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In a recent issue of Communications,  
ACM President Vinton Cerf gave an excellent 
account of what ACM is doing to help  
reform K–12 education (August 2013, p. 7). 

Moreover, he stressed ACM’s position 
about the fundamental importance of 
computer science, that it should be 
regarded as a science on par with oth-
er sciences. Education initiatives are 
having a great impact within the U.S., 
but beyond the U.S. shores, others are 
watching and learning.  

ACM’s Education Board promotes 
computer science education at all 
levels and in all ways possible. In Oc-
tober, ACM Council approved the 
publication of the CS 2013 report—
an exhaustive 10-year effort cham-
pioned by ACM’s Education Board 
and IEEE-Computer Society. The cur-
riculum presents many new features, 
including an outward-facing view of 
the discipline, facilitating links with 
multidisciplinary work. It draws at-
tention to the different platforms on 
which software resides and places 
considerable emphasis on security. 
Information Assurance and Security 
is deemed a new “knowledge area;” 
moreover, security considerations are 
to be embedded within the teaching 
of programming, software develop-
ment, the human-computer interface 
activities, databases, networking, and 
other topic areas to better prepare stu-
dents for the future.

CS 2013 is the latest in a series of 
curriculum guidance documents on 
computer science championed by 
both organizations; the respective co-
chairs were Mehran Sahami from ACM 
and Steve Roach from the IEEE-CS. 
The report runs over 500 pages, largely 
because of considerable efforts invest-
ed in providing guidance (often in the 

form of course exemplars) to a wide 
variety of interested parties. To view the 
full report, visit http://www.acm.org/ 
education/curricula-recommendations/.

ACM’s Education Board also re-
sponded to a recent request from the 
National Science Foundation to ad-
dress how to best direct institutions 
of higher education on cyber security 
education as well as how to promote 
the need to incorporate this track into 
their courses. A report presenting the 
Board’s suggestions is now available on 
ACM’s Educational Activities website 
(http://www.acm.org/education). 

Massive Open Online Courses 
(MOOCs) have been a major topic of dis-
cussion. Some commentators see these 
courses as having the capacity to bring 
about radical change to educational 
processes, whereas others hold a more 
conservative view. The Education Board, 
having a great interest in MOOCs, is 
sponsoring the first Learning at Scale 
(http://learningatscale.acm.org) con-
ference to address MOOCs-related re-
search issues and to help clarify and 
establish ACM’s position on online learn-
ing. This conference is slated to take place 
in Atlanta in March 2014, just prior to and 
co-located with SIGCSE 2014. 

As we look toward, and prepare for, 
the future of computing education, 
I am reminded of Doug Englebart’s 
1962 paper “Augmenting Human In-
telligence: A Conceptual Framework.” 
There he puts forward the view that 
computing has a vital role to play, not 
in making users more intelligent, but 
in supporting their thinking and their 
analysis of problems. A subsequent pa-

per draws attention to the bootstrap-
ping implications of this approach. 
In the research world disciplines like 
mathematics, physics, chemistry, 
medicine, and the humanities are all 
benefitting from great computational 
power, sophisticated modeling, and 
advances in data science. But related 
computational thinking needs to be 
woven more delicately into the fabric 
of general education so that students 
become more effective and efficient 
learners. Through this approach, all 
disciplines will benefit. 

With information being readily 
available anywhere and at any time, 
and with great computing power also 
immediately accessible, education 
must respond and change. On current 
evidence, part of the solution is to pay 
far greater attention to interactive 
computing and graphics, simulation 
and modeling, search, analytics, and 
machine intelligence (feeding into 
business intelligence, among others).  

Education is an ever-evolving do-
main, and ACM’s Education Board 
has always been at the forefront lead-
ing the charge for change. Our goal is 
to best prepare future generations for 
a truly digital world. Computer educa-
tion is the entryway to that world, and 
it is our job to make sure that door is 
never closed.	

Andrew McGettrick (andrew.mcgettrick@strath.ac.uk) 
is Professor Emeritus at the University of Strathclyde, 
Glasgow, Scotland, U.K. and the chair of ACM’s Education 
Board and Education Council. 

Copyright help by owners/author(s). 
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Cognitive Implants
We are already well into the second month 
of 2014 and well on our way to the middle of 
the second decade of the 21st century. One 
hundred years ago, World War I was about 

to start. Einstein’s “annus mirabilis” 
papers were just nine years in the past. 
The first computers were about 25 years 
ahead, counting Conrad Zuse’s 1938–
1939 et. seq. work on the Z1 and Z2, 
especially, as seminal. Some 50 years 
ago—1964—marked the introduction 
of the IBM 360 computer. Roughly 40 
years ago, the first paper on the Inter-
net’s core Transmission Control Proto-
col was published, the first hand-held 
mobile was being prototyped, and the 
Ethernet was invented. About 30 years 
ago the Internet was formally launched 
into operation and Apple announced 
the Macintosh. Circa 25 years ago, the 
World Wide Web was invented, the Mo-
saic Browser appears, and the so-called 
dot-com boom is poised to take off. 

Every time I see calendar dates like 
2014, I feel as if I have been transport-
ed by time machine into the future. It 
could not possibly be 2014 already! 
Isaac Asimov made some remarkably 
astute projections about 2014 in 1964,a 
so what might he say today? 

What we can reasonably see today 
is the emergence of a crude form of 
cognitive accessory that augments our 
remarkable, but in some ways limited, 
ability to think, analyze, evaluate, and 
remember. Just as readily available 
calculators seem to have eroded our 
ability to perform manual calculations, 
search engines have tended to become 
substitutes for basic human memory. 
The search engines of the Internet have 
become the moral equivalent of cogni-

a	 http://www.newsmax.com/SciTech/isaac-
asimov-predictions/2014/01/06/id/545487

tive implants. When I cannot think of 
someone’s name or a fact (an increas-
ingly common phenomenon), I find 
myself searching my email or just look-
ing things up on the World Wide Web. 

In effect, the Web is behaving like 
a big accessory that I use as if it were 
just a brain implant. Maybe by 2064 I 
will be able to access information just 
by thinking about it. Current mobiles, 
laptops, tablets, and Google Glass have 
audio interfaces that allow a user to 
voice requests for information and 
to cause transactions to take place. 
Whether we ever actually have the abil-
ity to connect our brains in some direct 
way to the Internet, it is clear we are 
fast approaching the ability to outfit 
computers (think “robots”) with the 
ability to know about, perceive, and in-
teract with the physical world. 

It has been speculated that ma-
chine intelligence and adaptive pro-
gramming will be the avenue through 
which computers will become increas-
ingly cognizant of the world around 
them—increasingly behaving like self-
aware systems. In addition to so-called 
“cyber-physical systems” that provide 
sensory input to computers and are ex-
pected to interact with the real world, 
an increasing degree of augmentation 
of our human sensory and cognitive 
capacity seems predictable.  While we 
joke about memory upgrades or im-
plants, search engines and the con-
tent of the Internet and World Wide 
Web act like exabyte memories that 
are reached through direct interaction 
with the computers that house them. 
Ray Kurzweil’s virtuous, exponential 

computing functionality and capacity 
growth predictions, even if overly bold 
in the short term, strike me as poten-
tial underestimates of what may be 
possible in 50 to 100 years. 

When we are on the cusp of generat-
ing an Internet of Things, humanoid and 
functional robots, smart cities, smart 
dwellings, and smart vehicles, to say 
nothing of instrumented and augment-
ed bodies, it does not seem excessive to 
suggest the world of 2064 will be as far 
beyond imagining as 2014 was in 1964, 
except that Asimov had a remarkably 
clairvoyant view of what 50 years of en-
gineering and discovery could achieve. 
A huge challenge will be to understand 
and characterize the level of complexity 
of such a world in which many billions 
of devices are interacting with one an-
other often in unplanned ways. 

For those of us who were around in 
1964, we may recall our naïve aspira-
tions for the decades ahead and realize 
how ambitious our expectations were. 
On the other hand, what is common-
place in 2014 would have been econom-
ically unthinkable 50 years ago. So per-
haps exabyte, cognitive implants are a 
trifle ambitious in the short term, but 
a lot can happen in 50 years time. Just 
as we have adapted to the past 50 years, 
I expect we will rapidly embrace some 
of the functionality coming in the next 
five decades. It is already difficult to re-
member how we lived our lives without 
mobiles and the Internet. Now, where 
did I put that time machine?

Vinton G. Cerf, acm president

Copyright held by Author.
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J
a c o b  L o v e l e s s  e T  a l . ’ s  ar-
ticle “Online Algorithms in 
High-Frequency Trading” 
(Oct. 2013) is an example 
of potentially valuable re-

search misdirected. Ask any propo-
nent of free-enterprise economics to 
explain its merits, and you will likely 
hear two themes: Profit motivates, 
and profit accrues by producing and 
selling valuable goods and services. 
The first buys the producer a bigger 
piece of the pie; the second increas-
es the total size of the pie, thus rais-
ing, at least on average, the econom-
ic status of all. It works, most of the 
time, quite well. 

Unfortunately, there are also many 
ways to profit while producing grossly 
inadequate, zero, or even negative 
economic value. Some of us are drawn 
to such schemes, so much so they 
work much more diligently at them 
than at a productive enterprise. To the 
extent this happens, free enterprise is 
undermined. Like printing counter-
feit money, it works only if a minority 
does it, and even then, at the expense 
of everyone else.

Among the most serious such non-
value-producing profit schemes is 
speculating in zero-sum derivative 
markets that produce no economic 
value at all, managing only to shuffle 
cash between winners and losers. Mil-
lisecond trading is just an escalation 
in vying for money this way. Even in fi-
nancial markets like common stocks, 
where the original purpose is invest-
ment, and that do contribute to pro-
ducing value, trading at sub-second 
time intervals is pure speculation or 
worse, as genuine investors could col-
lectively be net losers to speculators. 
Putting effort into developing and us-
ing more successful speculation strat-
egies is like going to a potluck dinner 
but bringing no food, just a bigger 
plate, while pushing more aggressive-
ly toward the front of the line. 

Online and one-pass algorithm 
research can surely be redirected to-
ward value-producing applications 
(such as robotics) where they can do 

more than just seize profits at some-
one else’s expense. 

Rodney M. Bates, Strong City, KS 

Put Thrills In Everyday Products, Too 
As a user experience (UX) researcher, 
I took note of Steve Benford et al.’s ar-
ticle “Uncomfortable User Experience” 
(Sept. 2013) on designing discomfort 
into users’ experience with technology. 
I appreciated Benford et al.’s interest 
in the framework of Freytag’s pyramid 
and their examples of physical experi-
ence (such as amusement park rides 
and breathing exercises) but was left 
with questions about applying these 
ideas to the commercial HCI, particu-
larly the UX, realm. 

I venture to say the majority of UX 
designers reading Communications 
design hardware or software, not just 
for entertainment but for educational 
and productivity purposes. In any do-
main, UX designers are always look-
ing for new interaction methods on 
mobile devices, ways to “gamify” tasks, 
or unique interactions that make their 
brands more desirable, popular, and 
memorable. For me, Benford et al. 
started down an interesting new path 
but stopped short of defining a clear 
link between these tactics and the kind 
of HCI work most developers do, which 
is probably more cognitive than physi-
cal. Could these tactics work for us? 

For example, Benford et al. remind-
ed us of interface innovator Ben Shnei-
derman’s guideline that the locus of 
control should remain with the user, 
suggesting “distorting this relation-
ship” would only generate discomfort. 
Moreover, Benford et al.’s examples 
were physical: thrill ride, walking tour, 
performance audience member. But 
this would seem to have been the per-
fect place to explore possibilities in ev-
eryday software development. If in your 
next mobile app project you wanted to 
build in a “thrill” for user sociality or 
enlightenment, how would it work? 

Benford et al. certainly inspired un-
conventional thinking, but I was left 
wanting acknowledgment there is a 

place for uncomfortable user experi-
ence in everyday products as well. 

Elise Lind, Portland, OR 

Survival vs. Reflection in Education 
Karen A. Frenkel’s news story “CS En-
rollments Rise… at the Expense of the 
Humanities?” (Dec. 2013) reminded 
me why the trend toward computer sci-
ence does not diminish the value of a 
well-rounded education or the humani-
ties in general, even as it identified two 
aspects of the humanities making them 
less desirable than computing and IT 
in today’s academic environment: 

Bias. The humanities have become 
politicized to the point they often seem 
intended to put the agendas of tenured 
faculty or intellectual movement ahead 
of students’ interests. Such bias plagues 
all traditional academic disciplines but 
is disproportionate in the humanities. 
Moreover, there is often no objective, 
measurable, or quantifiable way to as-
sess opinions, short of a professor’s 
publishing history, while schools of 
thought splinter into factions; see, for 
example, literary criticism; and 

Employment. Getting a job with just a 
degree in the humanities, even in teach-
ing, is a challenge. I know; as an under-
grad I studied comparative French and 
German literature. Granted, humanities 
graduates may write well and make per-
suasive arguments, but so do IT work-
ers and programmers. I fault academic 
institutions more than students for ig-
noring the employment implications 
of their programs, including the skills 
the economy demands and employers 
pay for; my college did not, for exam-
ple, offer accounting…on ideological 
grounds. Humanities professors com-
fortable within their intellectual mi-
crocosms should reassess their role in 
today’s academic climate and help their 
students learn the skills they need to 
create and survive, not just reflect. 

Dimitri Darras, Sterling, VA 
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Philip Guo 
Two Examples  
of HCI Research
http://cacm.acm.org/
blogs/blog-cacm/163199-
two-examples-of-hci-
research/fulltext

April 10, 2013

A
n  u n d e r g r a d  r e c e n tl  y 
sent me the following 
message: “I was thinking 
today that I would like to 
learn more about what 

HCI research involves. Can you recom-
mend any papers for me to read?”

I decided to follow Matt Might’s advice 
(at http://matt.might.net/articles/how-to-
blog-as-an-academic/) and write a public 
blog post about this topic, rather than 
just replying privately to this student.

(Disclaimer: HCI is a very diverse 
field, so I obviously do not claim to 
speak for all HCI researchers. If you 
asked 10 randomly selected HCI re-
searchers to write this post, you will get 
10 different answers.)

What Is HCI Research?
To me, research in HCI (human-com-
puter interaction) involves

˲˲ Understanding how humans inter-
act with computers, and

Paper 1
Two Studies of Opportunistic Program-
ming: Interleaving Web Foraging, Learn-
ing, and Writing Code (Brandt et al., CHI 
2009, http://www.joelbrandt.org/publi-
cations/brandt_chi2009_program-
mer_web_use.pdf) was published at CHI  
2009 (http://www.chi2009.org/), a notable 
academic conference for HCI research.

The research described by this pa-
per is an example of “understanding 
how humans interact with comput-
ers.” Specifically, Joel and his col-
leagues sought to understand how 
programmers interact with digital re-
sources found on the Web.

To do so, the research team per-
formed two studies:

1.	 Lab study: They invited 20 program-
mers into a computer lab one at a time, 
gave each subject a two-hour-long pro-
gramming task, and watched how the 
subject used Web resources while pro-
gramming. Drawing from direct observa-
tions of these 20 subjects in a controlled 
lab setting, the team observed three main 
forms of interaction with Web resourc-
es—learning, clarification, and remind-
er—and described the unique aspects of 
each form in their paper.

2.	 Query log analysis: The team 
wanted to validate whether these ob-
servations generalize beyond their 
small and relatively homogeneous 
population of 20 lab subjects, who 
were all Stanford students. Working 
with industry colleagues at Adobe, they 
obtained a dataset containing over 
100,000 queries made by over 24,000 
programmers to a custom search en-
gine for Adobe programming tools 

˲˲ Creating new and effective ways for 
humans to interact with computers.

Here, the term “computer” can refer 
to a desktop machine, laptop, tablet, 
mobile phone, digital eyewear (http://
www.google.com/glass/start/), or an as-
sortment of other electronic devices; 
it can also refer to both software and 
hardware running on these devices.

Some HCI research involves doing 
science (such as understanding), while 
others are more focused on engineer-
ing (such as creating).

Two Examples of HCI Research
There is no way that I can do justice 
to the entire world of HCI in one blog 
post, so instead I will present two pa-
pers that exemplify some typical char-
acteristics of modern HCI research.

The lead author on both papers is my 
colleague Joel Brandt (http://www.joel-
brandt.org/), who performed this work 
while he was a Ph.D. student in the Stan-
ford computer science department. At 
the time, Joel’s focus within HCI was on 
how programmers (humans!) interact 
with computer software used through-
out the programming process (for ex-
ample, IDEs (http://en.wikipedia.org/
wiki/Integrated_development_environ-
ment), debuggers, Web browsers).

Clarifying Human-
Computer Interaction 
Philip Guo teaches an undergrad through the use of examples. 
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(http://www.adobe.com/devnet.html). 
They parsed and analyzed the data to 
discover insights that supported obser-
vations from their prior lab study.

These two studies complement and 
reinforce one another. The first pro-
vides a great level of detail (direct hu-
man observation) but a small sample 
size (N=20). The second provides little 
detail (search queries) but a large sam-
ple size (N=24,000). By reading both 
studies in the paper, you can under-
stand the relative strengths and weak-
nesses of each approach.

The findings presented by HCI studies 
such as the ones in this paper serve two 
roles: they contribute to the body of scien-
tific knowledge about a form of human-
computer interaction (for example, Web 
usage during programming), and they 
inspire researchers to create new kinds of 
tools to improve such interactions.

For example, the findings in this pa-
per suggest ways that existing IDEs can 
be augmented to help programmers 
better leverage Web resources. These 
findings directly inspired Joel’s next re-
search project, which led to...

Paper 2
A year later, Joel published Example-
Centric Programming: Integrating Web 
Search into the Development Environ-
ment (Brandt et al., CHI 2010, http://
www.joelbrandt.org/publications/ 
brandt_chi2010_example_centric_
programming.pdf).

The research described by this pa-
per is an example of “creating new and 
effective ways for humans to interact 
with computers.” Here, Joel and his col-
leagues sought to create a new and bet-
ter way for programmers to use snippets 
of example code they find on the Web.

To do so, Joel spent a summer intern-
ship at Adobe building a plug-in for Ado-
be Flash Builder (http://www.adobe.com/
technology/projects/blueprint.html),  
which embeds a domain-specific search 
engine within the IDE (see screenshot).

This system, called Blueprint, com-
bines an IDE plugin and custom search 
engine to enable new kinds of user in-
teractions, such as:

˲˲ Instant Web search without leav-
ing the IDE’s code editor,

˲˲ Browsing through search results that 
are automatically formatted in a “code-
centric” format, which is more useful to 
programmers than plain Web pages,

˲˲ Fast copy and paste of retrieved 
example code snippets into the user’s 
code base, and

˲˲ Links between the copied code and 
its source, to support notifications if 
the source gets updated.

The first half of his paper describes 
how Joel used insights from the stud-
ies in his prior paper to design the 
Blueprint system. The second half 
describes two studies the team ran to 
show that Blueprint was effective:

1.	 User study: They recruited 20 
professional programmers at Adobe 
to perform a series of programming 
tasks in a controlled lab setting. They 
let half the participants use the Blue-
print system (treatment group) and 
the other half use an ordinary Web 
browser (control group). They then 
compared the performance of partici-
pants in both groups on metrics such 
as time to complete each task and re-
sulting code quality.

2.	 Longitudinal study: To under-
stand how Blueprint is used in real-
world settings, the team deployed 
the system to over 2,000 users over a 
three-month time span. They recorded 
17,000 queries made by these users and 
analyzed the contents of those queries 
to discover insights that complement-
ed their user study findings.

Finally, a customary way to end 
these sorts of papers is by discussing 
current limitations of the system and 
some ideas for future work.

Conclusion and Further Reading
These two papers formed the bulk 
of Joel’s 2010 Ph.D. dissertation  
(http://www.joelbrandt.org/publications/ 
brandt_2010_phd_dissertation.pdf).  
His research started in a university lab 
at Stanford, continued during sum-
mer internships at Adobe, and even-
tually turned into a feature within a 

commercial software product (Blue-
print) that thousands of people use 
on a daily basis. I like presenting this 
work because it is a good example of 
how HCI research can be done in both 
academia and industry, and can range 
from scientific studies to the develop-
ment of practical tools.

Joel’s work is just the tip of the ice-
berg, though. Besides studying the in-
teraction between humans and com-
puters, there is a lot of HCI research 
that explores how humans interact 
with one another via computers. For 
example, projects might involve:

˲˲ Understanding how programmers 
interact with one another on the Stack-
Overflow (http://stackoverflow.com/) 
Q&A site (Mamykina et al., CHI 2011, 
http://www.cs.berkeley.edu/~bjoern/ 
papers/mamykina-stackoverflow-
chi2011.pdf), and

˲˲ Creating a mobile phone app called 
VizWiz (http://vizwiz.org/) that lets blind 
users quickly and effectively solicit help 
from strangers on the Internet (Bigham 
et al., UIST 2010, http://www.cs.rochester.
edu/hci/pubs/pdfs/vizwiz.pdf).

Reading the four papers mentioned 
in this blog post will give you a sense of 
how HCI papers are structured. Enjoy!

Reader’s comment: 
HCI research: I ask 10 different 
researchers and get 15 different answers! 

What about theoretical models for HCI; 
that may reduce the dimensions. 

—Anonymous

Some nice points in this post, thanks. 
Responding to your anonymous commenter, 
HCI is indeed a diverse field that moves 
with the times, so as technologies change, 
so do some (but not all) of the research foci. 

The SIGCHI Executive Committee has 
been looking into HCI as a field in a project 
focused on HCI Education. We have written 
an interim report which is accessible 
from our website (http://www.sigchi.
org/). The results are also summarized 
on the Interactions website (see http://
interactions.acm.org/archive/view/march-
april-2013/teaching-and-learning-human-
computer-interaction).

—Elizabeth Churchill

Philip Guo is a postdoctoral scholar in the Massachusetts 
Institute of Technology Computer Science and Artificial 
Intelligence Laboratory. 
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Screenshot of a Blueprint code search.
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http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.cs.berkeley.edu%2F%7Ebjoern%2Fpapers%2Fmamykina-stackoverflowchi2011.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.cs.berkeley.edu%2F%7Ebjoern%2Fpapers%2Fmamykina-stackoverflowchi2011.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.cs.rochester.edu%2Fhci%2Fpubs%2Fpdfs%2Fvizwiz.pdf
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Finteractions.acm.org%2Farchive%2Fview%2Fmarch-april-2013%2Fteaching-and-learning-human-computer-interaction
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Finteractions.acm.org%2Farchive%2Fview%2Fmarch-april-2013%2Fteaching-and-learning-human-computer-interaction
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Finteractions.acm.org%2Farchive%2Fview%2Fmarch-april-2013%2Fteaching-and-learning-human-computer-interaction
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.sigchi.org%2F
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C
omputers have transformed 
a broad range of human ac-
tivities, from sales to basic 
research. Now, for an enthu-
siastic contingent of math-

ematicians and computer scientists, 
they are poised to deliver on a long-
standing promise to do the same for 
mathematics. 

The renewed excitement grows 
from discoveries that expand the scope 
of computer-assisted proofs of theo-
rems, but also provide a new and more 
intuitive way of grounding new results 
to the bedrock foundations of math-
ematics, even as those results grow 
more complex. Tools based on these 
developments could help establish 
a growing library of certified results 
backed by computer verification. Along 
the way, it could change the culture of 
mathematics by making it easier for 
individuals to dependably add to this 
growing edifice. 

The most prominent face of the new 
movement is Vladimir Voevodsky, at 
the School of Mathematics of the sto-
ried Institute for Advanced Study (IAS) 
in Princeton, NJ. In 2002, Voevodsky 
shared the International Math Union’s 
Fields Medal which, together with the 
Abel Prize, are often called the math-

ematics equivalent of the Nobel Prize. 
In recent years, he has turned his atten-
tion to exploring how computers can 
enhance mathematics research. 

In the process, Voevodsky has in-
spired a high-powered group of math-
ematicians and computer scientists 

to explore the implications of the new 
framework. Over the 2012–2013 aca-
demic year, several dozen of them as-
sembled at IAS to work towards this goal.

“It was really thrilling,” said co-
organizer Steve Awodey of Carnegie 
Mellon University in Pittsburgh, PA. 

A New Type of 
Mathematics? 
New discoveries expand the scope  
of computer-assisted proofs of theorems. 

Science  |  doi:10.1145/2557446	 Don Monroe

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=13&exitLink=http%3A%2F%2FSHUTTERSTOCK.COM
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and trace it all back to a few axioms. 
That goal ran into trouble when it was 
proved that, for any formal system, it is 
impossible to prove all theorems about 
that system. As a result, “working math-
ematicians decided that foundations 
are irrelevant for their purposes,” says 
Awodey. Moreover, there was no par-
ticular payoff for tracing everyday work 
back to first principles. Although the 
new framework does not avoid these 
problems, Awodey said, it doesn’t much 
matter. “This system of foundations has 
a much more practical aspect; it is clos-
er to the way mathematicians reason.”

The system could also enhance co-
operation between mathematicians. 
If computer-verified proofs become 
mainstream, Voevodsky says, “it will 
eventually lead us to a possibility of 
big, collaborative projects.” If the com-
puter can guarantee that a particular 
result is correct, others can build on it 
with confidence, even if it comes from 
an unknown or novice researcher, or 
an expert who is importing novel ideas 
into a different subfield. 

Voevodsky stresses that human in-
genuity will always be important. “It’s 
not like someone who doesn’t know 
anything in mathematics can just use 
this library and start producing great 
mathematics on top of it. One still has 
to have the internal [mental] represen-
tation of what’s going on there.”

Another advantage of a computer 
library of mathematics, says IAS par-
ticipant Andrej Bauer of the University 
of Ljubljana, Slovenia, would be the 
ability to search for relevant results. 
Even if the new framework lives up to 
its promise, he cautions, “ultimately, 
it is not just the math; it is the ques-
tion of how new mathematical ideas 
get adopted by the wider community 
of mathematicians.”

“You felt like you were part of the Man-
hattan Project of computer science. 
Everybody had the feeling they were 
part of something important, and I 
think they were. I think we really made 
some amazing progress there, the con-
sequences of which are going to take 
time now to play out.”

In part to build on this momen-
tum, some 25 of the researchers wrote 
a 600-page textbook (available free 
online at http://homotopytypetheory.
org/book/) describing the new view, 
called Homotopy Type Theory (HoTT) 
for reasons discussed later. The book 
was prepared collaboratively over just a 
few months, as illustrated in the time-
lapse video available at http://vimeo.
com/68761218, sharing and editing 
documents using the GitHub version-
control platform originally designed 
for code development.

This collaborative authorship is an 
intriguingly parallel to the group’s vi-
sion of a reliable and consistent en-
capsulation of a body of mathematical 
knowledge, analogous to a library of 
trusted subroutines in a computer pro-
gram. This vision is an old one: more 
than a century ago, mathematicians 
strove to formalize all mathematics, 

ACM, IEEE Choose 
Goodman To Receive 
Eckert-Mauchly Award 
ACM and the IEEE Computer 
Society have named James 
R. Goodman the recipient 
of the Eckert-Mauchly 
Award in recognition of his 
contributions to the hardware/
software interface of computer 
architecture. 

The Eckert-Mauchly award is 
given annually in recogmition of 
contributions to computer and 
digital systems architecture.  

Goodman is currently a 
professor of computer science 
and a department chair at  
the University of Auckland,  
New Zealand. 

His innovations led to 
the development of hybrid 
approaches to high-performance 
computer memory systems 
that can achieve nearly the 
performance of hardware but 
with the flexibility of software. 

Principal co-inventor of 
hardware queue-based locks, 
which allow programs with 
busy-wait synchronization, also 
known as spinning, to scale 
to very large multiprocessors, 
Goodman also introduced critical 
section speculation, which 
helped launch the resurgence 
of transactional memory as 
a parallel programming and 
synchronization method. 

Co-author of A Programmer’s 
View of Computer Architecture, 
a highly acclaimed book on 
computer architecture, with 
Karen Miller, and Structured 
Computer Organization with 
Andrew Tanenbaum, Goodman is 
a principal supervisor of 10 Ph.D. 
students, as well as a Fellow of 
both IEEE and ACM. 

Hanson Elected  
Fellow Of Royal Society 
of Edinburgh
Included among the more than 

40 people elected Fellows of 
The Royal Society of Edinburgh 
(RSE) in 2013 was ACM Secretary/
Treasurer Vicki L. Hanson, in 
recognition of her contributions 
to human computer interaction.

The RSE is Scotland’s 
national academy of science and 
letters. 

Hanson is professor of 
Inclusive Technologies at the 
University of Dundee, and 
research staff member emeritus 
from IBM Research. Her research 
explores design issues related to 
inclusion, seeking to understand 
and address problems that create 
barriers to technology adoption 
and use by examining ways in 
which existing technology can be 
adapted to better support older 
adults and disabled users.

An active ACM member 
for more than 20 years, 
Hanson currently serves the 
organization’s Secretary/
Treasurer, in addition to being 

a member of the ACM-W Europe 
Executive Committee, and the 
founder and co-editor-in-chief of 
ACM’s Transactions on Accessible 
Computing. She is past chair of 
the ACM SIG Governing Board 
and of ACM SIGACCESS, and was 
named an ACM Fellow in 2004. In 
2008, Hanson received the ACM 
SIGCHI Social Impact Award for 
the application of HCI research 
to pressing social needs. 

Hanson also has been 
named a Fellow of the British 
Computer Society, and was the 
2013 recipient of the Anita Borg 
Institute Woman of Vision Award 
for Social Impact. She received 
an IBM Corporate Award for 
Contributions to Accessibility, 
multiple IBM Outstanding 
Contribution Awards for her work 
in accessibility and education, 
the University of Oregon Arts and 
Sciences Alumni Fellows Award, 
and a Royal Society Wolfson 
Research Merit Award.

Milestones

Computer Science Honors

“This system of 
foundations has  
a much more  
practical aspect;  
it is closer to the 
way mathematicians 
reason.”

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=14&exitLink=http%3A%2F%2Fvimeo.com%2F68761218
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=14&exitLink=http%3A%2F%2Fvimeo.com%2F68761218
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=14&exitLink=http%3A%2F%2Fhomotopytypetheory.org%2Fbook%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=14&exitLink=http%3A%2F%2Fhomotopytypetheory.org%2Fbook%2F
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ity  of equality. This means there is 
an algorithm to determine whether 
any two objects are equal, which is a 
key step in its use for proofs. Yet Thi-
erry Coquand of the University of Go-
thenburg, Sweden, who was one of 
the developers of Coq, noted “there 
was always something missing” in the 
notion of equality in this type theory. 
“The concept of equal is better” in 
HoTT, he said. “Hopefully, it will lead 
to practical things.”

The new view of equality arises from 
the realization, arrived at indepen-
dently by Voevodsky and by Awodey 
and his student Michael Warren, of a 
connection between completely dif-
ferent branches of mathematics. To 
give a more familiar example, the 
ancient understanding of circles, el-
lipses, hyperbolas, and parabolas as 
cross-sections is enriched and com-
plemented by their description by 
algebraic equations. In a particular 
situation, one description or the other 
may be more useful, but their combi-
nation can lead to new insights and 
perhaps a glimpse of a larger reality. 
“This happens in mathematics over 
and over again,” says Bauer. “We’re 
discovering a new connection, and 
this new connection is now influenc-
ing both sides of the connection.”

Similarly, homotopy type theory 
represents a connection between type 
theory and homotopy theory, which is 
a branch of topology. In the homotopy 
view, the types (which can be theorems) 
are envisioned as spaces, and the ob-
jects of that type (which can be proofs) 
are points in the space. The equality 

of two points can then be thought of 
as the existence of a path in the space 
connecting the two points. This con-
nection allows a host of tools from ho-
motopy theory to be applied the task of 
mathematical proof.

At a minimum, HoTT extends the 
domain of proof assistant to new areas 
of mathematics. “Coq was designed by 
computer scientists, so its initial area 
of application was basically program-
ming language theory and combina-
torics,” Gonthier noted. Many papers 
presented at SIGPLAN’s Principles 
of Programming Languages (POPL) 
symposium are backed by computer 
proofs, but this kind of problem “isn’t 
all of mathematics,” he says, and ap-
plying it to other areas “is quite impor-
tant and interesting.”

Beyond applying logical reasoning, 
for example, to topological problems, 
Gonthier says, “the correspondence 
can be used in the reverse way, to try to 
deduce something about the logical sys-
tem based on insights that have been 
developed for, basically, topology.”

“It’s definitely expanding our no-
tion of what a proof can mean, because 
it’s explaining proofs in a geometric 
way,” says Bauer. “We know it’s going 
to bring us something new, but time 
will tell what.” 

“Formalization of mathematics is 
somehow too compelling and effec-
tive to go away,” said Awodey. “It’s go-
ing to happen. It’s just a question of 
when and using what system,” whether 
HoTT or something else.	

Further Reading

The Univalent Foundations Program,  
Institute for Advanced Study 
“Homotopy Type Theory: Univalent 
Foundations of Mathematics” (Princeton, 
2013) available for download or purchase at 
http://homotopytypetheory.org/book/.

Georges Gonthier 
“Formal Proof—The Four-Color Theorem”, 
Notices of the American Mathematical 
Society 55 (11): 1382–1393 (2008).

Thomas Hales 
“Mathematics in the Age of the Turing 
Machine”, to be published in Turing’s 
Legacy: Developments from Turing’s Ideas 
in Logic (Lecture Notes in Logic), ed. R. 
Downey, (Cambridge University Press, 2014)

Don Monroe is a science and technology writer based in 
Murray Hill, NJ.

© 2014 ACM 0001-0782/14/02 $15.00

Indeed, for a century, mathemati-
cians have considered set theory to be 
an adequate basis for formalizing all of 
mathematics. Starting with concepts 
like the null set (corresponding to zero) 
and the set containing only the null 
set (corresponding to one), one can, in 
principle, systematically construct all 
the objects of mathematics. In practice, 
however, the process is clunky and time-
consuming—and therefore, rare. The 
proponents of HoTT hope it will provide 
easier and more intuitive tools that will 
allow rigorously formalized mathemat-
ics to become standard practice.

HoTT is based on a mathematical 
framework called type theory. Unlike 
sets, which are like bags that can con-
tain various kinds of object, objects 
of a particular type have specific rules 
about how they can be manipulated. 
They are reminiscent of the data types 
that help enforce rigor in high-level 
programming languages, but the 
mathematical version of types can be 
more elaborate; for example, an n-di-
mensional vector whose precise char-
acter depends on a natural number n 
that must be computed. 

A version of type theory is used in 
most versions of automated “proof as-
sistants,” which have been growing in 
power since their introduction in the 
1960s but are still not widely used in 
pure mathematics. This framework 
expands the notion of types so that, for 
example, the formulation of a theorem 
can itself be a type, and a proof of the 
theorem can be an object of that type; 
thus, if such an object even exists, the 
theorem is proved. These exotic types 
can even ensure that no logical cases 
are overlooked.

One of the best-known successes was 
the formal proof of the four-color map 
theorem in 2005 by Georges Gonthier 
of Microsoft Research in Cambridge, 
UK. (The earlier 1976 proof by Kenneth 
Appel and Wolfgang Haken of the Uni-
versity of Illinois at Urbana-Champaign 
had combined computer code for some 
parts with text arguments for others.) 
Gonthier used the proof assistant Coq, 
which in 2013 won the Programming 
Languages Software Award of the ACM 
Special Interest Group on Program-
ming Languages (SIGPLAN).

This Coq flavor of type theory has 
good computational properties, in 
particular a feature called decidabil-

A version of type 
theory is used in 
most versions of 
automated “proof 
assistants,” which 
were introduced in 
the 1960s but are still 
not widely used in 
pure mathematics.

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=15&exitLink=http%3A%2F%2Fhomotopytypetheory.org%2Fbook%2F
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T
o  g au g e  t h e  ability of pro-
fessional graphic designers 
to do basic programming, 
Brian Dorn, then a graduate 
student at the Georgia In-

stitute of Technology (Georgia Tech), 
asked a group of them to read and 
modify a piece of program code. The 
idea was to see whether they could 
turn themselves into informal pro-
grammers and figure out how to de-
velop automated functions in Adobe 
Photoshop. Unfortunately, when the 
designers conducted Web searches to 
look for information on the code they 
needed, they sometimes used results 
that pointed them in the wrong direc-
tion, which was toward Java—when 
they actually needed to be using JavaS-
cript for this particular project. 

One of the underlying causes could 
have been tied to the participants’ “lack 
of sufficient general, abstract knowl-
edge of the computing and/or program-
ming structures at play,” wrote Dorn in 
Communications in May 2011. 

His advisor, Mark Guzdial, who re-
layed the story, said the findings indi-
cate to him “that there are a lot of peo-
ple who need knowledge of computer 
science … who are going to use it in their 
lives, but because they never learned 
anything about computer science, they 
are teaching it [to] themselves and cod-
ing inefficiently, and wasting a lot of 
time and getting frustrated.”  

If someone is going to become a 
knowledge worker, or take on any job 
“that requires an undergraduate de-
gree,” they should know how to read 
a piece of code that is useful to them 
and be able to make changes to it, says 
Guzdial, a professor and director of 
Contextualized Support for Learning 
in the School of Interactive Computing 
at Georgia Tech.

People ranging from former Presi-
dent Bill Clinton to Facebook creator 

Mark Zuckerberg to physicist, cosmolo-
gist, and author Stephen Hawking have 
expressed the belief that basic comput-
er programming is an essential skill in 
today’s world. “Code has become the 
4th literacy. Everyone needs to know 
how our digital world works, not just 
engineers,” says Mark Surman, execu-
tive director of the Mozilla Foundation, 
whose comments are among those of 
dozens of luminaries on code.org.

The demand for computer scien-
tists and technical professionals in the 
U.S. is projected to grow 34% through 
2018, according to the Bureau of Labor 
Statistics. Many people already engage 
in some level of programming; Guzdial 
cites a 2005 Carnegie Mellon Univer-
sity study indicating that in 2012 there 
would be 90 million workers in the U.S., 
more than 55 million of whom would 
use spreadsheets and databases, which 
can be deemed programming. The 
study also projected that more than 13 

million would describe themselves as 
“programmers” in 2012, although only 
three million of them would be profes-
sional software developers.

The Carnegie Mellon study also not-
ed that a lot of people were doing pro-
gramming without realizing it, by cre-
ating macros for spreadsheets or doing 
database queries using SQL. “So the 
argument is, lots of people are going to 
do programming,” says Guzdial, “and 
the data we have studying how end 
user programmers teach themselves 
and the types of mistakes they make 
suggest if they knew something about 
computer science, they might not have 
to struggle so much later.” 

Many people who avoided taking 
science and math courses in college 
are now struggling as they try to teach 
themselves how to program, he points 
out. “How many more would be do-
ing some programming if we helped 
them? That is the interesting part.”

Should Everybody 
Learn to Code? 
Not everyone needs coding skills, but learning how to think  
like a programmer can be useful in many disciplines.

Society  |  doi:10.1145/2557447	 Esther Shein

Second-grade students in Kevin Jarrett’s Elementary ‘STEMLAB’ at Northfield Community 
School (New Jersey) participate in the 2013 Hour of Code.

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=16&exitLink=http%3A%2F%2Fcode.org
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While noting that several of his col-
leagues are successful self-taught pro-
grammers, and that learning to pro-
gram does not necessarily have to be 
done at a university, Felker says people 
need to know more than memorizing 
the technology du jour and, as Wing 
said, they need the critical ability to 
think things through. 

“[I]f you aren’t dreaming of be-
coming a programmer—and there-
fore planning to embark on a lengthy 
course of study, whether self-directed 
or formal—I can’t endorse learning to 
code,” Felker writes. “Yes, it is a cre-
ative endeavor. At its base, it’s problem-
solving, and the rewards for exposing 
holes in your thinking and discovering 
elegant solutions are awesome.” He 
goes on to say he does not believe that 
most people who learn to code end up 
learning anything that stays with them.

Referencing a comment made by 
New York City Mayor Michael Bloom-
berg in 2012 that he would learn to 
code, programmer Jeff Atwood, writ-
ing in his blog “Code Horror,” poses 
the question, “…can you explain to me 
how Michael Bloomberg would be bet-
ter at his day-to-day job of leading the 
largest city in the USA if he woke up one 
morning as a crack Java coder?” While 
agreeing that programming is impor-
tant, Atwood says many other skills are 
important, too. “I would no more urge 
everyone to learn programming than I 
would urge everyone to learn plumb-
ing,” he writes.

The so-called “everyone should 
learn to code” movement is wrong for 
several reasons, according to Atwood, 
including the assumption that more 
code in the world is an inherently de-
sirable thing. That assumes code is 
the goal; it puts the method before the 

What You Should Learn
Everyone should learn computational 
thinking, maintains Jeannette Wing, 
corporate vice president at Microsoft 
Research. Computational thinking 
helps people learn how to think ab-
stractly and pull apart a problem into 
smaller pieces. One concrete way to 
learn aspects of those skills is pro-
gramming, Wing says. 

That is not to say everyone needs to 
learn a specific programming language 
like Python or C++, even though many 
people identify programming with 
turning out code, Wing says. “First of 
all, that is too low-level, and it is also 
very narrow an interpretation of what I 
believe is more important.” 

Instead of teaching everyone to 
churn out code, the emphasis should 
be on learning problem-solving skills 
in computer science, much like the 
problem-solving skills one learns in 
math and engineering, says Wing, 
who is on leave as President’s Profes-
sor of Computer Science at Carnegie 
Mellon. Writing a program is an ex-
plicit way of expressing a solution 
that a human or machine can carry 
out, she says. “The more fundamental 
skill and more critical thinking skill 
is what comes before you write down 
this piece of code, and that is compu-
tational thinking.” 

Guzdial agrees. “Should we learn 
enough so that you can write a script 
to do something that otherwise would 
have to be done by hand? I would like 
to see that, but I cannot make the argu-
ment that it is an absolutely necessity.”

He adds that ignorance of computer 
science puts people at a disadvantage 
in today’s world. “Not knowing any-
thing about programming makes it 
more difficult to pick it up.” 

The Flip Side
The issue is far more black and white 
to software engineer Chase Felker, who 
wrote an article for Slate magazine en-
titled “Maybe Not Everybody Should 
Learn to Code.” Felker writes, “Frankly, 
just the idea that you can learn to code 
in a year gives me the creeps: I would 
be terrified if someone with only a cou-
ple of classes were writing programs 
for me, not because he (of course, and 
unfortunately, most programmers are 
men) has learned anything wrong—
but because of what he doesn’t know.” 

Computational 
thinking helps people 
learn how to think 
abstractly and pull 
a problem apart into 
smaller pieces. 

ACM 
Member 
News
Technology, Always 
Changing, Should Be 
Easy to Use

The two guiding 
principles of 
Jeff Johnson’s 
35-year career in 
human-
computer 
interaction 

(HCI) have been the constantly 
changing nature of technology, 
and that technology should be 
easy to use.

Johnson, president and 
principal consultant for product 
usability consultancy UI 
Wizards Inc., earned B.A. and 
Ph.D. degrees in psychology 
and computer science from 
Yale and Stanford universities, 
respectively.  He has worked as 
a user-interface designer and 
implementer, engineer manager, 
usability tester, and researcher 
at Xerox, Hewlett-Packard Labs, 
and Sun Microsystems, and 
recently returned from a stint 
as a Visiting Erskine Fellow at 
the University of Canterbury, 
Christchurch, New Zealand. 
These experiences have solidified 
Johnson’s commitment to 
continually refresh his work to 
keep pace with the latest digital 
advances. “There never will be a 
time when everyone is a digital 
native, because the definition 
of that term changes as digital 
technology progresses,” he says. 

Johnson, an ACM 
Distinguished Speaker, recently 
updated his 2009 HCI book 
Designing with the Mind in 
Mind with a new section on 
peripheral vision and chapters 
on decision-making and hand-
eye coordination. 

He also has a new corporate 
endeavor: Wiser Usability, 
a consultancy that helps 
companies design senior-
friendly websites. “Older adults 
tend to have limited mobility 
and transportation, and they 
could benefit most from online 
shopping and online access to 
services,” Johnson says.  “No one 
who isn’t a hardcore computer-
geek, least of all seniors, wants 
to use technology for its own 
sake. Digital tools that don’t help 
seniors accomplish their goals 
with a minimum of learning and 
bother are not worth the time 
and expense,” he adds. 

—Laura DiDio 
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questions why they should. “I am not 
sure what we can teach them from a 
cognitive perspective.” Although there 
have been studies done on children 
learning to program in the Scratch 
programming language, “in general 
what we find is kids that young do 
not do the things you naturally would 
expect coding to involve,’’ including 
loops and conditionals. 

He says he is concerned about cog-
nitive development. “What we know 
about cognitive development is you 
typically develop the ability to do ab-
stract reasoning around the age of 12,” 
and programming is a very abstract 
activity. Guzdial is unsure whether 
young children who program develop 
abstract reasoning earlier, or if they 
are only able to learn a little bit of pro-
gramming skills. 

Overall, though, he says computer 
science should be taught in schools 
–but starting at age five or six, when 
only 12% of high schools in the U.S. of-
fer computer science courses and far 
fewer middle and elementary schools, 
creating a great divide. Guzdial says, 
“They are unlikely to see it again for 
a dozen years, so why offer it at five or 
six?”  

Wing also says that, while age five 
may be too early to teach how to code, 
students that young can learn some 
basic concepts similar to the number 
and counting skills children typically 
are taught at that age. As they get older, 
students should be taught other con-
cepts, like what an algorithm is, ways 
to represent data, and different analy-
sis techniques in order to understand 
and reason, she says. 

Looking Ahead
Just as students are taught reading, 
writing, and the fundamentals of math 
and the sciences, computer science 
may one day become a standard part of 
a K–12 school curriculum. If that hap-
pens, there will be significant benefits, 
observers say. As the kinds of problems 
we will face in the future will continue 
to increase in complexity, the systems 
being built to deal with that complexity 
will require increasingly sophisticated 
computational thinking skills, such as 
abstraction, decomposition, and com-
position, says Wing.

“If I had a magic wand, we would 
have some programming in every sci-
ence, mathematics, and arts class, 
maybe even in English classes, too,’’ 
says Guzdial. “I definitely do not want 
to see computer science on the side … 
I would have computer science in every 
high school available to students as 
one of their required science or math-
ematics classes.”	

Further Reading
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P. Norvig 
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problem, and assumes adding coders 
to the workforce is a net positive. 

“The general populace (and its 
political leadership) could probably 
benefit most of all from a basic under-
standing of how computers, and the 
Internet, work,’’ he says. “Being able to 
get around on the Internet is becoming 
a basic life skill, and we should be wor-
ried about fixing that first and most of 
all, before we start jumping all the way 
into code.”

Guzdial speculates there may be 
pushback from programmers, because 
they think not everyone can be taught 
what they do. “I am not suggesting ev-
eryone produce thousands and thou-
sands of lines of code. I would love if 
everyone could graduate from a uni-
versity writing 10 lines of code that are 
useful to them.” 

The point of teaching program-
ming in high school would be to give 
students some level of literacy relative 
to programming, including the ability 
to think about things in terms of code, 
and to understand what code can do, 
Guzdial adds.

The State of Computer Science 
in Public Education 
That may not, however, occur in 
schools. Many in the computer sci-
ence field say the U.S. is severely lag-
ging in making even basic computer 
science a priority in K–12 schools. 
“While other countries have designed 
and implemented national computer 
science education programs in order 
to better prepare their students for 
the increasingly competitive global 
economy, the decentralized (state, 
district-wide, and even school-based) 
educational decision-making process 
in the U.S. has severely hampered ef-
forts to standardize our computer 
science curriculum and create coher-
ence in student learning,” according 
to the 2010 report, “Addressing Core 
Equities in K–12 Computer Science 
Education.” 

Guzdial believes the biggest prob-
lem in teaching computer science in 
the U.S. is the lack of teachers who 
know the discipline. He estimates 
there are about 30,000 high schools in 
the country, but only 2,000 Advanced 
Placement computer science teachers. 

Students as young as five can learn 
to program, Guzdial maintains, but he 

Students as young 
as five can learn 
some basic concepts 
of programming, 
similar to the number 
and counting skills 
children typically are 
taught at that age.
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O
v e r the  las t decade, digi-
tal cameras have radically 
refocused the way people 
capture and manipulate 
pictures. Today, the snap 

of a photo is merely a starting point for 
composing and manipulating an im-
age. A photographer can make basic 
changes to a picture from within the 
camera, but also may use photoediting 
software on a computer to significantly 
alter the look, feel and composition. 
“We can use computation to make 
the process better, both aesthetically 
and in terms of greater flexibility,” ex-
plains Frédo Durand, a professor in 
the Computer Science and Artificial 
Intelligence Laboratory at MIT in Cam-
bridge, MA. 

Researchers and engineers are now 
taking the concept further. They are 
designing different types of cameras, 
developing increasingly sophisticated 
algorithms, and using new types of sen-
sors and systems to boldly go where 
no camera has gone before. The abil-
ity to record richer information about 
a scene and use powerful image en-
hancement techniques are redefining 
the field. “Computational photography 
and computational imaging are ex-
tremely vibrant areas,” states Shree K. 
Nayar, professor of computer science at 
Columbia University in New York City.

These cameras, along with more ad-
vanced software, will radically change 
the way people view and use images. 
For example, they will make it possible 
to detect a tiny object or imperceptible 
motion from the field of view. They 
might change the perspective or angle 
after a photo is snapped, or provide 
a 360-degree panoramic view. They 
might also augment reality and refocus 
various objects in scenes, after a photo 
has been shot. 

Meanwhile, smartphone cameras 
will further redefine photography by 
incorporating sensors and greater 
onboard computational power. Com-
bined with specialized apps or cloud-
based services, they will stretch the 
current concept of photography in new 
and intriguing ways.

A Better Image
It is no secret that digital cameras have 
reinvented photography. The transi-
tion from film to pixels has created an 
opportunity to manipulate and share 
photos in ways that were not imagin-
able in the past. However, today’s cam-
eras rely heavily on the same features 
and image capture techniques as film 
cameras; they are largely designed the 
same way film cameras were, but with 
new features. “They present a lot of 
limitations. It is very difficult to change 

the way the camera behaves or the way 
it captures images,” Durand explains.

However, the use of computation-
al photography, imaging, and optics 
promises to significantly change the 
way people approach photography, 
capture images, and edit them. For 
example, William Freeman, a profes-
sor of computer science at MIT, says 
computational cameras could capture 
multiple images at a time to compen-
sate for glare, oversaturation, and 
other exposure problems. They could 
also eliminate the need for a flash. 
“Too often, flash ruins the tonal scale 
of images,” he says, “but by combin-
ing multiple shots, both with flash and 
without, it is possible to create a single 
sharp, low-noise image that has a beau-
tiful tone scale.”

Similarly, the ability to change focus 
after capturing a shot would make it 

Computational 
Photography Comes 
into Focus  
Advances in computational photography are making image capture 
the starting point. The technology is transforming the field.

Technology  |  doi:10.1145/2557445	 Samuel Greengard

The Lytro camera captures the entire light field.
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in biology and microscopy, Levoy says. 
“A technician could capture images of 
cell cultures without focusing a micro-
scope; focusing would take place after 
the picture is taken.” A computational 
camera could also automatically count 
the number of cells in an image and 
provide information faster and more 
accurately than any human, he adds.

Perhaps the highest-profile example 
of a computational photography sys-
tem to date is Google Glass. Its camera 
captures images and provides addi-
tional information and insight in an 
array of situations and scenarios—a 
step toward more-advanced augment-
ed reality tools. Among other things, 
the Google Glass team is focused on 
developing map data, language trans-
lations, travel and transit information, 

and apps that track health, exercise 
data and body information. The device 
also can capture a burst of images and 
deliver improved high-dynamic-range 
imaging and low-light imaging.

