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letter from acm publications board co-chairs

T
he age of open access is 
upon us. Increasingly, the con-
sensus of authors of research 
articles and their funding in-
stitutions is that the fruits of 

taxpayer-supported research should be 
freely available to the public. This is a 
compelling argument and a noble goal. 

But, achieving open access is not 
easy. Professional maintenance and dis-
tribution of large digital archives, guar-
anteed for the long term, does incur 
significant cost. The most promising 
model for recovering such costs under 
an open-access regime is an author-
pays (or, in effect, a funding institution 
pays) model. Such a scheme introduces 
issues of its own. If publishers gener-
ate revenue by producing more content 
(paid for by authors) rather than quality 
content (paid for by subscribers), then 
the natural tendency in the system will 
be for the generation of large quanti-
ties of low-quality content. Indeed, we 
have seen the rise of predatory pub-
lishers, actively seeking authors to pay 
for publication in venues devoid of the 
exacting scrutiny of conscientious peer 
review. The result is a glut of third-rate 
publications that add noise rather than 
insight to the scientific enterprise. 

The important question is: Can we 
establish a sustainable economic model 
for publication that serves the interest 
of both authors and the reading public? 
We submit that non-profit professional 
societies must play a critical role in this 
regard. They are the hallmark of quality 
in publications, and must remain so to 
serve the interests of the reading public. 
But, how do we transition from the cur-
rent subscription model to a new finan-
cial model enabling open access in a way 
that does not bankrupt the organization 
in the process? This question has occu-
pied the attention of the ACM Publica-
tions Board for several years. Because 
the stakes are high, the Board has cho-
sen to move with caution.

Because we do not have a reliable 
crystal ball, we have chosen to provide 
an array of options for ACM authors 
and Special Interest Groups (SIGs) to 
enable a natural, slow, and (hopefully) 
stable evolution of the publication en-

terprise into the future. Examples of 
this are ACM’s long-standing policies 
enabling author-produced versions of 
ACM-published materials to be posted 
on author Web pages, on the pages 
of their institutions, and on archives 
mandated by funding institutions. A 
shining example of such green open-
access policies is ACM’s Author-Izer 
service, which allows authors to place 
specialized links on their Web pages 
that tunnel through ACM’s paywall to 
provide free access to the definitive ver-
sions of their papers, while capturing 
download statistics displayed in the 
ACM Digital Library (DL).  

In the next few months ACM will roll 
out more options for authors and SIGs, 
which will provide even greater levels of 
flexibility with regard to open access.

1.	 Author-pays Open Access Option. 
Individual authors (or their institu-
tions) will have the option to pay a fee 
that covers ACM publication and cura-
tion costs at the time of publication, 
after which the article will be freely 
available via the ACM DL platform. The 
fee, which has yet to be set, will differ-
entiate between journal articles and 
conference papers, as well as between 
ACM members and non-members.

2.	 Open Access During the Period 
Around SIG Conferences Option. SIGs 
will have the option to make the pro-
ceedings from their conferences freely 
available via the ACM DL platform for 
up to two weeks before the event and 
up to two weeks after. Not only will this 
option facilitate easy access to the pro-
ceedings by conference attendees, it 
will also enable the community at large 
to experience the excitement of learn-
ing about the latest developments be-
ing presented in the period surround-
ing the event itself.

3.	 Open Access for Most Recent In-
stance of SIG Conferences Option. SIGs 
will have the option to maintain ta-
bles-of-contents for the most recent 
instance of its conferences on the 
conference website with ACM Author-
Izer links that provide free access to the 
definitive version of the article main-
tained in the ACM DL. For conferences 
that are not in a recurring series, such 

access will be enabled for up to one 
year. When selected by the sponsor-
ing SIG, this reverse embargo will pro-
vide open access to conference papers 
during the period in which they are of 
greatest interest.

4.	 Options for Rights Management. 
When publishing articles with ACM, 
authors will have three options for the 
management of publication rights 
for their work. Authors who desire the 
convenience of having ACM maintain 
rights and permissions associated with 
their works will continue to be able 
to execute copyright transfer to ACM. 
ACM’s copyright policy will continue to 
grant authors liberal rights for the re-
use of their work and the posting of per-
sonal versions. Authors who prefer to 
retain copyright or want a more explicit 
publishing contract will have the op-
tion of signing one of two license agree-
ments. The first will have terms similar 
to that of the existing copyright trans-
fer. However, this option will provide 
increased clarity about the rights of 
both parties. Finally, those authors who 
wish to retain all rights to their work 
can do so by exercising the author-pays 
open access option described previ-
ously. In that case all rights remain with 
the author and ACM is simply granted a 
permanent license to distribute.

The set of changes unveiled here 
are but another step in an ongoing 
process in which ACM adapts to the 
new realities of scholarly publishing. 
Many further refinements are pos-
sible. For example, if the author-pays 
option is successful, the Publications 
Board may consider the feasibility of 
making previously published papers 
in the DL open access, or making 
entire proceedings open access us-
ing funding from registration fees or 
sponsors. As the Board considers each 
change it will continue to be respon-
sive to the needs and wishes of the 
ACM community while fulfilling its re-
sponsibility to maintain a healthy and 
sustainable publications program.	

Ronald F. Boisvert and Jack W. Davidson are co-chairs 
of the ACM Publications Board.

© 2013 ACM 0001-0782/13/02

Positioning ACM for an Open Access Future
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from the president

I have been thinking about the demographics 
of the computing profession and wondering 
what steps ACM and its members might take 
to increase interest in this career across a full 

spectrum of potential candidates. I spent a 
good part of a day browsing around in the 
ACM website discovering that this topic 
is and has been on the table in many dif-
ferent venues. One obvious place to look 
was in ACM publicationsa and I found 
many that had stories on this topic: Com-
munications, ACM Inroads,  ACM Queue, 
eLearn, XRDS (formerly Crossroads, the 
student magazine), Ubiquity, interac-
tions, among others. I also checked for 
blogs and found a bunchb including 
Communications, ACM Inroads, ACM 
Queue, eLearn, USACM, ACM-W and CS-
TA-advocate. Then I looked at the Spe-
cial Interest Groupsc and found many 
that seemed likely to be addressing this 
topic: Computer Science Education 
(SIGCSE), Computers and Society (SIG-
CAS), Access (SIGACCESS), Information 
Technology Education (SIGITE), Univer-
sity and College Computing Services (SI-
GUCC). It would not surprise me to find 
I have missed some key publications 
or that other SIGs that tend to be more 
technically focused have also, at least on 
occasion, addressed this same question. 

Then I found the Educational Ac-
tivities paged that had even more in-
formation and links to publications, 
organizations, and activities. And 
there is, of course, a wide range of ac-
tivities focused on engaging women 
in computing led by ACM-W, the ACM 
Women’s Council.e

a	 http://www.acm.org/publications
b	 https://myacm.acm.org/dashboard.

cfm?svc=acmblogs
c	 http://www.acm.org/sigs
d	 http://www.acm.org/education
e	 http://women.acm.org

If you accept that we do not have 
nearly as wide a range of participants as 
desired in the computing profession, 
the question is whether we can take ad-
ditional steps to foster interest in this 
field. There are all kinds of extramural 
activities that draw young people into 
computing. For example, the FIRST 
robotics competitionsf and CAMPUS 
PARTYg and the ACM International Col-
legiate Programming Contest (ACM-
ICPCh). There are many more such 
activities, several of them focused on 
computer and network security. 

On top of all that, we have the 
emerging Massive Open Online 
Courses (MOOCs) phenomenon that 
may involve hundreds of thousands 
of participants in all age groups. I am 
not even going to try to give you a list 
of those—just employ your  favorite 
search engine and you should reap a 
long list of Web pages, reports, news 
articles, and other references to this 
new use of the Internet. 

Indeed, there is no dearth of effort 
on the educational and activities side 
to stimulate interest in all aspects of 
computing but there persists a sense 
that the demographics of computing 
are still skewed in many ways. One 
possibility is that the statistics are 
wrong and we are not measuring the 
full range of participation. What about 
people who develop applications for 
mobile devices? What about Web page 
designers? Perhaps we might not be 

f	 http://www.usfirst.org/
g	 http://www.campus-party.org/home-en.html
h	 http://icpc.baylor.edu/

comfortable including many of these 
participants in the definition of com-
puting professional—is that an issue? 
On the other hand, the statistics may 
be telling us that despite our varied ef-
forts, we are not awakening interest in 
the field broadly enough. Considering 
that this field involves primarily think-
ing logically, designing, implement-
ing, testing of software and hardware, 
it is difficult to imagine that in and of 
itself, the profession has any built-in 
biases against anyone. Of course, not 
everyone is interested in this kind of 
activity but anyone who is interested 
should not be excluded by virtue of any 
inherent constraints. 

As the twenty-first century contin-
ues to unfold, we are surrounded by a 
growing number of devices with pro-
grammable features. Software (and 
hardware) is everywhere. Even casual 
users need to know something about 
the nature of this topic. Of course, 
many people use the products of com-
puting without much musing about 
its origins: computer games, laptops, 
desktops, tablets and mobiles to say 
nothing of cloud computing are all 
part of daily life, even when their com-
plexity is largely hidden. (A good thing 
for the most part.)

I am sure I must be missing some-
thing. So let me pose the question: 
What, if anything, might ACM do more 
than it is already doing, to grow inter-
est in and familiarity with computing 
and the computing profession? 

Vinton G. Cerf, ACM PRESIDENT

Growing the ACM Family
DOI:10.1145/2408776.2408778		  Vinton G. Cerf
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Bertrand Meyer  
“The Nastiness 
Problem in  
Computer Science”

�http://cacm.acm.org/blogs/blog-cacm/ 
123611-the-nastiness-problem-in-
computer-science/fulltext 
August 22, 2011

Are we malevolent grumps? Nothing 
personal, but as a community, com-
puter scientists sometimes seem to 
succumb to negativism. They admit it 
themselves. A common complaint in 
the profession is that instead of tak-
ing a cue from our colleagues in more 
cogently organized fields such as 
physics, who band together for funds, 
promotion, and recognition, we are 
incurably fractious. In committees, 
for example, we damage everyone’s 
chances by badmouthing colleagues 
with approaches other than ours. At 
least this is a widely perceived view 
(“Circling the wagons and shooting in-
ward,” as Greg Andrews put it in a re-
cent discussion). Is it accurate?

One statistic that I have heard cited 
is that in 1-to-5 evaluations of projects 

committee did come to its senses, and 
afterward several members wondered 
aloud what was the reason for this 
perfectionism that almost made us 
waste a great opportunity to reward. 
We come across such cases so often—
the research proposal evaluation that 
gratuitously but lethally states that you 
have “less than a 10% chance” of reach-
ing your goals, the killer argument “I 
didn’t hear anything that surprised me” 
after a candidate’s talk—that we con-
sider such nastiness normal without 
asking any more whether it is ethical 
or helpful. (The “surprise” comment 
is particularly vicious. Its real purpose 
is to make its author look smart and 
knowledgeable about the ways of the 
world, since he is so hard to surprise; 
and few people are ready to contradict 
it: Who wants to admit that he is naïve 
enough to have been surprised?)

A particular source of evidence is 
refereeing, as in the SIGMOD example.  
I keep wondering at the sheer nasti-
ness of referees in CS venues.

We should note that the large num-
ber of rejected submissions is not by 
itself the problem. Naughton com-
plains that researchers spend their en-
tire careers being graded, as if passing 
exams again and again. Well, I too like 
acceptance better than rejection, but 
we have to consider the reality: with 
acceptance rates in the 8%–20% range 
at good conferences, much referee-
ing is bound to be negative. Nor can 
we angelically hope for higher accep-
tance rates overall; research is a com-
petitive business, and we are evaluat-
ed at every step of our careers, whether 

submitted to the U.S. National Sci-
ence Foundation the average grade 
of computer science projects is one 
full point lower than the average for 
other disciplines. This is secondhand 
information, however, and I would 
be interested to know if readers with 
direct knowledge of the situation can 
confirm or disprove it.

More examples can be found in the 
material from a recent keynote by Jef-
frey Naughton, full of fascinating 
insights (see http://pages.cs.wisc.
edu/~naughton/naughtonicde.pptx). 
Naughton, a database expert, mentions 
that only one paper out of 350 submis-
sions to SIGMOD 2010 received a unan-
imous “accept” from its referees, and 
only four had an average accept recom-
mendation. As he writes, “either we all 
suck or something is broken!”

Much of the other evidence I have 
seen and heard is anecdotal, but per-
sistent enough to make one wonder if 
there is something special with us. I am 
reminded of a committee for a gener-
ously funded CS award some time ago, 
where we came close to not giving the 
prize at all because we only had “good” 
proposals, and none that a commit-
tee member was willing to die for. The 

When Reviews  
Do More than Sting 
Bertrand Meyer wonders why malicious reviews  
run rampant in computer science.

doi:10.1145/2408776.2408780			   http://cacm.acm.org/blogs/blog-cacm
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we like it or not. One could argue that 
most papers submitted to ICSE and 
ESEC are pretty reasonable contribu-
tions to software engineering, and 
hence these conferences should ac-
cept four out of five submissions; but 
the only practical consequence would 
be that some other venue would soon 
replace ICSE and ESEC as the publi-
cation place that matters in software 
engineering. In reality, rejection re-
mains a frequent occurrence even for 
established authors.

Rejecting a paper, however, is not 
the same thing as insulting the au-
thor under the convenient cover of 
anonymity.

The particular combination of 
incompetence and arrogance that 
characterizes much of what Naugh-
ton calls “bad refereeing” always 
stings when you are on the receiving 
end, although after a while it can be 
retrospectively funny; one day I will 
publish some of my own inventory 
collected over the years. As a preview, 
here are two comments on the first pa-
per I wrote on Eiffel, rejected in 1987 
by the IEEE Transactions on Software 
Engineering (it was later published, 
thanks to a more enlightened editor, 
Robert Glass, in the Journal of Systems 
and Software). The IEEE rejection was 
on the basis of such review gems as:

˲˲ I think time will show that inheri-
tance (section 1.5.3) is a terrible idea.

˲˲ Systems that do automatic garbage 
collection and prevent the designer from 
doing his own memory management are 
not good systems for industrial-strength 
software engineering.

One of the reviewers also wrote: 
“But of course, the bulk of the paper is 
contained in Part 2, where we are given 
code fragments showing how well things 
can be done in Eiffel. I only read 2.1 ar-
rays. After that I could not bring myself to 
waste the time to read the others.” 

This is sheer boorishness passing 
itself off as refereeing. I wonder if edi-
tors in other, more established disci-
plines tolerate such attitudes. I also 
have the impression that in non-CS 
journals the editor has more personal 
leverage. How can the editor of IEEE-
TSE have based his decision on such 
a biased an unprofessional review? 
Quis custodiet ipsos custodes?

“More established disciplines.” In-
deed, the usual excuse is that we are 

still a young field, suffering from ado-
lescent aggressiveness. If so, it may be, 
as Lance Fortnow has argued in a more 
general context, “time for computer sci-
ence to grow up.” After some 60 or 70 
years we are not so young any more.

What is your experience? Is the grass 
greener elsewhere? Are we just like ev-
eryone else, or do we truly have a nasti-
ness problem in computer science?

Readers’ Comments
This is only a problem for academics. In the 
real world (industry), the customers stand 
in judgment.

—Anonymous 

I am a physicist but have entered CS 
and now publish in this field. I do notice the 
attitudes you describe and they scare me 
because I get the impression that every 
other computer scientist is very insecure. 
Rude comments from reviewers are 
common and editors seem not to care. But 
more so, it is common that reviewers are 
clueless and barely understand the paper 
they review. So, if one reviewer is rude 
and clueless, and two are knowledgeable 
and positive, then the editor still mainly 
listens to the clueless one, simply because 
a negative critique is more worthy than 
positive in this field...

—Anonymous 

As a reviewer and as an author, I get 
the feeling (in some cases I actually know) 
that some of my (co)reviewers did one 
of two things: Had someone else less/
not qualified review the paper, without 
bothering to check the quality of the 
review; or reviewed the paper at the last 
possible minute, probably after several 
reminders from the program chair.

In either case, it is hard to get a fair 
review.

—Anonymous

I am from physics, it has its own share 
of nastiness, different from what you 
describe. Right now, I work in a research 
organization dominated by computer 
scientists and have written and reviewed 
some computer science papers. At the risk 
of sounding haughty (I do not mean to),  
I would say: 

As you have mentioned, computer 
science is a relatively new field and 
physics far more mature. This not only 
means that computer science has more 
upstarts reviewing and writing papers, but 
that the quality of research varies from 
excellent to mediocre to rather poor. As 
opposed to physics or natural sciences, 
where almost all research in a field is of 
similar quality (with respect to maturity). 
Now you might say that is good or not 
good, I don’t know. 

Also, computer scientists have far more 
funds to publish and hold conferences (at 
exotic locations), leading in turn to lots 
more papers to write and review, and all the 
related rage. I wrote one paper in two years 
and reviewed maybe a couple every year 
while I was in physics. I do some reviewing/
writing activity every week in computer 
science research. 

—Anonymous

One challenge this poses to program 
chairs is that we can be misled by nasty 
reviews versus genuine rejections, 
especially when the nasty guy works hard. 
A solution might be to publish reviewer 
stats, including how often a reviewer is the 
minority, average length of review, and so 
on. It might improve behavior if we know 
that poor numbers could brand us out 
of prestigious committees. We all want 
to be on program committees, and then 
act as if we can’t be bothered and are too 
busy! This needs to change. Coming from 
industry, I know that sticks work better 
than carrots!

—Anonymous

Bertrand Meyer is a professor at ETH Zurich and ITMO 
(St. Petersburg) and chief architect of Eiffel Software.

© 2013 ACM 0001-0782/13/02

Rejecting a paper  
is not the same  
thing as insulting  
the author under  
the convenient  
cover of anonymity.
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B
i o l o g i s t s  a r e  awa s h  in 
data; the genomes of 18,840 
organisms had been se-
quenced by mid-October 
2012, according to the U.S. 

Department of Energy’s Joint Ge-
nome Institute. And scientists around 
the world are trying to determine how 
to wring value from all that data, with 
projects studying how those genes 
interact with each other and the envi-
ronment, how embryos develop, how 
toxins affect tissues, and why some 
cells become cancerous, among many 
other questions. With so much data, 
and with questions that hinge on un-
derstanding the complex interplay of 
multiple factors, computer scientists 
are working to develop software that 
can simulate the behavior of biologi-
cal systems, from cells to organs to 
entire organisms.

“It’s trivial to generate terabytes of 
data in a day or two,” says Mark Isa-
lan, a systems biologist at the Centre 
for Genomic Regulation in Barcelona, 
Spain. The bigger challenge is how to 
use all that data to address important 
questions.

Yet that volume of data also makes 
problems in biology more tractable 
for computer scientists seeking to 
model biological behavior. “Because 
we can measure the cells much more 
precisely, we actually have numbers we 

Life in Simulation 
Computational models are tackling the complexity  
of biology, from single-celled microbes to human organs.

Science  |  doi:10.1145/2408776.2408781	 Neil Savage

The huge volume of data generated from genome sequencing technologies, like those used 
as part of the DOE’s Joint Genome Institute, has inspired computer scientists worldwide 
to create software that can take that data and build computational models simulating the 
behavior of biological systems.
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28 sub-models, each simulating a 
different process. One, for instance, 
modeled the replication of DNA, 
while another described the process 
of transcribing RNA, and another 
simulated how proteins produced by 
the cell folded into particular shapes. 
One advantage of this approach, says 
Karr, is that it makes sense from a 
software engineering perspective; 
“That’s the way programs are built,” 
he says. Another plus is that, instead 
of using one type of mathematical 
representation to describe the entire 
organism, it allowed the researchers 
to use the mathematical approach 
most appropriate to the activity of a 
particular module and to the amount 
of data available about that cellular 
function. One module might rely on 
ordinary differential equations, for 
instance, while another uses a Bool-
ean model. “Different aspects of cell 
biology are not all characterized to the 
same level of detail,” Karr explains. 
“There are just certain aspects of cell 
life we know more about and others 
where we know less.”  The team fed 
the model data gleaned from research 
literature about the bacteria and oth-
er similar organisms, and added addi-
tional information they generated in 
laboratory experiments. 

To make all the sub-models work 
together, the researchers built a piece 
of software to plug them all into. The 
sub-models run independently for a 
short time, less than a second. But to 
emulate how biology relies on feed-
back loops, the sub-models are linked 
by 16 variable metabolic states that, 
taken together, represent everything 
going on in the whole cell. At each 
time step of one second, the sub-mod-
els take the states of those variables 
and use them to run their simulation, 
then make the revised values available 
to the other sub-models. Also at each 
time step, the computer estimates the 
amount of metabolic resources a given 
biological process would require, then 
allocates the cell’s total resources pro-
portionally among the different pro-
cesses. These steps—measure, calcu-
late, share, repeat—run thousands of 
times until the simulated cell reaches 
the point where a real-life cell would 
divide into two, at which point the 
simulation is done. When the team 
ran their simulation, the computer 
produced results that matched those 
that had already been determined in 
lab experiments. But beyond that, says 
Karr, the simulation can also highlight 
inconsistencies in the data and sug-
gest the existence of cellular functions 

can give to models,” Isalan says. And 
once they have built accurate models, 
researchers can then change some of 
the model’s parameters and see what 
happens, which can help explain the 
mechanisms of disease, or suggest 
new targets for drugs to treat diseases.

Researchers from Stanford Uni-
versity and the Craig Venter Institute 
in Rockville, MD, have taken an im-
portant step toward getting value out 
of the huge datasets by creating what 
they say is the first comprehensive 
computational model of a living or-
ganism. They built a model of the bac-
terium Mycoplasma genitalium, a par-
asite that infects the human urethra. 
The scientists chose that microbe be-
cause it has only 525 genes, the fewest 
of any independently living organism; 
humans, by contrast, have around 
25,000. “We really wanted to build 
something that was complete,” says 
Jonathan Karr, a doctoral student in 
biophysics at Stanford and lead author 
of a paper about the work. “Anything 
larger we felt would just be impossible 
at this point to build a complete mod-
el.” Even this model, the researchers 
say, is essentially a “first draft.” 

To build their model, the team 
broke down the cell into various indi-
vidual functions. They came up with 

ACM Announces 
Distinguished Members
ACM has named 41 of its 
members as Distinguished 
Members for their individual 
contributions and their 
singular impacts on the 
dynamic computing field. Their 
achievements have advanced 
the science, engineering, 
and education of computing, 
enabling a range of technologies 
that drive innovation in 
the digital age. The 2012 
Distinguished Members hail 
from universities in Australia, 
Denmark, Italy, Korea, China, 
and the U.K. in addition to North 
America, and from leading 
corporations and research 
institutions around the world. 

To view the full list of 2012 
Distinguished Members, visit 
http://distinguished.acm.org.

Smithsonian  
Recognizes Thrun’s 
Udacity Work
Sebastian Thrun won the 
inaugural Smithsonian 
American Ingenuity in 
Education Award for his work 
with Udacity, an independent 
online education company 
he co-founded that provides 
high-quality education for free. 
Thrun, a roboticist, AI expert, 
Stanford research professor, 
and leading light at Google X, 
describes Udacity as an effort to 
democratize higher education. 
In accepting the award, Thrun 
said there is so much potential 
to do better than the classroom. 
“Higher education should be a 
basic human right; we should 
amend the Constitution,” he 
said. “You can give a man a fish 
and he has dinner for the night, 

or you can teach a man to fish 
and he has dinner for the rest of 
his life. That’s what education 
is all about.”

ABET Honors Zweben
Stuart H. Zweben, an ACM 
Fellow and former ACM 
president (1994–1996), has 
received the 2012 Linton E. 
Grinter Distinguished Service 
Award from the Accreditation 
Board for Engineering and 
Technology (ABET). The award 
cites Zweben, a Professor 
Emeritus at Ohio State 
University’s Computer Science 
and Engineering Department, 
for “outstanding leadership 
in computing accreditation 
worldwide.” In the early 1980s, 
Zweben played a key role in 
ACM’s decision to join with the 
IEEE-CS to form the Computing 

Sciences Accreditation Board, 
now known as CSAB.  

Leroy Receives 
Microsoft Award 
Xavier Leroy, senior computer 
scientist at INRIA’s Paris-
Rocquencourt research center, 
received the 2012 Microsoft 
Research Verified Software 
Milestone Award. Leroy was 
recognized for his role as architect 
of the CompCert C Verified 
Compiler. Said Judith Bishop, 
principal research director, 
computer science, at Microsoft 
Research, “Compilers are the basis 
for all the software we generate, and 
by ruling out compiler-introduced 
bugs, the CompCert project has 
taken a huge leap in producing 
strengthening guarantees for 
reliable critical embedded 
software across platforms.”

Milestones

Computer Science Awards, Honors

http://distinguished.acm.org
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stance. And results in animal studies 
may come from the high concentra-
tion of toxins used in tests, which may 
not replicate a real-life situation. “In 
most cases what the EPA cares about 
is long-term and very low-level expo-
sure,” Shah says.

The approach Shah’s team takes 
is agent-based multi-scale modeling. 
They make models at various levels 
of organization—the molecular path-
ways within a cell, the cell as a whole, 
groups of cells, sections of liver. Like 
the Stanford work, the whole model is 
built as a series of modules, with each 
module acting as an autonomous 
agent. One module might be responsi-
ble for metabolizing a substance, an-
other might affect blood flow through 
capillaries. The simulation focuses on 
a lobule, a functional unit of the liver 
containing roughly one million cells 
of various types, with a defined three-
dimensional structure. Blood flows 
through the lobule, nutrients are ex-
changed, bile is excreted. The team 
simulates the activity of a single lob-
ule in detail, then groups 20 or 30 of 
them together to build a larger model 
of liver function.

 This kind of modeling is a different 
approach to toxicology than statistical 
modeling, which looks for associa-
tions between, say, a potential toxin 
and a negative result. “We try to think 
about it more in terms of a mecha-
nistic level,” Shah says. Mechanistic 
modeling may not just reveal that a 
chemical has an ill effect, but lead to a 
greater understanding of why.

The project is far from complete. 
The EPA team presented its first proof 
of concept this year, running simula-

tions on 10 virtual individuals with 
10 virtual livers, but Shah said there 
needs to be much more refining of the 
biological information that goes into 
the models. One challenge that re-
mains is verifying that what the model 
shows is a valid representation of the 
real world; how do you test the com-
puter’s prediction against actual lab 
results when you cannot do these ex-
periments on humans? 

Karr would like to move from his 
bacterium model to more complex or-
ganisms, starting perhaps with yeast 
and then moving to simple multi-
celled organisms like worms, and on 
up the scale of complexity from there. 
Such models could allow synthetic 
biologists to design and engineer 
organisms, such as microbes that ef-
ficiently convert biomass into fuel or 
pharmaceuticals. And they could play 
a role in personalized medicine, al-
lowing doctors to prescribe the best 
treatment based on an individual’s 
own genome and history. That will 
demand a lot of work, both gathering 
the biological information and figur-
ing out the best computational ap-
proaches. “We eventually need to be 
able to understand how you get from 
a person’s DNA to the behavior of a 
human being,” Karr says. “And we’re 
going to need very detailed models to 
be able to do that.” 	

Further Reading

Karr, J.R. et al. 
A whole-cell computational model predicts 
phenotype from genotype, Cell 150, July 20, 
2012.

Wambaugh, J. and Shah, I. 
Simulating microdosimetry in a virtual 
hepatic lobule, PLoS Comput Biol 6, 4, Apr. 
22. 2010.

Isalan, M. 
A cell in a computer, Nature 498, Aug. 2, 2012.

Wambaugh, J, and Shah, I. 
Virtual tissues in toxicology, J Toxicol. and 
Environmental Health, Part B, 13, 2010.

Markum, H. 
How do neurons connect to each other? 
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Sept. 17, 2012; http://www.youtube.com/
watch?v=ySgmZOTkQA8/

Neil Savage is a science and technology writer based in 
Lowell, MA.
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that are not yet recognized, point-
ing the way to new lines of research. 
“The model helps us reason about the 
things we as a field collectively don’t 
know about cell biology,” he says.

From Bugs to Brains
While the Stanford group focuses on 
simulating a whole organism, other 
researchers are concentrating on sim-
ulating an organ. Since 2005, the Blue 
Brain Project at École Polytechnique 
Fédérale de Lausanne, in Switzer-
land, has been developing a comput-
er model of a brain. So far, they have 
built and run a representation of part 
of a rat’s cortex, consisting of 10,000 
neurons. The researchers have asked 
the European Union to fund a 10-year, 
one billion euro project to create a 
functioning model of an entire hu-
man brain, with hundreds of millions 
of neurons that could be used to sim-
ulate neurological diseases or the ef-
fects of various drugs on the brain. At 
press time, an answer was imminent.

In Germany, the Virtual Liver Net-
work consists of 70 research groups 
working to build a model that, while 
not fully duplicating the liver, rep-
resents the physiology of the organ, 
simulating biological functions at 
different levels, from activity within 
individual cells to the liver as a whole. 
Meanwhile, the U.S. Environmental 
Protection Agency (EPA) is working on 
a similar project, with the aim of being 
able to simulate the effects of drugs 
and environmental toxins on the liver. 
The agency also has a virtual embryo 
project to study how certain chemicals 
might cause birth defects.

The EPA needs such data to set reg-
ulations about what levels of exposure 
to chemicals should be considered 
safe for humans. To date, such levels 
are set based on data from animal 
models, but an animal study can take 
up to two years and cost millions of 
dollars, says Imran Shah, a computa-
tional systems biologist at the EPA’s 
National Center for Computational 
Toxicology in Research Triangle Park, 
NC, who works on the virtual liver. Fur-
ther, he says, there is some question 
as to how closely the effects of chemi-
cals in animals match what happens 
in humans; there are proteins whose 
increased production causes liver 
cancer in rats but not in people, for in-

“The model  
helps us reason  
about the things  
we as a field 
collectively  
don’t know about  
cell biology.”

http://www.youtube.com/watch?v=ySgmZOTkQA8/
http://www.youtube.com/watch?v=ySgmZOTkQA8/
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W
he n  NASA’s rover  Cu-
riosity touched down 
on the surface of the 
red planet on August 
6, 2012, the cheering 

in Mission Control was soon echoed by 
a prolonged burst of public euphoria. 
Crowds gathered in Times Square at 
one in the morning to watch the land-
ing on a giant TV screen, while millions 
of Web users blogged, tweeted, and 
otherwise applauded the embattled 
space agency’s continuing ability to 
pull off Big Things. 

Much of the Internet chatter cen-
tered on the acrobatic Sky Crane ma-
neuver, in which the landing capsule 
morphed like a Transformer into a 
rocket-powered hovercraft to ease its 
precious cargo onto the planet sur-
face. While the landing made for great 
online theater, those arresting images 
may also have diverted attention from 
several other important, though admit-
tedly less telegenic innovations.

The Curiosity mission (formally 
known as the Mars Science Laboratory, 
or MSL) may also mark the end of an 
era for NASA, as planetary exploration 
approaches a level of engineering com-
plexity that may call for fundamentally 
rethinking the design and architecture 
of future robotic missions.

“This represents the arc of an engi-
neering process that really started in 
the 1960s,” says Rob Manning, chief 
engineer of the Mars Exploration Pro-
gram at NASA’s Jet Propulsion Labora-
tory in Pasadena, California.

The earliest NASA missions of the 
1960s and 1970s relied on highly dis-
tributed systems, with computing 
power resident on multiple devices, 
largely due to limitations in process-
ing power. Starting with the Mars 
Pathfinder mission in 1996, however, 
the agency started to embrace a more 
centralized model, concentrating 
most computing tasks onto a single 
onboard computer. 

While the basic contours of each 
rover mission have stayed roughly the 
same since then—namely, fly a space-
ship to Mars, land a wheeled vehicle, 
then collect data while driving around 
the planet surface—the data gathering 
requirements have grown progressively 
more sophisticated with each mission. 

The 1996 Sojourner rover was con-
tent to snap photos and perform x-ray 
spectrometry on a few rock samples 
within about 40 feet of the landing 
site. For the 2004 mission, the team 
gave the Spirit and Opportunity rovers 
considerably more autonomy, equip-
ping them with a new software system 
dubbed Autonomous Exploration for 
Gathering Increased Science (AEGIS) 
that allowed the rovers to select poten-
tially interesting research targets with-
out requiring direction from Earth-
bound controllers. Curiosity takes 
that autonomy several steps further, 
moving far and wide—powered by a 
plutonium-fueled nuclear engine—

Revving the Rover
The new Mars rover has attracted plenty of attention for its planetary 
gymnastics, but the big breakthroughs are under the hood.

Technology | doi:10.1145/2408776.2408782	 Alex Wright
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NASA’s rover Curiosity landed on Mars last August carrying almost 2,000 pounds of state-of-the-art scientific instruments.
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gets further exacerbated by the com-
plexities of safety-critical systems like 
space exploration.

“Managing the development of a 
few million lines of critical code car-
ries very different challenges from 
the development of a few thousand or 
even a few hundred thousand lines,” 
says Holzmann.

To cope with the scale of the MSL 
challenge, the team introduced sev-
eral important new software reliabil-
ity initiatives, including the design of 
a new Institutional Coding Standard 
that, while requiring relatively few 
strict rules, was designed to support 
automated compliance verification, 
allowing the team to run a nightly 
check on every new build. The team 
also introduced a new peer code re-
view process and “scrub” tool inte-
grated with a suite of static source 
code analysis tools including well-
known commercial testing and anal-
ysis tools like Coverity, Codesonar, 
and Semmle, as well as Uno, a source 
code analysis tool that Holzmann had 
developed several years earlier while 
working at Bell Labs.

The static source code analyzers 
played a critical role in the software de-
velopment process, allowing the team 
to ferret out risks of data corruption, 
race conditions, or deadlocks. 

“A good static analyzer is very much 
like employing an additional, very con-
scientious and tireless developer on 
your team,” says Holzmann. “It’s an ex-
tra set of eyes that never tires of point-
ing out new subtle flaws.”

The team also had a secret weapon 
on hand in the form of Holzmann’s 
Spin logic model checker, which he 
developed over a period of several de-
cades in his previous job at Bell Labs. 
The system targets the formal verifica-
tion of multithreaded software written 

while carrying an arsenal of 10 differ-
ent scientific instruments, including 
cameras and imaging equipment, en-
vironmental sensors, and sophisticat-
ed sampling tools. Curiosity weighs in 
at nearly 2,000 pounds (compared to 
Sojourner’s lithe 23 pounds).

Managing so much onboard equip-
ment constituted an enormously dif-
ficult hardware and software design 
challenge. As the scientific require-
ments have grown more elaborate, the 
team has discovered the downside of 
centralized computing. 

“We have one set of requirements 
for cruise, one for landing, one for on 
the surface,” explains Manning. “So 
we have all this extra hardware and 
interfaces—and now we have to lug it 
all around.”

While the all-in-one approach 
makes for a much bulkier machine 
than previous rovers, the complexity 
of the software stems primarily from 
the rover’s high degree of autonomy, 
demanding millions of lines of code 
that would allow the rover to navigate 
the planet surface, identify and react 
to potential hazards while collecting 
samples, aim precision-targeted laser 
beams onto rocks several meters away, 
and communicate with Earth via its 
interplanetary ISP, NASA’s prodigious 
Deep Space Network.

Managing so many discrete func-
tions on the same machine demands a 
high level of functional decomposition, 
so that different routines can take over 
the system at appropriate times with-
out compromising other essential fea-
tures. As a result, the engineering team 
had to think carefully about issues of 
memory allocation and fault tolerance, 
as well as managing a bewildering ar-
ray of input and output devices.

“Software grows exponentially fast 
in this domain,” says Gerard Holz-
mann, head of the Laboratory for Reli-
able Software at NASA’s Jet Propulsion 
Laboratory, an organization formed 
in 2003 to improve the reliability of 
mission-critical software. Indeed, 
with each successive mission to Mars, 
the size of the onboard flight code has 
more than doubled. While software 
engineers have long understood that 
software packages often grow over 
time—expanding to take advantage of 
faster processors and additional stor-
age space, for example—that problem 

The Curiosity  
mission may mark 
the end of an era  
for NASA.

Sensor networks

WSNs 
Head to 

Himalayas
At press time a team of scientists 
was heading to the Himalayas to 
deploy innovative wireless sensor 
networks (WSNs) in several 
landslide-prone regions of the 
world’s tallest mountain ranges 
to provide real-time warnings  
for often deadly deluges.

The development of these 
WSNs began about five years 
ago when an interdisciplinary 
team of researchers from 
Amrita University, Kerala,  
India, combined efforts  
to design warning systems that 
would alert people living in 
landslide-prone areas.  
The team was made up of 
computer scientists, Earth 
scientists, and energy experts 
and was led by Maneesha 
Sudheer Ramesh, a founding 
member of ACM-W India.

The warning system uses 
WSN technology to issue real-
time warnings up to 24 hours 
prior to an impending landslide, 
thus facilitating evacuation and 
disaster management. During 
the creation of the WSN, Ramesh 
and her team built a working 
lab capable of mimicking a 
landslide. Published papers 
about the work intrigued the 
scientific community as well as 
the university’s chancellor, Sri 
Mata Amritanandamayi Devi, 
who was the first to proclaim the 
technology worthy of real-world 
applications. “Let us actually 
deploy the wireless sensor 
network in the field and enable 
it to save lives.”

The first WSN system was 
deployed in Munnar, Kerala,  
in June 2009, and has 
successfully delivered a high 
level of safety to citizens living 
in at-risk areas. While the  
team faced several challenges, 
including making the system 
energy sustainable during 
severe monsoon rains, Ramesh 
said she was surprised at 
the “immense amount of 
psychological safety and security 
the system seems to have given 
to the local population, which 
we never expected since the local 
population is not that tech savvy.”

Last December, the team was 
awarded the top prize for rural 
innovation by the Government 
of India.

—Diane Crawford
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ture consisting of Earthbound radio 
transmitters and receivers, and a con-
stellation of satellites orbiting Mars.

NASA put the initial Mars communi-
cations system in place with the Mars 
Global Surveyor mission communicat-
ing to the Spirit rover in 2004. Since 
then, it has made steady improvements 
to mitigate the ongoing problems of 
data loss, such as space-link noise, 
interfering spacecraft, and unpredict-
able technical problems at the relay 
spacecraft and ground stations.

Complicating matters further are 
the limited transmission windows be-
tween Mars and Earth due to orbital 
constraints; usually Curiosity can con-
nect to the network only 2–4 times per 
sol (astronomer-speak for a Martian 
day), transmitting an average of 64 
megabytes/sol broken into packets, 
Internet-style.

“We are bandwidth limited,” says 
Sandy Krasner, a NASA software sys-
tems engineer who has been working 
on the Mars project for the past 10 
years, “so we have to optimize the use 
of our downlink as much as possible.”

Given the high cost of retransmit-
ting data, the network is designed to fo-
cus on error detection and correction, 
and maximizing loss tolerance. The 
system sets a maximum file size of one 
quarter of a megabyte on command 
files sent to the spacecraft; larger files 
are broken into smaller datasets and 
concatenated onboard. To ensure the 
integrity of data received by the rover, 
the system also detects and corrects for 
errors at multiple levels. Data is trans-
mitted in 56-bit blocks assembled into 
variable-length frames up to 1 kilobyte. 

The team also tries to tolerate faults in 
data received from the spacecraft, ac-
cepting partial transmissions of image 
data, for example, where an occasional 
pixel may get lost in space.

NASA is now working on a more 
distributed network protocol known 
as Disruption-Tolerant Networking 
(DTN) that distributes data across a 
network of nodes so that any delays 
or transmission failures can be cor-
rected quickly by retransmitting the 
data. NASA hopes this architecture will 
make future interplanetary communi-
cation more efficient.

This ongoing network connectiv-
ity enabled the programming team 
to keep tweaking the rover’s software 
well after the mission’s launch date on 
November 26, 2011, sending updates 
to the onboard computer using a rela-
tively low-tech solution: compressed 
binary files.

Last June, two months before land-
ing, the team sent up its final in-flight 
software update while the capsule was 
hurtling through space at 13,000 miles 
per hour. 

Manning remembers the satisfac-
tion of looking on from a distance of 
20-odd light years as rover installed the 
software and restarted, ready to strike 
out for parts unknown. “Boot it up and 
away we go.” 	

Further Reading

Sky Crane Video; 
http://www.youtube.com/
watch?v=N9hXqzkH7YA

G.J. Holzmann 
The Spin Model Checker—Primer and 
Reference Manual, Addison-Wesley, 
Reading MA, 2004, ISBN 0-321-22862-6.

Mars Science Laboratory (NASA site) 
http://www.nasa.gov/mission_pages/msl/
index.html

G. Groth 
Software on Mars, Communications of the 
ACM 55, 11 (Nov. 2012), 13–15; http://cacm.
acm.org/news/156591-software-on-mars/
fulltext

B. Cichy 
2010 Workshop on Spacecraft Flight 
Software, California Institute of Technology; 
http://win-dms-ms1.caltech.edu/five/View
er/?peid=476727664f1b4d8390d3ab3767
0ababd

Alex Wright is a writer and information architect based in 
Brooklyn, NY.
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in C, the language used for about 96% 
of all spacecraft software.

“A mission failure often has multiple 
small triggers that combine in unsus-
pected ways,” he says. “By meticulously 
fixing the small, relatively benign issues 
with the same determination as the 
larger issues, we make sure that serious 
problems become much less likely.”

Those problems are further exacer-
bated by the organization’s now deeply 
rooted commitment to a centralized 
computing architecture. Looking 
ahead, Manning thinks the NASA team 
will need to rethink its architectural 
approach for the next generation of ro-
botic flight missions. “Going forward, 
I would take a more distributed ap-
proach,” he says.

For now, the team will continue to 
fine-tune Curiosity’s work from a dis-
tance over the next several months. But 
no matter how well the software works, 
they know full well that space explo-
ration is an inherently unpredictable 
business—especially on Mars, where 
wild temperature swings and changes 
in atmospheric pressure can ruin deli-
cate scientific instruments. To control 
the onboard temperature, the engineer-
ing team developed thermal “catcher’s 
mitts” (as Manning describes them) on 
the back of the machine, consisting of 
liquid freon pumped through a closed 
loop and warmed from the hot pluto-
nium rocks that power the rover. 

In order to model as many differ-
ent scenarios as possible, the team 
is constantly running so-called soft 
simulations with dedicated machines 
analagous to the onboard RAD750 
machine. The team also maintains a 
full replica of the rover on Earth in a 
testbed environment to troubleshoot 
problems and rehearse potential fu-
ture maneuvers. If all else fails, the 
rover also carries a fully redundant 
version of its onboard computer, 
ready to swap in at a moment’s notice 
in case of system failure. “We work 
hard to make sure the vehicle doesn’t 
come to its knees if it has a small com-
plaint,” says Manning.

For all its autonomy, Curiosity still 
depends heavily on regular communi-
cation with its handlers back on Earth. 
To stay connected with Mission Con-
trol—up to 240 million miles, or 21 
light minutes away—it relies on a so-
phisticated interplanetary infrastruc-

For all its autonomy, 
Curiosity still 
depends heavily 
on regular 
communication  
with its handlers  
back on Earth.

http://www.youtube.com/watch?v=N9hXqzkH7YA
http://www.nasa.gov/mission_pages/msl/index.html
http://www.nasa.gov/mission_pages/msl/index.html
http://cacm.acm.org/news/156591-software-on-mars/fulltext
http://win-dms-ms1.caltech.edu/five/Viewer/?peid=476727664f1b4d8390d3ab37670ababd
http://www.youtube.com/watch?v=N9hXqzkH7YA
http://cacm.acm.org/news/156591-software-on-mars/fulltext
http://cacm.acm.org/news/156591-software-on-mars/fulltext
http://win-dms-ms1.caltech.edu/five/Viewer/?peid=476727664f1b4d8390d3ab37670ababd
http://win-dms-ms1.caltech.edu/five/Viewer/?peid=476727664f1b4d8390d3ab37670ababd
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S
te p in side Brandon  Mar-
shall’s lab at Brown Univer-
sity and you get a glimpse 
into the unfolding future 
of epidemiology. Marshall, 

along with a multidisciplinary team 
comprised of IT specialists, software 
developers, mathematicians, health-
care analysts and others, are melding 
their expertise to take HIV policymak-
ing to a new level. In a world filled with 
what-if questions, the assistant profes-
sor of epidemiology is supplying an-
swers by building a model that in many 
respects resembles a consumer-orient-
ed simulation game such as The Sims. 

For example, Marshall can choose 
to view a fictional person based on 
particular characteristics. Overall, ap-
proximately 150,000 life courses reside 
within the model, which is focused on 
New York City. By selecting one agent 
and observing the interactions with 
other agents—including how they ap-
proach sex and drugs and how officials 
and policymakers approach issues 
such as the distribution of condoms 
and sterile needles, it is possible to un-
derstand behavior and choices in a far 
more complete and realistic way. “We 
can track individuals over time, which 
is really novel and exciting,” he says. 

Marshall is one of a growing num-
ber of researchers turning to computer 
modeling to go where researchers have 
not gone before. For most of human 
history, understanding the impact of a 
disease or health problems was noth-
ing less than guesswork. When a new 
virus or bacterial infection popped up, 
public officials did their best to assem-
ble data, extrapolate on it and estab-
lish a course of action. “The problem,” 
observes Marshall, “is that healthcare 
and public policy experts have had lim-
ited knowledge and visibility into all 
the factors and variables.” 

However, by plugging into mas-
sive datasets and tapping into today’s 
computing power—the list includes 
mobile tools, social media, and crowd-
sourcing to track movements and be-
havior in real time—it is possible to 
create far more realistic forecasts and 
what-if scenarios. The impact of com-
puter modeling on decision-making 
and public policy is nothing less than 
revolutionary. Ruben Juanes, an associ-
ate professor at MIT, also turned to al-
gorithms and advance models “to un-
derstand extremely complex issues in 
ways that weren’t possible in the past.” 

By the Numbers
The idea of using computers to analyze 
health data is nothing new, of course. 
In the 1950s, researchers—including 
epidemiological and public health of-
ficials—began exploring ways to trans-
form data into actionable models. 
Unfortunately, a general lack of com-
puting power and far less sophisticat-
ed software imposed severe limits on 
the breadth and depth of analysis that 
could take place. 

“Traditionally, researchers have 
relied on a reductionist approach 
to problem solving,” points out Pa-
tricia Mabry, senior advisor in the 
Office of Behavioral and Social Sci-
ences Research at the National Insti-
tutes of Health (NIH). However, this 
approach—known as a randomized 
controlled trial—typically addresses 
only one small aspect of the overall 
problem. Reductionism essentially 
attempts to condense and simplify 
issues in order to make the process 
more manageable. Controlled studies 
focus on different groups and differ-
ent assigned or measured variables. 
Both of these techniques rely on a rel-
atively narrow focus.

It was not until the 1990s that the 
first robust computer models began 
to appear. The addition of the Internet 
and big data analytics has revolution-
ized computer modeling over the last 
decade. Today, many new data points 
exist, including databases and metrics 
gleaned from mobile geolocation data 
and social media. In the healthcare arena, 
researchers now use computer model-

Last summer, Brown University’s Brandon Marshall unveiled a computer program calibrated 
to model accurately the spread of HIV in New York City over a decade and to make specific 
predictions about the future of the epidemic under various intervention scenarios.

A New Model  
for Healthcare  
Computer modeling is radically redefining healthcare  
and epidemiology by providing new tools for understanding  
the impact of different intervention strategies.

Society  |  doi:10.1145/2408776.2408783	 Samuel Greengard
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ing to examine the effect of different 
HIV policies, emergency response sce-
narios surrounding a poison gas attack, 
how eating and exercise impact obesity 
and healthcare costs, and more.  

Comprehensive simulation model-
ing is a key to effective decision-making, 
particularly in today’s cost-conscious 
environment, states Peter Aperin, M.D., 
vice president of medicine for Archime-
des Inc., a San Francisco, CA, company 
that develops full-scale simulation mod-
els of human physiology, diseases, be-
haviors, interventions, and healthcare 
practices for the likes of Kaiser Perman-
ente and the Robert Woods Foundation. 

Aperin says these techniques are 
useful for examining a wide range of 
issues: everything from obesity and 
diabetes to heart disease treatment 
options. “What if we change treat-
ments? What if we use different inter-
ventions? What if different interven-
tions or treatments have different side 
effects or cause different behavioral 
changes? We are able to view how an 
almost infinite number of decisions 
affect downstream health outcomes 
and costs.” In fact, it is possible to vi-
sualize these complex datasets rather 
than poring over an endless stream of 
statistics and numbers.

Moreover, researchers can select 
specific groups—men, women, gays, 
those who take certain medications, or 
display high or low compliance rates 
and much more—and watch these 
simulations play out as agents interact 
with others and change their behavior 
over time. These virtual people influ-
ence each other, just as they do in the 
real world. It is also possible to toss new 
factors or variables into the equation, 
such as a virus that mutates or a new 
pharmaceutical drug, and watch events 
unwind in a completely different way. 
After researchers run a simulation a 
number of different ways they begin to 
view patterns and trends that provide 
valuable clues about public policy strat-
egies and outcomes. 

Marshall’s HIV research is a perfect 
example. “The modeling allows us to 
combine data in very interesting ways 
that would be almost impossible em-
pirically,” Marshall explains. “We can 
combine datasets based on things like 
gender, sexual orientation, drug use, 
drug treatments and associated behav-
ioral outcomes, access to drug abuse 

treatment programs and more. The 
model lets us see how decisions sup-
port one another or how an approach 
or program could prove detrimental.” 
Marshall’s model is designed to exam-
ine different approaches and policy de-
cisions over a 20-year span.

