
COMMUNICATIONS
OF THE ACMcACM.acm.org� 02/2014 VOL.57 NO.02

Association for
Computing Machinery

 Ready Technology

A New Type of
Mathematics?

Node at LinkedIn

Computation Takes Time,
But How Much?

Cognitive Implants

Mars Code

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=Cover&exitLink=http%3A%2F%2FCACM.ACM.ORG

25-27 JUNE, 2014
NEWCASTLE UPON TYNE

UK

TVX2014.COM

Workshop, Demo, WIP
DC, Grand Challenge

& Industrial
Submissions by

31 March 2014

Paper Submissions by
3 February 2014

Content Production
Systems & Infrastructures

Devices & Interaction Techniques
Experience Design & Evaluation

Media Studies
Data Science & Recommendations

Business Models & Marketing
Innovative Concepts & Media Art

Welcoming Submissions on

C

M

Y

CM

MY

CY

CMY

K

tvx-full-page.pdf-newest.pdf 1 11/10/2013 12:03

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=CII&exitLink=http%3A%2F%2FTVX2014.COM

ACM’s Career
& Job Center

Are you looking for
 your next IT job?
 Do you need Career Advice?

Visit ACM’s Career & Job Center at:
 http://jobs.acm.org

The ACM Career & Job Center is the perfect place to
begin searching for your next employment opportunity!

Visit today at http://jobs.acm.org

The ACM Career & Job Center offers ACM members a host of
career-enhancing benefits:
• A highly targeted focus on job

opportunities in the computing industry

• Access to hundreds of industry job postings

• Resume posting keeping you connected
to the employment market while letting you
maintain full control over your confidential
information

• Job Alert system that notifies you of
new opportunities matching your criteria

• Career coaching and guidance available
from trained experts dedicated to your
success

• Free access to a content library of the best
career articles compiled from hundreds of
sources, and much more!

ACM_printadv1_final.indd 1 11/21/13 11:36 PM

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=1&exitLink=http%3A%2F%2Fjobs.acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=1&exitLink=http%3A%2F%2Fjobs.acm.org

2 communications of the acm | february 2014 | vol. 57 | no. 2

Departments

5	 Letter from Chair of Education Board
Education, Always
By Andrew McGettrick

7	 Letter from the President
Cognitive Implants
By Vinton G. Cerf

9	 Letters to the Editor
Contribute More Than
Algorithmic Speculation

10	 BLOG@CACM
Clarifying Human-Computer
Interaction
Philip Guo teaches an undergrad
through the use of examples.

27	 Calendar

115	 Careers

Last Byte

120	 Puzzled
Lowest Number Wins
By Peter Winkler

News

13	 A New Type of Mathematics?
New discoveries expand
the scope of computer-assisted
proofs of theorems.
By Don Monroe

16	 Should Everybody Learn to Code?
Not everyone needs coding skills,
but learning how to think like
a programmer can be useful in
many disciplines.
By Esther Shein

19	 Computational Photography
Comes into Focus
Advances in computational
photography are making image
capture the starting point. The
technology is transforming the field.
By Samuel Greengard

22	 ACM Fellows Inducted

Viewpoints

24	 Privacy and Security
Would Cybersecurity
Professionalization Help Address
the Cybersecurity Crisis?
Evaluating the trade-offs involved
in cybersecurity professionalization.
By Diana L. Burley, Jon Eisenberg,
and Seymour E. Goodman

28	 Education
Establishing a Nationwide
CS Curriculum in
New Zealand High Schools
Providing students, teachers,
and parents with a better
understanding of computer science
and programming.
By Tim Bell

31	 Inside Risks
An Integrated Approach
to Safety and Security Based
on Systems Theory
Applying a more powerful new
safety methodology to security risks.
By William Young and
Nancy G. Leveson

36	 Kode Vicious
Bugs and Bragging Rights
It is not always size that matters.
By George V. Neville-Neil

38	 Economic and Business Dimensions
Digital Platforms: When Is
Participation Valuable?
Assessing the benefits and
challenges of knowledge spillovers.
By Marco Ceccagnoli, Chris Forman,
Peng Huang, and D.J. Wu

40	 Viewpoint
Ready Technology
Fast-tracking emerging
business technologies.
By Stephen J. Andriole

P
h

o
t

o
g

r
a

p
h

 b
y

 K
e

v
i

n
 J

a
r

r
e

t
t

communications of the acm

Association for Computing Machinery
Advancing Computing as a Science & Profession

16

february 2014 | vol. 57 | no. 2 | communications of the acm 3

Practice

44	 Node at LinkedIn: The Pursuit
of Thinner, Lighter, Faster
A discussion with Kiran Prasad,
Kelly Norton, and Terry Coatta.

52	 Center Wheel for Success
“Not invented here” syndrome
is not unique to the IT world.
By Poul-Henning Kamp

55	 Provenance in Sensor
Data Management
A cohesive, independent
solution for bringing provenance
to scientific research.
By Zachary Hensley,
Jibonananda Sanyal,
and Joshua New

 Articles’ development led by
 queue.acm.org

Contributed Articles

64	 Mars Code
Redundant software (and hardware)
ensured Curiosity reached
its destination and functioned
as its designers intended.
By Gerard J. Holzmann

74	 Automatic Exploit Generation
The idea is to identify security-critical
software bugs so they can be fixed first.
By Thanassis Avgerinos, Sang Kil Cha,
Alexandre Rebert, Edward J. Schwartz,
Maverick Woo, and David Brumley

85	 Cryptography Miracles,
Secure Auctions, Matching
Problem Verification
A solution to the persistent
problem of preventing collusion
in Vickrey auctions.
By Silvio Micali and Michael O. Rabin

Review Articles

94	 Computation Takes Time,
But How Much?
Timing analysis for
hard real-time systems.
By Reinhard Wilhelm
and Daniel Grund

Research Highlights

106	 Technical Perspective
A New Spin on an Old Algorithm
By Michael W. Mahoney

107	 Communication Costs
of Strassen’s Matrix Multiplication
By Grey Ballard, James Demmel,
Olga Holtz, and Oded Schwartz

About the Cover:
When the Curiosity
rover landed on Mars
in August 2012, it was
a momentous feat for
NASA and, in particular,
the team responsible
for the software that
continues to control
the rover some 350
million miles from Earth.
This month’s cover pays
tribute to the unsung
heroes of that landmark
effort—the members

of the Flight Software Team. Look closely, you should
be able to read their names. Cover illustration by
Brian Greenberg/Andrij Borys Associates.Im

a

g
e

s
 b

y
 A

n
d

r
i

j
 B

o
r

y
s

 Ass

o

c
i

a
t

e
s

02/2014
vol. 57 no. 02

52 9464

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=3&exitLink=http%3A%2F%2Fqueue.acm.org

4 communications of the acm | february 2014 | vol. 57 | no. 2

communications of the acm
Trusted insights for computing’s leading professionals.

Communications of the ACM is the leading monthly print and online magazine for the computing and information technology fields.
Communications is recognized as the most trusted and knowledgeable source of industry information for today’s computing professional.
Communications brings its readership in-depth coverage of emerging areas of computer science, new trends in information technology,
and practical applications. Industry leaders use Communications as a platform to present and debate various technology implications,
public policies, engineering challenges, and market trends. The prestige and unmatched reputation that Communications of the ACM
enjoys today is built upon a 50-year commitment to high-quality editorial content and a steadfast dedication to advancing the arts,
sciences, and applications of information technology.

P
L

E

A
S E R E C Y

C
L

E

T
H

I

S M A G A Z

I
N

E

ACM, the world’s largest educational
and scientific computing society, delivers
resources that advance computing as a
science and profession. ACM provides the
computing field’s premier Digital Library
and serves its members and the computing
profession with leading-edge publications,
conferences, and career resources.

Executive Director and CEO
John White
Deputy Executive Director and COO
Patricia Ryan
Director, Office of Information Systems
Wayne Graves
Director, Office of Financial Services
Russell Harris
Director, Office of SIG Services
Donna Cappo
Director, Office of Publications
Bernard Rous
Director, Office of Group Publishing
Scott E. Delman

ACM Council
President
Vinton G. Cerf
Vice-President
Alexander L. Wolf
Secretary/Treasurer
Vicki L. Hanson
Past President
Alain Chesnais
Chair, SGB Board
Erik Altman
Co-Chairs, Publications Board
Jack Davidson and Joseph Konstan
Members-at-Large
Eric Allman; Ricardo Baeza-Yates;
Radia Perlman; Mary Lou Soffa;
Eugene Spafford
SGB Council Representatives
Brent Hailpern; Andrew Sears;
David Wood

Board Chairs
Education Board
Andrew McGettrick
Practitioners Board
Stephen Bourne

Regional Council Chairs
ACM Europe Council
Fabrizio Gagliardi
ACM India Council
Anand S. Deshpande, PJ Narayanan
ACM China Council
Jiaguang Sun

Publications Board
Co-Chairs
Jack Davidson; Joseph Konstan
Board Members
Ronald F. Boisvert; Marie-Paule Cani;
Nikil Dutt; Roch Guerrin; Carol Hutchins;
Patrick Madden; Catherine McGeoch;
M. Tamer Ozsu; Mary Lou Soffa

ACM U.S. Public Policy Office
Cameron Wilson, Director
1828 L Street, N.W., Suite 800
Washington, DC 20036 USA
T (202) 659-9711; F (202) 667-1066

Computer Science Teachers Association
Chris Stephenson,
Executive Director

STAFF

Director of Group Publishing
Scott E. Delman
publisher@cacm.acm.org

Executive Editor
Diane Crawford
Managing Editor
Thomas E. Lambert
Senior Editor
Andrew Rosenbloom
Senior Editor/News
Larry Fisher
Web Editor
David Roman
Editorial Assistant
Zarina Strakhan
Rights and Permissions
Deborah Cotton

Art Director
Andrij Borys
Associate Art Director
Margaret Gray
Assistant Art Directors
Mia Angelica Balaquiot
Brian Greenberg
Production Manager
Lynn D’Addesio
Director of Media Sales
Jennifer Ruzicka
Public Relations Coordinator
Virginia Gold
Publications Assistant
Emily Williams

Columnists
David Anderson; Phillip G. Armour;
Michael Cusumano; Peter J. Denning;
Mark Guzdial; Thomas Haigh;
Leah Hoffmann; Mari Sako;
Pamela Samuelson; Marshall Van Alstyne;

Contact Points
Copyright permission
permissions@cacm.acm.org
Calendar items
calendar@cacm.acm.org
Change of address
acmhelp@acm.org
Letters to the Editor
letters@cacm.acm.org

WebSITE
http://cacm.acm.org

Author Guidelines
http://cacm.acm.org/guidelines

ACM Advertising Department
2 Penn Plaza, Suite 701, New York, NY
10121-0701
T (212) 626-0686
F (212) 869-0481

Director of Media Sales
Jennifer Ruzicka
jen.ruzicka@hq.acm.org

Media Kit acmmediasales@acm.org

Association for Computing Machinery
(ACM)
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA
T (212) 869-7440; F (212) 869-0481

editorial Board

Editor-in-chief
Moshe Y. Vardi
eic@cacm.acm.org

News
Co-Chairs
Marc Najork and William Pulleyblank
Board Members
Hsiao-Wuen Hon; Mei Kobayashi;
Michael Mitzenmacher; Rajeev Rastogi

Viewpoints
Co-Chairs
Tim Finin; Susanne E. Hambrusch;
John Leslie King;
Board Members
William Aspray; Stefan Bechtold;
Michael L. Best; Judith Bishop;
Stuart I. Feldman; Peter Freeman;
Seymour Goodman; Mark Guzdial;
Rachelle Hollander; Richard Ladner;
Carl Landwehr; Carlos Jose Pereira de Lucena;
Beng Chin Ooi; Loren Terveen;
Marshall Van Alstyne; Jeannette Wing

 Practice
Co-Chairs
Stephen Bourne and George Neville-Neil
Board Members
Eric Allman; Charles Beeler; Bryan Cantrill;
Terry Coatta; Stuart Feldman; Benjamin Fried;
Pat Hanrahan; Tom Limoncelli;
Marshall Kirk McKusick; Erik Meijer;
Theo Schlossnagle; Jim Waldo

The Practice section of the CACM
Editorial Board also serves as
the Editorial Board of .

Contributed Articles
Co-Chairs
Al Aho and Georg Gottlob
Board Members
William Aiello; Robert Austin; Elisa Bertino;
Gilles Brassard; Kim Bruce; Alan Bundy;
Peter Buneman; Erran Carmel;
Andrew Chien; Peter Druschel;
Carlo Ghezzi; Carl Gutwin; James Larus;
Igor Markov; Gail C. Murphy; Shree Nayar;
Bernhard Nebel; Lionel M. Ni;
Sriram Rajamani; Marie-Christine Rousset;
Avi Rubin; Krishan Sabnani;
Fred B. Schneider; Abigail Sellen;
Ron Shamir; Yoav Shoham; Marc Snir;
Larry Snyder; Manuela Veloso;
Michael Vitale; Wolfgang Wahlster;
Hannes Werthner; Andy Chi-Chih Yao

Research Highlights
Co-Chairs
Azer Bestovros and Gregory Morrisett
Board Members
Martin Abadi; Sanjeev Arora; Dan Boneh;
Andrei Broder; Stuart K. Card; Jon Crowcroft;
Alon Halevy; Maurice Herlihy; Norm Jouppi;
Andrew B. Kahng; Xavier Leroy;
Mendel Rosenblum; David Salesin;
Guy Steele, Jr.; David Wagner;
Margaret H. Wright

Web
Chair
James Landay
Board Members
Gene Golovchinsky; Marti Hearst;
Jason I. Hong; Jeff Johnson;
Wendy E. MacKay

ACM Copyright Notice
Copyright © 2014 by Association for
Computing Machinery, Inc. (ACM).
Permission to make digital or hard copies
of part or all of this work for personal
or classroom use is granted without
fee provided that copies are not made
or distributed for profit or commercial
advantage and that copies bear this
notice and full citation on the first
page. Copyright for components of this
work owned by others than ACM must
be honored. Abstracting with credit is
permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to
lists, requires prior specific permission
and/or fee. Request permission to publish
from permissions@acm.org or fax
(212) 869-0481.

For other copying of articles that carry a
code at the bottom of the first or last page
or screen display, copying is permitted
provided that the per-copy fee indicated
in the code is paid through the Copyright
Clearance Center; www.copyright.com.

Subscriptions
An annual subscription cost is included
in ACM member dues of $99 ($40 of
which is allocated to a subscription to
Communications); for students, cost
is included in $42 dues ($20 of which
is allocated to a Communications
subscription). A nonmember annual
subscription is $100.

ACM Media Advertising Policy
Communications of the ACM and other
ACM Media publications accept advertising
in both print and electronic formats. All
advertising in ACM Media publications is
at the discretion of ACM and is intended
to provide financial support for the various
activities and services for ACM members.
Current Advertising Rates can be found
by visiting http://www.acm-media.org or
by contacting ACM Media Sales at
(212) 626-0686.

Single Copies
Single copies of Communications of the
ACM are available for purchase. Please
contact acmhelp@acm.org.

Communications of the ACM
(ISSN 0001-0782) is published monthly
by ACM Media, 2 Penn Plaza, Suite 701,
New York, NY 10121-0701. Periodicals
postage paid at New York, NY 10001,
and other mailing offices.

POSTMASTER
Please send address changes to
Communications of the ACM
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA

Printed in the U.S.A.

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=4&exitLink=mailto%3Apublisher%40cacm.acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=4&exitLink=mailto%3Apermissions%40cacm.acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=4&exitLink=mailto%3Acalendar%40cacm.acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=4&exitLink=mailto%3Aacmhelp%40acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=4&exitLink=mailto%3Aletters%40cacm.acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=4&exitLink=http%3A%2F%2Fcacm.acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=4&exitLink=http%3A%2F%2Fcacm.acm.org%2Fguidelines
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=4&exitLink=mailto%3Ajen.ruzicka%40hq.acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=4&exitLink=mailto%3Aacmmediasales%40acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=4&exitLink=mailto%3Aeic%40cacm.acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=4&exitLink=mailto%3Apermissions%40acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=4&exitLink=http%3A%2F%2Fwww.copyright.com
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=4&exitLink=http%3A%2F%2Fwww.acm-media.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=4&exitLink=mailto%3Aacmhelp%40acm.org

letter from chair of acm education board

february 2014 | vol. 57 | no. 2 | communications of the acm 5

In a recent issue of Communications,
ACM President Vinton Cerf gave an excellent
account of what ACM is doing to help
reform K–12 education (August 2013, p. 7).

Moreover, he stressed ACM’s position
about the fundamental importance of
computer science, that it should be
regarded as a science on par with oth-
er sciences. Education initiatives are
having a great impact within the U.S.,
but beyond the U.S. shores, others are
watching and learning.

ACM’s Education Board promotes
computer science education at all
levels and in all ways possible. In Oc-
tober, ACM Council approved the
publication of the CS 2013 report—
an exhaustive 10-year effort cham-
pioned by ACM’s Education Board
and IEEE-Computer Society. The cur-
riculum presents many new features,
including an outward-facing view of
the discipline, facilitating links with
multidisciplinary work. It draws at-
tention to the different platforms on
which software resides and places
considerable emphasis on security.
Information Assurance and Security
is deemed a new “knowledge area;”
moreover, security considerations are
to be embedded within the teaching
of programming, software develop-
ment, the human-computer interface
activities, databases, networking, and
other topic areas to better prepare stu-
dents for the future.

CS 2013 is the latest in a series of
curriculum guidance documents on
computer science championed by
both organizations; the respective co-
chairs were Mehran Sahami from ACM
and Steve Roach from the IEEE-CS.
The report runs over 500 pages, largely
because of considerable efforts invest-
ed in providing guidance (often in the

form of course exemplars) to a wide
variety of interested parties. To view the
full report, visit http://www.acm.org/
education/curricula-recommendations/.

ACM’s Education Board also re-
sponded to a recent request from the
National Science Foundation to ad-
dress how to best direct institutions
of higher education on cyber security
education as well as how to promote
the need to incorporate this track into
their courses. A report presenting the
Board’s suggestions is now available on
ACM’s Educational Activities website
(http://www.acm.org/education).

Massive Open Online Courses
(MOOCs) have been a major topic of dis-
cussion. Some commentators see these
courses as having the capacity to bring
about radical change to educational
processes, whereas others hold a more
conservative view. The Education Board,
having a great interest in MOOCs, is
sponsoring the first Learning at Scale
(http://learningatscale.acm.org) con-
ference to address MOOCs-related re-
search issues and to help clarify and
establish ACM’s position on online learn-
ing. This conference is slated to take place
in Atlanta in March 2014, just prior to and
co-located with SIGCSE 2014.

As we look toward, and prepare for,
the future of computing education,
I am reminded of Doug Englebart’s
1962 paper “Augmenting Human In-
telligence: A Conceptual Framework.”
There he puts forward the view that
computing has a vital role to play, not
in making users more intelligent, but
in supporting their thinking and their
analysis of problems. A subsequent pa-

per draws attention to the bootstrap-
ping implications of this approach.
In the research world disciplines like
mathematics, physics, chemistry,
medicine, and the humanities are all
benefitting from great computational
power, sophisticated modeling, and
advances in data science. But related
computational thinking needs to be
woven more delicately into the fabric
of general education so that students
become more effective and efficient
learners. Through this approach, all
disciplines will benefit.

With information being readily
available anywhere and at any time,
and with great computing power also
immediately accessible, education
must respond and change. On current
evidence, part of the solution is to pay
far greater attention to interactive
computing and graphics, simulation
and modeling, search, analytics, and
machine intelligence (feeding into
business intelligence, among others).

Education is an ever-evolving do-
main, and ACM’s Education Board
has always been at the forefront lead-
ing the charge for change. Our goal is
to best prepare future generations for
a truly digital world. Computer educa-
tion is the entryway to that world, and
it is our job to make sure that door is
never closed.	

Andrew McGettrick (andrew.mcgettrick@strath.ac.uk)
is Professor Emeritus at the University of Strathclyde,
Glasgow, Scotland, U.K. and the chair of ACM’s Education
Board and Education Council.

Copyright help by owners/author(s).

Education, Always
DOI:10.1145/2534706.2534707		 Andrew McGettrick

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=5&exitLink=http%3A%2F%2Fwww.acm.org%2Feducation%2Fcurricula-recommendations%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=5&exitLink=http%3A%2F%2Fwww.acm.org%2Feducation
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=5&exitLink=http%3A%2F%2Flearningatscale.acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=5&exitLink=mailto%3Aandrew.mcgettrick%40strath.ac.uk
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=5&exitLink=http%3A%2F%2Fwww.acm.org%2Feducation%2Fcurricula-recommendations%2F

Rise Above the Ordinary
A career at NSA is no ordinary job. It’s a profession dedicated to
identifying and defending against threats to our nation. It’s a
dynamic career filled with challenging and highly rewarding work
that you can’t do anywhere else but NSA.

You, too, can rise above the ordinary. Whether it’s producing valuable
foreign intelligence or preventing foreign adversaries from accessing
sensitive or classified national security information, you can help
protect the nation by putting your intelligence to work.

NSA offers a variety of career fields, paid internships, co-op and
scholarship opportunities.

Learn more about NSA and how your career can make
a difference for us all.

KNOWINGMATTERS

Excellent Career Opportunities
in Computer Science, Computer
Engineering and Related Fields

U.S. citizenship is required. NSA is an Equal Opportunity Employer.

2013 Cybersecurity Paper Competition

Eligibility: Any paper that exhibits outstanding contribution to
cybersecurity science and published from Oct 1, 2012 - Dec 31, 2013.

Entries judged on scientific merit, the strength and significance of the
work reported, and the degree to which the papers exemplify how
to perform and report cybersecurity scientific research.

Nominations close March 31, 2014.

Submit nominations to
http://cps-vo.org/group/sos/papercompetition

Hosted by the Research Directorate, National Security Agency

W H E R E I N T E L L I G E N C E G O E S T O W O R K®

Search NSA to Download

newcreative(8.125x10.875)r1.indd 1 1/9/14 2:38 PM

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=6&exitLink=http%3A%2F%2Fcps-vo.org%2Fgroup%2Fsos%2Fpapercompetition
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=6&exitLink=http%3A%2F%2Fwww.NSA.gov%2FCareers

from the president

february 2014 | vol. 57 | no. 2 | communications of the acm 7

Cognitive Implants
We are already well into the second month
of 2014 and well on our way to the middle of
the second decade of the 21st century. One
hundred years ago, World War I was about

to start. Einstein’s “annus mirabilis”
papers were just nine years in the past.
The first computers were about 25 years
ahead, counting Conrad Zuse’s 1938–
1939 et. seq. work on the Z1 and Z2,
especially, as seminal. Some 50 years
ago—1964—marked the introduction
of the IBM 360 computer. Roughly 40
years ago, the first paper on the Inter-
net’s core Transmission Control Proto-
col was published, the first hand-held
mobile was being prototyped, and the
Ethernet was invented. About 30 years
ago the Internet was formally launched
into operation and Apple announced
the Macintosh. Circa 25 years ago, the
World Wide Web was invented, the Mo-
saic Browser appears, and the so-called
dot-com boom is poised to take off.

Every time I see calendar dates like
2014, I feel as if I have been transport-
ed by time machine into the future. It
could not possibly be 2014 already!
Isaac Asimov made some remarkably
astute projections about 2014 in 1964,a
so what might he say today?

What we can reasonably see today
is the emergence of a crude form of
cognitive accessory that augments our
remarkable, but in some ways limited,
ability to think, analyze, evaluate, and
remember. Just as readily available
calculators seem to have eroded our
ability to perform manual calculations,
search engines have tended to become
substitutes for basic human memory.
The search engines of the Internet have
become the moral equivalent of cogni-

a	 http://www.newsmax.com/SciTech/isaac-
asimov-predictions/2014/01/06/id/545487

tive implants. When I cannot think of
someone’s name or a fact (an increas-
ingly common phenomenon), I find
myself searching my email or just look-
ing things up on the World Wide Web.

In effect, the Web is behaving like
a big accessory that I use as if it were
just a brain implant. Maybe by 2064 I
will be able to access information just
by thinking about it. Current mobiles,
laptops, tablets, and Google Glass have
audio interfaces that allow a user to
voice requests for information and
to cause transactions to take place.
Whether we ever actually have the abil-
ity to connect our brains in some direct
way to the Internet, it is clear we are
fast approaching the ability to outfit
computers (think “robots”) with the
ability to know about, perceive, and in-
teract with the physical world.

It has been speculated that ma-
chine intelligence and adaptive pro-
gramming will be the avenue through
which computers will become increas-
ingly cognizant of the world around
them—increasingly behaving like self-
aware systems. In addition to so-called
“cyber-physical systems” that provide
sensory input to computers and are ex-
pected to interact with the real world,
an increasing degree of augmentation
of our human sensory and cognitive
capacity seems predictable. While we
joke about memory upgrades or im-
plants, search engines and the con-
tent of the Internet and World Wide
Web act like exabyte memories that
are reached through direct interaction
with the computers that house them.
Ray Kurzweil’s virtuous, exponential

computing functionality and capacity
growth predictions, even if overly bold
in the short term, strike me as poten-
tial underestimates of what may be
possible in 50 to 100 years.

When we are on the cusp of generat-
ing an Internet of Things, humanoid and
functional robots, smart cities, smart
dwellings, and smart vehicles, to say
nothing of instrumented and augment-
ed bodies, it does not seem excessive to
suggest the world of 2064 will be as far
beyond imagining as 2014 was in 1964,
except that Asimov had a remarkably
clairvoyant view of what 50 years of en-
gineering and discovery could achieve.
A huge challenge will be to understand
and characterize the level of complexity
of such a world in which many billions
of devices are interacting with one an-
other often in unplanned ways.

For those of us who were around in
1964, we may recall our naïve aspira-
tions for the decades ahead and realize
how ambitious our expectations were.
On the other hand, what is common-
place in 2014 would have been econom-
ically unthinkable 50 years ago. So per-
haps exabyte, cognitive implants are a
trifle ambitious in the short term, but
a lot can happen in 50 years time. Just
as we have adapted to the past 50 years,
I expect we will rapidly embrace some
of the functionality coming in the next
five decades. It is already difficult to re-
member how we lived our lives without
mobiles and the Internet. Now, where
did I put that time machine?

Vinton G. Cerf, acm president

Copyright held by Author.

DOI:10.1145/2563407		 Vinton G. Cerf

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=7&exitLink=http%3A%2F%2Fwww.newsmax.com%2FSciTech%2Fisaacasimov-predictions%2F2014%2F01%2F06%2Fid%2F545487
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=7&exitLink=http%3A%2F%2Fwww.newsmax.com%2FSciTech%2Fisaacasimov-predictions%2F2014%2F01%2F06%2Fid%2F545487

HERE’S TO DENNIS AND KEN.
FOR GIVING US UNIX.

We’re more than computational theorists, database managers, UX mavens, coders and developers.
We’re on a mission to solve tomorrow. ACM gives us the resources, the access and the tools to invent the future.
Join ACM today and receive 25% off your fi rst year of membership.

BE CREATIVE. STAY CONNECTED. KEEP INVENTING.

 ACM.org/KeepInventing

Cr
ed

it
: R

ep
ri
nt

ed
 w

it
h

pe
rm

is
si

on
 o

f
Al

ca
te

l-
Lu

ce
nt

 U
SA

 In
c.

ACM_PrintAd1_Final.indd 1 12/6/13 10:06 AM

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=8&exitLink=http%3A%2F%2FACM.org%2FKeepInventing

letters to the editor

February 2014 | vol. 57 | no. 2 | communications of the acm 9

J
a c o b L o v e l e s s e T a l . ’ s ar-
ticle “Online Algorithms in
High-Frequency Trading”
(Oct. 2013) is an example
of potentially valuable re-

search misdirected. Ask any propo-
nent of free-enterprise economics to
explain its merits, and you will likely
hear two themes: Profit motivates,
and profit accrues by producing and
selling valuable goods and services.
The first buys the producer a bigger
piece of the pie; the second increas-
es the total size of the pie, thus rais-
ing, at least on average, the econom-
ic status of all. It works, most of the
time, quite well.

Unfortunately, there are also many
ways to profit while producing grossly
inadequate, zero, or even negative
economic value. Some of us are drawn
to such schemes, so much so they
work much more diligently at them
than at a productive enterprise. To the
extent this happens, free enterprise is
undermined. Like printing counter-
feit money, it works only if a minority
does it, and even then, at the expense
of everyone else.

Among the most serious such non-
value-producing profit schemes is
speculating in zero-sum derivative
markets that produce no economic
value at all, managing only to shuffle
cash between winners and losers. Mil-
lisecond trading is just an escalation
in vying for money this way. Even in fi-
nancial markets like common stocks,
where the original purpose is invest-
ment, and that do contribute to pro-
ducing value, trading at sub-second
time intervals is pure speculation or
worse, as genuine investors could col-
lectively be net losers to speculators.
Putting effort into developing and us-
ing more successful speculation strat-
egies is like going to a potluck dinner
but bringing no food, just a bigger
plate, while pushing more aggressive-
ly toward the front of the line.

Online and one-pass algorithm
research can surely be redirected to-
ward value-producing applications
(such as robotics) where they can do

more than just seize profits at some-
one else’s expense.

Rodney M. Bates, Strong City, KS

Put Thrills In Everyday Products, Too
As a user experience (UX) researcher,
I took note of Steve Benford et al.’s ar-
ticle “Uncomfortable User Experience”
(Sept. 2013) on designing discomfort
into users’ experience with technology.
I appreciated Benford et al.’s interest
in the framework of Freytag’s pyramid
and their examples of physical experi-
ence (such as amusement park rides
and breathing exercises) but was left
with questions about applying these
ideas to the commercial HCI, particu-
larly the UX, realm.

I venture to say the majority of UX
designers reading Communications
design hardware or software, not just
for entertainment but for educational
and productivity purposes. In any do-
main, UX designers are always look-
ing for new interaction methods on
mobile devices, ways to “gamify” tasks,
or unique interactions that make their
brands more desirable, popular, and
memorable. For me, Benford et al.
started down an interesting new path
but stopped short of defining a clear
link between these tactics and the kind
of HCI work most developers do, which
is probably more cognitive than physi-
cal. Could these tactics work for us?

For example, Benford et al. remind-
ed us of interface innovator Ben Shnei-
derman’s guideline that the locus of
control should remain with the user,
suggesting “distorting this relation-
ship” would only generate discomfort.
Moreover, Benford et al.’s examples
were physical: thrill ride, walking tour,
performance audience member. But
this would seem to have been the per-
fect place to explore possibilities in ev-
eryday software development. If in your
next mobile app project you wanted to
build in a “thrill” for user sociality or
enlightenment, how would it work?

Benford et al. certainly inspired un-
conventional thinking, but I was left
wanting acknowledgment there is a

place for uncomfortable user experi-
ence in everyday products as well.

Elise Lind, Portland, OR

Survival vs. Reflection in Education
Karen A. Frenkel’s news story “CS En-
rollments Rise… at the Expense of the
Humanities?” (Dec. 2013) reminded
me why the trend toward computer sci-
ence does not diminish the value of a
well-rounded education or the humani-
ties in general, even as it identified two
aspects of the humanities making them
less desirable than computing and IT
in today’s academic environment:

Bias. The humanities have become
politicized to the point they often seem
intended to put the agendas of tenured
faculty or intellectual movement ahead
of students’ interests. Such bias plagues
all traditional academic disciplines but
is disproportionate in the humanities.
Moreover, there is often no objective,
measurable, or quantifiable way to as-
sess opinions, short of a professor’s
publishing history, while schools of
thought splinter into factions; see, for
example, literary criticism; and

Employment. Getting a job with just a
degree in the humanities, even in teach-
ing, is a challenge. I know; as an under-
grad I studied comparative French and
German literature. Granted, humanities
graduates may write well and make per-
suasive arguments, but so do IT work-
ers and programmers. I fault academic
institutions more than students for ig-
noring the employment implications
of their programs, including the skills
the economy demands and employers
pay for; my college did not, for exam-
ple, offer accounting…on ideological
grounds. Humanities professors com-
fortable within their intellectual mi-
crocosms should reassess their role in
today’s academic climate and help their
students learn the skills they need to
create and survive, not just reflect.

Dimitri Darras, Sterling, VA

Communications welcomes your opinion. To submit a
Letter to the Editor, please limit yourself to 500 words or
less, and send to letters@cacm.acm.org.

© 2014 ACM 0001-0782/14/02 $15.00

Contribute More Than Algorithmic Speculation
DOI:10.1145/2556647.2556650		

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=9&exitLink=mailto%3Aletters%40cacm.acm.org

Follow us on Twitter at http://twitter.com/blogCACM

The Communications Web site, http://cacm.acm.org,
features more than a dozen bloggers in the BLOG@CACM
community. In each issue of Communications, we’ll publish
selected posts or excerpts.

10 communications of the acm | february 2013 | vol. 57 | no. 2

Philip Guo
Two Examples
of HCI Research
http://cacm.acm.org/
blogs/blog-cacm/163199-
two-examples-of-hci-
research/fulltext

April 10, 2013

A
n u n d e r g r a d r e c e n tl y
sent me the following
message: “I was thinking
today that I would like to
learn more about what

HCI research involves. Can you recom-
mend any papers for me to read?”

I decided to follow Matt Might’s advice
(at http://matt.might.net/articles/how-to-
blog-as-an-academic/) and write a public
blog post about this topic, rather than
just replying privately to this student.

(Disclaimer: HCI is a very diverse
field, so I obviously do not claim to
speak for all HCI researchers. If you
asked 10 randomly selected HCI re-
searchers to write this post, you will get
10 different answers.)

What Is HCI Research?
To me, research in HCI (human-com-
puter interaction) involves

˲˲ Understanding how humans inter-
act with computers, and

Paper 1
Two Studies of Opportunistic Program-
ming: Interleaving Web Foraging, Learn-
ing, and Writing Code (Brandt et al., CHI
2009, http://www.joelbrandt.org/publi-
cations/brandt_chi2009_program-
mer_web_use.pdf) was published at CHI
2009 (http://www.chi2009.org/), a notable
academic conference for HCI research.

The research described by this pa-
per is an example of “understanding
how humans interact with comput-
ers.” Specifically, Joel and his col-
leagues sought to understand how
programmers interact with digital re-
sources found on the Web.

To do so, the research team per-
formed two studies:

1.	 Lab study: They invited 20 program-
mers into a computer lab one at a time,
gave each subject a two-hour-long pro-
gramming task, and watched how the
subject used Web resources while pro-
gramming. Drawing from direct observa-
tions of these 20 subjects in a controlled
lab setting, the team observed three main
forms of interaction with Web resourc-
es—learning, clarification, and remind-
er—and described the unique aspects of
each form in their paper.

2.	 Query log analysis: The team
wanted to validate whether these ob-
servations generalize beyond their
small and relatively homogeneous
population of 20 lab subjects, who
were all Stanford students. Working
with industry colleagues at Adobe, they
obtained a dataset containing over
100,000 queries made by over 24,000
programmers to a custom search en-
gine for Adobe programming tools

˲˲ Creating new and effective ways for
humans to interact with computers.

Here, the term “computer” can refer
to a desktop machine, laptop, tablet,
mobile phone, digital eyewear (http://
www.google.com/glass/start/), or an as-
sortment of other electronic devices;
it can also refer to both software and
hardware running on these devices.

Some HCI research involves doing
science (such as understanding), while
others are more focused on engineer-
ing (such as creating).

Two Examples of HCI Research
There is no way that I can do justice
to the entire world of HCI in one blog
post, so instead I will present two pa-
pers that exemplify some typical char-
acteristics of modern HCI research.

The lead author on both papers is my
colleague Joel Brandt (http://www.joel-
brandt.org/), who performed this work
while he was a Ph.D. student in the Stan-
ford computer science department. At
the time, Joel’s focus within HCI was on
how programmers (humans!) interact
with computer software used through-
out the programming process (for ex-
ample, IDEs (http://en.wikipedia.org/
wiki/Integrated_development_environ-
ment), debuggers, Web browsers).

Clarifying Human-
Computer Interaction
Philip Guo teaches an undergrad through the use of examples.

doi:10.1145/2557448			 http://cacm.acm.org/blogs/blog-cacm

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Ftwitter.com%2FblogCACM
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fcacm.acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fcacm.acm.org%2Fblogs%2Fblog-cacm%2F163199-two-examples-of-hci-research%2Ffulltext
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fmatt.might.net%2Farticles%2Fhow-to-blog-as-an-academic%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fwww.joelbrandt.org%2Fpublications%2Fbrandt_chi2009_programmer_web_use.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fwww.chi2009.org%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fwww.google.com%2Fglass%2Fstart%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fwww.joelbrandt.org%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fwww.joelbrandt.org%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fen.wikipedia.org%2Ftowiki%2FIntegrated_development_environment
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fcacm.acm.org%2Fblogs%2Fblog-cacm
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fwww.joelbrandt.org%2Fpublications%2Fbrandt_chi2009_programmer_web_use.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fwww.joelbrandt.org%2Fpublications%2Fbrandt_chi2009_programmer_web_use.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fcacm.acm.org%2Fblogs%2Fblog-cacm%2F163199-two-examples-of-hci-research%2Ffulltext
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fcacm.acm.org%2Fblogs%2Fblog-cacm%2F163199-two-examples-of-hci-research%2Ffulltext
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fcacm.acm.org%2Fblogs%2Fblog-cacm%2F163199-two-examples-of-hci-research%2Ffulltext
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fwww.google.com%2Fglass%2Fstart%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fmatt.might.net%2Farticles%2Fhow-to-blog-as-an-academic%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fen.wikipedia.org%2Ftowiki%2FIntegrated_development_environment
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fen.wikipedia.org%2Ftowiki%2FIntegrated_development_environment

blog@cacm

February 2013 | vol. 57 | no. 2 | communications of the acm 11

(http://www.adobe.com/devnet.html).
They parsed and analyzed the data to
discover insights that supported obser-
vations from their prior lab study.

These two studies complement and
reinforce one another. The first pro-
vides a great level of detail (direct hu-
man observation) but a small sample
size (N=20). The second provides little
detail (search queries) but a large sam-
ple size (N=24,000). By reading both
studies in the paper, you can under-
stand the relative strengths and weak-
nesses of each approach.

The findings presented by HCI studies
such as the ones in this paper serve two
roles: they contribute to the body of scien-
tific knowledge about a form of human-
computer interaction (for example, Web
usage during programming), and they
inspire researchers to create new kinds of
tools to improve such interactions.

For example, the findings in this pa-
per suggest ways that existing IDEs can
be augmented to help programmers
better leverage Web resources. These
findings directly inspired Joel’s next re-
search project, which led to...

Paper 2
A year later, Joel published Example-
Centric Programming: Integrating Web
Search into the Development Environ-
ment (Brandt et al., CHI 2010, http://
www.joelbrandt.org/publications/
brandt_chi2010_example_centric_
programming.pdf).

The research described by this pa-
per is an example of “creating new and
effective ways for humans to interact
with computers.” Here, Joel and his col-
leagues sought to create a new and bet-
ter way for programmers to use snippets
of example code they find on the Web.

To do so, Joel spent a summer intern-
ship at Adobe building a plug-in for Ado-
be Flash Builder (http://www.adobe.com/
technology/projects/blueprint.html),
which embeds a domain-specific search
engine within the IDE (see screenshot).

This system, called Blueprint, com-
bines an IDE plugin and custom search
engine to enable new kinds of user in-
teractions, such as:

˲˲ Instant Web search without leav-
ing the IDE’s code editor,

˲˲ Browsing through search results that
are automatically formatted in a “code-
centric” format, which is more useful to
programmers than plain Web pages,

˲˲ Fast copy and paste of retrieved
example code snippets into the user’s
code base, and

˲˲ Links between the copied code and
its source, to support notifications if
the source gets updated.

The first half of his paper describes
how Joel used insights from the stud-
ies in his prior paper to design the
Blueprint system. The second half
describes two studies the team ran to
show that Blueprint was effective:

1.	 User study: They recruited 20
professional programmers at Adobe
to perform a series of programming
tasks in a controlled lab setting. They
let half the participants use the Blue-
print system (treatment group) and
the other half use an ordinary Web
browser (control group). They then
compared the performance of partici-
pants in both groups on metrics such
as time to complete each task and re-
sulting code quality.

2.	 Longitudinal study: To under-
stand how Blueprint is used in real-
world settings, the team deployed
the system to over 2,000 users over a
three-month time span. They recorded
17,000 queries made by these users and
analyzed the contents of those queries
to discover insights that complement-
ed their user study findings.

Finally, a customary way to end
these sorts of papers is by discussing
current limitations of the system and
some ideas for future work.

Conclusion and Further Reading
These two papers formed the bulk
of Joel’s 2010 Ph.D. dissertation
(http://www.joelbrandt.org/publications/
brandt_2010_phd_dissertation.pdf).
His research started in a university lab
at Stanford, continued during sum-
mer internships at Adobe, and even-
tually turned into a feature within a

commercial software product (Blue-
print) that thousands of people use
on a daily basis. I like presenting this
work because it is a good example of
how HCI research can be done in both
academia and industry, and can range
from scientific studies to the develop-
ment of practical tools.

Joel’s work is just the tip of the ice-
berg, though. Besides studying the in-
teraction between humans and com-
puters, there is a lot of HCI research
that explores how humans interact
with one another via computers. For
example, projects might involve:

˲˲ Understanding how programmers
interact with one another on the Stack-
Overflow (http://stackoverflow.com/)
Q&A site (Mamykina et al., CHI 2011,
http://www.cs.berkeley.edu/~bjoern/
papers/mamykina-stackoverflow-
chi2011.pdf), and

˲˲ Creating a mobile phone app called
VizWiz (http://vizwiz.org/) that lets blind
users quickly and effectively solicit help
from strangers on the Internet (Bigham
et al., UIST 2010, http://www.cs.rochester.
edu/hci/pubs/pdfs/vizwiz.pdf).

Reading the four papers mentioned
in this blog post will give you a sense of
how HCI papers are structured. Enjoy!

Reader’s comment:
HCI research: I ask 10 different
researchers and get 15 different answers!

What about theoretical models for HCI;
that may reduce the dimensions.

—Anonymous

Some nice points in this post, thanks.
Responding to your anonymous commenter,
HCI is indeed a diverse field that moves
with the times, so as technologies change,
so do some (but not all) of the research foci.

The SIGCHI Executive Committee has
been looking into HCI as a field in a project
focused on HCI Education. We have written
an interim report which is accessible
from our website (http://www.sigchi.
org/). The results are also summarized
on the Interactions website (see http://
interactions.acm.org/archive/view/march-
april-2013/teaching-and-learning-human-
computer-interaction).

—Elizabeth Churchill

Philip Guo is a postdoctoral scholar in the Massachusetts
Institute of Technology Computer Science and Artificial
Intelligence Laboratory.

© 2014 ACM 0001-0782/14/02 $15.00

Screenshot of a Blueprint code search.

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.adobe.com%2Fdevnet.html
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.joelbrandt.org%2Fpublications%2Fbrandt_chi2010_example_centric_programming.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.adobe.com%2Ftechnology%2Fprojects%2Fblueprint.html
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.adobe.com%2Ftechnology%2Fprojects%2Fblueprint.html
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.joelbrandt.org%2Fpublications%2Fbrandt_2010_phd_dissertation.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fstackoverflow.com%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.cs.berkeley.edu%2F%7Ebjoern%2Fpapers%2Fmamykina-stackoverflowchi2011.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fvizwiz.org%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.cs.rochester.edu%2Fhci%2Fpubs%2Fpdfs%2Fvizwiz.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.sigchi.org%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Finteractions.acm.org%2Farchive%2Fview%2Fmarch-april-2013%2Fteaching-and-learning-human-computer-interaction
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.joelbrandt.org%2Fpublications%2Fbrandt_chi2010_example_centric_programming.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.joelbrandt.org%2Fpublications%2Fbrandt_chi2010_example_centric_programming.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.joelbrandt.org%2Fpublications%2Fbrandt_chi2010_example_centric_programming.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.joelbrandt.org%2Fpublications%2Fbrandt_2010_phd_dissertation.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.cs.berkeley.edu%2F%7Ebjoern%2Fpapers%2Fmamykina-stackoverflowchi2011.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.cs.berkeley.edu%2F%7Ebjoern%2Fpapers%2Fmamykina-stackoverflowchi2011.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.cs.rochester.edu%2Fhci%2Fpubs%2Fpdfs%2Fvizwiz.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Finteractions.acm.org%2Farchive%2Fview%2Fmarch-april-2013%2Fteaching-and-learning-human-computer-interaction
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Finteractions.acm.org%2Farchive%2Fview%2Fmarch-april-2013%2Fteaching-and-learning-human-computer-interaction
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Finteractions.acm.org%2Farchive%2Fview%2Fmarch-april-2013%2Fteaching-and-learning-human-computer-interaction
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.sigchi.org%2F

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=12&exitLink=http%3A%2F%2Fmobilehci.acm.org%2F2014%2F

 N
news

February 2013 | vol. 57 | no. 2 | communications of the acm 13

Im

a
g

e
 f

r
o

m
 S

h
u

t
t

e
r

s
t

o
ck

.c

o
m

C
omputers have transformed
a broad range of human ac-
tivities, from sales to basic
research. Now, for an enthu-
siastic contingent of math-

ematicians and computer scientists,
they are poised to deliver on a long-
standing promise to do the same for
mathematics.

The renewed excitement grows
from discoveries that expand the scope
of computer-assisted proofs of theo-
rems, but also provide a new and more
intuitive way of grounding new results
to the bedrock foundations of math-
ematics, even as those results grow
more complex. Tools based on these
developments could help establish
a growing library of certified results
backed by computer verification. Along
the way, it could change the culture of
mathematics by making it easier for
individuals to dependably add to this
growing edifice.

The most prominent face of the new
movement is Vladimir Voevodsky, at
the School of Mathematics of the sto-
ried Institute for Advanced Study (IAS)
in Princeton, NJ. In 2002, Voevodsky
shared the International Math Union’s
Fields Medal which, together with the
Abel Prize, are often called the math-

ematics equivalent of the Nobel Prize.
In recent years, he has turned his atten-
tion to exploring how computers can
enhance mathematics research.

In the process, Voevodsky has in-
spired a high-powered group of math-
ematicians and computer scientists

to explore the implications of the new
framework. Over the 2012–2013 aca-
demic year, several dozen of them as-
sembled at IAS to work towards this goal.

“It was really thrilling,” said co-
organizer Steve Awodey of Carnegie
Mellon University in Pittsburgh, PA.

A New Type of
Mathematics?
New discoveries expand the scope
of computer-assisted proofs of theorems.

Science | doi:10.1145/2557446	 Don Monroe

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=13&exitLink=http%3A%2F%2FSHUTTERSTOCK.COM

news

14 communications of the acm | february 2013 | vol. 57 | no. 2

and trace it all back to a few axioms.
That goal ran into trouble when it was
proved that, for any formal system, it is
impossible to prove all theorems about
that system. As a result, “working math-
ematicians decided that foundations
are irrelevant for their purposes,” says
Awodey. Moreover, there was no par-
ticular payoff for tracing everyday work
back to first principles. Although the
new framework does not avoid these
problems, Awodey said, it doesn’t much
matter. “This system of foundations has
a much more practical aspect; it is clos-
er to the way mathematicians reason.”

The system could also enhance co-
operation between mathematicians.
If computer-verified proofs become
mainstream, Voevodsky says, “it will
eventually lead us to a possibility of
big, collaborative projects.” If the com-
puter can guarantee that a particular
result is correct, others can build on it
with confidence, even if it comes from
an unknown or novice researcher, or
an expert who is importing novel ideas
into a different subfield.

Voevodsky stresses that human in-
genuity will always be important. “It’s
not like someone who doesn’t know
anything in mathematics can just use
this library and start producing great
mathematics on top of it. One still has
to have the internal [mental] represen-
tation of what’s going on there.”

Another advantage of a computer
library of mathematics, says IAS par-
ticipant Andrej Bauer of the University
of Ljubljana, Slovenia, would be the
ability to search for relevant results.
Even if the new framework lives up to
its promise, he cautions, “ultimately,
it is not just the math; it is the ques-
tion of how new mathematical ideas
get adopted by the wider community
of mathematicians.”

“You felt like you were part of the Man-
hattan Project of computer science.
Everybody had the feeling they were
part of something important, and I
think they were. I think we really made
some amazing progress there, the con-
sequences of which are going to take
time now to play out.”

In part to build on this momen-
tum, some 25 of the researchers wrote
a 600-page textbook (available free
online at http://homotopytypetheory.
org/book/) describing the new view,
called Homotopy Type Theory (HoTT)
for reasons discussed later. The book
was prepared collaboratively over just a
few months, as illustrated in the time-
lapse video available at http://vimeo.
com/68761218, sharing and editing
documents using the GitHub version-
control platform originally designed
for code development.

This collaborative authorship is an
intriguingly parallel to the group’s vi-
sion of a reliable and consistent en-
capsulation of a body of mathematical
knowledge, analogous to a library of
trusted subroutines in a computer pro-
gram. This vision is an old one: more
than a century ago, mathematicians
strove to formalize all mathematics,

ACM, IEEE Choose
Goodman To Receive
Eckert-Mauchly Award
ACM and the IEEE Computer
Society have named James
R. Goodman the recipient
of the Eckert-Mauchly
Award in recognition of his
contributions to the hardware/
software interface of computer
architecture.

The Eckert-Mauchly award is
given annually in recogmition of
contributions to computer and
digital systems architecture.

Goodman is currently a
professor of computer science
and a department chair at
the University of Auckland,
New Zealand.

His innovations led to
the development of hybrid
approaches to high-performance
computer memory systems
that can achieve nearly the
performance of hardware but
with the flexibility of software.

Principal co-inventor of
hardware queue-based locks,
which allow programs with
busy-wait synchronization, also
known as spinning, to scale
to very large multiprocessors,
Goodman also introduced critical
section speculation, which
helped launch the resurgence
of transactional memory as
a parallel programming and
synchronization method.

Co-author of A Programmer’s
View of Computer Architecture,
a highly acclaimed book on
computer architecture, with
Karen Miller, and Structured
Computer Organization with
Andrew Tanenbaum, Goodman is
a principal supervisor of 10 Ph.D.
students, as well as a Fellow of
both IEEE and ACM.

Hanson Elected
Fellow Of Royal Society
of Edinburgh
Included among the more than

40 people elected Fellows of
The Royal Society of Edinburgh
(RSE) in 2013 was ACM Secretary/
Treasurer Vicki L. Hanson, in
recognition of her contributions
to human computer interaction.

The RSE is Scotland’s
national academy of science and
letters.

Hanson is professor of
Inclusive Technologies at the
University of Dundee, and
research staff member emeritus
from IBM Research. Her research
explores design issues related to
inclusion, seeking to understand
and address problems that create
barriers to technology adoption
and use by examining ways in
which existing technology can be
adapted to better support older
adults and disabled users.

An active ACM member
for more than 20 years,
Hanson currently serves the
organization’s Secretary/
Treasurer, in addition to being

a member of the ACM-W Europe
Executive Committee, and the
founder and co-editor-in-chief of
ACM’s Transactions on Accessible
Computing. She is past chair of
the ACM SIG Governing Board
and of ACM SIGACCESS, and was
named an ACM Fellow in 2004. In
2008, Hanson received the ACM
SIGCHI Social Impact Award for
the application of HCI research
to pressing social needs.

Hanson also has been
named a Fellow of the British
Computer Society, and was the
2013 recipient of the Anita Borg
Institute Woman of Vision Award
for Social Impact. She received
an IBM Corporate Award for
Contributions to Accessibility,
multiple IBM Outstanding
Contribution Awards for her work
in accessibility and education,
the University of Oregon Arts and
Sciences Alumni Fellows Award,
and a Royal Society Wolfson
Research Merit Award.

Milestones

Computer Science Honors

“This system of
foundations has
a much more
practical aspect;
it is closer to the
way mathematicians
reason.”

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=14&exitLink=http%3A%2F%2Fvimeo.com%2F68761218
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=14&exitLink=http%3A%2F%2Fvimeo.com%2F68761218
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=14&exitLink=http%3A%2F%2Fhomotopytypetheory.org%2Fbook%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=14&exitLink=http%3A%2F%2Fhomotopytypetheory.org%2Fbook%2F

news

February 2013 | vol. 57 | no. 2 | communications of the acm 15

ity of equality. This means there is
an algorithm to determine whether
any two objects are equal, which is a
key step in its use for proofs. Yet Thi-
erry Coquand of the University of Go-
thenburg, Sweden, who was one of
the developers of Coq, noted “there
was always something missing” in the
notion of equality in this type theory.
“The concept of equal is better” in
HoTT, he said. “Hopefully, it will lead
to practical things.”

The new view of equality arises from
the realization, arrived at indepen-
dently by Voevodsky and by Awodey
and his student Michael Warren, of a
connection between completely dif-
ferent branches of mathematics. To
give a more familiar example, the
ancient understanding of circles, el-
lipses, hyperbolas, and parabolas as
cross-sections is enriched and com-
plemented by their description by
algebraic equations. In a particular
situation, one description or the other
may be more useful, but their combi-
nation can lead to new insights and
perhaps a glimpse of a larger reality.
“This happens in mathematics over
and over again,” says Bauer. “We’re
discovering a new connection, and
this new connection is now influenc-
ing both sides of the connection.”

Similarly, homotopy type theory
represents a connection between type
theory and homotopy theory, which is
a branch of topology. In the homotopy
view, the types (which can be theorems)
are envisioned as spaces, and the ob-
jects of that type (which can be proofs)
are points in the space. The equality

of two points can then be thought of
as the existence of a path in the space
connecting the two points. This con-
nection allows a host of tools from ho-
motopy theory to be applied the task of
mathematical proof.

At a minimum, HoTT extends the
domain of proof assistant to new areas
of mathematics. “Coq was designed by
computer scientists, so its initial area
of application was basically program-
ming language theory and combina-
torics,” Gonthier noted. Many papers
presented at SIGPLAN’s Principles
of Programming Languages (POPL)
symposium are backed by computer
proofs, but this kind of problem “isn’t
all of mathematics,” he says, and ap-
plying it to other areas “is quite impor-
tant and interesting.”

Beyond applying logical reasoning,
for example, to topological problems,
Gonthier says, “the correspondence
can be used in the reverse way, to try to
deduce something about the logical sys-
tem based on insights that have been
developed for, basically, topology.”

“It’s definitely expanding our no-
tion of what a proof can mean, because
it’s explaining proofs in a geometric
way,” says Bauer. “We know it’s going
to bring us something new, but time
will tell what.”

“Formalization of mathematics is
somehow too compelling and effec-
tive to go away,” said Awodey. “It’s go-
ing to happen. It’s just a question of
when and using what system,” whether
HoTT or something else.	

Further Reading

The Univalent Foundations Program,
Institute for Advanced Study
“Homotopy Type Theory: Univalent
Foundations of Mathematics” (Princeton,
2013) available for download or purchase at
http://homotopytypetheory.org/book/.

Georges Gonthier
“Formal Proof—The Four-Color Theorem”,
Notices of the American Mathematical
Society 55 (11): 1382–1393 (2008).

Thomas Hales
“Mathematics in the Age of the Turing
Machine”, to be published in Turing’s
Legacy: Developments from Turing’s Ideas
in Logic (Lecture Notes in Logic), ed. R.
Downey, (Cambridge University Press, 2014)

Don Monroe is a science and technology writer based in
Murray Hill, NJ.

© 2014 ACM 0001-0782/14/02 $15.00

Indeed, for a century, mathemati-
cians have considered set theory to be
an adequate basis for formalizing all of
mathematics. Starting with concepts
like the null set (corresponding to zero)
and the set containing only the null
set (corresponding to one), one can, in
principle, systematically construct all
the objects of mathematics. In practice,
however, the process is clunky and time-
consuming—and therefore, rare. The
proponents of HoTT hope it will provide
easier and more intuitive tools that will
allow rigorously formalized mathemat-
ics to become standard practice.

HoTT is based on a mathematical
framework called type theory. Unlike
sets, which are like bags that can con-
tain various kinds of object, objects
of a particular type have specific rules
about how they can be manipulated.
They are reminiscent of the data types
that help enforce rigor in high-level
programming languages, but the
mathematical version of types can be
more elaborate; for example, an n-di-
mensional vector whose precise char-
acter depends on a natural number n
that must be computed.

A version of type theory is used in
most versions of automated “proof as-
sistants,” which have been growing in
power since their introduction in the
1960s but are still not widely used in
pure mathematics. This framework
expands the notion of types so that, for
example, the formulation of a theorem
can itself be a type, and a proof of the
theorem can be an object of that type;
thus, if such an object even exists, the
theorem is proved. These exotic types
can even ensure that no logical cases
are overlooked.

One of the best-known successes was
the formal proof of the four-color map
theorem in 2005 by Georges Gonthier
of Microsoft Research in Cambridge,
UK. (The earlier 1976 proof by Kenneth
Appel and Wolfgang Haken of the Uni-
versity of Illinois at Urbana-Champaign
had combined computer code for some
parts with text arguments for others.)
Gonthier used the proof assistant Coq,
which in 2013 won the Programming
Languages Software Award of the ACM
Special Interest Group on Program-
ming Languages (SIGPLAN).

This Coq flavor of type theory has
good computational properties, in
particular a feature called decidabil-

A version of type
theory is used in
most versions of
automated “proof
assistants,” which
were introduced in
the 1960s but are still
not widely used in
pure mathematics.

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=15&exitLink=http%3A%2F%2Fhomotopytypetheory.org%2Fbook%2F

news

16 communications of the acm | february 2014 | vol. 57 | no. 2

P
h

o
t

o
g

r
a

p
h

 b
y

 K
e

v
i

n
 J

a
r

r
e

t
t

T
o g au g e t h e ability of pro-
fessional graphic designers
to do basic programming,
Brian Dorn, then a graduate
student at the Georgia In-

stitute of Technology (Georgia Tech),
asked a group of them to read and
modify a piece of program code. The
idea was to see whether they could
turn themselves into informal pro-
grammers and figure out how to de-
velop automated functions in Adobe
Photoshop. Unfortunately, when the
designers conducted Web searches to
look for information on the code they
needed, they sometimes used results
that pointed them in the wrong direc-
tion, which was toward Java—when
they actually needed to be using JavaS-
cript for this particular project.

One of the underlying causes could
have been tied to the participants’ “lack
of sufficient general, abstract knowl-
edge of the computing and/or program-
ming structures at play,” wrote Dorn in
Communications in May 2011.

His advisor, Mark Guzdial, who re-
layed the story, said the findings indi-
cate to him “that there are a lot of peo-
ple who need knowledge of computer
science … who are going to use it in their
lives, but because they never learned
anything about computer science, they
are teaching it [to] themselves and cod-
ing inefficiently, and wasting a lot of
time and getting frustrated.”

If someone is going to become a
knowledge worker, or take on any job
“that requires an undergraduate de-
gree,” they should know how to read
a piece of code that is useful to them
and be able to make changes to it, says
Guzdial, a professor and director of
Contextualized Support for Learning
in the School of Interactive Computing
at Georgia Tech.

People ranging from former Presi-
dent Bill Clinton to Facebook creator

Mark Zuckerberg to physicist, cosmolo-
gist, and author Stephen Hawking have
expressed the belief that basic comput-
er programming is an essential skill in
today’s world. “Code has become the
4th literacy. Everyone needs to know
how our digital world works, not just
engineers,” says Mark Surman, execu-
tive director of the Mozilla Foundation,
whose comments are among those of
dozens of luminaries on code.org.

The demand for computer scien-
tists and technical professionals in the
U.S. is projected to grow 34% through
2018, according to the Bureau of Labor
Statistics. Many people already engage
in some level of programming; Guzdial
cites a 2005 Carnegie Mellon Univer-
sity study indicating that in 2012 there
would be 90 million workers in the U.S.,
more than 55 million of whom would
use spreadsheets and databases, which
can be deemed programming. The
study also projected that more than 13

million would describe themselves as
“programmers” in 2012, although only
three million of them would be profes-
sional software developers.

The Carnegie Mellon study also not-
ed that a lot of people were doing pro-
gramming without realizing it, by cre-
ating macros for spreadsheets or doing
database queries using SQL. “So the
argument is, lots of people are going to
do programming,” says Guzdial, “and
the data we have studying how end
user programmers teach themselves
and the types of mistakes they make
suggest if they knew something about
computer science, they might not have
to struggle so much later.”

Many people who avoided taking
science and math courses in college
are now struggling as they try to teach
themselves how to program, he points
out. “How many more would be do-
ing some programming if we helped
them? That is the interesting part.”

Should Everybody
Learn to Code?
Not everyone needs coding skills, but learning how to think
like a programmer can be useful in many disciplines.

Society | doi:10.1145/2557447	 Esther Shein

Second-grade students in Kevin Jarrett’s Elementary ‘STEMLAB’ at Northfield Community
School (New Jersey) participate in the 2013 Hour of Code.

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=16&exitLink=http%3A%2F%2Fcode.org

news

february 2014 | vol. 57 | no. 2 | communications of the acm 17

While noting that several of his col-
leagues are successful self-taught pro-
grammers, and that learning to pro-
gram does not necessarily have to be
done at a university, Felker says people
need to know more than memorizing
the technology du jour and, as Wing
said, they need the critical ability to
think things through.

“[I]f you aren’t dreaming of be-
coming a programmer—and there-
fore planning to embark on a lengthy
course of study, whether self-directed
or formal—I can’t endorse learning to
code,” Felker writes. “Yes, it is a cre-
ative endeavor. At its base, it’s problem-
solving, and the rewards for exposing
holes in your thinking and discovering
elegant solutions are awesome.” He
goes on to say he does not believe that
most people who learn to code end up
learning anything that stays with them.

Referencing a comment made by
New York City Mayor Michael Bloom-
berg in 2012 that he would learn to
code, programmer Jeff Atwood, writ-
ing in his blog “Code Horror,” poses
the question, “…can you explain to me
how Michael Bloomberg would be bet-
ter at his day-to-day job of leading the
largest city in the USA if he woke up one
morning as a crack Java coder?” While
agreeing that programming is impor-
tant, Atwood says many other skills are
important, too. “I would no more urge
everyone to learn programming than I
would urge everyone to learn plumb-
ing,” he writes.

The so-called “everyone should
learn to code” movement is wrong for
several reasons, according to Atwood,
including the assumption that more
code in the world is an inherently de-
sirable thing. That assumes code is
the goal; it puts the method before the

What You Should Learn
Everyone should learn computational
thinking, maintains Jeannette Wing,
corporate vice president at Microsoft
Research. Computational thinking
helps people learn how to think ab-
stractly and pull apart a problem into
smaller pieces. One concrete way to
learn aspects of those skills is pro-
gramming, Wing says.

That is not to say everyone needs to
learn a specific programming language
like Python or C++, even though many
people identify programming with
turning out code, Wing says. “First of
all, that is too low-level, and it is also
very narrow an interpretation of what I
believe is more important.”

Instead of teaching everyone to
churn out code, the emphasis should
be on learning problem-solving skills
in computer science, much like the
problem-solving skills one learns in
math and engineering, says Wing,
who is on leave as President’s Profes-
sor of Computer Science at Carnegie
Mellon. Writing a program is an ex-
plicit way of expressing a solution
that a human or machine can carry
out, she says. “The more fundamental
skill and more critical thinking skill
is what comes before you write down
this piece of code, and that is compu-
tational thinking.”