Beyond Pixels
Engineering these systems and devel-
oping the algorithms to support these 
devices is no simple task, particularly 
as researchers look to extend computa-
tional capabilities beyond the world of 
consumer cameras into fields such as 
astronomy, medical photography, and 
automobile photography. There also 
is the possibility of capturing images 
beyond the visible spectrum of light, 
incorporating environmental sensors, 
or finding ways to apply algorithms to 
detect small but important changes 
in the environment. As Levoy puts it, 
“There is a potential for this technol-
ogy to be extremely disruptive.”

Durand also says the gains are not 
limited to conventional cameras. New 
types of cameras and software could 
generate robust 3-D images that re-
veal things not visible through optics 
alone. Already, he and Freeman have 
developed algorithms that can sense 
the flow of blood in a person’s face, 
or detect one’s heartbeat based on 
subtle head motions. This relates to a 
technique called motion magnification, 
which could potentially be used to de-
tect weaknesses in bridges and build-

possible to fix on a person in the fore-
ground while also focusing on an ob-
ject in the distance, like the Eiffel Tow-
er or Statue of Liberty; everything else 
in the photo would appear blurred. The 
commercially available Lytro camera—
which records the entire light field in 
the frame (essentially, depth of field 
data about the entire scene)—already 
allows a user to refocus pictures and 
adjust lighting after image capture. 
Likewise, a sensor that would capture 
different levels of light on different 
pixels could create entirely new types 
of photographs, including images with 
markedly different brightness and col-
or ranges. 

The technology of computational 
photography could also lead to chang-
es in camera design. As Columbia’s 
Nayar points out, computational fea-
tures alone deliver significant improve-
ments, but they also create the possi-
bility for new types of camera bodies, 
lenses, and optics. Adding a compu-
tational lens to a smartphone, for in-
stance, could mimic the high-end fea-
tures of an expensive optical lens at a 
much lower price point, or may create 
entirely new features. A photographer 
might snap on a lens or multiple lenses 
that would provide 3-D capabilities, or 
marry video and still photography to 
address camera shake, particularly in 
difficult low-light or high-speed envi-
ronments.

The benefits of computational cam-
eras and software are likely to extend 
far beyond consumers. The technology 
could impact an array of industries, 
including medicine, manufacturing, 
transportation and security, points 
out Marc Levoy, a professor of com-
puter science and electrical engineer-
ing at Stanford University in Palo Alto, 
CA, who recently took leave to work 
with the Google Glass development 
team. Levoy says cameras with more 
advanced computational capabilities 
could redefine the way we think about 
the world around us, and provide in-
sights that extend beyond basic images 
or video.

For example, he and other research-
ers have explored the idea of develop-
ing a computational camera that could 
see through crowds, objects, and peo-
ple. The technology could also generate 
a focal stack within a single snapshot. 
This could create new opportunities 

Computational 
photography could 
lead to changes 
in camera design, 
such as new types 
of camera bodies, 
lenses, and optics.

A cutaway view of the Canon EOS 5D Mark II camera body.
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Researchers are likely to hit the tip-
ping point within the next decade, as 
increasingly powerful processors and 
a greater knowledge of physics push 
the technology forward. “The algo-
rithms being used today are still most-
ly in the infant stages,” Nayar says. “So 
far, most of the research has revolved 
around extending the capabilities of 
traditional imaging and finding ways 
to improve the performance of digital 
cameras.” As knowledge about non-
traditional imaging and optics con-
verge, he notes, “everything from chip 
design to lens and camera design will 
undergo major changes.”

In the end, Durand says it is im-
portant to place computational pho-
tography, imaging, and optics in the 
right context. The technology will not 
replace today’s cameras and photo-
graphs; it will enhance them and con-
tinue advancing a process that dates 
back thousands of years, to the devel-
opment of pinhole cameras. Compu-
tational photography puts data to use 
in new and better ways, whether it is 
applied to DNA sequencing or to im-
proved traffic cameras or security tools. 

Says Durand, “Photography is just 
one aspect of a much bigger picture. 
With it, we are able to see the world in a 
fundamentally different way.”	

Further Reading
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When Does Computational Imaging 
Improve Performance?, IEEE Transactions 
on Image Processing, 2012. http://www1.
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Cossairt_TIP12.pdf
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Human Error, J. Rasmussen, K. Duncan, J. 
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ings; it amplifies pulse signals and 
color variations. “These signals cannot 
be detected by the human eye, but they 
are revealed through advanced com-
putational imaging and slow-motion 
analysis,” Freeman explains.

Vladimir Katkovnik, a professor of 
signal processing at Tampere Univer-
sity of Technology in Finland, says a 
significant hurdle to accomplishing 
all this is the development of algo-
rithms that sort through all the data 
and apply it in usable ways. Despite 
the prospect of larger sensors that can 
capture more data, there is a trend to-
ward more pixels in images. “Larger 
numbers of megapixels means images 
with more pixels of a smaller size. As 
smaller numbers of photons appear 
on a pixel during exposure time, there 
is a larger amount of noise generated. 
Noise removal is a growing challenge 
in any imaging or sensing device; the 
end quality depends on how well noise 
is removed.”

Another challenge, Durand says, 
is developing robust algorithms that 
work effectively on relatively small de-
vices such as cameras, smartphones, 
and tablets. “The issue is not neces-
sarily whether you can develop an al-
gorithm that works; it is whether it is 
possible to map the computation to 
the hardware in an efficient manner. 
Writing optimized code that can take 
advantage of modern hardware, in-
cluding mobile processors, is extreme-
ly difficult.” He is currently developing 
a compiler to make it easier to achieve 
high performance, without devoting a 
large development team to the task.

Nayar believes researchers will tap 
into big data techniques and, in some 
cases, examine and analyze existing 
photos to build algorithms that drive 
even more sophisticated image pro-
cessing. Right now, “if you try to re-
move a person or object from a photo, 
there is no easy way to fill the hole, 
even with fairly sophisticated photoed-
iting software,” he says. “By using mil-
lions of pictures and applying machine 
learning algorithms, it is possible to fill 
the holes in visually plausible ways.” At 
some point, he adds, these capabilities 
will likely appear on cameras, smart-
phones, and tablets, and provide near-
ly instantaneous manipulation and 
editing tools that make today’s image-
editing options pale by comparison.

Opportunity

Heidelberg 
Laureate 
Forum
Individuals may apply through 
the end of February for one 
of 200 openings to attend the 
second Heidelberg Laureate 
Forum (HLF), to be held Sept. 
21–26 at Heidelberg University 
in Germany.

HLF allows researchers from 
all over the world to interact 
with laureates of the most 
prestigious awards in computer 
science and mathematics. Last 
year, 40 laureates, including 
recipients of the ACM A.M. 
Turing Award, the International 
Mathematical Union’s Fields 
Medal and Nevanlinna Prize, 
the Norwegian Academy of 
Science and Letter’s Abel Prize, 
addressed young researchers on 
topics that ranged from “how to 
do research” to deep technical 
areas of science and math.  

ACM Europe chair Fabrizio 
Gagliardi, one of a number of 
ACM members (among others) 
who helped organize the initial 
Forum, said about last year’s 
event, “I was impressed by the 
attitude of the laureates who all 
spent a considerable amount of 
time networking with the young 
researchers; not only during the 
HLF sessions, but also during 
meals and in after-dinner 
discussions. This is probably 
the highest value of the event: 
providing a relative small set 
of promising future scientists 
with the unique opportunity to 
engage with some of the most 
brilliant minds in mathematics 
and computer science.”

Interested researchers  may 
apply on the HLF website, at 
https://application.heidelberg-
laureate-forum.org.

HLF is organized by the 
Heidelberg Laureate Forum 
Foundation in cooperation 
with Klaus Tschira Stiftung 
and the Heidelberg Institute 
for Theoretical Studies, as 
well as ACM, the International 
Mathematical Union, and The 
Norwegian Academy of Science 
and Letters.

—Lawrence Fisher
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A
CM has recognized 50 of its 
members for their con-
tributions to computing 
that are driving innova-
tions across multiple 

domains and disciplines. The 2013 
ACM Fellows, representing many of 
the world’s leading universities, cor-
porations, and research labs, have 
achieved advances in computing re-
search and development that are ac-
celerating the digital revolution and 
impacting every dimension of how we 
live, work, and play … worldwide.

“We recognize these scientists and 
engineers, creators and builders, theo-
rists and practitioners who are mak-
ing a difference in our lives,” said ACM 
President Vinton G. Cerf. “They’re en-
abling us to listen, learn, calculate, and 
communicate in ways that underscore 
the benefits of the digital age. Their 
advances have led to opportunities for 
improved healthcare, enhanced secu-
rity, expanded interactions, and en-
riched lifestyles. Some recipients have 
also led efforts to extend computing 
across continents and countries in-
cluding Brazil, China, and Germany.”

The ACM Fellows Program was es-
tablished by Council in 1993 to rec-
ognize and honor outstanding ACM 
members for their achievements in 
computer science and information 
technology and for their significant 
contributions to the mission of the 
ACM. For a complete list of ACM Fel-
lows, visit http://fellows.acm.org/

2013 ACM Fellows

Mark S. Ackerman 
University of Michigan

Charu C. Aggarwal 
IBM Research

James H. Anderson 
�University of North Carolina  
at Chapel Hill

Mihir Bellare 
�University of California, San Diego

Christine L. Borgman 
�University of California,  
Los Angeles

Stefano Ceri 
Politecnico di Milano

Krishnendu Chakrabarty 
Duke University

Ramalingam Chellappa 
University of Maryland

Ingemar J. Cox 
�University of Copenhagen,  
University College London

Carlos J. P. De Lucena 
�Pontifical Catholic University  
of Rio de Janeiro

Rina Dechter 
University of California, Irvine

Chip Elliott 
Raytheon BBN Technologies

David Forsyth 
�University of Illinois  
at Urbana-Champaign

Wen Gao 
Peking University

David Garlan 
Carnegie Mellon University

James Gosling 
Liquid Robotics

Peter Haas 
IBM Research - Almaden

Marti Hearst 
University of California, Berkeley

Matthias Jarke 
�RWTH Aachen University  
(Germany Aachen University  
of Technology)

Sampath K. Kannan 
University of Pennsylvania

David J. Kasik 
Boeing

Dina Katabi 
�Massachusetts Institute  
of Technology

Henry A. Kautz 
University of Rochester

Jon Kleinberg 
Cornell University

Panganamala Kumar 
Texas A&M University

Douglas S. Lea 
�State University of New York, Oswego

Yoelle Maarek 
Yahoo!

Christopher D. Manning 
Stanford University

Madhav V. Marathe 
�Virginia Bioinformatics Institute 
and Virginia Polytechnic Institute

John M. Mellor-Crummey 
Rice University

Greg Morrisett 
Harvard University

Andrew C. Myers 
Cornell University

Dana Nau 
University of Maryland

Satish Rao 
University of California, Berkeley

S.E. Robertson 
University College London

Timothy Roscoe 
ETH Zurich

Timoleon K. Sellis 
RMIT University (Australia)

Dennis E. Shasha 
�Courant Institute,  
New York University

Nir N. Shavit 
�Massachusetts Institute  
of Technology 

Kyuseok Shim 
Seoul National University

Padhraic Smyth 
University of California, Irvine

Milind Tambe 
University of Southern California

Val Tannen 
University of Pennsylvania

David P. Williamson 
Cornell University

Limsoon Wong 
National University of Singapore

Moti Yung 
Google Inc.

Ellen Zegura 
Georgia Institute of Technology

Zhengyou Zhang 
Microsoft Research

Yuanyuan Zhou 
�University of California, San Diego

David Zuckerman 
University of Texas at Austin

ACM Fellows Inducted 
Milestones | doi:10.1145/2556647.2556662	
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Inviting Young 
Scientists

Meet Some of the Greatest Minds  
of Mathematics and Computer Science

Young researchers in the fields of mathematics and/or computer science are invited 
to participate in an extraordinary opportunity to meet some of the preeminent 
scientists in the field. ACM has joined forces with the Heidelberg Laureate Forum 
(HLF) to bring students together with the very pioneering researchers who may have 
sparked their passion for science and math. These role models include recipients of 
the Abel Prize, the ACM A.M. Turing Award, and the Fields Medal. 

The next Heidelberg Laureate Forum will take place September 21–26, 2014 
in Heidelberg, Germany. 
The week-long event will focus on scientific inspiration and exchange through a 
series of presentations, workshops, panel discussions, and social events involving 
both the laureates and the young scientists.

Who can participate?
The HLF invites new and recent Ph.D’s, Ph.D. candidates, other graduate students 
involved in research and undergraduate students with solid experience in and a 
commitment to computing research to apply. 

How to apply:
Young researchers can apply online: 

https://application.heidelberg-laureate-forum.org/

The materials required for a complete application are listed on the site.

What is the schedule?
The deadline for applications is February 28, 2014.

We reserve the right to close the application website early should we receive more 
applications and nominations than our reviewers can handle.

Successful applicants will be notified by April 15, 2014.

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=23&exitLink=https%3A%2F%2Fapplication.heidelberg-laureate-forum.org%2F
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T
he thousands of serious cyber 
attacks occurring daily high-
light the critical need for a 
workforce with the requi-
site skillset and of sufficient 

size to meet growing and increasingly 
complex demands. Yet despite sig-
nificant investments in the develop-
ment of the cybersecurity workforce 
from governments across the globe, 
the U.S. and many other nations lack 
a sufficient supply of well-trained cy-
bersecurity professionals. It is often 
argued that this workforce shortage, 
and the consequent openness to at-
tack, is a pressing security threat fac-
ing the U.S.1 

Professionalization—activities 
such as certification, licensure, and 
skill-based competency exams—has 
been advanced as a strategy for creat-
ing a workforce capable of address-
ing the growing cybersecurity threat. 

To explore this argument, the U.S. 
Department of Homeland Security 
sponsored a National Research Coun-
cil committee, which we led. What fol-
lows are insights largely drawing on 
the study and although the impetus 

for asking the question at this mo-
ment came from the U.S. government, 
the issues and analysis would have 
general applicability. Our key ques-
tion was: What is the role that profes-
sionalization might play in enhanc-
ing the capacity and capability of the 
U.S. national cybersecurity workforce? 
This question led to a complex mosaic 
of answers to the cybersecurity work-
force issue.

The Cybersecurity Workforce
Despite descriptions of the cyberse-
curity workforce as a “profession”—
meaning a single occupational cat-
egory, it is not. Rather, cybersecurity 
is a broad field comprised of many 
occupations spanning the range 
from highly technical to the manage-
ment- or policy-oriented. Some of 
these occupations may be ready for 
professionalization, while others are 

Privacy and Security 
Would Cybersecurity 
Professionalization 
Help Address the 
Cybersecurity Crisis?
Evaluating the trade-offs involved  
in cybersecurity professionalization. 

doi:10.1145/2556936	 Diana L. Burley, Jon Eisenberg, and Seymour E. Goodman

Despite descriptions 
of the cybersecurity 
workforce as  
a “profession”—
meaning a single 
occupational 
category—it is not.



viewpoints

february 2014  |   vol.  57  |   no.  2  |   communications of the acm     25

V
Illus







t
r

a
t

i
o

n
 b

y
 G

a
r

y
 N

e
i

ll


problem with current approaches 
to professionalization. Realistically, 
such professionalization can only be 
undertaken for specific occupations 
within the field, but not for the field as 
a whole. 

Professionalization
Professionalization is the process by 
which an occupation (or an individual 
who works within that occupation) 
is transformed through education, 
training, and other activities into a 
professional. Each occupation must 
exhibit some set of well-defined char-
acteristics before professionalization 
activities commence. Not all of these 
characteristics or standards must 
be met, but the level of occupational 
readiness for professionalization is 
higher when more of them are. Readi-
ness for professionalization, however, 
does not imply the occupation should 

not. Others are yet to be defined. Still 
others may never be defined either be-
cause the fluidity of the roles and re-
sponsibilities change too rapidly to al-
low for categorization or because they 
are hybrid occupations that blend cy-
bersecurity responsibilities with oth-
er, often unrelated work roles. Given 
the great diversity of roles, respon-
sibilities, and contexts, the fact that 
professionalization measures may be 
warranted in a particular subfield and 
context should not be confused with 
a broad need for professionalization. 

Before professionalization activi-
ties are undertaken for an occupation, 
the profession itself must have well-
defined characteristics: stable knowl-
edge and skill requirements, stable job 
roles, occupational boundaries, and 
career ladders. 

˲˲ Stable knowledge and skill re-
quirements: The occupation should 

have a stable (but not necessarily stat-
ic) common body of knowledge on 
which members of the profession can 
be judged to a generally agreed upon 
standard. This does not imply, how-
ever, that the occupation is static; even 
within a rapidly evolving profession, 
core knowledge elements that remain 
stable can be identified.  

˲˲ Stable roles and responsibilities 
and occupational boundaries that dis-
tinguish the profession from others. 

˲˲ Well-defined career ladders that 
are linked to professionalization 
mechanisms.

˲˲ Agreed-upon ethical standards to 
which members of the profession will 
be held and a mechanism for remov-
ing noncompliant individuals from the 
professional ranks. 

The fact that the current cyberse-
curity workforce is a field of multiple 
occupations highlights a significant 
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stricts the flow of qualified workers. 
˲˲ The Sieve: The sieve function is 

of particular concern in cybersecurity 
where many members of the work-
force function in hybrid positions 
and are subject to professionalization 
requirements in those other roles. 
Consider, for example, the healthcare 
professional who has added cyberse-
curity responsibilities to her portfolio 
and must meet a double set of require-
ments. If the professionalization re-
quirement is necessary to determine 
or verify skill requirements then it may 
be appropriate. If, on the other hand, 
the requirement has been imple-
mented without regard to remedying a 
specific deficiency, then it may unnec-
essarily burden and ultimately encour-
age the departure of the individual 
from the workforce.

Does the potential to provide addi-
tional information about a candidate 
outweigh the risks of false certainty 
about who is actually best suited for 
a job? Certificates and certifications 
may provide useful tools for vetting 
job candidates, but overreliance on 
them may screen out some of the 
most talented and suitable individu-
als. This is particularly true in cyber-
security today, where some of the 
most effective workers develop their 
skillsets through informal methods 
(for example, self-taught hackers). Or-
ganizations that do not already have a 
sophisticated cybersecurity workforce 
may place a greater value on profes-
sionalization measures because they 
make it easier for them to identify 
qualified workers. However, at a time 
when few think the cybersecurity situ-
ation is improving, and where “side-
ways” thinking may be at a premium, 
creativity and innovation may be lost 
with overly rigid screening. Moreover, 
given the fluid and changing nature 
of cybersecurity work, the knowledge, 
skills, and abilities actually needed in 
a particular job can change, and work-
ers’ roles and responsibilities can also 
shift rapidly.  

Do the benefits of establishing the 
standards needed for professionaliza-
tion outweigh the risks of obsolescence 
(when the knowledge or skills associ-
ated with the standard are out of date 
by the time a standard is agreed on) 
and ossification (when the establish-
ment of a standard inhibits further 

be professionalized, nor does it iden-
tify the appropriate professionaliza-
tion mechanism. It simply means the 
occupation could be professionalized 
if circumstances warrant the activity. 
At this point, the question becomes 
what are the deficiencies within the 
occupation that could be alleviated 
through professionalization.

The process of professionalization 
is initiated based on some deficiency 
in the occupational workforce—a 
lack of public trust, questionable 
skill or performance, weak behav-
ioral or ethical standards, low status, 
noncompliance with regulatory or le-
gal requirements, ill-defined career 
pathways, or unregulated labor sup-
ply (when a steady flow of workers is 
desired or necessary). But as has been 
stated, the cybersecurity workforce 
challenge is one of capacity and ca-
pability. This statement, though com-
pelling, is not sufficient to initiate 
professionalization activities. 

Rather, we must unbundle this 
statement and ask difficult ques-
tions about the precise nature of the 
need. If the workforce need is for 
more accountability in the mainte-
nance of hands-on skillsets within a 
particular occupation, then the pro-
fessionalization mechanism should 
be focused on continuing education 
requirements and skill-based testing. 
If, on the other hand, the nature of 
the workforce challenge is related to 
troubling examples of ethical lapses, 
then professionalization activities 
should focus on some type of com-
pliance mechanisms from a formal 
authority. The alignment of profes-
sionalization strategies with specific 
workforce challenges is necessary to 
ensure the deficiency is, in fact, ad-
dressed. It is also critical to ensuring 
the possible negative consequences 
of professionalization do not out-
weigh the good. 

Trade-Offs of Professionalization
Even when the professionalization ac-
tivity is aligned with the occupational 
deficiency, it will have associated trade-
offs. These costs and benefits should 
be considered before embarking on a 
professionalization activity.

Do the benefits of a given profes-
sionalization mechanism outweigh the 
potential supply restrictions resulting 

from the additional barriers to entry? 
Professionalization can serve as a 
magnet that attracts people to the oc-
cupation, as a funnel that restricts the 
supply of people entering the occupa-
tion, or as a sieve that filters people 
out of the occupation based on in-
creased requirements. 

˲˲ The Magnet: Professionalization 
may increase the supply over time as 
it helps increase awareness and desir-
ability of that profession, and thus in-
creases the number of individuals who 
consider cybersecurity as a career. By 
helping define roles and career paths, 
it can also help workers identify suit-
able jobs and help employers identify 
suitable workers. Specialization and 
stratification may also help address 
supply issues, much as the introduc-
tion of nurse practitioners and physi-
cal assistants expanded the workforce 
providing primary medical care.   

˲˲ The Funnel: No one would argue 
against restricting the supply of un-
qualified individuals in a workforce. 
Certainly, professionalization mecha-
nisms that address the capability of 
the workforce should be in place if 
capability is a concern. However, 
overly narrow professionalization or 
mismatched mechanisms may un-
necessarily filter out qualified workers 
whose skills are needed. For example, 
the requirement for entry-level, tech-
nical employees to hold a bachelor’s 
degree when an associate’s degree 
and passing a skill-based exam may 
be more appropriate unnecessarily re-

Before 
professionalization 
activities are 
undertaken for an 
occupation, the 
profession itself  
must have 
well-defined 
characteristics.
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development by workers of their skills 
and knowledge)? It takes time to reach 
consensus on the standards needed 
to establish a curriculum or certifica-
tion, and it can be difficult to reach 
convergence, given the rate of change 
in underlying technologies and the 
rapid pace at which the context and 
threat evolves. Following receipt of 
a degree or certification, workers 
may stop developing their skills and 
knowledge. Strategies for addressing 
these challenges, including focusing 
assessments as much as possible on 
fundamental concepts, segmenting a 
field (where possible) into sufficiently 
narrow specialty roles, adopting more 
nimble processes for updating con-
tent, and requiring continuing edu-
cation and periodic recertification to 
refresh requirements. 

These trade-offs illustrate the com-
plex set of costs and benefits associ-
ated with professionalization. Some 
of the uncertainties may diminish over 
time, and long-term benefits may ul-
timately outweigh short-term costs. It 
may, thus, be an effective strategy to 
encourage, rather than require, the use 
of certain professionalization mecha-
nisms so as to avoid overly restricting 
supply in the short term while still es-
tablishing a long-term path to enhanc-
ing quality.  

Conclusion
Continued attention to the capac-
ity and capability of the cybersecurity 
workforce is needed. Over time, parts 
of the cybersecurity field will likely 
reach the point where professionaliza-
tion will be warranted. But blanket pro-
fessionalization strategies will hinder 
efforts to build a national cybersecurity 
workforce of sufficient size, scope, and 
ability to meet the demands of the rap-
idly evolving field. The criteria set forth 
in the National Research Council Pro-
fessionalization of the Nation’s Cyberse-
curity Workforce? report2 can be used 
by decision-makers to judge when that 
time has come. 

Activities by the U.S. federal govern-
ment and other entities to profession-
alize cybersecurity should be under-
taken only when the occupations and 
specific occupational characteristics 
have been defined, when there are 
observed deficiencies in the occupa-
tional workforce that professionaliza-

tion could help remedy, and when the 
benefits of those activities outweigh 
the costs. When stakeholders believe 
those conditions have been met, we 
suggest they convene subject matter 
experts to outline a professionaliza-
tion strategy—including timeline, 
process, and other implementation 
details. 

This process will take time. But the 
path to professionalization of a field 
is slow and difficult, and not all por-
tions of a field can or should be profes-
sionalized at the same time.  Until that 
time, our work to develop a national 
cybersecurity workforce of sufficient 
capacity and capability should move 
away from overly broad generaliza-
tions based on anecdotal evidence and 
context-specific challenges, toward 
a set of targeted activities that meet 
identified and specific occupational 
workforce deficiencies. 	
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Calendar 
of Events
March 19–21
Multimedia Systems Conference 
2014, 
Singapore,
Sponsored: SIGMM,
Contact: Roger Zimmermann,
Email: rogerz@comp.nus.edu.sg

March 24–28
Design, Automation and  
Test in Europe,
Dresden, Germany,
Sponsored: SIGDA,
Contact: Gerhard Fettweis,
Email: Gerhard.fettweis@tu-
dresden.de

March 24–28
Symposium on Applied 
Computing,
Gyeongju, Republic of Korea,
Sponsored: SIGAPP,
Contact: Sung Shin,
Email: sung.shin@sdstate.edu

March 26–28
Eye Tracking Research and 
Applications,
Safety Harbor, FL,
Sponsored: SIGCHI, SIGGRAPH,
Contact: Pernilla Qvarfordt,
Email: pernilla.qvarford@
gmail.com

March 29–April 2
12th Annual/IEEE/ACM 
International Symposium 
on Code Generation and 
Optimization, 
Orlando, FL,
Sponsored: SIGMICRO, SIGPLAN,
Contact: David Kaeli,
Email: kaeli@ece.neu.edu

March 30–April 2
International Symposium  
on Physical Design,
Petaluma, CA,
Sponsored: SIGDA,
Contact: Cliff Chin Ngai Sze,
Email: csze@us.ibm.com

May 6–9
ACM The First Annual 
International Conference on 
Nanoscale Computing and 
Communication,
Atlanta, GA,
Contact: Ian F. Akyildiz,
Email: ian@ece.gatech.edu

May 7–9
Gender and IT Appropriation, 
Science and Praxis in Dialogue 
– Forum for Interdisciplinary 
Exchange,
Siegen, Germany,
Contact: Wulf Volker,
Email: volker.wulf@uni-siegen.de

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3Adburley%40gwu.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3AJeisenbe%40nas.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3Aseymour.goodman%40cc.gatech.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3Arogerz%40comp.nus.edu.sg
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3AGerhard.fettweis%40tudresden.de
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3Asung.shin%40sdstate.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3Apernilla.qvarford%40gmail.com
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3Akaeli%40ece.neu.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3Acsze%40us.ibm.com
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3Aian%40ece.gatech.edu
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3Avolker.wulf%40uni-siegen.de
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3AGerhard.fettweis%40tudresden.de
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3Apernilla.qvarford%40gmail.com
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=27&exitLink=mailto%3Aseymour.goodman%40cc.gatech.edu


V
viewpoints

28    communications of the acm    |   february 2014  |   vol.  57  |   no.  2

Im


a
g

e
 C

o
u

r
t

e
s

y
 o

f
 C

o
mpu




t
e

r
 S

c
i

e
n

c
e

 Ass



o

c
i

a
t

i
o

n
 o

f
 N

e
w

 Z
e

a
l

a
n

d
 

“formal languages” as a school topic, 
they may wonder if things have been 
taken too far, and when teachers do an 
online search for that phrase they are 
likely to encounter an overwhelming 
array of teaching material. However, 
the purpose of the new curriculum 
is to give students a taste of the field 
of computer science, not to teach it 
in great detail. For example, formal 

I
n  2 0 1 1 ,  c o m p u t e r  S c i e n c e  
was introduced as a subject 
in New Zealand high schools 
with a similar standing to sub-
jects like physics, as part of a 

new set of education standards under 
the umbrella term “digital technolo-
gies.”2 Since then, at least 150 teachers 
have increased their skill sets in order 
to teach these unfamiliar topics, and 
thousands of students have passed 
courses in programming and comput-
er science topics.

This rapid introduction of radi-
cally new material has not been easy; 
as well as having to train teachers and 
develop new teaching material, during 
the transition students had to prepare 
for assessments that no other stu-
dents had done before, and teachers 
who embraced the changes often had 
to work with school leaders who had 
little understanding of what computer 
science involves.

The details of the implementation 
are available elsewhere,1 but the key 
points are that “Programming and 
Computer Science” was introduced 
as an assessable subject for the final 
three years of high school, and the 
material was phased in from 2011 to 
2013 respectively, so the first cohort 
of students to have taken the new top-
ics left school in December 2013. With 
the new content, a course on com-
puter science can include topics like 

algorithms, HCI, formal languages, 
complexity and tractability, intelligent 
systems, software engineering, and 
graphics and visual computing, in ad-
dition to programming. Problem solv-
ing and creativity already permeate the 
New Zealand curriculum, and the new 
content gives students the opportunity 
and tools to be creative in new ways.

When outsiders see topics such as  

Education  
Establishing a Nationwide  
CS Curriculum in  
New Zealand High Schools 
Providing students, teachers, and parents with a better  
understanding of computer science and programming. 

doi:10.1145/2556937 	 Tim Bell

Computer Science Field Guide table of contents (see http://csfieldguide.org.nz).

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=28&exitLink=http%3A%2F%2Fcsfieldguide.org.nz
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which reflects a difficulty communicat-
ing the nature of the new courses.4 An 
important challenge is to help school 
management and student advisors to 
understand what computer science is, 
its value for students, and the kind of 
students who would do well to study it.

Marketing the subject is always a 
challenge. It is reasonable to let stu-
dents know about the high demand 
for computer science graduates, the 
high salaries that are available, and the 
great work environments, but we also 
must ensure students do not overlook 
the fact that there is a lot of work to be 
done to get to the point of being hired, 
and that computer science can be a de-
manding subject. Learning to program 
is not trivial, and we need to straddle 
the line between not dressing it up as 
an easy option, but also encouraging 
students to try out the subject to find 
out if it is indeed a strength they did 
not realize they had. Also, money may 
not be a motivator for all students; for 
some students the best message may 
be that they can make a difference 
in the world, designing software that 
helps people in areas such as medi-
cine, communication, and safety.

The Key Role of Teachers
The magnitude of the changes is easy 
to underestimate, and teachers have 
borne the brunt of the transition. In 
New Zealand, the new material was 
introduced with very little lead time, 
and for various reasons there was no 
opportunity to train a new generation 
of teachers, and very little time and 
resourcing to increase the skills of ex-
isting teachers. The majority of exist-
ing computing teachers are over 50 
years old, yet most have embraced the 
change, primarily because of wanting 
to do the right thing for the students 
and the country, rather than due to any 
directives from management.4

The rapid transition has been 
somewhat unsettling for many teach-
ers. From the New Zealand experi-
ence, we have found that teachers are 
willing to learn, but they need to be 
valued and supported. For those with-
out a background in computer science 
(and this is the majority of teachers in 
New Zealand, as many had started as 
typing or commerce teachers), they 
could feel like an imposter, and it is 
important to value what they bring—

languages can be introduced by work-
ing with some simple Finite State Au-
tomata and experimenting with some 
regular expressions, concepts that can 
be introduced in a few hours of class 
time. From this students can appreci-
ate the role of formal languages (for ex-
ample, to find identifiers in a program) 
without having to grapple with details. 
To support teachers, a number of re-
sources have been collected on the 
national teachers’ association website 
(see http://nzacditt.org.nz), and are 
now being worked into a free interac-
tive online textbook called the Com-
puter Science Field Guide (see http://
csfieldguide.org.nz).

The broad range of topics is impor-
tant to help students see the breadth of 
options computer science offers, and 
also takes some focus away from mere-
ly programming by showing the range 
of knowledge needed to produce effec-
tive software, and the value that people 
with good human skills can bring to the 
discipline. For example, Human-Com-
puter Interaction (HCI) is deliberately 
included early. The way it is presented 
is focused on evaluating existing inter-
faces to find design errors, taking into 
account usability principles and basic 
psychology relating to interaction. This 
can level the playing field—students 
who have been frustrated with com-
puters find a way to articulate what is 
wrong with them, whereas sometimes 
students who themselves can develop 
programs with elaborate but confus-
ing interfaces struggle to see the flaws 
because they assume the user under-
stands the program as well as they do.

For teaching programming, the 
choice of language is not specified, al-
though for the final year the language 
needs to support object-oriented pro-
gramming and graphical user interface 
development. Many schools are using 
Scratch as an introductory language 
at lower levels, and then switching to 
a text-based language for the more ad-
vanced levels. Python is emerging as 
the most popular text-based language, 
but JavaScript, Java, and Visual Basic 
are also widely used.

Although the new content is tar-
geted at the final three years of high 
school (when students have exams 
that become a permanent record of 
their school achievements), the mate-
rial is filtering down to lower levels. 

This is proving to be valuable, as it 
is easier to come to grips with a sub-
ject if it is taught over a number of 
years rather than suddenly becomes 
available in the same year it is being 
assessed for a student’s permanent 
record. Without the gentle introduc-
tion the risk is that students become 
focused on learning just enough to 
pass assessment with minimal effort, 
and they can miss out on enjoying and 
exploring the subject. The new cur-
ricula about to be introduced in the 
U.K. and Australia explicitly cover the 
full range of levels at school, whereas 
in New Zealand the curriculum allows 
it to appear at lower levels, but it is up 
to the enthusiasm and awareness of a 
particular teacher or their school lead-
ership to make that happen. 

Challenges with  
the Implementation
Before the 2011 changes occurred, 
computing in schools was focused on 
teaching students how to use comput-
ers, which led to courses that were not 
regarded as academically challenging, 
and thus were avoided by the students 
who were most likely to do well in a ca-
reer in computer science. The changes 
have transformed it into a challeng-
ing subject, and this has created some 
problems in the transition as students, 
parents, and even student advisors are 
unable to understand the difference, 
resulting in the wrong students join-
ing these courses (in New Zealand, stu-
dents have a lot of choice over which 
courses they take in high school). In 
a 2012 survey, one year after the new 
courses started, 46% of teachers re-
ported their courses attracted a signifi-
cant number of students who lacked 
the academic ability to perform well, 

The magnitude  
of the changes is easy 
to underestimate,  
and the teachers  
have borne the brunt 
of the transition.

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=29&exitLink=http%3A%2F%2Fnzacditt.org.nz
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their teaching experience, wisdom, 
passion, and ability to relate to stu-
dents—and provide them with learn-
ing opportunities in a form and at a 
time that they can access them. Some 
teachers will pick up things quickly 
if they have already had some experi-
ence in programming, while others 
will need some time. 

The single most popular source of 
help has been a national mailing list 
run by the teachers themselves, where 
many thousands of email messages 
have been exchanged sharing ideas, 
teaching material, and peer support. 
This is a powerful tool because peers 
best understand the issues that each 
other face. In addition, several Google 
CS4HS events3 have been run that 
provided intense training sessions 
focused entirely on preparing for the 
changes. More recent initiatives have 
been a formal postgraduate course 
teachers can take in their own time, 
and having university CS students 
work alongside teachers, helping 
them to understand the content while 
the teacher provides the classroom 
management skills.

Changes like this require a strong 
message to school management, who 
need to support it with resourcing, 
time for teachers to get up to speed, 
putting structures in place to enable 
students to make informed decisions 
about the new courses (such as hav-
ing lower-level classes with some input 
from a computer science teacher), and 
providing the right advice to students 
and parents. One teacher commented 
that the management assumes that 
“all students know how to surf the Net 
and operate a smart device and there-
fore will find computer science easy.” 
Changing this attitude will make the 
introduction of computer science con-

siderably easier for teachers, and with-
out it the changes can backfire, with 
the wrong students taking the subject, 
leading to a vicious cycle of low pass 
rates, students avoiding the subject, 
smaller classes in computing, and 
threats to computing teachers’ jobs.

A key factor with the new material 
has been to avoid covering too much 
new content. Setting expectations 
too high could backfire by causing 
schools and students to avoid the sub-
ject; the changes will be a success if 
high school students simply find out 
what CS and programming are about. 
We do not need to teach them every-
thing, and do not need to produce 
expert programmers, since there are 
plenty of opportunities to do that be-
yond high school. If students just find 
out they have a passion for the subject, 
the changes will have been a success. 
For some this may involve deciding 
that although they like computers, 
they do not like computer science, 
while others may find it is much more 
interesting than they imagined. The 
key is that they make informed choic-
es about their career.

The overarching issue that con-
tinually arises is the lack of under-
standing of what computer science 
is about. If students, school adminis-
trators, teachers, and parents gain a 
good idea of what it really means, this 
will have the biggest impact on the 
skills pipeline.	
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D
espite an enormous  amount  
of effort and resources ap-
plied to security in recent 
years, significant progress 
seems to be lacking. Similar-

ly, changes in engineering are making 
traditional safety analysis techniques 
increasingly less effective. Most of 
these techniques were created over 50 
years ago when systems were primarily 
composed of electromechanical com-
ponents and were orders of magnitude 
less complex than today’s software-in-
tensive systems. New, more powerful 
safety analysis techniques, based on 
systems theory, are being developed 
and successfully used on a large variety 
of systems today, including aircraft, 
spacecraft, nuclear power plants, au-
tomobiles, medical devices, and so 
forth.2 Systems theory can, in the same 
way, provide a powerful foundation for 
security. An additional benefit is the 
potential for creating an integrated ap-
proach to both security and safety. 

The Relationship Between 
Safety and Security
Practitioners have traditionally treat-
ed safety and security as different 
system properties. Both communi-
ties generally work in isolation using 
their respective vocabulary and frame-
works. Safety experts see their role as 
preventing losses due to unintentional 
actions by benevolent actors. Security 
experts see their role as preventing 

losses due to intentional actions by 
malevolent actors. The key difference 
is the intent of the actor that produced 
the loss event. It may never be possible 
to determine this intent—but if the 
majority of our energy and analysis is 
refocused on building better loss pre-
vention strategies (regardless of actor 

intent), then it may not matter. We are 
not suggesting that intent need not be 
considered, only that the problem can 
be reframed as a general loss preven-
tion problem that focuses on the as-
pects of the problem (such as the sys-
tem design) that we have control over 
rather than immediately jumping to 

Inside Risks  
An Integrated Approach  
to Safety and Security  
Based on Systems Theory 
Applying a more powerful new safety methodology to security risks.

doi:10.1145/2556938	 William Young and Nancy G. Leveson

Control room of a nuclear power plant.
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On the other hand, tactics are prudent 
means to accomplish a specific action 
(such as guarding networks and other 
information assets). Tactics is focused 
on physical threats, while strategy is fo-
cused on abstract outcomes.

In tactics models, losses are con-
ceptualized as specific events caused 
by threats. For example, a security 
incident consisting of a data breach 
with an accompanying loss of cus-
tomer Personally Identifiable In-
formation (PII) is viewed as a single 
occurrence, where an adversary suc-
cessfully precipitates a chain of events 
leading to a loss. The chain of events 
typically translates into attackers suc-
cessfully negotiating several layers of 
defenses such as firewalls and encryp-
tion. In almost all such cases, security 
analysts will identify some proximate 
cause that should have served as the 
last barrier or line of defense. If only 
the barrier would have been in place, 
then the attack would have failed. Al-
though threats exploiting vulnerabili-
ties produce the loss event, tactics 
models treat the threat as the cause of 
the loss. 

Preventing losses, then, is heavily de-
pendent on the degree to which security 
analysts can correctly identify potential 
attackers—their motives, capabilities, 
and targeting. Once equipped with this 
knowledge, security experts can analyze 
their systems to determine the most 
likely route (or causal chain) attackers 
may take to achieve their goal. Resourc-
es can then be allocated to erect a “de-
fense in depth” to prevent losses.

Threat prioritization is also chal-
lenging given the sheer volume of 
threats. If the defense is optimized 
against the wrong threat, then the bar-
riers may be ineffective. Perhaps an 
unstated assumption is that defense 
against the more sophisticated threats 
can handle so-called lesser-included 
cases, but this is not necessarily the 
case. Simple requirements errors or 
operational procedures may allow even 
unsophisticated attacks from previ-
ously ignored or lower-level adversar-
ies to succeed.

In contrast to a tactics-based, bot-
tom-up approach, a top-down, strate-
gic approach starts with identifying 
the system losses that are unaccept-
able and against which the system 
must be protected. The result is a 

the parts about which we have little in-
formation, such as identifying all the 
potential external threats. 

Note the common goal of mission 
assurance here, that is, the ability to 
complete a mission while enforcing 
constraints on how the mission can be 
achieved. In a nuclear power plant, for 
example, the goal is to produce power 
while preventing the release of radio-
activity. The causes for not producing 
the power or for releasing radioactivity 
may be due to accidental or malicious 
reasons, but the high-level goal of pre-
venting these events is the same. 

By taking a common top-down, 
system engineering approach to secu-
rity and safety, several benefits accrue. 
One is that the overall role of the entire 
socio-technical system as a whole in 
achieving security and safety can be 
considered, not just low-level hardware 
or operator behavior. Others include 
more efficient use of resources and 
the potential for resolving conflicts be-
tween safety and security early in the 
development process.

Applying systems theory and sys-
tems engineering to security requires 
initially focusing security on high-

level strategy rather than immedi-
ately jumping to the tactics problem. 
Certainly adversary action is a critical 
consideration in addressing security 
and preventing intentional losses. Yet, 
focusing on adversaries or threats too 
early in the process, absent the benefit 
of context, limits the overall strategic-
level utility of the security assessment. 
Stated another way, the goal of security 
is not to guard the physical network 
and prevent intrusions, which is threat 
focused. The goal is to ensure the criti-
cal functions and ultimately the ser-
vices that the network and systems 
provide are maintained in the face of 
disruptions. By changing to a strate-
gic viewpoint rather than starting with 
tactics, security analysts and defend-
ers can proactively shape the situation 
by identifying and controlling system 
vulnerabilities rather than defend-
ing from a position of disadvantage 
by being forced to react to continually 
changing threats and other environ-
mental disruptions.

Strategy vs. Tactics in Security
The security field tends to draw heav-
ily on language, metaphors, and mod-
els from military operations. As a re-
sult, much of cybersecurity is typically 
framed as a battle between intelligent, 
adaptive adversaries and defenders. 
Security focuses on how defenders 
can close holes in their networks that 
might otherwise allow adversaries to 
gain access and create disruptions. De-
fenders apply best practices (tactics) in 
order to protect the network and other 
information assets. 

There is an important distinction be-
tween tactics and strategy. Strategy can 
be considered as the art of gaining and 
maintaining continuing advantage. 

Tactics are prudent 
means to accomplish 
a specific action 
(such as guarding 
networks and other 
information assets).
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STAMP is a new systems-theoretic 
model of causality related to emer-
gent system properties. It was origi-
nally created to act as a foundation for 
more powerful approaches to safety. 
Security, however, is also an emergent 
system property, and STAMP and its 
associated analysis tools are equally 
applicable to security. STAMP envi-
sions losses as resulting from interac-
tions among humans, physical system 
components, and the environment 
that lead to the violation of safety con-
straints. The focus shifts from “pre-
venting failures” to “enforcing safety 
constraints on system behavior.” 
While enforcing safety constraints 
may require handling component fail-
ures, other inadvertent and advertent 
causes must also be controlled. 

Constraints on system behavior 
are enforced by controls in a hierar-
chical control structure, where each 
level of the structure enforces the re-
quired constraints on the behavior 
of the components at the next lower 
level. Control loops operate between 
each level of this control structure, 
with control actions shown on the 
downward arrows and feedback on 
the upward arrows. Figure 1 shows the 
general form of such control loops.  In 
both safety and security, the goal is 
to prevent (constrain) control actions 
that can lead to losses under worst-
case environmental conditions.3

In systems and control theory, every 
controller must contain a model of the 
process it is controlling. This model 
is used to determine what control ac-
tions are necessary. Many accidents 
related to software or human operators 
are not the result of software or human 
“failure” (whatever that might mean), 
but instead stem from inconsistencies 
between the controller’s models of the 
controlled process (usually called a 
mental model for human controllers) 
and the actual process state. For exam-
ple, friendly fire accidents are usually 
the result of thinking a friendly aircraft 
is an enemy and executing unsafe con-
trol actions. Whether the inconsistency 
results from an inadvertent reason (ac-
cidental loss of feedback, for example) 
or tricking the controller into thinking 
that the friendly aircraft is an enemy 
(purposeful creation of incorrect feed-
back), the result remains the same—an 
unsafe or unwanted control action. 

small and more manageable set of po-
tential losses stated at a high-level of 
abstraction. These losses likely extend 
beyond the physical and logical sys-
tem entities into the higher-level ser-
vices provided by these entities. 

Rather than starting with the tac-
tics questions of how best to guard the 
network against threats, a strategic ap-
proach begins with questions about 
what essential services and functions 
must be secured against disruptions 
and what represents an unacceptable 
loss. The “whats” will be used later to 
reason more thoroughly about only the 
“hows” that can lead to specific unde-
sirable outcomes. The analysis moves 
from general to specific, from abstract 
to concrete. (Robinson and Levitt5 simi-
larly considered abstraction layers with 
respect to being able to prove emergent 
system properties hierarchically.)

One of the most powerful ways 
human minds deal with complexity 
is by using hierarchical abstraction 
and refinement. By starting at a high 
level of abstraction with a small list 
and then refining that list with a more 
detailed list at each step (working top 
down), one can be more confident 
about completeness because each of 
the longer lists of causes (refined haz-
ards or causes) can be traced to one 
or more of the small starting list (and 
vice versa).

With traceability, it is also easier for 
human reviewers to find any incom-
pleteness. We say “more confident” be-
cause such a list can never be proven to 
be complete—there is no formal (math-
ematical) model of the entire system 
and how it will operate. Human par-
ticipation in the analysis and human 
review of the results will always be re-
quired and, therefore, incompleteness 
will always be possible. But structuring 
the process in a way that optimizes hu-
man processing and review will reduce 
any potential incompleteness. 

Focusing first on strategy rather 
than tactics can be achieved by adopt-
ing a new systems-theoretic causality 
model recently developed to provide a 
more powerful approach to engineer-
ing for safety.

A New Systems-Theoretic 
Approach to Security and Safety
The limitations of traditional engi-
neering methods and the need to field 

increasingly complex systems during 
and immediately following World War 
II led to the development of modern 
systems theory in the 1940s and 1950s.1 
Systems theory provides the philo-
sophical and intellectual foundation 
for systems engineering and for a new, 
more inclusive model of accident cau-
sality called STAMP (System-Theoretic 
Accident Model and Processes).2

Traditional causality models used 
in safety attribute accidents to an ini-
tial component failure or human error 
that cascades through a set of other 
components. One way to envision this 
model is as a set of dominoes. At one 
end is the initial domino, which is rep-
resentative of a single human error or 
component failure. This initial error is 
labeled as the root cause. The failure 
propagates through the system, lead-
ing to the failure of other components 
until the last domino falls and the loss 
occurs. In this model, the first domino 
causes the last domino to fall (the ac-
tual loss event). Moreover, if any of the 
intervening dominoes are removed, 
the chain is broken. 

This model is effective for systems 
with limited complexity, for example, 
linear interactions and simple cause-
and-effect linkages like dominos (or 
holes in Swiss cheese, another com-
mon analogy). 

Today’s increasingly complex, soft-
ware-intensive systems, however, are 
exhibiting new causes of losses, such 
as accidents caused by unsafe inter-
actions among components (none of 
which may have failed), system require-
ments and design errors, and indirect 
interactions and systemic factors lead-
ing to unidentified common-cause fail-
ures of barriers and protection devices. 
Linear causality models and the tools 
built upon them, like fault trees, sim-
ply lack the power to include these new 
causes of losses.   

Figure 1. A basic control loop. 
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Once the control structure is cre-
ated, the first step in the STPA analysis 
is to identify potentially unsafe con-
trol actions, which in general include 
(1) providing a control action that 
leads to a hazard (for example, a mis-
sile is launched at a friendly aircraft), 
(2) not providing a control action that 
is needed to prevent a hazard (for ex-
ample, a missile is not launched to 
down an enemy aircraft), (3) providing 
a control action too early or too late or 
out of sequence (for example, a missile 
is launched but too early or too late to 
be effective in preventing a loss), or (4) 
continuing a control action too long or 
stopping it too soon. Losses can also 
result from a safe (required) control ac-
tion that is not executed properly (for 
example, the launch missile instruc-
tion is not executed correctly). After 

Stuxnet provides another example. 
The automated system (controller) 
thought the centrifuges (controlled 
process) were spinning at a slower 
speed than they actually were, and is-
sued an Increase Speed command when 
the centrifuges were already spinning 
at maximum speed, which led to equip-
ment damage. (A loss that officials 
probably wanted to prevent.)

New and more powerful techniques 
for safety analysis and design have 
been created on this theoretical foun-
dation. STPA (System-Theoretic Pro-
cess Analysis), for example, is a new 
hazard analysis technique based on 
the STAMP model of causality. The 
analysis is performed on the system 
functional control structure. Figure 2 
depicts an illustrative functional con-
trol structure for a ballistic-missile de-

fense system.2,4 In this example, there 
are several safety and security critical 
control commands, such as fire enable 
and launch interceptor.

One key point worth emphasizing 
is the fact that the function control 
model contains physical aspects, so-
cial aspects, logical and information 
aspects, operations and management 
aspects. Performing the hazard (safe-
ty) or vulnerability (security) analysis 
on such a model allows a broad per-
spective on potential causes for a loss. 
Most hazard and vulnerability analy-
sis techniques use physical system 
models rather than functional system 
models, and thus concentrate on phys-
ical component failures rather than 
dysfunctional (unsafe or insecure) sys-
tem behavior and broader social and 
organizational factors.

Figure 2. Functional control structure for a ballistic missile defense system.
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abilities. This approach limits the in-
telligence burden required to perform 
the initial system security analysis. 
The analysis will eventually address 
threats, but does so much later in the 
process after generating a deeper sys-
temic understanding of the context 
under which the threats may operate 
and the disruptions that actually lead 
to critical loss events. 

Because contemporary security and 
safety both attempt to prevent losses in 
complex software-controlled systems, 
we believe applying the same system-
theoretic causality model may benefit 
security the same way it is benefitting 
safety. Research is currently under way 
to test this notion. The key underlying 
idea is that from a strategy perspective, 
the physical (or proximate) cause of a 
disruption does not really matter. What 
matters is the efficacy of the strategy in 
dealing with (controlling) the effects of 
that disruption on overall system func-
tion or assuring the mission. This is a 
significant paradigm shift for security 
experts (as it was for safety experts). 
While likely to force a reexamination of 
many of the accepted truths of security, 
we believe such a refocus will help ad-
dress three of the major problems with 
contemporary approaches to securi-
ty—quantity, threat variety, and threat 
prioritization—can all be addressed 
more effectively through this new 
approach than through existing ap-
proaches. The new approach does not 
discard traditional security thinking, 
but does suggest it is tactically focused 
and must be augmented by an effective 
strategy in order to succeed. 	
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the unsafe control actions have been 
identified, the second step involves ex-
amining the system control loops (us-
ing a structured and guided process) to 
identify scenarios that can lead to the 
identified unsafe control actions.

STPA-Sec is an extension to STPA to 
include security analysis. The initial 
steps in the analysis are identical to 
those for safety: identifying the losses to 
be considered, identifying system haz-
ards or security vulnerabilities, drawing 
the system functional control structure, 
and identifying unsafe, or in this case, 
insecure, control actions. The only dif-
ference is the addition of intentional 
actions in the generation of the causal 
scenarios, the last step in the process.

STPA is currently being used on 
safety problems in a wide variety of in-
dustries. Careful evaluations and com-
parisons with traditional hazard analy-
sis techniques have found that STPA 
finds the loss scenarios found by the 
traditional approaches (such as Fault 
Tree Analysis and Failure Modes and 
Effects Analysis) as well as many more 
that do not involve component fail-
ures. Surprisingly, while STPA is more 
powerful, it also appears to require 
fewer resources, including time. 

STPA-Sec is only now being applied 
to cybersecurity problems, but is show-
ing promise in these case studies. A for-
mal evaluation and comparison with 
real red teams using traditional secu-
rity analysis techniques such as attack 
trees will be completed by spring 2014.

