Then, we ex-
plore the main challenges of symbolic
execution, including path explosion,
constraint solving, and memory mod-
eling. Finally, we present several rep-
resentative symbolic execution tools.
Note that we do not aim to provide here
a comprehensive survey of existing
work in the area, but instead choose to
illustrate some of the main challenges
and proposed solutions by using exam-
ples from the authors’ own work.

Overview of Classical
Symbolic Execution
The key idea behind symbolic execu-
tion6,12,23 is to use symbolic values, in-
stead of concrete data values, as input
values, and to represent the values of
program variables as symbolic expres-
sions over the symbolic values. As a re-
sult, the output values computed by a
program are expressed as a function of
the input symbolic values. In software
testing, symbolic execution is used to
generate a test input for each feasible
execution path of a program. A feasible
execution path is a sequence of true
and false, where a value of true (re-
spectively false) at the ith position in
the sequence denotes that the ith condi-
tional statement encountered along the
execution path took the “then” (respec-
tively the “else”) branch. All the feasible
execution paths of a program can be
represented using a tree, called the ex-
ecution tree. For example, the function
testme() in Figure 1 has three feasible
execution paths, which form the ex-
ecution tree shown in Figure 2. These
paths can be executed, for instance, by
running the program on the inputs {x
= 0, y = 1}, {x = 2, y = 1} and {x = 30, y =
15}. The goal of symbolic execution is
to generate such a set of inputs so that
all the feasible execution paths (or as
many as possible in a given time bud-
get) can be explored exactly once by
running the program on those inputs.

Symbolic execution maintains a
symbolic state σ, which maps variables
to symbolic expressions, and a symbol-
ic path constraint (or path condition)
PC, which is a quantifier-free first-order
formula over symbolic expressions. At
the beginning of a symbolic execution,

σ is initialized to an empty map and PC
is initialized to true. Both σ and PC are
populated during the course of sym-
bolic execution. At the end of a sym-
bolic execution along a feasible execu-
tion path of the program, PC is solved
using a constraint solver to generate
concrete input values. If the program
is executed on these concrete input val-
ues, it will take exactly the same path as
the symbolic execution and terminate
in the same way.

For example, symbolic execution
of the code in Figure 1 starts with an
empty symbolic state and with sym-
bolic path constraint true. At every
read statement var = sym_input() that
receives program input, symbolic ex-
ecution adds the mapping var  s to
σ, where s is a fresh symbolic value.
For example, symbolic execution of the
first two lines of the main() function
(lines 16–17) results in σ = {x  x0, y
 y0}, where x0, y0 are two initially un-
constrained symbolic values. At every
assignment v = e, symbolic execution
updates σ by mapping v to σ(e), the
symbolic expression obtained by evalu-
ating e in the current symbolic state.
For example, after executing line 6, σ =
{x  x0, y  y0, z  2y0}.

At every conditional statement
if (e) S1 else S2, PC is updated to
PC∧σ(e) (“then” branch), and a fresh
path constraint PC′ is created and ini-
tialized to PC∧¬σ(e) (“else” branch). If
PC is satisfiable for some assignment
of concrete to symbolic values, then
symbolic execution continues along
the “then” branch with the symbolic
state σ and symbolic path constraint
PC. Similarly, if PC′ is satisfiable, then
another instance of symbolic execu-
tion is created with symbolic state σ
and symbolic path constraint PC′,
which continues the execution along
the “else” branch; note that unlike in
concrete execution, both branches can
be taken, resulting in two execution
paths. If any of PC or PC′ is not satis-
fiable, symbolic execution terminates
along the corresponding path. For
example, after line 7 in the example
code, two instances of symbolic execu-
tion are created with path constraints
x0 = 2y0 and x0 ≠ 2y0, respectively. Simi-
larly, after line 8, two instances of sym-
bolic execution are created with path
constraints (x0 = 2y0) ∧ (x0 > y0 + 10) and
(x0 = 2y0) ∧ (x0 ≤ y0 + 10), respectively.

Unlike other
program analysis
techniques,
symbolic execution
is not limited to
finding generic
errors such as
buffer overflows,
but can reason
about higher-level
program properties,
such as complex
program assertions.

review articles

february 2013 | vol. 56 | no. 2 | communications of the acm 85

If a symbolic execution instance hits
an exit statement or an error (for ex-
ample, the program crashes or violates
an assertion), the current instance of
symbolic execution is terminated and
a satisfying assignment to the current
symbolic path constraint is generated,
using an off-the-shelf constraint solver.
The satisfying assignment forms the
test inputs: if the program is executed
on these concrete input values, it will
take exactly the same path as the sym-
bolic execution and terminate in the
same way. For example, on our exam-
ple code we get three instances of sym-
bolic executions that result in the test
inputs {x = 0, y = 1}, {x = 2, y = 1}, and
{x = 30, y = 15}, respectively.

Symbolic execution of code con-
taining loops or recursion may result
in an infinite number of paths if the
termination condition for the loop or
recursion is symbolic. For example, the
code in Figure 3 has an infinite num-
ber of feasible execution paths, where
each feasible execution path is either
a sequence of an arbitrary number of
true’s followed by a false or a se-
quence of infinite number of true’s.
The symbolic path constraint of a path
with a sequence of n true’s followed
by a false is:

	
(∧

i∈[1,n]
Ni > 0) ∧ (Nn+1 ≤ 0)

	
where each Ni is a fresh symbolic value,
and the symbolic state at the end of the
execution is {N  Nn+1, sum ∑i∈[1,n]Ni}.
In practice, one needs to put a limit on
the search (for example, a timeout, or a
limit on the number of paths, loop it-
erations, or exploration depth).

A key disadvantage of classical sym-
bolic execution is that it cannot gener-
ate an input if the symbolic path con-
straint along a feasible execution path
contains formulas that cannot be (ef-
ficiently) solved by a constraint solver
(for example, nonlinear constraints).
Consider performing symbolic ex-
ecution on two variants of the code in
Figure 1: in one variant, we modify the
twice function as in Figure 4; in the
other variant, we assume that the code
of twice is not available. Let us assume
that our constraint solver cannot han-
dle non-linear arithmetic. For the first
variant, symbolic execution will gener-
ate the path constraints x0 ≠ (y0y0)%50
and x0 = (y0y0)%50 after the execution

of the first conditional statement. For
the second variant, symbolic execution
will generate the path constraints x0
≠ twice(y0) and x0 = twice(y0), where
twice is an uninterpreted function.
Since the constraint solver cannot
solve any of these constraints, symbolic
execution will fail to generate any input
for the modified programs. We next de-
scribe two modern symbolic execution
techniques that alleviate this problem
and generate at least some inputs for
the modified programs.

Modern Symbolic
Execution Techniques
One of the key elements of modern
symbolic execution techniques is their
ability to mix concrete and symbolic
execution. We present here two such
extensions, and then discuss the main
advantages they provide.

Concolic Testing. Directed Auto-
mated Random Testing (DART),19 or
concolic testing35 performs symbolic
execution dynamically, while the pro-
gram is executed on some concrete in-
put values. Concolic testing maintains
a concrete state and a symbolic state:
the concrete state maps all variables
to their concrete values; the symbolic
state only maps variables that have
non-concrete values. Unlike classical
symbolic execution, since concolic ex-
ecution maintains the entire concrete
state of the program along an execu-
tion, it needs initial concrete values for
its inputs. Concolic testing executes a
program starting with some given or

Figure 1. Simple example illustrating symbolic execution.

1 int twice (int v) {
2 return 2*v;
3 }
4
5 void testme (int x, int y) {
6 z = twice (y);
7 if (z == x) {
8 if (x > y+10)
9 ERROR;
10 }
11 }
12 }
13
14 /* simple driver exercising testme () with sym inputs */
15 int main() {
16 x = sym_input();
17 y = sym_input();
18 testme (x, y);
19 return 0;
20 }

x = 0
y = 1

x = 2
y = 1

x = 30
y = 15

x > y + 10

2*y == x

false

false

true

true

ERROR!

Figure 2. Execution tree for the example
in Figure 1.

Figure 3. Simple example illustrating an
infinite number of feasible execution paths.

1 void testme_inf() {
2 int sum = 0;
3 int N = sym_input();
4 while (N > 0) {
5 sum = sum + N
6 N = sym_input();
7 }
8 }

Figure 4. Simple modification of the
example in Figure 1. The function twice now
performs some non-linear computation.

1 int twice (int v) {
2 return (v*v) % 50;
3 }

86 communications of the acm | february 2013 | vol. 56 | no. 2

review articles

other places—such as unhandled in-
structions (for example, floating-point)
or complex functions that cause con-
straint solver timeouts—and the use of
concrete values allows symbolic execu-
tion to recover from that imprecision,
albeit at the cost of missing some fea-
sible paths, and thus sacrificing com-
pleteness.

To illustrate, we describe the behav-
ior of concolic testing on the version
of our running example in which the
function twice returns the non-linear
value (v*v)%50 (see Figure 4). Let us
assume that concolic testing gener-
ates the random input {x = 22, y = 7}.
Then, the symbolic execution will gen-
erate the symbolic path constraint x0 ≠
(y0y0)%50 along the concrete execution
path on this input. If we assume that
the constraint solver cannot handle
non-linear constraints, then concolic
testing will fail to generate an input
for an alternate execution path. We get
a similar situation if the source code
for the function twice is not available
(for example, twice is some third-party
closed-source library function or a sys-
tem call), in which case the path constraint
becomes x0 ≠ twice(y0), where twice
is an uninterpreted function. Concolic
testing handles this situation by replac-
ing some of the symbolic values with their
concrete values so that the resultant con-
straints are simplified and can be solved.
For instance, in the example, concolic
testing replaces y0 by its concrete value
7. This simplifies the path constraint
in both program versions to x0 ≠ 49.
By solving the path constraint x0 = 49,
concolic testing generates the new
input {x = 49, y = 7} for a previously
unexplored execution path. Note that
classical symbolic execution cannot
perform this simplification because
the concrete state is not available dur-
ing symbolic execution.

EGT can handle this situation in a
similar way: when it encounters the
statement return (v*v) % 50 or the
external call z = twice(y), it will call
the constraint solver on the current
symbolic path constraint to generate a
satisfying assignment to y0, say y0 = 7,
replace this value in the symbolic state
and in the path constraint, and contin-
ue the execution in a partial symbolic
state {x  x0, y  7}. The tool KLEE
optimizes this by keeping a counter-
example cache (described later).

concrete and symbolic execution by
dynamically checking before every
operation if the values involved are
all concrete. If so, the operation is ex-
ecuted just as in the original program.
Otherwise, if at least one value is sym-
bolic, the operation is performed sym-
bolically, by updating the path condi-
tion for the current path. For example,
if line 17 in Figure 1 is changed to y =
10, then line 6 will simply call function
twice() with the concrete argument
10, call which will be executed as in
the original program (note that twice
could perform an arbitrarily complex
operation on its input, but this would
not place any additional strain on sym-
bolic execution, because the call will be
executed concretely). Then, the branch
on line 7 will become if (20 == x), and
execution will be forked, one instance
adding the constraint that x = 20 and
following the “then” branch, and the
other adding the constraint that x ≠ 20
and following the “else” branch. Note
that on the “then” branch, the condi-
tional at line 8 becomes if (x > 20),
and therefore its “then” side is infea-
sible because x is constrained to have
value 20 on this path.

Imprecision vs. completeness in
concolic testing and EGT. One of the
key advantages in mixing concrete and
symbolic execution is that imprecision
in symbolic execution (due to, for ex-
ample, interaction with external code,
or constraint solving timeouts), can be
alleviated using concrete values (and
in the case of concolic testing, also
randomization).

For example, real applications al-
most always interact with the outside
world, for instance, by calling librar-
ies that are not instrumented for sym-
bolic execution, or by issuing OS sys-
tem calls. If all the arguments passed
to such a call are concrete, the call can
be simply performed concretely, as in
the original program. However, even if
some operands are symbolic, EGT and
concolic testing can use one of the pos-
sible concrete values of the symbolic
arguments: in EGT this is done by solv-
ing the current path constraint for a
satisfying assignment, while concolic
testing can immediately use the con-
crete runtime values of those inputs
from the current concolic execution.

Besides external code, imprecision
in symbolic execution creeps into many

random input, gathers symbolic con-
straints on inputs at conditional state-
ments along the execution, and then
uses a constraint solver to infer vari-
ants of the previous inputs in order to
steer the next execution of the program
toward an alternative feasible execu-
tion path. This process is repeated sys-
tematically or heuristically until all fea-
sible execution paths are explored or a
user-defined coverage criteria is met.

For the example in Figure 1, concolic
execution will generate some random
input, say {x = 22, y = 7}, and execute
the program both concretely and sym-
bolically. The concrete execution will
take the “else” branch at line 7 and the
symbolic execution will generate the
path constraint x0 ≠ 2y0 along the con-
crete execution path. Concolic testing
negates a conjunct in the path con-
straint and solves x0 = 2y0 to get the test
input {x = 2, y = 1}; this new input will
force the program execution along a
different execution path. Concolic test-
ing repeats both concrete and symbolic
execution on this new test input. The
execution takes a path different from
the previous one—the “then” branch
at line 7 and the “else” branch at line 8
are now taken in this execution. As in
the previous execution, concolic test-
ing also performs symbolic execution
along this concrete execution and gen-
erates the path constraint (x0 = 2y0) ∧ (x0
≤ y0 + 10). Concolic testing will gener-
ate a new test input that forces the pro-
gram along an execution path that has
not been previously executed. It does so
by negating the conjunct (x0 ≤ y0 + 10)
and solving the constraint (x0 = 2y0) ∧
(x0 > y0 + 10) to get the test input {x = 30,
y = 15}. The program reaches the ER-
ROR statement with this new input. Af-
ter this third execution of the program,
concolic testing reports that all execu-
tion paths of the program have been
explored and terminates test input gen-
eration. Note that in this example, con-
colic testing explores all the execution
paths using a depth-first search strat-
egy; however, one could employ other
strategies to explore paths in different
orders, as we discuss later.

Execution-Generated Testing (EGT).
The EGT approach,9 implemented and
extended by the EXE10 and KLEE8 tools,
works by making a distinction between
the concrete and symbolic state of a
program. To this end, EGT intermixes

review articles

february 2013 | vol. 56 | no. 2 | communications of the acm 87

Concolic testing and EGT’s ap-
proach to simplify constraints using
concrete values help them generate
test inputs for execution paths for
which symbolic execution gets stuck,
but this approach comes with a caveat:
due to simplification, concolic testing
and EGT could loose completeness,
that is, they may not be able to generate
test inputs for some feasible execution
paths. For instance, in our example
both techniques will fail to generate an
input for the path true, false. How-
ever, this is clearly preferable to the
alternative of simply aborting execu-
tion when unsupported statements or
external calls are encountered.

Challenges and Extensions
Here, we discuss the main challenges
in symbolic execution, and some inter-
esting solutions and extensions devel-
oped in response to them.

Path Explosion. One of the key chal-
lenges of symbolic execution is the
huge number of programs paths in
all but the smallest programs, which
is usually exponential in the number
of static branches in the code. How-
ever, note that symbolic execution
explores only feasible paths that de-
pend on the symbolic input, which
reduces the number of conditionals
that spawn new paths. For example,
in several experiments on testing a
number of medium-sized applica-
tions we found that less than 42% of
the executed statements depend on
the symbolic input, and often less
than 20% of the symbolic branches
encountered during execution have
both sides feasible.10

Despite this implicit filtering, path
explosion represents one of the big-
gest challenges facing symbolic execu-
tion, and given a fixed time budget, it
is critical to explore the most relevant
paths first. Here, we present a repre-
sentative selection of the techniques
developed to address this problem.

Search heuristics. The main mecha-
nism used by symbolic execution tools
to prioritize path exploration is the
use of search heuristics. Most heuris-
tics focus on achieving high statement
and branch coverage, but they could
also be employed to optimize other de-
sired criteria. We describe here several
coverage-optimized search heuristics
successfully used by current symbolic

execution tools.
One particularly effective approach

is to use the static control-flow graph
(CFG) to guide the exploration toward
the path closest (as measured stati-
cally using the CFG) from an uncov-
ered instruction.7,8 A similar approach,
described in Cadar et al.,10 is to favor
statements that were run the fewest
number of times.

As another example, heuristics
based on random exploration have also
proved successful.7,8 The main idea is
to start from the beginning of the pro-
gram, and at each symbolic branch for
which both sides are feasible to ran-
domly choose which side to explore.
Note that this random strategy has
a number of important advantages:
compared to randomly choosing a path
to execute, it avoids starvation when a
part of the program rapidly forks many
new paths; and compared to randomly
generating inputs, it has a higher prob-
ability to reach branches that are cov-
ered by a very small fraction of the in-
puts. Furthermore, this strategy favors
paths early in the execution, with fewer
constraints on the inputs, and thus on
reaching new program statements.

Interleaving random and symbolic ex-
ecution. Another successful approach,
which was explored in the context of
concolic testing, is to interleave sym-
bolic exploration with random test-
ing.26 This approach combines the abil-
ity of random testing to quickly reach
deep execution states, with the power
of symbolic execution to thoroughly
explore states in a given neighborhood.