Consider “Agent 89,425,” who is male 
and has sex with men. He participates 
in needle exchanges, but according to 
the probabilities built into the model, 
in year three he begins to share needles 
with another drug user with whom he is 
also having unprotected sex. In the last 
of those encounters, Agent 89,425 be-
comes infected with HIV. In year four he 
begins participating in drug treatment 
and in year five he gets tested for HIV, 
starts antiretroviral treatment, and re-
duces the frequency with which he has 
unprotected sex. Because he takes his 
HIV medication without exception, he 
never transmits the virus further.

The research has already yielded 
some remarkable insights. For ex-
ample, Marshall projects that with no 
change in New York City’s current pro-
grams, the infection rate among injec-
tion drug users will be 2.1 per 1,000 in 
2040. Expanding HIV testing by 50% 
would drop the rate only 12% to 1.9 per 
1,000; increasing enrollment in drug 
treatment programs by 50% would re-
duce the rate 26% to 1.6 per 1,000; pro-
viding earlier delivery of antiretroviral 
therapy and better adherence would 
drop the rate 45% to 1.2 per 1,000; and 
expanding needle exchange programs 
by 50% would reduce the rate 34% to 1.4 
per 1,000. However, adopting all four 
tactics would cut the rate by more than 
60%, to 0.8 per 1,000.

These types of analyses/dependenc-
es are routine in large data analysis in 
other fields. Is this true in healthcare 
or are the actors just learning this now? 
Or is Marshall’s model something new 
and better than what already exists?

Putting Models to Work
The appeal of advanced computing 
modeling—referred to by Mabry and 
her NIH colleagues as systems science 
methodologies—is that it allows re-
searchers far greater latitude to address 
the complexity of real-world phenom-
enon and “and to investigate what-if 
scenarios that cannot be studied in the 
real world due to time, money, ethical, 
or other constraints,” Mabry says.

This is no small matter. Complexi-
ties of the real world include making 
sense out of bidirectional relationships 
where one variable affects another 
and vice versa. Because changes in the 
variables feed off one another, such 
relationships have the potential to, as 
Mabry puts it, “generate vicious cycles in 
which we observe things deteriorating 
rapidly or virtuous cycles in which we 
observe a situation improving rapidly.” 

Because the underlying cause of 
such situations is not always apparent 
to the naked eye, policymakers may 
actually make bad situations worse 
by applying a remedy to the wrong 
place in the system. “The goal of using 
systems science methods is to under-
stand how the various components 
that make up a system interact and 
affect each other to produce an out-
come. These methods excel at iden-
tifying nonlinear relationships, and 
time-delayed effects as well as inter-
dependencies,” Mabry explains.

At MIT, researchers in the Depart-
ment of Civil and Environmental 
Engineering, led by Ruben Juanes, 
are applying seemingly incongruous 
methods to understand contagion 
dynamics through the air transporta-
tion network. Presently, the team is 
attempting to understand how likely 
the 40 largest U.S. airports are to influ-
ence the spread of a contagious dis-
ease originating in their home cities. 
The project could help determine how 
fast a virus might spread and appropri-
ate measures for containing the infec-
tion—from quarantining individuals 
to closing airports—in specific geo-
graphic areas. This information could 

Comprehensive 
simulation  
modeling is a key  
to effective  
decision-making  
in today’s  
cost-conscious 
environment.
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partners at NIH—a major provider of 
research grants—are now focusing on 
model “verification, validation, and un-
certainty quantification.” They hope to 
collectively produce some guidance for 
model builders, as well as those review-
ing journal manuscripts and grant ap-
plications. Without this, the fledgling 
field will continue to produce models 
that range widely in quality, she says. 

Yet, computer modeling continues 
to evolve and gain acceptance. “Com-
puter modeling isn’t a crystal ball,” 
Mabry concludes. “But it is helping to 
illuminate the complexity of health 
and social problems—along with po-
tential remedies. Success is ultimately 
dependent on culling huge amounts of 
data about the population, developing 
good algorithms, and harnessing the 
success of supercomputers to make 
sense of complex relationships. This 
information can then be used by public 
policymakers to do their job.”	
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also aid public health officials in mak-
ing decisions about the distribution of 
vaccinations or treatments in the earli-
est days of contagion. 

In order to predict how fast a con-
tagion might spread, researchers are 
examining variations in travel patterns 
among individuals, the geographic lo-
cations of airports, the disparity in in-
teractions among airports, and waiting 
times at individual airports. Juanes, a 
geoscientist, has tapped past research 
on the flow of fluids through fracture 
networks in subsurface rock to build 
an algorithm for the current task. 
Moreover, the team plugs in cellphone 
usage data to understand real-world 
human mobility patterns. The end re-
sult is “a model that’s very different 
from a typical diffusion model,” he 
says. It is plugging in more data—and 
better data—to create a more robust 
model than has ever before existed.

Archimedes’ Peter Alperin says that 
today’s models are aiding and speed-
ing policy decisions in ways that were 
unimaginable only a few years ago. The 
NIH, government agencies, pharma-
ceutical firms, and healthcare organi-
zations use these models to help build 
more effective policies or develop treat-
ment strategies or new medicines. Last 
year, the firm began building models 
for the U.S. Food and Drug Administra-
tion (FDA) to better understand clinical 
trials evaluating weight loss medica-
tions. The data is being used to better 
understand the benefits of weight loss 
against the long-term risks of cardio-
vascular outcomes in patients treated 
with weight loss drugs.

Nevertheless, computer modeling is 
not a fix-all, says Sandro Galea, chair of 
the Department of Epidemiology at Co-
lumbia University. Among other things, 
he has examined how policy decisions 
affect social problems ranging from 
obesity to how large-scale disasters and 
trauma affect mental health among 
various demographic groups. In the 
latter scenario, for example, modeling 
helps identify who is at greater risk and 
what types of treatment and services 
can help reduce mental illness. 

However, all models are built on as-
sumptions and have some flaws and 
errors. Indeed, there is no standard 
for how to build an effective computer 
model or to establish confidence in 
what a model produces. Mabry and her 
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David Patterson’s  
‘Big Data’ Project Takes 
Aim At A Cancer Cure

David Patterson 
and his team 
have been 
working for over 
a year on what 
he describes as 
an odd sort of 

project for a computer 
scientist—building a software 
pipeline for cancer genomics 
that is faster, cheaper, and more 
accurate than ones that already 
exist.

Patterson, a former ACM 
president who has been a 
computer science professor 
at the University of California 
Berkeley since 1977, recalls 
an application was needed for 
the university’s new AMPLab, 
which integrates Algorithms, 
Machines, and People to make 
sense of “big data.”

“A problem in academics 
is that data is either small and 
interesting or big and dull,” 
he says. “Interesting big data 
is usually proprietary. But, in 
the case of cancer genetics, we 
knew there would be lots of data 
and a really important use for 
it—helping discover treatments 
that might put an end to what 
is become the second leading 
cause of death in the U.S.”

The pipeline uses The 
Cancer Genome Atlas, a 
repository of five petabytes of 
data containing the genetic 
sequencing of thousands of 
cancer tumors. It is expected 
to grow to millions—along 
with what treatments were 
given to patients to cure those 
tumors, and the outcomes. 
“The ultimate goal is that, by 
sequencing the genome of a 
cancer tumor, doctors will be 
able to prescribe a personalized, 
targeted therapy to stop a 
cancer’s growth—or cure it,” he 
says (see http://nyti.ms/rJOjeS).

Patterson, no stranger to 
fighting diseases, has raised 
over $200,000 to fight multiple 
sclerosis after his wife was, 
fortunately, misdiagnosed 
with the disease. “Helping 
people fight both cancer and 
MS are worthwhile causes that 
work against the unfortunate 
stereotype of the uncaring 
computer scientist,” he says.

—Paul Hyman

http://www.annualreviews.org/doi/abs/10.1146/annurev-publhealth-031811-124655
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0044833
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http://www.annualreviews.org/doi/abs/10.1146/annurev-publhealth-031811-124655
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0044833
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0044833
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if we permit not only active surveil-
lance but also extensive data mining 
of personal information in the Net, 
we will not achieve that promise. 
Indeed, if the Net is not engineered 
to protect privacy, it will instead be-
come a jail for the human body and 
the human soul.

We are failing at present because 
our Net is being used to spy on us, 
constantly, as we use it to enrich our 
lives. The innovations in surveillance 
have come from industry. Record-
keeping about how we use the Net— 
what we search for, what we read, who 
we contact—is intensively and instan-
taneously “mined” for its value to 
those who want to sell us something. 
What we share with our friends and 
family, even the content of our email 
and other private communications, is 
scrutinized to the same end by compa-
nies that offer us “services” in return 
for access to our private data. All this 
data, assiduously gathered by busi-
nesses seeking profit, no matter how 
responsibly they manage it, is also at 
the disposal of any government capa-
ble—by law, force, or fraud—of gain-
ing their cooperation.

T
he last generation is being 
born whose brains will de-
velop independently of the 
Net. From now on, the way 
the Web works will play a 

dominant role in the socialization 
of the human race. But because we 
have built Web infrastructure with-
out considering privacy, we are also 
endangering our basic freedoms. We 
are on the verge of eliminating forev-
er the fundamental right to be alone 
in our thoughts.

At the beginning of the sixteenth 
century, moveable-type printing cre-
ated the experience of private read-
ing, and with it the Western idea of 
the individual self freely developed, 
self-made through a private process 
of reading and thinking. In religion, 
this led to the revolutionary adop-
tion of individualist forms of Prot-
estant Christianity. Secular society 
adopted the scientific method, and 
with it began radically improving 
the human social condition. The 
opening of learning also enabled 
the gradual transformation of the 
Western political landscape toward 
democratic self-government and the 

constitutional protection of freedom 
of thought.

The Net should now universalize 
that process throughout the human 
race, should make it possible for ev-
ery person on Earth to read, watch, 
listen, and participate in every form 
of learning and culture, everywhere, 
without discrimination between rich 
and poor, old and young, male and 
female. This truly universal learn-
ing system would immeasurably im-
prove the welfare of humankind. But 
if we do not protect the fundamen-
tal privacy of network interactions, 

Privacy and Security  
The Tangled Web  
We Have Woven 
Seeking to protect the fundamental privacy of network interactions.

doi:10.1145/2408776.2408784	 Eben Moglen 

We are on the verge 
of eliminating forever 
the fundamental  
right to be alone  
in our thoughts.
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Beyond the data itself lies the new 
mathematics of inferring from it. 
“Data mining,” which now politely 
refers to itself as “data science,” is a 
new subdiscipline of statistics, direct-
ed at using all this individually iden-
tifiable and aggregated behavioral 
data to predict human social action. 
Whether one is selling pharmaceuti-
cals, toys, advertising placement, or 
a political candidate, data science is 
now using our personal data to help 
the seller identify, pursue, and per-
suade us. Our consumption supplies 
information that can be used to read 
our minds.

The situation is made still worse be-
cause we are rapidly adopting personal 
service robots that are not working ex-
clusively in our interests. Unlike the 
robots living intermixed with humans 
in the science fiction of our child-
hoods, these robots have no hands 
and feet—we are their hands and feet. 
They see what we point them at; they 
have ears to hear everything going on 
around us; they know our location all 

the time. These robots we call smart-
phones and tablets often contain soft-
ware we cannot read or understand, 
much less change. We do not control 
them; rather, they offer others the op-
portunity to control us. 

Development in the private market 
of technologies to surveil, predict, and 
influence individuals through the Net 
has of course drawn the attention of 
states. Governments are rapidly mov-
ing, to the fullest extent of their differ-
ing means, to harness the power of big 
personal data to improve their social 
control. No matter what your politics, 
somewhere in the world, right now, a 
government of whose principles you 
completely disapprove is beginning 
to use the Net to locate support, influ-
ence the population, and find its en-
emies. Everywhere in the world, from 
now on, governments that become 
tyrannical will have immensely pow-
erful new tools for remaining perma-
nently in power.

This privacy crisis is ecological. The 
unintended consequences of tiny in-

dividual activities, aggregated over the 
vast scope of the Net, are producing a 
threat to our common human interests 
on a global scale.

Fortunately, because the parts of 
this crisis are all our creation, we can 
remedy the problem. We need to re-
build the operating software of the Net 
in keeping with certain ethical princi-
ples. This does not mean forcing peo-
ple or businesses to change what they 
are presently doing. It means providing 
the equivalent of green technologies, 
and helping people shift to them.

First, then, we need to build re-
sponsible replacement software, 
providing existing functions in ways 
that respect users’ privacy, to replace 
systems that are hazardous to privacy. 
Current webmail and social network-
ing services, for example, put all their 
users’ communications with their 
respective social circles inside huge 
centralized databases maintained by 
the service operator, who in return 
for doing the storing and providing 
sophisticated access services to users, 

viewpoints
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gets the right to mine the data, which 
is now centralized and vulnerable to 
government acquisition.

But email and the Web are by de-
sign federated services, in which in-
dividual servers can provide storage 
and access services cheaply, securely, 
and with near-perfect reliability for 
individual users. Users began using 
centralized services that hurt their 
privacy because they gained tangible 
convenience at no apparent cost. No 
one knew how to run her own mail 
server or Web server, and we did not 
make it easy to learn. But we can—and 
we should—help people to use free 
software and a coming flood of inex-
pensive “personal server” hardware to 
make personal privacy appliances.

The FreedomBox Foundation I am 
currently advising is an example of an 
attempt in this direction, making free 
personal privacy software for creating 
such appliances. Small, inexpensive, 
power-miserly devices you just plug in 
and forget, they keep your communi-
cations private, help you navigate the 
Web without being spied on, and let 
you share with the world, safely. Let 
me get technical for a few sentences to 
describe how.

Much of the implementation of 
such a software stack involves using 
existing free software tools. A privacy 
proxy located in the router between 
a user’s smartphone or PC browser 
and the public Net can remove adver-
tising and Web bugs, manage cookie 
flow, and improve browsing privacy 
and security by providing “HTTPS 
everywhere.” Automating use of SSH 
proxies and personal VPNs can not 
only protect the privacy of Web ac-
cess behind the FreedomBox used 
as a router, it can also provide se-
cure communications and privacy-
protected Web access from a mobile 
device used on untrusted networks 
away from home.

Some of the tools needed for per-
sonal privacy appliances are com-
binations of existing functionality. 
Combining a HTTPS Web server and 
a XMPP server with OpenPGP-based 
authentication, for example, along 
with a method for building the “web 
of trust” through exchange of public 
keys embodied in QR codes (the 2D 
barcodes that smartphones already 
scan) yields a method for secure text, 

voice, and video chat that is easy for 
ordinary users to deploy. That in turn 
also easily extends to a method for 
secure communication with journal-
ists and public media outlets for re-
laying video and audio recorded with 
mobile phones. Beyond our present 
stage of development lie the new 
tools we need to build, like feder-
ated social networking software that 
can smoothly and without disrupt-
ing the web of social sharing replace 
Facebook and similar “services,” that 
have imposed centralized storage, 
data mining, and control.

Soon, such privacy servers will be 
available to replace your home wireless 
router or other similar device at even 
lower cost, but with enormous overall 
social benefit. Think of them as per-
sonal coal-scrubbers that cost next to 
nothing and improve the atmosphere 
we all breathe.

But this is not all. We must also 
provide clear, factual, technical pub-
lic education about privacy and “the 
cloud.” Currently basic technical in-
formation is either altogether missing 
from or else distorted in the public 
debate. We need to help people un-
derstand why they might be better off 
storing their personal data on physi-
cal objects in their possession rather 
than in other peoples’ data centers in 
“the cloud.” We should make the re-
sults of “data science” accessible to a 
public that will never interest itself in 
the mathematics.

We must help people think eco-

When we act  
to improve  
our own privacy  
we are also 
protecting  
the privacy of  
our children,  
our families,  
and our friends.

logically about privacy. Users do not 
recognize that their correspondents’ 
privacy is also reduced when they use 
a “free” email service that reads and 
data mines email sent and received. 
They do not realize that everyone in 
the photographs they post on cen-
tralized social networking services is 
being facially identified and tagged. 
That the social networking service’s 
operator has access to all those pic-
tures and all the tags, and so does 
anyone with whom the operator “co-
operates.” We need to explain that 
every little decision to give away one’s 
own information also gives away 
other peoples’. We can teach people 
that when we act to improve our own 
privacy we are also protecting the pri-
vacy of our children, our families, and 
our friends. If we help people around 
us to understand the effects their ac-
tions have on others, they will decide 
for themselves what changes they 
should make.

Untangling the Web, restoring pri-
vacy in what we do and anonymity in 
what we read, will not be easy. Many 
fine businesses will make a little less 
money if we do not offer all our per-
sonal data to be mined by intermedi-
aries on their behalf. Governments—
pretty much all governments of every 
stripe—are rapidly discovering how 
much real control they can get with-
out showing their hands if they make 
use of the currently misconfigured, 
anti-privacy Net. A consensus of the 
great and the good against privacy is 
forming; the one against anonymity 
is already full-blown. Imagine how 
different our world would be if all the 
books in the West for the last half-
millennium had reported their read-
ers to  headquarters, including in-
forming the Prince or the Pope how 
many seconds each reader spent on 
each page. The book, which anyone 
could read to herself in the privacy of 
her mind, is being replaced by an ap-
pliance that tracks your reading for 
the bookseller, subject to the Prince’s 
subpoena. It will not be easy to save 
privacy. But if we believe in liberty, 
we have absolutely no choice.	

Eben Moglen (moglen@columbia.edu) is a law professor 
at Columbia Law School and the founding director  
of the Software Freedom Law Center in New York.

Copyright held by author. 
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y  previous  column, 
“The Foresight Saga, 
Redux” (Communica-
tions, October 2012), 
began a discussion that 

is continued here regarding some les-
sons learned from the 2012 U.S. No-
vember elections. I also pick up on 
where I left off four years ago in my col-
umn “U.S. Election After-Math” (Com-
munications, February 2009). In addi-
tion, I reflect on the collateral effects of 
Hurricane Sandy, along with the needs 
to anticipate and minimize the poten-
tial effects of other natural disasters 
more generally.

Election Integrity, Oversight, 
Accountability, and Auditing
State and federal roles in elections thus 
far have been rather inadequate, fail-
ing to provide any meaningful assur-
ances that elections can be conducted 
without serious problems, especially 
where these roles have often become 
strongly politicized. It is clear that 
some sort of impartial oversight is nec-
essary to ensure integrity throughout 
the entire election process—from be-
ginning to end. At present, every step 
along the way is a potential weak link, 
with respect to accidental and inten-
tional misuse as well as deceptive or 
otherwise biased practices that create 
voter confusion and inconvenience. It 
is also clear that much greater account-
ability is necessary, particularly in 
cases where rectification of egregious 
problems is difficult, or in some cases 
rendered essentially impossible, as a 

result of shortsighted legislation and 
regulations, inadequacies of propri-
etary systems, and the lack of foresight 
and planning for exceptional condi-
tions such as clearly evident election 
irregularities and process disruptions.

However, these considerations were 
exacerbated by what happened in the 
northeastern United States in the week 
before the 2012 U.S. general election: 
Hurricane Sandy resulted in ensuing 
losses of power and Internet access, 
shut-downs of public transit and busi-
nesses, and losses of life and property. 
The federal, state, and local govern-
ment responses were generally excep-
tional, although Election Day on the 
East Coast was severely complicated in 
many places as a result.

Various attempts were made to re-
duce the hardships that voters had ex-
perienced—by allowing for more early 
voting, extending polling place hours, 
accommodating voters whose polling 
places were without power or other-
wise inaccessible, and actually issuing 
and counting many more provisional 
ballots. However, inherent weaknesses 
in the election process made some of 
the would-be fixes even more vulner-
able to unfortunate disruptions and 
even willful misuse—such as last-min-
ute changes in software, procedures, 
and even voting places. When a voter 
has neither electricity nor the ability 
to travel (no gas, no subways, or other 
transportation options), and when 
polling places with no power have to be 

Inside Risks  
More Sight  
on Foresight  
Reflecting on elections, natural disasters, and the future.

doi:10.1145/2408776.2408785	 Peter G. Neumann 

Voting machines located under a tent at a temporary voting site in the Rockaways, NY, 
following Hurricane Sandy.
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monstrable fraud by election officials), 
to name just a few. Several specific 
anomalies deserve mention here.

˲˲ Andrew Appel noted some serious 
irregularities in New Jersey, where the 
Lieutenant Governor issued a well-
publicized directive permitting storm-
displaced voters to vote by email—de-
spite the state’s declared illegality of 
the announced directive as stated. 
Matt Blaze further warned that New 
Jersey’s emergency email voting could 
be “an insecure, illegal nightmare” 
(see https://freedom-to-tinker.com/
blog/appel/nj-lt-governor-invites-voters-
to-submit-invalid-ballots/).

˲˲ Voting system software was up-
graded with “experimental” patches 
just a few days before the election in 
39 counties in Ohio, bypassing normal 
election night reporting, and purport-
edly “fixing” problems.

˲˲ Alex Halderman demonstrated 
how easily existing voter registration 
addresses and other voter personal 
information in Washington state 
and Maryland could be accessed and 
changed online, by anyone else—
based only on the ability to provide 
some publicly available personal in-
formation on the would-be victim.

˲˲ In addition to reports of on-screen 
vote flipping, machines in Covington, 
VA, mistakenly listed the Obama-Biden 
ticket as Republican, leaving open the 
question of what would happen under 
straight-party voting.

˲˲ Reports by Thom Hartmann and 
Sam Sacks (Truthout, The Daily Take 
blog) discussed claims by the Anony-
mous group regarding attempts to 
rig the presidential election in three 
states. Irrespective of the validity of 
those claims, it is clear that such ef-
forts could succeed with relatively little 
evidence based on the fragility and lack 
of accountability in the existing propri-
etary election systems.

˲˲ ORCA, the Republicans’ high-tech 
program to dynamically monitor vot-
ing trends and identify potentially 
sympathetic voters, failed during the 
election.

If Internet-based and other remote 
computer or mobile-device enhanced 
voting is ever to take place in any wide-
spread use, it deserves much greater 
scrutiny, accountability, and over-
sight—considering the risks of tam-
pering, coercion, vote selling, and vote 

relocated, voting in person can become 
exceedingly difficult and confused by 
misleading reports of voting site un-
availability—sometimes intermixing 
both real and bogus location changes. 
Furthermore, proposed emergency al-
ternatives of voting by Internet or email 
without adequate preparation and 
concern for the possible risks, or even 
trying to print a ballot from some last-
minute supposedly correct location on 
the Web, are likely to be problematic 
in the absence of electrical power, sup-
posedly trustworthy computers, the 
rush to provide those alternatives with-
out any real assurances, and so on. 

One of the main goals for the con-
duct of elections should be to provide 
sufficient assurance throughout the 
entire process such that every loser 
and every voter who voted for any of the 
losers can justifiably believe that the 
elections were fair and justly evaluat-
ed—that is, that there were no events, 
circumstances, or externalities, ac-
countable or otherwise, that might 
have altered the results.

From the perspective of the past 
Inside Risks columns and our peri-
odic discussions of factors relating to 
election integrity, one of the most in-
teresting aspects in the 2012 Novem-
ber elections was that the results of 
the Presidential race were definitive 
enough that they did not depend on 
the outcomes in larger states such as 
Ohio and Florida. If those results had 
been very close, it is quite likely that we 
would have seen prolonged law suits 
from both parties leading to the Su-
preme Court—irrespective of the per-
ceived initial outcome. In Florida, the 
outcome of the presidential election 
was apparently not known officially for 
a week. In Arizona, it took two weeks to 
resolve three Congressional races be-
cause of the huge number of provision-
al ballots, all of which were ultimately 
counted after challenges by the losing 
candidates. Almost three weeks after 
the election, votes in 37 states and the 
District of Columbia were still waiting 
to be counted.

Overall for the election for all of-
fices and ballot measures, numerous 
issues arose during the campaigning 
and the voting process. Examples re-
lated to voter registration, voter disen-
franchisement, voter authentication, 
restrictions on early voting, shortages 

of voting machines and trained elec-
tion officials that resulted in huge lines 
in certain precincts, unsanctioned and 
unsupervised last-minute changes to 
proprietary election software, reported 
cases of vote flipping on touch screens 
in both directions, inconsistent party 
affiliations with unclear implications 
for straight-party voting, irregulari-
ties in issuing, validating, and count-
ing provisional ballots, cases in which 
more votes were reported counted than 
ballots issued, disappearing ballots, 
inconsistencies in announcements of 
policies, deceptive practices, poorly 
defined policies for reviewing and de-
finitively recounting close races, po-
tentially riskful emergency attempts at 
alternatives (noted earlier), along with 
many other factors such as the percep-
tion of even less visibility, account-
ability, and oversight for other than 
top races. The Supreme Court ruling 
that corporations are people as well as 
relaxed procedures on contributions 
also skewed the election processes, 
and gives the appearance of elections 
being bought.

Most of these problems were pre-
dictable. For many years, Inside Risks 
columns have reported issues with vot-
ing machines (disabled, failing, or mis-
calibrated touch-screens, erratic and 
nonreproducible behaviors, serious 
shortages of alternatives in times of 
failures, lack of accountability and au-
dit capabilities) and election processes 
(for example, inadequate allocation of 
operative voting machines and provi-
sional ballots, lack of adequate proce-
dures for election integrity, reports of 
insider misuse and in some cases de-

Some sort of  
impartial oversight  
is necessary to ensure 
integrity throughout 
the entire electoral 
process—from 
beginning to end.

https://freedom-to-tinker.com/blog/appel/nj-lt-governor-invites-voters-to-submit-invalid-ballots/
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buying. For example, see Barbara Si-
mons and Douglas W. Jones, “Internet 
Voting in the U.S.,” Communications, 
October 2012; See also Mark Halvorson 
and Barbara Simons, “Recount Rou-
lette,” Huffington Post (http://www.
huffingtonpost.com/barbara-simons/ 
voting-ballots-recount_b_2069192.html? 
utm_hp_ref=politics).

Above all, elections represent a col-
lection of holistic problems that en-
compass not just technology but also 
everything else that is largely nontech-
nological—governments, policies, lob-
byists, corruption, and political biases. 
For example, the U.S. Election Assis-
tance Commission currently has no 
commissioners, and has been reduced 
to the efforts of a few staffers. Con-
certed efforts to disenfranchise voters 
seem to have succeeded in making vot-
ing much more difficult than it should 
be, and yet evidently resulted in some 
major efforts to counter them. The 
nontechnological aspects of achiev-
ing equal opportunity for voters seem 
to dominate the technological issues, 
which are themselves considerable.

In retrospect, unauditable pro-
prietary paperless direct-recording 
voting machines (for example, with 
touch-screens or other non-keyboard 
inputs, but typically with no real as-
surance for system integrity or mean-
ingful trustworthy audit trails) seem 
to be generally discredited by the 
security community, but neverthe-
less still used—irrespective of the 
risks. Similarly, proposals for cast-
ing ballots over the Internet all seem 
to ignore the risks of integrity com-
promises, denials of service, loss of 
privacy, and vote selling/buying. How-
ever, consensus seems to be emerg-
ing that the most sensible approach 
at the moment utilizes computer-
scanned hand-marked paper ballots 
(even if obtained via the Internet, per-
haps in the case of overseas voters). 
Such systems can achieve a measure 
of verifiability that is unattainable by 
the unauditable direct recording sys-
tems and by Internet voting—in part 
because they provide something tan-
gible against which discrepancies and 
other irregularities can be evaluated. 
However, significant further research 
and development are needed, plus 
enforceable operational procedures 
directed at the realization that many 

of the risks in elections also lie far be-
yond the technology. Once again, the 
efforts to obtain pervasively fair elec-
tions are decidedly holistic.

Emergency Preparedness 
and Oversight
The effects that Hurricane Sandy had 
on the election on the East Coast (and 
elsewhere because of airport closures) 
remind us of the importance of trying 
to expect the unexpected and acting 
according to standards of preventive 
care. For example, climate change is 
now scientifically a reality, and needs 
to be confronted realistically. In ad-
dition, past hurricanes, earthquakes, 
tornados, and so on always tend to re-
mind us that we do not devote enough 
attention to emergency prepared-
ness. On October 29, 2012, Hurricane 
Sandy devastated shore areas of New 
Jersey and New York, with ocean surg-
es destroying houses, disrupting trav-
el, causing long-lasting power out-
ages affecting millions of people (in 
some cases without power for weeks). 
Some landline and mobile telecom-
munications were shut down—with 
reports of failures of undersea cables 
as well. Wired and wireless Internet 
infrastructures were also affected, 
including some entire data centers. 
Payphones were suddenly in great 
demand. Various deaths were report-
edly caused by the hurricane. Many 
organizations without off-site backup 
systems or enough emergency gen-
erators and spare fuel were seriously 
hindered in their efforts to recover. 
Some parts of the New York subway 
system were completely shut down 
for many days by flooded tunnels and 
damaged wiring. The PATH Trans-
Hudson line from Newark to the 
World Trade Center was inoperable 

for almost a month, and the line from 
Hoboken, NJ, even longer. Enough 
of the New York University Bellevue 
Hospital backup system was situated 
in a basement that flooded, necessi-
tating evacuation of the hospital. Sev-
enteen million gallons of water had to 
be pumped out from the basement of 
the hospital, although the pumps in 
the basement shorted out and were 
unable to feed the backup generators 
on the 13th floor! 

Of course, only some of these prob-
lems were suggested by past experi-
ences going back to the November 
1965 New England blackout, but the 
effects of Sandy were in many ways 
unprecedented. However, the scale 
of the disruption probably exceeded 
the overall disruption during the ice 
storm of 1998 in Quebec and Ontario, 
when the power transmission lines 
froze heavily and many of them col-
lapsed completely under the exces-
sive weight—resulting in a month of 
powerlessness in a huge but some-
what less densely populated area.

Conclusion
In the context of environmental disas-
ters and election integrity problems, 
the preceding analysis suggests that 
much more attention needs to be de-
voted in the future to proactive plan-
ning for adversities, rather than simply 
waiting for the next environmental ca-
tastrophe, or the next heatedly disputed 
local or national election. Much greater 
accountability, contingency planning, 
and objective oversight are needed—
along with considerably greater non-
partisan even-handedness—to ensure 
that the effects of future environmen-
tal disasters can be less widespread 
and that future elections will be able 
to avoid problems that are likely to re-
cur or unfold anew in the future. Thus, 
it seems that a common link between 
election integrity and environmental 
emergency preparedness lies in in-
creased understanding of the risks and 
greater foresight in anticipating what 
can go wrong.	

Peter G. Neumann (neumann@csl.sri.com), Principal 
Scientist in SRI International’s Computer Science 
Laboratory, is moderator of the ACM Risks Forum (http://
www.risks.org). Please check out recent issues of RISKS 
for source information and see his website for further 
background (http://www.csl.sri.com/neumann).
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Once completed, however, the 
process of neglect sets in—cost cut-
ting, slow repairs, ignoring major de-
sign flaws until bits of the roadways 
fall down. Finally, the highway is so 
poorly maintained that it is a menace, 
and then, unless you get lucky and 
an earthquake destroys the hideous 
thing, you come to the usual engineer-
ing decision: repair or rebuild.

The difference with software is that 
if code is used in the same way, day in 
and day out, and never extended or 
changed—other than fixing previously 
existing bugs—it should not wear out. 
Not wearing out depends on a few 
things—especially that hardware does 
not advance. A working system deliv-
ered in 1980—on, say, a classic mini-
computer such as the VAX—should, if 
the same hardware is present, work the 
same today as it did when it was built.

The problems of software mainte-
nance arise because things change. 

Dear KV,
Do you know of any rule of thumb for 
how often a piece of software should 
need maintenance? I am not thinking 
about bug fixes, since bugs are there 
from the moment the code is written, 
but about the constant refactoring that 
seems to go on in code. Sometimes I 
feel as if programmers use refactoring 
as a way of keeping their jobs, rather 
than offering any real improvement. Is 
there a “best used by” date for software?

Fresh Code

Dear Fresh,
I definitely like the idea of software 
coming with a freshness mark like you 
see on milk cartons. As with other per-
ishable products, software does seem 
to go bad after a while, and I am often 
reminded of the stench of spoiled milk 
when I open certain source files in my ed-
itor. No wonder so many programmers 
grimace whenever they go to fix bugs.

I think that a better analogy for soft-
ware is that of infrastructure. Anyone 
who has lived long enough to see new 
infrastructure built, neglected, and 
then repaired should understand this 
analogy. Consider the highways built in 
the U.S. in the 1950s. When these roads 
were first built they were considered 
a marvel, helping commuters get into 
and out of large cities. Everyone loves 
something new, and the building of 
this infrastructure was heralded with 
a good deal of fanfare, speeches, and 
other celebratory events that you asso-
ciate with large projects.

While the original libraries used to 
build a system do not wear out in any 
physical sense, the code they inter-
act with changes over time as idiots 
(oops, I meant to say marketers) de-
mand new features and as the speed 
and complexity of hardware advanc-
es. Efforts at portability are noble 
and often worthwhile, but there is 
simply no way that a piece of code 
that ran on a 1-MIPS CISC (complex 
instruction set computing) computer 
is going to run—without significant 
retesting and changes—on a modern 
processor with modern peripherals. 
Operating systems and device drivers 
can go only so far to hide the underly-
ing changes from applications.

While I have seen plenty of navel-
gazing exercises masquerading as 
refactoring, there comes a time in 
the life of all software when the de-
sign decisions it expresses must be 
reexamined. There is no hard and 
fast limit for this. If the code was a 
“prototype”—you know, code that 
management swore up and down 
they would never use, and then did—
it is going to go bad sooner rather 
than later.

Programs that were written in a 
more reasonable style and without 
ridiculous schedules imposed from 
above maintain their freshness longer. 
I consider my own code to have a “best 
by date” of one year from when I com-
plete the project. If I have not looked 
at some code in a year, I have probably 
forgotten how it worked, anyway. 

KV

Kode Vicious   
Divided by Division 
Is there a “best used by” date for software?
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ago there was a language called APL 
that required a special keyboard. 
That language is mostly dead—look 
at the keyboard shown here to find 
out why.

That brings us to where we are 
now with / meaning one thing and 
// meaning another. I am quite sure 
many bugs will result from this con-
flation of images, and I am sure they 
are going to occur when the person 
working on the code has just been 
awakened from a deep sleep by a pan-
icked telephone call. In the light of 
day, it is easy to tell / from //, but 
in the dim light of reawakening, it is 
not so easy.

KV

  Related articles  
  on queue.acm.org

You Don’t Know Jack  
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Paul Stachour, David Collier-Brown
http://queue.acm.org/detail.cfm?id=1640399
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Poul-Henning Kamp
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Concurrency’s Shysters 
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http://blogs.sun.com/bmc/entry/
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Dear KV,
I have been upgrading some Python 2 
code to Python 3 and ran across the 
following change in the language. It 
used to be that division (/) of two inte-
gers resulted in an integer, but to get 
that functionality in Python 3, I need 
to use //. There is still a /, but that is 
different. Why would anyone in their 
right mind have two similar opera-
tions that are so closely coded? Don’t 
they know this will lead to errors?

Divided by Division

Dear Divided,
Python is not the first—and I am quite 
sure it will not be the last—language 
to use visually similar keywords to 
mean different things. Consider C 
and C++ where bitwise and logical 
operations use very similar images 
to mean totally different operations: 
| for bitwise or operation and || for 
the logical, for example. I also recent-
ly discovered this change in Python 3 
and my coworkers discovered it just 
after I did, as I was quite vocal in my 
reaction. 

The problem of not having visually 
distinctive images in programming 
goes back to the problem, alluded to 
by Poul-Henning Kamp (“Sir, Please 
Step Away from the ASR-33!,” Com-
munications, November 2010), of the 
character set we use to create our 
languages. Language designers have 
only the character set shown in the ac-
companying figure to work with when 
they are looking for something to 
represent a shortcut to an operation. 
Many of the characters already have 
well-established meanings outside 

of programming, such as the arith-
metic operations +, -, *, and /, and 
the language designer who decides to 
change their meanings should be se-
verely punished. 

It is certainly possible to forgo 
shortcuts and to make everything 
a function such as (plus a b) for 
functional syntax, or create a large list 
of reserved words as in a equals b 
plus c for Algol-like languages. The 
fact is, as programmers, we like com-
pact syntax and would balk at using 
something as bulky as the example I 
have just given.

Another alternative is to throw 
away ASCII encoding and move to 
something richer in which we can 
have more distinct images to which 
we can attach semantic meanings. 
The problem then arises of how to 
type in that code. Modern computer 
keyboards are meant to allow pro-
grammers to type ASCII. Ask Japa-
nese programmers whether they use 
a Japanese keyboard or an American 
one, and nine out of 10 will tell you 
an American one. They choose the 
U.S. version because the “program-
mer keys,” the ones that represent 
the glyphs shown in the figure, are 
in the easiest-to-use placement. Ex-
tending our character set to allow 
for complex glyphs will slow the pro-
cess of entering new code, and we all 
know that typing speed is the biggest 
indicator of code quality. Many years 

Language character set.

!”#$%&’()*+,-./:;<=>?@[\]^_`{|}~

An APL keyboard.
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akin to on-campus Stanford students, 
received the same level of service in 
the evaluation of the their work, and 
received course credit upon passing 
classes. The costs involved, however, 
meant the number of remote students 
enrolled in the Stanford courses was 
usually dwarfed by the number of on-
campus students in the courses.

That equation changed in 2008 with 
the launch of Stanford Engineering 

Everywhere (SEE; http://see.stanford.
edu). Through the SEE initiative, Stan-
ford made several of its most popular 
engineering courses—including six 
CS courses—freely available online, 
including full videos of class lectures 
and all course materials (handouts, 
assignments, and software). Course 
videos were released through You-
Tube, Apple’s iTunes University, and 
on Stanford’s own website. While 

The Stanford Engineering Everywhere website (http://see.stanford.edu) was launched in 2008.
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T 
he recent wave of Mas-
sive Open Online Courses 
(MOOCs) has highlighted 
the potential for making 
educational offerings ac-

cessible at a global level. The atten-
tion MOOCs have received is well 
deserved, but it belies the fact that 
various forms of online education 
have existed for many years. Rather 
than attempting to catalogue the 
broad spectrum of online learning 
resources, we focus on a sampling of 
initiatives in online education—with 
an emphasis on our home institu-
tion, Stanford University, with which 
we are most familiar—highlighting 
some of the opportunities and chal-
lenges at hand.

By way of background, the Stan-
ford Center for Professional Devel-
opment (SCPD) began offering dis-
tance-learning courses via television 
microwave channels in 1969. Stu-
dents—mostly engineers working in 
the local Silicon Valley area—had the 
opportunity to watch course lectures 
on television at off-campus locations 
and submit course work via a courier 
system. By 1996, these course offer-
ings had evolved to using streaming 
video via the Internet and a variety of 
means for electronic assignment sub-
mission and distribution of course 
materials. While in some respects 
these course offerings were similar 
to the more modern MOOCs, a criti-
cal differentiator was cost. Students 
enrolled in SCPD courses paid tuition 

Education  
Reflections on 
Stanford’s MOOCs 
New possibilities in online education create new challenges.
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provide some form of certification 
to students. While the experience 
with SEE (which provides no form of 
certification) leads us to believe that 
many students will still pursue online 
education regardless of certification, 
we recognize that many students will 
be concerned they receive external 
validation/certification of their learn-
ing. There are many companies (both 
non-profit and for-profit) that have 
experience in awarding various forms 
of certifications, and several colleges 
offer purely online certificates and 
even degrees. Hybrid models are also 
emerging. For example, the Univer-
sity of Washington has offered to give 
college credit for some of its courses 
taken through Coursera for students 
who pay a fee and complete addition-
al assessments.2 Thus, models for the 
certification of online work certainly 
exist. The extent to which such certi-
fications are recognized by others, es-
pecially employers, will certainly im-
pact how MOOCs are viewed relative 
to more traditional courses.

Richer Evaluation
Although the initial set of MOOCs 
focused on relatively straightforward 
means for evaluation, such as multi-
ple-choice quizzes or short-answer 
questions, richer evaluation models 
measuring student engagement more 
fully with the material soon emerged. 
In a computing context, such evalua-
tions include assessing students’ pro-
grams and assessing larger student 
projects. While mechanisms such as 
testing suites can be used to measure 
aspects of a program’s functional-
ity, such tests are not applicable in 
all contexts, such as with interactive 
applications. Care must be given in 
developing assessment platforms al-
lowing for a rich design space of as-
signments while still making (semi-)
automated assessment feasible.

Peer assessments have also been 
proposed as a means for providing hu-
man assessments at scale. Research 
in peer assessment has shown the po-
tential for this approach.6 For exam-
ple, Stanford’s online Human-Com-
puter Interaction course, taught by 
Scott Klemmer, emphasizes student 
design work. Enabling assessment of 
these designs at scale requires each 
student in the course to provide an or-

the SEE initiative was not itself novel 
(MIT’s OpenCourseWare project was 
created years prior to SEE), the re-
sponse to the open online materials 
was significant. Among the classes 
released was an offering of CS106A 
(Stanford’s Java-based CS1 course). 
That course’s (hour-long) lecture vid-
eos have been viewed more than two 
million times on YouTube alone. The 
availability of such online materials 
has resulted in universities in the U.S., 
China, India, and Brazil using these 
videos as part of teaching their own 
introductory programming courses. 
And since the CS106A course covers 
much of the same material as the AP 
computer science curriculum, stu-
dents without access to traditional CS 
courses at high school have reported 
being able to study for and pass the 
AP CS exam as a result of watching the 
course videos (either alone or through 
a teacher-guided independent study 
at their school). Of note is the fact 
that these online materials generated 
such a strong response without any 
of the affordances of MOOCs (which 
typically offer enrollment, quizzes and 
assessments, assignment deadlines, 
statements of accomplishment, and 
so forth). Importantly, it is these seem-
ingly evolutionary additional features 
that allowed the recent set of MOOCs 
to cross a line from being considered 
yet another free educational resource 
to being viewed as scalable free cours-
es. This change in perception also 
brought with it a new set of possibili-
ties and expectations.

The trio of MOOCs released by 
Stanford faculty in fall 2011—courses 
in artificial intelligence, databases, 
and machine learning—attracted 
hundreds of thousands of students 
and spawned two private ventures: 
Coursera and Udacity. Concurrently, 
edX evolved from MITx as a non-prof-
it consortium for online education, 
comprised initially of MIT and Har-
vard, with UC Berkeley and the Uni-
versity of Texas later joining forces. 
Stanford has also developed two new 
online learning platforms—Class2Go 
and Venture Lab—and committed it-
self to further work in this area by ap-
pointing CS professor John Mitchell 
as the inaugural Vice Provost for On-
line Education.

MOOCs have the potential to pro-

vide education on a global scale. But 
many challenges remain if MOOCs, 
either in a standalone or hybrid con-
text, are to become competitive with 
the “classical” model of in-class edu-
cation. Here, we discuss some of the 
opportunities and challenges facing 
MOOCs based on our experiences.

Validation and Plagiarism
Perhaps the most widely discussed 
challenge in online education is that 
of validating original work and pre-
venting (or at least detecting) pla-
giarism. It has been reported that 
plagiarism is a potentially signifi-
cant problem in online courses.10 In 
response, Coursera has stated it may 
attempt to employ plagiarism-detec-
tion software. It is too early to tell the 
efficacy of automated methods for 
plagiarism detection, but the clear 
need may motivate further research 
in this area. Both edX and Udacity 
have partnered with Pearson VUE, a 
provider of testing centers, to validate 
students taking proctored exams.4,7 
While the use of testing centers to val-
idate students’ identity and original 
work seems more straightforward in 
practice than automated methods for 
plagiarism detection, it also carries 
with it cost for the student. How such 
costs are to be weighed with respect 
to the costs and benefits of enrolling 
in a traditional course will be an im-
portant factor in the future success of 
MOOCs.

Certification
Another important component of 
MOOCs is whether and how they 
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dering of several designs with which 
they are presented. The orderings 
from all students are then combined 
to get a more global ranking of de-
signs. Interestingly, some of the de-
signs presented to students to order 
have been graded by human experts 
(for example, the teaching assistants 
for the on-campus course). Since 
these graded designs are now embed-
ded in the global ordering, a grade 
can be determined for a student-sub-
mitted design by determining how 
it ranks relative to expert-evaluated 
designs. While such a system is not 
without issues, it does provide an 
interesting model for injecting ex-
pert evaluation into a primarily peer-
based assessment scheme.

Personalized Education
The massive scale of MOOCs pro-
vides the opportunity to collect un-
precedented volumes of data on 
students’ interactions with learn-
ing systems. As a result, it becomes 
possible to use machine learning 
to gain insight on and potentially 
personalize human learning. Work 
in this vein has existed for years un-
der the rubric of intelligent tutoring 
systems and educational data min-
ing. As one recent example, Piech et 
al.5 applied machine learning tech-
niques to build probabilistic models 
of automatically logged intermediate 
versions of student programs in our 
CS106A course. Such models, built 
on initial assignments in the course, 
were better predictors of students’ 
performance later in the course than 
the grades on those assignments. 
Such techniques could be used to 
identify students who are struggling 
in an online course and suggest re-
mediation via alternative learning 
paths through a MOOC.

MOOCs also have the potential 
to present information to students 
using many different pedagogic ap-
proaches, allowing each student to 
select a particular desired approach, 
or even making such suggestions to 
the student. A meta-analysis of more 
than 1,000 online studies8 argues that 
features such as instructor-directed 
and collaborative online instruction 
led to improved learning for stu-
dents, and that blended learning en-
vironments tended to be better for 

students than purely online ones. On-
line courses can evolve to incorporate 
such identified best practices.

Hybrid Education
As evidenced by Martin,3 some uni-
versities are leveraging MOOCs by 
having their students watch videos 
from an online course—Stanford’s ar-
tificial intelligence class in Martin’s 
case—prior to attending class at their 
own university to discuss the mate-
rial and engage in additional assess-
ments. Such “flipped classrooms,” 
which existed in various forms be-
fore MOOCs, enable the instructor to 
spend less time lecturing and more 
time interacting with the students. 
Indeed, we are likely only scratch-
ing the surface in exploring ways in 
which online videos can augment or 
potentially improve education. More 
work is needed to determine what in-
struction students should do on their 
own in preparing for class, as well as 
identifying how best to utilize class 
time given the fact that students have 
watched videos and engaged in atten-
dant exercises in preparation.

Innovation Beyond Online Videos
We need to identify new ways to think 
about online learning. Tools, such as 
algorithm visualizations (for example, 
AlgoViz, http://algoviz.org, or Amit 
Patel’s probability visualizations, 
http://www.redblobgames.com), pro-
gramming practice environments 
(such as Nick Parlante’s CodingBat, 
http://codingbat.com, or Amruth Ku-
mar’s Problets, http://problets.org), 
and editable coding visualizers (such 
as Philip Guo’s Online Python Tutor, 
http://www.pythontutor.com) all of-
fer promising online environments to 
aid student learning. We believe such 
innovations can become especially ef-
fective in online education, augment-

ing video presentations with myriad 
interactive activities for the learner 
to perform. Perhaps incorporation of 
appropriate interactive aids can be-
gin to move closer toward identifying 
and constructing curricula for mak-
ing Alan Kay’s Dynabook1 a reality.

It was Thomas Edison who be-
lieved that the advent of the phono-
graph would completely revolution-
ize education, rendering teachers 
obsolete. In the intervening century, 
similar predictions have been made 
about many other technological in-
novations. We do not believe MOOCs 
are going to render teachers obsolete, 
certainly not in the foreseeable fu-
ture. Online education can augment 
more traditional instruction, and 
serve as an effective means to scale 
education to students when other 
(in-person) forms of instruction are 
unavailable. Like Vardi,9 we believe 
MOOCs are here to stay. However, we 
are much more positive about online 
education’s transformative potential, 
if we as a community can find solu-
tions to the challenges at hand. It is 
really up to us.	
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O
ver the years the leading 
microprocessor compa-
ny, Intel, has introduced 
a steady stream of new 
microprocessor designs: 

the 286, 386, 486, Pentium, Pentium 
II, Pentium III, Pentium 4, and more 
recently the Multicore design. In the 
microprocessor industry these de-
signs are called microarchitectures. 
If there was a market for microar-
chitectures what would each design 
sell for? Our research addresses that 
modern question using economic 
insights developed almost two cen-
turies ago. 

Why estimate the value of these 
designs? This type of calculation can 
inform many aspects of firm strategy 
and valuation. Many companies devel-
op new designs and increasingly out-
source the manufacturing of the prod-
ucts. For example, fabless companies 
like Qualcomm and Broadcomm de-
sign chips and do none of their own 
manufacturing. Foundries do it for 
them on contract. The value of the fab-
less firms depends predominantly on 
the value of designs.  

Many factors complicate any at-
tempt to estimate the value of intel-
lectual property associated with such 
product designs. In microprocessors 
for instance, consumers are not willing 
to pay for a new design per se, but for 
the increase in computing power that 
comes with a new design.   

The classical economist, David Ricar-
do, had the key insight in 1817.2 Ricardo 
asked how much would be the rent to a 
unit of fertile land (say close to a river). Ri-
cardo reasoned that producing a pound 
of corn in the fertile land is less costly to 
a farmer than producing a pound on 
marginal land (the worst land being cul-
tivated, say in the hills). The fertile land 
requires less effort to achieve the same 
output. The rent for the fertile land 
arises from the difference between the 
labor cost of producing the same quan-
tity of crop on the fertile land and on 
the marginal land. Charge the farmer 
a rent higher than this maximum, and 
the farmer would prefer to move out 
and start cultivating the marginal land. 

Ricardo’s logic still applies today, 
and can help estimate the rent to a new 
microprocessor design at any point in 
time. Think of a new design as analo-
gous to fertile land and an old design 
as the marginal land. A microprocessor 
made with a new design can compute 
faster and hence sells for a higher price. 
To get the same revenue from selling 
microprocessors with older designs, In-
tel would need to sell more of the older 
microprocessors, something that in-
volves more labor cost than making one 
microprocessor with the new design. 
The rent for the new design, therefore, 
is the difference between the cost of 
producing a dollar of revenue with the 
new design and the cost using the old 
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ence in cost of production is the rent to 
the process technology.