Guzdial agrees. “Should we learn
enough so that you can write a script
to do something that otherwise would
have to be done by hand? I would like
to see that, but I cannot make the argu-
ment that it is an absolutely necessity.”

He adds that ignorance of computer
science puts people at a disadvantage
in today’s world. “Not knowing any-
thing about programming makes it
more difficult to pick it up.”

The Flip Side
The issue is far more black and white
to software engineer Chase Felker, who
wrote an article for Slate magazine en-
titled “Maybe Not Everybody Should
Learn to Code.” Felker writes, “Frankly,
just the idea that you can learn to code
in a year gives me the creeps: I would
be terrified if someone with only a cou-
ple of classes were writing programs
for me, not because he (of course, and
unfortunately, most programmers are
men) has learned anything wrong—
but because of what he doesn’t know.”

Computational
thinking helps people
learn how to think
abstractly and pull
a problem apart into
smaller pieces.

ACM
Member
News
Technology, Always
Changing, Should Be
Easy to Use

The two guiding
principles of
Jeff Johnson’s
35-year career in
human-
computer
interaction

(HCI) have been the constantly
changing nature of technology,
and that technology should be
easy to use.

Johnson, president and
principal consultant for product
usability consultancy UI
Wizards Inc., earned B.A. and
Ph.D. degrees in psychology
and computer science from
Yale and Stanford universities,
respectively. He has worked as
a user-interface designer and
implementer, engineer manager,
usability tester, and researcher
at Xerox, Hewlett-Packard Labs,
and Sun Microsystems, and
recently returned from a stint
as a Visiting Erskine Fellow at
the University of Canterbury,
Christchurch, New Zealand.
These experiences have solidified
Johnson’s commitment to
continually refresh his work to
keep pace with the latest digital
advances. “There never will be a
time when everyone is a digital
native, because the definition
of that term changes as digital
technology progresses,” he says.

Johnson, an ACM
Distinguished Speaker, recently
updated his 2009 HCI book
Designing with the Mind in
Mind with a new section on
peripheral vision and chapters
on decision-making and hand-
eye coordination.

He also has a new corporate
endeavor: Wiser Usability,
a consultancy that helps
companies design senior-
friendly websites. “Older adults
tend to have limited mobility
and transportation, and they
could benefit most from online
shopping and online access to
services,” Johnson says. “No one
who isn’t a hardcore computer-
geek, least of all seniors, wants
to use technology for its own
sake. Digital tools that don’t help
seniors accomplish their goals
with a minimum of learning and
bother are not worth the time
and expense,” he adds.

—Laura DiDio

news

18 communications of the acm | february 2014 | vol. 57 | no. 2

questions why they should. “I am not
sure what we can teach them from a
cognitive perspective.” Although there
have been studies done on children
learning to program in the Scratch
programming language, “in general
what we find is kids that young do
not do the things you naturally would
expect coding to involve,’’ including
loops and conditionals.

He says he is concerned about cog-
nitive development. “What we know
about cognitive development is you
typically develop the ability to do ab-
stract reasoning around the age of 12,”
and programming is a very abstract
activity. Guzdial is unsure whether
young children who program develop
abstract reasoning earlier, or if they
are only able to learn a little bit of pro-
gramming skills.

Overall, though, he says computer
science should be taught in schools
–but starting at age five or six, when
only 12% of high schools in the U.S. of-
fer computer science courses and far
fewer middle and elementary schools,
creating a great divide. Guzdial says,
“They are unlikely to see it again for
a dozen years, so why offer it at five or
six?”

Wing also says that, while age five
may be too early to teach how to code,
students that young can learn some
basic concepts similar to the number
and counting skills children typically
are taught at that age. As they get older,
students should be taught other con-
cepts, like what an algorithm is, ways
to represent data, and different analy-
sis techniques in order to understand
and reason, she says.

Looking Ahead
Just as students are taught reading,
writing, and the fundamentals of math
and the sciences, computer science
may one day become a standard part of
a K–12 school curriculum. If that hap-
pens, there will be significant benefits,
observers say. As the kinds of problems
we will face in the future will continue
to increase in complexity, the systems
being built to deal with that complexity
will require increasingly sophisticated
computational thinking skills, such as
abstraction, decomposition, and com-
position, says Wing.

“If I had a magic wand, we would
have some programming in every sci-
ence, mathematics, and arts class,
maybe even in English classes, too,’’
says Guzdial. “I definitely do not want
to see computer science on the side …
I would have computer science in every
high school available to students as
one of their required science or math-
ematics classes.”	

Further Reading

C. Simard, C. Stephenson, D. Kosaraju
“Addressing Core Equities in K–12
Computer Science Education: Identifying
Barriers And Sharing Strategies,” 2009.
http://anitaborg.org/files/ABI-csta-full-
report.pdf

C. Felker
“Maybe Not Everybody Should Learn
to Code,” 2013. http://www.slate.com/
articles/technology/future_tense/2013/08/
everybody_does_not_need_to_learn_to_
code.html

Martyr2
“Why Everyone Should NOT Learn to Code,”
2013. http://www.coderslexicon.com/why-
everyone-should-not-learn-to-code/

D. Haggard
“Why Everyone Should Learn to Program,”
2011. http://reviewsindepth.com/2011/04/
why-everyone-should-learn-to-program/

P. Norvig
“Teach Yourself Programming in Ten Years,”
2001. http://norvig.com/21-days.html

J. Lave
“Cognition in Practice: Mind, Mathematics,
and Culture in Everyday Life,” 1988,
Cambridge University Press.

J.R. Hayes
“The Complete Problem Solver,” 1989.
Lawrence Erlbaum Associates, Inc.

Esther Shein is a freelance technology and business
writer based in the Boston area.

© 2014 ACM 0001-0782/14/02 $15.00

problem, and assumes adding coders
to the workforce is a net positive.

“The general populace (and its
political leadership) could probably
benefit most of all from a basic under-
standing of how computers, and the
Internet, work,’’ he says. “Being able to
get around on the Internet is becoming
a basic life skill, and we should be wor-
ried about fixing that first and most of
all, before we start jumping all the way
into code.”

Guzdial speculates there may be
pushback from programmers, because
they think not everyone can be taught
what they do. “I am not suggesting ev-
eryone produce thousands and thou-
sands of lines of code. I would love if
everyone could graduate from a uni-
versity writing 10 lines of code that are
useful to them.”

The point of teaching program-
ming in high school would be to give
students some level of literacy relative
to programming, including the ability
to think about things in terms of code,
and to understand what code can do,
Guzdial adds.

The State of Computer Science
in Public Education
That may not, however, occur in
schools. Many in the computer sci-
ence field say the U.S. is severely lag-
ging in making even basic computer
science a priority in K–12 schools.
“While other countries have designed
and implemented national computer
science education programs in order
to better prepare their students for
the increasingly competitive global
economy, the decentralized (state,
district-wide, and even school-based)
educational decision-making process
in the U.S. has severely hampered ef-
forts to standardize our computer
science curriculum and create coher-
ence in student learning,” according
to the 2010 report, “Addressing Core
Equities in K–12 Computer Science
Education.”

Guzdial believes the biggest prob-
lem in teaching computer science in
the U.S. is the lack of teachers who
know the discipline. He estimates
there are about 30,000 high schools in
the country, but only 2,000 Advanced
Placement computer science teachers.

Students as young as five can learn
to program, Guzdial maintains, but he

Students as young
as five can learn
some basic concepts
of programming,
similar to the number
and counting skills
children typically are
taught at that age.

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=18&exitLink=http%3A%2F%2Fanitaborg.org%2Ffiles%2FABI-csta-full-report.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=18&exitLink=http%3A%2F%2Fwww.slate.com%2Farticles%2Ftechnology%2Ffuture_tense%2F2013%2F08%2Feverybody_does_not_need_to_learn_to_code.html
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=18&exitLink=http%3A%2F%2Fwww.slate.com%2Farticles%2Ftechnology%2Ffuture_tense%2F2013%2F08%2Feverybody_does_not_need_to_learn_to_code.html
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=18&exitLink=http%3A%2F%2Fwww.coderslexicon.com%2Fwhy-everyone-should-not-learn-to-code%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=18&exitLink=http%3A%2F%2Freviewsindepth.com%2F2011%2F04%2Fwhy-everyone-should-learn-to-program%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=18&exitLink=http%3A%2F%2Fnorvig.com%2F21-days.html
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=18&exitLink=http%3A%2F%2Fanitaborg.org%2Ffiles%2FABI-csta-full-report.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=18&exitLink=http%3A%2F%2Fwww.slate.com%2Farticles%2Ftechnology%2Ffuture_tense%2F2013%2F08%2Feverybody_does_not_need_to_learn_to_code.html
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=18&exitLink=http%3A%2F%2Fwww.slate.com%2Farticles%2Ftechnology%2Ffuture_tense%2F2013%2F08%2Feverybody_does_not_need_to_learn_to_code.html
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=18&exitLink=http%3A%2F%2Fwww.coderslexicon.com%2Fwhy-everyone-should-not-learn-to-code%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=18&exitLink=http%3A%2F%2Freviewsindepth.com%2F2011%2F04%2Fwhy-everyone-should-learn-to-program%2F

news

February 2014 | vol. 57 | no. 2 | communications of the acm 19

P
h

o
t

o
g

r
a

p
h

 b
y

 J
o

h
n

 B
i

e
h

l
e

r

O
v e r the las t decade, digi-
tal cameras have radically
refocused the way people
capture and manipulate
pictures. Today, the snap

of a photo is merely a starting point for
composing and manipulating an im-
age. A photographer can make basic
changes to a picture from within the
camera, but also may use photoediting
software on a computer to significantly
alter the look, feel and composition.
“We can use computation to make
the process better, both aesthetically
and in terms of greater flexibility,” ex-
plains Frédo Durand, a professor in
the Computer Science and Artificial
Intelligence Laboratory at MIT in Cam-
bridge, MA.

Researchers and engineers are now
taking the concept further. They are
designing different types of cameras,
developing increasingly sophisticated
algorithms, and using new types of sen-
sors and systems to boldly go where
no camera has gone before. The abil-
ity to record richer information about
a scene and use powerful image en-
hancement techniques are redefining
the field. “Computational photography
and computational imaging are ex-
tremely vibrant areas,” states Shree K.
Nayar, professor of computer science at
Columbia University in New York City.

These cameras, along with more ad-
vanced software, will radically change
the way people view and use images.
For example, they will make it possible
to detect a tiny object or imperceptible
motion from the field of view. They
might change the perspective or angle
after a photo is snapped, or provide
a 360-degree panoramic view. They
might also augment reality and refocus
various objects in scenes, after a photo
has been shot.

Meanwhile, smartphone cameras
will further redefine photography by
incorporating sensors and greater
onboard computational power. Com-
bined with specialized apps or cloud-
based services, they will stretch the
current concept of photography in new
and intriguing ways.

A Better Image
It is no secret that digital cameras have
reinvented photography. The transi-
tion from film to pixels has created an
opportunity to manipulate and share
photos in ways that were not imagin-
able in the past. However, today’s cam-
eras rely heavily on the same features
and image capture techniques as film
cameras; they are largely designed the
same way film cameras were, but with
new features. “They present a lot of
limitations. It is very difficult to change

the way the camera behaves or the way
it captures images,” Durand explains.

However, the use of computation-
al photography, imaging, and optics
promises to significantly change the
way people approach photography,
capture images, and edit them. For
example, William Freeman, a profes-
sor of computer science at MIT, says
computational cameras could capture
multiple images at a time to compen-
sate for glare, oversaturation, and
other exposure problems. They could
also eliminate the need for a flash.
“Too often, flash ruins the tonal scale
of images,” he says, “but by combin-
ing multiple shots, both with flash and
without, it is possible to create a single
sharp, low-noise image that has a beau-
tiful tone scale.”

Similarly, the ability to change focus
after capturing a shot would make it

Computational
Photography Comes
into Focus
Advances in computational photography are making image capture
the starting point. The technology is transforming the field.

Technology | doi:10.1145/2557445	 Samuel Greengard

The Lytro camera captures the entire light field.

news

20 communications of the acm | february 2014 | vol. 57 | no. 2

Im

a
g

e
 C

o
u

r
t

e
s

y
 o

f
 C

a
n

o
n

 U
S

A

in biology and microscopy, Levoy says.
“A technician could capture images of
cell cultures without focusing a micro-
scope; focusing would take place after
the picture is taken.” A computational
camera could also automatically count
the number of cells in an image and
provide information faster and more
accurately than any human, he adds.

Perhaps the highest-profile example
of a computational photography sys-
tem to date is Google Glass. Its camera
captures images and provides addi-
tional information and insight in an
array of situations and scenarios—a
step toward more-advanced augment-
ed reality tools. Among other things,
the Google Glass team is focused on
developing map data, language trans-
lations, travel and transit information,

and apps that track health, exercise
data and body information. The device
also can capture a burst of images and
deliver improved high-dynamic-range
imaging and low-light imaging.

Beyond Pixels
Engineering these systems and devel-
oping the algorithms to support these
devices is no simple task, particularly
as researchers look to extend computa-
tional capabilities beyond the world of
consumer cameras into fields such as
astronomy, medical photography, and
automobile photography. There also
is the possibility of capturing images
beyond the visible spectrum of light,
incorporating environmental sensors,
or finding ways to apply algorithms to
detect small but important changes
in the environment. As Levoy puts it,
“There is a potential for this technol-
ogy to be extremely disruptive.”

Durand also says the gains are not
limited to conventional cameras. New
types of cameras and software could
generate robust 3-D images that re-
veal things not visible through optics
alone. Already, he and Freeman have
developed algorithms that can sense
the flow of blood in a person’s face,
or detect one’s heartbeat based on
subtle head motions. This relates to a
technique called motion magnification,
which could potentially be used to de-
tect weaknesses in bridges and build-

possible to fix on a person in the fore-
ground while also focusing on an ob-
ject in the distance, like the Eiffel Tow-
er or Statue of Liberty; everything else
in the photo would appear blurred. The
commercially available Lytro camera—
which records the entire light field in
the frame (essentially, depth of field
data about the entire scene)—already
allows a user to refocus pictures and
adjust lighting after image capture.
Likewise, a sensor that would capture
different levels of light on different
pixels could create entirely new types
of photographs, including images with
markedly different brightness and col-
or ranges.

The technology of computational
photography could also lead to chang-
es in camera design. As Columbia’s
Nayar points out, computational fea-
tures alone deliver significant improve-
ments, but they also create the possi-
bility for new types of camera bodies,
lenses, and optics. Adding a compu-
tational lens to a smartphone, for in-
stance, could mimic the high-end fea-
tures of an expensive optical lens at a
much lower price point, or may create
entirely new features. A photographer
might snap on a lens or multiple lenses
that would provide 3-D capabilities, or
marry video and still photography to
address camera shake, particularly in
difficult low-light or high-speed envi-
ronments.

The benefits of computational cam-
eras and software are likely to extend
far beyond consumers. The technology
could impact an array of industries,
including medicine, manufacturing,
transportation and security, points
out Marc Levoy, a professor of com-
puter science and electrical engineer-
ing at Stanford University in Palo Alto,
CA, who recently took leave to work
with the Google Glass development
team. Levoy says cameras with more
advanced computational capabilities
could redefine the way we think about
the world around us, and provide in-
sights that extend beyond basic images
or video.

For example, he and other research-
ers have explored the idea of develop-
ing a computational camera that could
see through crowds, objects, and peo-
ple. The technology could also generate
a focal stack within a single snapshot.
This could create new opportunities

Computational
photography could
lead to changes
in camera design,
such as new types
of camera bodies,
lenses, and optics.

A cutaway view of the Canon EOS 5D Mark II camera body.

news

February 2014 | vol. 57 | no. 2 | communications of the acm 21

Researchers are likely to hit the tip-
ping point within the next decade, as
increasingly powerful processors and
a greater knowledge of physics push
the technology forward. “The algo-
rithms being used today are still most-
ly in the infant stages,” Nayar says. “So
far, most of the research has revolved
around extending the capabilities of
traditional imaging and finding ways
to improve the performance of digital
cameras.” As knowledge about non-
traditional imaging and optics con-
verge, he notes, “everything from chip
design to lens and camera design will
undergo major changes.”

In the end, Durand says it is im-
portant to place computational pho-
tography, imaging, and optics in the
right context. The technology will not
replace today’s cameras and photo-
graphs; it will enhance them and con-
tinue advancing a process that dates
back thousands of years, to the devel-
opment of pinhole cameras. Compu-
tational photography puts data to use
in new and better ways, whether it is
applied to DNA sequencing or to im-
proved traffic cameras or security tools.

Says Durand, “Photography is just
one aspect of a much bigger picture.
With it, we are able to see the world in a
fundamentally different way.”	

Further Reading

Ragan-Kelley, J., Adams, A., Paris, S, Levoy, M.,
Amarasinghe, S., Durand, F.
Decoupling Algorithms from Schedules for
Easy Optimization of Image Processing
Pipelines, SIGGRAPH 2012, http://people.
csail.mit.edu/jrk/halide12/halide12.pdf.

Bychkovsky, V., Paris, S., Chan, E., Durand, F.
When Does Computational Imaging
Improve Performance?, IEEE Transactions
on Image Processing, 2012. http://www1.
cs.columbia.edu/CAVE/publications/pdfs/
Cossairt_TIP12.pdf

Cossairt, O., Gupta, M., Nayar, S.K.
Ironies of automation. New Technology and
Human Error, J. Rasmussen, K. Duncan, J.
Leplat (Eds.). Wiley, Chichester, U.K., 1987,
271–283.

Cho, T.S., Avidan, S., Freeman, W.T.
A Probabilistic Image Jigsaw Puzzle Solver,
IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2010.
http://people.csail.mit.edu/billf/papers/
JigsawSolverCVPR2010.pdf

Samuel Greengard is an author and journalist based in
West Linn, OR.

© 2014 ACM 0001-0782/14/02 $15.00

ings; it amplifies pulse signals and
color variations. “These signals cannot
be detected by the human eye, but they
are revealed through advanced com-
putational imaging and slow-motion
analysis,” Freeman explains.

Vladimir Katkovnik, a professor of
signal processing at Tampere Univer-
sity of Technology in Finland, says a
significant hurdle to accomplishing
all this is the development of algo-
rithms that sort through all the data
and apply it in usable ways. Despite
the prospect of larger sensors that can
capture more data, there is a trend to-
ward more pixels in images. “Larger
numbers of megapixels means images
with more pixels of a smaller size. As
smaller numbers of photons appear
on a pixel during exposure time, there
is a larger amount of noise generated.
Noise removal is a growing challenge
in any imaging or sensing device; the
end quality depends on how well noise
is removed.”

Another challenge, Durand says,
is developing robust algorithms that
work effectively on relatively small de-
vices such as cameras, smartphones,
and tablets. “The issue is not neces-
sarily whether you can develop an al-
gorithm that works; it is whether it is
possible to map the computation to
the hardware in an efficient manner.
Writing optimized code that can take
advantage of modern hardware, in-
cluding mobile processors, is extreme-
ly difficult.” He is currently developing
a compiler to make it easier to achieve
high performance, without devoting a
large development team to the task.

Nayar believes researchers will tap
into big data techniques and, in some
cases, examine and analyze existing
photos to build algorithms that drive
even more sophisticated image pro-
cessing. Right now, “if you try to re-
move a person or object from a photo,
there is no easy way to fill the hole,
even with fairly sophisticated photoed-
iting software,” he says. “By using mil-
lions of pictures and applying machine
learning algorithms, it is possible to fill
the holes in visually plausible ways.” At
some point, he adds, these capabilities
will likely appear on cameras, smart-
phones, and tablets, and provide near-
ly instantaneous manipulation and
editing tools that make today’s image-
editing options pale by comparison.

Opportunity

Heidelberg
Laureate
Forum
Individuals may apply through
the end of February for one
of 200 openings to attend the
second Heidelberg Laureate
Forum (HLF), to be held Sept.
21–26 at Heidelberg University
in Germany.

HLF allows researchers from
all over the world to interact
with laureates of the most
prestigious awards in computer
science and mathematics. Last
year, 40 laureates, including
recipients of the ACM A.M.
Turing Award, the International
Mathematical Union’s Fields
Medal and Nevanlinna Prize,
the Norwegian Academy of
Science and Letter’s Abel Prize,
addressed young researchers on
topics that ranged from “how to
do research” to deep technical
areas of science and math.

ACM Europe chair Fabrizio
Gagliardi, one of a number of
ACM members (among others)
who helped organize the initial
Forum, said about last year’s
event, “I was impressed by the
attitude of the laureates who all
spent a considerable amount of
time networking with the young
researchers; not only during the
HLF sessions, but also during
meals and in after-dinner
discussions. This is probably
the highest value of the event:
providing a relative small set
of promising future scientists
with the unique opportunity to
engage with some of the most
brilliant minds in mathematics
and computer science.”

Interested researchers may
apply on the HLF website, at
https://application.heidelberg-
laureate-forum.org.

HLF is organized by the
Heidelberg Laureate Forum
Foundation in cooperation
with Klaus Tschira Stiftung
and the Heidelberg Institute
for Theoretical Studies, as
well as ACM, the International
Mathematical Union, and The
Norwegian Academy of Science
and Letters.

—Lawrence Fisher

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=21&exitLink=http%3A%2F%2Fpeople.csail.mit.edu%2Fjrk%2Fhalide12%2Fhalide12.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=21&exitLink=http%3A%2F%2Fwww1.cs.columbia.edu%2FCAVE%2Fpublications%2Fpdfs%2FCossairt_TIP12.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=21&exitLink=http%3A%2F%2Fpeople.csail.mit.edu%2Fbillf%2Fpapers%2FJigsawSolverCVPR2010.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=21&exitLink=https%3A%2F%2Fapplication.heidelberg-laureate-forum.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=21&exitLink=https%3A%2F%2Fapplication.heidelberg-laureate-forum.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=21&exitLink=http%3A%2F%2Fpeople.csail.mit.edu%2Fjrk%2Fhalide12%2Fhalide12.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=21&exitLink=http%3A%2F%2Fwww1.cs.columbia.edu%2FCAVE%2Fpublications%2Fpdfs%2FCossairt_TIP12.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=21&exitLink=http%3A%2F%2Fwww1.cs.columbia.edu%2FCAVE%2Fpublications%2Fpdfs%2FCossairt_TIP12.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=21&exitLink=http%3A%2F%2Fpeople.csail.mit.edu%2Fbillf%2Fpapers%2FJigsawSolverCVPR2010.pdf

news

22 communications of the acm | february 2014 | vol. 57 | no. 2

A
CM has recognized 50 of its
members for their con-
tributions to computing
that are driving innova-
tions across multiple

domains and disciplines. The 2013
ACM Fellows, representing many of
the world’s leading universities, cor-
porations, and research labs, have
achieved advances in computing re-
search and development that are ac-
celerating the digital revolution and
impacting every dimension of how we
live, work, and play … worldwide.

“We recognize these scientists and
engineers, creators and builders, theo-
rists and practitioners who are mak-
ing a difference in our lives,” said ACM
President Vinton G. Cerf. “They’re en-
abling us to listen, learn, calculate, and
communicate in ways that underscore
the benefits of the digital age. Their
advances have led to opportunities for
improved healthcare, enhanced secu-
rity, expanded interactions, and en-
riched lifestyles. Some recipients have
also led efforts to extend computing
across continents and countries in-
cluding Brazil, China, and Germany.”

The ACM Fellows Program was es-
tablished by Council in 1993 to rec-
ognize and honor outstanding ACM
members for their achievements in
computer science and information
technology and for their significant
contributions to the mission of the
ACM. For a complete list of ACM Fel-
lows, visit http://fellows.acm.org/

2013 ACM Fellows

Mark S. Ackerman
University of Michigan

Charu C. Aggarwal
IBM Research

James H. Anderson
�University of North Carolina
at Chapel Hill

Mihir Bellare
�University of California, San Diego

Christine L. Borgman
�University of California,
Los Angeles

Stefano Ceri
Politecnico di Milano

Krishnendu Chakrabarty
Duke University

Ramalingam Chellappa
University of Maryland

Ingemar J. Cox
�University of Copenhagen,
University College London

Carlos J. P. De Lucena
�Pontifical Catholic University
of Rio de Janeiro

Rina Dechter
University of California, Irvine

Chip Elliott
Raytheon BBN Technologies

David Forsyth
�University of Illinois
at Urbana-Champaign

Wen Gao
Peking University

David Garlan
Carnegie Mellon University

James Gosling
Liquid Robotics

Peter Haas
IBM Research - Almaden

Marti Hearst
University of California, Berkeley

Matthias Jarke
�RWTH Aachen University
(Germany Aachen University
of Technology)

Sampath K. Kannan
University of Pennsylvania

David J. Kasik
Boeing

Dina Katabi
�Massachusetts Institute
of Technology

Henry A. Kautz
University of Rochester

Jon Kleinberg
Cornell University

Panganamala Kumar
Texas A&M University

Douglas S. Lea
�State University of New York, Oswego

Yoelle Maarek
Yahoo!

Christopher D. Manning
Stanford University

Madhav V. Marathe
�Virginia Bioinformatics Institute
and Virginia Polytechnic Institute

John M. Mellor-Crummey
Rice University

Greg Morrisett
Harvard University

Andrew C. Myers
Cornell University

Dana Nau
University of Maryland

Satish Rao
University of California, Berkeley

S.E. Robertson
University College London

Timothy Roscoe
ETH Zurich

Timoleon K. Sellis
RMIT University (Australia)

Dennis E. Shasha
�Courant Institute,
New York University

Nir N. Shavit
�Massachusetts Institute
of Technology

Kyuseok Shim
Seoul National University

Padhraic Smyth
University of California, Irvine

Milind Tambe
University of Southern California

Val Tannen
University of Pennsylvania

David P. Williamson
Cornell University

Limsoon Wong
National University of Singapore

Moti Yung
Google Inc.

Ellen Zegura
Georgia Institute of Technology

Zhengyou Zhang
Microsoft Research

Yuanyuan Zhou
�University of California, San Diego

David Zuckerman
University of Texas at Austin

ACM Fellows Inducted
Milestones | doi:10.1145/2556647.2556662	

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=22&exitLink=http%3A%2F%2Ffellows.acm.org%2F

Inviting Young
Scientists

Meet Some of the Greatest Minds
of Mathematics and Computer Science

Young researchers in the fields of mathematics and/or computer science are invited
to participate in an extraordinary opportunity to meet some of the preeminent
scientists in the field. ACM has joined forces with the Heidelberg Laureate Forum
(HLF) to bring students together with the very pioneering researchers who may have
sparked their passion for science and math. These role models include recipients of
the Abel Prize, the ACM A.M. Turing Award, and the Fields Medal.

The next Heidelberg Laureate Forum will take place September 21–26, 2014
in Heidelberg, Germany.
The week-long event will focus on scientific inspiration and exchange through a
series of presentations, workshops, panel discussions, and social events involving
both the laureates and the young scientists.

Who can participate?
The HLF invites new and recent Ph.D’s, Ph.D. candidates, other graduate students
involved in research and undergraduate students with solid experience in and a
commitment to computing research to apply.

How to apply:
Young researchers can apply online:

https://application.heidelberg-laureate-forum.org/

The materials required for a complete application are listed on the site.

What is the schedule?
The deadline for applications is February 28, 2014.

We reserve the right to close the application website early should we receive more
applications and nominations than our reviewers can handle.

Successful applicants will be notified by April 15, 2014.

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=23&exitLink=https%3A%2F%2Fapplication.heidelberg-laureate-forum.org%2F

V
viewpoints

24 communications of the acm | february 2014 | vol. 57 | no. 2

T
he thousands of serious cyber
attacks occurring daily high-
light the critical need for a
workforce with the requi-
site skillset and of sufficient

size to meet growing and increasingly
complex demands. Yet despite sig-
nificant investments in the develop-
ment of the cybersecurity workforce
from governments across the globe,
the U.S. and many other nations lack
a sufficient supply of well-trained cy-
bersecurity professionals. It is often
argued that this workforce shortage,
and the consequent openness to at-
tack, is a pressing security threat fac-
ing the U.S.1

Professionalization—activities
such as certification, licensure, and
skill-based competency exams—has
been advanced as a strategy for creat-
ing a workforce capable of address-
ing the growing cybersecurity threat.

To explore this argument, the U.S.
Department of Homeland Security
sponsored a National Research Coun-
cil committee, which we led. What fol-
lows are insights largely drawing on
the study and although the impetus

for asking the question at this mo-
ment came from the U.S. government,
the issues and analysis would have
general applicability. Our key ques-
tion was: What is the role that profes-
sionalization might play in enhanc-
ing the capacity and capability of the
U.S. national cybersecurity workforce?
This question led to a complex mosaic
of answers to the cybersecurity work-
force issue.

The Cybersecurity Workforce
Despite descriptions of the cyberse-
curity workforce as a “profession”—
meaning a single occupational cat-
egory, it is not. Rather, cybersecurity
is a broad field comprised of many
occupations spanning the range
from highly technical to the manage-
ment- or policy-oriented. Some of
these occupations may be ready for
professionalization, while others are

Privacy and Security
Would Cybersecurity
Professionalization
Help Address the
Cybersecurity Crisis?
Evaluating the trade-offs involved
in cybersecurity professionalization.

doi:10.1145/2556936	 Diana L. Burley, Jon Eisenberg, and Seymour E. Goodman

Despite descriptions
of the cybersecurity
workforce as
a “profession”—
meaning a single
occupational
category—it is not.

viewpoints

february 2014 | vol. 57 | no. 2 | communications of the acm 25

V
Illus

t
r

a
t

i
o

n
 b

y
 G

a
r

y
 N

e
i

ll

problem with current approaches
to professionalization. Realistically,
such professionalization can only be
undertaken for specific occupations
within the field, but not for the field as
a whole.

Professionalization
Professionalization is the process by
which an occupation (or an individual
who works within that occupation)
is transformed through education,
training, and other activities into a
professional. Each occupation must
exhibit some set of well-defined char-
acteristics before professionalization
activities commence. Not all of these
characteristics or standards must
be met, but the level of occupational
readiness for professionalization is
higher when more of them are. Readi-
ness for professionalization, however,
does not imply the occupation should

not. Others are yet to be defined. Still
others may never be defined either be-
cause the fluidity of the roles and re-
sponsibilities change too rapidly to al-
low for categorization or because they
are hybrid occupations that blend cy-
bersecurity responsibilities with oth-
er, often unrelated work roles. Given
the great diversity of roles, respon-
sibilities, and contexts, the fact that
professionalization measures may be
warranted in a particular subfield and
context should not be confused with
a broad need for professionalization.

Before professionalization activi-
ties are undertaken for an occupation,
the profession itself must have well-
defined characteristics: stable knowl-
edge and skill requirements, stable job
roles, occupational boundaries, and
career ladders.

˲˲ Stable knowledge and skill re-
quirements: The occupation should

have a stable (but not necessarily stat-
ic) common body of knowledge on
which members of the profession can
be judged to a generally agreed upon
standard. This does not imply, how-
ever, that the occupation is static; even
within a rapidly evolving profession,
core knowledge elements that remain
stable can be identified.

˲˲ Stable roles and responsibilities
and occupational boundaries that dis-
tinguish the profession from others.

˲˲ Well-defined career ladders that
are linked to professionalization
mechanisms.

˲˲ Agreed-upon ethical standards to
which members of the profession will
be held and a mechanism for remov-
ing noncompliant individuals from the
professional ranks.

The fact that the current cyberse-
curity workforce is a field of multiple
occupations highlights a significant

viewpoints

26 communications of the acm | february 2014 | vol. 57 | no. 2

stricts the flow of qualified workers.
˲˲ The Sieve: The sieve function is

of particular concern in cybersecurity
where many members of the work-
force function in hybrid positions
and are subject to professionalization
requirements in those other roles.
Consider, for example, the healthcare
professional who has added cyberse-
curity responsibilities to her portfolio
and must meet a double set of require-
ments. If the professionalization re-
quirement is necessary to determine
or verify skill requirements then it may
be appropriate. If, on the other hand,
the requirement has been imple-
mented without regard to remedying a
specific deficiency, then it may unnec-
essarily burden and ultimately encour-
age the departure of the individual
from the workforce.

Does the potential to provide addi-
tional information about a candidate
outweigh the risks of false certainty
about who is actually best suited for
a job? Certificates and certifications
may provide useful tools for vetting
job candidates, but overreliance on
them may screen out some of the
most talented and suitable individu-
als. This is particularly true in cyber-
security today, where some of the
most effective workers develop their
skillsets through informal methods
(for example, self-taught hackers). Or-
ganizations that do not already have a
sophisticated cybersecurity workforce
may place a greater value on profes-
sionalization measures because they
make it easier for them to identify
qualified workers. However, at a time
when few think the cybersecurity situ-
ation is improving, and where “side-
ways” thinking may be at a premium,
creativity and innovation may be lost
with overly rigid screening. Moreover,
given the fluid and changing nature
of cybersecurity work, the knowledge,
skills, and abilities actually needed in
a particular job can change, and work-
ers’ roles and responsibilities can also
shift rapidly.

Do the benefits of establishing the
standards needed for professionaliza-
tion outweigh the risks of obsolescence
(when the knowledge or skills associ-
ated with the standard are out of date
by the time a standard is agreed on)
and ossification (when the establish-
ment of a standard inhibits further

be professionalized, nor does it iden-
tify the appropriate professionaliza-
tion mechanism. It simply means the
occupation could be professionalized
if circumstances warrant the activity.
At this point, the question becomes
what are the deficiencies within the
occupation that could be alleviated
through professionalization.

The process of professionalization
is initiated based on some deficiency
in the occupational workforce—a
lack of public trust, questionable
skill or performance, weak behav-
ioral or ethical standards, low status,
noncompliance with regulatory or le-
gal requirements, ill-defined career
pathways, or unregulated labor sup-
ply (when a steady flow of workers is
desired or necessary). But as has been
stated, the cybersecurity workforce
challenge is one of capacity and ca-
pability. This statement, though com-
pelling, is not sufficient to initiate
professionalization activities.

Rather, we must unbundle this
statement and ask difficult ques-
tions about the precise nature of the
need. If the workforce need is for
more accountability in the mainte-
nance of hands-on skillsets within a
particular occupation, then the pro-
fessionalization mechanism should
be focused on continuing education
requirements and skill-based testing.
If, on the other hand, the nature of
the workforce challenge is related to
troubling examples of ethical lapses,
then professionalization activities
should focus on some type of com-
pliance mechanisms from a formal
authority. The alignment of profes-
sionalization strategies with specific
workforce challenges is necessary to
ensure the deficiency is, in fact, ad-
dressed. It is also critical to ensuring
the possible negative consequences
of professionalization do not out-
weigh the good.

Trade-Offs of Professionalization
Even when the professionalization ac-
tivity is aligned with the occupational
deficiency, it will have associated trade-
offs. These costs and benefits should
be considered before embarking on a
professionalization activity.

Do the benefits of a given profes-
sionalization mechanism outweigh the
potential supply restrictions resulting

from the additional barriers to entry?
Professionalization can serve as a
magnet that attracts people to the oc-
cupation, as a funnel that restricts the
supply of people entering the occupa-
tion, or as a sieve that filters people
out of the occupation based on in-
creased requirements.

˲˲ The Magnet: Professionalization
may increase the supply over time as
it helps increase awareness and desir-
ability of that profession, and thus in-
creases the number of individuals who
consider cybersecurity as a career. By
helping define roles and career paths,
it can also help workers identify suit-
able jobs and help employers identify
suitable workers. Specialization and
stratification may also help address
supply issues, much as the introduc-
tion of nurse practitioners and physi-
cal assistants expanded the workforce
providing primary medical care.

˲˲ The Funnel: No one would argue
against restricting the supply of un-
qualified individuals in a workforce.
Certainly, professionalization mecha-
nisms that address the capability of
the workforce should be in place if
capability is a concern. However,
overly narrow professionalization or
mismatched mechanisms may un-
necessarily filter out qualified workers
whose skills are needed. For example,
the requirement for entry-level, tech-
nical employees to hold a bachelor’s
degree when an associate’s degree
and passing a skill-based exam may
be more appropriate unnecessarily re-

Before
professionalization
activities are
undertaken for an
occupation, the
profession itself
must have
well-defined
characteristics.

viewpoints

february 2014 | vol. 57 | no. 2 | communications of the acm 27

development by workers of their skills
and knowledge)? It takes time to reach
consensus on the standards needed
to establish a curriculum or certifica-
tion, and it can be difficult to reach
convergence, given the rate of change
in underlying technologies and the
rapid pace at which the context and
threat evolves. Following receipt of
a degree or certification, workers
may stop developing their skills and
knowledge. Strategies for addressing
these challenges, including focusing
assessments as much as possible on
fundamental concepts, segmenting a
field (where possible) into sufficiently
narrow specialty roles, adopting more
nimble processes for updating con-
tent, and requiring continuing edu-
cation and periodic recertification to
refresh requirements.

These trade-offs illustrate the com-
plex set of costs and benefits associ-
ated with professionalization. Some
of the uncertainties may diminish over
time, and long-term benefits may ul-
timately outweigh short-term costs. It
may, thus, be an effective strategy to
encourage, rather than require, the use
of certain professionalization mecha-
nisms so as to avoid overly restricting
supply in the short term while still es-
tablishing a long-term path to enhanc-
ing quality.

Conclusion
Continued attention to the capac-
ity and capability of the cybersecurity
workforce is needed. Over time, parts
of the cybersecurity field will likely
reach the point where professionaliza-
tion will be warranted. But blanket pro-
fessionalization strategies will hinder
efforts to build a national cybersecurity
workforce of sufficient size, scope, and
ability to meet the demands of the rap-
idly evolving field. The criteria set forth
in the National Research Council Pro-
fessionalization of the Nation’s Cyberse-
curity Workforce? report2 can be used
by decision-makers to judge when that
time has come.

Activities by the U.S. federal govern-
ment and other entities to profession-
alize cybersecurity should be under-
taken only when the occupations and
specific occupational characteristics
have been defined, when there are
observed deficiencies in the occupa-
tional workforce that professionaliza-

tion could help remedy, and when the
benefits of those activities outweigh
the costs. When stakeholders believe
those conditions have been met, we
suggest they convene subject matter
experts to outline a professionaliza-
tion strategy—including timeline,
process, and other implementation
details.

This process will take time. But the
path to professionalization of a field
is slow and difficult, and not all por-
tions of a field can or should be profes-
sionalized at the same time. Until that
time, our work to develop a national
cybersecurity workforce of sufficient
capacity and capability should move
away from overly broad generaliza-
tions based on anecdotal evidence and
context-specific challenges, toward
a set of targeted activities that meet
identified and specific occupational
workforce deficiencies. 	

References
1.	H omeland Security Advisory Council. Cyber Skills

Task Force Report. Department of Homeland Security,
Washington, D.C., 2012.

2.	N ational Research Council. Professionalizing the
Nation’s Cybersecurity Workforce?: Criteria for
Decision-Making. The National Academies Press,
Washington, D.C., 2013.

Diana L. Burley (dburley@gwu.edu) is an associate
professor of Human and Organizational Learning in the
Graduate School of Education and Human Development at
George Washington University.

Jon Eisenberg (JEisenbe@nas.edu) is the director of the
Computer Science and Telecommunications Board at the
National Research Council in Washington, D.C.

Seymour (Sy) E. Goodman (seymour.goodman@
cc.gatech.edu) is a professor of International Affairs
and Computing, jointly at the Sam Nunn School of
International Affairs and the College of Computing at the
Georgia Institute of Technology.

The views expressed in this Viewpoint are those of
the authors and do not necessarily reflect those of
the National Research Council, the Committee on
Professionalizing the Nation’s Cybersecurity Workforce,
which wrote the report, or the U.S. Department of
Homeland Security, which sponsored the study.

Copyright held by Author/Owner(s).

Continued attention
to the capacity
and capability of
the cybersecurity
workforce is needed.

Calendar
of Events
March 19–21
Multimedia Systems Conference
2014,
Singapore,
Sponsored: SIGMM,
Contact: Roger Zimmermann,
Email: rogerz@comp.nus.edu.sg

March 24–28
Design, Automation and
Test in Europe,
Dresden, Germany,
Sponsored: SIGDA,
Contact: Gerhard Fettweis,
Email: Gerhard.fettweis@tu-
dresden.de

March 24–28
Symposium on Applied
Computing,
Gyeongju, Republic of Korea,
Sponsored: SIGAPP,
Contact: Sung Shin,
Email: sung.shin@sdstate.edu

March 26–28
Eye Tracking Research and
Applications,
Safety Harbor, FL,
Sponsored: SIGCHI, SIGGRAPH,
Contact: Pernilla Qvarfordt,
Email: pernilla.qvarford@
gmail.com

March 29–April 2
12th Annual/IEEE/ACM
International Symposium
on Code Generation and
Optimization,
Orlando, FL,
Sponsored: SIGMICRO, SIGPLAN,
Contact: David Kaeli,
Email: kaeli@ece.neu.edu

March 30–April 2
International Symposium
on Physical Design,
Petaluma, CA,
Sponsored: SIGDA,
Contact: Cliff Chin Ngai Sze,
Email: csze@us.ibm.com

May 6–9
ACM The First Annual
International Conference on
Nanoscale Computing and
Communication,
Atlanta, GA,
Contact: Ian F. Akyildiz,
Email: ian@ece.gatech.edu

May 7–9
Gender and IT Appropriation,
Science and Praxis in Dialogue
– Forum for Interdisciplinary
Exchange,
Siegen, Germany,
Contact: Wulf Volker,
Email: volker.wulf@uni-siegen.de

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3Adburley%40gwu.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3AJeisenbe%40nas.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3Aseymour.goodman%40cc.gatech.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3Arogerz%40comp.nus.edu.sg
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3AGerhard.fettweis%40tudresden.de
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3Asung.shin%40sdstate.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3Apernilla.qvarford%40gmail.com
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3Akaeli%40ece.neu.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3Acsze%40us.ibm.com
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3Aian%40ece.gatech.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3Avolker.wulf%40uni-siegen.de
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3AGerhard.fettweis%40tudresden.de
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3Apernilla.qvarford%40gmail.com
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3Aseymour.goodman%40cc.gatech.edu

V
viewpoints

28 communications of the acm | february 2014 | vol. 57 | no. 2

Im

a
g

e
 C

o
u

r
t

e
s

y
 o

f
 C

o
mpu

t
e

r
 S

c
i

e
n

c
e

 Ass

o

c
i

a
t

i
o

n
 o

f
 N

e
w

 Z
e

a
l

a
n

d

“formal languages” as a school topic,
they may wonder if things have been
taken too far, and when teachers do an
online search for that phrase they are
likely to encounter an overwhelming
array of teaching material. However,
the purpose of the new curriculum
is to give students a taste of the field
of computer science, not to teach it
in great detail. For example, formal

I
n 2 0 1 1 , c o m p u t e r S c i e n c e
was introduced as a subject
in New Zealand high schools
with a similar standing to sub-
jects like physics, as part of a

new set of education standards under
the umbrella term “digital technolo-
gies.”2 Since then, at least 150 teachers
have increased their skill sets in order
to teach these unfamiliar topics, and
thousands of students have passed
courses in programming and comput-
er science topics.

This rapid introduction of radi-
cally new material has not been easy;
as well as having to train teachers and
develop new teaching material, during
the transition students had to prepare
for assessments that no other stu-
dents had done before, and teachers
who embraced the changes often had
to work with school leaders who had
little understanding of what computer
science involves.

The details of the implementation
are available elsewhere,1 but the key
points are that “Programming and
Computer Science” was introduced
as an assessable subject for the final
three years of high school, and the
material was phased in from 2011 to
2013 respectively, so the first cohort
of students to have taken the new top-
ics left school in December 2013. With
the new content, a course on com-
puter science can include topics like

algorithms, HCI, formal languages,
complexity and tractability, intelligent
systems, software engineering, and
graphics and visual computing, in ad-
dition to programming. Problem solv-
ing and creativity already permeate the
New Zealand curriculum, and the new
content gives students the opportunity
and tools to be creative in new ways.

When outsiders see topics such as

Education
Establishing a Nationwide
CS Curriculum in
New Zealand High Schools
Providing students, teachers, and parents with a better
understanding of computer science and programming.

doi:10.1145/2556937 	 Tim Bell

Computer Science Field Guide table of contents (see http://csfieldguide.org.nz).

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=28&exitLink=http%3A%2F%2Fcsfieldguide.org.nz

viewpoints

february 2014 | vol. 57 | no. 2 | communications of the acm 29

V
viewpoints

which reflects a difficulty communicat-
ing the nature of the new courses.4 An
important challenge is to help school
management and student advisors to
understand what computer science is,
its value for students, and the kind of
students who would do well to study it.

Marketing the subject is always a
challenge. It is reasonable to let stu-
dents know about the high demand
for computer science graduates, the
high salaries that are available, and the
great work environments, but we also
must ensure students do not overlook
the fact that there is a lot of work to be
done to get to the point of being hired,
and that computer science can be a de-
manding subject. Learning to program
is not trivial, and we need to straddle
the line between not dressing it up as
an easy option, but also encouraging
students to try out the subject to find
out if it is indeed a strength they did
not realize they had. Also, money may
not be a motivator for all students; for
some students the best message may
be that they can make a difference
in the world, designing software that
helps people in areas such as medi-
cine, communication, and safety.

The Key Role of Teachers
The magnitude of the changes is easy
to underestimate, and teachers have
borne the brunt of the transition. In
New Zealand, the new material was
introduced with very little lead time,
and for various reasons there was no
opportunity to train a new generation
of teachers, and very little time and
resourcing to increase the skills of ex-
isting teachers. The majority of exist-
ing computing teachers are over 50
years old, yet most have embraced the
change, primarily because of wanting
to do the right thing for the students
and the country, rather than due to any
directives from management.4

The rapid transition has been
somewhat unsettling for many teach-
ers. From the New Zealand experi-
ence, we have found that teachers are
willing to learn, but they need to be
valued and supported. For those with-
out a background in computer science
(and this is the majority of teachers in
New Zealand, as many had started as
typing or commerce teachers), they
could feel like an imposter, and it is
important to value what they bring—

languages can be introduced by work-
ing with some simple Finite State Au-
tomata and experimenting with some
regular expressions, concepts that can
be introduced in a few hours of class
time. From this students can appreci-
ate the role of formal languages (for ex-
ample, to find identifiers in a program)
without having to grapple with details.
To support teachers, a number of re-
sources have been collected on the
national teachers’ association website
(see http://nzacditt.org.nz), and are
now being worked into a free interac-
tive online textbook called the Com-
puter Science Field Guide (see http://
csfieldguide.org.nz).

The broad range of topics is impor-
tant to help students see the breadth of
options computer science offers, and
also takes some focus away from mere-
ly programming by showing the range
of knowledge needed to produce effec-
tive software, and the value that people
with good human skills can bring to the
discipline. For example, Human-Com-
puter Interaction (HCI) is deliberately
included early. The way it is presented
is focused on evaluating existing inter-
faces to find design errors, taking into
account usability principles and basic
psychology relating to interaction. This
can level the playing field—students
who have been frustrated with com-
puters find a way to articulate what is
wrong with them, whereas sometimes
students who themselves can develop
programs with elaborate but confus-
ing interfaces struggle to see the flaws
because they assume the user under-
stands the program as well as they do.

For teaching programming, the
choice of language is not specified, al-
though for the final year the language
needs to support object-oriented pro-
gramming and graphical user interface
development. Many schools are using
Scratch as an introductory language
at lower levels, and then switching to
a text-based language for the more ad-
vanced levels. Python is emerging as
the most popular text-based language,
but JavaScript, Java, and Visual Basic
are also widely used.

Although the new content is tar-
geted at the final three years of high
school (when students have exams
that become a permanent record of
their school achievements), the mate-
rial is filtering down to lower levels.

This is proving to be valuable, as it
is easier to come to grips with a sub-
ject if it is taught over a number of
years rather than suddenly becomes
available in the same year it is being
assessed for a student’s permanent
record. Without the gentle introduc-
tion the risk is that students become
focused on learning just enough to
pass assessment with minimal effort,
and they can miss out on enjoying and
exploring the subject. The new cur-
ricula about to be introduced in the
U.K. and Australia explicitly cover the
full range of levels at school, whereas
in New Zealand the curriculum allows
it to appear at lower levels, but it is up
to the enthusiasm and awareness of a
particular teacher or their school lead-
ership to make that happen.

Challenges with
the Implementation
Before the 2011 changes occurred,
computing in schools was focused on
teaching students how to use comput-
ers, which led to courses that were not
regarded as academically challenging,
and thus were avoided by the students
who were most likely to do well in a ca-
reer in computer science. The changes
have transformed it into a challeng-
ing subject, and this has created some
problems in the transition as students,
parents, and even student advisors are
unable to understand the difference,
resulting in the wrong students join-
ing these courses (in New Zealand, stu-
dents have a lot of choice over which
courses they take in high school). In
a 2012 survey, one year after the new
courses started, 46% of teachers re-
ported their courses attracted a signifi-
cant number of students who lacked
the academic ability to perform well,

The magnitude
of the changes is easy
to underestimate,
and the teachers
have borne the brunt
of the transition.

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=29&exitLink=http%3A%2F%2Fnzacditt.org.nz
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=29&exitLink=http%3A%2F%2Fcsfieldguide.org.nz
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=29&exitLink=http%3A%2F%2Fcsfieldguide.org.nz

viewpoints

30 communications of the acm | february 2014 | vol. 57 | no. 2

their teaching experience, wisdom,
passion, and ability to relate to stu-
dents—and provide them with learn-
ing opportunities in a form and at a
time that they can access them. Some
teachers will pick up things quickly
if they have already had some experi-
ence in programming, while others
will need some time.

The single most popular source of
help has been a national mailing list
run by the teachers themselves, where
many thousands of email messages
have been exchanged sharing ideas,
teaching material, and peer support.
This is a powerful tool because peers
best understand the issues that each
other face. In addition, several Google
CS4HS events3 have been run that
provided intense training sessions
focused entirely on preparing for the
changes. More recent initiatives have
been a formal postgraduate course
teachers can take in their own time,
and having university CS students
work alongside teachers, helping
them to understand the content while
the teacher provides the classroom
management skills.

Changes like this require a strong
message to school management, who
need to support it with resourcing,
time for teachers to get up to speed,
putting structures in place to enable
students to make informed decisions
about the new courses (such as hav-
ing lower-level classes with some input
from a computer science teacher), and
providing the right advice to students
and parents. One teacher commented
that the management assumes that
“all students know how to surf the Net
and operate a smart device and there-
fore will find computer science easy.”
Changing this attitude will make the
introduction of computer science con-

siderably easier for teachers, and with-
out it the changes can backfire, with
the wrong students taking the subject,
leading to a vicious cycle of low pass
rates, students avoiding the subject,
smaller classes in computing, and
threats to computing teachers’ jobs.

A key factor with the new material
has been to avoid covering too much
new content. Setting expectations
too high could backfire by causing
schools and students to avoid the sub-
ject; the changes will be a success if
high school students simply find out
what CS and programming are about.
We do not need to teach them every-
thing, and do not need to produce
expert programmers, since there are
plenty of opportunities to do that be-
yond high school. If students just find
out they have a passion for the subject,
the changes will have been a success.
For some this may involve deciding
that although they like computers,
they do not like computer science,
while others may find it is much more
interesting than they imagined. The
key is that they make informed choic-
es about their career.

The overarching issue that con-
tinually arises is the lack of under-
standing of what computer science
is about. If students, school adminis-
trators, teachers, and parents gain a
good idea of what it really means, this
will have the biggest impact on the
skills pipeline.	

References
1.	B ell, T., Andreae, P., and Lambert, L. Computer

science in New Zealand high schools. In ACE ’10:
Proceedings of the 12th Conference on Australasian
Computing Education (Australian Computer Science
Communications), volume 32. T. Clear and J. Hamer,
Eds. Australian Computer Society, Inc., Brisbane,
Australia, 2012, 15–22.

2.	B ell, T., Andreae, P., and Robins, A. Computer
science in NZ high schools: The first year of the new
standards. In Proceedings of the 43rd ACM Technical
Symposium on Computer Science Education (Raleigh,
N.C., 2012) L.A. Smith King, D.R. Musicant, T. Camp,
and P. Tymann, Eds. ACM, New York, 343–348.

3.	B lum, L. and Cortina, T.J. CS4HS: An outreach
program for high school CS teachers. In Proceedings
of the 38th SIGCSE Technical Symposium on Computer
Science Education, SIGCSE 2007 (Covington, KY,
2007) I. Russell, S.M Haller, J.D. Dougherty, and S.H.
Rodger, Eds. ACM, 2007, 19–23; http://dblp.uni-trier.
de/db/conf/sigcse/sigcse2007.html\#BlumC07.

4.	T hompson, D., Bell, T., Andreae, P., and Robins, A. The
role of teachers in implementing curriculum changes.
In Proceedings of IGCSE 2013 (Denver, CO, 2013),
245–250.

Tim Bell (tim.bell@canterbury.ac.nz) is a professor in
the Department of Computer Science and Software
Engineering at the University of Canterbury in
Christchurch, New Zealand.

Copyright held by Author/Owner(s).

A key factor with
the new material
has been to avoid
covering too much
new content.ACM Conference

Proceedings
Now Available via
Print-on-Demand!

Did you know that you can
now order many popular

ACM conference proceedings
via print-on-demand?

Institutions, libraries and
individuals can choose
from more than 100 titles
on a continually updated
list through Amazon, Barnes
& Noble, Baker & Taylor,
Ingram and NACSCORP:
CHI, KDD, Multimedia,
SIGIR, SIGCOMM, SIGCSE,
SIGMOD/PODS,
and many more.

For available titles and
ordering info, visit:
librarians.acm.org/pod

ACM Conference
Proceedings

Now Available via
Print-on-Demand!

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=30&exitLink=mailto%3Atim.bell%40canterbury.ac.nz
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=30&exitLink=http%3A%2F%2Flibrarians.acm.org%2Fpod
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=30&exitLink=http%3A%2F%2Fdblp.uni-trier.de%2Fdb%2Fconf%2Fsigcse%2Fsigcse2007.html%5C%23BlumC07
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=30&exitLink=http%3A%2F%2Fdblp.uni-trier.de%2Fdb%2Fconf%2Fsigcse%2Fsigcse2007.html%5C%23BlumC07

V
viewpoints

february 2014 | vol. 57 | no. 2 | communications of the acm 31

P
h

o
t

o
g

r
a

p
h

 b
y

 P
o

z
i

t
i

v
 S

t
u

d
i

j
a

D
espite an enormous amount
of effort and resources ap-
plied to security in recent
years, significant progress
seems to be lacking. Similar-

ly, changes in engineering are making
traditional safety analysis techniques
increasingly less effective. Most of
these techniques were created over 50
years ago when systems were primarily
composed of electromechanical com-
ponents and were orders of magnitude
less complex than today’s software-in-
tensive systems. New, more powerful
safety analysis techniques, based on
systems theory, are being developed
and successfully used on a large variety
of systems today, including aircraft,
spacecraft, nuclear power plants, au-
tomobiles, medical devices, and so
forth.2 Systems theory can, in the same
way, provide a powerful foundation for
security. An additional benefit is the
potential for creating an integrated ap-
proach to both security and safety.

The Relationship Between
Safety and Security
Practitioners have traditionally treat-
ed safety and security as different
system properties. Both communi-
ties generally work in isolation using
their respective vocabulary and frame-
works. Safety experts see their role as
preventing losses due to unintentional
actions by benevolent actors. Security
experts see their role as preventing

losses due to intentional actions by
malevolent actors. The key difference
is the intent of the actor that produced
the loss event. It may never be possible
to determine this intent—but if the
majority of our energy and analysis is
refocused on building better loss pre-
vention strategies (regardless of actor

intent), then it may not matter. We are
not suggesting that intent need not be
considered, only that the problem can
be reframed as a general loss preven-
tion problem that focuses on the as-
pects of the problem (such as the sys-
tem design) that we have control over
rather than immediately jumping to

Inside Risks
An Integrated Approach
to Safety and Security
Based on Systems Theory
Applying a more powerful new safety methodology to security risks.

doi:10.1145/2556938	 William Young and Nancy G. Leveson

Control room of a nuclear power plant.

viewpoints

32 communications of the acm | february 2014 | vol. 57 | no. 2

On the other hand, tactics are prudent
means to accomplish a specific action
(such as guarding networks and other
information assets). Tactics is focused
on physical threats, while strategy is fo-
cused on abstract outcomes.

In tactics models, losses are con-
ceptualized as specific events caused
by threats. For example, a security
incident consisting of a data breach
with an accompanying loss of cus-
tomer Personally Identifiable In-
formation (PII) is viewed as a single
occurrence, where an adversary suc-
cessfully precipitates a chain of events
leading to a loss. The chain of events
typically translates into attackers suc-
cessfully negotiating several layers of
defenses such as firewalls and encryp-
tion. In almost all such cases, security
analysts will identify some proximate
cause that should have served as the
last barrier or line of defense. If only
the barrier would have been in place,
then the attack would have failed. Al-
though threats exploiting vulnerabili-
ties produce the loss event, tactics
models treat the threat as the cause of
the loss.

Preventing losses, then, is heavily de-
pendent on the degree to which security
analysts can correctly identify potential
attackers—their motives, capabilities,
and targeting. Once equipped with this
knowledge, security experts can analyze
their systems to determine the most
likely route (or causal chain) attackers
may take to achieve their goal. Resourc-
es can then be allocated to erect a “de-
fense in depth” to prevent losses.

Threat prioritization is also chal-
lenging given the sheer volume of
threats. If the defense is optimized
against the wrong threat, then the bar-
riers may be ineffective. Perhaps an
unstated assumption is that defense
against the more sophisticated threats
can handle so-called lesser-included
cases, but this is not necessarily the
case. Simple requirements errors or
operational procedures may allow even
unsophisticated attacks from previ-
ously ignored or lower-level adversar-
ies to succeed.

In contrast to a tactics-based, bot-
tom-up approach, a top-down, strate-
gic approach starts with identifying
the system losses that are unaccept-
able and against which the system
must be protected. The result is a

the parts about which we have little in-
formation, such as identifying all the
potential external threats.

Note the common goal of mission
assurance here, that is, the ability to
complete a mission while enforcing
constraints on how the mission can be
achieved. In a nuclear power plant, for
example, the goal is to produce power
while preventing the release of radio-
activity. The causes for not producing
the power or for releasing radioactivity
may be due to accidental or malicious
reasons, but the high-level goal of pre-
venting these events is the same.

By taking a common top-down,
system engineering approach to secu-
rity and safety, several benefits accrue.
One is that the overall role of the entire
socio-technical system as a whole in
achieving security and safety can be
considered, not just low-level hardware
or operator behavior. Others include
more efficient use of resources and
the potential for resolving conflicts be-
tween safety and security early in the
development process.

Applying systems theory and sys-
tems engineering to security requires
initially focusing security on high-

level strategy rather than immedi-
ately jumping to the tactics problem.
Certainly adversary action is a critical
consideration in addressing security
and preventing intentional losses. Yet,
focusing on adversaries or threats too
early in the process, absent the benefit
of context, limits the overall strategic-
level utility of the security assessment.
Stated another way, the goal of security
is not to guard the physical network
and prevent intrusions, which is threat
focused. The goal is to ensure the criti-
cal functions and ultimately the ser-
vices that the network and systems
provide are maintained in the face of
disruptions. By changing to a strate-
gic viewpoint rather than starting with
tactics, security analysts and defend-
ers can proactively shape the situation
by identifying and controlling system
vulnerabilities rather than defend-
ing from a position of disadvantage
by being forced to react to continually
changing threats and other environ-
mental disruptions.

Strategy vs. Tactics in Security
The security field tends to draw heav-
ily on language, metaphors, and mod-
els from military operations. As a re-
sult, much of cybersecurity is typically
framed as a battle between intelligent,
adaptive adversaries and defenders.
Security focuses on how defenders
can close holes in their networks that
might otherwise allow adversaries to
gain access and create disruptions. De-
fenders apply best practices (tactics) in
order to protect the network and other
information assets.

There is an important distinction be-
tween tactics and strategy. Strategy can
be considered as the art of gaining and
maintaining continuing advantage.

Tactics are prudent
means to accomplish
a specific action
(such as guarding
networks and other
information assets).

Tracing Trends in
Steganography

How to Build a Bad
Research Center

Broadening Conversations
about CS Scholars and
Scholarship

Using Conferences to
Recruit Women into CS

Big Data in the
Government Sector

Making Parallel Programs
Reliable with Stable
Multitasking

TaintDroid

Plus, all the latest news on
a mathematical model that
reads thoughts, ways to power
devices by TV signals, and why
video games are good for you.

C
om

in
g

N
ex

t
M

on
th

 in
 C

O
M

M
U

N
IC

A
TI

O
N

S

viewpoints

february 2014 | vol. 57 | no. 2 | communications of the acm 33

STAMP is a new systems-theoretic
model of causality related to emer-
gent system properties. It was origi-
nally created to act as a foundation for
more powerful approaches to safety.
Security, however, is also an emergent
system property, and STAMP and its
associated analysis tools are equally
applicable to security. STAMP envi-
sions losses as resulting from interac-
tions among humans, physical system
components, and the environment
that lead to the violation of safety con-
straints. The focus shifts from “pre-
venting failures” to “enforcing safety
constraints on system behavior.”
While enforcing safety constraints
may require handling component fail-
ures, other inadvertent and advertent
causes must also be controlled.

Constraints on system behavior
are enforced by controls in a hierar-
chical control structure, where each
level of the structure enforces the re-
quired constraints on the behavior
of the components at the next lower
level. Control loops operate between
each level of this control structure,
with control actions shown on the
downward arrows and feedback on
the upward arrows. Figure 1 shows the
general form of such control loops. In
both safety and security, the goal is
to prevent (constrain) control actions
that can lead to losses under worst-
case environmental conditions.3

In systems and control theory, every
controller must contain a model of the
process it is controlling. This model
is used to determine what control ac-
tions are necessary. Many accidents
related to software or human operators
are not the result of software or human
“failure” (whatever that might mean),
but instead stem from inconsistencies
between the controller’s models of the
controlled process (usually called a
mental model for human controllers)
and the actual process state. For exam-
ple, friendly fire accidents are usually
the result of thinking a friendly aircraft
is an enemy and executing unsafe con-
trol actions. Whether the inconsistency
results from an inadvertent reason (ac-
cidental loss of feedback, for example)
or tricking the controller into thinking
that the friendly aircraft is an enemy
(purposeful creation of incorrect feed-
back), the result remains the same—an
unsafe or unwanted control action.

small and more manageable set of po-
tential losses stated at a high-level of
abstraction. These losses likely extend
beyond the physical and logical sys-
tem entities into the higher-level ser-
vices provided by these entities.

Rather than starting with the tac-
tics questions of how best to guard the
network against threats, a strategic ap-
proach begins with questions about
what essential services and functions
must be secured against disruptions
and what represents an unacceptable
loss. The “whats” will be used later to
reason more thoroughly about only the
“hows” that can lead to specific unde-
sirable outcomes. The analysis moves
from general to specific, from abstract
to concrete. (Robinson and Levitt5 simi-
larly considered abstraction layers with
respect to being able to prove emergent
system properties hierarchically.)

One of the most powerful ways
human minds deal with complexity
is by using hierarchical abstraction
and refinement. By starting at a high
level of abstraction with a small list
and then refining that list with a more
detailed list at each step (working top
down), one can be more confident
about completeness because each of
the longer lists of causes (refined haz-
ards or causes) can be traced to one
or more of the small starting list (and
vice versa).