Another benefit of using a tool 
based on a system-theoretic model is 
that it can be applied earlier in the de-
sign process and in situations where 
specific component data is unavail-
able. Analysis can begin as soon as the 
basic high-level goals (mission) of the 
system is identified and design deci-
sions evaluated for their impact on 
safety and security before expensive 
rework is necessary. As the detailed de-
sign decisions are made and the design 
refined, the STPA/STPA-Sec analysis is 
refined in parallel. 

Conclusion
By using a causality model based on 
systems theory, an integrated and more 
powerful approach to safety and secu-
rity is possible. Hazards lead to safety 
incidents in the same way that vulner-
abilities lead to security incidents. We 

argued in this column that the key ques-
tion facing security analysts should be 
how to control vulnerabilities, not how 
to avoid threats. Rather than initially 
trying to identify all the threats and 
then move up to the vulnerabilities they 
might exploit to produce a loss, a top-
down systems engineering approach 
starts with system vulnerabilities, 
which are likely far fewer than threats 
and, if controlled, can prevent losses 
due to numerous types of threats and 
disruptions. This top-down approach 
also elevates the security problem from 
guarding the network to the higher-lev-
el problem of assuring the overall func-
tion of the enterprise.

Use of a systems-theoretic approach 
to security, however, requires a refram-
ing of the usual security problem. Just 
as STAMP reframes the safety prob-
lem as a control rather than a failure 
problem, applying STAMP to security 
involves reframing the security prob-
lem into one of strategy rather than 
tactics. In practice, this reframing in-
volves shifting the majority of security 
analysis away from guarding against at-
tacks (tactics) and more toward design 
of the broader socio-technical system 
(strategy). Put another way, rather than 
focusing the majority of the security ef-
forts on threats from adversary action, 
which we have limited control over, se-
curity efforts should be focused on the 
larger, more inclusive goal of control-
ling system vulnerabilities.

Controlling vulnerabilities allows 
security analysts to prevent not only 
disruptions from known threats, but 
also disruptions introduced by un-
known threats, such as insiders. In 
other words, the source of the disrup-
tion does not matter. What matters is 
identifying and controlling the vulner-

The key question 
facing security 
analysts should 
be how to control 
vulnerabilities, not 
how to avoid threats.
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Dear KV, 
I have been dealing with a large pro-
gram written in Java that seems to 
spend most of its time asking me to re-
start it because it has run out of mem-
ory. I am not sure if this is an issue in 
the JVM (Java Virtual Machine) I am us-
ing or in the program itself, but during 
these frequent restarts, I keep wonder-
ing why this program is so incredibly 
bloated. I would have thought Java’s 
garbage collector would prevent pro-
grams from running out of memory, 
especially when my desktop has quite 
a lot of it. It seems that eight gigabytes 
just is not enough to handle a modern 
IDE anymore.

Lack of RAM

Dear Lack,
Eight gigabytes?! Is that all you have? 
Are you writing me from the desert 
wasteland where PCs go to die? No one 
in his or her right mind runs a machine 
with less than 48GB in our modern era, 
at least no one who wants to run cer-
tain, very special, pieces of Java code.

While I would love to spend several 
hundred words bashing Java—for, 
like all languages, it has many sins—
the problem you are experiencing is 
probably not related to a bug in the 
garbage collector. It has to do with 
bugs in the code you are running, and 
with a certain, fundamental bug in 
the human mind. I will address both 
of these in turn.

The bug in the code is easy enough 
to describe. Any computer language 
that takes the management of mem-
ory out of the hands of the program-
mer and puts it into an automatic 
garbage-collection system has one 
fatal flaw: the programmer can easily 
prevent the garbage collector from do-
ing its work. Any object that continues 
to have a reference cannot be garbage 
collected, and therefore freed back 
into the system’s memory. 

Sloppy programmers who do not 
free their references cause memory 
leaks. In systems with many objects 
(and almost everything in a Java pro-
gram is an object) a few small leaks 
can lead to out-of-memory errors quite 
quickly. These memory leaks are diffi-
cult to find. Sometimes they reside in 
the code you, yourself, are working on, 
but often they reside in libraries that 
your code depends on. Without ac-
cess to the library code, the bugs are 
impossible to fix, and even with ac-
cess to the source, who wants to spend 
their time fixing memory leaks in 
other people’s code. I certainly don’t. 
Moore’s Law often protects fools and 
little children from these problems, 
because while frequency scaling has 
stopped, memory density continues 
to increase. Why bother trying to find 
that small leak in your code when your 
boss is screaming to ship the next ver-
sion of whatever it is you are working 
on? “The system stayed up for a whole 
day, ship it!”

The second bug is far more perni-
cious. One thing you did not ask was, 

Kode Vicious   
Bugs and Bragging Rights 
It is not always size that matters.

doi:10.1145/2556939 	 George V. Neville-Neil

     Article development led by  
          queue.acm.org
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need to rewrite low-level code every 
time they want to run their programs 
on a new computer model. That may 
not be what the Oxford English Diction-
ary defines as an OS, but as it recently 
added “selfie” to its dictionary and 
named it word of the year for 2013, I 
am starting to think a bit less of the 
quality of their output, anyway.

I think the propensity for program-
mers to label their larger creations 
as operating systems comes from the 
need to secure bragging rights. Pro-
grammers never stop comparing their 
code with the code of their peers. The 
same can be seen even within actual 
operating-system projects. Everyone 
seems to want to (re)write the sched-
uler. Why? Because to many program-
mers, it is the most important piece 
of code in the system, and if they do 
a great job, and the scheduler runs 
really well, they will give their peers a 
good dose of coder envy. Never mind 
that the scheduler really ought to be 
incredibly small, and very, very sim-
ple, but that is not the point. The point 
is the bragging rights one gets from 
having rewritten it, often for the ump-
teenth time.

None of this is meant to belittle 
those programmers or teams of pro-
grammers who have slaved long and 
hard to produce elegant pieces of 
complex code that make our lives bet-
ter. If you look closely, though, you 
will find that those pieces of code are 
appropriately named, and they do not 
need to tack on an OS to make them 
look bigger.

KV

  Related articles  
  on queue.acm.org

Reveling in Constraints 

Bruce Johnson
http://queue.acm.org/detail.cfm?id=1572457

Gettin’ Your Kode On 

George Neville-Neil
http://queue.acm.org/detail.cfm?id=1117397

Self-Healing in Modern Operating Systems 
Michael W. Shapiro
http://queue.acm.org/detail.cfm?id=1039537

George V. Neville-Neil (kv@acm.org) is the proprietor of 
Neville-Neil Consulting and co-chair of the ACM Queue 
editorial board. He works on networking and operating 
systems code for fun and profit, teaches courses on 
various programming-related subjects, and encourages 
your comments, quips, and code snips pertaining to his 
Communications column.
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“Why do we have a garbage collector 
in our system?” The reason we have 
a garbage collector is because some-
time in the past, someone—well, re-
ally, a group of someones—wanted to 
remedy another problem: program-
mers who could not manage their 
own memory. C++, another object-
oriented language, also has lots of 
objects floating around when its pro-
grams execute. In C++, as we all know, 
objects must be created or destroyed 
using new and delete. If they are not 
destroyed, then we have a memory 
leak. Not only must the programmer 
manage objects, but in C++, the pro-
grammer can also get direct access to 
the memory that underlies the object, 
which leads naughty programmers to 
touch things they ought not to. The 
C++ runtime does not really say, “Bad 
touch, call an adult,” but that is what 
a segmentation fault really means. De-
pending on your point of view, garbage 
collection was promulgated either to 
free programmers from the tedium of 
managing memory by hand or to pre-
vent them from doing naughty things. 

The problem is that we traded one 
set of problems for another. Before 
garbage collection, we would forget to 
delete an object, or double delete it by 
mistake; and after garbage collection, 
we had to manage our references to ob-
jects, which, in all honesty, is the exact 
same problem as forgetting to delete 
an object. We traded pointers for refer-
ences and are none the wiser for it.

Longtime readers of KV know that 
silver bullets never work, and that one 
has to be very careful about protecting 
programmers from themselves. A side 
effect of creating a garbage-collected 
language was the overhead of having 
the virtual machine manage memory 
was too high for many workloads. 
The performance penalty has led to 
people building huge Java libraries 
that do not use garbage collection and 
in which the objects must be man-
aged manually, just as they did with 
languages such as C++. When one of 
your key features has such high over-
head that your own users create huge 
frameworks that avoid that feature, 
something has gone terribly wrong.

The situation as it stands is this: 
with a C++ (or C) program, you are 
more likely to see segmentation faults 
and memory-smashing bugs than you 

are to see out-of-memory errors on a 
modern system with a lot of RAM. If 
you are running something written 
in Java, then you had better pony up 
the cash for all the memory sticks you 
can manage because you are going to 
need them.

KV

Dear KV,
I cannot help but notice that a lot of 
large systems call themselves “operat-
ing systems” when they really do not 
bear much resemblance to one. Has 
the definition of operating system 
changed to the point where any large 
piece of software can call itself one?

OS or Not OS

Dear OS,
Certainly my definition of operating 
system has not changed to the point 
where any large piece of software can 
call itself one, but I have also spotted 
the trend. An old joke is that every 
program grows in size until it can be 
used to read email, which, if you can 
believe Wikipedia, is attributed to Ja-
mie Zawinski, based on an earlier joke 
by Greg Kuperberg, “Every program 
in development at MIT expands until 
it can read mail.” Now, it seems, mail 
is not enough. Every large program ex-
pands until it gets “OS” appended to 
its name.

An operating system is a program 
that is used to give efficient access 
to an underlying piece of hardware, 
hopefully in a portable manner, 
though that is not a strict require-
ment. The purpose of the software is 
to provide a consistent set of APIs to 
programmers such that they do not 

Programmers  
never stop  
comparing  
their code  
with the code  
of their peers.
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S
ma r t ow n ers  of  informa-
tion technology (IT) plat-
forms develop ecosystems 
and encourage third-party 
producers to develop com-

plements—products that run on the 
platform. Independent software ven-
dors develop complements for the plat-
forms of major vendors (for example, 
SAP, Apple). In addition, such platform 
companies sometimes create Internet-
based knowledge-sharing communi-
ties in which users exchange ideas. The 
benefits and costs of such participa-
tion are tied to what economists call 
“knowledge spillovers.”

This column reports on four stud-
ies of complements to SAP’s flag-
ship enterprise resource planning 
software.1–4 Users can participate in 
the SAP Developer Network (SDN), a 
knowledge-sharing community that 
encourages voluntary knowledge ex-
change regarding the implementa-
tion, use, and customization of SAP 
software. A study of 275 firms partici-
pating in SDN between 2004 and 2008 
showed firms using the platform’s 
online question-and-answer forum 
had significantly higher productivity. 
Knowledge spillovers were at work. 
Valuable knowledge gained from in-
vestments in SAP by user firms was 
transferred to others through the on-
line forum, helping the diffusion of 
best practices related to the platform. 
Preliminary estimates suggest a 1% 

increase in such inward knowledge 
spillovers will increase production 
output by many thousands of dollars.

While knowledge spillovers ben-
efit software users, they present chal-
lenges for producers. SAP bolsters 
development of third-party software 
products and complements by en-
couraging start-ups to ensure their 
products are compatible with the 
platform and to advertise this fact 
through formal certification. Small 
start-ups receiving SAP certification 
had higher sales and a greater likeli-

hood of issuing an initial public of-
fering. Complements and platforms 
in enterprise software are tightly cou-
pled, and applications developed and 
used without formal endorsement 
from the platform owner might not 
work well. Platform certification sig-
nals compatibility and higher qual-
ity. The study, using data from 1996–
2004, looked at small start-up firms 
before and after they joined SAP’s 
certification program.  

While start-ups benefited signifi-
cantly from certification, some start-

Economic and Business 
Dimensions 
Digital Platforms: When Is 
Participation Valuable? 
Assessing the benefits and challenges of knowledge spillovers. 

doi:10.1145/2556940	 Marco Ceccagnoli, Chris Forman, Peng Huang, and D.J. Wu
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ups benefited more than others. Firms 
with the greatest gains also had strong 
intellectual property protection from 
patents, copyrights, and trademarks, 
the latter being a common indicator 
of brand strength. Again, knowledge 
spillovers were at work. Certification 
requires start-ups to go through a pro-
cess of documentation and testing. Sig-
naling compatibility with the SAP plat-
form has benefits for the start-up, but 
poses risks of unintended knowledge 
spillovers leading to possible competi-
tion from SAP itself. SAP’s early website 
portal stated, “Part of being an open 
ecosystem is open and fair competi-
tion among partners, and between SAP 
and partners. SAP cannot guarantee ex-
clusivity of partner solutions, nor can 
we guarantee that we won’t offer com-
peting solutions.” 

Large platform companies like 
SAP realize their possible entry into 
complementary markets can dissuade 
complementors from joining the plat-
form. However, the intellectual proper-
ty asset holdings by start-ups help miti-
gate this problem. Protected start-ups 
are more likely to join the platform and 
tend to do so earlier, and large compa-
nies can face higher costs in compet-
ing with start-ups that hold intellectual 
property assets.a 

Intellectual property rights thus 
play a dual role in shaping platform 
growth.  On the one hand, strong intel-
lectual property rights can help protect 
small companies, reducing the threat 
of imitation and entry by a platform 
owner, and increasing the value of 
the platform and benefit the platform 
owner. On the other hand, intellectual 
property rights in the form of “patent 
thickets” (dense, overlapping webs of 
intellectual property rights held by in-
cumbents) can slow platform growth 
by raising complementors’ costs of 
potential patent infringement. Patent 
thickets make it easier to inadvertently 
infringe on intellectual property rights 
of other firms in the marketplace, a re-
cent example being the “smartphone 
war” between Apple, Samsung, and 
other firms. Patent thickets might be 
a more serious problem for small, en-
trepreneurial firms that have few in-
tellectual assets of their own and that 

a	 SAP. Powered by SAP Netweaver Partner Pro-
gram FAQs; http://bit.ly/J7UYgc.

are unable to navigate patent thickets 
by negotiating patent cross-licensing 
deals with other firms. 

Managers of technology platforms 
can bet that potential complementors 
might refuse to join a platform because 
of the risks of platform owner entry. 
Those platforms can alleviate comple-
mentor risks by giving up control of the 
platform or “opening” it up to encour-
age participation. Such approaches are 
less essential when strong IP rights 
protect complementors from the con-
sequences of unwanted spillovers to 
potential competitors.	
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I
n  the  2 0 t h century, companies 
waited until their industries 
and competitors fully vetted 
technologies before investing 
in even the most tried-and-

true ones. Technophobes believed 
that investing too early was indulgent 
and reckless. Executives wore their 
late technology adoption strategies as 
badges of corporate honor.

Today, many emerging technologies 
are ready for immediate deployment.a 
iPads are ready. Dropbox is ready. 
Skype is ready. ListenLogic is ready. 
Foursquare is ready. Ready technology 
is accessible and cost-effective. It also 
often arrives at companies without the 
participation of the corporate IT team, 
especially in federated or decentral-
ized companies where business units 
and employees are encouraged to solve 
their own problems. The accompany-
ing figure summarizes defined and 
ready technology adoption—and the 
implications of ready technology adop-
tion. It also provides some examples of 
ready technology. 

Technology Adoption
Defined Adoption. The 20th-century tech-
nology adoption models were predi-
cated on the diagnosticity of business 
requirements and technology maturity. 
The assumption was that technology 
and business requirements evolve at 
a pace that justifies phased adoption. 
Early deployments were assumed to be 
risky, costly, and therefore unnecessary. 

a	 Ready technology is easily accessible technology,  
requires minimal support, and is mature 
enough to make immediate—and major—
problem-solving contributions.

Defined and validated business re-
quirements were prized. An enormous 
industry was created around require-
ments analysis, requirements mod-
eling, and requirements validation. 
Books, articles, conferences, and work-
shops were everywhere. The prevailing 
wisdom was that business require-
ments modeling and validation were 
prerequisites to technology adoption, 
and that structured pilot demonstra-
tions with compelling TCO and ROI 
results were necessary to justify deploy-
ment. Technology also had to integrate 
and interoperate with existing technol-
ogy infrastructures and architectures. 
If it failed to cost-effectively integrate, 
adoption was often halted. If it did in-
tegrate, then a structured transition 

period was defined to test and deploy 
the new technology before the technol-
ogy went into production. Finally, new 
technology—just like old technology— 
required continuous support and ex-
pensive refreshes.

Ready Adoption. Technology adop-
tion is different today.b Requirements 

b	 Not all technology adoption falls in the “ready” 
category. There are still defined adoption 
projects that assume the value of prolonged 
requirements analyses, testing, and phased 
deployment. Major enterprise applications 
like ERP, CRM, and network and systems man-
agement, for example, fall into the defined cat-
egory. But not all technology is created equal: 
some—ready—technology can go to work 
without prolonged requirements analysis, 
testing, and phased deployment. 

Viewpoint 
Ready Technology 
Fast-tracking emerging business technologies. 

doi:10.1145/2556941	 Stephen J. Andriole
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unsecure. Corporate IT chased them 
around, but everyone got to keep their 
iPads (and other devices) when IT ulti-
mately declared them “safe”—well af-
ter their deployment.c Similar events 
occurred at Balfour Beatty, Luxottica, 
and RehabCare.d The same process is 
playing out in banks, consultancies, 
and retailers. In fact, there is no way 
to stop the process—as many com-
panies discovered when they tried to 
ban social networks.e 

The deployment of iPads, social 
media, file sharing, and video-telecon-
ferencing (among other technologies) 
at Shire and other companies demon-

c	 There are many stories about how iPads found 
their way into the enterprise—without the ap-
proval  of corporate IT departments. See T. 
Kaneshige, “iPads in the Enterprise:  IT Must 
Stay Ahead of the Curve,” CIO Magazine (May 
1, 2012),  (www.cio.com/article/705379/); and 
S. Ludwig, “The iPad is an Incredible Tool for 
Work—If Your IT Department Will Allow It,” 
VB Mobile (Jan. 4, 2012). The Shire case is docu-
mented in S.J. Andriole, “The Transformation 
of Technology at Shire Pharmaceuticals,” the 
Acentio Group, December 2012. 

d	 See M. Rosoff, “Huge Construction Firm Uses 
iPads and Apple TV to Save Millions,” CITE-
world (Mar. 28, 2013), and S. Ludwig (http://
bit.ly/1hP0NhP).

e	 See J. Bughin and M. Chui, “How Social Tech-
nologies are Extending the Organization,” 
McKinsey Quarterly (Apr. 2011); (http://bit.ly/
JiBPJr). Also see: “54% of Companies Ban Face-
book, Twitter at Work,” ComputerWorld (Oct. 
6, 2009); and K. Bhasin, “Companies Around 
The World Are Banning Social Media Sites At 
Work More Than Ever,” Business Insider (Sept. 
6, 2011); http://bit.ly/JaNkBV.

are often undefined and driven by em-
ployees-consumers who adopt technol-
ogies to solve a variety of problems with 
technologies that are acquired—and 
sometimes even supported—way out-
side the corporate firewall. Consumer-
driven requirements analysis, explora-
tion, and discovery is the mainstay of 
ready technology adoption. Note also 
that what was previously described 
as controlled pilots are largely ad hoc 
opportunistic experiments that often 
quickly turn into technology deploy-
ments—with or without the approval 
of corporate IT departments.  

Examples. The figure here lists a 
variety of ready technologies already 
at work solving a variety of problems 
across multiple vertical industries. The 
new governance process is significant 
because it often bypasses corporate 
IT and the policies and procedures 
aligned to specific vertical industries, 
like manufacturing, pharmaceuticals, 
and financial services. In fact, every 
industry is ready—though must keep 
compliance and security in mind as it 
officially—or unofficially—adopts new 
technology.

The list of ready technologies in-
cludes the following—but note this is 
not an exhaustive list and is represen-
tative of the growing number of ready 
technologies companies are quickly 
adopting:

˲˲ BYO:  Devices, applications, data, 
and so forth. 

˲˲ Tablets (such as iPads). 

˲˲ Smartphones (such as iPhones). 
˲˲ Content Sharing (such as with 

Dropbox). 
˲˲ Mobile and Other Applications 

(from App Stores). 
˲˲ Social Networking (with, for exam-

ple, ListenLogic).
˲˲ Video-Teleconferencing (with 

Facetime, Skype). 
˲˲ Video Sharing and Marketing (with 

YouTube). 
˲˲ Location Awareness (with Four-

square). 
At Shire Pharmaceuticals, for ex-

ample, ready technology found its 
way into the trenches through the 
C-suite: Shire professionals adopted 
iPhones, iPads, Skype, ListenLogic, 
and Dropbox before corporate IT 
could assess their reliability, security, 
or TCO/ROI.  Hundreds of iPads were 
deployed at Shire before corporate IT 
declared them “non-standard” and 

Ready technology 
adoption unleashes 
the power  
of emerging 
technology as early 
as possible.

Ready technology.

Defined Adoption

• �D efined Business-Driven 
Requirements Analysis 
and Validation

• �F ull Technology Pilot  
Demonstrations Prior  
to Deployment

• � Required Integration  
of New Technology into Existing 
Technology  
Architectures

• � Transition Period  
to Test and Integrate 
New Technology

• � Continuous Support 
and Refresh Requirements

Ready Adoption

• �D efined and Undefined  
Consumer-Driven Requirements 
Analysis and Exploration

• �U ncontrolled, Ad Hoc 
Technology Pilots

• � Limited or No Integration of 
New Technology into Existing 
Technology Architectures

• � Immediate Adoption and Delivery 
Through Cloud Providers

• � Limited Support and 
Refresh Requirements

Implications

• � Accelerated Technology Adoption

• � Increase in “Fail Fast/
Fail Cheap” Pilots

• � Rapid Technology-Driven 
Business Process Change

• � Improved Technology TCO/
ROI, Especially Through the 
Avoidance of Large Integration, 
Support and Refresh Costs

• � Major Changes in 
Corporate Governance of 
Information Technology

Examples

• � BYO: Devices, Applications, 
Data, and so forth. 

• � Tablets (such as iPads)

• �S martphones (such as 
iPhones and Androids)

• � Content/File Sharing (with, 
for example, Dropbox)

• � Mobile Applications 
(from App Stores)

• �S ocial Networking (with Facebook, 
Twitter, Flickr, and so forth)

• �V ideo-Teleconferencing 
(with Facetime, Skype)

• �V ideo Sharing and Marketing 
(with YouTube)

• � Location Awareness (with, 
for example, Foursquare)

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=41&exitLink=http%3A%2F%2Fwww.cio.com%2Farticle%2F705379%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=41&exitLink=http%3A%2F%2Fbit.ly%2F1hP0NhP
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=41&exitLink=http%3A%2F%2Fbit.ly%2FJiBPJr
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=41&exitLink=http%3A%2F%2Fbit.ly%2FJaNkBV
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=41&exitLink=http%3A%2F%2Fbit.ly%2F1hP0NhP
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strates just how fast technology can 
be adopted. (In fact, 93% of Fortune 
100 companies adopted iPads imme-
diately after they were introduced.f) 
Fast creative deployments legitimized 
iPads as solutions to an array of well-
known and yet-to-be-discovered prob-
lems. No one took the position that 
the first iPad was probably half-baked 
and that it made sense to wait for the 
iPad 2, 3, or 4.

The rapid adoption of social media 
listening technology is another exam-
ple. Once it was possible to listen to all 
flavors of social conversations, compa-
nies quickly found listening partners 
(like ListenLogic and Radian6 [now 
part of salesforce.com]), and started 
mining social data about what their 
customers liked and disliked about 
their products and services.g 

Dropbox is cloud file sharing. Count-
less professionals use Dropbox to store 
and share files of all kinds. Skype and 
Facetime are ready technologies used 
extensively for collaboration and com-
munication—even at companies with 
expensive proprietary video teleconfer-
encing (VTC) systems. App stores are 
not the stores of last resort, but often 
the first stores visited by professionals 
with problems to solve. Mobile appli-
cation development is also exploding. 
Foursquare is ready for location-based 
services, and YouTube for video shar-
ing for training and marketing.

Implications. The first implication 
of ready technology adoption is speed. 
Ready technology adoption unleashes 
the power of emerging technology as 
early as possible. Put another way, 
ready technology adoption—as cha-
otic as it sometimes is—enables us to 
“fail fast/fail cheap”—and redefines 
the whole “piloting” process. It also 
enables rapid business process mod-
eling (BPM) by introducing new capa-
bilities applied to old processes—like 
how we collaborate through cloud file 
sharing (Dropbox) or how we see each 
other while traveling (Skype, Face-

f	 Apple reported 93% of Fortune 500 companies 
have deployed or are testing iPads; http://bit.
ly/JiC6Mv.

g	 See S.J. Andriole, V.J. Schiavone, L.F. Stevens, M. 
Harrington, and M. Langsfeld, Social Business 
Intelligence:  Reducing Risk, Managing Brands & 
Defining Markets with Social Media (Ascendigm 
Press, 2013) for a deeper look at the business 
role social business intelligence can play. 

time). But perhaps the largest impli-
cation of ready technology adoption 
is how it rearranges technology gov-
ernance. In the 20th century, tech-
nology governance was centralized 
or federated. Ready technology adop-
tion is decentralized. This means 
employees-consumers in business 
units govern technology adoption 
and exploit what the technologies 
can provide without the “guidance” 
of corporate or business unit CIOs. 
This has profound implications for 
the acquisition and support of enter-
prise technology. Ready technology 
also challenges our technology cost 
models, how we define and measure 
Service Level Agreements (SLAs) and 
ultimately how we calculate technol-
ogy TCO and ROI. Ready technology—
as appealing and productive as it can 
be—also challenges our already formi-
dable problems around technology in-
tegration, interoperability, scalability, 
and support.

Conclusion 
While there are still plenty of technolo-
gies that require traditional adoption 
processes—like big data analytics, 
ERP and CRM applications—there 
is a growing number of technologies 
ready to go to work immediately. Many 
of these technologies are cloud-based, 
open source, and live happily outside 
of corporate firewalls. Many of them 
are easily and inexpensively acces-
sible to corporate professionals and 
will therefore continue to find their 
way into companies of all shapes and 
sizes—regardless of what CIOs think 
about their readiness. At the end of 
the day, ready technologies is upset-
ting just about every governance ap-
plecart at work today—as they rapidly 
discover, define, and solve more and 
more corporate problems. Rather than 
scramble to get all the apples back in 
the cart, CIOs and CTOs should re-
think the way useful technology en-
ters the enterprise and embrace the 
role ready technologies can play in the 
problem-solving process—especially 
since they have no choice.	

Stephen J. Andriole (steve@andriole.com) is a professor 
in the Department of Accounting and Information 
Systems at the Villanova School of Business, Villanova 
University, PA. 
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Node.js,  the server-side  JavaScript-based software 
platform used to build scalable network applications, 
has been all the rage among many developers for the 
past couple of years, although its popularity has also 
managed to enrage some others, who have unleashed a 
barrage of negative blog posts to point out its perceived 
shortcomings. Still, while new and untested, Node 
continues to win more converts. 

In 2011, LinkedIn joined the movement when it 
opted to rebuild its core mobile services in Node. The 
professional networking site, which had been relying 
on Ruby on Rails, was looking for performance and 
scalability gains. With its pervasive use of non-blocking 
primitives and a single-threaded event loop, Node 
seemed promising.

Following the creation of Node.js 
in 2009 by Ryan Dahl (now at Joyent, 
which sponsors and maintains Node), 
it did not take long for developers to 
seize upon it. Because Node uses Java-
Script, a language largely associated 
with the client side of Web apps, it 
clears the way for developers work-
ing on the client side to also work on 
corresponding functions over on the 
server side. 

Kiran Prasad, who joined LinkedIn 
as senior director of mobile engineer-
ing in 2011, led the company’s transi-
tion to Node. On the server side, Linked- 
In’s entire mobile front end is now 
built entirely in Node. Prasad admits 
Node isn’t the best tool for every job, 
but upon analyzing LinkedIn’s system, 
Prasad and his team determined that 
what was needed to improve efficiency 
was an event-driven system. Node also 
proved attractive because it’s thin and 
light while also allowing for the direct 
manipulation of data objects. 

Prasad was well prepared for his 
role in mobile services at LinkedIn, 
having already accumulated years of 
experience in mobile apps working 
on the WebOS platform at Palm and 
Handspring in addition to stints as an 
independent developer of mobile Web 
software (as CEO at Sliced Simple and 
CTO at Aliaron). 

He talks here about LinkedIn’s 
adoption of Node.js with Kelly Norton 
and Terry Coatta. Norton was one of 
the first software engineers to work on 
the Google Web Toolkit (GWT) before 
cofounding Homebase.io, which devel-
ops next-generation marketing tools. 

Coatta is CTO at Marine Learning 
Systems, which has developed a learn-
ing management system targeted at the 
marine industry. He previously worked 
for AssociCom, Vitrium Systems, GPS 
Industries, and Silicon Chalk.

KELLY NORTON:  Tell us what went into 
LinkedIn’s decision to use Node.js. 

KIRAN PRASAD: We were running 
a Ruby on Rails process-based sys-
tem, and it became pretty clear that 

Node at 
LinkedIn: 
The Pursuit 
of Thinner, 
Lighter, Faster

doi:10.1145/2556647.2556656
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just wasn’t going to scale the way we 
needed it to. I guess you can always 
scale something if you’re willing to 
throw enough money at it, but obvi-
ously that didn’t seem like the right 
way to go. Also, working with the mo-
bile model—where there are lots of 
microconnections—we could see that 
a process-based approach was going 
to run into difficulty with the Ruby on 
Rails stack.

We also noticed there was a pretty 
big performance hit with Rails since we 
were doing a lot of string manipulation 
and the Ruby interpreter version we 
were using was struggling to garbage-
collect all the small-string objects. Nor 
was it particularly optimized for JSON 
(JavaScript Object Notation) transla-
tion, which was what our back end was 
giving us, as well as what our front end 
was looking to consume. 

Clearly, Ruby on Rails was built 
more as a Web stack in that its real 

value lies in the templating it offers for 
that structure, along with some of the 
framework concepts it provides for the 
app and the controllers. But the con-
trollers and the views actually move 
down to the client whenever you’re 
doing client-side rendering, which is 
what happens with mobile systems.

With the larger, higher-scale stacks 
you find at places like LinkedIn, you 
also start breaking apart the model. 
That is, you’re not really inside Active 
Record on Rails at that point since 
you essentially end up moving down 
a level into other servers or services. 
This means the middle layer starts to 
get pretty thin and really focused on 
string manipulation.

So when we really started to look 
at that, we said, “This sure doesn’t 
feel like such a great fit anymore. It’s 
not designed to do what we’re trying 
to accomplish now.” So, what could 
we replace it with? It had to be some-

thing that was evented, was good at 
string manipulation, and was light 
and quick and easy to use. We started 
looking at some evented frameworks 
in Ruby such as EventMachine, as 
well as Twisted in Python. But there 
seemed to be no mainstream evented 
Java frameworks when we first started 
checking into this. While Play has be-
come a little more prevalent now, back 
when we were doing our analysis, in 
early 2011, it didn’t pop up on our ra-
dar for some reason.

NORTON:  Besides being event-driven, 
what was so compelling about Node? 

PRASAD: We looked at Node and ran 
some load against it, at which point it 
would send a request out to something 
like six other services, grab that data, 
merge it, and then pop it back out in 
a fairly simple way. We just ran with 
that all the way up to about 50,000 QPS 
(queries per second). Along the way we 
discovered that Node was roughly 20 
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trollers get pushed out all the way to 
the client. Then the question becomes: 
What’s left in the middle? Basically 
what you find there is just a bunch of 
functions that effectively manipulate 
hashes of data in order to format them. 
So now you’re just down to formatting 
and a little bit of aggregation.

I’m not sure I really had the clarity 
at the time to articulate why we chose 
Node.js. Now after using it for a few 
years, it has become pretty clear that 
in this layer that’s essentially the glue 
between your front end (which is liter-
ally in the client now) and your back 
end (which happens to be your data 
model), a functional sort of language 
is actually the best fit. At this point, we 
write all our back-end stuff in Java, and 
all the Java stacks we’re using are more 
process based.

COATTA: Having had this experience 
with Node.js in the middle layer, then, 
would you contemplate using it for the 
back end? 

PRASAD: Right now, we’re working 
on creating a data store that’s mobile-
specific, and as part of that we did an 
analysis of whether we should build it 
in Node.js and JavaScript. It turned out 
the team wanted something that was 
a little more precise—or typed, I sup-
pose. I’m actually trying to steer clear 
of classic programming stuff such 

times faster than what we had been 
using and its memory footprint was 
smaller as well. 

Obviously, Node.js also offers other 
benefits beyond the technical aspects. 
JavaScript is a language lots of people 
understand and are comfortable cod-
ing in. Besides, it didn’t hurt that Node 
was getting a lot of hype at the time—
and still is. In some ways, that makes it 
easier for me to recruit. 

TERRY COATTA: You mentioned that 
you had moved away from using Active 
Record in Ruby as your model repre-
sentation, but obviously that model 
had to end up going somewhere. Why 
didn’t you choose to use the infrastruc-
ture you already had for the model to 
handle the middleware as well? 

PRASAD: The thing about models is 
that they are really designed around 
objects. They have properties; they 
have methods; they are very structured 
and statically typed; and you’re trying 
to create an environment where they’re 
very solid so you know exactly what 
each object is. This is just the sort of 
approach we were all taught in our first 
exposure to object-oriented design. 

So you would think a more object-
oriented language would be ideal for 
building systems like that. But then 
that moves out to the view controllers, 
and in mobile systems, the view con-

Kiran Prasad

The reason why 
Node is so fast and 
so good is that it’s 

light and thin. It 
barely has anything 

in it at all, so every 
little thing you add 

to it, each additional 
Node module you 

want to use with it, 
comes at a cost.
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as taking a more statically typed ap-
proach, but the team definitely wanted 
the ability to define an object with cer-
tain methods and properties, and for 
that to be guaranteed so nobody could 
mess it up. They don’t want just anyone 
out there taking over that prototype or 
doing anything to it. Still, from a per-
formance standpoint, I would love to 
try a more event-driven framework. 
Currently, we’re using Rest.li internally 
to do some of this back-end, data-store 
stuff because we really do believe the 
event-driven stuff has transformed our 
architecture. 

COATTA: In terms of the perfor-
mance speedup you observed with 
Node.js, did you also construct light-
weight prototypes for the other lan-
guages you were considering for your 
middleware layer? 

PRASAD: We did some prototyp-
ing with Ruby and Python using the 
evented frameworks EventMachine 
and Twisted. The bottom line was that 
Node proved to be 2–5 times faster 
than both of those in terms of raw 
throughput. What was even more ex-
citing and really sold us on Node was 
that it took only two or three hours to 
write the Node prototype while it took 
us more on the order of a day or two to 
write the EventMachine and Twisted 
ones, just because we had to down-
load so much more stuff.

For example, you need to make sure 
you’re not using the standard HTTP li-
brary in Python, but instead the Async 
HTTP library. That’s the sort of thing 
that pretty much applied across the 
board. No matter what we wanted to 
do, we couldn’t use the standard Py-
thon library. Instead, we had to use the 
special Twisted version. The same held 
true with Ruby. Like a lot of others in 
the community, we found out just how 
much easier it is to get started with 
Node, where everything you need is es-
sentially there by default. Further, the 
fact that we could get stuff up so much 
faster with Node was really important. 
That’s just another form of perfor-
mance, right? Developer productivity 
definitely counts for something.

Memory footprint was also a factor. 
We looked at how well VMs (virtual 
machines) worked in each of these 
languages, and the V8 JavaScript En-
gine just blew everything else away. 
We were doing 50,000 QPS with all 

two places. If I wanted to add logging 
so I could see all the instances where 
somebody was talking to Companies, 
things are not centralized such that ev-
erything would funnel through nicely. 
While we’re not creating an object lay-
er, we are starting to recognize that, at 
least for RESTful APIs, we need to cre-
ate a set of functions that sit in front 
of each resource type we’re looking 
to communicate with. It’s kind of like 
proxying that interface. That’s one of 
the things we’ve learned along the way 
and are now starting to fix by creating 
this new layer of abstraction.

COATTA: You mentioned refactoring 
the code to introduce additional lay-
ers. If you consider the amount of time 
you’re putting in now on the refactor-
ing side, do you think you might still 
end up taking roughly as much time to 
create your code base as you would have 
had you taken some other approach?

PRASAD: I would guess not because 
it isn’t just about how long it takes to 
do the coding itself. It’s also about ev-
ery other aspect of the process. For ex-
ample, when you write your app and 
then type “Node” to run the app, it 
literally takes only about 20–100 milli-
seconds for it to come up. With Ruby, 
just getting the Rails console to come 
up sometimes takes more like 15–30 
seconds. I’m also not ready to say Node 
comes up short strictly from a coding 
standpoint in any event. All the way 
around, Node is just built thinner, 
lighter, faster. So every last little step, 
every single nuance of everything I do 
every day ends up being faster.

With the more structural languages, 
you’ve got to account for things like 
compile times and build times. Then 
you end up building essentially hot-
swap environments where the envi-
ronment is running but the IDE is also 
able to connect with and manipulate 
the runtime. You pretty much have to 
do it that way, because it takes so long 
for the thing to boot up, make your 
changes, and then boot up again. Node 
eliminates a whole range of these prob-
lems just because it’s so fast. 

Yes, the refactoring has added to 
the coding time while it has also taken 
away from the simplicity we enjoyed 
initially when we were just slashing 
and burning through things. But I 
think the overall efficiency we’ve been 
able to achieve because Node is so 

this manipulation, and we were run-
ning that in about 20MB to 25MB of 
memory. In EventMachine and Twist-
ed, just loading all of the classes nec-
essary to do the async stuff rather than 
the standard stuff was more like 60MB 
to 80MB. Just at a raw level, Node was 
going to run in only about half the 
memory footprint.

NORTON:  What sorts of things did 
you end up missing that you would 
have had in a more “modeled” environ-
ment? 

PRASAD: Because we embraced the 
functional nature of JavaScript, we 
didn’t think we would first have to 
translate everything coming in from 
the back end into a set of objects and 
a set of methods on those objects. This 
also meant we didn’t have to sort out 
the hierarchy of those objects, what the 
subclasses were, what the base class 
was, how all those things were struc-
tured, and what the relationship was 
among all those different objects. But 
that’s what you would need to do in a 
model- and object-based system. So for 
us it was more like saying, “OK, you’re 
going to hit these three endpoints, and 
then you’re going to merge the data 
and pop out this other object.”

In reality, though, it’s not an object 
but a hash, right? You’re consuming 
adjacent things and then popping 
out some other adjacent things. It’s 
almost like you’ve got a filter that you 
run a stream through. Data comes 
through and then pops out the oth-
er side—which gets you completely 
around all that thinking about what 
the objects are, how they work, and 
how they interact. So that let us get 
where we wanted to go a lot faster. 

Now that we’re through that, we’re 
going back and working on some func-
tions. Right now, they all talk to what-
ever they want. If Function A wanted 
to talk to Profile and Companies and 
Jobs and then merge them, then it 
would just go ahead and talk to Profiles 
and Companies and Jobs. And then if 
Function B wanted to talk to Profiles, 
Companies and something else, it 
would just go ahead and do that. But 
the two functions—A and B—wouldn’t 
be using the same functional inter-
face to talk to Profiles or Companies. 
The problem is that if there is a bug in 
the way we’re talking to Companies, 
I would have to go in and fix that in 
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rectories were actually empty—and, 
by the way, an empty directory was 
actually a good thing. We would leave 
the directory there just so people 
wouldn’t try to create things in that di-
rectory. It was like a code-review tool 
that said, “We must be really doing 
something wrong if we start creating 
things in that directory.” And that’s 
just from our server design pattern of 
how we wanted to use Node. 

Another helpful thing we did initial-
ly was to set up a basic testing environ-
ment and framework. Rails, as well as 
Python’s Django framework, were very 
big on TDD (test-driven development) 
and even BDD (behavior-driven devel-
opment), where you could essentially 
write your tests and sequences before 
filling in all the code. It’s a model that 
works really well when there’s a test-
ing framework. We essentially took 
the testing framework that was already 
there and slapped it on top of our direc-
tory structure using some scripts we’d 
written to get the two to interact. We 
started off using Vows, but after three 
months ended up writing all our own 
tests in Mocha.

You could say that setting up a test-
ing environment and framework was 
sort of another code pattern, but it was 
probably more difficult than it would 
have been with any other language—
especially in terms of dealing with the 
evented aspect of Node. Even though 
we ended up refactoring the code, we 
didn’t have to do anything major such 
as coming up with new abstractions or 
any additional functions. Most of what 
we did was syntactical in nature. And 
then there were a bunch of little func-
tional things—for example, Node’s 
concept that in every callback the 
first argument should be Error, which 
makes total sense.

But then you couldn’t figure out 
what the second and third and fourth 
arguments were. Or do you have only 
one argument? Or is it five arguments? 
How do you deal with that, and what is 
it going to be like after you do the call-
back? Let’s say you now want to change 
the callback signature. How do you tell 
everyone who was calling the function 
and expecting a callback that the sig-
natures have changed? I don’t know if 
that’s Node-specific or is common to 
all JavaScript, but it did take us awhile 
to figure it out.

thin and light more than makes up 
for any minor amount of refactoring 
we’ve had to do.

COATTA: If you were about to dive into 
another project based on Node, would 
you try to build a little more of your 
structure initially?

PRASAD: I don’t think that’s a Node-
specific question. It’s more a matter 
of personal preferences. My own view 
is that front-end UI code tends to last 
only about one-and-a-half to two years 
anyway. Very little of that code lasts as 
long as five to 10 years. The reason for 
this, I believe, doesn’t even have all that 
much to do with the quality of the code, 
but instead is driven more by the evo-
lution of technology and the fact that 
software developers are encouraged to 
work in four-year increments. You con-
stantly have new people looking over 
your code, and I know that whenever I 
look at anything, even if it’s just a table, 
I’m sure I could build a better one. So I 
believe the natural tendency is that, ev-
ery year-and-a-half to two years, a new 
set of people is going to look over some 
particular code base and decide they 
can do a better job.

Given that, it’s probably faster just 
to rewrite a whole chunk of that code 
base so long as it’s modularized—or 
maybe even rewrite the whole thing—
and take your one- or two-month hit 
for that, than it would be to slowly 
evolve the code base. So, if I had this 
project to do over again, I’d probably 
do it the same way. In any event, I’m 
more inclined to build a project first, 
get it out, and then extract a platform 
later if I can—as opposed to building 
a perfect platform and all the compo-
nents upfront and then trying to hook 
them all up in the right order. I don’t 
think you can possibly know what the 
right order is until you’ve actually got 
something running in production 
and can see where you’re hitting pain 
points. Then you can tell where you 
actually need to extract libraries and 
start doing something about it.

Once the decision had been made to 
convert to Node, Prasad’s team had to 
figure out the best approach to imple-
mentation and maintenance. Because 
LinkedIn’s mobile services team was 
largely accustomed to Ruby on Rails, 
they mimicked parts of their previ-

ous Rails structure in setting up the 
Node.js structure, allowing them to 
jumpstart the project. The team was 
small, so Prasad was able to monitor 
the transition to JavaScript and detect 
problems quickly.

Programming in Node.js is event-
driven and so required different ap-
proaches. Although a minor amount 
of refactoring was involved, the team 
didn’t have to create new abstractions 
or additional functions. Most of what 
they did was syntactical in nature. They 
also shed layers of abstraction, which 
significantly reduced the size of the 
code base.

NORTON:  You say your preference is to 
jump right into a project and do things 
the fast way. I wholeheartedly agree. In 
fact, I’d say my own philosophy is that 
since you don’t really know going into 
a project what it is you’re going to need 
to optimize for, then what you really 
ought to be setting out to optimize is 
your ability to change things. 

So I’m really curious as to how you 
structured your code and what prac-
tices you used to let you move fast ini-
tially and then continue moving fast 
as the constraints for your project be-
came clearer.

PRASAD: A lot of our people at the 
time were Ruby on Rails developers, so 
they were familiar with that directory-
tree structure and the terminology 
used in the Rails world. We mimicked 
that terminology, and that gave us a 
huge jumpstart. It also helped that 
Node is pretty barebones, much like 
Rails, but that also was a little scary be-
cause you’re not sure how to structure 
stuff, and there were no guides to tell 
you how to do it.

A second helpful decision we made 
was to put all the controllers and views 
on the client side, while the models 
were placed on the back end. From a 
directory-structure standpoint, that 
meant we wouldn’t have any files show-
ing up in our model structure or in our 
views directory. Although we used the 
term controllers, we were really work-
ing more with formatters in the sense 
that you would get something in, make 
a couple of requests, format the thing, 
and then pop it out.

This meant we still had this old 
Rails structure, only most of the di-
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Kelly Norton

My own philosophy 
is that since you 
don’t really know 
going into a project 
what it is you’re 
going to need to 
optimize for, then 
what you really 
ought to be setting 
out to optimize 
is your ability to 
change things.

NORTON:  How did your team com-
municate interface boundaries? Peo-
ple who are accustomed to working 
with types wouldn’t want to give away 
interfaces, since they provide a con-
crete form of documentation that ba-
sically allows one team member to say 
to another, “Here is my intent. I expect 
you’ll be calling me in this particular 
way.” Even more importantly, if that 
way of calling turns out not to exist, 
that probably means it’s a use case you 
haven’t considered and so is one that 
probably won’t work. 

PRASAD: I think there are interfaces 
between libraries inside the code and 
between the client and the server. 
For the interfaces between the client 
and server, we used REST (represen-
tational state transfer), and we had a 
very defined model where we had what 
we called “view-based models” that 
were returned by the Node server. We 
would just document those and say, 
“Hey, here are the REST interfaces, 
and here’s what we support.” That’s 
essentially along the lines of a ver-
sioned interface structure. It’s classic 
REST, actually.

Within the code base, we heavily 
used the module systems. Each REST 
endpoint has a file that represents 
all the responses for that endpoint, 
as well as the public interface for the 

module mapped to the routes. You can 
have as many functions as you want, 
but whatever you have will export out 
of that module. In that way you actu-
ally end up specifying the set of func-
tions you’re exposing. That’s essen-
tially what we use as our interface.  

Then, structurally, we did some-
thing really simple: Every function 
inside the module, whether public or 
private, was defined in an old-school 
C style. You might put in a comment 
that said “private” and then list some 
of your private functions. Or you 
could put in a comment that said 
“public” and then list all your pub-
lic functions. This is just like what 
you used to do in C, right? You had 
a bunch of functions and you’d put 
the private ones in one group and the 
public ones in another group. Then 
your header file would essentially ex-
pose your public interface. All of that 
happened in a single file. We don’t 
have a header file, but module.ex-
ports effectively serves as our header.

NORTON:  Another important com-
munications consideration has to do 
with helping a team that’s not accus-
tomed to writing JavaScript navigate 
around some of the minefields they’re 
likely to encounter. 

PRASAD: When we started on this, 
we were a group of only four people, 
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Step guarantees the order of this se-
quence, so even if the function is asyn-
chronous—meaning it’s going to do 
something evented—that function will 
be passed a callback, and it has to call 
once it’s finished doing its thing. Inde-
pendent of whether each function is 
synchronous or asynchronous, the wa-
terfall will execute in sequence.

Step also includes a group method 
and a parallel method. We use the 
group method very heavily. That means 
you can give it a group of functions and 
it will execute all of them in parallel, 
and then return when all of them are 
done executing. 

One nuance has turned out to be a 
pretty big deal for us. If we have a group 
that contains three functions and one 
of them is broken, Step won’t capture 
the responses for the other two. In-
stead, it will just call the callback and 
say, “Sorry, I’m errored.”

The negative thing about this en-
vironment is that if I call six things 
and two of them are required while 
four are optional, I’m not going to 
mind waiting for all of them with cer-
tain timeouts. But if one of those op-
tional things ends up erroring out, 
then it’s going to seem like the whole 
block errored. That’s just not ideal for 
us. We therefore created a function 
called GroupKeep that runs through 

so I was able to watch every check-in. 
Whenever I saw anything odd, I would 
ask about it—not necessarily because 
I thought it was wrong but because I 
wanted to understand why we had used 
that particular pattern. It was easy to 
get to the bottom of why things had 
been done in a certain way and figure 
out what we were going to do next. Now 
the group is much bigger and we’re 
percolating the nuances of the rea-
soning behind the choices we made, 
and that’s definitely a lot harder. Now 
we hold a three- to five-day boot camp 
whenever a new person starts with the 
group, which gives us a chance to ex-
plain, “Here’s how we do this. We know 
that might seem a little strange, but 
here’s why we do it that way.” I think 
that’s probably the best way of expos-
ing those code patterns.

COATTA: Which of those code patterns 
do you think are the most important? 

PRASAD: We ended up using Step as 
our flow-control library. It’s like a su-
per-simple Stem, with two main con-
structs. We augmented those a little 
and ended up adding a third. Basical-
ly, Step has this concept of a waterfall 
callback, meaning that you pass into 
Step an array of functions and then it 
will call each function in order such 
that as the first function returns, the 
second one will be called, and so forth. 

Terry Coatta

If you consider the 
amount of time 

you’re putting 
in now on the 

refactoring side, do 
you think you might 

still end up taking 
roughly as much 

time to create your 
code base as you 

would have had you 
taken some other 

approach?
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and executes everything, and then if 
there should be an error, it will hold 
the error in an array. That way, when 
the calls go out for callbacks, there 
will be this array of errors. Based on 
the position of an error, you can get a 
pretty good idea of whether it relates 
to something that’s required or some-
thing that’s optional. That makes it 
possible to write code that can contin-
ue a process wherever necessary.

The light and thin nature of Node.js 
appealed to Prasad and his team more 
than anything else. The extent of code 
reduction this allowed proved to be 
huge—from 60,000 lines down to just 
a couple thousand. They also now have 
essentially no frameworks, thus elimi-
nating a lot of extraneous code. More-
over, Node’s event-driven approach 
requires fewer resources and moves 
more functions to the client side. Fi-
nally, it takes a functional approach 
that sheds layers of abstraction. In 
sum, this all serves to enable support 
for huge numbers of users on a wide ar-
ray of devices in real time.

COATTA: When you were talking about 
how quickly you managed to get your 
initial Node prototypes up and running, 
it made me wonder whether you had 
also achieved some code reduction.

PRASAD: Absolutely. Our Node code 
base has grown a little from the origi-
nal version, but it’s still on the order of 
1,000 to 2,000 lines of code. The Ruby 
code base we were using previously, 
in contrast, was in the neighborhood 
of 60,000 lines of code. The biggest 
reason for that reduction is that our 
current code base is essentially frame-
work free, which means there’s just not 
a whole lot of cruft in there.

The second big reason has to do 
with the more functional approach 
we’re taking now, as opposed to an 
object-oriented one, which proved to 
be an important shift for us. In Ruby, 
the natural tendency is to create an ob-
ject that essentially wraps every com-
munication and type. Even though 
Ruby is actually a functional language, 
it has a much stronger notion of class 
and object than does JavaScript. So in 
our earlier code base we had lots of lay-
ers of abstraction and objects that had 

been created under the guise of greater 
componentization, refactorability, and 
reusability. In retrospect, however, we 
really didn’t need most of that.

Another significant reason for the 
code reduction is the momentum be-
hind the MVC (model-view-controller) 
model, at least for mobile vs. Web-
based systems. Before, we had mostly 
server-side rendering. Now with the 
move of templates and views over to 
the client side—along with rendering, 
of course—a lot of that code has just 
gone away. Along with that has come 
a new trust and belief that the back 
ends, where the models live, are where 
the validation and all the other more 
advanced things are going to happen. 
That means not having to double-
check things, which eliminates anoth-
er huge chunk of code.

NORTON:  You indicated earlier that 
one of the insights that led to your re-
write in Node.js was that you realized 
you didn’t really need a deep under-
standing of the objects you were ma-
nipulating, meaning you didn’t need 
to mutate those objects a lot. Basically, 
you could just do a lot of merging of 
hashes. Do you think you could have 
gotten to that same end with some oth-
er language, even Ruby, just by working 
with the hash-map primitive?