The accompanying figure illustrates 
the approach, using data from Intel’s 
production for the third quarter of 1997. 
There were two designs in operation in 
the quarter, Pentium (P5) and Pentium 
II (PII). There were process technologies, 
0.35 microns and 0.25 microns. There 
were three microprocessor vintages in 
production, (P5, 0.35), (PII, 0.35), and 
(PII, 0.25). The y-axis shows the average 
cost/average price of microprocessors of 
each vintage. The x-axis shows the total 
revenue obtained from each vintage. 

What is the message of the figure? 
The (P5, 0.35) vintage of microproces-
sors were the oldest ones, and had a 
high cost/revenue ratio. Microproces-
sors produced with the same process 
technology, but with a new design (PII) 
had a lower cost/price ratio. The latest 
microprocessors featuring a new de-
sign (PII) and a new process technolo-
gy (0.25) had the lowest cost/price ratio 
among the three vintages. The vertical 
distance between the top and the sec-
ond horizontal lines is the cost saving 
provided by the new design PII over the 
old design P5, for each dollar of rev-
enue that Intel obtained by selling the 
chips that used PII design. Hence the 
total rent to PII design during the quar-
ter is the area of the rectangle shaded 
with vertical lines. Similarly, the area 
of the rectangle shaded with diagonal 
lines is the rent to 0.25-micron process 
technology during the quarter. 

An estimate of the total value of the 
design or process technology to Intel 
comes from constructing similar dia-
grams for all the quarters in which a 
design or process technology was in 
use and by adding these up. The ac-

design in a given time period. Adding 
up all such rent across the lifetime of a 
specific design provides an estimate of 
the value of the design to Intel. 

It is not quite that simple in prac-
tice, of course. Increases in comput-
ing power can come from factors other 
than a new design. The decreasing size 
of transistors used in microproces-
sors is the leading example. Advances 
in semiconductor process technology 
have steadily driven down transistor 
sizes from three microns (where a mi-
cron is a millionth of a meter) in the 
original 8086 made by Intel to around 
0.022 microns in the latest chip. These 
smaller transistors—by themselves—
lead to greater computing power, with-
out any improvements in designs. In 
other words, a proper estimate must 
separate the value provided to Intel by 
new designs from the value provided 
by the technological transitions to 
smaller transistors. 

To summarize, Ricardo’s logic still 
applies. It can be applied to the mea-
surement of rent to a new micropro-
cessor design at any point in time. A 
new microprocessor can be defined as 
a pair of attributes: the design it uses 
and the semiconductor process tech-
nology it was made with. The rent to 
the combination of design and pro-
cess technology used in a new micro-
processor is the cost savings the new 
microprocessor provides over the old-
est one currently in use. If the new mi-
croprocessor uses the same process 
technology as the oldest one currently 
in use, then the difference in the cost 
of production is the rent to the design. 
On the other hand, if the new micro-
processor uses the same design as the 
oldest one currently in use, the differ-

companying table shows the estimates 
we obtained in our study.1

The cost savings from new design is 
in many billions of U.S. dollars. One can 
see from the table that Intel’s savings 
from new process technologies was al-
most three times the savings from new 
microprocessor designs, indicating the 
relative importance of new manufac-
turing technology transitions to Intel. 

The table also includes information 
about the value of specific designs. The 
Pentium 4 design provided very little 
value to Intel. This is not surprising 
due to its problems with overheating, 
which forced Intel to move to the new 
multicore designs. The Pentium III 
was the most valuable design for Intel, 
reflecting perhaps the high price that 
new designs were able to command at 
the height of the Internet boom of the 
late 1990s. In that period, Intel used 
the 0.13 manufacturing technology, 
again the one that we estimated to have 
provided most value to Intel. 

It should be noted that these values 
are calculated ex-post, after the mi-
croprocessors that used these designs 
were sold on the market. This meth-
od is not appropriate for forecasting 
value prior to any market experience, 
an important precaution in interpret-
ing these figures. Intel probably spent 
the most on developing the Pentium 4 
among all its designs, an investment 
that did not pan out for Intel. 

Overall, these calculations provide 
a rough estimate of the value to Intel 
of intellectual property embedded in 
new designs. Ricardo’s centuries-old 
wisdom on land rents turns out to be in-
sightful for valuing intangible assets. 	
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Estimate of the total value of the Intel design or process technology.

Design Cost Savings* Process Technology Cost Savings*
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Pentium 	 2.74 	0.60 	 1.18
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Pentium 4 	 0.01 	0.13 	 14.40

CORE 	 2.63 	0.09 	 5.01
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C
l o ud   c o mpu   t i n g  i s  an 
evolving paradigm that af-
fects a large part of the IT 
industry, in particular the 
way hardware and software 

are deployed: as a service.1 Cloud 
computing provides new opportuni-
ties for IT service providers, such as 
the adoption of new business models 
and the realization of economies of 
scale by increasing efficiency of re-
source utilization. Adopters are sup-
posed to benefit from advantages like 
up-to-date IT resources with a high 
degree of flexibility and low upfront 
capital investments.6

However, despite advantages of 
cloud computing, small and medium 
enterprises (SMEs) in particular re-
main cautious implementing cloud 
service solutions.4 This holds true for 
both IT service providers and IT ser-
vice users. The main reasons for the re-
luctance of companies to adopt cloud 
computing include:

˲˲ Due to the prevailing information 
asymmetry on the market, companies 
have difficulties comprehensively as-
sessing the individual benefits and 
challenges associated with the adop-
tion of cloud services. Furthermore, 
the information asymmetry impedes 
providers from aligning their services 
with the needs of potential customers.

˲˲ Companies lack appropriate, 
qualified, trustworthy information and 
benchmarks to assess cloud services 
with regard to individual benefits and 
associated risks.

˲˲ Companies lack approaches and 
metrics to adequately assess and 
compare the service quality of cloud 
services, especially, regarding secu-
rity and reliability.

˲˲ Industry-specific requirements 
and restrictions on IT usage and data 
processing limit the adoption of cloud 
services in sectors like health care or 
banking. Many of those requirements 
and restrictions are outdated and 
were issued long before broadband 
Internet connections and mobile de-
vices became ubiquitous.

˲˲ Noteworthy uncertainties concern-
ing legal compliance and conformance 
with international privacy require-
ments can be observed. Providers are 
constantly faced with the challenge to 
design niche-oriented, demand-specific 
services in a legally compliant manner.

Reflecting these reasons for inhib-
iting cloud computing adoption, the 
environment surrounding cloud com-
puting is characterized by uncertainty 
and a lack of transparency. Yet, trust 
is necessary in situations in which the 
interested party is confronted with un-
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certainty.7 Addressing the present trust 
issues in cloud computing and promot-
ing transparent information exchange 
between cloud service providers and 
cloud users are essential premises to 
accomplish broad diffusion of cloud 
computing in the market.

Certification of Cloud Services
We believe certification of cloud servic-
es by independent certification insti-
tutions can cope with the challenging 
lack of transparency, trust, and accep-
tance. Research has shown that trust 
can be built through supporting IT-
based mechanisms like certifications 
and escrows if experience in a market 
is not readily available.8 Furthermore, 
certifications help to establish market 
transparency, which companies may 
not be able to achieve on their own. 
Potential cloud adopters are faced with 
an abundance of service offerings of 
similar functionality. SMEs may not 
have sufficient resources to adequately 
assess cloud services, whereas large en-
terprises may have the resources, but 
still have to raise funds and undergo 
significant efforts in order to assess 
and benchmark cloud services. Ulti-
mately, all companies, which are plan-
ning to adopt a cloud service, need to 
perform similar assessments. Thus, it 
is economically beneficial to dedicate 
these assessments to specialized orga-
nizations, which issue broadly accept-
ed and standardized certifications. 

A cloud service certification process 
should include on-site data center 
audits as well as extensive evaluation 
of contracts and services. In order to 
achieve such a certification, a cloud 
service should satisfy specific quality 
specifications including contractual 
requirements (for example, service 
level agreements), legal requirements 
(for example, privacy policy), security 
requirements (for example, encryp-
tion), functional requirements (for 
example, API implementations), busi-
ness processes (for example, quality 
management), and data center infra-
structure (for example, physical access 
control). Additional industry-specific 
requirements may apply (for example, 
in the domain of health care3,9). In 
fact, models to assess perceived qual-
ity of service have been extensively re-
searched and validated in practice.5 
Assessments of service quality by a 

provider’s customers or independent 
third parties can improve trust and ac-
ceptance of a service. This approach 
has successfully been applied in other 
service industries, for example, sale of 
goods, news media, or entertainment.2

Reflecting the aforementioned rea-
sons for adoption uncertainty, a certi-
fication is particularly beneficial in the 
following scenarios:

Security and trust. The implementa-
tion of cloud computing creates addi-
tional challenges concerning IT securi-
ty. Besides technical issues, customers 
need to trust in the security and reli-
ability of a service in order to adopt it. 
In the case of online banking or online 
shopping, public key certificates issued 
by certificate authorities are a common 
way to verify a website’s authenticity 
and promote customers’ trust. Extend-
ed Validation Certificates do not dif-
fer in structure or cryptography from 
other (cheaper) certificates, but require 
extensive identity verification of the re-
questing organization. Thus, the online 
transaction itself is not more secure (ac-
cording to its encryption), but the certi-
fication is presented more prominently 
to the user and the extended validation 
fosters the trustfulness of the website. 
In the context of cloud computing, a 
certification by an independent certifi-
cation authority can improve trust the 
same way as in the domains of online 
banking and online shopping. In addi-
tion to the provider’s identity, a cloud 
certificate could evaluate infrastructure 
security and IT security measures of the 
cloud service provider. We consider the 
certification of large infrastructure, 
platform, or software providers as im-
portant since these providers serve as 
hubs for enormous amounts of data. 

Therefore, security flaws or outages in 
the systems of these large providers af-
fect a vast number of cloud users.

Legal compliance and privacy. Cur-
rent discussions on legal conflicts be-
tween the United States Patriot Act and 
the European Union (EU) Data Protec-
tion Directive (95/46/EC) intensify the 
need for legally compliant cloud ser-
vices. Moreover, individual member 
states of the EU have implemented 
the 16-year-old EU data protection di-
rective in very different manners. As a 
consequence, cloud service providers 
must deal thoroughly with 27 differ-
ent policies in order to comply with 
all 27 EU member states’ data protec-
tion laws. In addition, sector-specific 
regulations may apply (for example, 
the Health Insurance Portability and 
Accountability Act in the U.S.). Imple-
menting a framework with clear guide-
lines for privacy and legal compliance 
of cloud services would support pro-
viders to design and implement com-
pliant cloud solutions. Cloud service 
certifications verifying the adherence 
to such a legal and privacy framework 
can support users in their adoption de-
cisions as they can rely on the ongoing 
legal compliance of certified cloud ser-
vices. Likewise, specialized cloud ser-
vice providers can benefit from cloud 
certifications when selecting platform 
or infrastructure providers to deploy 
their services, which need to adhere 
to the national or industry-specific re-
quirements of their customers.

Digital preservation and lock-in ef-
fects. Digital preservation describes 
the management of digital informa-
tion in order to keep it accessible, re-
producible, and interpretable over long 
periods of time and different innova-
tion cycles. Digital preservation does 
not only focus on preserving data, but 
also on preserving the representation 
information necessary to interpret the 
preserved data. For example, the rep-
resentation information may be an ap-
plication used to access and interpret 
the data or specifications of the data 
format. In cloud computing, hardware 
and software are delivered as a service 
and are not in possession of the user. 
Thus, neither data nor applications are 
physically accessible. Moreover, data 
formats in cloud services like Google 
Docs are opaque. Supporting digital 
preservation of cloud-based informa-
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tion and applications might be includ-
ed in the certification requirements for 
cloud services. Another challenge for 
cloud service providers includes the 
prevention of lock-in effects. In order 
to acquire a certification, interfaces for 
digital preservation and data migra-
tion to other cloud service providers 
need to be provided.

Transparency. As a result of the 
late-2000s financial crisis, customers 
lost their confidence in the banking 
industry. Risky, complex, and non-
transparent financial products, such 
as mortgage-backed securities or col-
lateralized debt obligations, were 
placed on the capital market as sup-
posedly secure investments. Apply-
ing this situation correspondingly on 
cloud services, users do not necessar-
ily know which cloud services they are 
actually using and where data will be 
processed and stored. A Software as a 
Service provider in Germany may pro-
vide a cloud service, which integrates 
the capabilities of several cloud ser-
vices in Europe, Asia, and North Amer-
ica. The provider may implement the 
service within a Platform as a Service 
environment in the U.S., which in turn 
utilizes databases at an Infrastruc-
ture as a Service provider in Ireland 
and sources computing power from 
a cloud marketplace like Spotcloud 
(a marketplace for cloud service pro-
viders to sell their unused cloud ca-
pacity). Cloud adopters will contract 
and interact with a German provider, 
assuming the strict German privacy 
restrictions apply, but in fact it is to-
tally opaque where data is processed 
and stored. But the concept of cloud 
computing does not need to be cloudy 
at all. The clarification of a service’s 
interrelations as part of the certifica-
tion requirements can clarify complex 
provider cooperation and interaction.

Challenges for Cloud Certifications
Cloud service certifications can resolve 
adoption uncertainties and thereby 
support users and providers of cloud 
services in their adoption decisions. 
However, adherence to certification 
standards also entails challenges that 
need to be considered:

˲˲ Particularly, small- and medium-
sized cloud service providers may not 
have the budget to acquire a certifica-
tion for their cloud services; therefore, 

they would have to struggle with a com-
petitive disadvantage. A certification 
needs to be affordable, but neverthe-
less comprehensive in terms of on-site 
auditing and contractual evaluations.

˲˲ The demands of maintaining certi-
fications may preclude small cloud ser-
vice providers from delivering services 
in a cost-effective manner, while large 
cloud service providers can continue to 
differentiate themselves by their abil-
ity to provide significant cost savings 
and a high level of resource elasticity to 
their customers. Thus, large cloud ser-
vice providers can neglect undergoing 
audits of their physical facilities, ser-
vices, and processes and accomplish 
a similar outcome to certification by 
solely relying on their reputation. In 
contrast, small cloud service providers 
may be urged to undergo certification 
audits in order to differentiate them-
selves on the market and thereby suffer 
a competitive disadvantage.

˲˲ Certifications need to balance the 
tension between usefulness and com-
plexity. A certification framework may 
slow down innovation if adherence 
to the framework is connected with 
very strict requirements. But innova-
tive, pioneering services, and short 
innovation cycles are main benefits 
of the cloud computing paradigm. 
Therefore, a certification framework 
needs to be flexible and adaptable in 
order to cope with the fast innovation 
cycles of the IT industry. However, 
due to the wide diversity of cloud ser-
vice offerings, designing a compre-
hensive and widely applicable certi-
fication framework includes the risk 
of devolving into a set of lowest com-

We believe introducing  
a certification for 
cloud services  
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to a more trustworthy 
and transparent 
cloud computing 
environment.
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taining similar services in-house. By 
producing trustworthy cloud service 
certifications, cloud adopters are able 
to identify risks and benefits of indi-
vidual cloud services and consider 
those in their adoption decisions.

Currently, organizations such as 
Cloud Security Alliance and EuroCloud 
are launching cloud certification pro-
grams for individuals, providers, or 
services. We emphasize the need for 
broadly accepted, established, and 
feasible cloud service certification so-
lutions as well as trustworthy auditing 
institutions. Time will tell if certifica-
tions can mitigate challenges concern-
ing transparency, trust, and accep-
tance and whether current providers 
can cope with the outlined challenges 
of a certification itself. We want to mo-
tivate researchers and practitioners 
to engage in topics concerning cloud 
service certifications. We believe in-
troducing a certification for cloud ser-
vices is one possible way to address the 
current gaps and issues in cloud com-
puting, and that it is a step forward to 
a more trustworthy and transparent 
cloud computing environment.	
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mon denominator standards, which 
in turn would undermine the desired 
outcomes of a certification.

˲˲ Trustworthy certification institu-
tions need to be appointed in order to 
ensure acceptance of the certification. 
Decision makers of cloud service pro-
viders and cloud adopters must trust 
the certification authority; otherwise, 
the credibility of certified cloud servic-
es would be undermined.

˲˲ Existing cloud service certifica-
tions are valid for a predefined time-
frame (usually two years) and only 
provide a snapshot of the situation be-
fore and during the time of the audit. 
Whether the certified criteria are met 
during the validity period cannot be 
ensured. By implementing automated 
certification processes for continuous 
monitoring and refreshment of the 
certification in addition to periodic 
on-site audits (for example, bienni-
ally), a constant level of service quality 
can be monitored and proved, which 
regular on-site audits cannot accom-
plish in an economic manner.

Conclusion
Considering the current situation on 
the cloud computing market, unre-
solved obstacles need to be addressed 
for effective development and diffu-
sion of innovative cloud services. A 
standardized certification for cloud 
services aims to establish trust and 
improves acceptance of the cloud 
computing paradigm. Small, medi-
um, and large cloud service provid-
ers as well as cloud users can benefit 
from the outcomes of established 
cloud service certifications. By achiev-
ing practice-oriented and market-rel-
evant certificates for their cloud ser-
vices, small and regionally oriented IT 
service providers can stand out in the 
marketplace and gain a broader cus-
tomer base. Furthermore, mid-sized 
IT service providers can implement 
legally compliant, customer-specific 
requirements, which cannot be sat-
isfied by usually highly standardized 
solutions of large service providers. 
By signaling valuable qualities like 
transparency of their services, legal 
compliance, reliable service levels, 
and a high level of security at their 
data centers, large providers can at-
tract other cloud service providers to 
utilize their services instead of main-

Our new URL is
ComputingReviews.com

A daily snapshot of what is new 
and hot in computing.

Computing Reviews 
is on the move

C

M

Y

CM

MY

CY

CMY

K

1962 CR Arrow Circle Ad-ThirdVERT-F.pdf   2/9/2012   5:00:14 PM

http://ComputingReviews.com
mailto:sunyaev@wiso.uni-koeln.de
mailto:schneider@wiso.uni-koeln.de
http://ec.europa.eu/information_society/activities/cloudcomputing/docs/ccconsultationfinalreport.pdf
http://ec.europa.eu/information_society/activities/cloudcomputing/docs/ccconsultationfinalreport.pdf


february 2013  |   vol.  56  |   no.  2  |   communications of the acm     37

V
viewpoints

doi:10.1145/2408776.2408801	 Anita Jones

T
h e  numb    e r  o f  postdoctoral 
researchers in computer 
science slightly more than 
doubled in the decade end-
ing in 2008. It is troubling 

that the number has doubled again 
in the subsequent three years. This 
changes the demographics of the 
academic computing research enter-
prise, in particular. In this Viewpoint, 
I discuss some of the different facets 
of this troubling trend.

The chart shown in the accompa-
nying figure plots data from the 2012 
Taulbee surveya excluding data on grad-
uates going into industry and those in 
the Taulbee “other” category. The data 
indicates tenure-track faculty positions 
for new Ph.D.’s have declined steadily 
since 2004 from 224 to 124 in 2011 
while the number of postdoc positions 
greatly increased. In 2011, new Ph.D. 
graduates accepted twice as many post-
doc positions as tenure-track positions. 
Around 2003 there were approximately 
2.5 times more tenure-track positions 
than postdoc positions.

Most graduate departments primari-
ly train Ph.D. students for a tenure-track 

a	 Unless otherwise documented, the statis-
tics quoted in this Viewpoint are extracted 
from the Taulbee survey, an annual survey of 
Ph.D.-granting departments in computer sci-
ence, computer engineering, and informa-
tion systems conducted by the Computing 
Research Association.

faculty position in a research institu-
tion, though there is now some diversity 
in career path training in some univer-
sities. The Taulbee statistics document 
that most graduates will not achieve an 
academic tenure-track position. A mere 
7% of graduates were hired directly into 
tenure-track faculty positions in 2011. 
Teaching faculty and research faculty 
have roughly stayed constant.  

In past years computer science has 
been notable for the low level of post-
docs. The National Science Board re-
ports that in 2006, of the total number 
of postdocs in science and engineering 

disciplines, approximately 1% were in 
computer science. Engineering, phys-
ics, and chemistry each had between 
4% and 9.5% of the total.3

The Computing Community Con-
sortium created the CIFellows Pro-
gram to provide postdocs with funds 
from the National Science Foundation 
during the economic downturn at the 
end of the last decade in order to retain 
Ph.D.’s in research and teaching when 
universities dramatically curtailed hir-
ing. With an improving economy that 
program has served its purpose and is 
concluding. The three-year program 
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ulty member was paid an average of 
$70,000. At the same time the compara-
ble postdoc salary was $50,000. In some 
universities postdocs have fewer or 
lesser benefits in areas such as health 
care, retirement, access to childcare, 
and access to wellness centers.

Second, the postdoc generally fo-
cuses only on their individual postdoc 
objectives without other distractions 
and responsibilities. Unless there is 
good mentoring and a strong collegial 
relation around a postdoc, that person 
could become isolated. In some cases, 
postdocs are directed to work on re-
search projects or take on teaching ob-
ligations that do not advance their long-
term career trajectories, simply because 
they are cheap labor for their advisors.

Third, the postdoc is mature in her 
or his intellectual power. Yet, at most 
universities and in industry, postdocs 
are isolated from participation in the 
discussions, much less the decisions, 
that set the future of the organization. 
Typically, postdocs cannot be principal 
investigators on grant proposals.  

Last, the postdoc position is taken 
shortly after the degree. This is most of-
ten the time of life when couples start 
families. A postdoc position is not per-
manent; therefore the individual must 
do another job search, and typically 
will move from one geographic locale 
to another with the associated career 
disruption, personal disruption, and 
expense. Relocation is more difficult 
for women and men who are nurturing 
a young family. Delaying the bearing of 
children has health implications for 
women. In summary, there are distinct 
downsides to the postdoc experience.

Balance in the Academic 
Research Enterprise
The dramatic increase in postdocs 
changes the overall balance in the num-
ber of participants of different kinds in 
the academic research enterprise, that 
is the number of tenure-track faculty, 
graduate students, research faculty, 
teaching faculty, and postdocs. What 
effect does that have on other mem-
bers of the enterprise? 

When a recently graduated Ph.D. 
moves to a new research project, that 
person brings fresh ideas and even dif-
ferent assumptions about research. It 
is possible that a rapidly flowing pipe-
line of postdocs moving through a re-

funded 127 postdocs, a small number 
in relation to the postdoc growth in 
computer science.b 

Biomedical sciences have gotten 
very badly out of balance with respect 
to the number of postdocs and the long 
delay before they, on average, take per-
manent positions. The average age of 
first-time principal investigators ob-
taining R01-equivalent research fund-
ing (the major source of support for 
young investigators in the biomedical 
sciences) from the National Institutes 
of Health has risen to 44 years as of 
2011, up from about 36 years in 1980.2 
To what degree will computer science 
move in the same direction?

The Postdoc Experience
A postdoc position is a training oppor-
tunity in which a person who has just 
completed a Ph.D. can deepen his or 
her expertise and research skills for a 
short period of time, en route to a per-
manent position. A postdoc—the per-
son—may accept such a position for 
different reasons: to work under the 
tutelage of a specific expert, perhaps 
in a more highly regarded institution 
than his or her Ph.D.-granting univer-
sity; to gain exposure in a related area; 
to remain research active while wait-
ing for a faculty position; or to change 
fields altogether. The postdoc can have 
reasons that go beyond “training.” 
For example, the postdoc may wish to 
strengthen a research portfolio in an-
ticipation of a competitive job search 
or to synchronize job search timing 
with that of a spouse. 

A postdoc experience can genuinely 
advance an individual’s career: sharpen 
research skills, insight and knowledge; 
permit increase in publications; and 
enlarge the group of peers who know 
and respect the individual’s work.

The postdoc experience also has 
negatives. First, postdocs in academia 
are paid at a rate that is substantially 
lower than close peers. Taulbee data 
indicates the average (not starting) 
nine-month salary for an assistant fac-
ulty member was $90,000 in 2010. A 
research faculty member was paid an 
average of $81,000, and a teaching fac-

b	 The author has been a principal investigator on 
all the grants supporting the Computing Com-
munity Consortium and has been a member of 
its governing Council from founding to date.
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work is correlated with the number of 
publications consistent with a post-
doc, rather than a number of publica-
tions consistent with a recent Ph.d. 
degree. Over the decades we have built 
a vibrant industrial and academic 
computer science research enterprise 
based on hiring for quality, not hiring 
for extensive publication. 

I conclude that the increase in post-
docs derives from desires of the re-
search organizations to meet their own 
changed objectives, for example, in re-
search project management and hiring 
or from a shortage of supply of high-
quality Ph.D. students, not from a per-
ception of training shortfalls among 
Ph.D. graduates.

Community Action
I recommend the community, with 
leadership from the Computing Re-
search Association, take action.  

˲˲ Get the data. Taulbee surveys do 
not provide all the information needed 
to understand the increase in postdocs 
and their later career paths.

˲˲ Understand this trend and articu-
late clearly what constitutes the best 
balance among different categories of 
positions in the research community 
going forward.

˲˲ Better manage the postdoc experi-
ence to deliver high value to the post-
docs themselves.

Postdocs are frequently isolated, 
and sometimes benignly neglected. If 
the field requires many more postdocs 
for its own purposes, then the sponsor-
ing departments and laboratories—
not simply the mentors—should take 
responsibility to ensure the experience 
substantially contributes to the post-
doc still in training. NSF now requires 
a postdoc training supplement to pro-

posals that fund postdocs. A postdoc 
should be given:

˲˲ A mentor who provides adequate 
guidance; 

˲˲ A supportive set of colleagues in 
tenure-track faculty, other postdocs 
and research faculty who provide the 
postdoc with rich and frequent intel-
lectual interaction; 

˲˲ Skills in conducting research from 
proposal preparation to presentation 
and research group management; and

˲˲ Career development support with 
thoughtful exposure to alternative ca-
reer paths, for example industrial re-
search and development positions and 
bridges to other fields where computer 
science has a substantive role to play.

The sponsoring department or re-
search laboratory—not only the men-
tor—should proactively support and 
enforce high standards for all four. 

In addition, the Ph.D. advisor—who 
typically regards a Ph.D. student as an 
“intellectual descendent”—may want 
to continue vigilance on behalf of the 
Ph.D. student who accepts a postdoc 
position. The advisor should moni-
tor to ensure the host organization for 
the postdoc is providing an experience 
that will genuinely advance the post-
doc’s career. 

The increase in the number of post-
docs is a major change for our field. We 
should manage it thoughtfully. A docu-
ment outlining “best practices” for 
nurturing postdocs in computer sci-
ence can be found on the Computing 
Research Association website (http://
cra.org/resources/bp-view/best_prac-
tices_memo_computer_science_post-
docs_best_practices/).	
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search organization introduces new 
knowledge, broader interdisciplinary 
knowledge, more vitality, and a pro-
pensity to challenge assumptions—all 
in a way that students and the perma-
nent faculty do not. 

Perhaps the increase in postdocs 
is due to funding agencies insist-
ing on project milestones that have a 
short duration or even a development, 
versus research, character. Perhaps 
postdocs are used to help manage re-
search performance against tighter 
grant constraints.

One can make the simplistic as-
sumption that the total computing 
research budget is fixed and does not 
increase or decrease with the number 
of postdocs. More postdocs means that 
fewer graduate students can be sup-
ported. Principal investigators make 
a choice among the categories—re-
search faculty, students, and post-
docs—and to a lesser degree to tenure-
track faculty as they craft proposals.  

Alternatively, the increase in post-
docs may indicate a maturation of the 
field. Postdocs are more prevalent in 
math and the physical sciences. Post-
doc positions are historically more 
prevalent in theoretical areas of com-
puter science, as well.  

Certainly, the explosive increase of 
postdocs in the life sciences is trace-
able back to funding. When the NIH 
budget doubled during the 1990s, ei-
ther postdocs were the simplest way 
to rapidly expend the funding with no 
permanent obligations, or they were a 
way to deal with the overproduction of 
Ph.D.’s relative to tenure-track faculty 
positions. It is not clear that the life sci-
ences expected to increase the number 
of postdocs so dramatically.

I have two principal concerns. First, 
I am concerned that our field is redefin-
ing “career progression” for research-
ers by expecting Ph.D. graduates to 
accept one to two years (or even more) 
of postdoc training before attaining a 
first, independent, permanent posi-
tion.  If that is necessary, then the com-
munity should clearly articulate why. 
I see no evidence that the increase de-
rives from today’s students not being 
as prepared as in the past. 

Second, I am concerned that some 
academic departments and research 
laboratories are redefining hiring cri-
teria so the quality of a candidate’s 

The increase in  
the number of 
postdocs is a major 
change for our field.  
We should manage  
it thoughtfully.
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T h e r e  i s  a n  authentication plague upon the land. 
We have to claim and assert our identity repeatedly 
to a host of authentication trolls, each jealously 
guarding an Internet service of some sort. Each troll 
has specific rules for passwords, and the rules vary 
widely and incomprehensibly.

Password length requirements vary: Dartmouth 
wants exactly eight characters; my broker, six to eight; 
Wells Fargo, eight or more. Special characters are 
often encouraged or required, but some characters 
are too special: many disallow spaces, single or 
double quotes, underlines, or hyphens. Some systems 
disallow certain characters at the beginning of the 
password; dictionary checks abound, including 
foreign language dictionaries.

Sure, brokerage, bank, and medical sites need 
to protect accounts from unauthorized use. So do 
shopping sites such as Amazon. An email account 
might be just as important: ask Sarah Palin. 
The value of an account can change over time: 
perhaps a new online store is added to a previously 
unimportant account.

 Authentication may be more im-
portant to the service provider than to 
the client: do I care if someone gains 
access to my newspaper account? 
(The terms of use undoubtedly say I 
am supposed to care, but I do not.) In 
this case, the newspaper’s very require-
ment of a password is a nuisance, and 
the password-“strengthening” rules 
just increase my annoyance. The mar-
ketplace does work here: studies show 
that competitive pressure tends to 
force sites toward simpler passwords.4

Not only do these authentication 
rules vary widely, the rules themselves 
are often considered to be part of the 
security secret and not available at 
login time, when a hint about the rules 
would be helpful. I call these eye-of-
newt password rules: they remind me 
of the formulae for magic potions from 
Shakespeare. They are often particular, 
exacting, and sometimes difficult to 
satisfy. Can you think of a long pass-
phrase that does not repeat any charac-
ter more than four times?

The problem is emergent: if we 
had only one account, authentica-
tion would be much easier. But an 
active Internet user can have one- or 
two dozen accounts, some impor-
tant, some not. These authentication 
trolls bother most online users, and it 
is easy to elicit a litany of complaints 
from casual users.

Many of today’s rules are rooted 
in the deep past of security concerns, 
when access, threats, and targets were 
different. Many of these ideas were 
presented in the Password Manage-
ment Guideline, (Technical Report 
CSC-STD-002-85), published by the 
Department of Defense Computer 
Security Center (DoD CSC) in 1985.2 
Known as the Green Book, this re-
port was one of the Rainbow Series of 
books put out by the U.S. government 
in the 1980s and 1990s. Its advice was 
good at the time, and much of it still 
holds up, but many of our password 
aphorisms come from dated assump-
tions about threats and technology.

This is not a criticism of the original 
authors or their document: no sensible 
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security person would expect these 
rules to stand unamended for decades. 
The lore has simply not kept up with 
the threats and vulnerabilities. 

The Green Book In Today’s World
The Password Management Guideline 
came out shortly after the more-fa-
mous Orange Book (Trusted Com-
puter System Evaluation Criteria). The 
Green Book was the DoD’s manage-
ment guideline for access to classified 
or sensitive government computers. It 
is also the basis for most of the current 
password rules. Most computer access 
at the time was either via local batch 
processing (with cards!) or through 
local or remote serial lines using ter-
minals. The PC and Macintosh were 
available, but they were not especially 
relevant to secure computing and cer-
tainly were not networked.

Here is an important note found 
early in the report:

Because it is anticipated that diverse 
user communities will adopt this guide-
line, all recommendations are presented 
in general rather than specific terminol-
ogy…Where features require the setting 
of a specific value (for example, password 
maximum lifetime), it is suggested that 
these be designed as parametric settings 
leaving the determination of exact values 
to local security management…

The question for today’s security 
specialists is, what still makes sense 
from the 1985 guidelines? The cur-
rent authentication mess suggests 
that we have not kept up with this task. 
Perhaps this article will spur some re-
thinking along these lines.

The DoD report offered specific ad-
vice about authentication and pass-
words. It stated that in a password-
based authentication mechanism 
implemented on an ADP (automated 
data processing) system, passwords 
are vulnerable to compromise because 
of five essential aspects of the pass-
word system:

1.	 A password must be initially as-
signed to a user when enrolled on the ADP 
system. This rule is still fine. Many sites 
have used a standard password for 

the initial password but skipped the 
requirement to force a change to the 
default password—an attacker could 
simply try a number of accounts with 
the default password to break into a 
system. The same held for some reset 
password schemes. One solution that 
encouraged a change of default pass-
word was to set the default or recovery 
password to “I am stupid.”

2.	 A user’s password must be changed 
periodically. I will discuss this in more 
detail later.

3.	 The ADP system must maintain a 
password database. This rule is still fine.

4.	 Users must remember their pass-
words. It turns out this rule is unrea-
sonable, especially for machine-gen-

erated passwords. These passwords 
are simply not that memorable, and 
to memorize multiple ones for a long 
time is beyond the abilities of most 
people. Also, people logged into many 
fewer systems in 1985.

5.	 Users must enter their passwords 
into the ADP system at authentication 
time. Rule 5 is incomplete: it is only 
single-factor authentication. The alter-
natives were undoubtedly well known 
to the authors, but probably too expen-
sive for general deployment. I suspect 
that a remark to this effect at that time 
might have changed our world.

Furthermore, according to the report:
˲˲ Users should be able to change their 

own passwords. This is a good idea. 
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sample operating systems, found with 
the command find / -user root 
-perm -4000 –print.

Each of the examples in Table 1 is a 
potential root compromise, and an at-
tacker can often find at least one.

˲˲ Passwords should be changed on a 
periodic basis to counter the possibility 
of undetected password compromise.

The most obvious threat to the se-
curity provided by a password system 
is from the compromise of passwords. 
The greater the length of time during 
which a password is used for authenti-
cation purposes, the more opportuni-
ties there are for exposing it. In a use-
ful password system, the probability of 
compromise of a password increases 
during its lifetime.

This section refers to Green book 
Appendix C, which gets to the meat 
of password strength and lifetime in 
the face of dictionary attacks. Several 
simple formulae are offered (an ASCII 
layout and typos makes the math more 
difficult to follow in the online ver-
sions), and results computed for a typi-
cal case of the time.

The goal is to resist a year’s worth 
of dictionary attacks with a cracking 
probability of 10–6 (or 10–20 for sensi-
tive systems). To give one of the re-
port’s examples, a nine-character 
password of only uppercase letters 
can resist a yearlong dictionary attack 
over a 30-character-per-second ter-
minal session, assuming 8.5 guesses 
per minute. The report offers similar 
computations for uppercase alphanu-
meric characters and words selected 
from a 23,300-entry dictionary of Eng-
lish words from four to six characters 
in length. The authors admit a much 
higher guessing rate if a file on hand is 
protected by a password.

Let’s plug in the numbers for a 
modern dictionary attack using 100 
million and seven billion trials per 
second. The first is an easy rate for a 
multicore machine running on typi-
cal password-hashing algorithms. The 
second rate is claimed for attacks im-
plemented on modern GPUs by a com-
mercial source. These are somewhat 
conservative numbers in an age of 
multicore processors, clusters of com-
puters, and botnets. If you think they 
are too aggressive, wait a year. Table 2 
shows the cracking time and password 
change rates for some variations.

Some systems in the deep past did not 
allow this.

˲˲ Passwords should be machine-gener-
ated rather than user-created. It is true 
that machine-generated passwords 
tend to be much stronger: the work 
factor needed to crack them is easy to 
compute and noncontroversial. Not so 
for human-created passwords, where a 
sea of associations and language rules 
greatly reduces the search space.

˲˲ Certain audit reports (for example, 
date and time of last login) should be pro-
vided by the system directly to the user. 
This gives the user an opportunity to 
spot unauthorized accesses. The prac-
tice was widely adopted in Unix sys-
tems with the login(1) command. It 
is still a fine idea.

˲˲ User ID is a unique symbol or charac-
ter string that is used by an ADP system 
to uniquely identify a user. The security 
provided by a password system should 
not rely on secrecy of the user’s ID. This 
is a typical cryptographic assumption, 
that only the key is secret, not the user 
ID. (I wish this were true for the Social 
Security Number in the U.S.) Obscuring 
the user ID can be a useful barrier to 
wholesale attacks, however, especially 
against massive online systems.

˲˲ Throughout the lifetime of an ADP 

system, each user ID should be assigned 
to only one person. In other words, do 
not share accounts and their associ-
ated passwords. This is still a good idea 
for important accounts, because it may 
aid in logging and attribution. This can 
be especially important for shared ac-
counts when a marriage is failing: for-
mer partners can be very nasty.

˲˲ All user IDs should be revalidated 
periodically. This is a good idea, but it 
is rarely implemented. Many break-
ins have occurred on unused or fallow 
accounts. Some systems implement a 
“we-haven’t-seen-you-in-a-while” in-
crease in authentication requirements, 
a good idea. A modern version includes 
stronger authentication when connec-
tions come from unusual locations or 
IP addresses.

˲˲ The simplest way to recover from the 
compromise of a password is to change 
it. Ah, the good old days! This is just 
wrong now. Once an account is com-
promised, the rot sets in and spreads 
through further attacks and transitive 
trust. Other accounts are attacked with 
the same password, often successfully. 
Bank accounts are drained (at least 
temporarily—personal exposure has 
declined on this,3 plasma screens or-
dered, billing addresses changed, and 
identities stolen.) 

On Unix/Linux personal accounts, 
a stolen password is just the begin-
ning. Systems are rooted, backdoors 
installed, and, often, other security 
weaknesses are fixed. SSH (secure 
shell) clients are installed to capture 
other passwords. It tends to be easier 
to root a Unix host given a user ac-
count. Table 1 is a sample of the num-
ber of SUID(root) programs on a few 

Table 1. Number of setuid(root)  
programs found with find.

System Number of programs

Linux (Ubuntu) 19

FreeBSD 9.0 38

OSX 10.8.2 34

FreeBSD 7.2 46

Table 2. Cracking time and password change rates.

Search 
space 
(bits)

7 billion  
trials/second

10 million 
trials/second

Scheme Cracked in Change time Cracked in Change time

8-character,  
full alphanumeric

47.6 0.36 mins. 31.19 ms. 252.71 days 21.83 sec.

8-character,  
eye-of-newt

52.3 9.25 days 799.40 ms. 17.74 years 559.58 sec.

11-character,  
eye-of-newt

71.9 20,390 years 7 days 1.43E+07 years 14.3 years

13-character,  
full alphanumeric

77.4 906,123 years 331 days 2.32E+11 years 634 years

12 character,  
eye-of-newt

78.5 1,896,229 years 692 days 4.84E+11 years 1,327 years
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Once an account 
is compromised, 
the rot sets in and 
spreads through 
further attacks and 
transitive trust. 
Other accounts are 
attacked with the 
same password, 
often successfully. 

The second scheme shown in the 
table is tougher than passwords con-
sidered secure these days: it is eight 
random characters chosen from the 93 
characters found on a keyboard (a bit 
more than eye-of-newt). This strong 
password needs to be changed every 31 
milliseconds for security purposes. (My 
crude spreadsheet for exploring this is 
available on my Web site.1)

The last two schemes in the table 
roughly meet the criteria of this docu-
ment: the password may be changed 
annually without risking more than a 
one-in-a-million chance of compro-
mise after a yearlong dictionary attack. 
These correspond to a work factor of 
77–79 bits, which might surprise you 
as being much larger than typical pass-
word strengths actually required, usu-
ally from 20 to the mid-40s.3 The added 
bits come from the requirement of 10–6 
guessing success probability, which 
adds 20 bits to the password length. 
(The spec actually calls for a probabil-
ity of 10–20 for classified access: that 
adds 66 bits!) 

The one-in-a-million requirement 
is probably unreasonable. With an in-
stallation of very expensive brute-force 
hardware, I am unlikely to deploy it for 
a year to gain access to a high-value tar-
get if my chances of success are, say, 
1%. On the other hand, history is full of 
examples of defenders underestimat-
ing the amount of work an attacker is 
willing to undertake.

Other Aphorisms
˲˲ Do not use the same password on mul-

tiple services. This is still a very good 
idea, though I realize that it is a pain in 
the neck. If I break into your Facebook 
account, then I am going to try that 
same password on LinkedIn, Gmail, 
iTunes, and so on. This attack works 
beautifully, because most people do 
not follow this rule.

Most practitioners who do follow 
this rule use a basic password, modi-
fied by some service-dependent por-
tion. If that variable portion is obvious, 
they probably should not bother. In 
this case, it would probably be better 
to choose different, strong passwords 
and ignore the next piece of advice.

˲˲ Do not write your passwords down. 
This rule depends very strongly on your 
threat model: what are you afraid of? In 
the deep past, many attacks came from 

fellow students, co-workers, family 
members, and on-site spies. The mov-
ie trope of checking for Post-It notes 
around the desk worked, and still does.

Writing your passwords down, how-
ever, is probably much safer than us-
ing the same password on multiple 
machines. In most cases today, the 
attacker does not have to be present 
to win. Your machine can be compro-
mised from very far away. Or the attack-
er leaves infected USB thumb-sticks in 
the company parking lot. The check-
the-Post-It attack is much less com-
mon than networked hacking attacks.

Of course, there is no need to make it 
too easy. Write down a comment or vari-
ation on the password that is sufficient 
to remind you of the real password. 
Sometimes I find a reminder of the par-
ticular site’s eye-of-newt rule is enough.

Password wallets are a terrific idea 
for storing passwords, but they get you 
back in the game of storing secrets on 
possibly unsecured computers with 
network access. The yellow pad in your 
office is probably more secure.

˲˲ Change your passwords often. This 
is often enforced by the authentica-
tion service, and it is generally a bad 
idea—and not useful. A good, strong 
password that you can remember is 
difficult to create and probably diffi-
cult to remember, especially if there 
are different passwords for different 
accounts. When a password is changed 
by force, all that goodness goes away, 
requiring a whole new effort.

This can be a particular problem 
for rarely used passwords. For exam-
ple, corporate-provided health care in 
the U.S. requires employees to review 
and make changes to coverage op-
tions annually. These systems require 
strong authentication and tend to 
be used exactly once a year, so to re-
member the password at all, I either 
write it down or rely on the password-
recovery scheme. On some systems, 
I have cycled through several strong 
passwords over a longer period than 
the authentication server remembers. 
Those really good passwords are too 
good to let go.

What We Have Learned
It is simply poor engineering to expect 
people to choose and remember pass-
words that are resistant to dictionary 
attacks. User training does not work: 
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˲˲ fooled otherwise faustus
˲˲ exclaimed democrat cruz
˲˲ deauville attaches ornamented
˲˲ acutely jeep pasha

These give a search space of more 
than 43 bits, matching the estimated 
strength of today’s strongest pass-
words. They also offer a chance to ex-
pand one’s vocabulary. Alas, they prob-
ably fail most eye-of-newt rules.

Suggestions
My dream is that authentication might 
become a lot less odious, maybe even 
fun. Passwords and passphrases should 
be easier to type and include automatic 
correction for typing and “tapographi-
cal” errors (on smart phones). This can 
be done without loss of security.

Why do the eye-of-newt rules re-
main? Account unlocking is a problem, 
requiring relatively costly or unsecured 
secondary authentication efforts. In 
some cases, it would be appropriate to 
have someone else—for example, an 
authorized spouse on a shared back 
account—enable the temporary au-
thentication and subsequent password 
change. “Honey, I did it again” could 
be much easier than getting through to 
an 800 number on a weekend.

It would be nice to have more than 
one way to log into a site, each way 
having about the same strength. This 
gives the users a choice of authentica-
tion methods, with other methods as a 
backup login. (Mother’s maiden name 
is not what I am talking about here. 
Secondary passwords tend to be much 
weaker and should not be used. Secu-
rity history is full of attacks that force 
the defender to drop back to second-
ary, less effective defenses.)

If one tries the same password twice 
in a session, that should not count as 
two tries. We all make, or suspect that 
we make, typographical errors. Did I 
enter that password correctly? I will try 
again more carefully. This should not 
count as a second wish for the pass-
word troll.

Conclusion
I am not optimistic that these changes 
will happen rapidly, or even at all. There 
is a huge installed base out there. “We 
do the same thing as everybody else” is 
an effective legal defense against mal-
feasance, so why change things? (I hate 
the word legacy!)

people will write down their pass-
words regardless.

Fortunately, dictionary attacks are 
rarely the problem. They are com-
pletely frustrated by getting out of the 
game: limit the number of attempts to 
a handful, then disable the account. 
Multiple-factor authentication and 
better recovery from compromise have 
also helped out.

This is not a new idea. I got my first 
bank ATM card in the early 1970s; it 
had a four-digit PIN. I do not recall if 
I was allowed to select the PIN myself, 
but it did not matter: it was my only 
PIN, and the service was unique and 
useful enough that I committed the 
PIN to memory. If I forgot it, the card 
would be eaten, or the account locked. 
This policy is still used in the U.S. bank-
ing system some four decades later, 
proof that it is working. It is also not a 
rare solution. Most authentication sys-
tems lock a user out after several tries. 

More importantly, the threats have 
changed. Dictionary attacks on pass-
words are not nearly the problem they 
used to be. Today’s threats include:

˲˲ Keystroke loggers record any pass-
word, no matter how complex.

˲˲ Phishing sites capture the pass-
words of the unwary, and it is very easy to 
be unwary. The mail reader should pres-
ent any URL found in an email with red 
flags and warnings, especially if it refers 
to an unfamiliar domain.

˲˲ Password files from poorly protect-
ed servers spill our secrets across the In-
ternet, eye-of-newt passwords included.

˲˲ Sites that have passed state-of-the-
art security audits are later found to have 
been leaking credit card information 
for years. Best-in-practice may be good 
enough for the lawyers, but it really is 
not solving very hard security problems.

Client systems are hardly secure—
we have built our houses on sand. Why 
should any mouse click present a secu-
rity threat? 

Dictionary attacks can be launched 
on password wallets, SSH agent pass-
phrases, PGP (Pretty Good Privacy) key 
rings, and stolen password databases. 
For strong passwords, words, rather 
than eye-of-newt strings, are easier to 
type and remember. From the Brown 
corpus’s top 23,300 common English 
words, I generated several random 
passphrases in the spirit of STD-002 
and xkcd:5

Authentication systems are vital, 
and changes to them can produce 
widespread and embarrassing failures. 
It is not clear that easier authentication 
would provide a market advantage. Is a 
company less secure than another com-
pany because it is easier to log into? 
Will it gain market share by doing so?

In spite of all this, the system 
seems to be working. We are leak-
ing military and industrial secrets to 
attackers all over the world, but mil-
lions of people use the Internet suc-
cessfully every day, and it is an im-
portant part of the world’s economy. 
Somehow, we get by.

Finally, I would like to see these 
systems engineered such that the user 
needs to remember only one security 
maxim: Don’t be a moron. Do not pick 
a password that someone who knows 
you can guess in a few tries, or that 
someone watching you type can figure 
out easily.

Unlike the eye-of-newt password 
rules, this last rule makes sense to the 
casual user and is easy to remember. 
All we have to do is engineer the rest to 
be reasonably secure.	
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Performance issues can be complex and mysterious, 
providing little or no clue to their origin. In the absence 
of a starting point—or a methodology to provide one—
performance issues are often analyzed randomly: 
guessing where the problem may be and then changing 
things until it goes away. While this can deliver results—

if you guess correctly—it can also be 
time consuming, disruptive, and may 
ultimately overlook certain issues. This 
article describes system-performance 
issues and the methodologies in use to-
day for analyzing them, and it proposes 
a new methodology for approaching and 
solving a class of issues.

Systems-performance analysis is com-
plex because of the number of compo-
nents and their interactions in a typical 
system. An environment may be com-
posed of databases, Web servers, load 
balancers, and custom applications, all 
running upon operating systems—ei-
ther bare-metal or virtual. And that is just 
the software. Hardware and firmware, 
including external storage systems and 

network infrastructure, add many more 
components to the environment, any 
of which is a potential source of issues. 
Each of these components may require 
its own field of expertise, and a company 
may not have staff knowledgeable in all 
the components in its environment. 

Performance issues may also arise 
from complex interactions between 
components that work well in isola-
tion. Solving this type of problem may 
require multiple domains of expertise 
to work together.

As an example of such complex-
ity within an environment, consider 
a mysterious performance issue we 
encountered at Joyent for a cloud-
computing customer: the problem ap-
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analysis, as shown by the streetlight 
anti-method. This is the absence of any 
deliberate methodology. The user ana-
lyzes performance by selecting observ-
ability tools that are familiar, found on 
the Internet, or found at random and 
then seeing whether anything obvious 
shows up. This hit-or-miss approach 
can overlook many types of issues.

Finding the right tool can take a 
while. The most familiar tools are 
run first, even if they do not make the 
most sense. This is related to an ob-
servational bias called the streetlight 
effect,17 named after a parable:

A policeman sees a drunk hunting 
for something under a streetlight and 
asks what he is looking for. The drunk 
says he has lost his keys. The police-
man cannot find them either, and 
asks if he lost them under the street-
light. The drunk replies: “No, but this 
is where the light is best.”