With traceability, it is also easier for
human reviewers to find any incom-
pleteness. We say “more confident” be-
cause such a list can never be proven to
be complete—there is no formal (math-
ematical) model of the entire system
and how it will operate. Human par-
ticipation in the analysis and human
review of the results will always be re-
quired and, therefore, incompleteness
will always be possible. But structuring
the process in a way that optimizes hu-
man processing and review will reduce
any potential incompleteness.

Focusing first on strategy rather
than tactics can be achieved by adopt-
ing a new systems-theoretic causality
model recently developed to provide a
more powerful approach to engineer-
ing for safety.

A New Systems-Theoretic
Approach to Security and Safety
The limitations of traditional engi-
neering methods and the need to field

increasingly complex systems during
and immediately following World War
II led to the development of modern
systems theory in the 1940s and 1950s.1
Systems theory provides the philo-
sophical and intellectual foundation
for systems engineering and for a new,
more inclusive model of accident cau-
sality called STAMP (System-Theoretic
Accident Model and Processes).2

Traditional causality models used
in safety attribute accidents to an ini-
tial component failure or human error
that cascades through a set of other
components. One way to envision this
model is as a set of dominoes. At one
end is the initial domino, which is rep-
resentative of a single human error or
component failure. This initial error is
labeled as the root cause. The failure
propagates through the system, lead-
ing to the failure of other components
until the last domino falls and the loss
occurs. In this model, the first domino
causes the last domino to fall (the ac-
tual loss event). Moreover, if any of the
intervening dominoes are removed,
the chain is broken.

This model is effective for systems
with limited complexity, for example,
linear interactions and simple cause-
and-effect linkages like dominos (or
holes in Swiss cheese, another com-
mon analogy).

Today’s increasingly complex, soft-
ware-intensive systems, however, are
exhibiting new causes of losses, such
as accidents caused by unsafe inter-
actions among components (none of
which may have failed), system require-
ments and design errors, and indirect
interactions and systemic factors lead-
ing to unidentified common-cause fail-
ures of barriers and protection devices.
Linear causality models and the tools
built upon them, like fault trees, sim-
ply lack the power to include these new
causes of losses.

Figure 1. A basic control loop.

Controller (automated or human)

Control
Algorithm

Controlled Process

Process
Model

Control
Actions Feedback

viewpoints

34 communications of the acm | february 2014 | vol. 57 | no. 2

Once the control structure is cre-
ated, the first step in the STPA analysis
is to identify potentially unsafe con-
trol actions, which in general include
(1) providing a control action that
leads to a hazard (for example, a mis-
sile is launched at a friendly aircraft),
(2) not providing a control action that
is needed to prevent a hazard (for ex-
ample, a missile is not launched to
down an enemy aircraft), (3) providing
a control action too early or too late or
out of sequence (for example, a missile
is launched but too early or too late to
be effective in preventing a loss), or (4)
continuing a control action too long or
stopping it too soon. Losses can also
result from a safe (required) control ac-
tion that is not executed properly (for
example, the launch missile instruc-
tion is not executed correctly). After

Stuxnet provides another example.
The automated system (controller)
thought the centrifuges (controlled
process) were spinning at a slower
speed than they actually were, and is-
sued an Increase Speed command when
the centrifuges were already spinning
at maximum speed, which led to equip-
ment damage. (A loss that officials
probably wanted to prevent.)

New and more powerful techniques
for safety analysis and design have
been created on this theoretical foun-
dation. STPA (System-Theoretic Pro-
cess Analysis), for example, is a new
hazard analysis technique based on
the STAMP model of causality. The
analysis is performed on the system
functional control structure. Figure 2
depicts an illustrative functional con-
trol structure for a ballistic-missile de-

fense system.2,4 In this example, there
are several safety and security critical
control commands, such as fire enable
and launch interceptor.

One key point worth emphasizing
is the fact that the function control
model contains physical aspects, so-
cial aspects, logical and information
aspects, operations and management
aspects. Performing the hazard (safe-
ty) or vulnerability (security) analysis
on such a model allows a broad per-
spective on potential causes for a loss.
Most hazard and vulnerability analy-
sis techniques use physical system
models rather than functional system
models, and thus concentrate on phys-
ical component failures rather than
dysfunctional (unsafe or insecure) sys-
tem behavior and broader social and
organizational factors.

Figure 2. Functional control structure for a ballistic missile defense system.

Command
Authority

Operators

Interceptor
Simulator

Launcher

Flight
Computer

Interceptor
H/W

Fire Control

Launch Station

Early Warning
System Radar

Exercise Results
Readiness

Status
Wargame Results

Doctrine
Engagement Criteria

Training
TTP

Workarounds

Engage Target
Operational Mode Change
Readiness State Change

Weapons Free/Weapons Hold

Status Request

Launch Position
Stow Position
Perform BIT

BIT Results
Launcher Position

Fire Disable
Fire Enable

Operational Mode Change
Readiness State Change

Interceptor Tasking
Task Cancellation

Abort
Arm

BIT Command
Task Load

Operating Mode
Power
Safe

Software Updates

Command Responses
System Status
Launch Report

Launch Report
Status Report

Heartbeat
Launch Report
Status Report

Heartbeat

Status
Track Data

Acknowledgments
BIT Results

Health and Status

BIT Info
Safe and Arm Status

Arm
Safe

Ignite

Breakwires
Safe and Arm Status

Voltages

Operational Mode
Readiness State
System Status

Track Data
Weapon and System Status

Abort
Arm

BIT Command
Task Load

Launch
Operation Mode

Power
Safe

Software Updates

Acknowledgments
BIT Results

Health and Status

viewpoints

february 2014 | vol. 57 | no. 2 | communications of the acm 35

abilities. This approach limits the in-
telligence burden required to perform
the initial system security analysis.
The analysis will eventually address
threats, but does so much later in the
process after generating a deeper sys-
temic understanding of the context
under which the threats may operate
and the disruptions that actually lead
to critical loss events.

Because contemporary security and
safety both attempt to prevent losses in
complex software-controlled systems,
we believe applying the same system-
theoretic causality model may benefit
security the same way it is benefitting
safety. Research is currently under way
to test this notion. The key underlying
idea is that from a strategy perspective,
the physical (or proximate) cause of a
disruption does not really matter. What
matters is the efficacy of the strategy in
dealing with (controlling) the effects of
that disruption on overall system func-
tion or assuring the mission. This is a
significant paradigm shift for security
experts (as it was for safety experts).
While likely to force a reexamination of
many of the accepted truths of security,
we believe such a refocus will help ad-
dress three of the major problems with
contemporary approaches to securi-
ty—quantity, threat variety, and threat
prioritization—can all be addressed
more effectively through this new
approach than through existing ap-
proaches. The new approach does not
discard traditional security thinking,
but does suggest it is tactically focused
and must be augmented by an effective
strategy in order to succeed. 	

References
1.	 Checkland, P. Systems Thinking, Systems Practice.

John Wiley & Sons, New York, 1981.
2.	 Leveson, N.G. Engineering a Safer World, MIT Press,

2012.
3.	 Leveson, N. and Thomas, J. An STPA Primer; http://

sunnyday.mit.edu/STPA-Primer-v0.pdf
4.	 Pereira, S.J., Lee, G. and Howard, J. A system-theoretic

hazard analysis methodology for a non-advocate safety
assessment of the ballistic missile defense system.
In Proceedings of the 2006 AIAA Missile Sciences
Conference (Monterey, CA, Nov. 2006).

5.	R obinson, L. and Levitt, K.N. Proof techniques for
hierarchically structured programs. Commun. ACM 20,
4 (Apr. 1977), 271–283.

William Young (wyoung@mit.edu) is a Ph.D. candidate
in the Engineering Systems division at Massachusetts
Institute of Technology, Cambridge, MA.

Nancy G. Leveson (leveson@mit.edu) is Professor of
Aeronautics and Astronautics and also Professor of
Engineering Systems at Massachusetts Institute of
Technology, Cambridge, MA.

Copyright held by Author/Owner(s).

the unsafe control actions have been
identified, the second step involves ex-
amining the system control loops (us-
ing a structured and guided process) to
identify scenarios that can lead to the
identified unsafe control actions.

STPA-Sec is an extension to STPA to
include security analysis. The initial
steps in the analysis are identical to
those for safety: identifying the losses to
be considered, identifying system haz-
ards or security vulnerabilities, drawing
the system functional control structure,
and identifying unsafe, or in this case,
insecure, control actions. The only dif-
ference is the addition of intentional
actions in the generation of the causal
scenarios, the last step in the process.

STPA is currently being used on
safety problems in a wide variety of in-
dustries. Careful evaluations and com-
parisons with traditional hazard analy-
sis techniques have found that STPA
finds the loss scenarios found by the
traditional approaches (such as Fault
Tree Analysis and Failure Modes and
Effects Analysis) as well as many more
that do not involve component fail-
ures. Surprisingly, while STPA is more
powerful, it also appears to require
fewer resources, including time.

STPA-Sec is only now being applied
to cybersecurity problems, but is show-
ing promise in these case studies. A for-
mal evaluation and comparison with
real red teams using traditional secu-
rity analysis techniques such as attack
trees will be completed by spring 2014.

Another benefit of using a tool
based on a system-theoretic model is
that it can be applied earlier in the de-
sign process and in situations where
specific component data is unavail-
able. Analysis can begin as soon as the
basic high-level goals (mission) of the
system is identified and design deci-
sions evaluated for their impact on
safety and security before expensive
rework is necessary. As the detailed de-
sign decisions are made and the design
refined, the STPA/STPA-Sec analysis is
refined in parallel.

Conclusion
By using a causality model based on
systems theory, an integrated and more
powerful approach to safety and secu-
rity is possible. Hazards lead to safety
incidents in the same way that vulner-
abilities lead to security incidents. We

argued in this column that the key ques-
tion facing security analysts should be
how to control vulnerabilities, not how
to avoid threats. Rather than initially
trying to identify all the threats and
then move up to the vulnerabilities they
might exploit to produce a loss, a top-
down systems engineering approach
starts with system vulnerabilities,
which are likely far fewer than threats
and, if controlled, can prevent losses
due to numerous types of threats and
disruptions. This top-down approach
also elevates the security problem from
guarding the network to the higher-lev-
el problem of assuring the overall func-
tion of the enterprise.

Use of a systems-theoretic approach
to security, however, requires a refram-
ing of the usual security problem. Just
as STAMP reframes the safety prob-
lem as a control rather than a failure
problem, applying STAMP to security
involves reframing the security prob-
lem into one of strategy rather than
tactics. In practice, this reframing in-
volves shifting the majority of security
analysis away from guarding against at-
tacks (tactics) and more toward design
of the broader socio-technical system
(strategy). Put another way, rather than
focusing the majority of the security ef-
forts on threats from adversary action,
which we have limited control over, se-
curity efforts should be focused on the
larger, more inclusive goal of control-
ling system vulnerabilities.

Controlling vulnerabilities allows
security analysts to prevent not only
disruptions from known threats, but
also disruptions introduced by un-
known threats, such as insiders. In
other words, the source of the disrup-
tion does not matter. What matters is
identifying and controlling the vulner-

The key question
facing security
analysts should
be how to control
vulnerabilities, not
how to avoid threats.

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=35&exitLink=http%3A%2F%2Fsunnyday.mit.edu%2FStPa-Primer-v0.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=35&exitLink=mailto%3Awyoung%40mit.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=35&exitLink=mailto%3Aleveson%40mit.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=35&exitLink=http%3A%2F%2Fsunnyday.mit.edu%2FStPa-Primer-v0.pdf

V
viewpoints

36 communications of the acm | february 2014 | vol. 57 | no. 2

Illus

t

r
a

t
i

o
n

 b
y

 Iw

o
n

a
 U

s
a

k
i

e
w

i
cz

/A

n
d

r
i

j
 B

o
r

y
s

 Ass

o

c
i

a
t

e
s

Dear KV,
I have been dealing with a large pro-
gram written in Java that seems to
spend most of its time asking me to re-
start it because it has run out of mem-
ory. I am not sure if this is an issue in
the JVM (Java Virtual Machine) I am us-
ing or in the program itself, but during
these frequent restarts, I keep wonder-
ing why this program is so incredibly
bloated. I would have thought Java’s
garbage collector would prevent pro-
grams from running out of memory,
especially when my desktop has quite
a lot of it. It seems that eight gigabytes
just is not enough to handle a modern
IDE anymore.

Lack of RAM

Dear Lack,
Eight gigabytes?! Is that all you have?
Are you writing me from the desert
wasteland where PCs go to die? No one
in his or her right mind runs a machine
with less than 48GB in our modern era,
at least no one who wants to run cer-
tain, very special, pieces of Java code.

While I would love to spend several
hundred words bashing Java—for,
like all languages, it has many sins—
the problem you are experiencing is
probably not related to a bug in the
garbage collector. It has to do with
bugs in the code you are running, and
with a certain, fundamental bug in
the human mind. I will address both
of these in turn.

The bug in the code is easy enough
to describe. Any computer language
that takes the management of mem-
ory out of the hands of the program-
mer and puts it into an automatic
garbage-collection system has one
fatal flaw: the programmer can easily
prevent the garbage collector from do-
ing its work. Any object that continues
to have a reference cannot be garbage
collected, and therefore freed back
into the system’s memory.

Sloppy programmers who do not
free their references cause memory
leaks. In systems with many objects
(and almost everything in a Java pro-
gram is an object) a few small leaks
can lead to out-of-memory errors quite
quickly. These memory leaks are diffi-
cult to find. Sometimes they reside in
the code you, yourself, are working on,
but often they reside in libraries that
your code depends on. Without ac-
cess to the library code, the bugs are
impossible to fix, and even with ac-
cess to the source, who wants to spend
their time fixing memory leaks in
other people’s code. I certainly don’t.
Moore’s Law often protects fools and
little children from these problems,
because while frequency scaling has
stopped, memory density continues
to increase. Why bother trying to find
that small leak in your code when your
boss is screaming to ship the next ver-
sion of whatever it is you are working
on? “The system stayed up for a whole
day, ship it!”

The second bug is far more perni-
cious. One thing you did not ask was,

Kode Vicious
Bugs and Bragging Rights
It is not always size that matters.

doi:10.1145/2556939 	 George V. Neville-Neil

 Article development led by
 queue.acm.org

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=36&exitLink=http%3A%2F%2Fqueue.acm.org

viewpoints

february 2014 | vol. 57 | no. 2 | communications of the acm 37

V
viewpoints

need to rewrite low-level code every
time they want to run their programs
on a new computer model. That may
not be what the Oxford English Diction-
ary defines as an OS, but as it recently
added “selfie” to its dictionary and
named it word of the year for 2013, I
am starting to think a bit less of the
quality of their output, anyway.

I think the propensity for program-
mers to label their larger creations
as operating systems comes from the
need to secure bragging rights. Pro-
grammers never stop comparing their
code with the code of their peers. The
same can be seen even within actual
operating-system projects. Everyone
seems to want to (re)write the sched-
uler. Why? Because to many program-
mers, it is the most important piece
of code in the system, and if they do
a great job, and the scheduler runs
really well, they will give their peers a
good dose of coder envy. Never mind
that the scheduler really ought to be
incredibly small, and very, very sim-
ple, but that is not the point. The point
is the bragging rights one gets from
having rewritten it, often for the ump-
teenth time.

None of this is meant to belittle
those programmers or teams of pro-
grammers who have slaved long and
hard to produce elegant pieces of
complex code that make our lives bet-
ter. If you look closely, though, you
will find that those pieces of code are
appropriately named, and they do not
need to tack on an OS to make them
look bigger.

KV

 Related articles
 on queue.acm.org

Reveling in Constraints

Bruce Johnson
http://queue.acm.org/detail.cfm?id=1572457

Gettin’ Your Kode On

George Neville-Neil
http://queue.acm.org/detail.cfm?id=1117397

Self-Healing in Modern Operating Systems
Michael W. Shapiro
http://queue.acm.org/detail.cfm?id=1039537

George V. Neville-Neil (kv@acm.org) is the proprietor of
Neville-Neil Consulting and co-chair of the ACM Queue
editorial board. He works on networking and operating
systems code for fun and profit, teaches courses on
various programming-related subjects, and encourages
your comments, quips, and code snips pertaining to his
Communications column.

Copyright held by Owner/Author(s).

“Why do we have a garbage collector
in our system?” The reason we have
a garbage collector is because some-
time in the past, someone—well, re-
ally, a group of someones—wanted to
remedy another problem: program-
mers who could not manage their
own memory. C++, another object-
oriented language, also has lots of
objects floating around when its pro-
grams execute. In C++, as we all know,
objects must be created or destroyed
using new and delete. If they are not
destroyed, then we have a memory
leak. Not only must the programmer
manage objects, but in C++, the pro-
grammer can also get direct access to
the memory that underlies the object,
which leads naughty programmers to
touch things they ought not to. The
C++ runtime does not really say, “Bad
touch, call an adult,” but that is what
a segmentation fault really means. De-
pending on your point of view, garbage
collection was promulgated either to
free programmers from the tedium of
managing memory by hand or to pre-
vent them from doing naughty things.

The problem is that we traded one
set of problems for another. Before
garbage collection, we would forget to
delete an object, or double delete it by
mistake; and after garbage collection,
we had to manage our references to ob-
jects, which, in all honesty, is the exact
same problem as forgetting to delete
an object. We traded pointers for refer-
ences and are none the wiser for it.

Longtime readers of KV know that
silver bullets never work, and that one
has to be very careful about protecting
programmers from themselves. A side
effect of creating a garbage-collected
language was the overhead of having
the virtual machine manage memory
was too high for many workloads.
The performance penalty has led to
people building huge Java libraries
that do not use garbage collection and
in which the objects must be man-
aged manually, just as they did with
languages such as C++. When one of
your key features has such high over-
head that your own users create huge
frameworks that avoid that feature,
something has gone terribly wrong.

The situation as it stands is this:
with a C++ (or C) program, you are
more likely to see segmentation faults
and memory-smashing bugs than you

are to see out-of-memory errors on a
modern system with a lot of RAM. If
you are running something written
in Java, then you had better pony up
the cash for all the memory sticks you
can manage because you are going to
need them.

KV

Dear KV,
I cannot help but notice that a lot of
large systems call themselves “operat-
ing systems” when they really do not
bear much resemblance to one. Has
the definition of operating system
changed to the point where any large
piece of software can call itself one?

OS or Not OS

Dear OS,
Certainly my definition of operating
system has not changed to the point
where any large piece of software can
call itself one, but I have also spotted
the trend. An old joke is that every
program grows in size until it can be
used to read email, which, if you can
believe Wikipedia, is attributed to Ja-
mie Zawinski, based on an earlier joke
by Greg Kuperberg, “Every program
in development at MIT expands until
it can read mail.” Now, it seems, mail
is not enough. Every large program ex-
pands until it gets “OS” appended to
its name.

An operating system is a program
that is used to give efficient access
to an underlying piece of hardware,
hopefully in a portable manner,
though that is not a strict require-
ment. The purpose of the software is
to provide a consistent set of APIs to
programmers such that they do not

Programmers
never stop
comparing
their code
with the code
of their peers.

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=37&exitLink=http%3A%2F%2Fqueue.acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=37&exitLink=http%3A%2F%2Fqueue.acm.org%2Fdetail.cfm%3Fid%3D1572457
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=37&exitLink=http%3A%2F%2Fqueue.acm.org%2Fdetail.cfm%3Fid%3D1117397
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=37&exitLink=http%3A%2F%2Fqueue.acm.org%2Fdetail.cfm%3Fid%3D1039537
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=37&exitLink=mailto%3Akv%40acm.org

38 communications of the acm | february 2014 | vol. 57 | no. 2

Illus

t

r
a

t
i

o
n

 b
y

 S
e

b
a

s
t

i
a

n
 K

a
ul

i

t
zk

i

V
viewpoints

S
ma r t ow n ers of informa-
tion technology (IT) plat-
forms develop ecosystems
and encourage third-party
producers to develop com-

plements—products that run on the
platform. Independent software ven-
dors develop complements for the plat-
forms of major vendors (for example,
SAP, Apple). In addition, such platform
companies sometimes create Internet-
based knowledge-sharing communi-
ties in which users exchange ideas. The
benefits and costs of such participa-
tion are tied to what economists call
“knowledge spillovers.”

This column reports on four stud-
ies of complements to SAP’s flag-
ship enterprise resource planning
software.1–4 Users can participate in
the SAP Developer Network (SDN), a
knowledge-sharing community that
encourages voluntary knowledge ex-
change regarding the implementa-
tion, use, and customization of SAP
software. A study of 275 firms partici-
pating in SDN between 2004 and 2008
showed firms using the platform’s
online question-and-answer forum
had significantly higher productivity.
Knowledge spillovers were at work.
Valuable knowledge gained from in-
vestments in SAP by user firms was
transferred to others through the on-
line forum, helping the diffusion of
best practices related to the platform.
Preliminary estimates suggest a 1%

increase in such inward knowledge
spillovers will increase production
output by many thousands of dollars.

While knowledge spillovers ben-
efit software users, they present chal-
lenges for producers. SAP bolsters
development of third-party software
products and complements by en-
couraging start-ups to ensure their
products are compatible with the
platform and to advertise this fact
through formal certification. Small
start-ups receiving SAP certification
had higher sales and a greater likeli-

hood of issuing an initial public of-
fering. Complements and platforms
in enterprise software are tightly cou-
pled, and applications developed and
used without formal endorsement
from the platform owner might not
work well. Platform certification sig-
nals compatibility and higher qual-
ity. The study, using data from 1996–
2004, looked at small start-up firms
before and after they joined SAP’s
certification program.

While start-ups benefited signifi-
cantly from certification, some start-

Economic and Business
Dimensions
Digital Platforms: When Is
Participation Valuable?
Assessing the benefits and challenges of knowledge spillovers.

doi:10.1145/2556940	 Marco Ceccagnoli, Chris Forman, Peng Huang, and D.J. Wu

viewpoints

february 2014 | vol. 57 | no. 2 | communications of the acm 39

ups benefited more than others. Firms
with the greatest gains also had strong
intellectual property protection from
patents, copyrights, and trademarks,
the latter being a common indicator
of brand strength. Again, knowledge
spillovers were at work. Certification
requires start-ups to go through a pro-
cess of documentation and testing. Sig-
naling compatibility with the SAP plat-
form has benefits for the start-up, but
poses risks of unintended knowledge
spillovers leading to possible competi-
tion from SAP itself. SAP’s early website
portal stated, “Part of being an open
ecosystem is open and fair competi-
tion among partners, and between SAP
and partners. SAP cannot guarantee ex-
clusivity of partner solutions, nor can
we guarantee that we won’t offer com-
peting solutions.”

Large platform companies like
SAP realize their possible entry into
complementary markets can dissuade
complementors from joining the plat-
form. However, the intellectual proper-
ty asset holdings by start-ups help miti-
gate this problem. Protected start-ups
are more likely to join the platform and
tend to do so earlier, and large compa-
nies can face higher costs in compet-
ing with start-ups that hold intellectual
property assets.a

Intellectual property rights thus
play a dual role in shaping platform
growth. On the one hand, strong intel-
lectual property rights can help protect
small companies, reducing the threat
of imitation and entry by a platform
owner, and increasing the value of
the platform and benefit the platform
owner. On the other hand, intellectual
property rights in the form of “patent
thickets” (dense, overlapping webs of
intellectual property rights held by in-
cumbents) can slow platform growth
by raising complementors’ costs of
potential patent infringement. Patent
thickets make it easier to inadvertently
infringe on intellectual property rights
of other firms in the marketplace, a re-
cent example being the “smartphone
war” between Apple, Samsung, and
other firms. Patent thickets might be
a more serious problem for small, en-
trepreneurial firms that have few in-
tellectual assets of their own and that

a	 SAP. Powered by SAP Netweaver Partner Pro-
gram FAQs; http://bit.ly/J7UYgc.

are unable to navigate patent thickets
by negotiating patent cross-licensing
deals with other firms.

Managers of technology platforms
can bet that potential complementors
might refuse to join a platform because
of the risks of platform owner entry.
Those platforms can alleviate comple-
mentor risks by giving up control of the
platform or “opening” it up to encour-
age participation. Such approaches are
less essential when strong IP rights
protect complementors from the con-
sequences of unwanted spillovers to
potential competitors.	

References
1.	B enbya, H. and Van Alstyne, M. How to find answers

within your company. Sloan Management Review 52, 2
(Feb. 2011), 65–75; http://sloanreview.mit.edu/article/
how-to-find-answers-within-your-company/

2.	 Ceccagnoli, M., Forman, C., Huang, P., and Wu, D.J.
Cocreation of value in a platform ecosystem: The
case of enterprise software. MIS Quarterly 36, 1 (Jan.
2012), 263–290.

3.	H uang, P., Ceccagnoli, M., Forman, C., and Wu,
D.J. Appropriability mechanisms and the platform
partnership decision: Evidence from enterprise
software. Management Science 59, 1 (Jan. 2013),
102–121.

4.	H uang, P., Ceccagnoli, M., Forman, C., and Wu, D.J.
IT knowledge spillovers and productivity: Evidence
from enterprise software. Working Paper. University of
Maryland and Georgia Institute of Technology, 2013;
http://papers.ssrn.com/sol3/papers.cfm?abstract_
id=2243886

Marco Ceccagnoli (marco.ceccagnoli@scheller.gatech.
edu) is an associate professor of strategic management in
the Scheller College of Business at the Georgia Institute
of Technology in Atlanta.

Chris Forman (Chris.Forman@scheller.gatech.edu) is the
Brady Family Term Professor in the Scheller College of
Business at the Georgia Institute of Technology in Atlanta.

Peng Huang (huang@umd.edu) is an assistant professor
in the Decisions, Operations and Information Technologies
Department at the Robert H. Smith School of Business at
the University of Maryland.

D.J. Wu (dj.wu@scheller.gatech.edu) is an associate
professor in Information Technology Management in the
Scheller College of Business at the Georgia Institute of
Technology in Atlanta.

Copyright held by Author/Owner(s).

While start-ups
benefited
significantly
from certification,
some start-ups
benefited more
than others.

ACM
Transactions on

Accessible
Computing

◆ ◆ ◆ ◆ ◆

This quarterly publication is a
quarterly journal that publishes
refereed articles addressing issues
of computing as it impacts the
lives of people with disabilities.
The journal will be of particular
interest to SIGACCESS members
and delegrates to its affiliated
conference (i.e., ASSETS), as well
as other international accessibility
conferences.

◆ ◆ ◆ ◆ ◆

www.acm.org/taccess
www.acm.org/subscribe

CACM_TACCESS_one-third_page_vertical:Layout 1 6/9/09 1:04 PM Page 1

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=39&exitLink=http%3A%2F%2Fbit.ly%2FJ7UYgc
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=39&exitLink=http%3A%2F%2Fsloanreview.mit.edu%2Farticle%2Fhow-to-find-answers-within-your-company%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=39&exitLink=http%3A%2F%2Fpapers.ssrn.com%2Fsol3%2Fpapers.cfm%3Fabstract_id%3D2243886
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=39&exitLink=mailto%3Amarco.ceccagnoli%40scheller.gatech.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=39&exitLink=mailto%3AChris.Forman%40scheller.gatech.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=39&exitLink=http%3A%2F%2Fwww.acm.org%2Ftaccess
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=39&exitLink=http%3A%2F%2Fwww.acm.org%2Fsubscribe
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=39&exitLink=mailto%3Ahuang%40umd.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=39&exitLink=mailto%3Adj.wu%40scheller.gatech.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=39&exitLink=http%3A%2F%2Fsloanreview.mit.edu%2Farticle%2Fhow-to-find-answers-within-your-company%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=39&exitLink=http%3A%2F%2Fpapers.ssrn.com%2Fsol3%2Fpapers.cfm%3Fabstract_id%3D2243886
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=39&exitLink=mailto%3Amarco.ceccagnoli%40scheller.gatech.edu

40 communications of the acm | february 2014 | vol. 57 | no. 2

V
viewpoints

Illus

t

r
a

t
i

o
n

 b
y

 Iw

o
n

a
 U

s
a

k
i

e
w

i
cz

/A

n
d

r
i

j
 B

o
r

y
s

 Ass

o

c
i

a
t

e
s

I
n the 2 0 t h century, companies
waited until their industries
and competitors fully vetted
technologies before investing
in even the most tried-and-

true ones. Technophobes believed
that investing too early was indulgent
and reckless. Executives wore their
late technology adoption strategies as
badges of corporate honor.

Today, many emerging technologies
are ready for immediate deployment.a
iPads are ready. Dropbox is ready.
Skype is ready. ListenLogic is ready.
Foursquare is ready. Ready technology
is accessible and cost-effective. It also
often arrives at companies without the
participation of the corporate IT team,
especially in federated or decentral-
ized companies where business units
and employees are encouraged to solve
their own problems. The accompany-
ing figure summarizes defined and
ready technology adoption—and the
implications of ready technology adop-
tion. It also provides some examples of
ready technology.

Technology Adoption
Defined Adoption. The 20th-century tech-
nology adoption models were predi-
cated on the diagnosticity of business
requirements and technology maturity.
The assumption was that technology
and business requirements evolve at
a pace that justifies phased adoption.
Early deployments were assumed to be
risky, costly, and therefore unnecessary.

a	 Ready technology is easily accessible technology,
requires minimal support, and is mature
enough to make immediate—and major—
problem-solving contributions.

Defined and validated business re-
quirements were prized. An enormous
industry was created around require-
ments analysis, requirements mod-
eling, and requirements validation.
Books, articles, conferences, and work-
shops were everywhere. The prevailing
wisdom was that business require-
ments modeling and validation were
prerequisites to technology adoption,
and that structured pilot demonstra-
tions with compelling TCO and ROI
results were necessary to justify deploy-
ment. Technology also had to integrate
and interoperate with existing technol-
ogy infrastructures and architectures.
If it failed to cost-effectively integrate,
adoption was often halted. If it did in-
tegrate, then a structured transition

period was defined to test and deploy
the new technology before the technol-
ogy went into production. Finally, new
technology—just like old technology—
required continuous support and ex-
pensive refreshes.

Ready Adoption. Technology adop-
tion is different today.b Requirements

b	 Not all technology adoption falls in the “ready”
category. There are still defined adoption
projects that assume the value of prolonged
requirements analyses, testing, and phased
deployment. Major enterprise applications
like ERP, CRM, and network and systems man-
agement, for example, fall into the defined cat-
egory. But not all technology is created equal:
some—ready—technology can go to work
without prolonged requirements analysis,
testing, and phased deployment.

Viewpoint
Ready Technology
Fast-tracking emerging business technologies.

doi:10.1145/2556941	 Stephen J. Andriole

viewpoints

february 2014 | vol. 57 | no. 2 | communications of the acm 41

unsecure. Corporate IT chased them
around, but everyone got to keep their
iPads (and other devices) when IT ulti-
mately declared them “safe”—well af-
ter their deployment.c Similar events
occurred at Balfour Beatty, Luxottica,
and RehabCare.d The same process is
playing out in banks, consultancies,
and retailers. In fact, there is no way
to stop the process—as many com-
panies discovered when they tried to
ban social networks.e

The deployment of iPads, social
media, file sharing, and video-telecon-
ferencing (among other technologies)
at Shire and other companies demon-

c	 There are many stories about how iPads found
their way into the enterprise—without the ap-
proval of corporate IT departments. See T.
Kaneshige, “iPads in the Enterprise: IT Must
Stay Ahead of the Curve,” CIO Magazine (May
1, 2012), (www.cio.com/article/705379/); and
S. Ludwig, “The iPad is an Incredible Tool for
Work—If Your IT Department Will Allow It,”
VB Mobile (Jan. 4, 2012). The Shire case is docu-
mented in S.J. Andriole, “The Transformation
of Technology at Shire Pharmaceuticals,” the
Acentio Group, December 2012.

d	 See M. Rosoff, “Huge Construction Firm Uses
iPads and Apple TV to Save Millions,” CITE-
world (Mar. 28, 2013), and S. Ludwig (http://
bit.ly/1hP0NhP).

e	 See J. Bughin and M. Chui, “How Social Tech-
nologies are Extending the Organization,”
McKinsey Quarterly (Apr. 2011); (http://bit.ly/
JiBPJr). Also see: “54% of Companies Ban Face-
book, Twitter at Work,” ComputerWorld (Oct.
6, 2009); and K. Bhasin, “Companies Around
The World Are Banning Social Media Sites At
Work More Than Ever,” Business Insider (Sept.
6, 2011); http://bit.ly/JaNkBV.

are often undefined and driven by em-
ployees-consumers who adopt technol-
ogies to solve a variety of problems with
technologies that are acquired—and
sometimes even supported—way out-
side the corporate firewall. Consumer-
driven requirements analysis, explora-
tion, and discovery is the mainstay of
ready technology adoption. Note also
that what was previously described
as controlled pilots are largely ad hoc
opportunistic experiments that often
quickly turn into technology deploy-
ments—with or without the approval
of corporate IT departments.

Examples. The figure here lists a
variety of ready technologies already
at work solving a variety of problems
across multiple vertical industries. The
new governance process is significant
because it often bypasses corporate
IT and the policies and procedures
aligned to specific vertical industries,
like manufacturing, pharmaceuticals,
and financial services. In fact, every
industry is ready—though must keep
compliance and security in mind as it
officially—or unofficially—adopts new
technology.

The list of ready technologies in-
cludes the following—but note this is
not an exhaustive list and is represen-
tative of the growing number of ready
technologies companies are quickly
adopting:

˲˲ BYO: Devices, applications, data,
and so forth.

˲˲ Tablets (such as iPads).

˲˲ Smartphones (such as iPhones).
˲˲ Content Sharing (such as with

Dropbox).
˲˲ Mobile and Other Applications

(from App Stores).
˲˲ Social Networking (with, for exam-

ple, ListenLogic).
˲˲ Video-Teleconferencing (with

Facetime, Skype).
˲˲ Video Sharing and Marketing (with

YouTube).
˲˲ Location Awareness (with Four-

square).
At Shire Pharmaceuticals, for ex-

ample, ready technology found its
way into the trenches through the
C-suite: Shire professionals adopted
iPhones, iPads, Skype, ListenLogic,
and Dropbox before corporate IT
could assess their reliability, security,
or TCO/ROI. Hundreds of iPads were
deployed at Shire before corporate IT
declared them “non-standard” and

Ready technology
adoption unleashes
the power
of emerging
technology as early
as possible.

Ready technology.

Defined Adoption

• �D efined Business-Driven
Requirements Analysis
and Validation

• �F ull Technology Pilot
Demonstrations Prior
to Deployment

• � Required Integration
of New Technology into Existing
Technology
Architectures

• � Transition Period
to Test and Integrate
New Technology

• � Continuous Support
and Refresh Requirements

Ready Adoption

• �D efined and Undefined
Consumer-Driven Requirements
Analysis and Exploration

• �U ncontrolled, Ad Hoc
Technology Pilots

• � Limited or No Integration of
New Technology into Existing
Technology Architectures

• � Immediate Adoption and Delivery
Through Cloud Providers

• � Limited Support and
Refresh Requirements

Implications

• � Accelerated Technology Adoption

• � Increase in “Fail Fast/
Fail Cheap” Pilots

• � Rapid Technology-Driven
Business Process Change

• � Improved Technology TCO/
ROI, Especially Through the
Avoidance of Large Integration,
Support and Refresh Costs

• � Major Changes in
Corporate Governance of
Information Technology

Examples

• � BYO: Devices, Applications,
Data, and so forth.

• � Tablets (such as iPads)

• �S martphones (such as
iPhones and Androids)

• � Content/File Sharing (with,
for example, Dropbox)

• � Mobile Applications
(from App Stores)

• �S ocial Networking (with Facebook,
Twitter, Flickr, and so forth)

• �V ideo-Teleconferencing
(with Facetime, Skype)

• �V ideo Sharing and Marketing
(with YouTube)

• � Location Awareness (with,
for example, Foursquare)

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=41&exitLink=http%3A%2F%2Fwww.cio.com%2Farticle%2F705379%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=41&exitLink=http%3A%2F%2Fbit.ly%2F1hP0NhP
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=41&exitLink=http%3A%2F%2Fbit.ly%2FJiBPJr
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=41&exitLink=http%3A%2F%2Fbit.ly%2FJaNkBV
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=41&exitLink=http%3A%2F%2Fbit.ly%2F1hP0NhP
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=41&exitLink=http%3A%2F%2Fbit.ly%2FJiBPJr

viewpoints

42 communications of the acm | february 2014 | vol. 57 | no. 2

strates just how fast technology can
be adopted. (In fact, 93% of Fortune
100 companies adopted iPads imme-
diately after they were introduced.f)
Fast creative deployments legitimized
iPads as solutions to an array of well-
known and yet-to-be-discovered prob-
lems. No one took the position that
the first iPad was probably half-baked
and that it made sense to wait for the
iPad 2, 3, or 4.

The rapid adoption of social media
listening technology is another exam-
ple. Once it was possible to listen to all
flavors of social conversations, compa-
nies quickly found listening partners
(like ListenLogic and Radian6 [now
part of salesforce.com]), and started
mining social data about what their
customers liked and disliked about
their products and services.g

Dropbox is cloud file sharing. Count-
less professionals use Dropbox to store
and share files of all kinds. Skype and
Facetime are ready technologies used
extensively for collaboration and com-
munication—even at companies with
expensive proprietary video teleconfer-
encing (VTC) systems. App stores are
not the stores of last resort, but often
the first stores visited by professionals
with problems to solve. Mobile appli-
cation development is also exploding.
Foursquare is ready for location-based
services, and YouTube for video shar-
ing for training and marketing.

Implications. The first implication
of ready technology adoption is speed.
Ready technology adoption unleashes
the power of emerging technology as
early as possible. Put another way,
ready technology adoption—as cha-
otic as it sometimes is—enables us to
“fail fast/fail cheap”—and redefines
the whole “piloting” process. It also
enables rapid business process mod-
eling (BPM) by introducing new capa-
bilities applied to old processes—like
how we collaborate through cloud file
sharing (Dropbox) or how we see each
other while traveling (Skype, Face-

f	 Apple reported 93% of Fortune 500 companies
have deployed or are testing iPads; http://bit.
ly/JiC6Mv.

g	 See S.J. Andriole, V.J. Schiavone, L.F. Stevens, M.
Harrington, and M. Langsfeld, Social Business
Intelligence: Reducing Risk, Managing Brands &
Defining Markets with Social Media (Ascendigm
Press, 2013) for a deeper look at the business
role social business intelligence can play.

time). But perhaps the largest impli-
cation of ready technology adoption
is how it rearranges technology gov-
ernance. In the 20th century, tech-
nology governance was centralized
or federated. Ready technology adop-
tion is decentralized. This means
employees-consumers in business
units govern technology adoption
and exploit what the technologies
can provide without the “guidance”
of corporate or business unit CIOs.
This has profound implications for
the acquisition and support of enter-
prise technology. Ready technology
also challenges our technology cost
models, how we define and measure
Service Level Agreements (SLAs) and
ultimately how we calculate technol-
ogy TCO and ROI. Ready technology—
as appealing and productive as it can
be—also challenges our already formi-
dable problems around technology in-
tegration, interoperability, scalability,
and support.

Conclusion
While there are still plenty of technolo-
gies that require traditional adoption
processes—like big data analytics,
ERP and CRM applications—there
is a growing number of technologies
ready to go to work immediately. Many
of these technologies are cloud-based,
open source, and live happily outside
of corporate firewalls. Many of them
are easily and inexpensively acces-
sible to corporate professionals and
will therefore continue to find their
way into companies of all shapes and
sizes—regardless of what CIOs think
about their readiness. At the end of
the day, ready technologies is upset-
ting just about every governance ap-
plecart at work today—as they rapidly
discover, define, and solve more and
more corporate problems. Rather than
scramble to get all the apples back in
the cart, CIOs and CTOs should re-
think the way useful technology en-
ters the enterprise and embrace the
role ready technologies can play in the
problem-solving process—especially
since they have no choice.	

Stephen J. Andriole (steve@andriole.com) is a professor
in the Department of Accounting and Information
Systems at the Villanova School of Business, Villanova
University, PA.

Copyright held by Author/Owner(s).

ACM
Journal on

Computing and
Cultural
Heritage

◆ ◆ ◆ ◆ ◆

JOCCH publishes papers of
significant and lasting value in
all areas relating to the use of ICT
in support of Cultural Heritage,
seeking to combine the best of
computing science with real
attention to any aspect of the
cultural heritage sector.

◆ ◆ ◆ ◆ ◆

www.acm.org/jocch
www.acm.org/subscribe

CACM_JOCCH_one-third_page_vertical:Layout 1 7/30/09 5:50 PM Page 1

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=42&exitLink=http%3A%2F%2Fsalesforce.com
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=42&exitLink=http%3A%2F%2Fwww.acm.org%2Fjocch
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=42&exitLink=http%3A%2F%2Fwww.acm.org%2Fsubscribe
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=42&exitLink=mailto%3Asteve%40andriole.com

LEARNING @ SCALE
MARCH 4–5 2014

ATLANTA, GEORGIA, USA

http://learningatscale.acm.org/

http://learningatscale.acm.org/
L@S Corporate Support Provided By:

LEARNING @ SCALE
ACM will host the first ACM Conference
on Learning at Scale to be held March
4-5, 2014 at the Hyatt Regency Atlanta, in
Atlanta, Georgia, USA.

Inspired by the emergence of Massive
Open Online Courses (MOOCs) and the shift
in thinking about education, ACM created
this conference as a new venue to explore
how learning and teaching can change and
improve when done “at scale.”

ABOUT THE CONFERENCE
ACM Learning at Scale 2014 is the first in a
new conference series intended to promote
scientific exchange of interdisciplinary
research at the intersection of the learning
sciences and computer science.

Topics of accepted papers include peer
and self-assessment in MOOCs, tools for
instructors, the effect of video production
values on student engagement, automating
grading, educational games, analyzing
discussion forum behavior, and more.
In addition to paper presentations, the
conference will feature posters and demonstrations of research prototypes and production tools,
tutorials in natural language processing and educational analytics, panels covering topics in both
the learning sciences and the practice of scalable education, and invited presentations on scalable
education in the developing world.

The inaugural ACM Learning at Scale will be co-located with SIGCSE 2014, the annual Technical
Symposium of the ACM Special Interest Group on Computer Science Education (http://sigcse2014.
sigcse.org/). Together, these conferences will make for a great week spotlighting education!

COMMITTEE
GENERAL CHAIR

Mehran Sahami (Stanford University)

PROGRAM CHAIRS
Armando Fox (UC Berkeley)

Michelene T.H. Chi (Arizona State University)

Marti Hearst (UC Berkeley)

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=43&exitLink=http%3A%2F%2Flearningatscale.acm.org%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=43&exitLink=http%3A%2F%2Flearningatscale.acm.org%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=43&exitLink=http%3A%2F%2Fsigcse2014.sigcse.org%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=43&exitLink=http%3A%2F%2Fsigcse2014.sigcse.org%2F

practice

44 communications of the acm | february 2014 | vol. 57 | no. 2

Node.js, the server-side JavaScript-based software
platform used to build scalable network applications,
has been all the rage among many developers for the
past couple of years, although its popularity has also
managed to enrage some others, who have unleashed a
barrage of negative blog posts to point out its perceived
shortcomings. Still, while new and untested, Node
continues to win more converts.

In 2011, LinkedIn joined the movement when it
opted to rebuild its core mobile services in Node. The
professional networking site, which had been relying
on Ruby on Rails, was looking for performance and
scalability gains. With its pervasive use of non-blocking
primitives and a single-threaded event loop, Node
seemed promising.

Following the creation of Node.js
in 2009 by Ryan Dahl (now at Joyent,
which sponsors and maintains Node),
it did not take long for developers to
seize upon it. Because Node uses Java-
Script, a language largely associated
with the client side of Web apps, it
clears the way for developers work-
ing on the client side to also work on
corresponding functions over on the
server side.

Kiran Prasad, who joined LinkedIn
as senior director of mobile engineer-
ing in 2011, led the company’s transi-
tion to Node. On the server side, Linked-
In’s entire mobile front end is now
built entirely in Node. Prasad admits
Node isn’t the best tool for every job,
but upon analyzing LinkedIn’s system,
Prasad and his team determined that
what was needed to improve efficiency
was an event-driven system. Node also
proved attractive because it’s thin and
light while also allowing for the direct
manipulation of data objects.

Prasad was well prepared for his
role in mobile services at LinkedIn,
having already accumulated years of
experience in mobile apps working
on the WebOS platform at Palm and
Handspring in addition to stints as an
independent developer of mobile Web
software (as CEO at Sliced Simple and
CTO at Aliaron).

He talks here about LinkedIn’s
adoption of Node.js with Kelly Norton
and Terry Coatta. Norton was one of
the first software engineers to work on
the Google Web Toolkit (GWT) before
cofounding Homebase.io, which devel-
ops next-generation marketing tools.

Coatta is CTO at Marine Learning
Systems, which has developed a learn-
ing management system targeted at the
marine industry. He previously worked
for AssociCom, Vitrium Systems, GPS
Industries, and Silicon Chalk.

KELLY NORTON: Tell us what went into
LinkedIn’s decision to use Node.js.

KIRAN PRASAD: We were running
a Ruby on Rails process-based sys-
tem, and it became pretty clear that

Node at
LinkedIn:
The Pursuit
of Thinner,
Lighter, Faster

doi:10.1145/2556647.2556656

 Article development led by
 queue.acm.org

A discussion with Kiran Prasad,
Kelly Norton, and Terry Coatta.

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=44&exitLink=http%3A%2F%2FHomebase.io
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=44&exitLink=http%3A%2F%2Fqueue.acm.org

february 2014 | vol. 57 | no. 2 | communications of the acm 45

just wasn’t going to scale the way we
needed it to. I guess you can always
scale something if you’re willing to
throw enough money at it, but obvi-
ously that didn’t seem like the right
way to go. Also, working with the mo-
bile model—where there are lots of
microconnections—we could see that
a process-based approach was going
to run into difficulty with the Ruby on
Rails stack.

We also noticed there was a pretty
big performance hit with Rails since we
were doing a lot of string manipulation
and the Ruby interpreter version we
were using was struggling to garbage-
collect all the small-string objects. Nor
was it particularly optimized for JSON
(JavaScript Object Notation) transla-
tion, which was what our back end was
giving us, as well as what our front end
was looking to consume.

Clearly, Ruby on Rails was built
more as a Web stack in that its real

value lies in the templating it offers for
that structure, along with some of the
framework concepts it provides for the
app and the controllers. But the con-
trollers and the views actually move
down to the client whenever you’re
doing client-side rendering, which is
what happens with mobile systems.

With the larger, higher-scale stacks
you find at places like LinkedIn, you
also start breaking apart the model.
That is, you’re not really inside Active
Record on Rails at that point since
you essentially end up moving down
a level into other servers or services.
This means the middle layer starts to
get pretty thin and really focused on
string manipulation.

So when we really started to look
at that, we said, “This sure doesn’t
feel like such a great fit anymore. It’s
not designed to do what we’re trying
to accomplish now.” So, what could
we replace it with? It had to be some-

thing that was evented, was good at
string manipulation, and was light
and quick and easy to use. We started
looking at some evented frameworks
in Ruby such as EventMachine, as
well as Twisted in Python. But there
seemed to be no mainstream evented
Java frameworks when we first started
checking into this. While Play has be-
come a little more prevalent now, back
when we were doing our analysis, in
early 2011, it didn’t pop up on our ra-
dar for some reason.

NORTON: Besides being event-driven,
what was so compelling about Node?

PRASAD: We looked at Node and ran
some load against it, at which point it
would send a request out to something
like six other services, grab that data,
merge it, and then pop it back out in
a fairly simple way. We just ran with
that all the way up to about 50,000 QPS
(queries per second). Along the way we
discovered that Node was roughly 20

practice

46 communications of the acm | february 2014 | vol. 57 | no. 2

A
L

L
 P

h
o

t
o

 t
r

e
a

t
m

e
n

t
s

 b
y

 B
r

i
a

n
 G

r
e

e
n

b
e

r
g

/A
n

d
r

i
j

 B
o

r
y

s
 Ass

o
c

i
a

t
e

s

trollers get pushed out all the way to
the client. Then the question becomes:
What’s left in the middle? Basically
what you find there is just a bunch of
functions that effectively manipulate
hashes of data in order to format them.
So now you’re just down to formatting
and a little bit of aggregation.

I’m not sure I really had the clarity
at the time to articulate why we chose
Node.js. Now after using it for a few
years, it has become pretty clear that
in this layer that’s essentially the glue
between your front end (which is liter-
ally in the client now) and your back
end (which happens to be your data
model), a functional sort of language
is actually the best fit. At this point, we
write all our back-end stuff in Java, and
all the Java stacks we’re using are more
process based.

COATTA: Having had this experience
with Node.js in the middle layer, then,
would you contemplate using it for the
back end?

PRASAD: Right now, we’re working
on creating a data store that’s mobile-
specific, and as part of that we did an
analysis of whether we should build it
in Node.js and JavaScript. It turned out
the team wanted something that was
a little more precise—or typed, I sup-
pose. I’m actually trying to steer clear
of classic programming stuff such

times faster than what we had been
using and its memory footprint was
smaller as well.

Obviously, Node.js also offers other
benefits beyond the technical aspects.
JavaScript is a language lots of people
understand and are comfortable cod-
ing in. Besides, it didn’t hurt that Node
was getting a lot of hype at the time—
and still is. In some ways, that makes it
easier for me to recruit.

TERRY COATTA: You mentioned that
you had moved away from using Active
Record in Ruby as your model repre-
sentation, but obviously that model
had to end up going somewhere. Why
didn’t you choose to use the infrastruc-
ture you already had for the model to
handle the middleware as well?

PRASAD: The thing about models is
that they are really designed around
objects. They have properties; they
have methods; they are very structured
and statically typed; and you’re trying
to create an environment where they’re
very solid so you know exactly what
each object is. This is just the sort of
approach we were all taught in our first
exposure to object-oriented design.

So you would think a more object-
oriented language would be ideal for
building systems like that. But then
that moves out to the view controllers,
and in mobile systems, the view con-

Kiran Prasad

The reason why
Node is so fast and
so good is that it’s

light and thin. It
barely has anything

in it at all, so every
little thing you add

to it, each additional
Node module you

want to use with it,
comes at a cost.

practice

february 2014 | vol. 57 | no. 2 | communications of the acm 47

as taking a more statically typed ap-
proach, but the team definitely wanted
the ability to define an object with cer-
tain methods and properties, and for
that to be guaranteed so nobody could
mess it up. They don’t want just anyone
out there taking over that prototype or
doing anything to it. Still, from a per-
formance standpoint, I would love to
try a more event-driven framework.
Currently, we’re using Rest.li internally
to do some of this back-end, data-store
stuff because we really do believe the
event-driven stuff has transformed our
architecture.

COATTA: In terms of the perfor-
mance speedup you observed with
Node.js, did you also construct light-
weight prototypes for the other lan-
guages you were considering for your
middleware layer?

PRASAD: We did some prototyp-
ing with Ruby and Python using the
evented frameworks EventMachine
and Twisted. The bottom line was that
Node proved to be 2–5 times faster
than both of those in terms of raw
throughput. What was even more ex-
citing and really sold us on Node was
that it took only two or three hours to
write the Node prototype while it took
us more on the order of a day or two to
write the EventMachine and Twisted
ones, just because we had to down-
load so much more stuff.

For example, you need to make sure
you’re not using the standard HTTP li-
brary in Python, but instead the Async
HTTP library. That’s the sort of thing
that pretty much applied across the
board. No matter what we wanted to
do, we couldn’t use the standard Py-
thon library. Instead, we had to use the
special Twisted version. The same held
true with Ruby. Like a lot of others in
the community, we found out just how
much easier it is to get started with
Node, where everything you need is es-
sentially there by default. Further, the
fact that we could get stuff up so much
faster with Node was really important.
That’s just another form of perfor-
mance, right? Developer productivity
definitely counts for something.

Memory footprint was also a factor.
We looked at how well VMs (virtual
machines) worked in each of these
languages, and the V8 JavaScript En-
gine just blew everything else away.
We were doing 50,000 QPS with all

two places. If I wanted to add logging
so I could see all the instances where
somebody was talking to Companies,
things are not centralized such that ev-
erything would funnel through nicely.
While we’re not creating an object lay-
er, we are starting to recognize that, at
least for RESTful APIs, we need to cre-
ate a set of functions that sit in front
of each resource type we’re looking
to communicate with. It’s kind of like
proxying that interface. That’s one of
the things we’ve learned along the way
and are now starting to fix by creating
this new layer of abstraction.

COATTA: You mentioned refactoring
the code to introduce additional lay-
ers. If you consider the amount of time
you’re putting in now on the refactor-
ing side, do you think you might still
end up taking roughly as much time to
create your code base as you would have
had you taken some other approach?

PRASAD: I would guess not because
it isn’t just about how long it takes to
do the coding itself. It’s also about ev-
ery other aspect of the process. For ex-
ample, when you write your app and
then type “Node” to run the app, it
literally takes only about 20–100 milli-
seconds for it to come up. With Ruby,
just getting the Rails console to come
up sometimes takes more like 15–30
seconds. I’m also not ready to say Node
comes up short strictly from a coding
standpoint in any event. All the way
around, Node is just built thinner,
lighter, faster. So every last little step,
every single nuance of everything I do
every day ends up being faster.

With the more structural languages,
you’ve got to account for things like
compile times and build times. Then
you end up building essentially hot-
swap environments where the envi-
ronment is running but the IDE is also
able to connect with and manipulate
the runtime. You pretty much have to
do it that way, because it takes so long
for the thing to boot up, make your
changes, and then boot up again. Node
eliminates a whole range of these prob-
lems just because it’s so fast.

Yes, the refactoring has added to
the coding time while it has also taken
away from the simplicity we enjoyed
initially when we were just slashing
and burning through things. But I
think the overall efficiency we’ve been
able to achieve because Node is so

this manipulation, and we were run-
ning that in about 20MB to 25MB of
memory. In EventMachine and Twist-
ed, just loading all of the classes nec-
essary to do the async stuff rather than
the standard stuff was more like 60MB
to 80MB. Just at a raw level, Node was
going to run in only about half the
memory footprint.

NORTON: What sorts of things did
you end up missing that you would
have had in a more “modeled” environ-
ment?

PRASAD: Because we embraced the
functional nature of JavaScript, we
didn’t think we would first have to
translate everything coming in from
the back end into a set of objects and
a set of methods on those objects. This
also meant we didn’t have to sort out
the hierarchy of those objects, what the
subclasses were, what the base class
was, how all those things were struc-
tured, and what the relationship was
among all those different objects. But
that’s what you would need to do in a
model- and object-based system. So for
us it was more like saying, “OK, you’re
going to hit these three endpoints, and
then you’re going to merge the data
and pop out this other object.”

In reality, though, it’s not an object
but a hash, right? You’re consuming
adjacent things and then popping
out some other adjacent things. It’s
almost like you’ve got a filter that you
run a stream through. Data comes
through and then pops out the oth-
er side—which gets you completely
around all that thinking about what
the objects are, how they work, and
how they interact. So that let us get
where we wanted to go a lot faster.

Now that we’re through that, we’re
going back and working on some func-
tions. Right now, they all talk to what-
ever they want. If Function A wanted
to talk to Profile and Companies and
Jobs and then merge them, then it
would just go ahead and talk to Profiles
and Companies and Jobs. And then if
Function B wanted to talk to Profiles,
Companies and something else, it
would just go ahead and do that. But
the two functions—A and B—wouldn’t
be using the same functional inter-
face to talk to Profiles or Companies.
The problem is that if there is a bug in
the way we’re talking to Companies,
I would have to go in and fix that in

practice

48 communications of the acm | february 2014 | vol. 57 | no. 2

rectories were actually empty—and,
by the way, an empty directory was
actually a good thing. We would leave
the directory there just so people
wouldn’t try to create things in that di-
rectory. It was like a code-review tool
that said, “We must be really doing
something wrong if we start creating
things in that directory.” And that’s
just from our server design pattern of
how we wanted to use Node.

Another helpful thing we did initial-
ly was to set up a basic testing environ-
ment and framework. Rails, as well as
Python’s Django framework, were very
big on TDD (test-driven development)
and even BDD (behavior-driven devel-
opment), where you could essentially
write your tests and sequences before
filling in all the code. It’s a model that
works really well when there’s a test-
ing framework. We essentially took
the testing framework that was already
there and slapped it on top of our direc-
tory structure using some scripts we’d
written to get the two to interact. We
started off using Vows, but after three
months ended up writing all our own
tests in Mocha.

You could say that setting up a test-
ing environment and framework was
sort of another code pattern, but it was
probably more difficult than it would
have been with any other language—
especially in terms of dealing with the
evented aspect of Node. Even though
we ended up refactoring the code, we
didn’t have to do anything major such
as coming up with new abstractions or
any additional functions. Most of what
we did was syntactical in nature. And
then there were a bunch of little func-
tional things—for example, Node’s
concept that in every callback the
first argument should be Error, which
makes total sense.

But then you couldn’t figure out
what the second and third and fourth
arguments were. Or do you have only
one argument? Or is it five arguments?
How do you deal with that, and what is
it going to be like after you do the call-
back? Let’s say you now want to change
the callback signature. How do you tell
everyone who was calling the function
and expecting a callback that the sig-
natures have changed? I don’t know if
that’s Node-specific or is common to
all JavaScript, but it did take us awhile
to figure it out.

thin and light more than makes up
for any minor amount of refactoring
we’ve had to do.

COATTA: If you were about to dive into
another project based on Node, would
you try to build a little more of your
structure initially?

PRASAD: I don’t think that’s a Node-
specific question. It’s more a matter
of personal preferences. My own view
is that front-end UI code tends to last
only about one-and-a-half to two years
anyway. Very little of that code lasts as
long as five to 10 years. The reason for
this, I believe, doesn’t even have all that
much to do with the quality of the code,
but instead is driven more by the evo-
lution of technology and the fact that
software developers are encouraged to
work in four-year increments. You con-
stantly have new people looking over
your code, and I know that whenever I
look at anything, even if it’s just a table,
I’m sure I could build a better one. So I
believe the natural tendency is that, ev-
ery year-and-a-half to two years, a new
set of people is going to look over some
particular code base and decide they
can do a better job.

Given that, it’s probably faster just
to rewrite a whole chunk of that code
base so long as it’s modularized—or
maybe even rewrite the whole thing—
and take your one- or two-month hit
for that, than it would be to slowly
evolve the code base. So, if I had this
project to do over again, I’d probably
do it the same way. In any event, I’m
more inclined to build a project first,
get it out, and then extract a platform
later if I can—as opposed to building
a perfect platform and all the compo-
nents upfront and then trying to hook
them all up in the right order. I don’t
think you can possibly know what the
right order is until you’ve actually got
something running in production
and can see where you’re hitting pain
points. Then you can tell where you
actually need to extract libraries and
start doing something about it.

Once the decision had been made to
convert to Node, Prasad’s team had to
figure out the best approach to imple-
mentation and maintenance. Because
LinkedIn’s mobile services team was
largely accustomed to Ruby on Rails,
they mimicked parts of their previ-

ous Rails structure in setting up the
Node.js structure, allowing them to
jumpstart the project. The team was
small, so Prasad was able to monitor
the transition to JavaScript and detect
problems quickly.

Programming in Node.js is event-
driven and so required different ap-
proaches. Although a minor amount
of refactoring was involved, the team
didn’t have to create new abstractions
or additional functions. Most of what
they did was syntactical in nature. They
also shed layers of abstraction, which
significantly reduced the size of the
code base.

NORTON: You say your preference is to
jump right into a project and do things
the fast way. I wholeheartedly agree. In
fact, I’d say my own philosophy is that
since you don’t really know going into
a project what it is you’re going to need
to optimize for, then what you really
ought to be setting out to optimize is
your ability to change things.

So I’m really curious as to how you
structured your code and what prac-
tices you used to let you move fast ini-
tially and then continue moving fast
as the constraints for your project be-
came clearer.

PRASAD: A lot of our people at the
time were Ruby on Rails developers, so
they were familiar with that directory-
tree structure and the terminology
used in the Rails world. We mimicked
that terminology, and that gave us a
huge jumpstart. It also helped that
Node is pretty barebones, much like
Rails, but that also was a little scary be-
cause you’re not sure how to structure
stuff, and there were no guides to tell
you how to do it.

A second helpful decision we made
was to put all the controllers and views
on the client side, while the models
were placed on the back end. From a
directory-structure standpoint, that
meant we wouldn’t have any files show-
ing up in our model structure or in our
views directory. Although we used the
term controllers, we were really work-
ing more with formatters in the sense
that you would get something in, make
a couple of requests, format the thing,
and then pop it out.

This meant we still had this old
Rails structure, only most of the di-

practice

february 2014 | vol. 57 | no. 2 | communications of the acm 49

Kelly Norton

My own philosophy
is that since you
don’t really know
going into a project
what it is you’re
going to need to
optimize for, then
what you really
ought to be setting
out to optimize
is your ability to
change things.

NORTON: How did your team com-
municate interface boundaries? Peo-
ple who are accustomed to working
with types wouldn’t want to give away
interfaces, since they provide a con-
crete form of documentation that ba-
sically allows one team member to say
to another, “Here is my intent. I expect
you’ll be calling me in this particular
way.” Even more importantly, if that
way of calling turns out not to exist,
that probably means it’s a use case you
haven’t considered and so is one that
probably won’t work.

PRASAD: I think there are interfaces
between libraries inside the code and
between the client and the server.
For the interfaces between the client
and server, we used REST (represen-
tational state transfer), and we had a
very defined model where we had what
we called “view-based models” that
were returned by the Node server. We
would just document those and say,
“Hey, here are the REST interfaces,
and here’s what we support.” That’s
essentially along the lines of a ver-
sioned interface structure. It’s classic
REST, actually.

Within the code base, we heavily
used the module systems. Each REST
endpoint has a file that represents
all the responses for that endpoint,
as well as the public interface for the

module mapped to the routes. You can
have as many functions as you want,
but whatever you have will export out
of that module. In that way you actu-
ally end up specifying the set of func-
tions you’re exposing. That’s essen-
tially what we use as our interface.

Then, structurally, we did some-
thing really simple: Every function
inside the module, whether public or
private, was defined in an old-school
C style. You might put in a comment
that said “private” and then list some
of your private functions. Or you
could put in a comment that said
“public” and then list all your pub-
lic functions. This is just like what
you used to do in C, right? You had
a bunch of functions and you’d put
the private ones in one group and the
public ones in another group. Then
your header file would essentially ex-
pose your public interface. All of that
happened in a single file. We don’t
have a header file, but module.ex-
ports effectively serves as our header.

NORTON: Another important com-
munications consideration has to do
with helping a team that’s not accus-
tomed to writing JavaScript navigate
around some of the minefields they’re
likely to encounter.

PRASAD: When we started on this,
we were a group of only four people,

practice

50 communications of the acm | february 2014 | vol. 57 | no. 2

Step guarantees the order of this se-
quence, so even if the function is asyn-
chronous—meaning it’s going to do
something evented—that function will
be passed a callback, and it has to call
once it’s finished doing its thing. Inde-
pendent of whether each function is
synchronous or asynchronous, the wa-
terfall will execute in sequence.

Step also includes a group method
and a parallel method. We use the
group method very heavily. That means
you can give it a group of functions and
it will execute all of them in parallel,
and then return when all of them are
done executing.

One nuance has turned out to be a
pretty big deal for us. If we have a group
that contains three functions and one
of them is broken, Step won’t capture
the responses for the other two. In-
stead, it will just call the callback and
say, “Sorry, I’m errored.”