Pruning redundant paths. An alter-
native approach to avoid exploring the
same lines of code over and over again
is to automatically prune redundant
paths during exploration. The key in-
sight behind the RWset technique de-
scribed in Boonstoppel et al.5 is that
if a program path reaches the same
program point with the same symbolic
constraints as a previously explored
path, then this path will continue to ex-
ecute exactly the same from that point
on and thus can be discarded. This
technique is enhanced by an impor-
tant optimization: when comparing
the constraints on the two execution
paths, it discards those that depend
only on values that will not be subse-
quently read by the program. Note that
the effect of pruning these paths can be

Path explosion
represents one
of the biggest
challenges facing
symbolic execution.

88 communications of the acm | february 2013 | vol. 56 | no. 2

review articles

It is essential
to implement
constraint-solving
optimizations that
exploit the type
of constraints
generated during
the symbolic
execution of
real programs.

that exploit the type of constraints gen-
erated during the symbolic execution
of real programs. We present here two
representative optimizations used by
existing symbolic execution tools.

Irrelevant constraint elimination.
The vast majority of queries in sym-
bolic execution are issued in order to
determine the feasibility of taking a
certain branch side. For example, in
the concolic variant of symbolic execu-
tion, one branch predicate of an exist-
ing path constraint is negated and then
the resulting constraint set is checked
for satisfiability in order to determine
if the program can take the other side
of the branch, corresponding to the
negated constraint. An important ob-
servation is that in general a program
branch depends only on a small num-
ber of program variables, and therefore
on a small number of constraints from
the path condition. Thus, one effec-
tive optimization is to remove from the
path condition those constraints that
are irrelevant in deciding the outcome
of the current branch. For example, let
the path condition for the current ex-
ecution be (x + y > 10) ∧ (z > 0) ∧ (y <
12) ∧ (z − x = 0) and suppose we want to
generate a new input by solving (x + y >
10) ∧ (z > 0) ∧¬ (y < 12), where ¬(y < 12)
is the negated branch condition whose
feasibility we are trying to establish.
Then it is safe to eliminate the con-
straint on z, because this constraint
cannot influence the outcome of the
y < 12 branch. The solution of this re-
duced constraint set will give new val-
ues for x and y, and we use the value of
z from the current execution to gener-
ate the new input. More formally, the
algorithm computes the transitive clo-
sure of all the constraints on which the
negated constraint depends, by look-
ing whether they share any variables
between them. The extra complication
is in dealing with pointer dereferences
and array indexing, which is discussed
in detail in Cadar et al.10 and Sen et al.35

Incremental solving. One important
characteristic of the constraint sets
generated during symbolic execution
is that they are expressed in terms of
a fixed set of static branches from the
program source code. For this reason,
many paths have similar constraint
sets, and thus allow for similar solu-
tions; this fact can be exploited to im-
prove the speed of constraint solving

significant, as the number of new paths
spawned by the continued execution
can be exponential in the number of en-
countered branches.

Lazy test generation. Lazy test gen-
eration27 is an approach similar to the
counterexample-guided refinement
paradigm from static software verifica-
tion. The technique first explores, us-
ing concolic execution, an abstraction
of the function under test by replacing
each called function with an uncon-
strained input. Second, for each (pos-
sibly spurious) trace generated by this
abstraction, it attempts to expand the
trace to a concretely realizable execu-
tion by recursively expanding the called
functions and finding concrete execu-
tions in the called functions that can be
stitched together with the original trace
to form a complete program execution.
Thus, it reduces the burden of symbolic
reasoning about interprocedural paths
to reasoning about intraprocedural
paths (in the exploration phase), to-
gether with a localized and constrained
search through functions (in the con-
cretization phase).

Static path merging. One simple ap-
proach that can be used to reduce the
number of paths explored is to merge
them statically using select expressions
that are then passed directly to the con-
straint solver.13 For example, the state-
ment x[i] = x[i] > 0 ? x[i]:−x[i]
can be encoded as (x[i] = select(x[i] > 0,
x[i], −x[i]). If such an expression is com-
puted inside a loop statement with N
iterations, this approach can reduce
the number of explored paths from 2N
to 1. While merging can be effective in
many cases, it is unfortunately passing
the complexity to the constraint solver,
which as discussed in the next section
represents another major challenge of
symbolic execution.

Constraint Solving. Despite signifi-
cant advances in constraint solving
technology during the last few years—
which made symbolic execution practi-
cal in the first place—constraint solving
continues to be one of the main bottle-
necks in symbolic execution, where it
often dominates runtime. In fact, one of
the main reasons for which symbolic ex-
ecution fails to scale on some programs
is that their code is generating queries
that are blowing up the solver.

As a result, it is essential to imple-
ment constraint-solving optimizations

review articles

february 2013 | vol. 56 | no. 2 | communications of the acm 89

tions. In multithreaded programs,
CUTE combines concolic execution
with dynamic partial order reduction
to systematically generate both test in-
puts and thread schedules.

CUTE and jCUTE were developed
at University of Illinois at the Urbana-
Champaign for C and Java programs,
respectively. Both tools have been ap-
plied to several popular open source
software including the java.util library
of Sun JDK 1.4.

CREST7 is an open source tool for
concolic testing of C programs. CREST
is an extensible platform for building
and experimenting with heuristics for
selecting which paths to explore. Since
being released as open source in May
2008,a CREST has been downloaded
1,500+ times and has been used by
several research groups. For example,
CREST has been employed to build
tools for augmenting existing test
suites to test newly changed code38 and
detect SQL injection vulnerabilities,29
has been modified to run distributed
on a cluster for testing a flash storage
platform,22 and has been used to ex-
periment with more sophisticated con-
colic search heuristics.3

Concolic testing has also been
studied in different courses at several
universities.

EXE and KLEE. EXE10 is a symbolic
execution tool for C designed for com-
prehensively testing complex soft-
ware, with an emphasis on systems
code. To deal with the complexities
of systems code, EXE models mem-
ory with bit-level accuracy. This is
needed because systems code often
treats memory as untyped bytes, and
observes a single memory location in
multiple ways: for example, by cast-
ing signed variables to unsigned, or
treating an array of bytes as a network
packet, inode, or packet filter through
pointer casting. As importantly, EXE
provides the speed necessary to quick-
ly solve the constraints generated by
real code, through a combination of
low-level optimizations implemented
in its purposely designed constraint
solver STP,10,18 and a series of higher-
level ones such as caching and irrel-
evant constraint elimination.

KLEE8 is a redesign of EXE, built
on top of the LLVM24 compiler infra-

a	 Available at http://code.google.com/p/crest/

by reusing the results of previous simi-
lar queries, as done in several systems
such as CUTE and KLEE.8,35 To illus-
trate this point, we present one such
algorithm, namely the counterexam-
ple caching scheme used by KLEE.8 In
KLEE, all query results are stored in a
cache that maps constraint sets to con-
crete variable assignments (or a special
No solution flag if the constraint set is
unsatisfiable). For example, one map-
ping in this cache could be (x + y < 10) ∧
(x > 5) ⇒ {x = 6, y = 3}. Using these map-
pings, KLEE can quickly answer several
types of similar queries, involving sub-
sets and supersets of the constraint
sets already cached. For example, if
a subset of a cached constraint set is
encountered, KLEE can simply return
the cached solution, because removing
constraints from a constraint set does
not invalidate an existing solution.
Moreover, if a superset of a cached con-
straint set is encountered, KLEE can
quickly check if the cached solution
still works, by plugging in those values
into the superset. For example, KLEE can
quickly check that {x = 6, y = 3} is still a
valid solution for the query (x + y < 10)
∧ (x > 5) ∧ (y ≥ 0), which is a superset
of (x + y < 10) ∧ (x > 5). This latter tech-
nique exploits the fact that in practice,
adding extra constraints often does not
invalidate an existing solution.

Memory Modeling. The precision
with which program statements are
translated into symbolic constraints
can have a significant influence on the
coverage achieved by symbolic execu-
tion, as well as on the scalability of
constraint solving. For example, using
a memory model that approximates
fixed-width integer variables with ac-
tual mathematical integers may be
more efficient, but on the other hand
may result in imprecision in the analy-
sis of code depending on corner cases
such as arithmetic overflow—which
may cause symbolic execution to miss
paths, or explore infeasible ones.

Another example are pointers. On
the one end of the spectrum is a system
like DART that only reasons about con-
crete pointers, or systems like CUTE
and CREST that support only equality
and inequality constraints for point-
ers, which can be efficiently solved.35 At
the other end are systems like EXE, and
more recently KLEE and SAGE10,17,35
that model pointers using the theory of

arrays with selections and updates im-
plemented by solvers like STP or Z3.15,18

The trade-off between precision
and scalability should be determined
in light of the code being analyzed
(for example, low-level systems code
vs. high-level applications code), and
the exact performance difference be-
tween different constraint solving
theories. Note that the trade-off be-
tween precision and scalability is pos-
sible in modern symbolic execution
techniques because we can customize
the use of concrete values in symbolic
formulas and thereby tune both scal-
ability and precision.

Handling Concurrency. Large real-
world programs are often concurrent.
Because of the inherent non-deter-
minism of such programs, testing is
notoriously difficult. Concolic testing
was successfully combined with a vari-
ant of partial order reduction to test
concurrent programs effectively.31–34

This combined method provides one
of the first technique to effectively test
concurrent programs with complex
data inputs.

Tools
Dynamic symbolic execution has
been implemented by several tools
from both academia and research
labs.1,7–10,19,20,35,37 These tools support
a variety of languages, including C/
C++, Java, and the x86 instruction set,
implement several different memory
models, target different types of appli-
cations, and make use of several dif-
ferent constraint solvers and theories.
We discuss here five of these tools,
with whom the authors of this article
have been involved.

DART, CUTE, and CREST. DART19 is
the first concolic testing tool that com-
bines dynamic test generation with
random testing and model checking
techniques with the goal of systemati-
cally executing all (or as many as possi-
ble) feasible paths of a program, while
checking each execution for various
types of errors. DART was first imple-
mented at Bell Labs for testing C pro-
grams, and has inspired many other
extensions and tools since.

CUTE (A Concolic Unit Testing En-
gine) and jCUTE (CUTE for Java)31,33,35
extend DART to handle multithreaded
programs that manipulate dynamic
data structures using pointer opera-

http://code.google.com/p/crest/

90 communications of the acm | february 2013 | vol. 56 | no. 2

review articles

15.	D e Moura, L. and Bjørner, N. Z3: An efficient SMT
solver. In Proceedings of TACAS’08, (Mar–Apr 2008).

16.	D e Moura, L. and Bjørner, N. Satisfiability modulo
theories: introduction and applications. Commun. ACM
54, 9 (Sept. 2011), 69–77.

17.	E lkarablieh, B., Godefroid, P. and Levin, M.Y. Precise
pointer reasoning for dynamic test generation. In
Proceedings of ISSTA’09.

18.	G anesh, V. and Dill, D.L. A decision procedure for bit-vectors
and arrays. In Proceedings of CAV’07, (July 2007).

19.	G odefroid, P., Klarlund, N. and Sen, K. DART: Directed
Automated Random Testing. In Proceedings of
PLDI’05, (June 2005).

20.	G odefroid, P., Levin, M., and Molnar, D. Automated
whitebox fuzz testing. In Proceedings of NDSS’08,
(Feb. 2008).

21.	H astings, R. and Joyce, B. Purify: Fast detection of
memory leaks and access errors. In Proceedings of
Winter USENIX Conference, 1992.

22.	 Kim, Y., Kim, M., and Dang, N. Scalable distributed
concolic testing: A case study on a flash storage
platform. In Proceedings of ICTAC’10, 199–213.

23.	 King, J.C. Symbolic execution and program testing.
Commun. ACM 19, 7 (July 1976), 385–394.

24.	L attner, C. and Adve, V. LLVM: A compilation
framework for lifelong program analysis and
transformation. In Proceedings of CGO’04,
(Mar 2004).

25.	L i, G., Li, P., Sawaga, G, Gopalakrishnan, G., Ghosh, I.
and Rajan, S.P. GKLEE: Concolic verification and test
generation for GPUs. In Proceedings of PPoPP’12.

26.	M ajumdar, R. and Sen, K. Hybrid concolic testing. In
Proceedings of ICSE’07, (May 2007).

27.	M ajumdar, R. and Sen, K. Latest: Lazy dynamic test
input generation. Technical Report UCB/EECS-
2007-36. EECS Department, University of California,
Berkeley, Mar. 2007.

28.	N ethercote, N. and Seward, J. Valgrind: A program
supervision framework. Electronic Notes in Theoretical
Computer Science 89, 2 (2003).

29.	R use, M., Sarkar, T. and Basu, S. Analysis & detection
of SQL injection vulnerabilities via automatic test case
generation of programs. In Proceedings of SAINT’10,
(July 2010).

30.	S asnauskas, R., Link, J.A.B., Alizai, M.H., and Wehrle,
K. Kleenet: Automatic bug hunting in sensor network
applications. In Proceedings of IPSN’10, (Apr 2010).

31.	S en, K. Scalable Automated Methods for Dynamic
Program Analysis. Ph.D. thesis. University of Illinois at
Urbana-Champaign, June 2006.

32.	S en, K. and Agha, G. Automated systematic testing
of open distributed programs. In Proceedings of
FASE’06, 2006.

33.	S en, K. and Agha, G. CUTE and jCUTE : Concolic unit
testing and explicit path model-checking tools. In
Proceedings of CAV’06.

34.	S en, K. and Agha, G. A race-detection and flipping
algorithm for automated testing of multi-threaded
programs. In Proceedings of HVC, (2006).

35.	S en, K., Marinov, D. and Agha, G. CUTE: A concolic unit
testing engine for C. In Proceedings of ESEC/FSE’05,
(Sept. 2005).

36.	S ong, J., Ma, T., Cadar, C. and Pietzuch, P. Rule-based
verification of network protocol implementations using
symbolic execution. In Proceedings of ICCCN’11,
(May 2011).

37.	T illmann, N. and de Halleux, J. Pex—White box test
generation for .NET. In Proceedings of TAP’08,
(Apr. 2008).

38.	 Xu, Z., Kim, Y., Kim, M., Rothermel, G. and Cohen, M.B.
Directed test suite augmentation: Techniques and
trade-offs. In Proceedings of FSE’10, (Nov. 2010).

39.	Y ang, J., Sar, C., Twohey, P., Cadar, C. and Engler,
D. Automatically generating malicious disks using
symbolic execution. In IEEE Symposium on Security
and Privacy, (May 2006).

40.	Zamfir, C. and Candea, G. Execution synthesis: A
technique for automated software debugging. In
Proceedings of EuroSys’10, (Apr 2010).

Cristian Cadar (c.cadar@imperial.ac.uk) is a lecturer
in the Department of Computing at Imperial College
London.

Koushik Sen (ksen@cs.berkeley.edu) is an associate
professor in the Department of Electrical Engineering and
Computer Science at the University of California, Berkeley.

© 2013 ACM 0001-0782/13/02

structure. Like EXE, it performs mixed
concrete/symbolic execution, models
memory with bit-level accuracy, em-
ploys a variety of constraint solving op-
timizations, and uses search heuristics
to get high code coverage. One of the
key improvements of KLEE over EXE is
its ability to store a much larger num-
ber of concurrent states, by exploiting
sharing among states at the object-,
rather than at the page-level as in EXE.
Another important improvement is
its enhanced ability to handle interac-
tions with the outside environment—
for example, with data read from the
file system or over the network—by
providing models designed to explore
all possible legal interactions with the
outside world.

As a result of these features, EXE
and KLEE have been successfully
used to check a large number of dif-
ferent software systems, including
network servers and tools (Berkeley
Packet Filter, Avahi, Bonjour, among
others);10,36 file systems (ext2, ext3,
JFS);39 MINIX device drivers (Sound
Blaster 16, Lance, PCI);5 Unix utilities
(Coreutils, MINIX, Busybox suites);8
and computer vision code.13 They ex-
posed bugs and vulnerabilities in all
of these software systems, and con-
structed concrete inputs triggering
them. For example, EXE generated ac-
tual disk images that when mounted
under various file systems cause the
Linux kernel to panic.39 EXE and KLEE
were also able to successfully generate
high-coverage regression suites: when
run on the 89 stand-alone tools of the
Coreutils utility suite, KLEE generates
tests achieving on average over 90%
line coverage, significantly beating
an extensive manual regression suite
built incrementally by developers over
more than 15 years.

KLEE was open sourced in June
2009.b The tool has an active user com-
munity—with approximately 200 mem-
bers on the mailing list and growing—
and several research groups have built
upon it in a variety of areas, ranging
from wireless sensor networks30 to
automated debugging,40 reverse en-
gineering of binary device drivers,11
exploit generation,2 online gaming,4
testing and verification for GPUs,25 and
deterministic multithreading.14

b	 Available at http://klee.llvm.org/

Conclusion
Symbolic execution has become an
effective program testing technique,
providing a way to automatically gen-
erate inputs that trigger software er-
rors ranging from low-level program
crashes to higher-level semantic
properties; generate test suites that
achieve high program coverage; and
provide per-path correctness guaran-
tees. While more research is needed to
scale symbolic execution to very large
programs, existing tools have already
proved effective in testing and finding
errors in a variety of software, varying
from low-level network and operating
systems code to higher-level applica-
tions code.