The performance equivalent would 
be looking at top(1), not because it 
makes sense but because the user 
does not know how to read other tools.

Learning more tools helps but is 
still a limited approach. Certain sys-
tem components or resources may be 
overlooked because of a lack of ob-
servability tools or metrics. Further-
more, the user, unaware that the view 
is incomplete, has no way of identify-
ing “unknown unknowns.”

Better performance-analysis meth-
odologies are available that may solve 
issues before you run any tools at all. 
These include the problem statement 
method, workload characterization, 
and drill-down analysis. 

Problem Statement Method
The problem statement method, com-
monly used by support staff for col-
lecting information about a problem, 
has been adapted for performance 
analysis.9 It can be the first methodol-
ogy attempted for performance issues.

The intent is to collect a detailed 
description of the issue—the problem 
statement—that directs deeper analy-
sis. The description on its own may 
even solve the issue. This is typically 
entered into a ticketing system by ask-
ing the following questions:

˲˲ What makes you think there is a 
performance problem?

˲˲ Has this system ever performed 
well?

peared to be a memory leak, but from 
an unknown location. This was not 
reproducible in a lab environment 
with the components in isolation. The 
production environment included the 
operating system and system libraries, 
the customer’s own application code 
written in node.js, and a Riak database 
running on the Erlang VM (virtual ma-
chine). Finding the root cause required 
knowledge of the customer’s code, 
node.js, Riak, Erlang, and the operat-
ing system, each of which was provided 
by one or more different engineers. 
The problem turned out to be in the 
system library, identified by engineers 
with operating-systems expertise.

Another complicating factor is that 
“good” or “bad” performance can be 
subjective: what may be unacceptable 
latency for one user may be acceptable 
for another. Without a means of clearly 
identifying issues, it can be difficult to 
know not only if an issue is present, but 
also when it is fixed. The ability to mea-
sure performance issues—for example, 
as an expression of response time—al-
lows them to be quantified and different 
issues ranked in order of importance.

Performance-analysis methodology  
can provide an efficient means of ana-
lyzing a system or component and 
identifying the root cause(s) of prob-
lems, without requiring deep expertise. 
Methodology can also provide ways of 
identifying and quantifying issues, al-
lowing them to be known and ranked.

Performance texts have provided 
methodologies for various activities, 
such as capacity planning,1,16 bench-
marking,18 and modeling systems.7,8,10 
Methodologies for finding the root 
causes of performance issues, how-
ever, are uncommon. One example 
is the drill-down analysis method in-
troduced in Solaris Performance and 
Tools,13 which describes a three-stage 
procedure for moving from a high-
level symptom down to analyzing the 
cause. These texts have typically cov-
ered analysis by use of ad hoc check-
lists of recent tips and tuning, and by 
teaching operating-systems internals 
and tools.2,11,12,15 The latter allows per-
formance analysts to develop their 
own methodologies, although this can 
take considerable time to accomplish.

Ad hoc performance checklists have 
been a popular resource. For example, 
Sun Performance and Tuning2 includes 

“Quick Reference for Common Tuning 
Tips,” which lists 11 tips, intended to 
find disk bottlenecks, network file sys-
tem (NFS), memory, and CPU issues, 
and is both easy to follow and prescrip-
tive. Support staff groups often use 
these lists because they provide a con-
sistent check of all items, including the 
most egregious issues. This approach 
poses some problems, however. Observ-
ability is limited to the specific items in 
the list, and they are usually point-in-
time recommendations that go out of 
date and require updates. These check-
lists also focus on issues for which there 
are known fixes that can be easily docu-
mented, such as the setting of tunable 
parameters, but not custom fixes to the 
source code or environment.

In this article I summarize several 
other methodologies for systems-per-
formance analysis, including the USE 
method, which is explained in detail. I 
begin by describing two commonly used 
anti-methodologies—the blame-some-
one-else anti-method and the streetlight 
anti-method—that serve as compari-
sons with later methodologies.

The “Blame-Someone-Else”  
Anti-Method
The first anti-methodology follows 
these simple steps:

1.	 Find a system or environment 
component you are not responsible for. 

2.	 Hypothesize that the issue is with 
that component. 

3.	 Redirect the issue to the respon-
sible team. 

4.	 When proven wrong, go back to 
step 1.

For example, “Maybe it’s the net-
work. Can you check with the network 
team to see if they have had dropped 
packets or something?”

Instead of investigating perfor-
mance issues, this methodology makes 
them someone else’s problem, which 
can be wasteful of other teams’ resourc-
es. A lack of data analysis—or even data 
to begin with—leads to the hypothesis. 
Ask for screen shots showing which 
tools were run and how their output 
was interpreted. These can be taken to 
someone else for a second opinion.

The Streetlight Anti-Method
While running tools and collecting 
data is better than wild hypotheses, it is 
not sufficient for effective performance 
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“Good” or “bad” 
performance  
can be subjective: 
what may be 
unacceptable 
latency for  
one user may be 
acceptable  
for another.  
Without a means  
of clearly identifying 
issues, it can be 
difficult to know 
not only if an issue 
is present, but also 
when it is fixed.

˲˲ What has changed recently? (Soft-
ware? Hardware? Load?)

˲˲ Can the performance degradation 
be expressed in terms of latency or 
runtime?

˲˲ Does the problem affect other peo-
ple or applications (or is it just you)?

˲˲ What is the environment? What 
software and hardware is used? Ver-
sions? Configuration?

These questions may be custom-
ized to the environment. While the 
questions may seem obvious, the an-
swers often resolve a class of issues, 
requiring no deeper methodologies. 
When that is not the case, other meth-
odologies can be called into service, 
including workload characterization 
and drill-down analysis.

The Workload 
Characterization Method
The workload can be characterized by 
answering questions such as:

˲˲ Who is causing the load? Process 
ID, user ID, remote IP address? 

˲˲ Why is the load being called? 
Code path? 

˲˲ What are other characteristics of 
the load? IOPS, throughput, type? 

˲˲ How is the load changing over 
time? 

This helps to separate problems of 
load from problems of architecture, by 
identifying the former.

The best performance wins often 
arise from eliminating unnecessary 
work. Sometimes these bottlenecks 
are caused by applications malfunc-
tioning (for example, a thread stuck 
in a loop) or bad configurations (sys-
temwide backups running during the 
day). With maintenance or reconfigu-
ration, such unnecessary work can be 
eliminated. Characterizing the load 
can identify this class of issue.

The Drill-Down Analysis Method
Drill-down analysis involves peeling 
away layers of software and hardware 
to find the core of the issue—moving 
from a high-level view to deeper details. 
These deeper details may include exam-
ining kernel internals—for example, by 
using profiling to sample kernel stack 
traces, or dynamic tracing to examine 
the execution of kernel functions.

Solaris Performance and Tools13 
provides a drill-down analysis meth-
odology for system performance. It 

follows three stages:
˲˲ Monitoring. This continually re-

cords high-level statistics over time 
across many systems, identifying or 
alerting if a problem is present.

˲˲ Identification. Given a system with 
a suspected problem, this narrows the 
investigation to particular resources 
or areas of interest using system tools 
and identifying possible bottlenecks.

˲˲ Analysis. This stage provides fur-
ther examination of particular system 
areas, identifying the root cause(s) and 
quantifying the issue. 

The analysis stage may follow its 
own drill-down approach, beginning 
with applications at the top of the soft-
ware stack and drilling down into sys-
tem libraries, system calls, kernel in-
ternals, device drivers, and hardware.

While drill-down analysis often 
pinpoints the root cause of issues, it 
can be time consuming, and when 
drilling in the wrong direction, it can 
waste a great deal of time.

The Need for a New Methodology
I recently analyzed a database per-
formance issue on the Joyent public 
cloud, which began with a ticket con-
taining a problem statement as de-
scribed in the previous section. The 
statement indicated that there was a 
real issue that needed deeper analysis.

The issue had been intermittent, 
with some database queries taking 
seconds to complete. The customer 
blamed the network, hypothesizing 
that the query latency was caused by 
dropped network packets. This was 
not a wild hypothesis, as the ticket in-
cluded output from ping(1) showing 
occasional high latency; ping(1) is a 
common and familiar tool, however, 
and with no other supporting evi-
dence, this seemed to be an example 
of the streetlight anti-method.

The support team ran tools to in-
vestigate the network in much more 
detail, including examining TCP/IP 
stack network counters, without find-
ing any problems. This analysis took 
time because there are dozens of such 
statistics, some of which are difficult 
to interpret and must be examined 
over time to look for correlations. 
While logged into the systems, the 
team also checked CPU usage vs. the 
cloud-imposed limits, following their 
own ad hoc checklist of common is-
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vidually. Some software resources can 
be examined using the same methodol-
ogy, provided the metrics make sense. 

Utilization is the percentage of time 
that the resource is busy servicing 
work during a specific time interval. 
While busy, the resource may still be 
able to accept more work; the degree 
to which it cannot do so is identified 
by saturation. That extra work is often 
waiting in a queue.

For some resource types, including 
main memory, utilization is the capac-
ity of the resource that is used. This is 
different from the time-based defini-
tion. Once a capacity resource reaches 
100% utilization, no more work can be 
accepted, and it either queues the work 
(saturation) or returns errors, either of 
which is identified by the USE method.

Errors in terms of the USE method 
refer to the count of error events. Er-
rors should be investigated because 
they can degrade performance, and 
they may not be immediately noticed 
when the failure mode is recoverable. 
This includes operations that fail and 
are retried, as well as devices that fail 
in a pool of redundant devices.

In contrast to the streetlight anti-
method, the USE method iterates over 
system resources instead of starting 
with tools. This creates a complete list of 
questions to ask, and only then search-
es for the tools to answer them. Even 
when tools cannot be found to answer 
the questions, the knowledge that these 
questions are unanswered can be ex-
tremely useful for the performance ana-
lyst: they are now “known unknowns.”

The USE method also directs analy-
sis to a limited number of key met-
rics, so that all system resources are 
checked as quickly as possible. After 
this, if no issues have been found, you 
can turn to other methodologies.

The key metrics of the USE method 
are usually expressed as follows:

˲˲ Utilization as a percentage over a 
time interval (for example, one CPU is 
running at 90% utilization). 

˲˲ Saturation as a wait queue length 
(for example, the CPUs have an aver-
age run queue length of four).

˲˲ Errors as the number of errors re-
ported (for example, the network in-
terface has had 50 late collisions).

It is also important to express the 
time interval for the measurement. 
Though it may seem counterintuitive, a 

sues. Their conclusion was that there 
was no issue while they were watch-
ing: the network and CPUs were fine.

At this point, many system compo-
nents and tens of thousands of system 
statistics had not yet been checked, as 
they were assumed to be unrelated to 
the issue. Without a direction to fol-
low, checking everything across all 
systems in the customer’s cloud envi-
ronment could take days. The analysis 
to date had not found any evidence of 
a real issue, which was discouraging.

The next step was to try dynamic trac-
ing of the originally reported problem 
(network packet drops), in the hope of 
finding something that the standard 
network counters had missed. I have 
used the DTrace tool many times to 
perform drill-down analysis of the TCP/
IP stack. This can provide many details 
beyond the standard network observ-
ability toolset, including inspection 
of kernel-dropped packets and inter-
nal TCP state. It still can take hours to 
catch intermittent issues, however. I 
was tempted to begin drill-down analy-
sis from the database query latency, in 
case the issue was not network related, 
or to begin characterizing the database 
workload over time, in case the problem 
was caused by a burst of load, but these 
approaches are also time consuming.

Before beginning deeper analysis, I 
wanted to perform a quick check of all 
system components, not just the net-
work and CPUs, to look for bottlenecks 
or errors. For this to be quick, it would 
need to check only a limited number 
of statistics per system, not the tens of 

thousands available. And for this to be 
complete, it would need to check all 
components, including those that might 
be missed because they have no observ-
ability tools or statistics by default.

The utilization, saturation, and er-
rors (USE) method provided one way of 
doing this. It quickly revealed that the 
database system was out of memory 
and was paging, and that the disks were 
occasionally running at saturation. 
Focusing troubleshooting efforts on 
networking early on had meant these 
areas were overlooked in the team’s 
analysis. The real issues were in the 
system memory and disks, which were 
much quicker to read and interpret.

I developed the USE method while 
teaching classes in operating-systems 
performance. The goal was to help my 
students find common issues and to 
ensure that they were not overlook-
ing important areas. I have used it 
successfully many times in enterprise 
and cloud-computing environments, 
but it does not solve all types of prob-
lems and should be treated as just one 
methodology in the toolbox.

The USE Method
The USE method is intended to be 
used early in a performance investi-
gation, after the problem-statement 
method, to identify systemic bottle-
necks quickly. It can be summarized 
as: For every resource, check utilization, 
saturation, and errors.

Resource in this case means all physi-
cal server functional components (CPUs, 
disks, buses, and so on) examined indi-

Figure 1. A two-socket system.

CPU Interconnect

Memory
Bus

DRAM DRAMCPU 1

I/O Bridge

Expander Interconnect

Interface Transports

I/O Bus

I/O Controller

Disk Disk

Network Controller

CPU 2

Net Net



practice

february 2013  |   vol.  56  |   no.  2  |   communications of the acm     49

short burst of high utilization can cause 
saturation and performance issues, 
even though the overall utilization is low 
over a long interval. Some monitoring 
tools report utilization as five-minute 
averages. CPU utilization, for example, 
can vary dramatically from second to 
second, and a five-minute average can 
disguise short periods of 100% utiliza-
tion and, therefore, saturation.

The first step in the USE method is 
to create a list of resources. Try to be as 
complete as possible. Here is a generic 
list of server hardware resources, with 
specific examples:

˲˲ �CPUs—Sockets, cores, hardware 
threads (virtual CPUs). 

˲˲ Main memory—DRAM. 
˲˲ �Network interfaces—Ethernet 
ports. 

˲˲ Storage devices—Disks. 
˲˲ Controllers—Storage, network. 
˲˲ �Interconnects—CPU,  
memory, I/O. 

Each component typically acts as a 
single resource type. For example, main 
memory is a capacity resource, and a 
network interface is an I/O resource, 
which can mean either IOPS (I/O opera-
tions per second) or throughput. Some 
components can behave as multiple 
resource types—for example, a storage 
device is both an I/O resource and a ca-
pacity resource. Consider all types that 
can lead to performance bottlenecks. 
Also note that I/O resources can be fur-
ther studied as queueing systems, which 
queue and then service these requests.

Some physical components can 
be left off your checklist, such as 
hardware caches (for example, MMU 
TLB/TSB, CPU Level-1/2/3). The USE 
method is most effective for resources 
that suffer performance degradation 
under high utilization or saturation, 
leading to bottlenecks; caches improve 
performance under high utilization.

Cache hit rates and other perfor-
mance attributes can be checked after 
the USE method has been applied—
that is, after systemic bottlenecks have 
been ruled out. If you are unsure wheth-
er to include a resource, go ahead and 
include it and then see how well the 
metrics work in practice.

Function Block Diagram
Another way to iterate over resources is 
to find or draw a function block diagram3 
for the system. This type of diagram also 

shows relationships, which can be very 
useful when looking for bottlenecks in 
the flow of data. Figure 1 is a generic dia-
gram showing a two-socket system.

While determining utilization for 
the various buses, annotate each one 
on the functional diagram with its 
maximum bandwidth. The resulting 
diagram may pinpoint systemic bottle-
necks before a single measurement 
has been taken. (This is also a useful 
exercise during hardware product de-
sign, while you still have time to change 
physical components.)

CPU, memory, and I/O intercon-
nects are often overlooked. Fortunately, 
they are not commonly the cause of sys-
tem bottlenecks. Unfortunately, when 
they are, the problem can be difficult 
to solve (maybe you can upgrade the 
main board or reduce load (for exam-
ple, “zero copy” projects lighten mem-
ory bus load). At least the USE method 
takes interconnect performance into 
consideration. (See Analyzing the Hy-
perTransport4 for an example of an in-
terconnect issue identified in this way.)

Once you have your list of resources, 
consider the types of metrics you need for 
each (utilization, saturation, and errors). 
Table 1 lists some example resources 
and metric types, along with possible 
metrics (from generic Unix/Linux). 
These metrics can be expressed either 
as averages per interval or as counts.

Repeat for all combinations and 
include instructions for fetching each 
metric. Take note of metrics that are 
not currently available: these are the 
“known unknowns.” You will end up 
with a list of about 30 metrics, some 
of which are difficult to measure and 
some of which cannot be measured at 
all. Example checklists have been built 
for Linux- and Solaris-based systems.5,6

Fortunately, the most common is-
sues are usually found with the easier 
metrics (for example, CPU saturation, 
memory capacity saturation, network 
interface utilization, disk utilization), 
so these can be checked first.

Table 2 lists some examples of 
harder combinations. Some of these 
metrics may not be available from 

Table 1. Resources and metric types.

Resource Type Metric

CPU utilization CPU utilization (ideally per CPU)

CPU saturation dispatcher queue length (aka run-queue length)

Memory utilization available free memory (systemwide)

Memory saturation anonymous paging or thread swapping  
(“page scanning” is another indicator)

Network interface utilization RX/TX throughput / max bandwidth

Storage device I/O utilization device busy percent

Storage device I/O saturation wait queue length

Storage device I/O errors device errors (“soft,” “hard”)

Table 2. Harder combinations.

Resource Type Metric

CPU errors correctable CPU cache ECC events or faulted CPUs  
(if the OS+HW supports that)

Memory errors failed malloc()s (although this is usually because  
of virtual memory exhaustion, not physical)

Network saturation saturation-related NIC or operating-system errors  
(for example, Solaris “nocanputs”)

Storage Controller utilization depends on the controller; it may have a max IOPS  
or throughput that can be checked vs. current activity

CPU interconnect utilization per port throughput/max bandwidth  
(CPU performance counters)

Memory interconnect saturation memory stall cycles, high CPI  
(CPU performance counters)

I/O interconnect utilization bus throughput/max bandwidth  
(performance counters may exist on your hardware; for 
example, Intel “uncore” events)
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standard operating-system tools. I of-
ten have to write my own software for 
such metrics, using either static or dy-
namic tracing (DTrace) or the CPU per-
formance counter facility.

Some software resources can be sim-
ilarly examined. This usually applies to 
smaller components of software, not to 
entire applications. For example:

˲˲ Mutex locks. Utilization may be 
defined as the time the lock was held, 
saturation by those threads queued 
waiting on the lock. 

˲˲ Thread pools. Utilization may be 
defined as the time threads were busy 
processing work, saturation by the 
number of requests waiting to be ser-
viced by the thread pool. 

˲˲ Process/thread capacity. The sys-
tem may have a limited number of pro-
cesses or threads whose current usage 
may be defined as utilization; waiting 
on allocation may indicate saturation; 

and errors occur when the allocation 
fails (for example, “cannot fork”). 

˲˲ File descriptor capacity. This is 
similar to the above, but for file de-
scriptors. 

If the metrics work well, then use 
them; otherwise, software troubleshoot-
ing can be left to other methodologies.

Suggested Interpretations
The USE method helps identify which 
metrics to use. After you learn how to 
read them from the operating system, 
your next task is to interpret their cur-
rent values. For some metrics, interpre-
tation may be obvious (and well docu-
mented). Others are not so obvious 
and may depend on workload require-
ments or expectations. Here are some 
general suggestions for interpreting 
metric types:

˲˲ Utilization. 100% utilization is 
usually a sign of a bottleneck (check 

saturation and its effect to confirm). 
High utilization (for example, beyond 
60%) can begin to be a problem for a 
couple of reasons. First, when utiliza-
tion is measured over a relatively long 
time period (multiple seconds or min-
utes), a total utilization of, say, 60% 
can hide short bursts of 100% utiliza-
tion. Second, some system resources, 
such as hard disks, usually cannot be 
interrupted during an operation, even 
for higher-priority work. Compare this 
with CPUs, which can be interrupted 
(“preempted”) at almost any moment. 
Once disk utilization is above 60%, 
queueing delays can become more 
frequent and noticeable, as the tail of 
the queue becomes longer. This can 
be quantified using queuing theory to 
model response time vs. utilization (for 
example, modeling a disk as M/M/1).

˲˲ Saturation. Any degree of saturation 
can be a problem (non-zero). This may be 
measured as the length of a wait queue or 
time spent waiting on the queue.

˲˲ Errors. Non-zero error counters are 
worth investigating, especially if they 
are still increasing while performance 
is poor.

It is easy to interpret the negative 
cases: low utilization, no saturation, 
no errors. This is more useful than it 
sounds. Narrowing the scope of an in-
vestigation can help you focus quickly 
on the problem area.

Cloud Computing
In a cloud-computing environment, 
software resource controls may be in 
place to limit or throttle tenants who 
are sharing one system. At Joyent, we 
primarily use operating-system virtu-
alization (the SmartOS-based Smart-
Machine), which imposes memory and 
CPU limits, as well as storage I/O throt-
tling. Each of these resource limits can 
be examined with the USE method, sim-
ilar to examining the physical resources.

For example, in our environment 
memory capacity utilization can be the 
tenant’s memory usage vs. its memory 
cap. Memory capacity saturation can 
be seen by anonymous paging activity, 
even though the traditional Unix page 
scanner may be idle.

˲˲ Strategy. The USE method is pic-
tured as a flowchart in Figure 2. Errors 
come first, because they are usually 
easier and quicker to interpret than 
utilization and saturation.

Figure 2. The USE method.

Start

End

A Problem Identified

Identify Components

Choose a Component

Errors Present?

High Utilization?

Saturation?

Components Checked?

Y

Y

N

N

N

N

Y

Y



practice

february 2013  |   vol.  56  |   no.  2  |   communications of the acm     51

The USE method identifies prob-
lems that are likely to be system bottle-
necks. Unfortunately, a system may be 
suffering more than one performance 
problem, so the first issue you find may 
be a problem but not the problem. You 
can investigate each discovery using 
further methodologies before return-
ing to the USE method as needed to 
iterate over more resources. Or you 
may find it more efficient to complete 
the USE method checklist first and list 
all problems found, then to investigate 
each based on its likely priority.

Methodologies for further analysis 
include the workload characterization 
method and drill-down analysis method, 
summarized earlier. After completing 
these (if needed), you should have evi-
dence to determine whether the correc-
tive action needed is to adjust the load 
applied or to tune the resource itself.

While the previous methodologies 
may solve most server issues, latency-
based methodologies (for example, 
Method R14) can approach finding 
100% of all issues. These methodolo-
gies, however, can take much more 
time if you are unfamiliar with soft-
ware internals, and they may be more 
suited for database administrators or 
application developers who already 
have this familiarity.

Conclusion
Systems-performance analysis can be 
complex, and issues can arise from 
any component, including from in-
teractions among them. Methodolo-
gies in common use today sometimes 
resemble guesswork: trying familiar 
tools or posing hypotheses without 
solid evidence. 

The USE Method was developed to 
address shortcomings in other com-
monly used methodologies and is a 
simple strategy for performing a com-
plete check of system health. It consid-
ers all resources so as to avoid overlook-
ing issues, and it uses limited metrics 
so that it can be followed quickly. This 
is especially important for distributed 
environments including cloud com-
puting, where many systems may need 
to be checked. This methodology will, 
however, find only certain types of is-
sues—bottlenecks and errors—and 
should be considered as one tool in a 
larger methodology toolbox.	
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A Decade of OS  
Access-Control 
Extensibility

movement from multiuser computing 
toward single-user devices with com-
plex application models. The transition 
was facilitated by extensible access-con-
trol frameworks, which allow operating-
system kernels to be more easily adapt-
ed to new security requirements.

One such extensible kernel refer-
ence-monitor framework is the Trust-
edBSD MAC (Mandatory Access Con-
trol) Framework, developed beginning 
in 2000 and shipped in the open source 
FreeBSD operating system in 2003. 
This article first describes the context 
and challenges for access-control ex-
tensibility and high-level framework 
design, then turns to practical expe-
rience deploying security policies in 
several framework-based products, in-
cluding FreeBSD, nCircle appliances, 
Juniper’s Junos, and Apple’s OS X and 
iOS. While extensibility was key to each 
of these projects, they motivated con-
siderable changes to the framework it-
self, so the article also explores how the 
framework did (and did not) meet each 
product’s requirements, and finally re-
flects on the continuing evolution of 
operating-system security.

A Quiet Revolution in OS Design
Embedded and mobile operating sys-
tems have changed greatly in the past 
20 years: devices have gained the CPU 
power to run general-purpose operat-
ing systems; they have been placed in 
ubiquitous networking environments; 
they have needed to support mature 
software stacks including third-party 
applications; and they have found 
themselves exposed to malicious ac-
tivity motivated by strong financial 
incentives. Vendors built on exist-
ing operating systems—often open 
source—to avoid creating them from 
scratch. This provided mature applica-
tion frameworks and complex network 
stacks, both areas of weakness for 
then-contemporary “embedded oper-
ating systems.” One early example is 
Juniper’s Junos, a version of FreeBSD 
adapted for router control planes in 
1998. This trend had come to fruition 
by 2007 when Google’s Android, based 

To discuss operating-system  security is to marvel 
at the diversity of deployed access-control models: 
Unix and Windows NT multiuser security, Type 
Enforcement in SELinux, anti-malware products, app 
sandboxing in Apple OS X, Apple iOS, and Google 
Android, and application-facing systems such as 
Capsicum in FreeBSD. This diversity is the result of a 
stunning transition from the narrow 1990s Unix and 
NT status quo to security localization—the adaptation 
of operating-system security models to site-local or 
product-specific requirements. 

This transition was motivated by three changes: 
the advent of ubiquitous Internet connectivity; a 
migration from dedicated embedded operating 
systems to general-purpose ones in search of more 
sophisticated software stacks; and widespread 
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on Linux, and Apple’s iOS, based in 
part on Mach and FreeBSD, became 
available, transforming the smart-
phone market.

Common to all of these environ-
ments is a focus on security and reli-
ability: as third-party applications are 
deployed in systems from Junos, via its 
SDK, and to iOS/Android app stores, 
sandboxing becomes critical, first to 
prevent bricking (reducing a device to 
a mere brick as a result of malfunction 
or abuse) and later to constrain mal-
ware. This trend is reinforced by mo-
bile-phone access to online purchas-
ing, and most recently, banking and 
payment systems. As a result, the role 
of operating-system security has shift-
ed from protecting multiple users from 
each other toward protecting a single 
operator or user from untrustworthy 
applications. In 2013, embedded de-
vices, mobile phones, and tablets are 
points of confluence: the interests of 
many different parties—consumers, 
phone vendors, application authors, 
and online services—must be medi-
ated with the help of operating systems 

that were designed for another place 
and time.

Access-Control Frameworks. Oper-
ating-system developers must satisfy 
device vendors, who require everything 
from router and firewall hardening 
to mobile-phone app sandboxing. 
Operating-system vendors had accu-
rately observed a difficult adoption 
path for historic trusted operating sys-
tems, whose mandatory access-control 
schemes suffered from poor usability, 
performance, maintainability, and—
perhaps most critically—end-user de-
mand. Likewise, they saw many prom-
ising new security models in research, 
each with unknown viability, suggest-
ing that no single access-control mod-
el would meet all needs. This practical 
reality of security localization directly 
motivates extensible access control.

Research over the preceding 20 
years had made clear the need for a ref-
erence monitor—a self-contained, non-
bypassable, and compact (hence verifi-
able) centralization of access control.2 
By the early 1990s, this concept had 
been combined with the notion of en-

capsulation, appearing in Abrams et 
al.’s Generalized Framework for Ac-
cess Control (GFAC),1 and by the late 
1990s in Ott’s Rule Set-based Access 
Control (RSBAC)14 and Spencer et al.’s 
Flask security architecture.17 Main-
stream operating-system vendors did 
not adopt these approaches until the 
early 2000s with the MAC Framework 
on FreeBSD22 and shortly after, Linux 
Security Modules (LSM).23 In both cas-
es, a key concern was supporting third-
party security models without com-
mitting to fixed policies as had earlier 
trusted systems.

The MAC Framework
The MAC Framework was proposed 
in 1999, with the first whitepaper on 
its design published in June 2000.20 It 
appeared in FreeBSD 5.0 in 2003 as an 
experimental feature—compiled out 
by default but available to early adopt-
ers. FreeBSD 8.0 in 2009 included the 
framework as a production feature, 
compiled into the default kernel. (A 
timeline of key events in its develop-
ment appears in Figure 1.) 
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compiled into the kernel or loadable 
modules and implement well-defined 
kernel programming interfaces (KPIs). 
Policies can augment access-control 
decisions and make use of common 
infrastructure such as object labeling 
to avoid direct kernel modification 
and code duplication. They are able to 
enforce access control across a broad 

The MAC Framework offers a logi-
cal solution to the problem of kernel 
access-control augmentation: exten-
sion infrastructure able to represent 
many different policies, offering im-
proved maintainability and supported 
by the operating-system vendor. Simi-
lar to device drivers and virtual file 
system (VFS) modules,10 policies are 

range of object types, from files to net-
work interfaces, and integrate with the 
kernel’s concurrency model.

Mandatory Policies. MAC describes 
a class of security models in which 
policies constrain the interactions 
of all system users. Whereas discre-
tionary access control (DAC) schemes 
such as file-system access-control lists 

Figure 1. MAC Framework research and development with key corporate contributions.
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June 2000: extensible access control 
framework for FreeBSD proposed at 
Network Associates Laboratories

2001–2004 DARPA CBOSS project 
on access control extensibility at 
McAfee Reasearch

2004–2007 US Navy SEFOS project at 
McAfee Research improves the MAC 
Framework; SEBSD; Apple OS X port

October 2007, August 2008: MAC 
Framework improvements merged  
to FreeBSD from Apple OS X

2009: MAC Framework DTrace 
instrumentation added by University of 
Cambridge during dynamic analysis study

July 2002: MAC Framework merged to 
FreeBSD 5.0 development tree

November 2006: nCircle contributes OS 
privilege extensions to MAC Framework

2007: Secure Computing Corporation  
(later McAfee) contributes MAC Framework 
patches from FreeBSD transition; 
Sidewinder is evaluated to EAL 4+

2008: Seccuris  contributes MAC 
Framework IPC enhancements while 
developing Biba-based network intrusion 
detection appliance

Figure 2. Policy models are encapsulated in kernel modules that augment kernel access control.
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(ACLs) allow object owners to protect 
(or share) objects at their own discre-
tion, MAC enforces systemwide se-
curity invariants regardless of user 
preference. The research literature de-
scribes a plethora of mandatory poli-
cies grounded in information flow and 
rule-based models.

Early mandatory policies focused on 
information flow, requiring ubiquitous 
enforcement throughout the kernel. 
Multilevel security (MLS) protects con-
fidentiality by labeling user clearance 
and data confidentiality, limiting flow.5 
The Biba integrity policy is the logi-
cal dual of MLS, protecting integrity.6 
These models maintain subject and 
object security labels holding confi-
dentiality or integrity information, and 
controlling operations that might lead 
to information upgrade or downgrade.

SRI International’s PSOS (Provably 
Secure Operating System) design in-
cluded strong enforcement of object 
types, supplementing capability protec-
tions.13 This evolved into Boebert’s Type 
Enforcement (TE)7 and Badger et al.’s 
Domain and Type Enforcement (DTE),4 
which have proven influential, with TE 
deployed in SELinux11 and McAfee’s 
Sidewinder firewall. Both models are 
flexible and fine-grained, labeling sub-
jects and objects with symbolic do-
mains and types. Administrator-con-
trolled rules authorize interactions and 
transitions between domains.

Finally, a broad class of product-
specific hardening policies is also rel-
evant; these take less principled ap-
proaches, offering direct control over 
services rather than abstract models.

Before Access-Control Extensibil-
ity. In implementation papers, we cri-
tiqued contemporaneous techniques 
from experience:

˲˲ Direct kernel modification was used 
for most trusted systems, whether 
originated by operating-system ven-
dors (for example, Trusted Solaris) or 
third-party extensions (for example, 
Argus Pitbull). Tracking upstream 
operating-system development is 
problematic: extensions are unable 
to depend on public, and hence more 
stable, APIs (application program-
ming interfaces) and KPIs—and less 
obvious at the time, ABIs (application 
binary interfaces) and KBIs (kernel 
binary interfaces). Upstream churn 
frequently triggers design and source-

code conflicts with security exten-
sions. Assurance is also affected, as 
the burden of arguing for correctness 
is left entirely in the hands of the ex-
tension writer.

˲˲ System call interposition is widely 
used in antivirus systems and, in the 
past, security extension products and 
research systems.9 Kernel concurren-
cy proves a particular challenge, and 
we have demonstrated easily exploit-
ed race conditions between wrappers 
and kernels.19

Guiding Design Principles. The 
dual goals of access-control extensi-
bility and encouraging upstream and 
downstream vendor engagement mo-
tivated several design principles for 
the MAC Framework:

Do not commit to a specific access-
control policy. There is no consensus 
on a single policy or even policy lan-
guage; instead, capture policy models 
in C code.

Avoid policy-specific intrusions into 
the kernel. Encapsulate internals be-
hind policy-agnostic interfaces. This 
leads naturally to object-centered de-
sign—access-control checks with re-
spect to subjects, objects, and methods.

Provide policy-agnostic infrastructure. 
This satisfies common requirements 
beyond access-control instrumenta-
tion, such as labeling and tracing.

Support multiple simultaneously 
loaded policies. In this way different 
aspects of policy, perhaps from differ-
ent vendors, can be independently ex-
pressed. For example, Trusted IRIX and 
Argus Pitbull both employed MLS for 
user-data confidentiality and Biba for 
trusted computing base (TCB) protec-
tion. Composition must be predictable, 
deterministic, and ideally sensible.

Impose structures that facilitate as-
surance arguments. This can be done 
by separating policy and mechanism 
via a reference monitor and through 
well-defined KPI semantics (for exam-
ple, locking).

Design for an increasingly concurrent 
kernel. Policies must not only behave 
correctly, but also scale with the fea-
tures they protect.

Architecture of the MAC Frame-
work. The MAC Framework, illustrated 
in Figure 2, is a thin layer linking kernel 
services, policies, and security-aware 
applications. Control passes from ker-
nel consumers to framework to poli-

The MAC 
Framework 
offers a logical 
solution to the 
problem of kernel 
access-control 
augmentation: 
extension 
infrastructure able 
to represent many 
different policies, 
offering improved 
maintainability and 
supported by the 
operating-system 
vendor.
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˲˲ Policy entry points connect the 
framework and policies, adding ex-
plicit label arguments relative to corre-
sponding kernel-service entry points. 
They are supplemented by policy life-
cycle events and library functions. 

cies through roughly 250 entry points 
(object types × methods):

˲˲ Kernel-service entry points allow 
subsystems (for example, VFS) to en-
gage the reference-monitor framework 
in relevant events and access control.

Policies need implement only the entry 
points they require.

˲˲ Applications manage labels (on 
processes and files, among others) us-
ing the label-management API.

˲˲ DTrace probes allow entry-point 
tracing, profiling, and instrumentation.8

Collectively, these interfaces allow 
policies to augment kernel access con-
trol in a maintainable manner.

Entry-Point Invocation. To under-
stand how these layers interact, let’s fol-
low a single file-write check through the 
kernel. Figure 3 illustrates vn _ write, 
a VFS function implementing the 
write and writev system calls. The 
mac _ vnode _ check _ write ker-
nel service-entry point authorizes a write 
to a vnode (vp) by two subject creden-
tials: fp->f _ cred, which opened the 
file, and active _ cred, which initi-
ated the write operation. Policies can 
implement Unix capability semantics 
(fp->f _ cred) or revocation seman-
tics (active _ cred). The vnode lock 
(vp->v _ lock)is held over both check 
and use, protecting label state and pre-
venting time-of-check-to-time-of-use 
race conditions.

Arguments excluded from entry 
points are as important as those in-
cluded. For example, vn _ write’s 
data pointer (uio) is omitted, as this 
data resides in user memory and can-
not be accessed race-free with respect 
to the write. Similar design choices 
throughout the framework discourage 
behavior not safely expressible through 
the kernel synchronization model.

Wherever possible, it is best to take 
the perspective that kernel subsys-
tems implement labeled objects, and 
that policies may be enforced through 
controls on method invocation. This 
approach is a natural fit for the ker-
nel, which adopts an object-oriented 
structure despite an absence of lan-
guage features in C. Once objects have 
been identified, placing entry points 
requires care: the more granular the 
KPI, the more expressive policies can 
be—at the cost of policy complexity. 
The fewer the calling sites, the easier 
they are to validate; too few, however, 
leads to inadequate protection. Entry-
point design must also balance placing 
checks deep enough to allow insight 
into object types while minimizing en-
forcement points for a particular level 
of abstraction.

Figure 3. VFS invokes the MAC Framework to authorize file writes.

static int
vn_write(struct file *fp, struct uio *uio,
     struct ucred *active_cred, int flags,
     struct thread *td)
{
 ...
          vn_lock(vp, lock_flags | LK_RETRY);
 ...
#ifdef MAC
          error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
          if (error == 0)
#endif
                    error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
 ...
          VOP_UNLOCK(vp, 0);
 ...
          return (error);
}

Figure 4. Framework access control on file writes; lock assertions and DTrace probes are 
central design elements.

int
mac_vnode_check_write(struct ucred *active_cred,
     struct ucred *file_cred, struct vnode *vp)
{
          int error;

          ASSERT_VOP_LOCKED(vp, “mac_vnode_check_write”);
          MAC_POLICY_CHECK(vnode_check_write, active_cred,
               file_cred, vp, vp->v_label);
          MAC_CHECK_PROBE3(vnode_check_write, error,
               active_cred, file_cred, vp);
          return (error);
}

Figure 5. Biba authorization of file writes.

#define LABEL(l) ((struct mac_biba *)mac_label_get((l), biba_slot))

static int
biba_vnode_check_write(struct ucred *active_cred,
     struct ucred *file_cred, struct vnode *vp,struct label *vplabel)
{
     	 struct mac_biba *subj, *obj;

     	 if (!biba_enabled || !revocation_enabled)
         		 return (0);
     	 subj = LABEL(active_cred->cr_label);
     	 obj = LABEL(vplabel);
     	 if (!biba_dominate_effective(subj, obj))
       		  return (EACCES);
   	 return (0);
}
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Figure 4 illustrates mac _ vnode _
check _ write, a thin shim that as-
serts locks, invokes interested policies, 
and fires a DTrace probe. Policies are 
not prohibited from directly accessing 
vnode fields; however, passing an ex-
plicit label reference avoids encoding 
vnode structure layout into policies 
in a common case, improving KPI and 
KBI resilience.

Policy entry-point invocation, en-
capsulated in MAC _ POLICY _ CHECK, 
is nontrivial: access to the policy list 
must be synchronized to prevent races 
with module unload, interested poli-
cies must be called, and results must be 
composed. The framework employs a 
simple composition metapolicy: if any 
policy returns failure, then access is de-
nied. For example, an EACCES returned 
by Biba would be selected in preference 
to 0 (success) returned by MLS. The 
only exception lies in privilege exten-
sions discussed later. This metapolicy 
is simple, deterministic, predictable by 
developers, and above all, useful.

Figure 5 illustrates Biba invocation: 
Biba checks its revocation configura-
tion, unwraps policy-specific labels, 
and computes a decision using its 
dominance operator.

Kernel-Object Labeling. Many ac-
cess-control policies label subjects 
and objects in order to support access-
control decisions (for example, integ-
rity or confidentiality levels). The MAC 
Framework provides policy-agnostic 
label facilities for kernel objects, la-
bel-management system calls, and 
persistent storage for file labels. Poli-
cies control label semantics—not only 
the bytes stored, but also the memory 
model: policies might store per-in-
stance, reference-counted, or global 
data. For example, when a process 
creates a new socket, Biba propagates 
the current subject integrity level (for 
example, low) to the socket label. The 
partition policy, concerned with inter-
process access control, labels only 
processes and not sockets, so will not 
assign a label value for the socket.

The framework represents label 
storage using struct label, which 
is opaque to both kernel services and 
policies. Where object types support 
metadata schemes (for example, mbuf 
tags that hold per-packet metadata), 
those are used; otherwise, label point-
ers are added to core structures (for 
example, vnode). Policies may borrow 
existing object locks to protect label 

data, where supported by the synchro-
nization model.

From Research to Product
Having presented the design of the 
MAC Framework, let’s turn our at-
tention to policies found in FreeBSD-
derived commercial or open source 
products. Table 1 and Figure 6 illus-
trate several such policy modules, their 
feature footprints, and ship dates. A 
number of factors contributed to the 
success of this transition:

The need for new access control was 
pressing. The classic Unix model failed 
to meet the needs of ISPs, firewalls, 
and smartphones. Simultaneously, the 
threat of attack became universal with 
ubiquitous networking and strong fi-
nancial incentives for attackers.

Structural arguments for a frame-
work were correct. Access-control ex-
tensibility is the preferred way of sup-
porting security localization, catering 
to diverse requirements.

No one policy model has become domi-
nant. Therefore, many must be supported.

Hardware performance improvement 
increased tolerance for security over-
head. This was true even in consumer 
and embedded devices.

      

Table 1. Comparison of policies and their feature footprints.

Name OSS CP Product Type Lab Priv Proc VFS IPC Net API Sig

mac none P - FreeBSD Null policy - - - - - - - -

mac_stub P - FreeBSD Template policy P P P P P P P -

mac_test P - FreeBSD Framework self-test P - P P P P P -

mac_ugidfw P P FreeBSD File system firewall - - - P - - - -

mac_biba P P FreeBSD Fixed integrity P P P P P P P -

mac_lomac P ? FreeBSD Floating integrity P P P P P P P -

mac_mls P ? FreeBSD Confidentiality P - P P P P P -

sebsd P P FreeBSD Type Enforcement P P P P P P P -

sandbox - P Apple OS X Rule-based P P P P P - P P

quarantine - P Apple OS X Taint-based P - - P - - P -

tmsafetynet - P Apple OS X Fixed integrity P - - P - - P -

amfi - P Apple iOS Fixed integrity - P P - - - - P

sandbox - P Apple iOS Rule-based P P P P P - P P

mac_runasnonroot - P Apple iOS Hardening - - P - - - - P

mac_pcap - P Juniper Junos Grant BPF privs P P - P - P P -

mac_veriexec - P Juniper Junos Signed binaries P - - P - - - P

sidewinder_te - P McAfee Sidewinder Type Enforcement P P P P P P P -

mac_ncircle - P nCircle IP360 Hardening - P - P - - - -

Key:
OSS: open source software
CP: shipped in a commercial product
Lab: uses subject or object label facility

Priv, Proc, VFS, IPC, Net: implements  
access-control entry points for privileges,  
processes, file system, interprocess  
communication, or the network stack

API: uses MAC Framework application APIs
Sig: provides or depends on application  
digital signatures
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Open source technology transition 
works. FreeBSD provided not only a fo-
rum for collaborative research and de-
velopment, but also a pipeline to com-
mercial products.

The framework has evolved con-
siderably since 2003 thanks to contri-
butions from companies deploying it 
in products.

FreeBSD
FreeBSD is an open source operat-
ing system used to build online ser-
vices, appliances, and embedded 
devices. FreeBSD or its components 
can be found in data centers (Inter-
net Systems Consortium, Yahoo!), as 
a foundation for integrated products 
(NetApp and EMC Isilon storage ap-
pliances), and in embedded/mobile 
devices (Juniper switches and Apple 
iPhones). Its origins lie in BSD (the 
Berkeley Software Distribution), de-
veloped in the 1970s and 1980s.12 BSD 
originated a number of central Unix 
technologies, including FFS (the Fast 
File System) and the Berkeley TCP/IP 
stack and sockets API. The BSD license 
and its variations (MIT, CMU, ISC, 
Apache) have encouraged technol-
ogy transition by allowing unrestricted 
commercial use. FreeBSD’s diverse 
consumers both motivate and are the 
perfect target for security localization.

The MAC Framework is a com-
plex piece of software; although the 
framework itself is only 8,500 lines of 

code, with 15,000 lines in reference 
policies, it integrates with a multi-
million-line kernel. The transition to 
production relied on several factors, 
including increasing confidence in 
mediation and response to commu-
nity feedback on design, compatibil-
ity, and performance. The framework, 
as first shipped in FreeBSD 5.0, was 
marked as experimental, with several 
implications:

˲˲ Enabling it required recompiling 
the kernel.

˲˲ Documentation marked it as po-
tentially incomplete, unstable, or inse-
cure, and therefore unsupported.

˲˲ Programming and binary interface 
(API, KPI, ABI, and KBI) stability was 
disclaimed, allowing change without 
formal depreciation.

Merging the framework while still 
experimental was key to gaining users 
who could help validate and improve 
the approach, while retaining the flex-
ibility to make changes. Two concerns 
needed to be addressed before the 
framework could be considered pro-
duction worthy:

˲˲ Binary compatibility impact for 
the kernel, policies, and other modules 
must be better understood.

˲˲ Performance must be analyzed and 
optimized based on community review.

KPI and KBI Resilience. FreeBSD 
policy dictates that certain classes of 
kernel modules compiled against a 
release must work with later minor 

versions in the same series (for ex-
ample, a FreeBSD 9.0 network device 
driver should work with FreeBSD 9.1). 
The goals were to avoid disrupting the 
KBIs of consumer subsystems and 
to offer similar levels of binary com-
patibility for policy modules. Label 
storage opacity for subsystems and 
policies was the primary area of refine-
ment, which avoids encoding kernel 
data-structure internals into policies 
if they require only label access, as 
well as providing flexibility to change 
label implementation.

Performance Optimization. Many 
FreeBSD deployments are extremely 
performance sensitive, requiring 
minimal overhead, especially if the 
framework is disabled. As sites se-
lect policies based on local security-
performance trade-offs, it is also de-
sirable for policies to incur only the 
performance penalties of features 
they actually use—performance pro-
portionality. As shipped in FreeBSD 
5.0, however, regressions were mea-
surable, an obstacle to enabling the 
framework by default.

Label Allocation Trade-offs. Even 
when the framework was compiled 
out, bloat from adding a label to ker-
nel data structures (especially packet 
mbufs) created significant allocation-
time zeroing cost. In FreeBSD 5.1, in-
lined mbuf labels were replaced with 
pointers, and for all object types in 
5.2; this decreased costs for non-MAC 

Figure 6. Timelines of selected MAC Framework-based product ship dates.

20012000 2004 200720052002 200920062003 2010 201220112008 2013

January 2003: FreeBSD 5.0 released 
with MAC Framework marked as an 
experimental feature

July 2007: nCircle ships IP360 6.7 
with MAC Framework policy

January 2007: Secure Computing 
Corporation (later McAfee)  
ships Sidewinder 7.0 product  
with MAC Framework

2009: Juniper ships Junos using the MAC 
Framework for access control

November 2009: FreeBSD 8.0 released with 
MAC Framework in default kernel marked 
as a production feature

October 2007: Apple ships OS X 
Leopard with MAC Framework 
support and sandboxing model

April 2010 Apple 
ships iPad with  
app sandboxing

July 2008: Apple ships iPhone  
OS 2.0 with App Store and 
sandboxed third-party applications

2010: Apple completes  
EAL 3+ evaluation with MAC 
Framework enforcement

July 2011: Apple ships  
OS X Lion with preliminary 
app sandboxing

July 2012: Apple ships 
OS X Mountain Lion with 
mandatory app sandboxing
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kernels at the expense of additional 
allocation and indirection for MAC-
enabled kernels.

Label allocation was even more 
measurable with the framework en-
abled—and unnecessary for unla-
beled policies. The effect was most 
pronounced with network packets 
and led, in FreeBSD 5.1, to a per-poli-
cy flag to request packet labels. In 8.0, 
this approach was generalized so that 
labels were allocated only for object 
types for which at least one loaded 
policy defined an initialization entry 
point. This effectively eliminated the 
cost of labeling when not required by 
a policy, restoring performance pro-
portionality and satisfying the general 
case well. However, one commercial 
product that used packet labeling, the 
McAfee Sidewinder Firewall, saw suf-
ficient overhead to bypass the label 
abstraction in favor of direct struc-
ture modification.

Minimizing Synchronization Over-
heads. With the framework compiled in, 
lock-protected reference count opera-
tions on entry-point invocation were eas-
ily measurable for frequent operations, 
such as per-packet delivery checks. As 
multicore hardware became more com-
mon, lock (and later cache-line) conten-
tion also became significant.

Beginning in FreeBSD 5.2, policies 
were divided into static and dynamic 
sets to help fixed-configuration em-
bedded systems. The former were com-
piled in or loaded at boot and unload-
able thereafter, and hence required no 
synchronization. Dynamic policies—
those loaded after boot, or potentially 
unloadable—still required multiple 
lock operations.

In FreeBSD 8.0, synchronization 
was further optimized so that the MAC 
Framework could be shipped in the de-
fault kernel. This effort benefited from 
continuing improvements in kernel 
scalability driven by increasingly com-
mon eight-core machines. Particularly 
critical were read-mostly locks, which 
do not trigger cache-line migrations 
during read-only acquisition, at the 
cost of more expensive exclusive ac-
quisition—perfect for infrequently 
changed policy lists.

nCircle IP360 Appliance
nCircle Network Security produces a 
FreeBSD-based appliance, the IP360, 

to scan networks for vulnerable soft-
ware and Sarbanes-Oxley compliance. 
While most of its security require-
ments could be captured with conven-
tional DAC, customers requested the 
ability to audit appliance content and 
configuration directly. To meet this 
requirement, while limiting potential 
damage in case audit access is misused 
or compromised, nCircle developed a 
custom policy.

The policy authorizes an audit user 
to read all file-system and configura-
tion data, bypassing permissions, 
while also preventing file-system 
writes. The MAC Framework could ex-
press only a subset of this augmenta-
tion: policies could constrain rights 
but not grant them. nCircle therefore 
enhanced the framework to allow con-
trol over fine-grained system privileges.