The negative thing about this en-
vironment is that if I call six things
and two of them are required while
four are optional, I’m not going to
mind waiting for all of them with cer-
tain timeouts. But if one of those op-
tional things ends up erroring out,
then it’s going to seem like the whole
block errored. That’s just not ideal for
us. We therefore created a function
called GroupKeep that runs through

so I was able to watch every check-in.
Whenever I saw anything odd, I would
ask about it—not necessarily because
I thought it was wrong but because I
wanted to understand why we had used
that particular pattern. It was easy to
get to the bottom of why things had
been done in a certain way and figure
out what we were going to do next. Now
the group is much bigger and we’re
percolating the nuances of the rea-
soning behind the choices we made,
and that’s definitely a lot harder. Now
we hold a three- to five-day boot camp
whenever a new person starts with the
group, which gives us a chance to ex-
plain, “Here’s how we do this. We know
that might seem a little strange, but
here’s why we do it that way.” I think
that’s probably the best way of expos-
ing those code patterns.

COATTA: Which of those code patterns
do you think are the most important?

PRASAD: We ended up using Step as
our flow-control library. It’s like a su-
per-simple Stem, with two main con-
structs. We augmented those a little
and ended up adding a third. Basical-
ly, Step has this concept of a waterfall
callback, meaning that you pass into
Step an array of functions and then it
will call each function in order such
that as the first function returns, the
second one will be called, and so forth.

Terry Coatta

If you consider the
amount of time

you’re putting
in now on the

refactoring side, do
you think you might

still end up taking
roughly as much

time to create your
code base as you

would have had you
taken some other

approach?

practice

february 2014 | vol. 57 | no. 2 | communications of the acm 51

and executes everything, and then if
there should be an error, it will hold
the error in an array. That way, when
the calls go out for callbacks, there
will be this array of errors. Based on
the position of an error, you can get a
pretty good idea of whether it relates
to something that’s required or some-
thing that’s optional. That makes it
possible to write code that can contin-
ue a process wherever necessary.

The light and thin nature of Node.js
appealed to Prasad and his team more
than anything else. The extent of code
reduction this allowed proved to be
huge—from 60,000 lines down to just
a couple thousand. They also now have
essentially no frameworks, thus elimi-
nating a lot of extraneous code. More-
over, Node’s event-driven approach
requires fewer resources and moves
more functions to the client side. Fi-
nally, it takes a functional approach
that sheds layers of abstraction. In
sum, this all serves to enable support
for huge numbers of users on a wide ar-
ray of devices in real time.

COATTA: When you were talking about
how quickly you managed to get your
initial Node prototypes up and running,
it made me wonder whether you had
also achieved some code reduction.

PRASAD: Absolutely. Our Node code
base has grown a little from the origi-
nal version, but it’s still on the order of
1,000 to 2,000 lines of code. The Ruby
code base we were using previously,
in contrast, was in the neighborhood
of 60,000 lines of code. The biggest
reason for that reduction is that our
current code base is essentially frame-
work free, which means there’s just not
a whole lot of cruft in there.

The second big reason has to do
with the more functional approach
we’re taking now, as opposed to an
object-oriented one, which proved to
be an important shift for us. In Ruby,
the natural tendency is to create an ob-
ject that essentially wraps every com-
munication and type. Even though
Ruby is actually a functional language,
it has a much stronger notion of class
and object than does JavaScript. So in
our earlier code base we had lots of lay-
ers of abstraction and objects that had

been created under the guise of greater
componentization, refactorability, and
reusability. In retrospect, however, we
really didn’t need most of that.

Another significant reason for the
code reduction is the momentum be-
hind the MVC (model-view-controller)
model, at least for mobile vs. Web-
based systems. Before, we had mostly
server-side rendering. Now with the
move of templates and views over to
the client side—along with rendering,
of course—a lot of that code has just
gone away. Along with that has come
a new trust and belief that the back
ends, where the models live, are where
the validation and all the other more
advanced things are going to happen.
That means not having to double-
check things, which eliminates anoth-
er huge chunk of code.

NORTON: You indicated earlier that
one of the insights that led to your re-
write in Node.js was that you realized
you didn’t really need a deep under-
standing of the objects you were ma-
nipulating, meaning you didn’t need
to mutate those objects a lot. Basically,
you could just do a lot of merging of
hashes. Do you think you could have
gotten to that same end with some oth-
er language, even Ruby, just by working
with the hash-map primitive?

PRASAD: Probably so, but if you
look at Ruby, you see that Rails just
has so much extra stuff in it, whereas
Node at its base has an HTTP server
aspect and a client aspect built into
the binary. This means you don’t
need an HTTP Node module and an
HTTP listening module.

So, yes, I suppose if we had elimi-
nated all the object hierarchy and just
used the hash structures, we might
have been able to use Ruby. But then
you would still have to listen to HTTP
and turn that into a controller, which
just gets you back into adding all these
little microlayers. While each microlay-
er gives you a bunch of code you don’t
have to write, it also adds a bunch of re-
quirements for stuff you do then have
to write so everything will work nicely
with your framework.

COATTA: If you were to talk to some-
one else who was about to undertake a
similar project, what would you point
to and say, “Hey, pay attention to this
or you’re going to be in trouble”?

PRASAD: Flow control. Exception

handling. And while this isn’t really
specific to Node, I’d say, “Keep it light.
Keep it thin.” I think there’s a natu-
ral tendency for people to say, “Well,
I need something that does HTTP, so
I’ll just find a module that does that,”
and then another 4,000 lines of code
drops into their environment when all
they really need is an HTTP request.
Instead, they end up with this super-
duper thing that gives them that and a
whole bunch of other stuff besides.

Basically, the reason why Node is so
fast and so good is that it’s light and
thin. It barely has anything in it at all,
so every little thing you add to it, each
additional Node module you want to
use with it, comes at a cost.

NORTON: For those companies that
have already launched projects in Node,
what would you say are the three things
they might want to add to their ecosys-
tems to make them even stronger?

PRASAD: First would be a good IDE.
InteliJ IDEA is pretty good, but outside
of that, I haven’t really seen a great IDE
and toolset for Node.

Second would be to allow for evolv-
ing performance analysis and monitor-
ing. Better operational monitoring for
Node would be great, but for now it’s
essentially a black box unless you put
your own monitoring hooks into your
code. I’d love to see a lot of the stuff a
JMX layer in the Java VM provides. You
can get out some really useful informa-
tion that way.

And the third thing would be some-
thing like New Relic for Node—some-
thing that can inspect everything
your Node system is doing and actu-
ally understand your application so it
can provide you with detailed break-
downs of where your bottlenecks and
slowdowns are. That would be awe-
some, actually.	

 Related articles
 on queue.acm.org

Reveling in Constraints

Bruce Johnson
http://queue.acm.org/detail.cfm?id=1572457

Multitier Programming in Hop

Manuel Serrano and Gérard Berry
http://queue.acm.org/detail.cfm?id=2330089

High Performance Web Sites
Steve Souders
http://queue.acm.org/detail.cfm?id=1466450

© 2014 ACM 0001-0782/14/02 $15.00

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fqueue.acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fqueue.acm.org%2Fdetail.cfm%3Fid%3D1572457
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fqueue.acm.org%2Fdetail.cfm%3Fid%3D2330089
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fqueue.acm.org%2Fdetail.cfm%3Fid%3D1466450

practice

52 communications of the acm | february 2014 | vol. 57 | no. 2

doi:10.1145/2556647.2556655

 Article development led by
 queue.acm.org

“Not invented here” syndrome
is not unique to the IT world.

By Poul-Henning Kamp

W h e n I f i r s t read the claim that HealthCare.gov,
the website initiated by the Affordable Care Act, had
cost $500 million to create,4 I did not believe the number.
There is no way to make a website cost that much.
But the actual number seems not to be an order-of-
magnitude lower, and as I understand the reports, the
website does not have much to show for the high cost in
term of performance, features, or quality in general.

This is hardly a unique experience in the IT world.
In fact, it seems more the rule than the exception.

Here in Denmark we are in no way immune:
POLSAG, a new case-management system for the
Danish police force, was scrapped after running up a
tab of $100 million and having nothing usable to show
for it. We are quick to dismiss these types of failures
as politicians asking for the wrong systems and
incompetent and/or greedy companies being happy to
oblige. While that may be part of the explanation, it is
hardly sufficient.

The traditional response from the
IT world is that the Next Big Thing will
fix this, where the Next Big Thing has
been a seemingly infinite sequence of
concepts such as high-level languages,
structured programming, relational
databases, SQL, fourth-generation lan-
guages, object-oriented programming,
agile methodologies, and so on ad
nauseam. I think it is fair to say none
of these technologies has made any
significant difference in the success/
failure ratio of IT projects. Clearly they
allow us to make much bigger proj-
ects, but the actual success/failure rate
seems to be pretty much the same.

At the same time, there are all these
amazing success stories, where a cou-
ple of college kids change the way we
think about information retrieval with
their Google information-scoring algo-
rithm, or a bunch of friends change the
way we communicate with their Twit-
ter information-distribution system.

Why, despite politicians’ lofty speech-
es, does that never happen in govern-
ment IT applications? There is clearly
something we are missing here, some-
thing we are doing wrong, without even
thinking about it. That particular mis-
take is far more common than it should
be in a (so-called) “knowledge economy.”

Lessons from Wheelbarrows
Growing up in the countryside, I spent
a good portion of my youth operating
a wheelbarrow. The European wheel-
barrow is a rationalization of the
handbarrow, which was basically two
planks, two feet apart, with boards
nailed or tied between them. One per-
son grabs the two planks at the front,
one in each hand, another grabs them
at the back, and then they trudge away
with their load.

Sometime back in the low thou-
sands, a productivity consultant must
have pointed out that if you replaced
the person in front with a wheel, then
you could get twice as many wheelbar-
rows moving with the same number of
workers. (This industrial application
of technology undoubtedly earned the
consultant a hefty fee.)

Center Wheel
for
Success

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fqueue.acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=52&exitLink=http%3A%2F%2FHealthCare.gov

february 2014 | vol. 57 | no. 2 | communications of the acm 53

And that is it! That is the very same
contraption I lugged around as a kid
and the same one I used just a few
hours ago for gardening. As anybody
knows, using a wheelbarrow is easier
than carrying things, but it is still
quite heavy work. You lift roughly half
the load yourself, you provide the en-
ergy for motion, and you must steer it
in the right direction, which is diffi-
cult on account of the first two expen-
ditures of energy.

While a vast improvement over the
handbarrow, the wheelbarrow is stu-
pidly inefficient, at least compared
with the Chinese version.2 Somebody
in China was smarter than the Medi-
eval European downsizer and moved
the wheel to the middle of the wheel-
barrow, so that the entire weight of the
load is carried by the wheel. The Chi-
nese wheelbarrow will readily trans-
port two or three times the load of a Eu-
ropean wheelbarrow, with the operator
hardly breaking a sweat, just pushing
and steering, with barely any lifting.

From a management perspective,
the Chinese wheelbarrow is identical
to the European one: one wheel, two
handles, one operator. Looking at it
that way, however, we blind ourselves
to how differently they work, and we
miss the full productivity improvement
of the wheel.

In Europe we have known about the
Chinese wheelbarrow since at least
1797,2 yet, to this day, we still sweat
while lifting half the load carried on
our nonoptimized wheelbarrows.

The “not invented here” syndrome
is not unique to the IT world.

I am beginning to think the reason
our big IT projects sink is that we make
the same kind of mistake: mindlessly
replacing human labor with technology
instead of solving the actual problem.

Many human jobs can be replaced
directly with computers. Email re-
placed the old telegraph system, deliv-
ering the exact same conceptual ser-
vice: delivering a text message quickly
while using hardly any manpower. But
delivering text messages was the least
email could do—once we got to know

 it better.
First there were
programs answering
email messages, sending
source code, or looking
up things in databases. Next
came programs sending email to
other programs, to keep databas-
es synchronized, and then email
containing pictures, sound, and
vice presidents.1

However, the email system
we know today, as envisioned
by Ray Tomlinson, was not the
only such system somebody cre-
ated. The state-sanctioned post
and telegraph monopolies at-
tempted to standardize email—
or “telematic services” as they
called it—in CCITT (International
Telegraph and Telephone Consulta-
tive Committee) recommendations
X.400-X.599,3 as part of the grand vi-
sion of “The Intelligent Network.”

They started approximately 15 years
before Tomlinson. They spent un-
countable millions of all sorts of cur-
rencies. They had legislators mandat-
ing their way be the one and only legal
way forward. And they failed utterly,
miserably, and definitively.

Why is it that in IT one person can
often do what thousands cannot?

It is tempting to speculate that
HealthCare.gov would have worked
much better had they given the task
to a 10-person company rather than
a conglomerate with 69,000 employ-
ees all over the globe. I am sure that
is a necessary part of the solution, but
again, it is hardly a sufficient condi-
tion for success.

For one thing, while there are
“only” 380,000 words in the Afford-
able Care Act (also known as Obam-
acare), the regulations floating from
the law amount to 12 million words
(and counting). No 10-person company
would even be able to read all that ver-
biage before the delivery deadline had
whooshed past.

Interestingly, The New York Times re-
ports that HealthCare.gov contains an
estimated 500 million lines of code.4

That is no more likely to be true than
the $500 million price tag.

I looked at one of the actual laws
that make up Obamacare, the Patient
Protection and Affordable Care Act
(PPACA),5 and since I was not going
to read all 906 pages, I started in the
middle, on page 403. After a few pag-
es I ran into this definition of patient
decision aid:

“(1) PATIENT DECISION AID—The
term ‘patient decision aid’ means an
educational tool that helps patients,
caregivers, or authorized representa-
tives understand and communicate
their beliefs and preferences related
to their treatment options, and to de-
cide with their healthcare provider
what treatments are best for them
based on their treatment options, sci-
entific evidence, circumstances, be-
liefs, and preferences.”

Reading on, I found the require-
ments:

“(2) REQUIREMENTS FOR PATIENT
DECISION AIDS—Patient decision aids
developed and produced pursuant to a
grant or contract under paragraph (1):

“(A) shall be designed to engage
patients, caregivers, and authorized
representatives in informed decision
making with healthcare providers;Illus

t
r

a
t

i
o

n
 b

y
 Iw

o

n
a

 U
s

a
k

i
e

w
i

cz

/A
n

d
r

i
j

 B
o

r
y

s
 Ass

o
c

i
a

t
e

s

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=53&exitLink=http%3A%2F%2FHealthCare.gov
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=53&exitLink=http%3A%2F%2FHealthCare.gov

practice

54 communications of the acm | february 2014 | vol. 57 | no. 2

and carried him the rest of the way to
their ambulance on a high-tech alu-
minum stretcher.

I am absolutely sure that Congress
would never replace the front man on
an ambulance stretcher with a wheel
to save manpower—yet, in a way, they
did just that. I do not claim to know the
correct way to optimize a healthcare
consultation with computers—there
may be one, but more importantly,
there may not.

Blindly deciding that IT be substi-
tuted for humans is unenlightened. IT
is not a magic potion that makes un-
pleasant or inconvenient things disap-
pear. The right thing to do is to ask, as
a Chinese engineer did 2,000 years ago,
“If we’re going to put a wheel on this
thing, where is the best place to put it?”

And to realize that two questions
were asked.	

 Related articles
 on queue.acm.org

More Encryption Is Not the Solution

Poul-Henning Kamp
http://queue.acm.org/detail.cfm?id=2508864

Better Health Care Through Technology

Mache Creeger
http://queue.acm.org/detail.cfm?id=1180186

A Requirements Primer
George W. Beeler and Dana Gardner
http://queue.acm.org/detail.cfm?id=1160447

References
1.	B orenstein, M. and Linimon, M. The extension of MIME

content-types to a new medium. RFC 1437, 1993;
http://www.rfc-editor.org/rfc/rfc1437.txt.

2.	D e Decker, K. How to downsize a transport network:
The Chinese wheelbarrow. Low-tech Magazine; http://
www.lowtechmagazine.com/2011/12/the-chinese-
wheelbarrow.html.

3.	I nternational Telecommunication Union. ITU-T
recommendations; http://www.itu.int/ITU-T/
recommendations/index.aspx?ser=X.

4.	 LaFraniere, S., Austen, I. and Pear, R. Contractors see
weeks of work on health site. The New York Times
(Oct. 20, 2013); http://www.nytimes.com/2013/10/21/
us/insurance-site-seen-needing-weeks-to-fix.html.

5.	 Patient Protection and Affordable Care Act. 2010;
http://www.gpo.gov/fdsys/pkg/PLAW-111publ148/
content-detail.html.

Poul-Henning Kamp (phk@FreeBSD.org) is one of the
primary developers of the FreeBSD operating system. He
is widely unknown for his MD5-based password scrambler,
which protects the passwords on Cisco routers, Juniper
routers, and Linux and BSD systems. Today, he is an
independent contractor.

© 2014 ACM 0001-0782/14/02 $15.00

“(B) shall present up-to-date clinical
evidence about the risks and benefits
of treatment options in a form and
manner that is age-appropriate and
can be adapted for patients, caregivers,
and authorized representatives from
a variety of cultural and educational
backgrounds to reflect the varying
needs of consumers and diverse levels
of health literacy;

“(C) shall, where appropriate, ex-
plain why there is a lack of evidence to
support one treatment option over an-
other; and

“(D) shall address healthcare deci-
sions across the age span, including
those affecting vulnerable populations
including children.”

Unless Congress thinks of teach-
ers as “educational tools,” I think we
can take it as written here that they
expect this to be some kind of com-
puter program. But read it again and
pay attention to the language. When
was the last time you saw a computer
program that “engaged,” “explained,”
or “addressed decisions?” Or, for that
matter, when have you seen a pro-
gram that “adapted for [...] a variety
of cultural and educational back-
grounds to reflect the varying needs
of consumers and diverse levels of
health literacy”?

These paragraphs legislate that
Obamacare will fund research in
heavy-duty state-of-the-art artificial
intelligence—I somehow doubt that
is what Congress intended it to say.
I posit that Congress worried about
having enough doctors and nurses for
this new healthcare, so they wanted to
use computers to cut down the talk-
ing and explaining. In other words,
they want to save manpower—by re-
placing the front man on the hand-
barrow with a wheel.

I have used a handbarrow once,
in an emergency. My fellow campers
and I constructed it from two young
pine trees, wrapping the sail from
our tent around them. Compared to
a wheelbarrow, it was both easier and
faster, because the front man did not
get stuck in any holes or hit any rocks,
and he helped with all of navigation,
lifting, locomotion, and steering.
When we met the first responders,
they gently lifted our friend with his
injured leg from our makeshift ver-
sion to their professional handbarrow

Blindly deciding
that IT be
substituted
for humans is
unenlightened.
IT is not a magic
potion that makes
unpleasant
or inconvenient
things disappear.

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=54&exitLink=http%3A%2F%2Fqueue.acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=54&exitLink=http%3A%2F%2Fqueue.acm.org%2Fdetail.cfm%3Fid%3D2508864
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=54&exitLink=http%3A%2F%2Fqueue.acm.org%2Fdetail.cfm%3Fid%3D1180186
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=54&exitLink=http%3A%2F%2Fqueue.acm.org%2Fdetail.cfm%3Fid%3D1160447
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=54&exitLink=http%3A%2F%2Fwww.rfc-editor.org%2Frfc%2Frfc1437.txt
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=54&exitLink=http%3A%2F%2Fwww.lowtechmagazine.com%2F2011%2F12%2Fthe-chinese-wheelbarrow.html
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=54&exitLink=http%3A%2F%2Fwww.lowtechmagazine.com%2F2011%2F12%2Fthe-chinese-wheelbarrow.html
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=54&exitLink=http%3A%2F%2Fwww.itu.int%2FITU-T%2Frecommendations%2Findex.aspx%3Fser%3DX
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=54&exitLink=http%3A%2F%2Fwww.itu.int%2FITU-T%2Frecommendations%2Findex.aspx%3Fser%3DX
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=54&exitLink=http%3A%2F%2Fwww.nytimes.com%2F2013%2F10%2F21%2Fus%2Finsurance-site-seen-needing-weeks-to-fix.html
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=54&exitLink=http%3A%2F%2Fwww.nytimes.com%2F2013%2F10%2F21%2Fus%2Finsurance-site-seen-needing-weeks-to-fix.html
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=54&exitLink=http%3A%2F%2Fwww.gpo.gov%2Ffdsys%2Fpkg%2FPLaW-111publ148%2Fcontent-detail.html
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=54&exitLink=http%3A%2F%2Fwww.gpo.gov%2Ffdsys%2Fpkg%2FPLaW-111publ148%2Fcontent-detail.html
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=54&exitLink=mailto%3Aphk%40FreebSd.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=54&exitLink=http%3A%2F%2Fwww.lowtechmagazine.com%2F2011%2F12%2Fthe-chinese-wheelbarrow.html

february 2014 | vol. 57 | no. 2 | communications of the acm 55

doi:10.1145/2556647.2556657

 �Article development led by
queue.acm.org

A cohesive, independent solution for bringing
provenance to scientific research.

By Zachary Hensley, Jibonananda Sanyal, and Joshua New

Provenance in
Sensor Data
Management

In today’s information-driven workplaces, data
is constantly being moved around and undergoing
transformation. The typical business-as-usual approach
is to use email attachments, shared network locations,
databases, and more recently, the cloud. More often
than not, there are multiple versions of the data sitting

in different locations, and users of
this data are confounded by the lack of
metadata describing its provenance—
or in other words, its lineage. The
ProvDMS project at the Oak Ridge Na-
tional Laboratory (ORNL) described in
this article aims to solve this issue in
the context of sensor data.

ORNL’s Building Technologies Re-
search and Integration Center has re-
configurable commercial buildings de-
ployed on flexible research platforms
(FRPs). Figure 1 is a Google Earth mod-
el of a medium-size commercial office
building that is part of the ORNL’s
FRP apparatus. These buildings (metal
warehouse and office) are instrument-
ed with a large number of sensors that
measure variables such as HVAC effi-
ciency, relative humidity, and tempera-
ture gradients across doors, windows,
and walls. The sensors acquire sub-
minute resolution data from hundreds

of channels. Scientists conduct experi-
ments, run simulations, and analyze
the data. The sensor data is also used
in elaborate quality assurance exercis-
es to study the effect of systemic faults.
The two types of commercial build-
ings comprising the FRPs stream data
at a 30-second resolution for a total of
1,071 channels for both buildings.

The sensor data collected from the
FRPs is saved to a shared network lo-
cation accessible by researchers. It be-
came apparent that proper scientific
controls required not just managing
the data acquisition and delivery, but
also managing the metadata associ-
ated with temporal subsets of the sen-
sor data. The ProvDMS, or Provenance
Data Management System, for the
FRPs allows researchers to retrieve
data of interest, as well as trace its
lineage. The life cycle of most objects
consists of creation, curation, transfor-

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=55&exitLink=http%3A%2F%2Fqueue.acm.org

practice

56 communications of the acm | february 2014 | vol. 57 | no. 2

mation, archival, and potentially dele-
tion. Provenance is the tracking of such
information.8

ProvDMS provides researchers with
a one-stop shop for all data transfor-
mations, allowing them to effectively
trace their data to its source so that
experiments and derivations of experi-
ments can be reused and reproduced
without the overhead of repeating ev-
ery experiment.

There are a number of existing soft-
ware systems for provenance data col-
lection with strong workflow integra-
tion. Chimera6 is a process-oriented
provenance system that manages deri-
vation and analysis of data objects in
collaboratory environments. It stores
provenance information that can be
used to regenerate, compare, and au-
dit data derivations within the system.
The Karma provenance system7 allows
users to collect and query provenance
of scientific data processes with the
ability either to run stand-alone or as
part of a greater cyber-infrastructure
setup. The Karma system is intimately
connected with its data as a result of
its close workflow integration. Vis-
Trails4,5 provides support for scientific
data exploration and visualization
with a strong focus on work flow as
provenance objects to represent com-
plex computations. Workflow in Vis-

Trails can be visualized as pipelines
of procedure sequences that lead to a
computational output. The EU Prov-
enance Project1 uses an open prov-
enance architecture for grid systems
with a service-oriented approach,
namely for aerospace engineering and
organ-transplant management. In
the EU Provenance Project, the prove-
nance system was used to track medi-
cal information in units of patient/
doctor interactions. The project at-
tempted to find equilibrium between
the amount of data collected and min-
imizing the intrusiveness of the col-
lection effort in order to preserve the
quality of medical care.

While many of these systems are
complete software solutions, Core
Provenance Library (CPL)3 was de-
signed to be application independent
and easy to integrate into new or exist-
ing systems. Because of its indepen-
dent nature, CPL was used in ProvD-
MS to serve as the provenance back
end. This allowed the user interface
of ProvDMS to be separate from CPL’s
object constraints, thereby producing
a positive user experience.

Effective Provenance Design
Particular implementations of prove-
nance can vary greatly depending upon
a few important attributes. The focus

of ProvDMS is on researcher require-
ments, granularity of the provenance,
workflow requirements, and object
design. Its design principles empha-
size the importance of user needs, tak-
ing a cohesive but independent stance
on the integration of provenance with
user tools.

Granularity. Most systems incorpo-
rate both fine and coarse granularity to
avoid restricting the type and amount
of data available to users.2 ProvDMS im-
plements a fine-granularity system but
provides a mixed-granularity interface
for users so that tracing lineage using
visualization is contextual. Users are
shown generalizations as coarse prov-
enance objects that can be contextually
expanded to provider finer granularity
information. This allows users still to
see finer, exact provenance objects that
specifically map to logical objects in
the system but are not overburdened
with unnecessary information when
viewing the provenance.

Tool integration with workflow.
ProvDMS’s design was largely deter-
mined by the “when” and “how” of
integrating with existing tools. Most
tools have limited to no provenance-
tracking abilities. ORNL researchers
routinely use a wide array of specialized
tools from various vendors that do not
have provenance support. As a result,
ProvDMS could not have many restric-
tions. While challenging, this steered
the focus toward data infrastructure re-
quirements to enable tracing the prov-
enance while facilitating development
of software interfaces to support future
system integration. To enable a sense of
workflow, ProvDMS uses the notion of a
user experiment, where the sensor data
resides once exported from the system.
Users may choose any tool and have the
option of importing different states of
their experiments back into ProvDMS.

Provenance of provenance. The abil-
ity of a provenance system to track how
it creates and tracks provenance ob-
jects was not an initial design require-
ment for ProvDMS but emerged from
the abilities of CPL. By tracking prov-
enance of provenance (PoP), ProvDMS
provides specific information about
when the provenance system created
new objects or versions of objects,
which user was responsible for the
creation of objects, the process ID that
performed tracking functions, and sys-

Figure 1. Model of a building that is part of the ORNL’s FRP apparatus.

practice

february 2014 | vol. 57 | no. 2 | communications of the acm 57

tem information such as the executing
environment. Administrators of this
system can now track system usage
over time and may detect patterns in
how the system and provenance data
storage is being used.

Uniqueness. Provenance systems
inherently involve hierarchical connec-
tivity among objects. The use of CPL as
the provenance back end allows users
to access provenance object ancestry
easily. Additionally, CPL’s versioning
system ensures each object is uniquely
identifiable, which solves the design
issue of the user’s ability to define an
experiment multiple times.

Object design. Object design shaped
the entirety of ProvDMS and arguably
comprised the most difficult set of de-
cisions to make. The first challenge was
to determine how users are expected to
interact with the data that would deter-
mine the required provenance objects.
This was difficult to gauge for a system
that was still on paper. We were un-
sure of the level of granularity of prov-
enance to store and expose since there
was the possibility that much of the
provenance data could go unused. We
leaned on the side of finer granularity
while providing support across a spec-
trum of granularity to account for the
yet-to-discover unknowns in ProvDMS.

Provenance objects in CPL are
uniquely defined using three main
attributes: Name, Type, and Origina-
tor. In ProvDMS’s use of CPL, Name
describes the object, and Type deter-
mines its granularity. The Origina-
tor is to be used in a similar vein to
Java’s package-naming convention,
via hierarchical domain namespaces.
ProvDMS uses the name of the system
as the top-level domain, user as the
next level, and interface as the final
level. This ensures the existence of un-
derstandable and unique originators
differentiating the experiments (and
corresponding provenance objects)
based on authenticated users.

System Architecture, Design,
Cohesion, and Independence
The FRPs use Campbell Scientific’s
data loggers for collecting data from
1,071 channels in the facility. Camp-
bell Scientific’s Loggernet Database
(LNDB) runs on a dedicated server and
populates a MySQL database with the
raw sensor output. ProvDMS runs on

another dedicated server and retrieves
the data from the MySQL database
to fulfill user needs, thereby provid-
ing complete separation of the raw
data store from the provenance trace.
LNDB creates the required schema
on the data server, and ProvDMS is
architected to sense the schema and
its logical relationship to the FRP in
order to present a cogent, simplified
interface to the users. Checks are in
place to ensure data backup, security,
and isolation since much of the data is
proprietary.

Figure 2 shows the logical repre-
sentation of the physical layout of FRP
data. This influences the provenance
object design of ProvDMS. As illustrat-
ed in the figure, the sensor data is sepa-
rated into stations, each containing a
set of data loggers. These data loggers
consist of a set of data channels. Physi-
cally, these channels relate to sensors
placed in different locations through-
out the test facility.

The ultimate goal of the provenance
system is to trace the participation of
temporal subsets of sensor data in user
experiments. ProvDMS treats these as
objects. Researchers export a tempo-
ral subset of the chosen sensor chan-

nels as an experiment, which can then
go through various transformations in
the user’s workspace. Once research-
ers feel ready, they may submit the
“state” of their experiment to the sys-
tem, along with any additional derived
data, supporting files, results, or other
metadata. ProvDMS allows users to
map the uploaded files as a derivative
of the original experiment.

The logical representation of FRP
data was designed to correspond to
the provenance objects. Each type of
provenance object relates to its logi-
cal representation. These objects are
similar in their representation, with a
few differences. Importantly, there are
additional links from data loggers to
their associated files. In the case of us-
er-defined experiments, these are the
files holding channels of sensor data.
For derived experiments, these are any
associated files used in the derivation.
Figure 3 illustrates the differences in
their representation. Two types of links
are used: version dependencies and da-
ta-flow dependencies. Differences be-
tween these links are important for the
cycle-avoidance algorithm in the CPL.

In addition, there are two types of
links between objects: version depen-

Figure 2. Logical representation of the physical layout of FRP data.

Station A Data Logger P

Sensor O

Data Logger Q

Data Logger R

Station X

Station Y

Sensor N

Active Inactive

Sensor M

Figure 3. Logical representation of the provenance object design.

Experiment Experiment Imported Experiment

Data Logger

Station

Channel/Sensor

Data Logger

Station

Channel/Sensor

Associated File A

Associated File B

Associated File C

Version
Dependency

Data-flow
Dependency

practice

58 communications of the acm | february 2014 | vol. 57 | no. 2

dencies are used for objects created as
new versions of previous objects; data-
flow dependencies are used as ances-
try links between differing objects,
representing a translation of data be-
tween them. The differences between
these two types of links are very impor-
tant for CPL’s cycle-avoidance algo-
rithm (discussed in more detail later
in the section covering provenance
visualization).

Architecturally, ProvDMS has a
layered design. Figure 4 is a diagram
showing its layers and components.
The compatibility layer includes two
wrappers: a PHP wrapper and a C++

wrapper the PHP wrapper interacts
with. The C++ wrapper abstracts the
provenance back-end interaction.
The different components interact
cohesively:

˲˲ The ProvDMS layer represents the
user interface for provenance interac-
tion. Figure 5 shows the experiment
creation interface, which allows users
to select subsets of data for experiment
objects and to interact with managed
sensor data, visualize provenance in-
formation, and either define or derive
experiments.

˲˲ The compatibility layer abstracts
the API calls of CPL so ProvDMS can

interact with the underlying system.
Using the PHP wrapper, the system can
pass queries from the coupled software
to the database back end, as well as
share those results.

˲˲ The provenance database is the
storage layer of ProvDMS. The inter-
actions between the database and
the compatibility layer allow for prov-
enance information to be gathered
when users define or derive experi-
ment objects while interacting with
ProvDMS.

˲˲ The sensor database stores FRP
sensor data, as well as stored proce-
dures for fast querying when needed.
Most data retrieved from this layer is
joined with particular FRP stations or
data loggers before transmission. It is
independent of the provenance system
in order to facilitate decoupled scal-
ability and interfacing with other soft-
ware components being developed for
the FRPs.

Using CPL allows ProvDMS to act
independently of provenance-calling
API hooks when information has to be
saved to the provenance database. An
abstraction layer handles the transla-
tion of user actions to CPL API calls for
inserting or querying provenance in-
formation. This is encapsulated into a
compatibility layer containing the PHP
and C++ wrappers.

The PHP code in Figure 6 demon-
strates the wrapper’s interaction with
C++ in order to store or retrieve prov-
enance data.

CPL, which is written in C, already
includes some C++ functionality. The
C++ wrapper abstracts the interaction
with CPL via a heavily object-oriented
interface. The code snippet in Figure 7
illustrates the creation of provenance
objects. As illustrated, PHP communi-
cates with the C++ wrapper using exec
calls. The decision to forgo a PHP exten-
sion was based on a few driving factors:

Trade-off. The trade-off between de-
coupled generality and performance
overhead of exec calls, especially for a
small number of them, leaned toward
a PHP exec framework rather than a
full PHP extension.

Simplicity. Using an exec call to an
external C++ executable made it pos-
sible to maintain a simple parameter-
based call similar to that of bash.

Source. Including the C++ wrapper
as an external executable while provid-

Figure 4. The layers and components of ProvDMS.

ProvDMS

Web-interface

User Actions Visualization

Compatibility Layer

PHP wrapper

C++ wrapper

Core Provenance Library

Sensor Database

Provenance Database

Figure 5. The experiment creation interface.

practice

february 2014 | vol. 57 | no. 2 | communications of the acm 59

ing source code allows administrators
to modify the wrapper based on organi-
zational needs.

Time to Implement. ProvDMS was
designed and implemented in eight
to nine weeks, and we made the best
of the rapid development. A complete
PHP extension implementation was
outside the scope of the allocated time
and budget for the project.

The integration with CPL was
among the smoothest parts of ProvD-
MS’s implementation. Some minor dif-
ferences in testing and using CPL-inte-
grated systems on different client and
server platforms exist. Open-SUSE 12.3
was used for development and testing
of ProvDMS, and Red Hat Enterprise
Linux 6 for the production version.

One of the earliest hitches involved
interactions between PHP and exec’d
C++ calls. In order for CPL to provide
PoP, it must pull some information
from the executing environment. This
works perfectly for client-side execu-
tion of CPL code, but once the CPL
code is executed via PHP exec calls,
certain environment variables are no
longer retrievable. These variables are
necessary to save information about
provenance sessions, and thus the
provenance back end cannot continue.
A quick hot-fix to pass in proper envi-
ronment information evaded the pull
from environment variables.

Features and Usage
ProvDMS was built not just to trace
the provenance of experiments, but
also to be a one-stop access point for
all sensor data-related activities for
the FRPs. It provides the following in-
terface features:

Experiment creation. ProvDMS al-
lows users to select subsets of stations,
data loggers, and channels as a defi-
nition of a new experiment. This in-
formation is parsed and saved as CSV
files on the server. On request, users
can export this data. On creation, each
experiment is defined as a provenance
object by the provenance back end—
creating all finer-granularity objects in
addition.

Experiment derivation. Users up-
load and define experiments as deri-
vations of previous experiments. This
means users can save the state of their
data and any associated files in ProvD-
MS, allowing them to trace the deriva-

tion in the future.
Data status. The system provides

a dashboard with Sparklines,9 which
helps summarize the status of data on
the server. Sparklines are small trend-
ing plots that have no axes labels, allow-
ing them to be embedded inline with
text, thus permitting users to pick out
trends in the data easily. Sparklines can
display the status of key channels from
different sensors for quick assessment
and detection of faults in the system.

Provenance visualization. The sys-
tem provides visualization capabili-
ties so users can easily visualize their
data’s lineage. The subject of prov-
enance visualization warrants a sepa-
rate discussion, covered in more de-
tail in the next section.

Much of the early development of
ProvDMS was spent ensuring it is natu-
ral and simple to use. For example, the
experiment creation feature (Figure 5)
is designed with effective user inter-
action principles to enable a simple
“flow,” and it emphasizes the impor-
tance of efficiency when managing
user data.

Provenance Visualization
The first question anyone should ask
when beginning visualization is simi-
lar to the first question that should
be asked when designing a prove-
nance system: “What information is
important?”

The developers of CPL suggest the
use of their Orbiter tool to visualize

Figure 6. The wrapper’s interaction with C++.

Function prov_new_experiment ($experiment)
{
	 global $comman;
	 global $userID;

	 $retInfo = Array() ;
	 $retStatus = null ;

	 $exp = new Provenance_Object ($experiment [
		 'name'], "Experiment");
	 $exp–>addPrperty ('time_begin' , $experiment [|
		 'time_begin']) ;
	 $exp–>addProperty('time_end' , $experiment [
		 'time_end']);

	 $params = ' ' ;
	 $params . = ' −c "create_object"';
	 $params . = ' −n "' . $exp–>getName() . '"';
	 $params . = ' −t "' . $exp–>getType () . '"';
	 $params . = ' −o "' . $exp–>getOriginator() . '"';
	 $params . = ' −p "' . $exp–>getProperties() . '"';
	 $params . = ' −u "' . $userID . '"';
	 $params . = ' −s "Yes"';
					 //
	 Soft-create, make new version if already exists

	 exec ($command . $params , $retInfo , $retStatus);

}

Figure 7. The creation of provenance objects.

bool hook_create_object(const char * user, Prov_Params
	 params)
{
	 int pid = getpid();

	 odbcHandler * handler = new odbcHandler("CPL",
	 true, user, pid);
	 handler–>new_object(params);
	 delete handler;

	 return true;

}

practice

60 communications of the acm | february 2014 | vol. 57 | no. 2

provenance using CPL. Orbiter is an ex-
ternal visualization program developed
in Java. It pulls information from the
CPL database (an SQL back end in this
case) and visualizes it using a node-link
graph. It includes features for time-
based visualization and node grouping
for nodes with common links. It is an
excellent tool for visualizing the infor-
mation from the CPL database.

As easy as it would have been to
make Orbiter ProvDMS’s visualization
tool, there are some issues. Primary
among these is CPL’s use of a cycle-
avoidance algorithm to version and
link objects without creating cycles in
object provenance. Contextual infor-

mation must be displayed as part of the
visualization. This means removing
particular information from CPL’s an-
cestry queries. Figure 8 shows a subset
of provenance information created by
ProvDMS and its integration with CPL.
Two versions of the finer-granularity
objects exist as a result of data-flow
dependencies and the cycle-avoidance
algorithm. These extra nodes must be
removed for clean visualization of the
provenance. This information is cor-
rect in its representation, but many of
the objects are not important to users
and can obfuscate the data’s lineage in
the visualization. For a clearer repre-
sentation of the provenance, the dou-

ble versions created via the translated
objects as a result of cycle avoidance
must be removed.

It is important to note how specific
these parsed cases are. In the figure, the
experiment objects are missing the ex-
tra translation versions because these
experiments are linked only via ver-
sion dependencies. This means a user
has created a new experiment with the
same identification as a previous ex-
periment. This is a cue for ProvDMS’s
integration with CPL to create a new
version of this experiment. This proce-
dure bypasses the need to link objects
manually via data-flow dependencies.
A situation like this increases the dif-
ficulty in parsing individual cases for
visualization.

Types of Visualization
ProvDMS’s visualization is Web en-
abled using various JavaScript visual-
ization libraries such as the JIT (Java-
Script InfoVis Toolkit) and D3.js (Data
Driven Documents). ProvDMS includes
a few types of visualizations:

Non-unique node-link tree. Objects
in CPL’s provenance implementation
are inherently unique because of the
Name, Type, Originator object conven-
tion. Though objects are initially cre-
ated uniquely, the nature of provenance
is to provide a hierarchical flow of data.
Objects will undoubtedly have mul-
tiple versions at some point in their life
cycles. Multiversioned objects do not
change their identification from one
version to another. As only their ver-
sion changes, the nodes are no longer
uniquely identified using the same con-
vention for this type of visualization.

Force-based node-link layout. Clas-
sical approaches to the visualization
of provenance focus on tree-like views
rooted from the top-level provenance
object (often a selected one). CPL’s
objects are designed to use this type of
inheritance as well, relying on descen-
dants and ancestors for the traversal
of provenance information. Even
then, it can be useful to visualize the
lineage of objects differently, such as
employing a force-based layout. This
layout still uses a node-link format—
as the other ones do—but it uses a sys-
tem of forces acting on each node to
determine their positions. This makes
the system feel more interactive, as us-
ers have the ability to apply forces to

Figure 8. Logical representation of a subset of provenance data.

Created Objects

Data Logger 1 V.0

Station 1 V.0

Channel 1 V.0

Experiment A V.0

Translated Objects
(Result of data flow)

Data Logger 1 V.1

Station 1 V.1

Channel 1 V.1

Created Objects

Data Logger 1 V.0

Station 1 V.0

Channel 1 V.0

Experiment A V.1

Translated Objects
(Result of data flow)

Data Logger 1 V.1

Station 1 V.1

Channel 1 V.1

Figure 9. The force-based node-link layout.

Object version 0

Object version 1

Trace of coarse granularity object lineage
Trace of fine granularity objects

Derived Object version O

Object version 2

practice

february 2014 | vol. 57 | no. 2 | communications of the acm 61

nodes in the graphs by dragging them.
Figures 9 and 10 demonstrate some

interesting results of this type of visu-
alization. In Figure 9, a traceable flow
of data lineage is visible, as well as a
natural grouping of objects with simi-
lar granularity. Solid gray lines repre-
sent hierarchical connections between
provenance objects that group togeth-
er as information relevant to a single
version of a user-defined or imported
experiment. Orange-colored nodes
represent the top-level experiment ob-
jects that are parents of all associated
finer-granularity objects such as sta-
tions, data loggers, and channels (col-
ored blue, red, and green, respectively).
In Figure 10, the innermost node and
all of the finer-granularity nodes’ con-
nections create a pseudo “weight” that
encompasses the entirety of the group-
ing of objects. Each object has its asso-
ciated weight, which affects the layout

of all connected nodes. The grouping
tends to act as a single node in the vi-
sualization.

Unique, contextual node-link tree.
The current implementation of visual-
ization in ProvDMS uses this approach
in its provenance-visualization mod-
ule. Similar to the first approach, this
one uses a node-link tree to visualize
the provenance in a hierarchical fash-
ion. Nodes are expanded asynchro-
nously, pulling information from the
provenance database as they do. Con-
textual information can be shown for
certain objects. In this manner, even
finer granularity can be visualized by
processing provenance object proper-
ties in addition to the objects them-
selves. Figure 11 is an example of this
visualization, using contextual node-
link trees. Two nodes are expanded to
show meta-information at a finer gran-
ularity level than their parent nodes.

Experiment nodes are the coarsest
objects, while information specific to
provenance objects, shown in rectan-
gles, is at the finest granularity level.

Conclusion
This attempt to bring provenance to
scientific research has highlighted
some of the challenges and potential
solutions for applying provenance to
generalized data streams. Although
we successfully built a system to han-
dle provenance for ORNL’s FRPs, this
specific use case makes it less general
than many other provenance systems.
The availability of CPL as a library has
been beneficial. The success with us-
ing CPL can be attributed to ProvDMS
being independent of the provenance
back end, providing the required flex-
ibility in system design. The C++ and
PHP-wrapper code developed during
the project was contributed back to the

Figure 10. A close-up of one of the groupings in the force-based node-link layout.

Coarse
Granularity

Object

Another Coarse
Granularity

ObjectFine
Granularity

Object

Fine
Granularity

Object

Fine
Granularity

Object

Fine
Granularity

Object

Fine
Granularity

Object

Fine
Granularity

Object

Fine
Granularity

Object

Fine
Granularity

Object

Fine
Granularity

Object

Fine
Granularity

Object

Pseudo-”weight”
created as combination
of object weights and

their connections to the
coarse granularity object

”Weight”

”Weight” ”Weight”

practice

62 communications of the acm | february 2014 | vol. 57 | no. 2

authors of CPL for future integration.
Research efforts are under way in

automated sensor-data validation, es-
timation for missing or corrupt data,
and machine-learning estimations of
sensor health with plans to integrate
work flows with ProvDMS. The systems
will connect to the underlying layers of
ProvDMS, allowing integrated track-
ing of the provenance for data validity,
fault detection, and quality assurance.

Despite challenging design deci-
sions, usability both guided and re-
stricted the abilities of ProvDMS. We
limited the features and the granularity
of collected provenance to ensure min-
imal restrictions and little additional
training required of the researchers.
The result is a simple interface for us-
ers to keep track of their data and ex-
periments manually. The modular de-
sign of ProvDMS will allow the addition
of newer provenance-collection meth-
ods as the system evolves. The knowl-
edge derived from our experience with
ProvDMS’s design and use should soon
lead to further improvements.

In the end, ProvDMS can serve as

an example of implementing and us-
ing provenance of a common data ar-
chetype in an environment normally
devoid of information-tracking meth-
ods. ProvDMS should demonstrate the
power of such systems for enabling re-
producible science.

Acknowledgments
We thank the authors of CPL—Peter
Macko and Margo Seltzer of Harvard
University—for their support and guid-
ance on the use of CPL during the proj-
ect. This work was funded by fieldwork
proposal RAEB006 under the Depart-
ment of Energy Building Technology
Activity Number EB3603000. We also
thank Edward Vineyard for his support
of this project.

Oak Ridge National Laboratory
is managed by UT-Battelle, LLC, for
the U.S. Department of Energy under
contract DE-AC05-00OR22725. This
manuscript has been authored by UT-
Battelle, LLC, under Contract Number
DEAC05-00OR22725 with the U.S. De-
partment of Energy. The U.S. govern-
ment retains and the publisher, by

accepting the article for publication,
acknowledges the U.S. government re-
tains a nonexclusive, paid-up, irrevo-
cable, worldwide license to publish or
reproduce the published form of this
manuscript, or allow others to do so,
for U.S. government purposes.	

 Related articles
 on queue.acm.org

Hazy: Making it Easier to Build
and Maintain Big-data Analytics

Arun Kumar, Feng Niu and Christopher Ré
http://queue.acm.org/detail.cfm?id=2431055

The Invisible Assistant

Gaetano Borriello
http://queue.acm.org/detail.cfm?id=1147532

Self-Healing Networks
Robert Poor, Cliff Bowman
and Charlotte Burgess Auburn
http://queue.acm.org/detail.cfm?id=864027

References
1.	A lvarez, S., Vazquez-Salceda, J., Kifor, T., Varga, L. Z.,

and Willmott, S. Applying provenance in distributed
organ transplant management. Provenance and
Annotation of Data. Springer, 2006, 28–36.

2.	 Chapman, A. and Jagadish, H.V. Issues in building
practical provenance systems. IEEE Data Engineering
Bulletin 30, 4 (2007), 38–43.

3.	 Macko, P. and Seltzer, M. A general-purpose
provenance library. In Proceedings of the 4th Usenix
Workshop on the Theory and Practice of Provenance,
2012.

4.	 Scheidegger, C., Koop, D., Santos, E., Vo, H., Callahan,
S., Freire, J. and Silva, C. Tackling the provenance
challenge one layer at a time. Concurrency and
Computation: Practice and Experience 20, 5 (2008),
473–483.

5.	 Silva, C.T., Freire, J. and Callahan, S.P. Provenance for
visualizations: reproducibility and beyond. Computing
in Science & Engineering 9, 5 (2007), 82–89.

6.	 Simmhan, Y.L., Plale, B. and Gannon, D. A survey of
data provenance in e-science. ACM Sigmod Record 34,
3 (2005), 31–36.

7.	 Simmhan, Y.L., Plale, B. and Gannon, D. Query
capabilities of the Karma provenance framework.
Concurrency and Computation: Practice and
Experience 20, 5 (2008), 441–451.

8.	 Szomszor, M., Moreau, L. Recording and reasoning
over data provenance in Web and grid services. On the
Move to Meaningful Internet Systems 2003: CoopIS,
DOA, and ODBASE. Springer, 603–620.

9.	T ufte, E. Sparklines: theory and practice, 2004;
http://www.edwardtufte.com/bboard/q-and-a-fetch-
msg?msg_id=0001OR&topic_id=1.

Zachary Hensley is a senior computer science major
with a focus on software and scientific applications
at Tennessee Technological University. He previously
interned at Oak Ridge National Laboratory. The ProvDMS
project was his first experience of extensive research into
data provenance.

Jibonananda (Jibo) Sanyal is a staff scientist at the
Building Technologies Research and Integration Center
at Oak Ridge National Laboratory. His current research
focus includes massively parallel and scalable energy
simulations on high-performance computing systems and
subsequent big-data analysis.

Joshua New has been a computer scientist with Oak
Ridge National Laboratory since 2009. He coordinates the
energy-modeling efforts of ORNL’s Building Technology
Research Integration Center for EnergyPlus, OpenStudio,
and advanced simulation capabilities leveraging high-
performance computing and AI for building energy
models via ensemble simulations and big data mining.

© 2014 ACM 0001-0782/14/02 $15.00

Figure 11. ProvDMS’s current visualization using contextual node-link trees.

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=62&exitLink=http%3A%2F%2Fqueue.acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=62&exitLink=http%3A%2F%2Fqueue.acm.org%2Fdetail.cfm%3Fid%3D2431055
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=62&exitLink=http%3A%2F%2Fqueue.acm.org%2Fdetail.cfm%3Fid%3D1147532
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=62&exitLink=http%3A%2F%2Fqueue.acm.org%2Fdetail.cfm%3Fid%3D864027
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=62&exitLink=http%3A%2F%2Fwww.edwardtufte.com%2Fbboard%2Fq-and-a-fetch-msg%3Fmsg_id%3D0001OR%26topic_id%3D1
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=62&exitLink=http%3A%2F%2Fwww.edwardtufte.com%2Fbboard%2Fq-and-a-fetch-msg%3Fmsg_id%3D0001OR%26topic_id%3D1

ICMI 2014
The 16th International Conference on
Multimodal Interaction

http://icmi.acm.org/2014

Bogazici University, Istanbul, Turkey
November 12-16th, 2014

Grand challenge proposals January 15th, 2014
Special session proposals March 22nd, 2014
Workshop proposals March 15th, 2014

Long and short paper submissions May 9th, 2014

Doctoral consortium submissions July 1st, 2014

Demo proposals July 15th, 2014

Organising Committee

Important Dates

General Chairs
Albert Ali Salah (Boğaziçi University, Turkey)
Je�rey Cohn (University of Pittsburgh, USA)
Björn Schuller (TUM / Imperial College London, UK)

Program Chairs
Oya Aran (Idiap Research Institute, Switzerland)
Louis-Philippe Morency (University of Southern California, USA)

Workshop Chairs
Alexandros Potamianos (University of Crete, Greece)
Carlos Busso (University of Texas at Dallas, USA)

Demo Chairs
Kazuhiro Otsuka (NTT Comm. Science Lab.s, Japan)
Lale Akarun (Boğaziçi University, Turkey)

Multimodal Grand Challenge Chairs
Dirk Heylen (University of Twente, The Netherlands)
Hatice Gunes (Queen Mary University of London, UK)

Doctoral Consortium Chairs
Justine Cassell (Carnegie Mellon University, USA)
Marco Cristani (University of Verona, Italy)

Publication Chairs
Alessandro Vinciarelli (University of Glasgow, UK)
Zakia Hammal (Carnegie Mellon University, USA)

Publicity Chair
Nicu Sebe (University of Trento, Italy)

Sponsorship Chair
Aytül Erçil (Sabancı University, Turkey)

Local Organization Chair
Hazım Ekenel (Istanbul Technical University, Turkey)

Multimodal Interaction Processing

Interactive Systems and Applications

Modelling Human Communication Patterns

Data, Evaluation and Standards for Multimodal Interactive Systems

Urban Interactions

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=63&exitLink=http%3A%2F%2Ficmi.acm.org%2F2014

contributed articles

64 communications of the acm | february 2014 | vol. 57 | no. 2

Illus

t

r
a

t
i

o
n

 b
y

 B
r

i
a

n
 G

r
e

e
n

b
e

r
g

/A
n

d
r

i
j

 B
o

r
y

s
 Ass

o
c

i
a

t
e

s

On August 5, 2012,10:18 P.M. PST, a large rover named
Curiosity made a soft landing on the surface of Mars.
Given the one-way light-time to Mars, the controllers
on Earth learned about the successful touchdown 14
minutes later, at 10:32 p.m. PST. As can be expected,
all functions on the rover, and on the spacecraft
that brought it to its destination 350 million miles
from Earth, are controlled by software. This article
discusses some of the precautions the JPL flight
software team took to improve its reliability.

To begin the journey to Mars you need a launch
vehicle with enough thrust to escape Earth’s gravity.
On Earth, Curiosity weighed 900 kg. It weighs no more
than 337.5 kg on Mars because Mars is smaller than
Earth. Curiosity began its trip atop a large Atlas V 541
rocket, which, together with fuel and all other parts
needed for the trip, brought the total launch weight
to a whopping 531,000 kg, or 590 times the weight
of the rover alone.

Within two hours following launch,
though, most parts of the launch ve-
hicle had been discarded. At that
point, the remaining main parts of the
spacecraft included the cruise-stage,
the backshell with a large parachute
inside, the descent-stage with its intri-
cate sky crane mechanism, the rover,
and a large heat shield (see Figure 1).

The cruise-stage was equipped with
solar panels to help power the space-
craft during its nine-month trip to
Mars, as well as a star tracker to help
with navigation, and thrusters to per-
form small course corrections. All
were cast off approximately 10 min-
utes before the spacecraft entered the
Martian atmosphere.

The remaining parts were now all
contained within the backshell and
protected by the heat shield. The
backshell, large enough to hold a
small car, had its own set of thrust-
ers to make small course adjustments
during the hypersonic entry into the
Martian atmosphere. During entry,
the backshell cast off several large
chunks of ballast mass (weighing
some 320 kg) to adjust the center of
gravity for the landing at the com-
mand of the rover computer that con-
trols the entire mission.

Approximately three minutes be-
fore landing the parachute deployed
to slow the spacecraft from 1,500
km/h to 300 km/h. The heat shield
was ejected, and less than a minute
before touchdown the descent stage
dropped away from the backshell (see
Figure 2). From this point on it was up
to the descent stage to guide the rover,
with wheels deployed, to the surface
(see Figure 3), disconnect itself, and
fly away a safe distance to crash. All
steps in this sequence were again con-

Mars
Code

doi:10.1145/2560217.2560218

Redundant software (and hardware) ensured
Curiosity reached its destination and
functioned as its designers intended.

By Gerard J. Holzmann

This image depicts the “fill-packet”
transmitted by the Curiosity rover many
times each sol (a day on Mars) whenever
there is no useful telemetry to send to Earth.
The fill packet lists 50 members of the NASA
JPL flight software team as well as an in
memoriam list of another 18, including
the crew of the Challenger and Columbia
shuttles and the astronauts killed in a pre-
launch test for Apollo 1, and inspirational
remarks from astronomer Carl Sagan.

contributed articles

66 communications of the acm | february 2014 | vol. 57 | no. 2

includes a good development process,
with clearly stated requirements, re-
quirements tracking, daily integration
builds, rigorous unit and integration
testing, and extensive simulation.

This article does not revisit these
well-known principles of software de-
sign. Instead, it focuses on a different
set of precautions the flight software
team took in the development of the
MSL mission software that is perhaps
less common. We restrict ourselves
here to three specific topics: First, the
coding standard we adopted, which is
distinguished by being sparse, risk-
based, and supported by automated
compliance-checking tools; second,
the redefined code-review process we
adopted, which allowed us to thor-
oughly scrub large amounts of code
efficiently, again leveraging the use of
tools; and third, logic model-check-
ing tools to formally verify mission-
critical code segments for the exis-
tence of concurrency-related defects.

Risk-based coding rules. No meth-
od can claim to prevent all mistakes,
but that does not mean we should
not try to reduce their likelihood. Be-
fore we can do so, though, we have to
know what types of mistakes occur

trolled by one of two available com-
puters located within the body of the
rover itself.

With each new mission flown to
Mars, the size and complexity of both
spacecraft hardware and software has
increased. The Mars Science Labora-
tory (MSL) mission, for instance, uses
more code than all previous missions
to Mars combined, from all countries
that have tried to do it. This rapid
growth in the size of the software is
clearly a concern, but one not unique to
this application domain. Unlike most

other software applications, though,
the embedded software for a spacecraft
is designed for a one-of-a-kind device
with an uncommon array of custom-
built peripherals. The code targets
just one user (the mission), and for the
most critical parts of the mission the
software is used just once, as in the all-
important landing phase, which lasts
only minutes. Moreover, the software
can be frustratingly difficult to test in
an accurate representation of the en-
vironment in which it must ultimately
operate, yet there are no second chanc-
es. The penalty for even a small coding
error can be not just the loss of a rare
opportunity to expand our knowledge
of the solar system, it can also mean the
loss of a significant investment and put
a serious dent in the reputation of the
responsible organization.

Reducing Risk
There are standard precautions that
can help reduce risk in complex soft-
ware systems. This includes the defi-
nition of a good software architec-
ture based on a clean separation of
concerns, data hiding, modularity,
well-defined interfaces, and strong
fault-protection mechanisms.18 It also

 key insights
 � �The software that controls an interplanet-

ary spacecraft must be designed to
a high standard of reliability; any small
mistake can lead to the loss of the mission
and its unique opportunity to expand
human knowledge.

 � �Extraordinary measures are taken in both
hardware and software design to ensure
spacecraft reliability and that the system
can be debugged and repaired from
millions of miles away.

 � �Formal methods help verify intricate
software subsystems for the potential
of race conditions and deadlocks;
new model-checking techniques
automate the verification process.

Figure 1. Spacecraft parts.

Backshell Interface Plate

Parachute Support
Structure

Parachute

Bridal
Umbilical
Device

Cruise Stage

Descent Stage

Entry Vehicle System

Rover

Heat Shield

Backshell

contributed articles

february 2014 | vol. 57 | no. 2 | communications of the acm 67

most often in this domain. Finding
the data is not difficult. Most anoma-
lies that have affected space missions
are carefully studied and document-
ed, with most information publicly
available. We used it to categorize the
root causes of each software anomaly
to produce a list of the primary areas
of concern.

Among them are basic coding
and design errors, especially those
caused by an undisciplined use of
multitasking. Other frequently oc-
curring errors originate in the use
of dynamic memory-allocation tech-
niques, which in the early days of
space exploration often meant the
use of dynamic memory overlays. Fi-
nally, the data also shows even stan-
dard fault-protection techniques can
have unintended side effects that
can also cause missions to fail.

The coding standard we developed
based on this study differs from many
others in that it contained only risk-
related, as opposed to style-related,
rules.9,13 Our view is that coding style
(for instance, where curly brackets are
placed and how a loop statement is for-
matted) can be adjusted easily to the
preferences of a viewer (or reviewer) us-
ing standard code-reformatting tools.
Risk-reduction, though, is a consid-
eration that should trump formatting
decisions. We used two criteria for in-
clusion of rules in our new JPL coding
standard: First, the rule had to corre-
late directly with observed risk based
on our taxonomy of software anoma-
lies from earlier missions; and second,
compliance with the coding rule had to
be verifiable with tool-based checks.

Compliance with a coding standard
need not be an all-or-nothing proposi-
tion; not all code is equally critical to
an application. The coding standard
we developed therefore recognizes
different levels of compliance that ap-
ply to different types of software (see
Figure 4).

Level-one compliance, or LOC-1,
sets a minimal standard of workman-
ship for all code written at JPL. There
are just two rules at this level: The first
says all code must be language compli-
ant; that is, it cannot rely on compiler-
specific extensions that go outside the
language definition proper. For flight
software the language standard used
at JPL is ISO-C99. The second rule at

this level requires that all code can pass
both the compiler and a good static
source code analyzer without triggering
warnings. For this test, the compiler is
used with all warnings enabled.

LOC-2 compliance adds rules that

are meant to secure predictable execu-
tion in an embedded system context.
One important rule defined at this lev-
el is that all loops must have a statical-
ly verifiable upper bound on the num-
ber of iterations they can perform.

Figure 2. MSL descent stage.

Figure 3. MSL sky crane.

Figure 4. Life cycle of a code comment; orange arrow indicates where the developer
disagrees with a code change but is overruled in the final review.

Code
Comments

Disagree Code Fix Job Ticket

Agree

Discuss No Fix

Peer Reviewer
or Tool Created

Developer
Response

Code Review
Resolution

Code Review
Closeout

contributed articles

68 communications of the acm | february 2014 | vol. 57 | no. 2

tools can prove their value. A static an-
alyzer will not tire of checking for the
same types of defects over and over,
night after night, patiently reporting
all violations. We have therefore made
extensive use of this technology.

A wide range of commercial static
source-code-analysis tools is on the
market, each with slightly different
strengths. We found that running
multiple analyzers over the same code
can be very effective; there is surpris-
ingly little overlap in the output from
the various tools. This observation
prompted us to run not just one but
four different analyzers over all code as
part of the nightly integration builds
for the MSL mission.

The analyzers we selected—Cover-
ity, Codesonar, Semmle, and Uno—
had to be able to identify likely bugs
with a reasonably low false-positive
rate, handle millions of lines of code
efficiently, and allow for the defini-
tion of custom checks (such as verify-
ing compliance with the rules from
our coding standard). The output of
each tool was uniformly reformatted
with simple post-processing scripts
so all tool reports could be made avail-
able within a single vendor-neutral
code-review tool we developed, called
Scrub. The Scrub tool was designed
to integrate the output of the static
analyzers and any other type of back-
ground checkers with human-gener-
ated peer code review comments in a
single user-interface.8

In peer code reviews, the reviewers
are asked to add their observations
to the code in the Scrub tool, which is
prepopulated with static analysis re-
sults from the most recent integration
build of the code. The module owner
is required to respond to each report,
whether generated by a human peer
reviewer or by one of the static analy-
sis tools. To respond, the Scrub tool
allows the module owner to choose
from three possible responses: agree,
meaning the module owner accepts
the comment and agrees to change the
code to address the concern; disagree,
meaning the module owner has reason
to believe the code as written should
not be changed; and discuss, meaning
the comment or report is unclear and
needs clarification before it can be ad-
dressed (see Figure 5).

The peer code reviews, and the re-

To reach LOC-3 compliance, one
of the most important rules concerns
the use of assertions. We originally
formulated the rule to require all
functions with more than 10 lines of
code contain at least one assertion.
We later revised it to require that the
flight software as a whole, and each
module within it, had to reach a mini-
mal assertion density of 2%. There is
compelling evidence that higher as-
sertion densities correlate with lower
residual defect densities.14 The MSL
flight software reached an overall as-
sertion density of 2.26%, a significant
improvement over earlier missions.
This rate also compares favorably
with others reported in the litera-
ture.1,7 One final departure from ear-
lier practice was that on the MSL mis-
sion all assertions remained enabled
in flight, whereas before they were
disabled after testing. A failing asser-
tion is now tied in with the fault-pro-
tection system and by default places
the spacecraft into a predefined safe
state where the cause of the failure
can be diagnosed carefully before
normal operation is resumed.