Acknowledgments
The EGT, EXE, and KLEE projects are
joint work with Dawson Engler and
several other researchers.5,8–10,13,36,39
Daniel Dunbar is the main author of
the KLEE system. The DART and con-
colic testing projects are joint work
with several researchers including Gul
Agha, Jacob Burnim, Patrice Gode-
froid, Nils Klarlund, Rupak Majumdar,
and Darko Marinov.	

References
1.	A nand, S., Păsăreanu, C.S. and Visser, W. JPF-SE: A

symbolic execution extension to Java PathFinder. In
Proceedings of TACAS’07.

2.	A vgerinos, T., Cha, S.K., Hao, B.L.T. and Brumley, D.
AEG: Automatic exploit generation. In Proceedings of
NDSS’11, (Feb. 2011).

3.	B aluda, M., Braione, P., Denaro, G. and Pezzè, M.
Structural coverage of feasible code. In Proceedings
of AST’10.

4.	B ethea, D., Cochran, R. and Reiter, M. Server-side
verification of client behavior in online games. In
Proceedings of NDSS’10, 2010.

5.	B oonstoppel, P., Cadar, C. and Engler, D. RWset: Attacking
path explosion in constraint-based test generation. In
Proceedings of TACAS’08, (Mar–Apr 2008).

6.	B oyer, R.S., Elspas, B. and Levitt, K.N. SELECT—A
formal system for testing and debugging programs
by symbolic execution. SIGPLAN Not. 10 (1975),
234–245.

7.	B urnim, J. and Sen, K. Heuristics for scalable dynamic
test generation. In Proceedings of ASE’08, (Sept. 2008).

8.	C adar, C., Dunbar, D. and Engler, D. KLEE: Unassisted
and automatic generation of high-coverage tests
for complex systems programs. In Proceedings of
OSDI’08, (Dec 2008).

9.	C adar, C. and Engler, D. Execution generated test
cases: How to make systems code crash itself (invited
paper). In Proceedings of SPIN’05, (Aug 2005).

10.	C adar, C., Ganesh, V., Pawlowski, P., Dill, D. and Engler,
D. EXE: Automatically generating inputs of death. In
Proceedings of CCS’06, (Oct–Nov 2006). An extended
version appeared in ACM TISSEC 12, 2 (2008).

11.	C hipounov, V. and Candea, G. Reverse engineering of
binary device drivers with RevNIC. In Proceedings of
EuroSys’10, (Apr 2010).

12.	C larke, L.A. A program testing system. In Proceedings
of the 1976 Annual Conference, 488–491.

13.	C ollingbourne, P., Cadar, C. and Kelly, P.H. Symbolic
crosschecking of floating-point and SIMD code. In
Proceedings of EuroSys’11, (Apr 2011).

14.	C ui, H., Wu, J. che Tsai, C. and Yang, J. Stable
deterministic multithreading through schedule
memoization. In Proceedings of OSDI’10.

http://klee.llvm.org/
mailto:c.cadar@imperial.ac.uk
mailto:ksen@cs.berkeley.edu

research highlights

february 2013 | vol. 56 | no. 2 | communications of the acm 91

p. 93

Power Challenges May End
the Multicore Era
By Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant,
Karthikeyan Sankaralingam, and Doug Burger

p. 92

Technical
Perspective
Is Dark Silicon Real?
By Pradip Bose

92 communications of the acm | february 2013 | vol. 56 | no. 2

research highlights

doi:10.1145/2408776.2408796

The microprocessor chip R&D com-
munity has been well aware of the
so-called “power wall” challenge for
over a decade now. Researchers have
focused mainly on creative techniques
to improve power-performance effi-
ciency. Developers have adopted many
of those ideas, and through engineer-
ing innovations have been able to keep
the economics of technology scaling
largely justifiable up until now. Indus-
try witnessed a clear paradigm shift
(as a response to the looming power
wall) when the single-core processor
chip era gave way to the multicore era
at the beginning of the current cen-
tury. Power (and power density) limits,
coupled with the steady demise of ide-
alized Dennard scaling rules, made it
difficult to keep increasing the clock
frequency. Also, limits in instruction-
level parallelism (ILP) made it dif-
ficult to keep increasing single-core
instructions-per-cycle (IPC), without
spending an inordinate amount of
area and power. However, even though
we embarked upon the multicore trail,
the power wall was never forgotten.
We knew that sacrificing single-thread
performance in favor of generational
increases in chip throughput would
not make the power wall go away for-
ever! It would loom large again as the
core count kept increasing. Because,
fundamentally, the memory and I/O
bandwidth demands dictated by the
need to “feed” so many cores costs
power and pins that we do not have.
Also, delivering the current to feed an
increasing number of cores at a lower
voltage than before makes the design-
er hit a chip C4 current limit wall that
is difficult to ignore.

The following work by Esmaeilza-
deh et al. is a landmark paper that
opens our eyes to the unrelenting
power challenge we face in the multi-
core era. Most interestingly, it raises
the specter of dark silicon: lots of pro-
cessor cores, but very few that can be
powered on or utilized at any given
time. Not that the authors see this as
a desirable feature of future designs;

but they certainly raise a very valid
question about the future viability of
the basic multicore paradigm. Just
like ILP limits make it ever harder to
boost single-thread IPC at affordable
power and complexity, thread-level
parallelism (TLP) at the chip level
gets ever harder because of the lim-
ited parallelism in so-called parallel
applications. And, even for some sci-
entific applications that are embar-
rassingly parallel or for commercial
server workloads with large TLP, on-
chip shared hardware resource con-
tention and size limits make it more
difficult to extract that parallelism at
affordable power. So, even if we are
able to go on doubling the number of
cores each technology generation, we
have two basic problems, as clearly
enunciated by the authors: for a fixed
chip power budget and area, even a
very aggressive investment in applica-
tion parallelism enhancement does
not help one get even respectably
close to the targeted 2X (throughput)
performance growth per generation;
and even if cooling and power deliv-
ery technologies improve to allow
a large increase in the chip power
budget, real application parallelism
levels would not allow targeted per-
formance scaling in most cases—not
by a long shot. The paper’s elegant
analytical formalism shows that un-
der ITRS projections, as we approach
the 8nm technology node, over half
the chip will remain unutilized (and
consequently “dark”). In a sense, this
is regardless of whether one views
the problem from the perspective of
a power wall constraint or from one
that focuses first on the effective TLP
limit constraint.

The effective parallelism content
of real application workloads is of-
ten small enough that strong single-
thread performance remains a crucial
factor to combat the (serial) Amdahl
bottleneck. The paper, therefore does
consider heterogeneous (or asym-
metric) multicores in the analysis in a
quest to find an optimistic outlook for

the future. However, the combination
of realistic chip power limits and real
application parallelism limits makes it
hard or impossible to sustain histori-
cally established performance growth
rates using the multicore paradigm as
we currently know it.

Is the specter of progressively dark-
er silicon real? Or, are there technolog-
ical or design breakthroughs around
the corner to help us circumvent such
a scenario, at least in the short term?
Alternatively, if that specter is indeed
real from a utilization efficiency view-
point, but not directly from a power
limit perspective, are there other ways
the “idle” cores can be used to provide
functionality that is not traditional
“performance”? For example, can
available idle cores be used to enhance
reliability or security? The paper does
briefly journey into optimistic dream-
land to give the reader a hint about
promising new innovations that could
potentially be disruptive in the face of
the specter that seems to be haunting
us at this time.

This paper is not just a doomsday
predictor. It raises our awareness of
the problem through scientific quan-
tification; but it should also serve as a
springboard for innovative research,
especially for computer architects.
However, the architect cannot hope
to invent in a vacuum; the needed in-
novations will surely come, but only
by adopting a holistic, cross-layer
view of the full system—from devices,
through circuits, microarchitecture,
system architecture, and the software
stack. Researchers are well-aware of
this urgent need, thanks to papers like
this one; the industrial development
teams cannot wait to take advantage of
the next generation of holistic, cross-
layer system architectural thoughts,
models, and design tools.	

Pradip Bose (pbose@us.ibm.com) is a research
staff member at IBM T.J. Watson Research Center
where he manages the Reliability- and Power-Aware
Microarchitectures department.

© 2013 ACM 0001-0782/13/02

Technical Perspective
Is Dark Silicon Real?
By Pradip Bose

mailto:pbose@us.ibm.com

february 2013 | vol. 56 | no. 2 | communications of the acm 93

doi:10.1145/2408776.2408797

Power Challenges May End
the Multicore Era
By Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankaralingam, and Doug Burger

Abstract
Starting in 2004, the microprocessor industry has shifted to
multicore scaling—increasing the number of cores per die
each generation—as its principal strategy for continuing per-
formance growth. Many in the research community believe
that this exponential core scaling will continue into the hun-
dreds or thousands of cores per chip, auguring a parallelism
revolution in hardware or software. However, while transis-
tor count increases continue at traditional Moore’s Law
rates, the per-transistor speed and energy efficiency improve-
ments have slowed dramatically. Under these conditions,
more cores are only possible if the cores are slower, simpler,
or less utilized with each additional technology generation.
This paper brings together transistor technology, processor
core, and application models to understand whether mul-
ticore scaling can sustain the historical exponential perfor-
mance growth in this energy-limited era. As the number of
cores increases, power constraints may prevent powering of
all cores at their full speed, requiring a fraction of the cores
to be powered off at all times. According to our models, the
fraction of these chips that is “dark” may be as much as 50%
within three process generations. The low utility of this “dark
silicon” may prevent both scaling to higher core counts and
ultimately the economic viability of continued silicon scal-
ing. Our results show that core count scaling provides much
less performance gain than conventional wisdom suggests.
Under (highly) optimistic scaling assumptions—for parallel
workloads—multicore scaling provides a 7.9× (23% per year)
over ten years. Under more conservative (realistic) assump-
tions, multicore scaling provides a total performance gain of
3.7× (14% per year) over ten years, and obviously less when
sufficiently parallel workloads are unavailable. Without a
breakthrough in process technology or microarchitecture,
other directions are needed to continue the historical rate of
performance improvement.

1. INTRODUCTION
Moore’s Law18 (the doubling of transistors on chip every 18
months) has been a fundamental driver of computing. For
more than four decades, through transistor, circuit, micro-
architecture, architecture, and compiler advances, Moore’s
Law, coupled with Dennard scaling,9 has resulted in consis-
tent exponential performance increases. Dennard’s scaling
theory showed how to reduce the dimensions and the elec-
trical characteristics of a transistor proportionally to enable
successive shrinks that simultaneously improved density,
speed, and energy efficiency. According to Dennard’s theory
with a scaling ratio of , the transistor count doubles
(Moore’s Law), frequency increases by 40%, and the total

chip power stays the same from one generation of process
technology to the next on a fixed chip area. With the end of
Dennard scaling, process technology scaling can sustain
doubling the transistor count every generation, but with sig-
nificantly less improvement in transistor switching speed
and energy efficiency. This transistor scaling trend presages
a divergence between energy efficiency gains and transis-
tor density increases. The recent shift to multicore designs,
which was partly a response to the end of Dennard scaling,
aimed to continue proportional performance scaling by
utilizing the increasing transistor count to integrate more
cores, which leverage application and/or task parallelism.

Given the transistor scaling trends and challenges, it is
timely and crucial for the broader computing community
to examine whether multicore scaling will utilize each gen-
eration’s doubling transistor count effectively to sustain the
performance improvements we have come to expect from
technology scaling. Even though power and energy have
become the primary concern in system design, no one knows
how severe (or not) the power problem will be for multicore
scaling, especially given the large multicore design space.

Through comprehensive modeling, this paper provides a
decade-long performance scaling projection for future mul-
ticore designs. Our multicore modeling takes into account
transistor scaling trends, processor core design options, chip
multiprocessor organizations, and benchmark characteris-
tics, while applying area and power constraints at future tech-
nology nodes. The model combines these factors to project
the upper bound speedup achievable through multicore scal-
ing under current technology scaling trends. The model also
estimates the effects of nonideal transistor scaling, includ-
ing the percentage of dark silicon—the fraction of the chip
that needs to be powered off at all times—in future multicore
chips. Our modeling also discovers the best core organiza-
tion, the best chip-level topology, and the optimal number of
cores for the workloads studied. We do not believe or advo-
cate that designs with dark silicon are ideal or even desirable;
in our view smaller chips are more likely. Nonetheless, our
modeling shows that—even with the best multicore organiza-
tion, assuming constant chip size and fixed power budget—a
significant portion of the chip will remain dark.

The study shows that regardless of chip organization and
topology, multicore scaling is power limited to a degree not

A previous version of this article appears in Proceedings of
the 38th International Symposium on Computer Architecture
( June 2011). Parts of this article appear in IEEE Micro Top
Picks from the Computer Architecture Conferences of 2011
(May/June 2012).

94 communications of the acm | february 2013 | vol. 56 | no. 2

research highlights

widely appreciated by the computing community. In just
five generations, at 8nm, the percentage of dark silicon in
a fixed-size chip may grow to 50%. Given the recent trend of
technology scaling, the 8nm technology node is expected to
be available in 2018. Over this period of ten years (from 2008
when 45nm microprocessors were available), with optimistic
international technology roadmap for semiconductors
(ITRS) scaling projections,16 only 7.9× average speedup is pos-
sible for commonly used parallel workloads,4 leaving a nearly
24-fold gap from a target of doubled performance per genera-
tion. This gap grows to 28-fold with conservative scaling pro-
jections,5 with which only 3.7× speedup is achievable in the
same period. Further investigations also show that beyond
a certain point increasing the core count does not translate
to meaningful performance gains. These power and parallel-
ism challenges threaten to end the multicore era, defined as
the era during which core counts grow appreciably.

2. OVERVIEW
Figure 1 shows how we build and combine three models to
project the performance of future multicores. Ultimately,
the model predicts the speedup achievable by multicore
scaling and shows a gap between our model’s projected
speedup and the expected exponential speedup with each
technology generation. We refer to this gap as the dark
silicon performance gap, since it is partly the result of the
dark silicon phenomenon, or the nonideal transistor scal-
ing that prevents fully utilizing the exponential increases
in transistor count. Our modeling considers transistor
scaling projections, single-core design scaling, multicore
design choices, application characteristics, and microar-
chitectural features. This study assumes that the die size
and the power budget stay the same as technology scales,

an assumption in line with the common practice for micro-
processor design. Below we briefly discuss each of the three
models.

Device scaling model (M-Device). Two device (transistor)
scaling models provide the area, power, and frequency
scaling factors at technology nodes from 45nm through
8nm. One model is based on aggressive ITRS projections16
while the other builds on more conservative predictions
from Shekhar Borkar’s recent study.5

Core scaling model (M-Core). Through Pareto-optimal
curves, derived from measured data, the M-Core model
provides the maximum performance that a single-core can
sustain for any given area. Further, it provides the minimum
power that is consumed to sustain this level of performance.
At each technology node, these two Pareto frontiers, which
constitute the M-Core model, define the best-case design
space of single cores.

Multicore scaling model (M-CMP). The M-CMP covers
two mainstream classes of multicore organizations,
multicore CPUs and many-thread GPUs, which represent
two extreme points in the threads-per-core spectrum. The
CPU multicore organization represents Intel Nehalem-
like multicore designs that benefit from large caches and
offer relatively high single-thread performance. The GPU
multicore organization represents NVIDIA Tesla-like
lightweight cores with heavy multithreading support and
poor single-thread performance. In modeling each of the
two multicore organizations, we consider four topologies:
symmetric, asymmetric, dynamic, and composed (also called
“fused” in the literature15).
Symmetric multicore. The symmetric, or homogeneous,
multicore topology consists of multiple copies of the
same core operating at the same voltage and frequency

ITRS
Projections

Device Scaling
(M-Device)

Core Scaling
(M-Core)

Multicore Scaling
(M-CMP)

Optimal No. of Cores
Multicore Speedup
% of Dark Silicon

Conservative
Projections

Tech Node

Tech Node Performance

Performance
Applications

C
or

e
P

ow
er

%
 o

f
D

ar
k

S
ili

co
n

M
ul

ti
co

re
 S

pe
ed

up

D
ar

k
S

ili
co

n
G

ap

C
or

e
A

re
a

Tech Node

Tech Node

Tech Node

2 Projection
Schemes

Data for 152
Processors

2 Chip Organizations x 4 Topologies Search 800 Configs
for 12 Benchmarks12 Benchmarks

V
dd

P
ow
er

C
f

A
re
a

Collecting
Empirical Data

Analytical Models
Microarchitectural
Features
Application Behavior

CPU-Like
Multicore

GPU-Like
Multicore

1

+1 – f
S(q) N(q)S(q)

Year

Model Projections

Year

Historic
al P

erfo
rm

ance

Scalin
g

Deriving
Pareto Frontiers

f

Figure 1. Overview of the methodology and the models.

february 2013 | vol. 56 | no. 2 | communications of the acm 95

setting. In a symmetric multicore, the resources, includ-
ing the power and the area budget, are shared equally
across all cores.
Asymmetric multicore. The asymmetric multicore topology
consists of one large monolithic core and many identical
small cores. This design uses the high-performing large core
for the serial portion of code and leverages the numerous
small cores as well as the large core to exploit the parallel
portion of code.
Dynamic multicore. The dynamic multicore topology is a vari-
ation of the asymmetric multicore topology. During parallel
code portions, the large core is shut down and, conversely,
during the serial portion, the small cores are turned off and
the code runs only on the large core.6, 21 Switching the cores
off and on allows integrating more cores or using a higher
voltage and frequency operational setting.
Composed multicore. The composed multicore topology is a
collection of small cores that can dynamically merge together
and compose a logical higher performance large core.15, 17
While providing a parallel substrate for the parallel portion
of code when unmerged, the small cores merge and compose
a logical core that offers higher single-threaded performance
for the serial portion.