Privilege Extensions. Operating-sys-
tem privilege confers the right to bypass 
operating-system security policies (for 
example, changing system settings or 
overriding DAC or the process model). 
In classic Unix, system privileges are 
granted to any process running as the 
root user. To meet nCircle’s goals, a 
policy must be able to augment the ker-
nel’s default privilege policy to grant 
(and moderate) privileges for other us-
ers. This presented two technical chal-
lenges: how to identify and distinguish 
different types of privilege; and how to 
add extensibility to the existing privilege 
model. These problems resemble, in mi-
crocosm, the larger concern addressed 
by the MAC Framework—structuring of 
a reference monitor for extensibility—
and seemed a natural fit despite a depar-
ture from the original design choice to 
only limit, rather than grant, rights.

All existing kernel privilege checks 
were analyzed and replaced with checks 
for specific named privileges. Privilege 
checking was then reworked to include 
an explicit composition policy for 
sources and limitations of privilege, 
including two new MAC Framework 
entry points: mac _ priv _ check fol-
lows the standard entry-point conven-
tions, accepting a credential, named 
privilege arguments, and restrict-
ing privileges by returning an error; 
mac _ priv _ grant diverges from 
this model by overriding the base oper-
ating-system policy to grant new rights, 
using a new composition operator that 
allows any policy to grant a right, rather 

It is desirable for 
policies to incur only 
the performance 
penalties of  
features they 
actually use—
performance 
proportionality.
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than requiring them all to agree.
Existing policies were updated to 

take advantage of the new features, 
providing stronger nondiscretionary 
control of the root user. For example, 
the Biba policy now limits access to a 
number of privileges that might allow 
bypass of the process model or system 
reconfiguration when operating as the 
root user without Biba privilege. These 
features shipped in FreeBSD 7.0.

The nCircle MAC Policy. The nCircle 
policy extends (and restricts) rights 
available to the audit user:

˲˲ It identifies a specific user ID to 
which all remaining policy activities 
apply.

˲˲ Privileges are granted, including 
read access to the kernel log and fire-
wall configuration, and file read/look-
up protections are overridden.

˲˲ VFS entry points deny write access 
to all objects and read access to certain 
files such as the password file. 

With these enhancements, the nCir-
cle policy is able to combine controlled 
privilege escalation with mandatory 
constraints, meeting product needs 
while minimizing local operating-sys-
tem modification.

Juniper Junos
The Junos router operating system 
runs on the control planes of all Juni-
per routers and switches. Juniper main-
tains substantial local modifications to 
FreeBSD and is undergoing a multiyear 
process to minimize its patches by re-
turning improvements to the FreeBSD 
community and increasing use of oper-
ating-system extensibility frameworks 
that allow local features to be cleanly 
grafted onto an unmodified operating 
system. As part of that project, Juniper 
has been moving local security exten-
sions into MAC Framework policies, 
both to reduce conflicts during FreeBSD 
updates and to prepare certain policies 

for upstreaming. Junos ships with four 
local security extensions:

˲˲ mac _ runasnonroot. Ensures 
that third-party applications written 
against the Junos SDK are not run as 
the root user.

˲˲ mac _ pcap. Allows Junos SDK 
applications to capture packets despite 
not running as root.

˲˲ mac _ veriexec. Implements 
support for digitally signed binaries.

˲˲ Junos SDK sandboxing. Constrains 
third-party applications based on mac_
veriexec certificates.

The mac _ runasnonroot and 
mac _ pcap extensions first shipped 
as framework policies in 2009. Then 
mac _ veriexec shipped in 2012, 
replacing a previous directly patched 
implementation. Juniper is preparing 
to migrate Junos SDK sandboxing to 
the MAC Framework to reduce local 
patches further, as well as upstream 
mac _ veriexec.

These policies required minor 
changes to the MAC Framework, includ-
ing additional entry points; perhaps 
most interesting is a new O _ VERIFY 
flag to the open system call, which sig-
nals to the framework that the user-
space runtime linker has requested that 
a file be validated.

Apple OS X and iOS
In quick succession, Apple released 
versions of OS X Leopard for the desk-
top/server in 2007, and iPhone OS 2 for 
the iPhone and iPod Touch in 2008, 
incorporating the MAC Framework as 
a reference-monitor framework. OS 
X Snow Leopard shipped with three 
MAC policies:

˲˲ Sandbox. Provides policy-driven 
sandboxing of risky components that 
process untrustworthy data such as 
network services and video codecs.

˲˲ Quarantine. Taints downloaded 
files, supporting a user dialog display-

ing the originating website.
˲˲ Time Machine Safety Net. Protects 

the integrity of Time Machine backups.
With OS X Mountain Lion, applica-

tions distributed via Apple’s App Store 
have mandatory sandboxing. Apple’s 
iOS 2.0 shipped with two policies: 
Sandbox and one additional:

˲˲ Apple Mobile File Integrity (AMFI). 
Works in concert with a code-signing 
facility, terminating apps whose digi-
tal signatures have been invalidated at 
runtime; exempts debugging during 
app development.

Collectively the policies support sys-
tem integrity and provide strong sepa-
ration between apps in order to keep 
data private. Both OS X and iOS diverge 
substantially from our design expecta-
tions for the MAC Framework, requir-
ing significant adaptation.

XNU Prototype. Apple began beta 
testing OS X in 2000, and the promise 
of a commodity desktop operating sys-
tem with an open source kernel was 
difficult to ignore. The XNU kernel is 
a sophisticated blend of Carnegie Mel-
lon University’s Mach microkernel, 
FreeBSD 5.0, cherry-picked newer Free-
BSD elements, and numerous features 
developed by Apple. With these foun-
dations, it seemed likely that the MAC 
Framework approach, and even code, 
would be reusable.

Though not a microkernel, XNU 
(short for X is not Unix) adopts many 
elements from Mach, including its 
scheduler, interprocess communica-
tion (IPC) model, and VM system. The 
FreeBSD process model, IPC, network 
stack, and VFS are grafted onto Mach, 
providing a rich POSIX program-
ming model. Apple-developed kernel 
components in the first release of OS 
X included the I/O Kit device-driver 
framework, network kernel extensions 
(NKEs), and the HFS+ file system; this 
list has only grown over time.

Table 2. Apple OS X applications may use one of several statically configured profiles, or define their own.

Profile Description

kSBXProfileNoInternet TCP/IP networking is prohibited

kSBXProfileNoNetwork All sockets-based networking is prohibited

kSBXProfileNoWrite File-system writes are prohibited

kSBXProfileNoWriteExceptTemporary File-system writes are restricted to temporary folders

kSBXProfilePureComputation Only Mach IPC to the host process is permitted
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Interesting questions abounded: 
for example, would ideas developed in 
the DTMach16 and DTOS17 microker-
nel projects apply better or worse than 
the monolithic kernel approach in the 
MAC Framework? Between 2003 and 
2007, the increasingly mature MAC 
Framework was ported to OS X.18

Adapting to OS X. The MAC Frame-
work required a detailed analysis of 
the FreeBSD kernel and is tightly in-
tegrated with low-level memory man-
agement and synchronization, as well 
as higher-level services such as the file 
system, IPC, and network stack. While 
the adaptation to OS X was able to rely 
heavily on Apple’s use of FreeBSD com-
ponents, fundamental changes were 
needed to reflect differences between 
FreeBSD and XNU.

The first step was integrating the 
MAC Framework with the closely 
aligned BSD process model, file system, 
and network stack. High-level architec-
tural alignment made some of the ad-
aptation easy, but nontrivial differenc-
es were also encountered. For example, 
FreeBSD’s Unix file system (UFS) con-
siders directories to be specialized file 
objects, whereas HFS+ considers the 
directory and object attribute struc-
ture, or disk catalog, to be a first-class 
object. This required changes to both 
the framework and XNU.

Next, coverage was extended to in-
clude Mach tasks and IPC. Each XNU 
process links a Mach task (schedul-
ing, VM) with a FreeBSD process (cre-
dentials, file descriptors), presenting 
a philosophical problem: is the MAC 
Framework part of Mach or BSD? 
While useful architecturally, the Mach-
BSD boundary in XNU proves artificial: 
references frequently span layers, re-
quiring the MAC Framework to serve 
both. Label modifications on BSD pro-
cess labels are mirrored to correspond-
ing Mach task labels.

Mach ports are another case in 
which microkernel origins come into 
conflict with the monolithic kernel 
premise of the MAC Framework. Un-
like BSD IPC objects, with kernel-
managed namespaces, Mach ports rely 
on userspace namespaces managed 
by launchd (for example, for desk-
top IPC). Taking a leaf from DTOS, 
launchd is responsible for labeling 
and enforcement but queries the ref-
erence monitor to authorize lookups. 

A userspace label handle abstraction 
similar to the kernel label structure 
serves this purpose.

Adoption by Apple. Apple is the 
world’s largest vendor of desktop Unix 
systems and was among the first to de-
ploy Unix in a smartphone. It has like-
wise seen exploding use cases and new 
security requirements motivated by 
ubiquitous networking and malicious 
attackers. Apple’s adoption of the MAC 
Framework was not assured, however, 
as competing technologies were also 
considered, motivated by similar ob-
servations, awareness of future prod-
uct directions, performance concerns, 
and our research.

Alternatives included system-call 
interposition-based technology similar 
to that discussed earlier, and Apple’s 
Kauth3 (short for kernel authorization), 
an authorization framework targeted 
at antivirus vendors (modeled in part 
on the MAC Framework). Apple found 
arguments about the fallibility of sys-
tem-call interposition convincing, and 
in the end adopted two technologies: 
Kauth for third-party antivirus vendors; 
and the more expressive and capable 
MAC Framework for its own sandbox-
ing technologies.

The Sandbox Policy. Since Apple’s 
OS X and iOS policy modules are not 
open source, we are unable to consid-
er their implementations, but public 
documentation exists for the Sandbox 
policy used by Mac OS X components 

and third-party applications such as 
Google’s Chrome Web browser. Sand-
box allows applications voluntarily to 
restrict their access to resources (for ex-
ample, the file system, IPC namespac-
es, and networking). Process sandbox 
profiles are stored in process labels.

Bytecode-compiled policies can be 
set via public APIs, or by the sandbox-
exec helper program. Applications 
may select from several Apple-defined 
policies (Table 2) or define custom poli-
cies. Several applications use default 
policies such as the iChat video codec, 
which employs the computation-only 
profile limited to IPC with the host pro-
cess. Many other software components, 
such as Spotlight indexing, the BIND 
name server, Quicklook document pre-
views, and the System Log Daemon, uti-
lize custom profiles to limit the effects 
of potential vulnerabilities.

Figure 7 shows excerpts from the 
common.sb profile used by Chrome, 
illustrating key Sandbox constructs: 
coarse controls for sysctl kernel-man-
agement interfaces and shared memo-
ry, and fine-grained regular expression 
matching of file paths. File path-based 
control is a highlight of the Sandbox 
policy, addressing programmer mod-
els much better than file labels in Biba, 
MLS, and TE. Path-based schemes are 
difficult to implement on the Unix VFS 
model, which considers paths to be 
second-class constructs. Whereas Free-
BSD permits files to have zero (unlinked 

Figure 7. Chrome OS X sandbox policy excerpts.

(deny default)

; Allow sending signals to self - http://crbug.com/20370
(allow signal (target self))

; Needed for full-page-zoomed controls -
; http://crbug.com/11325
(allow sysctl-read)

; Allow following symlinks
(allow file-read-metadata)

; Loading System Libraries.
(allow file-read-data
  (regex #”^/System/Library/Frameworks($|/)”))
(allow file-read-data
  (regex #”^/System/Library/PrivateFrameworks($|/)”))
(allow file-read-data
  (regex #”^/System/Library/CoreServices($|/)”))

; Needed for IPC on 10.6
(allow ipc-posix-shm)
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The MAC Framework 
has become 
the foundation 
for numerous 
instances of 
security localization, 
allowing local 
access-control 
policies to be 
composed with 
the still-popular 
Unix discretionary 
access control 
model.

but open), one, or multiple names 
(hard links), HFS+ implements a par-
ent pointer for files and ensures that the 
name cache always contains the infor-
mation required to calculate unambig-
uous paths for in-use files.

While Sandbox is used with many OS 
X services, a number of third-party ap-
plications incorporate strong assump-
tions of ambient authority, the ability to 
access any object in the system. With 
the iPhone, Apple broke this assump-
tion: applications execute in isolation 
from system services and each other. 
This model is now appearing in OS X 
and could similarly help protect device 
integrity against misbehaving apps 
and, increasingly, end-user data.

Performance Optimizations. OS X 
and iOS were shipped with the MAC 
Framework prior to FreeBSD 8.0’s per-
formance optimizations, requiring 
Apple to make its own optimizations 
based on product-specific constraints. 
As with FreeBSD optimizations, these 
were generally concerned with the over-
head of framework entry and labeling. 
By default, labeling is compiled out of 
the kernel for certain object types; for 
others, such as vnodes, policies may 
selectively request label allocation, ca-
tering to the often-sparse labeling use 
in OS X’s policies.

In FreeBSD, framework instrumen-
tation and synchronization optimiza-
tions rely on all-or-nothing distinc-
tions between sites willing to pay for 
additional access-control extension. 
In OS X, the assumption is that sand-
boxing is used on most machines, but 
selectively applied to high-risk process-
es. To this end, each process carries a 
mask, set by policies, indicating which 
object types require enforcement. As 
OS X adopts more universal sandbox-
ing, as is the case in iOS, it may be de-
sirable to apply more global optimiza-
tions as in FreeBSD.

Reflections
Over the past decade, the MAC Frame-
work has become the foundation for 
numerous instances of security local-
ization, allowing local access-control 
policies to be composed with the still-
popular Unix discretionary access con-
trol (DAC) model—a timely conver-
gence of industry requirements and 
research. Deploying via open source 
proved a successful strategy, providing 

a forum for collaborative refinement, 
access to early adopters, and a path to 
numerous products. 

Perhaps the most surprising adop-
tion was at McAfee itself: when the 
framework was open sourced by 
McAfee Research, Secure Computing 
Corporation (then a competitor) ad-
opted it for Sidewinder, which McAfee 
later acquired. More generally, this 
speaks to the success of open source in 
providing a venue in which competing 
companies can collaborate to develop 
common infrastructure technolo-
gies. The industry’s adoption of open 
source foundations for appliances and 
embedded devices has been well-ca-
tered to by our access-control extensi-
bility argument:

˲˲ Security localization in devices has 
become widespread.

˲˲ The criticality of multiprocessing 
has only increased.

˲˲ Security label abstractions have 
proven beneficial beyond their MAC 
roots.

˲˲ Non-consensus on access-control 
policies continues.

The MAC Framework, however, also 
required refinement and extension to 
address several unanticipated concerns:

˲˲ The desire to revisit the structure 
of Unix privilege.

˲˲ The importance of digital signa-
tures when applying access control to 
third-party applications.

˲˲ Continued tensions over the desire 
for name-based vs. label-based access 
control.

New Design Principles. In light of 
extensive field experience with the 
MAC Framework, we have added sev-
eral new design principles:

Policy authors determine their own 
performance, functionality, and assur-
ance trade-offs. Policies may not re-
quire heavyweight infrastructure (for 
example, labels), so offer performance 
proportionality.

Traceability is a key design concern.
Programming and binary interface 

stability is critical. API, ABI, KPI, and 
KBI sustainability is often overlooked 
in research, where prototypes are fre-
quently one-offs without multi-decade 
support obligations.

Manipulating operating-system privi-
lege is important to policies that augment 
rather than supplement DAC. 

It is clear from the work of down-
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stream consumers, however, that 
two further principles are now also 
necessary:

Application authors are first-class 
principals. Apple’s App Store and Ju-
niper’s SDK both employ application 
signatures and certificates as policy 
inputs.

Applications themselves require flex-
ible access control to support application 
compartmentalization.

This latter observation led us to 
develop the application-focused Cap-
sicum protection model,21 recently 
shipped as an experimental feature in 
FreeBSD 9.0. It can be viewed as com-
plementary to policy-driven kernel ac-
cess control.

Domain-Specific Policy Models. 
Why no consensus has been reached in 
the expression of operating-system pol-
icies is an interesting question—cer-
tainly, proponents of successive policy 
models have argued that their models 
capture the key concerns in system 
design. In catering to a variety of mod-
els, our observations are twofold: first, 
policy models aim to capture aspects of 
the principle of least privilege15 but often 
in fundamentally different forms (for 
example, information flow vs. system 
privileges), making their approaches 
complementary; second, different 
models address different spaces in a 
multidimensional trade-off between 
types of expression, assurance, perfor-
mance, administrative complexity, im-
plementation complexity, compatibil-
ity, and maintainability. This instead 
reflects a consensus for domain-specific 
policy models.

The Value of Extensibility. Does the 
need for significant design enhance-
ment confirm or reject the hypoth-
esis of access-control extensibility? 
Further comparison to similar frame-
works, such as VFS and device drivers, 
seems appropriate: both are regularly 
extended to adapt to new require-
ments such as changes in distributed 
file-system technology or improve-
ment in power management. The 
willingness of industrial consumers 
to extend the framework and return 
improvements reflects our fundamen-
tally economic hypothesis regarding 
extensibility: managing the upstream-
downstream relationship for signifi-
cant source-code bases is a strong mo-
tivator. Widespread and continuing 

deployment of the MAC Framework 
appears to confirm the more general 
argument that access-control extensi-
bility is a critical aspect of contempo-
rary operating-system design.
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Cl oud computing is  a service model that offers users 
(herein called “tenants”) on-demand network access 
to a large shared pool of computing resources (the 
cloud). The financial benefits of cloud computing 
are widely recognized. Building and managing a 
large-scale data center results in savings of a factor 
between five and seven over one of medium size in 
terms of electricity, hardware, network-bandwidth, 
and operational costs.1 From the tenant’s perspective, 
the ability to use and pay for resources on demand 
and the elasticity of the cloud are strong incentives for 
migration to the cloud. 

Despite these benefits, public clouds are still not 
widely adopted, especially by enterprises. Most large 
organizations today run private clouds, in the sense

of virtualized and geographically dis-
tributed data centers, but rarely rely 
primarily on externally managed re-
sources; notable exceptions include 
Twitter and The New York Times, which 
run on Amazon infrastructure. 

Major barriers to adoption are 
the security and operational risks to 
which existing cloud infrastructures 
are prone, including hardware failure, 
software bugs, power outages, server 
misconfiguration, malware, and insid-
er threats. Such failure and attack vec-
tors are not new, but their risk is am-
plified by the large scale of the cloud.5 
They can even be disastrous, including 
data loss and corruption, breaches of 
data confidentiality, and malicious 
tampering with data. Strong protec-
tions beyond encryption are therefore 
a necessity for data outsourced to the 
cloud, with two standing out as particu-
larly important: integrity, or assurance 
against data tampering, and freshness, 
or the guarantee that retrieved data re-
flects the latest updates. 

Another concern hindering mi-
gration into a public cloud is lack of 
availability and reliability guarantees. 
Well-known cloud providers have ex-
perienced temporary lack of availabil-
ity lasting at least several hours11,21 and 
striking loss of personal customer data, 
most notably the 2011 T-Mobile/Side-
kick incident.23 Traditional reliability 
models for hardware make certain as-
sumptions about failure patterns (such 
as independence of failures among 
hard drives) that are not accurate in 
the world of cloud computing. With-
out novel data-reliability protections 
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Extending the data trust perimeter from  
the enterprise to the public cloud requires  
more than encryption. 
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 key insights
 � �Security concerns limit or even impede 

enterprise migration into public clouds. 

 � �Creating incentives for cloud adoption 
requires thinking beyond data 
encryption, which alone rarely provides 
confidentiality on data processed in the 
cloud or protects against tampering, 
corruption, or loss of availability. 

 � �Real-time auditing by tenants or third 
parties can create new security visibility 
in the cloud and strong assurance of 
correct cloud-service operation. 
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(beyond today’s RAID-5 and RAID-6), 
maintaining correctness of massive 
amounts of data over long periods of 
time is extremely difficult.4 

Another top concern for enterprises 
migrating into the cloud is collocation 
with potentially malicious tenants.5 In 
an Infrastructure-as-a-Service (IaaS) 
model, tenants rent virtual machines 
(VMs) on servers they share with other 
tenants; logical isolation among VMs 
is enforced by hypervisors. In a Plat-
form-as-a-Service (PaaS) model, differ-
ent tenants may run applications in the 
same operating system, without clear 
isolation beyond basic OS-level pro-
tections (easily bypassed by advanced 
malware). Ristenpart et al.18 showed 
that an attacker can collocate a VM 
under its control on the same server 
as a targeted victim VM in the Amazon 
IaaS infrastructure; they also provided 

evidence that such an attacker can ex-
ploit side channels in shared hardware 
(such as the L2 cache) to exfiltrate sen-
sitive data from the victim. 

Our research addresses the chal-
lenge of migrating enterprise data 
into the public cloud while retaining 
tenant trust and visibility. We have 
devised cryptographic protocols that 
extend traditional trust perimeters 
from enterprise data centers into the 
public cloud by conferring strong pro-
tections on migrated data, including 
integrity, freshness, and high avail-
ability. In addition, we propose an au-
diting framework to verify properties 
of the internal operation of the cloud 
and assure enterprises that their 
cloud data—and workloads—are han-
dled securely and reliably. 

Adversarial model. Here, we are 
concerned mainly with cloud provid-

ers subject to a range of threats. These 
providers might deviate from our pro-
tocols for cost savings or due to poor 
security practices but not for pure mali-
cious intent. In most cases, we are able 
to detect deviations from our protocols 
by misbehaving cloud providers but do 
not provide remediation mechanisms 
against fully malicious cloud provid-
ers. By using multiple cloud providers 
in the design of our High-Availability 
and Integrity Layer, or HAIL, protocol, 
described later, we show we can also 
provide data integrity and availability 
in a setting in which a fraction of pro-
viders can be fully compromised. 

Solution overview. Figure 1 out-
lines our vision of a more-trustworthy 
cloud-computing model for enter-
prises. A small trusted gateway with-
in the enterprise intermediates all 
communication, from internal data 



66    communications of the acm    |   february 2013  |   vol.  56  |   no.  2

contributed articles

center to external public cloud. The 
gateway manages cryptographic keys 
(for encrypting data for confidential-
ity requirements), maintains trusted 
storage for integrity and freshness en-
forcement, and may add redundancy 
to data for enhanced availability. Once 
the data and workloads of a particular 
enterprise migrate to the cloud, an 
independent cloud-auditing service 
(run by the enterprise or, alternative-
ly, a third party) monitors the enter-
prise’s cloud resources. This service 
regularly communicates bi-direction-
ally with the gateway. Updates on en-
terprise data and workloads migrated 
to the cloud propagate from the en-
terprise to the auditing service, which 
communicates the results of its audits 
back to the enterprise, including, say, 
the health scores of various resources 
(such as data repositories and virtual 
machines). 

Organization. Here, we describe 
several research projects that are com-
ponents of this broad vision, starting 
with our design for an authenticated 
file system called Iris that allows mi-
gration of existing internal enterprise 
file systems into the cloud. Iris offers 
strong integrity and freshness guaran-
tees of both file-system data and meta-
data accessed while users perform file-
system operations. Iris minimizes the 
effects of network latency on file-sys-
tem operations and is optimized for 

typical file-system workloads (sequen-
tial file accesses). We then introduce 
our auditing framework, including 
Proofs of Retrievability (PoR) and relat-
ed protocols that cryptographically ver-
ify the correctness of all cloud-stored 
data with minimal communication. 
(Remarkably, even against a cheat-
ing cloud, PoRs show that every bit of 
data stored in the cloud is intact.) We 
describe a dynamic PoR architecture 
that supports data updates in Iris and 
audit of physical-layer storage proper-
ties. We also show how to verify that 
cloud data is replicated across mul-
tiple hard drives with our Reversible 
Addition-Fragmentation chain Trans-
fer, or RAFT, protocol. For further data 
protection we address the challenge of 
data availability in the face of cloud-
service failures, including potentially 
malicious ones. We also describe our 
HAIL protocol, which distributes data 
redundantly across multiple cloud 
providers. HAIL is a cloud extension of 
the RAID principle, building reliable 
storage systems from inexpensive, 
unreliable components. We conclude 
with yet more challenges in securing 
cloud data. 

Integrity Checking with Iris 
Tenants commonly assume encrypt-
ing their data before sending it to the 
cloud is sufficient for securing it. En-
cryption provides strong confidential-

ity against a prying or breached cloud 
provider. It does not, however, protect 
against corruption of data due to soft-
ware bugs or configuration errors, 
which require enforcement of a differ-
ent property—data integrity—to en-
sure that data retrieved by a tenant is 
authentic, or has not been modified or 
corrupted by an unauthorized party. On 
its own, data integrity is relatively easy 
to achieve through cryptography (typi-
cally through Message-Authentication 
Codes, or MACs, on data blocks). But 
one critical yet subtle related security 
property—freshness—of data is often 
overlooked. Freshness ensures the lat-
est updates are always propagated to 
the cloud and prevents rollback attacks 
in which stale versions of the data are 
presented to tenants. 

Data freshness ensures retrieved 
data always reflects the most recent 
updates while preventing rollback at-
tacks. Achieving data freshness is es-
sential for protecting against miscon-
figuration errors or rollbacks that are 
caused intentionally and is the main 
technical challenge in building the 
Iris system we describe in the follow-
ing section: 

Iris design goals. Iris is an authenti-
cated file system that supports migra-
tion of an enterprise-class distributed 
file system into the cloud, efficiently, 
transparently, and in a scalable man-
ner. It is authenticated in the sense 

Figure 1. Extending trust perimeter from enterprise data center to the public cloud. 
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that it enables an enterprise tenant 
to verify the integrity and freshness of 
retrieved data while performing file-
system operations. 

A key Iris design requirement is 
that it imposes on client applications 
no changes to file-system operations, 
including file read, write, update, and 
delete operations, as well as creation 
and removal of directories. That is, Iris 
does not require user machines to run 
modified applications. It also aims to 
achieve a slowdown in operation la-
tency small enough to go unnoticed 
by users even when a large number of 
clients in the enterprise (on the order 
of hundreds and even thousands) issue 
file-system operations in parallel. 

Iris architecture. An important 
challenge we faced when designing 
Iris is how to address the typically 
high network latency between an en-
terprise and the cloud. To reduce the 
effect of network latency on individual 
operation latency and the cost of net-
work transfer to and from the cloud, 
Iris employs heavy caching on the en-
terprise side. 

In Iris, a trusted gateway residing 
within the enterprise trust bound-
ary, as in Figure 1, intermediates all 
communication from enterprise us-
ers to the cloud. The gateway caches 
data and meta-data blocks from the 
file system recently accessed by enter-
prise users. The gateway computes in-
tegrity checks, namely MACs, on data 
blocks. It also maintains integrity and 
freshness information for cached data 
consisting of parts of a tree-based au-
thenticated data structure stored in 
the cloud. 

The cloud maintains the distributed 
file system consisting of all enterprise 
files and directories. Iris is designed 
to use any existing back-end cloud-
storage system transparently, without 
modification. The cloud also stores 
MACs for block-level integrity checks, 
as well as a tree-based cryptographic 
data structure needed to ensure the 
freshness of data blocks and the direc-
tory tree of the file system. 

Integrity and freshness verification. 
To guarantee data integrity and fresh-
ness for an entire file system, Iris uses 
an authentication scheme consist-
ing of two layers (see Figure 2). At the 
lower layer, it stores a MAC for each 
file block; file blocks are fixed-size 

file segments of typical size 4KB. This 
structure enables random access to file 
blocks and verification of individual 
file-block integrity without accessing 
full files. For freshness, MACs are not 
sufficient, so Iris associates a counter 
or version number with each file block 
incremented on every block update15 
and included in the block MAC. Dif-
ferent versions of a block can be dis-
tinguished through different version 
numbers. But for freshness, block ver-
sion numbers must also be authenti-
cated. 

The upper layer of the authentica-
tion scheme is a Merkle tree tailored 
to the file system directory tree. The 
leaves of the Merkle tree store block-
version numbers in compressed form. 
The authentication of data is separated 
from the authentication of block-ver-
sion numbers to enable optimizations 
in the data structure. Internal nodes of 
the tree contain hashes of their chil-
dren, as in a standard Merkle tree. The 
root of the Merkle tree must be main-
tained at all times within the enter-
prise-trust boundary at the gateway. 

The tenant can efficiently verify the 
integrity and freshness of a file data 
block by checking the block MAC and 
the freshness of the block-version 
number. The tenant verifies the block-
version number by accessing the sib-
ling nodes on the path from the leaf 
storing the version number up to the 
root of the tree, recomputing all hash-

es on the path to the root and checking 
that the root matches the value stored 
locally. With a similar mechanism, the 
tenant can additionally verify the cor-
rectness of file paths in the file system 
and, more generally, of any other file 
system metadata (such as file names, 
number of files in a directory, and file-
creation time). 

This Merkle-tree-based structure 
has two distinctive features compared 
to other authenticated file systems: 
Support for existing file-system opera-
tions (Iris maintains a balanced binary 
tree over the file system directory struc-
ture to efficiently support existing file 
system calls); and support for concur-
rent operations (the Merkle tree sup-
ports efficient updates from multiple 
clients operating on the file system 
in parallel). Iris also optimizes for se-
quential file-block accesses; sequences 
of identical version counters are com-
pressed into a single leaf. 

The Iris authentication mechanism 
is practical and scalable; in a prototype 
system, a Merkle tree cache of only 
10MB increases the system through-
put by a factor of 3, so, compared to 
no caching, the throughput is fairly 
constant for approximately 100 clients 
executing operations on the file system 
in parallel; the operation-latency over-
head introduced by processing at the 
gateway, including the integrity-check-
ing mechanism, is at most 15%. These 
numbers are reported from a user-level 

Figure 2. Authentication data structure in Iris. 
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implementation of Iris evaluated on 
commonly used benchmarks, includ-
ing IOZone, sequential file reads and 
writes, and archiving of an entire direc-
tory structure.20

Auditing Framework 
Tools like Iris enable tenants to de-
ploy their own security protections 
for data migrated to the cloud. But 
tenant self-protection is effective only 
to a point; for instance, even with Iris 
in place, a tenant’s data is not safe 
against wholesale service-provider 
failure. Moreover, while Iris enables 
tenants to detect data loss resulting 
from a drive crash, it does not give 
them early warning of the probable 
precondition—a dangerous lack of 
provider storage redundancy. 

A strong auditing framework is the 
cornerstone of tenant confidence in a 
service provider. Regulatory, reputa-
tional, and contractual assurances of 
provider safeguards are important, but 
ongoing technical assurances of solid 
security are irreplaceable. 

Our research aims to develop a 
tenant-provider auditing relationship 
in which a tenant or external auditing 
service acting on the tenant’s behalf, 
as in Figure 1, can continuously audit 
a provider to prove or disprove com-
pliance with a given security policy. 
The provider responds to a challenge 
with a compact, real-time proof. Such 
auditing draws on the structure of 
a cryptographic challenge-response 
protocol; the tenant can rigorously 
verify the provider’s response, obtain-
ing a technically strong guarantee of 
policy compliance. 

The challenge-response-style pro-
tocols described here cover a range 
of security properties, from data cor-
rectness to availability in the face of 
provider failures. We give a high-level 
overview of how they work and the 
guarantees they offer; we also briefly 
discuss their place in a larger vision, in 
which trusted hardware complements 
our auditing framework. 

For concreteness, we mimic the 
cryptographic literature, referring 
to our canonical tenant as Alice and 
cloud provider as Bob. In our descrip-
tion here, Alice also acts as the auditor 
verifying properties of cloud-stored 
data, but in our more general frame-
work, from Figure 1, the auditing pro-

tocol could be executed by a separate 
entity—the auditing service. 

Auditing data retrievability. When 
Alice (the tenant) stores data with Bob 
(the cloud), the most basic assurance 
she is likely to seek is that her data re-
mains intact. She wants to know that 
Bob has not let her data succumb to 
bit rot, storage-device failure, corrup-
tion by buggy software, or myriad other 
common threats to data integrity. Be-
cause even a well-meaning Bob may 
be vulnerable to infection by malware, 
Alice also needs such assurance to be 
robust even if Bob cheats. 

One strong cryptographic approach 
to assurance is the PoR,12 a challenge-
response protocol in which Bob proves 
to Alice that a given piece of data D 
stored in the cloud is intact and retriev-
able. While the Iris system enables 
verification of data integrity for data 
retrieved from the cloud in the course 
of performing regular file-system op-
erations, a PoR enables verification of 
an entire data collection without first 
retrieving it from the cloud. 

This goal might seem counterintui-
tive at first, even impossible. A PoR can 
demonstrate with a compact proof (on 
the order of, say, hundreds of bytes) 
that every single bit of data is intact 
and accessible to Alice, even if it is very 
large (gigabytes or more). 

Building a PoR, step by step. Here, to 
give a sense of how a PoR works, we de-
velop a construction in stages. An ob-
vious candidate approach is for Alice 
to simply store a cryptographic hash c 
= h(D) of data D in the cloud. To verify 
that D is intact, she challenges Bob to 
send her c. However, this idea involves 
two problems: Bob can cheat, storing c 
and throwing away D, though a refine-
ment incorporating a secret “nonce” 
into the hash would address it. Effi-
ciency considerations are a more fun-
damental drawback; to generate c from 
D authentically, Bob must hash all of D, 
a resource-intensive process if D is big. 

An alternative approach is for Alice 
to sample data blocks and verify their 
correctness, in effect spot-checking 
her data. Now let ri denote the ith data 
block; blocks are fixed-size segments 
of data with typical size 4KB. Before 
storing the data into the cloud, Alice 
locally retains a randomly selected 
block ri. To challenge Bob, she sends 
him the block-index i and asks him to 

When Alice  
(the tenant) stores 
data with Bob  
(the cloud),  
she wants to know 
that Bob has not let 
her data succumb 
to bit rot,  
storage-device 
failures, corruption 
by buggy software, 
or myriad other 
common threats  
to data integrity. 
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transmit ri, which she verifies against 
her local copy. To amplify the prob-
ability of detecting data corruption, 
Alice can request multiple blocks with 
independent random indices i1, i2,…, 
im simultaneously. 

Bob now has to touch only a small 
portion of the data to respond to a chal-
lenge, solving the resource-consump-
tion problem with hashing. If D, or a 
large chunk of D, is missing or corrupt-
ed, Alice will detect this fact with high 
probability, as desired. However, the 
scheme still involves two drawbacks: 

First, while Alice can detect large 
corruptions with high probability, she 
is unlikely to detect small corruptions 
of, say, limited bit rot, even with mul-
tiple challenge blocks. Suppose her 
data has one million blocks and she 
challenges Bob on 10 randomly se-
lected blocks; the probability of Alice 
detecting a one-bit error would be less 
than 0.001%. And second, she must use 
fresh blocks for each challenge, so Bob 
cannot predict future challenges from 
past ones. So, if Alice plans to chal-
lenge Bob many times, she must store 
a considerable amount of data locally. 

To solve the first, we can appeal to 
an error-correcting code, a technique 
for adding redundancy to some piece 
of data D (called “message”), yielding 
encoded data D* (called “code word”). 
D* is often constructed by appending 
what are called “parity blocks” to the 
end of D. If a limited portion of the en-
coded data D* is corrupted or erased, a 
decoding function can still be applied 
to restore the original data D. The ex-
pansion ratio (|D*|=|D|) and amount 
of tolerable corruption depend on the 
code parameters. For the sake of the 
example, though, consider an error-
correcting code that expands data by 
10%—|D*|=|D| = 1.1—and can success-
fully decode it provided that at most 
10% of the blocks in D* are corrupted. 

Now, if Alice stores D* instead of 
D, she is assured her data will be lost 
only if a significant fraction of her data 
is corrupted or erased. That is, for a 
single bit of D to be irretrievably cor-
rupted, a large chunk of D* must be 
corrupted Use of error-correcting ef-
fectively amplifies the power of Alice’s 
challenges. Suppose, for instance, she 
uses a code that corrects up to 10% cor-
ruption. Now, issuing 10 challenges 
against a one-million-block data col-

lection will result in detection of any 
irretrievably corrupted bits in D with 
probability over 65%—a vast improve-
ment over 0.001%. 

Solving the problem of excessive lo-
cal storage is fairly easy. Using a locally 
stored secret key k, Alice can compute 
MACs—secret-key digital signatures—
over data blocks r1, r2,…, rn. She can 
safely have Bob store MACs c1, c2,…, cn 
alongside D*. To verify the correctness 
of a block r1, Alice uses k and ci. So Alice 
needs to store only the key k. Figure 3 
shows the data stored by Alice and Bob 
in this PoR construction. 

Concerning other challenges in 
constructing a practical PoR, Alice can 
send, say, a key to a pseudorandom 
function during a challenge, based 
on which Bob can infer the position 
of all challenged blocks. Bob can also 
aggregate multiple response blocks 
into one, rendering transmission and 
verification more efficient. Addition-
ally, making error-correcting practical 
for large data collections requires cod-
ing and cryptographic tricks, though 
the solution presented here provides 
much of the intuition behind a full-
blown PoR construction. 

A PoR can be used to verify the integ-
rity and correctness of any type of data 
collection stored in the cloud, includ-
ing file systems and key-value stores. 
Its salient property is it gives Alice 
strong guarantees about the correct-

ness of an entire data collection using 
minimal computation and bandwidth 
for auditing. The auditing protocol 
could be performed by a third-party au-
diting service. 

Variants. Several PoR variants are 
available for auditing data integrity: 
for example, a Proof of Data Posses-
sion (PDP)2 enables public verifica-
tion of data integrity by employing 
public-key cryptography. Compared 
with PoRs, PDP provides detection of 
only large amounts of data corruption, 
without a recovering mechanism. PDP 
and PoR protocols can be privately or 
publicly verifiable. In a privately veri-
fiable protocol, auditing can be per-
formed only by the party who knows 
the secret key used for encoding the 
data. In contrast, in a publicly verifi-
able protocol, auditing can be per-
formed by any third-party service, at 
the cost of more computationally ex-
pensive encoding and auditing proto-
cols. The term Proof of Storage (PoS)3 
has evolved as a convenient catchall 
for PoRs and PDPs. Most PoS protocols 
can be combined with other crypto-
graphic protections (such as encryp-
tion for data confidentiality) to achieve 
a suite of cloud-data protections.13 

PoRs in Iris. A basic PoR, as de-
scribed earlier, has a notable limita-
tion: an inability to handle data up-
dates gracefully. Changing a single 
data block in D requires propagation 

Figure 3. Data stored by Alice and Bob in a PoR. To issue a challenge to Bob, Alice indicates 
positions i1,…, im to Bob. Bob returns data blocks ri1,…, rim, along with MACs ci1,…, cim. Alice 
verifies the correctness of rij against MAC cij, for all j ∈ {1,…, m} using secret key k. 
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of changes across the parity blocks of 
D*. So a basic PoR is efficient only for 
checks on static data (such as archived 
data). The situation is somewhat bet-
ter without error correction; research-
ers have proposed (asymptotically 
efficient) PDP systems that support 
data updates.8 But support for updates 
also rules out recovering from a small 
amount of data corruption. 

It is natural, then, to ask whether 
we can have the best of both worlds—a 
PoR for dynamically changing data. Yes 
is the answer. 

Check values (MACs or digital sig-
natures) pose the first major challenge 
in supporting a dynamic PoR/PDP. 
Not only must they be updated in con-
junction with data-block updates, but, 
when verifying them, Alice must be 
able to determine they are both correct 
and fresh. The Iris system is designed 
precisely to tackle the tricky problem 
of efficient freshness verification for 
file systems, making it ideal for build-
ing a dynamic PoR. 

An even more formidable challenge 
is updating error-correcting blocks as 
data blocks change. That is, to protect 
against targeted corruption by Bob, the 
structure of the error-correcting code, 
and thus the pattern of parity block 
updates, must be hidden from him. 
Encryption is no help; basic encryption 
hides data, not access patterns. 

The way out of this conundrum is a 
model shift inspired by the deployment 
objectives of Iris. While PoR designers 
generally aim to keep Alice’s storage 
to a minimum, Iris aims at enterprise-

class cloud deployment. When Alice is 
a company, rather than an individual, 
substantial tenant-side resources are a 
reasonable expectation. 

The key idea for dynamic PoR lay-
ered on Iris is to have Alice cache parity 
blocks locally, on the enterprise side, 
and periodically back them up to the 
cloud. This approach conceals indi-
vidual parity-block updates from Bob, 
as well as the code structure. It has an-
other advantage, too: Alice’s updates 
to parity blocks can be made locally. 
As a single data-block update results 
in multiple parity-block updates, the 
ability to make updates locally greatly 
reduces communication between Alice 
and Bob. 

The result is an enhancement such 
that Iris not only verifies file integrity 
and freshness but can also check (ef-
ficiently) whether an entire file system 
is intact, down to the last bit. In addi-
tion, if corruptions to data are found 
(through auditing or through integrity 
verification using the Merkle tree struc-
ture described earlier), Iris can recover 
corrupted blocks from the additional 
redundancy provided by the erasure 
code. Iris provides strong guarantees of 
detection and remediation of data cor-
ruption, resulting in retrievability of an 
entire file system stored in the cloud. A 
great Iris benefit is that its parameters 
for the erasure code and the communi-
cation during an audit can be adjusted 
for a desired level of recoverability. 

While construction in Iris provides 
the first practical solution to a dynamic 
PoR protocol, it relies on some amount 

of local storage maintained by the ten-
ant; in our Iris instantiation the client 
maintains O(√n) local storage for a file 
system with n data blocks. The prob-
lem of constructing a dynamic PoR 
protocol with constant storage at the 
client-side is the major remaining the-
oretical cryptographic research chal-
lenge in auditing data retrievability. 

Auditing of drive-failure resilience. 
Detecting data loss via Proofs of Stor-
age (PoS) is helpful, though prevention 
is best. One major cause of data loss 
is drive crashes. In a large data center 
with hundreds of thousands of drives, 
drive failure is the norm rather than 
the exception. With 2%–3% annual fail-
ure rates published by manufacturers 
and even higher numbers observed in 
the field,19 a large data center is likely to 
experience thousands of drive failures 
each year. 

Services (such as Amazon S3) claim 
to store files in triplicate. But how can 
such a claim be verified remotely? At first 
glance, it seems impossible. Suppose 
Alice wants to verify that Bob is storing 
three copies of her data. Downloading 
the three copies would not work; if Bob 
is cheating and storing only one copy 
of the data, he can simply transmit that 
one copy three times. There is, however, 
a very simple solution: Alice can encrypt 
each copy of her data under a separate 
key, yielding three distinct encryptions. 
Executing a PoS against each encrypted 
version ensures the existence of three 
distinct copies. 

In many cases, though, Alice does 
not want to have to store her data in en-

Figure 4. Responding to challenges from one disk (on the left) and two disks (on the right) in the RAFT protocol.
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crypted form. She may want Bob to be 
able to process her data for her or make 
it available to her friends. More impor-
tant, the existence of three distinct cop-
ies does not per se ensure resilience to 
drive crashes. All three copies could be 
sitting on the same drive, after all. So 
how can Alice verify that there are three 
distinct copies of the data, each on a 
different drive? 

A striking feature of the problem is 
that it is primarily physical, not logical. 
The objective is not to verify the encod-
ing or mere existence of data but its 
disposition on a physical substrate. 

RAFT7 is the solution, allowing Al-
ice to verify that Bob has stored some 
piece of data D so it can survive up to t 
drive failures, for a desired parameter 
t. RAFT allows D to be dispersed using 
erasure coding, a more space-efficient 
technique than maintaining full file 
copies. RAFT operates specifically on 
data stored in rotational drives, ex-
ploiting their performance limitations 
as a bounding parameter. The more 
drives across which Bob has striped 
D, the faster he can respond to a chal-
lenge. In particular, RAFT makes use 
of bounds on the seek time of a rota-
tional drive. Alice transforms her data 
D using an erasure code into encoded 
data D*. D* can be striped across c 
drives such that if any t fail, D can be 
recovered. She asks Bob to store D* 
across c drives. 

To verify resilience to t drive fail-
ures, Alice challenges Bob to fetch a set 
of n randomly distributed blocks from 
D*. Suppose Bob stores D* on d drives. 

Each block fetch incurs a seek (assum-
ing the random blocks are spread apart 
at a large distance). So on average, if 
a seek takes time µ, Bob’s total fetch 
time is µn/d. If d < c, then his response 
time will take µn(1/d–1/c) longer than 
expected, on average. By measuring 
Bob’s response time, then, Alice can 
determine whether he is indeed using 
c drives, as required (see Figure 4). 

While we do not go into detail here, 
many complications arise in real-world 
settings. Variations in drive perfor-
mance, as well as in network latency, be-
tween Alice and Bob must be measured 
carefully. Sensitive statistical analysis 
and structuring of challenges is required 
to accommodate these variations. 

Hardware roots of trust. Another 
approach to assurance within the 
challenge-response framework we ex-
plore here is a hardware root of trust, 
as supported by, say, Trusted Platform 
Modules that permit a tenant to verify 
remotely, via a challenge-response pro-
tocol, a provider is executing a particu-
lar software stack. 

But hardware roots of trust cannot 
directly enforce guarantees on storage 
integrity or reliability. Even if Bob’s 
servers are configured precisely, as 
specified by Alice, and even if Alice con-
trols their operation, she obtains no di-
rect guarantee as to their correspond-
ing storage subsystem. For instance, 
the only way for Alice to determine a 
file F is intact in storage without full-
file inspection is to perform a PoR. The 
same holds for properties verified by 
Iris, HAIL, and RAFT, none guaranteed 

solely through trustworthy execution 
environments. 

Enhancing Data 
Availability with HAIL 
We have described an auditing frame-
work that offers tenants visibility into 
the operations of the cloud and veri-
fication of some properties of their 
cloud-side data. But what happens 
if the cloud provider fails to respond 
correctly to an audit due to data loss? 
A major impediment to cloud adop-
tion by enterprises is temporary lack 
of availability by the provider or even 
permanent failure. This is a real threat, 
as illustrated by catastrophic provider 
failures resulting in massive customer 
data loss.23 

We designed HAIL6 specifically to 
address this challenge, predicated on 
the idea that it is wise to distribute 
data across multiple cloud providers 
for continuous availability. HAIL thus 
leverages multiple cloud providers 
to construct a reliable, cost-effective 
cloud-storage service from unreliable 
components. The idea is similar in fla-
vor to RAID,16 which creates reliable 
storage arrays from unreliable hard 
drives. HAIL extends the idea into the 
cloud, the main differences being its 
support for a stronger adversarial mod-
el and a higher-level abstraction. 

HAIL works by promptly detecting 
and recovering from data corruption. 
The tenant (or third-party service) peri-
odically audits individual cloud provid-
ers toward this end. HAIL auditing is 
lightweight in terms of both bandwidth 

Figure 5. Encoding of data D: on the left, original data is represented as a matrix; on the right, encoded data with parity blocks is added for 
both server and dispersal codes. 
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and computation. Using the redun-
dancy embedded across different cloud 
providers, the tenant (or third party) re-
mediates corruption detected in a sub-
set of providers. HAIL is reactive, rather 
than proactive, meaning it remediates 
data only on detected corruption. 

System model. In HAIL a tenant 
like Alice distributes her data with em-
bedded redundancy to a set of n cloud 
providers: S1,…, Sn. In our model, data 
generated by all enterprise users is 
transmitted to the gateway, as in Fig-
ure 1. The gateway performs some data 
encoding, described in the following 
paragraphs, optionally encrypts data, 
and distributes a data fragment to 
each cloud provider. HAIL operates 
through an adversarial model in which 
a strong mobile adversary can corrupt 
all cloud providers over time. But with-
in a single epoch (a predetermined pe-
riod of fixed length) the adversary can 
corrupt at most b out of n servers, for 
some b < n. 

HAIL encoding. Figure 5 outlines 
the encoding of data in HAIL. To pro-
vide resilience against cloud-provider 
failure, the gateway splits the data into 
fixed-size blocks and encodes it with 
a new erasure code we call “dispersal 
code.” The figure includes a matrix 
representation of the data on the left, 
resulting in an encoded matrix on the 
right. Each row in the encoded ma-
trix is a stripe or code word obtained 
by applying the dispersal code. Each 
row contains the original data blocks, 
as well as new parity blocks obtained 
with the dispersal code. Each matrix 
column is stored at a different cloud 
provider. The dispersal code guaran-
tees the original data can be recon-
structed, given up to b cloud provider 
failures (and n – b intact columns). 

However, a single layer of encod-
ing is not sufficient to guarantee data 
availability and integrity in HAIL’s 
strong adversarial model. Consider 
this attack: The adversary corrupts b 
new servers in each epoch, picks a par-
ticular row index i, and corrupts the 
corresponding block ri,j at server Sj. Af-
ter n/b epochs, the adversary corrupts 
all servers and the entire row i in the 
encoded matrix from Figure 5. In this 
case, the redundancy of the dispersal 
code is not helpful in recovering the 
corrupted row, and the entire data D is 
permanently corrupted. 

How can the system prevent such 
a creeping-corruption attack? By sim-
ply auditing a few randomly selected 
blocks at each server, the probability 
that the tenant would discover the cor-
ruption of blocks in a single row of the 
encoded matrix is quite low. Therefore, 
another encoding layer we call a “serv-
er code” is needed within each server. 
The server code adds additional redun-
dancy (parity blocks) to each column 
in the encoded matrix representation. 
The role of the server code is to recover 
from a small amount of corruption at 
each cloud provider that would other-
wise be undetectable through the au-
diting protocol. 

To prevent adversarial data corrup-
tion, the tenant also needs to store 
MACs on data blocks in the cloud. With 
a new technique we call an “integrity-
protected dispersal code,” parity 
blocks of the dispersal code can them-
selves be used as MACs on the rows, 
thus reducing the storage overhead for 
integrity protection. 