LOC-4 is the target level for all mis-
sion-critical code, which for the MSL
mission includes all on-board flight
software. Compliance with this level of
the standard restricts use of the C pre-
processor, as well as function pointers
and pointer indirections. The cumula-
tive number of coding rules that must
be complied with to reach this level
remains relatively low, with no more
than 31 risk-related rules.

Safety-critical and human-rated
software is expected to comply with
the higher levels of rigor defined in
LOC-5 and LOC-6. These two high-
est levels of compliance add all rules
from the well-known MISRA C coding
guidelines16 not already covered at the
lower levels.

We worked with vendors of static
source code analysis tools, including
Coverity, Codesonar, and Semmle, to
develop automatic compliance check-
ers for the majority of the rules in our
coding standard. Compliance with all
risk-based rules could therefore be
verified automatically with multiple
independent tools on every build of the
MSL software.

One additional precaution we un-
dertook starting with the MSL mission
was to introduce a new certification
program for flight-software developers,
allowing us to, for instance, discuss the
detailed rationale for all coding rules
and reinforce knowledge of defensive
coding techniques. The certification
program is concluded with an exam,
passage of which is required for all de-
velopers who write or maintain space-
craft software.

Tool-based code review. Not all
software defects can be prevented
by even the strongest coding rules,
meaning it is important to devise as
many methods as possible to inter-
cept the defects that slip through
and use them as early and often as
possible. One standard mechanism
for scrutinizing software is peer code
review. Traditionally, in a peer-code-
review session, expert developers are
invited to provide feedback in a guid-
ed code walkthrough. This process
can work exceptionally well, but only
for relatively small amounts of code.
If more than a few hundred lines of
code are examined in a single session,
the effectiveness of the session, mea-
sured by number of flaws exposed,
decreases rapidly. Reviewing a few
million lines of code in this manner
would severely strain the system, if
not the reviewers.8

Peer reviewers can excel at identify-
ing design flaws but are much less reli-
able at the more down-to-earth job of
checking for mundane issues like rule-
compliance and avoidance of com-
mon coding errors. Fortunately, this
is where static source-code-analysis

Figure 5. Coding standard levels of
compliance.

LOC-1: language compliance (2 rules)

LOC-2: predictable execution (10 rules)

LOC-3: defensive coding (7 rules)

LOC-4: code clarity (12 rules)

LOC-5: all MISRA shall rules (73 rules)

LOC-6: all MISRA should rules (16 rules)

contributed articles

february 2014 | vol. 57 | no. 2 | communications of the acm 69

sponses to all comments and reports,
are done offline, outside meetings. Just
one face-to-face meeting per module
code review is used to resolve disagree-
ments, clarify reports, and reach con-
sensus on the changes to the code that
have to be made.

In 145 code reviews held between
2008 and 2012 for MSL flight software,
approximately 10,000 peer comments
and 30,000 tool-generated reports
were discussed.20 Approximately 84%
of all comments and tool reports led to
changes in the code to address the un-
derlying concerns. There was less than
2% difference in this rate between the
peer-generated and the tool-generated
reports. Explicit disagree responses
from the module owner occurred in
just 12.3% of the cases. The responses
were overruled in the final code review
session in 33% of those cases, lead-
ing to a required fix anyway. A discuss
response was given for just 6.4% of all
comments and reports, leading to a
change in the code in approximately
60% of those cases.

These statistics from the MSL code-
review process illustrate that the large
majority of comments and tool re-
ports led to immediately agreed-upon
changes to the code and did not require
discussion in the code review close-out
meetings. The time saved allowed us to
push the code-review process further
than would have been possible other-
wise. Critical modules, for instance,
could now be reviewed multiple times
before the code was finalized for launch.

Model checking. The strongest type
of check we have in our arsenal for
analyzing multithreaded code is logic
model checking. The code for the MSL
mission makes significant use of mul-
tithreading, with 120 parallel tasks
being executed under the control of a
real-time operating system. The po-
tential for race conditions therefore
always exists and has been a signifi-
cant cause of anomalies on earlier mis-
sions. To thoroughly analyze the code
for race conditions, we made exten-
sive use of the capabilities of the logic
model checker Spin,10 together with an
extended version of a model extraction
tool for C code.12

Spin was developed in the Comput-
ing Science Research group of Bell Labs
starting in the early 1980s and has been
freely available since 1989. We earlier

used this tool on the verification of key
parts of the control software for a num-
ber of spacecraft, including Cassini,21
Deep Space One,5,6 and the Mars Explo-
ration rovers.11 We also used it in the
recent investigation of possible triggers
for unintended acceleration in Toyota
vehicles.17 In almost all these cases, the
verification effort succeeded in iden-
tifying unsuspected software defects,
especially concurrency-related issues
that would be very difficult to uncover
by other means.

The model checker Spin specifi-
cally targets verification of distributed-
systems software with asynchronous
threads of execution. Its internal verifi-
cation algorithm is based on Vardi and
Wolper’s automata-theoretic verifica-
tion method.23 Informally, Spin takes
the role of a demonic process schedul-
er, trying to find system executions that
violate user-defined requirements.
Simple examples of the type of require-
ments that can be proven or disproven
this way are the validity of program as-
sertions and the absence of deadlock
scenarios. But the model checker can
also reach farther by verifying more
complex requirements on feasible or
infeasible program executions that can
be expressed in linear temporal logic.19

We analyzed several critical soft-
ware components for the MSL mis-
sion, including a dual-CPU boot-
control algorithm (the algorithm that
controls which of two available CPUs
will take control of the spacecraft
when it boots), the nonvolatile flash
file system, and the data-management
subsystem. Several vulnerabilities
identified through these analyses
could be eliminated from the code
before the mission was launched, ef-
fectively helping reduce the risk of in-
flight surprises. The basic procedure
of software model checking, using the
tools we developed, can be illustrated
with a small example. (Because NASA
rules prevent us from publishing ac-
tual flight code from the rover, we use
equivalent public-domain code for
this example.)

It can be unreasonably difficult to
prove manually that a concurrent al-
gorithm is correct under all possible
execution scenarios. We take as our
example a non-blocking algorithm
for two-sided queues presented in De-
tlefs et al.2 together with a four-page

Peer reviewers can
excel at identifying
design flaws but
are much less
reliable at the more
down-to-earth job
of checking for
mundane issues like
rule-compliance
and avoidance of
common coding
errors.

contributed articles

70 communications of the acm | february 2014 | vol. 57 | no. 2

summary of a proof of correctness. A
few years following its publication an
attempt was made to formalize that
proof with a theorem prover22 as part of
a master’s thesis project.3 The formal-
ization revealed that both the original
proof and the algorithm were flawed.
A correction to the algorithm could
be proven correct with the theorem
prover.4 Each proof attempt, for both
the original algorithm and the cor-
rected version, reportedly took several
months.

Lamport15 later formalized the
original algorithm in +CAL, showing
the flaws could be found more quickly
through a model checker. Lamport
noted the proof with the TLA+ model
checker could be completed in less
than two days, most of which was
needed to define a formal model of the
original algorithm in the language sup-
ported by the model checker.

As shown here, a model extractor
can help avoid the need for manual
construction of a formal model as well,
allowing us to perform these types of
verification on multithreaded code
fragments in minutes instead of days.
We use the original algorithm from
Detlefs2 to show how this verification
approach works. With it, finding the
flaw in the implementation of the al-
gorithm requires no more than typing
in a few lines of text and executing a
single command.

The algorithm uses an atomic
Double-word Compare-And-Swap, or
DCAS, instruction; Figure 6 gives the
semantics of this instruction as de-
fined in Detlefs.2 Figure 7 reproduces
two C routines from Detlefs2 for adding
an element to the right of the queue
and for deleting an element from the
same side. The routines for adding or
deleting elements from the left side
of the queue are symmetric. The node
structure used has three fields: a left
pointer L, a right pointer R, and an in-
teger value V.

To verify the code we first define a
simple test driver that exercises the
code by adding and deleting elements
(see Figure 8). For simplicity, this ex-
ample uses only the pushRight() and
popRight() routines.

In the example test driver in Figure
8, the writer initializes the queue on
line 74, and the reader waits until this
step is completed on lines 57–59. The

Figure 6. Semantics of the DCAS instruction.

boolean DCAS (val *addr1, val *addr2,
 val old1, val old2,
 val new1, val new2)
{
 atomically {
 if (*addr1 == old1 && *addr2 == old2)
 { *addr1 = new1;
 *addr2 = new2;
 return true;
 } else
 { return false;
 } }
}

Figure 7. C code for pushRight and popRight routines.

 1 Node *Dummy, *LH, *RH;
 2
 3 val
 4 pushRight(val v)
 5 { Node *nd, *rh, *lh, *rhR;
 6
 7 nd = (Node *) spin_malloc(sizeof(Node));
 8
 9 if (!nd) return FULL;
10
11 nd->R = Dummy;
12 nd->V = v;
13
14 while (true)
15 { rh = RH;
16 rhR = rh->R;
17 if (rhR == rh)
18 { nd->L = Dummy;
19 lh = LH;
20 if (DCAS(&RH,&LH,rh,lh,nd,nd))
21 return OKAY;
22 } else
23 { nd->L = rh;
24 if (DCAS(&RH,&rh->R,rh,rhR,nd,nd))
25 return OKAY;
26 } }
27 }
28
29 val
30 popRight(void)
31 { Node *rh, *lh, *rhL;
32 val result;
33
34 while (true)
35 { rh = RH;
36 lh = LH;
37
38 if (rh->R == rh)
39 return EMPTY;
40
41 if (rh == lh)
42 { if (DCAS(&RH,&LH,rh,lh,Dummy,Dummy))
43 return rh->V;
44 } else
45 { rhL = rh->L;
46 if (DCAS(&RH,&rh->L,rh,rhL,rhL,rh))
47 { result = rh->V;
48 rh->R = Dummy;
49 rh->V = null;
50 return result;
51 } } }
52 }

contributed articles

february 2014 | vol. 57 | no. 2 | communications of the acm 71

reader contains an assertion on line 64
to verify the values sent by the writer
are received in the correct order, with-
out omissions.

We can perform the test using dif-
ferent threads for the reader and the
writer, though these tests alone can-
not establish the correctness of the al-
gorithm. A model checker is designed
to perform this type of check more rig-
orously. If there is any possible inter-
leaving of the thread executions that
can trigger an assertion failure, the
model checker is guaranteed to find
it. To use the model checker we define
a small configuration file that indenti-
fies the parts of the code we are inter-
ested in. This configuration file allows
us to define an execution context for
the system we want to verify by extract-
ing the relevant parts of the code and

placing them into an executable sys-
tem that is then analyzed.

Figure 9 shows the complete con-
figuration file needed to verify this ap-
plication. The first four lines identify
four functions in source file dcas.c we
are interested in extracting as instru-
mented function calls. The next two
lines identify sample _ reader and
sample _ writer as active threads
that will call these functions. The last
three lines in the configuration file de-
fine the required header file dcas.h
that holds the definition of data struc-
ture Node and the name of the source
file (dcas.c) to which the verifier must
be linked for additional routines, in-
cluding a C encoding of the function
that defines the semantics of the DCAS
instruction (also shown in Figure 6).

The verification of the algorithm
can now be performed with a single
command, using the model-extraction
tool Modex and the model checker Spin
(see Figure 10).

The command takes approximately
12 seconds of real time to execute, of
which only 0.02 seconds is needed for
the verification itself. The rest of the
runtime is taken by the model extrac-
tor to generate the verification model
from the source code, for Spin to con-

vert that model into optimized C code,
and finally for the C compiler to pro-
duce the executable that performs the
verification. None of these steps re-
quires further user interaction.

A replay of the error-trail reveals a
race condition that can lead to an as-
sertion violation and therefore shows
the algorithm to be faulty (see figures
11, 12, and 13). Statements executed
by the writer process are marked with
W and statements executed by the
reader process with R. First consider
Figure 11. After the initial call to ini-
tialize in the sample _ writer
routine (line 74 in Figure 8), the writer
initiates its first call to pushRight on
line 77, with value 0. This value is then
stored by executing lines 7 through 19
in the pushRight routine.

The next statement in the execution
of pushRight would now be a call on
DCAS to complete the update, but that
call is delayed. Meanwhile, the sam-
ple _ reader is free to proceed with
calls to popRight to poll the queue
for new elements (see Figure 12). The
first call (line 62 in Figure 8) succeeds
and retrieves the stored value 0. The
remaining steps in Figure 12 illustrate
the execution of the popRight rou-
tine for that call.

Figure 10. Verification steps.

$ time modex -run dcas.c
MODEX Version 2.0 - 2 September 2011
c_code line 111 precondition false:
 (Psample_reader->rv==Psample_reader->i)
wrote model.trail
...
pan: elapsed time 0.02 seconds

7.69 user 4.02 system 0:12.04 elapsed 97% CPU
$

Figure 11. Part 1, partial execution of pushRight by the test writer.

74 W: initialize()
76 W: i = 0
76 W: (i<10)
77 W: # v = pushRight(i) ::
 7 W: nd = (Node *) spin_malloc(sizeof(Node));
 9 W: !(!nd)
11 W: nd->R = Dummy;
12 W: nd->V = v;
14 W: (true)
15 W: rh = RH;
16 W: rhR = rh->R;
17 W: (rhR == rh)
18 W: nd->L = Dummy;
19 W: lh = LH;

Figure 8. C code for a sample test driver.

53 void
54 sample_reader(void)
55 { int i, rv;
56
57 while (!RH)
58 { /* wait */
59 }
60
61 for (i = 0; i < 10; i++)
62 { rv = popRight();
63 if (rv != EMPTY)
64 { assert(rv == i);
65 } else
66 { i--;
67 } }
68 }
69
70 void
71 sample_writer(void)
72 { int i, v;
73
74 initialize();
75
76 for (i = 0; i < 10; i++)
77 { v = pushRight(i);
78 if (v != OKAY)
79 { i--;
80 } }
81 }

Figure 9. Modex configuration file.

%X -e pushRight
%X -e popRight
%X -e initialize
%X -e dcas_malloc
%X -a sample_reader
%X -a sample_writer
%D
#include “dcas.h”
%O dcas.c

contributed articles

72 communications of the acm | february 2014 | vol. 57 | no. 2

ule implemented in approximately
45,000 lines of C. The design of this
subsystem was converted manually
into a Spin verification model of ap-
proximately 1,600 lines, in close col-
laboration with the module designer.
In most cases, the model-checking
runs successfully identified the exis-
tence of subtle concurrency flaws that
could be remedied in the software.
For the file system software in par-
ticular, the model-checking runs be-
came a routine part of our regression
“tests,” executed after every change
in the code, often surprising us with
the ease with which it could identify
newly committed coding errors.

Conclusion
The MSL spacecraft performed flawless-
ly in delivering Curiosity to the surface of
Mars in August 2012 where it is currently
exploring the planet (see Figure 14). The
rover has meanwhile achieved its pri-
mary mission, which was to determine
if our neighbor planet could in principle
have supported life in the distant past.

Every precaution was taken to opti-
mize the chances of success, and not
just in the development of the soft-
ware. Critical hardware components
were duplicated, including the rover’s
main CPU. But though it is not difficult
to see how duplication of an essential
hardware component helps improve
system reliability, seeing how one can
use redundancy to improve software
reliability is less simple.

We gave two examples of how
software redundancy was nonethe-
less used on the MSL mission. The
first—emphasis on use of assertions
throughout the code—may sound ob-
vious but is rarely recognized as a pro-

This call should not succeed be-
cause the pushRight call, initiated
by the writer in Figure 11, has not yet
completed its update. But the trap has
now been set. The sample _ reader
thread now moves on to the next call,
after incrementing the value of i. This
second call to popRight completes
the same way it did before and again
returns the value 0, resulting in the fail-
ure (see Figure 13).

The model-extraction method used
here is defined in such a way it allows
for very simple types of instrumenta-
tion in basic applications. The model
extractor always preserves the applica-
tion’s original control flow. However,
it also supports the definition of more
advanced abstraction functions in con-

figuration files (similar to the one in
Figure 9) that can be used to reduce the
complexity of extracted models. The
default conversion rule, which defines
a one-to-one mapping of statements
from the source code into the model,
allows for direct verification of a sur-
prisingly large set of multithreaded C
programs and algorithms.

The MSL mission made exten-
sive use of this automated capabil-
ity to verify critical multithreaded
algorithms, directly using their im-
plementation in C. For larger subsys-
tems, we also manually constructed
Spin verification models in a more
traditional way and analyzed them.
The largest such MSL subsystem was
a critical data-management mod-

Figure 12. Part 2, call to popRight by the test reader.

57 R: !(!RH)
61 R: i = 0
61 R: (i < 10)
62 R: # rv = popRight() ::
34 R: (true)
35 R: rh = RH;
36 R: lh = LH;
38 R: !(rh->R == rh)
41 R: (rh == lh)
42 R: DCAS(&(RH),&(LH),rh,lh,Dummy,Dummy)
43 R: return rh->V;

Figure 13. Part 3, second call to popRight by the reader, with the writer still stalled in its
first call to pushRight, leading to the assertion violation.

62	 R: rv = popRight(i) # rv is 0
63	 R: (rv != EMPTY) # true
64	 R: assert(rv == i) # true
61	 R: i++; # i is now 1
61	 R: (i<10) # true
62	 R: rv = popRight() # rv is again 0
63	 R: (rv != EMPTY) # true
64	 R: assert(rv == i) # false

Figure 14. First MSL wheel tracks on Mars.

contributed articles

february 2014 | vol. 57 | no. 2 | communications of the acm 73

tection mechanism based on redun-
dancy. An assertion is always meant to
be satisfied, meaning that technically
its evaluation is almost always redun-
dant. But sometimes the impossible
does happen, as when, say, external
conditions change in unforeseen ways.
Assertions prove their value by detect-
ing off-nominal conditions at the earli-
est possible point in an execution, thus
allowing fault-protection monitors to
take action and prevent damage.

The second example of software re-
dundancy was used to protect the criti-
cal landing sequence. This was the only
phase of the mission in which both the
main CPU and its backup were used
simultaneously, with the backup in
hot standby. Running the same land-
ing software on two CPUs in parallel
offers little protection against soft-
ware defects. Two different versions
of the entry-descent-and-landing code
were therefore developed, with the
version running on the backup CPU a
simplified version of the primary ver-
sion running on the main CPU. In the
case where the main CPU would have
unexpectedly failed during the land-
ing sequence, the backup CPU was
programmed to take control and con-
tinue the sequence following the sim-
plified procedure. The backup version
of the software was aptly called “sec-
ond chance,” and to everyone’s relief
proved itself redundant by never being
called on to execute.

Acknowledgments
This research was carried out at the
Jet Propulsion Laboratory, California
Institute of Technology, Pasadena,
CA, under a contract with the National
Aeronautics and Space Administra-
tion. Credit for the nearly flawless per-
formance of the MSL flight software to
date goes to the superb software devel-
opment team that created, reviewed,
analyzed, tested, and retested the code,
working countless hours. 	

References
1.	 Chalin, P. Ensuring Continued Mainstream Use of

Formal Methods: An Assessment. Roadmap and
Issues Group, D.S.R., TR 2005-001, Concordia
University, Montréal, Canada, 2005.

2.	D etlefs, D.L., Flood, C.H., Garthwaite, A.T. et al. Even
better DCAS-based concurrent deques. In Distributed
Algorithms, LNCS Vol. 1914, M. Herlihy, Ed. Springer
Verlag, Heidelberg, 2000, 59–73.

3.	D oherty, S. Modelling and Verifying Non-blocking
Algorithms that Use Dynamically Allocated Memory.
Master’s Thesis, Victoria University, Wellington, New
Zealand, 2004.

4.	D oherty, S., Detlefs, D.L., Groves, L. et al. DCAS is
not a silver bullet for nonblocking algorithm design.
In Proceedings of the 16th Annual ACM Symposium
on Parallelism in Algorithms and Architectures, P.B.
Gibbons and M. Adler, Eds. (Barcelona, Spain, June
27–30). ACM Press, New York, 2004, 216–224.

5.	G luck, P.R. and Holzmann, G.J. Using Spin model
checking for flight software verification. In Proceedings
of the 2002 Aerospace Conference (Big Sky, MT, Mar.
9–16). IEEE Press, Piscataway, NJ, 2002.

6.	H avelund, K., Lowry, M., Park, S. et al. Formal analysis
of the remote agent: Before and after flight. IEEE
Transactions on Software Engineering 27, 8 (Aug.
2001), 749–765.

7.	H oare, C.A.R. Assertions: A personal perspective.
IEEE Annals of the History of Computing 25, 2 (Apr.-
June 2003), 14–25.

8.	H olzmann, G.J. Scrub: A tool for code reviews.
Innovations in Systems and Software Engineering 6, 4
(Dec. 2010), 311–318.

9.	H olzmann, G.J. The power of ten: Rules for developing
safety critical code. IEEE Computer 39, 6 (June
2006), 95–97.

10.	H olzmann, G.J. The Spin Model Checker: Primer and
Reference Manual. Addison-Wesley, Boston, 2004.

11.	H olzmann, G.J. and Joshi, R. Model-driven software
verification. In Proceedings of the 11th Spin Workshop,
LNCS 2989 (Barcelona, Spain, Apr. 1–3). Springer
Verlag, Berlin, 2004, 76–91.

12.	H olzmann, G.J. and Smith, M.H. Automating software
feature verification. Bell Labs Technical Journal 5, 2
(Apr.-June 2000), 7–87.

13.	 Jet Propulsion Laboratory. JPL Coding Standard for
Flight Software; http://lars-lab.jpl.nasa.gov/JPL_
Coding_Standard_C.pdf

14.	 Kudrjavets, G., Nagappan, N., and Ball, T. Assessing
the relationship between software assertions and
faults: An empirical investigation. In Proceedings
of the IEEE International Symposium on Software
Reliability Engineering (Raleigh, NC, Nov. 7–10). IEEE
Press, Piscataway, NJ, 2006, 204–212.

15.	 Lamport, L. Checking a multithreaded algorithm with
+CAL. In Proceedings of Distributed Computing: 20th
International Conference (Stockholm, Sweden, Sept.
18–20). Springer-Verlag, Berlin, 2006, 151–163.

16.	 Motor Industry Software Reliability Association.
MISRA-C Guidelines for the Use of the C Language in
Critical Systems. MIRA Ltd., Warwickshire, U.K., 2012;
http://www.misra-c.com/

17.	NA SA. NASA Engineering and Safety Center, Technical
Assessment Report. National Highway Traffic
Safety Administration (NHTSA), Toyota Unintended
Acceleration Investigation, Appendix A: Software,
Washington, D.C., Jan. 18, 2011; http://www.nhtsa.gov/
staticfiles/nvs/pdf/NASA_FR_Appendix_A_Software.pdf

18.	O ng, E.C. and Leveson, N. Fault protection in a
component-based spacecraft architecture. In
Proceedings of the International Conference on
Space Mission Challenges for Information Technology
(Pasadena, CA, July 13–16). Jet Propulsion
Laboratory, Pasadena, CA, 2003.

19.	 Pnueli, A. The temporal logic of programs. In
Proceedings of the 18th Annual Symposium on
Foundations of Computer Science (Providence, RI, Oct.
31–Nov. 1). IEEE Computer Society, Washington, D.C.,
1977, 46–57.

20.	R edberg, R. and Holzmann, G.J. Reviewing Code
Review. LaRS Report, Jet Propulsion Laboratory,
Pasadena, CA, Nov. 2013.

21.	 Schneider, F., Easterbrook, S.M., Callahan, J.R.,
and Holzmann, G.J. Validating requirements for
fault-tolerant systems using model checking. In
Proceedings of the International Conference on
Requirements Engineering (Colorado Springs, CO,
April 6–10). IEEE Computer Society, Washington, D.C.,
1998, 4–13.

22.	 SRI International, Computer Science Laboratory. The
PVS Specification and Verification System; http://pvs.
csl.sri.com/

23.	V ardi, M. and Wolper, P. An automata-theoretic
approach to automatic program verification. In
Proceedings of the First IEEE Symposium on Logic
in Computer Science (Cambridge, MA, June 16–18).
IEEE Computer Society, Washington, D.C., 1986,
332–344.

Gerard J. Holzmann (gholzmann@acm.org) is a senior
research scientist and a fellow at NASA’s Jet Propulsion
Laboratory, California Institute of Technology, Pasadena, CA.

© 2014 ACM 0001-0782/14/02 $15.00

Every precaution
was taken to
optimize the
chances of success,
and not just in
the development
of the software.
Critical hardware
components
were duplicated,
including the rover’s
main CPU.

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=73&exitLink=http%3A%2F%2Flars-lab.jpl.nasa.gov%2FJPL_Coding_Standard_C.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=73&exitLink=http%3A%2F%2Fwww.misra-c.com%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=73&exitLink=http%3A%2F%2Fwww.nhtsa.gov%2Fstaticfiles%2Fnvs%2Fpdf%2FNASA_FR_Appendix_A_Software.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=73&exitLink=http%3A%2F%2Fpvs.csl.sri.com%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=73&exitLink=mailto%3Agholzmann%40acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=73&exitLink=http%3A%2F%2Flars-lab.jpl.nasa.gov%2FJPL_Coding_Standard_C.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=73&exitLink=http%3A%2F%2Fwww.nhtsa.gov%2Fstaticfiles%2Fnvs%2Fpdf%2FNASA_FR_Appendix_A_Software.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=73&exitLink=http%3A%2F%2Fpvs.csl.sri.com%2F

contributed articles

74 communications of the acm | february 2014 | vol. 57 | no. 2

Attackers commonly exploit buggy programs to
break into computers. Security-critical bugs pave the
way for attackers to install trojans, propagate worms,
and use victim computers to send spam and launch
denial-of-service attacks. A direct way, therefore,
to make computers more secure is to find security-
critical bugs before they are exploited by attackers.

Unfortunately, bugs are plentiful. For example, the
Ubuntu Linux bug-management database listed more
than 103,000 open bugs as of January 2013. Specific
widely used programs (such as the Firefox Web browser
and the Linux 3.x kernel) list 7,597 and 1,293 open
bugs in their public bug trackers, respectively.a Other
projects, including those that are closed-source, likely
involve similar statistics. These are just the bugs we
know; there is always the persistent threat of zero-day
exploits, or attacks against previously unknown bugs.

Among the thousands of known bugs, which should
software developers fix first? Which are exploitable?

a	 All bug counts exclude bugs tagged as “wishlist,” “unknown,” “undecided,” or “trivial.”

How would you go about finding the un-
known exploitable ones that still lurk?

Given a program, the automatic ex-
ploit generation (AEG) research chal-
lenge is to both automatically find
bugs and generate working exploits.
The generated exploits unambigu-
ously demonstrate a bug is security-
critical. Successful AEG solutions pro-
vide concrete, actionable information
to help developers decide which bugs
to fix first.

Our research team and others cast
AEG as a program-verification task
but with a twist (see the sidebar “His-
tory of AEG”). Traditional verification
takes a program and a specification of
safety as inputs and verifies the pro-
gram satisfies the safety specification.
The twist is we replace typical safety
properties with an “exploitability”
property, and the “verification” pro-
cess becomes one of finding a pro-
gram path where the exploitability
property holds. Casting AEG in a veri-
fication framework ensures AEG tech-
niques are based on a firm theoretic
foundation. The verification-based
approach guarantees sound analysis,
and automatically generating an ex-
ploit provides proof that the reported
bug is security-critical.

Verification involves many well-
known scalability challenges, several
of which are exacerbated in AEG. Each
new branch potentially doubles the
number of possible program paths,
possibly leading to an explosion of
paths to check for exploitability. Tra-
ditional verification takes advantage
of source code, models, and other ab-
stractions to help tackle the state ex-
plosion and scale. Unfortunately, ab-

Automatic
Exploit
Generation

doi:10.1145/2560217.2560219

The idea is to identify security-critical
software bugs so they can be fixed first.

By Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert,
Edward J. Schwartz, Maverick Woo, and David Brumley

 key insights

 � �This research formalizes the notion of an
exploit, allowing for automated reasoning
about exploitation.

 � �The technology can be used to identify
and prioritize security-critical bugs.

 � �Improvements for verifying programs
safe may also lead to improvements for
automatically generating exploits. IIm

a
g

e
 c

o
ll

a

g
e

 b
y

 Iw

o
n

a
 U

s
a

k
i

e
w

i
cz

/A

n
d

r
i

j
 B

o
r

y
s

 Ass

o

c
i

a
t

e
s

february 2014 | vol. 57 | no. 2 | communications of the acm 75

contributed articles

76 communications of the acm | february 2014 | vol. 57 | no. 2

Exploiting Programs
Suppose a developer is interested in
finding and fixing exploitable bugs in
the /usr/bin directory of the latest
Debian operating system. For instance,
in June 2012 we downloaded the then-
current Debian 6.0.5, with (in our in-
stallation) 1,168 executables in /usr/
bin to analyze for exploitable bugs.

A typical approach to finding ex-
ploitable bugs is to first find them
and then determine which ones are
exploitable. One popular way to find
bugs is to perform “black-box fuzz-
ing.” Fuzzing is a program-testing
technique that runs a program on
inputs from a fixed alphabet, often
either modifying at random a known
input or trying extreme values (such
as 0 and the native maximum inte-
ger), and the “black-box” refers to the
program itself, which is not analyzed
at all. The fuzzer chooses the inputs
and observes the program, looking
for hangs, crashes, buggy outputs, or
other indications of a bug.

We fuzzed each program using the
following script:

for letter in {a..z} {A..Z}; do
 �timeout -s 9 1s <program>
-$letter <path>

done

The script tries all single-letter com-

stractions often leak by not perfectly
encapsulating all security-relevant
details, and the leaky points tend to
affect the quality of security analysis.
For example, writing 12B to an array
declared to be 11B long is wrong in C
but is also unlikely to be exploitable
because most compilers would pad
the array with extra bytes to word-
align memory operations.

In order to provide high fidelity,
most AEG work analyzes raw execut-
able code. Executable code analysis is
needed because many exploits rely on
low-level details that are abstract in
source code (such as CPU semantics
and memory layout). Executable code
analysis is also attractive because it
is widely applicable; users typically
have access to the executable code of
the programs they run (as opposed to
source code) and thus can audit the
code for security-critical bugs.

Throughout this article, we focus
on AEG as a defensive tool for priori-
tizing exploitable bugs. However, we
are also cognizant of the obvious of-
fensive computing implications and
applications as well. Governments
worldwide are developing computer-
warfare capabilities, and exploits
have become a new type of ammuni-
tion. At present, exploit generation in
practice is mostly a manual process.
Therefore, techniques that help re-

duce the time and effort for exploit
generation can potentially affect a na-
tion’s operational capabilities. AEG
research is in its infancy and not yet
at the point of automatically churn-
ing out weapons-grade exploits for
an arbitrary program. Most reported
research results generate exploits
against bugs up to a few thousand
lines deep in execution and for rela-
tively straightforward bugs, while typ-
ical offensive needs include exploits
for complicated bugs and large pro-
grams like Internet Explorer and Ado-
be Reader. Nonetheless, current AEG
results show promise, and a conserva-
tive defensive security position must
consider the possibility of real-world
offensive AEG capabilities.

This article describes our AEG re-
search at Carnegie Mellon University,
its successes, as well as its current
limitations. We focus primarily on
control-flow hijack exploits that give
an attacker the ability to run arbitrary
code. Control-flow hijacks are a seri-
ous threat to defenders and coveted
by attackers.3,35 Although most current
research focuses on control-flow hi-
jacks due to their immediate danger,
AEG is not limited to only this class
of attacks. Exploitable bugs are found
in programs in all languages, and the
verification-based approach to AEG
still applies.

Our running example of a buffer overflow in acpi-listen.

 1. int main(int argc, char **argv) {
 2. char *name; int i;
 3. for (;;) {
 4. i = getopt(argc, argv, "c:s:t:vh");
 5. if (i == -1) break;
 6. switch (i) {
 7. case 'c': ...; break;
 8. case 's': name = optarg; break;
 9. ...
10. }
11. }
12. sock_fd = ud_connect(name);
13. ...
14. }
15. int ud_connect(const char *name) {
16. int fd;
17. struct sockaddr_un {
18. sa_family_t sun_family;
19. char sun_path[108];
20. } addr;
21. ...
22. sprintf(addr.sun_path, "%s", name);
23. ...
24. return fd;
25. }

00000000 31 c9 f7 e1 51 68 2f 2f 73 68 68 2f 62 69 6e 89 |1...Qh//shh/bin.|

00000010 e3 b0 0b cd 80 41 41 41 41 41 41 41 41 41 41 41 |.....AAAAAAAAAAA|

00000020 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 |AAAAAAAAAAAAAAAA|

*

00000080 41 41 41 41 41 41 41 41 74 f2 ff bf |AAAAAAAAt...|

…

0xbffff274

0xbffff28f

0xbffff28c
–

0xbf

0xff

0xf2

0x74

After sprintf

…

A (0x41)

A (0x41)

shellcode[20]

…

shellcode[0]
lower
address

higher
address…

28 bytes of

…

sun_path[107]

sun_path[0]

sequential
access

Before sprintf

m
ai
n

ud
_
c
o
n
n
e
c
t

…

ret addr LSB

ret addr MSB

saved values

locals &

contributed articles

february 2014 | vol. 57 | no. 2 | communications of the acm 77

mand-line options from a to Z, fol-
lowed by a valid 6,676B filename. The
timeout command limited total exe-
cution time to one second, after which
the program was killed.

The script took about 13 minutes
to fuzz all programs on our test ma-
chine, yielding 756 total crashes. We
identified 52 distinct bugs in 29 pro-
grams by analyzing the calling con-
text and faulting instruction of each
crash. Which bugs should a developer
fix first? The answer is the exploit-
able ones. For now, we forgo several
important issues relevant in practice
we tackle later (such as whether the
buggy program is a realistic attack tar-
get and whether additional operating
system defenses would protect the
otherwise exploitable program from
attack).

We first describe simple manual
exploit generation to introduce ter-
minology and give a flavor of how
exploits work. We focus on control-
flow hijack exploits, which have
been a staple class of exploits in the
computer-security industry for de-
cades.3,35 Well-known examples of
control-flow hijacks range from ex-
ploits in the Morris worm in 1988 to
the more recent Stuxnet and Flame
worms (though the latter exploits are
much more complicated than those
described here).

The figure here shows a bug discov-
ered in acpi _ listen (now patched
in Debian testing) we use as our run-
ning example. A buffer overflow oc-
curs on line 22. The program reads
in a command-line argument; if it is
-s (line 8), it assigns the subsequent
argument string to the name variable.
On line 22, the sprintf function
copies name into sun _ path, a field
in a local instance of the networking
sockaddr _ un data type, a standard
data structure in Unix for sockets.

The bug is that sun _ path is a
fixed-size buffer of 108B, while the
command-line argument copied
through name into sun _ path can
be any length. The C standard says
the execution behavior is undefined if
more than 108B are written. When ex-
ecuted, something will happen; with
the fuzzing script described earlier,
the program crashed. Unfortunately,
this crashing bug can be exploited.

All control-flow hijack exploits

have two goals: hijack control of the
instruction pointer (IP) and then
run an attacker’s computation. For
acpi _ listen, some of the details
an attacker must understand in-
depth include: the hardware execu-
tion model (such as how instructions
are fetched from memory and ex-
ecuted; how function calls are imple-
mented; how writing outside the allo-
cated space can hijack control of the
IP; and how to redirect the IP to run
the attacker’s code). Since any discus-
sion of creating exploits against vul-
nerable C programs assumes a basic
understanding of these facts, we offer
the following overview.

During runtime, computer hard-
ware implements a fetch-decode-
execute loop to run a program. The
hardware maintains an IP register that
contains the memory address of the
next instruction to be executed. During
the fetch phase, the hardware loads the
data pointed to by the IP register. The
data is then decoded as an instruction
that is subsequently executed. The IP
is then set to the next instruction to be
executed. Control is hijacked by taking
control of the IP, which is then used to
fetch, decode, and execute the attack-
er’s computation.

A straightforward exploit for
acpi _ listen hijacks control by
overwriting data used to implement
function returns. Exploits can also
overwrite other control data (such as
function pointers and the global off-
set table, as in Muller29), but we omit
these details here. Function calls,
returns, and local variables are not
supported directly by hardware. The
compiler implements the semantics
of these abstractions using low-level
assembly instructions and memory.
An attacker must be proficient in many
details of code execution (such as how
arguments are passed and registers
are shared between caller and callee).
For simplicity, we assume a standard
C calling convention known as cdecl.
Functions using it implement a stack
abstraction in memory where func-
tions push space for local variables,
arguments to future calls, and other
data onto the stack immediately after
being called. A function return pops
the allocated space off the stack. Thus,
the stack grows a bit for each call and
shrinks a bit on each return.

The twist is
we replace
typical safety
properties with
an “exploitability”
property, and the
“verification”
process becomes
one of finding
a program
path where the
exploitability
property holds.

contributed articles

78 communications of the acm | february 2014 | vol. 57 | no. 2

being overwritten in a variable up-
date. Control-flow hijacks are an in-
stance of a channeling vulnerability
that arise when the control and data
planes are not rigorously separated.
For this particular example, an out-
of-bound write can clobber the return
address. When sprintf executes, it
copies data sequentially from name
up the stack, starting from the ad-
dress for sun _ path, as shown. The
copy stops only when a zero integer,
or ASCII NULL, is found, which is not
necessarily when sun _ path runs
out of space. A long name will clobber
the saved local variables and eventu-
ally the saved return address. Since an
attacker controls the values in name,
and those values overwrite the return
address, the attacker ultimately con-
trols which instructions are executed
when ud _ connect returns.

Attackers must analyze the program
to figure out exactly how many bytes to
write, what constraints may be on the
bytes, and what would be a good value
with which to overwrite the return ad-
dress. For acpi _ listen, a string of
length 140 will overwrite the return ad-
dress. The first 108B will be copied into
space allocated for sun _ path. The
next 28B on the stack are intended to
hold local variables and saved register
values. The final 4B overwrite the saved
return address.

When ud _ connect returns, the
overwritten return address is popped
off the stack into the IP register. The
machine continues executing the in-
struction starting at the overwritten
address. While this example overwrites
the return address, a variety of other
control data structures can be used to
seize control; examples include func-
tion pointers, heap metadata, and C++
virtual function tables.

Control is typically hijacked to run
an attacker-supplied computation.
The most basic attack is to inject execut-
able code into the vulnerable process.
More advanced techniques (such as
command injection, return-to-libc, and
return-oriented programming) are also
possible29,33 (and in some cases can be
automated as well31), but we omit such
discussion here.

A natural choice for the computa-
tion is to execute the command-line
shell /bin/sh so the attacker is able
to subsequently run any command

When f calls g, f first puts g’s argu-
ments onto the stack, then invokes
g, typically through a call assembly
instruction. The semantics of call
includes pushing f’s return address
onto the stack; that is, the address in f
where execution (normally) continues
once g terminates. Upon entrance,
g creates space for its variables and
other run-time information (such as
saved register values). After g com-
pletes, g returns control to f by shrink-
ing the created stack space for g and
popping off the saved address into the
IP register, typically through a ret in-
struction. A critical detail is that the
popped value, regardless of whether it
was the original value pushed by f or
not, is used as the address of the next
instruction to execute. If an attacker
can overwrite that address, the attack-
er can gain control of execution.

The stack frame just before
sprintf is called on line 22 in the Fig-
ure. The flow of execution for creating
the depicted stack includes six steps:

Return address pushed onto the
stack. When main called ud _ con-
nect, main pushed the address of the
next instruction to be executed (corre-
sponding to line 13) onto the stack;

Control transfer. main transferred
control to ud _ connect;

Local variable space allocated. ud _
connect allocated space for its local
variables. On our computer, 108B were
allocated for sun _ path and an addi-
tional 28B for other data (such as ad-
ditional local variables and saved reg-
ister values);

Function body executed. The body of
ud _ connect ran. When sprintf
is called, a similar flow pushes a new
return address on the stack and new
space onto the stack for sprintf’s lo-
cal variables;

Local variable space deallocated.
When ud _ connect returns, it first
deallocates the local variable space,
then pops off the saved return address
into the IP register; and

Return to caller. Under normal op-
eration, the return address points to
the instruction for line 13, and main
resumes execution.

The crux of a control-flow hijack
is that memory is used to store both
control data (such as return address-
es) and program-variable values, but
the control data is not protected from

Governments
worldwide are
developing
computer-warfare
capabilities, and
exploits have
become a new type
of ammunition.

contributed articles

february 2014 | vol. 57 | no. 2 | communications of the acm 79

Our research vision is to automate it.
AEG uses verification techniques to

transform the process of finding and
deciding exploitability to reasoning
in logic. At a high level, AEG consists
of three steps: It first encodes what it
means to exploit a program as a logi-
cal property; it then checks whether
the exploitability property holds on
a program path; and finally, for each
path the property holds, it produces a
satisfying input that exploits the pro-
gram along the path.

These steps are the cornerstones
of AEG research. First, what exploit-
ability properties do we encode, and
how? In industry, an exploit could
mean control-flow hijack, while an
intelligence agency might also in-
clude information disclosures, and
a safety board could include denial
of service for critical services. Any
single property may have many en-
codings, with some more efficient
for automated tools to check than
others. Second, what techniques and
algorithms should a programmer em-
ploy to check a program? The general
problem of checking programs for
properties is called “software model
checking,”24 encompassing a num-
ber of techniques (such as bounded
model checking, symbolic execution,
and abstract interpretation). Third,
what does it take to implement real
systems, and how do these systems
perform on real software?

The theory of AEG can be de-
scribed with a small number of opera-
tions on a well-defined programming
language that interacts with its envi-
ronment in a few predicable, easy-to-
model ways. However, a real system
must also contend with hundreds of
CPU instructions and the tricky and
complex ways programs interact with
their environments. Sometimes even
pedestrian yet necessary details are
difficult to get right; for example, it
took our team almost a year to stop
finding bugs in our internal seman-
tics for the x86 shift instructions
(such as shl). The developers of Mi-
crosoft’s SAGE tool reported similar
difficulties for the same instructions.4

Current AEG research primar-
ily uses symbolic execution25 to check
program paths for exploitability prop-
erties. At a high level, symbolic execu-
tion represents all possible inputs as

with the privileges of the exploited
process. In fact, executing a shell is so
popular that colloquially any attacker
code is called “shellcode.” A classic
approach is to give executable code as
input to the program and redirect con-
trol flow to the given executable code.
The executable code itself can be cre-
ated by mimicking the assembly for
execve("/bin/sh", args, NULL).
Attackers introduce the shellcode to
the vulnerable program as a normal
string program input that is eventu-
ally decoded and executed as code.

The final step of the attack is to
overwrite the return address with the
address of the shellcode. On our ma-
chine, sun _ path is at memory ad-
dress 0xbffff274. The complete
exploit for acpi _ listen (gener-
ated automatically by our AEG tools) is
shown in the figure, where:

Shellcode. The first bytes of the com-
mand line argument are the shellcode;
the shellcode is 21B, and, in this case,
the first 21B are copied into bytes 0–20
of sun _ path;

Padding. The next 115B of input can
be any non-zero, or non-NULL ASCII,
value; the bytes are copied into bytes
21–107 of sun _ path and the addi-
tional space for other locals; and

Shellcode address. The last 4B of
input are the hex string 0x74 0xf2
0xff 0xbf. They overwrite the return
address. When the return address is
popped, the bytes become the address
0xbffff274 (because x86 is little en-
dian), which is the address of the shell-
code after it is copied to sun _ path.

The figure shows the stack frame
after supplying this string as a com-
mand-line argument following -s.
When ud _ connect returns, the ad-
dress 0xbffff274 is popped into the
IP register, and the hardware fetches,
decodes, and executes the bytes in
sun _ path that, when interpreted as
executable code, runs /bin/sh. When
the shellcode runs, the attacker is able
to run any command with the same
privileges as the exploited program.

Research Vision
Manual exploit generation requires
a developer to reason about an enor-
mous number of details (such as size
of the stack, location of control flow
critical data, like return address, and
precise semantics of each instruction).

a set of symbolic input variables. Sym-
bolic execution then picks a program
path through a predefined path-selec-
tion algorithm. The path is then “ex-
ecuted,” except, instead of executing
on a real, concrete input, a symbolic
input stands in for any possible con-
crete value. Symbolic execution builds
up a path formula in terms of the sym-
bolic inputs based on the instructions
executed. The path formula is satis-
fied, meaning made true, by any con-
crete input that executes the desired
path. If the path formula is unsatisfi-
able, there is no input that executes
the path, and the path is called infea-
sible. The satisfiability check itself is
done through automated solvers (such
as Satisfiability Modulo Theories, or
SMT).15 By construction, free variables
correspond to program inputs, and
any satisfying assignment of values
to free variables (called a model) is an
input that executes the selected path.
SMT solvers enumerate satisfying an-
swers when needed.

In acpi _ listen, the symbolic
inputs are the first two arguments
argv[1] and argv[2]. (Although we
have shown source code for acpi _
listen for clarity, our AEG tool
Mayhem requires only the program
executable.12) Executing the -s op-
tion program path generates the con-
straint that the first 3B of argv[1]
correspond to the NULL-terminated
string -s. At each subsequent branch
point, symbolic execution adds more
constraints to the formula. Next,
acpi _ listen calls sprintf, which
copies bytes from name to addr.
sun _ path until it encounters a
NULL character. Symbolic execution
captures this logic by adding the con-
straint that each copied byte is non-
NULL. Symbolically executing the -s
program path where argv[1] is three
symbolic bytes and argv[2] is 140
non-NULL symbolic bytes generates
the constraints:

argv[1][0:2]= "−s" ∧∀i∈[0,139].
argv[2][i]≠0∧argv[2][140]=0	 (1)

Note that a formula may have many
satisfying answers; for example, bytes
0–139 of argv[2] can be “A,” “B,” or
any other non-NULL character.

Each feasible path can be checked
for exploitability by adding a set of con-

contributed articles

80 communications of the acm | february 2014 | vol. 57 | no. 2

be placed anywhere in memory. In our
experiment, our AEG tool Mayhem12
found the exploitable path and solved
the exploitability formula in 0.5 sec-
onds. Mayhem is also able to enumer-
ate satisfying answers to automatically
generate multiple exploits.

Managing state explosion. AEG is
a type of software verification, albeit
for a very special property. As such, it
inherits benefits but also well-known
scalability challenges (such as path ex-
plosion and the NP-hardness of solving
SMT queries in general). They are often

dress of our shellcode. The full formula
to reach and exploit the acpi _ lis-
ten bug is:

(Equation 1)∧mem[ar]=as
∧mem[as:as+len(shellcode)−1]=
〈shellcode〉	 (3)

The mem[ar] constraint requires the re-
turn address to contain the address of
the shellcode as. The final constraint re-
quires the shellcode to start at address
as. The variable as is left unconstrained
since the shellcode could potentially

straints that are satisfied only by ex-
ploiting inputs. Most research tackles
control-flow hijack exploits, where the
exploitability constraints specify the IP
register holds a value that corresponds
to some function f of user input i (such
as, f may be a call to tolower on the
input i) and the resulting IP points to
shellcode:

IP=f(i)∧mem[IP]=〈shellcode〉	 (2)

Now let ar be the memory address for
the return address and as be the ad-

Symbolic execution was invented around 1975
independently by several researchers.5,23,25 Around
2005, the field exploded. Hundreds of papers have now
been published describing advanced techniques and
applications; see Cadar and Sen11 for a description and
the main challenges of symbolic execution. Modern
tools (such as KLEE,9 EXE,10 SAGE,20 and others7,13,32,37)
find inputs that can crash or hang a system. Such inputs
may well be viewed as exploits in safety-critical systems
where uptime is critical. More generally, work in
symbolic execution is directly applicable to making AEG
more efficient. As of 2012, most symbolic-execution
work followed one execution path at a time. Since then,
more work has looked at generalizing over multiple
paths (such as to loops30). Others have also investigated
alternatives to symbolic execution that tame path
explosion (such as Brumley and Jager6 and Flanagan
and Saxe16,18,26). More generally, any verification
technique that can produce example inputs (such as
bounded model checking) is likely usable for AEG.

Modern AEG research dates to at least Ganapathy
et al.,17 who explicitly connected verification to
exploit generation, modeling how format string
specifiers are parsed by functions like printf that
take a variable number of arguments and use the
model to automatically generate exploits. They also
demonstrated automatically generating an exploit
against a key integrity property for a cryptographic
co-processor.17 However, they considered only API-level
exploits, which do not include running shellcode or the
conditions necessary to reach a vulnerable API call site.

In 2007, Medeiros28 and Grenier et al.21 proposed
techniques based on pattern matching for AEG.

In 2008, Brumley et al.8 developed automatic patch-
based exploit generation (APEG). The APEG challenge
is, given a buggy program P and a patched version P′,
generate an exploit for the bug present in P but not
present in P′. The idea is the difference between P and
P′ reflects where the original bug occurs and under
what conditions it might be triggered. Attackers have
long known the value of analyzing patches to find non-
public bugs; for example, attackers have been known to
joke Microsoft’s “patch Tuesday” is followed by “exploit
Wednesday.” Our techniques automatically found the
differences between P and P′ and generated inputs
that triggered the bugs in P using symbolic execution.
One main security implication is that attackers can
potentially use APEG to exploit bugs before patches can
be distributed to a large number of users. We generated
exploits for five Microsoft security patches, including

triggering an infinite loop in the TCP/IP driver and
stealing files on Microsoft Web servers. One limitation
was that our work on APEG only proposed, but did not
implement, techniques for executing shellcode for
memory-safety bugs.8

Heelan’s 2009 thesis22 was the first to
comprehensively describe and implement techniques
for automatically generating control-flow hijack exploits
that execute shellcode. In Heelan’s problem setting, the
attacker is given an input that executes an exploitable
program path, and the goal is to output a working
control-flow-hijack exploit. This setting is the same as
in our running example where we first fuzzed to find
bugs, then checked exploitability. Heelan proposed
using symbolic execution and taint analysis to derive the
conditions necessary to transfer control to shellcode and
demonstrated a tool that produced exploits for several
synthetic and for one real vulnerability. He also used a
technique called return-to-register to improve exploit
robustness. Heelan’s thesis also presented a history of
AEG work through 2009.

In 2011, we proposed AEG techniques that find
bugs and generate exploits, demonstrating them
on 16 vulnerabilities.1 The initial work performed
symbolic execution on source code to find bugs, then
used dynamic binary analysis to generate control-
flow hijack exploits. Included were a number of
optimizations for searching the state space (such as
preconditioned symbolic execution and the buggy-
path first optimizations discussed earlier). In 2012, we
introduced Mayhem, a tool and set of techniques for
AEG on executable code.12 With Mayhem, we proposed
techniques for actively managing symbolically
executed program paths without exhausting memory
and reasoning about symbolic memory addresses
efficiently. Both papers1,12 targeted control-flow hijacks
for buffer overflows and format-string vulnerabilities.
Mayhem generated exploits for seven Windows and 22
Linux vulnerabilities. Disregarding one long-running
outlier, the average exploit-generation time in all
experiments was 165 seconds. As of July 2013, Mayhem
was able to generate exploits for buffer overflows,
format strings, command injection, and some
information-leak vulnerabilities.

AEG1 and Mayhem12 were designed to demonstrate a
bug is exploitable but do not try to bypass defenses that
may otherwise protect a system. In 2011, we proposed
techniques for bypassing the DEP and ASLR defenses
implemented in Windows 7 and Linux, as well as exploit
hardening and maintenance.31

History of AEG

contributed articles

february 2014 | vol. 57 | no. 2 | communications of the acm 81

amplified in AEG because AEG tech-
niques reason about both low-level
code and large inputs, along with a few
abstractions. However, specific charac-
teristics of AEG also afford researchers
unique opportunities.

Consider the affect of path prioriti-
zation on this program:

 int x = get _ int();
 if((x % 2) == 0) {
 if(x > 10) vuln1();
 else if(x == 3) vuln2();
 else safe();
 } else { safe(); }

Let xo be ao explore the program and
find the vulnerability:

(x0% 2) = 0 ∧ ¬(x0 > 10) ∧ ¬(x0 = 3)
(x0% 2) = 0 ∧ ¬(x0 > 10) ∧ x0 = 3
¬((x0% 2) = 0)
(x0% 2) = 0 ∧ x0 > 10

The first formula for the first path
is satisfiable (such as when xo = 4), in-
dicating the path can be executed but
is safe (unexploitable). The second
formula corresponds to the infeasible
path up to vuln2() and is unsatisfi-
able because the constraint (xo % 2) =
0 and xo =3 cannot both be true simul-
taneously. Since vuln2 will never be
executed, it can never be exploited.
The third formula corresponds to a
feasible, safe path. Only the fourth
formula corresponding to the path
up to vuln1() is satisfiable, where a
satisfying assignment (such as xo =42)
corresponds to an exploit. In general,
the number of paths and formulas
is infinite for programs with loops
and exponential in terms of number
of branches for any acyclic portion,
making effective path selection a fun-
damental issue in AEG research.

Path-selection heuristics guide
execution so vulnerable paths are se-
lected early in exploration. Symbolic
execution research is filled with a vari-
ety of approaches. For example, KLEE
has options for depth-first traversal
of the control-flow graph, as well as a
randomized strategy.9 Microsoft uses
generational search,20 which priori-
tizes symbolically executing program
paths that branch off a known path
taken by a fixed concrete seed input.
Godefroid et al.’s research20 suggests
generational search is more effective

than either breadth-first search or
depth-first search.

Two techniques that proved effec-
tive in our experiments at Carnegie
Mellon are “preconditioned symbolic
execution” and “buggy-path first.”1
Preconditioned symbolic execution
first performs lightweight analysis
to determine the necessary condi-
tions to exploit any lurking bugs, then
prunes the search space of paths that
do not meet these conditions. For ex-
ample, a lightweight program analy-
sis may determine the minimum
length input string needed to trigger
possible buffer overflows, and paths
corresponding to inputs smaller than
the minimum length can be pruned
or skipped.

The idea of buggy-path first is that
any bug is a sign of programmer con-
fusion, increasing the likelihood of
an exploitable bug being nearby. For
example:

 char buf[1024];
 memset(buf, 0, strlen(input));
 ...
 �strncpy(buf, input,
strlen(input));

The second line contains a mistake
where potentially more than 1,024B of
buf are zeroed. This bug would likely
not lead to a control-flow hijack, but
does signal confusion that the length
of input is somehow related to the size
of buf. Buggy-path first would priori-
tize further exploration of the buggy
path over other possible paths and
thus discover the subsequent exploit-
able code more quickly in our tests.
Note that a unique aspect of buggy-
path first is that execution continues
under the assumption the bug has
been triggered (such as in the example
when nearby stack variables may have
been zeroed inadvertently).

A second core challenge of AEG
research is optimizing SMT satisfi-
ability checks. In theory, each satisfi-
ability check is an NP-hard problem
instance, but in practice many queries
are resolved quickly. For example, in
an experiment involving 5.6 million
SMT queries, 99.98% of all solved que-
ries took one second or less. Domain-
specific optimizations in symbolic ex-
ecution (such as arithmetic and logical
simplifications, strength reduction,

A sound AEG
technique says a
bug is exploitable
if it really is
exploitable,
while a complete
technique reports
all exploitable bugs.

contributed articles

82 communications of the acm | february 2014 | vol. 57 | no. 2

Automatically
generating an
exploit provides
proof that the
reported bug is
security-critical.

concrete execution, and caching) all
help speed queries.9,10,13,19,32

In 2006 when we started using sym-
bolic execution and SMT solvers, we
treated the SMT solver as a black box,
focusing only on the symbolic execu-
tor. In hindsight, that approach was
naive. In our research group we now
believe it is more fruitful to view the
SMT solver as a search procedure and
use optimizations to guide the search.
For example, one recurring challenge
in AEG is checking satisfiability of for-
mulas that operate on memory with
symbolic memory addresses. A sym-
bolic memory address occurs when
an index into an array or memory is
based on user input, as in:

...; y = mem[i % 256]; if(y == 2) vuln(); ...

Without more information, the SMT
solver must do a case split over all pos-
sible values of i that may reach down-
stream statements (such as vuln).
Case splits can quickly push an SMT
solver off an exponential cliff. Sym-
bolic memory references often crop
up in commonly occurring library
calls (such as conversion functions
like tolower and toascii) and pars-
ing functions (such as sscanf). Many
symbolic executors mitigate the case
split by concretizing symbolic ad-
dresses to a specific value (such as by
picking i=42).

Unfortunately, in our experiments
with dozens of exploitable bugs we
found concretization overconstrains
formulas, leading our initial AEG
techniques to miss 40% of known ex-
ploitable bugs in our test suite;12 for
example, AEG may need to craft an
input that becomes valid shellcode
after being processed by tolower
(such as tolower is f in Equation 2).
In Mayhem, we proposed a number of
optimizations for symbolic memory;12
for example, one performs a type of
strength reduction where symbolic
memory accesses are encoded as
piecewise linear equations.12

Example application: Exploiting
/usr/bin. Recall we fuzzed Debian
/usr/bin and found 52 distinct bugs
in 29 programs, including acpi _
listen. One goal was to determine
which bugs are exploitable.

We ran our binary-only AEG tool
called Mayhem12 on each crash to de-

termine if we could automatically gen-
erate an exploit from the crashing path.
We also manually checked whether it
was possible to exploit the bug. Five of
the 52 bugs were vulnerable to a con-
trol-flow hijack, and Mayhem generat-
ed exploits for four of them. The exploit
for acpi _ listen took 0.5 seconds to
generate, and the remaining three took
8, 12, and 28 seconds, respectively.

These results on /usr/bin offer
three insights: First, current AEG tools
like Mayhem are sound but incom-
plete. A sound AEG technique says a
bug is exploitable if it really is exploit-
able, while a complete technique re-
ports all exploitable bugs. Unfortunate-
ly, Rice’s theorem implies developing
a sound and complete analysis for any
nontrivial program property is in gen-
eral undecidable. Second, AEG can be
very fast when it succeeds. And finally,
there is ample room for improving
AEG in particular and symbolic execu-
tion and software model checking in
general. For example, we analyzed why
Mayhem failed on the last vulnerability,
finding the problem was a single con-
straint that pushed the SMT solver (we
use Z3) off an exponential cliff. Perhaps
comically, manual analysis showed the
constraint was superfluous but was not
recognized as such by the automatic
formula optimizer. Once the constraint
was removed from the formula, exploit
generation took less than five seconds.

Real-World Considerations
Security practitioners often focus only
on exploits for programs on the at-
tack surface of a system.27 The attack
surface consists roughly of the set of
programs, files, protocols, services,
and other channels available to an
attacker; examples include network
daemons, programs called from Web
servers on untrusted inputs, privileged
programs, and media players. Our ex-
ample acpi _ listen is not on the at-
tack surface. We chose acpi _ listen
because it highlights the steps of AEG,
yet disclosing the exploit would do lit-
tle damage because it is not on the at-
tack surface. Interestingly, the acpi _
listen vulnerability is remarkably
similar to a recent PHP vulnerability
that performs an unchecked copy on
the same data structure.14

Overall, AEG techniques are valu-
able because they show whether a pro-

contributed articles

february 2014 | vol. 57 | no. 2 | communications of the acm 83

gram can be exploited regardless of
whether it is on the attack surface or
not. For example, a program not on the
attack surface in one deployment may
be on the surface for another. More
generally, programs on the attack
surface are simply a subset of all pro-
grams; if we can handle all programs
we can surely handle the subset on
the attack surface. Current techniques
have found exploits on the attack sur-
face, albeit not in widely used large ap-
plications like Internet Explorer. For
example, as we wrote this article we
ran Mayhem on additional examples
that are on the attack surface, finding a
number of zero-day exploits for media
applications (such as ezstream and
imview) and network applications
(such as latd and ndtpd).

Another consideration is additional
layers of defense that might protect
otherwise exploitable programs. Two
popular operating-system-level de-
fenses against control-flow hijacks are
data-execution prevention, or DEP, and
address space layout randomization,
or ASLR.

DEP marks memory pages either
“writable” or “executable” but forbids
a memory page from being both. DEP
prevents an exploit that requires writ-
ing and then executing shellcode on
a memory page from working (such
as the shellcode mentioned earlier).
Unfortunately, attackers have devel-
oped techniques to bypass DEP. One
such method is called return-to-libc
where the attacker shellcode executes
code already present in memory (such
as by running system (“/bin/sh”) in
libc directly) rather than writing new
code to memory. Return-oriented pro-
gramming, or ROP, uses instruction
sequences already present in memo-
ry, called “gadgets.” Shacham et al.33
showed it is possible to find a Turing-
complete set of gadgets in libc.

ASLR prevents control-flow hijacks
by randomizing the location of ob-
jects in memory. Recall that to exploit
acpi _ listen, the attacker needs
to know the address of the shellcode.
ASLR randomizes addresses so vul-
nerable programs likely crash instead
of successfully redirecting control to
the shellcode. ASLR is an important
defense but does not fix the underly-
ing vulnerabilities and thus may pro-
vide limited protection; for example,

Windows and Linux systems running
on 32b processors may have insuffi-
cient randomness to provide strong
security,34 though 64b architectures
can address this problem. Particular
deployments of ASLR may have weak-
nesses as well; for example as of Janu-
ary 2013 the program image of Linux
executables is often not randomized.
Even when randomized well, addi-
tional vulnerabilities may disclose
information that can subsequently be
used in a control-hijack exploit.

Schwartz et al.31 proposed exploit
hardening, which takes an exploit that
works against an undefended system
and hardens it to bypass defenses.
One step in exploit hardening is to
automatically generate ROP payloads
(to bypass DEP) that take advantage
of small portions of unrandomized
memory (to bypass ASLR on the 2013
implementations of ASLR on Windows
7 and Linux). In particular, Schwartz et
al. showed ROP payloads can be gener-
ated for most programs in Windows
and Linux that have at least 20KB of
unrandomized code, which is true for
many programs. Exploit hardening
can be paired with AEG to check the
end-to-end security of a program run-
ning on a specific system.

Finally, DEP and ASLR defend only
against memory overwrite attacks.
Other vulnerabilities (such as informa-
tion disclosure, denial of service, and
command injection) are also critical in
practice; for example, DEP and ASLR
do not protect against exploits for
the command-injection vulnerability
found by Mayhem in ezstream.

Conclusion
AEG is far from being solved. Scalabil-
ity will always be an open and inter-
esting problem. As of February 2013,
AEG tools typically scale to finding
buffer overflow exploits in programs
the size of common Linux utilities.
In Mayhem, one current bottleneck is
driving the symbolic executor to the
buggy portion of the state space. As a
result, programs with deep bugs are
typically beyond the scope of our cur-
rent Mayhem AEG tool. Examples in-
clude large programs with bugs deep
in the program (such as Internet Ex-
plorer and Adobe Reader), as well as
those with large protocol state (such
as first authenticate, then send mul-

tiple fragmented messages to exploit
a bug). In addition, programs with
complex functions (such as hashes)
are often a bottleneck for SMT solv-
ers. One promising data point is that
Microsoft’s SAGE tool routinely finds
bugs in large applications,20 though
automatically generating exploits for
those bugs is an open challenge with
huge potential rewards.

More fundamentally, AEG must
expand to involve a wider variety of
exploitability properties and scale to
new program domains. While buffer
overflows continue to be exploited3,35
integer overflows, use-after-free, heap
overflows, and Web vulnerabilities are
also important (and popular) targets;3
for example, heap overflows against
modern operating systems like Win-
dows 8 pose difficult challenges (such
as modeling internal heap metadata
and new heap allocators with built-in
defenses). In our experience, the prob-
lem is often not coming up with some
formalism, but with the right formal-
ism and optimizations that make AEG
efficient and practical on real-world
programs and vulnerabilities.