The multicore model is an analytic model that computes
the multicore performance and takes the core performance
as input (obtained from M-Core), the multicore organiza-
tion (CPU-like or GPU-like), and multicore topology (sym-
metric, asymmetric, dynamic, and composed). Unlike
previous studies, the model also takes into account applica-
tion characteristics such as memory access pattern, and the
amount of thread-level parallelism in the workload as well
as the microarchitectural features such as cache size and
memory bandwidth. We choose the PARSEC benchmarks4
to study the multicore scaling potential for successfully
parallelized applications. PARSEC is a set of highly paral-
lel applications that are widely used to support the parallel
architecture research.

Modeling future multicore chips. To model future
multicore chips, we first model the building blocks, the
future cores. We combine the device and core models to
project the best-case design space of single cores—the Pareto
frontiers—at future technology nodes. Any performance
improvement for future cores will come at the cost of area or
power as defined by the projected Pareto frontiers. Then, we
combine all three models and perform an exhaustive design-
space search to find the optimal multicore configuration for
each individual application considering its characteristics.
The optimal configuration delivers the maximum multicore
speedup for each benchmark at future technology nodes
while enforcing area and power constraints. The gap
between the projected speedup and the speedup we have
come to expect with each technology generation is the dark
silicon performance gap.

Related work. Other work has studied various subsets of
the problem that we study comprehensively. Hill and Marty
extend Amdahl’s Law to model multicore architectures with
different topologies.14 Hempstead et al. introduce a variant
of Amdahl’s Law to estimate the amount of specialization
required to maintain 1.5× performance growth per year,

assuming completely parallelizable code.13 Chung et al.
study unconventional cores including custom logic, FPGAs,
or GPUs in heterogeneous single-chip designs.7 Azizi et al.
derive the single-core energy/performance tradeoff as
Pareto frontiers using architecture-level statistical models
combined with circuit-level energy-performance trade-
off functions.2 Chakraborty considers device-scaling and
estimates a simultaneous activity factor for technology
nodes down to 32nm.6 Venkatesh et al. estimate technology-
imposed utilization limits and motivate energy-efficient
and application-specific core designs.22 Hardavellas et al.
forecast the limits of multicore scaling and the emergence
of dark silicon in servers with workloads that have an
inherent abundance of parallelism.12

3. DEVICE MODEL (M-DEVICE)
The first step in projecting gains from more cores is develop-
ing a model that captures future transistor scaling trends.
To highlight the challenges of nonideal device scaling, first
we present a simplified overview of historical Dennard scal-
ing and the more recent scaling trends.

Historical device scaling trends. According to Dennard
scaling, as the geometric dimensions of transistors scale,
the electric field within the transistors stays constant if
other physical features, such as the gate oxide thickness
and doping concentrations, are reduced proportionally.
To keep the electric field constant, the supply voltage (the
switch on voltage) as well as the threshold voltage (the volt-
age level below which the transistor switches off) need to be
scaled at the same rate as the dimensions of the transistor.
With Dennard scaling, a 30% reduction in transistor length
and width results in a 50% decrease in transistor area, dou-
bling the number of transistors that can fit on chip with
each technology generation (Moore’s Law18). Furthermore,
the decrease in transistor sizes results in a 30% reduction in
delay. In total, Dennard scaling suggests a 30% reduction
in delay (hence 40% increase in frequency), a 50% reduc-
tion in area, and a 50% reduction in power per transistor.
As a result, the chip power stays the same as the number of
transistors doubles from one technology node to the next
in the same area.

Recent device scaling trends. At recent technology nodes,
the rate of supply voltage scaling has dramatically slowed
due to limits in threshold voltage scaling. Leakage cur-
rent increases exponentially when the threshold voltage
is decreased, limiting threshold voltage scaling, and mak-
ing leakage power a significant and first-order constraint.
Additionally, as technology scales to smaller nodes, phys-
ics limits decreases in gate oxide thickness. These two
phenomena were not considered in the original Dennard
scaling theory, since leakage power was not dominant in the
older generations, and the physical limits of scaling oxide
thickness were too far out to be considered. Consequently,
Dennard scaling stopped at 90nm.8 That is, transistor area
continues to scale at the historic rate, which allows for dou-
bling the number of transistors, while the power per tran-
sistor is not scaling at the same rate. This disparity will
translate to an increase in chip power if the fraction of active
transistors is not reduced from one technology generation

96 communications of the acm | february 2013 | vol. 56 | no. 2

research highlights

Figure 2. Design space and derivation of the Pareto frontiers.

0 5 10 15 20 25 30 35 40

Performance (SPECmark)

5

10

15

20

25

30

C
or

e
ar

ea
 (
m
m

2)

A(q)= 0.0152q2 + 0.0265q + 7.4393

Intel Nehalem (45nm)
Intel Core (45nm)
AMD Shanghai (45nm)
Intel Atom (45nm)
Pareto Frontier (45nm)

(b) Area/performance frontier, 45nm

0 5 10 15 20 25 30 35 40

Performance (SPECmark)

0

5

10

15

20

25

30

C
or

e
po

w
er

(W
)

Intel Nehalem (45nm)
Intel Core (45nm)
AMD Shanghai (45nm)
Intel Atom (45nm)
Pareto Frontier (45nm)

(a) Power/performance frontier, 45nm

P(q)= 0.0002q3 + 0.0009q2 + 0.3859q − 0.0301

power/performance Pareto frontier, P(q), for these two design
spaces, where q is the single-threaded performance of a core.
These frontiers capture the best-case area/performance and
power/performance tradeoffs for a core while abstracting
away specific details of the core. We use the device scaling
model to project the frontiers to future technologies and
model performance, area, and power of cores fabricated at
those nodes.

4.2. Model implementation
As Figure 2 depicts, we populate the two design spaces at
45nm using 20 representative Intel and AMD processors
and derive the Pareto frontiers. The curve that bounds all
power(area)/performance points in the design space and
minimizes power(area) required for a given level of perfor-
mance constructs the Pareto frontier. The polynomials P(q)
and A(q) are the core model. The core performance, q, is
the processor’s SPECmark and is collected from the SPEC

to the next.6 The shift to multicore architectures was partly a
response to the end of Dennard scaling.

3.1. Model structure
The device model provides transistor area, power, and
frequency scaling factors from a base technology node (e.g.
45nm) to future technologies. The area scaling factor corre-
sponds to the shrinkage in transistor dimensions. The fre-
quency scaling factor is calculated based on the fan-out of
4 (FO4) delay reduction. FO4 is a process independent delay
metric used to measure the delay of CMOS logic that identifies
the processor frequency. FO4 is the delay of an inverter, driven
by an inverter 4× smaller than itself, and driving an inverter 4×
larger than itself. The power scaling factor is computed using
the predicted frequency, voltage, and gate capacitance scal-
ing factors in accordance with the equation.

3.2. Model implementation
We generate two device scaling models: ITRS and conserva-
tive. The ITRS model uses projections from the ITRS 2010
technology roadmap.16 The conservative model is based on
predictions by Shekhar Borkar and represents a less opti-
mistic view.5 The parameters used for calculating the power
and performance scaling factors are summarized in Table
1. We allocate 20% of the chip-power budget to leakage
power and assume chip designers can maintain this ratio.

4. CORE MODEL (M-CORE)
The second step in estimating future multicore perfor-
mance is modeling a key building block, the processor core.

4.1. Model structure
We build a technology-scalable core model by populating the
area/performance and power/performance design spaces
with the data collected for a set of processors; all fabricated
in the same technology node. The core model is the combi-
nation of the area/performance Pareto frontier, A(q), and the

Table 1. Scaling factors with ITRS and conservative projections.

Tech
node
(nm)

Frequency
scaling
factor

(/45nm)

Vdd
scaling
factor

(/45nm)

Capacitance
scaling
factor

(/45nm)

Power
scaling
factor

(/45nm)

IT
R

S

45* 1.00 1.00 1.00 1.00
32* 1.09 0.93 0.70 0.66
22† 2.38 0.84 0.33 0.54
16† 3.21 0.75 0.21 0.38
11† 4.17 0.68 0.13 0.25
8† 3.85 0.62 0.08 0.12

31% frequency increase and 35% power reduction per node

C
on

se
rv

at
iv

e 45 1.00 1.00 1.00 1.00
32 1.10 0.93 0.75 0.71
22 1.19 0.88 0.56 0.52
16 1.25 0.86 0.42 0.39
11 1.30 0.84 0.32 0.29
8 1.34 0.84 0.24 0.22

6% frequency increase and 23% power reduction per node

*Extended planar bulk transistors.
†Multi-gate transistors.

february 2013 | vol. 56 | no. 2 | communications of the acm 97

Website.20 We estimate the core power budget using the TDP
reported in processor datasheets. TDP is the chip-power
budget, or the amount of power the chip can dissipate with-
out exceeding the transistor junction temperature. We use
die photos of the four microarchitectures, Intel Atom, Intel
Core, AMD Shanghai, and Intel Nehalem, to estimate the
core areas (excluding level 2 and level 3 caches). Since the
focus of this work is to study the impact of technology con-
straints on logic scaling rather than cache scaling, we derive
the Pareto frontiers using only the portion of power budget
and area allocated to the core in each processor excluding
the uncore components.

As illustrated in Figure 2, a cubic polynomial, P(q), is fit to
the points along the edge of the power/performance design
space and a quadratic polynomial (Pollack’s rule19), A(q), to
the points along the edge of the area/performance design
space. The Intel Atom Z520 with an estimated 1.89 W TDP
per core represents the lowest power design (lower-left fron-
tier point), and the Nehalem-based Intel Core i7-965 Extreme
Edition with an estimated 31.25 W TDP per core represents
the highest performing design (upper-right frontier point).
The points along the scaled Pareto frontier are used as the
search space for determining the best core configuration by
the multicore model.

5. MULTICORE MODEL (M-CMP)
The last step in modeling multicore scaling is to develop a
detailed chip-level model (M-CMP) that integrates the area
and power frontiers, microarchitectural features, and appli-
cation behavior, while accounting for the chip organization
(CPU-like or GPU-like) and its topology (symmetric, asym-
metric, dynamic, or composed).

5.1. Model structure
Guz et al. proposed a model to consider first-order impacts
of microarchitectural features (cache organization, memory
bandwidth, number of threads per core, etc.) and workload
characteristics (memory access pattern).10 To first order,
their model considers stalls due to memory dependences
and resource constraints (bandwidth or functional units).
We extend their approach to build our multicore model. Our
extensions incorporate additional application characteris-
tics, microarchitectural features, and physical constraints,
and covers both homogeneous and heterogeneous multicore
topologies.

This model uses single-threaded cores with large caches
to cover the CPU multicore design space and massively
threaded cores with minimal caches to cover the GPU mul-
ticore design while modeling all four topologies. The input
parameters to the model, and how, if at all, they are affected
by the multicore design choices are listed in Table 2.

Multicore topologies. The multicore model is an extended
Amdahl’s Law1 equation that incorporates the multicore
performance (Perf ) calculated from (2)–(5):

	 � (1)

The M-CMP model (1) measures the multicore speedup
with respect to a baseline multicore (PerfB). That is, the

parallel portion of code (f) is sped up by SParallel = PerfP/PerfB
and the serial portion of code (1 − f) is sped up by SSerial =
PerfS/PerfB.

The number of cores that fit on the chip is calculated as
follows based on the topology of the multicore, its area bud-
get (AREA), its power budget (TDP), each core’s area (A(q) ),
and each core’s power (P(q) ).

	 	

For heterogeneous multicores, qS is the single-threaded
performance of the small cores and qL is the single-threaded
performance of the large core. The area overhead of sup-
porting composability is t; however, no power overhead is
assumed for composability support.

Microarchitectural features. Multithreaded performance
(Perf ) of an either CPU-like or GPU-like multicore running
a fully parallel (f = 1) and multithreaded application is

Table 2. M-CMP parameters with default values from 45nm Nehalem.

Parameter Description Default Affected by

N Number of cores 4 Multicore topology

T Number of threads
per core

1 Core style

freq Core frequency (MHz) 3200 Core performance

CPI Cycles per instruction
(zero-latency cache
accesses)

1 Core performance,
application

C1 L1 cache size per core
(KB)

64 Core style

C2 L2 cache size per chip
(MB)

2 Core style, multi-
core topology

t1 L1 access time (cycles) 3 –

t2 L2 access time (cycles) 20 –

t Memory access time
(cycles)

426 Core performance

BW Maximum memory
bandwidth (GB/s)

200 Technology node

b Bytes per memory
access (B)

64 –

f Fraction of code that
can be parallel

Varies Application

r Fraction of
instructions that are
memory accesses

Varies Application

a1, b1 L1 cache miss rate
function constants

Varies Application

a2, b2 L2 cache miss rate
function constants

Varies Application

98 communications of the acm | february 2013 | vol. 56 | no. 2

research highlights

each processor design point. We start by assuming that the
Nehalem core has a CPIexe of . Then, the smallest core, an
Atom processor, should have a CPIexe such that the ratio of
its M-CMP performance to the Nehalem core’s M-CMP per-
formance is the same as the ratio of their SPECmark scores
(q). We assume CPIexe does not change as technology scales,
while frequency does change as discussed in Section 6.1.

Microarchitectural features. A key part of the detailed
model is the set of input parameters that model the micro-
architecture of the cores. For single-thread (ST) cores, we
assume each core has a 64KB L1 cache, and chips with only
ST cores have an L2 cache that is 30% of the chip area. Ma-
ny-thread (MT) cores have small L1 caches (32KB for every
8 cores), support multiple hardware contexts (1024 threads
per 8 cores) and a thread register file, and have no L2 cache.
From Atom and Tesla die photos, we estimate that 8 small
MT cores, their shared L1 cache, and their thread register
file can fit in the same area as one Atom processor. We as-
sume that off-chip bandwidth (BWmax) increases linearly as
process technology scales down while the memory access
time is constant.

Composed multicores. We assume that t (area overhead
of composability) increases from 10% to 400% depending
on the total area of the composed core and performance of
the composed core cannot exceed performance of a single
Nehalem core at 45nm.

Constraints and baseline. The area and power bud-
gets are derived from the highest-performing quad-core
Nehalem multicore at 45nm excluding the L2 and L3 cach-
es. They are 111 mm2 and 125 W, respectively. The M-CMP
multicore speedup baseline is a quad-Nehalem multicore
that fits in the area and power budgets. The reported dark
silicon projections are for the area budget that is solely
allocated to the cores, not caches and other ‘uncore’ com-
ponents. The actual fraction of chip that goes dark may
be higher.

6. COMBINING MODELS
6.1. Device × core model
To study core scaling in future technology nodes, we scaled
the 45nm Pareto frontiers down to 8nm by scaling the
power and performance of each processor data point using
the DevM model and then re-fitting the Pareto optimal
curves at each technology node. Performance, measured
in SPECmark, is assumed to scale linearly with frequency.
This optimistic assumption ignores the effects of memory
latency and bandwidth on the core performance, and thus
actual performance gains through scaling may be lower.
Based on the optimistic ITRS model, scaling a microarchi-
tecture (core) from 45nm to 8nm will result in a 3.9× per-
formance improvement and an 88% reduction in power
consumption. Conservative scaling, however, suggests
that performance will increase only by 34%, and power will
decrease by 74%.

6.2. Device × core × multicore model
All three models are combined to produce final projec-
tions on optimal multicore speedup, optimal number
of cores, and amount of dark silicon. To determine the

calculated in terms of instructions per second in (2) by mul-
tiplying the number of cores (N) by the core utilization (h)
and scaling by the ratio of the processor frequency to CPIexe:

	 � (2)

The CPIexe parameter does not include stalls due to cache
accesses, which are considered separately in the core utili-
zation (h). The core utilization is the fraction of time that a
thread running on the core can keep it busy. It is modeled
as a function of the average time spent waiting for each
memory access (t), fraction of instructions that access the
memory (rm), and the CPIexe:

	 � (3)

The average time spent waiting for memory accesses (t) is a
function of the time to access the caches (tL1 and tL2), time to
visit memory (tmem), and the predicted cache miss rate (mL1
and mL2):

	 � (4)

	 � (5)

5.2. Model implementation
The M-CMP model incorporates the Pareto frontiers, physi-
cal constraints, real application characteristics, and realis-
tic microarchitectural features into the multicore speedup
projections as discussed below.