PRASAD: Probably so, but if you 
look at Ruby, you see that Rails just 
has so much extra stuff in it, whereas 
Node at its base has an HTTP server 
aspect and a client aspect built into 
the binary. This means you don’t 
need an HTTP Node module and an 
HTTP listening module.

So, yes, I suppose if we had elimi-
nated all the object hierarchy and just 
used the hash structures, we might 
have been able to use Ruby. But then 
you would still have to listen to HTTP 
and turn that into a controller, which 
just gets you back into adding all these 
little microlayers. While each microlay-
er gives you a bunch of code you don’t 
have to write, it also adds a bunch of re-
quirements for stuff you do then have 
to write so everything will work nicely 
with your framework.

COATTA: If you were to talk to some-
one else who was about to undertake a 
similar project, what would you point 
to and say, “Hey, pay attention to this 
or you’re going to be in trouble”?

PRASAD: Flow control. Exception 

handling. And while this isn’t really 
specific to Node, I’d say, “Keep it light. 
Keep it thin.” I think there’s a natu-
ral tendency for people to say, “Well, 
I need something that does HTTP, so 
I’ll just find a module that does that,” 
and then another 4,000 lines of code 
drops into their environment when all 
they really need is an HTTP request. 
Instead, they end up with this super-
duper thing that gives them that and a 
whole bunch of other stuff besides.

Basically, the reason why Node is so 
fast and so good is that it’s light and 
thin. It barely has anything in it at all, 
so every little thing you add to it, each 
additional Node module you want to 
use with it, comes at a cost.

NORTON:  For those companies that 
have already launched projects in Node, 
what would you say are the three things 
they might want to add to their ecosys-
tems to make them even stronger?

PRASAD: First would be a good IDE. 
InteliJ IDEA is pretty good, but outside 
of that, I haven’t really seen a great IDE 
and toolset for Node. 

Second would be to allow for evolv-
ing performance analysis and monitor-
ing. Better operational monitoring for 
Node would be great, but for now it’s 
essentially a black box unless you put 
your own monitoring hooks into your 
code. I’d love to see a lot of the stuff a 
JMX layer in the Java VM provides. You 
can get out some really useful informa-
tion that way.

And the third thing would be some-
thing like New Relic for Node—some-
thing that can inspect everything 
your Node system is doing and actu-
ally understand your application so it 
can provide you with detailed break-
downs of where your bottlenecks and 
slowdowns are. That would be awe-
some, actually.	
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“Not invented here” syndrome  
is not unique to the IT world.

By Poul-Henning Kamp

W h e n  I  f i r s t  read the claim that HealthCare.gov,  
the website initiated by the Affordable Care Act, had 
cost $500 million to create,4 I did not believe the number. 
There is no way to make a website cost that much. 
But the actual number seems not to be an order-of-
magnitude lower, and as I understand the reports, the 
website does not have much to show for the high cost in 
term of performance, features, or quality in general.

This is hardly a unique experience in the IT world.  
In fact, it seems more the rule than the exception.

Here in Denmark we are in no way immune: 
POLSAG, a new case-management system for the 
Danish police force, was scrapped after running up a 
tab of $100 million and having nothing usable to show 
for it. We are quick to dismiss these types of failures 
as politicians asking for the wrong systems and 
incompetent and/or greedy companies being happy to 
oblige. While that may be part of the explanation, it is 
hardly sufficient.

The traditional response from the 
IT world is that the Next Big Thing will 
fix this, where the Next Big Thing has 
been a seemingly infinite sequence of 
concepts such as high-level languages, 
structured programming, relational 
databases, SQL, fourth-generation lan-
guages, object-oriented programming, 
agile methodologies, and so on ad 
nauseam. I think it is fair to say none 
of these technologies has made any 
significant difference in the success/
failure ratio of IT projects. Clearly they 
allow us to make much bigger proj-
ects, but the actual success/failure rate 
seems to be pretty much the same.

At the same time, there are all these 
amazing success stories, where a cou-
ple of college kids change the way we 
think about information retrieval with 
their Google information-scoring algo-
rithm, or a bunch of friends change the 
way we communicate with their Twit-
ter information-distribution system.

Why, despite politicians’ lofty speech-
es, does that never happen in govern-
ment IT applications? There is clearly 
something we are missing here, some-
thing we are doing wrong, without even 
thinking about it. That particular mis-
take is far more common than it should 
be in a (so-called) “knowledge economy.”

Lessons from Wheelbarrows
Growing up in the countryside, I spent 
a good portion of my youth operating 
a wheelbarrow. The European wheel-
barrow is a rationalization of the 
handbarrow, which was basically two 
planks, two feet apart, with boards 
nailed or tied between them. One per-
son grabs the two planks at the front, 
one in each hand, another grabs them 
at the back, and then they trudge away 
with their load.

Sometime back in the low thou-
sands, a productivity consultant must 
have pointed out that if you replaced 
the person in front with a wheel, then 
you could get twice as many wheelbar-
rows moving with the same number of 
workers. (This industrial application 
of technology undoubtedly earned the 
consultant a hefty fee.)

Center Wheel 
for  
Success
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And that is it! That is the very same 
contraption I lugged around as a kid 
and the same one I used just a few 
hours ago for gardening. As anybody 
knows, using a wheelbarrow is easier 
than carrying things, but it is still 
quite heavy work. You lift roughly half 
the load yourself, you provide the en-
ergy for motion, and you must steer it 
in the right direction, which is diffi-
cult on account of the first two expen-
ditures of energy.

While a vast improvement over the 
handbarrow, the wheelbarrow is stu-
pidly inefficient, at least compared 
with the Chinese version.2 Somebody 
in China was smarter than the Medi-
eval European downsizer and moved 
the wheel to the middle of the wheel-
barrow, so that the entire weight of the 
load is carried by the wheel. The Chi-
nese wheelbarrow will readily trans-
port two or three times the load of a Eu-
ropean wheelbarrow, with the operator 
hardly breaking a sweat, just pushing 
and steering, with barely any lifting.

From a management perspective, 
the Chinese wheelbarrow is identical 
to the European one: one wheel, two 
handles, one operator. Looking at it 
that way, however, we blind ourselves 
to how differently they work, and we 
miss the full productivity improvement 
of the wheel.

In Europe we have known about the 
Chinese wheelbarrow since at least 
1797,2 yet, to this day, we still sweat 
while lifting half the load carried on 
our nonoptimized wheelbarrows. 

The “not invented here” syndrome 
is not unique to the IT world.

I am beginning to think the reason 
our big IT projects sink is that we make 
the same kind of mistake: mindlessly 
replacing human labor with technology 
instead of solving the actual problem.

Many human jobs can be replaced 
directly with computers. Email re-
placed the old telegraph system, deliv-
ering the exact same conceptual ser-
vice: delivering a text message quickly 
while using hardly any manpower. But 
delivering text messages was the least 
email could do—once we got to know

 it better.  
First there were 
programs answering 
email messages, sending 
source code, or looking 
up things in databases. Next 
came programs sending email to 
other programs, to keep databas-
es synchronized, and then email 
containing pictures, sound, and 
vice presidents.1

However, the email system 
we know today, as envisioned 
by Ray Tomlinson, was not the 
only such system somebody cre-
ated. The state-sanctioned post 
and telegraph monopolies at-
tempted to standardize email—
or “telematic services” as they 
called it—in CCITT (International 
Telegraph and Telephone Consulta-
tive Committee) recommendations 
X.400-X.599,3 as part of the grand vi-
sion of “The Intelligent Network.”

They started approximately 15 years 
before Tomlinson. They spent un-
countable millions of all sorts of cur-
rencies. They had legislators mandat-
ing their way be the one and only legal 
way forward. And they failed utterly, 
miserably, and definitively.

Why is it that in IT one person can 
often do what thousands cannot?

It is tempting to speculate that 
HealthCare.gov would have worked 
much better had they given the task 
to a 10-person company rather than 
a conglomerate with 69,000 employ-
ees all over the globe. I am sure that 
is a necessary part of the solution, but 
again, it is hardly a sufficient condi-
tion for success.

For one thing, while there are 
“only” 380,000 words in the Afford-
able Care Act (also known as Obam-
acare), the regulations floating from 
the law amount to 12 million words 
(and counting). No 10-person company 
would even be able to read all that ver-
biage before the delivery deadline had 
whooshed past.

Interestingly, The New York Times re-
ports that HealthCare.gov contains an 
estimated 500 million lines of code.4 

That is no more likely to be true than 
the $500 million price tag.

I looked at one of the actual laws 
that make up Obamacare, the Patient 
Protection and Affordable Care Act 
(PPACA),5 and since I was not going 
to read all 906 pages, I started in the 
middle, on page 403. After a few pag-
es I ran into this definition of patient 
decision aid:

“(1) PATIENT DECISION AID—The 
term ‘patient decision aid’ means an 
educational tool that helps patients, 
caregivers, or authorized representa-
tives understand and communicate 
their beliefs and preferences related 
to their treatment options, and to de-
cide with their healthcare provider 
what treatments are best for them 
based on their treatment options, sci-
entific evidence, circumstances, be-
liefs, and preferences.”

Reading on, I found the require-
ments:

“(2) REQUIREMENTS FOR PATIENT 
DECISION AIDS—Patient decision aids 
developed and produced pursuant to a 
grant or contract under paragraph (1):

“(A) shall be designed to engage 
patients, caregivers, and authorized 
representatives in informed decision 
making with healthcare providers;Illus
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and carried him the rest of the way to 
their ambulance on a high-tech alu-
minum stretcher.

I am absolutely sure that Congress 
would never replace the front man on 
an ambulance stretcher with a wheel 
to save manpower—yet, in a way, they 
did just that. I do not claim to know the 
correct way to optimize a healthcare 
consultation with computers—there 
may be one, but more importantly, 
there may not.

Blindly deciding that IT be substi-
tuted for humans is unenlightened. IT 
is not a magic potion that makes un-
pleasant or inconvenient things disap-
pear. The right thing to do is to ask, as 
a Chinese engineer did 2,000 years ago, 
“If we’re going to put a wheel on this 
thing, where is the best place to put it?”

And to realize that two questions 
were asked.	
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“(B) shall present up-to-date clinical 
evidence about the risks and benefits 
of treatment options in a form and 
manner that is age-appropriate and 
can be adapted for patients, caregivers, 
and authorized representatives from 
a variety of cultural and educational 
backgrounds to reflect the varying 
needs of consumers and diverse levels 
of health literacy;

“(C) shall, where appropriate, ex-
plain why there is a lack of evidence to 
support one treatment option over an-
other; and

“(D) shall address healthcare deci-
sions across the age span, including 
those affecting vulnerable populations 
including children.”

Unless Congress thinks of teach-
ers as “educational tools,” I think we 
can take it as written here that they 
expect this to be some kind of com-
puter program. But read it again and 
pay attention to the language. When 
was the last time you saw a computer 
program that “engaged,” “explained,” 
or “addressed decisions?” Or, for that 
matter, when have you seen a pro-
gram that “adapted for [...] a variety 
of cultural and educational back-
grounds to reflect the varying needs 
of consumers and diverse levels of 
health literacy”? 

These paragraphs legislate that 
Obamacare will fund research in 
heavy-duty state-of-the-art artificial 
intelligence—I somehow doubt that 
is what Congress intended it to say. 
I posit that Congress worried about 
having enough doctors and nurses for 
this new healthcare, so they wanted to 
use computers to cut down the talk-
ing and explaining. In other words, 
they want to save manpower—by re-
placing the front man on the hand-
barrow with a wheel.

I have used a handbarrow once, 
in an emergency. My fellow campers 
and I constructed it from two young 
pine trees, wrapping the sail from 
our tent around them. Compared to 
a wheelbarrow, it was both easier and 
faster, because the front man did not 
get stuck in any holes or hit any rocks, 
and he helped with all of navigation, 
lifting, locomotion, and steering. 
When we met the first responders, 
they gently lifted our friend with his 
injured leg from our makeshift ver-
sion to their professional handbarrow 

Blindly deciding  
that IT be 
substituted 
for humans is 
unenlightened. 
IT is not a magic 
potion that makes 
unpleasant  
or inconvenient 
things disappear.
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A cohesive, independent solution for bringing 
provenance to scientific research.

By Zachary Hensley, Jibonananda Sanyal, and Joshua New

Provenance in 
Sensor Data 
Management 

In today’s information-driven  workplaces, data 
is constantly being moved around and undergoing 
transformation. The typical business-as-usual approach  
is to use email attachments, shared network locations, 
databases, and more recently, the cloud. More often 
than not, there are multiple versions of the data sitting 

in different locations, and users of 
this data are confounded by the lack of 
metadata describing its provenance—
or in other words, its lineage. The 
ProvDMS project at the Oak Ridge Na-
tional Laboratory (ORNL) described in 
this article aims to solve this issue in 
the context of sensor data. 

ORNL’s Building Technologies Re-
search and Integration Center has re-
configurable commercial buildings de-
ployed on flexible research platforms 
(FRPs). Figure 1 is a Google Earth mod-
el of a medium-size commercial office 
building that is part of the ORNL’s 
FRP apparatus. These buildings (metal 
warehouse and office) are instrument-
ed with a large number of sensors that 
measure variables such as HVAC effi-
ciency, relative humidity, and tempera-
ture gradients across doors, windows, 
and walls. The sensors acquire sub-
minute resolution data from hundreds 

of channels. Scientists conduct experi-
ments, run simulations, and analyze 
the data. The sensor data is also used 
in elaborate quality assurance exercis-
es to study the effect of systemic faults. 
The two types of commercial build-
ings comprising the FRPs stream data 
at a 30-second resolution for a total of 
1,071 channels for both buildings.

The sensor data collected from the 
FRPs is saved to a shared network lo-
cation accessible by researchers. It be-
came apparent that proper scientific 
controls required not just managing 
the data acquisition and delivery, but 
also managing the metadata associ-
ated with temporal subsets of the sen-
sor data. The ProvDMS, or Provenance 
Data Management System, for the 
FRPs allows researchers to retrieve 
data of interest, as well as trace its 
lineage. The life cycle of most objects 
consists of creation, curation, transfor-
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mation, archival, and potentially dele-
tion. Provenance is the tracking of such 
information.8

ProvDMS provides researchers with 
a one-stop shop for all data transfor-
mations, allowing them to effectively 
trace their data to its source so that 
experiments and derivations of experi-
ments can be reused and reproduced 
without the overhead of repeating ev-
ery experiment.

There are a number of existing soft-
ware systems for provenance data col-
lection with strong workflow integra-
tion. Chimera6 is a process-oriented 
provenance system that manages deri-
vation and analysis of data objects in 
collaboratory environments. It stores 
provenance information that can be 
used to regenerate, compare, and au-
dit data derivations within the system. 
The Karma provenance system7 allows 
users to collect and query provenance 
of scientific data processes with the 
ability either to run stand-alone or as 
part of a greater cyber-infrastructure 
setup. The Karma system is intimately 
connected with its data as a result of 
its close workflow integration. Vis-
Trails4,5 provides support for scientific 
data exploration and visualization 
with a strong focus on work flow as 
provenance objects to represent com-
plex computations. Workflow in Vis-

Trails can be visualized as pipelines 
of procedure sequences that lead to a 
computational output. The EU Prov-
enance Project1 uses an open prov-
enance architecture for grid systems 
with a service-oriented approach, 
namely for aerospace engineering and 
organ-transplant management. In 
the EU Provenance Project, the prove-
nance system was used to track medi-
cal information in units of patient/
doctor interactions. The project at-
tempted to find equilibrium between 
the amount of data collected and min-
imizing the intrusiveness of the col-
lection effort in order to preserve the 
quality of medical care.

While many of these systems are 
complete software solutions, Core 
Provenance Library (CPL)3 was de-
signed to be application independent 
and easy to integrate into new or exist-
ing systems. Because of its indepen-
dent nature, CPL was used in ProvD-
MS to serve as the provenance back 
end. This allowed the user interface 
of ProvDMS to be separate from CPL’s 
object constraints, thereby producing 
a positive user experience.

Effective Provenance Design
Particular implementations of prove-
nance can vary greatly depending upon 
a few important attributes. The focus 

of ProvDMS is on researcher require-
ments, granularity of the provenance, 
workflow requirements, and object 
design. Its design principles empha-
size the importance of user needs, tak-
ing a cohesive but independent stance 
on the integration of provenance with 
user tools.

Granularity. Most systems incorpo-
rate both fine and coarse granularity to 
avoid restricting the type and amount 
of data available to users.2 ProvDMS im-
plements a fine-granularity system but 
provides a mixed-granularity interface 
for users so that tracing lineage using 
visualization is contextual. Users are 
shown generalizations as coarse prov-
enance objects that can be contextually 
expanded to provider finer granularity 
information. This allows users still to 
see finer, exact provenance objects that 
specifically map to logical objects in 
the system but are not overburdened 
with unnecessary information when 
viewing the provenance.

Tool integration with workflow. 
ProvDMS’s design was largely deter-
mined by the “when” and “how” of 
integrating with existing tools. Most 
tools have limited to no provenance-
tracking abilities. ORNL researchers 
routinely use a wide array of specialized 
tools from various vendors that do not 
have provenance support. As a result, 
ProvDMS could not have many restric-
tions. While challenging, this steered 
the focus toward data infrastructure re-
quirements to enable tracing the prov-
enance while facilitating development 
of software interfaces to support future 
system integration. To enable a sense of 
workflow, ProvDMS uses the notion of a 
user experiment, where the sensor data 
resides once exported from the system. 
Users may choose any tool and have the 
option of importing different states of 
their experiments back into ProvDMS.

Provenance of provenance. The abil-
ity of a provenance system to track how 
it creates and tracks provenance ob-
jects was not an initial design require-
ment for ProvDMS but emerged from 
the abilities of CPL. By tracking prov-
enance of provenance (PoP), ProvDMS 
provides specific information about 
when the provenance system created 
new objects or versions of objects, 
which user was responsible for the 
creation of objects, the process ID that 
performed tracking functions, and sys-

Figure 1. Model of a building that is part of the ORNL’s FRP apparatus.
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tem information such as the executing 
environment. Administrators of this 
system can now track system usage 
over time and may detect patterns in 
how the system and provenance data 
storage is being used.

Uniqueness. Provenance systems 
inherently involve hierarchical connec-
tivity among objects. The use of CPL as 
the provenance back end allows users 
to access provenance object ancestry 
easily. Additionally, CPL’s versioning 
system ensures each object is uniquely 
identifiable, which solves the design 
issue of the user’s ability to define an 
experiment multiple times.

Object design. Object design shaped 
the entirety of ProvDMS and arguably 
comprised the most difficult set of de-
cisions to make. The first challenge was 
to determine how users are expected to 
interact with the data that would deter-
mine the required provenance objects. 
This was difficult to gauge for a system 
that was still on paper. We were un-
sure of the level of granularity of prov-
enance to store and expose since there 
was the possibility that much of the 
provenance data could go unused. We 
leaned on the side of finer granularity 
while providing support across a spec-
trum of granularity to account for the 
yet-to-discover unknowns in ProvDMS.

Provenance objects in CPL are 
uniquely defined using three main 
attributes: Name, Type, and Origina-
tor. In ProvDMS’s use of CPL, Name 
describes the object, and Type deter-
mines its granularity. The Origina-
tor is to be used in a similar vein to 
Java’s package-naming convention, 
via hierarchical domain namespaces. 
ProvDMS uses the name of the system 
as the top-level domain, user as the 
next level, and interface as the final 
level. This ensures the existence of un-
derstandable and unique originators 
differentiating the experiments (and 
corresponding provenance objects) 
based on authenticated users.

System Architecture, Design, 
Cohesion, and Independence
The FRPs use Campbell Scientific’s 
data loggers for collecting data from 
1,071 channels in the facility. Camp-
bell Scientific’s Loggernet Database 
(LNDB) runs on a dedicated server and 
populates a MySQL database with the 
raw sensor output. ProvDMS runs on 

another dedicated server and retrieves 
the data from the MySQL database 
to fulfill user needs, thereby provid-
ing complete separation of the raw 
data store from the provenance trace. 
LNDB creates the required schema 
on the data server, and ProvDMS is 
architected to sense the schema and 
its logical relationship to the FRP in 
order to present a cogent, simplified 
interface to the users. Checks are in 
place to ensure data backup, security, 
and isolation since much of the data is 
proprietary.

Figure 2 shows the logical repre-
sentation of the physical layout of FRP 
data. This influences the provenance 
object design of ProvDMS. As illustrat-
ed in the figure, the sensor data is sepa-
rated into stations, each containing a 
set of data loggers. These data loggers 
consist of a set of data channels. Physi-
cally, these channels relate to sensors 
placed in different locations through-
out the test facility.

The ultimate goal of the provenance 
system is to trace the participation of 
temporal subsets of sensor data in user 
experiments. ProvDMS treats these as 
objects. Researchers export a tempo-
ral subset of the chosen sensor chan-

nels as an experiment, which can then 
go through various transformations in 
the user’s workspace. Once research-
ers feel ready, they may submit the 
“state” of their experiment to the sys-
tem, along with any additional derived 
data, supporting files, results, or other 
metadata. ProvDMS allows users to 
map the uploaded files as a derivative 
of the original experiment.

The logical representation of FRP 
data was designed to correspond to 
the provenance objects. Each type of 
provenance object relates to its logi-
cal representation. These objects are 
similar in their representation, with a 
few differences. Importantly, there are 
additional links from data loggers to 
their associated files. In the case of us-
er-defined experiments, these are the 
files holding channels of sensor data. 
For derived experiments, these are any 
associated files used in the derivation. 
Figure 3 illustrates the differences in 
their representation. Two types of links 
are used: version dependencies and da-
ta-flow dependencies. Differences be-
tween these links are important for the 
cycle-avoidance algorithm in the CPL.

In addition, there are two types of 
links between objects: version depen-

Figure 2. Logical representation of the physical layout of FRP data.
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dencies are used for objects created as 
new versions of previous objects; data-
flow dependencies are used as ances-
try links between differing objects, 
representing a translation of data be-
tween them. The differences between 
these two types of links are very impor-
tant for CPL’s cycle-avoidance algo-
rithm (discussed in more detail later 
in the section covering provenance 
visualization).

Architecturally, ProvDMS has a 
layered design. Figure 4 is a diagram 
showing its layers and components. 
The compatibility layer includes two 
wrappers: a PHP wrapper and a C++ 

wrapper the PHP wrapper interacts 
with. The C++ wrapper abstracts the 
provenance back-end interaction. 
The different components interact 
cohesively:

˲˲ The ProvDMS layer represents the 
user interface for provenance interac-
tion. Figure 5 shows the experiment 
creation interface, which allows users 
to select subsets of data for experiment 
objects and to interact with managed 
sensor data, visualize provenance in-
formation, and either define or derive 
experiments.

˲˲ The compatibility layer abstracts 
the API calls of CPL so ProvDMS can 

interact with the underlying system. 
Using the PHP wrapper, the system can 
pass queries from the coupled software 
to the database back end, as well as 
share those results.

˲˲ The provenance database is the 
storage layer of ProvDMS. The inter-
actions between the database and 
the compatibility layer allow for prov-
enance information to be gathered 
when users define or derive experi-
ment objects while interacting with 
ProvDMS.

˲˲ The sensor database stores FRP 
sensor data, as well as stored proce-
dures for fast querying when needed. 
Most data retrieved from this layer is 
joined with particular FRP stations or 
data loggers before transmission. It is 
independent of the provenance system 
in order to facilitate decoupled scal-
ability and interfacing with other soft-
ware components being developed for 
the FRPs.

Using CPL allows ProvDMS to act 
independently of provenance-calling 
API hooks when information has to be 
saved to the provenance database. An 
abstraction layer handles the transla-
tion of user actions to CPL API calls for 
inserting or querying provenance in-
formation. This is encapsulated into a 
compatibility layer containing the PHP 
and C++ wrappers.

The PHP code in Figure 6 demon-
strates the wrapper’s interaction with 
C++ in order to store or retrieve prov-
enance data.

CPL, which is written in C, already 
includes some C++ functionality. The 
C++ wrapper abstracts the interaction 
with CPL via a heavily object-oriented 
interface. The code snippet in Figure 7 
illustrates the creation of provenance 
objects. As illustrated, PHP communi-
cates with the C++ wrapper using exec 
calls. The decision to forgo a PHP exten-
sion was based on a few driving factors:

Trade-off. The trade-off between de-
coupled generality and performance 
overhead of exec calls, especially for a 
small number of them, leaned toward 
a PHP exec framework rather than a 
full PHP extension.

Simplicity. Using an exec call to an 
external C++ executable made it pos-
sible to maintain a simple parameter-
based call similar to that of bash.

Source. Including the C++ wrapper 
as an external executable while provid-

Figure 4. The layers and components of ProvDMS.
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Figure 5. The experiment creation interface.
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ing source code allows administrators 
to modify the wrapper based on organi-
zational needs.

Time to Implement. ProvDMS was 
designed and implemented in eight 
to nine weeks, and we made the best 
of the rapid development. A complete 
PHP extension implementation was 
outside the scope of the allocated time 
and budget for the project.

The integration with CPL was 
among the smoothest parts of ProvD-
MS’s implementation. Some minor dif-
ferences in testing and using CPL-inte-
grated systems on different client and 
server platforms exist. Open-SUSE 12.3 
was used for development and testing 
of ProvDMS, and Red Hat Enterprise 
Linux 6 for the production version.

One of the earliest hitches involved 
interactions between PHP and exec’d 
C++ calls. In order for CPL to provide 
PoP, it must pull some information 
from the executing environment. This 
works perfectly for client-side execu-
tion of CPL code, but once the CPL 
code is executed via PHP exec calls, 
certain environment variables are no 
longer retrievable. These variables are 
necessary to save information about 
provenance sessions, and thus the 
provenance back end cannot continue. 
A quick hot-fix to pass in proper envi-
ronment information evaded the pull 
from environment variables.

Features and Usage
ProvDMS was built not just to trace 
the provenance of experiments, but 
also to be a one-stop access point for 
all sensor data-related activities for 
the FRPs. It provides the following in-
terface features:

Experiment creation. ProvDMS al-
lows users to select subsets of stations, 
data loggers, and channels as a defi-
nition of a new experiment. This in-
formation is parsed and saved as CSV 
files on the server. On request, users 
can export this data. On creation, each 
experiment is defined as a provenance 
object by the provenance back end—
creating all finer-granularity objects in 
addition.

Experiment derivation. Users up-
load and define experiments as deri-
vations of previous experiments. This 
means users can save the state of their 
data and any associated files in ProvD-
MS, allowing them to trace the deriva-

tion in the future.
Data status. The system provides 

a dashboard with Sparklines,9 which 
helps summarize the status of data on 
the server. Sparklines are small trend-
ing plots that have no axes labels, allow-
ing them to be embedded inline with 
text, thus permitting users to pick out 
trends in the data easily. Sparklines can 
display the status of key channels from 
different sensors for quick assessment 
and detection of faults in the system.

Provenance visualization. The sys-
tem provides visualization capabili-
ties so users can easily visualize their 
data’s lineage. The subject of prov-
enance visualization warrants a sepa-
rate discussion, covered in more de-
tail in the next section.

Much of the early development of 
ProvDMS was spent ensuring it is natu-
ral and simple to use. For example, the 
experiment creation feature (Figure 5) 
is designed with effective user inter-
action principles to enable a simple 
“flow,” and it emphasizes the impor-
tance of efficiency when managing 
user data.

Provenance Visualization
The first question anyone should ask 
when beginning visualization is simi-
lar to the first question that should 
be asked when designing a prove-
nance system: “What information is 
important?”

The developers of CPL suggest the 
use of their Orbiter tool to visualize 

Figure 6. The wrapper’s interaction with C++.

Function prov_new_experiment ( $experiment )
{
	 global  $comman;
	 global  $userID;

	 $retInfo = Array() ;
	 $retStatus = null ;

	 $exp = new Provenance_Object ( $experiment [
		  'name' ], "Experiment" );
	 $exp–>addPrperty ( 'time_begin' ,  $experiment [|
		  'time_begin' ]  ) ;
	 $exp–>addProperty( 'time_end' ,  $experiment [
		  'time_end'  ]  );

	 $params  = ' ' ;
	 $params  . = '  −c  "create_object"';
	 $params  . = '  −n  "' .  $exp–>getName()  . '"'; 
	 $params  . = '  −t  "' .  $exp–>getType ()  .  '"';
	 $params  . = '  −o  "' .  $exp–>getOriginator()  .  '"';
	 $params  . = '  −p  "' .  $exp–>getProperties()  . '"';
	 $params  . = '  −u  "' .  $userID . '"';
	 $params  . = '  −s  "Yes"'; 
					     //
	 Soft-create, make new version if already exists

	 exec ( $command . $params , $retInfo , $retStatus );

}

Figure 7. The creation of provenance objects.

bool hook_create_object( const char * user, Prov_Params
	 params)
{
	   int pid = getpid();

	   odbcHandler * handler = new odbcHandler( "CPL",
	       true, user, pid );
	   handler–>new_object( params );
	   delete handler;

	   return true;

}
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provenance using CPL. Orbiter is an ex-
ternal visualization program developed 
in Java. It pulls information from the 
CPL database (an SQL back end in this 
case) and visualizes it using a node-link 
graph. It includes features for time-
based visualization and node grouping 
for nodes with common links. It is an 
excellent tool for visualizing the infor-
mation from the CPL database.

As easy as it would have been to 
make Orbiter ProvDMS’s visualization 
tool, there are some issues. Primary 
among these is CPL’s use of a cycle-
avoidance algorithm to version and 
link objects without creating cycles in 
object provenance. Contextual infor-

mation must be displayed as part of the 
visualization. This means removing 
particular information from CPL’s an-
cestry queries. Figure 8 shows a subset 
of provenance information created by 
ProvDMS and its integration with CPL. 
Two versions of the finer-granularity 
objects exist as a result of data-flow 
dependencies and the cycle-avoidance 
algorithm. These extra nodes must be 
removed for clean visualization of the 
provenance. This information is cor-
rect in its representation, but many of 
the objects are not important to users 
and can obfuscate the data’s lineage in 
the visualization. For a clearer repre-
sentation of the provenance, the dou-

ble versions created via the translated 
objects as a result of cycle avoidance 
must be removed.

It is important to note how specific 
these parsed cases are. In the figure, the 
experiment objects are missing the ex-
tra translation versions because these 
experiments are linked only via ver-
sion dependencies. This means a user 
has created a new experiment with the 
same identification as a previous ex-
periment. This is a cue for ProvDMS’s 
integration with CPL to create a new 
version of this experiment. This proce-
dure bypasses the need to link objects 
manually via data-flow dependencies. 
A situation like this increases the dif-
ficulty in parsing individual cases for 
visualization.

Types of Visualization
ProvDMS’s visualization is Web en-
abled using various JavaScript visual-
ization libraries such as the JIT (Java-
Script InfoVis Toolkit) and D3.js (Data 
Driven Documents). ProvDMS includes 
a few types of visualizations:

Non-unique node-link tree. Objects 
in CPL’s provenance implementation 
are inherently unique because of the 
Name, Type, Originator object conven-
tion. Though objects are initially cre-
ated uniquely, the nature of provenance 
is to provide a hierarchical flow of data. 
Objects will undoubtedly have mul-
tiple versions at some point in their life 
cycles. Multiversioned objects do not 
change their identification from one 
version to another. As only their ver-
sion changes, the nodes are no longer 
uniquely identified using the same con-
vention for this type of visualization.

Force-based node-link layout. Clas-
sical approaches to the visualization 
of provenance focus on tree-like views 
rooted from the top-level provenance 
object (often a selected one). CPL’s 
objects are designed to use this type of 
inheritance as well, relying on descen-
dants and ancestors for the traversal 
of provenance information. Even 
then, it can be useful to visualize the 
lineage of objects differently, such as 
employing a force-based layout. This 
layout still uses a node-link format—
as the other ones do—but it uses a sys-
tem of forces acting on each node to 
determine their positions. This makes 
the system feel more interactive, as us-
ers have the ability to apply forces to 

Figure 8. Logical representation of a subset of provenance data.
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nodes in the graphs by dragging them. 
Figures 9 and 10 demonstrate some 

interesting results of this type of visu-
alization. In Figure 9, a traceable flow 
of data lineage is visible, as well as a 
natural grouping of objects with simi-
lar granularity. Solid gray lines repre-
sent hierarchical connections between 
provenance objects that group togeth-
er as information relevant to a single 
version of a user-defined or imported 
experiment. Orange-colored nodes 
represent the top-level experiment ob-
jects that are parents of all associated 
finer-granularity objects such as sta-
tions, data loggers, and channels (col-
ored blue, red, and green, respectively). 
In Figure 10, the innermost node and 
all of the finer-granularity nodes’ con-
nections create a pseudo “weight” that 
encompasses the entirety of the group-
ing of objects. Each object has its asso-
ciated weight, which affects the layout 

of all connected nodes. The grouping 
tends to act as a single node in the vi-
sualization.

Unique, contextual node-link tree. 
The current implementation of visual-
ization in ProvDMS uses this approach 
in its provenance-visualization mod-
ule. Similar to the first approach, this 
one uses a node-link tree to visualize 
the provenance in a hierarchical fash-
ion. Nodes are expanded asynchro-
nously, pulling information from the 
provenance database as they do. Con-
textual information can be shown for 
certain objects. In this manner, even 
finer granularity can be visualized by 
processing provenance object proper-
ties in addition to the objects them-
selves. Figure 11 is an example of this 
visualization, using contextual node-
link trees. Two nodes are expanded to 
show meta-information at a finer gran-
ularity level than their parent nodes. 

Experiment nodes are the coarsest 
objects, while information specific to 
provenance objects, shown in rectan-
gles, is at the finest granularity level.

Conclusion
This attempt to bring provenance to 
scientific research has highlighted 
some of the challenges and potential 
solutions for applying provenance to 
generalized data streams. Although 
we successfully built a system to han-
dle provenance for ORNL’s FRPs, this 
specific use case makes it less general 
than many other provenance systems. 
The availability of CPL as a library has 
been beneficial. The success with us-
ing CPL can be attributed to ProvDMS 
being independent of the provenance 
back end, providing the required flex-
ibility in system design. The C++ and 
PHP-wrapper code developed during 
the project was contributed back to the 

Figure 10. A close-up of one of the groupings in the force-based node-link layout.
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authors of CPL for future integration.
Research efforts are under way in 

automated sensor-data validation, es-
timation for missing or corrupt data, 
and machine-learning estimations of 
sensor health with plans to integrate 
work flows with ProvDMS. The systems 
will connect to the underlying layers of 
ProvDMS, allowing integrated track-
ing of the provenance for data validity, 
fault detection, and quality assurance.

Despite challenging design deci-
sions, usability both guided and re-
stricted the abilities of ProvDMS. We 
limited the features and the granularity 
of collected provenance to ensure min-
imal restrictions and little additional 
training required of the researchers. 
The result is a simple interface for us-
ers to keep track of their data and ex-
periments manually. The modular de-
sign of ProvDMS will allow the addition 
of newer provenance-collection meth-
ods as the system evolves. The knowl-
edge derived from our experience with 
ProvDMS’s design and use should soon 
lead to further improvements.

In the end, ProvDMS can serve as 

an example of implementing and us-
ing provenance of a common data ar-
chetype in an environment normally 
devoid of information-tracking meth-
ods. ProvDMS should demonstrate the 
power of such systems for enabling re-
producible science.
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On  August 5,  2012,10:18 P.M.  PST,  a large rover named 
Curiosity made a soft landing on the surface of Mars. 
Given the one-way light-time to Mars, the controllers 
on Earth learned about the successful touchdown 14 
minutes later, at 10:32 p.m. PST. As can be expected, 
all functions on the rover, and on the spacecraft 
that brought it to its destination 350 million miles 
from Earth, are controlled by software. This article 
discusses some of the precautions the JPL flight 
software team took to improve its reliability. 

To begin the journey to Mars you need a launch 
vehicle with enough thrust to escape Earth’s gravity. 
On Earth, Curiosity weighed 900 kg. It weighs no more 
than 337.5 kg on Mars because Mars is smaller than 
Earth. Curiosity began its trip atop a large Atlas V 541 
rocket, which, together with fuel and all other parts 
needed for the trip, brought the total launch weight  
to a whopping 531,000 kg, or 590 times the weight  
of the rover alone. 

Within two hours following launch, 
though, most parts of the launch ve-
hicle had been discarded. At that 
point, the remaining main parts of the 
spacecraft included the cruise-stage, 
the backshell with a large parachute 
inside, the descent-stage with its intri-
cate sky crane mechanism, the rover, 
and a large heat shield (see Figure 1). 

The cruise-stage was equipped with 
solar panels to help power the space-
craft during its nine-month trip to 
Mars, as well as a star tracker to help 
with navigation, and thrusters to per-
form small course corrections. All 
were cast off approximately 10 min-
utes before the spacecraft entered the 
Martian atmosphere. 

The remaining parts were now all 
contained within the backshell and 
protected by the heat shield. The 
backshell, large enough to hold a 
small car, had its own set of thrust-
ers to make small course adjustments 
during the hypersonic entry into the 
Martian atmosphere. During entry, 
the backshell cast off several large 
chunks of ballast mass (weighing 
some 320 kg) to adjust the center of 
gravity for the landing at the com-
mand of the rover computer that con-
trols the entire mission. 

Approximately three minutes be-
fore landing the parachute deployed 
to slow the spacecraft from 1,500 
km/h to 300 km/h. The heat shield 
was ejected, and less than a minute 
before touchdown the descent stage 
dropped away from the backshell (see 
Figure 2). From this point on it was up 
to the descent stage to guide the rover, 
with wheels deployed, to the surface 
(see Figure 3), disconnect itself, and 
fly away a safe distance to crash. All 
steps in this sequence were again con-

Mars 
Code 

doi:10.1145/2560217.2560218

Redundant software (and hardware) ensured 
Curiosity reached its destination and 
functioned as its designers intended. 

By Gerard J. Holzmann 

This image depicts the “fill-packet” 
transmitted by the Curiosity rover many 
times each sol (a day on Mars) whenever 
there is no useful telemetry to send to Earth. 
The fill packet lists 50 members of the NASA 
JPL flight software team as well as an in 
memoriam list of another 18, including  
the crew of the Challenger and Columbia 
shuttles and the astronauts killed in a pre-
launch test for Apollo 1, and inspirational 
remarks from astronomer Carl Sagan.
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includes a good development process, 
with clearly stated requirements, re-
quirements tracking, daily integration 
builds, rigorous unit and integration 
testing, and extensive simulation. 

This article does not revisit these 
well-known principles of software de-
sign. Instead, it focuses on a different 
set of precautions the flight software 
team took in the development of the 
MSL mission software that is perhaps 
less common. We restrict ourselves 
here to three specific topics: First, the 
coding standard we adopted, which is 
distinguished by being sparse, risk-
based, and supported by automated 
compliance-checking tools; second, 
the redefined code-review process we 
adopted, which allowed us to thor-
oughly scrub large amounts of code 
efficiently, again leveraging the use of 
tools; and third, logic model-check-
ing tools to formally verify mission-
critical code segments for the exis-
tence of concurrency-related defects. 

Risk-based coding rules. No meth-
od can claim to prevent all mistakes, 
but that does not mean we should 
not try to reduce their likelihood. Be-
fore we can do so, though, we have to 
know what types of mistakes occur 

trolled by one of two available com-
puters located within the body of the 
rover itself. 

With each new mission flown to 
Mars, the size and complexity of both 
spacecraft hardware and software has 
increased. The Mars Science Labora-
tory (MSL) mission, for instance, uses 
more code than all previous missions 
to Mars combined, from all countries 
that have tried to do it. This rapid 
growth in the size of the software is 
clearly a concern, but one not unique to 
this application domain. Unlike most 

other software applications, though, 
the embedded software for a spacecraft 
is designed for a one-of-a-kind device 
with an uncommon array of custom-
built peripherals. The code targets 
just one user (the mission), and for the 
most critical parts of the mission the 
software is used just once, as in the all-
important landing phase, which lasts 
only minutes. Moreover, the software 
can be frustratingly difficult to test in 
an accurate representation of the en-
vironment in which it must ultimately 
operate, yet there are no second chanc-
es. The penalty for even a small coding 
error can be not just the loss of a rare 
opportunity to expand our knowledge 
of the solar system, it can also mean the 
loss of a significant investment and put 
a serious dent in the reputation of the 
responsible organization. 

Reducing Risk 
There are standard precautions that 
can help reduce risk in complex soft-
ware systems. This includes the defi-
nition of a good software architec-
ture based on a clean separation of 
concerns, data hiding, modularity, 
well-defined interfaces, and strong 
fault-protection mechanisms.18 It also 

 key insights
 � �The software that controls an interplanet- 

ary spacecraft must be designed to  
a high standard of reliability; any small 
mistake can lead to the loss of the mission  
and its unique opportunity to expand  
human knowledge. 

 � �Extraordinary measures are taken in both 
hardware and software design to ensure 
spacecraft reliability and that the system 
can be debugged and repaired from 
millions of miles away. 

 � �Formal methods help verify intricate 
software subsystems for the potential  
of race conditions and deadlocks;  
new model-checking techniques  
automate the verification process. 

Figure 1. Spacecraft parts. 
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most often in this domain. Finding 
the data is not difficult. Most anoma-
lies that have affected space missions 
are carefully studied and document-
ed, with most information publicly 
available. We used it to categorize the 
root causes of each software anomaly 
to produce a list of the primary areas 
of concern. 

Among them are basic coding 
and design errors, especially those 
caused by an undisciplined use of 
multitasking. Other frequently oc-
curring errors originate in the use 
of dynamic memory-allocation tech-
niques, which in the early days of 
space exploration often meant the 
use of dynamic memory overlays. Fi-
nally, the data also shows even stan-
dard fault-protection techniques can 
have unintended side effects that 
can also cause missions to fail. 

The coding standard we developed 
based on this study differs from many 
others in that it contained only risk-
related, as opposed to style-related, 
rules.9,13 Our view is that coding style 
(for instance, where curly brackets are 
placed and how a loop statement is for-
matted) can be adjusted easily to the 
preferences of a viewer (or reviewer) us-
ing standard code-reformatting tools. 
Risk-reduction, though, is a consid-
eration that should trump formatting 
decisions. We used two criteria for in-
clusion of rules in our new JPL coding 
standard: First, the rule had to corre-
late directly with observed risk based 
on our taxonomy of software anoma-
lies from earlier missions; and second, 
compliance with the coding rule had to 
be verifiable with tool-based checks. 

Compliance with a coding standard 
need not be an all-or-nothing proposi-
tion; not all code is equally critical to 
an application. The coding standard 
we developed therefore recognizes 
different levels of compliance that ap-
ply to different types of software (see 
Figure 4). 

Level-one compliance, or LOC-1, 
sets a minimal standard of workman-
ship for all code written at JPL. There 
are just two rules at this level: The first 
says all code must be language compli-
ant; that is, it cannot rely on compiler-
specific extensions that go outside the 
language definition proper. For flight 
software the language standard used 
at JPL is ISO-C99. The second rule at 

this level requires that all code can pass 
both the compiler and a good static 
source code analyzer without triggering 
warnings. For this test, the compiler is 
used with all warnings enabled. 

LOC-2 compliance adds rules that 

are meant to secure predictable execu-
tion in an embedded system context. 
One important rule defined at this lev-
el is that all loops must have a statical-
ly verifiable upper bound on the num-
ber of iterations they can perform. 

Figure 2. MSL descent stage.

Figure 3. MSL sky crane. 

Figure 4. Life cycle of a code comment; orange arrow indicates where the developer  
disagrees with a code change but is overruled in the final review. 
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tools can prove their value. A static an-
alyzer will not tire of checking for the 
same types of defects over and over, 
night after night, patiently reporting 
all violations. We have therefore made 
extensive use of this technology. 

A wide range of commercial static 
source-code-analysis tools is on the 
market, each with slightly different 
strengths. We found that running 
multiple analyzers over the same code 
can be very effective; there is surpris-
ingly little overlap in the output from 
the various tools. This observation 
prompted us to run not just one but 
four different analyzers over all code as 
part of the nightly integration builds 
for the MSL mission. 

The analyzers we selected—Cover-
ity, Codesonar, Semmle, and Uno—
had to be able to identify likely bugs 
with a reasonably low false-positive 
rate, handle millions of lines of code 
efficiently, and allow for the defini-
tion of custom checks (such as verify-
ing compliance with the rules from 
our coding standard). The output of 
each tool was uniformly reformatted 
with simple post-processing scripts 
so all tool reports could be made avail-
able within a single vendor-neutral 
code-review tool we developed, called 
Scrub. The Scrub tool was designed 
to integrate the output of the static 
analyzers and any other type of back-
ground checkers with human-gener-
ated peer code review comments in a 
single user-interface.8 

In peer code reviews, the reviewers 
are asked to add their observations 
to the code in the Scrub tool, which is 
prepopulated with static analysis re-
sults from the most recent integration 
build of the code. The module owner 
is required to respond to each report, 
whether generated by a human peer 
reviewer or by one of the static analy-
sis tools. To respond, the Scrub tool 
allows the module owner to choose 
from three possible responses: agree, 
meaning the module owner accepts 
the comment and agrees to change the 
code to address the concern; disagree, 
meaning the module owner has reason 
to believe the code as written should 
not be changed; and discuss, meaning 
the comment or report is unclear and 
needs clarification before it can be ad-
dressed (see Figure 5). 

The peer code reviews, and the re-

To reach LOC-3 compliance, one 
of the most important rules concerns 
the use of assertions. We originally 
formulated the rule to require all 
functions with more than 10 lines of 
code contain at least one assertion. 
We later revised it to require that the 
flight software as a whole, and each 
module within it, had to reach a mini-
mal assertion density of 2%. There is 
compelling evidence that higher as-
sertion densities correlate with lower 
residual defect densities.14 The MSL 
flight software reached an overall as-
sertion density of 2.26%, a significant 
improvement over earlier missions. 
This rate also compares favorably 
with others reported in the litera-
ture.1,7 One final departure from ear-
lier practice was that on the MSL mis-
sion all assertions remained enabled 
in flight, whereas before they were 
disabled after testing. A failing asser-
tion is now tied in with the fault-pro-
tection system and by default places 
the spacecraft into a predefined safe 
state where the cause of the failure 
can be diagnosed carefully before 
normal operation is resumed. 

LOC-4 is the target level for all mis-
sion-critical code, which for the MSL 
mission includes all on-board flight 
software. Compliance with this level of 
the standard restricts use of the C pre-
processor, as well as function pointers 
and pointer indirections. The cumula-
tive number of coding rules that must 
be complied with to reach this level 
remains relatively low, with no more 
than 31 risk-related rules. 

Safety-critical and human-rated 
software is expected to comply with 
the higher levels of rigor defined in 
LOC-5 and LOC-6. These two high-
est levels of compliance add all rules 
from the well-known MISRA C coding 
guidelines16 not already covered at the 
lower levels. 

We worked with vendors of static 
source code analysis tools, including 
Coverity, Codesonar, and Semmle, to 
develop automatic compliance check-
ers for the majority of the rules in our 
coding standard. Compliance with all 
risk-based rules could therefore be 
verified automatically with multiple 
independent tools on every build of the 
MSL software. 

One additional precaution we un-
dertook starting with the MSL mission 
was to introduce a new certification 
program for flight-software developers, 
allowing us to, for instance, discuss the 
detailed rationale for all coding rules 
and reinforce knowledge of defensive 
coding techniques. The certification 
program is concluded with an exam, 
passage of which is required for all de-
velopers who write or maintain space-
craft software. 

Tool-based code review. Not all 
software defects can be prevented 
by even the strongest coding rules, 
meaning it is important to devise as 
many methods as possible to inter-
cept the defects that slip through 
and use them as early and often as 
possible. One standard mechanism 
for scrutinizing software is peer code 
review. Traditionally, in a peer-code-
review session, expert developers are 
invited to provide feedback in a guid-
ed code walkthrough. This process 
can work exceptionally well, but only 
for relatively small amounts of code. 
If more than a few hundred lines of 
code are examined in a single session, 
the effectiveness of the session, mea-
sured by number of flaws exposed, 
decreases rapidly. Reviewing a few 
million lines of code in this manner 
would severely strain the system, if 
not the reviewers.8 

Peer reviewers can excel at identify-
ing design flaws but are much less reli-
able at the more down-to-earth job of 
checking for mundane issues like rule-
compliance and avoidance of com-
mon coding errors. Fortunately, this 
is where static source-code-analysis 

Figure 5. Coding standard levels of  
compliance. 

LOC-1: language compliance (2 rules)

LOC-2: predictable execution (10 rules)

LOC-3: defensive coding (7 rules)

LOC-4: code clarity (12 rules)

LOC-5: all MISRA shall rules (73 rules)

LOC-6: all MISRA should rules (16 rules)
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sponses to all comments and reports, 
are done offline, outside meetings. Just 
one face-to-face meeting per module 
code review is used to resolve disagree-
ments, clarify reports, and reach con-
sensus on the changes to the code that 
have to be made. 

In 145 code reviews held between 
2008 and 2012 for MSL flight software, 
approximately 10,000 peer comments 
and 30,000 tool-generated reports 
were discussed.20 Approximately 84% 
of all comments and tool reports led to 
changes in the code to address the un-
derlying concerns. There was less than 
2% difference in this rate between the 
peer-generated and the tool-generated 
reports. Explicit disagree responses 
from the module owner occurred in 
just 12.3% of the cases. The responses 
were overruled in the final code review 
session in 33% of those cases, lead-
ing to a required fix anyway. A discuss 
response was given for just 6.4% of all 
comments and reports, leading to a 
change in the code in approximately 
60% of those cases. 

These statistics from the MSL code-
review process illustrate that the large 
majority of comments and tool re-
ports led to immediately agreed-upon 
changes to the code and did not require 
discussion in the code review close-out 
meetings. The time saved allowed us to 
push the code-review process further 
than would have been possible other-
wise. Critical modules, for instance, 
could now be reviewed multiple times 
before the code was finalized for launch. 

Model checking. The strongest type 
of check we have in our arsenal for 
analyzing multithreaded code is logic 
model checking. The code for the MSL 
mission makes significant use of mul-
tithreading, with 120 parallel tasks 
being executed under the control of a 
real-time operating system. The po-
tential for race conditions therefore 
always exists and has been a signifi-
cant cause of anomalies on earlier mis-
sions. To thoroughly analyze the code 
for race conditions, we made exten-
sive use of the capabilities of the logic 
model checker Spin,10 together with an 
extended version of a model extraction 
tool for C code.12 

Spin was developed in the Comput-
ing Science Research group of Bell Labs 
starting in the early 1980s and has been 
freely available since 1989. We earlier 

used this tool on the verification of key 
parts of the control software for a num-
ber of spacecraft, including Cassini,21 
Deep Space One,5,6 and the Mars Explo-
ration rovers.11 We also used it in the 
recent investigation of possible triggers 
for unintended acceleration in Toyota 
vehicles.17 In almost all these cases, the 
verification effort succeeded in iden-
tifying unsuspected software defects, 
especially concurrency-related issues 
that would be very difficult to uncover 
by other means. 

The model checker Spin specifi-
cally targets verification of distributed-
systems software with asynchronous 
threads of execution. Its internal verifi-
cation algorithm is based on Vardi and 
Wolper’s automata-theoretic verifica-
tion method.23 Informally, Spin takes 
the role of a demonic process schedul-
er, trying to find system executions that 
violate user-defined requirements. 
Simple examples of the type of require-
ments that can be proven or disproven 
this way are the validity of program as-
sertions and the absence of deadlock 
scenarios. But the model checker can 
also reach farther by verifying more 
complex requirements on feasible or 
infeasible program executions that can 
be expressed in linear temporal logic.19 

We analyzed several critical soft-
ware components for the MSL mis-
sion, including a dual-CPU boot-
control algorithm (the algorithm that 
controls which of two available CPUs 
will take control of the spacecraft 
when it boots), the nonvolatile flash 
file system, and the data-management 
subsystem. Several vulnerabilities 
identified through these analyses 
could be eliminated from the code 
before the mission was launched, ef-
fectively helping reduce the risk of in-
flight surprises. The basic procedure 
of software model checking, using the 
tools we developed, can be illustrated 
with a small example. (Because NASA 
rules prevent us from publishing ac-
tual flight code from the rover, we use 
equivalent public-domain code for 
this example.) 