Except for a few examples (such as
Ganapathy et al.’s17 exploits against
a particular cryptographic API), most
work in AEG has focused on exploiting
programs in type-unsafe languages,
though type safety is no panacea. In-
formation flow, command injection,
and many other common exploitable
bugs can all occur in typical type-safe
languages. Moreover, the runtime
environment itself may have security-
critical flaws. For example, the most
commonly exploited vulnerabilities
in 2011 were in Java.2

AEG can be modeled as a verifica-
tion task; therefore, the better pro-
grammers and researchers get at soft-
ware verification, the better they will
likely get at automatically generating
exploits. Some security researchers
are pessimistic about the practicality
of AEG in many application settings,36
rightfully pointing out significant scal-
ability hurdles and the lack of exploits
against vulnerabilities like use-after-
free. We are more optimistic. Eight
years ago, AEG techniques were re-
stricted to analyzing a single API call.
Today, AEG can both automatically
find and generate exploits in com-
mon binaries. In an effort to improve

contributed articles

84 communications of the acm | february 2014 | vol. 57 | no. 2

security in Debian, we started a proj-
ect in 2013 to check all programs in
/usr/bin for exploitable bugs and so
far have found more than 13,000 with
more than 150 exploitable. Advance-
ments will continue to be fueled by
better tools, techniques, and improve-
ments in verification and security.

Acknowledgments
This research is partially supported
by grants and support from the Na-
tional Science Foundation, the De-
fense Advanced Research Projects
Agency, Lockheed Martin, Northrop
Grumman, and the Prabhu and Poo-
nam Goel Fellowship. Any opinions,
findings, and conclusions or recom-
mendations expressed in this mate-
rial are those of the authors and do
not necessarily reflect the views of the
funding agencies. 	

References
1.	A vgerinos, T., Cha, S.K., Lim, B.T.H., and Brumley, D.

AEG: Automatic Exploit Generation. In Proceedings
of the Network and Distributed System Security
Symposium (San Diego, CA, Feb. 6–9). Internet
Society, Reston, VA, 2011, 283–300.

2.	B atchelder, D., Bawany, S., Blackbird, J., Blakemore, E.,
Faulhaber, J., Fayyaz, S., Felstead, D., Henry, P., Goel,
N.K., Jones, J., Kuo, J., Lauricella, M., Malcolmson,
K., Ng, N., Oram, M., Peccelj, D., Probert, D., Rains,
T., Simorjay, F., Stewart, H., Thomlinson, M., Wu, S.,
and Zink, T. Microsoft Security Intelligence Report 12
(July–Dec. 2011). Microsoft, Redmond, WA; http://
www.microsoft.com/security/sir/archive/default.aspx

3.	B ilge, L. and Dumitras, T. Before we knew it: An
empirical study of zero-day attacks in the real world.
In Proceedings of the ACM Conference on Computer
and Communications Security (Raleigh, NC, Oct.
16–18). ACM Press, New York, 2012, 833–844.

4.	B ounimova, E., Godefroid, P., and Molnar, D. Billions
and Billions of Constraints: Whitebox Fuzz Testing
in Production. Technical Report MSR-TR-2012-55.
Microsoft, Redmond, WA, May 2012; http://research.
microsoft.com/apps/pubs/?id=165861

5.	B oyer, R. S., Elspas, B., and Levitt, K. N. SELECT—A
formal system for testing and debugging programs
by symbolic execution. In Proceedings of the
International Conference on Reliable Software (Los
Angeles, Apr). ACM Press, New York, 1975, 234–245.

6.	B rumley, D. and Jager, I. Efficient Directionless
Weakest Preconditions. Technical Report CMU-
CyLab-10-002. Carnegie Mellon University, Pittsburgh,
PA, July 14, 2010; https://www.cylab.cmu.edu/
research/techreports/2010/tr_cylab10002.html

7.	B rumley, D., Jager, I., Avgerinos, T., and Schwartz,
E.J. BAP: A binary analysis platform. In Proceedings
of the International Conference on Computer Aided
Verification (Snowbird, UT, July 14–20). Springer,
Berlin, Heidelberg, Germany, 2011, 463–469.

8.	B rumley, D., Poosankam, P., Song, D., and Zheng, J.
Automatic patch-based exploit generation is possible:
Techniques and implications. In Proceedings of
the IEEE Symposium on Security and Privacy (San
Francisco, May 18–21). IEEE Press, Los Alamitos, CA,
2008, 143–157.

9.	 Cadar, C., Dunbar, D., and Engler, D. KLEE: Unassisted
and automatic generation of high-coverage tests for
complex systems programs. In Proceedings of the
USENIX Symposium on Operating System Design and
Implementation (San Diego, CA, Dec. 8–10). USENIX
Association, Berkeley, CA, 2008, 209–224.

10.	 Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., and
Engler, D.R. EXE: Automatically generating inputs
of death. In Proceedings of the ACM Conference on
Computer and Communications Security (Alexandria,

VA, Oct. 30–Nov. 3). ACM Press, New York, 2006,
322–335.

11.	 Cadar, C. and Sen, K. Symbolic execution for software
testing: Three decades later. Commun. ACM 56, 2 (Feb
2013), 82–90.

12.	 Cha, S.K., Avgerinos, T., Rebert, A., and Brumley, D.
Unleashing Mayhem on binary code. In Proceedings
of the IEEE Symposium on Security and Privacy (San
Francisco, May 21–23). IEEE Press, Los Alamitos, CA,
2012, 380–394.

13.	 Chipounov, V., Kuznetsov, V., and Candea, G. The S2E
platform. ACM Transactions on Computer Systems 30,
1 (Feb. 2012).

14.	 CERT/NIST. PHP socket_connect() Stack Buffer
Overflow. National Vulnerability Database,
Entry CVE-2011-1938. National Institute of
Standards and Technology, Gaithersburg, MD,
May 31, 2011; http://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2011-1938

15.	D e Moura, L. and Bjørner, N. Satisfiability Modulo
Theories: Introduction and applications. Commun.
ACM 54, 9 (Sept. 2011), 69–77.

16.	 Flanagan, C. and Saxe, J.B. Avoiding exponential
explosion: Generating compact verification conditions.
In Proceedings of the ACM Symposium on Principles
of Programming Languages (London, U.K., Jan. 17–19).
ACM Press, New York, 2001, 193–205.

17.	G anapathy, V., Seshia, S.A., Jha, S., Reps, T.W., and
Bryant, R.E. Automatic discovery of API-level exploits.
In Proceedings of the International Conference on
Software Engineering (St. Louis, MO, May 15–21).
IEEE Press, Los Alamitos, CA, 2005, 312–321.

18.	G odefroid, P. Compositional dynamic test generation.
In Proceedings of the ACM Symposium on the
Principles of Programming Languages (Nice, France,
Jan. 17–19). ACM Press, New York, 2007, 47–54.

19.	G odefroid, P., Klarlund, N., and Sen, K. DART: Directed
automated random testing. In Proceedings of the ACM
Conference on Programming Language Design and
Implementation (Chicago, June 12–15). ACM Press,
New York, 2005, 213–223.

20.	G odefroid, P., Levin, M.Y., and Molnar, D. SAGE:
Whitebox fuzzing for security. Commun. ACM 55, 3
(Mar. 2012), 40–44.

21.	G renier, L. (Pusscat and Lin0xx). Byakugan:
Automating exploitation. In ToorCon Seattle (Seattle,
WA, May 2007); http://seattle.toorcon.net/

22.	H eelan, S. Automatic Generation of Control Flow
Hijacking Exploits for Software Vulnerabilities. M.Sc.
thesis. University of Oxford, Oxford, U.K., Sept. 3,
2009; http://solo.bodleian.ox.ac.uk/primo_library/
libweb/action/dlDisplay.do?vid=OXVU1&docId=oxfale
ph017069721

23.	H owden, W.E. Methodology for the generation of
program test data. IEEE Transactions on Computers
C-24, 5 (May 1975), 554–560.

24.	 Jhala, R. and Majumdar, R. Software model checking.
ACM Computing Surveys 41, 4 (Oct. 2009).

25.	 King, J.C. Symbolic execution and program testing.
Commun. ACM 19, 7 (July 1976), 385–394.

26.	 Kuznetsov, V., Kinder, J., Bucur, S., and Candea, G.
Efficient state merging in symbolic execution. In
Proceedings of the ACM Conference on Programming
Language Design and Implementation (Beijing, June
11–16). ACM Press, New York, 2012, 193–204.

27.	 Manadhata, P.K. and Wing, J.M. An attack surface
metric. IEEE Transactions on Software Engineering
37, 3 (May–June). IEEE Press, Los Alamitos, CA,
2011, 371–386.

28.	 Medeiros, J. Automated Exploit Development, The
Future of Exploitation Is Here. Technical Report.
Grayscale Research, 2007; http://www.grayscale-
research.org/new/pdfs/toorcon_whitepaper.pdf

29.	 Muller, T. ASLR Smack & Laugh Reference Seminar
on Advanced Exploitation Techniques. Technical
Report. RWTH Aachen University, Aachen, Germany,
Feb. 2008.

30.	 Saxena, P., Poosankam, P., McCamant, S., and Song,
D. Loop-extended symbolic execution on binary
programs. In Proceedings of the International
Symposium on Software Testing and Analysis
(Chicago, July 19–23). ACM Press, New York, 2009,
225–236.

31.	 Schwartz, E.J., Avgerinos, T., and Brumley, D.Q: Exploit
hardening made easy. In Proceedings of the USENIX
Security Symposium (San Francisco, Aug. 8–12).
USENIX Association, Berkeley, CA, 2011, 379–394.

32.	 Sen, K., Marinov, D., and Agha, G. CUTE: A Concolic
Unit Testing Engine for C. In Proceedings of the ACM

International Symposium on Foundations of Software
Engineering (St. Petersburg, Russia, Aug. 18–26). ACM
Press, New York, 2005, 263–272.

33.	 Shacham, H. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the x86).
In Proceedings of the ACM Conference on Computer and
Communications Security (Alexandria, VA, Oct. 29–Nov.
2). ACM Press, New York, 2007, 552–561.

34.	 Shacham, H., Page, M., Pfaff, B., Goh, E., Modadugu, N.,
and Boneh, D. On the effectiveness of address-space
randomization. In Proceedings of the ACM Conference
on Computer and Communications Security
(Washington, D.C., Oct. 25–29). ACM Press, New York,
2004, 298–307.

35.	 van der Veen, V., dutt-Sharma, N., Cavallaro, L.,
and Bos, H. Memory errors: The past, the present,
and the future. In Proceedings of the International
Symposium on Research in Attacks, Intrusions, and
Defenses (Amsterdam, The Netherlands, Sept. 12–14).
Springer, Berlin, Heidelberg, Germany, 2012, 86–106.

36.	V anegue, J., Heelan, S., and Rolles, R. SMT solvers
for software security. In Proceedings of the USENIX
Workshop on Offensive Technologies (Bellevue, WA,
Aug. 6–7). USENIX Association, Berkeley, CA, 2012.

37.	 Wang, X., Chen, H., Jia, Z., Zeldovich, N., and Kaashoek,
M.F. Improving integer security for systems with
KINT. In Proceedings of the USENIX Conference
on Operating Systems Design and Implementation
(Hollywood, CA, Oct. 8–10). USENIX Association,
Berkeley, CA, 2012, 163–177.

Thanassis Avgerinos (thanassis@cmu.edu) is a Ph.D.
candidate in the Electrical and Computer Engineering
Department at Carnegie Mellon University, Pittsburgh, PA,
and a founder of ForAllSecure.com.

Sang Kil Cha (sangkilc@cmu.edu) is a Ph.D. candidate in
the Electrical and Computer Engineering Department at
Carnegie Mellon University, Pittsburgh, PA.

Alexandre Rebert (alexandre@cmu.edu) is a Ph.D.
student in the Electrical and Computer Engineering
Department at Carnegie Mellon University, Pittsburgh, PA,
and a founder of ForAllSecure.com.

Edward J. Schwartz (edmcman@cmu.edu) is a Ph.D.
candidate in the Electrical and Computer Engineering
Department at Carnegie Mellon University, Pittsburgh, PA.

Maverick Woo (pooh@cmu.edu) is a systems scientist in
CyLab at Carnegie Mellon University, Pittsburgh, PA.

David Brumley (dbrumley@cmu.edu) is an assistant
professor in the Electrical and Computer Engineering
Department at Carnegie Mellon University, Pittsburgh, PA,
and CEO of ForAllSecure.com.

Copyright held by Owner/Author(s). Publication rights
licensed to ACM. $15.00

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=84&exitLink=http%3A%2F%2Fwww.microsoft.com%2Fsecurity%2Fsir%2Farchive%2Fdefault.aspx
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=84&exitLink=http%3A%2F%2Fresearch.microsoft.com%2Fapps%2Fpubs%2F%3Fid%3D165861
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=84&exitLink=https%3A%2F%2Fwww.cylab.cmu.edu%2Fresearch%2Ftechreports%2F2010%2Ftr_cylab10002.html
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=84&exitLink=https%3A%2F%2Fwww.cylab.cmu.edu%2Fresearch%2Ftechreports%2F2010%2Ftr_cylab10002.html
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=84&exitLink=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2011-1938
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=84&exitLink=http%3A%2F%2Fseattle.toorcon.net%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=84&exitLink=http%3A%2F%2Fsolo.bodleian.ox.ac.uk%2Fprimo_library%2Flibweb%2Faction%2FdlDisplay.do%3Fvid%3DOXVU1%26docId%3Doxfaleph017069721
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=84&exitLink=http%3A%2F%2Fsolo.bodleian.ox.ac.uk%2Fprimo_library%2Flibweb%2Faction%2FdlDisplay.do%3Fvid%3DOXVU1%26docId%3Doxfaleph017069721
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=84&exitLink=http%3A%2F%2Fwww.grayscale-research.org%2Fnew%2Fpdfs%2Ftoorcon_whitepaper.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=84&exitLink=http%3A%2F%2Fwww.grayscale-research.org%2Fnew%2Fpdfs%2Ftoorcon_whitepaper.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=84&exitLink=mailto%3Athanassis%40cmu.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=84&exitLink=http%3A%2F%2FForallSecure.com
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=84&exitLink=mailto%3Asangkilc%40cmu.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=84&exitLink=mailto%3Aalexandre%40cmu.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=84&exitLink=http%3A%2F%2FForallSecure.com
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=84&exitLink=mailto%3Aedmcman%40cmu.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=84&exitLink=mailto%3Apooh%40cmu.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=84&exitLink=mailto%3Adbrumley%40cmu.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=84&exitLink=http%3A%2F%2FForallSecure.com
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=84&exitLink=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2011-1938
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=84&exitLink=http%3A%2F%2Fwww.microsoft.com%2Fsecurity%2Fsir%2Farchive%2Fdefault.aspx
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=84&exitLink=http%3A%2F%2Fsolo.bodleian.ox.ac.uk%2Fprimo_library%2Flibweb%2Faction%2FdlDisplay.do%3Fvid%3DOXVU1%26docId%3Doxfaleph017069721
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=84&exitLink=http%3A%2F%2Fresearch.microsoft.com%2Fapps%2Fpubs%2F%3Fid%3D165861

february 2014 | vol. 57 | no. 2 | communications of the acm 85

In this article, we extend the methods of Rabin et al.10,11
in a major way and provide a solution to the long-standing
important problem of preventing collusion in second-
price (Vickrey) auctions. The new tools presented are
deniable revelation of a secret value and uncontrollable
deniable bidding. In Rabin et al.,10,11 new highly efficient

methods for proving correctness of
announced results of computations
were introduced. These proofs com-
pletely conceal input values and inter-

mediate results of the computation.
One application was to enable an
Auctioneer to announce outcome of a
sealed bid auction and provide verifi-
cation of correctness of the outcome,
while keeping bid values information-
theoretically secret. We quickly survey
these methods for completeness of
the discussion and because of their
wide applicability. Another example
of an application is to prove to par-
ticipants of a stable matching process
such as the assignment residents to
hospitals, of the correctness of the an-
nounced assignment without reveal-
ing any preferences of residents with
respect to hospitals and vice-versa.

Cryptography
Miracles,
Secure Auctions,
Matching
Problem
Verification

doi:10.1145/255594

A solution to the persistent problem of
preventing collusion in Vickrey auctions.

by Silvio Micali and Michael O. Rabin

 key insights

 � �Practically efficient secrecy of values
preserving proofs of correctness of
computations are useful for many
financial and social processes.

 � �In particular, they supply a solution to
the long-standing open problem of
countering collusion of bidders in
second-price (Vickrey) auctions.

 � �An important feature of these new
methods is their understandability by
a wide audience of potential users.

contributed articles

86 communications of the acm | february 2014 | vol. 57 | no. 2

IT, then the fact he won will remain
secret/unknown to the other bidders.
This assumption holds, for example,
for digital goods but may be difficult
to implement for some physical goods
such as radio spectrum. This issue is
fully discussed later.

We shall prove that these properties
1–9 enable the Auctioneer to pre-
vent collusion by promising, when
announcing the auction, a kickback
payment to the second highest bidder,
whoever he may turn out to be.

The implementation of properties
1–8 requires of the Auctioneer proofs
of correctness of announced results of
computations while keeping input values
and intermediate results secret. A new
highly efficient tool for doing this was
presented in Rabin et al.10,11

A new construct of a deniable proof of
value presented in this paper is employed
in implementing the properties 1 and 8.

Sealed Bid Auctions
Implementation by Encryption
and Secure Bulletin Board
In this article, we assume that the Auc-
tioneer employs an electronic Secure
Bulletin Board (SBB) with the following
properties. The SBB is controllable by
the AU who can post data. Posted data
is time stamped and signed by the AU.
Data cannot be erased. The SBB is view-
able by all participants in the auction
and they are assured that they all view
the same content. Detailed implemen-
tations of a SBB use standard algorith-
mic tools and are not discussed herein.

Much of the data posted on the
SBB will be in “sealed envelopes”
created by bidders or by the AU. In
Definition 3, we specify the Pedersen
Commitment function which will be
used in detailed proofs of the secrecy
properties of our bidding mecha-
nism. In practice, we implement
sealed envelopes and commitments
by an encryption function E(,), say
a 128-bit AES (Advanced Encryption
Standard) used in authenticated
encryption mode such as GCM.

Previous Results and Background
The method of value-secrecy preserving
proofs of correctness in Rabin et al.10,11
and in the present work was motivated
by the ground-breaking methodology of
Zero Knowledge Proofs (ZKP) innovated

By way of motivation, let us outline
the main application given in this arti-
cle for the extended method for secrecy
preserving proofs of correctness. We
consider Vickrey auctions where bid-
ders B1, . . ., Bn submit sealed bids b1, . . ., bn
for a single item IT to a seller/auctioneer
AU. At an announced end of bidding
time T1, the AU opens the bids and deter-
mines that, say, bw was the highest bid
value and bs was the second highest bid.
Bidder Bw will get the item IT and pay to
AU the second-highest bid value bs.

This bidding mechanism, absent col-
lusion, makes it worth while for every bid-
der to bid his true value for the item IT. It
thus assures the AU a return of the sec-
ond highest private true value for the IT.14

When setting up the auction, AU
specifies a reserve price r. If none of
the bids is ≥r, then the IT is not sold.
If the second price is smaller than r,
then the winner (if there is one) pays
r for the IT.

The possibility of collusion com-
pletely subverts the above advantage
to the AU from the second price auc-
tion. Assume that all bidders form
a Cartel to collude against AU. They
determine ahead of closing time T
that B1’s true value b1 (as claimed by
him) for the item IT is the largest
among all true values as claimed by
bidders. They agree that in the actual
auction, B1 will bid b1 and each of the
other bidders B2, . . ., Bn will bid r. They
also agree that if B1 gets the IT, then
he will make certain side payments
to Cartel members B2, . . ., Bn. They
also specify fines to be paid by cartel
members who deviate from the agree-
ment. Now, if all Cartel members keep
to their agreement, then B1 will get the
IT and pay r to the AU. Thus, all of the
seller’s potential gain from conduct-
ing the auction is wiped out. Because
of possibility of collusion, second-
price auctions are rarely used despite
their theoretical advantage.5, 6, 12, 13

We shall show how the use of cryp-
tography enables prevention of collu-
sion in one-time second-price auctions
by making cartel agreements unen-
forceable and making it worthwhile for
colluders to break those agreements. In
repeated auctions involving the same
bidders, the participants have an incen-
tive to voluntarily keep collusion agree-
ments so as to gain in the long run. The
extent to which our methods can be

applied to these cases and to other auc-
tions is under study.

Using the methods of Rabin et al.10,11
and the new tools of deniable revela-
tion of a secret value and uncontrollable
deniable bidding, we design an auc-
tion mechanism with the following
properties.

1.	 Bidders submit sealed bids b1, . . ., bn
to AU in an uncontrollable and deniable
manner. This means that a bidder can-
not be compelled by anybody to submit
a specified bid value. Also, he cannot
be compelled to reveal any information
about his submitted bid.

2.	 The AU assigns to every bidder
Bi a secret identifier idi. Identifiers are
known to AU but NOT known to bidders.

3.	 After the closing time of the auc-
tion, the AU determines that bidder Bw
is the highest/winning bidder and that
Bs is the second highest bidder with bid
value bs.

4.	 AU proves to the bidders, refer-
ring only to identifiers, that the bid by
the bidder with identifier value idw (say
identifier value 10325) is the highest
bid. Also that the bid by the bidder with
identifier value ids (say identifier value
21131) is the second highest bid.

5.	 The proof in 4 is information-
theoretic hiding with respect to all bid
values and with respect to the correla-
tion between identifiers and bidders.
Thus at this stage, bidders know nothing
about who bid what and even the winner
and second highest bidder do not know
about their status as such.

6.	 The AU proves to Bw that his iden-
tifier is the above-mentioned idw, that is,
that he is the winner of the IT. AU proves
to Bw that the bid value associated with
the above-mentioned identifier ids is bs.
AU collects from the winner Bw the price
bs. That is, the winner gets IT and pays
to the AU the second highest bid value bs
(Vickrey). These proofs to Bw are again
secrecy preserving with respect to the
actual identity of Bs and any other bid
value except bs.

7.	 The AU proves to Bs that his identi-
fier is ids. The AU proves to every bidder
Bj,  j ≠ s, that his identifier is different
from ids.

8.	 The proofs of 6–7 are again secrecy
preserving and deniable by the bidders
involved.

9.	 Every bidder Bi, if he so desires,
can arrange that if he wins the item

contributed articles

february 2014 | vol. 57 | no. 2 | communications of the acm 87

We show how the
use of cryptography
enables prevention
of collusion in
one-time
second-price
auctions by making
cartel agreements
unenforceable
and making it
worthwhile for
colluders to break
those agreements.

in Goldreich et al.3 and Goldwasser
et al.,4 and the subject of thousands
of subsequent papers. ZKP and other
methods of verification of truth of
claimed statements are, however, not
sufficiently efficient for providing prac-
tical solutions for the auction-verifica-
tion problems treated in Rabin et al.10,11
and herein.

By way of example, in Parkes et al.8
a method using Paillier homomorphic
encryption7 was employed for verifi-
cation of claimed results of an auc-
tion while keeping bid values secret.
Verification of a hundred-bidder sec-
ond-price auction required several
hundred minutes. By comparison, the
new method of Rabin et al.10 verifies a
hundred-bidder second-price auction
in two milliseconds. The use of multi-
party computations (see Ben-David et
al.1) provides secrecy of bids but no ver-
ification of correctness of announced
results. It is also by far slower than that
of Rabin et al.10,11 and that presented in
the present work.

The main innovation of Rabin
et al.10,11 is to work directly with the
input values to a computation and
its intermediate results as numbers
rather than going down to the bit level.
Furthermore, numbers are randomly
represented by two-coordinate vectors.

The papers by Rabin et al.10,11 con-
sider a generalized form of straight line
computations on elements of a finite
field Fp. For our applications, a 128-bit
prime p is completely adequate. Thus,
the field operations (x + y) mod p and
(x × y) mod p are rapidly executable on
an ordinary 64-bit processor.

A number of players P1, . . ., Pn
secretly submit to an Evaluator Prover
EP input values x1, . . ., xn taken from Fp

(i.e., x ∈ {0, 1, . . ., p − 1}). The EP per-
forms a computation on these inputs
and announces the results of that
computation.

Definition 1. A Generalized Straight Line
Computation (GSLC) on inputs x1, . . ., xn ∈
Fp with K outputs xL+1, . . ., xL+K is a sequence

GSLC = �x1, . . ., xn, xn+1, . . ., xL,
xL+1, . . ., xL+K� (1)

where for all m > n there exist i, j < m, L,
such that xm = (xi + xj) mod p, or xm = (xi × xj)
mod p, or xm = xi, or xm = TruthValue (xi ≤ xj).

An example of a GSLC for the output

x(2n − 1) = x1 + . . . + xn is

x1, . . ., xn, x (n+1), . . ., x (2n–1),
where x (n+1) �= x1 + x2, x(n+2)

= x(n+1) + x3, etc.� (2)

Random vector representations of
values x ∈ Fp. We now come to the main
construct for enabling Secrecy Preserving
Proofs for the correctness of the results
xL+1, . . ., xL+K of the GSLC(1).

Definition 2. Let x ∈ Fp be a value.
 A random vector representation RR(x) of
x is a vector X = (u, v) where u, v ∈ Fp; u
was chosen randomly (notation u ← Fp)
and x = (u + v) mod p. For a vector X = (u, v)
we denote val(X) = (u + v) mod p.

The method for creating a RR(x) =
(u, v) of x is to randomly choose u ← Fp
and set v = (x − u) mod p. Note that from
u (or v) by itself, no information about
x can be deduced.

Commitment functions. We shall use
the Pedersen commitment function9
for values u ∈ Fp. Let G be a group of
prime order q > p for which computing
the discrete log function is intractable.
Let g, h in G be two generators such that
logg(h) = e (i.e., g e = h) is not known and
by the intractability assumption not
computable in, say, a thousand years.

Definition 3. Let u ∈ Fp, the commit-
ment COM(u, r) to u, using the help value
r ∈ [0, q − 1], is COM(u, r) = g u × hr.

Note that under a random choice
of the help value r, COM(u, r) is a ran-
dom element of G. Consequently, the
commitment function COM(u, r) is
information-theoretically hiding. Since
computation of logg(h) = e is intractable,
the commitment function is computa-
tionally binding. The latter means that
for no commitment value C is it possible
to compute two different pairs (u, r) ≠
(v, s) such that C = COM(u, r) = COM(v, s).
The reason is that logg(h) = e is effi-
ciently computable from the equation
gu × hr = gv × hs. Consequently, a player
who has created and posted a commit-
ment COM(u, r) can open it only in one
way to reveal the original value u.

Even the above strong binding prop-
erty of the Pedersen commitment leaves
it exposed to an attack by imitation.
Assume that one bidder in an auction

contributed articles

88 communications of the acm | february 2014 | vol. 57 | no. 2

val(X3), etc., will be done simultane-
ously for all equations. The EP will pres-
ent to Verifier n − 1 values w1, . . ., wn−1.
The Verifier will then randomly choose
a challenge c ← {1, 2}. The same chal-
lenge c will be used by EP and Verifier to
check all the n − 1 equalities. It is clear
that if not all n − 1 claimed equations are
true, then the probability that Verifier
will accept is at most 1/2. Also, the argu-
ment of Theorem 2 that the interactive
proof is information-theoretic value-
hiding holds without change.

Proving claimed correctness of mul-
tiplications. For proving correctness
of the operations of multiplication
xm = xi × xj in the SLC (1), the EP will
have posted on the SBB for the Verifier
commitments COM(Xm), COM(Xi),
COM(Xj) for random representations
of the values xm, xi, xj. The EP has to
prove to Verifier that

val(Xi) × val(Xj) = val(Xm)� (5)

Let Xi = (u1, v1), Xj = (u2, v2), and Xm = (u3,
v3). The EP prepares auxiliary vectors
Z0 = (u1u2, v1v2), Z1 = (u1v2 + w1, p − w1),
Z2 = (u2v1 + w2, p − w2), where w1, w2 are
randomly chosen values. The EP aug-
ments the commitments presented to
Verifier into:

COM(Xm), COM(Xi), COM(Xj),
COM(Z0), COM(Z1), COM(Z2)� (6)

Clearly (5) holds if the following
Aspects 0–4 hold true for the vectors
committed in (6):

Aspect 0: Z0 = (u1u2, v1v2).
Aspect 1: val(Z1) = u1v2.
Aspect 2: val(Z2) = u2v1.
Aspect 4: val(Xm) = val(Z0) + val(Z1) + val(Z2).

In the interactive proof/verification,
either Aspects 0 and 4 are checked
together, or Aspect 1 or Aspect 2 is sepa-
rately checked. The Veifier randomly
chooses with probability 1/2 to verify
Aspect 0 and the addition in Aspect 4. He
randomly chooses c ← {1, 2}. Say c = 1.
The EP reveals the first coordinates
of Xm, Xi, Xj and Z0. Aspect 0 is verified.
Aspect 4 is verified in the manner of ver-
ification of additions. If the EP’s claim is
false with respect to Aspect 0 or Aspect
4, then the probability of Verifier accept-
ing is at most 3/4 = 1 − (1/2) × (1/2).

has committed to his bid using a value u
committed to as C = COM(u, r) = g u × hr.
Another bidder who sees the posted C
will post D = C × g × hs. When the first bid-
der decommits the value u by revealing
u and r, the second bidder will open D
by revealing u + 1 and r + s, thus decom-
mitting the value u + 1 and raising
the bid by 1. In the following, such an
attack will be enabled if there is collu-
sion between the auctioneer and the
second bidder.

To counter exposure to imita-
tion, we assume that an independent
agent, such as NIST, has created and
signed randomly chosen pairs (gi,
hi), i = 0, 1, . . ., of generators of the
group G. When setting up the auc-
tion, the AU and every participant are
assigned a different pair of genera-
tors from the above list to be used for
their commitments.

Proving claimed correctness of an addi-
tion x + y = z. We can now show how the
EP can prove to a Verifier correctness of
an equation x + y = z. The EP prepares
random representations X = (u1, v1), Y =
(u2, v2), and Z = (u3, v3), of the values x, y,
and z. Note that

val(X) + val(Y) = val(Z)� (3)

if and only if there exists a w ∈ Fp such
that X + Y = Z + (w, −w).
The EP prepares commitments

COM(X) = [COM(u1, r1), COM(v1, s1)],
COM(Y) = [COM(u2, r2), COM(v2, s2)],�(4)
COM(Z) = [COM(u3, r3), COM(v3, s3)]

The EP posts the commitments (4) or
sends them to the Verifier VER and
claims that the hidden vectors X, Y, Z
satisfy (3).

When challenged by VER to prove
this claim, the EP posts or sends to
Verifier the above value w. The Verifier
now presents to EP a randomly chosen
challenge c ← {1, 2}.

Assume that c = 1. The EP decom-
mits/reveals to Verifier uj, rj, j = 1, 2, 3.
The Verifier checks the commitments,
that is, computes COM(uj, rj), j = 1, 2, 3,
and compares to the posted first coor-
dinates of COM(X), COM(Y), COM(Z).

The Verifier next checks that u1 + u2
= u3 + w. If c = 2 was chosen, then the
Verifier asks for the second coordi-
nates of X, Y, Z, and checks that u1 + u2 =

u3 − w. The following two theorems are
immediately obvious.

Theorem 1. If (3) is not true for the vectors
committed in COM(X), COM(Y), COM(Z),
then Verifier will accept with probability at
most 1/2 the claim that (3) holds.

Proof. Under our assumption about
the COM function being computation-
ally binding, the EP can open the com-
mitments for uj, vj, j = 1, 2, 3, in only
one way. Now, if (3) does not hold, then
at least one of the equations u1 + u2 = u3
+ w, or v1 + v2 = v3 − w is not true. So the
probability that a random challenge
c ← {1, 2} will not uncover the falsity
of the claim (3) is less than 1/2.

Theorem 2. The above interactive proof
between EP and Verifier reveals nothing
about the values val(X), val(Y), val(Z)
beyond, if successful, that the claim that
(3) is true (subject to probability at most
1/2 of Verifier accepting a false claim).

Proof. We note that the interac-
tive proof involves only the revela-
tion of either all the first coordinates
or all the second coordinates of X,
Y, Z. Assume that Verifier’s chal-
lenge was c = 1. The only revealed
values were random u1, u2, u3, w
which satisfy u1 + u2 = u3 + w. Because
the commitment function C(,)
is information-theoretically hiding, the
un opened second coordinates in the
commitments (3) of COM(X), COM(Y),
COM(Z) are consistent with any three
values v1,1, v2,2, v3,3, satisfying v1,1 + v2,2
= v3,3 − w. Thus, the interactive proof is
consistent with any three vectors X1, Y1,
Z1 satisfying the sum equality (3).

A probability of 1/2 of the Verifier
being cheated is of course not accept-
able. The probability of being cheated
is exponentially reduced by simulta-
neously employing k repetitions of
the process.

Simultaneous verification of several
additions. Consider the GSLC (2) which
involves n inputs x1, . . ., xn, and has as
output their sum x1 + . . . + xn. The EP will
present to Verifier 2n − 1 commitments
COM(Xj), 1 ≤ j ≤ 2n − 1, for random rep-
resentation for the values xj, 1 ≤ j ≤ 2n − 1.
The interactive proofs for correctness
of all n − 1 claimed equalities val(Xn+1) =
val(X1) + val(X2), val(Xn+2) = val(Xn+1) +

contributed articles

february 2014 | vol. 57 | no. 2 | communications of the acm 89

The Verifier chooses to check either
Aspect 1 or Aspect 2, each with prob-
ability 1/4. Say Aspect 1 was chosen by
Verifier. The EP reveals the first coordi-
nate u1 of Xi and the second coordinate
v2 of Xj and both coordinates of Z1 and
checks the equality of Aspect 1. Note that
if Aspect 1 is false and is chosen for veri-
fication, then Verifier will never accept.
Similarly for Aspect 2. Consequently, if
(5) is false and the proof of correctness
(6) presented by EP to Verifier is false in
Aspect 1, or Aspect 2, then the probabil-
ity that Verifier will accept is at most 3/4.
Altogether we have:

Theorem 3. If the product claim (5) is
false then the probability that the Verifier
will accept EP’s proof of correctness is at
most 3/4.

Remark. To achieve the information-
theoretic value hiding property of the
above interactive proof of correctness,
we require an additional step in EP’s con-
struction of the posted proof (6). We note
that the same xi can appear in the GSLC
(1) as left factor and as right factor. One
example arises if the GSLC has an opera-
tion xm = xi × xi. In this case, verifying
Aspect 1 will reveal both coordinates of
Xi and hence reveal the value xi = val(Xi).
When preparing a proof of correctness
of the GSLC (1), the EP creates for every xi
involved in multiplications two random
vector representations XL

i and XR
i .

The proof of correctness of the mul-
tiplication xm = xi × xj will be:

COM(Xm), COM(Xi
L), COM(Xj

R),
COM(Z0), COM(Z1), COM(Z2),

where now XL
i = (u1, v1), XR

i = (u2, v2). It is
clear that even if i = j, and Aspect 1 is
checked, u1 and v2 are independent ran-
dom values from Fp. Similarly if SLC con-
tains another multiplication xk = xs × xi,
it, as well as xm = xi × xj, is verified with
respect to Aspect 1. For the first multi-
plication, XR

i will be employed, and for
the second multiplication, XL

i will be
used. Thus again independent random
first coordinate of XR

i and second coor-
dinate of XL

i are revealed.

Proving claimed inequalities xm =
TruthValue(xi ≤ xj). Such inequalities x ≤
y are proved for cases x, y < p/2. It is clear
that for such x, y, we have x ≤ y iff y − x
< p/2. Example: Let p = 17, x = 7, y = 5.

Then x ≤ y is false and y − x = 15 > 17/2.
So the EP can prove correctness

of inequalities if he can, when true,
prove for a commitment COM(X) that
val(X) < p/2.

In Rabin et al.,10, 11 Lagrange’s theo-
rem that every integer x is the sum of
four squares of integers: x = w2

1 + w2
2 +

w2
3 + w2

4 is employed to enable the EP
to create a Value Hiding Proof of the
GSLC (1) by use of which he can achieve
[Rabin et al.,10,11 Theorem 1]:

Theorem 4. Let commitments COM(X1),
. . ., COM(Xn) to input values x1, . . ., xn be
posted and let the EP perform the GSLC
(1) and post the K output values x(L+1), . . .,
x(L+k). The claimed correctness of the out-
put values can be interactively proven
by the EP and a Verifier while keeping all
inputs and intermediate values informa-
tion-theoretically secret. If the Prover’s
claim is true then the Verifier will always
accept the claim. If the Prover’s claim is
false then the probability that Verifier
will accept the claim is at most 3/4.

Amplification of
Verifier’s Confidence
In the previous section, we saw how the
EP has expanded the GSLC (1) into a
sequence of commitments to be called
a Value Hiding Proof (VHP-GSLC). The
Value Hiding Proof is employed by EP
and VER in an input and intermedi-
ate value-hiding interactive proof of
correctness of the output values of the
GSLC as claimed by the EP. We have
shown that the probability of the VER
to accept a false claim is at most 3/4. In
applications, a 3/4 probability of being
cheated is of course unacceptable. The
solution is of course duplication of the
interactive proof in k translations of
the GSLC (1). A successful verification
of correctness of all k translations by
VER will assure him that the probabil-
ity of him having been cheated by the
EP is smaller than (3/4)k.

In practice, the EP may be called upon
to interactively prove correctness of
announced results to different Verifiers
upon K different occasions. So, what is
needed is for the EP to prepare and post
K × k Value Hiding Proofs of the GSLC.
Next we give an algorithm for doing that.

Making multiple copies of a sequence
of hidden values. The reader who
is mainly interested in the overall

structure of our results may skip the
details of this section and just take
for granted its conclusion that many
copies of posted hidden values can be
made and their value consistency can
be proved without revelation of actual
values.

In the general case, as well as in the
application to securing Vickrey auc-
tions, the EP will have a sequence of m
hidden input values y1, . . ., ym. Some of
these inputs were supplied by players
P1, . . ., Pn (in the case of auctions by bid-
ders) and some of these inputs are created
by the EP as part of the GSLC computa-
tion and proofs that he will conduct.

To begin with, the AU posts on the
Secure Bulletin Board 3k rows:

COM(Y 1
(  j)), . . ., COM(Y m

(  j)),  1 ≤ j ≤ 3k.� (7)

Each of these 3k rows consists of m
commitments to vector representations
of the m values val(Yi

(  j)) = yi, 1 ≤ i ≤ m.
For some column indices i, the 3k com-
mitments COM(Y i

(  j)), 1 ≤ j ≤ 3k, to vector
representations of the value yi were pro-
vided by one of the players P1, . . ., Pn. For
the other column indices i, the 3k com-
mitments were supplied by the EP. For
a proof of correctness of announced
output results, the question arises:
How can the EP prove to a Verifier that
for each column index i the posted
commitments COM(Y i

(  j)), 1 ≤ j ≤ 3k, all
contain vector representations of the
same value. That is, how can the EP
prove that the rows in (7) are pairwise
value consistent in the following sense.

Definition 4: Two rows of commitments

COM(X1), . . ., COM(Xm)
COM(Y1), . . ., COM(Ym)�

(8)

are called value consistent if val(Xi) =
val(Yi), 1 ≤ i ≤ m.

Assume that the EP wants to prove
for two posted commitments COM(X)
and COM(Y), where X = (u1, v1) and
Y = (u2, v2), a claim that val(X) = val(Y).
He reveals to VER the pair (w, −w) such
that X = Y + (w, −w). As in the verifi-
cation of addition, the Verifier now
presents to EP a randomly chosen
challenge c ← {1, 2}. If c = 1, then the
EP reveals to VER the first coordinates
u1 and u2. The VER checks that u1 = u2 + w.
Similarly if c = 2. Clearly, if the EP’s
claim is false, then the probability that

contributed articles

90 communications of the acm | february 2014 | vol. 57 | no. 2

In practice, the EP
may be called upon
to interactively
prove correctness
of announced
results to different
Verifiers upon K
different occasions.

of correctness of outputs, where each
proof uses k rows extended to Value
Hiding Proofs. Every such interactive
proof employing k rows reduces proba-
bility of Verifier being cheated to (1/10
+ 3/4)k.

In the following treatment of
Vickrey auctions, we shall assume the
availability of any needed number of
value-consistent rows of commitments
to input values without repeating
the details as to how these rows were
obtained from the initial input rows.

Deniable Revelation of a Value
We want to show that the EP can post
commitments COM(X) to vector pre-
sentations of a value x and reveal the
value x to a player P in a manner that
P can subsequently deny knowledge of
the value x. Furthermore, even though the
commitments are publicly posted on the
SBB and viewable by other players, P
cannot open any of these commitments.
Consequently, the value x remains infor-
mation-theoretically hidden from every-
body except for the EP and P.

Our algorithm requires a step where
P privately meets with the EP in a man-
ner unobserved by anybody else and that
P does not carry away from the meet-
ing a record of the value x. The ques-
tion whether this private meeting can
be replaced by exchanges of encrypted
messages is a topic for further research.

Theorem 6. Assume that the EP has
posted on the SBB 20k commitments:

(P, COM(X(  j))),  1 ≤ j ≤ 20k,� (10)

where P is a name of a player, to ran-
dom representations of a value x, that
is, val(X (j)) = x, 1 ≤ j ≤ 20k. Note that
these posted commitments are pub-
licly associated with the player P.

The EP reveals the value x to P and
claims to him that the posted commit-
ments (10) are to vector representations
of this x. The EP can prove to P that the
commitments are to random represen-
tations of the value x in a manner that
(a) If more than 2k of the above 20k com-
mitments are not to vector representa-
tions of x, then the probability that P
will accept the false claim is at most
dk; (b) P cannot be compelled to reveal
that value x to another party or prove
to another party that the commitments
are to the value x.

VER will accept the claim is at most 1/2.
The same procedure will apply to

proving/verifying a claim that the two
rows (8) are value consistent. Here,
EP posts m vectors (wi, −wi), 1 ≤ i ≤ m.
The VER uses one random challenge
c ← {1, 2} to require from the EP to
either reveal/open all first coordinates
in all commitments or to reveal/open
all second coordinates.

We now come to the procedure
whereby the EP proves to a VER the
value consistency of the initially posted
3k rows of commitments (7) and cre-
ates additional N rows of commitments
to be used in multiple proofs of correct-
ness of announced results of the GSLC.

Theorem 5. (Rabin et al.,10,11 Theorem 8)
Let the EP choose an L (say L = 10) and pre-
pare and post M = 10 × k × L new rows (9):

COM(X1
(  j)), . . ., COM(Xm

(  j)),  1 ≤ j ≤ M,� (9)

so that each row of (9) is pairwise value
consistent with every one of the 3k
rows (7). That is, for every input index i,
val(Xi

(  j)) = yi , 1 ≤  j ≤ M.

Upon demand, EP can conduct an
information-theoretic value-hiding inter-
active proof convincing a Verifier that:

1.	 Among the initially posted 3k
rows (7) at least a majority of 2k rows
are pairwise value consistent. By defi-
nition, the m values y1, . . ., ym of the vec-
tors committed to in that 2k majority
are the input values to the process.

2.	 In the additional M rows (9) post-
ed by EP, at least (1 − 1/L)M rows are
pairwise value consistent with at least
2k pairwise value consistent rows of (7).

3.	 The probability that the Verifier
will accept claims 1–2 when not both
are true is at most (1/2 + 1/e2)k + (1/2 + 1/
e2)3k < 2(1/2 + 1/e2)k.� 

The interactive proof involves EP open-
ing one coordinate in every one of the
3 km pairs (7) and opening one coor-
dinate in each commitment in 6 kL
rows of (9). Thus this interactive proof
leaves 4 kL untouched rows of (9) with
the assurance that at least (1 − 1/L)4 kl
of these rows are pairwise value con-
sistent with the m values initially com-
mitted to in (7). The untouched rows
can be employed in N = 4L = 40 proofs

contributed articles

february 2014 | vol. 57 | no. 2 | communications of the acm 91

Proof. Player P meets privately with
the EP. The EP claims to P that the
hidden value is x. Player P randomly
chooses 10k commitments out of the
20k commitments (P, COM(X(i) )).

For each of the 10k commitment
(P, COM(X(i)) ) chosen by P, the EP
privately claims to P that X(i) = (u(i),
v(i)). Note that this is what EP claims,
without opening the commitment
COM(X(i)).

Player P checks that for every claimed
value of a vector X(i), (u(i) + v(i)) mod p = x.

Next, P chooses, for each of the 10k
selected COM(X(i)), independently a ran-
dom challenge ci ∈ {1, 2} and presents
ci to EP. If ci = 1, then EP opens/reveals
to P the first commitment of the chosen
pair COM(X(i)). Player P checks that for
COM(X(i)), the revealed coordinate value
matches the above value u(i) as claimed
by EP. Similarly for the case ci = 2. Player
P accepts that (10) are 20k commit-
ments to representations of the value x
only if all the above 10k checks are true.

The opening of the commitment to
the coordinate ci is done by EP on the
SBB so that the identity of the opened
commitment is publicly known.

Why is knowledge of the value x
deniable by P? Player P was privately
shown both coordinates, u(i) and v(i), of
10k vectors X(i). Thus he has deniabil-
ity of what he saw. For each of these
vectors, the EP publicly opened just
one of the two posted commitments
COM(u(i)), COM(v(i))), where COM(X(i)))
= (COM(u(i)), COM(v(i))). Hence, nobody
except for the EP can open the other
coordinate and the value x remains
information-theoretically hidden.

We turn to the probability that
the player P will accept a false
claim. For brevity of discussion,
we present a heuristic argument
that if, say, k > 30 then the value d
in the above bound dk on the prob-
ability of P being cheated is close to

, e being the natural log base
2.71 . . .. Namely, if more than 2k
of the 20k vectors X(i) have val(X(i))
≠ x, then the probability for a ran-
domly chosen X(i) to lead P to find
that EP is cheating is >(1/10) × 1/2.
Consequently, the probability of
accepting EP’s claim for a randomly
chosen X(i) that val(X(i)) = x is < 11/20.
For 10k choices, the probability of
accepting is smaller than (11/20)10k.
But (11/20)10 approximates .�

Uncontrollable, Deniable Bidding
We turn to describe the method im-
plementing uncontrollable, deniable
bidding by use of deniable revelation
of a value. In the following sections,
the auctioneer AU will play the role
of an evaluator prover EP vis-à-vis the
bidders in the auction. The terms AU
and EP will be used interchangeably.

Step 6.1 Assume a one-time single-
item Vickrey auction. The auctioneer
AU, who will later also act as a prover,
announces the auction and a reserve
price r below which the item will not be
sold. AU announces a time T for clos-
ing of the auction participation phase.
AU also announces a time T1 > T for
completion of submission of bids.
Step 6.2 Assume that bidders B1, . . .,
Bn have decided to participate in the
auction. As each bidder Bi declares to
AU prior to time T his intention to par-
ticipate in the auction, the AU assigns
to Bi a randomly chosen identifica-
tion number idi ∈ Fp and a randomly
chosen value xi ∈ Fp. The value xi will
be subsequently used to enable Bi to
submit his bid in an uncontrollable,
deniable way.

The EP posts for every Bi 20k pairs
(Bi, COM(Xi

(  j))), 1 ≤ j ≤ 20k, to random
vector representations of the value xi,
that is, val(Xi

(  j)) = xi, 1 ≤ j ≤ 20k.
In a private meeting, EP reveals to

Bi the value xi in a deniable way as dis-
cussed earlier.
Step 6.3 To bid the value bi, bidder Bi
computes, while still privately meeting
with EP, the zi ∈ Fp such that xi + zi = bi
mod p.

Bidder Bi prepares 3k commitments
COM(Zi

(  j)), 1 ≤ j ≤ 3k, to random vector
representations of the value zi, that is,
val(Zi

(  j)) = zi, 1 ≤ j ≤ 3k. He digitally signs
these commitments and hands them
over to EP who posts them on the SBB.

Now Bi erases from his device the
values xi and bi but retains the value zi
and the data required for opening/
decommitting COM(Zi

(  j)), 1 ≤ j ≤ 3k.
Note that at this point in time,

before the closing of the auction, Bi
has made his chosen bid bi, but the EP
does not know what that bid value is
because he does not know the value zi.

Theorem 7. The above process imple-
ments a sealed-bid uncontrollable and
deniable submission of a bid by bidder Bi.

Proof. The bid value bi equals the sum
xi + zi. While EP knows the value xi, he
will know the value zi only after bidder
Bi will reveal it to the EP at the closing
of the auction at time T1. Thus we have
a sealed-bid auction.

Bidder Bi cannot be compelled to
make a specified bid because until his
private meeting with the EP he does
not know the value xi. After he made
his bid he can perhaps be made, or
volunteer, to reveal the value zi. But the
value xi was revealed to Bi in a deniable
way. As shown earlier and in Theorem
6, Bi can claim anything about that
value but can prove nothing about it.
Thus this deniability extends to his
bid value xi + zi = bi.

Conducting the Second
Price Auction
The purpose of the following proce-
dure is to enable the EP to prove to
bidders who won and what price the
winner should pay by referring only to
id numbers assigned by the EP to bid-
ders. The procedure keeps bid values
information-theoretically secret as
well as the correlation between id num-
bers and actual bidders.

Step 7.1 The EP chooses for every bid-
der Bi a random identifier idi. The
identifiers are known only to the EP. At
time T, the announced end of auction
participation phase, the AU will post
on the Secure Bulletin Board (SBB) the
following data:

〈B1, COM(I D1
(  j)), COM(Y1

(  j)),
COM (Z1

(  j))〉, . . .,
〈Bn, COM (I Dn

(  j), COM(Yn
(  j),

COM(Zn
(  j))〉,  1 ≤ j ≤ 3k�

(11)

where ID1
(  j) is the jth random vector

representation of the identifier id1;
COM(Y1

(  j)) is the jth random vector rep-
resentation of the value x1 chosen as
explained at the end of of the section
“Deniable Revelation of a Value”; and
Z1

(  j) is the jth random vector represen-
tation of the value z1. Similarly for the
other subscripts 2, . . ., n.
Step 7.2 After time T of closing the sub-
mission of sealed-bid auction and post-
ing of the 3k rows (11), every bidder Bi
opens his 3k commitments COM(Zi

(  j)),
for the EP.

The EP chooses M = 10 kL, L = 10, and
randomly chooses M permutations p

contributed articles

92 communications of the acm | february 2014 | vol. 57 | no. 2

Countering Collusion
The construction of a bidding process
having Properties 1–8 is now complete.

Formation of the cartel. By way of exam-
ple we assume that seven bidders, B1, . . .,
B7, out of the n bidders get together
before the closing of the auction and,
following a discussion, agree that:

a.	 �Bidder Bi will bid according to
strategy si, 1 ≤ i ≤ 7.

b.	 �If a cartel bidder Bi is the winner,
he will make side payments p(i)

j  to
each player Bj, j ≠ i, in the cartel.

Remark. Clauses (a)–(b) enable, for
example, an agreement that B1 will be
the highest bidder among B1, . . ., B7,
and that if he wins he will make prom-
ised side payments to B2, . . ., B7. On the
other hand, if one of B2, . . ., B7 wins by
deviating from the agreement then
he will make punitively high side pay-
ments to the other cartel members.

Theorem 8. If the auction mechanism
satisfies conditions 1–9 then collusion is
avoidable.

Proof. We assume that the bidders
B1, . . ., B7 are independent self-interested
entities and that the auction for the
item IT with reserve price r is a one-
time event.

When announcing the auction, the
AU promises in a binding way that the
second price bidder Bj among all bid-
ders B1, . . ., Bn, whoever he will turn
out to be, will get a kick back pay-
ment of (bj − r)/k, where bj is his bid
and r is the announced reserve price.
Say k = 10.

Now, every cartel member Bi argues
for himself as follows. In the proof of
correctness of the auction result, all
bid values will remain information-
theoretically secret. Each of the cartel
members can arrange it so that if he
wins, the fact that he won will remain
unknown to me (bidder Bi). Because
that winner is self-interested, he will
not make the side payment to me
without any danger of reprisal. Also if
I win, this fact will remain unknown
to everyone except to me and to the
AU, hence I shall not need to make
any side payments. On the other hand,
if I bid bi = my true private value for IT,
then if I win I shall get the IT at the
second highest bid value. If I am the

of the indexes {1, . . ., n}. The EP cre-
ates for every bidder Bi M commit-
ments COM(VBi) to random vector
representations VBi of the value Bi (the
names of the bidders are ASCII code
words reduced to numbers).

The EP now creates and posts M
new rows R3k+h, 1 ≤ h ≤ M each row R3k+h,
a random permutation ph of the n
quadruples:

〈COM(V B1
(3k+h)), COM(I D1

(3k+h)),
COM(Y1

(3k+h)), COM(Z1
(3k+h))〉, . . .,

〈COM (V Bn
(3k+h)), COM(I Dn

(3k+h)),
COM(Yn

(3k+h), COM(Zn
(3k+h))〉,

1 ≤ h ≤ M.�

(12)

Each of the rows (12) contains m = 4n
commitments and, before being per-
muted, is pairwise value consistent
with each of the rows (11) viewed as a
sequence of m = 4n commitments to
vector representations of values.
Step 7.3 The EP acting as Prover and
all bidders B1, . . ., Bn jointly acting as
Verifier, now conduct the secrecy pre-
serving proof noted earlier confirm-
ing that out of the 3k rows (11) at least
2k are pairwise value consistent and
out of the new M rows (12) no more
than M/L are not value consistent with
at least 2k majority of the rows (11).

The only new point in this inter-
active proof is that whenever a row
R3k+h is chosen by the Verifier, the EP/
Prover opens all the n commitments
COM(VBi

(3k+h)) revealing the names
B1, . . ., Bn and ordering the quadruples
according to the names.

As mentioned, 4 kL of the rows R3k+h
remain untouched at the end of this
Step 7.3.
Step 7.4 Now the EP proves which
identifier number idw had highest
bid and which identifier number ids
had the second highest bid. Without
revealing bid values and without
revealing names of the bidders asso-
ciated with these identifier numbers,
this is done as follows:

The Verifiers B1, . . ., Bn randomly
choose k rows R3k+h out of the 4 kL
remaining untouched rows in Step 7.3.
Slightly abusing notations, call these
rows R1, . . ., Rk.

The EP orders the identifier num-
bers id1, . . ., idn he has assigned to the
bidders B1, . . ., Bn according to size.
This induces a permutation p on the
indices {1, . . ., n} so that

idp (1) < idp (2) <, . . ., < idp (n)� (13)

The EP opens in each of the rows R1, . . .,
Rk the n commitments COM(ID). Thus
the rearranged row Rj will look to the
Verifiers as:

〈COM(V Bp
(j)

(1)), idp (1), COM(Yp
(j)
(1)),

COM(Zp
(  j)
(1))〉, . . .,

〈COM (V Bp
( j)
(n)), idp (n),

COM(Yp(n)(  j), COM(Zp(n)(  j))〉,
1 ≤ j ≤ k�

(14)

Recall that for every quadruple
〈COM(V B), id, COM(Y), COM(Z)〉, the
bid value b of the bidder B to whom
the EP secretly attached the identifier
number id is b = val(Y) + val(Z).

Using the k rows (14) as inputs and
noting that the pairwise value con-
sistency for these rows has already
been established for the Verifiers,
the EP can interactively prove to the
Verifiers that for identifier numbers
idw and ids the bid value represented
in the quadruple containing idw is the
highest and the bid value represented
in the quadruple containing ids is
the second highest. The interactive
proofs are as in Rabin et al.10,11 and
as detailed in the section discussing
previous results.
Step 7.5 Informing the winner, the
second highest bidder and the other
bidders. The EP now privately proves
to the winning bidder that his asso-
ciated identifier number is the idw of
step 7.4, thereby proving to him that
he is the Winner. The EP reveals to the
winner in a deniable way that the bid
value associated with the identifier
number ids is bs and collects that pay-
ment from the Winner.

In preparation for the kick back
promised by the EP/AU to the second
highest bidder, the EP privately and
deniably proves to the second highest
bidder that his identifier number is ids.

The EP also privately proves to
every other bidder that his identifier
number is neither ids nor idw. These
interactive proofs are conducted with-
out revealing to the bidder in question
his identifier number.

In the interest of brevity, we omit
the detailed constructions of the
above proofs. They follow the pat-
terns and employ the tools developed
in Rabin et al.10,11 and in previous sec-
tions of this article.

contributed articles

february 2014 | vol. 57 | no. 2 | communications of the acm 93

second highest bidder, then I shall
get a kick back payment of (bi − r)/k,
where bi = my private true value for
the IT. The fact that I got the kick
back payment will remain secret and
be deniable by me.

The above argument can be strength-
ened to cover certain instances where
the identity of the winner does not
remain secret. Namely, the winner
Bw has to pay the AU the second high-
est bid value bs. But the identity of the
second highest bidder Bs is secret from
everyone except for the AU and Bs him-
self. The bidder Bs is informed that he
is the second highest in a deniable
way. The winner Bw learns from the
AU in a deniable way of the payment bs
he has to make. Thus he can claim to
other cartel members anything about
that payment and consequently cheat
them about the level of side payments
he has to make.

The only concern that a cartel mem-
ber Bi planning to deviate from the
cartel agreement may have is that if
another cartel member was designated
as winner and that if he (Bi) bids his true
value, he may turn out to be the winner
and be subject to a fine payment. If Bi,
based on his estimate of bids by other
bidders, concludes that this is a likely
outcome, then he will deviate only if he
knows that his becoming the winner
can be concealed. Possible conceal-
ment strategies are described follow-
ing this Theorem.
Conclusion. Cartels are useless and the
best strategy for every bidder is to bid
his private true value. � 

Keeping the winner’s identity secret.
The possibility of doing so depends
on laws governing auctions and on
special circumstances of a bidder,
auctioneer, and the nature of the item
IT up for auction.

For example: If the Auctioneer is a
government agency, then there are
often transparency requirements with
respect to who gets the IT. Similarly, if
a bidder is a government agency. The
same restrictions may apply to pub-
licly held corporations. In the latter
case, the corporation may circumvent
restrictions by use of an entity regis-
tered in another jurisdiction.

If the IT is a financial instrument,
then transfer to the winner may be

secretly done and subsequently known
only to tax authorities.

Consider an auction of a large
plot of land. If a bidder is a developer
intending to build on it, then if he wins
the fact is not concealable. If the bid-
der is an investor who intends to later
on resell for a profit, then if he wins he
can ask the AU to transfer right to sell
to a confidentiality protecting trust.
That trust will arrange the transfer of
title to a subsequent buyer while keep-
ing the winner’s identity concealed.

All in all the possibility of keeping the
winner’s identity concealed depends on
a myriad of legal and practical factors
governing the auction in question. It
gives rise to creative solutions. It is in
the interest of the auctioneer and a win-
ning bidder to cooperate in implement-
ing a solution when legal and possible.

Verification of Stable
Matching Solutions
In 1962, Gale and Shapley2 formulat-
ed the stable matching problem and
provided an efficient algorithm for its
solution. A number of players H1, . . .,
Hm are looking at a pool of candidates
G1, . . ., Gk.

In one example, the players are
women, the candidates are men, and
m = k. Every woman has her ordering
of preference of men as spouses, and
similarly for every man. A matching is a
permutation µ: [1, n] → [1, n] assigning
to Hi the spouse Gµ(i). The matching is
stable if there is no pair of indexes i, j
such that Hi prefers Gµ(j) to Gµ(i) and
Gµ(j) prefers Hi to Hj. If the latter hap-
pens, then Hi can drop Gµ(i) and Gµ(j)
will move to Hi.

In another important example, the
players are hospital departments (say
surgery departments) and the candi-
dates are graduating medical interns
looking to become residents. In this
case, k > m and every department may
induct several residents. Again every
department has its ordering of pref-
erence of candidates and every can-
didate has his ordering of preference
of departments. These orderings are
submitted to an agency that computes
a stable matching and announces the
assignments while keeping the prefer-
ences secret.

Assume that a resident Gi assigned
to hospital department Hj suspects that
the agency could have assigned him to

another department preferred by him
because such a department got assigned
a resident less desirable to it than Gi.
Upon demand, Gi can get a proof that
that is not the case. The proof of correct-
ness does not reveal any preferences,
only that Gi was not cheated. Similarly
a department can obtain a secrecy pre-
serving proof that no more desirable
candidate is willing to move over to it.

Acknowledgments
Michael O. Rabin thanks Eric Maskin
for very useful conversations and com-
ments on the topic of Vickrey auctions,
and Hal Varian for suggesting the ap-
plication to matching problems.	

References
1.	B en-David, A., Nisan, N., Pinkas, B. Fairplaymp

a system for secure multi-party computations. In CCS
(2008), ACM.

2.	G ale, D., Shapley, L.S. College admissions and the
stability of marriage. Am. Math. Mon. 69 (1962), 9–14.

3.	G oldreich, O., Micali, S., Wigderson, A. Proofs that yield
nothing but their own validity, or all languages in np
have zkp systems. J. ACM 38 (1991), 692–729.

4.	G oldwasser, S., Micali, S., Racoff, C. The knowledge
complexity of interactive proof systems. SIAM J.
Comput. 18 (1989), 186–208.

5.	G raham, D., Marshall, R. Collusive bidder behavior in
single-object second-price and English auctions. J.
Polit. Econ. 95, 6 (1987).

6.	 Marshall, R., Marx, L. Bidder collusion. J. Econ. Theor.
133 (2007), 374–402.

7.	 Paillier, P. Public-key encryptions based on composite
residuosity classes. In Proceedings of EUROCRYPT 99
(1999), 223–239.

8.	 Parkes, D., Rabin, M.O., Shieber, S., Thorpe, C. Practical
secrecy-preserving verifiably correct and trust
worthy auctions. In Proceedings of 8th International
Conference on Electronic Commerce (ICEC) (2006),
71–81.

9.	 Pedersen, T. Non-interactive and information-theoretic
secure verifiable secret sharing. In Proceedings of
CRYPTO 91 (1991), Springer Verlag, 129–140.

10.	R abin, M., Mansour, Y., Muthukrishnan, S., Yung, M.
Strictly black-box zero-knowledge and efficient
validation of financial transactions. In Proceedings of
ICALP (2012), Springer Verlag, 738–749.

11.	R abin, M., Servedio, R., Thorpe, C. Practical secrecy-
preserving, verifiably correct and trustworthy
auctions. In Proceedings of IEEE Symposium on Logic
in Computer Science (Wroclaw, 2007).

12.	 Sandhholm, T. Limitations of the Vickrey auction
in computational multi-agent systems. Research
Paper. Department of Computer Science, Washington
University, St. Louis, MO.

13.	 Ungern-Sternberg, T.V. Cartel stability in sealed bid
second price auctions. J. Ind. Econ. 36 (Mar. 1988),
351–358.

14.	V ickrey, W. Counterspeculation, auctions, and
competitive sealed tenders. J. Finance 16 (1961), 8–37.

Silvio Micali (silvio@csail.mit.edu) is the Ford Professor
of Engineering in the Electrical Engineering and Computer
Science Department at the Massachusetts Institute of
Technology, Cambridge, MA. He is co-recipient of the 2012
ACM A.M. Turing Award.

Michael O. Rabin (morabin@gmail.com) is The Thomas J.
Watson Professor of Computer Science at Harvard
University, Cambridge, MA, and professor of computer
science at Columbia University, New York, NY. He is
co-recipient of the 1976 ACM A.M. Turing Award.