Application characteristics. The input parameters
that characterize an application are its cache behavior,
fraction of instructions that are loads or stores, and frac-
tion of parallel code. For the PARSEC benchmarks, we
obtain this data from two previous studies.3, 4 To obtain
the fraction of parallel code (f) for each benchmark, we
fit an Amdahl’s Law-based curve to the reported speed-
ups across different numbers of cores from both studies.
The value of f ranges from 0.75 to 0.9999 depending on
the benchmark.

Obtaining frequency and CPIexe from Pareto frontiers.
To incorporate the Pareto-optimal curves into the M-CMP
model, we convert the SPECmark scores (q) into an esti-
mated CPIexe and core frequency. We assume the core fre-
quency scales linearly with performance, from 1.5 GHz for
an Atom core to 3.2 GHz for a Nehalem core. Each applica-
tion’s CPIexe is dependent on its instruction mix and use of
hardware resources (e.g., functional units and out-of-order
issue width). Since the measured CPIexe for each benchmark
at each technology node is not available, we use the M-CMP
model to generate per benchmark CPIexe estimates for each
design point along the Pareto frontier. With all other model
inputs kept constant, we iteratively search for the CPIexe at

february 2013 | vol. 56 | no. 2 | communications of the acm 99

best multicore configuration at each technology node,
we sweep the design points along the scaled area/per-
formance and power/performance Pareto frontiers
(M-Device × M-Core) as these points represent the most
efficient designs. At each technology node, for each core
design on the scaled frontiers, we construct a multicore
chip consisting of one such core. For a symmetric mul-
ticore chip, we iteratively add identical cores one by one
until the area or power budget is hit, or performance
improvement is limited. We sweep the frontier and con-
struct a symmetric multicore for each processor design
point. From this set of symmetric multicores, we pick the
multicore with the best speedup as the optimal symmet-
ric multicore for that technology node. The procedure is
similar for other topologies. This procedure is performed
separately for CPU-like and GPU-like organizations. The
amount of dark silicon is the difference between the area
occupied by cores for the optimal multicore and the area
budget allocated to the cores.

7. SCALING AND FUTURE MULTICORES
We apply the combined models to study the future of mul-
ticore designs and their performance-limiting factors. The
results from this study provide a detailed analysis of mul-
ticore behavior for future technologies considering 12 real
applications from the PARSEC suite.

7.1. Speedup projections
Figure 3 summarizes all of the speedup projections in a
single scatter plot. For every benchmark at each technol-
ogy node, we plot the speedup of eight possible multicore
configurations (CPU-like, GPU-like) × (symmetric, asym-
metric, dynamic, composed). The solid line is exponential
performance scaling–doubling performance every tech-
nology generation.

45 32 22 16 11 8

Technology node (nm)

0

8

16

24

32

S
pe

ed
up

Exponential performance
Geometric mean
Design points

(a) Conservative Scaling

45 32 22 16 11 8

Technology node (nm)

0

8

16

24

32

S
pe

ed
up

Exponential performance
Geometric mean
Design points

(b) ITRS Scaling

Figure 3. Speedup across process technology nodes across all
organizations and topologies with PARSEC benchmarks.

75% 80% 85% 90% 95% 99%

Percentage of parallel code

8

16

24

32

S
pe

ed
up

100 200 300 400 500

Power budget (W)

20

40

60

80

S
pe

ed
up

(a) Parallelism (actual f at marker) (b) Power budget

blackscholes
bodytrack

canneal
dedup

facesim
ferret

fluidanimate
freqmine

streamcluster
swaptions

vips
x264

Figure 4. Impact of application parallelism and power budget on
speedup at 8nm.

With optimal multicore configurations for each individual
application, at 8nm, only 3.7× (conservative scaling)
or 7.9× (ITRS scaling) geometric mean speedup is
possible, as shown by the dashed line in Figure 3.

Highly parallel workloads with a degree of parallelism
higher than 99% will continue to benefit from multicore
scaling.

7.2. Dark silicon projections

With ITRS projections, at 8nm, over 50% of the chip will
be dark and cannot be utilized.

At 8nm, the geometric mean speedup for dynamic and
composed topologies is only 10% higher than the
geometric mean speedup for symmetric topologies.

To understand whether parallelism or the power constraint
is the primary source of the dark silicon performance gap,
we vary each of these factors in two experiments at 8nm.
First, as depicted in Figure 4(a), we keep the power budget
constant (our default budget is 125 W), and vary the level of
parallelism in the PARSEC applications from 0.75 to 0.99,
assuming programmer effort can realize this improve-
ment. We see performance improves slowly as the paral-
lelism level increases, with most benchmarks reaching
a speedup of about only 15× at 99% parallelism. Provided
that the power budget is the only limiting factor, typical
upper-bound ITRS-scaling speedups would still be limited
to 15×. With conservative scaling, this best-case speedup is
limited to 6.3×.

For the second experiment, we keep each application’s
parallelism at its real level and vary the power budget from
50 W to 500 W. As Figure 4(b) shows, eight of 12 bench-
marks show no more than 10× speedup even with a prac-
tically unlimited power budget. That is, increasing core
counts beyond a certain point does not improve perfor-
mance due to the limited parallelism in the applications
and the Amdahl’s Law. Only four benchmarks have suffi-
cient parallelism to even hypothetically sustain the expo-
nential level of speedup.

100 communications of the acm | february 2013 | vol. 56 | no. 2

research highlights

7.3. Core count projections
Different applications saturate performance improve-
ments at different core counts. We consider the chip con-
figuration that provides the best speedup for all of the
applications as an ideal configuration. Figure 5 shows
the number of cores (solid line) for the ideal CPU-like
dynamic multicore configuration across technology gen-
erations. We choose the dynamic topology since it deliv-
ers the highest performance. The dashed line illustrates
the number of cores required to achieve 90% of the ideal
configuration’s geometric mean speedup across PARSEC
benchmarks. As depicted, with ITRS scaling, the ideal con-
figuration integrates 442 cores at 8nm; however, 35 cores
reach the 90% of the speedup achievable by 442 cores.
With conservative scaling, the 90% speedup core count is
20 at 8nm.

we ignore any increase in L2 cache power or increase in L2
cache access latency. Across the PARSEC benchmarks, the
optimal percentage of chip devoted to cache varies from
20% to 50% depending on benchmark memory access
characteristics. Compared to the unified 30% cache area
for all the applications, using each application’s optimal
cache area improves performance merely by at most 20%
across all benchmarks.

Memory bandwidth. Figure 6(b) illustrates the sensitivity
of PARSEC performance to the available memory bandwidth
for symmetric GPU multicores at 45nm. As the memory
bandwidth increases, the speedup improves since more
threads can be fed with data; however, the benefits are lim-
ited by power and/or parallelism and in 10 out of 12 bench-
marks speedups do not increase by more than 2× compared
to the baseline, 200GB/s.

SMT. To simplify the discussion, we did not consider
SMT support for the processors (cores) in the CPU multicore
organization. SMT support can improve power efficiency of
the cores for parallel workloads to some extent. We studied
2-way, 4-way, and 8-way SMT with no area or energy penalty,
and observed that speedup improves with 2-way SMT by 1.5×
in the best case and decreases as much as 0.6× in the worst
case due to increased cache contention; the range for 8-way
SMT is 0.3–2.5×.

8. ASSUMPTIONS AND LIMITATIONS
We discuss some of the important limitations of our
model and argue that they do not significantly change our
final results.

Dynamic voltage and frequency scaling (DVFS). Our
device and core models do not explicitly consider
dynamic voltage and frequency scaling; instead, we
take an optimistic approach to account for their best-
case settings. When deriving the Pareto frontiers, we
set each processor to operate at its optimal voltage and
frequency setting (Vddmin

, Freqmax). At a fixed Vdd setting,
scaling down the frequency from Freqmax results in a
power/performance point inside the optimal Pareto
curve, a suboptimal design point. However, scaling

(a) Conservative Scaling

0

Technology node (nm)

45 32 22 16 11 8

Technology node (nm)

45 32 22 16 11 8

32

64

96

128

160

192

224

256

0

32

64

96

128

160

192

224

256
406

N
um

be
r

of
 c

or
es

N
um

be
r

of
 c

or
es

Ideal config
90% config

Ideal config

442

90% config

(b) ITRS Scaling

Figure 5. Number of cores for the ideal CPU-like dynamic multicore
configurations and the number of cores delivering 90% of the
speedup achievable by the ideal configurations across the PARSEC
benchmarks.

25% 50% 75% 100%

Percentage of chip for L2

0

0.5

1

S
pe

ed
up

200 400 600 800 1000

Memory bandwidth (GB/s)

2

4

6

8

10

S
pe

ed
up

(b) Memory band width(GPU)(a) L2 size (CPU)

blackscholes
bodytrack

canneal
dedup

facesim
ferret

fluidanimate
freqmine

streamcluster
swaptions

vips
x264

Figure 6. Effect of L2 size and memory bandwidth on speedup at 45nm.

Due to limited parallelism in the PARSEC suite, even
with novel heterogeneous topologies and optimistic
ITRS scaling, integrating more than 35 cores improves
performance only slightly for CPU-like topologies.

7.4. Sensitivity studies
Our analysis thus far examined typical configurations
and showed poor scalability for the multicore designs.
A natural question is, can simple configuration changes
(percentage cache area, memory bandwidth, etc.) provide
significant benefits that can bridge the dark silicon gap?
We investigate three such simple changes: L2 cache
size, memory bandwidth, and simultaneous multi-
threading (SMT).

L2 cache area. Figure 6(a) shows the optimal speedup
at 45nm as the amount of a symmetric CPU’s chip area
devoted to L2 cache varies from 0% to 100%. In this study

The level of parallelism in PARSEC applications is the
primary contributor to the dark silicon performance gap.
However, in realistic settings the dark silicon resulting
from power constraints limits the achievable speedup.

february 2013 | vol. 56 | no. 2 | communications of the acm 101

workloads, allowing the economics of process scaling
to hold. A key question for the computing community is
whether scaling multicores will provide the performance
and value needed to scale down many more technology
generations. Are we in a long-term “multicore era,” or
will it instead be a “multicore decade” (2004–2014)? Will
industry need to move in different, perhaps radical, direc-
tions to justify the cost of scaling? To answer the question,
this paper models an upper bound on parallel application
performance available from multicore and CMOS scaling–
assuming no major disruptions in process scaling or core
efficiency. Using a constant area and power budget, this
study showed that the space of known multicore designs
(CPU, GPU, their hybrids) or novel heterogeneous topolo-
gies (e.g., dynamic or composable) falls far short of the
historical performance gains to which the microprocessor
industry is accustomed. Even with aggressive ITRS scal-
ing projections, scaling cores achieve a geometric mean
7.9× speedup in 10 years at 8nm—a 23% annual gain. Our
findings suggest that without process breakthroughs,
directions beyond multicore are needed to provide perfor-
mance scaling. There are reasons to be both pessimistic
and optimistic.

9.1. Pessimistic view
A pessimistic interpretation of this study is that the per-
formance improvements to which we have grown accus-
tomed over the past 40 years are unlikely to continue with
multicore scaling as the primary driver. The transition
from multicore to a new approach is likely to be more dis-
ruptive than the transition to multicore. Furthermore, to
sustain the current cadence of Moore’s Law, the transition
needs to be made in only a few years, much shorter than
the traditional academic time frame for research and tech-
nology transfer. Major architecture breakthroughs in “al-
ternative” directions such as neuromorphic computing,
quantum computing, or bio-integration will require even
more time to enter the industrial product cycle. Further-
more, while a slowing of Moore’s Law will obviously not
be fatal, it has significant economic implications for the
semiconductor industry.

9.2. Optimistic view
Technology. The study shows if energy efficiency break-
throughs are made on supply voltage and process scaling,
the performance improvement potential for multicore scal-
ing is still high for applications with very high degrees of
parallelism.

The need for microarchitecture innovations. Our study
shows that fundamental processing limitations emanate
from the processor core. The limited improvements on
single-threaded performance is the inhibiting factor.
Clearly, architectures that move well past the power/
performance Pareto-optimal frontier of today’s designs
are necessary to bridge the dark silicon gap and utilize
the increases in transistor count. Hence, improvements
to the processor core efficiency will have significant
impact on performance improvement and will enable
technology scaling even though the core consumes

voltage up and operating at a new (V ′ddmin
, Freq′max) setting

results in a different power-performance point that is
still at the optimal frontier. Since we investigate all of the
points along the frontier to find the optimal multicore
configuration, our study covers multicore designs that
induce heterogeneity to symmetric topologies through
dynamic voltage and frequency scaling.

Architecture details in multicore model and validation.
The multicore model considers the first-order impact of
caching, parallelism, and threading under assumptions that
result only in optimistic projections (i.e., favorable multicore
scaling). Comparing the output of the M-CMP model against
published empirical results confirm that our model
always overpredicts multicore performance. The model
optimistically assumes that the workload is homogeneous,
work is infinitely parallel during parallel sections of code,
memory accesses never stall due to a previous access, and
no thread synchronization, operating system serialization,
or swapping occurs.

Server workloads. We do not directly study the server
workloads, a domain where applications are highly
concurrent and embarrassingly parallel. However, even
in these types of workloads, resource scheduling and
structural hazards such as competition for cache,
memory bandwidth, DRAM storage, SSD IO, network
IO, etc. limit parallelism. These factors induce a serial
portion to the execution of the workloads. The key
challenge is to measure the amount of serialization from
these structural hazards, which is an interesting future
study. Once the amount of serialization is measured, our
models can be applied to the server workloads to project
the amount of dark silicon and its effects. Generally,
if the effective parallelism is less than 99%, the results
suggest that dark silicon and its effects will manifest.
Furthermore, Hardavellas et al. forecast the limits of
multicore scaling and the emergence of dark silicon in
servers with workloads that have an inherent abundance
of parallelism.12 They project that for server workloads
such as online transaction processing (OLTP), decision
support systems (DSS), and Web server (Apache), even
with 3D-stacked memory, a significant amount of a
multicore chip will be dark as technology scales. They
determine that power and limited and nonscalable
off-chip bandwidth are the primary limiting factors to
multicore performance scaling and result in dark silicon
for server workloads.

Alternative cores. We do not consider embedded ARM
or Tilera cores in this work because they are designed for
restricted domains and their SPECmark scores are not
available for a meaningful comparison.

9. A PATH FORWARD?
For decades, Moore’s Law plus Dennard scaling permit-
ted more transistors, faster transistors, and more energy
efficient transistors with each new process node, justi-
fying the enormous costs required to develop each new
process node. Dennard scaling’s failure led industry to
race down the multicore path, which for sometime per-
mitted performance scaling for parallel and multitasked

102 communications of the acm | february 2013 | vol. 56 | no. 2

research highlights

only 20% of the power budget for an entire laptop,
smartphone, tablet, etc. When performance becomes
limited, microarchitectural techniques that occasionally
use parts of the chip to deliver outcomes orthogonal to
performance, such as security, programmer productivity,
and software maintainability are ways to sustain the
economics of the industry. We believe this study will
revitalize and trigger microarchitecture innovations,
making the case for their urgency and their potential
impact.

Efficiency through specialization. Recent work has
quantified three orders of magnitude difference in efficiency
between general-purpose processors and ASICs.11 However,
there is a well-known tension between efficiency and
programmability. Designing ASICs for the massive base of
quickly changing general-purpose applications is currently
infeasible. Programmable accelerators, such as GPUs and
FPGAs, and specialized hardware can provide an intermediate
point between the efficiency of ASICs and the generality of
conventional processors, gaining significant improvements
for specific domains of applications. Even though there is
an emerging consensus that specialization and acceleration
is a promising approach for efficiently utilizing the growing
number of transistors, developing programming abstractions
that allow general-purpose applications to leverage
specialized hardware and programmable accelerators remain
challenging.

Opportunity for disruptive innovations. Our study is
based on a model that takes into account properties of
devices, processor cores, multicore organizations, and
topologies. Thus the model inherently provides the areas
to focus on for innovation. To surpass the dark silicon
performance barrier highlighted by our work, designers
must develop systems that use significantly more
energy-efficient techniques. Some examples include
device abstractions beyond digital logic (error-prone
devices); processing paradigms beyond superscalar,
SIMD, and SIMT; and program semantic abstractions
allowing probabilistic and approximate computation.
There is an emerging synergy between the applications
that can tolerate approximation and the unreliability
in the computation fabric as technology scales down.
If done in a disciplined manner, relaxing the high tax
of providing perfect accuracy at the device, circuit,
and architecture level can provide a huge opportunity
to improve performance and energy efficiency for the
domains in which applications can tolerate approximate
computation yet deliver acceptable outputs. Our results
show that such radical departures are needed and the
model provides quantitative measures to examine the
impact of such techniques.