It can be unreasonably difficult to 
prove manually that a concurrent al-
gorithm is correct under all possible 
execution scenarios. We take as our 
example a non-blocking algorithm 
for two-sided queues presented in De-
tlefs et al.2 together with a four-page 

Peer reviewers can 
excel at identifying 
design flaws but 
are much less 
reliable at the more 
down-to-earth job 
of checking for 
mundane issues like 
rule-compliance 
and avoidance of 
common coding 
errors. 
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summary of a proof of correctness. A 
few years following its publication an 
attempt was made to formalize that 
proof with a theorem prover22 as part of 
a master’s thesis project.3 The formal-
ization revealed that both the original 
proof and the algorithm were flawed. 
A correction to the algorithm could 
be proven correct with the theorem 
prover.4 Each proof attempt, for both 
the original algorithm and the cor-
rected version, reportedly took several 
months. 

Lamport15 later formalized the 
original algorithm in +CAL, showing 
the flaws could be found more quickly 
through a model checker. Lamport 
noted the proof with the TLA+ model 
checker could be completed in less 
than two days, most of which was 
needed to define a formal model of the 
original algorithm in the language sup-
ported by the model checker. 

As shown here, a model extractor 
can help avoid the need for manual 
construction of a formal model as well, 
allowing us to perform these types of 
verification on multithreaded code 
fragments in minutes instead of days. 
We use the original algorithm from 
Detlefs2 to show how this verification 
approach works. With it, finding the 
flaw in the implementation of the al-
gorithm requires no more than typing 
in a few lines of text and executing a 
single command. 

The algorithm uses an atomic 
Double-word Compare-And-Swap, or 
DCAS, instruction; Figure 6 gives the 
semantics of this instruction as de-
fined in Detlefs.2 Figure 7 reproduces 
two C routines from Detlefs2 for adding 
an element to the right of the queue 
and for deleting an element from the 
same side. The routines for adding or 
deleting elements from the left side 
of the queue are symmetric. The node 
structure used has three fields: a left 
pointer L, a right pointer R, and an in-
teger value V. 

To verify the code we first define a 
simple test driver that exercises the 
code by adding and deleting elements 
(see Figure 8). For simplicity, this ex-
ample uses only the pushRight() and 
popRight() routines. 

In the example test driver in Figure 
8, the writer initializes the queue on 
line 74, and the reader waits until this 
step is completed on lines 57–59. The 

Figure 6. Semantics of the DCAS instruction. 

boolean DCAS (val *addr1, val *addr2,
              val  old1,  val  old2,
              val  new1,  val  new2)
{
    atomically {
        if (*addr1 == old1 && *addr2 == old2)
        {    *addr1 = new1;
             *addr2 = new2;
             return true;
        } else
        {    return false;
    }   }
}

Figure 7. C code for pushRight and popRight routines. 

 1 Node *Dummy, *LH, *RH;
 2 
 3 val
 4 pushRight(val v)
 5 {   Node *nd, *rh, *lh, *rhR;
 6 
 7     nd = (Node *) spin_malloc(sizeof(Node));
 8 
 9     if (!nd) return FULL;
10 
11     nd->R = Dummy;
12     nd->V = v;
13 
14     while (true) 
15     {   rh = RH;
16         rhR = rh->R;
17         if (rhR == rh)
18         {   nd->L = Dummy;
19             lh = LH;
20             if (DCAS(&RH,&LH,rh,lh,nd,nd))
21                 return OKAY;
22         } else
23         {   nd->L = rh;
24             if (DCAS(&RH,&rh->R,rh,rhR,nd,nd))
25                 return OKAY;
26     }   }
27 }
28 
29 val
30 popRight(void)
31 {   Node *rh, *lh, *rhL;
32     val result;
33 
34     while (true)
35     {   rh = RH;
36         lh = LH;
37 
38         if (rh->R == rh)
39             return EMPTY;
40 
41         if (rh == lh)
42         {   if (DCAS(&RH,&LH,rh,lh,Dummy,Dummy))
43                 return rh->V;
44         } else
45         {   rhL = rh->L;
46             if (DCAS(&RH,&rh->L,rh,rhL,rhL,rh))
47             {   result = rh->V;
48                 rh->R = Dummy;
49                 rh->V = null;
50                 return result;
51     }   }   }
52 }
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reader contains an assertion on line 64 
to verify the values sent by the writer 
are received in the correct order, with-
out omissions. 

We can perform the test using dif-
ferent threads for the reader and the 
writer, though these tests alone can-
not establish the correctness of the al-
gorithm. A model checker is designed 
to perform this type of check more rig-
orously. If there is any possible inter-
leaving of the thread executions that 
can trigger an assertion failure, the 
model checker is guaranteed to find 
it. To use the model checker we define 
a small configuration file that indenti-
fies the parts of the code we are inter-
ested in. This configuration file allows 
us to define an execution context for 
the system we want to verify by extract-
ing the relevant parts of the code and 

placing them into an executable sys-
tem that is then analyzed. 

Figure 9 shows the complete con-
figuration file needed to verify this ap-
plication. The first four lines identify 
four functions in source file dcas.c we 
are interested in extracting as instru-
mented function calls. The next two 
lines identify sample _ reader and 
sample _ writer as active threads 
that will call these functions. The last 
three lines in the configuration file de-
fine the required header file dcas.h 
that holds the definition of data struc-
ture Node and the name of the source 
file (dcas.c) to which the verifier must 
be linked for additional routines, in-
cluding a C encoding of the function 
that defines the semantics of the DCAS 
instruction (also shown in Figure 6). 

The verification of the algorithm 
can now be performed with a single 
command, using the model-extraction 
tool Modex and the model checker Spin 
(see Figure 10). 

The command takes approximately 
12 seconds of real time to execute, of 
which only 0.02 seconds is needed for 
the verification itself. The rest of the 
runtime is taken by the model extrac-
tor to generate the verification model 
from the source code, for Spin to con-

vert that model into optimized C code, 
and finally for the C compiler to pro-
duce the executable that performs the 
verification. None of these steps re-
quires further user interaction. 

A replay of the error-trail reveals a 
race condition that can lead to an as-
sertion violation and therefore shows 
the algorithm to be faulty (see figures 
11, 12, and 13). Statements executed 
by the writer process are marked with 
W and statements executed by the 
reader process with R. First consider 
Figure 11. After the initial call to ini-
tialize in the sample _ writer 
routine (line 74 in Figure 8), the writer 
initiates its first call to pushRight on 
line 77, with value 0. This value is then 
stored by executing lines 7 through 19 
in the pushRight routine. 

The next statement in the execution 
of pushRight would now be a call on 
DCAS to complete the update, but that 
call is delayed. Meanwhile, the sam-
ple _ reader is free to proceed with 
calls to popRight to poll the queue 
for new elements (see Figure 12). The 
first call (line 62 in Figure 8) succeeds 
and retrieves the stored value 0. The 
remaining steps in Figure 12 illustrate 
the execution of the popRight rou-
tine for that call. 

Figure 10. Verification steps.

$ time modex -run dcas.c
MODEX Version 2.0 - 2 September 2011
c_code line 111 precondition false:
    (Psample_reader->rv==Psample_reader->i)
wrote model.trail
...
pan: elapsed time 0.02 seconds

7.69 user 4.02 system 0:12.04 elapsed 97% CPU
$

Figure 11. Part 1, partial execution of pushRight by the test writer. 

74  W: initialize()
76  W: i = 0
76  W: (i<10)
77  W: # v = pushRight(i) ::
 7  W:   nd = (Node *) spin_malloc(sizeof(Node));
 9  W:   !(!nd)
11  W:   nd->R = Dummy;
12  W:   nd->V = v;
14  W:   (true)
15  W:   rh = RH;
16  W:   rhR = rh->R;
17  W:   (rhR == rh)
18  W:   nd->L = Dummy;
19  W:   lh = LH;

Figure 8. C code for a sample test driver. 

53 void
54 sample_reader(void)
55 {   int i, rv;
56 
57     while (!RH)
58     {    /* wait */
59     }
60 
61     for (i = 0; i < 10; i++)
62     {   rv = popRight();
63         if (rv != EMPTY)
64         {   assert(rv == i);
65         } else
66         {   i--;
67     }   }
68 }
69 
70 void
71 sample_writer(void)
72 {   int i, v;
73 
74     initialize();
75 
76     for (i = 0; i < 10; i++)
77     {   v = pushRight(i);
78         if (v != OKAY)
79         {   i--;
80     }   }
81 }

Figure 9. Modex configuration file. 

%X -e pushRight
%X -e popRight
%X -e initialize
%X -e dcas_malloc
%X -a sample_reader
%X -a sample_writer
%D
#include “dcas.h”
%O dcas.c
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ule implemented in approximately 
45,000 lines of C. The design of this 
subsystem was converted manually 
into a Spin verification model of ap-
proximately 1,600 lines, in close col-
laboration with the module designer. 
In most cases, the model-checking 
runs successfully identified the exis-
tence of subtle concurrency flaws that 
could be remedied in the software. 
For the file system software in par-
ticular, the model-checking runs be-
came a routine part of our regression 
“tests,” executed after every change 
in the code, often surprising us with 
the ease with which it could identify 
newly committed coding errors. 

Conclusion 
The MSL spacecraft performed flawless-
ly in delivering Curiosity to the surface of 
Mars in August 2012 where it is currently 
exploring the planet (see Figure 14). The 
rover has meanwhile achieved its pri-
mary mission, which was to determine 
if our neighbor planet could in principle 
have supported life in the distant past.

Every precaution was taken to opti-
mize the chances of success, and not 
just in the development of the soft-
ware. Critical hardware components 
were duplicated, including the rover’s 
main CPU. But though it is not difficult 
to see how duplication of an essential 
hardware component helps improve 
system reliability, seeing how one can 
use redundancy to improve software 
reliability is less simple. 

We gave two examples of how 
software redundancy was nonethe-
less used on the MSL mission. The 
first—emphasis on use of assertions 
throughout the code—may sound ob-
vious but is rarely recognized as a pro-

This call should not succeed be-
cause the pushRight call, initiated 
by the writer in Figure 11, has not yet 
completed its update. But the trap has 
now been set. The sample _ reader 
thread now moves on to the next call, 
after incrementing the value of i. This 
second call to popRight completes 
the same way it did before and again 
returns the value 0, resulting in the fail-
ure (see Figure 13). 

The model-extraction method used 
here is defined in such a way it allows 
for very simple types of instrumenta-
tion in basic applications. The model 
extractor always preserves the applica-
tion’s original control flow. However, 
it also supports the definition of more 
advanced abstraction functions in con-

figuration files (similar to the one in 
Figure 9) that can be used to reduce the 
complexity of extracted models. The 
default conversion rule, which defines 
a one-to-one mapping of statements 
from the source code into the model, 
allows for direct verification of a sur-
prisingly large set of multithreaded C 
programs and algorithms. 

The MSL mission made exten-
sive use of this automated capabil-
ity to verify critical multithreaded 
algorithms, directly using their im-
plementation in C. For larger subsys-
tems, we also manually constructed 
Spin verification models in a more 
traditional way and analyzed them. 
The largest such MSL subsystem was 
a critical data-management mod-

Figure 12. Part 2, call to popRight by the test reader. 

57  R: !(!RH)
61  R: i = 0
61  R: (i < 10)
62  R: # rv = popRight() ::
34  R:   (true)
35  R:   rh = RH;
36  R:   lh = LH;
38  R:   !(rh->R == rh)
41  R:   (rh == lh)
42  R:   DCAS(&(RH),&(LH),rh,lh,Dummy,Dummy)
43  R:   return rh->V;

Figure 13. Part 3, second call to popRight by the reader, with the writer still stalled in its 
first call to pushRight, leading to the assertion violation. 

62	 R: rv = popRight(i)  # rv is 0
63	 R: (rv != EMPTY)     # true
64	 R: assert(rv == i)   # true
61	 R: i++;              # i is now 1
61	 R: (i<10)            # true
62	 R: rv = popRight()   # rv is again 0
63	 R: (rv != EMPTY)     # true
64	 R: assert(rv == i)   # false

Figure 14. First MSL wheel tracks on Mars. 
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tection mechanism based on redun-
dancy. An assertion is always meant to 
be satisfied, meaning that technically 
its evaluation is almost always redun-
dant. But sometimes the impossible 
does happen, as when, say, external 
conditions change in unforeseen ways. 
Assertions prove their value by detect-
ing off-nominal conditions at the earli-
est possible point in an execution, thus 
allowing fault-protection monitors to 
take action and prevent damage.

The second example of software re-
dundancy was used to protect the criti-
cal landing sequence. This was the only 
phase of the mission in which both the 
main CPU and its backup were used 
simultaneously, with the backup in 
hot standby. Running the same land-
ing software on two CPUs in parallel 
offers little protection against soft-
ware defects. Two different versions 
of the entry-descent-and-landing code 
were therefore developed, with the 
version running on the backup CPU a 
simplified version of the primary ver-
sion running on the main CPU. In the 
case where the main CPU would have 
unexpectedly failed during the land-
ing sequence, the backup CPU was 
programmed to take control and con-
tinue the sequence following the sim-
plified procedure. The backup version 
of the software was aptly called “sec-
ond chance,” and to everyone’s relief 
proved itself redundant by never being 
called on to execute. 
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Every precaution 
was taken to 
optimize the 
chances of success, 
and not just in 
the development 
of the software. 
Critical hardware 
components 
were duplicated, 
including the rover’s 
main CPU. 
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Attackers commonly exploit  buggy programs to 
break into computers. Security-critical bugs pave the 
way for attackers to install trojans, propagate worms, 
and use victim computers to send spam and launch 
denial-of-service attacks. A direct way, therefore, 
to make computers more secure is to find security-
critical bugs before they are exploited by attackers. 

Unfortunately, bugs are plentiful. For example, the 
Ubuntu Linux bug-management database listed more 
than 103,000 open bugs as of January 2013. Specific 
widely used programs (such as the Firefox Web browser 
and the Linux 3.x kernel) list 7,597 and 1,293 open 
bugs in their public bug trackers, respectively.a Other 
projects, including those that are closed-source, likely 
involve similar statistics. These are just the bugs we 
know; there is always the persistent threat of zero-day 
exploits, or attacks against previously unknown bugs. 

Among the thousands of known bugs, which should 
software developers fix first? Which are exploitable?

a	 All bug counts exclude bugs tagged as “wishlist,” “unknown,” “undecided,” or “trivial.”

How would you go about finding the un-
known exploitable ones that still lurk? 

Given a program, the automatic ex-
ploit generation (AEG) research chal-
lenge is to both automatically find 
bugs and generate working exploits. 
The generated exploits unambigu-
ously demonstrate a bug is security-
critical. Successful AEG solutions pro-
vide concrete, actionable information 
to help developers decide which bugs 
to fix first. 

Our research team and others cast 
AEG as a program-verification task 
but with a twist (see the sidebar “His-
tory of AEG”). Traditional verification 
takes a program and a specification of 
safety as inputs and verifies the pro-
gram satisfies the safety specification. 
The twist is we replace typical safety 
properties with an “exploitability” 
property, and the “verification” pro-
cess becomes one of finding a pro-
gram path where the exploitability 
property holds. Casting AEG in a veri-
fication framework ensures AEG tech-
niques are based on a firm theoretic 
foundation. The verification-based 
approach guarantees sound analysis, 
and automatically generating an ex-
ploit provides proof that the reported 
bug is security-critical. 

Verification involves many well-
known scalability challenges, several 
of which are exacerbated in AEG. Each 
new branch potentially doubles the 
number of possible program paths, 
possibly leading to an explosion of 
paths to check for exploitability. Tra-
ditional verification takes advantage 
of source code, models, and other ab-
stractions to help tackle the state ex-
plosion and scale. Unfortunately, ab-

Automatic 
Exploit 
Generation 

doi:10.1145/2560217.2560219

The idea is to identify security-critical 
software bugs so they can be fixed first. 

By Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert, 
Edward J. Schwartz, Maverick Woo, and David Brumley 

 key insights

 � �This research formalizes the notion of an 
exploit, allowing for automated reasoning 
about exploitation. 

 � �The technology can be used to identify 
and prioritize security-critical bugs. 

 � �Improvements for verifying programs 
safe may also lead to improvements for 
automatically generating exploits. IIm
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Exploiting Programs 
Suppose a developer is interested in 
finding and fixing exploitable bugs in 
the /usr/bin directory of the latest 
Debian operating system. For instance, 
in June 2012 we downloaded the then-
current Debian 6.0.5, with (in our in-
stallation) 1,168 executables in /usr/
bin to analyze for exploitable bugs. 

A typical approach to finding ex-
ploitable bugs is to first find them 
and then determine which ones are 
exploitable. One popular way to find 
bugs is to perform “black-box fuzz-
ing.” Fuzzing is a program-testing 
technique that runs a program on 
inputs from a fixed alphabet, often 
either modifying at random a known 
input or trying extreme values (such 
as 0 and the native maximum inte-
ger), and the “black-box” refers to the 
program itself, which is not analyzed 
at all. The fuzzer chooses the inputs 
and observes the program, looking 
for hangs, crashes, buggy outputs, or 
other indications of a bug. 

We fuzzed each program using the 
following script: 

for letter in {a..z} {A..Z}; do
 �timeout -s 9 1s <program> 
-$letter <path>

done

The script tries all single-letter com-

stractions often leak by not perfectly 
encapsulating all security-relevant 
details, and the leaky points tend to 
affect the quality of security analysis. 
For example, writing 12B to an array 
declared to be 11B long is wrong in C 
but is also unlikely to be exploitable 
because most compilers would pad 
the array with extra bytes to word-
align memory operations. 

In order to provide high fidelity, 
most AEG work analyzes raw execut-
able code. Executable code analysis is 
needed because many exploits rely on 
low-level details that are abstract in 
source code (such as CPU semantics 
and memory layout). Executable code 
analysis is also attractive because it 
is widely applicable; users typically 
have access to the executable code of 
the programs they run (as opposed to 
source code) and thus can audit the 
code for security-critical bugs. 

Throughout this article, we focus 
on AEG as a defensive tool for priori-
tizing exploitable bugs. However, we 
are also cognizant of the obvious of-
fensive computing implications and 
applications as well. Governments 
worldwide are developing computer-
warfare capabilities, and exploits 
have become a new type of ammuni-
tion. At present, exploit generation in 
practice is mostly a manual process. 
Therefore, techniques that help re-

duce the time and effort for exploit 
generation can potentially affect a na-
tion’s operational capabilities. AEG 
research is in its infancy and not yet 
at the point of automatically churn-
ing out weapons-grade exploits for 
an arbitrary program. Most reported 
research results generate exploits 
against bugs up to a few thousand 
lines deep in execution and for rela-
tively straightforward bugs, while typ-
ical offensive needs include exploits 
for complicated bugs and large pro-
grams like Internet Explorer and Ado-
be Reader. Nonetheless, current AEG 
results show promise, and a conserva-
tive defensive security position must 
consider the possibility of real-world 
offensive AEG capabilities. 

This article describes our AEG re-
search at Carnegie Mellon University, 
its successes, as well as its current 
limitations. We focus primarily on 
control-flow hijack exploits that give 
an attacker the ability to run arbitrary 
code. Control-flow hijacks are a seri-
ous threat to defenders and coveted 
by attackers.3,35 Although most current 
research focuses on control-flow hi-
jacks due to their immediate danger, 
AEG is not limited to only this class 
of attacks. Exploitable bugs are found 
in programs in all languages, and the 
verification-based approach to AEG 
still applies. 

Our running example of a buffer overflow in acpi-listen. 

 1. int main(int argc, char **argv) {
 2.   char *name; int i;
 3.   for (;;) {
 4.     i = getopt(argc, argv, "c:s:t:vh");
 5.     if (i == -1) break;
 6.     switch (i) {
 7.       case 'c': ...; break;
 8.       case 's': name = optarg; break;
 9.       ...
10.     }
11.   }
12.   sock_fd = ud_connect(name);
13.   ...
14. }
15. int ud_connect(const char *name) {
16.   int fd;
17.   struct sockaddr_un {
18.     sa_family_t sun_family;
19.     char sun_path[108];
20.   } addr;
21.   ...
22.   sprintf(addr.sun_path, "%s", name);
23.   ...
24.   return fd;
25. }

00000000  31 c9 f7 e1 51 68 2f 2f  73 68 68 2f 62 69 6e 89  |1...Qh//shh/bin.|

00000010  e3 b0 0b cd 80 41 41 41  41 41 41 41 41 41 41 41  |.....AAAAAAAAAAA|

00000020  41 41 41 41 41 41 41 41  41 41 41 41 41 41 41 41  |AAAAAAAAAAAAAAAA|

*

00000080  41 41 41 41 41 41 41 41  74 f2 ff bf              |AAAAAAAAt...|

…

0xbffff274

0xbffff28f

0xbffff28c
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mand-line options from a to Z, fol-
lowed by a valid 6,676B filename. The 
timeout command limited total exe-
cution time to one second, after which 
the program was killed. 

The script took about 13 minutes 
to fuzz all programs on our test ma-
chine, yielding 756 total crashes. We 
identified 52 distinct bugs in 29 pro-
grams by analyzing the calling con-
text and faulting instruction of each 
crash. Which bugs should a developer 
fix first? The answer is the exploit-
able ones. For now, we forgo several 
important issues relevant in practice 
we tackle later (such as whether the 
buggy program is a realistic attack tar-
get and whether additional operating 
system defenses would protect the 
otherwise exploitable program from 
attack). 

We first describe simple manual 
exploit generation to introduce ter-
minology and give a flavor of how 
exploits work. We focus on control-
flow hijack exploits, which have 
been a staple class of exploits in the 
computer-security industry for de-
cades.3,35 Well-known examples of 
control-flow hijacks range from ex-
ploits in the Morris worm in 1988 to 
the more recent Stuxnet and Flame 
worms (though the latter exploits are 
much more complicated than those 
described here). 

The figure here shows a bug discov-
ered in acpi _ listen (now patched 
in Debian testing) we use as our run-
ning example. A buffer overflow oc-
curs on line 22. The program reads 
in a command-line argument; if it is 
-s (line 8), it assigns the subsequent 
argument string to the name variable. 
On line 22, the sprintf function 
copies name into sun _ path, a field 
in a local instance of the networking 
sockaddr _ un data type, a standard 
data structure in Unix for sockets. 

The bug is that sun _ path is a 
fixed-size buffer of 108B, while the 
command-line argument copied 
through name into sun _ path can 
be any length. The C standard says 
the execution behavior is undefined if 
more than 108B are written. When ex-
ecuted, something will happen; with 
the fuzzing script described earlier, 
the program crashed. Unfortunately, 
this crashing bug can be exploited. 

All control-flow hijack exploits 

have two goals: hijack control of the 
instruction pointer (IP) and then 
run an attacker’s computation. For 
acpi _ listen, some of the details 
an attacker must understand in-
depth include: the hardware execu-
tion model (such as how instructions 
are fetched from memory and ex-
ecuted; how function calls are imple-
mented; how writing outside the allo-
cated space can hijack control of the 
IP; and how to redirect the IP to run 
the attacker’s code). Since any discus-
sion of creating exploits against vul-
nerable C programs assumes a basic 
understanding of these facts, we offer 
the following overview. 

During runtime, computer hard-
ware implements a fetch-decode-
execute loop to run a program. The 
hardware maintains an IP register that 
contains the memory address of the 
next instruction to be executed. During 
the fetch phase, the hardware loads the 
data pointed to by the IP register. The 
data is then decoded as an instruction 
that is subsequently executed. The IP 
is then set to the next instruction to be 
executed. Control is hijacked by taking 
control of the IP, which is then used to 
fetch, decode, and execute the attack-
er’s computation. 

A straightforward exploit for 
acpi _ listen hijacks control by 
overwriting data used to implement 
function returns. Exploits can also 
overwrite other control data (such as 
function pointers and the global off-
set table, as in Muller29), but we omit 
these details here. Function calls, 
returns, and local variables are not 
supported directly by hardware. The 
compiler implements the semantics 
of these abstractions using low-level 
assembly instructions and memory. 
An attacker must be proficient in many 
details of code execution (such as how 
arguments are passed and registers 
are shared between caller and callee). 
For simplicity, we assume a standard 
C calling convention known as cdecl. 
Functions using it implement a stack 
abstraction in memory where func-
tions push space for local variables, 
arguments to future calls, and other 
data onto the stack immediately after 
being called. A function return pops 
the allocated space off the stack. Thus, 
the stack grows a bit for each call and 
shrinks a bit on each return. 

The twist is 
we replace 
typical safety 
properties with 
an “exploitability” 
property, and the 
“verification” 
process becomes 
one of finding 
a program 
path where the 
exploitability 
property holds. 
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being overwritten in a variable up-
date. Control-flow hijacks are an in-
stance of a channeling vulnerability 
that arise when the control and data 
planes are not rigorously separated. 
For this particular example, an out-
of-bound write can clobber the return 
address. When sprintf executes, it 
copies data sequentially from name 
up the stack, starting from the ad-
dress for sun _ path, as shown. The 
copy stops only when a zero integer, 
or ASCII NULL, is found, which is not 
necessarily when sun _ path runs 
out of space. A long name will clobber 
the saved local variables and eventu-
ally the saved return address. Since an 
attacker controls the values in name, 
and those values overwrite the return 
address, the attacker ultimately con-
trols which instructions are executed 
when ud _ connect returns. 

Attackers must analyze the program 
to figure out exactly how many bytes to 
write, what constraints may be on the 
bytes, and what would be a good value 
with which to overwrite the return ad-
dress. For acpi _ listen, a string of 
length 140 will overwrite the return ad-
dress. The first 108B will be copied into 
space allocated for sun _ path. The 
next 28B on the stack are intended to 
hold local variables and saved register 
values. The final 4B overwrite the saved 
return address. 

When ud _ connect returns, the 
overwritten return address is popped 
off the stack into the IP register. The 
machine continues executing the in-
struction starting at the overwritten 
address. While this example overwrites 
the return address, a variety of other 
control data structures can be used to 
seize control; examples include func-
tion pointers, heap metadata, and C++ 
virtual function tables. 

Control is typically hijacked to run 
an attacker-supplied computation. 
The most basic attack is to inject execut-
able code into the vulnerable process. 
More advanced techniques (such as 
command injection, return-to-libc, and 
return-oriented programming) are also 
possible29,33 (and in some cases can be 
automated as well31), but we omit such 
discussion here. 

A natural choice for the computa-
tion is to execute the command-line 
shell /bin/sh so the attacker is able 
to subsequently run any command 

When f calls g, f first puts g’s argu-
ments onto the stack, then invokes 
g, typically through a call assembly 
instruction. The semantics of call 
includes pushing f’s return address 
onto the stack; that is, the address in f 
where execution (normally) continues 
once g terminates. Upon entrance, 
g creates space for its variables and 
other run-time information (such as 
saved register values). After g com-
pletes, g returns control to f by shrink-
ing the created stack space for g and 
popping off the saved address into the 
IP register, typically through a ret in-
struction. A critical detail is that the 
popped value, regardless of whether it 
was the original value pushed by f or 
not, is used as the address of the next 
instruction to execute. If an attacker 
can overwrite that address, the attack-
er can gain control of execution. 

The stack frame just before 
sprintf is called on line 22 in the Fig-
ure. The flow of execution for creating 
the depicted stack includes six steps: 

Return address pushed onto the 
stack. When main called ud _ con-
nect, main pushed the address of the 
next instruction to be executed (corre-
sponding to line 13) onto the stack; 

Control transfer. main transferred 
control to ud _ connect; 

Local variable space allocated. ud _
connect allocated space for its local 
variables. On our computer, 108B were 
allocated for sun _ path and an addi-
tional 28B for other data (such as ad-
ditional local variables and saved reg-
ister values); 

Function body executed. The body of 
ud _ connect ran. When sprintf 
is called, a similar flow pushes a new 
return address on the stack and new 
space onto the stack for sprintf’s lo-
cal variables; 

Local variable space deallocated. 
When ud _ connect returns, it first 
deallocates the local variable space, 
then pops off the saved return address 
into the IP register; and 

Return to caller. Under normal op-
eration, the return address points to 
the instruction for line 13, and main 
resumes execution. 

The crux of a control-flow hijack 
is that memory is used to store both 
control data (such as return address-
es) and program-variable values, but 
the control data is not protected from 

Governments 
worldwide are 
developing 
computer-warfare 
capabilities, and 
exploits have 
become a new type 
of ammunition. 
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Our research vision is to automate it. 
AEG uses verification techniques to 

transform the process of finding and 
deciding exploitability to reasoning 
in logic. At a high level, AEG consists 
of three steps: It first encodes what it 
means to exploit a program as a logi-
cal property; it then checks whether 
the exploitability property holds on 
a program path; and finally, for each 
path the property holds, it produces a 
satisfying input that exploits the pro-
gram along the path. 

These steps are the cornerstones 
of AEG research. First, what exploit-
ability properties do we encode, and 
how? In industry, an exploit could 
mean control-flow hijack, while an 
intelligence agency might also in-
clude information disclosures, and 
a safety board could include denial 
of service for critical services. Any 
single property may have many en-
codings, with some more efficient 
for automated tools to check than 
others. Second, what techniques and 
algorithms should a programmer em-
ploy to check a program? The general 
problem of checking programs for 
properties is called “software model 
checking,”24 encompassing a num-
ber of techniques (such as bounded 
model checking, symbolic execution, 
and abstract interpretation). Third, 
what does it take to implement real 
systems, and how do these systems 
perform on real software? 

The theory of AEG can be de-
scribed with a small number of opera-
tions on a well-defined programming 
language that interacts with its envi-
ronment in a few predicable, easy-to-
model ways. However, a real system 
must also contend with hundreds of 
CPU instructions and the tricky and 
complex ways programs interact with 
their environments. Sometimes even 
pedestrian yet necessary details are 
difficult to get right; for example, it 
took our team almost a year to stop 
finding bugs in our internal seman-
tics for the x86 shift instructions 
(such as shl). The developers of Mi-
crosoft’s SAGE tool reported similar 
difficulties for the same instructions.4 

Current AEG research primar-
ily uses symbolic execution25 to check 
program paths for exploitability prop-
erties. At a high level, symbolic execu-
tion represents all possible inputs as 

with the privileges of the exploited 
process. In fact, executing a shell is so 
popular that colloquially any attacker 
code is called “shellcode.” A classic 
approach is to give executable code as 
input to the program and redirect con-
trol flow to the given executable code. 
The executable code itself can be cre-
ated by mimicking the assembly for 
execve("/bin/sh", args, NULL). 
Attackers introduce the shellcode to 
the vulnerable program as a normal 
string program input that is eventu-
ally decoded and executed as code. 

The final step of the attack is to 
overwrite the return address with the 
address of the shellcode. On our ma-
chine, sun _ path is at memory ad-
dress 0xbffff274. The complete 
exploit for acpi _ listen (gener-
ated automatically by our AEG tools) is 
shown in the figure, where: 

Shellcode. The first bytes of the com-
mand line argument are the shellcode; 
the shellcode is 21B, and, in this case, 
the first 21B are copied into bytes 0–20 
of sun _ path; 

Padding. The next 115B of input can 
be any non-zero, or non-NULL ASCII, 
value; the bytes are copied into bytes 
21–107 of sun _ path and the addi-
tional space for other locals; and 

Shellcode address. The last 4B of 
input are the hex string 0x74 0xf2 
0xff 0xbf. They overwrite the return 
address. When the return address is 
popped, the bytes become the address 
0xbffff274 (because x86 is little en-
dian), which is the address of the shell-
code after it is copied to sun _ path. 

The figure shows the stack frame 
after supplying this string as a com-
mand-line argument following -s. 
When ud _ connect returns, the ad-
dress 0xbffff274 is popped into the 
IP register, and the hardware fetches, 
decodes, and executes the bytes in 
sun _ path that, when interpreted as 
executable code, runs /bin/sh. When 
the shellcode runs, the attacker is able 
to run any command with the same 
privileges as the exploited program. 

Research Vision 
Manual exploit generation requires 
a developer to reason about an enor-
mous number of details (such as size 
of the stack, location of control flow 
critical data, like return address, and 
precise semantics of each instruction). 

a set of symbolic input variables. Sym-
bolic execution then picks a program 
path through a predefined path-selec-
tion algorithm. The path is then “ex-
ecuted,” except, instead of executing 
on a real, concrete input, a symbolic 
input stands in for any possible con-
crete value. Symbolic execution builds 
up a path formula in terms of the sym-
bolic inputs based on the instructions 
executed. The path formula is satis-
fied, meaning made true, by any con-
crete input that executes the desired 
path. If the path formula is unsatisfi-
able, there is no input that executes 
the path, and the path is called infea-
sible. The satisfiability check itself is 
done through automated solvers (such 
as Satisfiability Modulo Theories, or 
SMT).15 By construction, free variables 
correspond to program inputs, and 
any satisfying assignment of values 
to free variables (called a model) is an 
input that executes the selected path. 
SMT solvers enumerate satisfying an-
swers when needed. 

In acpi _ listen, the symbolic 
inputs are the first two arguments 
argv[1] and argv[2]. (Although we 
have shown source code for acpi _
listen for clarity, our AEG tool 
Mayhem requires only the program 
executable.12) Executing the -s op-
tion program path generates the con-
straint that the first 3B of argv[1] 
correspond to the NULL-terminated 
string -s. At each subsequent branch 
point, symbolic execution adds more 
constraints to the formula. Next, 
acpi _ listen calls sprintf, which 
copies bytes from name to addr.
sun _ path until it encounters a 
NULL character. Symbolic execution 
captures this logic by adding the con-
straint that each copied byte is non-
NULL. Symbolically executing the -s 
program path where argv[1] is three 
symbolic bytes and argv[2] is 140 
non-NULL symbolic bytes generates 
the constraints: 

argv[1][0:2]= "−s" ∧∀i∈[0,139]. 
argv[2][i]≠0∧argv[2][140]=0	 (1)

Note that a formula may have many 
satisfying answers; for example, bytes 
0–139 of argv[2] can be “A,” “B,” or 
any other non-NULL character. 

Each feasible path can be checked 
for exploitability by adding a set of con-
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be placed anywhere in memory. In our 
experiment, our AEG tool Mayhem12 
found the exploitable path and solved 
the exploitability formula in 0.5 sec-
onds. Mayhem is also able to enumer-
ate satisfying answers to automatically 
generate multiple exploits. 

Managing state explosion. AEG is 
a type of software verification, albeit 
for a very special property. As such, it 
inherits benefits but also well-known 
scalability challenges (such as path ex-
plosion and the NP-hardness of solving 
SMT queries in general). They are often 

dress of our shellcode. The full formula 
to reach and exploit the acpi _ lis-
ten bug is: 

(Equation 1)∧mem[ar]=as 
∧mem[as:as+len(shellcode)−1]=
〈shellcode〉	 (3)

The mem[ar] constraint requires the re-
turn address to contain the address of 
the shellcode as. The final constraint re-
quires the shellcode to start at address 
as. The variable as is left unconstrained 
since the shellcode could potentially 

straints that are satisfied only by ex-
ploiting inputs. Most research tackles 
control-flow hijack exploits, where the 
exploitability constraints specify the IP 
register holds a value that corresponds 
to some function f of user input i (such 
as, f may be a call to tolower on the 
input i) and the resulting IP points to 
shellcode: 

IP=f(i)∧mem[IP]=〈shellcode〉	 (2)

Now let ar be the memory address for 
the return address and as be the ad-

Symbolic execution was invented around 1975 
independently by several researchers.5,23,25 Around 
2005, the field exploded. Hundreds of papers have now 
been published describing advanced techniques and 
applications; see Cadar and Sen11 for a description and 
the main challenges of symbolic execution. Modern 
tools (such as KLEE,9 EXE,10 SAGE,20 and others7,13,32,37) 
find inputs that can crash or hang a system. Such inputs 
may well be viewed as exploits in safety-critical systems 
where uptime is critical. More generally, work in 
symbolic execution is directly applicable to making AEG 
more efficient. As of 2012, most symbolic-execution 
work followed one execution path at a time. Since then, 
more work has looked at generalizing over multiple 
paths (such as to loops30). Others have also investigated 
alternatives to symbolic execution that tame path 
explosion (such as Brumley and Jager6 and Flanagan 
and Saxe16,18,26). More generally, any verification 
technique that can produce example inputs (such as 
bounded model checking) is likely usable for AEG. 

Modern AEG research dates to at least Ganapathy 
et al.,17 who explicitly connected verification to 
exploit generation, modeling how format string 
specifiers are parsed by functions like printf that 
take a variable number of arguments and use the 
model to automatically generate exploits. They also 
demonstrated automatically generating an exploit 
against a key integrity property for a cryptographic 
co-processor.17 However, they considered only API-level 
exploits, which do not include running shellcode or the 
conditions necessary to reach a vulnerable API call site. 

In 2007, Medeiros28 and Grenier et al.21 proposed 
techniques based on pattern matching for AEG. 

In 2008, Brumley et al.8 developed automatic patch-
based exploit generation (APEG). The APEG challenge 
is, given a buggy program P and a patched version P′, 
generate an exploit for the bug present in P but not 
present in P′. The idea is the difference between P and 
P′ reflects where the original bug occurs and under 
what conditions it might be triggered. Attackers have 
long known the value of analyzing patches to find non-
public bugs; for example, attackers have been known to 
joke Microsoft’s “patch Tuesday” is followed by “exploit 
Wednesday.” Our techniques automatically found the 
differences between P and P′ and generated inputs 
that triggered the bugs in P using symbolic execution. 
One main security implication is that attackers can 
potentially use APEG to exploit bugs before patches can 
be distributed to a large number of users. We generated 
exploits for five Microsoft security patches, including 

triggering an infinite loop in the TCP/IP driver and 
stealing files on Microsoft Web servers. One limitation 
was that our work on APEG only proposed, but did not 
implement, techniques for executing shellcode for 
memory-safety bugs.8 

Heelan’s 2009 thesis22 was the first to 
comprehensively describe and implement techniques 
for automatically generating control-flow hijack exploits 
that execute shellcode. In Heelan’s problem setting, the 
attacker is given an input that executes an exploitable 
program path, and the goal is to output a working 
control-flow-hijack exploit. This setting is the same as 
in our running example where we first fuzzed to find 
bugs, then checked exploitability. Heelan proposed 
using symbolic execution and taint analysis to derive the 
conditions necessary to transfer control to shellcode and 
demonstrated a tool that produced exploits for several 
synthetic and for one real vulnerability. He also used a 
technique called return-to-register to improve exploit 
robustness. Heelan’s thesis also presented a history of 
AEG work through 2009. 

In 2011, we proposed AEG techniques that find 
bugs and generate exploits, demonstrating them 
on 16 vulnerabilities.1 The initial work performed 
symbolic execution on source code to find bugs, then 
used dynamic binary analysis to generate control-
flow hijack exploits. Included were a number of 
optimizations for searching the state space (such as 
preconditioned symbolic execution and the buggy-
path first optimizations discussed earlier). In 2012, we 
introduced Mayhem, a tool and set of techniques for 
AEG on executable code.12 With Mayhem, we proposed 
techniques for actively managing symbolically 
executed program paths without exhausting memory 
and reasoning about symbolic memory addresses 
efficiently. Both papers1,12 targeted control-flow hijacks 
for buffer overflows and format-string vulnerabilities. 
Mayhem generated exploits for seven Windows and 22 
Linux vulnerabilities. Disregarding one long-running 
outlier, the average exploit-generation time in all 
experiments was 165 seconds. As of July 2013, Mayhem 
was able to generate exploits for buffer overflows, 
format strings, command injection, and some 
information-leak vulnerabilities. 

AEG1 and Mayhem12 were designed to demonstrate a 
bug is exploitable but do not try to bypass defenses that 
may otherwise protect a system. In 2011, we proposed 
techniques for bypassing the DEP and ASLR defenses 
implemented in Windows 7 and Linux, as well as exploit 
hardening and maintenance.31 

History of AEG
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amplified in AEG because AEG tech-
niques reason about both low-level 
code and large inputs, along with a few 
abstractions. However, specific charac-
teristics of AEG also afford researchers 
unique opportunities. 

Consider the affect of path prioriti-
zation on this program: 

    int x = get _ int();
    if((x % 2) == 0) {
      if(x > 10) vuln1(); 
      else if(x == 3) vuln2();
      else safe();
    } else { safe(); } 

Let xo be ao explore the program and 
find the vulnerability: 

( x0% 2) = 0  ∧ ¬( x0 > 10) ∧ ¬( x0 = 3)
( x0% 2) = 0  ∧ ¬( x0 > 10) ∧ x0 = 3
¬(( x0% 2) = 0)
( x0% 2) = 0 ∧ x0 > 10

The first formula for the first path 
is satisfiable (such as when xo = 4), in-
dicating the path can be executed but 
is safe (unexploitable). The second 
formula corresponds to the infeasible 
path up to vuln2() and is unsatisfi-
able because the constraint (xo % 2) = 
0 and xo =3 cannot both be true simul-
taneously. Since vuln2 will never be 
executed, it can never be exploited. 
The third formula corresponds to a 
feasible, safe path. Only the fourth 
formula corresponding to the path 
up to vuln1() is satisfiable, where a 
satisfying assignment (such as xo =42) 
corresponds to an exploit. In general, 
the number of paths and formulas 
is infinite for programs with loops 
and exponential in terms of number 
of branches for any acyclic portion, 
making effective path selection a fun-
damental issue in AEG research. 

Path-selection heuristics guide 
execution so vulnerable paths are se-
lected early in exploration. Symbolic 
execution research is filled with a vari-
ety of approaches. For example, KLEE 
has options for depth-first traversal 
of the control-flow graph, as well as a 
randomized strategy.9 Microsoft uses 
generational search,20 which priori-
tizes symbolically executing program 
paths that branch off a known path 
taken by a fixed concrete seed input. 
Godefroid et al.’s research20 suggests 
generational search is more effective 

than either breadth-first search or 
depth-first search. 

Two techniques that proved effec-
tive in our experiments at Carnegie 
Mellon are “preconditioned symbolic 
execution” and “buggy-path first.”1 
Preconditioned symbolic execution 
first performs lightweight analysis 
to determine the necessary condi-
tions to exploit any lurking bugs, then 
prunes the search space of paths that 
do not meet these conditions. For ex-
ample, a lightweight program analy-
sis may determine the minimum 
length input string needed to trigger 
possible buffer overflows, and paths 
corresponding to inputs smaller than 
the minimum length can be pruned 
or skipped. 

The idea of buggy-path first is that 
any bug is a sign of programmer con-
fusion, increasing the likelihood of 
an exploitable bug being nearby. For 
example: 

 char buf[1024];
 memset(buf, 0, strlen(input));
 ...
 �strncpy(buf, input, 
strlen(input));

The second line contains a mistake 
where potentially more than 1,024B of 
buf are zeroed. This bug would likely 
not lead to a control-flow hijack, but 
does signal confusion that the length 
of input is somehow related to the size 
of buf. Buggy-path first would priori-
tize further exploration of the buggy 
path over other possible paths and 
thus discover the subsequent exploit-
able code more quickly in our tests. 
Note that a unique aspect of buggy-
path first is that execution continues 
under the assumption the bug has 
been triggered (such as in the example 
when nearby stack variables may have 
been zeroed inadvertently). 

A second core challenge of AEG 
research is optimizing SMT satisfi-
ability checks. In theory, each satisfi-
ability check is an NP-hard problem 
instance, but in practice many queries 
are resolved quickly. For example, in 
an experiment involving 5.6 million 
SMT queries, 99.98% of all solved que-
ries took one second or less. Domain-
specific optimizations in symbolic ex-
ecution (such as arithmetic and logical 
simplifications, strength reduction, 

A sound AEG 
technique says a 
bug is exploitable 
if it really is 
exploitable, 
while a complete 
technique reports 
all exploitable bugs. 
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Automatically 
generating an 
exploit provides 
proof that the 
reported bug is 
security-critical. 

concrete execution, and caching) all 
help speed queries.9,10,13,19,32 

In 2006 when we started using sym-
bolic execution and SMT solvers, we 
treated the SMT solver as a black box, 
focusing only on the symbolic execu-
tor. In hindsight, that approach was 
naive. In our research group we now 
believe it is more fruitful to view the 
SMT solver as a search procedure and 
use optimizations to guide the search. 
For example, one recurring challenge 
in AEG is checking satisfiability of for-
mulas that operate on memory with 
symbolic memory addresses. A sym-
bolic memory address occurs when 
an index into an array or memory is 
based on user input, as in: 

...; y = mem[i % 256]; if(y == 2) vuln(); ... 

Without more information, the SMT 
solver must do a case split over all pos-
sible values of i that may reach down-
stream statements (such as vuln). 
Case splits can quickly push an SMT 
solver off an exponential cliff. Sym-
bolic memory references often crop 
up in commonly occurring library 
calls (such as conversion functions 
like tolower and toascii) and pars-
ing functions (such as sscanf). Many 
symbolic executors mitigate the case 
split by concretizing symbolic ad-
dresses to a specific value (such as by 
picking i=42). 

Unfortunately, in our experiments 
with dozens of exploitable bugs we 
found concretization overconstrains 
formulas, leading our initial AEG 
techniques to miss 40% of known ex-
ploitable bugs in our test suite;12 for 
example, AEG may need to craft an 
input that becomes valid shellcode 
after being processed by tolower 
(such as tolower is f in Equation 2). 
In Mayhem, we proposed a number of 
optimizations for symbolic memory;12 
for example, one performs a type of 
strength reduction where symbolic 
memory accesses are encoded as 
piecewise linear equations.12 

Example application: Exploiting  
/usr/bin. Recall we fuzzed Debian  
/usr/bin and found 52 distinct bugs 
in 29 programs, including acpi _
listen. One goal was to determine 
which bugs are exploitable. 

We ran our binary-only AEG tool 
called Mayhem12 on each crash to de-

termine if we could automatically gen-
erate an exploit from the crashing path. 
We also manually checked whether it 
was possible to exploit the bug. Five of 
the 52 bugs were vulnerable to a con-
trol-flow hijack, and Mayhem generat-
ed exploits for four of them. The exploit 
for acpi _ listen took 0.5 seconds to 
generate, and the remaining three took 
8, 12, and 28 seconds, respectively. 

These results on /usr/bin offer 
three insights: First, current AEG tools 
like Mayhem are sound but incom-
plete. A sound AEG technique says a 
bug is exploitable if it really is exploit-
able, while a complete technique re-
ports all exploitable bugs. Unfortunate-
ly, Rice’s theorem implies developing 
a sound and complete analysis for any 
nontrivial program property is in gen-
eral undecidable. Second, AEG can be 
very fast when it succeeds. And finally, 
there is ample room for improving 
AEG in particular and symbolic execu-
tion and software model checking in 
general. For example, we analyzed why 
Mayhem failed on the last vulnerability, 
finding the problem was a single con-
straint that pushed the SMT solver (we 
use Z3) off an exponential cliff. Perhaps 
comically, manual analysis showed the 
constraint was superfluous but was not 
recognized as such by the automatic 
formula optimizer. Once the constraint 
was removed from the formula, exploit 
generation took less than five seconds. 

Real-World Considerations 
Security practitioners often focus only 
on exploits for programs on the at-
tack surface of a system.27 The attack 
surface consists roughly of the set of 
programs, files, protocols, services, 
and other channels available to an 
attacker; examples include network 
daemons, programs called from Web 
servers on untrusted inputs, privileged 
programs, and media players. Our ex-
ample acpi _ listen is not on the at-
tack surface. We chose acpi _ listen 
because it highlights the steps of AEG, 
yet disclosing the exploit would do lit-
tle damage because it is not on the at-
tack surface. Interestingly, the acpi _
listen vulnerability is remarkably 
similar to a recent PHP vulnerability 
that performs an unchecked copy on 
the same data structure.14 

Overall, AEG techniques are valu-
able because they show whether a pro-
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gram can be exploited regardless of 
whether it is on the attack surface or 
not. For example, a program not on the 
attack surface in one deployment may 
be on the surface for another. More 
generally, programs on the attack 
surface are simply a subset of all pro-
grams; if we can handle all programs 
we can surely handle the subset on 
the attack surface. Current techniques 
have found exploits on the attack sur-
face, albeit not in widely used large ap-
plications like Internet Explorer. For 
example, as we wrote this article we 
ran Mayhem on additional examples 
that are on the attack surface, finding a 
number of zero-day exploits for media 
applications (such as ezstream and 
imview) and network applications 
(such as latd and ndtpd). 

Another consideration is additional 
layers of defense that might protect 
otherwise exploitable programs. Two 
popular operating-system-level de-
fenses against control-flow hijacks are 
data-execution prevention, or DEP, and 
address space layout randomization, 
or ASLR. 

DEP marks memory pages either 
“writable” or “executable” but forbids 
a memory page from being both. DEP 
prevents an exploit that requires writ-
ing and then executing shellcode on 
a memory page from working (such 
as the shellcode mentioned earlier). 
Unfortunately, attackers have devel-
oped techniques to bypass DEP. One 
such method is called return-to-libc 
where the attacker shellcode executes 
code already present in memory (such 
as by running system (“/bin/sh”) in 
libc directly) rather than writing new 
code to memory. Return-oriented pro-
gramming, or ROP, uses instruction 
sequences already present in memo-
ry, called “gadgets.” Shacham et al.33 
showed it is possible to find a Turing-
complete set of gadgets in libc. 

ASLR prevents control-flow hijacks 
by randomizing the location of ob-
jects in memory. Recall that to exploit 
acpi _ listen, the attacker needs 
to know the address of the shellcode. 
ASLR randomizes addresses so vul-
nerable programs likely crash instead 
of successfully redirecting control to 
the shellcode. ASLR is an important 
defense but does not fix the underly-
ing vulnerabilities and thus may pro-
vide limited protection; for example, 

Windows and Linux systems running 
on 32b processors may have insuffi-
cient randomness to provide strong 
security,34 though 64b architectures 
can address this problem. Particular 
deployments of ASLR may have weak-
nesses as well; for example as of Janu-
ary 2013 the program image of Linux 
executables is often not randomized. 
Even when randomized well, addi-
tional vulnerabilities may disclose 
information that can subsequently be 
used in a control-hijack exploit. 

Schwartz et al.31 proposed exploit 
hardening, which takes an exploit that 
works against an undefended system 
and hardens it to bypass defenses. 
One step in exploit hardening is to 
automatically generate ROP payloads 
(to bypass DEP) that take advantage 
of small portions of unrandomized 
memory (to bypass ASLR on the 2013 
implementations of ASLR on Windows 
7 and Linux). In particular, Schwartz et 
al. showed ROP payloads can be gener-
ated for most programs in Windows 
and Linux that have at least 20KB of 
unrandomized code, which is true for 
many programs. Exploit hardening 
can be paired with AEG to check the 
end-to-end security of a program run-
ning on a specific system. 

Finally, DEP and ASLR defend only 
against memory overwrite attacks. 
Other vulnerabilities (such as informa-
tion disclosure, denial of service, and 
command injection) are also critical in 
practice; for example, DEP and ASLR 
do not protect against exploits for 
the command-injection vulnerability 
found by Mayhem in ezstream. 

Conclusion 
AEG is far from being solved. Scalabil-
ity will always be an open and inter-
esting problem. As of February 2013, 
AEG tools typically scale to finding 
buffer overflow exploits in programs 
the size of common Linux utilities. 
In Mayhem, one current bottleneck is 
driving the symbolic executor to the 
buggy portion of the state space. As a 
result, programs with deep bugs are 
typically beyond the scope of our cur-
rent Mayhem AEG tool. Examples in-
clude large programs with bugs deep 
in the program (such as Internet Ex-
plorer and Adobe Reader), as well as 
those with large protocol state (such 
as first authenticate, then send mul-

tiple fragmented messages to exploit 
a bug). In addition, programs with 
complex functions (such as hashes) 
are often a bottleneck for SMT solv-
ers. One promising data point is that 
Microsoft’s SAGE tool routinely finds 
bugs in large applications,20 though 
automatically generating exploits for 
those bugs is an open challenge with 
huge potential rewards. 