Auditing and recovering from fail-
ures. In HAIL, the gateway (or an exter-
nal auditing service, as in Figure 1) pe-
riodically audits the correctness of the 
cloud data by contacting all cloud pro-
viders. The gateway sends a random 
row index i as a challenge to each 
cloud provider, and verifies, upon re-
ceiving the responses ri,j, for j in {1,…, 
n} the correctness of the entire row. It 
is also possible to aggregate multiple 
responses (multiple randomly select-
ed blocks) from each server to reduce 
bandwidth and amplify the probability 
of failure detection. 

When data corruption at one or 
more cloud providers is detected, the 
corrupted data can be reconstructed at 
the tenant side using the two encoding 
layers—the dispersal and server code. 
Data reconstruction is an expensive 
protocol, one rarely invoked (only upon 
detection of data corruption). 

With its encoding, auditing, and 
recovery mechanisms, HAIL provides 
resilience against a strong mobile ad-
versary that might potentially corrupt 
all providers over time. However, a 
limitation of HAIL is that, as designed, 
it does not handle file updates grace-
fully. Rather, it is most suited to archi-
val data, or data stored in the cloud for 
retention purposes and not regularly 
modified. More-efficient versions of 

HAIL is an extension 
of RAID into the 
cloud, distributing 
data across multiple 
cloud providers to 
achieve continuous 
availability. 
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HAIL can be constructed under a weak-
er adversarial model that may be prac-
tical for short-term data storage. 

Conclusion 
We have described new techniques 
that secure cloud data by ensuring a 
range of protections, from integrity 
and freshness verification to high data 
availability. We also proposed an audit-
ing framework that offers tenants vis-
ibility into the correct operation of the 
cloud. These techniques enable an ex-
tension of the trust perimeter from en-
terprise internal data centers into pub-
lic clouds, as in Figure 1. Our hope is 
these techniques will alleviate some of 
the concern over security in the cloud 
and facilitate migration of enterprise 
resources into public clouds. We con-
clude here by mentioning several open 
problems of interest in this context: 

Performing computations over 
tenants' encrypted data. We have em-
phasized data integrity and availabil-
ity, but data confidentiality is a major 
open problem. General computation 
over a tenant’s encrypted data is pos-
sible using a technique we call “fully 
homomorphic encryption,” though 
this breakthrough10 is not yet practi-
cal. Weaker, custom techniques can 
achieve specific functionalities (such 
as searches14 and general SQL que-
ries17) over encrypted data. 

The impossibility of general com-
putations over multiple tenants’ en-
crypted data using only cryptographic 
techniques and no interaction among 
tenants was shown in van Dijk and 
Juels.22 A promising area of research 
is the design of custom protocols for 
applications involving multiple ten-
ants’ data (such as data mining over 
multiple institutions’ medical records 
or financial transactions). Combining 
secure hardware architectures with 
cryptography (such as secure multi-
party computation protocols) offers 
significant potential. 

Ensuring tenant isolation. Cloud 
co-tenancy with attackers can jeop-
ardize tenant data, as shown in 
Ristenpart et al.,18 which explored 
cache-based side channels for data 
exfiltration. The risks of co-tenancy in 
storage systems (such as storage-sys-
tem side channels) is an unexplored 
vector of attack now deserving investi-
gation, in our view. 

One approach to co-tenancy risks is 
to isolate tenants by implementing vir-
tual private cloud (VPC) abstractions 
within a public cloud. HomeAlone24 
enables tenants to verify remotely that 
a VPC is strongly enforced at the host 
level, in the sense of creating physi-
cal isolation of a tenant’s workloads. 
While physical isolation offers a solu-
tion for extremely sensitive workloads, 
it can undercut the financial benefits of 
tenant sharing of computing resourc-
es. For this reason, solutions offering 
tenant isolation and enabling the shar-
ing of cloud resources at the same time 
are extremely important. Trusted hard-
ware may also play an important role, 
along with tight enforcement of logical 
isolation abstractions throughout the 
software stack, including hypervisor 
and OS, and across the cloud fabric. 

Geolocation of data. Of particular 
commercial interest is the open prob-
lem of remote verification of the geo-
graphical location of cloud data. The 
motivation is regulatory compliance, 
with many laws requiring providers 
keep customer data within, say, nation-
al boundaries.9 Given the challenge of 
ensuring that data is not duplicated, 
any solution probably requires a trust-
ed data-management system via, say, 
trusted hardware, and localizing the 
pieces of the system is an interesting 
challenge. Geolocation of trusted hard-
ware via remote timing from trusted 
anchor points seems a key avenue of 
exploration. 	
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Systems that respond to user actions quickly (within 
100ms) feel more fluid and natural to users than 
those that take longer.3 Improvements in Internet 
connectivity and the rise of warehouse-scale computing 
systems2 have enabled Web services that provide fluid 
responsiveness while consulting multi-terabyte datasets 
spanning thousands of servers; for example, the Google 
search system updates query results interactively as 
the user types, predicting the most likely query based 
on the prefix typed so far, performing the search and 
showing the results within a few tens of milliseconds. 
Emerging augmented-reality devices (such as the 
Google Glass prototype7) will need associated Web 
services with even greater responsiveness in order to 
guarantee seamless interactivity. 

It is challenging for service providers to keep the tail 
of latency distribution short for interactive services  
as the size and complexity of the system scales up or 

as overall use increases. Temporary 
high-latency episodes (unimportant in 
moderate-size systems) may come to 
dominate overall service performance at 
large scale. Just as fault-tolerant comput-
ing aims to create a reliable whole out of 
less-reliable parts, large online services 
need to create a predictably responsive 
whole out of less-predictable parts; 
we refer to such systems as “latency 
tail-tolerant,” or simply “tail-tolerant.” 
Here, we outline some common causes 
for high-latency episodes in large online 
services and describe techniques that 
reduce their severity or mitigate their 
effect on whole-system performance. 
In many cases, tail-tolerant techniques 
can take advantage of resources already 
deployed to achieve fault-tolerance, re-
sulting in low additional overhead. We 
explore how these techniques allow sys-
tem utilization to be driven higher with-
out lengthening the latency tail, thus 
avoiding wasteful overprovisioning. 

Why Variability Exists? 
Variability of response time that leads 
to high tail latency in individual com-
ponents of a service can arise for many 
reasons, including: 

Shared resources. Machines might 
be shared by different applications 
contending for shared resources (such 
as CPU cores, processor caches, mem-
ory bandwidth, and network band-
width), and within the same applica-
tion different requests might contend 
for resources; 

Daemons. Background daemons 
may use only limited resources on aver-
age but when scheduled can generate 
multi-millisecond hiccups; 

The Tail 
at Scale 

doi:10.1145/2408776.2408794

Software techniques that tolerate latency 
variability are vital to building responsive 
large-scale Web services. 

By Jeffrey Dean and Luiz André Barroso 

 key insights
 � �Even rare performance hiccups affect 

a significant fraction of all requests in 
large-scale distributed systems. 

 � �Eliminating all sources of latency 
variability in large-scale systems 
is impractical, especially in shared 
environments. 

 � �Using an approach analogous to 
fault-tolerant computing, tail-tolerant 
software techniques form a predictable 
whole out of less-predictable parts. 
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Global resource sharing. Applica-
tions running on different machines 
might contend for global resources 
(such as network switches and shared 
file systems); 

Maintenance activities. Background 
activities (such as data reconstruction 
in distributed file systems, periodic log 
compactions in storage systems like 
BigTable,4 and periodic garbage collec-
tion in garbage-collected languages) can 
cause periodic spikes in latency; and 

Queueing. Multiple layers of queue-
ing in intermediate servers and network 
switches amplify this variability. 

Increased variability is also due to 
several hardware trends: 

Power limits. Modern CPUs are de-
signed to temporarily run above their 
average power envelope, mitigating 
thermal effects by throttling if this activ-
ity is sustained for a long period;5 

Garbage collection. Solid-state stor-
age devices provide very fast random 
read access, but the need to periodically 
garbage collect a large number of data 
blocks can increase read latency by a 
factor of 100 with even a modest level of 
write activity; and 

Energy management. Power-saving 
modes in many types of devices save 
considerable energy but add additional 
latency when moving from inactive to 
active modes. 

Component-Level Variability 
Amplified By Scale 
A common technique for reducing la-
tency in large-scale online services is to 
parallelize sub-operations across many 
different machines, where each sub-op-
eration is co-located with its portion of 
a large dataset. Parallelization happens 
by fanning out a request from a root to 
a large number of leaf servers and merg-
ing responses via a request-distribution 
tree. These sub-operations must all 
complete within a strict deadline for the 
service to feel responsive. 

Variability in the latency distribu-
tion of individual components is mag-
nified at the service level; for example, 
consider a system where each server 
typically responds in 10ms but with a 
99th-percentile latency of one second. 
If a user request is handled on just one 
such server, one user request in 100 will 
be slow (one second). The figure here 
outlines how service-level latency in this 
hypothetical scenario is affected by very 

modest fractions of latency outliers. If 
a user request must collect responses 
from 100 such servers in parallel, then 
63% of user requests will take more than 
one second (marked “x” in the figure). 
Even for services with only one in 10,000 
requests experiencing more than one-
second latencies at the single-server 
level, a service with 2,000 such servers 
will see almost one in five user requests 
taking more than one second (marked 
“o” in the figure). 

Table 1 lists measurements from 
a real Google service that is logically 
similar to this idealized scenario; root 
servers distribute a request through in-
termediate servers to a very large num-
ber of leaf servers. The table shows the 
effect of large fan-out on latency distri-
butions. The 99th-percentile latency for 
a single random request to finish, mea-
sured at the root, is 10ms. However, the 
99th-percentile latency for all requests to 
finish is 140ms, and the 99th-percentile 
latency for 95% of the requests finish-
ing is 70ms, meaning that waiting for 
the slowest 5% of the requests to com-
plete is responsible for half of the total 
99%-percentile latency. Techniques that 
concentrate on these slow outliers can 
yield dramatic reductions in overall ser-
vice performance. 

Overprovisioning of resources, care-
ful real-time engineering of software, 
and improved reliability can all be 
used at all levels and in all components 
to reduce the base causes of variability. 
We next describe general approaches 
useful for reducing variability in ser-
vice responsiveness. 

Reducing Component Variability 
Interactive response-time variability 
can be reduced by ensuring interactive 
requests are serviced in a timely manner 
through many small engineering deci-
sions, including: 

Differentiating service classes and 
higher-level queuing. Differentiated ser-
vice classes can be used to prefer sched-
uling requests for which a user is wait-
ing over non-interactive requests. Keep 
low-level queues short so higher-level 
policies take effect more quickly; for ex-
ample, the storage servers in Google’s 
cluster-level file-system software keep 
few operations outstanding in the op-
erating system’s disk queue, instead 
maintaining their own priority queues 
of pending disk requests. This shallow 

queue allows the servers to issue incom-
ing high-priority interactive requests 
before older requests for latency-insen-
sitive batch operations are served. 

Reducing head-of-line blocking. High-
level services can handle requests with 
widely varying intrinsic costs. It is some-
times useful for the system to break 
long-running requests into a sequence 
of smaller requests to allow interleaving 
of the execution of other short-running 
requests; for example, Google’s Web 
search system uses such time-slicing to 
prevent a small number of very compu-
tationally expensive queries from add-
ing substantial latency to a large num-
ber of concurrent cheaper queries. 

Managing background activities and 
synchronized disruption. Background 
tasks can create significant CPU, disk, 
or network load; examples are log 
compaction in log-oriented storage 
systems and garbage-collector activity 
in garbage-collected languages. A com-
bination of throttling, breaking down 
heavyweight operations into smaller 
operations, and triggering such opera-
tions at times of lower overall load is 
often able to reduce the effect of back-
ground activities on interactive request 
latency. For large fan-out services, it is 
sometimes useful for the system to syn-
chronize the background activity across 
many different machines. This synchro-
nization enforces a brief burst of activity 
on each machine simultaneously, slow-
ing only those interactive requests being 
handled during the brief period of back-
ground activity. In contrast, without syn-
chronization, a few machines are always 
doing some background activity, push-
ing out the latency tail on all requests. 

Missing in this discussion so far is 
any reference to caching. While effec-
tive caching layers can be useful, even a 
necessity in some systems, they do not 
directly address tail latency, aside from 
configurations where it is guaranteed 
that the entire working set of an applica-
tion can reside in a cache. 

Living with Latency Variability 
The careful engineering techniques in 
the preceding section are essential for 
building high-performance interactive 
services, but the scale and complexity 
of modern Web services make it infea-
sible to eliminate all latency variabil-
ity. Even if such perfect behavior could 
be achieved in isolated environments, 
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systems with shared computational 
resources exhibit performance fluctua-
tions beyond the control of application 
developers. Google has therefore found 
it advantageous to develop tail-tolerant 
techniques that mask or work around 
temporary latency pathologies, instead 
of trying to eliminate them altogether. 
We separate these techniques into two 
main classes: The first corresponds to 
within-request immediate-response 
techniques that operate at a time scale 
of tens of milliseconds, before longer-
term techniques have a chance to react. 
The second consists of cross-request 
long-term adaptations that perform on 
a time scale of tens of seconds to min-
utes and are meant to mask the effect of 
longer-term phenomena. 

Within Request Short-Term  
Adaptations 
A broad class of Web services deploy 
multiple replicas of data items to pro-
vide additional throughput capacity and 
maintain availability in the presence of 
failures. This approach is particularly 
effective when most requests operate on 
largely read-only, loosely consistent da-
tasets; an example is a spelling-correc-
tion service that has its model updated 
once a day while handling thousands of 
correction requests per second. Simi-
larly, distributed file systems may have 
multiple replicas of a given data chunk 
that can all be used to service read re-
quests. The techniques here show how 
replication can also be used to reduce 
latency variability within a single high-
er-level request: 

Hedged requests. A simple way to 
curb latency variability is to issue the 
same request to multiple replicas and 
use the results from whichever replica 
responds first. We term such requests 
“hedged requests” because a client first 
sends one request to the replica be-
lieved to be the most appropriate, but 
then falls back on sending a secondary 
request after some brief delay. The cli-
ent cancels remaining outstanding re-
quests once the first result is received. 
Although naive implementations of 
this technique typically add unaccept-
able additional load, many variations 
exist that give most of the latency-re-
duction effects while increasing load 
only modestly. 

One such approach is to defer send-
ing a secondary request until the first 

request has been outstanding for more 
than the 95th-percentile expected la-
tency for this class of requests. This 
approach limits the additional load to 
approximately 5% while substantially 
shortening the latency tail. The tech-
nique works because the source of la-
tency is often not inherent in the par-
ticular request but rather due to other 
forms of interference. For example, in 
a Google benchmark that reads the val-
ues for 1,000 keys stored in a BigTable 
table distributed across 100 different 
servers, sending a hedging request after 
a 10ms delay reduces the 99.9th-percen-
tile latency for retrieving all 1,000 values 
from 1,800ms to 74ms while sending 
just 2% more requests. The overhead of 
hedged requests can be further reduced 
by tagging them as lower priority than 
the primary requests. 

Tied requests. The hedged-requests 
technique also has a window of vulner-

ability in which multiple servers can 
execute the same request unnecessar-
ily. That extra work can be capped by 
waiting for the 95th-percentile expect-
ed latency before issuing the hedged 
request, but this approach limits the 
benefits to only a small fraction of re-
quests. Permitting more aggressive 
use of hedged requests with moderate 
resource consumption requires faster 
cancellation of requests. 

A common source of variability is 
queueing delays on the server before 
a request begins execution. For many 
services, once a request is actually 
scheduled and begins execution, the 
variability of its completion time goes 
down substantially. Mitzenmacher10 
said allowing a client to choose between 
two servers based on queue lengths at 
enqueue time exponentially improves 
load-balancing performance over a uni-
form random scheme. We advocate not 
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Table 1. Individual-leaf-request finishing times for a large fan-out service tree (measured 
from root node of the tree). 

50%ile latency 95%ile latency 99%ile latency

One random leaf finishes 1ms 5ms 10ms

95% of all leaf  
requests finish

12ms 32ms 70ms

100% of all leaf  
requests finish

40ms 87ms 140ms
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choosing but rather enqueuing copies 
of a request in multiple servers simulta-
neously and allowing the servers to com-
municate updates on the status of these 
copies to each other. We call requests 
where servers perform cross-server sta-
tus updates “tied requests.” The sim-
plest form of a tied request has the cli-
ent send the request to two different 
servers, each tagged with the identity of 
the other server (“tied”). When a request 
begins execution, it sends a cancellation 
message to its counterpart. The corre-
sponding request, if still enqueued in 
the other server, can be aborted imme-
diately or deprioritized substantially. 

There is a brief window of one aver-
age network message delay where both 
servers may start executing the request 
while the cancellation messages are 
both in flight to the other server. A com-
mon case where this situation can occur 
is if both server queues are completely 
empty. It is useful therefore for the cli-
ent to introduce a small delay of two 
times the average network message de-
lay (1ms or less in modern data-center 
networks) between sending the first re-
quest and sending the second request. 

Google’s implementation of this 
technique in the context of its cluster-
level distributed file system is effective 
at reducing both median and tail laten-
cies. Table 2 lists the times for servicing 
a small read request from a BigTable 
where the data is not cached in memory 
but must be read from the underlying 
file system; each file chunk has three 
replicas on distinct machines. The table 
includes read latencies observed with 
and without tied requests for two sce-
narios: The first is a cluster in which the 
benchmark is running in isolation, in 
which case latency variability is mostly 

from self-interference and regular clus-
ter-management activities. In it, send-
ing a tied request that does cross-server 
cancellation to another file system 
replica following 1ms reduces median 
latency by 16% and is increasingly ef-
fective along the tail of the latency dis-
tribution, achieving nearly 40% reduc-
tion at the 99.9th-percentile latency. The 
second scenario is like the first except 
there is also a large, concurrent sorting 
job running on the same cluster con-
tending for the same disk resources in 
the shared file system. Although overall 
latencies are somewhat higher due to 
higher utilization, similar reductions in 
the latency profile are achieved with the 
tied-request technique discussed earli-
er. The latency profile with tied requests 
while running a concurrent large sort-
ing job is nearly identical to the latency 
profile of a mostly idle cluster without 
tied requests. Tied requests allow the 
workloads to be consolidated into a sin-
gle cluster, resulting in dramatic com-
puting cost reductions. In both Table 2 
scenarios, the overhead of tied requests 
in disk utilization is less than 1%, indi-
cating the cancellation strategy is effec-
tive at eliminating redundant reads. 

An alternative to the tied-request and 
hedged-request schemes is to probe re-
mote queues first, then submit the re-
quest to the least-loaded server.10 It can 
be beneficial but is less effective than 
submitting work to two queues simul-
taneously for three main reasons: load 
levels can change between probe and re-
quest time; request service times can be 
difficult to estimate due to underlying 
system and hardware variability; and 
clients can create temporary hot spots 
by all clients picking the same (least-
loaded) server at the same time. The 

Distributed Shortest-Positioning Time 
First system9 uses another variation in 
which the request is sent to one server 
and forwarded to replicas only if the ini-
tial server does not have it in its cache 
and uses cross-server cancellations. 

Worth noting is this technique is not 
restricted to simple replication but is 
also applicable in more-complex coding 
schemes (such as Reed-Solomon) where 
a primary request is sent to the machine 
with the desired data block, and, if no 
response is received following a brief 
delay, a collection of requests is issued 
to a subset of the remaining replica-
tion group sufficient to reconstruct the 
desired data, with the whole ensemble 
forming a set of tied requests. 

Note, too, the class of techniques de-
scribed here is effective only when the 
phenomena that causes variability does 
not tend to simultaneously affect mul-
tiple request replicas. We expect such 
uncorrelated phenomena are rather 
common in large-scale systems. 

Cross-Request  
Long-Term Adaptations 
Here, we turn to techniques that are ap-
plicable for reducing latency variability 
caused by coarser-grain phenomena 
(such as service-time variations and 
load imbalance). Although many sys-
tems try to partition data in such a way 
that the partitions have equal cost, a 
static assignment of a single partition 
to each machine is rarely sufficient in 
practice for two reasons: First, the per-
formance of the underlying machines 
is neither uniform nor constant over 
time, for reasons (such as thermal 
throttling and shared workload inter-
ference) mentioned earlier. And second, 
outliers in the assignment of items to 
partitions can cause data-induced load 
imbalance (such as when a particular 
item becomes popular and the load for 
its partition increases). 

Micro-partitions. To combat imbal-
ance, many of Google’s systems gener-
ate many more partitions than there 
are machines in the service, then do 
dynamic assignment and load balanc-
ing of these partitions to particular ma-
chines. Load balancing is then a matter 
of moving responsibility for one of these 
small partitions from one machine to 
another. With an average of, say, 20 
partitions per machine, the system can 
shed load in roughly 5% increments and 

Table 2. Read latencies observed in a BigTable service benchmark. 

Mostly idle cluster With concurrent terasort

No hedge Tied request after 1ms No hedge Tied request after 1ms

50%ile 19ms 	 16ms	 (–16%) 24ms 	 19ms	 (–21%)

90%ile 38ms 	 29ms	 (–24%) 56ms 	 38ms	 (–32%)

99%ile 67ms 	 42ms	 (–37%) 108ms 	 67ms	 (–38%)

99.9%ile 98ms 	 61ms	 (–38%) 159ms 	 108ms	 (–32%)
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in 1/20th the time it would take if the sys-
tem simply had a one-to-one mapping 
of partitions to machines. The BigTable 
distributed-storage system stores data 
in tablets, with each machine managing 
between 20 and 1,000 tablets at a time. 
Failure-recovery speed is also improved 
through micro-partitioning, since many 
machines pick up one unit of work when 
a machine failure occurs. This method 
of using micro-partitions is similar to 
the virtual servers notion as described 
in Stoica12 and the virtual-processor-
partitioning technique in DeWitt et al.6

Selective replication. An enhance-
ment of the micro-partitioning scheme 
is to detect or even predict certain items 
that are likely to cause load imbalance 
and create additional replicas of these 
items. Load-balancing systems can then 
use the additional replicas to spread 
the load of these hot micro-partitions 
across multiple machines without hav-
ing to actually move micro-partitions. 
Google’s main Web search system uses 
this approach, making additional cop-
ies of popular and important docu-
ments in multiple micro-partitions. At 
various times in Google’s Web search 
system’s evolution, it has also created 
micro-partitions biased toward particu-
lar document languages and adjusted 
replication of these micro-partitions 
as the mix of query languages changes 
through the course of a typical day. 
Query mixes can also change abruptly, 
as when, say, an Asian data-center out-
age causes a large fraction of Asian-lan-
guage queries to be directed to a North 
American facility, materially changing 
its workload behavior. 

Latency-induced probation. By ob-
serving the latency distribution of re-
sponses from the various machines in 
the system, intermediate servers some-
times detect situations where the sys-
tem performs better by excluding a par-
ticularly slow machine, or putting it on 
probation. The source of the slowness is 
frequently temporary phenomena like 
interference from unrelated network-
ing traffic or a spike in CPU activity for 
another job on the machine, and the 
slowness tends to be noticed when the 
system is under greater load. However, 
the system continues to issue shadow 
requests to these excluded servers, col-
lecting statistics on their latency so they 
can be reincorporated into the service 
when the problem abates. This situa-

tion is somewhat peculiar, as removal 
of serving capacity from a live system 
during periods of high load actually im-
proves latency. 

Large Information 
Retrieval Systems 
In large information-retrieval (IR) sys-
tems, speed is more than a performance 
metric; it is a key quality metric, as re-
turning good results quickly is better 
than returning the best results slowly. 
Two techniques apply to such systems, 
as well as other to systems that inher-
ently deal with imprecise results: 

Good enough. In large IR systems, 
once a sufficient fraction of all the leaf 
servers has responded, the user may 
be best served by being given slightly 
incomplete (“good-enough”) results in 
exchange for better end-to-end latency. 
The chance that a particular leaf server 
has the best result for the query is less 
than one in 1,000 queries, odds further 
reduced by replicating the most im-
portant documents in the corpus into 
multiple leaf servers. Since waiting for 
exceedingly slow servers might stretch 
service latency to unacceptable levels, 
Google’s IR systems are tuned to occa-
sionally respond with good-enough re-
sults when an acceptable fraction of the 
overall corpus has been searched, while 
being careful to ensure good-enough 
results remain rare. In general, good-
enough schemes are also used to skip 
nonessential subsystems to improve re-
sponsiveness; for example, results from 
ads or spelling-correction systems are 
easily skipped for Web searches if they 
do not respond in time. 

Canary requests. Another problem 
that can occur in systems with very high 
fan-out is that a particular request ex-
ercises an untested code path, causing 
crashes or extremely long delays on 
thousands of servers simultaneously. To 
prevent such correlated crash scenarios, 
some of Google’s IR systems employ 
a technique called “canary requests”; 
rather than initially send a request to 
thousands of leaf servers, a root server 
sends it first to one or two leaf servers. 
The remaining servers are only queried 
if the root gets a successful response 
from the canary in a reasonable period 
of time. If the server crashes or hangs 
while the canary request is outstanding, 
the system flags the request as poten-
tially dangerous and prevents further ex-

A simple way 
to curb latency 
variability is to issue 
the same request 
to multiple replicas 
and use  
the results from 
whichever replica 
responds first.
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ecution by not sending it to the remain-
ing leaf servers. Canary requests provide 
a measure of robustness to back-ends in 
the face of difficult-to-predict program-
ming errors, as well as malicious denial-
of-service attacks. 

The canary-request phase adds only a 
small amount of overall latency because 
the system must wait for only a single 
server to respond, producing much less 
variability than if it had to wait for all 
servers to respond for large fan-out re-
quests; compare the first and last rows 
in Table 1. Despite the slight increase 
in latency caused by canary requests, 
such requests tend to be used for every 
request in all of Google’s large fan-out 
search systems due to the additional 
safety they provide. 

Mutations 
The techniques we have discussed so 
far are most applicable for operations 
that do not perform critical mutations 
of the system’s state, which covers a 
broad range of data-intensive services. 
Tolerating latency variability for opera-
tions that mutate state is somewhat eas-
ier for a number of reasons: First, the 
scale of latency-critical modifications 
in these services is generally small. Sec-
ond, updates can often be performed 
off the critical path, after responding 
to the user. Third, many services can 
be structured to tolerate inconsistent 
update models for (inherently more 
latency-tolerant) mutations. And, final-
ly, for those services that require con-
sistent updates, the most commonly 
used techniques are quorum-based 
algorithms (such as Lamport’s Paxos8); 
since these algorithms must commit to 
only three to five replicas, they are in-
herently tail-tolerant. 

Hardware Trends and Their Effects 
Variability at the hardware level is likely 
to be higher in the future due to more 
aggressive power optimizations becom-
ing available and fabrication challenges 
at deep submicron levels resulting in 
device-level heterogeneity. Device het-
erogeneity combined with ever-increas-
ing system scale will make tolerating 
variability through software techniques 
even more important over time. For-
tunately, several emerging hardware 
trends will increase the effectiveness 
of latency-tolerating techniques. For 
example, higher bisection bandwidth 

in data-center networks and network-
interface optimizations that reduce 
per-message overheads (such as remote 
direct-memory access) will reduce the 
cost of tied requests, making it more 
likely that cancellation messages are re-
ceived in time to avoid redundant work. 
Lower per-message overheads naturally 
allow more fine-grain requests, contrib-
uting to better multiplexing and avoid-
ing head-of-line blocking effects. 

Conclusion 
Delivering the next generation of com-
pute-intensive, seamlessly interactive 
cloud services requires consistently 
responsive massive-scale computing 
systems that are only now beginning to 
be contemplated. As systems scale up, 
simply stamping out all sources of per-
formance variability will not achieve 
such responsiveness. Fault-tolerant 
techniques were developed because 
guaranteeing fault-free operation be-
came infeasible beyond certain levels 
of system complexity. Similarly, tail-
tolerant techniques are being devel-
oped for large-scale services because 
eliminating all sources of variability is 
also infeasible. Although approaches 
that address particular sources of la-
tency variability are useful, the most 
powerful tail-tolerant techniques re-
duce latency hiccups regardless of 
root cause. These tail-tolerant tech-
niques allow designers to continue to 
optimize for the common case while 
providing resilience against uncom-
mon cases. We have outlined a small 
collection of tail-tolerant techniques 
that have been effective in several of 
Google’s large-scale software systems. 
Their importance will only increase as 
Internet services demand ever-larger 
and more complex warehouse-scale 
systems and as the underlying hard-
ware components display greater per-
formance variability. 

While some of the most powerful 
tail-tolerant techniques require addi-
tional resources, their overhead can be 
rather modest, often relying on existing 
capacity already provisioned for fault-
tolerance while yielding substantial la-
tency improvements. In addition, many 
of these techniques can be encapsu-
lated within baseline libraries and sys-
tems, and the latency improvements 
often enable radically simpler applica-
tion-level designs. Besides enabling low 

latency at large scale, these techniques 
make it possible to achieve higher sys-
tem utilization without sacrificing ser-
vice responsiveness. 
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Symb  olic execution has  garnered a lot of attention 
in recent years as an effective technique for generating 
high-coverage test suites and for finding deep errors 
in complex software applications. While the key idea 
behind symbolic execution was introduced more 
than three decades ago,6,12,23 it has only recently been 
made practical, as a result of significant advances 
in constraint satisfiability,16 and of more scalable 
dynamic approaches that combine concrete and 
symbolic execution.9,19

Symbolic execution is typically used in software 
testing to explore as many different program paths as 
possible in a given amount of time, and for each path to 
generate a set of concrete input values exercising it, and

check for the presence of various 
kinds of errors including assertion 
violations, uncaught exceptions, se-
curity vulnerabilities, and memory 
corruption. The ability to generate 
concrete test inputs is one of the ma-
jor strengths of symbolic execution: 
from a test generation perspective, it 
allows the creation of high-coverage 
test suites, while from a bug-finding 
perspective, it provides developers 
with a concrete input that triggers the 
bug, which can be used to confirm the 
error independently of the symbolic 
execution tool that generated it.

Furthermore, note that in terms 
of finding errors on a given program 
path, symbolic execution is much 
more powerful than traditional dy-
namic execution techniques such as 
those implemented by popular tools 
like Valgrind28 or Purify,21 because it 
has the ability to find a bug if there are 
any buggy inputs on that path, rather 
than depending on having a concrete 
input that triggers the bug.

Finally, unlike other program analy-
sis techniques, symbolic execution is 
not limited to finding generic errors 
such as buffer overflows, but can reason 
about higher-level program properties, 
such as complex program assertions.

This article gives an overview of 
symbolic execution by showing how it 
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The challenges—and great promise— 
of modern symbolic execution techniques,  
and the tools to help implement them.

By Cristian Cadar and Koushik Sen

 key insights

 � �Modern symbolic execution techniques 
provide an effective way to automatically 
generate test inputs for real-world 
software. Such inputs can achieve high 
test coverage and find corner-case bugs 
such as buffer overflows, uncaught 
exceptions, and assertion violations.

 � �Symbolic execution works by exploring 
as many program paths as possible in 
a given time budget, creating logical 
formula encoding the explored paths, and 
using a constraint solver to generate test 
inputs for feasible execution paths.

 � �Modern symbolic execution techniques 
mix concrete and symbolic execution 
and benefit from significant advances in 
constraint solving to alleviate limitations 
which prevented traditional symbolic 
execution from being useful in practice 
for about 30 years.
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works on a simple example and high-
lighting its main features. We describe 
a couple of modern approaches to sym-
bolic execution that make it effective 
for real-world software. Then, we ex-
plore the main challenges of symbolic 
execution, including path explosion, 
constraint solving, and memory mod-
eling. Finally, we present several rep-
resentative symbolic execution tools. 
Note that we do not aim to provide here 
a comprehensive survey of existing 
work in the area, but instead choose to 
illustrate some of the main challenges 
and proposed solutions by using exam-
ples from the authors’ own work.

Overview of Classical 
Symbolic Execution
The key idea behind symbolic execu-
tion6,12,23 is to use symbolic values, in-
stead of concrete data values, as input 
values, and to represent the values of 
program variables as symbolic expres-
sions over the symbolic values. As a re-
sult, the output values computed by a 
program are expressed as a function of 
the input symbolic values. In software 
testing, symbolic execution is used to 
generate a test input for each feasible 
execution path of a program. A feasible 
execution path is a sequence of true 
and false, where a value of true (re-
spectively false) at the ith position in 
the sequence denotes that the ith condi-
tional statement encountered along the 
execution path took the “then” (respec-
tively the “else”) branch. All the feasible 
execution paths of a program can be 
represented using a tree, called the ex-
ecution tree. For example, the function 
testme() in Figure 1 has three feasible 
execution paths, which form the ex-
ecution tree shown in Figure 2. These 
paths can be executed, for instance, by 
running the program on the inputs {x 
= 0, y = 1}, {x = 2, y = 1} and {x = 30, y = 
15}. The goal of symbolic execution is 
to generate such a set of inputs so that 
all the feasible execution paths (or as 
many as possible in a given time bud-
get) can be explored exactly once by 
running the program on those inputs.

Symbolic execution maintains a 
symbolic state σ, which maps variables 
to symbolic expressions, and a symbol-
ic path constraint (or path condition) 
PC, which is a quantifier-free first-order 
formula over symbolic expressions. At 
the beginning of a symbolic execution, 

σ is initialized to an empty map and PC 
is initialized to true. Both σ and PC are 
populated during the course of sym-
bolic execution. At the end of a sym-
bolic execution along a feasible execu-
tion path of the program, PC is solved 
using a constraint solver to generate 
concrete input values. If the program 
is executed on these concrete input val-
ues, it will take exactly the same path as 
the symbolic execution and terminate 
in the same way.

For example, symbolic execution 
of the code in Figure 1 starts with an 
empty symbolic state and with sym-
bolic path constraint true. At every 
read statement var = sym_input() that 
receives program input, symbolic ex-
ecution adds the mapping var  s to 
σ, where s is a fresh symbolic value. 
For example, symbolic execution of the 
first two lines of the main() function 
(lines 16–17) results in σ = {x  x0, y 
 y0}, where x0, y0 are two initially un-
constrained symbolic values. At every 
assignment v = e, symbolic execution 
updates σ by mapping v to σ(e), the 
symbolic expression obtained by evalu-
ating e in the current symbolic state. 
For example, after executing line 6, σ = 
{x  x0, y  y0, z  2y0}.

At every conditional statement 
if (e) S1 else S2, PC is updated to 
PC∧σ(e) (“then” branch), and a fresh 
path constraint PC′ is created and ini-
tialized to PC∧¬σ(e) (“else” branch). If 
PC is satisfiable for some assignment 
of concrete to symbolic values, then 
symbolic execution continues along 
the “then” branch with the symbolic 
state σ and symbolic path constraint 
PC. Similarly, if PC′ is satisfiable, then 
another instance of symbolic execu-
tion is created with symbolic state σ 
and symbolic path constraint PC′, 
which continues the execution along 
the “else” branch; note that unlike in 
concrete execution, both branches can 
be taken, resulting in two execution 
paths. If any of PC or PC′ is not satis-
fiable, symbolic execution terminates 
along the corresponding path. For 
example, after line 7 in the example 
code, two instances of symbolic execu-
tion are created with path constraints 
x0 = 2y0 and x0 ≠ 2y0, respectively. Simi-
larly, after line 8, two instances of sym-
bolic execution are created with path 
constraints (x0 = 2y0) ∧ (x0 > y0 + 10) and 
(x0 = 2y0) ∧ (x0 ≤ y0 + 10), respectively.

Unlike other 
program analysis 
techniques, 
symbolic execution 
is not limited to 
finding generic 
errors such as 
buffer overflows, 
but can reason 
about higher-level 
program properties, 
such as complex 
program assertions.
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If a symbolic execution instance hits 
an exit statement or an error (for ex-
ample, the program crashes or violates 
an assertion), the current instance of 
symbolic execution is terminated and 
a satisfying assignment to the current 
symbolic path constraint is generated, 
using an off-the-shelf constraint solver. 
The satisfying assignment forms the 
test inputs: if the program is executed 
on these concrete input values, it will 
take exactly the same path as the sym-
bolic execution and terminate in the 
same way. For example, on our exam-
ple code we get three instances of sym-
bolic executions that result in the test 
inputs {x = 0, y = 1}, {x = 2, y = 1}, and 
{x = 30, y = 15}, respectively.

Symbolic execution of code con-
taining loops or recursion may result 
in an infinite number of paths if the 
termination condition for the loop or 
recursion is symbolic. For example, the 
code in Figure 3 has an infinite num-
ber of feasible execution paths, where 
each feasible execution path is either 
a sequence of an arbitrary number of 
true’s followed by a false or a se-
quence of infinite number of true’s. 
The symbolic path constraint of a path 
with a sequence of n true’s followed 
by a false is: 

	
(∧

i∈[1,n]
Ni > 0) ∧ (Nn+1 ≤ 0)  

	
where each Ni is a fresh symbolic value, 
and the symbolic state at the end of the 
execution is {N  Nn+1, sum ∑i∈[1,n]Ni}. 
In practice, one needs to put a limit on 
the search (for example, a timeout, or a 
limit on the number of paths, loop it-
erations, or exploration depth).

A key disadvantage of classical sym-
bolic execution is that it cannot gener-
ate an input if the symbolic path con-
straint along a feasible execution path 
contains formulas that cannot be (ef-
ficiently) solved by a constraint solver 
(for example, nonlinear constraints). 
Consider performing symbolic ex-
ecution on two variants of the code in 
Figure 1: in one variant, we modify the 
twice function as in Figure 4; in the 
other variant, we assume that the code 
of twice is not available. Let us assume 
that our constraint solver cannot han-
dle non-linear arithmetic. For the first 
variant, symbolic execution will gener-
ate the path constraints x0 ≠ (y0y0)%50 
and x0 = (y0y0)%50 after the execution 

of the first conditional statement. For 
the second variant, symbolic execution 
will generate the path constraints x0 
≠ twice(y0) and x0 = twice(y0), where 
twice is an uninterpreted function. 
Since the constraint solver cannot 
solve any of these constraints, symbolic 
execution will fail to generate any input 
for the modified programs. We next de-
scribe two modern symbolic execution 
techniques that alleviate this problem 
and generate at least some inputs for 
the modified programs.

Modern Symbolic 
Execution Techniques
One of the key elements of modern 
symbolic execution techniques is their 
ability to mix concrete and symbolic 
execution. We present here two such 
extensions, and then discuss the main 
advantages they provide.

Concolic Testing. Directed Auto-
mated Random Testing (DART),19 or 
concolic testing35 performs symbolic 
execution dynamically, while the pro-
gram is executed on some concrete in-
put values. Concolic testing maintains 
a concrete state and a symbolic state: 
the concrete state maps all variables 
to their concrete values; the symbolic 
state only maps variables that have 
non-concrete values. Unlike classical 
symbolic execution, since concolic ex-
ecution maintains the entire concrete 
state of the program along an execu-
tion, it needs initial concrete values for 
its inputs. Concolic testing executes a 
program starting with some given or 

Figure 1. Simple example illustrating symbolic execution.

1   int twice (int v) {
2             return 2*v;
3   }
4 
5   void testme (int x, int y) {
6             z = twice (y);
7             if (z == x) {
8                       if (x > y+10)
9                              ERROR;
10                      }
11            }
12  }
13
14  /* simple driver exercising testme () with sym inputs */
15  int main() {
16            x = sym_input();
17            y = sym_input();
18            testme (x, y);
19            return 0;
20  }

x = 0 
y = 1

x = 2 
y = 1

x = 30 
y = 15

x > y + 10

2*y == x

false

false

true

true

ERROR!

Figure 2. Execution tree for the example  
in Figure 1.

Figure 3. Simple example illustrating an 
infinite number of feasible execution paths.

1   void testme_inf() {
2            int sum = 0;
3            int N = sym_input();
4            while (N > 0) {
5                sum = sum + N
6                N = sym_input();
7            }
8   }

Figure 4. Simple modification of the  
example in Figure 1. The function twice now 
performs some non-linear computation.

1   int twice (int v) {
2             return (v*v) % 50;
3   }
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other places—such as unhandled in-
structions (for example, floating-point) 
or complex functions that cause con-
straint solver timeouts—and the use of 
concrete values allows symbolic execu-
tion to recover from that imprecision, 
albeit at the cost of missing some fea-
sible paths, and thus sacrificing com-
pleteness.

To illustrate, we describe the behav-
ior of concolic testing on the version 
of our running example in which the 
function twice returns the non-linear 
value (v*v)%50 (see Figure 4). Let us 
assume that concolic testing gener-
ates the random input {x = 22, y = 7}. 
Then, the symbolic execution will gen-
erate the symbolic path constraint x0 ≠ 
(y0y0)%50 along the concrete execution 
path on this input. If we assume that 
the constraint solver cannot handle 
non-linear constraints, then concolic 
testing will fail to generate an input 
for an alternate execution path. We get 
a similar situation if the source code 
for the function twice is not available 
(for example, twice is some third-party 
closed-source library function or a sys-
tem call), in which case the path constraint 
becomes x0 ≠ twice(y0), where twice 
is an uninterpreted function. Concolic 
testing handles this situation by replac-
ing some of the symbolic values with their 
concrete values so that the resultant con-
straints are simplified and can be solved. 
For instance, in the example, concolic 
testing replaces y0 by its concrete value 
7. This simplifies the path constraint 
in both program versions to x0 ≠ 49. 
By solving the path constraint x0 = 49, 
concolic testing generates the new 
input {x = 49, y = 7} for a previously 
unexplored execution path. Note that 
classical symbolic execution cannot 
perform this simplification because 
the concrete state is not available dur-
ing symbolic execution.

EGT can handle this situation in a 
similar way: when it encounters the 
statement return (v*v) % 50 or the 
external call z = twice(y), it will call 
the constraint solver on the current 
symbolic path constraint to generate a 
satisfying assignment to y0, say y0 = 7, 
replace this value in the symbolic state 
and in the path constraint, and contin-
ue the execution in a partial symbolic 
state {x  x0, y  7}. The tool KLEE 
optimizes this by keeping a counter-
example cache (described later).

concrete and symbolic execution by 
dynamically checking before every 
operation if the values involved are 
all concrete. If so, the operation is ex-
ecuted just as in the original program. 
Otherwise, if at least one value is sym-
bolic, the operation is performed sym-
bolically, by updating the path condi-
tion for the current path. For example, 
if line 17 in Figure 1 is changed to y = 
10, then line 6 will simply call function 
twice() with the concrete argument 
10, call which will be executed as in 
the original program (note that twice 
could perform an arbitrarily complex 
operation on its input, but this would 
not place any additional strain on sym-
bolic execution, because the call will be 
executed concretely). Then, the branch 
on line 7 will become if (20 == x), and 
execution will be forked, one instance 
adding the constraint that x = 20 and 
following the “then” branch, and the 
other adding the constraint that x ≠ 20 
and following the “else” branch. Note 
that on the “then” branch, the condi-
tional at line 8 becomes if (x > 20), 
and therefore its “then” side is infea-
sible because x is constrained to have 
value 20 on this path.

Imprecision vs. completeness in 
concolic testing and EGT. One of the 
key advantages in mixing concrete and 
symbolic execution is that imprecision 
in symbolic execution (due to, for ex-
ample, interaction with external code, 
or constraint solving timeouts), can be 
alleviated using concrete values (and 
in the case of concolic testing, also 
randomization).

For example, real applications al-
most always interact with the outside 
world, for instance, by calling librar-
ies that are not instrumented for sym-
bolic execution, or by issuing OS sys-
tem calls. If all the arguments passed 
to such a call are concrete, the call can 
be simply performed concretely, as in 
the original program. However, even if 
some operands are symbolic, EGT and 
concolic testing can use one of the pos-
sible concrete values of the symbolic 
arguments: in EGT this is done by solv-
ing the current path constraint for a 
satisfying assignment, while concolic 
testing can immediately use the con-
crete runtime values of those inputs 
from the current concolic execution.

Besides external code, imprecision 
in symbolic execution creeps into many 

random input, gathers symbolic con-
straints on inputs at conditional state-
ments along the execution, and then 
uses a constraint solver to infer vari-
ants of the previous inputs in order to 
steer the next execution of the program 
toward an alternative feasible execu-
tion path. This process is repeated sys-
tematically or heuristically until all fea-
sible execution paths are explored or a 
user-defined coverage criteria is met.

For the example in Figure 1, concolic 
execution will generate some random 
input, say {x = 22, y = 7}, and execute 
the program both concretely and sym-
bolically. The concrete execution will 
take the “else” branch at line 7 and the 
symbolic execution will generate the 
path constraint x0 ≠ 2y0 along the con-
crete execution path. Concolic testing 
negates a conjunct in the path con-
straint and solves x0 = 2y0 to get the test 
input {x = 2, y = 1}; this new input will 
force the program execution along a 
different execution path. Concolic test-
ing repeats both concrete and symbolic 
execution on this new test input. The 
execution takes a path different from 
the previous one—the “then” branch 
at line 7 and the “else” branch at line 8 
are now taken in this execution. As in 
the previous execution, concolic test-
ing also performs symbolic execution 
along this concrete execution and gen-
erates the path constraint (x0 = 2y0) ∧ (x0 
≤ y0 + 10). Concolic testing will gener-
ate a new test input that forces the pro-
gram along an execution path that has 
not been previously executed. It does so 
by negating the conjunct (x0 ≤ y0 + 10) 
and solving the constraint (x0 = 2y0) ∧ 
(x0 > y0 + 10) to get the test input {x = 30, 
y = 15}. The program reaches the ER-
ROR statement with this new input. Af-
ter this third execution of the program, 
concolic testing reports that all execu-
tion paths of the program have been 
explored and terminates test input gen-
eration. Note that in this example, con-
colic testing explores all the execution 
paths using a depth-first search strat-
egy; however, one could employ other 
strategies to explore paths in different 
orders, as we discuss later.

Execution-Generated Testing (EGT). 
The EGT approach,9 implemented and 
extended by the EXE10 and KLEE8 tools, 
works by making a distinction between 
the concrete and symbolic state of a 
program. To this end, EGT intermixes 
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Concolic testing and EGT’s ap-
proach to simplify constraints using 
concrete values help them generate 
test inputs for execution paths for 
which symbolic execution gets stuck, 
but this approach comes with a caveat: 
due to simplification, concolic testing 
and EGT could loose completeness, 
that is, they may not be able to generate 
test inputs for some feasible execution 
paths. For instance, in our example 
both techniques will fail to generate an 
input for the path true, false. How-
ever, this is clearly preferable to the 
alternative of simply aborting execu-
tion when unsupported statements or 
external calls are encountered.

Challenges and Extensions
Here, we discuss the main challenges 
in symbolic execution, and some inter-
esting solutions and extensions devel-
oped in response to them.

Path Explosion. One of the key chal-
lenges of symbolic execution is the 
huge number of programs paths in 
all but the smallest programs, which 
is usually exponential in the number 
of static branches in the code. How-
ever, note that symbolic execution 
explores only feasible paths that de-
pend on the symbolic input, which 
reduces the number of conditionals 
that spawn new paths. For example, 
in several experiments on testing a 
number of medium-sized applica-
tions we found that less than 42% of 
the executed statements depend on 
the symbolic input, and often less 
than 20% of the symbolic branches 
encountered during execution have 
both sides feasible.10

Despite this implicit filtering, path 
explosion represents one of the big-
gest challenges facing symbolic execu-
tion, and given a fixed time budget, it 
is critical to explore the most relevant 
paths first.  Here, we present a repre-
sentative selection of the techniques 
developed to address this problem.

Search heuristics. The main mecha-
nism used by symbolic execution tools 
to prioritize path exploration is the 
use of search heuristics. Most heuris-
tics focus on achieving high statement 
and branch coverage, but they could 
also be employed to optimize other de-
sired criteria. We describe here several 
coverage-optimized search heuristics 
successfully used by current symbolic 

execution tools.
One particularly effective approach 

is to use the static control-flow graph 
(CFG) to guide the exploration toward 
the path closest (as measured stati-
cally using the CFG) from an uncov-
ered instruction.7,8 A similar approach, 
described in Cadar et al.,10 is to favor 
statements that were run the fewest 
number of times.

As another example, heuristics 
based on random exploration have also 
proved successful.7,8 The main idea is 
to start from the beginning of the pro-
gram, and at each symbolic branch for 
which both sides are feasible to ran-
domly choose which side to explore. 
Note that this random strategy has 
a number of important advantages: 
compared to randomly choosing a path 
to execute, it avoids starvation when a 
part of the program rapidly forks many 
new paths; and compared to randomly 
generating inputs, it has a higher prob-
ability to reach branches that are cov-
ered by a very small fraction of the in-
puts. Furthermore, this strategy favors 
paths early in the execution, with fewer 
constraints on the inputs, and thus on 
reaching new program statements.

Interleaving random and symbolic ex-
ecution. Another successful approach, 
which was explored in the context of 
concolic testing, is to interleave sym-
bolic exploration with random test-
ing.26 This approach combines the abil-
ity of random testing to quickly reach 
deep execution states, with the power 
of symbolic execution to thoroughly 
explore states in a given neighborhood.

Pruning redundant paths. An alter-
native approach to avoid exploring the 
same lines of code over and over again 
is to automatically prune redundant 
paths during exploration. The key in-
sight behind the RWset technique de-
scribed in Boonstoppel et al.5 is that 
if a program path reaches the same 
program point with the same symbolic 
constraints as a previously explored 
path, then this path will continue to ex-
ecute exactly the same from that point 
on and thus can be discarded. This 
technique is enhanced by an impor-
tant optimization: when comparing 
the constraints on the two execution 
paths, it discards those that depend 
only on values that will not be subse-
quently read by the program. Note that 
the effect of pruning these paths can be 

Path explosion 
represents one 
of the biggest 
challenges facing 
symbolic execution. 
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It is essential 
to implement 
constraint-solving 
optimizations that 
exploit the type 
of constraints 
generated during 
the symbolic 
execution of  
real programs. 

that exploit the type of constraints gen-
erated during the symbolic execution 
of real programs. We present here two 
representative optimizations used by 
existing symbolic execution tools.