The model we have developed in the paper is useful to
determine an optimal multicore configuration given a work-
load set, a power and area budget, and a technology gen-
eration. It can also be used to project expected multicore
performance for the best configurations under a range of
assumptions. We have made the models available for gen-
eral use at the following URL: http://research.cs.wisc.edu/
vertical/DarkSilicon.

	 1.	A mdahl, G.M. Validity of the single
processor approach to achieving
large-scale computing capabilities.
In AFIPS (1967).

	 2.	A zizi, O., Mahesri, A., Lee, B.C.,
Patel, S.J., Horowitz, M. Energy-
performance tradeoffs in processor
architecture and circuit design:
a marginal cost analysis. In ISCA
(2010).

	 3.	B hadauria, M., Weaver, V., McKee, S.
Understanding PARSEC performance
on contemporary CMPs. In IISWC
(2009).

	 4.	B ienia, C., Kumar, S., Singh, J.P.,
Li, K. The PARSEC benchmark suite:
Characterization and architectural
implications. In PACT (2008).

	 5.	B orkar, S. The exascale challenge.
Keynote at VLSI-DAT (2010).

	 6.	C hakraborty, K. Over-provisioned
multicore systems. PhD thesis,
University of Wisconsin-Madison
(2008).

	 7.	C hung, E.S., Milder, P.A., Hoe, J.C.,
Mai, K. Single-chip heterogeneous
computing: Does the future include
custom logic, FPGAs, and GPUs?
In MICRO (2010).

	 8.	D ennard, R.H., Cai, J., Kumar, A.
A perspective on today’s scaling
challenges and possible future
directions. Solid-State Electron.
5, 4 (Apr. 2007).

	 9.	D ennard, R.H., Gaensslen, F.H.,
Rideout, V.L., Bassous, E., LeBlanc,
A.R. Design of ion-implanted mosfet’s
with very small physical dimensions.
IEEE J. Solid-State Circuits 9
(Oct. 1974).

	10.	G uz, Z., Bolotin, E., Keidar, I.,
Kolodny, A., Mendelson, A., Weiser,
U.C. Many-core vs. many-thread
machines: Stay away from the
valley. IEEE Comput. Archit. Lett.
8 (Jan. 2009).

	11.	H ameed, R., Qadeer, W., Wachs, M.,
Azizi, O., Solomatnikov, A., Lee, B.C.,

Richardson, S., Kozyrakis, C.,
Horowitz, M. Understanding sources
of inefficiency in general-purpose
chips. In ISCA (2010).

	12.	H ardavellas, N., Ferdman, M., Falsafi, B.,
Ailamaki, A. Toward dark silicon
in servers. IEEE Micro 31, 4 (Jul.–
Aug. 2011).

	13.	H empstead, M., Wei, G.Y., Brooks, D.
Navigo: An early-stage model to study
power-contrained architectures and
specialization. In MoBS (2009).

	14.	H ill, M.D., Marty, M.R. Amdahl’s law
in the multicore era. Computer 41,
7 (Jul. 2008).

	15.	I pek, E., Kirman, M., Kirman, N.,
Martinez, J.F. Core fusion:
accommodating software diversity
in chip multiprocessors. In
ISCA (2007).

	16.	ITRS . International technology
roadmap for semiconductors, the 2010
update, http://www.itrs.net (2011).

	 17.	 Kim, C., Sethumadhavan, S., Govindan,
M.S., Ranganathan, N., Gulati, D., Burger,
D., Keckler, S.W. Composable lightweight
processors. In MICRO (2007).

	18.	M oore, G.E. Cramming more
components onto integrated circuits.
Electronics 38, 8 (Apr. 1965).

	19.	 Pollack, F. New microarchitecture
challenges in the coming generations
of CMOS process technologies.
Keynote at MICRO (1999).

	20.	S PEC. Standard performance
evaluation corporation, http://www.
spec.org (2011).

	21.	S uleman, A.M., Mutlu, O., Qureshi,
M.K., Patt, Y.N. Accelerating critical
section execution with asymmetric
multi-core architectures. In
ASPLOS (2009).

	22.	 Venkatesh, G., Sampson, J.,
Goulding, N., Garcia, S., Bryksin,
V., Lugo-Martinez, J., Swanson, S.,
Taylor, M.B. Conservation cores:
reducing the energy of mature
computations. In ASPLOS (2010).

References

© 2013 ACM 0001-0782/13/02

Hadi Esmaeilzadeh (hadianeh@
cs.washington.edu), University of
Washington.

Emily Blem (blem@cs.wisc.edu),
University of Wisconsin-Madison.

Renée St. Amant (stamant@cs.utexas.
edu), The University of Texas at Austin.

Karthikeyan Sankaralingam (karu@
cs.wisc.edu), University of Wisconsin-
Madison.

Doug Burger (dburger@microsoft.com),
Microsoft Research.

Acknowledgments
We thank Shekhar Borkar for sharing his personal views
on how CMOS devices are likely to scale. Support for
this research was provided by NSF under the following
grants: CCF-0845751, CCF-0917238, and CNS-0917213. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of NSF.�

http://research.cs.wisc.edu/vertical/DarkSilicon
mailto:hadianeh@cs.washington.edu
mailto:blem@cs.wisc.edu
mailto:karu@cs.wisc.edu
mailto:dburger@microsoft.com
http://research.cs.wisc.edu/vertical/DarkSilicon
mailto:hadianeh@cs.washington.edu
mailto:karu@cs.wisc.edu
mailto:stamant@cs.utexas.edu
mailto:stamant@cs.utexas.edu
http://www.itrs.net
http://www.spec.org
http://www.spec.org

february 2013 | vol. 56 | no. 2 | communications of the acm 103

careers

Bucknell University
Assistant Professor, Computer Science –
Computer Architecture

Applications are invited for a tenure-track posi-
tion in computer science beginning mid-August
2013. We expect to hire at the Assistant Professor
level, but outstanding candidates will be consid-
ered at Associate Professor or Professor; years of
credit toward tenure will be awarded based upon
qualifications. We seek a teacher-scholar with
a demonstrated ability to work with a diverse
student body and are specifically interested in
candidates whose research area is in computer
architecture. This position is responsible for the
department’s upper-level undergraduate Com-
puter Architecture course. In addition, the suc-
cessful candidate must be able to participate in
the teaching of required core courses and be able
to develop elective courses in the candidate’s area
of expertise. Candidates are expected to have
completed or be in the final stages of complet-
ing their Ph.D. by the beginning of the 2013 fall
semester. A strong commitment to excellence in
teaching and scholarship is required.

Bucknell is a highly selective private univer-
sity emphasizing quality undergraduate educa-
tion in engineering and in liberal arts and sci-
ences. The B.S. programs in computer science are
ABET accredited. The computing environment is
Linux/Unix-based. More information about the
department can be found at:

http://www.bucknell.edu/ComputerScience/

Applications will be considered as received
and recruiting will continue until the position is
filled. Candidates are asked to submit a cover let-
ter, CV, a statement of teaching philosophy and
research interests, and the contact information
for three references. Please submit your applica-
tion to

http://jobs.bucknell.edu/

by searching for the “Computer Science Fac-
ulty Position – Computer Architecture”.

Please direct any questions to Professor Ste-
phen Guattery of the Computer Science Depart-
ment at guattery@bucknell.edu.

Bucknell University, an Equal Opportunity
Employer, believes that students learn best in a
diverse, inclusive community and is therefore
committed to academic excellence through di-
versity in its faculty, staff, and students. Thus, we
seek candidates who are committed to Bucknell’s
efforts to create a climate that fosters the growth
and development of a diverse student body. We
welcome applications from members of groups
that have been historically underrepresented in
higher education.

this faculty position to begin in August. Contact:
Gary Parker. Email: bioinfosearch@conncoll.
edu. Apply URL:

http://cs.conncoll.edu/bioinformatics.htm

Dalhousie University Halifax, Canada
Faculty of Computer Science
Probationary Tenure Track Assistant Professor

Probationary Tenure Track Assistant Professor
position in the Faculty of Computer Science

Dalhousie University (http://www.dal.ca)
invites applications for a Probationary Tenure
Track position at the Assistant Professor level
in the Faculty of Computer Science (http://www.
cs.dal.ca) that currently has 30 faculty members,
approximately 425 undergraduate majors and
240 master’s and doctoral students. The Faculty
partners with other Faculties in the University to
offer the Master of Electronic Commerce, Master
of Health Informatics and Master of Science in
Bioinformatics programs, and is an active partici-
pant in the Interdisciplinary PhD program.

Dalhousie University is located in Halifax,
Nova Scotia (http://www.halifaxinfo.com/), which
is the largest city in Atlantic Canada and affords
its residents outstanding quality of life.

The Faculty welcomes applications from out-
standing candidates in Computer Science. An ap-
plicant should have a PhD in Computer Science
or related area and be comfortable teaching core
computer science courses, particularly Software
Engineering. Evidence of a strong commitment
to and aptitude for research and teaching is es-
sential. The ideal candidate will be open to col-
laborative research within the faculty and add to
or complement existing research strengths and
strategic research directions of the Faculty.

Applications should include an application
letter, curriculum vitae, a statement of research
and teaching interests, sample publications, and
the names, email addresses and physical address-
es of three referees. The application must include
the Equity Self-Identification form (see the URL
below). All documents are to be submitted to the
email address below as PDF files.

Applicants should provide their referees with
the URL of this advertisement (see below), and
request that they forward letters of reference by
email to the same address.

Applications will be accepted until April 30, 2013

All qualified candidates are encouraged to ap-
ply; however Canadian and permanent residents
will be given priority. Dalhousie University is an
Employment Equity/Affirmative Action Employ-
er. The University encourages applications from
qualified Aboriginal people, persons with a dis-
ability, racially visible persons and women.

Carnegie Mellon University
Computer Science Department
Teaching Track Positions

Applications are invited for two teaching-track po-
sitions in Computer Science, beginning Fall 2013.
This is a renewable, career-oriented position with
an initial appointment for three years. We seek
highly qualified applicants with a strong commit-
ment to excellence in teaching and the ability to
teach at all levels in the undergraduate curriculum.

Applicants for the position must have a Ph.D.
in Computer Science or a related field, and demon-
strated excellence in teaching Computer Science
courses. Teaching-track appointments are typical-
ly at the rank of Assistant Teaching Professor, with
the possibility of promotion to the ranks of Asso-
ciate Teaching Professor and Teaching Professor.
None of these ranks are tenured; applicants seek-
ing a tenure-track position at a research university
are therefore not a good match for these positions.

In order to receive full consideration, appli-
cants should submit a letter of application, cur-
riculum vitae, a statement of teaching philoso-
phy, and the names and email addresses of three
or more individuals whom the applicant has
asked to provide letters of reference. Applicants
should arrange for reference letters to be sent
directly to the contact below. This information
should be sent by February 28, 2013, to the con-
tact listed below.

Additionally, applicants are encouraged to
submit a video sample of their teaching. This en-
ables applicants to add another dimension to their
application. Since the people who will eventually
fill these positions will be expected to be excellent
classroom teachers, the video sample is an oppor-
tunity for candidates to show off their talents in a
way other than traditional on paper means.

Please send your applications and accompa-
nying materials to

Dr. Klaus Sutner
Computer Science Department
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
email: sutner@cs.cmu.edu

Carnegie Mellon is an affirmative action/
equal opportunity employer and we invite and
encourage applications from women and under-
represented minorities.

Connecticut College
Data Mining Postdoctoral / Visiting Faculty

Connecticut College is seeking candidates with
research interests in the use of data mining/ma-
chine learning for analyzing biological data. See
details at cs.conncoll.edu/bioinformatics.htm for

http://jobs.bucknell.edu/
mailto:guattery@bucknell.edu
mailto:sutner@cs.cmu.edu
http://cs.conncoll.edu/bioinformatics.htm
http://www.halifaxinfo.com/
http://cs.conncoll.edu/bioinformatics.htm
mailto:bioinfosearch@conncoll.edu
mailto:bioinfosearch@conncoll.edu

104 communications of the acm | february 2013 | vol. 56 | no. 2

careers

˲˲ Lead weekly sections and teach undergraduate
students

˲˲ Hire, train, and supervise a team of teaching
fellows, including leading regular TF meetings

˲˲ Design and implement tools and test cases to
be used by each courses’ students and TFs

˲˲ Hold office hours and advise undergraduate stu-
dents across the Computer Science concentration

A background in computer science is re-
quired; master’s or PhD in computer science or
education preferred. We seek candidates with su-
perior organizational, written and interpersonal
communication skills, along with the ability to
lead and train teaching fellows and to manage re-
lationships with hundreds of undergraduate stu-
dents. Prior experience teaching and designing
problem sets and classroom exercises is strongly
preferred and industry experience is a plus.

Applicants must apply on-line at http://
academicpositions.harvard.edu/postings/4473.
Required documents include a cover letter, CV,
names and contact information for at least three
references, and a summary of prior teaching or
tutoring experience including, for each course, its
name, school, description, syllabus (if available),
and website (if available).

Applications will be reviewed as they are re-
ceived. Applicants are strongly encouraged to
submit applications by February 15, 2013. How-
ever, applications will continue to be accepted
until the position is filled. Harvard is an Equal
Opportunity/Affirmative Action Employer. Appli-
cations from women and minority candidates are
strongly encouraged.

Submission Address for application documents
and reference letters: appointments@cs.dal.ca

Location of this advertisement:
www.cs.dal.ca

Self-Identification form (PDF):
http://hrehp.dal.ca/Files/Academic_
Hiring_%28For/selfid02.pdf

Self-Identification form (Word):
http://hrehp.dal.ca/Files/Academic_
Hiring_%28For/selfid02.doc

Grove City College
Professor of Computer Science

Grove City College announces a faculty opening in the
Computer Science Department in July 2013. A Ph.D.
in Computer Science is required. Responsibilities in-
clude teaching lower-level and upper-level Computer
Science courses, guiding undergraduate-research
projects, and developing innovative pedagogy.

Rank and salary are commensurate with qual-
ifications. Grove City College is a highly selective
college of liberal arts, sciences, and engineering
where intellectual inquiry remains open to the
questions religion raises and affirms the answers
Christianity offers.

Send letter of application, vita, transcripts,
names of four references (three professional and
one pastoral), a brief statement of how you would
engage undergraduates in your research plans,
and a brief essay relating your philosophy of a
liberal arts education and teaching Computer Sci-
ence to the College’s mission (see www.gcc.edu) to:
William P. Anderson, Jr.; Ph.D., Provost and VP for

Academic Affairs, 100 Campus Drive, Grove City,
PA 16127 or electronically to laklaiber@gcc.edu.

Grove City College is a private educational in-
stitution noted for its academic excellence where
scholarship is informed by Christian principles.
It does not discriminate on the basis of age, race,
color, creed, sex, marital status, disability, or na-
tional or ethnic origin in the administration of its
educational policies, admission policies, scholar-
ship and loan programs, and athletic and other
college-administrative programs.

Harvard University
School of Engineering and Applied Sciences
Preceptor in Computer Science

The Harvard School of Engineering and Applied
Sciences (SEAS) seeks applicants for the position of
Preceptor in Computer Science. The preceptor will
be primarily responsible for the coordination and
support of core undergraduate courses in Computer
Science, including Computer Science 50: Introduc-
tion to Computer Science I, CS51: Introduction to
Computer Science II, and CS61: Systems Program-
ming and Machine Organization. The position is
an annual (twelve-month), academic appointment,
renewable for up to three or more years, depending
on continuing curricular need and performance.

Typical Responsibilities:
˲˲ Work with and report to the faculty members who

are the principal course instructors on the prepara-
tion of lecture materials, in-class exercises, home-
work assignments, and examination questions

Yale School of Engineering & Applied Science
Department of Electrical Engineering

Junior Search in Communications and Networking at Yale University
Yale University’s Electrical Engineering Department invites applications from qualified individuals for a tenure-track, non-tenured faculty
position in the area of communications and networking. Subfields of interest include wireless communications, networking, signal
processing, network optimization, network economics, machine learning, and network science. All candidates should be strongly
committed to both teaching and research and should be open to collaborative research. Candidates should have distinguished
records of research accomplishments and should be willing and able to participate in shaping Yale’s expanding program in electrical
engineering. Yale University is an Affirmative Action/Equal Opportunity Employer. Yale values diversity among it students, staff, and
faculty and strongly welcomes applications from women and under represented minorities. The review process will begin November 15,
2012. Applicants should include a CV, a research statement, a teaching statement and submit to http://academicjobsonline.org/.

Senior Search in Communications and Networking at Yale University
Yale University’s Electrical Engineering Department invites applications from qualified individuals for a tenured faculty position in the
area of communications and networking. Subfields of interest include wireless communications, networking, signal processing, network
optimization, network economics, machine learning, and network science. All candidates should be strongly committed to both teaching
and research and should be open to collaborative research. Candidates should have distinguished records of research accomplishments
and should be willing and able to take the lead in shaping Yale’s expanding program in electrical engineering. Yale University is an
Affirmative Action/Equal Opportunity Employer. Yale values diversity among it students, staff, and faculty and strongly welcomes
applications from women and under represented minorities. The review process will begin November 15, 2012. Applicants should include
a CV, a research statement, a teaching statement and submit to http://academicjobsonline.org/.