More fundamentally, AEG must 
expand to involve a wider variety of 
exploitability properties and scale to 
new program domains. While buffer 
overflows continue to be exploited3,35 
integer overflows, use-after-free, heap 
overflows, and Web vulnerabilities are 
also important (and popular) targets;3 
for example, heap overflows against 
modern operating systems like Win-
dows 8 pose difficult challenges (such 
as modeling internal heap metadata 
and new heap allocators with built-in 
defenses). In our experience, the prob-
lem is often not coming up with some 
formalism, but with the right formal-
ism and optimizations that make AEG 
efficient and practical on real-world 
programs and vulnerabilities. 

Except for a few examples (such as 
Ganapathy et al.’s17 exploits against 
a particular cryptographic API), most 
work in AEG has focused on exploiting 
programs in type-unsafe languages, 
though type safety is no panacea. In-
formation flow, command injection, 
and many other common exploitable 
bugs can all occur in typical type-safe 
languages. Moreover, the runtime 
environment itself may have security-
critical flaws. For example, the most 
commonly exploited vulnerabilities 
in 2011 were in Java.2 

AEG can be modeled as a verifica-
tion task; therefore, the better pro-
grammers and researchers get at soft-
ware verification, the better they will 
likely get at automatically generating 
exploits. Some security researchers 
are pessimistic about the practicality 
of AEG in many application settings,36 
rightfully pointing out significant scal-
ability hurdles and the lack of exploits 
against vulnerabilities like use-after-
free. We are more optimistic. Eight 
years ago, AEG techniques were re-
stricted to analyzing a single API call. 
Today, AEG can both automatically 
find and generate exploits in com-
mon binaries. In an effort to improve 
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security in Debian, we started a proj-
ect in 2013 to check all programs in  
/usr/bin for exploitable bugs and so 
far have found more than 13,000 with 
more than 150 exploitable. Advance-
ments will continue to be fueled by 
better tools, techniques, and improve-
ments in verification and security. 
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In this article,  we extend the methods of Rabin et al.10,11 
in a major way and provide a solution to the long-standing 
important problem of preventing collusion in second-
price (Vickrey) auctions. The new tools presented are 
deniable revelation of a secret value and uncontrollable 
deniable bidding. In Rabin et al.,10,11 new highly efficient 

methods for proving correctness of 
announced results of computations 
were introduced. These proofs com-
pletely conceal input values and inter-

mediate results of the computation. 
One application was to enable an 
Auctioneer to announce outcome of a 
sealed bid auction and provide verifi-
cation of correctness of the outcome, 
while keeping bid values information-
theoretically secret. We quickly survey 
these methods for completeness of 
the discussion and because of their 
wide applicability. Another example 
of an application is to prove to par-
ticipants of a stable matching process 
such as the assignment residents to 
hospitals, of the correctness of the an-
nounced assignment without reveal-
ing any preferences of residents with 
respect to hospitals and vice-versa.

Cryptography 
Miracles,  
Secure Auctions, 
Matching 
Problem 
Verification

doi:10.1145/255594

A solution to the persistent problem of 
preventing collusion in Vickrey auctions.

by Silvio Micali and Michael O. Rabin

 key insights

 � �Practically efficient secrecy of values 
preserving proofs of correctness of 
computations are useful for many 
financial and social processes.

 � �In particular, they supply a solution to  
the long-standing open problem of 
countering collusion of bidders in  
second-price (Vickrey) auctions.

 � �An important feature of these new 
methods is their understandability by  
a wide audience of potential users.
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IT, then the fact he won will remain 
secret/unknown to the other bidders. 
This assumption holds, for example, 
for digital goods but may be difficult 
to implement for some physical goods 
such as radio spectrum. This issue is 
fully discussed later.

We shall prove that these properties 
1–9 enable the Auctioneer to pre-
vent collusion by promising, when 
announcing the auction, a kickback 
payment to the second highest bidder, 
whoever he may turn out to be.

The implementation of properties 
1–8 requires of the Auctioneer proofs 
of correctness of announced results of 
computations while keeping input values 
and intermediate results secret. A new 
highly efficient tool for doing this was 
presented in Rabin et al.10,11

A new construct of a deniable proof of 
value presented in this paper is employed 
in implementing the properties 1 and 8.

Sealed Bid Auctions 
Implementation by Encryption 
and Secure Bulletin Board
In this article, we assume that the Auc-
tioneer employs an electronic Secure 
Bulletin Board (SBB) with the following 
properties. The SBB is controllable by 
the AU who can post data. Posted data 
is time stamped and signed by the AU. 
Data cannot be erased. The SBB is view-
able by all participants in the auction 
and they are assured that they all view 
the same content. Detailed implemen-
tations of a SBB use standard algorith-
mic tools and are not discussed herein.

Much of the data posted on the 
SBB will be in “sealed envelopes” 
created by bidders or by the AU. In 
Definition 3, we specify the Pedersen 
Commitment function which will be 
used in detailed proofs of the secrecy 
properties of our bidding mecha-
nism. In practice, we implement 
sealed envelopes and commitments 
by an encryption function E( , ), say 
a 128-bit AES (Advanced Encryption 
Standard) used in authenticated 
encryption mode such as GCM.

Previous Results and Background
The method of value-secrecy preserving 
proofs of correctness in Rabin et al.10,11 
and in the present work was motivated 
by the ground-breaking methodology of 
Zero Knowledge Proofs (ZKP) innovated 

By way of motivation, let us outline 
the main application given in this arti-
cle for the extended method for secrecy 
preserving proofs of correctness. We 
consider Vickrey auctions where bid-
ders B1, . . ., Bn submit sealed bids b1, . . ., bn 
for a single item IT to a seller/auctioneer 
AU. At an announced end of bidding 
time T1, the AU opens the bids and deter-
mines that, say, bw was the highest bid 
value and bs was the second highest bid. 
Bidder Bw will get the item IT and pay to 
AU the second-highest bid value bs.

This bidding mechanism, absent col-
lusion, makes it worth while for every bid-
der to bid his true value for the item IT. It 
thus assures the AU a return of the sec-
ond highest private true value for the IT.14

When setting up the auction, AU 
specifies a reserve price r. If none of 
the bids is ≥r, then the IT is not sold. 
If the second price is smaller than r, 
then the winner (if there is one) pays 
r for the IT.

The possibility of collusion com-
pletely subverts the above advantage 
to the AU from the second price auc-
tion. Assume that all bidders form 
a Cartel to collude against AU. They 
determine ahead of closing time T 
that B1’s true value b1 (as claimed by 
him) for the item IT is the largest 
among all true values as claimed by 
bidders. They agree that in the actual 
auction, B1 will bid b1 and each of the 
other bidders B2, . . ., Bn will bid r. They 
also agree that if B1 gets the IT, then 
he will make certain side payments 
to Cartel members B2, . . ., Bn. They 
also specify fines to be paid by cartel 
members who deviate from the agree-
ment. Now, if all Cartel members keep 
to their agreement, then B1 will get the 
IT and pay r to the AU. Thus, all of the 
seller’s potential gain from conduct-
ing the auction is wiped out. Because 
of possibility of collusion, second-
price auctions are rarely used despite 
their theoretical advantage.5, 6, 12, 13

We shall show how the use of cryp-
tography enables prevention of collu-
sion in one-time second-price auctions 
by making cartel agreements unen-
forceable and making it worthwhile for 
colluders to break those agreements. In 
repeated auctions involving the same 
bidders, the participants have an incen-
tive to voluntarily keep collusion agree-
ments so as to gain in the long run. The 
extent to which our methods can be 

applied to these cases and to other auc-
tions is under study.

Using the methods of Rabin et al.10,11 
and the new tools of deniable revela-
tion of a secret value and uncontrollable 
deniable bidding, we design an auc-
tion mechanism with the following 
properties.

1.	 Bidders submit sealed bids b1, . . ., bn  
to AU in an uncontrollable and deniable 
manner. This means that a bidder can-
not be compelled by anybody to submit 
a specified bid value. Also, he cannot 
be compelled to reveal any information 
about his submitted bid.

2.	 The AU assigns to every bidder 
Bi a secret identifier idi. Identifiers are 
known to AU but NOT known to bidders.

3.	 After the closing time of the auc-
tion, the AU determines that bidder Bw 
is the highest/winning bidder and that 
Bs is the second highest bidder with bid 
value bs.

4.	 AU proves to the bidders, refer-
ring only to identifiers, that the bid by 
the bidder with identifier value idw (say 
identifier value 10325) is the highest 
bid. Also that the bid by the bidder with 
identifier value ids (say identifier value 
21131) is the second highest bid.

5.	 The proof in 4 is information-
theoretic hiding with respect to all bid 
values and with respect to the correla-
tion between identifiers and bidders. 
Thus at this stage, bidders know nothing 
about who bid what and even the winner 
and second highest bidder do not know 
about their status as such.

6.	 The AU proves to Bw that his iden-
tifier is the above-mentioned idw, that is, 
that he is the winner of the IT. AU proves 
to Bw that the bid value associated with 
the above-mentioned identifier ids is bs. 
AU collects from the winner Bw the price 
bs. That is, the winner gets IT and pays 
to the AU the second highest bid value bs 
(Vickrey). These proofs to Bw are again 
secrecy preserving with respect to the 
actual identity of Bs and any other bid 
value except bs.

7.	 The AU proves to Bs that his identi-
fier is ids. The AU proves to every bidder 
Bj,  j ≠ s, that his identifier is different 
from ids.

8.	 The proofs of 6–7 are again secrecy 
preserving and deniable by the bidders 
involved.

9.	 Every bidder Bi, if he so desires, 
can arrange that if he wins the item 
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We show how the 
use of cryptography 
enables prevention 
of collusion in  
one-time  
second-price 
auctions by making 
cartel agreements 
unenforceable 
and making it 
worthwhile for 
colluders to break 
those agreements.

in Goldreich et al.3 and Goldwasser  
et al.,4 and the subject of thousands 
of subsequent papers. ZKP and other 
methods of verification of truth of 
claimed statements are, however, not 
sufficiently efficient for providing prac-
tical solutions for the auction-verifica-
tion problems treated in Rabin et al.10,11 
and herein.

By way of example, in Parkes et  al.8 
a method using Paillier homomorphic 
encryption7 was employed for verifi-
cation of claimed results of an auc-
tion while keeping bid values secret. 
Verification of a hundred-bidder sec-
ond-price auction required several 
hundred minutes. By comparison, the 
new method of Rabin et al.10 verifies a 
hundred-bidder second-price auction 
in two milliseconds. The use of multi-
party computations (see Ben-David et 
al.1) provides secrecy of bids but no ver-
ification of correctness of announced 
results. It is also by far slower than that 
of Rabin et al.10,11 and that presented in 
the present work.

The main innovation of Rabin 
et al.10,11 is to work directly with the 
input values to a computation and 
its intermediate results as numbers 
rather than going down to the bit level. 
Furthermore, numbers are randomly 
represented by two-coordinate vectors.

The papers by Rabin et al.10,11 con-
sider a generalized form of straight line 
computations on elements of a finite 
field Fp. For our applications, a 128-bit 
prime p is completely adequate. Thus, 
the field operations (x + y) mod p and 
(x × y) mod p are rapidly executable on 
an ordinary 64-bit processor.

A number of players P1, . . ., Pn 
secretly submit to an Evaluator Prover 
EP input values x1, . . ., xn taken from Fp 

(i.e., x ∈ {0, 1, . . ., p − 1}). The EP per-
forms a computation on these inputs 
and announces the results of that 
computation.

Definition 1. A Generalized Straight Line 
Computation (GSLC) on inputs x1, . . ., xn ∈ 
Fp with K outputs xL+1, . . ., xL+K is a sequence

GSLC = �x1, . . ., xn, xn+1, . . ., xL,  
xL+1, . . ., xL+K� (1)

where for all m > n there exist i, j < m, L, 
such that xm = (xi + xj) mod p, or xm = (xi × xj) 
mod p, or xm = xi, or xm = TruthValue (xi ≤ xj).

An example of a GSLC for the output 

x(2n − 1) = x1 + . . . + xn is

x1, . . ., xn, x (n+1), . . ., x (2n–1), 
where x (n+1) �= x1 + x2, x(n+2)  

= x(n+1) + x3, etc.� (2)

Random vector representations of 
values x ∈ Fp. We now come to the main 
construct for enabling Secrecy Preserving 
Proofs for the correctness of the results 
xL+1, . . ., xL+K of the GSLC(1).

Definition 2. Let x ∈ Fp be a value.  
 A random vector representation RR(x) of 
x is a vector X = (u, v) where u, v ∈ Fp; u 
was chosen randomly (notation u ← Fp ) 
and x = (u + v) mod p. For a vector X = (u, v) 
we denote val(X) = (u + v) mod p.

The method for creating a RR(x) = 
(u, v) of x is to randomly choose u ← Fp 
and set v = (x − u) mod p. Note that from 
u (or v) by itself, no information about 
x can be deduced.

Commitment functions. We shall use 
the Pedersen commitment function9 
for values u ∈ Fp. Let G be a group of 
prime order q > p for which computing 
the discrete log function is intractable. 
Let g, h in G be two generators such that 
logg(h) = e (i.e., g e = h) is not known and 
by the intractability assumption not 
computable in, say, a thousand years.

Definition 3. Let u ∈ Fp, the commit-
ment COM(u, r) to u, using the help value 
r ∈ [0, q − 1], is COM(u, r) = g u × hr.

Note that under a random choice 
of the help value r, COM(u, r) is a ran-
dom element of G. Consequently, the 
commitment function COM(u, r) is 
information-theoretically hiding. Since 
computation of logg(h) = e is intractable, 
the commitment function is computa-
tionally binding. The latter means that 
for no commitment value C is it possible 
to compute two different pairs (u, r) ≠ 
(v, s) such that C = COM(u, r) = COM(v, s). 
The reason is that logg(h) = e is effi-
ciently computable from the equation 
gu × hr = gv × hs. Consequently, a player 
who has created and posted a commit-
ment COM(u, r) can open it only in one 
way to reveal the original value u.

Even the above strong binding prop-
erty of the Pedersen commitment leaves 
it exposed to an attack by imitation. 
Assume that one bidder in an auction 
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val(X3), etc., will be done simultane-
ously for all equations. The EP will pres-
ent to Verifier n − 1 values w1,  . . ., wn−1. 
The Verifier will then randomly choose 
a challenge c ← {1, 2}. The same chal-
lenge c will be used by EP and Verifier to 
check all the n − 1 equalities. It is clear 
that if not all n − 1 claimed equations are 
true, then the probability that Verifier 
will accept is at most 1/2. Also, the argu-
ment of Theorem 2 that the interactive 
proof is information-theoretic value-
hiding holds without change.

Proving claimed correctness of mul-
tiplications. For proving correctness 
of the operations of multiplication 
xm = xi × xj in the SLC (1), the EP will 
have posted on the SBB for the Verifier 
commitments COM(Xm), COM(Xi), 
COM(Xj) for random representations 
of the values xm, xi, xj. The EP has to 
prove to Verifier that

val(Xi) × val(Xj) = val(Xm)� (5)

Let Xi = (u1, v1), Xj = (u2, v2), and Xm = (u3, 
v3). The EP prepares auxiliary vectors  
Z0 = (u1u2, v1v2), Z1 = (u1v2 + w1, p − w1), 
Z2 = (u2v1 + w2, p − w2), where w1, w2 are 
randomly chosen values. The EP aug-
ments the commitments presented to 
Verifier into:

COM(Xm), COM(Xi), COM(Xj),  
COM(Z0), COM(Z1), COM(Z2)� (6)

Clearly (5) holds if the following 
Aspects 0–4 hold true for the vectors 
committed in (6):

Aspect 0: Z0 = (u1u2, v1v2).
Aspect 1: val(Z1) = u1v2.
Aspect 2: val(Z2) = u2v1.
Aspect 4: val(Xm) = val(Z0) + val(Z1) + val(Z2).

In the interactive proof/verification, 
either Aspects 0 and 4 are checked 
together, or Aspect 1 or Aspect 2 is sepa-
rately checked. The Veifier randomly 
chooses with probability 1/2 to verify 
Aspect 0 and the addition in Aspect 4. He 
randomly chooses c ← {1, 2}. Say c = 1.  
The EP reveals the first coordinates 
of Xm, Xi, Xj and Z0. Aspect 0 is verified. 
Aspect 4 is verified in the manner of ver-
ification of additions. If the EP’s claim is 
false with respect to Aspect 0 or Aspect 
4, then the probability of Verifier accept-
ing is at most 3/4 = 1 − (1/2) × (1/2).

has committed to his bid using a value u 
committed to as C = COM(u, r) = g u × hr. 
Another bidder who sees the posted C 
will post D = C × g × hs. When the first bid-
der decommits the value u by revealing 
u and r, the second bidder will open D 
by revealing u + 1 and r + s, thus decom-
mitting the value u + 1 and raising 
the bid by 1. In the following, such an 
attack will be enabled if there is collu-
sion between the auctioneer and the 
second bidder.

To counter exposure to imita-
tion, we assume that an independent 
agent, such as NIST, has created and 
signed randomly chosen pairs (gi, 
hi), i = 0, 1,  . . ., of generators of the 
group G. When setting up the auc-
tion, the AU and every participant are 
assigned a different pair of genera-
tors from the above list to be used for 
their commitments.

Proving claimed correctness of an addi-
tion x + y = z. We can now show how the 
EP can prove to a Verifier correctness of 
an equation x + y = z. The EP prepares 
random representations X = (u1, v1), Y = 
(u2, v2), and Z = (u3, v3), of the values x, y, 
and z. Note that

val(X) + val(Y) = val(Z)� (3)

if and only if there exists a w ∈ Fp such 
that X + Y = Z + (w, −w).
The EP prepares commitments

COM(X) = [COM(u1, r1), COM(v1, s1)], 
COM(Y) = [COM(u2, r2), COM(v2, s2)],�(4) 
COM(Z) = [COM(u3, r3), COM(v3, s3)]

The EP posts the commitments (4) or 
sends them to the Verifier VER and 
claims that the hidden vectors X, Y, Z 
satisfy (3).

When challenged by VER to prove 
this claim, the EP posts or sends to 
Verifier the above value w. The Verifier 
now presents to EP a randomly chosen 
challenge c ← {1, 2}.

Assume that c = 1. The EP decom-
mits/reveals to Verifier uj, rj, j = 1, 2, 3. 
The Verifier checks the commitments, 
that is, computes COM(uj, rj), j = 1, 2, 3, 
and compares to the posted first coor-
dinates of COM(X), COM(Y), COM(Z).

The Verifier next checks that u1 + u2 
= u3 + w. If c = 2 was chosen, then the 
Verifier asks for the second coordi-
nates of X, Y, Z, and checks that u1 + u2 = 

u3 − w. The following two theorems are 
immediately obvious.

Theorem 1. If (3) is not true for the vectors 
committed in COM(X), COM(Y), COM(Z), 
then Verifier will accept with probability at 
most 1/2 the claim that (3) holds.

Proof. Under our assumption about 
the COM function being computation-
ally binding, the EP can open the com-
mitments for uj, vj, j = 1, 2, 3, in only 
one way. Now, if (3) does not hold, then 
at least one of the equations u1 + u2 = u3 
+ w, or v1 + v2 = v3 − w is not true. So the 
probability that a random challenge  
c ← {1, 2} will not uncover the falsity 
of the claim (3) is less than 1/2.

Theorem 2. The above interactive proof 
between EP and Verifier reveals nothing 
about the values val(X), val(Y), val(Z) 
beyond, if successful, that the claim that 
(3) is true (subject to probability at most 
1/2 of Verifier accepting a false claim).

Proof. We note that the interac-
tive proof involves only the revela-
tion of either all the first coordinates 
or all the second coordinates of X, 
Y, Z. Assume that Verifier’s chal-
lenge was c = 1. The only revealed 
values were random u1, u2, u3, w 
which satisfy u1 + u2 = u3 + w. Because 
the commitment function C( , )  
is information-theoretically hiding, the 
un opened second coordinates in the 
commitments (3) of COM(X), COM(Y), 
COM(Z) are consistent with any three 
values v1,1, v2,2, v3,3, satisfying v1,1 + v2,2 
= v3,3 − w. Thus, the interactive proof is 
consistent with any three vectors X1, Y1, 
Z1 satisfying the sum equality (3).

A probability of 1/2 of the Verifier 
being cheated is of course not accept-
able. The probability of being cheated 
is exponentially reduced by simulta-
neously employing k repetitions of 
the process.

Simultaneous verification of several 
additions. Consider the GSLC (2) which 
involves n inputs x1, . . ., xn, and has as 
output their sum x1 + . . . + xn. The EP will 
present to Verifier 2n − 1 commitments 
COM(Xj), 1 ≤ j ≤ 2n − 1, for random rep-
resentation for the values xj, 1 ≤ j ≤ 2n − 1. 
The interactive proofs for correctness 
of all n − 1 claimed equalities val(Xn+1) = 
val(X1) + val(X2), val(Xn+2) = val(Xn+1) + 
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The Verifier chooses to check either 
Aspect 1 or Aspect 2, each with prob-
ability 1/4. Say Aspect 1 was chosen by 
Verifier. The EP reveals the first coordi-
nate u1 of Xi and the second coordinate 
v2 of Xj and both coordinates of Z1 and 
checks the equality of Aspect 1. Note that 
if Aspect 1 is false and is chosen for veri-
fication, then Verifier will never accept. 
Similarly for Aspect 2. Consequently, if 
(5) is false and the proof of correctness 
(6) presented by EP to Verifier is false in 
Aspect 1, or Aspect 2, then the probabil-
ity that Verifier will accept is at most 3/4.
Altogether we have:

Theorem 3. If the product claim (5) is 
false then the probability that the Verifier 
will accept EP’s proof of correctness is at 
most 3/4.

Remark. To achieve the information-
theoretic value hiding property of the 
above interactive proof of correctness, 
we require an additional step in EP’s con-
struction of the posted proof (6). We note 
that the same xi can appear in the GSLC 
(1) as left factor and as right factor. One 
example arises if the GSLC has an opera-
tion xm = xi × xi. In this case, verifying 
Aspect 1 will reveal both coordinates of 
Xi and hence reveal the value xi = val(Xi). 
When preparing a proof of correctness 
of the GSLC (1), the EP creates for every xi 
involved in multiplications two random 
vector representations XL

i and XR
i .

The proof of correctness of the mul-
tiplication xm = xi × xj will be:

COM(Xm), COM(Xi
L), COM(Xj

R),  
COM(Z0), COM(Z1), COM(Z2),

where now XL
i = (u1, v1), XR

i  = (u2, v2). It is 
clear that even if i = j, and Aspect 1 is 
checked, u1 and v2 are independent ran-
dom values from Fp. Similarly if SLC con-
tains another multiplication xk = xs × xi,  
it, as well as xm = xi × xj, is verified with 
respect to Aspect 1. For the first multi-
plication, XR

i  will be employed, and for 
the second multiplication, XL

i will be 
used. Thus again independent random 
first coordinate of XR

i  and second coor-
dinate of XL

i are revealed.

Proving claimed inequalities xm = 
TruthValue(xi ≤ xj). Such inequalities x ≤ 
y are proved for cases x, y < p/2. It is clear 
that for such x, y, we have x ≤ y iff y − x 
< p/2. Example: Let p = 17, x = 7, y = 5. 

Then x ≤ y is false and y − x = 15 > 17/2.
So the EP can prove correctness 

of inequalities if he can, when true, 
prove for a commitment COM(X) that 
val(X) < p/2.

In Rabin et al.,10, 11 Lagrange’s theo-
rem that every integer x is the sum of 
four squares of integers: x = w2

1 + w2
2 + 

w2
3 + w2

4 is employed to enable the EP 
to create a Value Hiding Proof of the 
GSLC (1) by use of which he can achieve 
[Rabin et al.,10,11 Theorem 1]:

Theorem 4. Let commitments COM(X1), 
. . ., COM(Xn) to input values x1, . . ., xn be 
posted and let the EP perform the GSLC 
(1) and post the K output values x(L+1), . . ., 
x(L+k). The claimed correctness of the out-
put values can be interactively proven 
by the EP and a Verifier while keeping all 
inputs and intermediate values informa-
tion-theoretically secret. If the Prover’s 
claim is true then the Verifier will always 
accept the claim. If the Prover’s claim is 
false then the probability that Verifier 
will accept the claim is at most 3/4.

Amplification of  
Verifier’s Confidence
In the previous section, we saw how the 
EP has expanded the GSLC (1) into a 
sequence of commitments to be called 
a Value Hiding Proof (VHP-GSLC). The 
Value Hiding Proof is employed by EP 
and VER in an input and intermedi-
ate value-hiding interactive proof of 
correctness of the output values of the 
GSLC as claimed by the EP. We have 
shown that the probability of the VER 
to accept a false claim is at most 3/4. In 
applications, a 3/4 probability of being 
cheated is of course unacceptable. The 
solution is of course duplication of the 
interactive proof in k translations of 
the GSLC (1). A successful verification 
of correctness of all k translations by 
VER will assure him that the probabil-
ity of him having been cheated by the 
EP is smaller than (3/4)k.

In practice, the EP may be called upon 
to interactively prove correctness of 
announced results to different Verifiers 
upon K different occasions. So, what is 
needed is for the EP to prepare and post 
K × k Value Hiding Proofs of the GSLC. 
Next we give an algorithm for doing that.

Making multiple copies of a sequence 
of hidden values. The reader who 
is mainly interested in the overall 

structure of our results may skip the 
details of this section and just take 
for granted its conclusion that many 
copies of posted hidden values can be 
made and their value consistency can 
be proved without revelation of actual 
values.

In the general case, as well as in the 
application to securing Vickrey auc-
tions, the EP will have a sequence of m 
hidden  input values y1, . . ., ym. Some of 
these inputs were supplied by players  
P1, . . ., Pn (in the case of auctions by bid-
ders) and some of these inputs are created 
by the EP as part of the GSLC computa-
tion and proofs that he will conduct.

To begin with, the AU posts on the 
Secure Bulletin Board 3k rows:

COM(Y 1
(  j)), . . ., COM(Y m

(  j)),  1 ≤ j ≤ 3k.� (7)

Each of these 3k rows consists of m 
commitments to vector representations 
of the m values val(Yi

(  j)) = yi, 1 ≤ i ≤ m. 
For some column indices i, the 3k com-
mitments COM(Y i

(  j)), 1 ≤  j ≤ 3k, to vector 
representations of the value yi were pro-
vided by one of the players P1, . . ., Pn. For 
the other column indices i, the 3k com-
mitments were supplied by the EP. For 
a proof of correctness of announced 
output results, the question arises: 
How can the EP prove to a Verifier that 
for each column index i the posted 
commitments COM(Y i

(  j)), 1 ≤ j ≤ 3k, all 
contain vector representations of the 
same value. That is, how can the EP 
prove that the rows in (7) are pairwise 
value consistent in the following sense.

Definition 4: Two rows of commitments

COM(X1), . . ., COM(Xm)  
COM(Y1), . . ., COM(Ym)�

(8)

are called value consistent if val(Xi) = 
val(Yi), 1 ≤ i ≤ m.

Assume that the EP wants to prove 
for two posted commitments COM(X) 
and COM(Y), where X = (u1, v1) and  
Y = (u2, v2), a claim that val(X) = val(Y). 
He reveals to VER the pair (w, −w) such 
that X = Y + (w, −w). As in the verifi-
cation of addition, the Verifier now 
presents to EP a randomly chosen 
challenge c ← {1, 2}. If c = 1, then the 
EP reveals to VER the first coordinates  
u1 and u2. The VER checks that u1 = u2 + w. 
Similarly if c = 2. Clearly, if the EP’s 
claim is false, then the probability that 
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In practice, the EP 
may be called upon 
to interactively 
prove correctness 
of announced 
results to different 
Verifiers upon K 
different occasions.

of correctness of outputs, where each 
proof uses k rows extended to Value 
Hiding Proofs. Every such interactive 
proof employing k rows reduces proba-
bility of Verifier being cheated to (1/10 
+ 3/4)k.

In the following treatment of 
Vickrey auctions, we shall assume the 
availability of any needed number of 
value-consistent rows of commitments 
to input values without repeating 
the details as to how these rows were 
obtained from the initial input rows.

Deniable Revelation of a Value
We want to show that the EP can post 
commitments COM(X) to vector pre-
sentations of a value x and reveal the 
value x to a player P in a manner that 
P  can subsequently deny knowledge of 
the value x. Furthermore, even though the 
commitments are publicly posted on the 
SBB and viewable by other players, P 
cannot open any of these commitments. 
Consequently, the value x remains infor-
mation-theoretically hidden from every-
body except for the EP and P.

Our algorithm requires a step where 
P privately meets with the EP in a man-
ner unobserved by anybody else and that 
P does not carry away from the meet-
ing a record of the value x. The ques-
tion whether this private meeting can 
be replaced by exchanges of encrypted 
messages is a topic for further research.

Theorem 6. Assume that the EP has 
posted on the SBB 20k commitments:

(P, COM(X(  j))),  1 ≤ j ≤ 20k,� (10)

where P is a name of a player, to ran-
dom representations of a value x, that 
is, val(X ( j )) = x, 1 ≤ j ≤ 20k. Note that 
these posted commitments are pub-
licly associated with the player P.

The EP reveals the value x to P and 
claims to him that the posted commit-
ments (10) are to vector representations 
of this x. The EP can prove to P that the 
commitments are to random represen-
tations of the value x in a manner that 
(a) If more than 2k of the above 20k com-
mitments are not to vector representa-
tions of x, then the probability that P 
will accept the false claim is at most 
dk; (b) P cannot be compelled to reveal 
that value x to another party or prove 
to another party that the commitments 
are to the value x.

VER will accept the claim is at most 1/2.
The same procedure will apply to 

proving/verifying a claim that the two 
rows (8) are value consistent. Here, 
EP posts m vectors (wi, −wi), 1 ≤ i ≤ m. 
The VER uses one random challenge 
c ← {1, 2} to require from the EP to 
either reveal/open all first coordinates 
in all commitments or to reveal/open 
all second coordinates.

We now come to the procedure 
whereby the EP proves to a VER the 
value consistency of the initially posted 
3k rows of commitments (7) and cre-
ates additional N rows of commitments 
to be used in multiple proofs of correct-
ness of announced results of the GSLC.

Theorem 5. (Rabin et al.,10,11 Theorem 8) 
Let the EP choose an L (say L = 10) and pre-
pare and post M = 10 × k × L new rows (9):

COM(X1
(  j)), . . ., COM(Xm

(  j)),  1 ≤ j ≤ M,� (9)

so that each row of (9) is pairwise value 
consistent with every one of the 3k 
rows (7). That is, for every input index i, 
val(Xi

(  j)) = yi , 1 ≤  j ≤ M.

Upon demand, EP can conduct an 
information-theoretic value-hiding inter-
active proof convincing a Verifier that:

1.	 Among the initially posted 3k 
rows (7) at least a majority of 2k rows 
are pairwise value consistent. By defi-
nition, the m values y1, . . ., ym of the vec-
tors committed to in that 2k majority 
are the input values to the process.

2.	 In the additional M rows (9) post-
ed by EP, at least (1 − 1/L)M rows are 
pairwise value consistent with at least 
2k pairwise value consistent rows of (7).

3.	 The probability that the Verifier 
will accept claims 1–2 when not both 
are true is at most (1/2 + 1/e2)k + (1/2 + 1/
e2)3k < 2(1/2 + 1/e2)k.� 

The interactive proof involves EP open-
ing one coordinate in every one of the 
3 km pairs (7) and opening one coor-
dinate in each commitment in 6 kL 
rows of (9). Thus this interactive proof 
leaves 4 kL untouched rows of (9) with 
the assurance that at least (1 − 1/L)4 kl 
of these rows are pairwise value con-
sistent with the m values initially com-
mitted to in (7). The untouched rows 
can be employed in N = 4L = 40 proofs 
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Proof. Player P meets privately with 
the EP. The EP claims to P that the 
hidden value is x. Player P randomly 
chooses 10k commitments out of the 
20k commitments (P, COM(X(i) )).

For each of the 10k commitment 
(P,  COM(X(i)) ) chosen by P, the EP 
privately claims to P that X(i) = (u(i ), 
v(i )). Note that this is what EP claims, 
without opening the commitment 
COM(X(i)).

Player P checks that for every claimed 
value of a vector X(i), (u(i) + v(i)) mod p = x.

Next, P chooses, for each of the 10k 
selected COM(X(i)), independently a ran-
dom challenge ci ∈ {1, 2} and presents 
ci to EP. If ci = 1, then EP opens/reveals 
to P the first commitment of the chosen 
pair COM(X(i)). Player P checks that for 
COM(X(i)), the revealed coordinate value 
matches the above value u(i) as claimed 
by EP. Similarly for the case ci = 2. Player 
P accepts that (10) are 20k commit-
ments to representations of the value x 
only if all the above 10k checks are true.

The opening of the commitment to 
the coordinate ci is done by EP on the 
SBB so that the identity of the opened 
commitment is publicly known.

Why is knowledge of the value x 
deniable by P? Player P was privately 
shown both coordinates, u(i) and v(i), of 
10k vectors X(i). Thus he has deniabil-
ity of what he saw. For each of these 
vectors, the EP publicly opened just 
one of the two posted commitments 
COM(u(i)), COM(v(i))), where COM(X(i))) 
= (COM(u(i)), COM(v(i))). Hence, nobody 
except for the EP can open the other 
coordinate and the value x remains 
information-theoretically hidden.

We turn to the probability that 
the player P will accept a false 
claim. For brevity of discussion, 
we present a heuristic argument 
that if, say, k > 30 then the value d 
in the above bound dk on the prob-
ability of P being cheated is close to 

, e being the natural log base 
2.71 . . .. Namely, if more than 2k 
of the 20k vectors X(i) have val(X(i)) 
≠ x, then the probability for a ran-
domly chosen X(i) to lead P to find 
that EP is cheating is >(1/10) × 1/2.  
Consequently, the probability of 
accepting EP’s claim for a randomly 
chosen X(i) that val(X(i)) = x is < 11/20. 
For 10k choices, the probability of 
accepting is smaller than (11/20)10k. 
But (11/20)10 approximates .�

Uncontrollable, Deniable Bidding
We turn to describe the method im-
plementing uncontrollable, deniable 
bidding by use of deniable revelation 
of a value. In the following sections, 
the auctioneer AU will play the role 
of an evaluator prover EP vis-à-vis the 
bidders in the auction. The terms AU 
and EP will be used interchangeably.

Step 6.1 Assume a one-time single-
item Vickrey auction. The auctioneer 
AU, who will later also act as a prover, 
announces the auction and a reserve 
price r below which the item will not be 
sold. AU announces a time T for clos-
ing of the auction participation phase. 
AU also announces a time T1 > T for 
completion of submission of bids.
Step 6.2 Assume that bidders B1, . . ., 
Bn have decided to participate in the 
auction. As each bidder Bi declares to 
AU prior to time T his intention to par-
ticipate in the auction, the AU assigns 
to Bi a randomly chosen identifica-
tion number idi ∈ Fp and a randomly 
chosen value xi ∈ Fp. The value xi will 
be subsequently used to enable Bi to 
submit his bid in an uncontrollable, 
deniable way.

The EP posts for every Bi 20k pairs 
(Bi, COM(Xi

(  j))), 1 ≤ j ≤ 20k, to random 
vector representations of the value xi, 
that is, val(Xi

(  j)) = xi, 1 ≤ j ≤ 20k.
In a private meeting, EP reveals to 

Bi the value xi in a deniable way as dis-
cussed earlier.
Step 6.3 To bid the value bi, bidder Bi 
computes, while still privately meeting 
with EP, the zi ∈ Fp such that xi + zi = bi 
mod p.

Bidder Bi prepares 3k commitments 
COM(Zi

(  j)), 1 ≤ j ≤ 3k, to random vector 
representations of the value zi, that is, 
val(Zi

(  j)) = zi, 1 ≤ j ≤ 3k. He digitally signs 
these commitments and hands them 
over to EP who posts them on the SBB.

Now Bi erases from his device the 
values xi and bi but retains the value zi 
and the data required for opening/ 
decommitting COM(Zi

(  j)), 1 ≤ j ≤ 3k.
Note that at this point in time, 

before the closing of the auction, Bi 
has made his chosen bid bi, but the EP 
does not know what that bid value is 
because he does not know the value zi.

Theorem 7. The above process imple-
ments a sealed-bid uncontrollable and 
deniable submission of a bid by bidder Bi.

Proof. The bid value bi equals the sum 
xi + zi. While EP knows the value xi, he 
will know the value zi only after bidder 
Bi will reveal it to the EP at the closing 
of the auction at time T1. Thus we have 
a sealed-bid auction.

Bidder Bi cannot be compelled to 
make a specified bid because until his 
private meeting with the EP he does 
not know the value xi. After he made 
his bid he can perhaps be made, or 
volunteer, to reveal the value zi. But the 
value xi was revealed to Bi in a deniable 
way. As shown earlier and in Theorem 
6, Bi can claim anything about that 
value but can prove nothing about it. 
Thus this deniability extends to his 
bid value xi + zi = bi.

Conducting the Second 
Price Auction
The purpose of the following proce-
dure is to enable the EP to prove to 
bidders who won and what price the 
winner should pay by referring only to 
id numbers assigned by the EP to bid-
ders. The procedure keeps bid values 
information-theoretically secret as 
well as the correlation between id num-
bers and actual bidders.

Step 7.1 The EP chooses for every bid-
der Bi a random identifier idi. The 
identifiers are known only to the EP. At 
time T, the announced end of auction 
participation phase, the AU will post 
on the Secure Bulletin Board (SBB) the 
following data:

〈B1, COM(I D1
(  j)), COM(Y1

(  j)),  
COM (Z1

(  j ))〉, . . ., 
〈Bn, COM (I Dn

(  j), COM(Yn
(  j),  

COM(Zn
(  j))〉,  1 ≤ j ≤ 3k�

(11)

where ID1
(  j) is the jth random vector 

representation of the identifier id1; 
COM(Y1

(  j)) is the jth random vector rep-
resentation of the value x1 chosen as 
explained at the end of of the section 
“Deniable Revelation of a Value”; and 
Z1

(  j) is the jth random vector represen-
tation of the value z1. Similarly for the 
other subscripts 2, . . ., n.
Step 7.2 After time T of closing the sub-
mission of sealed-bid auction and post-
ing of the 3k rows (11), every bidder Bi 
opens his 3k commitments COM(Zi

(  j)), 
for the EP.

The EP chooses M = 10 kL, L = 10, and 
randomly chooses M permutations p 
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Countering Collusion
The construction of a bidding process 
having Properties 1–8 is now complete.

Formation of the cartel. By way of exam-
ple we assume that seven bidders, B1, . . ., 
B7, out of the n bidders get together 
before the closing of the auction and, 
following a discussion, agree that:

a.	 �Bidder Bi will bid according to 
strategy si, 1 ≤ i ≤ 7.

b.	 �If a cartel bidder Bi is the winner, 
he will make side payments p(i)

j  to 
each player Bj, j ≠ i, in the cartel.

Remark. Clauses (a)–(b) enable, for 
example, an agreement that B1 will be 
the highest bidder among B1, . . ., B7, 
and that if he wins he will make prom-
ised side payments to B2, . . ., B7. On the 
other hand, if one of B2, . . ., B7 wins by 
deviating from the agreement then 
he will make punitively high side pay-
ments to the other cartel members.

Theorem 8. If the auction mechanism 
satisfies conditions 1–9 then collusion is 
avoidable.

Proof. We assume that the bidders  
B1, . . ., B7 are independent self-interested 
entities and that the auction for the 
item IT with reserve price r is a one-
time event.

When announcing the auction, the 
AU promises in a binding way that the 
second price bidder Bj among all bid-
ders B1, . . ., Bn, whoever he will turn 
out to be, will get a kick back pay-
ment of (bj − r)/k, where bj is his bid 
and r is the announced reserve price. 
Say k = 10.

Now, every cartel member Bi argues 
for himself as follows. In the proof of 
correctness of the auction result, all 
bid values will remain information-
theoretically secret. Each of the cartel 
members can arrange it so that if he 
wins, the fact that he won will remain 
unknown to me (bidder Bi). Because 
that winner is self-interested, he will 
not make the side payment to me 
without any danger of reprisal. Also if 
I  win, this fact will remain unknown 
to everyone except to me and to the 
AU, hence I shall not need to make 
any side payments. On the other hand, 
if I bid bi = my true private value for IT, 
then if I win I shall get the IT at the 
second highest bid value. If I am the 

of the indexes {1, . . ., n}. The EP cre-
ates for every bidder Bi M commit-
ments COM(VBi) to random vector 
representations VBi of the value Bi (the 
names of the bidders are ASCII code 
words reduced to numbers).

The EP now creates and posts M 
new rows R3k+h, 1 ≤ h ≤ M each row R3k+h, 
a random permutation ph of the n 
quadruples:

〈COM(V B1
(3k+h)), COM(I D1

(3k+h)), 
COM(Y1

(3k+h)), COM(Z1
(3k+h))〉, . . .,

〈COM (V Bn
(3k+h)), COM(I Dn

(3k+h)), 
COM(Yn

(3k+h), COM(Zn
(3k+h))〉, 

1 ≤ h ≤ M.�

(12)

Each of the rows (12) contains m = 4n 
commitments and, before being per-
muted, is pairwise value consistent 
with each of the rows (11) viewed as a 
sequence of m = 4n commitments to 
vector representations of values.
Step 7.3 The EP acting as Prover and 
all bidders B1, . . ., Bn jointly acting as 
Verifier, now conduct the secrecy pre-
serving proof noted earlier confirm-
ing that out of the 3k rows (11) at least 
2k are pairwise value consistent and 
out of the new M rows (12) no more 
than M/L are not value consistent with 
at least 2k majority of the rows (11).

The only new point in this inter-
active proof is that whenever a row 
R3k+h is chosen by the Verifier, the EP/
Prover opens all the n commitments 
COM(VBi

(3k+h)) revealing the names 
B1, . . ., Bn and ordering the quadruples 
according to the names.

As mentioned, 4 kL of the rows R3k+h 
remain untouched at the end of this 
Step 7.3.
Step 7.4 Now the EP proves which 
identifier number idw had highest 
bid and which identifier number ids 
had the second highest bid. Without 
revealing bid values and without 
revealing names of the bidders asso-
ciated with these identifier numbers, 
this is done as follows:

The Verifiers B1, . . ., Bn randomly 
choose k rows R3k+h out of the 4 kL 
remaining untouched rows in Step 7.3. 
Slightly abusing notations, call these 
rows R1, . . ., Rk.

The EP orders the identifier num-
bers id1, . . ., idn he has assigned to the 
bidders B1, . . ., Bn according to size. 
This induces a permutation p on the 
indices {1, . . ., n} so that

idp (1) < idp (2) <, . . ., < idp (n)� (13)

The EP opens in each of the rows R1, . . ., 
Rk the n commitments COM(ID). Thus 
the rearranged row Rj will look to the 
Verifiers as:

〈COM(V Bp
( j)

(1) ), idp (1), COM(Yp
( j)
(1) ), 

COM(Zp
(  j)
(1))〉, . . ., 

〈COM (V Bp
(  j)
(n)), idp (n),  

COM(Yp(n)(  j), COM(Zp(n)(  j))〉, 
1 ≤ j ≤ k�

(14)

Recall that for every quadruple 
〈COM(V B), id, COM(Y), COM(Z)〉, the 
bid value b of the bidder B to whom 
the EP secretly attached the identifier 
number id is b = val(Y) + val(Z).

Using the k rows (14) as inputs and 
noting that the pairwise value con-
sistency for these rows has already 
been established for the Verifiers, 
the EP can interactively prove to the 
Verifiers that for identifier numbers 
idw and ids the bid value represented 
in the quadruple containing idw is the 
highest and the bid value represented 
in the quadruple containing ids is 
the second highest. The interactive 
proofs are as in Rabin et al.10,11 and 
as detailed in the section discussing 
previous results.
Step 7.5 Informing the winner, the 
second highest bidder and the other 
bidders. The EP now privately proves 
to the winning bidder that his asso-
ciated identifier number is the idw of 
step 7.4, thereby proving to him that 
he is the Winner. The EP reveals to the 
winner in a deniable way that the bid 
value associated with the identifier 
number ids is bs and collects that pay-
ment from the Winner.

In preparation for the kick back 
promised by the EP/AU to the second 
highest bidder, the EP privately and 
deniably proves to the second highest 
bidder that his identifier number is ids.

The EP also privately proves to 
every other bidder that his identifier 
number is neither ids nor idw. These 
interactive proofs are conducted with-
out revealing to the bidder in question 
his identifier number.

In the interest of brevity, we omit 
the detailed constructions of the 
above proofs. They follow the pat-
terns and employ the tools developed 
in Rabin et al.10,11 and in previous sec-
tions of this article.
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second highest bidder, then I shall 
get a kick back payment of (bi − r)/k, 
where bi = my private true value for 
the IT. The fact that I got the kick 
back payment will remain secret and 
be deniable by me.

The above argument can be strength-
ened to cover certain instances where 
the identity of the winner does not 
remain secret. Namely, the winner 
Bw has to pay the AU the second high-
est bid value bs. But the identity of the 
second highest bidder Bs is secret from 
everyone except for the AU and Bs him-
self. The bidder Bs is informed that he 
is the second highest in a deniable 
way. The winner Bw learns from the 
AU in a deniable way of the payment bs 
he has to make. Thus he can claim to 
other cartel members anything about 
that payment and consequently cheat 
them about the level of side payments 
he has to make.

The only concern that a cartel mem-
ber Bi planning to deviate from the 
cartel agreement may have is that if 
another cartel member was designated 
as winner and that if he (Bi) bids his true 
value, he may turn out to be the winner 
and be subject to a fine payment. If Bi, 
based on his estimate of bids by other 
bidders, concludes that this is a likely 
outcome, then he will deviate only if he 
knows that his becoming the winner 
can be concealed. Possible conceal-
ment strategies are described follow-
ing this Theorem.
Conclusion. Cartels are useless and the 
best strategy for every bidder is to bid 
his private true value. � 

Keeping the winner’s identity secret. 
The possibility of doing so depends 
on laws governing auctions and on 
special circumstances of a bidder, 
auctioneer, and the nature of the item 
IT up for auction.

For example: If the Auctioneer is a 
government agency, then there are 
often transparency requirements with 
respect to who gets the IT. Similarly, if 
a bidder is a government agency. The 
same restrictions may apply to pub-
licly held corporations. In the latter 
case, the corporation may circumvent 
restrictions by use of an entity regis-
tered in another jurisdiction.

If the IT is a financial instrument, 
then transfer to the winner may be 

secretly done and subsequently known 
only to tax authorities.

Consider an auction of a large 
plot of land. If a bidder is a developer 
intending to build on it, then if he wins 
the fact is not concealable. If the bid-
der is an investor who intends to later 
on resell for a profit, then if he wins he 
can ask the AU to transfer right to sell 
to a confidentiality protecting trust. 
That trust will arrange the transfer of 
title to a subsequent buyer while keep-
ing the winner’s identity concealed.

All in all the possibility of keeping the 
winner’s identity concealed depends on 
a myriad of legal and practical factors 
governing the auction in question. It 
gives rise to creative solutions. It is in 
the interest of the auctioneer and a win-
ning bidder to cooperate in implement-
ing a solution when legal and possible.

Verification of Stable 
Matching Solutions
In 1962, Gale and Shapley2 formulat-
ed the stable matching problem and 
provided an efficient algorithm for its 
solution. A number of players H1, . . ., 
Hm are looking at a pool of candidates 
G1, . . ., Gk.

In one example, the players are 
women, the candidates are men, and 
m = k. Every woman has her ordering 
of preference of men as spouses, and 
similarly for every man. A matching is a 
permutation µ: [1, n] → [1, n] assigning 
to Hi the spouse Gµ(i ). The matching is 
stable if there is no pair of indexes i, j 
such that Hi prefers Gµ( j) to Gµ(i ) and 
Gµ( j) prefers Hi to Hj. If the latter hap-
pens, then Hi can drop Gµ(i ) and Gµ( j ) 
will move to Hi.

In another important example, the 
players are hospital departments (say 
surgery departments) and the candi-
dates are graduating medical interns 
looking to become residents. In this 
case, k > m and every department may 
induct several residents. Again every 
department has its ordering of pref-
erence of candidates and every can-
didate has his ordering of preference 
of departments. These orderings are 
submitted to an agency that computes 
a stable matching and announces the 
assignments while keeping the prefer-
ences secret.

Assume that a resident Gi assigned 
to hospital department Hj suspects that 
the agency could have assigned him to 

another department preferred by him 
because such a department got assigned 
a resident less desirable to it than Gi. 
Upon demand, Gi can get a proof that 
that is not the case. The proof of correct-
ness does not reveal any preferences, 
only that Gi was not cheated. Similarly 
a department can obtain a secrecy pre-
serving proof that no more desirable 
candidate is willing to move over to it.
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review articles

A few years  ago, in the pages of this magazine, 
Edward Lee argued that computing needs time.23 
This article focuses on the natural assumption that 
computing also takes time. We examine the problem 
of determining how much time. It is the problem 
of verifying the real-time behavior of safety-critical 
embedded systems. For such systems, for example, 
anti-lock brakes and airbags, punctual behavior is of 
utmost importance: If the controlling computations 
take too long, quality of service degrades or the systems 
fail completely—your braking distance is longer or 
your head hits the steering wheel, respectively.

The basis for verifying the timeliness of system 
reactions is reliable information on the execution 
times of all computational tasks involved. It is  
the job of timing analysis, also called worst-case 
execution-time (WCET) analysis, to determine  
such information.

 key insights

 � �The tremendous progress in 
microprocessor architecture not only 
increased average-case performance,  
but also the complexity of verifying  
the real-time behavior of programs 
executed on those architectures.

 � �To derive useful execution time 
guarantees, static analyses must prove 
that speculation mechanisms of modern 
CPUs will indeed be effective during 
program runtime.

 � �This is challenging due to timing 
anomalies and interdependencies 
between architectural components.

Computation 
Takes Time, 
But How 
Much?

doi:10.1145/2500886

Timing analysis for hard real-time systems.

By Reinhard Wilhelm and Daniel Grund
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To avoid having to solve the halting 
problem, all programs under analysis 
must be known to terminate. Loops 
need bounded iteration counts and re-
cursion needs bounded depth—either 
given explicitly in the program, deter-
mined by some analysis, or supplied by 
the programmer. Furthermore, com-
puting the exact WCET of a program is 
not necessary. A conservative approxi-
mation, such as an upper bound on the 
execution times of a program, is ade-
quate; and if low enough also sufficient 
to prove overall timeliness. Figure 1 il-
lustrates the most important notions.

In the old days, such a conservative 
approximation, called the timing sche-
ma method, was proposed by Shaw.33 
Its goal is to determine bounds on the 
execution times of higher-level lan-
guage programs. The idea is to work 
along the structurally inductive defini-
tion of high-level programming lan-
guages, such as along the syntax tree 
of programs: It starts with bounds on 
the execution times of atomic program 
elements and then computes bounds 
on the execution times of complex con-
structs by composing the execution 
times of their components.

For instance, the upper bound on the 
execution times of a conditional if b 
then s1 else s2 would be computed as: 
ub (if b then then s1 else s2) = ub(b) 
+ max{ub(s1), ub(s2)}.

Today there are at least two reasons 
that render the timing schema method 
impractical, infeasible, or imprecise. 
The first one is compilers. Program 
transformations and optimizations 
performed by compilers render source 
code inadequate for timing analysis: 
Source code does not reveal the actu-
ally executed machine instructions. It 
does not show the control flow of the 
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are virtually useless.
Let us look into the reasons for the 

variability of instruction timing more 
closely: The different execution times 
of an instruction result from the dif-
ferent states the architecture may be 
in when execution of the instruction 
starts. For instance, the time for a load 
instruction depends on the state of 
the cache(s) and, maybe, also on the 
occupancy of the processor memory 
bus; the time for a conditional branch 
depends on the state of the branch 
prediction and may include the time 
necessary to recovery from mispredic-
tion. The architectural state in turn 
is the result of the execution history, 
which again is determined by the in-
put to the program and the initial 
architectural state. Different initial 
states and different control-flow paths 
to a program point will result in a set 
of possible execution states, P, before 
the instruction at this program point 
is executed. Later, we describe how a 
phase called microarchitectural analy-
sis computes invariants that charac-
terize these sets of states.