Irrelevant constraint elimination. 
The vast majority of queries in sym-
bolic execution are issued in order to 
determine the feasibility of taking a 
certain branch side. For example, in 
the concolic variant of symbolic execu-
tion, one branch predicate of an exist-
ing path constraint is negated and then 
the resulting constraint set is checked 
for satisfiability in order to determine 
if the program can take the other side 
of the branch, corresponding to the 
negated constraint. An important ob-
servation is that in general a program 
branch depends only on a small num-
ber of program variables, and therefore 
on a small number of constraints from 
the path condition. Thus, one effec-
tive optimization is to remove from the 
path condition those constraints that 
are irrelevant in deciding the outcome 
of the current branch. For example, let 
the path condition for the current ex-
ecution be (x + y > 10) ∧ (z > 0) ∧ (y < 
12) ∧ (z − x = 0) and suppose we want to 
generate a new input by solving (x + y > 
10) ∧ (z > 0) ∧¬ (y < 12), where ¬(y < 12) 
is the negated branch condition whose 
feasibility we are trying to establish. 
Then it is safe to eliminate the con-
straint on z, because this constraint 
cannot influence the outcome of the 
y < 12 branch. The solution of this re-
duced constraint set will give new val-
ues for x and y, and we use the value of 
z from the current execution to gener-
ate the new input. More formally, the 
algorithm computes the transitive clo-
sure of all the constraints on which the 
negated constraint depends, by look-
ing whether they share any variables 
between them. The extra complication 
is in dealing with pointer dereferences 
and array indexing, which is discussed 
in detail in Cadar et al.10 and Sen et al.35

Incremental solving. One important 
characteristic of the constraint sets 
generated during symbolic execution 
is that they are expressed in terms of 
a fixed set of static branches from the 
program source code. For this reason, 
many paths have similar constraint 
sets, and thus allow for similar solu-
tions; this fact can be exploited to im-
prove the speed of constraint solving 

significant, as the number of new paths 
spawned by the continued execution 
can be exponential in the number of en-
countered branches.

Lazy test generation. Lazy test gen-
eration27 is an approach similar to the 
counterexample-guided refinement 
paradigm from static software verifica-
tion. The technique first explores, us-
ing concolic execution, an abstraction 
of the function under test by replacing 
each called function with an uncon-
strained input. Second, for each (pos-
sibly spurious) trace generated by this 
abstraction, it attempts to expand the 
trace to a concretely realizable execu-
tion by recursively expanding the called 
functions and finding concrete execu-
tions in the called functions that can be 
stitched together with the original trace 
to form a complete program execution. 
Thus, it reduces the burden of symbolic 
reasoning about interprocedural paths 
to reasoning about intraprocedural 
paths (in the exploration phase), to-
gether with a localized and constrained 
search through functions (in the con-
cretization phase).

Static path merging. One simple ap-
proach that can be used to reduce the 
number of paths explored is to merge 
them statically using select expressions 
that are then passed directly to the con-
straint solver.13 For example, the state-
ment x[i] = x[i] > 0 ? x[i]:−x[i] 
can be encoded as (x[i] = select(x[i] > 0, 
x[i], −x[i]). If such an expression is com-
puted inside a loop statement with N 
iterations, this approach can reduce 
the number of explored paths from 2N 
to 1. While merging can be effective in 
many cases, it is unfortunately passing 
the complexity to the constraint solver, 
which as discussed in the next section 
represents another major challenge of 
symbolic execution.

Constraint Solving. Despite signifi-
cant advances in constraint solving 
technology during the last few years—
which made symbolic execution practi-
cal in the first place—constraint solving 
continues to be one of the main bottle-
necks in symbolic execution, where it 
often dominates runtime. In fact, one of 
the main reasons for which symbolic ex-
ecution fails to scale on some programs 
is that their code is generating queries 
that are blowing up the solver.

As a result, it is essential to imple-
ment constraint-solving optimizations 
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tions. In multithreaded programs, 
CUTE combines concolic execution 
with dynamic partial order reduction 
to systematically generate both test in-
puts and thread schedules.

CUTE and jCUTE were developed 
at University of Illinois at the Urbana-
Champaign for C and Java programs, 
respectively. Both tools have been ap-
plied to several popular open source 
software including the java.util library 
of Sun JDK 1.4.

CREST7 is an open source tool for 
concolic testing of C programs. CREST 
is an extensible platform for building 
and experimenting with heuristics for 
selecting which paths to explore. Since 
being released as open source in May 
2008,a CREST has been downloaded 
1,500+ times and has been used by 
several research groups. For example, 
CREST has been employed to build 
tools for augmenting existing test 
suites to test newly changed code38 and 
detect SQL injection vulnerabilities,29 
has been modified to run distributed 
on a cluster for testing a flash storage 
platform,22 and has been used to ex-
periment with more sophisticated con-
colic search heuristics.3

Concolic testing has also been 
studied in different courses at several 
universities.

EXE and KLEE. EXE10 is a symbolic 
execution tool for C designed for com-
prehensively testing complex soft-
ware, with an emphasis on systems 
code. To deal with the complexities 
of systems code, EXE models mem-
ory with bit-level accuracy. This is 
needed because systems code often 
treats memory as untyped bytes, and 
observes a single memory location in 
multiple ways: for example, by cast-
ing signed variables to unsigned, or 
treating an array of bytes as a network 
packet, inode, or packet filter through 
pointer casting. As importantly, EXE 
provides the speed necessary to quick-
ly solve the constraints generated by 
real code, through a combination of 
low-level optimizations implemented 
in its purposely designed constraint 
solver STP,10,18 and a series of higher-
level ones such as caching and irrel-
evant constraint elimination.

KLEE8 is a redesign of EXE, built 
on top of the LLVM24 compiler infra-

a	 Available at http://code.google.com/p/crest/

by reusing the results of previous simi-
lar queries, as done in several systems 
such as CUTE and KLEE.8,35 To illus-
trate this point, we present one such 
algorithm, namely the counterexam-
ple caching scheme used by KLEE.8 In 
KLEE, all query results are stored in a 
cache that maps constraint sets to con-
crete variable assignments (or a special 
No solution flag if the constraint set is 
unsatisfiable). For example, one map-
ping in this cache could be (x + y < 10) ∧ 
(x > 5) ⇒ {x = 6, y = 3}. Using these map-
pings, KLEE can quickly answer several 
types of similar queries, involving sub-
sets and supersets of the constraint 
sets already cached. For example, if 
a subset of a cached constraint set is 
encountered, KLEE can simply return 
the cached solution, because removing 
constraints from a constraint set does 
not invalidate an existing solution. 
Moreover, if a superset of a cached con-
straint set is encountered, KLEE can 
quickly check if the cached solution 
still works, by plugging in those values 
into the superset. For example, KLEE can 
quickly check that {x = 6, y = 3} is still a 
valid solution for the query (x + y < 10) 
∧  (x > 5) ∧ (y ≥ 0), which is a superset 
of (x + y < 10) ∧ (x > 5). This latter tech-
nique exploits the fact that in practice, 
adding extra constraints often does not 
invalidate an existing solution.

Memory Modeling. The precision 
with which program statements are 
translated into symbolic constraints 
can have a significant influence on the 
coverage achieved by symbolic execu-
tion, as well as on the scalability of 
constraint solving. For example, using 
a memory model that approximates 
fixed-width integer variables with ac-
tual mathematical integers may be 
more efficient, but on the other hand 
may result in imprecision in the analy-
sis of code depending on corner cases 
such as arithmetic overflow—which 
may cause symbolic execution to miss 
paths, or explore infeasible ones.

Another example are pointers. On 
the one end of the spectrum is a system 
like DART that only reasons about con-
crete pointers, or systems like CUTE 
and CREST that support only equality 
and inequality constraints for point-
ers, which can be efficiently solved.35 At 
the other end are systems like EXE, and 
more recently KLEE and SAGE10,17,35 
that model pointers using the theory of 

arrays with selections and updates im-
plemented by solvers like STP or Z3.15,18

The trade-off between precision 
and scalability should be determined 
in light of the code being analyzed 
(for example, low-level systems code 
vs. high-level applications code), and 
the exact performance difference be-
tween different constraint solving 
theories. Note that the trade-off be-
tween precision and scalability is pos-
sible in modern symbolic execution 
techniques because we can customize 
the use of concrete values in symbolic 
formulas and thereby tune both scal-
ability and precision.

Handling Concurrency. Large real-
world programs are often concurrent. 
Because of the inherent non-deter-
minism of such programs, testing is 
notoriously difficult. Concolic testing 
was successfully combined with a vari-
ant of partial order reduction to test 
concurrent programs effectively.31–34 

This combined method provides one 
of the first technique to effectively test 
concurrent programs with complex 
data inputs.

Tools
Dynamic symbolic execution has 
been implemented by several tools 
from both academia and research 
labs.1,7–10,19,20,35,37 These tools support 
a variety of languages, including C/
C++, Java, and the x86 instruction set, 
implement several different memory 
models, target different types of appli-
cations, and make use of several dif-
ferent constraint solvers and theories. 
We discuss here five of these tools, 
with whom the authors of this article 
have been involved.

DART, CUTE, and CREST. DART19 is 
the first concolic testing tool that com-
bines dynamic test generation with 
random testing and model checking 
techniques with the goal of systemati-
cally executing all (or as many as possi-
ble) feasible paths of a program, while 
checking each execution for various 
types of errors. DART was first imple-
mented at Bell Labs for testing C pro-
grams, and has inspired many other 
extensions and tools since.

CUTE (A Concolic Unit Testing En-
gine) and jCUTE (CUTE for Java)31,33,35 
extend DART to handle multithreaded 
programs that manipulate dynamic 
data structures using pointer opera-

http://code.google.com/p/crest/
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structure. Like EXE, it performs mixed 
concrete/symbolic execution, models 
memory with bit-level accuracy, em-
ploys a variety of constraint solving op-
timizations, and uses search heuristics 
to get high code coverage. One of the 
key improvements of KLEE over EXE is 
its ability to store a much larger num-
ber of concurrent states, by exploiting 
sharing among states at the object-, 
rather than at the page-level as in EXE. 
Another important improvement is 
its enhanced ability to handle interac-
tions with the outside environment—
for example, with data read from the 
file system or over the network—by 
providing models designed to explore 
all possible legal interactions with the 
outside world.

As a result of these features, EXE 
and KLEE have been successfully 
used to check a large number of dif-
ferent software systems, including 
network servers and tools (Berkeley 
Packet Filter, Avahi, Bonjour, among 
others);10,36 file systems (ext2, ext3, 
JFS);39 MINIX device drivers (Sound 
Blaster 16, Lance, PCI);5 Unix utilities 
(Coreutils, MINIX, Busybox suites);8 
and computer vision code.13 They ex-
posed bugs and vulnerabilities in all 
of these software systems, and con-
structed concrete inputs triggering 
them. For example, EXE generated ac-
tual disk images that when mounted 
under various file systems cause the 
Linux kernel to panic.39 EXE and KLEE 
were also able to successfully generate 
high-coverage regression suites: when 
run on the 89 stand-alone tools of the 
Coreutils utility suite, KLEE generates 
tests achieving on average over 90% 
line coverage, significantly beating 
an extensive manual regression suite 
built incrementally by developers over 
more than 15 years.

KLEE was open sourced in June 
2009.b The tool has an active user com-
munity—with approximately 200 mem-
bers on the mailing list and growing—
and several research groups have built 
upon it in a variety of areas, ranging 
from wireless sensor networks30 to 
automated debugging,40 reverse en-
gineering of binary device drivers,11 
exploit generation,2 online gaming,4 
testing and verification for GPUs,25 and 
deterministic multithreading.14

b	 Available at http://klee.llvm.org/

Conclusion
Symbolic execution has become an 
effective program testing technique, 
providing a way to automatically gen-
erate inputs that trigger software er-
rors ranging from low-level program 
crashes to higher-level semantic 
properties; generate test suites that 
achieve high program coverage; and 
provide per-path correctness guaran-
tees. While more research is needed to 
scale symbolic execution to very large 
programs, existing tools have already 
proved effective in testing and finding 
errors in a variety of software, varying 
from low-level network and operating 
systems code to higher-level applica-
tions code.
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The microprocessor chip R&D com-
munity has been well aware of the 
so-called “power wall” challenge for 
over a decade now. Researchers have 
focused mainly on creative techniques 
to improve power-performance effi-
ciency. Developers have adopted many 
of those ideas, and through engineer-
ing innovations have been able to keep 
the economics of technology scaling 
largely justifiable up until now. Indus-
try witnessed a clear paradigm shift 
(as a response to the looming power 
wall) when the single-core processor 
chip era gave way to the multicore era 
at the beginning of the current cen-
tury. Power (and power density) limits, 
coupled with the steady demise of ide-
alized Dennard scaling rules, made it 
difficult to keep increasing the clock 
frequency. Also, limits in instruction-
level parallelism (ILP) made it dif-
ficult to keep increasing single-core 
instructions-per-cycle (IPC), without 
spending an inordinate amount of 
area and power. However, even though 
we embarked upon the multicore trail, 
the power wall was never forgotten. 
We knew that sacrificing single-thread 
performance in favor of generational 
increases in chip throughput would 
not make the power wall go away for-
ever! It would loom large again as the 
core count kept increasing. Because, 
fundamentally, the memory and I/O 
bandwidth demands dictated by the 
need to “feed” so many cores costs 
power and pins that we do not have. 
Also, delivering the current to feed an 
increasing number of cores at a lower 
voltage than before makes the design-
er hit a chip C4 current limit wall that 
is difficult to ignore. 

The following work by Esmaeilza-
deh et al. is a landmark paper that 
opens our eyes to the unrelenting 
power challenge we face in the multi-
core era. Most interestingly, it raises 
the specter of dark silicon: lots of pro-
cessor cores, but very few that can be 
powered on or utilized at any given 
time. Not that the authors see this as 
a desirable feature of future designs; 

but they certainly raise a very valid 
question about the future viability of 
the basic multicore paradigm. Just 
like ILP limits make it ever harder to 
boost single-thread IPC at affordable 
power and complexity, thread-level 
parallelism (TLP) at the chip level 
gets ever harder because of the lim-
ited parallelism in so-called parallel 
applications. And, even for some sci-
entific applications that are embar-
rassingly parallel or for commercial 
server workloads with large TLP, on-
chip shared hardware resource con-
tention and size limits make it more 
difficult to extract that parallelism at 
affordable power. So, even if we are 
able to go on doubling the number of 
cores each technology generation, we 
have two basic problems, as clearly 
enunciated by the authors: for a fixed 
chip power budget and area, even a 
very aggressive investment in applica-
tion parallelism enhancement does 
not help one get even respectably 
close to the targeted 2X (throughput) 
performance growth per generation; 
and even if cooling and power deliv-
ery technologies improve to allow 
a large increase in the chip power 
budget, real application parallelism 
levels would not allow targeted per-
formance scaling in most cases—not 
by a long shot. The paper’s elegant 
analytical formalism shows that un-
der ITRS projections, as we approach 
the 8nm technology node, over half 
the chip will remain unutilized (and 
consequently “dark”). In a sense, this 
is regardless of whether one views 
the problem from the perspective of 
a power wall constraint or from one 
that focuses first on the effective TLP 
limit constraint. 

The effective parallelism content 
of real application workloads is of-
ten small enough that strong single-
thread performance remains a crucial 
factor to combat the (serial) Amdahl 
bottleneck. The paper, therefore does 
consider heterogeneous (or asym-
metric) multicores in the analysis in a 
quest to find an optimistic outlook for 

the future. However, the combination 
of realistic chip power limits and real 
application parallelism limits makes it 
hard or impossible to sustain histori-
cally established performance growth 
rates using the multicore paradigm as 
we currently know it.

Is the specter of progressively dark-
er silicon real? Or, are there technolog-
ical or design breakthroughs around 
the corner to help us circumvent such 
a scenario, at least in the short term? 
Alternatively, if that specter is indeed 
real from a utilization efficiency view-
point, but not directly from a power 
limit perspective, are there other ways 
the “idle” cores can be used to provide 
functionality that is not traditional 
“performance”? For example, can 
available idle cores be used to enhance 
reliability or security? The paper does 
briefly journey into optimistic dream-
land to give the reader a hint about 
promising new innovations that could 
potentially be disruptive in the face of 
the specter that seems to be haunting 
us at this time. 

This paper is not just a doomsday 
predictor. It raises our awareness of 
the problem through scientific quan-
tification; but it should also serve as a 
springboard for innovative research, 
especially for computer architects. 
However, the architect cannot hope 
to invent in a vacuum; the needed in-
novations will surely come, but only 
by adopting a holistic, cross-layer 
view of the full system—from devices, 
through circuits, microarchitecture, 
system architecture, and the software 
stack. Researchers are well-aware of 
this urgent need, thanks to papers like 
this one; the industrial development 
teams cannot wait to take advantage of 
the next generation of holistic, cross-
layer system architectural thoughts, 
models, and design tools.	
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Abstract
Starting in 2004, the microprocessor industry has shifted to 
multicore scaling—increasing the number of cores per die 
each generation—as its principal strategy for continuing per-
formance growth. Many in the research community believe 
that this exponential core scaling will continue into the hun-
dreds or thousands of cores per chip, auguring a parallelism 
revolution in hardware or software. However, while transis-
tor count increases continue at traditional Moore’s Law 
rates, the per-transistor speed and energy efficiency improve-
ments have slowed dramatically. Under these conditions, 
more cores are only possible if the cores are slower, simpler, 
or less utilized with each additional technology generation. 
This paper brings together transistor technology, processor 
core, and application models to understand whether mul-
ticore scaling can sustain the historical exponential perfor-
mance growth in this energy-limited era. As the number of 
cores increases, power constraints may prevent powering of 
all cores at their full speed, requiring a fraction of the cores 
to be powered off at all times. According to our models, the 
fraction of these chips that is “dark” may be as much as 50% 
within three process generations. The low utility of this “dark 
silicon” may prevent both scaling to higher core counts and 
ultimately the economic viability of continued silicon scal-
ing. Our results show that core count scaling provides much 
less performance gain than conventional wisdom suggests. 
Under (highly) optimistic scaling assumptions—for parallel 
workloads—multicore scaling provides a 7.9× (23% per year) 
over ten years. Under more conservative (realistic) assump-
tions, multicore scaling provides a total performance gain of 
3.7× (14% per year) over ten years, and obviously less when 
sufficiently parallel workloads are unavailable. Without a 
breakthrough in process technology or microarchitecture, 
other directions are needed to continue the historical rate of 
performance improvement.

1. INTRODUCTION
Moore’s Law18 (the doubling of transistors on chip every 18 
months) has been a fundamental driver of computing. For 
more than four decades, through transistor, circuit, micro-
architecture, architecture, and compiler advances, Moore’s 
Law, coupled with Dennard scaling,9 has resulted in consis-
tent exponential performance increases. Dennard’s scaling 
theory showed how to reduce the dimensions and the elec-
trical characteristics of a transistor proportionally to enable 
successive shrinks that simultaneously improved density, 
speed, and energy efficiency. According to Dennard’s theory 
with a scaling ratio of , the transistor count doubles 
(Moore’s Law), frequency increases by 40%, and the total 

chip power stays the same from one generation of process 
technology to the next on a fixed chip area. With the end of 
Dennard scaling, process technology scaling can sustain 
doubling the transistor count every generation, but with sig-
nificantly less improvement in transistor switching speed 
and energy efficiency. This transistor scaling trend presages 
a divergence between energy efficiency gains and transis-
tor density increases. The recent shift to multicore designs, 
which was partly a response to the end of Dennard scaling, 
aimed to continue proportional performance scaling by 
utilizing the increasing transistor count to integrate more 
cores, which leverage application and/or task parallelism.

Given the transistor scaling trends and challenges, it is 
timely and crucial for the broader computing community 
to examine whether multicore scaling will utilize each gen-
eration’s doubling transistor count effectively to sustain the 
performance improvements we have come to expect from 
technology scaling. Even though power and energy have 
become the primary concern in system design, no one knows 
how severe (or not) the power problem will be for multicore 
scaling, especially given the large multicore design space.

Through comprehensive modeling, this paper provides a 
decade-long performance scaling projection for future mul-
ticore designs. Our multicore modeling takes into account 
transistor scaling trends, processor core design options, chip 
multiprocessor organizations, and benchmark characteris-
tics, while applying area and power constraints at future tech-
nology nodes. The model combines these factors to project 
the upper bound speedup achievable through multicore scal-
ing under current technology scaling trends. The model also 
estimates the effects of nonideal transistor scaling, includ-
ing the percentage of dark silicon—the fraction of the chip 
that needs to be powered off at all times—in future multicore 
chips. Our modeling also discovers the best core organiza-
tion, the best chip-level topology, and the optimal number of 
cores for the workloads studied. We do not believe or advo-
cate that designs with dark silicon are ideal or even desirable; 
in our view smaller chips are more likely. Nonetheless, our 
modeling shows that—even with the best multicore organiza-
tion, assuming constant chip size and fixed power budget—a 
significant portion of the chip will remain dark.

The study shows that regardless of chip organization and 
topology, multicore scaling is power limited to a degree not 

A previous version of this article appears in Proceedings of 
the 38th International Symposium on Computer Architecture 
( June 2011). Parts of this article appear in IEEE Micro Top 
Picks from the Computer Architecture Conferences of 2011 
(May/June 2012).
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widely appreciated by the computing community. In just 
five generations, at 8nm, the percentage of dark silicon in 
a fixed-size chip may grow to 50%. Given the recent trend of 
technology scaling, the 8nm technology node is expected to 
be available in 2018. Over this period of ten years (from 2008 
when 45nm microprocessors were available), with optimistic 
international technology roadmap for semiconductors 
(ITRS) scaling projections,16 only 7.9× average speedup is pos-
sible for commonly used parallel workloads,4 leaving a nearly 
24-fold gap from a target of doubled performance per genera-
tion. This gap grows to 28-fold with conservative scaling pro-
jections,5 with which only 3.7× speedup is achievable in the 
same period. Further investigations also show that beyond 
a certain point increasing the core count does not translate 
to meaningful performance gains. These power and parallel-
ism challenges threaten to end the multicore era, defined as 
the era during which core counts grow appreciably.

2. OVERVIEW
Figure 1 shows how we build and combine three models to 
project the performance of future multicores. Ultimately, 
the model predicts the speedup achievable by multicore 
scaling and shows a gap between our model’s projected 
speedup and the expected exponential speedup with each 
technology generation. We refer to this gap as the dark 
silicon performance gap, since it is partly the result of the 
dark silicon phenomenon, or the nonideal transistor scal-
ing that prevents fully utilizing the exponential increases 
in transistor count. Our modeling considers transistor 
scaling projections, single-core design scaling, multicore 
design choices, application characteristics, and microar-
chitectural features. This study assumes that the die size 
and the power budget stay the same as technology scales, 

an assumption in line with the common practice for micro-
processor design. Below we briefly discuss each of the three 
models.

Device scaling model (M-Device). Two device (transistor) 
scaling models provide the area, power, and frequency 
scaling factors at technology nodes from 45nm through 
8nm. One model is based on aggressive ITRS projections16 
while the other builds on more conservative predictions 
from Shekhar Borkar’s recent study.5

Core scaling model (M-Core). Through Pareto-optimal 
curves, derived from measured data, the M-Core model 
provides the maximum performance that a single-core can 
sustain for any given area. Further, it provides the minimum 
power that is consumed to sustain this level of performance. 
At each technology node, these two Pareto frontiers, which 
constitute the M-Core model, define the best-case design 
space of single cores.

Multicore scaling model (M-CMP). The M-CMP covers 
two  mainstream classes of multicore organizations, 
multicore CPUs and many-thread GPUs, which represent 
two extreme points in the threads-per-core spectrum. The 
CPU multicore organization represents Intel Nehalem-
like multicore designs that benefit from large caches and 
offer relatively high single-thread performance. The GPU 
multicore organization represents NVIDIA Tesla-like 
lightweight cores with heavy multithreading support and 
poor single-thread performance. In modeling each of the 
two multicore organizations, we consider four topologies: 
symmetric, asymmetric, dynamic, and composed (also called 
“fused” in the literature15).
Symmetric multicore. The symmetric, or homogeneous, 
multicore topology consists of multiple copies of the 
same core operating at the same voltage and frequency 
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setting. In a symmetric multicore, the resources, includ-
ing the power and the area budget, are shared equally 
across all cores.
Asymmetric multicore. The asymmetric multicore topology 
consists of one large monolithic core and many identical 
small cores. This design uses the high-performing large core 
for the serial portion of code and leverages the numerous 
small cores as well as the large core to exploit the parallel 
portion of code.
Dynamic multicore. The dynamic multicore topology is a vari-
ation of the asymmetric multicore topology. During parallel 
code portions, the large core is shut down and, conversely, 
during the serial portion, the small cores are turned off and 
the code runs only on the large core.6, 21 Switching the cores 
off and on allows integrating more cores or using a higher 
voltage and frequency operational setting.
Composed multicore. The composed multicore topology is a 
collection of small cores that can dynamically merge together 
and compose a logical higher performance large core.15, 17 
While providing a parallel substrate for the parallel portion 
of code when unmerged, the small cores merge and compose 
a logical core that offers higher single-threaded performance 
for the serial portion.

The multicore model is an analytic model that computes 
the multicore performance and takes the core performance 
as input (obtained from M-Core), the multicore organiza-
tion (CPU-like or GPU-like), and multicore topology (sym-
metric, asymmetric, dynamic, and composed). Unlike 
previous studies, the model also takes into account applica-
tion characteristics such as memory access pattern, and the 
amount of thread-level parallelism in the workload as well 
as the microarchitectural features such as cache size and 
memory bandwidth. We choose the PARSEC benchmarks4 
to study the multicore scaling potential for successfully 
parallelized applications. PARSEC is a set of highly paral-
lel applications that are widely used to support the parallel 
architecture research.

Modeling future multicore chips. To model future 
multicore chips, we first model the building blocks, the 
future cores. We combine the device and core models to 
project the best-case design space of single cores—the Pareto 
frontiers—at future technology nodes. Any performance 
improvement for future cores will come at the cost of area or 
power as defined by the projected Pareto frontiers. Then, we 
combine all three models and perform an exhaustive design-
space search to find the optimal multicore configuration for 
each individual application considering its characteristics. 
The optimal configuration delivers the maximum multicore 
speedup for each benchmark at future technology nodes 
while enforcing area and power constraints. The gap 
between the projected speedup and the speedup we have 
come to expect with each technology generation is the dark 
silicon performance gap.

Related work. Other work has studied various subsets of 
the problem that we study comprehensively. Hill and Marty 
extend Amdahl’s Law to model multicore architectures with 
different topologies.14 Hempstead et al. introduce a variant 
of Amdahl’s Law to estimate the amount of specialization 
required to maintain 1.5× performance growth per year, 

assuming completely parallelizable code.13 Chung et al. 
study unconventional cores including custom logic, FPGAs, 
or GPUs in heterogeneous single-chip designs.7 Azizi et al. 
derive the single-core energy/performance tradeoff as 
Pareto frontiers using architecture-level statistical models 
combined with circuit-level energy-performance trade-
off functions.2 Chakraborty considers device-scaling and 
estimates a simultaneous activity factor for technology 
nodes down to 32nm.6 Venkatesh et al. estimate technology-
imposed utilization limits and motivate energy-efficient 
and application-specific core designs.22 Hardavellas et al. 
forecast the limits of multicore scaling and the emergence 
of dark silicon in servers with workloads that have an 
inherent abundance of parallelism.12

3. DEVICE MODEL (M-DEVICE)
The first step in projecting gains from more cores is develop-
ing a model that captures future transistor scaling trends. 
To highlight the challenges of nonideal device scaling, first 
we present a simplified overview of historical Dennard scal-
ing and the more recent scaling trends.

Historical device scaling trends. According to Dennard 
scaling, as the geometric dimensions of transistors scale, 
the electric field within the transistors stays constant if 
other physical features, such as the gate oxide thickness 
and doping concentrations, are reduced proportionally. 
To keep the electric field constant, the supply voltage (the 
switch on voltage) as well as the threshold voltage (the volt-
age level below which the transistor switches off) need to be 
scaled at the same rate as the dimensions of the transistor. 
With Dennard scaling, a 30% reduction in transistor length 
and width results in a 50% decrease in transistor area, dou-
bling the number of transistors that can fit on chip with 
each technology generation (Moore’s Law18). Furthermore, 
the decrease in transistor sizes results in a 30% reduction in 
delay. In total, Dennard scaling suggests a 30% reduction 
in delay (hence 40% increase in frequency), a 50% reduc-
tion in area, and a 50% reduction in power per transistor. 
As a result, the chip power stays the same as the number of 
transistors doubles from one technology node to the next 
in the same area.

Recent device scaling trends. At recent technology nodes, 
the rate of supply voltage scaling has dramatically slowed 
due to limits in threshold voltage scaling. Leakage cur-
rent increases exponentially when the threshold voltage 
is decreased, limiting threshold voltage scaling, and mak-
ing leakage power a significant and first-order constraint. 
Additionally, as technology scales to smaller nodes, phys-
ics limits decreases in gate oxide thickness. These two 
phenomena were not considered in the original Dennard 
scaling theory, since leakage power was not dominant in the 
older generations, and the physical limits of scaling oxide 
thickness were too far out to be considered. Consequently, 
Dennard scaling stopped at 90nm.8 That is, transistor area 
continues to scale at the historic rate, which allows for dou-
bling the number of transistors, while the power per tran-
sistor is not scaling at the same rate. This disparity will 
translate to an increase in chip power if the fraction of active 
transistors is not reduced from one technology generation 
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Figure 2. Design space and derivation of the Pareto frontiers.
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P(q)= 0.0002q3 + 0.0009q2 + 0.3859q − 0.0301

power/performance Pareto frontier, P(q), for these two design 
spaces, where q is the single-threaded performance of a core. 
These frontiers capture the best-case area/performance and 
power/performance tradeoffs for a core while abstracting 
away specific details of the core. We use the device scaling 
model to project the frontiers to future technologies and 
model performance, area, and power of cores fabricated at 
those nodes.

4.2. Model implementation
As Figure 2 depicts, we populate the two design spaces at 
45nm using 20 representative Intel and AMD processors 
and derive the Pareto frontiers. The curve that bounds all 
power(area)/performance points in the design space and 
minimizes power(area) required for a given level of perfor-
mance constructs the Pareto frontier. The polynomials P(q) 
and A(q) are the core model. The core performance, q, is 
the processor’s SPECmark and is collected from the SPEC 

to the next.6 The shift to multicore architectures was partly a 
response to the end of Dennard scaling.

3.1. Model structure
The device model provides transistor area, power, and 
frequency scaling factors from a base technology node (e.g. 
45nm) to future technologies. The area scaling factor corre-
sponds to the shrinkage in transistor dimensions. The fre-
quency scaling factor is calculated based on the fan-out of 
4 (FO4) delay reduction. FO4 is a process independent delay 
metric used to measure the delay of CMOS logic that identifies 
the processor frequency. FO4 is the delay of an inverter, driven 
by an inverter 4× smaller than itself, and driving an inverter 4× 
larger than itself. The power scaling factor is computed using 
the predicted frequency, voltage, and gate capacitance scal-
ing factors in accordance with the   equation.

3.2. Model implementation
We generate two device scaling models: ITRS and conserva-
tive. The ITRS model uses projections from the ITRS 2010 
technology roadmap.16 The conservative model is based on 
predictions by Shekhar Borkar and represents a less opti-
mistic view.5 The parameters used for calculating the power 
and performance scaling factors are summarized in Table 
1. We allocate 20% of the chip-power budget to leakage 
power and assume chip designers can maintain this ratio.

4. CORE MODEL (M-CORE)
The second step in estimating future multicore perfor-
mance is modeling a key building block, the processor core.

4.1. Model structure
We build a technology-scalable core model by populating the 
area/performance and power/performance design spaces 
with the data collected for a set of processors; all fabricated 
in the same technology node. The core model is the combi-
nation of the area/performance Pareto frontier, A(q), and the 

Table 1. Scaling factors with ITRS and conservative projections.

 
Tech 
node 
(nm)

Frequency 
scaling  
factor  

(/45nm)

Vdd  
scaling 
factor 

(/45nm)

Capacitance 
scaling  
factor  

(/45nm)

Power  
scaling  
factor  

(/45nm)

IT
R

S

45* 1.00 1.00 1.00 1.00
32* 1.09 0.93 0.70 0.66
22† 2.38 0.84 0.33 0.54
16† 3.21 0.75 0.21 0.38
11† 4.17 0.68 0.13 0.25
8† 3.85 0.62 0.08 0.12

31% frequency increase and 35% power reduction per node

C
on

se
rv

at
iv

e 45 1.00 1.00 1.00 1.00
32 1.10 0.93 0.75 0.71
22 1.19 0.88 0.56 0.52
16 1.25 0.86 0.42 0.39
11 1.30 0.84 0.32 0.29
8 1.34 0.84 0.24 0.22

6% frequency increase and 23% power reduction per node

*Extended planar bulk transistors.
†Multi-gate transistors.
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Website.20 We estimate the core power budget using the TDP 
reported in processor datasheets. TDP is the chip-power 
budget, or the amount of power the chip can dissipate with-
out exceeding the transistor junction temperature. We use 
die photos of the four microarchitectures, Intel Atom, Intel 
Core, AMD Shanghai, and Intel Nehalem, to estimate the 
core areas (excluding level 2 and level 3 caches). Since the 
focus of this work is to study the impact of technology con-
straints on logic scaling rather than cache scaling, we derive 
the Pareto frontiers using only the portion of power budget 
and area allocated to the core in each processor excluding 
the uncore components.

As illustrated in Figure 2, a cubic polynomial, P(q), is fit to 
the points along the edge of the power/performance design 
space and a quadratic polynomial (Pollack’s rule19), A(q), to 
the points along the edge of the area/performance design 
space. The Intel Atom Z520 with an estimated 1.89 W TDP 
per core represents the lowest power design (lower-left fron-
tier point), and the Nehalem-based Intel Core i7-965 Extreme 
Edition with an estimated 31.25 W TDP per core represents 
the highest performing design (upper-right frontier point). 
The points along the scaled Pareto frontier are used as the 
search space for determining the best core configuration by 
the multicore model.

5. MULTICORE MODEL (M-CMP)
The last step in modeling multicore scaling is to develop a 
detailed chip-level model (M-CMP) that integrates the area 
and power frontiers, microarchitectural features, and appli-
cation behavior, while accounting for the chip organization 
(CPU-like or GPU-like) and its topology (symmetric, asym-
metric, dynamic, or composed).

5.1. Model structure
Guz et al. proposed a model to consider first-order impacts 
of microarchitectural features (cache organization, memory 
bandwidth, number of threads per core, etc.) and workload 
characteristics (memory access pattern).10 To first order, 
their model considers stalls due to memory dependences 
and resource constraints (bandwidth or functional units). 
We extend their approach to build our multicore model. Our 
extensions incorporate additional application characteris-
tics, microarchitectural features, and physical constraints, 
and covers both homogeneous and heterogeneous multicore 
topologies.

This model uses single-threaded cores with large caches 
to cover the CPU multicore design space and massively 
threaded cores with minimal caches to cover the GPU mul-
ticore design while modeling all four topologies. The input 
parameters to the model, and how, if at all, they are affected 
by the multicore design choices are listed in Table 2.

Multicore topologies. The multicore model is an extended 
Amdahl’s Law1 equation that incorporates the multicore 
performance (Perf ) calculated from (2)–(5):

	 � (1)

The M-CMP model (1) measures the multicore speedup 
with respect to a baseline multicore (PerfB). That is, the 

parallel portion of code ( f ) is sped up by SParallel = PerfP/PerfB 
and  the  serial portion of code (1 − f ) is sped up by SSerial = 
PerfS/PerfB.

The number of cores that fit on the chip is calculated as 
follows based on the topology of the multicore, its area bud-
get (AREA), its power budget (TDP), each core’s area (A(q) ), 
and each core’s power (P(q) ).

	 	

For heterogeneous multicores, qS is the single-threaded 
performance of the small cores and qL is the single-threaded 
performance of the large core. The area overhead of sup-
porting composability is t; however, no power overhead is 
assumed for composability support.

Microarchitectural features. Multithreaded performance 
(Perf ) of an either CPU-like or GPU-like multicore running 
a fully parallel ( f = 1) and multithreaded application is 

Table 2. M-CMP parameters with default values from 45nm Nehalem.

Parameter Description Default Affected by

N Number of cores 4 Multicore topology

T Number of threads  
per core

1 Core style

freq Core frequency (MHz) 3200 Core performance

CPI Cycles per instruction 
(zero-latency cache 
accesses)

1 Core performance, 
application

C1 L1 cache size per core 
(KB)

64 Core style

C2 L2 cache size per chip 
(MB)

2 Core style, multi-
core topology

t1 L1 access time (cycles) 3 –

t2 L2 access time (cycles) 20 –

t Memory access time 
(cycles)

426 Core performance

BW Maximum memory 
bandwidth (GB/s)

200 Technology node

b Bytes per memory 
access (B)

64 –

f Fraction of code that  
can be parallel

Varies Application

r Fraction of  
instructions that are 
memory accesses

Varies Application

a1, b1 L1 cache miss rate  
function constants

Varies Application

a2, b2 L2 cache miss rate  
function constants

Varies Application
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each processor design point. We start by assuming that the 
Nehalem core has a CPIexe of . Then, the smallest core, an 
Atom processor, should have a CPIexe such that the ratio of 
its M-CMP performance to the Nehalem core’s M-CMP per-
formance is the same as the ratio of their SPECmark scores 
(q). We assume CPIexe does not change as technology scales, 
while frequency does change as discussed in Section 6.1.

Microarchitectural features. A key part of the detailed 
model is the set of input parameters that model the micro-
architecture of the cores. For single-thread (ST) cores, we 
assume each core has a 64KB L1 cache, and chips with only 
ST cores have an L2 cache that is 30% of the chip area. Ma-
ny-thread (MT) cores have small L1 caches (32KB for every 
8 cores), support multiple hardware contexts (1024 threads 
per 8 cores) and a thread register file, and have no L2 cache. 
From Atom and Tesla die photos, we estimate that 8 small 
MT cores, their shared L1 cache, and their thread register 
file can fit in the same area as one Atom processor. We as-
sume that off-chip bandwidth (BWmax) increases linearly as 
process technology scales down while the memory access 
time is constant.

Composed multicores. We assume that t (area overhead 
of composability) increases from 10% to 400% depending 
on the total area of the composed core and performance of 
the composed core cannot exceed performance of a single 
Nehalem core at 45nm.

Constraints and baseline. The area and power bud-
gets are derived from the highest-performing quad-core 
Nehalem multicore at 45nm excluding the L2 and L3 cach-
es. They are 111 mm2 and 125 W, respectively. The M-CMP 
multicore speedup baseline is a quad-Nehalem multicore 
that fits in the area and power budgets. The reported dark 
silicon projections are for the area budget that is solely 
allocated to the cores, not caches and other ‘uncore’ com-
ponents. The actual fraction of chip that goes dark may 
be higher.

6. COMBINING MODELS
6.1. Device × core model
To study core scaling in future technology nodes, we scaled 
the 45nm Pareto frontiers down to 8nm by scaling the 
power and performance of each processor data point using 
the DevM model and then re-fitting the Pareto optimal 
curves at each technology node. Performance, measured 
in SPECmark, is assumed to scale linearly with frequency. 
This optimistic assumption ignores the effects of memory 
latency and bandwidth on the core performance, and thus 
actual performance gains through scaling may be lower. 
Based on the optimistic ITRS model, scaling a microarchi-
tecture (core) from 45nm to 8nm will result in a 3.9× per-
formance improvement and an 88% reduction in power 
consumption. Conservative scaling, however, suggests 
that performance will increase only by 34%, and power will 
decrease by 74%.

6.2. Device × core × multicore model
All three models are combined to produce final projec-
tions on optimal multicore speedup, optimal number 
of cores, and amount of dark silicon. To determine the 

calculated in terms of instructions per second in (2) by mul-
tiplying the  number of cores (N) by the core utilization (h) 
and scaling by the ratio of the processor frequency to CPIexe:

	 � (2)

The CPIexe parameter does not include stalls due to cache 
accesses, which are considered separately in the core utili-
zation (h). The core utilization is the fraction of time that a 
thread running on the core can keep it busy. It is modeled 
as a function of the average time spent waiting for each 
memory access (t), fraction of instructions that access the 
memory (rm), and the CPIexe:

	 � (3)

The average time spent waiting for memory accesses (t) is a 
function of the time to access the caches (tL1 and tL2), time to 
visit memory (tmem), and the predicted cache miss rate (mL1 
and mL2):

	 � (4)

	 � (5)

5.2. Model implementation
The M-CMP model incorporates the Pareto frontiers, physi-
cal constraints, real application characteristics, and realis-
tic microarchitectural features into the multicore speedup 
projections as discussed below.

Application characteristics. The input parameters 
that characterize an application are its cache behavior, 
fraction of instructions that are loads or stores, and frac-
tion of parallel code. For the PARSEC benchmarks, we 
obtain this data from two previous studies.3, 4 To obtain 
the fraction of parallel code ( f ) for each benchmark, we 
fit an Amdahl’s Law-based curve to the reported speed-
ups across different numbers of cores from both studies. 
The value of f ranges from 0.75 to 0.9999 depending on 
the benchmark.

Obtaining frequency and CPIexe from Pareto frontiers. 
To incorporate the Pareto-optimal curves into the M-CMP 
model, we convert the SPECmark scores (q) into an esti-
mated CPIexe and core frequency. We assume the core fre-
quency scales linearly with performance, from 1.5 GHz for 
an Atom core to 3.2 GHz for a Nehalem core. Each applica-
tion’s CPIexe is dependent on its instruction mix and use of 
hardware resources (e.g., functional units and out-of-order 
issue width). Since the measured CPIexe for each benchmark 
at each technology node is not available, we use the M-CMP 
model to generate per benchmark CPIexe estimates for each 
design point along the Pareto frontier. With all other model 
inputs kept constant, we iteratively search for the CPIexe at 
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best multicore configuration at each technology node, 
we sweep the design points along the scaled area/per-
formance and power/performance Pareto frontiers 
(M-Device  × M-Core) as these points represent the most 
efficient designs. At each technology node, for each core 
design on the scaled frontiers, we construct a multicore 
chip consisting of one such core. For a symmetric mul-
ticore chip, we iteratively add identical cores one by one 
until the area or power budget is hit, or performance 
improvement is limited. We sweep the frontier and con-
struct a symmetric multicore for each processor design 
point. From this set of symmetric multicores, we pick the 
multicore with the best speedup as the optimal symmet-
ric multicore for that technology node. The procedure is 
similar for other topologies. This procedure is performed 
separately for CPU-like and GPU-like organizations. The 
amount of dark silicon is the difference between the area 
occupied by cores for the optimal multicore and the area 
budget allocated to the cores.

7. SCALING AND FUTURE MULTICORES
We apply the combined models to study the future of mul-
ticore designs and their performance-limiting factors. The 
results from this study provide a detailed analysis of mul-
ticore behavior for future technologies considering 12 real 
applications from the PARSEC suite.

7.1. Speedup projections
Figure 3 summarizes all of the speedup projections in a 
single scatter plot. For every benchmark at each technol-
ogy node, we plot the speedup of eight possible multicore 
configurations (CPU-like, GPU-like) × (symmetric, asym-
metric, dynamic, composed). The solid line is exponential 
performance scaling–doubling performance every tech-
nology generation.
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Figure 3. Speedup across process technology nodes across all 
organizations and topologies with PARSEC benchmarks.
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Figure 4. Impact of application parallelism and power budget on 
speedup at 8nm.

With optimal multicore configurations for each individual 
application, at 8nm, only 3.7× (conservative scaling) 
or  7.9× (ITRS scaling) geometric mean speedup is 
possible, as shown by the dashed line in Figure 3.

Highly parallel workloads with a degree of parallelism 
higher than 99% will continue to benefit from multicore 
scaling.

7.2. Dark silicon projections

With ITRS projections, at 8nm, over 50% of the chip will 
be dark and cannot be utilized.

At 8nm, the geometric mean speedup for dynamic and 
composed topologies is only 10% higher than the 
geometric mean speedup for symmetric topologies.

To understand whether parallelism or the power constraint 
is the primary source of the dark silicon performance gap, 
we vary each of these factors in two experiments at 8nm. 
First, as depicted in Figure 4(a), we keep the power budget 
constant (our default budget is 125 W), and vary the level of 
parallelism in the PARSEC applications from 0.75 to 0.99, 
assuming programmer effort can realize this improve-
ment. We see performance improves slowly as the paral-
lelism level increases, with most benchmarks reaching 
a speedup of about only 15× at 99% parallelism. Provided 
that the power budget is the only limiting factor, typical 
upper-bound ITRS-scaling speedups would still be limited 
to 15×. With conservative scaling, this best-case speedup is 
limited to 6.3×.

For the second experiment, we keep each application’s 
parallelism at its real level and vary the power budget from 
50 W to 500 W. As Figure 4(b) shows, eight of 12 bench-
marks show no more than 10× speedup even with a prac-
tically unlimited power budget. That is, increasing core 
counts beyond a certain point does not improve perfor-
mance due to the limited parallelism in the applications 
and the Amdahl’s Law. Only four benchmarks have suffi-
cient parallelism to even hypothetically sustain the expo-
nential level of speedup.
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7.3. Core count projections
Different applications saturate performance improve-
ments at different core counts. We consider the chip con-
figuration that provides the best speedup for all of the 
applications as an ideal configuration. Figure 5 shows 
the number of cores (solid line) for the ideal CPU-like 
dynamic multicore configuration across technology gen-
erations. We choose the dynamic topology since it deliv-
ers the highest performance. The dashed line illustrates 
the number of cores required to achieve 90% of the ideal 
configuration’s geometric mean speedup across PARSEC 
benchmarks. As depicted, with ITRS scaling, the ideal con-
figuration integrates 442 cores at 8nm; however, 35 cores 
reach the 90% of the speedup achievable by 442 cores. 
With conservative scaling, the 90% speedup core count is  
20 at 8nm.

we ignore any increase in L2 cache power or increase in L2 
cache access latency. Across the PARSEC benchmarks, the 
optimal percentage of chip devoted to cache varies from 
20% to 50% depending on benchmark memory access 
characteristics. Compared to the unified 30% cache area 
for all the applications, using each application’s optimal 
cache area improves performance merely by at most 20% 
across all benchmarks.

Memory bandwidth. Figure 6(b) illustrates the sensitivity 
of PARSEC performance to the available memory bandwidth 
for symmetric GPU multicores at 45nm. As the memory 
bandwidth increases, the speedup improves since more 
threads can be fed with data; however, the benefits are lim-
ited by power and/or parallelism and in 10 out of 12 bench-
marks speedups do not increase by more than 2× compared 
to the baseline, 200GB/s.

SMT. To simplify the discussion, we did not consider 
SMT support for the processors (cores) in the CPU multicore 
organization. SMT support can improve power efficiency of 
the cores for parallel workloads to some extent. We studied 
2-way, 4-way, and 8-way SMT with no area or energy penalty, 
and observed that speedup improves with 2-way SMT by 1.5× 
in the best case and decreases as much as 0.6× in the worst 
case due to increased cache contention; the range for 8-way 
SMT is 0.3–2.5×.

8. ASSUMPTIONS AND LIMITATIONS
We discuss some of the important limitations of our 
model and argue that they do not significantly change our 
final results.

Dynamic voltage and frequency scaling (DVFS). Our 
device and core models do not explicitly consider 
dynamic voltage and frequency scaling; instead, we 
take an optimistic approach to account for their best-
case settings. When deriving the Pareto frontiers, we 
set each  processor to operate at its optimal voltage and 
frequency setting (Vddmin

, Freqmax). At a fixed Vdd setting, 
scaling down the frequency from Freqmax results in a 
power/performance point inside the optimal Pareto 
curve, a suboptimal design point. However, scaling 
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Figure 5. Number of cores for the ideal CPU-like dynamic multicore 
configurations and the number of cores delivering 90% of the 
speedup achievable by the ideal configurations across the PARSEC 
benchmarks.
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Figure 6. Effect of L2 size and memory bandwidth on speedup at 45nm.

Due to limited parallelism in the PARSEC suite, even 
with novel heterogeneous topologies and optimistic 
ITRS scaling, integrating more than 35 cores improves 
performance only slightly for CPU-like topologies.

7.4. Sensitivity studies
Our analysis thus far examined typical configurations 
and showed poor scalability for the multicore designs. 
A natural question is, can simple configuration changes 
(percentage cache area, memory bandwidth, etc.) provide 
significant benefits that can bridge the dark silicon gap? 
We investigate three such simple changes: L2 cache 
size,  memory bandwidth, and simultaneous multi-
threading (SMT).

L2 cache area. Figure 6(a) shows the optimal speedup 
at 45nm as the amount of a symmetric CPU’s chip area 
devoted to L2 cache varies from 0% to 100%. In this study 

The level of parallelism in PARSEC applications is the 
primary contributor to the dark silicon performance gap. 
However, in realistic settings the dark silicon resulting 
from power constraints limits the achievable speedup.
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workloads, allowing the economics of process scaling 
to hold. A key question for the computing community is 
whether scaling multicores will provide the performance 
and value needed to scale down many more technology 
generations. Are we in a long-term “multicore era,” or 
will it instead be a “multicore decade” (2004–2014)? Will 
industry need to move in different, perhaps radical, direc-
tions to justify the cost of scaling? To answer the question, 
this paper models an upper bound on parallel application 
performance available from multicore and CMOS scaling–
assuming no major disruptions in process scaling or core 
efficiency. Using a constant area and power budget, this 
study showed that the space of known multicore designs 
(CPU, GPU, their hybrids) or novel heterogeneous topolo-
gies (e.g., dynamic or composable) falls far short of the 
historical performance gains to which the microprocessor 
industry is accustomed. Even with aggressive ITRS scal-
ing projections, scaling cores achieve a geometric mean 
7.9× speedup in 10 years at 8nm—a 23% annual gain. Our 
findings suggest that without process breakthroughs, 
directions beyond multicore are needed to provide perfor-
mance scaling. There are reasons to be both pessimistic 
and optimistic.