Senior Position in Computer Engineering at Yale University
Yale University’s Electrical Engineering Department invites applications from qualified individuals for a tenured faculty position in
computer engineering. Subfields of interest include systems on a chip, embedded systems, VLSI, design automation, energy-efficient
computing, low-power circuits, verification, networked systems, mobile computing, sensor networks, and biodevices. All candidates
should be strongly committed to both teaching and research and should be open to collaborative research. Candidates should have
distinguished records of research accomplishments and should be willing and able to take the lead in shaping Yale’s expanding program
in computer engineering. Yale University is an Affirmative Action/Equal Opportunity Employer. Yale values diversity among it students,
staff, and faculty and strongly welcomes applications from women and under represented minorities. The review process will begin
on November 15, 2012. Applicants should include a CV, a research statement, a teaching statement and submit to
http://academicjobsonline.org/.

mailto:appointments@cs.dal.ca
http://www.cs.dal.ca
http://hrehp.dal.ca/Files/Academic_Hiring_%28For/selfid02.pdf
http://hrehp.dal.ca/Files/Academic_Hiring_%28For/selfid02.doc
http://hrehp.dal.ca/Files/Academic_Hiring_%28For/selfid02.doc
http://www.gcc.edu
mailto:laklaiber@gcc.edu
http://academicjobsonline.org/
http://academicjobsonline.org/
http://academicjobsonline.org/
http://hrehp.dal.ca/Files/Academic_Hiring_%28For/selfid02.pdf

WE ARE HIRING!
We have openings for Research Scientists, Applied Scientists and Research
Engineers at our locations in the US, Spain, Israel, India and China. Come join
us in solving real world problems at scale, diving into oceans of data, creating
new products and experiences, and collaborating in ground-breaking research.
We are looking for scientists in many disciplines of Computer Science such
as Machine Learning, Natural Language Processing, Statistical Data Analysis,
Systems, Computational Advertising, Optimization, Media, Human-Computer
Interaction and Mobile Experiences.

For our Research and Applied Scientist positions, we are looking for full time and postdoc
scientists, as well as interns for summer 2013.

For more information and to apply please visit
http://careers.yahoo.com

and search for scientist positions.

Interns, please apply here:
http://y.ahoo.it/uhMpv

Come make your mark on science – come grow with us!

About Yahoo! Labs
Founded in 2005, Yahoo! Labs pioneered important research in web mining and systems, and

created the field of Computational Advertising. Today we continue to be a leader in industrial

research. As the center of scientific excellence at Yahoo! we deliver both fundamental and applied

scientific leadership, publish research, and create new technologies that power Yahoo!’s products

and experiences. We’re responsible for big inventions, and our goals are nothing short of inventing

the future of the Internet and creating the next generation of businesses for Yahoo!.

http://careers.yahoo.com
http://y.ahoo.it/uhMpv

106 communications of the acm | february 2013 | vol. 56 | no. 2

careers

invites applications for Junior Research Groups
Leaders in the Max Planck Center for Visual Com-
puting and Communication

The Max Planck Center for Visual Comput-
ing and Communications offers young scientists
in information technology the opportunity to
develop their own research program address-
ing important problems in areas such as image
communication, computer graphics, geometric
computing, imaging systems, computer vision,
human machine interface, distributed multime-
dia architectures, multimedia networking, visual
media security.

The center includes an outstanding group of
faculty members at Stanford’s Computer Science
and El¬ectrical Engineering Departments, the
Max Planck Institute for Informatics, and Saar-
land University.

The program begins with a preparatory 1-2
year postdoc phase (Phase P) at the Max Planck
Institute for Informatics, followed by a two-year
appointment at Stanford University (Phase I) as
a visiting assistant professor, and then a posi-
tion at the Max Planck Institute for Informatics
as a junior research group leader (Phase II). How-
ever, the program can be entered flexibly at each
phase, commensurate with the experience of the
applicant.

Applicants to the program must have com-
pleted an outstanding PhD. Exact duration of the
preparatory postdoc phase is flexible, but we typi-
cally expect this to be about 1-2 years. Applicants
who completed their PhD in Germany may enter
Phase I of the program directly. Applicants for
Phase II are expected to have completed a post-

Kettering University
Assistant Professor of Computer Science

The Computer Science Department at Kettering
University seeks outstanding applicants for a ten-
ure-track position at the rank of assistant profes-
sor, beginning in July 2013. A PhD in Computer
Science is required. We have been named as a US
Ignite institution and are currently building the
high-speed broadband infrastructure necessary
to participate in Internet-scale networking exper-
imentation across university campuses and cit-
ies. The successful candidate will be able to foster
academic/public/private collaborations in the
areas of software-defined networks, cloud com-
puting, and wireless networking, and will have
experience, or can demonstrate competency, in
teaching a broad range of undergraduate com-
puter science courses. Additional research inter-
ests in systems, security, or software engineering
is considered an asset. Interested individuals
must apply for the position on-line https://jobs.
kettering.edu. Applications will be reviewed be-
ginning January 7, 2013 and continue until the
position is filled. Kettering University is commit-
ted to excellence through diversity in its faculty,
staff, and students. AA/EOE

Max Planck Institute for Informatics
Junior Research Group Leader

The Max Planck Institute for Informatics, as the
coordinator of the Max Planck Center for Visual
Computing and Communication (MPC-VCC),

doc stay abroad and must have demonstrated
their outstanding research potential and ability
to successfully lead a research group.

Reviewing of applications will commence on
01 Jan 2013. The final deadline is 31 Jan 2013.
Applicants should submit their CV, copies of
their school and university reports, list of pub-
lications, reprints of five selected publications,
names of references, a brief description of their
previous research and a detailed description of
the proposed research project (including possi-
ble opportunities for collaboration with existing
research groups at Saarbrücken and Stanford) to:

Prof. Dr. Hans-Peter Seidel
Max Planck Institute for Informatics,
Campus E 1 4, 66123 Saarbrücken, Germany;
Email: mpc-vcc@mpi-inf.mpg.de

The Max Planck Center is an equal opportuni-
ty employer and women are encouraged to apply.

Additional information is available on the
website http://www.mpc-vcc.de

Missouri University of Science and
Technology (S&T)
Computer Science
Department Chair

The Department of Computer Science at the Mis-
souri University of Science and Technology (S&T)
invites applications for the position of Depart-
ment Chair starting Fall 2013. The successful
candidate will assume a leadership role in the
department to strengthen and expand the depart-

IST Austria has set up a program for exceptional postdoctoral fellows with an emphasis on
interdisciplinary work. Appointments will be for 2–4 years. Applications will be accepted at
any time, but fellows will be selected twice a year in April and October, with deadlines on
15th of March and September, respectively. Applicants must have the support of one or more
members of the IST Austria faculty.

 Benefi ts:
 Internationally competitive salary
 Full social security coverage
 Travel, mobility and family allowance
 Funding for conferences and scientifi c visits

The institute offers postdoctoral positions in the following fi elds:
Biology I Computer Science I Mathematics I Physics I Neuroscience

ISTFELLOW is partially funded by the European Union.

The institute offers postdoctoral positions in the following fi elds:

For a list of faculty members please visit www.ist.ac.at.
For inquiries, please contact istfellow@ist.ac.at.
For further information, please refer to the ISTFELLOW website: http://ist.ac.at/istfellow

IST Austria is committed to Equality and Diversity.

CALL FOR POSTDOCTORAL FELLOWS
ISTFELLOW

https://jobs.kettering.edu
http://www.ist.ac.at
mailto:istfellow@ist.ac.at
http://ist.ac.at/istfellow
https://jobs.kettering.edu
mailto:mpc-vcc@mpi-inf.mpg.de
http://www.mpc-vcc.de

King Abdullah University of Science and Technology (KAUST) invites applications for faculty
positions at the rank of Full, Associate or Assistant Professor in the area of Computer Science.
KAUST, located on the Red Sea coast of Saudi Arabia, is an international graduate-level research university dedicated to
advancing science and technology through bold and collaborative research and to addressing challenges of regional and
global significance, thereby serving the Kingdom, the region, and the world. Newly opened in September 2009, KAUST is an
independent and merit-based university and welcomes exceptional faculty, researchers, and students from around the world.
KAUST is committed to cutting-edge research in the globally significant areas of water, food, energy and the environment.
In addition, KAUST emphasizes research on the discipline of Computational Science and Engineering serving as an enabling
technology for all its research activities. Areas of interest are:

Management of very large data•	

Data mining and knowledge extraction•	

Parallel and distributed systems•	

Data security•	

High priority will be given to the overall originality and promise of the candidate’s work rather than the candidate’s sub-area of
specialization within Computer Science. An earned PhD in Computer Science, Computer Engineering, Electrical Engineering,
or a related field, and strong publication record are required. A successful candidate will be expected to teach courses at the
graduate level and to build and lead a research group of postdoctoral fellows and graduate students. Faculty members enjoy
secure research funding from KAUST and have opportunities for additional funding through several KAUST provided sources
and through industry collaborations.

Applications submitted as a single PDF/Word file should include a cover letter indicating the position of
interest, a curriculum vitae with a list of publications, statements of research, and teaching interests,
and the names and contact information of at least three references for an Assistant Professor position
and at least six references for an Associate or Full Professor position. Review of applications will begin
immediately; however, applications will be considered until all available positions have been filled.
Applications and questions should be emailed to: cssearch@kaust.edu.sa

Further information about KAUST can be found at www.kaust.edu.sa

The appointment, promotion, and retention of faculty and staff, and all the educational and administrative
activities of the University shall be conducted on the basis of equality, without regard to race, color, religion
or gender.

mailto:cssearch@kaust.edu.sa
http://www.kaust.edu.sa

108 communications of the acm | february 2013 | vol. 56 | no. 2

careers

plications received after April 1, 2013 will not be
given consideration. For more information prior
to submitting an application, please contact the
Search Committee Chair, Dr. Bruce McMillin, at
ff@mst.edu or the Search Committee Vice-Chair,
Dr. Sanjay Madria, at madrias@mst.edu.

All submitted application materials must
have the position reference number in order to
be processed. Acceptable electronic formats that
can be used for email attachments include PDF
and Word; hardcopy application materials will
not be accepted.

Missouri S&T is an AA/EO Employer and does
not discriminate based on race, color, religion,
sex, sexual orientation, national origin, age, dis-
ability, or status as Vietnam-era veteran. Females,
minorities, and persons with disabilities are en-
couraged to apply. Missouri S&T is responsive to
the needs of dual-career couples.

North Carolina State University
Department of Computer Science
Faculty Position
Assistant/Associate/Full Professor

The Department of Computer Science at North
Carolina State University (NCSU) seeks to fill a
tenure-track faculty position in the area of Soft-
ware Engineering starting August 16, 2013. Soft-
ware engineering candidates with research expe-
rience in requirements engineering are especially
encouraged to apply.

Successful candidate must have a strong com-
mitment to academic and research excellence,

ment’s research and teaching missions. Candi-
dates must, by the date of appointment, have the
qualifications and standing to be appointed as a
tenured full professor. The candidate should have
a strong record of research and teaching at a uni-
versity, but candidates from industry with a strong
research record coupled with academic and ad-
ministrative experience are encouraged to apply.

The department’s current research strengths
are in software engineering, mobile and distrib-
uted systems, cyber security and information
assurance, social-cyber-physical systems and
critical infrastructure protection, computational
intelligence, pervasive computing, and wireless
and sensor networks. Recent funding sources in-
clude NSF, NSA, ARL, AFRL, NIST, Sandia Nation-
al Laboratories, as well as the U.S. Departments
of Energy, Defense, and Education. The depart-
ment’s visions and strategic plan, activities, and
research well as required and desired Attributes,
Skills, and Characteristics are detailed further on
our web site: http://cs.mst.edu.

The department has 18 full-time faculty lines
as well as some joint appointments and adjunct
faculty, and grants BS, MS and Ph.D. degrees as
well as graduate certificates and a minor. The
program is ABET accredited. As of fall semester
2012, the department has over 350 BS, 50 MS, and
30 Ph.D. students. The department leads two cen-
ters and many of our faculty members participate
in interdisciplinary research with several campus
research centers and departments.

Details of the application process are given at
http://hraadi.mst.edu/hr/employment/. Review
of applications will begin February 15, 2013. Ap-

and an outstanding research record commensu-
rate with the expectations of a major research uni-
versity. Required credentials include a doctorate
in Computer Science or a related field. While the
department expects to hire at the Assistant Pro-
fessor level, candidates with exceptional research
records are encouraged to apply for a senior po-
sition. The department is one of the largest and
oldest in the country. It is part of NCSU’s College
of Engineering. The department’s research ex-
penditures and recognition have been growing
steadily. For example, we have one of the largest
concentrations in the country of prestigious NSF
Early Career Award winners (total of 21).

NCSU is located in Raleigh, the capital of
North Carolina, which forms one vertex of the
world-famous Research Triangle Park (RTP). RTP
is an innovative environment, both as a metropol-
itan area with one of the most diverse industrial
bases in the world, and as a center of excellence
promoting technology and science. The Research
Triangle area is routinely recognized in nation-
wide surveys as one of the best places to live in the
U.S. We enjoy outstanding public schools, afford-
able housing, and great weather, all in the prox-
imity to the mountains and the seashore.

Applications will be reviewed as they are
received. The positions will remain open until
suitable candidates are identified. Applicants
should submit the following materials online at
http://jobs.ncsu.edu (reference position num-
ber 1092) cover letter, curriculum vitae, research
statement, teaching statement, and names and
complete contact information of four references,
including email addresses and phone numbers.

Northwestern University
Assistant Professor in Database Systems

The Department of Electrical Engineering and Computer Science
at Northwestern University invites applications for a tenure-track
assistant professor position in database systems to start in fall
2013. We are interested in exceptional candidates in all areas of
database systems, but have a particular focus on areas such as
large-scale data management, integration of structured and un-
structured data, parallel and distributed data mining and ana-
lytics, stream databases, and database engines for scalable
computing and emerging computer architectures.
A Ph.D. in Computer Science or Computer Engineering is re-
quired, as is a clear track record of success in database systems.
Successful candidates will be expected to carry out world class-
research, collaborate with other faculty, and teach effectively at
the undergraduate and graduate levels. Compensation and start-
up packages are negotiable and will be competitive.
Northwestern EECS consists of over 50 faculty members of in-
ternational prominence whose interests span a wide range.
Northwestern University is located in Evanston, Illinois on the
shores of Lake Michigan just north of Chicago. Further infor-
mation about the Department and the University is available at
http://www.eecs.northwestern.edu and
http://www.northwestern.edu.
To ensure full consideration, applications should be received by
February 15, 2013, but applications will be accepted until the
position is filled.
To apply, first read full upload instructions at
http://eecs.northwestern.edu/academic-openings.html. Ap-
plicants will submit (1) a cover letter, (2) a curriculum vitae, (3)
statements of research and teaching interests, (4) three repre-
sentative publications, and (5) at least three, but no more than
five references. For general questions about the search or ap-
plication assistance post submission, contact
db-search@eecs.northwestern.edu.
The aforementioned application materials may also be sent to:
Database Systems Faculty Search Committee, Department of
Electrical Engineering and Computer Science, Technological
Institute, L359, Northwestern University, 2145 Sheridan
Road, Evanston, IL 60208, USA.

Northwestern University is an equal opportunity, affirmative action
employer. Qualified women and minorities are encouraged to apply. It

is the policy of Northwestern University not to discriminate against
any individual on the basis of race, color, religion, national origin,

gender, sexual orientation, marital status, age, disability, citizenship,
veteran status, or other protected group status. Hiring is contingent

upon eligibility to work in the United States.

Communications of the ACM
Issue February
Deadline 12-20-12
1/6 page print ad + 60 days online

TEMASEK RESEARCH FELLOWSHIP (TRF)
A globally connected cosmopolitan city, Singapore provides a supportive
environment for a vibrant research culture. Its universities Nanyang
Technological University (NTU), National University of Singapore (NUS) and
Singapore University of Technology and Design (SUTD) invite outstanding
young researchers to apply for the prestigious TRF awards.