We could then, at least conceptu-
ally, try to “expand” the instruction 
by its implementation in the underly-
ing architectural platform, which is a 
huge finite-state machine. For this in-
struction, only a subset of the possible 
transitions through this finite-state 
machine are possible, namely those 
starting in states in P. They would lead 
to a new set of states reached by execut-
ing the instruction.

All paths not starting in states in P 
can be ignored in the search. Unfortu-
nately, the rest would still be too large 
to be exhaustively explored. This is 
the state-space explosion problem en-
countered by many attempts to exhaus-
tively explore state spaces.

The main measure used in micro-
architectural analysis to counter this 
complexity threat is abstraction. It al-
lows for a compact representation of 
sets of execution states: Information 
irrelevant for timing can be dropped 
completely. Timing-relevant informa-
tion can be conservatively approximat-
ed such that it can be efficiently rep-
resented. As we will discuss, there are 
limits as to how much such an abstrac-
tion may forget and still be useful.

At the end of this introduction, it 
should be clear that timing analysis 

binary program executed on the target 
machine. Nor does it show the register 
or memory allocation of program vari-
ables and intermediate results. This 
uncertainty about the actually execut-
ed code has already been addressed in 
Shaw,33 and has been found to be diffi-
cult. Since then, advances in optimiz-
ing compilers have only increased this 
uncertainty.4

The second reason is the tremen-
dous progress in computer archi-
tecture aiming at ever-increasing 
(average-case) performance. In the 
old times, execution times of instruc-
tions were constants. With the advent 
of microprocessors incorporating 
deep pipelines, caches, and various 
other speculation concepts, the ex-

ecution times of instructions became 
variable: The execution times of an 
instruction may be different for dif-
ferent occurrences of the instruction, 
that is, at different program points. 
Execution time may even differ for dif-
ferent executions of an instruction at 
a single program point. The variations 
are large: Execution times of instruc-
tions may vary by a factor of 100 or 
more. One could argue that, most of 
the time, execution is fast since the 
architectures are optimized for aver-
age-case performance. However, this 
is no foundation for deriving guaran-
tees. On the other hand, starting the 
structural composition of the timing 
schema with extremely wide bounds 
can only result in overall bounds that 

Figure 2. Main phases of a static timing analysis.
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The basis for 
verifying the 
timeliness of 
system reactions is 
reliable information 
on the execution 
times of all 
computational 
tasks involved.

does not try to solve the halting prob-
lem. All programs under analysis are 
guaranteed to terminate. The complex-
ity of several subtasks, in particular the 
huge state space to explore, is the prob-
lem to cope with.

Taking the Problem Apart
WCET analysis essentially is the search 
for a longest path through a program. 
This can be cast as the problem of con-
structing a weighted graph and finding 
a longest path in it: The graph nodes 
model program fragments, for exam-
ple, basic blocks, that is, maximally 
long sequences of straight-line code. 
The graph edges model possible con-
trol flow. The node weights are upper 
bounds on the execution times of the 
program fragments, the edge weights 
are bounds on their traversal counts.

Following this scheme, a quasi-
standard architecture for static timing 
analysis has emerged over the years, 
as shown in Figure 2. Here, we briefly 
explain the objective and main chal-
lenges of each subtask using the graph 
terminology.

1.	 Control-flow reconstruction38 de-
termines the control-flow graph itself. 
It reads the binary executable to be 
analyzed, reconstructs its control flow, 
and transforms it into an intermedi-
ate program representation. This is 
a nontrivial task due to dynamically 
computed control-flow successors, for 
example, machine code generated for 
switch statements; or function point-
ers whose values might not be deter-
mined easily. Some instruction-set 
architectures (ISAs) have additional 
surprises in store, for example those 
without a proper instruction for the re-
turn from subroutines.

2.	 Value analysis can be seen as an 
auxiliary analysis. It attempts to stati-
cally determine the values stored in 
registers and memory locations. Such 
information is needed for loop-bound 
analysis, to determine the execution 
time of arithmetic instructions whose 
timing depends on the values of their 
operands, for safely approximating 
effective addresses for data-cache 
analysis, and to resolve some more 
value-dependent timing issues. The 
general problem of value analysis is 
undecidable, and often several values 
are possible at a program point when 
control passes by this program point 

several times. One out of many approx-
imations6 is an interval analysis, which 
computes enclosing intervals for the 
set of possible values in registers and 
memory locations.

3.	 Loop bound analysis14,15 deter-
mines the edge weights of the graph. 
It identifies loops in the program 
and tries to determine bounds on the 
number of loop iterations. Similarly, 
recursion must be bounded. Encoun-
tered challenges are the analysis of 
computations on loop counters and 
loop exit conditions, as well as de-
pendencies between loop counters in 
nested loops. As the general problem 
is undecidable, bounds may have to 
be provided by the user.

4.	 Control-flow analysis,14,16 also 
known as infeasible path analysis, is 
an optional analysis. It determines 
the set of possible paths through the 
program more precisely in order to 
tighten the timing bounds. Its results 
are additional edge weights, but also 
more general path constraints. Note 
that loop bound analysis can be seen 
as a special, indispensable case of 
control-flow analysis.

5.	 Microarchitectural analysis deter-
mines the node weights of the graph. 
This subtask will be detailed below as it 
is the most complex one and provides 
the most interesting insights.

6.	 Global bound analysis,1,24,39 also 
called path analysis, finally deter-
mines a longest path in the graph. 
One approach24,39 conveniently relies 
on integer linear programming to do 
so: (a) Integer variables model the tra-
versal count of nodes and edges. (b) A 
set of constraints models the control 
flow of the program using Kirchhoff’s 
law: The sum of incoming flow at a 
node must equal the sum of outgoing 
flow. The incoming flow at the pro-
gram start node is fixed to 1. (c) An-
other set of constraints models loop 
bounds and other path constraints as 
determined by control-flow analysis. 
(d) The objective function is the sca-
lar product of the traversal counts and 
weights of the nodes, that is, execu-
tion count times execution time. To 
compute upper bounds, the objective 
function is maximized.

The Core of the Problem
In modern computer architectures, 
speculation is overabundant, it is the 
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is, t > th + n ∙ tp. A cache hit may entail 
a state change in another component 
such that an even greater penalty is in-
curred by that other component.

This all suggests that analyzing 
each architectural component inde-
pendently of other components is ei-
ther unsound or imprecise: Unsound 
if other components and their in in-
fluence are simply disregarded; im-
precise if the analysis always has to 
account for the worst behavior of other 
components.

Dire consequences. As a conse-
quence of timing anomalies, microar-
chitectural analysis must consider all 
transitions that cannot be ruled out 
statically. Due to the interdependen-
cies, the currently practiced solution 
is to analyze all architectural com-
ponents simultaneously. If one addi-
tionally considers this analysis is per-
formed at the granularity of processor 
cycles, it becomes apparent that this 
subtask of WCET analysis is the most 
complex one.

The preceding discussion also illus-
trates that worst-case execution time—
as other nonfunctional properties like 
maximal stack usage—is very difficult 
to check experimentally, such as, by 
testing and measurements. Identifying 
safe end-of-test criteria for these pro-
gram properties is an unsolved prob-
lem. In consequence, the required test 
effort is high, the tests require access 
to the physical hardware, and the re-
sults are not complete. The advantage 
of static analysis is that it enables full 
control and data coverage, it can be 
easily automatized, and software devel-
opers can run tools from their worksta-
tion computers.

Architectural abstractions. As 
mentioned earlier, abstraction is the 
strong asset in microarchitectural 
analysis. It is used to efficiently rep-
resent the architectural state at pro-
gram points and to allow for an effi-
cient state-space exploration.

A feature common to all architec-
tural abstractions is they completely 
abstract from data. WCET analysis 
is primarily interested in how long a 
computation takes; the actually com-
puted values are of no direct interest. 
Only if values have an influence on 
the execution time of an instruction 
they become important. For instance, 
it makes a difference whether the ad-

normal mode of operation, and works 
astonishingly well: Caches specu-
late on data reuse; branch prediction 
speculates on the outcome of com-
parisons, pipelining speculates on the 
absence of data dependencies; among 
others. There are even speculations 
on speculation: Instruction prefetch-
ing and speculative execution hope 
for correct branch prediction. And mi-
croarchitectural analysis, which has 
to determine upper bounds on the ex-
ecution times of program fragments, 
has to pay the bill.

Microarchitectural analysis. Com-
puter architects are content when 
speculation works most of the time—
average-case performance is what 
matters to them. To derive tight tim-
ing bounds, however, microarchi-
tectural analysis must prove that the 
speculation mechanisms work—
when they do.

This can possibly be done in many 
ways. We use abstract interpretation6 
to compute invariants at each pro-
gram point that characterize the set 
of all states the architecture can be in 
when control reaches this program 
point. These invariants describe safe 
information about the contents of the 
caches;10,11 the state of the pipeline in-
cluding the contents of all its queues 
and buffers as well as the occupancy 
of its units;12,40 and the state of off-chip 
buses, memories, and peripherals. The 
computed invariants are used to ex-
clude transitions in the architecture. 
For example, a cache-miss transition 
can be excluded if the invariant about 
the cache state allows it to predict a 
cache hit.

If this seems easy to you, let us in-
dicate some pitfalls that rule out some 
“obvious” optimizations and limit 
scalability.

Pitfall timing anomalies. It looks 
tempting to only follow the worst-case 
transition, for example, the cache-
miss transition, when the statically 
available information admits several 
possible transitions, for example, 
cache hit and cache miss. However, 
there are timing anomalies that make 
it difficult to decide which transition 
is the worst.

Intuitively, a timing anomaly is a 
situation where the local worst case 
does not entail the global worst case. 
Consider Figure 3, where a cache miss 

to memory block A—the local worst 
case—results in a globally shorter ex-
ecution time than a cache hit. This is 
because it prevents a branch predic-
tion that would erroneously prefetch B. 
Another example is given in Figure 4. 
Shortening instruction A leads to a lon-
ger overall schedule, because instruc-
tion B can now block the more impor-
tant instruction C, which may only run 
on Resource 2.

In other words, greedy is not nec-
essarily optimal when maximizing 
execution times. For details see Lun-
dqvist and Stenström,25 who intro-
duced the notion of timing anomalies, 
or Reineke and Sen,30 who present 
a formal definition in the context of 
WCET analysis.

Pitfall interdependencies. It looks 
tempting to decompose the architec-
tural analysis into individual analyses 
of its components. However, archi-
tectural components interact in non-
trivial ways.

For instance, consider caches in 
combination with branch prediction: 
If a branch is mispredicted, instruc-
tions are fetched from the wrong 
branch target before the mispredic-
tion is detected and fetching is redi-
rected to the correct branch target. 
Those extra instruction fetches can 
evict blocks from the cache that might 
have been useful for future program 
execution. Conversely, a data-cache 
miss can delay the computation of a 
branch condition, which in turn can 
trigger a branch prediction, and ulti-
mately speculative fetching and execu-
tion of code. If the initial data-cache 
access were a hit, none of this might 
have happened. Such (circular) inter-
dependencies also exist between other 
architectural components.

In particular, the following attempt 
to analyze the influence of a cache on 
execution time is unsound:

1.	 Determine an execution time 
bound, th, for a program assuming that 
all cache accesses are hits.

2.	 Determine an upper bound, n, on 
the overall number of cache misses in 
any program execution.

3.	 Take th and add n times the cache-
miss penalty, tp, to obtain an upper 
bound on the execution time that in-
cludes cache misses.

In fact, there may be an execution 
of the program that takes longer, that 
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dress of a memory access maps to a fast 
SRAM or a slow external flash memory. 
Or whether the operand of a variable-
latency floating-point multiplication is 
zero or not.

Information about values is main-
tained by the preceding value analysis 
and can be queried if necessary. Fac-
toring out value analysis (as well as 
control-flow analysis and loop bound 
analysis) in this way is possible be-
cause it solely depends on the instruc-
tion set of the considered computing 
platform. How a particular instruction 
set is implemented by a microarchi-
tecture, which determines the timing, 
is irrelevant for them. Hence, all those 
analyses can be performed at the in-
struction level, prior to microarchitec-
tural analysis, which is performed at 
the cycle level. This improves analysis 
efficiency considerably.

Note that the whole truth may in-
clude pleasantries like exposed pipe-
lines or delay slots. The intrepid reader 
may think about the ramifications of 
“undead code,” that is, unreachable 
code that gets executed speculatively; 
or, similarly, loop bounds that get ex-
ceeded by speculative execution.

The next step toward efficient rep-
resentations is component-specific 
abstractions. Consider caches for 
instance. The timing-relevant infor-
mation about caches is whether the 
memory block accessed at a program 
point is contained in the cache or not 
when execution reaches that program 
point. This essential information is 
called must- and may-cache informa-
tion:10 Must-cache information is a set 
of memory blocks that definitely are 
contained in the cache whenever ex-
ecution reaches that program point. 
May-cache information is a set of mem-
ory blocks that may be contained in the 
cache whenever execution reaches that 
program point. The former allows to 
predict hits; the latter allows to predict 
misses; and for the memory blocks in 
the set May\Must both hit and miss 
need to be taken into account.

Cache abstractions conservatively 
approximate this information. To be 
able to maintain useful information 
on cache updates, abstract caches con-
tain more than just the must- and may-
information. Compared to interval and 
congruence abstractions with rather 
simple encodings, that is, [l, u] and n 

mod m, respectively, the encoding and 
interpretation of abstract caches is 
more complicated. Yet abstract caches 
are elegant and more efficient than 
explicit encodings of sets of concrete 
cache states. For a recent overview of 
cache analysis and examples of cache 
abstractions, Grund11 or refer to the 
earlier work.10

Regarding the success in abstrac-
tion, pipelines are a counterexample. 
Pipelines are much more heteroge-
neous, that is, they consist of a large 
number of small components, for 
example, fetch buffers, dispatchers, 
execution units, queues for pending 
load and store instructions, among 
others. Besides some minor abstrac-
tions, for example, abstraction of sym-
metrical units, no satisfactory abstrac-
tion of sets of pipeline states has been 
found so far. In lieu of compact ab-
stract domains, the domain used for 
pipeline analysis essentially is a pow-
erset domain: The architectural state 
of pipelines is approximated by sets 
of concrete pipelines. For an early ex-
ample of such a pipeline analysis, see 
Ferdinand et al.;8 for a more complex 
example, see Thesing.40

As explained earlier, all these anal-
yses are performed simultaneously. 

Much like the actual hardware is made 
up of components, the microarchitec-
tural analysis is made up of abstract 
domains for all components, which are 
composed using appropriate domain 
constructors. Overall, microarchitec-
tural analysis is an abstract interpreta-
tion with a huge abstract domain. The 
number of states considered during 
the analysis of an average-sized basic 
block for a PowerPC 7448 can grow to 
seven-figure numbers.

Context sensitivity. Most static 
program analyses rely on the tacit as-
sumption of control-flow abstraction: 
Considering the exact set of possible 
program paths (to a program point) is 
intractable. A simple abstraction is to 
approximate the set of possible paths 
(to a program point) by the set of all 
paths through the CFG (to that pro-
gram point). The loss of this abstrac-
tion stems from considering infeasible 
paths through the CFG.

Regarding the WCET bound, infea-
sible shortcuts are not that problemat-
ic but infeasible detours are. Hence, as 
explained, there is control flow analy-
sis, which determines infeasible paths 
and thereby narrows down the set of 
considered paths in order to tighten 
the timing bounds.

Figure 3. Speculation timing anomaly.
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louse, France, based on static analysis;
(e)  RapiTime, a commercial tool by 

Rapita Systems Ltd., York, U.K., based 
on measurements; and,

(f)  SWEET, an academic prototype 
of Mälardalen University, Sweden, fo-
cusing on static control-flow analysis.

For a more complete list and a deep-
er discussion of functionalities and 
limitations we refer to Wilhelm et al.43

Regarding sound static analysis ap-
proaches and saving open and upcom-
ing challenges for later discussion, 
the most important developments 
were (a) the timing schema introduced 
by Shaw33 and its extension; (b) the 
switch to the more suitable implicit 
path enumeration technique (IPET), 
initially proposed by Li and Malik,24 
which is still used today for global 
bound analysis; (c) dissection of the 
timing analysis task into controllable 
subtasks;8 (d) approaches to microar-
chitectural analysis, leading to com-
plete models of complex processors;40 
(e) abstractions for the huge state 
spaces of cache architectures;10,11 and 
(f) relaxations of the uninterrupted-
execution assumption,2 which we will 
discuss in further detail.

The WCET research group at Mälar-
dalen University maintains a num-
ber of WCET benchmark programsa 
used to evaluate and compare differ-
ent types of WCET analysis tools and 
methods.13 Since 2006, the WCET 
community periodically performs a 
WCET Tool Challenge.b The published 
results37 give a good overview of the 
state of the different tools.

Industrial Adoption
Until the 1990s, timing analysis in 
industrial contexts was dominated by 
measurement-based techniques and 
simple counting methods. The strand 
of research on static methods reached 
a milestone in 1998 with the founding 
of the company AbsInt Angewandte 
Informatik GmbH. After preliminary 
discussions with the German TÜVs 
(technical inspection offices) the mar-
ket potential of Abstract Interpreta-
tion based WCET analysis seemed to 
justify the commercialization effort. 
Airbus was among the first companies 

a	 http://www.mrtc.mdh.se/projects/wcet/
benchmarks.html/

b	 http://www.mrtc.mdh.se/projects/WCC/

In general, the WCET problem re-
quires analyses that are highly context-
sensitive. That is, they need to distin-
guish between different possibilities 
how control reaches a program point. 
To see why, consider the execution 
of loops: The first iteration typically 
exhibits a different architectural be-
havior than subsequent iterations, for 
example, the instructions of the loop 
get loaded into the cache. If one would 
not distinguish between iterations one 
would have to conservatively take in-
struction cache misses into account 
for all loop iterations. This, however, 
would lead to a significant overestima-
tion of the execution time.

Similar differences can be exhibited 
between different call sites of functions. 
After a first call some of the function’s 
code might remain in the cache. Loop 
bounds within the function might de-
pend on a function parameter. Different 
parameter values might induce paths of 
different lengths through the function.

Essentially contexts allow to in-
fer stronger invariants per (program 
point, context) -pair compared to a sin-
gle invariant per program point. 

To read more on context sensitivity 
and special kinds of context sensitivity 
that have emerged in WCET analysis, 
see Martin et al.26

Conclusion. Modern CPUs feature 
an abundance of speculation mecha-
nisms that increase (average-case) 
performance. To derive tight bounds 
on program execution times, static 
WCET analysis must prove that specu-
lation mechanisms indeed work well. 
As we have seen, this is difficult for 
many reasons:

Interdependencies between archi-
tectural components forbid the analy-
sis of individual components as well 
as the naive approach of assigning 
execution time penalties, for example, 
“add n times the cache miss penalty.” 
Analyses need to be integrated, which 
entails higher complexity and in-
creased resource demand. At the same 
time, pruning of the analysis search 
space is hindered by timing anoma-
lies and requires precise information 
about the architectural state. To obtain 
such precise information, context-sen-
sitive analyses are required that need 
to distinguish between a large number 
of different execution histories. This 
is because the state of components 

like caches and branch predictors may 
depend on events in the distant past. 
Indeed some may never forget about 
their history.29

On a more abstract level, CPUs 
are built to exploit runtime informa-
tion during the execution of a single 
program path. WCET analysis must 
statically prove successful exploitation 
while efficiency dictates implicit con-
sideration of all program paths. It is fair 
to say that for hard real-time systems, 
the high sophistication of some specu-
lation mechanisms is a waste of silicon.

Academic Development
The editorial by Puschner and Burns28 
compactly describes the early work on 
WCET analysis in the 1980s and 1990s. 
It summarizes the contributions of 
the then active research groups. The 
more recent survey of Wilhelm et al.43 
takes a more problem-centric point of 
view. It discusses different approach-
es at the subtasks of timing analysis, 
contributing groups, as well as the 
strengths and limits of the tools avail-
able at that time.

In principle, one can distinguish 
between methods based on measure-
ments, simulation, or static analysis. 
The WCET estimates determined by 
measurements or simulation are unsafe 
as inclusion of the worst-case combina-
tion of program input and initial archi-
tectural state can rarely be guaranteed. 
Static methods can provide guarantees 
but may suffer from overestimation. 
Performing measurements requires the 
hardware and tracing equipment; simu-
lations and static analysis require mod-
els of the architecture.

Some research groups invested into 
academic prototypes, some of which 
made the leap to commercially avail-
able tools. The most widely known 
tools that are still maintained are:

(a)  aiT, a commercial tool by AbsInt 
GmbH, Saarbrücken, Germany, based 
on static analysis;

(b)  BoundT, a commercial tool by 
Tidorum Ltd., Helsinki, Finland, based 
on static analysis;

(c)  Chronos, an open source soft-
ware developed by National University 
of Singapore, employs the SimpleSca-
lar simulator for microarchitectural 
analysis;

(d)  OTTAWA, an open source soft-
ware developed by University of Tou-

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=100&exitLink=http%3A%2F%2Fwww.mrtc.mdh.se%2Fprojects%2Fwcet%2Fbenchmarks.html%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=100&exitLink=http%3A%2F%2Fwww.mrtc.mdh.se%2Fprojects%2Fwcet%2Fbenchmarks.html%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=100&exitLink=http%3A%2F%2Fwww.mrtc.mdh.se%2Fprojects%2FWCC%2F
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The worst-
case execution 
time estimates 
determined by 
measurements 
or simulation are 
unsafe as inclusion 
of the worst-case 
starting conditions 
can rarely be 
guaranteed. 
Methods based on 
static analysis can 
provide guarantees 
but may suffer from 
overestimation.

to recognize the potential of the novel 
technique. Airbus was instrumental 
in the European IST project Daedalus 
(Validation of critical software by static 
analysis and abstract testing), in the 
course of which AbsInt adapted its pro-
totypical tool chain for WCET analysis 
to the industrial requirements for avi-
onics software.34,35,41 The first proces-
sors supported by the new commercial 
WCET analysis tool were Motorola 
PowerPC 755 and TI TMS470. Today, 
this tool, which implements the archi-
tectures described earlier, is known as 
aiT WCET Analyzer.

Initially reported results35 pertain 
to the more complex PowerPC 755, 
whose variance of execution times for 
instructions is in the order of a factor 
of several hundreds. The comparison 
shows that the computed upper bound 
of a task typically is about 25% higher 
than the measured time for the same 
task, the real but non-calculable WCET 
being in between. Analysis time was 12 
hours per program on average and the 
maximal memory demand was close to 
3GiB. Since then, the aiT tool chain has 
been continuously improved by incor-
porating new research results and now 
supports some 20 processor targets.c 
For simpler microcontrollers overesti-
mation is below 10%.d

Tool couplings to other develop-
ment tools have been implemented. 
For instance between aiT and model-
based code generators like Esterel 
SCADE9 and dSPACE TargetLink.20 
They enable the worst-case timing 
behavior to be continuously evalu-
ated during software development. 
Links between analysis results and 
the model level enable timing infor-
mation to be traced back to the model 
level. Errors can be detected early in 
the development process, thus avoid-
ing late-stage integration problems. 
Another important process optimi-
zation can be realized by integrating 
tools for computing the worst-case 
execution time and the worst-case re-
sponse time. A tool coupling between 
aiT and the SymTA/S tool from Symta-
vision provides a seamless approach 
to timing analysis: SymTA/S computes 
the end-to-end times and worst-case 
response times of the system based 

c	 http:/www.absint.com/ait/targets.htm/
d	 http://www.absint.com/ait/precision.htm/

on the worst-case execution times 
computed by aiT.19 From a safety as-
surance perspective, typically mod-
el-based testing is used for showing 
functional program properties, and 
static analysis to prove the absence 
of non-functional program errors. 
Therefore it can be very beneficial to 
integrate model-based testing and 
analysis, which has been addressed by 
a tool coupling between aiT and the 
model-based testing tool BTC Embed-
dedTester.18 Model-level information 
like execution model or environment 
specifications is automatically taken 
into account, avoiding duplicate effort 
for test and analysis setup. Tests and 
analyses can be launched seamlessly 
and produce unified result reports.

During the last years, most of the 
relevant safety standards have been 
undergoing major revisions, for exam-
ple, DO-178, IEC-61508, and CENEL-
EC EN-50128. The norm ISO-26262 
defining functional safety for road ve-
hicles was published in the year 2011. 
All of them require to identify poten-
tial functional and nonfunctional 
hazards and to demonstrate that the 
software does not violate the relevant 
safety goals. All mentioned standards 
list the worst-case execution time to 
the software properties that have to 
be determined for real-time software. 
When used in the certification process 
of safety-critical systems, tools must 
be qualified according to the perti-
nent safety standard. To support this, 
AbsInt has developed Qualification 
Support Kits (QSK) for aiT, which can 
demonstrate the tool works correctly 
in the operational context of the user. 
Additionally, Qualification Software 
Life Cycle Data (QSLCD) reports are 
available that document the entire 
tool development process of aiT for 
all target processors and compilers, 
including all verification and quality 
assurance activities. QSK and QSLCD 
enable the tool qualification accord-
ing to any safety standard to be per-
formed in a mostly automatic way up 
to the highest criticality levels.22

Customers of aiT come from all 
safety-critical industry sectors: Avion-
ics and space, automotive, nuclear 
power plant control, healthcare tech-
nology, among others. Regrettably, 
most aiT customers do not agree to 
be referenced. Some who agreed can 

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=101&exitLink=http%3A%2F%2Fwww.absint.com%2Fait%2Ftargets.htm%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=101&exitLink=http%3A%2F%2Fwww.absint.com%2Fait%2Fprecision.htm%2F
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Necessary effort 
and achievable 
precision for the 
single-core setting 
meet industrial 
requirements. 
For most current 
multicore 
platforms, precision 
and/or complexity 
are unacceptable.

In fact one can state this assump-
tion in a more general way: Analysis 
takes account only of events whose 
occurrence can be associated with 
specific program points. Other types 
of events that happen without such 
an association and that alter the ar-
chitectural state have to be dealt with 
separately. Preemptive scheduling, 
possibly implemented using hard-
ware interrupts, is only one example. 
Others include DRAM refreshes, DMA 
transfers, or even the parallel execu-
tion of programs on multiprocessor or 
multicore platforms.

The problem with parallel execu-
tion of programs is the induced in-
terference on architectural resources 
that are shared between programs, 
for example, caches, interconnects, 
flash memories, peripherals, and so 
on. Some accesses to shared resourc-
es, in particular global variables, will 
be synchronized to guarantee the se-
mantics of the co-running programs. 
For the rest, the order in which com-
peting threads access shared machine 
resources is not statically fixed. This 
complicates timing analysis as any 
access to a shared resource might be 
delayed due to competing accesses. 
One approach to statically prove the 
absence of such delays is to analyze 
each program given abstractions of 
the resource access behaviors of all 
other co-running programs. One ex-
ample is given by Schranzhofer et al.,32 
but finding suitable abstractions for 
the general problem is unsolved.

To mitigate problems in timing 
analysis, one can try to reduce inter-
ferences on resources by smart config-
uration of the CPU or system board.7,21 

As an alternative to tilting at wind-
mills, that is, trying to fix designs that 
are less favorable for WCET analysis, 
one can try to design the architectures 
appropriately in the first place.42,44 Ap-
propriately meaning that one can eas-
ily predict their behavior while they 
still exhibit high performance. The 
need for predictability was recognized 
early36 and has since been inspected 
in several ways, for example, Henzing-
er,17 Bernardes,5 and Thiele.42 Howev-
er, the understanding of predictability 
in the real-time community is rather 
implicit. A generally accepted formal 
definition is still to be found. The joint 
article by Axer et al.3 discusses predict-

be found at http:/www.absint.com/
success.htm. In 2010, aiT was used by 
NASA as an industry-standard tool for 
demonstrating the absence of timing-
related software defects in the Toyota 
Motor Corporation Unintended Accel-
eration Investigation.27

Open Questions and 
Future Challenges
In this article, we described a solu-
tion for the WCET-analysis problem. 
However, there are still shortcomings 
whose removal will increase general 
applicability. Here, we discuss these 
shortcomings as well as future threats 
to the viability of this solution.

For the sake of completeness, let 
us list the underlying assumptions of 
our approach. Regarding the program 
to be analyzed: termination, no self-
modifying code, no dynamic memory 
allocation, and resolvable dynamic 
branch targets.

These are rather easy to satisfy 
and missing information can be sup-
plied by the developer or derived from 
a higher-level model. Although the 
source code might be subject to regu-
lations or norms, this is irrelevant for 
WCET analysis as it requires binaries 
as input.

Static analysis requires a truth-
ful model of the architecture to be 
analyzed. Current abstract models are 
crafted by studying hardware docu-
mentation, by querying designers, by 
asking somebody who knows, and, if 
necessary, by performing reverse-engi-
neering experiments. The upcoming al-
ternative to this error-prone and labori-
ous process is to derive abstract models 
from VHDL or Verilog specifications.31

One important assumption we 
make on the system level is that pro-
grams are executed in isolation. If 
program execution were interrupted, 
and other code were executed, the 
architectural state would be differ-
ent when program execution would 
resume. Hence, the computed invari-
ants on the architectural state at all 
following program points would be 
wrong. One needs additional analyses 
that allow to bound the interruption-
caused increase in execution time.2 
Nonpreemptive scheduling, as found 
in avionics for example, is the easier 
choice though, at least concerning 
WCET analysis.

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=102&exitLink=http%3A%2F%2Fwww.absint.com%2Fsuccess.htm
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=102&exitLink=http%3A%2F%2Fwww.absint.com%2Fsuccess.htm
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ability fundamentally and at several 
abstraction levels of systems.

Conclusion
Timing analysis has been made dif-
ficult by the use of high-performance 
microprocessors, which use caches, 
deep pipelines, out-of-order execution, 
and branch prediction to improve aver-
age-case performance. These architec-
tural components have introduced a 
large variability of the execution times 
of individual instructions by the de-
pendence on the execution state. The 
solution is to safely bound the execu-
tion times of sequences of instructions 
occurring in the program based on in-
formation about all possible execution 
histories leading to these occurrences. 
Static program analysis is used to com-
pute such information. Reliable and 
precise upper bounds can be comput-
ed. Timing-analysis tools are in routine 
use in the safety-critical embedded-
systems industries.

The possibility to determine execu-
tion-time bounds and the precision of 
the results depend heavily on proper-
ties of the underlying computer archi-
tecture. Trends in computer architec-
ture and in software design threaten 
the applicability of established meth-
ods. The fact the timing analysis 
problem could be solved in a provably 
correct way is considered one of the 
success stories of formal methods. 
Continuation of this story will require 
more predictable architectures as well 
as advances in analysis technology.

Acknowledgments
We thank our many colleagues who 
have contributed to the described ap-
proach, including Christian Ferdi-
nand, Florian Martin, Henrik Theil-
ing, Michael Schmidt, and Stephan 
Thesing, Reinhold Heckmann, Daniel 
Kästner, and Jan Reineke.

The development of the technology 
was supported by the Transfer Project 
14 of the Deutsche Forschungsgemein-
schaft, the European IST project Dae-
dalus, and the Transregional Research 
Center AVACS of the Deutsche Forsc-
hungsgemeinschaft.	

References
1.	A lthaus, E., Altmeyer, S. and Naujoks, R. Precise and 

efficient parametric path analysis. In Proceedings 
of the ACM SIGPLAN/SIGBED 2011 Conference 
on Languages, Compilers, and Tools for Embedded 

Systems. ACM, NY (Apr. 2011), 141–150.
2.	A ltmeyer, S., Davis, R.I. and Maiza, C. Improved 

cache related pre-emption delay aware response time 
analysis for fixed priority pre-emptive systems. Real-
Time Systems 48, 5 (2012), 499–526.

3.	A xer, P. et al. Building timing predictable embedded 
systems. Trans. Embedded Computing Systems (2012).

4.	B alakrishnan, G. and Reps, T. WYSINWYX: What you 
see is not what you eXecute. ACM Trans. Program. 
Lang. Syst. 32, 6 (Aug. 2010), 23:1–23:84.

5.	B ernardes, J.N.C. On the predictability of discrete 
dynamical systems. In Proc. of the American Math. 
Soc. 130, 7 (2001), 1983–1992.

6.	 Cousot, P. Abstract interpretation based formal 
methods and future challenges. Informatics—10 
Years Back, 10 Years Ahead (2001), 138–156.

7.	 Cullmann, C. et al. Predictability considerations in 
the design of multi-core embedded systems. In 
Proceedings of Embedded Real Time Software and 
Systems (May 2010), 36–42.

8.	 Ferdinand, C. et al. Reliable and precise WCET 
determination for a real-life processor. In Proceedings 
of the First International Workshop on Embedded 
Software (London, U.K., 2001). Springer, 469–485.

9.	 Ferdinand, C. et al. Combining a high-level design 
tool for safety-critical systems with a tool for WCET 
analysis on executables. In Proceedings of the 4th 
European Congress ERTS Embedded Real-Time 
Software (Toulouse, France, Jan. 2008).

10.	 Ferdinand, C. and Wilhelm, R. Efficient and precise 
cache behavior prediction for real-time systems. Real-
Time Systems 17, 2-3 (1999), 131–181.

11.	G rund, D. Static Cache Analysis for Real-Time 
Systems—LRU, FIFO, PLRU. Ph.D. thesis. Saarland 
University, 2012.

12.	G rund, D., Reineke, J. and Gebhard, G. Branch target 
buffers: WCET analysis framework and timing 
predictability. J. Systems Architecture 57, 6 (2011), 
625–637.

13.	G ustafsson, J., Betts, A. Ermedahl, A. and Lisper, B. 
The Mälardalen WCET benchmarks: Past, present 
and future. In Proceedings of the 10th International 
Workshop on Worst-Case Execution Time Analysis.

14.	G ustafsson, J., Ermedahl, A., Sandberg, C. and Lisper, 
B. Automatic derivation of loop bounds and infeasible 
paths for WCET analysis using abstract execution. In 
Proceedings of the 27th IEEE International Real-Time 
Systems Symposium (Washington, D.C., 2006), IEEE-
CS, 57–66.

15.	H ealy, C. Sjödin, M., Rustagi, V., Whalley, D. and van 
Engelen, R. Supporting timing analysis by automatic 
bounding of loop iterations. Real-Time Systems 18 
(2000), 129–156.

16.	H ealy, C. and Whalley, D. Automatic detection and 
exploitation of branch constraints for timing analysis. 
IEEE Trans. Software Engineering 28, 8 (2002), 
763–781.

17.	H enzinger, T. Two challenges in embedded systems 
design: Predictability and robustness. Philos. Trans. 
Royal Soc. Math., Phys. and Engin. Sciences, 366, 1881 
(2008), 3727–3736.

18.	 Kästner, D. et al. Leveraging from the combination of 
model-based analysis and testing. Embedded World 
Congress, 2013.

19.	 Kästner, D., Ferdinand, C., Heckmann, R., Jersak, 
M. and Gliwa, P. An integrated timing analysis 
methodology for real-time systems. SAE World 
Congress. SAE International, 2011.

20.	 Kästner, D. et al. Integrating model-based code 
generators with static program analyzers. Embedded 
World Congress, 2013.

21.	 Kästner, D. et al. Meeting real-time requirements 
with multi-core processors. In Proceedings of 2012 
Workshop: Next Generation of System Assurance 
Approaches for Safety-Critical Systems. (Sept. 2012).

22.	 Kästner, D. and Ferdinand, C. Efficient verification 
of non-functional safety properties by abstract 
interpretation: Timing, stack consumption, and 
absence of runtime errors. In Proceedings of the 
29th International System Safety Conference (Las 
Vegas, 2011).

23.	 Lee, E.A. Computing needs time. Commun. ACM 52, 5 
(May 2009), 70–79.

24.	 Li, Y-T.S. and Malik, S. Performance analysis of 
embedded software using implicit path enumeration. 
In Proceedings of the 32nd Annual ACM/IEEE Design 
Automation Conference (New York, NY, 1995), ACM, 
NY, 456–461.

25.	 Lundqvist, T. and Stenström, P. Timing anomalies 
in dynamically scheduled microprocessors. In 
Proceedings of the 20th IEEE Real-Time Systems 

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=103&exitLink=mailto%3Awilhelm%40cs.uni-saarland.de
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=103&exitLink=mailto%3Adaniel.grund%40thalesgroup.com


Priority Code:  AD13

Online
http://www.acm.org/join

Phone
+1-800-342-6626 (US & Canada)

+1-212-626-0500 (Global)

Fax  
+1-212-944-1318

membership application &
digital library order form

PROFESSIONAL MEMBERSHIP:

o ACM Professional Membership: $99 USD

o ACM Professional Membership plus the ACM Digital Library: 

$198 USD ($99 dues + $99 DL)

o ACM Digital Library: $99 USD (must be an ACM member)

STUDENT MEMBERSHIP:
o ACM Student Membership: $19 USD

o ACM Student Membership plus the ACM Digital Library:  $42 USD

o ACM Student Membership PLUS Print CACMMagazine:  $42 USD

o ACM Student Membership w/Digital Library PLUS Print 

CACM Magazine: $62 USD

choose one membership option:

Name

Address

City State/Province Postal code/Zip

Country E-mail address

Area code & Daytime phone Fax          Member number, if applicable

 Payment must accompany application. If paying by check or
money order, make payable to ACM, Inc. in US dollars or foreign
currency at current exchange rate.

o Visa/MasterCard o American Express o Check/money order

o Professional Member Dues ($99 or $198)         $ _____________________

o ACM Digital Library ($99)                                       $ _____________________

o Student Member Dues ($19, $42, or $62)         $ _____________________

Total Amount Due $ ______________________

Card # Expiration date

Signature

Member dues, subscriptions, and optional contributions are
tax-deductible under certain circumstances. Please consult
with your tax advisor.

payment:

RETURN COMPLETED APPLICATION TO:

All new professional members will receive an 
ACM membership card.

Association for Computing Machinery, Inc.
General Post Office
P.O. Box 30777
New York, NY 10087-0777

Questions?  E-mail us at acmhelp@acm.org
Or call +1-800-342-6626 to speak to a live representative

Satisfaction Guaranteed!

Purposes of ACM
ACM is dedicated to:
1) advancing the art, science, engineering,  
and application of information technology
2) fostering the open interchange of 
information to serve both professionals and   
the public

3) promoting the highest professional and 
ethics standards

I agree with the Purposes of ACM:

Signature
ACM Code of Ethics:

http://www.acm.org/about/code-of-ethics

You can join ACM in several easy ways:

Or, complete this application and return with payment via postal mail

Special rates for residents of developing countries:
http://www.acm.org/membership/L2-3/

Special rates for members of sister societies:
http://www.acm.org/membership/dues.html

Advancing Computing as a Science & Profession

Please print clearly

o Join ACM-W: ACM-W supports, celebrates, and advocates internationally for the full engagement of women in all aspects of the 
computing field. Available at no additional cost.

CACM_PRINT_MAG_APP_2013_Layout 1  12/2/13  10:40 AM  Page 2

http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=104&exitLink=http%3A%2F%2Fwww.acm.org%2Fjoin
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=104&exitLink=mailto%3Aacmhelp%40acm.org
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=104&exitLink=http%3A%2F%2Fwww.acm.org%2Fabout%2Fcode-of-ethics
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=104&exitLink=http%3A%2F%2Fwww.acm.org%2Fmembership%2FL2-3%2F
http://mags.acm.org/communications/february_2014/TrackLink.action?pageName=104&exitLink=http%3A%2F%2Fwww.acm.org%2Fmembership%2Fdues.html


research highlights 

105    communications of the acm    |   february 2014  |   vol.  57  |   no.  2

p. 107

Communication Costs of 
Strassen’s Matrix Multiplication
By Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz

p. 106

Technical 
Perspective  
A New Spin on  
an Old Algorithm
By Michael W. Mahoney



106    communications of the acm    |   february 2014  |   vol.  57  |   no.  2

C o m m u n i c ati  o n — t h e  c o s t  of moving 
bits between levels of the memory hier-
archy on a single machine or between 
machines in a network or data cen-
ter—is often a more precious resource 
than computation. Although not new, 
communication-computation trade-
offs have received renewed interest 
in recent years due to architectural 
trends underlying high-performance 
computing as well as technologi-
cal trends that permit the automatic 
generation of enormous quantities of 
data. On the practical side, this has led 
to multicore processors, libraries such 
as LAPACK and ScaLAPACK, schemes 
such as MPI and MapReduce, and dis-
tributed cloud-computing platforms. 
On the theoretical side, this has moti-
vated a large body of work on new al-
gorithms for old problems under new 
models of data access.

Into this fray enters the following 
paper by Ballard, Demmel, Holtz, and 
Schwartz, which considers a funda-
mental problem, adopting a new per-
spective on an old algorithm that has 
for years occupied a peculiar place in 
the theory and practice of matrix al-
gorithms. In doing so, the work high-
lights how abstract ideas from theoret-
ical computer science (TCS) can lead to 
useful results in practice, and it illus-
trates how bridging the theory-practice 
gap requires a healthy understanding 
of the practice.

The basic problem is the multiplica-
tion of two n × n matrices. This is a fun-
damental primitive in numerical linear 
algebra (NLA), scientific computing, 
machine learning, and large-scale data 
analysis. Clearly, n2 time is a trivial low-
er bound—that much time is necessary 
to read the input and write the output. 
Moreover, at first glance, it seems “ob-
vious” the ubiquitous three-loop al-
gorithm for multiplying two matrices 
(given as input two n × n matrices, A 
and B, for each i, j, k, do: C(i, j)+= A(i, k) 
* B(k, j)) shows that a constant times n3 
time is needed to solve the problem. 

Back in 1969, it was surprising when 
Strassen presented his by-now well-
known algorithm. The basic idea is two 
2 × 2 matrices can be multiplied using 
7, rather than the usual 8, multiplica-
tions. Since the same idea applies to 2 × 
2 block matrices, the natural recursive 
extension can be used to multiply two 
n × n matrices in no more than a con-
stant times nω arithmetic operations, 
where ω = log2 7 ≈ 2.808. Over the years, 
the exponent ω has been whittled down 
to ω ≈ 2.373, and many conjecture that 
there exist Strassen-like algorithms 
with ω = 2.

Strassen’s algorithm highlights 
the distinction, extremely important 
in TCS, between problems and algo-
rithms; and it demonstrates that non-
obvious algorithms can have better 
running times, in theory at least, than 
the obvious algorithm. Although its 
running time can be better than the 
usual three-loop algorithm for input 
matrices larger than ca. 100 × 100, 
Strassen’s algorithm has, for both tech-
nical and non-technical reasons, yet to 
be widely used in practice.

This paper is part of a larger body 
of work on minimizing communica-
tion in NLA algorithms. Previous work 
has shown that geometric embedding 
methods can be used to establish com-
munication lower bounds for three-
loop matrix multiplication algorithms 
in both shared-memory sequential and 
distributed-memory parallel models. 
Basically, the algorithm can be mod-
eled as a computation directed acyclic 
graph (CDAG). Due to the three-loop 
structure of the algorithm, this graph 
can be embedded into a 3D cube; and 
from the isoperimetric properties of 
that embedding a lower bound on 
communication can be established. 
The main result of this paper is a new 
lower bound on the amount of commu-
nication for both sequential and paral-
lel versions of Strassen-like algorithms 
that is lower than the lower bound of 
the usual three-loop algorithm.

Since the geometric embedding 
methods do not seem to apply to the 
recursive structure of Strassen-like 
algorithms, the new lower bound is 
established by considering the edge 
expansion of the CDAG of Strassen’s 
algorithm. Expanders—graphs that do 
not have any good partitions and that 
do not embed well in any low-dimen-
sional Euclidean space—are remark-
ably useful structures that are ubiqui-
tous within TCS and almost unknown 
outside TCS. For readers familiar with 
expanders, this paper will provide yet 
another application. For readers not 
familiar with expanders, this paper 
should be a starting point.

Finally, in a stroke that will make 
practitioners of numerical analysis and 
data analysis—as well as lower bound 
complexity theorists—happy, the au-
thors also show their lower bounds 
are tight by providing an optimal al-
gorithm. In the sequential case, this is 
attained by the standard implementa-
tion of Strassen’s algorithm; and, in the 
parallel case, the authors, in joint work 
with Benjamin Lipshitz, have devel-
oped a novel Communication Avoiding 
Parallel Strassen algorithm. This latter 
algorithm communicates asymptoti-
cally less than previous three-loop and 
Strassen-based algorithms; and its em-
pirical performance exceeds all other 
known matrix multiplication algo-
rithms, three-loop or Strassen-based, 
on large parallel machines. Remark-
ably, this suggests that Strassen’s algo-
rithm should be adopted into existing 
parallel NLA libraries, providing a great 
example of how to bridge the theory-
practice gap, and suggesting that Stras-
sen’s algorithm might still see practical 
use—ironically, though, due to its bet-
ter communication properties.	

Michael W. Mahoney (mmahoney@icsi.berkeley.edu) is 
at the International Computer Science Institute and the 
Department of Statistics at the University of California at 
Berkeley. 
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Communication Costs of 
Strassen’s Matrix Multiplication
By Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz

Abstract
Algorithms have historically been evaluated in terms of the 
number of arithmetic operations they performed. This anal-
ysis is no longer sufficient for predicting running times on 
today’s machines. Moving data through memory hierarchies 
and among processors requires much more time (and energy) 
than performing computations. Hardware trends suggest that 
the relative costs of this communication will only increase. 
Proving lower bounds on the communication of algorithms 
and finding algorithms that attain these bounds are therefore 
fundamental goals. We show that the communication cost of 
an algorithm is closely related to the graph expansion proper-
ties of its corresponding computation graph.

Matrix multiplication is one of the most fundamental 
problems in scientific computing and in parallel comput-
ing. Applying expansion analysis to Strassen’s and other 
fast matrix multiplication algorithms, we obtain the first 
lower bounds on their communication costs. These bounds 
show that the current sequential algorithms are optimal but 
that previous parallel algorithms communicate more than 
necessary. Our new parallelization of Strassen’s algorithm 
is communication-optimal and outperforms all previous 
matrix multiplication algorithms.

1. INTRODUCTION
Communication (i.e., moving data) can greatly dominate 
the cost of an algorithm, whether the cost is measured in 
running time or in total energy. This holds for moving data 
between levels of a memory hierarchy or between processors 
over a network. Communication time per data unit varies by 
orders of magnitude, from order of 10−9 seconds for an L1 
cache reference to order of 10−2 seconds for disk access. The 
variation can be even more dramatic when communication 
occurs over networks or the internet. In fact, technological 
trends16, 17 are making communication costs grow exponen-
tially over time compared to arithmetic costs. Moore’s Law 
is making arithmetic on a chip improve at about 60% per 
year, but memory and network bandwidth is improving at 
only 26% and 23% per year.16 So even in cases where commu-
nication is not the bottleneck today, it may be in the future.

Ideally, we would be able to determine lower bounds on the 
amount of required communication for important problems 
and design algorithms that attain them, namely, algorithms 
that are communication-optimal. These dual problems have 
long attracted researchers, with one example being classi-
cal Θ(n3) matrix multiplication (see further details below), 
with lower bounds proved in Hong and Kung18 and Irony 
et al.20 and many optimal sequential and parallel algorithms 
obtained in, for example, Agarwal et al.1 and Cannon11.

These lower bounds have recently been extended to a 
large class of other classical linear algebra problems, includ-
ing linear system solving, least squares, and eigenvalue 
problems, for dense and sparse matrices, and for sequential 
and parallel machines.9 Surprisingly, the highly optimized 
algorithms in widely implemented libraries like LAPACK 
and ScaLAPACK3 often do not attain these lower bounds, 
even in the asymptotic sense. This has led to much recent 
work inventing new, faster algorithms that do; see the cita-
tions in Ballard et al.9, 10 for references.

In this paper, we describe a novel approach to prove 
the first communication lower bounds for Strassen’s 
Θ(nlog2 7) matrix multiplication algorithm, as well as 
many similar fast algorithms. Specifically, we introduce 
expansion analysis of the computational graphs of the 
algorithms and show that the expansion helps deter-
mine the communication cost. These communication 
cost bounds are lower than those of classical matrix 
multiplication: this means that not only does Strassen’s 
algorithm reduce computation, but it also creates an 
opportunity for reducing communication. In addition, 
the lower bound decreases as the amount of available 
memory grows, suggesting that using extra memory may 
also allow for faster algorithms.

In fact, there is an optimal parallel algorithm that attains 
our lower bounds for varying amounts of memory, whose 
performance exceeds all other known matrix multiplication 
implementations, classical or Strassen-based, on a large 
parallel machine,6 see Figure 1. In the rest of this paper, we 
focus on explaining our new lower bounds for Strassen’s 
algorithm and their implications.

1.1. Communication models
In order to analyze the communication costs of algorithms, 
we consider idealized memory and communication models. 
In the sequential case (see Figure 2), we consider a machine 
with two levels of memory hierarchy: a fast memory of size 
M words (where computation is performed) and a slow 
memory of infinite size. We assume that the input initially 
resides in slow memory and is too large to fit in fast memory. 
We define the communication cost of a sequential algorithm 

The original version of this paper is entitled “Graph 
Expansion and Communication Costs of Fast Matrix 
Multiplication” and was first published in the Proceedings 
of the 2011 ACM Symposium on Parallelism in Algorithms 
and Architectures and also appeared in the December 
2012 issue of the Journal of the ACM.
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multiplication, resulting in a total communication cost of 
Θ(n3). A natural question to ask is: can we do better?

Algorithm 1 Naive Classical Matrix Multiplication

1:  for i = 1 to n do
2:    for j = 1 to n do
3:	 for k = 1 to n do
4:	 Ci j = Ci j + Ai k · Bk j

The answer is yes. We can reduce communication by 
using a “blocked” algorithm (see Algorithm 2). The idea is 
to partition A, B, and C into square blocks of size b × b so 
that three blocks can simultaneously fit in the fast memory. 
We use the notation C[I, J   ] to refer to the (I, J   )th b × b block of 
the C matrix. When C[I, J   ], A[I, K   ], and B[K, J   ] are all in fast 
memory, then the inner loop of the algorithm (correspond-
ing to (b3) arithmetic operations) can be performed with no 
more communication.

Algorithm 2 Blocked Classical Matrix Multiplication

1:  for I = 0 to n/b do
2:    for J = 0 to n/b do
3:	 for K = 0 to n/b do
4:	 C[I, J   ] = C[I, J   ] + A[I, K   ] · B[K, J  ]

If we pick the maximum block size of , this results 
in a total of  block operations, each requiring (M) 
words to be communicated. Hence, the total communica-
tion cost is , a factor of  better than that of 
the naive algorithm.

The typical performance difference between the naive 
and blocked algorithms on a sequential machine is an order 
of magnitude. With the blocked algorithm, attained per-
formance is close to the peak capabilities of the machine. 
Again, the question arises: can we do better? Can we further 
reorder these computations to communicate less?

If we insist on performing the (n3) arithmetic operations 
given by the classical formulation, the answer is no. Hong 
and Kung18 proved a communication cost lowerbound of 

 for any reordering, showing that the blocked 
algorithm is communication-optimal. But this is not the 
end of the story: this communication optimality of the 
blocked algorithm assumes (n3) arithmetic operations.

1.3. Strassen’s matrix multiplication
While the classical algorithms for matrix multiplication 
have already been optimized for reducing communication 
cost to the minimum possible, a completely different algo-
rithmic approach for this problem is possible. Let us recall 
Strassen’s algorithm24 (see Algorithm 3).