Copyright held by Owner(s)/Author(s). Publication rights
licensed to ACM. $15.00.

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=93&exitLink=mailto%3Asilvio%40csail.mit.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=93&exitLink=mailto%3Amorabin%40gmail.com

94 communications of the acm | february 2014 | vol. 57 | no. 2

review articles

A few years ago, in the pages of this magazine,
Edward Lee argued that computing needs time.23
This article focuses on the natural assumption that
computing also takes time. We examine the problem
of determining how much time. It is the problem
of verifying the real-time behavior of safety-critical
embedded systems. For such systems, for example,
anti-lock brakes and airbags, punctual behavior is of
utmost importance: If the controlling computations
take too long, quality of service degrades or the systems
fail completely—your braking distance is longer or
your head hits the steering wheel, respectively.

The basis for verifying the timeliness of system
reactions is reliable information on the execution
times of all computational tasks involved. It is
the job of timing analysis, also called worst-case
execution-time (WCET) analysis, to determine
such information.

 key insights

 � �The tremendous progress in
microprocessor architecture not only
increased average-case performance,
but also the complexity of verifying
the real-time behavior of programs
executed on those architectures.

 � �To derive useful execution time
guarantees, static analyses must prove
that speculation mechanisms of modern
CPUs will indeed be effective during
program runtime.

 � �This is challenging due to timing
anomalies and interdependencies
between architectural components.

Computation
Takes Time,
But How
Much?

doi:10.1145/2500886

Timing analysis for hard real-time systems.

By Reinhard Wilhelm and Daniel Grund

February 2014 | vol. 57 | no. 2 | communications of the acm 95

Illus

t

r
a

t
i

o
n

 b
y

 b
y

 Al

i
c

i
a

 K
u

b
i

s
t

a
/A

n
d

r
i

j
 B

o
r

y
s

 Ass

o

c
i

a
t

e
s

To avoid having to solve the halting
problem, all programs under analysis
must be known to terminate. Loops
need bounded iteration counts and re-
cursion needs bounded depth—either
given explicitly in the program, deter-
mined by some analysis, or supplied by
the programmer. Furthermore, com-
puting the exact WCET of a program is
not necessary. A conservative approxi-
mation, such as an upper bound on the
execution times of a program, is ade-
quate; and if low enough also sufficient
to prove overall timeliness. Figure 1 il-
lustrates the most important notions.

In the old days, such a conservative
approximation, called the timing sche-
ma method, was proposed by Shaw.33
Its goal is to determine bounds on the
execution times of higher-level lan-
guage programs. The idea is to work
along the structurally inductive defini-
tion of high-level programming lan-
guages, such as along the syntax tree
of programs: It starts with bounds on
the execution times of atomic program
elements and then computes bounds
on the execution times of complex con-
structs by composing the execution
times of their components.

For instance, the upper bound on the
execution times of a conditional if b
then s1 else s2 would be computed as:
ub (if b then then s1 else s2) = ub(b)
+ max{ub(s1), ub(s2)}.

Today there are at least two reasons
that render the timing schema method
impractical, infeasible, or imprecise.
The first one is compilers. Program
transformations and optimizations
performed by compilers render source
code inadequate for timing analysis:
Source code does not reveal the actu-
ally executed machine instructions. It
does not show the control flow of the

review articles

96 communications of the acm | february 2014 | vol. 57 | no. 2

are virtually useless.
Let us look into the reasons for the

variability of instruction timing more
closely: The different execution times
of an instruction result from the dif-
ferent states the architecture may be
in when execution of the instruction
starts. For instance, the time for a load
instruction depends on the state of
the cache(s) and, maybe, also on the
occupancy of the processor memory
bus; the time for a conditional branch
depends on the state of the branch
prediction and may include the time
necessary to recovery from mispredic-
tion. The architectural state in turn
is the result of the execution history,
which again is determined by the in-
put to the program and the initial
architectural state. Different initial
states and different control-flow paths
to a program point will result in a set
of possible execution states, P, before
the instruction at this program point
is executed. Later, we describe how a
phase called microarchitectural analy-
sis computes invariants that charac-
terize these sets of states.

We could then, at least conceptu-
ally, try to “expand” the instruction
by its implementation in the underly-
ing architectural platform, which is a
huge finite-state machine. For this in-
struction, only a subset of the possible
transitions through this finite-state
machine are possible, namely those
starting in states in P. They would lead
to a new set of states reached by execut-
ing the instruction.

All paths not starting in states in P
can be ignored in the search. Unfortu-
nately, the rest would still be too large
to be exhaustively explored. This is
the state-space explosion problem en-
countered by many attempts to exhaus-
tively explore state spaces.

The main measure used in micro-
architectural analysis to counter this
complexity threat is abstraction. It al-
lows for a compact representation of
sets of execution states: Information
irrelevant for timing can be dropped
completely. Timing-relevant informa-
tion can be conservatively approximat-
ed such that it can be efficiently rep-
resented. As we will discuss, there are
limits as to how much such an abstrac-
tion may forget and still be useful.

At the end of this introduction, it
should be clear that timing analysis

binary program executed on the target
machine. Nor does it show the register
or memory allocation of program vari-
ables and intermediate results. This
uncertainty about the actually execut-
ed code has already been addressed in
Shaw,33 and has been found to be diffi-
cult. Since then, advances in optimiz-
ing compilers have only increased this
uncertainty.4

The second reason is the tremen-
dous progress in computer archi-
tecture aiming at ever-increasing
(average-case) performance. In the
old times, execution times of instruc-
tions were constants. With the advent
of microprocessors incorporating
deep pipelines, caches, and various
other speculation concepts, the ex-

ecution times of instructions became
variable: The execution times of an
instruction may be different for dif-
ferent occurrences of the instruction,
that is, at different program points.
Execution time may even differ for dif-
ferent executions of an instruction at
a single program point. The variations
are large: Execution times of instruc-
tions may vary by a factor of 100 or
more. One could argue that, most of
the time, execution is fast since the
architectures are optimized for aver-
age-case performance. However, this
is no foundation for deriving guaran-
tees. On the other hand, starting the
structural composition of the timing
schema with extremely wide bounds
can only result in overall bounds that

Figure 2. Main phases of a static timing analysis.

Binary
Executable

CFG
Reconstruction

Control-flow
Graph

Loop Bound
Analysis

Value
Analysis

Control-flow
Analysis

Annotated
CFG

Basic Block
Timing Info

Microarchitectural
Analysis

Global Bound
Analysis

Legend:

Data

Action

Figure 1. Fictitious distribution of execution times of a task exemplifying lower and upper
timing bounds (LB, UB) as well as best-case and worst-case execution time (BCET, WCET).

LB BCET WCET UB Execution time

Fr
eq

ue
nc

y

Overest.
Analysis-guaranteed timing bounds

Variance due to different
inputs and initial states

review articles

february 2014 | vol. 57 | no. 2 | communications of the acm 97

The basis for
verifying the
timeliness of
system reactions is
reliable information
on the execution
times of all
computational
tasks involved.

does not try to solve the halting prob-
lem. All programs under analysis are
guaranteed to terminate. The complex-
ity of several subtasks, in particular the
huge state space to explore, is the prob-
lem to cope with.

Taking the Problem Apart
WCET analysis essentially is the search
for a longest path through a program.
This can be cast as the problem of con-
structing a weighted graph and finding
a longest path in it: The graph nodes
model program fragments, for exam-
ple, basic blocks, that is, maximally
long sequences of straight-line code.
The graph edges model possible con-
trol flow. The node weights are upper
bounds on the execution times of the
program fragments, the edge weights
are bounds on their traversal counts.

Following this scheme, a quasi-
standard architecture for static timing
analysis has emerged over the years,
as shown in Figure 2. Here, we briefly
explain the objective and main chal-
lenges of each subtask using the graph
terminology.

1.	 Control-flow reconstruction38 de-
termines the control-flow graph itself.
It reads the binary executable to be
analyzed, reconstructs its control flow,
and transforms it into an intermedi-
ate program representation. This is
a nontrivial task due to dynamically
computed control-flow successors, for
example, machine code generated for
switch statements; or function point-
ers whose values might not be deter-
mined easily. Some instruction-set
architectures (ISAs) have additional
surprises in store, for example those
without a proper instruction for the re-
turn from subroutines.

2.	 Value analysis can be seen as an
auxiliary analysis. It attempts to stati-
cally determine the values stored in
registers and memory locations. Such
information is needed for loop-bound
analysis, to determine the execution
time of arithmetic instructions whose
timing depends on the values of their
operands, for safely approximating
effective addresses for data-cache
analysis, and to resolve some more
value-dependent timing issues. The
general problem of value analysis is
undecidable, and often several values
are possible at a program point when
control passes by this program point

several times. One out of many approx-
imations6 is an interval analysis, which
computes enclosing intervals for the
set of possible values in registers and
memory locations.

3.	 Loop bound analysis14,15 deter-
mines the edge weights of the graph.
It identifies loops in the program
and tries to determine bounds on the
number of loop iterations. Similarly,
recursion must be bounded. Encoun-
tered challenges are the analysis of
computations on loop counters and
loop exit conditions, as well as de-
pendencies between loop counters in
nested loops. As the general problem
is undecidable, bounds may have to
be provided by the user.

4.	 Control-flow analysis,14,16 also
known as infeasible path analysis, is
an optional analysis. It determines
the set of possible paths through the
program more precisely in order to
tighten the timing bounds. Its results
are additional edge weights, but also
more general path constraints. Note
that loop bound analysis can be seen
as a special, indispensable case of
control-flow analysis.

5.	 Microarchitectural analysis deter-
mines the node weights of the graph.
This subtask will be detailed below as it
is the most complex one and provides
the most interesting insights.

6.	 Global bound analysis,1,24,39 also
called path analysis, finally deter-
mines a longest path in the graph.
One approach24,39 conveniently relies
on integer linear programming to do
so: (a) Integer variables model the tra-
versal count of nodes and edges. (b) A
set of constraints models the control
flow of the program using Kirchhoff’s
law: The sum of incoming flow at a
node must equal the sum of outgoing
flow. The incoming flow at the pro-
gram start node is fixed to 1. (c) An-
other set of constraints models loop
bounds and other path constraints as
determined by control-flow analysis.
(d) The objective function is the sca-
lar product of the traversal counts and
weights of the nodes, that is, execu-
tion count times execution time. To
compute upper bounds, the objective
function is maximized.

The Core of the Problem
In modern computer architectures,
speculation is overabundant, it is the

review articles

98 communications of the acm | february 2014 | vol. 57 | no. 2

is, t > th + n ∙ tp. A cache hit may entail
a state change in another component
such that an even greater penalty is in-
curred by that other component.

This all suggests that analyzing
each architectural component inde-
pendently of other components is ei-
ther unsound or imprecise: Unsound
if other components and their in in-
fluence are simply disregarded; im-
precise if the analysis always has to
account for the worst behavior of other
components.

Dire consequences. As a conse-
quence of timing anomalies, microar-
chitectural analysis must consider all
transitions that cannot be ruled out
statically. Due to the interdependen-
cies, the currently practiced solution
is to analyze all architectural com-
ponents simultaneously. If one addi-
tionally considers this analysis is per-
formed at the granularity of processor
cycles, it becomes apparent that this
subtask of WCET analysis is the most
complex one.

The preceding discussion also illus-
trates that worst-case execution time—
as other nonfunctional properties like
maximal stack usage—is very difficult
to check experimentally, such as, by
testing and measurements. Identifying
safe end-of-test criteria for these pro-
gram properties is an unsolved prob-
lem. In consequence, the required test
effort is high, the tests require access
to the physical hardware, and the re-
sults are not complete. The advantage
of static analysis is that it enables full
control and data coverage, it can be
easily automatized, and software devel-
opers can run tools from their worksta-
tion computers.

Architectural abstractions. As
mentioned earlier, abstraction is the
strong asset in microarchitectural
analysis. It is used to efficiently rep-
resent the architectural state at pro-
gram points and to allow for an effi-
cient state-space exploration.

A feature common to all architec-
tural abstractions is they completely
abstract from data. WCET analysis
is primarily interested in how long a
computation takes; the actually com-
puted values are of no direct interest.
Only if values have an influence on
the execution time of an instruction
they become important. For instance,
it makes a difference whether the ad-

normal mode of operation, and works
astonishingly well: Caches specu-
late on data reuse; branch prediction
speculates on the outcome of com-
parisons, pipelining speculates on the
absence of data dependencies; among
others. There are even speculations
on speculation: Instruction prefetch-
ing and speculative execution hope
for correct branch prediction. And mi-
croarchitectural analysis, which has
to determine upper bounds on the ex-
ecution times of program fragments,
has to pay the bill.

Microarchitectural analysis. Com-
puter architects are content when
speculation works most of the time—
average-case performance is what
matters to them. To derive tight tim-
ing bounds, however, microarchi-
tectural analysis must prove that the
speculation mechanisms work—
when they do.

This can possibly be done in many
ways. We use abstract interpretation6
to compute invariants at each pro-
gram point that characterize the set
of all states the architecture can be in
when control reaches this program
point. These invariants describe safe
information about the contents of the
caches;10,11 the state of the pipeline in-
cluding the contents of all its queues
and buffers as well as the occupancy
of its units;12,40 and the state of off-chip
buses, memories, and peripherals. The
computed invariants are used to ex-
clude transitions in the architecture.
For example, a cache-miss transition
can be excluded if the invariant about
the cache state allows it to predict a
cache hit.

If this seems easy to you, let us in-
dicate some pitfalls that rule out some
“obvious” optimizations and limit
scalability.

Pitfall timing anomalies. It looks
tempting to only follow the worst-case
transition, for example, the cache-
miss transition, when the statically
available information admits several
possible transitions, for example,
cache hit and cache miss. However,
there are timing anomalies that make
it difficult to decide which transition
is the worst.

Intuitively, a timing anomaly is a
situation where the local worst case
does not entail the global worst case.
Consider Figure 3, where a cache miss

to memory block A—the local worst
case—results in a globally shorter ex-
ecution time than a cache hit. This is
because it prevents a branch predic-
tion that would erroneously prefetch B.
Another example is given in Figure 4.
Shortening instruction A leads to a lon-
ger overall schedule, because instruc-
tion B can now block the more impor-
tant instruction C, which may only run
on Resource 2.

In other words, greedy is not nec-
essarily optimal when maximizing
execution times. For details see Lun-
dqvist and Stenström,25 who intro-
duced the notion of timing anomalies,
or Reineke and Sen,30 who present
a formal definition in the context of
WCET analysis.

Pitfall interdependencies. It looks
tempting to decompose the architec-
tural analysis into individual analyses
of its components. However, archi-
tectural components interact in non-
trivial ways.

For instance, consider caches in
combination with branch prediction:
If a branch is mispredicted, instruc-
tions are fetched from the wrong
branch target before the mispredic-
tion is detected and fetching is redi-
rected to the correct branch target.
Those extra instruction fetches can
evict blocks from the cache that might
have been useful for future program
execution. Conversely, a data-cache
miss can delay the computation of a
branch condition, which in turn can
trigger a branch prediction, and ulti-
mately speculative fetching and execu-
tion of code. If the initial data-cache
access were a hit, none of this might
have happened. Such (circular) inter-
dependencies also exist between other
architectural components.

In particular, the following attempt
to analyze the influence of a cache on
execution time is unsound:

1.	 Determine an execution time
bound, th, for a program assuming that
all cache accesses are hits.

2.	 Determine an upper bound, n, on
the overall number of cache misses in
any program execution.

3.	 Take th and add n times the cache-
miss penalty, tp, to obtain an upper
bound on the execution time that in-
cludes cache misses.

In fact, there may be an execution
of the program that takes longer, that

review articles

february 2014 | vol. 57 | no. 2 | communications of the acm 99

dress of a memory access maps to a fast
SRAM or a slow external flash memory.
Or whether the operand of a variable-
latency floating-point multiplication is
zero or not.

Information about values is main-
tained by the preceding value analysis
and can be queried if necessary. Fac-
toring out value analysis (as well as
control-flow analysis and loop bound
analysis) in this way is possible be-
cause it solely depends on the instruc-
tion set of the considered computing
platform. How a particular instruction
set is implemented by a microarchi-
tecture, which determines the timing,
is irrelevant for them. Hence, all those
analyses can be performed at the in-
struction level, prior to microarchitec-
tural analysis, which is performed at
the cycle level. This improves analysis
efficiency considerably.

Note that the whole truth may in-
clude pleasantries like exposed pipe-
lines or delay slots. The intrepid reader
may think about the ramifications of
“undead code,” that is, unreachable
code that gets executed speculatively;
or, similarly, loop bounds that get ex-
ceeded by speculative execution.

The next step toward efficient rep-
resentations is component-specific
abstractions. Consider caches for
instance. The timing-relevant infor-
mation about caches is whether the
memory block accessed at a program
point is contained in the cache or not
when execution reaches that program
point. This essential information is
called must- and may-cache informa-
tion:10 Must-cache information is a set
of memory blocks that definitely are
contained in the cache whenever ex-
ecution reaches that program point.
May-cache information is a set of mem-
ory blocks that may be contained in the
cache whenever execution reaches that
program point. The former allows to
predict hits; the latter allows to predict
misses; and for the memory blocks in
the set May\Must both hit and miss
need to be taken into account.

Cache abstractions conservatively
approximate this information. To be
able to maintain useful information
on cache updates, abstract caches con-
tain more than just the must- and may-
information. Compared to interval and
congruence abstractions with rather
simple encodings, that is, [l, u] and n

mod m, respectively, the encoding and
interpretation of abstract caches is
more complicated. Yet abstract caches
are elegant and more efficient than
explicit encodings of sets of concrete
cache states. For a recent overview of
cache analysis and examples of cache
abstractions, Grund11 or refer to the
earlier work.10

Regarding the success in abstrac-
tion, pipelines are a counterexample.
Pipelines are much more heteroge-
neous, that is, they consist of a large
number of small components, for
example, fetch buffers, dispatchers,
execution units, queues for pending
load and store instructions, among
others. Besides some minor abstrac-
tions, for example, abstraction of sym-
metrical units, no satisfactory abstrac-
tion of sets of pipeline states has been
found so far. In lieu of compact ab-
stract domains, the domain used for
pipeline analysis essentially is a pow-
erset domain: The architectural state
of pipelines is approximated by sets
of concrete pipelines. For an early ex-
ample of such a pipeline analysis, see
Ferdinand et al.;8 for a more complex
example, see Thesing.40

As explained earlier, all these anal-
yses are performed simultaneously.

Much like the actual hardware is made
up of components, the microarchitec-
tural analysis is made up of abstract
domains for all components, which are
composed using appropriate domain
constructors. Overall, microarchitec-
tural analysis is an abstract interpreta-
tion with a huge abstract domain. The
number of states considered during
the analysis of an average-sized basic
block for a PowerPC 7448 can grow to
seven-figure numbers.

Context sensitivity. Most static
program analyses rely on the tacit as-
sumption of control-flow abstraction:
Considering the exact set of possible
program paths (to a program point) is
intractable. A simple abstraction is to
approximate the set of possible paths
(to a program point) by the set of all
paths through the CFG (to that pro-
gram point). The loss of this abstrac-
tion stems from considering infeasible
paths through the CFG.

Regarding the WCET bound, infea-
sible shortcuts are not that problemat-
ic but infeasible detours are. Hence, as
explained, there is control flow analy-
sis, which determines infeasible paths
and thereby narrows down the set of
considered paths in order to tighten
the timing bounds.

Figure 3. Speculation timing anomaly.

A

A

Cache Miss

Cache Hit

C

Branch Condition
Evaluated

Prefetch B - Miss C

A

A

Resource 1

Resource 2

Resource 1

Resource 2

C

B C

B

D E

D E

C ready

Figure 4. Scheduling timing anomaly. Arrows indicate dependencies.

review articles

100 communications of the acm | february 2014 | vol. 57 | no. 2

louse, France, based on static analysis;
(e)  RapiTime, a commercial tool by

Rapita Systems Ltd., York, U.K., based
on measurements; and,

(f)  SWEET, an academic prototype
of Mälardalen University, Sweden, fo-
cusing on static control-flow analysis.

For a more complete list and a deep-
er discussion of functionalities and
limitations we refer to Wilhelm et al.43

Regarding sound static analysis ap-
proaches and saving open and upcom-
ing challenges for later discussion,
the most important developments
were (a) the timing schema introduced
by Shaw33 and its extension; (b) the
switch to the more suitable implicit
path enumeration technique (IPET),
initially proposed by Li and Malik,24
which is still used today for global
bound analysis; (c) dissection of the
timing analysis task into controllable
subtasks;8 (d) approaches to microar-
chitectural analysis, leading to com-
plete models of complex processors;40
(e) abstractions for the huge state
spaces of cache architectures;10,11 and
(f) relaxations of the uninterrupted-
execution assumption,2 which we will
discuss in further detail.

The WCET research group at Mälar-
dalen University maintains a num-
ber of WCET benchmark programsa
used to evaluate and compare differ-
ent types of WCET analysis tools and
methods.13 Since 2006, the WCET
community periodically performs a
WCET Tool Challenge.b The published
results37 give a good overview of the
state of the different tools.

Industrial Adoption
Until the 1990s, timing analysis in
industrial contexts was dominated by
measurement-based techniques and
simple counting methods. The strand
of research on static methods reached
a milestone in 1998 with the founding
of the company AbsInt Angewandte
Informatik GmbH. After preliminary
discussions with the German TÜVs
(technical inspection offices) the mar-
ket potential of Abstract Interpreta-
tion based WCET analysis seemed to
justify the commercialization effort.
Airbus was among the first companies

a	 http://www.mrtc.mdh.se/projects/wcet/
benchmarks.html/

b	 http://www.mrtc.mdh.se/projects/WCC/

In general, the WCET problem re-
quires analyses that are highly context-
sensitive. That is, they need to distin-
guish between different possibilities
how control reaches a program point.
To see why, consider the execution
of loops: The first iteration typically
exhibits a different architectural be-
havior than subsequent iterations, for
example, the instructions of the loop
get loaded into the cache. If one would
not distinguish between iterations one
would have to conservatively take in-
struction cache misses into account
for all loop iterations. This, however,
would lead to a significant overestima-
tion of the execution time.

Similar differences can be exhibited
between different call sites of functions.
After a first call some of the function’s
code might remain in the cache. Loop
bounds within the function might de-
pend on a function parameter. Different
parameter values might induce paths of
different lengths through the function.

Essentially contexts allow to in-
fer stronger invariants per (program
point, context) -pair compared to a sin-
gle invariant per program point.

To read more on context sensitivity
and special kinds of context sensitivity
that have emerged in WCET analysis,
see Martin et al.26

Conclusion. Modern CPUs feature
an abundance of speculation mecha-
nisms that increase (average-case)
performance. To derive tight bounds
on program execution times, static
WCET analysis must prove that specu-
lation mechanisms indeed work well.
As we have seen, this is difficult for
many reasons:

Interdependencies between archi-
tectural components forbid the analy-
sis of individual components as well
as the naive approach of assigning
execution time penalties, for example,
“add n times the cache miss penalty.”
Analyses need to be integrated, which
entails higher complexity and in-
creased resource demand. At the same
time, pruning of the analysis search
space is hindered by timing anoma-
lies and requires precise information
about the architectural state. To obtain
such precise information, context-sen-
sitive analyses are required that need
to distinguish between a large number
of different execution histories. This
is because the state of components

like caches and branch predictors may
depend on events in the distant past.
Indeed some may never forget about
their history.29

On a more abstract level, CPUs
are built to exploit runtime informa-
tion during the execution of a single
program path. WCET analysis must
statically prove successful exploitation
while efficiency dictates implicit con-
sideration of all program paths. It is fair
to say that for hard real-time systems,
the high sophistication of some specu-
lation mechanisms is a waste of silicon.

Academic Development
The editorial by Puschner and Burns28
compactly describes the early work on
WCET analysis in the 1980s and 1990s.
It summarizes the contributions of
the then active research groups. The
more recent survey of Wilhelm et al.43
takes a more problem-centric point of
view. It discusses different approach-
es at the subtasks of timing analysis,
contributing groups, as well as the
strengths and limits of the tools avail-
able at that time.

In principle, one can distinguish
between methods based on measure-
ments, simulation, or static analysis.
The WCET estimates determined by
measurements or simulation are unsafe
as inclusion of the worst-case combina-
tion of program input and initial archi-
tectural state can rarely be guaranteed.
Static methods can provide guarantees
but may suffer from overestimation.
Performing measurements requires the
hardware and tracing equipment; simu-
lations and static analysis require mod-
els of the architecture.

Some research groups invested into
academic prototypes, some of which
made the leap to commercially avail-
able tools. The most widely known
tools that are still maintained are:

(a)  aiT, a commercial tool by AbsInt
GmbH, Saarbrücken, Germany, based
on static analysis;

(b)  BoundT, a commercial tool by
Tidorum Ltd., Helsinki, Finland, based
on static analysis;

(c)  Chronos, an open source soft-
ware developed by National University
of Singapore, employs the SimpleSca-
lar simulator for microarchitectural
analysis;

(d)  OTTAWA, an open source soft-
ware developed by University of Tou-

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=100&exitLink=http%3A%2F%2Fwww.mrtc.mdh.se%2Fprojects%2Fwcet%2Fbenchmarks.html%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=100&exitLink=http%3A%2F%2Fwww.mrtc.mdh.se%2Fprojects%2Fwcet%2Fbenchmarks.html%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=100&exitLink=http%3A%2F%2Fwww.mrtc.mdh.se%2Fprojects%2FWCC%2F

review articles

february 2014 | vol. 57 | no. 2 | communications of the acm 101

The worst-
case execution
time estimates
determined by
measurements
or simulation are
unsafe as inclusion
of the worst-case
starting conditions
can rarely be
guaranteed.
Methods based on
static analysis can
provide guarantees
but may suffer from
overestimation.

to recognize the potential of the novel
technique. Airbus was instrumental
in the European IST project Daedalus
(Validation of critical software by static
analysis and abstract testing), in the
course of which AbsInt adapted its pro-
totypical tool chain for WCET analysis
to the industrial requirements for avi-
onics software.34,35,41 The first proces-
sors supported by the new commercial
WCET analysis tool were Motorola
PowerPC 755 and TI TMS470. Today,
this tool, which implements the archi-
tectures described earlier, is known as
aiT WCET Analyzer.

Initially reported results35 pertain
to the more complex PowerPC 755,
whose variance of execution times for
instructions is in the order of a factor
of several hundreds. The comparison
shows that the computed upper bound
of a task typically is about 25% higher
than the measured time for the same
task, the real but non-calculable WCET
being in between. Analysis time was 12
hours per program on average and the
maximal memory demand was close to
3GiB. Since then, the aiT tool chain has
been continuously improved by incor-
porating new research results and now
supports some 20 processor targets.c
For simpler microcontrollers overesti-
mation is below 10%.d

Tool couplings to other develop-
ment tools have been implemented.
For instance between aiT and model-
based code generators like Esterel
SCADE9 and dSPACE TargetLink.20
They enable the worst-case timing
behavior to be continuously evalu-
ated during software development.
Links between analysis results and
the model level enable timing infor-
mation to be traced back to the model
level. Errors can be detected early in
the development process, thus avoid-
ing late-stage integration problems.
Another important process optimi-
zation can be realized by integrating
tools for computing the worst-case
execution time and the worst-case re-
sponse time. A tool coupling between
aiT and the SymTA/S tool from Symta-
vision provides a seamless approach
to timing analysis: SymTA/S computes
the end-to-end times and worst-case
response times of the system based

c	 http:/www.absint.com/ait/targets.htm/
d	 http://www.absint.com/ait/precision.htm/

on the worst-case execution times
computed by aiT.19 From a safety as-
surance perspective, typically mod-
el-based testing is used for showing
functional program properties, and
static analysis to prove the absence
of non-functional program errors.
Therefore it can be very beneficial to
integrate model-based testing and
analysis, which has been addressed by
a tool coupling between aiT and the
model-based testing tool BTC Embed-
dedTester.18 Model-level information
like execution model or environment
specifications is automatically taken
into account, avoiding duplicate effort
for test and analysis setup. Tests and
analyses can be launched seamlessly
and produce unified result reports.

During the last years, most of the
relevant safety standards have been
undergoing major revisions, for exam-
ple, DO-178, IEC-61508, and CENEL-
EC EN-50128. The norm ISO-26262
defining functional safety for road ve-
hicles was published in the year 2011.
All of them require to identify poten-
tial functional and nonfunctional
hazards and to demonstrate that the
software does not violate the relevant
safety goals. All mentioned standards
list the worst-case execution time to
the software properties that have to
be determined for real-time software.
When used in the certification process
of safety-critical systems, tools must
be qualified according to the perti-
nent safety standard. To support this,
AbsInt has developed Qualification
Support Kits (QSK) for aiT, which can
demonstrate the tool works correctly
in the operational context of the user.
Additionally, Qualification Software
Life Cycle Data (QSLCD) reports are
available that document the entire
tool development process of aiT for
all target processors and compilers,
including all verification and quality
assurance activities. QSK and QSLCD
enable the tool qualification accord-
ing to any safety standard to be per-
formed in a mostly automatic way up
to the highest criticality levels.22

Customers of aiT come from all
safety-critical industry sectors: Avion-
ics and space, automotive, nuclear
power plant control, healthcare tech-
nology, among others. Regrettably,
most aiT customers do not agree to
be referenced. Some who agreed can

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=101&exitLink=http%3A%2F%2Fwww.absint.com%2Fait%2Ftargets.htm%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=101&exitLink=http%3A%2F%2Fwww.absint.com%2Fait%2Fprecision.htm%2F

review articles

102 communications of the acm | february 2014 | vol. 57 | no. 2

Necessary effort
and achievable
precision for the
single-core setting
meet industrial
requirements.
For most current
multicore
platforms, precision
and/or complexity
are unacceptable.

In fact one can state this assump-
tion in a more general way: Analysis
takes account only of events whose
occurrence can be associated with
specific program points. Other types
of events that happen without such
an association and that alter the ar-
chitectural state have to be dealt with
separately. Preemptive scheduling,
possibly implemented using hard-
ware interrupts, is only one example.
Others include DRAM refreshes, DMA
transfers, or even the parallel execu-
tion of programs on multiprocessor or
multicore platforms.

The problem with parallel execu-
tion of programs is the induced in-
terference on architectural resources
that are shared between programs,
for example, caches, interconnects,
flash memories, peripherals, and so
on. Some accesses to shared resourc-
es, in particular global variables, will
be synchronized to guarantee the se-
mantics of the co-running programs.
For the rest, the order in which com-
peting threads access shared machine
resources is not statically fixed. This
complicates timing analysis as any
access to a shared resource might be
delayed due to competing accesses.
One approach to statically prove the
absence of such delays is to analyze
each program given abstractions of
the resource access behaviors of all
other co-running programs. One ex-
ample is given by Schranzhofer et al.,32
but finding suitable abstractions for
the general problem is unsolved.

To mitigate problems in timing
analysis, one can try to reduce inter-
ferences on resources by smart config-
uration of the CPU or system board.7,21

As an alternative to tilting at wind-
mills, that is, trying to fix designs that
are less favorable for WCET analysis,
one can try to design the architectures
appropriately in the first place.42,44 Ap-
propriately meaning that one can eas-
ily predict their behavior while they
still exhibit high performance. The
need for predictability was recognized
early36 and has since been inspected
in several ways, for example, Henzing-
er,17 Bernardes,5 and Thiele.42 Howev-
er, the understanding of predictability
in the real-time community is rather
implicit. A generally accepted formal
definition is still to be found. The joint
article by Axer et al.3 discusses predict-

be found at http:/www.absint.com/
success.htm. In 2010, aiT was used by
NASA as an industry-standard tool for
demonstrating the absence of timing-
related software defects in the Toyota
Motor Corporation Unintended Accel-
eration Investigation.27

Open Questions and
Future Challenges
In this article, we described a solu-
tion for the WCET-analysis problem.
However, there are still shortcomings
whose removal will increase general
applicability. Here, we discuss these
shortcomings as well as future threats
to the viability of this solution.

For the sake of completeness, let
us list the underlying assumptions of
our approach. Regarding the program
to be analyzed: termination, no self-
modifying code, no dynamic memory
allocation, and resolvable dynamic
branch targets.

These are rather easy to satisfy
and missing information can be sup-
plied by the developer or derived from
a higher-level model. Although the
source code might be subject to regu-
lations or norms, this is irrelevant for
WCET analysis as it requires binaries
as input.

Static analysis requires a truth-
ful model of the architecture to be
analyzed. Current abstract models are
crafted by studying hardware docu-
mentation, by querying designers, by
asking somebody who knows, and, if
necessary, by performing reverse-engi-
neering experiments. The upcoming al-
ternative to this error-prone and labori-
ous process is to derive abstract models
from VHDL or Verilog specifications.31

One important assumption we
make on the system level is that pro-
grams are executed in isolation. If
program execution were interrupted,
and other code were executed, the
architectural state would be differ-
ent when program execution would
resume. Hence, the computed invari-
ants on the architectural state at all
following program points would be
wrong. One needs additional analyses
that allow to bound the interruption-
caused increase in execution time.2
Nonpreemptive scheduling, as found
in avionics for example, is the easier
choice though, at least concerning
WCET analysis.

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=102&exitLink=http%3A%2F%2Fwww.absint.com%2Fsuccess.htm
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=102&exitLink=http%3A%2F%2Fwww.absint.com%2Fsuccess.htm

review articles

february 2014 | vol. 57 | no. 2 | communications of the acm 103

Symposium (Dec. 1999), 12–21.
26.	 Martin, F., Alt, M., Wilhelm, R. and Ferdinand, C. Analysis

of loops. Compiler Construction (1998), 80–94.
27.	N ational Highway Traffic Safety Administration Toyota

unintended acceleration investigation. Technical
Report TI-10-00618, NASA Engineering and Safety
Center, January 2011.

28.	 Puschner, P. and Burns, A. Guest editorial: A review
of worst-case execution-time analysis. Real-Time
Systems 18 (2000), 115–128.

29.	R eineke, J. and Grund, D. Sensitivity of cache
replacement policies. ACM Trans. Embedded
Computing Systems (2013).

30.	R eineke, J. et al. A definition and classification of
timing anomalies. In Proceedings of 6th International
Workshop on Worst-Case Execution Time Analysis
(July 2006).

31.	 Schlickling, M. and Pister, M. Semi-automatic
derivation of timing models for WCET analysis. In
Proceedings of the ACM SIGPLAN/SIGBED 2010
Conference on Languages, Compilers, and Tools for
Embedded Systems (Apr. 2010), 67–76. ACM, NY.

32.	 Schranzhofer, A. Pellizzoni, R., Chen, J.-J., Thiele, L.
and Caccamo, M. Timing analysis for resource access
interference on adaptive resource arbiters. IEEE
Real-Time and Embedded Technology and
Applications Symposium (2011), 213–222.

33.	 Shaw, A.C. Reasoning about time in higher-level
language software. IEEE Trans. Software Eng. 15, 7
(1989), 875–889.

34.	 Souyris, J. Industrial experience of abstract
interpretation-based static analyzers. Building the
Information Society. R. Jacquart, ed. IFIP 156 (2004),
393–400. Springer, Boston.

35.	 Souyris, J., Pavec, E.L., Himbert, G., Jégu, V. and
Borios, G. Computing the worst-case execution time
of an avionics program by abstract interpretation. In
Proceedings of the 5th Intl. Workshop on Worst-Case
Execution Time Analysis (2005), 21–24.

36.	 Stankovic, J. and Ramamritham, K. What is
predictability for real-time systems? Real-Time Syst.
2 (1990), 247–254.

37.	T an, L. The worst-case execution time tool challenge
2006. International J. Software Tools for Technology
Transfer 11, 2 (2009), 133–152.

38.	T heiling, H. Extracting safe and precise control flow
from binaries. In Proceedings of the 7th International
Conference on Real-Time Systems and Applications
(Washington, D.C. 2000). IEEE-CS, 23–30.

39.	T heiling, H. ILP-based interprocedural path analysis.
Lecture Notes in Computer Science, EMSOFT 2491
(2002), 349–363. Springer.

40.	Thesing, S. Safe and Precise WCET Determinations
by Abstract Interpretation of Pipeline Models. Ph.D.
thesis, Saarland University, 2004.

41.	T hesing, S. et al. An abstract interpretation-based
timing validation of hard real-time avionics software
systems. In Proceedings of the 2003 International
Conference on Dependable Systems and Networks
(June 2003), IEEE-CS, 625–632.

42.	T hiele, L. and Wilhelm, R. Design for timing
predictability. Real-Time Systems, 28, 2-3 (2004),
157–177.

43.	 Wilhelm, R. et al. The worst-case execution-time
problem—Overview of methods and survey of tools.
ACM Trans. Embedded Computing Systems 7, 3
(2008), 1–53.

44.	Wilhelm, R. et al. Memory hierarchies, pipelines, and
buses for future time-critical embedded architectures.
IEEE TCAD 28, 7 (July 2009), 966–978.

Reinhard Wilhelm (wilhelm@cs.uni-saarland.de) is a
professor at Saarland University, Saarbrücken, Germany,
where he has served as chair for programming languages
and compiler construction since 1978.

Daniel Grund (daniel.grund@thalesgroup.com) is
currently a systems architect Thales Transportation
Systems in Stüttgart, Germany. He contributed to the
work described in this article while he was a researcher at
Saarland University, Saarbrücken, Germany.

© 2014 ACM 0001-0782/14/02 $15.00

ability fundamentally and at several
abstraction levels of systems.

Conclusion
Timing analysis has been made dif-
ficult by the use of high-performance
microprocessors, which use caches,
deep pipelines, out-of-order execution,
and branch prediction to improve aver-
age-case performance. These architec-
tural components have introduced a
large variability of the execution times
of individual instructions by the de-
pendence on the execution state. The
solution is to safely bound the execu-
tion times of sequences of instructions
occurring in the program based on in-
formation about all possible execution
histories leading to these occurrences.
Static program analysis is used to com-
pute such information. Reliable and
precise upper bounds can be comput-
ed. Timing-analysis tools are in routine
use in the safety-critical embedded-
systems industries.

The possibility to determine execu-
tion-time bounds and the precision of
the results depend heavily on proper-
ties of the underlying computer archi-
tecture. Trends in computer architec-
ture and in software design threaten
the applicability of established meth-
ods. The fact the timing analysis
problem could be solved in a provably
correct way is considered one of the
success stories of formal methods.
Continuation of this story will require
more predictable architectures as well
as advances in analysis technology.

Acknowledgments
We thank our many colleagues who
have contributed to the described ap-
proach, including Christian Ferdi-
nand, Florian Martin, Henrik Theil-
ing, Michael Schmidt, and Stephan
Thesing, Reinhold Heckmann, Daniel
Kästner, and Jan Reineke.

The development of the technology
was supported by the Transfer Project
14 of the Deutsche Forschungsgemein-
schaft, the European IST project Dae-
dalus, and the Transregional Research
Center AVACS of the Deutsche Forsc-
hungsgemeinschaft.	

References
1.	A lthaus, E., Altmeyer, S. and Naujoks, R. Precise and

efficient parametric path analysis. In Proceedings
of the ACM SIGPLAN/SIGBED 2011 Conference
on Languages, Compilers, and Tools for Embedded

Systems. ACM, NY (Apr. 2011), 141–150.
2.	A ltmeyer, S., Davis, R.I. and Maiza, C. Improved

cache related pre-emption delay aware response time
analysis for fixed priority pre-emptive systems. Real-
Time Systems 48, 5 (2012), 499–526.

3.	A xer, P. et al. Building timing predictable embedded
systems. Trans. Embedded Computing Systems (2012).

4.	B alakrishnan, G. and Reps, T. WYSINWYX: What you
see is not what you eXecute. ACM Trans. Program.
Lang. Syst. 32, 6 (Aug. 2010), 23:1–23:84.

5.	B ernardes, J.N.C. On the predictability of discrete
dynamical systems. In Proc. of the American Math.
Soc. 130, 7 (2001), 1983–1992.

6.	 Cousot, P. Abstract interpretation based formal
methods and future challenges. Informatics—10
Years Back, 10 Years Ahead (2001), 138–156.

7.	 Cullmann, C. et al. Predictability considerations in
the design of multi-core embedded systems. In
Proceedings of Embedded Real Time Software and
Systems (May 2010), 36–42.

8.	 Ferdinand, C. et al. Reliable and precise WCET
determination for a real-life processor. In Proceedings
of the First International Workshop on Embedded
Software (London, U.K., 2001). Springer, 469–485.

9.	 Ferdinand, C. et al. Combining a high-level design
tool for safety-critical systems with a tool for WCET
analysis on executables. In Proceedings of the 4th
European Congress ERTS Embedded Real-Time
Software (Toulouse, France, Jan. 2008).

10.	 Ferdinand, C. and Wilhelm, R. Efficient and precise
cache behavior prediction for real-time systems. Real-
Time Systems 17, 2-3 (1999), 131–181.

11.	G rund, D. Static Cache Analysis for Real-Time
Systems—LRU, FIFO, PLRU. Ph.D. thesis. Saarland
University, 2012.

12.	G rund, D., Reineke, J. and Gebhard, G. Branch target
buffers: WCET analysis framework and timing
predictability. J. Systems Architecture 57, 6 (2011),
625–637.

13.	G ustafsson, J., Betts, A. Ermedahl, A. and Lisper, B.
The Mälardalen WCET benchmarks: Past, present
and future. In Proceedings of the 10th International
Workshop on Worst-Case Execution Time Analysis.

14.	G ustafsson, J., Ermedahl, A., Sandberg, C. and Lisper,
B. Automatic derivation of loop bounds and infeasible
paths for WCET analysis using abstract execution. In
Proceedings of the 27th IEEE International Real-Time
Systems Symposium (Washington, D.C., 2006), IEEE-
CS, 57–66.

15.	H ealy, C. Sjödin, M., Rustagi, V., Whalley, D. and van
Engelen, R. Supporting timing analysis by automatic
bounding of loop iterations. Real-Time Systems 18
(2000), 129–156.

16.	H ealy, C. and Whalley, D. Automatic detection and
exploitation of branch constraints for timing analysis.
IEEE Trans. Software Engineering 28, 8 (2002),
763–781.

17.	H enzinger, T. Two challenges in embedded systems
design: Predictability and robustness. Philos. Trans.
Royal Soc. Math., Phys. and Engin. Sciences, 366, 1881
(2008), 3727–3736.

18.	 Kästner, D. et al. Leveraging from the combination of
model-based analysis and testing. Embedded World
Congress, 2013.

19.	 Kästner, D., Ferdinand, C., Heckmann, R., Jersak,
M. and Gliwa, P. An integrated timing analysis
methodology for real-time systems. SAE World
Congress. SAE International, 2011.

20.	 Kästner, D. et al. Integrating model-based code
generators with static program analyzers. Embedded
World Congress, 2013.

21.	 Kästner, D. et al. Meeting real-time requirements
with multi-core processors. In Proceedings of 2012
Workshop: Next Generation of System Assurance
Approaches for Safety-Critical Systems. (Sept. 2012).

22.	 Kästner, D. and Ferdinand, C. Efficient verification
of non-functional safety properties by abstract
interpretation: Timing, stack consumption, and
absence of runtime errors. In Proceedings of the
29th International System Safety Conference (Las
Vegas, 2011).

23.	 Lee, E.A. Computing needs time. Commun. ACM 52, 5
(May 2009), 70–79.

24.	 Li, Y-T.S. and Malik, S. Performance analysis of
embedded software using implicit path enumeration.
In Proceedings of the 32nd Annual ACM/IEEE Design
Automation Conference (New York, NY, 1995), ACM,
NY, 456–461.

25.	 Lundqvist, T. and Stenström, P. Timing anomalies
in dynamically scheduled microprocessors. In
Proceedings of the 20th IEEE Real-Time Systems

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=103&exitLink=mailto%3Awilhelm%40cs.uni-saarland.de
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=103&exitLink=mailto%3Adaniel.grund%40thalesgroup.com

Priority Code: AD13

Online
http://www.acm.org/join

Phone
+1-800-342-6626 (US & Canada)

+1-212-626-0500 (Global)

Fax
+1-212-944-1318

membership application &
digital library order form

PROFESSIONAL MEMBERSHIP:

o ACM Professional Membership: $99 USD

o ACM Professional Membership plus the ACM Digital Library:

$198 USD ($99 dues + $99 DL)

o ACM Digital Library: $99 USD (must be an ACM member)

STUDENT MEMBERSHIP:
o ACM Student Membership: $19 USD

o ACM Student Membership plus the ACM Digital Library: $42 USD

o ACM Student Membership PLUS Print CACMMagazine: $42 USD

o ACM Student Membership w/Digital Library PLUS Print

CACM Magazine: $62 USD

choose one membership option:

Name

Address

City State/Province Postal code/Zip

Country E-mail address

Area code & Daytime phone Fax Member number, if applicable

 Payment must accompany application. If paying by check or
money order, make payable to ACM, Inc. in US dollars or foreign
currency at current exchange rate.

o Visa/MasterCard o American Express o Check/money order

o Professional Member Dues ($99 or $198) $ _____________________

o ACM Digital Library ($99) $ _____________________

o Student Member Dues ($19, $42, or $62) $ _____________________

Total Amount Due $ ______________________

Card # Expiration date

Signature

Member dues, subscriptions, and optional contributions are
tax-deductible under certain circumstances. Please consult
with your tax advisor.

payment:

RETURN COMPLETED APPLICATION TO:

All new professional members will receive an
ACM membership card.

Association for Computing Machinery, Inc.
General Post Office
P.O. Box 30777
New York, NY 10087-0777

Questions? E-mail us at acmhelp@acm.org
Or call +1-800-342-6626 to speak to a live representative

Satisfaction Guaranteed!

Purposes of ACM
ACM is dedicated to:
1) advancing the art, science, engineering,
and application of information technology
2) fostering the open interchange of
information to serve both professionals and
the public

3) promoting the highest professional and
ethics standards

I agree with the Purposes of ACM:

Signature
ACM Code of Ethics:

http://www.acm.org/about/code-of-ethics

You can join ACM in several easy ways:

Or, complete this application and return with payment via postal mail

Special rates for residents of developing countries:
http://www.acm.org/membership/L2-3/

Special rates for members of sister societies:
http://www.acm.org/membership/dues.html

Advancing Computing as a Science & Profession

Please print clearly

o Join ACM-W: ACM-W supports, celebrates, and advocates internationally for the full engagement of women in all aspects of the
computing field. Available at no additional cost.

CACM_PRINT_MAG_APP_2013_Layout 1 12/2/13 10:40 AM Page 2

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=104&exitLink=http%3A%2F%2Fwww.acm.org%2Fjoin
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=104&exitLink=mailto%3Aacmhelp%40acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=104&exitLink=http%3A%2F%2Fwww.acm.org%2Fabout%2Fcode-of-ethics
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=104&exitLink=http%3A%2F%2Fwww.acm.org%2Fmembership%2FL2-3%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=104&exitLink=http%3A%2F%2Fwww.acm.org%2Fmembership%2Fdues.html

research highlights

105 communications of the acm | february 2014 | vol. 57 | no. 2

p. 107

Communication Costs of
Strassen’s Matrix Multiplication
By Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz

p. 106

Technical
Perspective
A New Spin on
an Old Algorithm
By Michael W. Mahoney

106 communications of the acm | february 2014 | vol. 57 | no. 2

C o m m u n i c ati o n — t h e c o s t of moving
bits between levels of the memory hier-
archy on a single machine or between
machines in a network or data cen-
ter—is often a more precious resource
than computation. Although not new,
communication-computation trade-
offs have received renewed interest
in recent years due to architectural
trends underlying high-performance
computing as well as technologi-
cal trends that permit the automatic
generation of enormous quantities of
data. On the practical side, this has led
to multicore processors, libraries such
as LAPACK and ScaLAPACK, schemes
such as MPI and MapReduce, and dis-
tributed cloud-computing platforms.
On the theoretical side, this has moti-
vated a large body of work on new al-
gorithms for old problems under new
models of data access.

Into this fray enters the following
paper by Ballard, Demmel, Holtz, and
Schwartz, which considers a funda-
mental problem, adopting a new per-
spective on an old algorithm that has
for years occupied a peculiar place in
the theory and practice of matrix al-
gorithms. In doing so, the work high-
lights how abstract ideas from theoret-
ical computer science (TCS) can lead to
useful results in practice, and it illus-
trates how bridging the theory-practice
gap requires a healthy understanding
of the practice.

The basic problem is the multiplica-
tion of two n × n matrices. This is a fun-
damental primitive in numerical linear
algebra (NLA), scientific computing,
machine learning, and large-scale data
analysis. Clearly, n2 time is a trivial low-
er bound—that much time is necessary
to read the input and write the output.
Moreover, at first glance, it seems “ob-
vious” the ubiquitous three-loop al-
gorithm for multiplying two matrices
(given as input two n × n matrices, A
and B, for each i, j, k, do: C(i, j)+= A(i, k)
* B(k, j)) shows that a constant times n3
time is needed to solve the problem.

Back in 1969, it was surprising when
Strassen presented his by-now well-
known algorithm. The basic idea is two
2 × 2 matrices can be multiplied using
7, rather than the usual 8, multiplica-
tions. Since the same idea applies to 2 ×
2 block matrices, the natural recursive
extension can be used to multiply two
n × n matrices in no more than a con-
stant times nω arithmetic operations,
where ω = log2 7 ≈ 2.808. Over the years,
the exponent ω has been whittled down
to ω ≈ 2.373, and many conjecture that
there exist Strassen-like algorithms
with ω = 2.

Strassen’s algorithm highlights
the distinction, extremely important
in TCS, between problems and algo-
rithms; and it demonstrates that non-
obvious algorithms can have better
running times, in theory at least, than
the obvious algorithm. Although its
running time can be better than the
usual three-loop algorithm for input
matrices larger than ca. 100 × 100,
Strassen’s algorithm has, for both tech-
nical and non-technical reasons, yet to
be widely used in practice.

This paper is part of a larger body
of work on minimizing communica-
tion in NLA algorithms. Previous work
has shown that geometric embedding
methods can be used to establish com-
munication lower bounds for three-
loop matrix multiplication algorithms
in both shared-memory sequential and
distributed-memory parallel models.
Basically, the algorithm can be mod-
eled as a computation directed acyclic
graph (CDAG). Due to the three-loop
structure of the algorithm, this graph
can be embedded into a 3D cube; and
from the isoperimetric properties of
that embedding a lower bound on
communication can be established.
The main result of this paper is a new
lower bound on the amount of commu-
nication for both sequential and paral-
lel versions of Strassen-like algorithms
that is lower than the lower bound of
the usual three-loop algorithm.

Since the geometric embedding
methods do not seem to apply to the
recursive structure of Strassen-like
algorithms, the new lower bound is
established by considering the edge
expansion of the CDAG of Strassen’s
algorithm. Expanders—graphs that do
not have any good partitions and that
do not embed well in any low-dimen-
sional Euclidean space—are remark-
ably useful structures that are ubiqui-
tous within TCS and almost unknown
outside TCS. For readers familiar with
expanders, this paper will provide yet
another application. For readers not
familiar with expanders, this paper
should be a starting point.

Finally, in a stroke that will make
practitioners of numerical analysis and
data analysis—as well as lower bound
complexity theorists—happy, the au-
thors also show their lower bounds
are tight by providing an optimal al-
gorithm. In the sequential case, this is
attained by the standard implementa-
tion of Strassen’s algorithm; and, in the
parallel case, the authors, in joint work
with Benjamin Lipshitz, have devel-
oped a novel Communication Avoiding
Parallel Strassen algorithm. This latter
algorithm communicates asymptoti-
cally less than previous three-loop and
Strassen-based algorithms; and its em-
pirical performance exceeds all other
known matrix multiplication algo-
rithms, three-loop or Strassen-based,
on large parallel machines. Remark-
ably, this suggests that Strassen’s algo-
rithm should be adopted into existing
parallel NLA libraries, providing a great
example of how to bridge the theory-
practice gap, and suggesting that Stras-
sen’s algorithm might still see practical
use—ironically, though, due to its bet-
ter communication properties.	

Michael W. Mahoney (mmahoney@icsi.berkeley.edu) is
at the International Computer Science Institute and the
Department of Statistics at the University of California at
Berkeley.

Copyright held by Author.

Technical Perspective
A New Spin on
an Old Algorithm
By Michael W. Mahoney

research highlights

doi:10.1145/2556329

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=106&exitLink=mailto%3Ammahoney%40icsi.berkeley.edu

February 2014 | vol. 57 | no. 2 | communications of the acm 107

doi:10.1145/2556647.2556660

Communication Costs of
Strassen’s Matrix Multiplication
By Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz

Abstract
Algorithms have historically been evaluated in terms of the
number of arithmetic operations they performed. This anal-
ysis is no longer sufficient for predicting running times on
today’s machines. Moving data through memory hierarchies
and among processors requires much more time (and energy)
than performing computations. Hardware trends suggest that
the relative costs of this communication will only increase.
Proving lower bounds on the communication of algorithms
and finding algorithms that attain these bounds are therefore
fundamental goals. We show that the communication cost of
an algorithm is closely related to the graph expansion proper-
ties of its corresponding computation graph.

Matrix multiplication is one of the most fundamental
problems in scientific computing and in parallel comput-
ing. Applying expansion analysis to Strassen’s and other
fast matrix multiplication algorithms, we obtain the first
lower bounds on their communication costs. These bounds
show that the current sequential algorithms are optimal but
that previous parallel algorithms communicate more than
necessary. Our new parallelization of Strassen’s algorithm
is communication-optimal and outperforms all previous
matrix multiplication algorithms.

1. INTRODUCTION
Communication (i.e., moving data) can greatly dominate
the cost of an algorithm, whether the cost is measured in
running time or in total energy. This holds for moving data
between levels of a memory hierarchy or between processors
over a network. Communication time per data unit varies by
orders of magnitude, from order of 10−9 seconds for an L1
cache reference to order of 10−2 seconds for disk access. The
variation can be even more dramatic when communication
occurs over networks or the internet. In fact, technological
trends16, 17 are making communication costs grow exponen-
tially over time compared to arithmetic costs. Moore’s Law
is making arithmetic on a chip improve at about 60% per
year, but memory and network bandwidth is improving at
only 26% and 23% per year.16 So even in cases where commu-
nication is not the bottleneck today, it may be in the future.

Ideally, we would be able to determine lower bounds on the
amount of required communication for important problems
and design algorithms that attain them, namely, algorithms
that are communication-optimal. These dual problems have
long attracted researchers, with one example being classi-
cal Θ(n3) matrix multiplication (see further details below),
with lower bounds proved in Hong and Kung18 and Irony
et al.20 and many optimal sequential and parallel algorithms
obtained in, for example, Agarwal et al.1 and Cannon11.

These lower bounds have recently been extended to a
large class of other classical linear algebra problems, includ-
ing linear system solving, least squares, and eigenvalue
problems, for dense and sparse matrices, and for sequential
and parallel machines.9 Surprisingly, the highly optimized
algorithms in widely implemented libraries like LAPACK
and ScaLAPACK3 often do not attain these lower bounds,
even in the asymptotic sense. This has led to much recent
work inventing new, faster algorithms that do; see the cita-
tions in Ballard et al.9, 10 for references.

In this paper, we describe a novel approach to prove
the first communication lower bounds for Strassen’s
Θ(nlog2 7) matrix multiplication algorithm, as well as
many similar fast algorithms. Specifically, we introduce
expansion analysis of the computational graphs of the
algorithms and show that the expansion helps deter-
mine the communication cost. These communication
cost bounds are lower than those of classical matrix
multiplication: this means that not only does Strassen’s
algorithm reduce computation, but it also creates an
opportunity for reducing communication. In addition,
the lower bound decreases as the amount of available
memory grows, suggesting that using extra memory may
also allow for faster algorithms.

In fact, there is an optimal parallel algorithm that attains
our lower bounds for varying amounts of memory, whose
performance exceeds all other known matrix multiplication
implementations, classical or Strassen-based, on a large
parallel machine,6 see Figure 1. In the rest of this paper, we
focus on explaining our new lower bounds for Strassen’s
algorithm and their implications.

1.1. Communication models
In order to analyze the communication costs of algorithms,
we consider idealized memory and communication models.
In the sequential case (see Figure 2), we consider a machine
with two levels of memory hierarchy: a fast memory of size
M words (where computation is performed) and a slow
memory of infinite size. We assume that the input initially
resides in slow memory and is too large to fit in fast memory.
We define the communication cost of a sequential algorithm

The original version of this paper is entitled “Graph
Expansion and Communication Costs of Fast Matrix
Multiplication” and was first published in the Proceedings
of the 2011 ACM Symposium on Parallelism in Algorithms
and Architectures and also appeared in the December
2012 issue of the Journal of the ACM.

108 communications of the acm | february 2014 | vol. 57 | no. 2

multiplication, resulting in a total communication cost of
Θ(n3). A natural question to ask is: can we do better?

Algorithm 1 Naive Classical Matrix Multiplication

1:  for i = 1 to n do
2:   for j = 1 to n do
3:	 for k = 1 to n do
4:	 Ci j = Ci j + Ai k · Bk j

The answer is yes. We can reduce communication by
using a “blocked” algorithm (see Algorithm 2). The idea is
to partition A, B, and C into square blocks of size b × b so
that three blocks can simultaneously fit in the fast memory.
We use the notation C[I, J   ] to refer to the (I, J   )th b × b block of
the C matrix. When C[I, J   ], A[I, K   ], and B[K, J   ] are all in fast
memory, then the inner loop of the algorithm (correspond-
ing to (b3) arithmetic operations) can be performed with no
more communication.

Algorithm 2 Blocked Classical Matrix Multiplication

1:  for I = 0 to n/b do
2:   for J = 0 to n/b do
3:	 for K = 0 to n/b do
4:	 C[I, J   ] = C[I, J   ] + A[I, K   ] · B[K, J  ]

If we pick the maximum block size of , this results
in a total of block operations, each requiring (M)
words to be communicated. Hence, the total communica-
tion cost is , a factor of better than that of
the naive algorithm.

The typical performance difference between the naive
and blocked algorithms on a sequential machine is an order
of magnitude. With the blocked algorithm, attained per-
formance is close to the peak capabilities of the machine.
Again, the question arises: can we do better? Can we further
reorder these computations to communicate less?

If we insist on performing the (n3) arithmetic operations
given by the classical formulation, the answer is no. Hong
and Kung18 proved a communication cost lowerbound of

 for any reordering, showing that the blocked
algorithm is communication-optimal. But this is not the
end of the story: this communication optimality of the
blocked algorithm assumes (n3) arithmetic operations.

1.3. Strassen’s matrix multiplication
While the classical algorithms for matrix multiplication
have already been optimized for reducing communication
cost to the minimum possible, a completely different algo-
rithmic approach for this problem is possible. Let us recall
Strassen’s algorithm24 (see Algorithm 3).

Strassen’s key idea is to multiply 2 × 2 matrices using seven
scalar multiplies instead of eight. Because n × n matrices can
be divided into quadrants, Strassen’s idea applies recursively.
Each of the seven quadrant multiplications is computed
recursively, and the computational cost of additions and sub-
tractions of quadrants is (n2). Thus, the recurrence for the flop
count is F (n) = 7F (n/2) + (n2) with base case F (1) = 1, which

research highlights

to be the total number of words transferred between the
slow and fast memories.

In the parallel case (see Figure 2), we consider p proces-
sors, each with a local memory of size M, connected over a
network. In this case, the communication cost is the num-
ber of words transferred between processors, counted along
the critical path of the algorithm. That is, two words that are
communicated simultaneously between separate pairs of
processors are counted only once.

1.2. Classical matrix multiplication
To illustrate the effects of arithmetic reordering on com-
munication and running time of a sequential computation,
consider the problem of computing matrix multiplication
C = A · B, where the (i, j)th output element is computed by the
classical formula Ci j = ∑k Ai k · Bk j. One “naive” ordering of
the computation of the classical algorithm can be specified
simply by three nested loops (see Algorithm 1). For matrices
that are too large to fit in fast memory, this ordering requires
the communication of at least one operand for each scalar

0

10

20

30

40

50

100 1000 10000

Ef
fe

ct
iv

e
G

fl
op

s
/ s

 /
pr

oc
es

so
r

Number of processors

Classical Peak

New Algorithm

Best Previous Strassen

Best Classical

Figure 1. Strong-scaling performance comparison of parallel matrix
multiplication algorithms on a Cray XT4.6 All data corresponds to
a fixed dimension n = 94080. The x-axis represents the number
of processors p on a log scale, and the y-axis measures effective
performance, or 2n3/(p · time). The new algorithm outperforms all
other known algorithms and exceeds the peak performance of the
machine with respect to the classical flop count. The new algorithm
runs 24–184% faster than the best previous Strassen-based
algorithm and 51–84% faster than the best classical algorithm for
this problem size.

CPU
M

CPU
M

CPU
M

CPU
M

CPU
M

Figure 2. Sequential two-level (left) and parallel distributed-memory
(right) models.

February 2014 | vol. 57 | no. 2 | communications of the acm 109

is given by the recurrence . The
base case occurs when the input and output sub-matrices fit
in the fast memory and the matrix multiplication can be per-
formed with no further communication. This yields

for M n2, matching the lower bound stated in Theorem 1.

2.2. Parallel case
The proof technique of Theorem 1 extends to parallel
machines, yielding

Corollary 2.10 Consider Strassen’s algorithm implemented
on a parallel machine with p processors, each with a local
memory of size M. Then for , the communication
cost of Strassen’s algorithm is

While Corollary 2 does not hold for all sizes of local
memory (relative to the problem size and number of
processors), the following memory-independent lower
bound can be proved using similar techniques5 and holds
for all local memory sizes, though it requires separate
assumptions.

Theorem 3.5 Suppose a parallel algorithm performing Stras
sen’s matrix multiplication load balances the computation.
Then, the communication cost is

Note that the bound in Corollary 2 dominates the one in
Theorem 3 for M = O (n2/p2 / log 7). Thus, the tightest lower bound
for parallel implementations of Strassen is the maximum of
these two bounds. Table 2 and Figure 3, both adapted from
Ballard et al.,5 illustrate the relationship between the two func-
tions. Figure 3 in particular shows bounds on strong scaling:
for a fixed dimension n, increasing the number of processors
(each with local memory size M) within a limited range does
not increase the total volume of communication. Thus, the
communication cost along the critical path decreases linearly
with p. This is because in this “perfect strong scaling range,”

yields F (n) = (nlog27), which is asymptotically less computation
than the classical algorithm.

The main results presented in the following section
expose a wonderful fact: not only does Strassen’s algorithm
require less computation than the classical algorithm, but it
also requires less communication!

Algorithm 3 Strassen’s Matrix Multiplication Algorithm

Input:

1:  if n = 1 then
2:	 C = A · B
3:  else
4:	 M1 = (A11 + A22) · (B11 + B22)
5:	 M2 = (A21 + A22) · B11

6:	 M3 = A11 · (B12 − B22)
7:	 M4 = A22 · (B21 − B11)
8:	 M5 = (A11 + A12) · B22

9:	 M6 = (A21 − A11) · (B11 + B12)
10:	 M7 = (A12 − A22) · (B21 + B22)
11:	 C11 = M1 + M4 − M5 + M7

12:	 C12 = M3 + M5

13:	 C21 = M2 + M4

14:	 C22 = M1 − M2 + M3 + M6

Output:
 

2. COMMUNICATION LOWER BOUNDS
In this section, we state our main results: communication
lower bounds for Strassen’s matrix multiplication. The proof
technique described in Section 3 allows us to state bounds
in both sequential and parallel cases. As mentioned in the
Section 1, the lower bounds are lower than the bounds for
the classical algorithm.18, 20 In both sequential and parallel
cases, there now exist communication-optimal algorithms
that achieve the lower bounds.