9.1. Pessimistic view
A pessimistic interpretation of this study is that the per-
formance improvements to which we have grown accus-
tomed over the past 40 years are unlikely to continue with 
multicore scaling as the primary driver. The transition 
from multicore to a new approach is likely to be more dis-
ruptive than the transition to multicore. Furthermore, to 
sustain the current cadence of Moore’s Law, the transition 
needs to be made in only a few years, much shorter than 
the traditional academic time frame for research and tech-
nology transfer. Major architecture breakthroughs in “al-
ternative” directions such as neuromorphic computing, 
quantum computing, or bio-integration will require even 
more time to enter the industrial product cycle. Further-
more, while a slowing of Moore’s Law will obviously not 
be fatal, it has significant economic implications for the 
semiconductor industry.

9.2. Optimistic view
Technology. The study shows if energy efficiency break-
throughs are made on supply voltage and process scaling, 
the performance improvement potential for multicore scal-
ing is still high for applications with very high degrees of 
parallelism.

The need for microarchitecture innovations. Our study 
shows that fundamental processing limitations emanate 
from the processor core. The limited improvements on 
single-threaded performance is the inhibiting factor. 
Clearly, architectures that move well past the power/
performance Pareto-optimal frontier of today’s designs 
are necessary to bridge the dark silicon gap and utilize 
the increases in transistor count. Hence, improvements 
to the processor core efficiency will have significant 
impact on performance improvement and will enable 
technology scaling even though the core consumes 

voltage up and operating at a new (V ′ddmin
, Freq′max) setting 

results in a different power-performance point that is 
still at the optimal frontier. Since we investigate all of the 
points along the frontier to find the optimal multicore 
configuration, our study covers multicore designs that 
induce heterogeneity to symmetric topologies through 
dynamic voltage and frequency scaling.

Architecture details in multicore model and validation. 
The multicore model considers the first-order impact of 
caching, parallelism, and threading under assumptions that 
result only in optimistic projections (i.e., favorable multicore 
scaling). Comparing the output of the M-CMP model against 
published empirical results confirm that our model 
always overpredicts multicore performance. The model 
optimistically assumes that the workload is homogeneous, 
work is infinitely parallel during parallel sections of code, 
memory accesses never stall due to a previous access, and 
no thread synchronization, operating system serialization, 
or swapping occurs.

Server workloads. We do not directly study the server 
workloads, a domain where applications are highly 
concurrent and embarrassingly parallel. However, even 
in these types of workloads, resource scheduling and 
structural hazards such as competition for cache, 
memory bandwidth, DRAM storage, SSD IO, network 
IO, etc. limit parallelism. These factors induce a serial 
portion to the execution of the workloads. The key 
challenge is to measure the amount of serialization from 
these structural hazards, which is an interesting future 
study. Once the amount of serialization is measured, our 
models can be applied to the server workloads to project 
the amount of dark silicon and its effects. Generally, 
if the effective parallelism is less than 99%, the results 
suggest that dark silicon and its effects will manifest. 
Furthermore, Hardavellas et al. forecast the limits of 
multicore scaling and the emergence of dark silicon in 
servers with workloads that have an inherent abundance 
of parallelism.12 They project that for server workloads 
such as online transaction processing (OLTP), decision 
support systems (DSS), and Web server (Apache), even 
with 3D-stacked memory, a significant amount of a 
multicore chip will be dark as technology scales. They 
determine that power and limited and nonscalable 
off-chip bandwidth are the primary limiting factors to 
multicore performance scaling and result in dark silicon 
for server workloads.

Alternative cores. We do not consider embedded ARM 
or Tilera cores in this work because they are designed for 
restricted domains and their SPECmark scores are not 
available for a meaningful comparison.

9. A PATH FORWARD?
For decades, Moore’s Law plus Dennard scaling permit-
ted more transistors, faster transistors, and more energy 
efficient transistors with each new process node, justi-
fying the enormous costs required to develop each new 
process node. Dennard scaling’s failure led industry to 
race down the multicore path, which for sometime per-
mitted performance scaling for parallel and multitasked 
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only 20% of the power budget for an entire laptop, 
smartphone, tablet, etc. When performance becomes 
limited, microarchitectural techniques that occasionally 
use parts of the chip to deliver outcomes orthogonal to 
performance, such as security, programmer productivity, 
and software maintainability are ways to sustain the 
economics of the industry. We believe this study will 
revitalize and trigger microarchitecture innovations, 
making the case for their urgency and their potential 
impact.

Efficiency through specialization. Recent work has 
quantified three orders of magnitude difference in efficiency 
between general-purpose processors and ASICs.11 However, 
there is a well-known tension between efficiency and 
programmability. Designing ASICs for the massive base of 
quickly changing general-purpose applications is currently 
infeasible. Programmable accelerators, such as GPUs and 
FPGAs, and specialized hardware can provide an intermediate 
point between the efficiency of ASICs and the generality of 
conventional processors, gaining significant improvements 
for specific domains of applications. Even though there is 
an emerging consensus that specialization and acceleration 
is a promising approach for efficiently utilizing the growing 
number of transistors, developing programming abstractions 
that allow general-purpose applications to leverage 
specialized hardware and programmable accelerators remain 
challenging.

Opportunity for disruptive innovations. Our study is 
based on a model that takes into account properties of 
devices, processor cores, multicore organizations, and 
topologies. Thus the model inherently provides the areas 
to focus on for innovation. To surpass the dark silicon 
performance barrier highlighted by our work, designers 
must develop systems that use significantly more 
energy-efficient techniques. Some examples include 
device abstractions beyond digital logic (error-prone 
devices); processing paradigms beyond superscalar, 
SIMD, and SIMT; and program semantic abstractions 
allowing probabilistic and approximate computation. 
There is an emerging synergy between the applications 
that can tolerate approximation and the unreliability 
in the computation fabric as technology scales down. 
If done in a disciplined manner, relaxing the high tax 
of providing perfect accuracy at the device, circuit, 
and architecture level can provide a huge opportunity 
to improve performance and energy efficiency for the 
domains in which applications can tolerate approximate 
computation yet deliver acceptable outputs. Our results 
show that such radical departures are needed and the 
model provides quantitative measures to examine the 
impact of such techniques.

The model we have developed in the paper is useful to 
determine an optimal multicore configuration given a work-
load set, a power and area budget, and a technology gen-
eration. It can also be used to project expected multicore 
performance for the best configurations under a range of 
assumptions. We have made the models available for gen-
eral use at the following URL: http://research.cs.wisc.edu/
vertical/DarkSilicon.
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Bucknell University
Assistant Professor, Computer Science – 
Computer Architecture

Applications are invited for a tenure-track posi-
tion in computer science beginning mid-August 
2013. We expect to hire at the Assistant Professor 
level, but outstanding candidates will be consid-
ered at Associate Professor or Professor; years of 
credit toward tenure will be awarded based upon 
qualifications. We seek a teacher-scholar with 
a demonstrated ability to work with a diverse 
student body and are specifically interested in 
candidates whose research area is in computer 
architecture. This position is responsible for the 
department’s upper-level undergraduate Com-
puter Architecture course. In addition, the suc-
cessful candidate must be able to participate in 
the teaching of required core courses and be able 
to develop elective courses in the candidate’s area 
of expertise. Candidates are expected to have 
completed or be in the final stages of complet-
ing their Ph.D. by the beginning of the 2013 fall 
semester. A strong commitment to excellence in 
teaching and scholarship is required.

Bucknell is a highly selective private univer-
sity emphasizing quality undergraduate educa-
tion in engineering and in liberal arts and sci-
ences. The B.S. programs in computer science are 
ABET accredited. The computing environment is 
Linux/Unix-based. More information about the 
department can be found at:

http://www.bucknell.edu/ComputerScience/

Applications will be considered as received 
and recruiting will continue until the position is 
filled. Candidates are asked to submit a cover let-
ter, CV, a statement of teaching philosophy and 
research interests, and the contact information 
for three references. Please submit your applica-
tion to

http://jobs.bucknell.edu/

by searching for the “Computer Science Fac-
ulty Position – Computer Architecture”.

Please direct any questions to Professor Ste-
phen Guattery of the Computer Science Depart-
ment at guattery@bucknell.edu.

Bucknell University, an Equal Opportunity 
Employer, believes that students learn best in a 
diverse, inclusive community and is therefore 
committed to academic excellence through di-
versity in its faculty, staff, and students. Thus, we 
seek candidates who are committed to Bucknell’s 
efforts to create a climate that fosters the growth 
and development of a diverse student body. We 
welcome applications from members of groups 
that have been historically underrepresented in 
higher education.

this faculty position to begin in August. Contact: 
Gary Parker. Email: bioinfosearch@conncoll.
edu. Apply URL: 

http://cs.conncoll.edu/bioinformatics.htm

Dalhousie University Halifax, Canada
Faculty of Computer Science
Probationary Tenure Track Assistant Professor

Probationary Tenure Track Assistant Professor 
position in the Faculty of Computer Science

Dalhousie University (http://www.dal.ca) 
invites applications for a Probationary Tenure 
Track position at the Assistant Professor level 
in the Faculty of Computer Science (http://www.
cs.dal.ca) that currently has 30 faculty members, 
approximately 425 undergraduate majors and 
240 master’s and doctoral students. The Faculty 
partners with other Faculties in the University to 
offer the Master of Electronic Commerce, Master 
of Health Informatics and Master of Science in 
Bioinformatics programs, and is an active partici-
pant in the Interdisciplinary PhD program.

Dalhousie University is located in Halifax, 
Nova Scotia (http://www.halifaxinfo.com/), which 
is the largest city in Atlantic Canada and affords 
its residents outstanding quality of life.

The Faculty welcomes applications from out-
standing candidates in Computer Science. An ap-
plicant should have a PhD in Computer Science 
or related area and be comfortable teaching core 
computer science courses, particularly Software 
Engineering. Evidence of a strong commitment 
to and aptitude for research and teaching is es-
sential. The ideal candidate will be open to col-
laborative research within the faculty and add to 
or complement existing research strengths and 
strategic research directions of the Faculty.

Applications should include an application 
letter, curriculum vitae, a statement of research 
and teaching interests, sample publications, and 
the names, email addresses and physical address-
es of three referees. The application must include 
the Equity Self-Identification form (see the URL 
below). All documents are to be submitted to the 
email address below as PDF files.

Applicants should provide their referees with 
the URL of this advertisement (see below), and 
request that they forward letters of reference by 
email to the same address.

Applications will be accepted until April 30, 2013

All qualified candidates are encouraged to ap-
ply; however Canadian and permanent residents 
will be given priority. Dalhousie University is an 
Employment Equity/Affirmative Action Employ-
er. The University encourages applications from 
qualified Aboriginal people, persons with a dis-
ability, racially visible persons and women.

Carnegie Mellon University
Computer Science Department
Teaching Track Positions

Applications are invited for two teaching-track po-
sitions in Computer Science, beginning Fall 2013. 
This is a renewable, career-oriented position with 
an initial appointment for three years. We seek 
highly qualified applicants with a strong commit-
ment to excellence in teaching and the ability to 
teach at all levels in the undergraduate curriculum.

Applicants for the position must have a Ph.D. 
in Computer Science or a related field, and demon-
strated excellence in teaching Computer Science 
courses. Teaching-track appointments are typical-
ly at the rank of Assistant Teaching Professor, with 
the possibility of promotion to the ranks of Asso-
ciate Teaching Professor and Teaching Professor. 
None of these ranks are tenured; applicants seek-
ing a tenure-track position at a research university 
are therefore not a good match for these positions.

In order to receive full consideration, appli-
cants should submit a letter of application, cur-
riculum vitae, a statement of teaching philoso-
phy, and the names and email addresses of three 
or more individuals whom the applicant has 
asked to provide letters of reference. Applicants 
should arrange for reference letters to be sent 
directly to the contact below. This information 
should be sent by February 28, 2013, to the con-
tact listed below.

Additionally, applicants are encouraged to 
submit a video sample of their teaching. This en-
ables applicants to add another dimension to their 
application. Since the people who will eventually 
fill these positions will be expected to be excellent 
classroom teachers, the video sample is an oppor-
tunity for candidates to show off their talents in a 
way other than traditional on paper means.

Please send your applications and accompa-
nying materials to

Dr. Klaus Sutner
Computer Science Department
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
email: sutner@cs.cmu.edu

Carnegie Mellon is an affirmative action/
equal opportunity employer and we invite and 
encourage applications from women and under-
represented minorities.

Connecticut College
Data Mining Postdoctoral / Visiting Faculty

Connecticut College is seeking candidates with 
research interests in the use of data mining/ma-
chine learning for analyzing biological data. See 
details at cs.conncoll.edu/bioinformatics.htm for 

http://jobs.bucknell.edu/
mailto:guattery@bucknell.edu
mailto:sutner@cs.cmu.edu
http://cs.conncoll.edu/bioinformatics.htm
http://www.halifaxinfo.com/
http://cs.conncoll.edu/bioinformatics.htm
mailto:bioinfosearch@conncoll.edu
mailto:bioinfosearch@conncoll.edu


104    communications of the acm    |   february 2013  |   vol.  56  |   no.  2

careers

˲˲ Lead weekly sections and teach undergraduate 
students

˲˲ Hire, train, and supervise a team of teaching 
fellows, including leading regular TF meetings

˲˲ Design and implement tools and test cases to 
be used by each courses’ students and TFs

˲˲ Hold office hours and advise undergraduate stu-
dents across the Computer Science concentration

A background in computer science is re-
quired; master’s or PhD in computer science or 
education preferred. We seek candidates with su-
perior organizational, written and interpersonal 
communication skills, along with the ability to 
lead and train teaching fellows and to manage re-
lationships with hundreds of undergraduate stu-
dents. Prior experience teaching and designing 
problem sets and classroom exercises is strongly 
preferred and industry experience is a plus.

Applicants must apply on-line at http://
academicpositions.harvard.edu/postings/4473. 
Required documents include a cover letter, CV, 
names and contact information for at least three 
references, and a summary of prior teaching or 
tutoring experience including, for each course, its 
name, school, description, syllabus (if available), 
and website (if available).

Applications will be reviewed as they are re-
ceived. Applicants are strongly encouraged to 
submit applications by February 15, 2013. How-
ever, applications will continue to be accepted 
until the position is filled. Harvard is an Equal 
Opportunity/Affirmative Action Employer. Appli-
cations from women and minority candidates are 
strongly encouraged.

Submission Address for application documents 
and reference letters: appointments@cs.dal.ca

Location of this advertisement:  
www.cs.dal.ca

Self-Identification form (PDF):  
http://hrehp.dal.ca/Files/Academic_
Hiring_%28For/selfid02.pdf

Self-Identification form (Word):  
http://hrehp.dal.ca/Files/Academic_
Hiring_%28For/selfid02.doc

Grove City College
Professor of Computer Science

Grove City College announces a faculty opening in the 
Computer Science Department in July 2013. A Ph.D. 
in Computer Science is required. Responsibilities in-
clude teaching lower-level and upper-level Computer 
Science courses, guiding undergraduate-research 
projects, and developing innovative pedagogy.

Rank and salary are commensurate with qual-
ifications. Grove City College is a highly selective 
college of liberal arts, sciences, and engineering 
where intellectual inquiry remains open to the 
questions religion raises and affirms the answers 
Christianity offers.

Send letter of application, vita, transcripts, 
names of four references (three professional and 
one pastoral), a brief statement of how you would 
engage undergraduates in your research plans, 
and a brief essay relating your philosophy of a 
liberal arts education and teaching Computer Sci-
ence to the College’s mission (see www.gcc.edu) to: 
William P. Anderson, Jr.; Ph.D., Provost and VP for 

Academic Affairs, 100 Campus Drive, Grove City, 
PA 16127 or electronically to laklaiber@gcc.edu.

Grove City College is a private educational in-
stitution noted for its academic excellence where 
scholarship is informed by Christian principles. 
It does not discriminate on the basis of age, race, 
color, creed, sex, marital status, disability, or na-
tional or ethnic origin in the administration of its 
educational policies, admission policies, scholar-
ship and loan programs, and athletic and other 
college-administrative programs.

Harvard University
School of Engineering and Applied Sciences
Preceptor in Computer Science

The Harvard School of Engineering and Applied 
Sciences (SEAS) seeks applicants for the position of 
Preceptor in Computer Science. The preceptor will 
be primarily responsible for the coordination and 
support of core undergraduate courses in Computer 
Science, including Computer Science 50: Introduc-
tion to Computer Science I, CS51: Introduction to 
Computer Science II, and CS61: Systems Program-
ming and Machine Organization. The position is 
an annual (twelve-month), academic appointment, 
renewable for up to three or more years, depending 
on continuing curricular need and performance.

Typical Responsibilities:
˲˲ Work with and report to the faculty members who 

are the principal course instructors on the prepara-
tion of lecture materials, in-class exercises, home-
work assignments, and examination questions

Yale School of Engineering & Applied Science
Department of Electrical Engineering

Junior Search in Communications and Networking at Yale University 
Yale University’s Electrical Engineering Department invites applications from qualified individuals for a tenure-track, non-tenured faculty 
position in the area of communications and networking. Subfields of interest include wireless communications, networking, signal 
processing, network optimization, network economics, machine learning, and network science. All candidates should be strongly 
committed to both teaching and research and should be open to collaborative research. Candidates should have distinguished 
records of research accomplishments and should be willing and able to participate in shaping Yale’s expanding program in electrical 
engineering. Yale University is an Affirmative Action/Equal Opportunity Employer. Yale values diversity among it students, staff, and 
faculty and strongly welcomes applications from women and under represented minorities. The review process will begin November 15, 
2012. Applicants should include a CV, a research statement, a teaching statement and submit to http://academicjobsonline.org/. 

Senior Search in Communications and Networking at Yale University 
Yale University’s Electrical Engineering Department invites applications from qualified individuals for a tenured faculty position in the 
area of communications and networking. Subfields of interest include wireless communications, networking, signal processing, network 
optimization, network economics, machine learning, and network science. All candidates should be strongly committed to both teaching 
and research and should be open to collaborative research. Candidates should have distinguished records of research accomplishments 
and should be willing and able to take the lead in shaping Yale’s expanding program in electrical engineering. Yale University is an 
Affirmative Action/Equal Opportunity Employer. Yale values diversity among it students, staff, and faculty and strongly welcomes 
applications from women and under represented minorities. The review process will begin November 15, 2012. Applicants should include 
a CV, a research statement, a teaching statement and submit to http://academicjobsonline.org/. 

Senior Position in Computer Engineering at Yale University
Yale University’s Electrical Engineering Department invites applications from qualified individuals for a tenured faculty position in 
computer engineering. Subfields of interest include systems on a chip, embedded systems, VLSI, design automation, energy-efficient 
computing, low-power circuits, verification, networked systems, mobile computing, sensor networks, and biodevices. All candidates 
should be strongly committed to both teaching and research and should be open to collaborative research. Candidates should have 
distinguished records of research accomplishments and should be willing and able to take the lead in shaping Yale’s expanding program 
in computer engineering. Yale University is an Affirmative Action/Equal Opportunity Employer. Yale values diversity among it students, 
staff, and faculty and strongly welcomes applications from women and under represented minorities. The review process will begin  
on November 15, 2012. Applicants should include a CV, a research statement, a teaching statement and submit to  
http://academicjobsonline.org/.

mailto:appointments@cs.dal.ca
http://www.cs.dal.ca
http://hrehp.dal.ca/Files/Academic_Hiring_%28For/selfid02.pdf
http://hrehp.dal.ca/Files/Academic_Hiring_%28For/selfid02.doc
http://hrehp.dal.ca/Files/Academic_Hiring_%28For/selfid02.doc
http://www.gcc.edu
mailto:laklaiber@gcc.edu
http://academicjobsonline.org/
http://academicjobsonline.org/
http://academicjobsonline.org/
http://hrehp.dal.ca/Files/Academic_Hiring_%28For/selfid02.pdf


WE ARE HIRING!
We have openings for Research Scientists, Applied Scientists and Research 
Engineers at our locations in the US, Spain, Israel, India and China. Come join 
us in solving real world problems at scale, diving into oceans of data, creating 
new products and experiences, and collaborating in ground-breaking research. 
We are looking for scientists in many disciplines of Computer Science such 
as Machine Learning, Natural Language Processing, Statistical Data Analysis, 
Systems, Computational Advertising, Optimization, Media, Human-Computer 
Interaction and Mobile Experiences.

For our Research and Applied Scientist positions, we are looking for full time and postdoc 
scientists, as well as interns for summer 2013. 
 

For more information and to apply please visit 
http://careers.yahoo.com 

and search for scientist positions.

Interns, please apply here: 
http://y.ahoo.it/uhMpv

Come make your mark on science – come grow with us!

About Yahoo! Labs
Founded in 2005, Yahoo! Labs pioneered important research in web mining and systems, and 

created the field of Computational Advertising. Today we continue to be a leader in industrial 

research. As the center of scientific excellence at Yahoo! we deliver both fundamental and applied 

scientific leadership, publish research, and create new technologies that power Yahoo!’s products 

and experiences. We’re responsible for big inventions, and our goals are nothing short of inventing 

the future of the Internet and creating the next generation of businesses for Yahoo!.

http://careers.yahoo.com
http://y.ahoo.it/uhMpv
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invites applications for Junior Research Groups 
Leaders in the Max Planck Center for Visual Com-
puting and Communication

The Max Planck Center for Visual Comput-
ing and Communications offers young scientists 
in information technology the opportunity to 
develop their own research program address-
ing important problems in areas such as image 
communication, computer graphics, geometric 
computing, imaging systems, computer vision, 
human machine interface, distributed multime-
dia architectures, multimedia networking, visual 
media security.

The center includes an outstanding group of 
faculty members at Stanford’s Computer Science 
and El¬ectrical Engineering Departments, the 
Max Planck Institute for Informatics, and Saar-
land University.

The program begins with a preparatory 1-2 
year postdoc phase (Phase P) at the Max Planck 
Institute for Informatics, followed by a two-year 
appointment at Stanford University (Phase I) as 
a visiting assistant professor, and then a posi-
tion at the Max Planck Institute for Informatics 
as a junior research group leader (Phase II). How-
ever, the program can be entered flexibly at each 
phase, commensurate with the experience of the 
applicant.

Applicants to the program must have com-
pleted an outstanding PhD. Exact duration of the 
preparatory postdoc phase is flexible, but we typi-
cally expect this to be about 1-2 years. Applicants 
who completed their PhD in Germany may enter 
Phase I of the program directly. Applicants for 
Phase II are expected to have completed a post-

Kettering University
Assistant Professor of Computer Science

The Computer Science Department at Kettering 
University seeks outstanding applicants for a ten-
ure-track position at the rank of assistant profes-
sor, beginning in July 2013. A PhD in Computer 
Science is required. We have been named as a US 
Ignite institution and are currently building the 
high-speed broadband infrastructure necessary 
to participate in Internet-scale networking exper-
imentation across university campuses and cit-
ies. The successful candidate will be able to foster 
academic/public/private collaborations in the 
areas of software-defined networks, cloud com-
puting, and wireless networking, and will have 
experience, or can demonstrate competency, in 
teaching a broad range of undergraduate com-
puter science courses. Additional research inter-
ests in systems, security, or software engineering 
is considered an asset. Interested individuals 
must apply for the position on-line https://jobs.
kettering.edu. Applications will be reviewed be-
ginning January 7, 2013 and continue until the 
position is filled. Kettering University is commit-
ted to excellence through diversity in its faculty, 
staff, and students. AA/EOE

Max Planck Institute for Informatics
Junior Research Group Leader

The Max Planck Institute for Informatics, as the 
coordinator of the Max Planck Center for Visual 
Computing and Communication (MPC-VCC), 

doc stay abroad and must have demonstrated 
their outstanding research potential and ability 
to successfully lead a research group.

Reviewing of applications will commence on 
01 Jan 2013. The final deadline is 31 Jan 2013. 
Applicants should submit their CV, copies of 
their school and university reports, list of pub-
lications, reprints of five selected publications, 
names of references, a brief description of their 
previous research and a detailed description of 
the proposed research project (including possi-
ble opportunities for collaboration with existing 
research groups at Saarbrücken and Stanford) to:

Prof. Dr. Hans-Peter Seidel
Max Planck Institute for Informatics,
Campus E 1 4, 66123 Saarbrücken, Germany;
Email: mpc-vcc@mpi-inf.mpg.de

The Max Planck Center is an equal opportuni-
ty employer and women are encouraged to apply.

Additional information is available on the 
website http://www.mpc-vcc.de

Missouri University of Science and 
Technology (S&T)
Computer Science
Department Chair

The Department of Computer Science at the Mis-
souri University of Science and Technology (S&T) 
invites applications for the position of Depart-
ment Chair starting Fall 2013. The successful 
candidate will assume a leadership role in the 
department to strengthen and expand the depart-

IST Austria has set up a program for exceptional postdoctoral fellows with an emphasis on 
interdisciplinary work. Appointments will be for 2–4 years. Applications will be accepted at 
any time, but fellows will be selected twice a year in April and October, with deadlines on 
15th of March and September, respectively. Applicants must have the support of one or more 
members of the IST Austria faculty. 

 Benefi ts:
   Internationally competitive salary 
   Full social security coverage
   Travel, mobility and family allowance
   Funding for conferences and scientifi c visits

The institute offers postdoctoral positions in the following fi elds:
Biology I Computer Science I Mathematics I Physics I Neuroscience

ISTFELLOW is partially funded by the European Union.

The institute offers postdoctoral positions in the following fi elds:

For a list of faculty members please visit www.ist.ac.at. 
For inquiries, please contact istfellow@ist.ac.at. 
For further information, please refer to the ISTFELLOW website: http://ist.ac.at/istfellow

IST Austria is committed to Equality and Diversity.

CALL FOR POSTDOCTORAL FELLOWS
ISTFELLOW

https://jobs.kettering.edu
http://www.ist.ac.at
mailto:istfellow@ist.ac.at
http://ist.ac.at/istfellow
https://jobs.kettering.edu
mailto:mpc-vcc@mpi-inf.mpg.de
http://www.mpc-vcc.de


King Abdullah University of Science and Technology (KAUST) invites applications for faculty 
positions at the rank of Full, Associate or Assistant Professor in the area of Computer Science.
KAUST, located on the Red Sea coast of Saudi Arabia, is an international graduate-level research university dedicated to 
advancing science and technology through bold and collaborative research and to addressing challenges of regional and 
global significance, thereby serving the Kingdom, the region, and the world. Newly opened in September 2009, KAUST is an 
independent and merit-based university and welcomes exceptional faculty, researchers, and students from around the world. 
KAUST is committed to cutting-edge research in the globally significant areas of water, food, energy and the environment. 
In addition, KAUST emphasizes research on the discipline of Computational Science and Engineering serving as an enabling 
technology for all its research activities. Areas of interest are:

Management of very large data•	

Data mining and knowledge extraction•	

Parallel and distributed systems•	

Data security•	

High priority will be given to the overall originality and promise of the candidate’s work rather than the candidate’s sub-area of 
specialization within Computer Science. An earned PhD in Computer Science, Computer Engineering, Electrical Engineering, 
or a related field, and strong publication record are required. A successful candidate will be expected to teach courses at the 
graduate level and to build and lead a research group of postdoctoral fellows and graduate students. Faculty members enjoy 
secure research funding from KAUST and have opportunities for additional funding through several KAUST provided sources 
and through industry collaborations.

Applications submitted as a single PDF/Word file should include a cover letter indicating the position of 
interest, a curriculum vitae with a list of publications, statements of research, and teaching interests, 
and the names and contact information of at least three references for an Assistant Professor position 
and at least six references for an Associate or Full Professor position. Review of applications will begin 
immediately; however, applications will be considered until all available positions have been filled. 
Applications and questions should be emailed to: cssearch@kaust.edu.sa

Further information about KAUST can be found at www.kaust.edu.sa

The appointment, promotion, and retention of faculty and staff, and all the educational and administrative 
activities of the University shall be conducted on the basis of equality, without regard to race, color, religion 
or gender.

mailto:cssearch@kaust.edu.sa
http://www.kaust.edu.sa
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plications received after April 1, 2013 will not be 
given consideration. For more information prior 
to submitting an application, please contact the 
Search Committee Chair, Dr. Bruce McMillin, at 
ff@mst.edu or the Search Committee Vice-Chair, 
Dr. Sanjay Madria, at madrias@mst.edu.

All submitted application materials must 
have the position reference number in order to 
be processed. Acceptable electronic formats that 
can be used for email attachments include PDF 
and Word; hardcopy application materials will 
not be accepted.

Missouri S&T is an AA/EO Employer and does 
not discriminate based on race, color, religion, 
sex, sexual orientation, national origin, age, dis-
ability, or status as Vietnam-era veteran. Females, 
minorities, and persons with disabilities are en-
couraged to apply. Missouri S&T is responsive to 
the needs of dual-career couples.

North Carolina State University
Department of Computer Science
Faculty Position 
Assistant/Associate/Full Professor

The Department of Computer Science at North 
Carolina State University (NCSU) seeks to fill a 
tenure-track faculty position in the area of Soft-
ware Engineering starting August 16, 2013. Soft-
ware engineering candidates with research expe-
rience in requirements engineering are especially 
encouraged to apply.

Successful candidate must have a strong com-
mitment to academic and research excellence, 

ment’s research and teaching missions. Candi-
dates must, by the date of appointment, have the 
qualifications and standing to be appointed as a 
tenured full professor. The candidate should have 
a strong record of research and teaching at a uni-
versity, but candidates from industry with a strong 
research record coupled with academic and ad-
ministrative experience are encouraged to apply.

The department’s current research strengths 
are in software engineering, mobile and distrib-
uted systems, cyber security and information 
assurance, social-cyber-physical systems and 
critical infrastructure protection, computational 
intelligence, pervasive computing, and wireless 
and sensor networks. Recent funding sources in-
clude NSF, NSA, ARL, AFRL, NIST, Sandia Nation-
al Laboratories, as well as the U.S. Departments 
of Energy, Defense, and Education. The depart-
ment’s visions and strategic plan, activities, and 
research well as required and desired Attributes, 
Skills, and Characteristics are detailed further on 
our web site: http://cs.mst.edu.

The department has 18 full-time faculty lines 
as well as some joint appointments and adjunct 
faculty, and grants BS, MS and Ph.D. degrees as 
well as graduate certificates and a minor. The 
program is ABET accredited. As of fall semester 
2012, the department has over 350 BS, 50 MS, and 
30 Ph.D. students. The department leads two cen-
ters and many of our faculty members participate 
in interdisciplinary research with several campus 
research centers and departments.

Details of the application process are given at 
http://hraadi.mst.edu/hr/employment/. Review 
of applications will begin February 15, 2013. Ap-

and an outstanding research record commensu-
rate with the expectations of a major research uni-
versity. Required credentials include a doctorate 
in Computer Science or a related field. While the 
department expects to hire at the Assistant Pro-
fessor level, candidates with exceptional research 
records are encouraged to apply for a senior po-
sition. The department is one of the largest and 
oldest in the country. It is part of NCSU’s College 
of Engineering. The department’s research ex-
penditures and recognition have been growing 
steadily. For example, we have one of the largest 
concentrations in the country of prestigious NSF 
Early Career Award winners (total of 21).

NCSU is located in Raleigh, the capital of 
North Carolina, which forms one vertex of the 
world-famous Research Triangle Park (RTP). RTP 
is an innovative environment, both as a metropol-
itan area with one of the most diverse industrial 
bases in the world, and as a center of excellence 
promoting technology and science. The Research 
Triangle area is routinely recognized in nation-
wide surveys as one of the best places to live in the 
U.S. We enjoy outstanding public schools, afford-
able housing, and great weather, all in the prox-
imity to the mountains and the seashore.

Applications will be reviewed as they are 
received. The positions will remain open until 
suitable candidates are identified. Applicants 
should submit the following materials online at 
http://jobs.ncsu.edu (reference position num-
ber 1092) cover letter, curriculum vitae, research 
statement, teaching statement, and names and 
complete contact information of four references, 
including email addresses and phone numbers. 

Northwestern University
Assistant Professor in Database Systems

The Department of Electrical Engineering and Computer Science
at Northwestern University invites applications for a tenure-track
assistant professor position in database systems to start in fall
2013. We are interested in exceptional candidates in all areas of
database systems, but have a particular focus on areas such as
large-scale data management, integration of structured and un-
structured data, parallel and distributed data mining and ana-
lytics, stream databases, and database engines for scalable
computing and emerging computer architectures.
A Ph.D. in Computer Science or Computer Engineering is re-
quired, as is a clear track record of success in database systems.
Successful candidates will be expected to carry out world class-
research, collaborate with other faculty, and teach effectively at
the undergraduate and graduate levels. Compensation and start-
up packages are negotiable and will be competitive.
Northwestern EECS consists of over 50 faculty members of in-
ternational prominence whose interests span a wide range.
Northwestern University is located in Evanston, Illinois on the
shores of Lake Michigan just north of Chicago. Further infor-
mation about the Department and the University is available at
http://www.eecs.northwestern.edu and
http://www.northwestern.edu.
To ensure full consideration, applications should be received by
February 15, 2013, but applications will be accepted until the
position is filled. 
To apply, first read full upload instructions at 
http://eecs.northwestern.edu/academic-openings.html. Ap-
plicants will submit (1) a cover letter, (2) a curriculum vitae, (3)
statements of research and teaching interests, (4) three repre-
sentative publications, and (5) at least three, but no more than
five references.  For general questions about the search or ap-
plication assistance post submission, contact 
db-search@eecs.northwestern.edu.
The aforementioned application materials may also be sent to:
Database Systems Faculty Search Committee, Department of
Electrical Engineering and Computer Science, Technological
Institute, L359, Northwestern University, 2145 Sheridan
Road, Evanston, IL 60208, USA.

Northwestern University is an equal opportunity, affirmative action
employer. Qualified women and minorities are encouraged to apply. It

is the policy of Northwestern University not to discriminate against
any individual on the basis of race, color, religion, national origin,

gender, sexual orientation, marital status, age, disability, citizenship,
veteran status, or other protected group status. Hiring is contingent

upon eligibility to work in the United States.

Communications of the ACM
Issue February 
Deadline 12-20-12
1/6 page print ad + 60 days online

TEMASEK RESEARCH FELLOWSHIP (TRF)
A globally connected cosmopolitan city, Singapore provides a supportive 
environment for a vibrant research culture. Its universities Nanyang 
Technological University (NTU), National University of Singapore (NUS) and 
Singapore University of Technology and Design (SUTD) invite outstanding 
young researchers to apply for the prestigious TRF awards.

Under the TRF scheme, selected young researchers with a PhD degree have an 
opportunity to conduct and lead defence-related research. It offers:

•  A 3-year research grant of up to S$1 million commensurate with 
the scope of work, with an option to extend for another 3 years

•  Postdoctoral or tenure-track appointment (eligibility for tenure-
track will be determined by the university)

• Attractive and competitive remuneration

Fellows may lead, conduct research and publish in these areas:

• Advanced Materials for Aerospace Applications
• Bio-mimetic Aerodynamics
• Cognitive Science and Neuroengineering
• Cyber Security
• High Power Laser Diode
• High Speed High Voltage Switching Devices

For more information and application procedure, please visit:

NTU –  http://www3.ntu.edu.sg/trf/index_trf.html
NUS –  http://www.nus.edu.sg/dpr/funding/trf.html
SUTD –  http://www.sutd.edu.sg/trf

Closing date: 15 March 2013 (Friday)

Shortlisted candidates will be invited to Singapore to present their research 
plans, meet local researchers and identify potential collaborators in July 2013.

http://cs.mst.edu
http://hraadi.mst.edu/hr/employment/
mailto:ff@mst.edu
mailto:madrias@mst.edu
http://www3.ntu.edu.sg/trf/index_trf.html
http://www.nus.edu.sg/dpr/funding/trf.html
http://www.sutd.edu.sg/trf
http://www.eecs.northwestern.edu
http://www.northwestern.edu
http://eecs.northwestern.edu/academic-openings.html
mailto:db-search@eecs.northwestern.edu
http://jobs.ncsu.edu
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Candidates can obtain information about the 
department and its research programs, as well as 
more detail about the position advertised here at 
http://www.csc.ncsu.edu/. Inquiries may be sent 
via email to: facultyhire@csc.ncsu.edu.

NCSU is an equal opportunity and affirmative 
action employer. In addition, NCSU welcomes all 
persons without regard to sexual orientation or 
genetic information. Individuals with disabilities 
desiring accommodations in the application pro-
cess should contact the Department of Computer 
Science at (919) 515-2858.

Palo Alto Research Center (PARC, a 
Xerox Company)
Research Scientist / Senior Research Scientist 
in Security

PARC - Research Scientist/Senior Research 
Scientist in Security Candidates in all areas of 
cyber security will be considered, with particular 
interest in: systems and network security, 
security in cloud computing and ubiquitous 
environments, machine learning & security, 
applied cryptography.

Apply at:  
http://www.parc.com/about/careers/

Princeton University
Computer Science
Part-Time or Full-Time Lecturer

The Department of Computer Science seeks ap-
plications from outstanding teachers to assist the 
faculty in teaching our introductory course se-
quence or some of our upper-level courses start-
ing February 1, 2013.

Depending on the qualifications and inter-
ests of the applicant, the job responsibilities will 
include such activities as teaching recitation sec-
tions and supervising graduate-student teaching 
assistants; grading problem sets and program-
ming assignments, and supervising students in 
the grading of problem sets and programming 
assignments; developing and maintaining online 
curricular material, classroom demonstrations, 
and laboratory exercises; and supervising under-
graduate research projects. An advanced degree 
in computer science, or related field, is required 
(PhD preferred).

The position is for one semester with possi-
bility of renewal for 1-year terms, up to six years, 
depending upon departmental need.

Princeton University is an equal opportunity 
employer and complies with applicable EEO and 
affirmative action regulations. You may apply on-
line, by submitting a letter of application, resume 
and names of three references at http://jobs.
cs.princeton.edu/lecturer. (Princeton University 
Requisition number 1200848)

Swarthmore College
Tenure Track Assistant Professor

Swarthmore College has a strong institutional 
commitment to excellence through diversity in its 
educational program and employment practices 
and actively seeks and welcomes applications 
from candidates with exceptional qualifications, 

particularly those with demonstrable commit-
ments to a more inclusive society and world.

Applications are invited for a tenure track 
position at the assistant professor level begin-
ning Fall semester 2013. Swarthmore College is 
a small, selective, liberal arts college located 10 
miles outside of Philadelphia. The Computer Sci-
ence Department offers majors and minors at the 
undergraduate level. Applicants must have teach-
ing experience and should be comfortable teach-
ing a wide range of courses at the introductory 
and intermediate level. Candidates should addi-
tionally have a strong commitment to involving 
undergraduates in their research. A Ph.D. in CS 
by or near the time of appointment is required. 
We are particularly interested in applicants that 
add breadth to our department, including the 
areas of databases, networking, security, theory, 
compilers, and programming languages. Strong 
applicants in other areas will also be considered.

Priority will be given to applications received 
by December 15, but will be accepted until the 
position is filled. Applications should include a 
vita, teaching statement, research statement, and 
three letters of reference, at least two that speak 
to the candidate’s teaching ability.

Apply for this Job:
Contact Person: Richard Wicentowski
Email Address:  

jobs2013@cs.swarthmore.edu
Phone: 610-328-8272
Fax: 610-328-8606
Apply URL:  

http://goo.gl/LPYF2

University of Northern Iowa
Assistant Professor of Computer Science

The Department of Computer Science at the Uni-
versity of Northern Iowa invites applications for 
a tenure-track assistant professor position to be-
gin August 2013. Applicants must hold a Ph.D. in 
Computer Science or a closely-related discipline. 
The department seeks candidates able to partici-
pate widely in the CS curriculum and conduct a 
research program involving undergraduates.

Detailed information about the position 
and the department are available at http://www.
cs.uni.edu/

To apply, visit http://jobs.uni.edu/. Applica-
tions received by January 15, 2013, will be given 
full consideration. EOE/AA. Pre-employment 
background checks are required. UNI is a smoke-
free campus.

University of Pittsburgh
School of Information Sciences
Professor of Practice

The School of Information Sciences (http://www.
ischool.pitt.edu) at the University of Pittsburgh is 
seeking candidates for a Professor of Practice at 
an assistant/associate/full professor level – Posi-
tion #02025 (Non-tenure stream) to start in the 
fall term of 2013. The primary areas of interest 
include:

˲˲ Object-oriented systems analysis and design
˲˲ Information systems architecture
˲˲ Value-centered design

Advertising in Career Opportunities 
How to Submit a Classified Line Ad: Send an e-mail to  
acmmediasales@acm.org. Please include text, and indicate the issue/or 
issues where the ad will appear, and a contact name and number.

Estimates: An insertion order will then be e-mailed back to you. The ad 
will by typeset according to CACM guidelines. NO PROOFS can be sent.  
Classified line ads are NOT commissionable.

Rates: $325.00 for six lines of text, 40 characters per line. $32.50 for each 
additional line after the first six. The MINIMUM is six lines.

Deadlines: 20th of the month/2 months prior to issue date.  For latest 
deadline info, please contact:

acmmediasales@acm.org

Career Opportunities Online: Classified and recruitment display ads 
receive a free duplicate listing on our website at:

http://jobs.acm.org 

Ads are listed for a period of 30 days.
For More Information Contact: 

ACM Media Sales
at 212-626-0686 or 

acmmediasales@acm.org

http://www.csc.ncsu.edu/
mailto:facultyhire@csc.ncsu.edu
http://www.parc.com/about/careers/
mailto:jobs2013@cs.swarthmore.edu
http://goo.gl/LPYF2
http://www.cs.uni.edu/
http://jobs.uni.edu/
http://www.ischool.pitt.edu
mailto:acmmediasales@acm.org
mailto:acmmediasales@acm.org
http://jobs.acm.org
mailto:acmmediasales@acm.org
http://www.cs.uni.edu/
http://www.ischool.pitt.edu
http://jobs.cs.princeton.edu/lecturer
http://jobs.cs.princeton.edu/lecturer
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The undergraduate program prepares students be-
come system designers, system analysts, database 
managers, system administrators, programmer an-
alysts, network engineers, and a host of related jobs. 
A clinical faculty member with experience in the de-
sign and implementation of small, large and distrib-
uted systems would serve as an excellent resource in 
the teaching of state-of-the-art industry practices.

For a complete description, please visit 
http://www.ischool.pitt.edu/news/ 
facultyopenings.php.

Contact: Search Committee
Email: sissearch@sis.pitt.edu
Phone: 412-624-5129
Fax: 412-624-5231
Apply URL: http://www.ischool.pitt.edu/

news/facultyopenings.php

The University of Pittsburgh is an Equal Op-
portunity, Affirmative Action employer and 
strongly encourages women and candidates from 
under-represented minorities to apply.

University of São Paulo
Institute of Mathematics and Statistics
Department of Computer Science
Tenure-Track Positions 
Assistant Professor

The Institute of Mathematics and Statistics of the 
University of São Paulo (IME-USP) invites applica-
tions for faculty positions at the Assistant Profes-
sor level. The Department is accepting applica-
tions in all areas of Computer Science.

We expect candidates with strong potential 
for research and teaching ability. The candidates 
should have a PhD in Computer Science or a related 
area. The selected candidate will be responsible for 

developing research and for teaching to the pro-
grams of the department (undergraduate and grad-
uate courses). Deadlines and documents required 
for the application are specified at www.ime.usp.br/
dcc/faculty_position The documents and selection 
interview may be either in Portuguese or English.

The University of São Paulo - USP is one of the 
most prestigious educational institution in South 
America. It is the best ranked brazilian university. 
The Department of Computer Science of the IME-
USP is responsible for the BSc, MSc and PhD de-
grees in Computer Science, offering some of the 
most competitive courses in Brazil.

More information:  
http://www.ime.usp.br/dcc

Contact: mac@ime.usp.br

Virginia Commonwealth  
University – VCU
Computer Science
VCU School of Engineering
Assistant/Associate/Professor tenure-track

The Computer Science Department at Virginia 
Commonwealth University (VCU) invites appli-
cations for a tenure-track/tenured position at 
the rank of Assistant/Associate Professor. Out-
standing well-funded candidates at higher level 
would also be considered. Candidates must have 
a Ph.D. in computer science, or in the related 
area. Junior faculty will be required to have an es-
tablished research agenda and a clear potential 
for external funding, and potential for scholar-
ship or creative expression to complement and 
expand existing expertise in the department and 
the School of Engineering, especially in the field 
of cyber security, broadly defined. For Associate/
Professor level, faculty member will be required 
to have a well developed scholarly/research port-
folio with evidence of multidisciplinary applica-
tions and external funding appropriate to com-
plement and expand existing expertise within 
the department, especially in the field of cyber 
security.

Successful candidates are expected to teach 
courses in Computer Science at both the under-
graduate and graduate level. Additionally, candi-
date must have demonstrated experience work-
ing in and fostering a diverse faculty, staff, and 
student environment or commitment to do so as 
a faculty member at VCU is required.

VCU, the largest urban university in Virginia, 
is a Carnegie research I extensive institution 
ranked in the top 100 universities in the U.S. in 
federal R&D expenditures, with a richly diverse 
community and commitment to multicultural 
opportunities.

For best consideration, applications should 
be submitted by March 1, 2013.

Candidates are to submit applications elec-
tronically to cmscsearch@vcu.edu as a single pdf 
file that includes (in this order) a cover letter, re-
sume, research and teaching statement, and the 
names and e-mail addresses of three references. 
(Reference letters should be provided only upon 
the request of the search committee).

Virginia Commonwealth University is an 
equal opportunity, affirmative action university 
providing access to education and employment 
without regard to age, race, color, national origin, 
gender, religion, sexual orientation, veteran’s sta-
tus, political affiliation or disability
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last byte

1. Six dice are rolled 
simultaneously, and 

the number N of different 
numbers that appear is 
determined; for example, if the 
dice show 3,4,1,6,5,6, then N = 
5, and if they show 6,2,2,3,6,2, 
then N = 3. Clearly, N could be 
any number from one to six, 
but these values are not equally 
likely. What is the probability 
that N = 4? 

2. Alice and Bob roll a 
single die repeatedly. 

Alice is waiting until all six of 
the die’s faces appear at least 
once. Bob is waiting for some 
face (any face) to appear four 

times. The winner is the one 
who gets his or her wish first; 
for example, if the successive 
rolls are 2,5,4,5,3,6,6,5,1, 
then Alice wins, since all 
numbers have appeared, 
none more than three times. 
If the successive rolls instead 
happen to be 4,6,3,6,6,1,2,2,6, 
then Bob wins because he has 
seen four 6s and no 5 (yet). 
Now answer this easy question: 
What is the maximum number 
of rolls needed to determine 
a winner? And this more 
difficult question: Which 
player is more likely to win? 
This can be worked out with 
only a little bit of arithmetic, 

assuming you are clever 
enough. 

3.Alice and Bob have now 
secured a second die, roll 

the two dice together, noting 
the sum of the two values 
shown, and repeat. Each sum 
is, of course, a number from 
2 to 12, with 7 the most likely 
outcome; six of the 36 ways 
to roll a pair of dice results in 
a sum of 7. This time, Alice 
is waiting for two 7s in a row, 
while Bob wants an 8 followed 
immediately by a 7. Which of 
them has the shorter average 
wait? And whose wish is more 
likely to come true first? 

Puzzled  
Tumbling Dice  
These puzzles involve computing probabilities associated with dice. A die is a cube with faces 
marked with numbers 1 to 6, as in the figure here, and we assume that when a die is rolled, each 
number is equally likely to come out on top. The questions we ask are somewhat unusual, though. 
We have collected several facts that run counter to many people’s intuitions. Our job is therefore 
both mathematical and psychological—first, make the calculation, then, if the answer strains  
our intuition, try to reconcile the conflict through reasoning. 

DOI:10.1145/2408776.2408800		  Peter Winkler

Readers are encouraged to submit prospective puzzles for future columns to puzzled@cacm.acm.org.    

Peter Winkler (puzzled@cacm.acm.org) is William Morrill Professor of Mathematics and Computer Science 
at Dartmouth College, Hanover, NH.

A roll of six dice from Puzzle 1 that would produce an outcome of N = 4. 

mailto:puzzled@cacm.acm.org
mailto:puzzled@cacm.acm.org


4th Annual ACM SIGPLAN Conference on

Systems,
Programming,
Languages,
Applications:
Software for
Humanity

Submission Deadlines
March 28, 2013
• OOPSLA Papers
• Wavefront Papers & Experience 

Reports
• Proposals for Workshops & Panels
April 5, 2013
• Onward! Papers & Essays
June 8, 2013
• Dynamic Languages Symposium
June 28, 2013
• Posters, Doctoral Symposium
• ACM Student Research Competition
• Demonstrations
• Student Volunteers

Location
 Hyatt Regency Indianapolis
Events

• 28th Annual OOPSLA
• Onward!
• Wavefront
• Dynamic Languages Symposium (DLS)
• Generative Programming & Component 

Engineering (GPCE)
• Software Language Engineering (SLE)
• …and more

General Chairs
 Patrick Eugster & Antony Hosking
 Purdue University
OOPSLA Papers Chair
 Cristina Lopes
 University of California, Irvine
Onward! Papers Chair
 Robert Hirschfeld
 Hasso-Plattner-Institut Potsdam
Onward! Essays Chair
 Bernd Brügge
 Technische Universität München
DLS Papers Chair
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