Strassen’s key idea is to multiply 2 × 2 matrices using seven 
scalar multiplies instead of eight. Because n × n matrices can 
be divided into quadrants, Strassen’s idea applies recursively. 
Each of the seven quadrant multiplications is computed 
recursively, and the computational cost of additions and sub-
tractions of quadrants is (n2). Thus, the recurrence for the flop 
count is F (n) = 7F (n/2) + (n2) with base case F (1) = 1, which 
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to be the total number of words transferred between the 
slow and fast memories.

In the parallel case (see Figure 2), we consider p proces-
sors, each with a local memory of size M, connected over a 
network. In this case, the communication cost is the num-
ber of words transferred between processors, counted along 
the critical path of the algorithm. That is, two words that are 
communicated simultaneously between separate pairs of 
processors are counted only once.

1.2. Classical matrix multiplication
To illustrate the effects of arithmetic reordering on com-
munication and running time of a sequential computation, 
consider the problem of computing matrix multiplication 
C = A · B, where the (i, j )th output element is computed by the 
classical formula Ci j = ∑k Ai k · Bk j. One “naive” ordering of 
the computation of the classical algorithm can be specified 
simply by three nested loops (see Algorithm 1). For matrices 
that are too large to fit in fast memory, this ordering requires 
the communication of at least one operand for each scalar 
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is given by the recurrence . The 
base case occurs when the input and output sub-matrices fit 
in the fast memory and the matrix multiplication can be per-
formed with no further communication. This yields

for M  n2, matching the lower bound stated in Theorem 1.

2.2. Parallel case
The proof technique of Theorem 1 extends to parallel 
machines, yielding

Corollary 2.10 Consider Strassen’s algorithm implemented 
on a parallel machine with p processors, each with a local 
memory of size M. Then for , the communication 
cost of Strassen’s algorithm is

While Corollary 2 does not hold for all sizes of local 
memory (relative to the problem size and number of 
processors), the following memory-independent lower 
bound can be proved using similar techniques5 and holds 
for all local memory sizes, though it requires separate 
assumptions.

Theorem 3.5 Suppose a parallel algorithm performing Stras
sen’s matrix multiplication load balances the computation. 
Then, the communication cost is

Note that the bound in Corollary 2 dominates the one in 
Theorem 3 for M = O (n2/p2 / log 7). Thus, the tightest lower bound 
for parallel implementations of Strassen is the maximum of 
these two bounds. Table 2 and Figure 3, both adapted from 
Ballard et al.,5 illustrate the relationship between the two func-
tions. Figure 3 in particular shows bounds on strong scaling: 
for a fixed dimension n, increasing the number of processors 
(each with local memory size M) within a limited range does 
not increase the total volume of communication. Thus, the 
communication cost along the critical path decreases linearly 
with p. This is because in this “perfect strong scaling range,” 

yields F (n) = (nlog27), which is asymptotically less computation 
than the classical algorithm.

The main results presented in the following section 
expose a wonderful fact: not only does Strassen’s algorithm 
require less computation than the classical algorithm, but it 
also requires less communication!

Algorithm 3 Strassen’s Matrix Multiplication Algorithm

Input:
 

1:  if n = 1 then
2:	 C = A · B
3:  else
4:	 M1 = (A11 + A22) · (B11 + B22)
5:	 M2 = (A21 + A22) · B11

6:	 M3 = A11 · (B12 − B22)
7:	 M4 = A22 · (B21 − B11)
8:	 M5 = (A11 + A12) · B22

9:	 M6 = (A21 − A11) · (B11 + B12)
10:	 M7 = (A12 − A22) · (B21 + B22)
11:	 C11 = M1 + M4 − M5 + M7

12:	 C12 = M3 + M5

13:	 C21 = M2 + M4

14:	 C22 = M1 − M2 + M3 + M6

Output:
 

2. COMMUNICATION LOWER BOUNDS
In this section, we state our main results: communication 
lower bounds for Strassen’s matrix multiplication. The proof 
technique described in Section 3 allows us to state bounds 
in both sequential and parallel cases. As mentioned in the 
Section 1, the lower bounds are lower than the bounds for 
the classical algorithm.18, 20 In both sequential and parallel 
cases, there now exist communication-optimal algorithms 
that achieve the lower bounds.

2.1. Sequential case
We obtain the following lower bound:

Theorem 1.10 Consider Strassen’s algorithm implemented 
on a sequential machine with fast memory of size M. Then for 
M  n2, the communication cost of Strassen’s algorithm is

It holds for any implementation and any known variant 
of Strassen’s algorithm that is based on performing 2 × 2 
matrix multiplication with seven scalar multiplications. 
This includes Winograd’s O (nlog27) variant that uses 15 addi-
tions instead of 18, which is the most commonly used fast 
matrix multiplication algorithm in practice.

This lower bound is tight, in that it is attained by the 
standard recursive sequential implementation of Strassen’s 
algorithm. The recursive algorithm’s communication cost 

Table 1. Asymptotic communication cost lower bounds for sequen-
tial matrix multiplication, where n is the matrix dimension and M 
is the fast memory size. Note that although the expressions for 
classical and Strassen are similar, the proof techniques are quite 
different

Classical Strassen

Sequential lower 
bound18, 10
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the dominant lower bound includes a p in the denominator; 
however, when the second bound begins to dominate, the 
denominator includes a p2/3 rather than p, and increasing p 
leads to more communication volume. As shown in the fig-
ure, a similar phenomenon occurs for the classical algorithm, 
though with slightly different parameters.5, 23

The recent parallel algorithm for Strassen’s matrix multi-
plication6 has communication cost

where p is the number of processors and M is the size of the 
local memory. Note that this matches the lower bounds of 
Corollary 2 and Theorem 3 above. A similar algorithm for 
Strassen’s matrix multiplication in the BSP model is pre-
sented in McColl and Tiskin.22

3. PROOF HIGHLIGHTS
The crux of the proof of Theorem 1 is based on estimating 
the edge expansion of the computation graph of Strassen’s 
algorithm. We describe below how communication cost 
is closely related to the edge expansion properties of this 
graph. The graph has a recursive structure, and we use a 
combinatorial analysis of the expansion. The high-level 
argument is based on partitioning the computation in 
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segments, which we explain in Section 3.3. Let us first define 
two key concepts: computation graphs and edge expansion. 
See Ballard et al.10 for the full proof.

3.1. Computation graphs
The computation performed by an algorithm on a given 
input can be modeled as a computation directed acyclic 
graph (CDAG): we have a vertex for each input, intermediate, 
and output argument, and edges according to direct depen-
dencies (e.g., for the binary arithmetic operation x := y + z, 
we have directed edges from vertices corresponding to oper-
ands y and z to the vertex corresponding to x).

In the sequential case, an implementation (or sched-
uling) determines the order of execution of the arithme-
tic operations, which respects the partial ordering of the 
CDAG. In the parallel case, an implementation determines 
which arithmetic operations are performed by which of the 
p processors as well as the ordering of local operations. This 
corresponds to partitioning the CDAG into p parts. Edges 
crossing between the various parts correspond to arguments 
that are in the possession of one processor but are needed by 
another processor and therefore relate to communication.

3.2. Edge expansion
Expansion is a graph-theoretic concept19 that relates a given 
subset of a graph to its boundary. If a graph has large expan-
sion, then subsets of vertices will have relatively large bound-
aries. For example, a 2D grid where each vertex has north, 
south, east, and west neighbors has small expansion, whereas 
a complete graph has large expansion. While there are sev-
eral variants of expansion metrics, we are interested in edge 
expansion of regular graphs, defined as follows: the edge 
expansion h(G) of a d-regular undirected graph G = (V, E) is

	 � (1)

where EG(A, B) is the set of edges connecting the disjoint 
vertex sets A and B.

Note that CDAGs are typically not regular. If a graph 
G = (V, E) is not regular but has a bounded maximal degree d, 
then we can add (<d) loops to vertices of degree <d, obtaining 
a regular graph G. We use the convention that a loop adds 
1 to the degree of a vertex. Note that for any S Í V, we have 
|EG(S, V \S)| = |EG (S, V \S)|, as none of the added loops con-
tributes to the edge expansion of G.

For many graphs, small sets have larger expansion than 
larger sets. Let hs(G) denote the edge expansion of G for sets 
of size at most s:

	 � (2)

For many interesting graph families (including Strassen’s 
CDAG), hs(G) does not depend on |V(G)| when s is fixed, 
although it may decrease when s increases.

3.3. The partition argument
The high-level lower bound argument is based on partition-
ing the execution of an algorithm’s implementation into 
segments. Let O be any total ordering of the vertices that 

 Classical Strassen

Memory-dependent 
lower bound20, 10

Memory-independent 
lower bound5

Table 2. A symptotic communication cost lower bounds for parallel 
matrix multiplication, where n is matrix dimension, M is local 
memory size, and p is the number of processors

Figure 3. Communication costs and strong scaling of matrix 
multiplication: classical vs. Strassen.5 The vertical axis corresponds 
to p times the communication cost, so horizontal lines correspond to 
perfect strong scaling. The quantity pmin is the minimum number of 
processors required to store the input and output matrices (i.e., pmin = 
3n2/M where n is the matrix dimension and M is the local memory size).
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respects the partial ordering of the CDAG G, that is, all the 
edges are directed upwards in the total order. This total 
ordering can be thought of as the actual order in which the 
computations are performed. Let P be any partition of V into 
segments S1, S2, …, so that a segment Si  P is a subset of the 
vertices that are contiguous in the total ordering O.

Let S be some segment, and define RS and WS to be the set 
of read and write operands, respectively (see Figure 4), namely, 
RS is the set of vertices outside S that have an edge going into 
S, and WS is the set of vertices in S that have an edge going out-
side of S. Recall that M is the size of the fast memory. Then, 
the total communication cost due to reads of  operands in 
S is at least |RS| − M, as at most M of the needed |RS| oper-
ands are already in fast memory when the segment starts. 
Similarly, S causes at least |WS|− M actual write operations, 
as at most M of the operands needed by other segments are 
left in the fast memory when the segment ends. The total 
communication cost is therefore bounded below by

	 � (3)

3.4. Edge expansion and communication
Consider a segment S and its read and write operands RS and 
WS (see Figure 4). If the graph G containing S has h(G) edge 
expansion, maximum degree d and at least 2|S| vertices, 
then (using the definition of h(G) ), we have

Claim 4. |RS| + |WS| ≥ h(G) · |S|.

Combining this with (3) and choosing to partition V into |V|/s 
segments of equal size s, we obtain IO  maxs (|V|/s) · (h(G) · s − 
2M) = (|V| · h(G) ). In many cases, h(G) is too small to attain the 
desired communication cost lower bound. Typically, h(G) is 
a decreasing function of |V(G)|; that is, the edge expansion 
deteriorates with the increase of the input size and number 
of arithmetic operations of the corresponding algorithm 
(this is the case with Strassen’s algorithm). In such cases, it 
is better to consider the expansion of G on small sets only: IO  
maxs (|V|/s) · (hs(G) · s − 2M). Choosing the minimal s so that

	 hs(G) · s ≥ 3M� (4)

we obtain

	 � (5)

The existence of a value s  |V|/2 that satisfies condition (4) is 
not always guaranteed. In Ballard et al.,10 we confirm the exis-
tence of such s for Strassen’s CDAG for sufficiently large |V|.

4. STRASSEN’S CDAG
Recall Strassen’s algorithm for matrix multiplication and 
consider its computation graph. If we let Hi be the computation 
graph of Strassen’s algorithm for recursion of depth i, then 
Hlog2 n corresponds to the computation for input matrices of 
size n × n. Let us first consider H1 as shown in Figure 5, which 
corresponds to multiplying 2 × 2 matrices. Each of A and B 
is “encoded” into seven pairs of multiplication inputs, and 
vertices corresponding to the outputs of the multiplications 
are then “decoded” to compute the output matrix C.

The general computation graph Hlog2 n has similar structure:

•	 Encode A: generate weighted sums of elements of A
•	 Encode B: generate weighted sums of elements of B
•	 Multiply the encodings of A and B element-wise
•  Decode C: take weighted sums of the products

Denote by Enclog2 n A the part of Hlog2 n that corresponds to 
the encoding of matrix A. Similarly, Enclog2 nB, and Declog2 nC 
correspond to the parts of Hlog2 n that compute the encoding 
of B and the decoding of C, respectively. Figure 6 shows a 
high level picture of Hlog2 n. In the next section, we provide a 
more detailed description of the CDAG.

S

RS

WS

V

Figure 4. A subset (segment) S and its corresponding read operands 
RS and write operands WS.

7 5 4 1 3 2 6

11 12 21 22

11 12 21 2211 12 21 22

Dec1 C

Enc1 A Enc1 B

Figure 5. Computation graph of Strassen’s algorithm for multiplying 
2 × 2 matrices (H1). The encodings of A and B correspond to the 
additions and subtractions in lines 4–10 of Algorithm 3, and the 
decoding of the seven multiplications to compute C corresponds 
to lines 11–14. A vertex labeled with two indices ij corresponds to 
the (i, j)th entry of a matrix and a vertex labeled with one index k 
corresponds to the kth intermediate multiplication.
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4.2. Strassen’s edge expansion
Given the construction of the CDAG for Strassen’s algorithm, we 
now state our main lemma on the edge expansion of the decod-
ing graph. The proof technique resembles the expander analy-
sis in Alon et al.2 For the complete proof, see Ballard et al.10

Lemma 5. (Main lemma) The edge expansion of DeckC is

By another argument (proof in Ballard et al.10), we obtain that

hs(Declog2n C) ≥ h(DeckC),

where s = (7k). Choosing s = (M (log27)/2), we satisfy Inequality 4 
and obtain Inequality 5 (for sufficiently large |V|). This gives 
Theorem 1.

5. EXTENSIONS
In this paper, we focus on lower bounds for Strassen’s matrix 
multiplication algorithm on two machine models. However, 
the design space of improving fundamental algorithms via 
communication minimization is much larger. It includes prov-
ing lower bounds and developing optimal algorithms; using 
classical methods as well as fast algorithms like Strassen’s; 
performing matrix multiplication, other matrix algorithms, and 
more general computations; minimizing time and/or energy; 
using minimal memory or trading off extra memory for less 
communication; and using hierarchical, homogeneous, or 
heterogeneous sequential and parallel models. In this section, 
we discuss a subset of these extensions; see Ballard et al.9, 10 and 
the references therein for more details.

5.1. Lower bounds
The proof technique described in Section 3 is not specific 
to Strassen’s algorithm and can be applied more widely. 
The partition argument is used for classical algorithms in 
numerical linear algebra8, 20 where a geometric inequality 
specifies the per-segment communication cost rather than 
edge expansion. Further, the edge expansion technique 
applies to Strassen-like algorithms that also multiply square 
matrices with o(n3) arithmetic operations, to other fast algo-
rithms for rectangular matrix multiplication, and to other 
matrix computations.

Strassen-like algorithms. Strassen-like algorithms are recur
sive matrix multiplication algorithms based on a scheme for 
multiplying k × k matrices using q scalar multiplications for 
some k and q < k3 (so that the algorithm performs O(nω0) flops 
where ω0 = logk q.) For the latest bounds on the arithmetic 
complexity of matrix multiplication and references to 
previous bounds, see Williams.25 For our lower bound proof 
to apply, we require another technical criterion for Strassen-
like algorithms: the decoding graph must be connected. This 
class of algorithms includes many (but not all) fast matrix 
multiplications. For details and examples, see Ballard et al.7, 10

For Strassen-like algorithms, the statements of the com-
munication lower bounds have the same form as Theorem 1, 
Corollary 2, and Theorem 3: replace log2 7 with ω0 everywhere 
it appears! The proof technique follows that for Strassen’s 

4.1. Recursive construction
We construct the computation graph Hi+1 by constructing Deci+1C 
from DeciC and Dec1C, similarly constructing Enci+1 A  and 
Enci+1B, and then composing the three parts together. Here 
is the main idea for recursively constructing Deci+1C, which 
is illustrated in Figure 7.

•	 Replicate Dec1C 7i times.
•	 Replicate DeciC 4 times.
•  Identify the 4 · 7i output vertices of the copies of Dec1C 

with the 4 · 7i input vertices of the copies of DeciC:
  – �Recall that each Dec1C has four output vertices.
  – �The set of each first output vertex of the 7i Dec1C 

graphs is identified with the set of 7i input vertices of 
the first copy of Deci C.

  – �The set of each second output vertex of the 7i Dec1C 
graphs is identified with the set of 7i input vertices of 
the second copy of DeciC, and so on.

  – �We make sure that the jth input vertex of a copy of 
DeciC is identified with an output vertex of the j th copy 
of Dec1C.

After constructing Enci+1A and Enci+1B in a similar manner, we 
obtain Hi+1 by connecting edges from the kth output vertices 
of Enci+1A and Enci+1B to the kth input vertex of Deci+1C, which 
corresponds to the element-wise scalar multiplications.

Enclog2 n BEnclog2 n A

Declog2 n C log2 n

nlog
2

 7

n2

n2

Figure 6. High-level view of Strassen’s CDAG for n × n matrices. The 
graph is composed of two encoding subgraphs and one decoding 
subgraph; connections between the subgraphs are not shown.

DeciC

Dec
1 C

Figure 7. Illustration of the recursive construction of the decoding 
subgraph. To construct Deci+1C, DeciC is replicated 4 times and Dec1C 
is replicated 7i times, and appropriate vertices are identified.
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implementation for distributed-memory machines that it 
performs much faster in practice.6, 21

Communication avoiding parallel Strassen. In Section  2.2, 
we  stated the communication cost of a new parallel 
algorithm for Strassen’s matrix multiplication, matching 
the asymptotic lower bound. The details of the algorithm 
appear in Ballard et al.,6 and more extensive implementation 
details and performance data are given in Lipshitz et al.21 
We show that the new algorithm is more efficient than 
any other parallel matrix multiplication algorithm of 
which we are aware, including those that are based on the 
classical algorithm and those that are based on previous 
parallelizations of Strassen’s algorithm.

Figure 1 shows performance on a Cray XT4. For results on 
other machines, see Lipshitz et al.21 For example, running on 
a Cray XE6 with up to 10,000 cores, for a problem of dimen-
sion n = 131712, our new algorithm attains performance as 
high as 30% above the peak for classical matrix multiplica-
tion, 83% above the best classical implementation, and 
75% above the best previous implementation of Strassen’s 
algorithm. Even for a small problem of dimension n = 4704, 
it attains performance 66% higher than the best classical 
implementation.

Further applications. The key algorithmic idea in our par
allel implementation of Strassen’s algorithm is a careful 
parallel traversal of the recursion tree. This idea works for 
many other recursive algorithms where the subproblems 
do not have interdependencies (and it also works in some 
cases where dependencies exist). For example, classical 
rectangular matrix multiplication14 and sparse matrix–
matrix multiplication4 can be parallelized in this way to 
obtain communication optimality.

The same techniques can be utilized to save energy at the 
algorithmic level (since communication consumes more 
energy than computation) as well as to obtain lower bounds 
on energy requirements.15

In summary, we believe this work flow of theoretical lower 
bounds to algorithmic development to efficient implemen-
tations is very effective: by considering fundamental compu-
tations at an algorithmic level, significant improvements in 
many applications are possible.
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algorithm. While the bounds for the classical algorithm 
have the same form, replacing log2 7 with 3, the proof tech-
niques are quite different.18, 20

Fast rectangular matrix multiplication. Many fast algo
rithms have been devised for multiplication of rectangular 
matrices (see Ballard et al.7 for a detailed list). A fast 
algorithm for multiplying m × k and k × r matrices in q < mkr 
scalar multiplications can be applied recursively to multiply 
mt × k t and k t × r t matrices in O(qt ) flops. For such algorithms, 
the CDAG has very similar structure to Strassen and 
Strassen-like algorithms for square multiplication in that 
it is composed of two encoding graphs and one decoding 
graph. Assuming that the decoding graph is connected, the 
proofs of Theorem 1 and Lemma 5 apply where we plug in mr 
and q for 4 and 7. In this case, we obtain a result analogous 
to Theorem 1 which states that the communication cost of 
such an algorithm is given by Ω (qt/M logmr q–1). If the output 
matrix is the largest of the three matrices (i.e., k < m and k < r), 
then this lower bound is attained by the natural recursive 
algorithm and is therefore tight. The lower bound extends to 
the parallel case as well, analogous to Corollary 2, and can be 
attained using the algorithmic technique of Ballard et al.6

The rest of numerical linear algebra. Fast matrix multi
plication, algorithms are basic building blocks in many fast 
algorithms in linear algebra, such as algorithms for LU, 
QR, and eigenvalue and singular value decompositions.13 
Therefore, communication cost lower bounds for these 
algorithms can be derived from our lower bounds for fast 
matrix multiplication algorithms. For example, a lower 
bound on LU (or QR, etc.) follows when the fast matrix 
multiplication algorithm is called by the LU algorithm 
on sufficiently large sub-matrices. This is the case in the 
algorithms of Demmel et al.,13 and we can then deduce 
matching lower and upper bounds.10

Nested loops computation. Nearly all of the arguments 
for proving communication lower bounds are based on 
establishing a relationship between a given set of data and 
the amount of useful computation that can be done with 
that data, a so-called “surface-to-volume” ratio. For example, 
Hong and Kung18 use an analysis of dominator sets and 
minimal sets of CDAGs to establish such ratios. The Loomis–
Whitney geometric inequality is applied for this purpose 
to matrix computations specified by three nested loops in 
Ballard et al.8 and Irony et al.20 Recently, Christ et al.12 have 
extended this analysis using a generalization of the Loomis–
Whitney inequality, known as the Hölder–Brascamp–Lieb 
inequality, to prove lower bounds for computations that 
are specified by an arbitrary set of nested loops that linearly 
access arrays and meet certain other criteria.

5.2. Algorithms
The main motivation for pursuing communication 
lower bounds is to provide targets for algorithmic per-
formance. Indeed, the conjecture and proof of Theorem 
1 and Corollary 2, as well as the existence of an optimal 
algorithm in the sequential case, were the main moti-
vations for   improving the parallel implementations of 
Strassen’s algorithm. Not only were we able to devise an 
optimal algorithm, but we were also able to show with an 
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Boston College
Assistant Professor, Computer Science

The Computer Science Department of Boston 
College invites applications for a tenure-track 
Assistant Professorship beginning September, 
2014. Applications from all areas of Computer 
Science will be considered. Applicants should 
have a Ph.D. in Computer Science or related dis-
cipline, a strong research record, and a commit-
ment to undergraduate teaching.

We will begin reviewing applications on 
December 1, 2013, and will continue considering 
applications until the position is filled. 
Additional information about the department 
and the position is available at www.cs.bc.edu. 
Submit applications online at apply.interfolio.
com/22805.

Dartmouth College
Department of Computer Science

Assistant Professor of Computer Science: 
Computer Graphics/Digital Arts

The Dartmouth College Department of Computer 
Science invites applications for a tenure-track fac-
ulty position at the level of assistant professor. We 
seek candidates who will be excellent researchers 
and teachers in the areas of computer graphics 
and/or digital arts, although outstanding candi-
dates in any area will be considered. We particu-
larly seek candidates who will be integral mem-
bers of the Digital Arts program and help lead, 
initiate, and participate in collaborative research 
projects both within Computer Science and in-
volving other Dartmouth researchers, including 
those in other Arts & Sciences departments, Dart-
mouth’s Geisel School of Medicine, and Thayer 
School of Engineering.

The department is home to 17 tenured 
and tenure-track faculty members and two re-
search faculty members. Research areas of the 
department encompass the areas of systems, 
security, vision, digital arts, algorithms, the-
ory, robotics, and computational biology. The 
Computer Science department is in the School 
of Arts & Sciences, and it has strong Ph.D. and 
M.S. programs and outstanding undergraduate 
majors. Digital Arts at Dartmouth is an inter-
disciplinary program housed in the Computer 
Science department, working with several oth-
er departments, including Studio Art, Theater, 
and Film and Media Studies. The department 
is affiliated with Dartmouth’s M.D.-Ph.D. pro-
gram and has strong collaborations with Dart-
mouth’s other schools.

Dartmouth College, a member of the Ivy 
League, is located in Hanover, New Hampshire 
(on the Vermont border). Dartmouth has a beau-
tiful, historic campus, located in a scenic area on 
the Connecticut River. Recreational opportuni-
ties abound in all four seasons.

minority groups, Dartmouth is committed to 
diversity and encourages applications from 
women and minorities.

To create an atmosphere supportive of re-
search, Dartmouth offers new faculty members 
grants for research-related expenses, a quarter 
of sabbatical leave for each three academic years 
in residence, and flexible scheduling of teaching 
responsibilities.

Applicants are invited to submit application 
materials via Interfolio at http://apply.interfolio.
com/23502. Upload a CV, research statement, 
and teaching statement, and request at least four 
references to upload letters of recommendation, 
at least one of which should comment on teach-
ing. Email facsearch14@cs.dartmouth.edu with 
any questions.

Application review will begin December 15, 
2013, and continue until the position is filled.

Dartmouth College
Department of Computer Science
Assistant Professor of Computer Science: 
Theory/Algorithms

The Dartmouth College Department of Computer 
Science invites applications for a tenure-track fac-
ulty position at the level of assistant professor. We 
seek candidates who will be excellent researchers 
and teachers in the area of theoretical computer 
science, including algorithms, although out-
standing candidates in any area will be consid-
ered. We particularly seek candidates who will 
help lead, initiate, and participate in collabora-
tive research projects both within Computer Sci-
ence and involving other Dartmouth researchers, 
including those in other Arts & Sciences depart-
ments, Dartmouth’s Geisel School of Medicine, 
Thayer School of Engineering, and Tuck School 
of Business.

The department is home to 17 tenured and 
tenure-track faculty members and two research 
faculty members. Research areas of the depart-
ment encompass the areas of systems, security, 
vision, digital arts, algorithms, theory, robotics, 
and computational biology. The Computer Sci-
ence department is in the School of Arts & Scienc-
es, and it has strong Ph.D. and M.S. programs and 
outstanding undergraduate majors. The depart-
ment is affiliated with Dartmouth’s M.D.-Ph.D. 
program and has strong collaborations with Dart-
mouth’s other schools.

Dartmouth College, a member of the Ivy 
League, is located in Hanover, New Hampshire 
(on the Vermont border). Dartmouth has a beau-
tiful, historic campus, located in a scenic area on 
the Connecticut River. Recreational opportuni-
ties abound in all four seasons.

With an even distribution of male and female 
students and over one third of the undergraduate 
student population members of minority groups, 
Dartmouth is committed to diversity and encour-
ages applications from women and minorities.

With an even distribution of male and fe-
male students and over one third of the un-
dergraduate student population members of 
minority groups, Dartmouth is committed to 
diversity and encourages applications from 
women and minorities.

To create an atmosphere supportive of re-
search, Dartmouth offers new faculty members 
grants for research-related expenses, a quarter 
of sabbatical leave for each three academic years 
in residence, and flexible scheduling of teaching 
responsibilities.

Applicants are invited to submit application 
materials via Interfolio at http://apply.interfolio.
com/23489. Upload a CV, research statement, 
and teaching statement, and request at least four 
references to upload letters of recommendation, 
at least one of which should comment on teach-
ing. Email facsearch14@cs.dartmouth.edu with 
any questions.

Application review will begin November 1, 
2013, and continue until the position is filled.

Dartmouth College
Department of Computer Science
Assistant Professor of Computer Science: 
Machine Learning

The Dartmouth College Department of Computer 
Science invites applications for a tenure-track fac-
ulty position at the level of assistant professor. We 
seek candidates who will be excellent researchers 
and teachers in the area of machine learning, al-
though outstanding candidates in any area will be 
considered. We particularly seek candidates who 
will help lead, initiate, and participate in collab-
orative research projects both within Computer 
Science and involving other Dartmouth research-
ers, including those in other Arts & Sciences de-
partments, Dartmouth’s Geisel School of Medi-
cine, Thayer School of Engineering, and Tuck 
School of Business.

The department is home to 17 tenured and 
tenure-track faculty members and two research 
faculty members. Research areas of the depart-
ment encompass the areas of systems, security, 
vision, digital arts, algorithms, theory, robotics, 
and computational biology. The Computer Sci-
ence department is in the School of Arts & Scienc-
es, and it has strong Ph.D. and M.S. programs and 
outstanding undergraduate majors. The depart-
ment is affiliated with Dartmouth’s M.D.-Ph.D. 
program and has strong collaborations with Dart-
mouth’s other schools.

Dartmouth College, a member of the Ivy 
League, is located in Hanover, New Hampshire 
(on the Vermont border). Dartmouth has a beau-
tiful, historic campus, located in a scenic area on 
the Connecticut River. Recreational opportuni-
ties abound in all four seasons.

With an even distribution of male and fe-
male students and over one third of the un-
dergraduate student population members of 
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Max Planck Institute for  
Software Systems
Senior Faculty Position in Software Systems

Applications are invited for a senior faculty 
position in the Max Planck Institute for Soft-
ware Systems (MPI-SWS). The position is that 
of a director and scientific member of the 
Max Planck Society, and is comparable to an 
endowed chair position at a leading univer-
sity. Directors lead their individual research 
groups, and also provide strategic direction for 
the institute, mentor junior faculty, and take 
turn in chairing the faculty. A successful candi-
date is an internationally recognized leader in 
the research community, and pursues a com-
pelling and far-reaching research vision.

All areas related to the study, design, and 
engineering of software systems are considered. 
These areas include, but are not limited to, secu-
rity and privacy, embedded and mobile systems, 
social computing, large-scale data management, 
programming languages and systems, software 
verification and analysis, parallel and distributed 
systems, storage systems, and networking. Pref-
erence will be given to candidates whose research 
complements existing strengths.

MPI-SWS, founded in 2005, is part of a net-
work of 82 Max Planck Institutes, Germany’s 
premier basic research facilities. MPIs have an 
established record of world-class, foundation-
al research in the fields of medicine, biology, 
chemistry, physics, technology and humani-
ties. Since 1948, MPI researchers have won 
17 Nobel prizes. MPI-SWS aspires to meet the 

To create an atmosphere supportive of re-
search, Dartmouth offers new faculty members 
grants for research-related expenses, a quarter 
of sabbatical leave for each three academic years 
in residence, and flexible scheduling of teaching 
responsibilities.

Applicants are invited to submit application 
materials via Interfolio at http://apply.interfolio.
com/23503. Upload a CV, research statement, 
and teaching statement, and request at least four 
references to upload letters of recommendation, 
at least one of which should comment on teach-
ing. Email facsearch14@cs.dartmouth.edu with 
any questions.

Application review will begin December 15 
2013, and continue until the position is filled.

Harvard School of Engineering  
and Applied Sciences
Tenure-Track Positions in Computer Science

The Harvard School of Engineering and Applied 
Sciences (SEAS) seeks applicants for positions at 
the tenure-track level in Computer Science, with 
an expected start date of July 1, 2014.

This is a broad faculty search and we welcome 
outstanding applicants in all areas of computer 
science, including applicants whose research 
and interests connect to such areas as engineer-
ing, health and medicine, or the social sciences. 
Of particular interest are candidates with a focus 
on data science, with research at the intersection 
of computer science, applied mathematics, sta-
tistics, and computational science.

The Computer Science program at Harvard 
University benefits from outstanding undergrad-
uate and graduate students, an excellent location, 
significant industrial collaboration, and substan-
tial support from the School of Engineering and 
Applied Sciences. Information about Harvard’s 
current faculty, research, and educational pro-
grams in computer science is available at http://
www.seas.harvard.edu/computer-science. The as-
sociated Institute for Applied Computational Sci-
ence (http://iacs.seas.harvard.edu) fosters con-
nections among computer science, applied math, 
data science, and various domain sciences at Har-
vard through its graduate program and events.

Candidates are required to have a doctorate 
or terminal degree by the expected start date. 
We seek candidates who have an outstanding 
research record and a strong commitment to un-
dergraduate teaching and graduate training.

Required application documents include a 
cover letter, cv, a statement of research interests, 
a teaching statement, and up to three represen-
tative papers. Candidates are also required to 
submit the names and contact information for at 
least three to five references (three letters of rec-
ommendation are required), and the application 
is complete only when three letters have been 
submitted. We encourage candidates to apply by 
January 1, 2014, but will continue to review appli-
cations until the positions are filled. Applicants 
will apply on-line at http://academicpositions.
harvard.edu/postings/5199.

Harvard is an Equal Opportunity/Affirmative 
Action employer. Applications from women and 
minority candidates are strongly encouraged.

ISTFELLOW: Call for Postdoctoral Fellows
Are you a talented, dynamic, and motivated scientist looking for an  
opportunity to conduct research in the fields of BIOLOGY, COMPUTER SCIENCE, 
MATHEMATICS, PHYSICS, or NEUROSCIENCE at a young, thriving institution that 
fosters scientific excellence and interdisciplinary collaboration?
 

Apply to the ISTFellow program. Deadlines March 15 and September 15
 

www.ist.ac.at/istfellow

ISTFELLOW is partially funded  
by the European Union
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highest standards of excellence and interna-
tional recognition with its research in software 
systems.

To this end, the institute offers a unique en-
vironment that combines the best aspects of a 
university department and a research laboratory:

a) Faculty independently lead a team of grad-
uate students and post-docs. They have full aca-
demic freedom and publish their research results 
freely. Substantial base funding complements 
third-party funds.

b) Faculty supervise doctoral theses, and have 
the opportunity to teach graduate and undergrad-
uate courses.

c) Faculty are provided with outstanding tech-
nical and administrative support facilities as well 
as internationally competitive compensation 
packages.

MPI-SWS currently has 10 tenured and ten-
ure-track faculty and 50 doctoral and post-doctor-
al researchers. The institute is funded to support 
17 faculty and up to 100 doctoral and post-doc-
toral positions. Additional growth through out-
side funding is expected. We maintain an open, 
international and diverse work environment and 
seek applications from outstanding researchers 
regardless of national origin or citizenship. The 
working language is English.

The institute is located in Kaiserslautern and 
Saarbruecken, in the tri-border area of Germany, 
France and Luxembourg. The area offers a high 
standard of living, beautiful surroundings and 
easy access to major metropolitan areas in the 
center of Europe, as well as a stimulating, com-
petitive and collaborative work environment. In 
immediate proximity are the MPI for Informatics, 
Saarland University, the Technical University of 
Kaiserslautern, the German Center for Artificial 
Intelligence (DFKI), and the Fraunhofer Insti-
tutes for Experimental Software Engineering and 
for Industrial Mathematics.

Qualified candidates are invited to send a CV 
and cover letter to rupak@mpi-sws.org. The re-
view of applications will begin on Feb 1, 2014; ap-
plications will continue to be accepted until the 
position is filled.

The Max Planck Society is committed to in-
creasing the representation of women and indi-
viduals with physical disabilities in Computer 
Science. We particularly encourage such individ-
uals to apply.

National Taiwan University
Professor-Associate Professor- 
Assistant Professor

The Department of Computer Science at National 
Taiwan Univ. has faculty openings at all ranks be-
ginning in August 2014. Highly qualified candi-
dates in all areas of computer science are invited 
to apply. A Ph.D. or its equivalent is required. 
Applicants are expected to conduct outstanding 
research and be committed to teaching. Candi-
dates should send curriculum vitae, statements 
of research/teaching, three letters of reference, 
and supporting materials before February 28, 
2014, to Prof. Chih-Jen Lin, Department of Com-
puter Science, National Taiwan Univ., No 1, Sec 4, 
Roosevelt Rd., Taipei 106, Taiwan. Reference let-
ters can be sent to faculty_search@csie.ntu.edu.
tw but use regular mails for other materials. An 
early submission is strongly encouraged.

Purdue University
Tenure-Track/Tenured Faculty Positions

The Department of Computer Science at Purdue 
University is entering a phase of sustained expan-
sion. Applications for tenure-track and tenured 
positions at the Assistant, Associate and Full 
Professor levels beginning August 2014 are being 
solicited. Outstanding candidates in all areas will 
be considered.

The Department of Computer Science offers 
a stimulating and nurturing academic environ-
ment with active research programs in all areas 
of our discipline. Information about the depart-
ment and a description of open positions are 
available at http://www.cs.purdue.edu.

Applicants should hold a PhD in Computer 
Science, or related discipline, be committed to 
excellence in teaching, and have demonstrated 
excellence in research. Successful candidates will 
be expected to teach courses in computer science, 
conduct research in their field of expertise, and 
participate in other department and university 
activities. Salary and benefits are competitive. Ap-
plicants are strongly encouraged to apply online 
at https://hiring.science.purdue.edu. Alternative-
ly, hardcopy applications can be sent to: Faculty 
Search Chair, Department of Computer Science, 
305 N. University Street, Purdue University, West 
Lafayette, IN 47907. Review of applications will be-
gin in fall 2013, and will continue until positions 
are filled. A background check will be required for 
employment. Purdue University is an Equal Oppor-
tunity/Equal Access/Affirmative Action employer 
committed to achieving a diverse workforce.

Southern Illinois University
Assistant/Associate Professor

The Department of Computer Science at Southern 
Illinois University Edwardsville invites applica-
tions for one tenure-track position at the Assistant 
or Associate Professor level beginning August 
2014. Visit cs.siue.edu for more information.

State University of New York  
at Binghamton
Department of Computer Science
Four Tenure-Track Assistant  
Professor Positions

Applications are invited for four tenure-track Assis-
tant Professor positions beginning Fall 2014 with 
specializations in: (a) cybersecurity (three positions) 
and, (b) embedded systems programming/design 
with an emphasis on energy optimization (one posi-
tion). The Department has established graduate and 
undergraduate programs, including 60 full-time 
PhD students. Junior faculty have a significantly re-
duced teaching load for at least the first three years. 
Please indicate your teaching and research areas of 
interest in a single sentence on your cover letter.

Further details and application information 
are available at:

http://www.binghamton.edu/cs

Applications will be reviewed until positions 
are filled. First consideration will be given to ap-
plications received by February 17, 2014.

We are an EE/AA employer.

JOIN THE INNOVATION.
Qatar Computing Research Institute seeks 
talented scientists and software engineers to join 
our team and conduct world-class applied research
focused on tackling large-scale computing challenges.

We offer unique opportunities for a strong career
spanning academic and applied research in the
areas of Arabic language technologies including 
natural language processing, information retrieval
and machine translation, distributed systems, data
analytics, cyber security, social computing and
computational science and engineering.

/QCRI.QA @QatarComputing QatarComputing www.qcri.qaQatarComputing

Scientist applicants must hold (or will hold at 
the time of hiring) a PhD degree, and should have a 
compelling track record of accomplishments and 
publications, strong academic excellence, effective 
communication and collaboration skills.
 
Software engineer applicants must hold a 
degree in computer science, computer 
engineering or related field; MSc or PhD 
degree is a plus.

We also welcome applications for post
doctoral researcher positions.

As a national research institute and 
proud member of Qatar Foundation, our 
research program offers a collaborative, 
multidisciplinary team environment endowed 
with a comprehensive support infrastructure.  
 
Successful candidates will be offered a highly
competitive compensation package including 
an attractive tax-free salary and additional
benefits such as furnished accommodation,
excellent medical insurance, generous annual 
paid leave, and more.

For full details about our vacancies and 
how to apply online please visit 
http://www.qcri.qa/join-us/
For queries, please email 
QFJobs@qf.org.qa
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˲˲ An earned doctoral degree in engineering, com-
puter science or other appropriate disciplines

˲˲ A record of accomplishments that justifies ap-
pointment as a tenured full professor

˲˲ A professional history of successfully mentor-
ing those in junior positions

Highly desirable qualifications include:
˲˲ A record of securing competitive research funding
˲˲ A record of sustained scholarly achievements, 

including publications in highly respected ven-
ues and international peer recognition

˲˲ A history of working in teams, especially those 
that span multiple disciplines

˲˲ A record of directing PhD students to completion

Located in Orlando, FL, UCF is one of the na-
tion’s most dynamic metropolitan research uni-
versities, having been recognized as a “very high 
research activity” institution by the Carnegie 
Foundation, and has been ranked consistently 
in the top 10 in the country in the impact of its 
patents. UCF is also a very academically diverse 
institution, offering 91 undergraduate, 86 mas-
ters and 31doctoral programs along with the M.D. 
degree in its College of Medicine.

Candidates must submit all documents 
on-line to http://www.jobswithucf.com/post-
ings/37068. Applicants must submit all required 
documents at the time of application. Required 
documents include a signed cover letter; com-
plete curriculum vitae; maximum two-page state-
ment each outlining research vision and teaching 
interests; a list of at least three references with 
contact information. Review of applications will 
begin immediately and continue until the posi-
tions are filled.

Interested persons with questions about the 
positions may contact the Search Committee 
Chair, Dr. MJ Soileau, Vice President of Research, 
at mj@ucf.edu.

UCF is an equal opportunity, affirmative 
action employer and encourages the candida-
cies of women, members of racial and ethnic 
minorities, and persons with disabilities. All 
searches and documents are subject to the 
Sunshine and public records laws of the State 
of Florida.

University of Maryland,  
Baltimore County
Computer Science and Electrical  
Engineering Department
Two Tenure Track Assistant Professor 
Positions, Computer Science

We invite applications for two tenure track po-
sitions in Computer Science at the rank of As-
sistant Professor to begin in August 2014. All 
areas will be considered, but we are especially 
interested in candidates in systems, security, 
or data analytics. Unusually strong candidates 
at the Associate Professor level will be consid-
ered. Submit a cover letter, brief statement of 
teaching and research experience and inter-
ests, CV, and three letters of recommendation. 
See http://csee.umbc.edu/about/jobs/ for more 
information about this search and concurrent 
searches for a tenure track position in Electri-
cal and Computer Engineering and a Professor 
of the Practice position in Computer Science. 
UMBC is an AA/EOE.

The Cooper Union for the  
Advancement of Science and Art
Open-Rank Faculty Position  
in Computer Science

The Albert Nerken School of Engineering at The 
Cooper Union for the Advancement of Sci-
ence and Art seeks outstanding candidates for 
a tenured or tenure-track faculty position in 
Computer Science. The Nerken School is dis-
tinguished by a curriculum that is rigorous, 
analytical, and project-oriented and a student 
body that is highly gifted. The School’s new 
initiatives emphasize computing, entrepre-
neurship, design, undergraduate research, 
global partnerships, graduate programs, and 
teaching innovation. Faculty will develop 
computing and entrepreneurship programs, 
leveraging MOOC content and the New York 
City tech community. Preferred candidates will 
have established records of funded research in 
information-based sciences, with ability to in-
volve undergraduates in applied research and 
tech transfer.

In the heart of Manhattan, The Cooper Union 
offers an unparalleled education in engineering, 
art, and architecture. The College typically admits 
8 percent of applicants and ranks number one 
among Baccalaureate Colleges in the Northeast 
in U.S. News & World Report.

A PhD is required. Please submit a C.V., state-
ments of teaching and research, and contact 
information of at least three references to hr@
cooper.edu. Direct questions to NerkenSchool@

gmail.com. Benefits and work terms are negotiat-
ed through the Cooper Union Federation of Col-
lege Teachers bargaining unit. The Cooper Union 
is an AA/EOE by choice. Women and individuals 
from underrepresented groups are encouraged 
to apply.

University of Central Florida
Ten Provost Professorships in Engineering & 
Computer Science

The University of Central Florida (UCF) 
announces multiple Provost Professorships 
to be filled by the College of Engineering 
and Computer Science (CECS). The Provost 
Professorship is accompanied with a yearly 
allocation of discretionary funds to facilitate 
the candidate’s expected extraordinary research 
productivity.

We are seeking outstanding candidates in 
all disciplines associated with the College’s 
research mission and are especially interested 
in candidates who work across academic 
fields both within and outside of the College’s 
domains. With this targeted hiring initiative, the 
University seeks to build on its existing strengths 
in the engineering and computing disciplines by 
adding senior faculty members who will have 
an immediate impact on the College’s research 
funding and scholarly productivity.

Specific requirements for appointment to one of 
these positions are:
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University of Rochester
Department of Computer Science
Faculty Positions in Computer Science: 
Experimental Systems and Data Science

The University of Rochester Department of 
Computer Science seeks applicants for multiple 
tenure track positions in the broad areas of ex-
perimental systems and data science research 
(including but not exclusively focused on very 
large data-driven systems, machine learning 
and/or optimization, networks and distributed 
systems, operating systems, sustainable systems, 
security, and cloud computing). Candidates 
must have a PhD in computer science or a related 
discipline.

Apply online at
https://www.rochester.edu/fort/csc

Consideration of applications at any rank will 
begin immediately and continue until all inter-
view slots are filled. Candidates should apply no 
later than January 1, 2014 for full consideration. 
Applications that arrive after this date incur a 
probability of being overlooked or arriving after 
the interview schedule is filled up.

The Department of Electrical and Computer  
Engineering
(http://www.ece.rochester.edu/about/jobs.html) 
is also searching for a candidate broadly oriented 
toward data science. While the two searches are 
concurrent and plan to coordinate, candidates 
should apply to the department/s that best match-
es their academic background and interests.

The Department of Computer Science is a re-
search-oriented department with a distinguished 
history of contributions in systems, theory, artifi-
cial intelligence, and HCI. We have a collabora-
tive culture and strong ties to electrical and com-
puter engineering, cognitive science, linguistics, 
and several departments in the medical center. 
Over the past decade, a third of the department’s 
PhD graduates have won tenure-track faculty po-
sitions, and its alumni include leaders at major 
research laboratories such as Google, Microsoft, 
and IBM.

The University of Rochester is a private, Tier 
I research institution located in western New 
York State. It consistently ranks among the top 
30 institutions, both public and private, in fed-
eral funding for research and development. The 
university has made substantial investments in 
computing infrastructure through the Center 
for Integrated Research Computing (CIRC) and 
the Health Sciences Center for Computational 
Innovation (HSCCI). Teaching loads are light 
and classes are small. Half of all undergradu-
ates go on to post-graduate or professional 
education. The university includes the Eastman 
School of Music, a premiere music conserva-
tory, and the University of Rochester Medical 
Center, a major medical school, research cen-
ter, and hospital system. The greater Rochester 
area is home to over a million people, including 
80,000 students who attend its 8 colleges and 
universities.

The University of Rochester has a strong com-
mitment to diversity and actively encourages ap-
plications from candidates from groups under-
represented in higher education. The University 
is an Equal Opportunity Employer.

The newly launched ShanghaiTech University invites highly qualified candidates to 
fill multiple tenure-track/tenured faculty positions as its core team in the School of 
Information Science and Technology (SIST). Candidates should have exceptional 
academic records or demonstrate strong potential in cutting-edge research areas 
of information science and technology. They must be fluent in English. Overseas 
academic connection or background is highly desired.

ShanghaiTech is built as a world-class research university for training future generations 
of scientists, entrepreneurs, and technological leaders. Located in Zhangjiang High-
Tech Park in the cosmopolitan Shanghai, ShanghaiTech is ready to trail-blaze a new 
education system in China. Besides establishing and maintaining a world-class 
research profile, faculty candidates are also expected to contribute substantially to 
graduate and undergraduate education within the school.

Academic Disciplines: We seek candidates in all cutting edge areas of information 
science and technology. Our recruitment focus includes, but is not limited to: computer 
architecture and technologies, nano-scale electronics, high speed and RF circuits, 
intelligent and integrated signal processing systems, computational foundations, big data, 
data mining, visualization, computer vision, bio-computing, smart energy/power devices 
and systems, next-generation networking, as well as inter-disciplinary areas involving 
information science and technology.  

Compensation and Benefits: Salary and startup funds are highly competitive, 
commensurate with experience and academic accomplishment. We also offer a 
comprehensive benefit package to employees and eligible dependents, including 
housing benefits. All regular ShanghaiTech faculty members will be within its new 
tenure-track system commensurate with international practice for performance 
evaluation and promotion. 

Qualifications:
• A detailed research plan and demonstrated record/potentials;
• Ph.D. (Electrical Engineering, Computer Engineering, Computer Science, or related field);
• A minimum relevant research experience of 4 years.

Applications: Submit (in English) a cover letter, a 2-page research plan, a CV 
plus copies of 3 most significant publications, and names of three referees to:  
sist@shanghaitech.edu.cn by March 31st, 2014 (until positions are filled). For more 
information, visit http://www.shanghaitech.edu.cn.

ShanghaiTech University

Faculty
Search

Advertising in Career Opportunities 
How to Submit a Classified Line Ad: Send an e-mail to  
acmmediasales@acm.org. Please include text, and indicate the issue/or 
issues where the ad will appear, and a contact name and number.

Estimates: An insertion order will then be e-mailed back to you. The ad 
will by typeset according to CACM guidelines. NO PROOFS can be sent.  
Classified line ads are NOT commissionable.

Rates: $325.00 for six lines of text, 40 characters per line. $32.50 for each 
additional line after the first six. The MINIMUM is six lines.

Deadlines: 20th of the month/2 months prior to issue date.  For latest 
deadline info, please contact:

acmmediasales@acm.org

Career Opportunities Online: Classified and recruitment display ads 
receive a free duplicate listing on our website at:

http://jobs.acm.org 

Ads are listed for a period of 30 days.
For More Information Contact: 

ACM Media Sales
at 212-626-0686 or 

acmmediasales@acm.org
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Puzzled  
Lowest Number Wins 
Each of these puzzles involves a symmetric game. You will be asked about  
your best strategy, but what does “best strategy” mean? Here, we want a strategy 
that is a “Nash equilibrium” for all players; that is, one with the property that  
if it is followed by all other players, you can do no better than follow it yourself. 
Often, such a strategy requires that players do some randomization; for example,  
in the familiar game “Rock, Paper, Scissors,” the Nash equilibrium strategy  
requires each player to choose rock, paper, or scissors with equal probability.  
As in “Rock, Paper, Scissors,” plays in the games here are done simultaneously,  
with no collaboration allowed, so every man/woman for him/herself.  
For solutions and sources, see next month’s column. 

DOI:10.1145/2559597		  Peter Winkler

Readers are encouraged to submit prospective 
puzzles for future columns to puzzled@cacm.acm.org. 

Peter Winkler (puzzled@cacm.acm.org) is William Morrill 
Professor of Mathematics and Computer Science at 
Dartmouth College, Hanover, NH.

Copyright held by Author/Owner(s).

2. No dollar is found 
this time. Alice and 

Bob instead play a “zero-sum 
game” with their own money. 
Each again writes down a 
positive integer. Lowest integer 
wins $1 from the other player, 
unless it is lower by exactly 1; 
in that case, the player with the 
higher number wins $2 from 
the other player. If the players 
happen to choose the same 
number, no money changes 
hands. What is the highest 
integer you, as Alice, should 
consider writing down? 

3. Three players this 
time, with a $10 prize 

to be given to the player who 
writes down the lowest number 
not written down by any other 
player. For example, if Alice 
and Bob each write “1” and 
Charlie writes “2,” Charlie 
wins the $10. If Alice writes 
“2,” Bob “3,” and Charlie “5,” 
Alice wins. If all three write the 
same number, the prize goes 
unclaimed. What is the highest 
integer you, as Alice, should 
consider writing down? 

Corrections to “Solutions and Sources” (Dec. 2013) to  
“Coin Flipping” (Nov. 2013). Three careful readers pointed 
out there are 12, not 10 (as we said in the solution to 
Problem 1) head-tail sequences of length 5 that take 
on average only 32 flips to occur. In addition, Joseph 
Skudlarek found a sequence (HTTHH or its complement 
THHTT) that gets the first player a better than 1/3 chance 
to win in Problem 2, 9/26, to be exact. 

1. Having found a dollar 
bill on the street, Alice 

and Bob each write down a 
positive integer. Lowest integer 
wins the dollar. If they each 
write the same number, the 
dollar is torn up. What is the 
highest integer you, as Alice, 
should consider writing down?  
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April 26th – May 1st
Toronto, Canada

Inspiring keynotes: Margaret Atwood, Scott Jenson
 

World-leading research findings
 

Courses from HCI legends including Bill Buxton & Don Norman
 

Industry focused HCI in practice & case study sessions

Attend. Be changed. Change the world.

Conference Chairs: Matt Jones, Philippe Palanque
Technical Program Chairs: Tovi Grossman, Albrecht Schmidt

32nd ACM Conference on Human Factors in Computing Systems

chi2014.acm.org  @sig_chi
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