2.1. Sequential case
We obtain the following lower bound:

Theorem 1.10 Consider Strassen’s algorithm implemented
on a sequential machine with fast memory of size M. Then for
M n2, the communication cost of Strassen’s algorithm is

It holds for any implementation and any known variant
of Strassen’s algorithm that is based on performing 2 × 2
matrix multiplication with seven scalar multiplications.
This includes Winograd’s O (nlog27) variant that uses 15 addi-
tions instead of 18, which is the most commonly used fast
matrix multiplication algorithm in practice.

This lower bound is tight, in that it is attained by the
standard recursive sequential implementation of Strassen’s
algorithm. The recursive algorithm’s communication cost

Table 1. Asymptotic communication cost lower bounds for sequen-
tial matrix multiplication, where n is the matrix dimension and M
is the fast memory size. Note that although the expressions for
classical and Strassen are similar, the proof techniques are quite
different

Classical Strassen

Sequential lower
bound18, 10

110 communications of the acm | february 2014 | vol. 57 | no. 2

the dominant lower bound includes a p in the denominator;
however, when the second bound begins to dominate, the
denominator includes a p2/3 rather than p, and increasing p
leads to more communication volume. As shown in the fig-
ure, a similar phenomenon occurs for the classical algorithm,
though with slightly different parameters.5, 23

The recent parallel algorithm for Strassen’s matrix multi-
plication6 has communication cost

where p is the number of processors and M is the size of the
local memory. Note that this matches the lower bounds of
Corollary 2 and Theorem 3 above. A similar algorithm for
Strassen’s matrix multiplication in the BSP model is pre-
sented in McColl and Tiskin.22

3. PROOF HIGHLIGHTS
The crux of the proof of Theorem 1 is based on estimating
the edge expansion of the computation graph of Strassen’s
algorithm. We describe below how communication cost
is closely related to the edge expansion properties of this
graph. The graph has a recursive structure, and we use a
combinatorial analysis of the expansion. The high-level
argument is based on partitioning the computation in

research highlights

segments, which we explain in Section 3.3. Let us first define
two key concepts: computation graphs and edge expansion.
See Ballard et al.10 for the full proof.

3.1. Computation graphs
The computation performed by an algorithm on a given
input can be modeled as a computation directed acyclic
graph (CDAG): we have a vertex for each input, intermediate,
and output argument, and edges according to direct depen-
dencies (e.g., for the binary arithmetic operation x := y + z,
we have directed edges from vertices corresponding to oper-
ands y and z to the vertex corresponding to x).

In the sequential case, an implementation (or sched-
uling) determines the order of execution of the arithme-
tic operations, which respects the partial ordering of the
CDAG. In the parallel case, an implementation determines
which arithmetic operations are performed by which of the
p processors as well as the ordering of local operations. This
corresponds to partitioning the CDAG into p parts. Edges
crossing between the various parts correspond to arguments
that are in the possession of one processor but are needed by
another processor and therefore relate to communication.

3.2. Edge expansion
Expansion is a graph-theoretic concept19 that relates a given
subset of a graph to its boundary. If a graph has large expan-
sion, then subsets of vertices will have relatively large bound-
aries. For example, a 2D grid where each vertex has north,
south, east, and west neighbors has small expansion, whereas
a complete graph has large expansion. While there are sev-
eral variants of expansion metrics, we are interested in edge
expansion of regular graphs, defined as follows: the edge
expansion h(G) of a d-regular undirected graph G = (V, E) is

	 � (1)

where EG(A, B) is the set of edges connecting the disjoint
vertex sets A and B.

Note that CDAGs are typically not regular. If a graph
G = (V, E) is not regular but has a bounded maximal degree d,
then we can add (<d) loops to vertices of degree <d, obtaining
a regular graph G. We use the convention that a loop adds
1 to the degree of a vertex. Note that for any S Í V, we have
|EG(S, V \S)| = |EG (S, V \S)|, as none of the added loops con-
tributes to the edge expansion of G.

For many graphs, small sets have larger expansion than
larger sets. Let hs(G) denote the edge expansion of G for sets
of size at most s:

	 � (2)

For many interesting graph families (including Strassen’s
CDAG), hs(G) does not depend on |V(G)| when s is fixed,
although it may decrease when s increases.

3.3. The partition argument
The high-level lower bound argument is based on partition-
ing the execution of an algorithm’s implementation into
segments. Let O be any total ordering of the vertices that

 Classical Strassen

Memory-dependent
lower bound20, 10

Memory-independent
lower bound5

Table 2. A symptotic communication cost lower bounds for parallel
matrix multiplication, where n is matrix dimension, M is local
memory size, and p is the number of processors

Figure 3. Communication costs and strong scaling of matrix
multiplication: classical vs. Strassen.5 The vertical axis corresponds
to p times the communication cost, so horizontal lines correspond to
perfect strong scaling. The quantity pmin is the minimum number of
processors required to store the input and output matrices (i.e., pmin =
3n2/M where n is the matrix dimension and M is the local memory size).

pmin pmin

(C
om

m
un

ic
at

io
n

co
st

)
x

p

p

Classical
Strassen

(log27)/2
pmin

3/2

February 2014 | vol. 57 | no. 2 | communications of the acm 111

research highlights

respects the partial ordering of the CDAG G, that is, all the
edges are directed upwards in the total order. This total
ordering can be thought of as the actual order in which the
computations are performed. Let P be any partition of V into
segments S1, S2, …, so that a segment Si P is a subset of the
vertices that are contiguous in the total ordering O.

Let S be some segment, and define RS and WS to be the set
of read and write operands, respectively (see Figure 4), namely,
RS is the set of vertices outside S that have an edge going into
S, and WS is the set of vertices in S that have an edge going out-
side of S. Recall that M is the size of the fast memory. Then,
the total communication cost due to reads of operands in
S is at least |RS| − M, as at most M of the needed |RS| oper-
ands are already in fast memory when the segment starts.
Similarly, S causes at least |WS|− M actual write operations,
as at most M of the operands needed by other segments are
left in the fast memory when the segment ends. The total
communication cost is therefore bounded below by

	 � (3)

3.4. Edge expansion and communication
Consider a segment S and its read and write operands RS and
WS (see Figure 4). If the graph G containing S has h(G) edge
expansion, maximum degree d and at least 2|S| vertices,
then (using the definition of h(G) ), we have

Claim 4. |RS| + |WS| ≥ h(G) · |S|.

Combining this with (3) and choosing to partition V into |V|/s
segments of equal size s, we obtain IO maxs (|V|/s) · (h(G) · s −
2M) = (|V| · h(G) ). In many cases, h(G) is too small to attain the
desired communication cost lower bound. Typically, h(G) is
a decreasing function of |V(G)|; that is, the edge expansion
deteriorates with the increase of the input size and number
of arithmetic operations of the corresponding algorithm
(this is the case with Strassen’s algorithm). In such cases, it
is better to consider the expansion of G on small sets only: IO
maxs (|V|/s) · (hs(G) · s − 2M). Choosing the minimal s so that

	 hs(G) · s ≥ 3M� (4)

we obtain

	 � (5)

The existence of a value s |V|/2 that satisfies condition (4) is
not always guaranteed. In Ballard et al.,10 we confirm the exis-
tence of such s for Strassen’s CDAG for sufficiently large |V|.

4. STRASSEN’S CDAG
Recall Strassen’s algorithm for matrix multiplication and
consider its computation graph. If we let Hi be the computation
graph of Strassen’s algorithm for recursion of depth i, then
Hlog2 n corresponds to the computation for input matrices of
size n × n. Let us first consider H1 as shown in Figure 5, which
corresponds to multiplying 2 × 2 matrices. Each of A and B
is “encoded” into seven pairs of multiplication inputs, and
vertices corresponding to the outputs of the multiplications
are then “decoded” to compute the output matrix C.

The general computation graph Hlog2 n has similar structure:

•	 Encode A: generate weighted sums of elements of A
•	 Encode B: generate weighted sums of elements of B
•	 Multiply the encodings of A and B element-wise
•  Decode C: take weighted sums of the products

Denote by Enclog2 n A the part of Hlog2 n that corresponds to
the encoding of matrix A. Similarly, Enclog2 nB, and Declog2 nC
correspond to the parts of Hlog2 n that compute the encoding
of B and the decoding of C, respectively. Figure 6 shows a
high level picture of Hlog2 n. In the next section, we provide a
more detailed description of the CDAG.

S

RS

WS

V

Figure 4. A subset (segment) S and its corresponding read operands
RS and write operands WS.

7 5 4 1 3 2 6

11 12 21 22

11 12 21 2211 12 21 22

Dec1 C

Enc1 A Enc1 B

Figure 5. Computation graph of Strassen’s algorithm for multiplying
2 × 2 matrices (H1). The encodings of A and B correspond to the
additions and subtractions in lines 4–10 of Algorithm 3, and the
decoding of the seven multiplications to compute C corresponds
to lines 11–14. A vertex labeled with two indices ij corresponds to
the (i, j)th entry of a matrix and a vertex labeled with one index k
corresponds to the kth intermediate multiplication.

research highlights

112 communications of the acm | february 2014 | vol. 57 | no. 2

4.2. Strassen’s edge expansion
Given the construction of the CDAG for Strassen’s algorithm, we
now state our main lemma on the edge expansion of the decod-
ing graph. The proof technique resembles the expander analy-
sis in Alon et al.2 For the complete proof, see Ballard et al.10

Lemma 5. (Main lemma) The edge expansion of DeckC is

By another argument (proof in Ballard et al.10), we obtain that

hs(Declog2n C) ≥ h(DeckC),

where s = (7k). Choosing s = (M (log27)/2), we satisfy Inequality 4
and obtain Inequality 5 (for sufficiently large |V|). This gives
Theorem 1.

5. EXTENSIONS
In this paper, we focus on lower bounds for Strassen’s matrix
multiplication algorithm on two machine models. However,
the design space of improving fundamental algorithms via
communication minimization is much larger. It includes prov-
ing lower bounds and developing optimal algorithms; using
classical methods as well as fast algorithms like Strassen’s;
performing matrix multiplication, other matrix algorithms, and
more general computations; minimizing time and/or energy;
using minimal memory or trading off extra memory for less
communication; and using hierarchical, homogeneous, or
heterogeneous sequential and parallel models. In this section,
we discuss a subset of these extensions; see Ballard et al.9, 10 and
the references therein for more details.

5.1. Lower bounds
The proof technique described in Section 3 is not specific
to Strassen’s algorithm and can be applied more widely.
The partition argument is used for classical algorithms in
numerical linear algebra8, 20 where a geometric inequality
specifies the per-segment communication cost rather than
edge expansion. Further, the edge expansion technique
applies to Strassen-like algorithms that also multiply square
matrices with o(n3) arithmetic operations, to other fast algo-
rithms for rectangular matrix multiplication, and to other
matrix computations.

Strassen-like algorithms. Strassen-like algorithms are recur
sive matrix multiplication algorithms based on a scheme for
multiplying k × k matrices using q scalar multiplications for
some k and q < k3 (so that the algorithm performs O(nω0) flops
where ω0 = logk q.) For the latest bounds on the arithmetic
complexity of matrix multiplication and references to
previous bounds, see Williams.25 For our lower bound proof
to apply, we require another technical criterion for Strassen-
like algorithms: the decoding graph must be connected. This
class of algorithms includes many (but not all) fast matrix
multiplications. For details and examples, see Ballard et al.7, 10

For Strassen-like algorithms, the statements of the com-
munication lower bounds have the same form as Theorem 1,
Corollary 2, and Theorem 3: replace log2 7 with ω0 everywhere
it appears! The proof technique follows that for Strassen’s

4.1. Recursive construction
We construct the computation graph Hi+1 by constructing Deci+1C
from DeciC and Dec1C, similarly constructing Enci+1 A and
Enci+1B, and then composing the three parts together. Here
is the main idea for recursively constructing Deci+1C, which
is illustrated in Figure 7.

•	 Replicate Dec1C 7i times.
•	 Replicate DeciC 4 times.
•  Identify the 4 · 7i output vertices of the copies of Dec1C

with the 4 · 7i input vertices of the copies of DeciC:
  – �Recall that each Dec1C has four output vertices.
  – �The set of each first output vertex of the 7i Dec1C

graphs is identified with the set of 7i input vertices of
the first copy of Deci C.

  – �The set of each second output vertex of the 7i Dec1C
graphs is identified with the set of 7i input vertices of
the second copy of DeciC, and so on.

  – �We make sure that the jth input vertex of a copy of
DeciC is identified with an output vertex of the j th copy
of Dec1C.

After constructing Enci+1A and Enci+1B in a similar manner, we
obtain Hi+1 by connecting edges from the kth output vertices
of Enci+1A and Enci+1B to the kth input vertex of Deci+1C, which
corresponds to the element-wise scalar multiplications.

Enclog2 n BEnclog2 n A

Declog2 n C log2 n

nlog
2

 7

n2

n2

Figure 6. High-level view of Strassen’s CDAG for n × n matrices. The
graph is composed of two encoding subgraphs and one decoding
subgraph; connections between the subgraphs are not shown.

DeciC

Dec
1 C

Figure 7. Illustration of the recursive construction of the decoding
subgraph. To construct Deci+1C, DeciC is replicated 4 times and Dec1C
is replicated 7i times, and appropriate vertices are identified.

February 2014 | vol. 57 | no. 2 | communications of the acm 113

implementation for distributed-memory machines that it
performs much faster in practice.6, 21

Communication avoiding parallel Strassen. In Section 2.2,
we stated the communication cost of a new parallel
algorithm for Strassen’s matrix multiplication, matching
the asymptotic lower bound. The details of the algorithm
appear in Ballard et al.,6 and more extensive implementation
details and performance data are given in Lipshitz et al.21
We show that the new algorithm is more efficient than
any other parallel matrix multiplication algorithm of
which we are aware, including those that are based on the
classical algorithm and those that are based on previous
parallelizations of Strassen’s algorithm.

Figure 1 shows performance on a Cray XT4. For results on
other machines, see Lipshitz et al.21 For example, running on
a Cray XE6 with up to 10,000 cores, for a problem of dimen-
sion n = 131712, our new algorithm attains performance as
high as 30% above the peak for classical matrix multiplica-
tion, 83% above the best classical implementation, and
75% above the best previous implementation of Strassen’s
algorithm. Even for a small problem of dimension n = 4704,
it attains performance 66% higher than the best classical
implementation.

Further applications. The key algorithmic idea in our par
allel implementation of Strassen’s algorithm is a careful
parallel traversal of the recursion tree. This idea works for
many other recursive algorithms where the subproblems
do not have interdependencies (and it also works in some
cases where dependencies exist). For example, classical
rectangular matrix multiplication14 and sparse matrix–
matrix multiplication4 can be parallelized in this way to
obtain communication optimality.

The same techniques can be utilized to save energy at the
algorithmic level (since communication consumes more
energy than computation) as well as to obtain lower bounds
on energy requirements.15

In summary, we believe this work flow of theoretical lower
bounds to algorithmic development to efficient implemen-
tations is very effective: by considering fundamental compu-
tations at an algorithmic level, significant improvements in
many applications are possible.

Acknowledgments
We would like to thank Benjamin Lipshitz for his work on
many of these ideas and for useful discussions during the
writing of this paper.

This work is supported by Microsoft (Award #024263)
and Intel (Award #024894) funding and by matching fund-
ing by U.C. Discovery (Award #DIG07-10227); additional
support from Par Lab affiliates National Instruments,
NEC, Nokia, NVIDIA, and Samsung is acknowledged. This
research is supported by U.S. Department of Energy grants
under Grant Numbers DE-SC0003959, DE-SC0004938,
DE-SC0005136, DE-SC0008700, AC02-05CH11231, and
DE-FC02-06-ER25786, and DARPA grant HR0011-12-2-0016.
The research is also supported by the Sofja Kovalevskaja
programme of Alexander von Humboldt Foundation and
by the National Science Foundation under agreement DMS-
0635607, and by ERC Starting Grant Number 239985.�

algorithm. While the bounds for the classical algorithm
have the same form, replacing log2 7 with 3, the proof tech-
niques are quite different.18, 20

Fast rectangular matrix multiplication. Many fast algo
rithms have been devised for multiplication of rectangular
matrices (see Ballard et al.7 for a detailed list). A fast
algorithm for multiplying m × k and k × r matrices in q < mkr
scalar multiplications can be applied recursively to multiply
mt × k t and k t × r t matrices in O(qt ) flops. For such algorithms,
the CDAG has very similar structure to Strassen and
Strassen-like algorithms for square multiplication in that
it is composed of two encoding graphs and one decoding
graph. Assuming that the decoding graph is connected, the
proofs of Theorem 1 and Lemma 5 apply where we plug in mr
and q for 4 and 7. In this case, we obtain a result analogous
to Theorem 1 which states that the communication cost of
such an algorithm is given by Ω (qt/M logmr q–1). If the output
matrix is the largest of the three matrices (i.e., k < m and k < r),
then this lower bound is attained by the natural recursive
algorithm and is therefore tight. The lower bound extends to
the parallel case as well, analogous to Corollary 2, and can be
attained using the algorithmic technique of Ballard et al.6

The rest of numerical linear algebra. Fast matrix multi
plication, algorithms are basic building blocks in many fast
algorithms in linear algebra, such as algorithms for LU,
QR, and eigenvalue and singular value decompositions.13
Therefore, communication cost lower bounds for these
algorithms can be derived from our lower bounds for fast
matrix multiplication algorithms. For example, a lower
bound on LU (or QR, etc.) follows when the fast matrix
multiplication algorithm is called by the LU algorithm
on sufficiently large sub-matrices. This is the case in the
algorithms of Demmel et al.,13 and we can then deduce
matching lower and upper bounds.10

Nested loops computation. Nearly all of the arguments
for proving communication lower bounds are based on
establishing a relationship between a given set of data and
the amount of useful computation that can be done with
that data, a so-called “surface-to-volume” ratio. For example,
Hong and Kung18 use an analysis of dominator sets and
minimal sets of CDAGs to establish such ratios. The Loomis–
Whitney geometric inequality is applied for this purpose
to matrix computations specified by three nested loops in
Ballard et al.8 and Irony et al.20 Recently, Christ et al.12 have
extended this analysis using a generalization of the Loomis–
Whitney inequality, known as the Hölder–Brascamp–Lieb
inequality, to prove lower bounds for computations that
are specified by an arbitrary set of nested loops that linearly
access arrays and meet certain other criteria.

5.2. Algorithms
The main motivation for pursuing communication
lower bounds is to provide targets for algorithmic per-
formance. Indeed, the conjecture and proof of Theorem
1 and Corollary 2, as well as the existence of an optimal
algorithm in the sequential case, were the main moti-
vations for improving the parallel implementations of
Strassen’s algorithm. Not only were we able to devise an
optimal algorithm, but we were also able to show with an

research highlights

114 communications of the acm | february 2014 | vol. 57 | no. 2

References
multiplication. In Proceedings of the
27th IEEE International Parallel &
Distributed Processing Symposium
(IPDPS) (2013), IEEE.

	15.	D emmel, J., Gearhart, A., Lipshitz, B.,
Schwartz, O. Perfect strong scaling using
no additional energy. In Proceedings
of the 27th IEEE International
Parallel & Distributed Processing
Symposium, IPDPS ’13 (2013), IEEE.

	16.	 Fuller, S.H., Millett, L.I., eds. The
Future of Computing Performance:
Game Over or Next Level? The
National Academies Press,
Washington, D.C., 2011, 200 pages,
http://www.nap.edu.

	17.	G raham, S.L., Snir, M., Patterson, C.A.,
eds. Getting up to Speed: The Future
of Supercomputing. Report of National
Research Council of the National
Academies Sciences. The National
Academies Press, Washington, D.C.,
2004, 289 pages, http://www.nap.edu.

	18.	H ong, J.W., Kung, H.T. I/O complexity:
The red-blue pebble game. In STOC
’81: Proceedings of the 13th annual
ACM Symposium on Theory of
Computing (1981), ACM, New York,
NY, USA, 326–333.

	19.	H oory, S., Linial, N., Wigderson, A.
Expander graphs and their applications.
Bull. AMS 43(4), (2006), 439–561.

	20.	I rony, D., Toledo, S., Tiskin, A.

Communication lower bounds
for distributed-memory matrix
multiplication. J. Parallel Distrib.
Comput. 64, 9, (2004), 1017–1026.

	21.	 Lipshitz, B., Ballard, G., Demmel, J.,
Schwartz, O. Communication-avoiding
parallel Strassen: Implementation
and performance. In Proceedings of
the International Conference on High
Performance Computing, Networking,
Storage and Analysis, (2012),
IEEE Computer Society Press, Los
Alamitos, CA, USA, 101:1–101:11.

	22.	 McColl, W.F., Tiskin, A. Memory-
efficient matrix multiplication in the
BSP model. Algorithmica 24 (1999),
287–297.

	23.	 Solomonik, E., Demmel, J. Commu-
nication-optimal parallel 2.5D matrix
multiplication and LU factorization
algorithms. In Proceedings of the 17th
International European Conference
on Parallel and Distributed Computing
(2011), Springer.

	24.	 Strassen, V. Gaussian elimination is
not optimal. Numer. Math. 13 (1969),
354–356.

	25.	 Williams, V.V. Multiplying matrices
faster than Coppersmith-Winograd.
In Proceedings of the 44th
Symposium on Theory of Computing,
STOC ’12 (2012), ACM, New York, NY,
USA, 887–898.

	 1.	A garwal, R.C., Balle, S.M., Gustavson, F.G.,
Joshi, M., Palkar, P. A three-
dimensional approach to parallel
matrix multiplication. IBM J. Res. Dev.
39, 5 (1995), 575–582.

	 2.	A lon, N., Schwartz, O., Shapira, A.
An elementary construction of constant-
degree expanders. Combinator. Probab.
Comput. 17, 3 (2008), 319–327.

	 3.	A nderson, E., Bai, Z., Bischof, C.,
Demmel, J., Dongarra, J., Croz, J.D.,
Greenbaum, A., Hammarling, S.,
McKenney, A., Ostrouchov, S.,
Sorensen, D. LAPACK’s User’s Guide,
Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA,
1992. Also available from http://www.
netlib.org/lapack/.

	 4.	B allard, G., Buluç, A., Demmel, J.,
Grigori, L., Lipshitz, B., Schwartz, O.,
Toledo, S. Communication Optimal
Parallel Multiplication of Sparse
Random Matrices. In Proceedings of the
25th ACM Symposium on Parallelism in
Algorithms and Architectures, (2013),
ACM, New York, NY, USA.

	 5.	B allard, G., Demmel, J., Holtz, O.,
Lipshitz, B., Schwartz, O. Brief
announcement: Strong scaling of
matrix multiplication algorithms and
memory-independent communication
lower bounds. In Proceedings of the
24th ACM Symposium on Parallelism
in Algorithms and Architectures,
(2012), ACM, New York, NY, USA, 77–79.

	 6.	B allard, G., Demmel, J., Holtz, O.,
Lipshitz, B., Schwartz, O. Communication-
optimal parallel algorithm for
Strassen’s matrix multiplication. In
Proceedings of the 24th ACM
Symposium on Parallelism in
Algorithms and Architectures, SPAA ’12
(2012), ACM, New York, NY, USA, 193–204.

	 7.	B allard, G., Demmel, J., Holtz, O.,
Lipshitz, B., Schwartz, O. Graph
expansion analysis for communication
costs of fast rectangular matrix
multiplication. In Design and Analysis
of Algorithms. G. Even and D. Rawitz,
eds., Volume 7659 of Lecture Notes
in Computer Science (2012), Springer,
Berlin-Heidelberg, 13–36.

	 8.	B allard, G., Demmel, J., Holtz, O.,
Schwartz, O. Graph expansion and
communication costs of fast matrix
multiplication. In Proceedings of
the 23rd Annual ACM Symposium
on Parallel Algorithms and Architec-
tures (2011), ACM, New York, NY,
USA, 1–12.

	 9.	B allard, G., Demmel, J., Holtz, O.,
Schwartz, O. Minimizing
communication in numerical linear
algebra. SIAM J. Matrix Anal. Appl.
32, 3 (2011), 866–901.

	10.	B allard, G., Demmel, J., Holtz, O.,
Schwartz, O. Graph expansion and
communication costs of fast matrix
multiplication. J. ACM (Dec. 2012)
59, 6, 32:1–32:23.

	11.	 Cannon, L. A cellular computer
to implement the Kalman filter
algorithm. PhD thesis, Montana State
University, Bozeman, MN (1969).

	12.	 Christ, M., Demmel, J., Knight, N.,
Scanlon, T., Yelick, K. Communication
lower bounds and optimal algorithms
for programs that reference arrays –
Part I. Manuscript, 2013.

	13.	D emmel, J., Dumitriu, I., Holtz, O.
Fast linear algebra is stable. Numer.
Math. 108, 1 (2007), 59–91.

	14.	D emmel, J., Eliahu, D., Fox, A.,
Kamil, S., Lipshitz, B., Schwartz, O.,
Spillinger, O. Communication-optimal
parallel recursive rectangular matrix © 2014 ACM 0001-0782/14/02 $15.00

Grey Ballard (ballard@eecs.berkeley.
edu), Electrical Engineering and
Computer Science Department,
University of California, Berkeley, CA.

James Demmel (demmel@cs.berkeley.
edu), Department of Mathematics
and Computer Science Division,
University of California, Berkeley, CA.

Olga Holtz (holtz@math.berkeley.edu),
Department of Mathematics, University of
California, Berkeley, CA, and Institut
für Mathematik, Technische Universitat
Berlin, Germany.

Oded Schwartz (odedsc@eecs.berkeley.
edu), Electrical Engineering and Computer
Science Department, University of
California, Berkeley, CA.

ACM Transactions
on Interactive

Intelligent Systems

ACM Transactions on Interactive
Intelligent Systems (TIIS). This
quarterly journal publishes papers
on research encompassing the
design, realization, or evaluation of
interactive systems incorporating
some form of machine intelligence.

World-Renowned Journals from ACM
 ACM publishes over 50 magazines and journals that cover an array of established as well as emerging areas of the computing field.

IT professionals worldwide depend on ACM's publications to keep them abreast of the latest technological developments and industry
news in a timely, comprehensive manner of the highest quality and integrity. For a complete listing of ACM's leading magazines & journals,

including our renowned Transaction Series, please visit the ACM publications homepage: www.acm.org/pubs.

 PLEASE CONTACT ACM MEMBER
SERVICES TO PLACE AN ORDER
Phone: 1.800.342.6626 (U.S. and Canada)
 +1.212.626.0500 (Global)
Fax: +1.212.944.1318
 (Hours: 8:30am–4:30pm, Eastern Time)
Email: acmhelp@acm.org
Mail: ACM Member Services
 General Post Offi ce
 PO Box 30777
 New York, NY 10087-0777 USA

ACM Transactions on Computation
Theory (ToCT). This quarterly peer-
reviewed journal has an emphasis
on computational complexity, foun-
dations of cryptography and other
computation-based topics in theo-
retical computer science.

ACM Transactions
on Computation

Theory

www.acm.org/pubs

PUBS_halfpage_Ad.indd 1 6/7/12 11:38 AM

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=114&exitLink=http%3A%2F%2Fwww.nap.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=114&exitLink=http%3A%2F%2Fwww.nap.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=114&exitLink=http%3A%2F%2Fwww.netlib.org%2Flapack%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=114&exitLink=mailto%3Aballard%40eecs.berkeley.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=114&exitLink=mailto%3Ademmel%40cs.berkrlry.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=114&exitLink=mailto%3Aholtz%40math.berkeley.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=114&exitLink=mailto%3Aodedsc%40eecs.berkeley.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=114&exitLink=http%3A%2F%2Fwww.acm.org%2Fpubs
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=114&exitLink=mailto%3Aacmhelp%40acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=114&exitLink=http%3A%2F%2Fwww.acm.org%2Fpubs
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=114&exitLink=http%3A%2F%2Fwww.netlib.org%2Flapack%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=114&exitLink=mailto%3Aballard%40eecs.berkeley.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=114&exitLink=mailto%3Ademmel%40cs.berkrlry.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=114&exitLink=mailto%3Aodedsc%40eecs.berkeley.edu

february 2014 | vol. 57 | no. 2 | communications of the acm 115

careers

Boston College
Assistant Professor, Computer Science

The Computer Science Department of Boston
College invites applications for a tenure-track
Assistant Professorship beginning September,
2014. Applications from all areas of Computer
Science will be considered. Applicants should
have a Ph.D. in Computer Science or related dis-
cipline, a strong research record, and a commit-
ment to undergraduate teaching.

We will begin reviewing applications on
December 1, 2013, and will continue considering
applications until the position is filled.
Additional information about the department
and the position is available at www.cs.bc.edu.
Submit applications online at apply.interfolio.
com/22805.

Dartmouth College
Department of Computer Science

Assistant Professor of Computer Science:
Computer Graphics/Digital Arts

The Dartmouth College Department of Computer
Science invites applications for a tenure-track fac-
ulty position at the level of assistant professor. We
seek candidates who will be excellent researchers
and teachers in the areas of computer graphics
and/or digital arts, although outstanding candi-
dates in any area will be considered. We particu-
larly seek candidates who will be integral mem-
bers of the Digital Arts program and help lead,
initiate, and participate in collaborative research
projects both within Computer Science and in-
volving other Dartmouth researchers, including
those in other Arts & Sciences departments, Dart-
mouth’s Geisel School of Medicine, and Thayer
School of Engineering.

The department is home to 17 tenured
and tenure-track faculty members and two re-
search faculty members. Research areas of the
department encompass the areas of systems,
security, vision, digital arts, algorithms, the-
ory, robotics, and computational biology. The
Computer Science department is in the School
of Arts & Sciences, and it has strong Ph.D. and
M.S. programs and outstanding undergraduate
majors. Digital Arts at Dartmouth is an inter-
disciplinary program housed in the Computer
Science department, working with several oth-
er departments, including Studio Art, Theater,
and Film and Media Studies. The department
is affiliated with Dartmouth’s M.D.-Ph.D. pro-
gram and has strong collaborations with Dart-
mouth’s other schools.

Dartmouth College, a member of the Ivy
League, is located in Hanover, New Hampshire
(on the Vermont border). Dartmouth has a beau-
tiful, historic campus, located in a scenic area on
the Connecticut River. Recreational opportuni-
ties abound in all four seasons.

minority groups, Dartmouth is committed to
diversity and encourages applications from
women and minorities.

To create an atmosphere supportive of re-
search, Dartmouth offers new faculty members
grants for research-related expenses, a quarter
of sabbatical leave for each three academic years
in residence, and flexible scheduling of teaching
responsibilities.

Applicants are invited to submit application
materials via Interfolio at http://apply.interfolio.
com/23502. Upload a CV, research statement,
and teaching statement, and request at least four
references to upload letters of recommendation,
at least one of which should comment on teach-
ing. Email facsearch14@cs.dartmouth.edu with
any questions.

Application review will begin December 15,
2013, and continue until the position is filled.

Dartmouth College
Department of Computer Science
Assistant Professor of Computer Science:
Theory/Algorithms

The Dartmouth College Department of Computer
Science invites applications for a tenure-track fac-
ulty position at the level of assistant professor. We
seek candidates who will be excellent researchers
and teachers in the area of theoretical computer
science, including algorithms, although out-
standing candidates in any area will be consid-
ered. We particularly seek candidates who will
help lead, initiate, and participate in collabora-
tive research projects both within Computer Sci-
ence and involving other Dartmouth researchers,
including those in other Arts & Sciences depart-
ments, Dartmouth’s Geisel School of Medicine,
Thayer School of Engineering, and Tuck School
of Business.

The department is home to 17 tenured and
tenure-track faculty members and two research
faculty members. Research areas of the depart-
ment encompass the areas of systems, security,
vision, digital arts, algorithms, theory, robotics,
and computational biology. The Computer Sci-
ence department is in the School of Arts & Scienc-
es, and it has strong Ph.D. and M.S. programs and
outstanding undergraduate majors. The depart-
ment is affiliated with Dartmouth’s M.D.-Ph.D.
program and has strong collaborations with Dart-
mouth’s other schools.

Dartmouth College, a member of the Ivy
League, is located in Hanover, New Hampshire
(on the Vermont border). Dartmouth has a beau-
tiful, historic campus, located in a scenic area on
the Connecticut River. Recreational opportuni-
ties abound in all four seasons.

With an even distribution of male and female
students and over one third of the undergraduate
student population members of minority groups,
Dartmouth is committed to diversity and encour-
ages applications from women and minorities.

With an even distribution of male and fe-
male students and over one third of the un-
dergraduate student population members of
minority groups, Dartmouth is committed to
diversity and encourages applications from
women and minorities.

To create an atmosphere supportive of re-
search, Dartmouth offers new faculty members
grants for research-related expenses, a quarter
of sabbatical leave for each three academic years
in residence, and flexible scheduling of teaching
responsibilities.

Applicants are invited to submit application
materials via Interfolio at http://apply.interfolio.
com/23489. Upload a CV, research statement,
and teaching statement, and request at least four
references to upload letters of recommendation,
at least one of which should comment on teach-
ing. Email facsearch14@cs.dartmouth.edu with
any questions.

Application review will begin November 1,
2013, and continue until the position is filled.

Dartmouth College
Department of Computer Science
Assistant Professor of Computer Science:
Machine Learning

The Dartmouth College Department of Computer
Science invites applications for a tenure-track fac-
ulty position at the level of assistant professor. We
seek candidates who will be excellent researchers
and teachers in the area of machine learning, al-
though outstanding candidates in any area will be
considered. We particularly seek candidates who
will help lead, initiate, and participate in collab-
orative research projects both within Computer
Science and involving other Dartmouth research-
ers, including those in other Arts & Sciences de-
partments, Dartmouth’s Geisel School of Medi-
cine, Thayer School of Engineering, and Tuck
School of Business.

The department is home to 17 tenured and
tenure-track faculty members and two research
faculty members. Research areas of the depart-
ment encompass the areas of systems, security,
vision, digital arts, algorithms, theory, robotics,
and computational biology. The Computer Sci-
ence department is in the School of Arts & Scienc-
es, and it has strong Ph.D. and M.S. programs and
outstanding undergraduate majors. The depart-
ment is affiliated with Dartmouth’s M.D.-Ph.D.
program and has strong collaborations with Dart-
mouth’s other schools.

Dartmouth College, a member of the Ivy
League, is located in Hanover, New Hampshire
(on the Vermont border). Dartmouth has a beau-
tiful, historic campus, located in a scenic area on
the Connecticut River. Recreational opportuni-
ties abound in all four seasons.

With an even distribution of male and fe-
male students and over one third of the un-
dergraduate student population members of

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=115&exitLink=http%3A%2F%2Fwww.cs.bc.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=115&exitLink=http%3A%2F%2Fapply.interfolio.com%2F22805
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=115&exitLink=http%3A%2F%2Fapply.interfolio.com%2F23502
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=115&exitLink=mailto%3Afacsearch14%40cs.dartmouth.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=115&exitLink=http%3A%2F%2Fapply.interfolio.com%2F23489
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=115&exitLink=mailto%3Afacsearch14%40cs.dartmouth.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=115&exitLink=http%3A%2F%2Fapply.interfolio.com%2F22805
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=115&exitLink=http%3A%2F%2Fapply.interfolio.com%2F23489
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=115&exitLink=http%3A%2F%2Fapply.interfolio.com%2F23502

116 communications of the acm | february 2014 | vol. 57 | no. 2

careers

Max Planck Institute for
Software Systems
Senior Faculty Position in Software Systems

Applications are invited for a senior faculty
position in the Max Planck Institute for Soft-
ware Systems (MPI-SWS). The position is that
of a director and scientific member of the
Max Planck Society, and is comparable to an
endowed chair position at a leading univer-
sity. Directors lead their individual research
groups, and also provide strategic direction for
the institute, mentor junior faculty, and take
turn in chairing the faculty. A successful candi-
date is an internationally recognized leader in
the research community, and pursues a com-
pelling and far-reaching research vision.

All areas related to the study, design, and
engineering of software systems are considered.
These areas include, but are not limited to, secu-
rity and privacy, embedded and mobile systems,
social computing, large-scale data management,
programming languages and systems, software
verification and analysis, parallel and distributed
systems, storage systems, and networking. Pref-
erence will be given to candidates whose research
complements existing strengths.

MPI-SWS, founded in 2005, is part of a net-
work of 82 Max Planck Institutes, Germany’s
premier basic research facilities. MPIs have an
established record of world-class, foundation-
al research in the fields of medicine, biology,
chemistry, physics, technology and humani-
ties. Since 1948, MPI researchers have won
17 Nobel prizes. MPI-SWS aspires to meet the

To create an atmosphere supportive of re-
search, Dartmouth offers new faculty members
grants for research-related expenses, a quarter
of sabbatical leave for each three academic years
in residence, and flexible scheduling of teaching
responsibilities.

Applicants are invited to submit application
materials via Interfolio at http://apply.interfolio.
com/23503. Upload a CV, research statement,
and teaching statement, and request at least four
references to upload letters of recommendation,
at least one of which should comment on teach-
ing. Email facsearch14@cs.dartmouth.edu with
any questions.

Application review will begin December 15
2013, and continue until the position is filled.

Harvard School of Engineering
and Applied Sciences
Tenure-Track Positions in Computer Science

The Harvard School of Engineering and Applied
Sciences (SEAS) seeks applicants for positions at
the tenure-track level in Computer Science, with
an expected start date of July 1, 2014.

This is a broad faculty search and we welcome
outstanding applicants in all areas of computer
science, including applicants whose research
and interests connect to such areas as engineer-
ing, health and medicine, or the social sciences.
Of particular interest are candidates with a focus
on data science, with research at the intersection
of computer science, applied mathematics, sta-
tistics, and computational science.

The Computer Science program at Harvard
University benefits from outstanding undergrad-
uate and graduate students, an excellent location,
significant industrial collaboration, and substan-
tial support from the School of Engineering and
Applied Sciences. Information about Harvard’s
current faculty, research, and educational pro-
grams in computer science is available at http://
www.seas.harvard.edu/computer-science. The as-
sociated Institute for Applied Computational Sci-
ence (http://iacs.seas.harvard.edu) fosters con-
nections among computer science, applied math,
data science, and various domain sciences at Har-
vard through its graduate program and events.

Candidates are required to have a doctorate
or terminal degree by the expected start date.
We seek candidates who have an outstanding
research record and a strong commitment to un-
dergraduate teaching and graduate training.

Required application documents include a
cover letter, cv, a statement of research interests,
a teaching statement, and up to three represen-
tative papers. Candidates are also required to
submit the names and contact information for at
least three to five references (three letters of rec-
ommendation are required), and the application
is complete only when three letters have been
submitted. We encourage candidates to apply by
January 1, 2014, but will continue to review appli-
cations until the positions are filled. Applicants
will apply on-line at http://academicpositions.
harvard.edu/postings/5199.

Harvard is an Equal Opportunity/Affirmative
Action employer. Applications from women and
minority candidates are strongly encouraged.

ISTFELLOW: Call for Postdoctoral Fellows
Are you a talented, dynamic, and motivated scientist looking for an
opportunity to conduct research in the fields of BIOLOGY, COMPUTER SCIENCE,
MATHEMATICS, PHYSICS, or NEUROSCIENCE at a young, thriving institution that
fosters scientific excellence and interdisciplinary collaboration?

Apply to the ISTFellow program. Deadlines March 15 and September 15

www.ist.ac.at/istfellow

ISTFELLOW is partially funded
by the European Union

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=116&exitLink=http%3A%2F%2Fapply.interfolio.com%2F23503
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=116&exitLink=mailto%3Afacsearch14%40cs.dartmouth.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=116&exitLink=http%3A%2F%2Fwww.seas.harvard.edu%2Fcomputer-science
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=116&exitLink=http%3A%2F%2Fiacs.seas.harvard.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=116&exitLink=http%3A%2F%2Facademicpositions.harvard.edu%2Fpostings%2F5199
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=116&exitLink=http%3A%2F%2Fwww.ist.ac.at%2Fistfellow
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=116&exitLink=http%3A%2F%2Fapply.interfolio.com%2F23503
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=116&exitLink=http%3A%2F%2Fwww.seas.harvard.edu%2Fcomputer-science
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=116&exitLink=http%3A%2F%2Facademicpositions.harvard.edu%2Fpostings%2F5199

february 2014 | vol. 57 | no. 2 | communications of the acm 117

highest standards of excellence and interna-
tional recognition with its research in software
systems.

To this end, the institute offers a unique en-
vironment that combines the best aspects of a
university department and a research laboratory:

a) Faculty independently lead a team of grad-
uate students and post-docs. They have full aca-
demic freedom and publish their research results
freely. Substantial base funding complements
third-party funds.

b) Faculty supervise doctoral theses, and have
the opportunity to teach graduate and undergrad-
uate courses.

c) Faculty are provided with outstanding tech-
nical and administrative support facilities as well
as internationally competitive compensation
packages.

MPI-SWS currently has 10 tenured and ten-
ure-track faculty and 50 doctoral and post-doctor-
al researchers. The institute is funded to support
17 faculty and up to 100 doctoral and post-doc-
toral positions. Additional growth through out-
side funding is expected. We maintain an open,
international and diverse work environment and
seek applications from outstanding researchers
regardless of national origin or citizenship. The
working language is English.

The institute is located in Kaiserslautern and
Saarbruecken, in the tri-border area of Germany,
France and Luxembourg. The area offers a high
standard of living, beautiful surroundings and
easy access to major metropolitan areas in the
center of Europe, as well as a stimulating, com-
petitive and collaborative work environment. In
immediate proximity are the MPI for Informatics,
Saarland University, the Technical University of
Kaiserslautern, the German Center for Artificial
Intelligence (DFKI), and the Fraunhofer Insti-
tutes for Experimental Software Engineering and
for Industrial Mathematics.

Qualified candidates are invited to send a CV
and cover letter to rupak@mpi-sws.org. The re-
view of applications will begin on Feb 1, 2014; ap-
plications will continue to be accepted until the
position is filled.

The Max Planck Society is committed to in-
creasing the representation of women and indi-
viduals with physical disabilities in Computer
Science. We particularly encourage such individ-
uals to apply.

National Taiwan University
Professor-Associate Professor-
Assistant Professor

The Department of Computer Science at National
Taiwan Univ. has faculty openings at all ranks be-
ginning in August 2014. Highly qualified candi-
dates in all areas of computer science are invited
to apply. A Ph.D. or its equivalent is required.
Applicants are expected to conduct outstanding
research and be committed to teaching. Candi-
dates should send curriculum vitae, statements
of research/teaching, three letters of reference,
and supporting materials before February 28,
2014, to Prof. Chih-Jen Lin, Department of Com-
puter Science, National Taiwan Univ., No 1, Sec 4,
Roosevelt Rd., Taipei 106, Taiwan. Reference let-
ters can be sent to faculty_search@csie.ntu.edu.
tw but use regular mails for other materials. An
early submission is strongly encouraged.

Purdue University
Tenure-Track/Tenured Faculty Positions

The Department of Computer Science at Purdue
University is entering a phase of sustained expan-
sion. Applications for tenure-track and tenured
positions at the Assistant, Associate and Full
Professor levels beginning August 2014 are being
solicited. Outstanding candidates in all areas will
be considered.

The Department of Computer Science offers
a stimulating and nurturing academic environ-
ment with active research programs in all areas
of our discipline. Information about the depart-
ment and a description of open positions are
available at http://www.cs.purdue.edu.

Applicants should hold a PhD in Computer
Science, or related discipline, be committed to
excellence in teaching, and have demonstrated
excellence in research. Successful candidates will
be expected to teach courses in computer science,
conduct research in their field of expertise, and
participate in other department and university
activities. Salary and benefits are competitive. Ap-
plicants are strongly encouraged to apply online
at https://hiring.science.purdue.edu. Alternative-
ly, hardcopy applications can be sent to: Faculty
Search Chair, Department of Computer Science,
305 N. University Street, Purdue University, West
Lafayette, IN 47907. Review of applications will be-
gin in fall 2013, and will continue until positions
are filled. A background check will be required for
employment. Purdue University is an Equal Oppor-
tunity/Equal Access/Affirmative Action employer
committed to achieving a diverse workforce.

Southern Illinois University
Assistant/Associate Professor

The Department of Computer Science at Southern
Illinois University Edwardsville invites applica-
tions for one tenure-track position at the Assistant
or Associate Professor level beginning August
2014. Visit cs.siue.edu for more information.

State University of New York
at Binghamton
Department of Computer Science
Four Tenure-Track Assistant
Professor Positions

Applications are invited for four tenure-track Assis-
tant Professor positions beginning Fall 2014 with
specializations in: (a) cybersecurity (three positions)
and, (b) embedded systems programming/design
with an emphasis on energy optimization (one posi-
tion). The Department has established graduate and
undergraduate programs, including 60 full-time
PhD students. Junior faculty have a significantly re-
duced teaching load for at least the first three years.
Please indicate your teaching and research areas of
interest in a single sentence on your cover letter.

Further details and application information
are available at:

http://www.binghamton.edu/cs

Applications will be reviewed until positions
are filled. First consideration will be given to ap-
plications received by February 17, 2014.

We are an EE/AA employer.

JOIN THE INNOVATION.
Qatar Computing Research Institute seeks
talented scientists and software engineers to join
our team and conduct world-class applied research
focused on tackling large-scale computing challenges.

We offer unique opportunities for a strong career
spanning academic and applied research in the
areas of Arabic language technologies including
natural language processing, information retrieval
and machine translation, distributed systems, data
analytics, cyber security, social computing and
computational science and engineering.

/QCRI.QA @QatarComputing QatarComputing www.qcri.qaQatarComputing

Scientist applicants must hold (or will hold at
the time of hiring) a PhD degree, and should have a
compelling track record of accomplishments and
publications, strong academic excellence, effective
communication and collaboration skills.

Software engineer applicants must hold a
degree in computer science, computer
engineering or related field; MSc or PhD
degree is a plus.

We also welcome applications for post
doctoral researcher positions.

As a national research institute and
proud member of Qatar Foundation, our
research program offers a collaborative,
multidisciplinary team environment endowed
with a comprehensive support infrastructure.

Successful candidates will be offered a highly
competitive compensation package including
an attractive tax-free salary and additional
benefits such as furnished accommodation,
excellent medical insurance, generous annual
paid leave, and more.

For full details about our vacancies and
how to apply online please visit
http://www.qcri.qa/join-us/
For queries, please email
QFJobs@qf.org.qa

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=117&exitLink=mailto%3Arupak%40mpi-sws.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=117&exitLink=mailto%3Afaculty_search%40csie.ntu.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=117&exitLink=http%3A%2F%2Fwww.cs.purdue.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=117&exitLink=https%3A%2F%2Fhiring.science.purdue.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=117&exitLink=http%3A%2F%2Fwww.cs.siue.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=117&exitLink=http%3A%2F%2Fwww.binghamton.edu%2Fcs
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=117&exitLink=http%3A%2F%2FQCRI.QA
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=117&exitLink=http%3A%2F%2Fwww.qcri.qa
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=117&exitLink=http%3A%2F%2Fwww.qcri.qa%2Fjoin-us%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=117&exitLink=mailto%3AQFJobs%40qf.org.qa

118 communications of the acm | february 2014 | vol. 57 | no. 2

careers

˲˲ An earned doctoral degree in engineering, com-
puter science or other appropriate disciplines

˲˲ A record of accomplishments that justifies ap-
pointment as a tenured full professor

˲˲ A professional history of successfully mentor-
ing those in junior positions

Highly desirable qualifications include:
˲˲ A record of securing competitive research funding
˲˲ A record of sustained scholarly achievements,

including publications in highly respected ven-
ues and international peer recognition

˲˲ A history of working in teams, especially those
that span multiple disciplines

˲˲ A record of directing PhD students to completion

Located in Orlando, FL, UCF is one of the na-
tion’s most dynamic metropolitan research uni-
versities, having been recognized as a “very high
research activity” institution by the Carnegie
Foundation, and has been ranked consistently
in the top 10 in the country in the impact of its
patents. UCF is also a very academically diverse
institution, offering 91 undergraduate, 86 mas-
ters and 31doctoral programs along with the M.D.
degree in its College of Medicine.

Candidates must submit all documents
on-line to http://www.jobswithucf.com/post-
ings/37068. Applicants must submit all required
documents at the time of application. Required
documents include a signed cover letter; com-
plete curriculum vitae; maximum two-page state-
ment each outlining research vision and teaching
interests; a list of at least three references with
contact information. Review of applications will
begin immediately and continue until the posi-
tions are filled.

Interested persons with questions about the
positions may contact the Search Committee
Chair, Dr. MJ Soileau, Vice President of Research,
at mj@ucf.edu.

UCF is an equal opportunity, affirmative
action employer and encourages the candida-
cies of women, members of racial and ethnic
minorities, and persons with disabilities. All
searches and documents are subject to the
Sunshine and public records laws of the State
of Florida.

University of Maryland,
Baltimore County
Computer Science and Electrical
Engineering Department
Two Tenure Track Assistant Professor
Positions, Computer Science

We invite applications for two tenure track po-
sitions in Computer Science at the rank of As-
sistant Professor to begin in August 2014. All
areas will be considered, but we are especially
interested in candidates in systems, security,
or data analytics. Unusually strong candidates
at the Associate Professor level will be consid-
ered. Submit a cover letter, brief statement of
teaching and research experience and inter-
ests, CV, and three letters of recommendation.
See http://csee.umbc.edu/about/jobs/ for more
information about this search and concurrent
searches for a tenure track position in Electri-
cal and Computer Engineering and a Professor
of the Practice position in Computer Science.
UMBC is an AA/EOE.

The Cooper Union for the
Advancement of Science and Art
Open-Rank Faculty Position
in Computer Science

The Albert Nerken School of Engineering at The
Cooper Union for the Advancement of Sci-
ence and Art seeks outstanding candidates for
a tenured or tenure-track faculty position in
Computer Science. The Nerken School is dis-
tinguished by a curriculum that is rigorous,
analytical, and project-oriented and a student
body that is highly gifted. The School’s new
initiatives emphasize computing, entrepre-
neurship, design, undergraduate research,
global partnerships, graduate programs, and
teaching innovation. Faculty will develop
computing and entrepreneurship programs,
leveraging MOOC content and the New York
City tech community. Preferred candidates will
have established records of funded research in
information-based sciences, with ability to in-
volve undergraduates in applied research and
tech transfer.

In the heart of Manhattan, The Cooper Union
offers an unparalleled education in engineering,
art, and architecture. The College typically admits
8 percent of applicants and ranks number one
among Baccalaureate Colleges in the Northeast
in U.S. News & World Report.

A PhD is required. Please submit a C.V., state-
ments of teaching and research, and contact
information of at least three references to hr@
cooper.edu. Direct questions to NerkenSchool@

gmail.com. Benefits and work terms are negotiat-
ed through the Cooper Union Federation of Col-
lege Teachers bargaining unit. The Cooper Union
is an AA/EOE by choice. Women and individuals
from underrepresented groups are encouraged
to apply.

University of Central Florida
Ten Provost Professorships in Engineering &
Computer Science

The University of Central Florida (UCF)
announces multiple Provost Professorships
to be filled by the College of Engineering
and Computer Science (CECS). The Provost
Professorship is accompanied with a yearly
allocation of discretionary funds to facilitate
the candidate’s expected extraordinary research
productivity.

We are seeking outstanding candidates in
all disciplines associated with the College’s
research mission and are especially interested
in candidates who work across academic
fields both within and outside of the College’s
domains. With this targeted hiring initiative, the
University seeks to build on its existing strengths
in the engineering and computing disciplines by
adding senior faculty members who will have
an immediate impact on the College’s research
funding and scholarly productivity.

Specific requirements for appointment to one of
these positions are:

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=118&exitLink=http%3A%2F%2Fwww.jobswithucf.com%2Fpostings%2F37068
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=118&exitLink=mailto%3Amj%40ucf.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=118&exitLink=http%3A%2F%2Fcsee.umbc.edu%2Fabout%2Fjobs%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=118&exitLink=mailto%3Ahr%40cooper.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=118&exitLink=mailto%3ANerkenSchool%40gmail.com
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=118&exitLink=http%3A%2F%2Fwww.jobswithucf.com%2Fpostings%2F37068
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=118&exitLink=mailto%3Ahr%40cooper.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=118&exitLink=mailto%3ANerkenSchool%40gmail.com
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=118&exitLink=mailto%3Adean.cset%40qf.org.qa
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=118&exitLink=http%3A%2F%2Fwww.qf.org.qa
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=118&exitLink=http%3A%2F%2Fhbku.edu.qa

february 2014 | vol. 57 | no. 2 | communications of the acm 119

University of Rochester
Department of Computer Science
Faculty Positions in Computer Science:
Experimental Systems and Data Science

The University of Rochester Department of
Computer Science seeks applicants for multiple
tenure track positions in the broad areas of ex-
perimental systems and data science research
(including but not exclusively focused on very
large data-driven systems, machine learning
and/or optimization, networks and distributed
systems, operating systems, sustainable systems,
security, and cloud computing). Candidates
must have a PhD in computer science or a related
discipline.

Apply online at
https://www.rochester.edu/fort/csc

Consideration of applications at any rank will
begin immediately and continue until all inter-
view slots are filled. Candidates should apply no
later than January 1, 2014 for full consideration.
Applications that arrive after this date incur a
probability of being overlooked or arriving after
the interview schedule is filled up.

The Department of Electrical and Computer
Engineering
(http://www.ece.rochester.edu/about/jobs.html)
is also searching for a candidate broadly oriented
toward data science. While the two searches are
concurrent and plan to coordinate, candidates
should apply to the department/s that best match-
es their academic background and interests.

The Department of Computer Science is a re-
search-oriented department with a distinguished
history of contributions in systems, theory, artifi-
cial intelligence, and HCI. We have a collabora-
tive culture and strong ties to electrical and com-
puter engineering, cognitive science, linguistics,
and several departments in the medical center.
Over the past decade, a third of the department’s
PhD graduates have won tenure-track faculty po-
sitions, and its alumni include leaders at major
research laboratories such as Google, Microsoft,
and IBM.

The University of Rochester is a private, Tier
I research institution located in western New
York State. It consistently ranks among the top
30 institutions, both public and private, in fed-
eral funding for research and development. The
university has made substantial investments in
computing infrastructure through the Center
for Integrated Research Computing (CIRC) and
the Health Sciences Center for Computational
Innovation (HSCCI). Teaching loads are light
and classes are small. Half of all undergradu-
ates go on to post-graduate or professional
education. The university includes the Eastman
School of Music, a premiere music conserva-
tory, and the University of Rochester Medical
Center, a major medical school, research cen-
ter, and hospital system. The greater Rochester
area is home to over a million people, including
80,000 students who attend its 8 colleges and
universities.

The University of Rochester has a strong com-
mitment to diversity and actively encourages ap-
plications from candidates from groups under-
represented in higher education. The University
is an Equal Opportunity Employer.

The newly launched ShanghaiTech University invites highly qualified candidates to
fill multiple tenure-track/tenured faculty positions as its core team in the School of
Information Science and Technology (SIST). Candidates should have exceptional
academic records or demonstrate strong potential in cutting-edge research areas
of information science and technology. They must be fluent in English. Overseas
academic connection or background is highly desired.

ShanghaiTech is built as a world-class research university for training future generations
of scientists, entrepreneurs, and technological leaders. Located in Zhangjiang High-
Tech Park in the cosmopolitan Shanghai, ShanghaiTech is ready to trail-blaze a new
education system in China. Besides establishing and maintaining a world-class
research profile, faculty candidates are also expected to contribute substantially to
graduate and undergraduate education within the school.

Academic Disciplines: We seek candidates in all cutting edge areas of information
science and technology. Our recruitment focus includes, but is not limited to: computer
architecture and technologies, nano-scale electronics, high speed and RF circuits,
intelligent and integrated signal processing systems, computational foundations, big data,
data mining, visualization, computer vision, bio-computing, smart energy/power devices
and systems, next-generation networking, as well as inter-disciplinary areas involving
information science and technology.

Compensation and Benefits: Salary and startup funds are highly competitive,
commensurate with experience and academic accomplishment. We also offer a
comprehensive benefit package to employees and eligible dependents, including
housing benefits. All regular ShanghaiTech faculty members will be within its new
tenure-track system commensurate with international practice for performance
evaluation and promotion.

Qualifications:
• A detailed research plan and demonstrated record/potentials;
• Ph.D. (Electrical Engineering, Computer Engineering, Computer Science, or related field);
• A minimum relevant research experience of 4 years.

Applications: Submit (in English) a cover letter, a 2-page research plan, a CV
plus copies of 3 most significant publications, and names of three referees to:
sist@shanghaitech.edu.cn by March 31st, 2014 (until positions are filled). For more
information, visit http://www.shanghaitech.edu.cn.

ShanghaiTech University

Faculty
Search

Advertising in Career Opportunities
How to Submit a Classified Line Ad: Send an e-mail to
acmmediasales@acm.org. Please include text, and indicate the issue/or
issues where the ad will appear, and a contact name and number.

Estimates: An insertion order will then be e-mailed back to you. The ad
will by typeset according to CACM guidelines. NO PROOFS can be sent.
Classified line ads are NOT commissionable.

Rates: $325.00 for six lines of text, 40 characters per line. $32.50 for each
additional line after the first six. The MINIMUM is six lines.

Deadlines: 20th of the month/2 months prior to issue date. For latest
deadline info, please contact:

acmmediasales@acm.org

Career Opportunities Online: Classified and recruitment display ads
receive a free duplicate listing on our website at:

http://jobs.acm.org

Ads are listed for a period of 30 days.
For More Information Contact:

ACM Media Sales
at 212-626-0686 or

acmmediasales@acm.org

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=119&exitLink=https%3A%2F%2Fwww.rochester.edu%2Ffort%2Fcsc
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=119&exitLink=http%3A%2F%2Fwww.ece.rochester.edu%2Fabout%2Fjobs.html
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=119&exitLink=mailto%3Asist%40shanghaitech.edu.cn
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=119&exitLink=http%3A%2F%2Fwww.shanghaitech.edu.cn
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=119&exitLink=mailto%3Aacmmediasales%40acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=119&exitLink=mailto%3Aacmmediasales%40acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=119&exitLink=http%3A%2F%2Fjobs.acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=119&exitLink=mailto%3Aacmmediasales%40acm.org

last byte

P
h

o
t

o
g

r
a

p
h

 f
r

o
m

 S
h

u
t

t
e

r
s

t
o

ck

.c
o

m

Puzzled
Lowest Number Wins
Each of these puzzles involves a symmetric game. You will be asked about
your best strategy, but what does “best strategy” mean? Here, we want a strategy
that is a “Nash equilibrium” for all players; that is, one with the property that
if it is followed by all other players, you can do no better than follow it yourself.
Often, such a strategy requires that players do some randomization; for example,
in the familiar game “Rock, Paper, Scissors,” the Nash equilibrium strategy
requires each player to choose rock, paper, or scissors with equal probability.
As in “Rock, Paper, Scissors,” plays in the games here are done simultaneously,
with no collaboration allowed, so every man/woman for him/herself.
For solutions and sources, see next month’s column.

DOI:10.1145/2559597		 Peter Winkler

Readers are encouraged to submit prospective
puzzles for future columns to puzzled@cacm.acm.org.

Peter Winkler (puzzled@cacm.acm.org) is William Morrill
Professor of Mathematics and Computer Science at
Dartmouth College, Hanover, NH.

Copyright held by Author/Owner(s).

2. No dollar is found
this time. Alice and

Bob instead play a “zero-sum
game” with their own money.
Each again writes down a
positive integer. Lowest integer
wins $1 from the other player,
unless it is lower by exactly 1;
in that case, the player with the
higher number wins $2 from
the other player. If the players
happen to choose the same
number, no money changes
hands. What is the highest
integer you, as Alice, should
consider writing down?

3. Three players this
time, with a $10 prize

to be given to the player who
writes down the lowest number
not written down by any other
player. For example, if Alice
and Bob each write “1” and
Charlie writes “2,” Charlie
wins the $10. If Alice writes
“2,” Bob “3,” and Charlie “5,”
Alice wins. If all three write the
same number, the prize goes
unclaimed. What is the highest
integer you, as Alice, should
consider writing down?

Corrections to “Solutions and Sources” (Dec. 2013) to
“Coin Flipping” (Nov. 2013). Three careful readers pointed
out there are 12, not 10 (as we said in the solution to
Problem 1) head-tail sequences of length 5 that take
on average only 32 flips to occur. In addition, Joseph
Skudlarek found a sequence (HTTHH or its complement
THHTT) that gets the first player a better than 1/3 chance
to win in Problem 2, 9/26, to be exact.

1. Having found a dollar
bill on the street, Alice

and Bob each write down a
positive integer. Lowest integer
wins the dollar. If they each
write the same number, the
dollar is torn up. What is the
highest integer you, as Alice,
should consider writing down?

120 communications of the acm | february 2014 | vol. 57 | no. 2

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=120&exitLink=mailto%3Apuzzled%40cacm.acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=120&exitLink=mailto%3Apuzzled%40cacm.acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=120&exitLink=http%3A%2F%2FSHUTTERSTOCK.COM

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=CIII&exitLink=http%3A%2F%2Fwww.computingreviews.com

April 26th – May 1st
Toronto, Canada

Inspiring keynotes: Margaret Atwood, Scott Jenson

World-leading research findings

Courses from HCI legends including Bill Buxton & Don Norman

Industry focused HCI in practice & case study sessions

Attend. Be changed. Change the world.

Conference Chairs: Matt Jones, Philippe Palanque
Technical Program Chairs: Tovi Grossman, Albrecht Schmidt

32nd ACM Conference on Human Factors in Computing Systems

chi2014.acm.org @sig_chi

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=CIV&exitLink=http%3A%2F%2Fchi2014.acm.org

	Table of Contents
	Departments
	Letter from Chair of ACM Education Board
	Education, Always

	Letter from the President
	Cognitive Implants

	Letters to the Editor
	Contribute More Than Algorithmic Speculation

	BLOG@CACM
	Clarifying Human-Computer Interaction

	Calendar
	Careers

	Last Byte
	Puzzled
	Lowest Number Wins

	News
	A New Type of Mathematics?
	Should Everybody Learn to Code?
	Computational Photography Comes into Focus
	ACM Fellows Inducted

	Viewpoints
	Privacy and Security
	Would Cybersecurity Professionalization Help Address the Cybersecurity Crisis?

	Education
	Establishing a Nationwide CS Curriculum in New Zealand High Schools

	Inside Risks
	An Integrated Approach to Safety and Security Based on Systems Theory

	Kode Vicious
	Bugs and Bragging Rights

	Economic and Business Dimensions
	Digital Platforms: When Is Participation Valuable?

	Viewpoint
	Ready Technology

	Practice
	Node at LinkedIn: The Pursuit of Thinner, Lighter, Faster
	Center Wheel for Success
	Provenance in Sensor Data Management

	Contributed Articles
	Mars Code
	Automatic Exploit Generation
	Cryptography Miracles, Secure Auctions, Matching Problem Verification

	Review Articles
	Computation Takes Time, But How Much?

	Research Highlights
	Technical Perspective
	A New Spin on an Old Algorithm

	Communication Costs of Strassen's Matrix Multiplication