Under the TRF scheme, selected young researchers with a PhD degree have an
opportunity to conduct and lead defence-related research. It offers:

• A 3-year research grant of up to S$1 million commensurate with
the scope of work, with an option to extend for another 3 years

• Postdoctoral or tenure-track appointment (eligibility for tenure-
track will be determined by the university)

• Attractive and competitive remuneration

Fellows may lead, conduct research and publish in these areas:

• Advanced Materials for Aerospace Applications
• Bio-mimetic Aerodynamics
• Cognitive Science and Neuroengineering
• Cyber Security
• High Power Laser Diode
• High Speed High Voltage Switching Devices

For more information and application procedure, please visit:

NTU – http://www3.ntu.edu.sg/trf/index_trf.html
NUS – http://www.nus.edu.sg/dpr/funding/trf.html
SUTD – http://www.sutd.edu.sg/trf

Closing date: 15 March 2013 (Friday)

Shortlisted candidates will be invited to Singapore to present their research
plans, meet local researchers and identify potential collaborators in July 2013.

http://cs.mst.edu
http://hraadi.mst.edu/hr/employment/
mailto:ff@mst.edu
mailto:madrias@mst.edu
http://www3.ntu.edu.sg/trf/index_trf.html
http://www.nus.edu.sg/dpr/funding/trf.html
http://www.sutd.edu.sg/trf
http://www.eecs.northwestern.edu
http://www.northwestern.edu
http://eecs.northwestern.edu/academic-openings.html
mailto:db-search@eecs.northwestern.edu
http://jobs.ncsu.edu

february 2013 | vol. 56 | no. 2 | communications of the acm 109

Candidates can obtain information about the
department and its research programs, as well as
more detail about the position advertised here at
http://www.csc.ncsu.edu/. Inquiries may be sent
via email to: facultyhire@csc.ncsu.edu.

NCSU is an equal opportunity and affirmative
action employer. In addition, NCSU welcomes all
persons without regard to sexual orientation or
genetic information. Individuals with disabilities
desiring accommodations in the application pro-
cess should contact the Department of Computer
Science at (919) 515-2858.

Palo Alto Research Center (PARC, a
Xerox Company)
Research Scientist / Senior Research Scientist
in Security

PARC - Research Scientist/Senior Research
Scientist in Security Candidates in all areas of
cyber security will be considered, with particular
interest in: systems and network security,
security in cloud computing and ubiquitous
environments, machine learning & security,
applied cryptography.

Apply at:
http://www.parc.com/about/careers/

Princeton University
Computer Science
Part-Time or Full-Time Lecturer

The Department of Computer Science seeks ap-
plications from outstanding teachers to assist the
faculty in teaching our introductory course se-
quence or some of our upper-level courses start-
ing February 1, 2013.

Depending on the qualifications and inter-
ests of the applicant, the job responsibilities will
include such activities as teaching recitation sec-
tions and supervising graduate-student teaching
assistants; grading problem sets and program-
ming assignments, and supervising students in
the grading of problem sets and programming
assignments; developing and maintaining online
curricular material, classroom demonstrations,
and laboratory exercises; and supervising under-
graduate research projects. An advanced degree
in computer science, or related field, is required
(PhD preferred).

The position is for one semester with possi-
bility of renewal for 1-year terms, up to six years,
depending upon departmental need.

Princeton University is an equal opportunity
employer and complies with applicable EEO and
affirmative action regulations. You may apply on-
line, by submitting a letter of application, resume
and names of three references at http://jobs.
cs.princeton.edu/lecturer. (Princeton University
Requisition number 1200848)

Swarthmore College
Tenure Track Assistant Professor

Swarthmore College has a strong institutional
commitment to excellence through diversity in its
educational program and employment practices
and actively seeks and welcomes applications
from candidates with exceptional qualifications,

particularly those with demonstrable commit-
ments to a more inclusive society and world.

Applications are invited for a tenure track
position at the assistant professor level begin-
ning Fall semester 2013. Swarthmore College is
a small, selective, liberal arts college located 10
miles outside of Philadelphia. The Computer Sci-
ence Department offers majors and minors at the
undergraduate level. Applicants must have teach-
ing experience and should be comfortable teach-
ing a wide range of courses at the introductory
and intermediate level. Candidates should addi-
tionally have a strong commitment to involving
undergraduates in their research. A Ph.D. in CS
by or near the time of appointment is required.
We are particularly interested in applicants that
add breadth to our department, including the
areas of databases, networking, security, theory,
compilers, and programming languages. Strong
applicants in other areas will also be considered.

Priority will be given to applications received
by December 15, but will be accepted until the
position is filled. Applications should include a
vita, teaching statement, research statement, and
three letters of reference, at least two that speak
to the candidate’s teaching ability.

Apply for this Job:
Contact Person: Richard Wicentowski
Email Address:

jobs2013@cs.swarthmore.edu
Phone: 610-328-8272
Fax: 610-328-8606
Apply URL:

http://goo.gl/LPYF2

University of Northern Iowa
Assistant Professor of Computer Science

The Department of Computer Science at the Uni-
versity of Northern Iowa invites applications for
a tenure-track assistant professor position to be-
gin August 2013. Applicants must hold a Ph.D. in
Computer Science or a closely-related discipline.
The department seeks candidates able to partici-
pate widely in the CS curriculum and conduct a
research program involving undergraduates.

Detailed information about the position
and the department are available at http://www.
cs.uni.edu/

To apply, visit http://jobs.uni.edu/. Applica-
tions received by January 15, 2013, will be given
full consideration. EOE/AA. Pre-employment
background checks are required. UNI is a smoke-
free campus.

University of Pittsburgh
School of Information Sciences
Professor of Practice

The School of Information Sciences (http://www.
ischool.pitt.edu) at the University of Pittsburgh is
seeking candidates for a Professor of Practice at
an assistant/associate/full professor level – Posi-
tion #02025 (Non-tenure stream) to start in the
fall term of 2013. The primary areas of interest
include:

˲˲ Object-oriented systems analysis and design
˲˲ Information systems architecture
˲˲ Value-centered design

Advertising in Career Opportunities
How to Submit a Classified Line Ad: Send an e-mail to
acmmediasales@acm.org. Please include text, and indicate the issue/or
issues where the ad will appear, and a contact name and number.

Estimates: An insertion order will then be e-mailed back to you. The ad
will by typeset according to CACM guidelines. NO PROOFS can be sent.
Classified line ads are NOT commissionable.

Rates: $325.00 for six lines of text, 40 characters per line. $32.50 for each
additional line after the first six. The MINIMUM is six lines.

Deadlines: 20th of the month/2 months prior to issue date. For latest
deadline info, please contact:

acmmediasales@acm.org

Career Opportunities Online: Classified and recruitment display ads
receive a free duplicate listing on our website at:

http://jobs.acm.org

Ads are listed for a period of 30 days.
For More Information Contact:

ACM Media Sales
at 212-626-0686 or

acmmediasales@acm.org

http://www.csc.ncsu.edu/
mailto:facultyhire@csc.ncsu.edu
http://www.parc.com/about/careers/
mailto:jobs2013@cs.swarthmore.edu
http://goo.gl/LPYF2
http://www.cs.uni.edu/
http://jobs.uni.edu/
http://www.ischool.pitt.edu
mailto:acmmediasales@acm.org
mailto:acmmediasales@acm.org
http://jobs.acm.org
mailto:acmmediasales@acm.org
http://www.cs.uni.edu/
http://www.ischool.pitt.edu
http://jobs.cs.princeton.edu/lecturer
http://jobs.cs.princeton.edu/lecturer

110 communications of the acm | february 2013 | vol. 56 | no. 2

careers

The undergraduate program prepares students be-
come system designers, system analysts, database
managers, system administrators, programmer an-
alysts, network engineers, and a host of related jobs.
A clinical faculty member with experience in the de-
sign and implementation of small, large and distrib-
uted systems would serve as an excellent resource in
the teaching of state-of-the-art industry practices.

For a complete description, please visit
http://www.ischool.pitt.edu/news/
facultyopenings.php.

Contact: Search Committee
Email: sissearch@sis.pitt.edu
Phone: 412-624-5129
Fax: 412-624-5231
Apply URL: http://www.ischool.pitt.edu/

news/facultyopenings.php

The University of Pittsburgh is an Equal Op-
portunity, Affirmative Action employer and
strongly encourages women and candidates from
under-represented minorities to apply.

University of São Paulo
Institute of Mathematics and Statistics
Department of Computer Science
Tenure-Track Positions
Assistant Professor

The Institute of Mathematics and Statistics of the
University of São Paulo (IME-USP) invites applica-
tions for faculty positions at the Assistant Profes-
sor level. The Department is accepting applica-
tions in all areas of Computer Science.

We expect candidates with strong potential
for research and teaching ability. The candidates
should have a PhD in Computer Science or a related
area. The selected candidate will be responsible for

developing research and for teaching to the pro-
grams of the department (undergraduate and grad-
uate courses). Deadlines and documents required
for the application are specified at www.ime.usp.br/
dcc/faculty_position The documents and selection
interview may be either in Portuguese or English.

The University of São Paulo - USP is one of the
most prestigious educational institution in South
America. It is the best ranked brazilian university.
The Department of Computer Science of the IME-
USP is responsible for the BSc, MSc and PhD de-
grees in Computer Science, offering some of the
most competitive courses in Brazil.

More information:
http://www.ime.usp.br/dcc

Contact: mac@ime.usp.br

Virginia Commonwealth
University – VCU
Computer Science
VCU School of Engineering
Assistant/Associate/Professor tenure-track

The Computer Science Department at Virginia
Commonwealth University (VCU) invites appli-
cations for a tenure-track/tenured position at
the rank of Assistant/Associate Professor. Out-
standing well-funded candidates at higher level
would also be considered. Candidates must have
a Ph.D. in computer science, or in the related
area. Junior faculty will be required to have an es-
tablished research agenda and a clear potential
for external funding, and potential for scholar-
ship or creative expression to complement and
expand existing expertise in the department and
the School of Engineering, especially in the field
of cyber security, broadly defined. For Associate/
Professor level, faculty member will be required
to have a well developed scholarly/research port-
folio with evidence of multidisciplinary applica-
tions and external funding appropriate to com-
plement and expand existing expertise within
the department, especially in the field of cyber
security.

Successful candidates are expected to teach
courses in Computer Science at both the under-
graduate and graduate level. Additionally, candi-
date must have demonstrated experience work-
ing in and fostering a diverse faculty, staff, and
student environment or commitment to do so as
a faculty member at VCU is required.

VCU, the largest urban university in Virginia,
is a Carnegie research I extensive institution
ranked in the top 100 universities in the U.S. in
federal R&D expenditures, with a richly diverse
community and commitment to multicultural
opportunities.

For best consideration, applications should
be submitted by March 1, 2013.

Candidates are to submit applications elec-
tronically to cmscsearch@vcu.edu as a single pdf
file that includes (in this order) a cover letter, re-
sume, research and teaching statement, and the
names and e-mail addresses of three references.
(Reference letters should be provided only upon
the request of the search committee).

Virginia Commonwealth University is an
equal opportunity, affirmative action university
providing access to education and employment
without regard to age, race, color, national origin,
gender, religion, sexual orientation, veteran’s sta-
tus, political affiliation or disability

http://inroads.acm
.org

P
a
v
in

g
 t

h
e
 w

a
y
 t

o
w

a
rd

 e
x
c
e
ll
e
n
c
e
 i
n
 c

o
m

p
u
ti
n
g

 e
d
u
c
a
ti
o
n

ACM
Inroads

The
magazine for

computing
educators

worldwide

http://www.ischool.pitt.edu/news/facultyopenings.php
http://www.ischool.pitt.edu/news/facultyopenings.php
mailto:sissearch@sis.pitt.edu
http://www.ischool.pitt.edu/news/facultyopenings.php
http://www.ischool.pitt.edu/news/facultyopenings.php
http://www.ime.usp.br/dcc/faculty_position
http://www.ime.usp.br/dcc
mailto:mac@ime.usp.br
mailto:cmscsearch@vcu.edu
http://www.ime.usp.br/dcc/faculty_position
http://www.acm.org/trets
http://www.acm.org/subscribe
http://inroads.acm.org

ht tp://w w w.acm.org/dl

LibraryJournal_042012_V01.indd 1 4/23/12 11:02 AM

http://www.acm.org/dl

112 communications of the acm | february 2013 | vol. 56 | no. 2

last byte

1. Six dice are rolled
simultaneously, and

the number N of different
numbers that appear is
determined; for example, if the
dice show 3,4,1,6,5,6, then N =
5, and if they show 6,2,2,3,6,2,
then N = 3. Clearly, N could be
any number from one to six,
but these values are not equally
likely. What is the probability
that N = 4?

2. Alice and Bob roll a
single die repeatedly.

Alice is waiting until all six of
the die’s faces appear at least
once. Bob is waiting for some
face (any face) to appear four

times. The winner is the one
who gets his or her wish first;
for example, if the successive
rolls are 2,5,4,5,3,6,6,5,1,
then Alice wins, since all
numbers have appeared,
none more than three times.
If the successive rolls instead
happen to be 4,6,3,6,6,1,2,2,6,
then Bob wins because he has
seen four 6s and no 5 (yet).
Now answer this easy question:
What is the maximum number
of rolls needed to determine
a winner? And this more
difficult question: Which
player is more likely to win?
This can be worked out with
only a little bit of arithmetic,

assuming you are clever
enough.

3.Alice and Bob have now
secured a second die, roll

the two dice together, noting
the sum of the two values
shown, and repeat. Each sum
is, of course, a number from
2 to 12, with 7 the most likely
outcome; six of the 36 ways
to roll a pair of dice results in
a sum of 7. This time, Alice
is waiting for two 7s in a row,
while Bob wants an 8 followed
immediately by a 7. Which of
them has the shorter average
wait? And whose wish is more
likely to come true first?

Puzzled
Tumbling Dice
These puzzles involve computing probabilities associated with dice. A die is a cube with faces
marked with numbers 1 to 6, as in the figure here, and we assume that when a die is rolled, each
number is equally likely to come out on top. The questions we ask are somewhat unusual, though.
We have collected several facts that run counter to many people’s intuitions. Our job is therefore
both mathematical and psychological—first, make the calculation, then, if the answer strains
our intuition, try to reconcile the conflict through reasoning.

DOI:10.1145/2408776.2408800		 Peter Winkler

Readers are encouraged to submit prospective puzzles for future columns to puzzled@cacm.acm.org.

Peter Winkler (puzzled@cacm.acm.org) is William Morrill Professor of Mathematics and Computer Science
at Dartmouth College, Hanover, NH.

A roll of six dice from Puzzle 1 that would produce an outcome of N = 4.

mailto:puzzled@cacm.acm.org
mailto:puzzled@cacm.acm.org

4th Annual ACM SIGPLAN Conference on

Systems,
Programming,
Languages,
Applications:
Software for
Humanity

Submission Deadlines
March 28, 2013
• OOPSLA Papers
• Wavefront Papers & Experience

Reports
• Proposals for Workshops & Panels
April 5, 2013
• Onward! Papers & Essays
June 8, 2013
• Dynamic Languages Symposium
June 28, 2013
• Posters, Doctoral Symposium
• ACM Student Research Competition
• Demonstrations
• Student Volunteers

Location
 Hyatt Regency Indianapolis
Events

• 28th Annual OOPSLA
• Onward!
• Wavefront
• Dynamic Languages Symposium (DLS)
• Generative Programming & Component

Engineering (GPCE)
• Software Language Engineering (SLE)
• …and more

General Chairs
 Patrick Eugster & Antony Hosking
 Purdue University
OOPSLA Papers Chair
 Cristina Lopes
 University of California, Irvine
Onward! Papers Chair
 Robert Hirschfeld
 Hasso-Plattner-Institut Potsdam
Onward! Essays Chair
 Bernd Brügge
 Technische Universität München
DLS Papers Chair
 Carl Friedrich Bolz
 Heinrich-Heine-Universität Düsseldorf

SPLASH
INDIANAPOLIS 2013
O C T O B E R 2 6 – 3 1

More Information
 http://splashcon.org
 info@splashcon.org

http://splashcon.org
mailto:info@splashcon.org

The Tail
at Scale

COMMUNICATIONS
OF THE ACM

Association for
Computing Machinery

C
o

m
m

u
n

ic
a

t
io

n
s

 o
f

 t
h

e
 A

C
m

	cA

C

M
.a

c
m

.o
r

g
�

0
2

/
1

3
 V

O
L

.5
6

 NO

.2

cACM.acm.org� 02/2013 VOL.56 NO.2

	Table of Contents
	Departments
	Letter from ACM Publications Board Co-Chairs
	Positioning ACM for an Open Access Future

	From the President
	Growing the ACM Family

	BLOG@CACM
	When Reviews Do More than Sting

	Calendar
	Careers

	Last Byte
	Puzzled
	Tumbling Dice

	News
	Life in Simulation
	Revving the Rover
	A New Model for Healthcare

	Viewpoints
	Privacy and Security
	The Tangled Web We Have Woven

	Inside Risks
	More Sight on Foresight

	Kode Vicious
	Divided by Division

	Education
	Reflections on Stanford's MOOCs

	Economic and Business Dimensions
	The Value of Microprocessor Designs

	Viewpoint
	Cloud Services Certification

	Viewpoint
	The Explosive Growth of Postdocs in Computer Science

	Practice
	Rethinking Passwords
	Thinking Methodically about Performance
	A Decade of OS Access-Control Extensibility

	Contributed Articles
	New Approaches to Security and Availability for Cloud Data
	The Tail at Scale

	Review Articles
	Symbolic Execution for Software Testing: Three Decades Later

	Research Highlights
	Technical PerspectiveIs
	Dark Silicon Real?

	Power Challenges May End the Multicore Era

